WorldWideScience

Sample records for future human spaceflight

  1. Global Survey on Future Trends in Human Spaceflight: the Implications for Space Tourism

    Science.gov (United States)

    Gurtuna, O.; Garneau, S.

    2002-01-01

    With the much-publicized first ever space tourist flight, of Dennis Tito, and the announcement of the second space tourist flight to take place in April 2002, it is clear that an alternative motivation for human spaceflight has emerged. Human spaceflight is no longer only about meeting the priorities of national governments and space agencies, but is also about the tangible possibility of ordinary people seeing the Earth from a previously exclusive vantage point. It is imperative that major space players look beyond the existing human spaceflight rationale to identify some of the major driving forces behind space tourism, including the evolving market potential and developments in enabling technologies. In order to determine the influence of these forces on the future of commercial human spaceflight, the responses of a Futuraspace survey on future trends in human spaceflight are analyzed and presented. The motivation of this study is to identify sought-after space destinations, explore the expected trends in enabling technologies, and understand the future role of emerging space players. The survey will reflect the opinions of respondents from around the world including North America, Europe (including Russia) and Asia. The profiles of targeted respondents from space industry, government and academia are high-level executives/managers, senior researchers, as well as former and current astronauts. The survey instrument is a questionnaire which is validated by a pilot study. The sampling method is non-probabilistic, targeting as many space experts as possible who fit our intended respondent profile. Descriptive and comparative statistical analysis methods are implemented to investigate both global and regional perceptions of future commercial trends in human spaceflight. This study is not intended to be a formal market study of the potential viability of the space tourism market. Instead, the focus is on the future trends of human spaceflight, by drawing on the

  2. Spaceflight Versus Human Spaceflight

    Science.gov (United States)

    Barr, Stephanie

    2013-09-01

    Spaceflight is challenging. Human spaceflight is far more challenging,.Those familiar with spaceflight recognize that human spaceflight is more than tacking an environmental control system on an existing spacecraft, that there are a number of serious technical challenges involved in sending people out into space and bringing them back home safely.The return trip, bringing the crew back to the surface of the earth safely, is more than just an additional task, it's the new imperative. Differences between manned and unmanned spaceflight are more than technical. The human element forces a change in philosophy, a mindset that will likely touch every aspect of flight from launch through mission and return. Seasoned space professionals used to the paradigms and priorities of unmanned flight need to be cognizant of these differences and some of the implications, perhaps most especially because mission success and human safety priorities are sometimes contradictory.

  3. Future perspectives on space psychology: Recommendations on psychosocial and neurobehavioural aspects of human spaceflight

    Science.gov (United States)

    De La Torre, Gabriel G.; van Baarsen, Berna; Ferlazzo, Fabio; Kanas, Nick; Weiss, Karine; Schneider, Stefan; Whiteley, Iya

    2012-12-01

    Recently the psychological effects of space flight have gained in attention. In uncovering the psychological challenges that individuals and teams can face, we need research options that integrate psychosocial aspects with behavioral, performance, technical and environmental issues. Future perspectives in Space Psychology and Human Spaceflight are reviewed in this paper. The topics covered include psychosocial and neurobehavioural aspects, neurocognitive testing tools, decision making, autonomy and delayed communications, well being, mental health, situational awareness, and methodology. Authors were members of a European Space Agency (ESA) Research Topical Team on Psychosocial and Behavioral Aspects of Human Spaceflight. They discuss the different topics under a common perspective of a theoretical and practical framework, showing interactions, relationships and possible solutions for the different aspects and variables in play. Recommendations for every topic are offered and summarized for future research in the field. The different proposed research ideas can be accomplished using analogs and simulation experiments, short- and long-duration bed rest, and in-flight microgravity studies. These topics are especially important for future Moon and Mars mission design and training.

  4. Evaluating Failures and near Misses in Human Spaceflight History for Lessons for Future Human Spaceflight

    Science.gov (United States)

    Barr, Stephanie

    2010-01-01

    Studies done in the past have drawn on lessons learned with regard to human loss-of-life events. However, an examination of near-fatal accidents can be equally useful, not only in detecting causes, both proximate and systemic, but also for determining what factors averted disaster, what design decisions and/or operator actions prevented catastrophe. Binary pass/fail launch history is often used for risk, but this also has limitations. A program with a number of near misses can look more reliable than a consistently healthy program with a single out-of-family failure. Augmenting reliability evaluations with this near miss data can provide insight and expand on the limitations of a strictly pass/fail evaluation. This paper intends to show how near-miss lessons learned can provide crucial data for any new human spaceflight programs that are interested in sending man into space

  5. 76 FR 24836 - Regulatory Approach for Commercial Orbital Human Spaceflight

    Science.gov (United States)

    2011-05-03

    ... human spaceflight. The FAA will share its current philosophy, but is most interested in the public's... for Commercial Orbital Human Spaceflight AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... information from the public on the regulatory approach to commercial orbital human spaceflight by the FAA...

  6. NASA Human Spaceflight Conjunction Assessment: Recent Conjunctions of Interest

    Science.gov (United States)

    Browns, Ansley C.

    2010-01-01

    This viewgraph presentation discusses a brief history of NASA Human Spaceflight Conjunction Assessment (CA) activities, an overview of NASA CA process for ISS and Shuttle, and recent examples from Human Spaceflight conjunctions.

  7. Spaceflight induced changes in the human proteome.

    Science.gov (United States)

    Kononikhin, Alexey S; Starodubtseva, Natalia L; Pastushkova, Lyudmila Kh; Kashirina, Daria N; Fedorchenko, Kristina Yu; Brhozovsky, Alexander G; Popov, Igor A; Larina, Irina M; Nikolaev, Evgeny N

    2017-01-01

    Spaceflight is one of the most extreme conditions encountered by humans: Individuals are exposed to radiation, microgravity, hypodynamia, and will experience isolation. A better understanding of the molecular processes induced by these factors may allow us to develop personalized countermeasures to minimize risks to astronauts. Areas covered: This review is a summary of literature searches from PubMed, NASA, Roskosmos and the authors' research experiences and opinions. The review covers the available proteomic data on the effects of spaceflight factors on the human body, including both real space missions and ground-based model experiments. Expert commentary: Overall, the authors believe that the present background, methodology and equipment improvements will enhance spaceflight safety and support accumulation of new knowledge on how organisms adapt to extreme conditions.

  8. Building a Shared Definitional Model of Long Duration Human Spaceflight

    Science.gov (United States)

    Orr, M.; Whitmire, A.; Sandoval, L.; Leveton, L.; Arias, D.

    2011-01-01

    In 1956, on the eve of human space travel Strughold first proposed a simple classification of the present and future stages of manned flight that identified key factors, risks and developmental stages for the evolutionary journey ahead. As we look to optimize the potential of the ISS as a gateway to new destinations, we need a current shared working definitional model of long duration human space flight to help guide our path. Initial search of formal and grey literature augmented by liaison with subject matter experts. Search strategy focused on both the use of term long duration mission and long duration spaceflight, and also broader related current and historical definitions and classification models of spaceflight. The related sea and air travel literature was also subsequently explored with a view to identifying analogous models or classification systems. There are multiple different definitions and classification systems for spaceflight including phase and type of mission, craft and payload and related risk management models. However the frequently used concepts of long duration mission and long duration spaceflight are infrequently operationally defined by authors, and no commonly referenced classical or gold standard definition or model of these terms emerged from the search. The categorization (Cat) system for sailing was found to be of potential analogous utility, with its focus on understanding the need for crew and craft autonomy at various levels of potential adversity and inability to gain outside support or return to a safe location, due to factors of time, distance and location.

  9. Urine Pretreatment History and Perspective in NASA Human Spaceflight

    Science.gov (United States)

    Anderson, Molly; Adam, Niklas; Chambers, Antja; Broyan, James

    2015-01-01

    Urine pretreatment is a technology that may seem to have small mass impacts in future spaceflight missions, but can have significant impacts on reliability, life, and performance of the rest of the wastewater management and recovery systems. NASA has experience with several different urine pretreatment systems, including those flow on the space shuttle, evaluated for NASA waste collection systems or used in Russian commodes on ISS, or developed by NASA or industry as alternatives. Each has had unique requirements for shelf life, operational life, and the life or conditions of the stored, treated urine. Each was evaluated under different test conditions depending on mission, and depending on testing experience developed over NASA's history. Those that were flown led to further lessons learned about hardware compatibility and control. As NASA looks forward to human spaceflight missions beyond low Earth orbit, these techniques need to be evaluated in new light. Based on published design reference missions, candidate requirements can be derived for future systems. Initial comparisons between these requirements and previous performance or test results can be performed. In many cases these comparisons reveal data gaps. Successful previous performance is not enough to address current needs.

  10. The Spaceflight Revolution Revisted

    Science.gov (United States)

    Bainbridge, William Sims

    2002-01-01

    There are two models of the future of spaceflight, and there are two theories of how that future might be achieved. The first model of spaceflight assumes that we have already achieved most of what is worth achieving in space, whereas the second imagines it will be possible to build a truly interplanetary civilization in which most human beings live elsewhere than on Earth. The first theory holds that progress comes incrementally from the inexorable working of free markets and political systems, whereas the second believes that revolutionary transformations must sometimes be accomplished by social movements that transcend the ordinary institutions and motivations of mundane existence.

  11. Synthetic Biology and Human Health: Potential Applications for Spaceflight

    Science.gov (United States)

    Karouia, Fathi; Carr, Christopher; Cai, Yizhi; Chen, Y.; Grenon, Marlene; Larios-Sanz, Maia; Jones, Jeffrey A.; Santos, Orlando

    2011-01-01

    Human space travelers experience a unique environment that affects homeostasis and physiologic adaptation. Spaceflight-related changes have been reported in the musculo-skeletal, cardiovascular, neurovestibular, endocrine, and immune systems. The spacecraft environment further subjects the traveler to noise and gravitational forces, as well as airborne chemical, microbiological contaminants, and radiation exposure. As humans prepare for longer duration missions effective countermeasures must be developed, verified, and implemented to ensure mission success. Over the past ten years, synthetic biology has opened new avenues for research and development in areas such as biological control, biomaterials, sustainable energy production, bioremediation, and biomedical therapies. The latter in particular is of great interest to the implementation of long-duration human spaceflight capabilities. This article discusses the effects of spaceflight on humans, and reviews current capabilities and potential needs associated with the health of the astronauts where synthetic biology could play an important role in the pursuit of space exploration.

  12. Technology assessment of human spaceflight - Combining philosophical and technical issues

    Science.gov (United States)

    Fromm, J.; Hoevelmann, G. H.

    1992-08-01

    A transutilitarian rationale is proposed for assessing human spaceflight that is based on objectives for these endeavors and ethical norms of conduct. Specific attention is given to: presupposed/tacit reasons for including man in spaceflight and the restricted notion of rational/justifiable activity. It is shown that economic rationale is insufficient and unsuitable as a means for assessing manned spaceflight, and transutilitarian objectives are compiled that contribute to the motivation for manned flight. The transutilitarian motivations include: pioneering uncharted territory, enhancing national prestige, establishing space-related autonomy, promoting international cooperation, and enhancing science and the quality of human life.

  13. Human Spaceflight Technology Needs - A Foundation for JSC's Technology Strategy

    Science.gov (United States)

    Stecklein, Jonette M.

    2013-01-01

    Human space exploration has always been heavily influenced by goals to achieve a specific mission on a specific schedule. This approach drove rapid technology development, the rapidity of which adds risks as well as provides a major driver for costs and cost uncertainty. The National Aeronautics and Space Administration (NASA) is now approaching the extension of human presence throughout the solar system by balancing a proactive yet less schedule-driven development of technology with opportunistic scheduling of missions as the needed technologies are realized. This approach should provide cost effective, low risk technology development that will enable efficient and effective manned spaceflight missions. As a first step, the NASA Human Spaceflight Architecture Team (HAT) has identified a suite of critical technologies needed to support future manned missions across a range of destinations, including in cis-lunar space, near earth asteroid visits, lunar exploration, Mars moons, and Mars exploration. The challenge now is to develop a strategy and plan for technology development that efficiently enables these missions over a reasonable time period, without increasing technology development costs unnecessarily due to schedule pressure, and subsequently mitigating development and mission risks. NASA's Johnson Space Center (JSC), as the nation s primary center for human exploration, is addressing this challenge through an innovative approach in allocating Internal Research and Development funding to projects. The HAT Technology Needs (TechNeeds) Database has been developed to correlate across critical technologies and the NASA Office of Chief Technologist Technology Area Breakdown Structure (TABS). The TechNeeds Database illuminates that many critical technologies may support a single technical capability gap, that many HAT technology needs may map to a single TABS technology discipline, and that a single HAT technology need may map to multiple TABS technology

  14. Human spaceflight technology needs-a foundation for JSC's technology strategy

    Science.gov (United States)

    Stecklein, J. M.

    Human space exploration has always been heavily influenced by goals to achieve a specific mission on a specific schedule. This approach drove rapid technology development, the rapidity of which added risks and became a major driver for costs and cost uncertainty. The National Aeronautics and Space Administration (NASA) is now approaching the extension of human presence throughout the solar system by balancing a proactive yet less schedule-driven development of technology with opportunistic scheduling of missions as the needed technologies are realized. This approach should provide cost effective, low risk technology development that will enable efficient and effective manned spaceflight missions. As a first step, the NASA Human Spaceflight Architecture Team (HAT) has identified a suite of critical technologies needed to support future manned missions across a range of destinations, including in cis-lunar space, near earth asteroid visits, lunar exploration, Mars moons, and Mars exploration. The challenge now is to develop a strategy and plan for technology development that efficiently enables these missions over a reasonable time period, without increasing technology development costs unnecessarily due to schedule pressure, and subsequently mitigating development and mission risks. NASA's Johnson Space Center (JSC), as the nation's primary center for human exploration, is addressing this challenge through an innovative approach in allocating Internal Research and Development funding to projects. The HAT Technology Needs (Tech Needs) Database has been developed to correlate across critical technologies and the NASA Office of Chief Technologist Technology Area Breakdown Structure (TABS). The TechNeeds Database illuminates that many critical technologies may support a single technical capability gap, that many HAT technology needs may map to a single TABS technology discipline, and that a single HAT technology need may map to multiple TABS technology disciplines. Th

  15. Could spaceflight-associated immune system weakening preclude the expansion of human presence beyond Earth's orbit?

    Science.gov (United States)

    Guéguinou, Nathan; Huin-Schohn, Cécile; Bascove, Matthieu; Bueb, Jean-Luc; Tschirhart, Eric; Legrand-Frossi, Christine; Frippiat, Jean-Pol

    2009-11-01

    This year, we celebrate the 40th birthday of the first landing of humans on the moon. By 2020, astronauts should return to the lunar surface and establish an outpost there that will provide a technical basis for future manned missions to Mars. This paper summarizes major constraints associated with a trip to Mars, presents immunological hazards associated with this type of mission, and shows that our current understanding of the immunosuppressive effects of spaceflight is limited. Weakening of the immune system associated with spaceflight is therefore an area that should be considered more thoroughly before we undertake prolonged space voyages.

  16. Human Spaceflight and American Society: The Record So Far

    Science.gov (United States)

    Murray, Charles

    2002-01-01

    These remarks give me an excuse to revisit a world that Catherine Cox and I had a chance to live in vicariously from 1986 to 1989 when we were researching and writing about Project Apollo. As I thought about it, I realized that actually very few people in this audience have had a chance to live in that world, either vicariously or for real. For most people today, NASA's human spaceflight program is the Shuttle. The NASA you know is an extremely large bureaucracy. The Apollo you know is a historical event. So to kick off today's presentations, I want to be the "Voice of Christmas Past." If we want to think about what is possible for human spaceflight as part of America's future, it is essential to understand how NASA people understood "possible" during the Apollo era. It is also important to understand that the way NASA functioned during the Apollo Program was wildly different from the way NASA functions now. In fact-and I say this with all due respect to the current NASA team members who are doing fine work-the race to the Moon was not really a race against the Russians; it was a race to see if we could get to the Moon before NASA became a bureaucracy, and we won. But the lessons of that experience should be ones that we still have at the front of our minds.

  17. Brain structural plasticity with spaceflight.

    Science.gov (United States)

    Koppelmans, Vincent; Bloomberg, Jacob J; Mulavara, Ajitkumar P; Seidler, Rachael D

    2016-01-01

    Humans undergo extensive sensorimotor adaptation during spaceflight due to altered vestibular inputs and body unloading. No studies have yet evaluated the effects of spaceflight on human brain structure despite the fact that recently reported optic nerve structural changes are hypothesized to occur due to increased intracranial pressure occurring with microgravity. This is the first report on human brain structural changes with spaceflight. We evaluated retrospective longitudinal T2-weighted MRI scans and balance data from 27 astronauts (thirteen ~2-week shuttle crew members and fourteen ~6-month International Space Station crew members) to determine spaceflight effects on brain structure, and whether any pre to postflight brain changes are associated with balance changes. Data were obtained from the NASA Lifetime Surveillance of Astronaut Health. Brain scans were segmented into gray matter maps and normalized into MNI space using a stepwise approach through subject specific templates. Non-parametric permutation testing was used to analyze pre to postflight volumetric gray matter changes. We found extensive volumetric gray matter decreases, including large areas covering the temporal and frontal poles and around the orbits. This effect was larger in International Space Station versus shuttle crew members in some regions. There were bilateral focal gray matter increases within the medial primary somatosensory and motor cortex; i.e., the cerebral areas where the lower limbs are represented. These intriguing findings are observed in a retrospective data set; future prospective studies should probe the underlying mechanisms and behavioral consequences.

  18. Moving NASA Beyond Low Earth Orbit: Future Human-Automation-Robotic Integration Challenges

    Science.gov (United States)

    Marquez, Jessica

    2016-01-01

    This presentation will provide an overview of current human spaceflight operations. It will also describe how future exploration missions will have to adapt and evolve in order to deal with more complex missions and communication latencies. Additionally, there are many implications regarding advanced automation and robotics, and this presentation will outline future human-automation-robotic integration challenges.

  19. Defending spaceflight: The echoes of Apollo

    Science.gov (United States)

    Rovetto, R. J.

    2016-12-01

    This paper defends, and emphasizes the importance of, spaceflight, broadly construed to include human and unmanned spaceflight, space science, exploration and development. Within this discourse, I provide counter-replies to remarks by physicist Dr. Steven Weinberg against my previous support of human spaceflight. In this defense of peaceful spaceflight I draw upon a variety of sources. Although a focus is human spaceflight, human and unmanned modes must not be treated as an either-or opposition. Rather, each has a critical role to play in moving humanity forward as a spacefaring species. In the course of this communication, I also stress the perennial role of space agencies as science and technology-drivers, and their function to provide a stable and unified platform for space programs.

  20. Fundamentals of Anesthesiology for Spaceflight

    OpenAIRE

    Komorowski, M; Fleming, SF; Kirkpatrick, AK

    2016-01-01

    During future space exploration missions, the risk of medical events requiring surgery is significant, and will likely rely on anesthetic techniques. Available options during spaceflight include local, regional (nerve block) and general anesthesia. No actual invasive anesthesia was ever performed on humans in space or immediately after landing, and the safe delivery of such advanced medical care in this context is challenging. In the first section of this review, Human adaptation to the space...

  1. Radiation protection for human spaceflight

    International Nuclear Information System (INIS)

    Hajek, M.

    2009-01-01

    Cosmic radiation exposure is one of the most significant risks associated with human space exploration. Except for the principles of justification and optimization (ALARA), the concepts of terrestrial radiation protection are of limited applicability to human spaceflight, as until now only few experimentally verified data on the biological effectiveness of heavy ions and the dose distribution within the human body exist. Instead of applying the annual dose limits for workers on ground also to astronauts, whose careers are of comparatively short duration, the overall lifetime risk is used as a measure. For long-term missions outside Earth's magnetic field, the acceptable level of risk has not yet been defined, since there is not enough information available to estimate the risk of effects to the central nervous system and of potential non-cancer radiation health hazards. (orig.)

  2. Brain structural plasticity with spaceflight

    OpenAIRE

    Koppelmans, Vincent; Bloomberg, Jacob J; Mulavara, Ajitkumar P; Seidler, Rachael D

    2016-01-01

    Humans undergo extensive sensorimotor adaptation during spaceflight due to altered vestibular inputs and body unloading. No studies have yet evaluated the effects of spaceflight on human brain structure despite the fact that recently reported optic nerve structural changes are hypothesized to occur due to increased intracranial pressure occurring with microgravity. This is the first report on human brain structural changes with spaceflight. We evaluated retrospective longitudinal T2-weighted ...

  3. Becoming Earth Independent: Human-Automation-Robotics Integration Challenges for Future Space Exploration

    Science.gov (United States)

    Marquez, Jessica J.

    2016-01-01

    Future exploration missions will require NASA to integrate more automation and robotics in order to accomplish mission objectives. This presentation will describe on the future challenges facing the human operator (astronaut, ground controllers) as we increase the amount of automation and robotics in spaceflight operations. It will describe how future exploration missions will have to adapt and evolve in order to deal with more complex missions and communication latencies. This presentation will outline future human-automation-robotic integration challenges.

  4. The Challenges and Achievements in 50 Years of Human Spaceflight

    Science.gov (United States)

    Hawley, Steven A.

    2012-01-01

    On April 12, 1961 the era of human spaceflight began with the orbital flight of Cosmonaut Yuri Gagarin. On May 5, 1961 The United States responded with the launch of Alan Shepard aboard Freedom 7 on the first flight of Project Mercury. The focus of the first 20 years of human spaceflight was developing the fundamental operational capabilities and technologies required for a human mission to the Moon. The Mercury and Gemini Projects demonstrated launch and entry guidance, on-orbit navigation, rendezvous, extravehicular activity, and flight durations equivalent to a round-trip to the Moon. Heroes of this epoch included flight directors Chris Kraft, Gene Kranz, and Glynn Lunney along with astronauts like John Young, Jim Lovell, Tom Stafford, and Neil Armstrong. The "Race to the Moon” was eventually won by the United States with the landing of Apollo 11 on July 20, 1969. The Apollo program was truncated at 11 missions and a new system, the Space Shuttle, was developed which became the focus of the subsequent 30 years. Although never able to meet the flight rate or cost promises made in the 1970s, the Shuttle nevertheless left a remarkable legacy of accomplishment. The Shuttle made possible the launch and servicing of the Hubble Space Telescope and diverse activities such as life science research and classified national security missions. The Shuttle launched more than half the mass ever put into orbit and its heavy-lift capability and large payload bay enabled the on-orbit construction of the International Space Station. The Shuttle also made possible spaceflight careers for scientists who were not military test pilots - people like me. In this talk I will review the early years of spaceflight and share my experiences, including two missions with HST, from the perspective of a five-time flown astronaut and a senior flight operations manager.

  5. NASA Human Spaceflight Scenarios - Do All Our Models Still Say No?

    Science.gov (United States)

    Zapata, Edgar

    2017-01-01

    human spaceflight differently. 1) If costs have traditionally been so high that adding them up is discouraging, are there any new facts on the ground offering paths to significantly lower costs? 2) If NASA's spaceflight budget and process is an over-arching constraint, with its planning limitations favoring short-term outlooks, is there a way to step outside the budget box? 3) If life cycle answers have historically been too uncertain to be useful, is there a process where stakeholders gain valuable insights merely from emphasizing a common understanding around questions? We analyze the potential life cycle cost of assorted NASA human spaceflight architectures - an architecture as a sum of individual systems, working together. With the prior questions of high costs, limited budgets and uncertainties in mind, public private partnerships are central in these architectures. The cost data for current commercial public private partnerships is encouraging, as are cost estimates for future partnership approaches beyond low Earth orbit. Private capital, directly or indirectly, an ingredient of public private partnerships, may be a significant factor in finding a path around the limits of the NASA spaceflight budget. Also, understanding and reviewing the pros, cons and uncertainties of assorted architectures can assist in developing a common understanding around key questions as important if not more so than the numbers and answers. Lastly, a scenario planning technique is briefly explored that can mature a common understanding about the agencies situation at hand and how diverse stakeholders can go forward together. Scenario planning, rather than focusing on answers, places emphasis on stakeholders developing a common understanding about the future. Putting aside costs, this is especially true of questions about sustainability and growth, results, benefits and expectations. While efficiency exercises or analysis look to reduce resources in one place to apply them elsewhere

  6. Human spaceflight and an asteroid redirect mission: Why?

    Science.gov (United States)

    Burchell, M. J.

    2014-08-01

    The planning of human spaceflight programmes is an exercise in careful rationing of a scarce and expensive resource. Current NASA plans are to develop the new capability for human-rated launch into space to replace the Space Transportation System (STS), more commonly known as the Space Shuttle, combined with a heavy lift capability, and followed by an eventual Mars mission. As an intermediate step towards Mars, NASA proposes to venture beyond Low Earth Orbit to cis-lunar space to visit a small asteroid which will be captured and moved to lunar orbit by a separate robotic mission. The rationale for this and how to garner support from the scientific community for such an asteroid mission are discussed. Key points that emerge are that a programme usually has greater legitimacy when it emerges from public debate, mostly via a Presidential Commission, a report by the National Research Council or a Decadal Review of science goals etc. Also, human spaceflight missions need to have support from a wide range of interested communities. Accordingly, an outline scientific case for a human visit to an asteroid is made. Further, it is argued here that the scientific interest in an asteroid mission needs to be included early in the planning stages, so that the appropriate capabilities (here the need for drilling cores and carrying equipment to, and returning samples from, the asteroid) can be included.

  7. Spaceflight-Induced Intracranial Hypertension.

    Science.gov (United States)

    Michael, Alex P; Marshall-Bowman, Karina

    2015-06-01

    Although once a widely speculated about and largely theoretical topic, spaceflight-induced intracranial hypertension has gained acceptance as a distinct clinical phenomenon, yet the underlying physiological mechanisms are still poorly understood. In the past, many terms were used to describe the symptoms of malaise, nausea, vomiting, and vertigo, though longer duration spaceflights have increased the prevalence of overlapping symptoms of headache and visual disturbance. Spaceflight-induced visual pathology is thought to be a manifestation of increased intracranial pressure (ICP) because of its similar presentation to cases of known intracranial hypertension on Earth as well as the documentation of increased ICP by lumbar puncture in symptomatic astronauts upon return to gravity. The most likely mechanisms of spaceflight-induced increased ICP include a cephalad shift of body fluids, venous outflow obstruction, blood-brain barrier breakdown, and disruption to CSF flow. The relative contribution of increased ICP to the symptoms experienced during spaceflight is currently unknown, though other factors recently posited to contribute include local effects on ocular structures, individual differences in metabolism, and the vasodilator effects of carbon dioxide. This review article attempts to consolidate the literature regarding spaceflight-induced intracranial hypertension and distinguish it from other pathologies with similar symptomatology. It discusses the proposed physiological causes and the pathological manifestations of increased ICP in the spaceflight environment and provides considerations for future long-term space travel. In the future, it will be critical to develop countermeasures so that astronauts can participate at their peak potential and return safely to Earth.

  8. Virtual reality: Avatars in human spaceflight training

    Science.gov (United States)

    Osterlund, Jeffrey; Lawrence, Brad

    2012-02-01

    With the advancements in high spatial and temporal resolution graphics, along with advancements in 3D display capabilities to model, simulate, and analyze human-to-machine interfaces and interactions, the world of virtual environments is being used to develop everything from gaming, movie special affects and animations to the design of automobiles. The use of multiple object motion capture technology and digital human tools in aerospace has demonstrated to be a more cost effective alternative to the cost of physical prototypes, provides a more efficient, flexible and responsive environment to changes in the design and training, and provides early human factors considerations concerning the operation of a complex launch vehicle or spacecraft. United Space Alliance (USA) has deployed this technique and tool under Research and Development (R&D) activities on both spacecraft assembly and ground processing operations design and training on the Orion Crew Module. USA utilizes specialized products that were chosen based on functionality, including software and fixed based hardware (e.g., infrared and visible red cameras), along with cyber gloves to ensure fine motor dexterity of the hands. The key findings of the R&D were: mock-ups should be built to not obstruct cameras from markers being tracked; a mock-up toolkit be assembled to facilitate dynamic design changes; markers should be placed in accurate positions on humans and flight hardware to help with tracking; 3D models used in the virtual environment be striped of non-essential data; high computational capable workstations are required to handle the large model data sets; and Technology Interchange Meetings with vendors and other industries also utilizing virtual reality applications need to occur on a continual basis enabling USA to maintain its leading edge within this technology. Parameters of interest and benefit in human spaceflight simulation training that utilizes virtual reality technologies are to

  9. On Orbit and Beyond Psychological Perspectives on Human Spaceflight

    CERN Document Server

    2013-01-01

    As we stand poised on the verge of a new era of spaceflight, we must rethink every element, including the human dimension. This book explores some of the contributions of psychology to yesterday’s great space race, today’s orbiter and International Space Station missions, and tomorrow’s journeys beyond Earth’s orbit. Early missions into space were typically brief, and crews were small, often drawn from a single nation. As international cooperation in space exploration has increased over the decades, the challenges of communicating across cultural boundaries and dealing with interpersonal conflicts have become all the more important, requiring different coping skills and sensibilities than “the right stuff” expected of early astronauts. As astronauts travel to asteroids or establish a permanent colony on the Moon, with the eventual goal of reaching Mars, the duration of expeditions will increase markedly, as will the psychosocial stresses. Away from their home planet for extended times, future spac...

  10. The elements of a commercial human spaceflight safety reporting system

    Science.gov (United States)

    Christensen, Ian

    2017-10-01

    In its report on the SpaceShipTwo accident the National Transportation Safety Board (NTSB) included in its recommendations that the Federal Aviation Administration (FAA) ;in collaboration with the commercial spaceflight industry, continue work to implement a database of lessons learned from commercial space mishap investigations and encourage commercial space industry members to voluntarily submit lessons learned.; In its official response to the NTSB the FAA supported this recommendation and indicated it has initiated an iterative process to put into place a framework for a cooperative safety data sharing process including the sharing of lessons learned, and trends analysis. Such a framework is an important element of an overall commercial human spaceflight safety system.

  11. Cardiac output by pulse contour analysis does not match the increase measured by rebreathing during human spaceflight.

    Science.gov (United States)

    Hughson, Richard L; Peterson, Sean D; Yee, Nicholas J; Greaves, Danielle K

    2017-11-01

    Pulse contour analysis of the noninvasive finger arterial pressure waveform provides a convenient means to estimate cardiac output (Q̇). The method has been compared with standard methods under a range of conditions but never before during spaceflight. We compared pulse contour analysis with the Modelflow algorithm to estimates of Q̇ obtained by rebreathing during preflight baseline testing and during the final month of long-duration spaceflight in nine healthy male astronauts. By Modelflow analysis, stroke volume was greater in supine baseline than seated baseline or inflight. Heart rate was reduced in supine baseline so that there were no differences in Q̇ by Modelflow estimate between the supine (7.02 ± 1.31 l/min, means ± SD), seated (6.60 ± 1.95 l/min), or inflight (5.91 ± 1.15 l/min) conditions. In contrast, rebreathing estimates of Q̇ increased from seated baseline (4.76 ± 0.67 l/min) to inflight (7.00 ± 1.39 l/min, significant interaction effect of method and spaceflight, P < 0.001). Pulse contour analysis utilizes a three-element Windkessel model that incorporates parameters dependent on aortic pressure-area relationships that are assumed to represent the entire circulation. We propose that a large increase in vascular compliance in the splanchnic circulation invalidates the model under conditions of spaceflight. Future spaceflight research measuring cardiac function needs to consider this important limitation for assessing absolute values of Q̇ and stroke volume. NEW & NOTEWORTHY Noninvasive assessment of cardiac function during human spaceflight is an important tool to monitor astronaut health. This study demonstrated that pulse contour analysis of finger arterial blood pressure to estimate cardiac output failed to track the 46% increase measured by a rebreathing method. These results strongly suggest that alternative methods not dependent on pulse contour analysis are required to track cardiac function in spaceflight

  12. Commercial Human Spaceflight: Self-Regulation is the Future

    Science.gov (United States)

    Sgobba, Tommaso

    2013-09-01

    In 2004, the US private spaceflight industry welcomed a law (i.e. the Commercial Space Launch Amendment Act (CSLAA)) postponing until December 23, 2012 or until an accident occurs, the ability by the FAA to issue safety standards and regulations except for aspects of public safety. The Congress later extended the original deadline nearly three years to October 1, 2015.It goes without saying that while government regulations are postponed a commercial spaceflight company has in any case all interest to build a safe vehicles according to the state-of-art. No doubt that their engineers will routinely apply well established technical standards for developing or procuring subsystems and equipment, like pressurized tanks, batteries or pyro valves. They will also at certain points take decisions about redundancy levels when defining, for example, the on-board computers architecture, or the landing system. There will be trade-offs to be made considering cost and mass constraints and acceptable risk thresholds defined. Some key safety decisions will be taken at technical level, other will be necessarily deferred to the company management due to potential impact on the overall project cost and schedule.Therefore the on-going debate is not truly about making or not a commercial space system safe (for those on-board), but about who should bear, at this initial stage of industry development, responsibility to ensure that best practices are known and consistently applied. Responsibility which traditionally belongs to government agencies but that the CSLAA "de facto" delegates to each manufacturer.This paper tries to demonstrate that the traditional model of government establishing detailed safety regulations and certifying compliance is no longer valid for the development of highly advanced systems, and that the current trend is instead for relevant industrial community as a whole to take the lead in developing detailed safety standards and policies and verifying their

  13. The Changes of Gene Expression on Human Hair during Long-Spaceflight

    Science.gov (United States)

    Terada, Masahiro; Mukai, Chiaki; Ishioka, Noriaki; Majima, Hideyuki J.; Yamada, Shin; Seki, Masaya; Takahashi, Rika; Higashibata, Akira; Ohshima, Hiroshi; Sudoh, Masamichi; Minamisawa, Susumu

    Hair has many advantages as the experimental sample. In a hair follicle, hair matrix cells actively divide and these active changes sensitively reflect physical condition on human body. The hair shaft records the metabolic conditions of mineral elements in our body. From human hairs, we can detect physiological informations about the human health. Therefore, we focused on using hair root analysis to understand the effects of spaceflight on astronauts. In 2009, we started a research program focusing on the analysis of astronauts’ hairs to examine the effects of long-term spaceflight on the gene expression in the human body. We want to get basic information to invent the effectivly diagnostic methods to detect the health situations of astronauts during space flight by analyzing human hair. We extracted RNA form the collected samples. Then, these extracted RNA was amplified. Amplified RNA was processed and hybridized to the Whole Human Genome (4×44K) Oligo Microarray (Agilent Technologies) according to the manufacturer’s protocol. Slide scanning was performed using the Agilent DNA Microarray Scanner. Scanning data were normalized with Agilent’s Feature Extraction software. Data preprocessing and analysis were performed using GeneSpring software 11.0.1. Next, Synthesis of cDNA (1 mg) was carried out using the PrimeScript RT reagent Kit (TaKaRa Bio) following the manufacturer’s instructions. The qRT-PCR experiment was performed with SYBR Premix Ex Taq (TaKaRa Bio) using the 7500 Real-Time PCR system (Applied Biosystems). We detected the changes of some gene expressions during spaceflight from both microarray and qRT-PCR data. These genes seems to be related with the hair proliferation. We believe that these results will lead to the discovery of the important factor effected during space flight on the hair.

  14. The effect of spaceflight and microgravity on the human brain.

    Science.gov (United States)

    Van Ombergen, Angelique; Demertzi, Athena; Tomilovskaya, Elena; Jeurissen, Ben; Sijbers, Jan; Kozlovskaya, Inessa B; Parizel, Paul M; Van de Heyning, Paul H; Sunaert, Stefan; Laureys, Steven; Wuyts, Floris L

    2017-10-01

    Microgravity, confinement, isolation, and immobilization are just some of the features astronauts have to cope with during space missions. Consequently, long-duration space travel can have detrimental effects on human physiology. Although research has focused on the cardiovascular and musculoskeletal system in particular, the exact impact of spaceflight on the human central nervous system remains to be determined. Previous studies have reported psychological problems, cephalic fluid shifts, neurovestibular problems, and cognitive alterations, but there is paucity in the knowledge of the underlying neural substrates. Previous space analogue studies and preliminary spaceflight studies have shown an involvement of the cerebellum, cortical sensorimotor, and somatosensory areas and the vestibular pathways. Extending this knowledge is crucial, especially in view of long-duration interplanetary missions (e.g., Mars missions) and space tourism. In addition, the acquired insight could be relevant for vestibular patients, patients with neurodegenerative disorders, as well as the elderly population, coping with multisensory deficit syndromes, immobilization, and inactivity.

  15. Software Engineering for Human Spaceflight

    Science.gov (United States)

    Fredrickson, Steven E.

    2014-01-01

    The Spacecraft Software Engineering Branch of NASA Johnson Space Center (JSC) provides world-class products, leadership, and technical expertise in software engineering, processes, technology, and systems management for human spaceflight. The branch contributes to major NASA programs (e.g. ISS, MPCV/Orion) with in-house software development and prime contractor oversight, and maintains the JSC Engineering Directorate CMMI rating for flight software development. Software engineering teams work with hardware developers, mission planners, and system operators to integrate flight vehicles, habitats, robotics, and other spacecraft elements. They seek to infuse automation and autonomy into missions, and apply new technologies to flight processor and computational architectures. This presentation will provide an overview of key software-related projects, software methodologies and tools, and technology pursuits of interest to the JSC Spacecraft Software Engineering Branch.

  16. PHILOSOPHERS BEFORE AND AFTER SPACEFLIGHT

    OpenAIRE

    Fabio Grigenti

    2011-01-01

    In my contribution, I will show the ways by which philosophers have treated the topic of space-travel before and after its implementation. I will discuss the following points: a) Introduction: the human condition. b) Philosophers before spaceflight: the Astolfo Protocol. c) Philosophers after spaceflight: the Promethean suspect. In this paper I will emphasize the elements of two different and alternative visions of spaceflight that can be found in the Western tradition of philosophical thought.

  17. Brain Activations for Vestibular Stimulation and Dual Tasking Change with Spaceflight

    Science.gov (United States)

    Yuan, Peng; Koppelmans, Vincent; Reuter-Lorenz, Patricia; De Dios, Yiri; Gadd, Nichole; Wood, Scott; Riascos, Roy; Kofman, Igor; Bloomberg, Jacob; Mulavara, Ajitkumar; hide

    2017-01-01

    Previous studies have documented the effects of spaceflight on human physiology and behavior, including muscle mass, cardiovascular function, gait, balance, manual motor control, and cognitive performance. An understanding of spaceflight-related changes provides important information about human adaptive plasticity and facilitates future space travel. In the current study, we evaluated how brain activations associated with vestibular stimulation and dual tasking change as a function of spaceflight. Five crewmembers were included in this study. The durations of their spaceflight missions ranged from 3 months to 7 months. All of them completed at least two preflight assessments and at least one postflight assessment. The preflight sessions occurred, on average, about 198 days and 51 days before launch; the first postflight sessions were scheduled 5 days after return. Functional MRI was acquired during vestibular stimulation and dual tasking, at each session. Vestibular stimulation was administered via skull taps delivered by a pneumatic tactile pulse system placed over the lateral cheekbones. The magnitude of brain activations for vestibular stimulation increased with spaceflight relative to the preflight levels, in frontal areas and the precuneus. In addition, longer flight duration was associated with greater preflight-to-postflight increases in vestibular activation in frontal regions. Functional MRI for finger tapping was acquired during both single-task (finger tapping only) and dual-task (simultaneously performing finger tapping and a secondary counting task) conditions. Preflight-to-post-spaceflight decreases in brain activations for dual tasking were observed in the right postcentral cortex. An association between flight duration and amplitude of flight-related change in activations for dual tasking was observed in the parietal cortex. The spaceflight-related increase in vestibular brain activations suggests that after a long-term spaceflight, more neural

  18. PHILOSOPHERS BEFORE AND AFTER SPACEFLIGHT

    Directory of Open Access Journals (Sweden)

    Fabio Grigenti

    2011-12-01

    Full Text Available In my contribution, I will show the ways by which philosophers have treated the topic of space-travel before and after its implementation. I will discuss the following points: a Introduction: the human condition. b Philosophers before spaceflight: the Astolfo Protocol. c Philosophers after spaceflight: the Promethean suspect. In this paper I will emphasize the elements of two different and alternative visions of spaceflight that can be found in the Western tradition of philosophical thought.

  19. [Remodeling simulation of human femur under bed rest and spaceflight circumstances based on three dimensional finite element analysis].

    Science.gov (United States)

    Yang, Wenting; Wang, Dongmei; Lei, Zhoujixin; Wang, Chunhui; Chen, Shanguang

    2017-12-01

    Astronauts who are exposed to weightless environment in long-term spaceflight might encounter bone density and mass loss for the mechanical stimulus is smaller than normal value. This study built a three dimensional model of human femur to simulate the remodeling process of human femur during bed rest experiment based on finite element analysis (FEA). The remodeling parameters of this finite element model was validated after comparing experimental and numerical results. Then, the remodeling process of human femur in weightless environment was simulated, and the remodeling function of time was derived. The loading magnitude and loading cycle on human femur during weightless environment were increased to simulate the exercise against bone loss. Simulation results showed that increasing loading magnitude is more effective in diminishing bone loss than increasing loading cycles, which demonstrated that exercise of certain intensity could help resist bone loss during long-term spaceflight. At the end, this study simulated the bone recovery process after spaceflight. It was found that the bone absorption rate is larger than bone formation rate. We advise that astronauts should take exercise during spaceflight to resist bone loss.

  20. A truly international lunar base as the next logical step for human spaceflight

    Science.gov (United States)

    Bonneville, R.

    2018-06-01

    A human mission to Mars has been highlighted as the long term goal for space exploration, with intermediate stages such as missions to the Moon and/or to asteroids, but a human mission to Mars will not be feasible before several decades. For the time being the major ambitious accomplishment in the field of human spaceflight is the International Space Station but a human spaceflight programme which would be restricted to Low Earth orbit (LEO) has indeed little interest. Thus the next step in the field of human exploration should be the definition of a new exploration programme beyond LEO, built within a long term perspective. We must acknowledge that science is not the main driver of human space exploration and that the main success of the ISS is to have allowed its partners to work together. The main goal of a new human exploration programme will be to promote international cooperation between the major space-faring countries. The only sensible and feasible objective of a near/mid-term human spaceflight programme should be the edification of a lunar base, under the condition that this base is built as a truly international venture. The ISS in the 1990s had illustrated a calmed relation between the USA, together with Europe, Canada and Japan, and Russia; a lunar base would be the symbol of a similar calmed relation between the same partners and China, and possibly others such as India. For the benefit of all humankind this extra continent, the Moon, should be used only for peaceful purposes like Antarctica today, and should not become the theatre or the stake of conflicts. Such a programme is technically feasible and financially affordable in a rather short term. So let us go to the Moon, but let us get there together.

  1. Effects of Spaceflight on Bone: The Rat as an Animal Model for Human Bone Loss

    Science.gov (United States)

    Halloran, B.; Weider, T.; Morey-Holton, E.

    1999-01-01

    The loss of weight bearing during spaceflight results in osteopenia in humans. Decrements in bone mineral reach 3-10% after as little as 75-184 days in space. Loss of bone mineral during flight decreases bone strength and increases fracture risk. The mechanisms responsible for, and the factors contributing to, the changes in bone induced by spaceflight are poorly understood. The rat has been widely used as an animal model for human bone loss during spaceflight. Despite its potential usefulness, the results of bone studies performed in the rat in space have been inconsistent. In some flights bone formation is decreased and cancellous bone volume reduced, while in others no significant changes in bone occur. In June of 1996 Drs. T. Wronski, S. Miller and myself participated in a flight experiment (STS 78) to examine the effects of glucocorticoids on bone during weightlessness. Technically the 17 day flight experiment was flawless. The results, however, were surprising. Cancellous bone volume and osteoblast surface in the proximal tibial metaphysis were the same in flight and ground-based control rats. Normal levels of cancellous bone mass and bone formation were also detected in the lumbar vertebrae and femoral neck of flight rats. Furthermore, periosteal bone formation rate was found to be identical in flight and ground-based control rats. Spaceflight had little or no effect on bone metabolism! These results prompted us to carefully review the changes in bone observed in, and the flight conditions of previous spaceflight missions.

  2. Nutrition and muscle loss in humans during spaceflight

    Science.gov (United States)

    Stein, T. P.

    1999-01-01

    The protein loss in humans during spaceflight is partly due to a normal adaptive response to a decreased work load on the muscles involved in weight bearing. The process is mediated by changes in prostaglandin release, secondary to the decrease in tension on the affected muscles. On missions, where there is a high level of physical demands on the astronauts, there tends to be an energy deficit, which adds to the muscle protein loss and depletes the body fat reserves. While the adaptive response is a normal part of homeostasis, the additional protein loss from an energy deficit can, in the long run, have a negative effect on health and capability of humans to live and work in space and afterward return to Earth.

  3. Efficacy of Antimicrobials on Bacteria Cultured in a Spaceflight Analogue

    Science.gov (United States)

    Nickerson, CA; Wotring, Virginia; Barrila, Jennifer; Crabbe, Aurelie; Castro, Sarah; Davis, Richard; Rideout, April; McCarthy, Breanne; Ott, C. Mark

    2014-01-01

    . This study investigated the response of three medically significant microorganisms grown in the RWV to antibiotics that could be used on spaceflight missions. Our findings suggest potential alterations in antibiotic efficacy during spaceflight and indicate that future studies on the antibiotic response require additional basic research using the RWV and/or true spaceflight. However, while this analogue has reinforced these potential alterations, the results suggest the best approach for applied forward work is evaluating an in vivo system during spaceflight, including human and rodent studies. The complex nature of the analysis for many antibiotics and organism suggests the best approach to determine in vivo responses during pharmaceutical treatment is evaluating an in vivo system during spaceflight.

  4. Structural Design Requirements and Factors of Safety for Spaceflight Hardware: For Human Spaceflight. Revision A

    Science.gov (United States)

    Bernstein, Karen S.; Kujala, Rod; Fogt, Vince; Romine, Paul

    2011-01-01

    This document establishes the structural requirements for human-rated spaceflight hardware including launch vehicles, spacecraft and payloads. These requirements are applicable to Government Furnished Equipment activities as well as all related contractor, subcontractor and commercial efforts. These requirements are not imposed on systems other than human-rated spacecraft, such as ground test articles, but may be tailored for use in specific cases where it is prudent to do so such as for personnel safety or when assets are at risk. The requirements in this document are focused on design rather than verification. Implementation of the requirements is expected to be described in a Structural Verification Plan (SVP), which should describe the verification of each structural item for the applicable requirements. The SVP may also document unique verifications that meet or exceed these requirements with NASA Technical Authority approval.

  5. The ISS flight of Richard Garriott: a template for medicine and science investigation on future spaceflight participant missions.

    Science.gov (United States)

    Jennings, Richard T; Garriott, Owen K; Bogomolov, Valery V; Pochuev, Vladimir I; Morgun, Valery V; Garriott, Richard A

    2010-02-01

    A total of eight commercial spaceflight participants have launched to the International Space Station (ISS) on Soyuz vehicles. Based on an older mean age compared to career astronauts and an increased prevalence of medical conditions, spaceflight participants have provided the opportunity to learn about the effect of space travel on crewmembers with medical problems. The 12-d Soyuz TMA-13/12 ISS flight of spaceflight participant Richard Garriott included medical factors that required preflight intervention, risk mitigation strategies, and provided the opportunity for medical study on-orbit. Equally important, Mr. Garriott conducted extensive medical, scientific, and educational payload operations during the flight. These included 7 medical experiments and a total of 15 scientific projects such as protein crystal growth, Earth observations/photography, educational projects with schools, and amateur radio. The medical studies included the effect of microgravity on immune function, sleep, bone loss, corneal refractive surgery, low back pain, motion perception, and intraocular pressure. The overall mission success resulted from non-bureaucratic agility in mission planning, cooperation with investigators from NASA, ISS, International Partners, and the Korean Aerospace Research Institute, in-flight support and leadership from a team with spaceflight and Capcom experience, and overall mission support from the ISS program. This article focuses on science opportunities that suborbital and orbital spaceflight participant flights offer and suggests that the science program on Richard Garriott's flight be considered a model for future orbital and suborbital missions. The medical challenges are presented in a companion article.

  6. Spaceflight promotes biofilm formation by Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Wooseong Kim

    Full Text Available Understanding the effects of spaceflight on microbial communities is crucial for the success of long-term, manned space missions. Surface-associated bacterial communities, known as biofilms, were abundant on the Mir space station and continue to be a challenge on the International Space Station. The health and safety hazards linked to the development of biofilms are of particular concern due to the suppression of immune function observed during spaceflight. While planktonic cultures of microbes have indicated that spaceflight can lead to increases in growth and virulence, the effects of spaceflight on biofilm development and physiology remain unclear. To address this issue, Pseudomonas aeruginosa was cultured during two Space Shuttle Atlantis missions: STS-132 and STS-135, and the biofilms formed during spaceflight were characterized. Spaceflight was observed to increase the number of viable cells, biofilm biomass, and thickness relative to normal gravity controls. Moreover, the biofilms formed during spaceflight exhibited a column-and-canopy structure that has not been observed on Earth. The increase in the amount of biofilms and the formation of the novel architecture during spaceflight were observed to be independent of carbon source and phosphate concentrations in the media. However, flagella-driven motility was shown to be essential for the formation of this biofilm architecture during spaceflight. These findings represent the first evidence that spaceflight affects community-level behaviors of bacteria and highlight the importance of understanding how both harmful and beneficial human-microbe interactions may be altered during spaceflight.

  7. Anesthesia during and Immediately after Spaceflight

    Science.gov (United States)

    Seubert, Christoph N.; Price, Catherine; Janelle, Gregory M.

    2006-01-01

    The increasing presence of humans in space and long-duration manned missions to the Moon or Mars pose novel challenges to the delivery of medical care. Even now, cumulative person-days in space exceed 80 years and preparations for a return to the Moon are actively underway. Medical care after an emergent de-orbit or an accident during a non-nominal landing must not only address the specific disease or injuries but also the challenges posed by physiologic adaptations to microgravity. In the highly autonomous situation of a long-term space mission the situation is even more complex, because personnel, equipment, specific training, and clinical experience are by definition limited. To summarize our current knowledge specifically for anesthetic care during and immediately after spaceflight, we will review physiologic adaptations to microgravity with particular emphasis on the resulting anesthetic risks, discuss veterinary experiences with anesthesia in weightlessness or in animals adapted to microgravity, describe current research that pertains to anesthesia and spaceflight and point out unresolved questions for future investigation.

  8. Doing the Impossible George E Mueller and the Management of NASA’s Human Spaceflight Program

    CERN Document Server

    Slotkin, Arthur L

    2012-01-01

    This excellent account of one of the most important personalities in early American human spaceflight history describes for the first time how George E. Mueller, the system manager of the human spaceflight program of the 1960s, applied the SPO methodology and other special considerations, resulting in the success of the Apollo Program. While Wernher von Braun and others did not really readily accept Mueller's approach to system management, they later acknowledged that without it NASA would not have landed astronauts on the Moon by 1969. While Apollo remained Mueller's top priority, from his earliest days at the agency he promoted a robust post-Apollo program, which culminated in Skylab, the Space Shuttle, and the International Space Station. As a result of these efforts, Mueller earned the sobriquet: "the father of the Space Shuttle."

  9. Human spaceflight and space adaptations: Computational simulation of gravitational unloading on the spine

    Science.gov (United States)

    Townsend, Molly T.; Sarigul-Klijn, Nesrin

    2018-04-01

    Living in reduced gravitational environments for a prolonged duration such, as a fly by mission to Mars or an extended stay at the international space station, affects the human body - in particular, the spine. As the spine adapts to spaceflight, morphological and physiological changes cause the mechanical integrity of the spinal column to be compromised, potentially endangering internal organs, nervous health, and human body mechanical function. Therefore, a high fidelity computational model and simulation of the whole human spine was created and validated for the purpose of investigating the mechanical integrity of the spine in crew members during exploratory space missions. A spaceflight exposed spine has been developed through the adaptation of a three-dimensional nonlinear finite element model with the updated Lagrangian formulation of a healthy ground-based human spine in vivo. Simulation of the porohyperelastic response of the intervertebral disc to mechanical unloading resulted in a model capable of accurately predicting spinal swelling/lengthening, spinal motion, and internal stress distribution. The curvature of this space adaptation exposed spine model was compared to a control terrestrial-based finite element model, indicating how the shape changed. Finally, the potential of injury sites to crew members are predicted for a typical 9 day mission.

  10. The Ultimate Destination: Choice of Interplanetary Exploration Path can define Future of Interstellar Spaceflight

    Science.gov (United States)

    Silin, D. V.

    Manned interstellar spaceflight is facing multiple challenges of great magnitude; among them are extremely large distances and the lack of known habitable planets other than Earth. Many of these challenges are applicable to manned space exploration within the Solar System to the same or lesser degree. If these issues are resolved on an interplanetary scale, better position to pursue interstellar exploration can be reached. However, very little progress (if any) was achieved in manned space exploration since the end of Space Race. There is no lack of proposed missions, but all of them require considerable technological and financial efforts to implement while yielding no tangible benefits that would justify their costs. To overcome this obstacle highest priority in future space exploration plans should be assigned to the creation of added value in outer space. This goal can be reached if reductions in space transportation, construction and maintenance of space-based structures costs are achieved. In order to achieve these requirements several key technologies have to be mastered, such as near-Earth object mining, space- based manufacturing, agriculture and structure assembly. To keep cost and difficulty under control next exploration steps can be limited to nearby destinations such as geostationary orbit, low lunar orbit, Moon surface and Sun-Earth L1 vicinity. Completion of such a program will create a solid foundation for further exploration and colonization of the Solar System, solve common challenges of interplanetary and interstellar spaceflight and create useful results for the majority of human population. Another important result is that perception of suitable destinations for interstellar missions will change significantly. If it becomes possible to create habitable and self-sufficient artificial environments in the nearby interplanetary space, Earth-like habitable planets will be no longer required to expand beyond our Solar System. Large fraction of the

  11. Altered Venous Function during Long-Duration Spaceflights

    Directory of Open Access Journals (Sweden)

    Jacques-Olivier Fortrat

    2017-09-01

    Full Text Available Aims: Venous adaptation to microgravity, associated with cardiovascular deconditioning, may contribute to orthostatic intolerance following spaceflight. The aim of this study was to analyze the main parameters of venous hemodynamics with long-duration spaceflight.Methods: Venous plethysmography was performed on 24 cosmonauts before, during, and after spaceflights aboard the International Space Station. Venous plethysmography assessed venous filling and emptying functions as well as microvascular filtration, in response to different levels of venous occlusion pressure. Calf volume was assessed using calf circumference measurements.Results: Calf volume decreased during spaceflight from 2.3 ± 0.3 to 1.7 ± 0.2 L (p < 0.001, and recovered after it (2.3 ± 0.3 L. Venous compliance, determined as the relationship between occlusion pressure and the change in venous volume, increased during spaceflight from 0.090 ± 0.005 to 0.120 ± 0.007 (p < 0.01 and recovered 8 days after landing (0.071 ± 0.005, arbitrary units. The index of venous emptying rate decreased during spaceflight from −0.004 ± 0.022 to −0.212 ± 0.033 (p < 0.001, arbitrary units. The index of vascular microfiltration increased during spaceflight from 6.1 ± 1.8 to 10.6 ± 7.9 (p < 0.05, arbitrary units.Conclusion: This study demonstrated that overall venous function is changed during spaceflight. In future, venous function should be considered when developing countermeasures to prevent cardiovascular deconditioning and orthostatic intolerance with long-duration spaceflight.

  12. Spaceplane Hermes Europe's dream of independent manned spaceflight

    CERN Document Server

    van den Abeelen, Luc

    2017-01-01

    This is the first comprehensive book on the European Hermes program. It tells the fascinating story of how Europe aimed for an independent manned spaceflight capability which was to complement US and Soviet/Russian space activities.In 1975, France decided to expand its plans for automated satellites for materials processing to include the development of a small 10 ton spaceplane to be launched on top of a future heavy-lifting Ariane rocket. This Hermes spaceplane would give Europe its own human spaceflight capability for shuttling crews between Earth and space stations. The European Space Agency backed the proposal. Unfortunately, after detailed studies, the project was cancelled in 1993. If Hermes had been introduced into service, it could have become the preferred "space taxi" for ferrying crews to and from the International Space Station. But that opportunity was lost. This book provides the first look of the complete story of and reasons for the demise of this ambitious program. It also gives an account w...

  13. Radiation protection for human spaceflight; Strahlenschutz in der bemannten Weltraumfahrt

    Energy Technology Data Exchange (ETDEWEB)

    Hajek, M. [Atominstitut, Technische Univ. Wien (Austria)

    2009-07-01

    Cosmic radiation exposure is one of the most significant risks associated with human space exploration. Except for the principles of justification and optimization (ALARA), the concepts of terrestrial radiation protection are of limited applicability to human spaceflight, as until now only few experimentally verified data on the biological effectiveness of heavy ions and the dose distribution within the human body exist. Instead of applying the annual dose limits for workers on ground also to astronauts, whose careers are of comparatively short duration, the overall lifetime risk is used as a measure. For long-term missions outside Earth's magnetic field, the acceptable level of risk has not yet been defined, since there is not enough information available to estimate the risk of effects to the central nervous system and of potential non-cancer radiation health hazards. (orig.)

  14. Future Autonomous and Automated Systems Testbed

    Data.gov (United States)

    National Aeronautics and Space Administration — Trust is the greatest obstacle to implementing greater autonomy and automation (A&A) in the human spaceflight program. The Future Autonomous and Automated...

  15. Urolithiasis and Genitourinary Systems Issues for Spaceflight

    Science.gov (United States)

    Jones, Jeffrey A.; Sargsyan, Ashot; Pietryzk, Robert; Sams, C.; Stepaniak, Phillip; Whitson, P.

    2008-09-01

    Genitourinary medical events have shown to be an issue for both short duration and long duration spaceflight, and are anticipated to also be a potential issue for future exploration missions as well. This is based on actual historical pre-, in- and post-flight medical events, as well as assessment of what future flight challenges lay ahead. For this study, retrospective record review, as well as prospective studies of ultrasound and contingency management procedure development, and oral urinary stone prophylaxis were conducted. Results showed that the incidence of prior urinary calculi in- and post-flight was a risk driver for development of on-orbit countermeasures, as well as diagnostic and therapeutic methods for a possible in-flight calculus contingency. Oral potassium citrate and bisphosphonate preparations show promise for prophylaxis in spaceflight risk reduction. We conclude that a properly developed approach of selection, monitoring, and preventive medicine with effective countermeasures, along with early imaging diagnosis and minimally-invasive contingency intervention, should prevent issues such as urinary calculi from having a significant mission impact for exploration-class spaceflight.

  16. A synergetic use of hydrogen and fuel cells in human spaceflight power systems

    Science.gov (United States)

    Belz, S.

    2016-04-01

    Hydrogen is very flexible in different fields of application of energy conversion. It can be generated by water electrolysis. Stored in tanks it is available for re-electrification by fuel cells. But it is not only the power system, which benefits from use of hydrogen, but also the life support system, which can contain hydrogen consuming technologies for recycling management (e.g. carbon dioxide removal and waste combustion processes). This paper points out various fields of hydrogen use in a human spaceflight system. Depending on mission scenarios, shadow phases, and the need of energy storage, regenerative fuel cell systems can be more efficient than secondary batteries. Here, different power storage concepts are compared by equivalent system mass calculation, thus including impact in the peripheral structure (volume, thermal management, etc.) on the space system. It is also focused on the technical integration aspect, e.g. which peripheral components have to be adapted when hydrogen is also used for life support technologies and what system mass benefit can be expected. Finally, a recommendation is given for the following development steps for a synergetic use of hydrogen and fuel cells in human spaceflight power systems.

  17. GeneLab: A Systems Biology Platform for Spaceflight Omics Data

    Science.gov (United States)

    Reinsch, Sigrid S.; Lai, San-Huei; Chen, Rick; Thompson, Terri; Berrios, Daniel; Fogle, Homer; Marcu, Oana; Timucin, Linda; Chakravarty, Kaushik; Coughlan, Joseph

    2015-01-01

    NASA's mission includes expanding our understanding of biological systems to improve life on Earth and to enable long-duration human exploration of space. Resources to support large numbers of spaceflight investigations are limited. NASA's GeneLab project is maximizing the science output from these experiments by: (1) developing a unique public bioinformatics database that includes space bioscience relevant "omics" data (genomics, transcriptomics, proteomics, and metabolomics) and experimental metadata; (2) partnering with NASA-funded flight experiments through bio-sample sharing or sample augmentation to expedite omics data input to the GeneLab database; and (3) developing community-driven reference flight experiments. The first database, GeneLab Data System Version 1.0, went online in April 2015. V1.0 contains numerous flight datasets and has search and download capabilities. Version 2.0 will be released in 2016 and will link to analytic tools. In 2015 Genelab partnered with two Biological Research in Canisters experiments (BBRIC-19 and BRIC-20) which examine responses of Arabidopsis thaliana to spaceflight. GeneLab also partnered with Rodent Research-1 (RR1), the maiden flight to test the newly developed rodent habitat. GeneLab developed protocols for maxiumum yield of RNA, DNA and protein from precious RR-1 tissues harvested and preserved during the SpaceX-4 mission, as well as from tissues from mice that were frozen intact during spaceflight and later dissected. GeneLab is establishing partnerships with at least three planned flights for 2016. Organism-specific nationwide Science Definition Teams (SDTs) will define future GeneLab dedicated missions and ensure the broader scientific impact of the GeneLab missions. GeneLab ensures prompt release and open access to all high-throughput omics data from spaceflight and ground-based simulations of microgravity and radiation. Overall, GeneLab will facilitate the generation and query of parallel multi-omics data, and

  18. The next phase of life-sciences spaceflight research

    Science.gov (United States)

    Etheridge, Timothy; Nemoto, Kanako; Hashizume, Toko; Mori, Chihiro; Sugimoto, Tomoko; Suzuki, Hiromi; Fukui, Keiji; Yamazaki, Takashi; Higashibata, Akira; Higashitani, Atsushi

    2011-01-01

    Recently we demonstrated that the effectiveness of RNAi interference (RNAi) for inhibiting gene expression is maintained during spaceflight in the worm Caenorhabditis elegans and argued for the biomedical importance of this finding. We also successfully utilized green fluorescent protein (GFP)-tagged proteins to monitor changes in GPF localization during flight. Here we discuss potential applications of RNAi and GFP in spaceflight studies and the ramifications of these experiments for the future of space life-sciences research. PMID:22446523

  19. Evolution of Flexible Multibody Dynamics for Simulation Applications Supporting Human Spaceflight

    Science.gov (United States)

    Huynh, An; Brain, Thomas A.; MacLean, John R.; Quiocho, Leslie J.

    2016-01-01

    During the course of transition from the Space Shuttle and International Space Station programs to the Orion and Journey to Mars exploration programs, a generic flexible multibody dynamics formulation and associated software implementation has evolved to meet an ever changing set of requirements at the NASA Johnson Space Center (JSC). Challenging problems related to large transitional topologies and robotic free-flyer vehicle capture/ release, contact dynamics, and exploration missions concept evaluation through simulation (e.g., asteroid surface operations) have driven this continued development. Coupled with this need is the requirement to oftentimes support human spaceflight operations in real-time. Moreover, it has been desirable to allow even more rapid prototyping of on-orbit manipulator and spacecraft systems, to support less complex infrastructure software for massively integrated simulations, to yield further computational efficiencies, and to take advantage of recent advances and availability of multi-core computing platforms. Since engineering analysis, procedures development, and crew familiarity/training for human spaceflight is fundamental to JSC's charter, there is also a strong desire to share and reuse models in both the non-realtime and real-time domains, with the goal of retaining as much multibody dynamics fidelity as possible. Three specific enhancements are reviewed here: (1) linked list organization to address large transitional topologies, (2) body level model order reduction, and (3) parallel formulation/implementation. This paper provides a detailed overview of these primary updates to JSC's flexible multibody dynamics algorithms as well as a comparison of numerical results to previous formulations and associated software.

  20. The Integrated Impact of Diet on Human Immune Response, the Gut Microbiota, and Nutritional Status During Adaptation to a Spaceflight Analog

    Science.gov (United States)

    Douglas, G. L.; Zwart, S. R.; Young, M.; Kloeris, V.; Crucian, B.; Smith, S. M.; Lorenzi, H.

    2018-01-01

    Spaceflight impacts human physiology, including well documented immune system dysregulation. Diet, immune function, and the microbiome are interlinked, but diet is the only one of these factors that we have the ability to easily, and significantly, alter on Earth or during flight. As we understand dietary impacts on physiology more thoroughly, we may then improve the spaceflight diet to improve crew health and potentially reduce spaceflight-associated physiological alterations. It is expected that increasing the consumption of fruits and vegetables and bioactive compounds (e.g., omega-3 fatty acids, lycopene, flavonoids) and therefore enhancing overall nutritional intake from the nominal shelf-stable, fully-processed space food system could serve as a countermeasure to improve human immunological profiles, the taxonomic profile of the gut microbiota, and nutritional status, especially where currently dysregulated during spaceflight. This interdisciplinary study will determine the effect of the current shelf-stable spaceflight diet compared to an "enhanced" shelf-stable spaceflight diet (25% more foods rich in omega-3 fatty acids, lycopene, flavonoids, and more fruits, and vegetables in general). The NASA Human Exploration Research Analog (HERA) 2017 missions, consisting of four 45-day missions with closed chamber confinement and realistic mission simulation in a high-fidelity mock space vehicle, will serve as a platform to replicate mission stressors and the effects on crew biochemistry, immunology, and the gut microbiome. Bio sampling of crewmembers is scheduled for selected intervals pre- and in-mission. Data collection also includes dietary intake recording. Outcome measures will include immune markers (e.g., peripheral leukocyte distribution, inflammatory cytokine profiles, T cell function), the taxonomic and metatranscriptomic profile of the gut microbiome, and nutritional status biomarkers and metabolites. Statistical evaluations will determine physiological

  1. Spaceflight Flow Cytometry: Design Challenges and Applications

    Science.gov (United States)

    Pappas, Dimitri; Kao, Shih-Hsin; Jeevarajan, Antony S.

    2004-01-01

    Future space exploration missions will require analytical technology capable of providing both autonomous medical care to the crew and investigative capabilities to researchers. While several promising candidate technologies exist for further development, flow cytometry is an attractive technology as it offers both crew health and a wide array of biochemistry and immunology assays. While flow cytometry has been widely used for cellular analysis in both clinical and research settings, the requirements for proper operation in spaceflight impose constraints on any instrument designs. The challenges of designing a spaceflight-ready flow cytometer are discussed, as well as some preliminary results using a prototype system.

  2. Effects of orbital spaceflight on human osteoblastic cell physiology and gene expression

    Science.gov (United States)

    Harris, S. A.; Zhang, M.; Kidder, L. S.; Evans, G. L.; Spelsberg, T. C.; Turner, R. T.

    2000-01-01

    During long-term spaceflight, astronauts lose bone, in part due to a reduction in bone formation. It is not clear, however, whether the force imparted by gravity has direct effects on bone cells. To examine the response of bone forming cells to weightlessness, human fetal osteoblastic (hFOB) cells were cultured during the 17 day STS-80 space shuttle mission. Fractions of conditioned media were collected during flight and shortly after landing for analyses of glucose utilization and accumulation of type I collagen and prostaglandin E(2) (PGE(2)). Total cellular RNA was isolated from flight and ground control cultures after landing. Measurement of glucose levels in conditioned media indicated that glucose utilization occurred at a similar rate in flight and ground control cultures. Furthermore, the levels of type I collagen and PGE(2) accumulation in the flight and control conditioned media were indistinguishable. The steady-state levels of osteonectin, alkaline phosphatase, and osteocalcin messenger RNA (mRNA) were not significantly changed following spaceflight. Gene-specific reductions in mRNA levels for cytokines and skeletal growth factors were detected in the flight cultures using RNase protection assays. Steady-state mRNA levels for interleukin (IL)-1alpha and IL-6 were decreased 8 h following the flight and returned to control levels at 24 h postflight. Also, transforming growth factor (TGF)-beta(2) and TGF-beta(1) message levels were modestly reduced at 8 h and 24 h postflight, although the change was not statistically significant at 8 h. These data suggest that spaceflight did not significantly affect hFOB cell proliferation, expression of type I collagen, or PGE(2) production, further suggesting that the removal of osteoblastic cells from the context of the bone tissue results in a reduced ability to respond to weightlessness. However, spaceflight followed by return to earth significantly impacted the expression of cytokines and skeletal growth factors

  3. Spaceflight enhances cell aggregation and random budding in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Aurélie Crabbé

    Full Text Available This study presents the first global transcriptional profiling and phenotypic characterization of the major human opportunistic fungal pathogen, Candida albicans, grown in spaceflight conditions. Microarray analysis revealed that C. albicans subjected to short-term spaceflight culture differentially regulated 452 genes compared to synchronous ground controls, which represented 8.3% of the analyzed ORFs. Spaceflight-cultured C. albicans-induced genes involved in cell aggregation (similar to flocculation, which was validated by microscopic and flow cytometry analysis. We also observed enhanced random budding of spaceflight-cultured cells as opposed to bipolar budding patterns for ground samples, in accordance with the gene expression data. Furthermore, genes involved in antifungal agent and stress resistance were differentially regulated in spaceflight, including induction of ABC transporters and members of the major facilitator family, downregulation of ergosterol-encoding genes, and upregulation of genes involved in oxidative stress resistance. Finally, downregulation of genes involved in actin cytoskeleton was observed. Interestingly, the transcriptional regulator Cap1 and over 30% of the Cap1 regulon was differentially expressed in spaceflight-cultured C. albicans. A potential role for Cap1 in the spaceflight response of C. albicans is suggested, as this regulator is involved in random budding, cell aggregation, and oxidative stress resistance; all related to observed spaceflight-associated changes of C. albicans. While culture of C. albicans in microgravity potentiates a global change in gene expression that could induce a virulence-related phenotype, no increased virulence in a murine intraperitoneal (i.p. infection model was observed under the conditions of this study. Collectively, our data represent an important basis for the assessment of the risk that commensal flora could play during human spaceflight missions. Furthermore, since the

  4. Spaceflight Microbiology: Benefits for Long Duration Spaceflight and Our Understanding of Microorganisms on Earth

    Science.gov (United States)

    Ott, C. Mark

    2014-01-01

    Spaceflight microbiology is composed of both operational and experimental components that complement each other in our understanding of microbial interactions and their responses in the microgravity of spaceflight. Operationally, efforts to mitigate microbiological risk to the crew and the spacecraft have historically focused on minimizing the number of detectable organisms, relying heavily on preventative measures, including appropriate vehicle design, crew quarantine prior to flight, and stringent microbial monitoring. Preflight monitoring targets have included the astronauts, spaceflight foods, potable water systems, the vehicle air and surfaces, and the cargo carried aboard the spacecraft. This approach has been very successful for earlier missions; however, the construction and long-term habitation of the International Space Station (ISS) has created the need for additional inflight monitoring of the environment and potable water systems using hardware designed for both in-flight microbial enumeration and sample collection and return to Earth. In addition to operational activities, the ISS is providing a research platform to advance our understanding of microbiomes in the built environment. Adding to the research possibilities of this system are multiple reports of unique changes in microbial gene expression and phenotypic responses, including virulence and biofilm formation, in response to spaceflight culture. The tremendous potential of the ISS research platform led the National Research Council to recommend that NASA utilize the ISS as a microbial observatory. Collectively, the findings from operational and research activities on the ISS are expected to both enable future space exploration and translate to basic and applied research on Earth.

  5. Preflight screening techniques for centrifuge-simulated suborbital spaceflight.

    Science.gov (United States)

    Pattarini, James M; Blue, Rebecca S; Castleberry, Tarah L; Vanderploeg, James M

    2014-12-01

    Historically, space has been the venue of the healthy individual. With the advent of commercial spaceflight, we face the novel prospect of routinely exposing spaceflight participants (SPFs) with multiple comorbidities to the space environment. Preflight screening procedures must be developed to identify those individuals at increased risk during flight. We examined the responses of volunteers to centrifuge accelerations mimicking commercial suborbital spaceflight profiles to evaluate how potential SFPs might tolerate such forces. We evaluated our screening process for medical approval of subjects for centrifuge participation for applicability to commercial spaceflight operations. All registered subjects completed a medical questionnaire, physical examination, and electrocardiogram. Subjects with identified concerns including cardiopulmonary disease, hypertension, and diabetes were required to provide documentation of their conditions. There were 335 subjects who registered for the study, 124 who completed all prescreening, and 86 subjects who participated in centrifuge trials. Due to prior medical history, five subjects were disqualified, most commonly for psychiatric reasons or uncontrolled medical conditions. Of the subjects approved, four individuals experienced abnormal physiological responses to centrifuge profiles, including one back strain and three with anxiety reactions. The screening methods used were judged to be sufficient to identify individuals physically capable of tolerating simulated suborbital flight. Improved methods will be needed to identify susceptibility to anxiety reactions. While severe or uncontrolled disease was excluded, many subjects successfully participated in centrifuge trials despite medical histories of disease that are disqualifying under historical spaceflight screening regimes. Such screening techniques are applicable for use in future commercial spaceflight operations.

  6. Transcriptomics, NF-κB Pathway, and Their Potential Spaceflight-Related Health Consequences.

    Science.gov (United States)

    Zhang, Ye; Moreno-Villanueva, Maria; Krieger, Stephanie; Ramesh, Govindarajan T; Neelam, Srujana; Wu, Honglu

    2017-05-31

    In space, living organisms are exposed to multiple stress factors including microgravity and space radiation. For humans, these harmful environmental factors have been known to cause negative health impacts such as bone loss and immune dysfunction. Understanding the mechanisms by which spaceflight impacts human health at the molecular level is critical not only for accurately assessing the risks associated with spaceflight, but also for developing effective countermeasures. Over the years, a number of studies have been conducted under real or simulated space conditions. RNA and protein levels in cellular and animal models have been targeted in order to identify pathways affected by spaceflight. Of the many pathways responsive to the space environment, the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) network appears to commonly be affected across many different cell types under the true or simulated spaceflight conditions. NF-κB is of particular interest, as it is associated with many of the spaceflight-related health consequences. This review intends to summarize the transcriptomics studies that identified NF-κB as a responsive pathway to ground-based simulated microgravity or the true spaceflight condition. These studies were carried out using either human cell or animal models. In addition, the review summarizes the studies that focused specifically on NF-κB pathway in specific cell types or organ tissues as related to the known spaceflight-related health risks including immune dysfunction, bone loss, muscle atrophy, central nerve system (CNS) dysfunction, and risks associated with space radiation. Whether the NF-κB pathway is activated or inhibited in space is dependent on the cell type, but the potential health impact appeared to be always negative. It is argued that more studies on NF-κB should be conducted to fully understand this particular pathway for the benefit of crew health in space.

  7. Transcriptomics, NF-κB Pathway, and Their Potential Spaceflight-Related Health Consequences

    Directory of Open Access Journals (Sweden)

    Ye Zhang

    2017-05-01

    Full Text Available In space, living organisms are exposed to multiple stress factors including microgravity and space radiation. For humans, these harmful environmental factors have been known to cause negative health impacts such as bone loss and immune dysfunction. Understanding the mechanisms by which spaceflight impacts human health at the molecular level is critical not only for accurately assessing the risks associated with spaceflight, but also for developing effective countermeasures. Over the years, a number of studies have been conducted under real or simulated space conditions. RNA and protein levels in cellular and animal models have been targeted in order to identify pathways affected by spaceflight. Of the many pathways responsive to the space environment, the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB network appears to commonly be affected across many different cell types under the true or simulated spaceflight conditions. NF-κB is of particular interest, as it is associated with many of the spaceflight-related health consequences. This review intends to summarize the transcriptomics studies that identified NF-κB as a responsive pathway to ground-based simulated microgravity or the true spaceflight condition. These studies were carried out using either human cell or animal models. In addition, the review summarizes the studies that focused specifically on NF-κB pathway in specific cell types or organ tissues as related to the known spaceflight-related health risks including immune dysfunction, bone loss, muscle atrophy, central nerve system (CNS dysfunction, and risks associated with space radiation. Whether the NF-κB pathway is activated or inhibited in space is dependent on the cell type, but the potential health impact appeared to be always negative. It is argued that more studies on NF-κB should be conducted to fully understand this particular pathway for the benefit of crew health in space.

  8. Effect of a 17 day spaceflight on contractile properties of human soleus muscle fibres

    Science.gov (United States)

    Widrick, J. J.; Knuth, S. T.; Norenberg, K. M.; Romatowski, J. G.; Bain, J. L.; Riley, D. A.; Karhanek, M.; Trappe, S. W.; Trappe, T. A.; Costill, D. L.; hide

    1999-01-01

    1. Soleus biopsies were obtained from four male astronauts 45 days before and within 2 h after a 17 day spaceflight. 2. For all astronauts, single chemically skinned post-flight fibres expressing only type I myosin heavy chain (MHC) developed less average peak Ca2+ activated force (Po) during fixed-end contractions (0.78 +/- 0. 02 vs. 0.99 +/- 0.03 mN) and shortened at a greater mean velocity during unloaded contractions (Vo) (0.83 +/- 0.02 vs. 0.64 +/- 0.02 fibre lengths s-1) than pre-flight type I fibres. 3. The flight-induced decline in absolute Po was attributed to reductions in fibre diameter and/or Po per fibre cross-sectional area. Fibres from the astronaut who experienced the greatest relative loss of peak force also displayed a reduction in Ca2+ sensitivity. 4. The elevated Vo of the post-flight slow type I fibres could not be explained by alterations in myosin heavy or light chain composition. One alternative possibility is that the elevated Vo resulted from an increased myofilament lattice spacing. This hypothesis was supported by electron micrographic analysis demonstrating a reduction in thin filament density post-flight. 5. Post-flight fibres shortened at 30 % higher velocities than pre-flight fibres at external loads associated with peak power output. This increase in shortening velocity either reduced (2 astronauts) or prevented (2 astronauts) a post-flight loss in fibre absolute peak power (microN (fibre length) s-1). 6. The changes in soleus fibre diameter and function following spaceflight were similar to those observed after 17 days of bed rest. Although in-flight exercise countermeasures probably reduced the effects of microgravity, the results support the idea that ground-based bed rest can serve as a model of human spaceflight. 7. In conclusion, 17 days of spaceflight decreased force and increased shortening velocity of single Ca2+-activated muscle cells expressing type I MHC. The increase in shortening velocity greatly reduced the impact

  9. Fault Management Techniques in Human Spaceflight Operations

    Science.gov (United States)

    O'Hagan, Brian; Crocker, Alan

    2006-01-01

    This paper discusses human spaceflight fault management operations. Fault detection and response capabilities available in current US human spaceflight programs Space Shuttle and International Space Station are described while emphasizing system design impacts on operational techniques and constraints. Preflight and inflight processes along with products used to anticipate, mitigate and respond to failures are introduced. Examples of operational products used to support failure responses are presented. Possible improvements in the state of the art, as well as prioritization and success criteria for their implementation are proposed. This paper describes how the architecture of a command and control system impacts operations in areas such as the required fault response times, automated vs. manual fault responses, use of workarounds, etc. The architecture includes the use of redundancy at the system and software function level, software capabilities, use of intelligent or autonomous systems, number and severity of software defects, etc. This in turn drives which Caution and Warning (C&W) events should be annunciated, C&W event classification, operator display designs, crew training, flight control team training, and procedure development. Other factors impacting operations are the complexity of a system, skills needed to understand and operate a system, and the use of commonality vs. optimized solutions for software and responses. Fault detection, annunciation, safing responses, and recovery capabilities are explored using real examples to uncover underlying philosophies and constraints. These factors directly impact operations in that the crew and flight control team need to understand what happened, why it happened, what the system is doing, and what, if any, corrective actions they need to perform. If a fault results in multiple C&W events, or if several faults occur simultaneously, the root cause(s) of the fault(s), as well as their vehicle-wide impacts, must be

  10. An overview of NASA ISS human engineering and habitability: past, present, and future.

    Science.gov (United States)

    Fitts, D; Architecture, B

    2000-09-01

    The International Space Station (ISS) is the first major NASA project to provide human engineering an equal system engineering an equal system engineering status to other disciplines. The incorporation and verification of hundreds of human engineering requirements applied across-the-board to the ISS has provided for a notably more habitable environment to support long duration spaceflight missions than might otherwise have been the case. As the ISS begins to be inhabited and become operational, much work remains in monitoring the effectiveness of the Station's built environment in supporting the range of activities required of a long-duration vehicle. With international partner participation, NASA's ISS Operational Habitability Assessment intends to carry human engineering and habitability considerations into the next phase of the ISS Program with constant attention to opportunities for cost-effective improvements that need to be and can be made to the on-orbit facility. Too, during its operations the ISS must be effectively used as an on-orbit laboratory to promote and expand human engineering/habitability awareness and knowledge to support the international space faring community with the data needed to develop future space vehicles for long-duration missions. As future space mission duration increases, the rise in importance of habitation issues make it imperative that lessons are captured from the experience of human engineering's incorporation into the ISS Program and applied to future NASA programmatic processes.

  11. Future Challenges in Managing Human Health and Performance Risks for Space Flight

    Science.gov (United States)

    Corbin, Barbara J.; Barratt, Michael

    2013-01-01

    The global economy forces many nations to consider their national investments and make difficult decisions regarding their investment in future exploration. To enable safe, reliable, and productive human space exploration, we must pool global resources to understand and mitigate human health & performance risks prior to embarking on human exploration of deep space destinations. Consensus on the largest risks to humans during exploration is required to develop an integrated approach to mitigating risks. International collaboration in human space flight research will focus research on characterizing the effects of spaceflight on humans and the development of countermeasures or systems. Sharing existing data internationally will facilitate high quality research and sufficient power to make sound recommendations. Efficient utilization of ISS and unique ground-based analog facilities allows greater progress. Finally, a means to share results of human research in time to influence decisions for follow-on research, system design, new countermeasures and medical practices should be developed. Although formidable barriers to overcome, International working groups are working to define the risks, establish international research opportunities, share data among partners, share flight hardware and unique analog facilities, and establish forums for timely exchange of results. Representatives from the ISS partnership research and medical communities developed a list of the top ten human health & performance risks and their impact on exploration missions. They also drafted a multilateral data sharing plan to establish guidelines and principles for sharing human spaceflight data. Other working groups are also developing methods to promote international research solicitations. Collaborative use of analog facilities and shared development of space flight research and medical hardware continues. Establishing a forum for exchange of results between researchers, aerospace physicians

  12. Human-Automation Allocations for Current Robotic Space Operations

    Science.gov (United States)

    Marquez, Jessica J.; Chang, Mai L.; Beard, Bettina L.; Kim, Yun Kyung; Karasinski, John A.

    2018-01-01

    Within the Human Research Program, one risk delineates the uncertainty surrounding crew working with automation and robotics in spaceflight. The Risk of Inadequate Design of Human and Automation/Robotic Integration (HARI) is concerned with the detrimental effects on crew performance due to ineffective user interfaces, system designs and/or functional task allocation, potentially compromising mission success and safety. Risk arises because we have limited experience with complex automation and robotics. One key gap within HARI, is the gap related to functional allocation. The gap states: We need to evaluate, develop, and validate methods and guidelines for identifying human-automation/robot task information needs, function allocation, and team composition for future long duration, long distance space missions. Allocations determine the human-system performance as it identifies the functions and performance levels required by the automation/robotic system, and in turn, what work the crew is expected to perform and the necessary human performance requirements. Allocations must take into account each of the human, automation, and robotic systems capabilities and limitations. Some functions may be intuitively assigned to the human versus the robot, but to optimize efficiency and effectiveness, purposeful role assignments will be required. The role of automation and robotics will significantly change in future exploration missions, particularly as crew becomes more autonomous from ground controllers. Thus, we must understand the suitability of existing function allocation methods within NASA as well as the existing allocations established by the few robotic systems that are operational in spaceflight. In order to evaluate future methods of robotic allocations, we must first benchmark the allocations and allocation methods that have been used. We will present 1) documentation of human-automation-robotic allocations in existing, operational spaceflight systems; and 2) To

  13. Animal mdels for the study of the effects of spaceflight on the immune system

    Science.gov (United States)

    Sonnenfeld, G.

    Animal models have been used extensively to study the effects of spaceflight on the immune system. The rat has been the animal used most extensively, but some studies have also been carried out utilizing mice and rhesus monkeys. Hindlimb unloading of rats and mice is a ground-based model that has been utilized to determine the effects of spaceflight-type conditions on the immune systems. The results using this model have shown that hindlimb unloading results in alterations of functional rodent immune responses, including cytokine production, blastogenesis of leukocytes, response of bone marrow cells to colony stimulating factors, neutrophil activity, and resistance to infection. Distribution of leukocyte subtypes was not affected by hindlimb unloading. Studies on rats flown in space have demonstrated that exposure to spaceflight results in alterations in cytokine production, alterations in the ability of bone marrow cells to respond to colony stimulating factors, alterations in leukocyte subset distribution, and alterations in natural killer cell function. When pregnant rats were flown in space, although the immune responses of the pregnant mothers were altered by exposure to spaceflight, no effects of spaceflight on the immune responses of the offspring were observed. In one study, rhesus monkeys were flown in space and their immune status was evaluated upon their return to earth. Results of that study showed alterations in the ability of monkey immune cells to produce cytokines, express cytokine receptors, and respond to colony stimulating factor. Therefore, it is clear that exposure to spaceflight results in alterations in immune responses of the test animals. These changes are similar to those observed for humans that have flown in space, and demonstrate that the animal models are appropriate for studying the effects of spaceflight on the immune system. Although use of the hindlimb unloading model on the ground has indicated that exposure to the model also

  14. Gravity in mammalian organ development: differentiation of cultured lung and pancreas rudiments during spaceflight

    Science.gov (United States)

    Spooner, B. S.; Hardman, P.; Paulsen, A.

    1994-01-01

    Organ culture of embryonic mouse lung and pancreas rudiments has been used to investigate development and differentiation, and to assess the effects of microgravity on culture differentiation, during orbital spaceflight of the shuttle Endeavour (mission STS-54). Lung rudiments continue to grow and branch during spaceflight, an initial result that should allow future detailed study of lung morphogenesis in microgravity. Cultured embryonic pancreas undergoes characteristic exocrine acinar tissue and endocrine islet tissue differentiation during spaceflight, and in ground controls. The rudiments developing in the microgravity environment of spaceflight appear to grow larger than their ground counterparts, and they may have differentiated more rapidly than controls, as judged by exocrine zymogen granule presence.

  15. Media ion composition controls regulatory and virulence response of Salmonella in spaceflight.

    Directory of Open Access Journals (Sweden)

    James W Wilson

    Full Text Available The spaceflight environment is relevant to conditions encountered by pathogens during the course of infection and induces novel changes in microbial pathogenesis not observed using conventional methods. It is unclear how microbial cells sense spaceflight-associated changes to their growth environment and orchestrate corresponding changes in molecular and physiological phenotypes relevant to the infection process. Here we report that spaceflight-induced increases in Salmonella virulence are regulated by media ion composition, and that phosphate ion is sufficient to alter related pathogenesis responses in a spaceflight analogue model. Using whole genome microarray and proteomic analyses from two independent Space Shuttle missions, we identified evolutionarily conserved molecular pathways in Salmonella that respond to spaceflight under all media compositions tested. Identification of conserved regulatory paradigms opens new avenues to control microbial responses during the infection process and holds promise to provide an improved understanding of human health and disease on Earth.

  16. Skeletal changes during and after spaceflight.

    Science.gov (United States)

    Vico, Laurence; Hargens, Alan

    2018-03-21

    Space sojourns are challenging for life. The ability of the human body to adapt to these extreme conditions has been noted since the beginning of human space travel. Skeletal alterations that occur during spaceflight are now better understood owing to tools such as dual-energy X-ray densitometry and high-resolution peripheral quantitative CT, and murine models help researchers to understand cellular and matrix changes that occur in bone and that are difficult to measure in humans. However, questions remain with regard to bone adaptation and osteocyte fate, as well as to interactions of the skeleton with fluid shifts towards the head and with the vascular system. Further investigations into the relationships between the musculoskeletal system, energy metabolism and sensory motor acclimatisation are needed. In this regard, an integrated intervention is required that will address multiple systems simultaneously. Importantly, radiation and isolation-related stresses are gaining increased attention as the prospect of human exploration into deep space draws nearer. Although space is a unique environment, clear parallels exist between the effects of spaceflight, periods of immobilization and ageing, with possibly irreversible features. Space travel offers an opportunity to establish integrated deconditioning and ageing interventions that combine nutritional, physical and pharmaceutical strategies.

  17. Things That Scientists Don't Understand About NASA Spaceflight Research

    Science.gov (United States)

    Platts, S. H.; Bauer, Terri; Rogers, Shanna

    2017-01-01

    So you want to conduct human spaceflight research aboard the International Space Station (ISS)? Once your spaceflight research aboard the ISS is proposal is funded.... the real work begins. Because resources are so limited for ISS research, it is necessary to maximize the work being done, while at the same time, minimizing the resources spent. Astronauts may be presented with over 30 human research experiments and select, on average approximately 15 in which to participate. In order to conduct this many studies, ISSMP uses the study requirements provided by the principle investigator to integrate all of this work into the astronauts' complement. The most important thing for investigators to convey to the ISSMP team is their RESEARCH REQUIREMENTS. Requirements are captured in the Experiment document. This document is the official record of how, what, where and when data will be collected. One common mistake that investigators make is not taking this document seriously, but when push comes to shove, if a research requirement is not in this document....it will not get done. The research requirements are then integrated to form a complement of research for each astronaut. What do we mean by integration? Many experiments have overlapping requirements; blood draws, behavioral surveys, heart rate measurement. Where possible, these measures are combined to reduce redundancy and save crew time. Investigators can access these data via data sharing agreements. More examples of how ISS research is integrated will be presented. There are additional limitations commonly associated with human spaceflight research that will also be discussed. Large/heavy hardware, invasive procedures, and toxic reagents are extremely difficult to implement on the ISS. There are strict limits placed on the amount of blood that can be drawn from crew members during (and immediately after) spaceflight. These limits are based on 30-day rolling accumulations. We have recently had to start restricting

  18. Spaceflight and ageing: reflecting on Caenorhabditis elegans in space.

    Science.gov (United States)

    Honda, Yoko; Honda, Shuji; Narici, Marco; Szewczyk, Nathaniel J

    2014-01-01

    The prospect of space travel continues to capture the imagination. Several competing companies are now promising flights for the general population. Previously, it was recognized that many of the physiological changes that occur with spaceflight are similar to those seen with normal ageing. This led to the notion that spaceflight can be used as a model of accelerated ageing and raised concerns about the safety of individuals engaging in space travel. Paradoxically, however, space travel has been recently shown to be beneficial to some aspects of muscle health in the tiny worm Caenorhabditis elegans. C. elegans is a commonly used laboratory animal for studying ageing. C. elegans displays age-related decline of some biological processes observed in ageing humans, and about 35% of C. elegans' genes have human homologs. Space flown worms were found to have decreased expression of a number of genes that increase lifespan when expressed at lower levels. These changes were accompanied by decreased accumulation of toxic protein aggregates in ageing worms' muscles. Thus, in addition to spaceflight producing physiological changes that are similar to accelerated ageing, it also appears to produce some changes similar to delayed ageing. Here, we put forward the hypothesis that in addition to the previously well-appreciated mechanotransduction changes, neural and endocrine signals are altered in response to spaceflight and that these may have both negative (e.g. less muscle protein) and some positive consequences (e.g. healthier muscles), at least for invertebrates, with respect to health in space. Given that changes in circulating hormones are well documented with age and in astronauts, our view is that further research into the relationship between metabolic control, ageing, and adaptation to the environment should be productive in advancing our understanding of the physiology of both spaceflight and ageing.

  19. Spaceflight bioreactor studies of cells and tissues.

    Science.gov (United States)

    Freed, Lisa E; Vunjak-Novakovic, Gordana

    2002-01-01

    Studies of the fundamental role of gravity in the development and function of biological organisms are a central component of the human exploration of space. Microgravity affects numerous physical phenomena relevant to biological research, including the hydrostatic pressure in fluid filled vesicles, sedimentation of organelles, and buoyancy-driven convection of flow and heat. These physical phenomena can in turn directly and indirectly affect cellular morphology, metabolism, locomotion, secretion of extracellular matrix and soluble signals, and assembly into functional tissues. Studies aimed at distinguishing specific effects of gravity on biological systems require the ability to: (i) control and systematically vary gravity, e.g. by utilizing the microgravity environment of space in conjunction with an in-flight centrifuge; and (ii) maintain constant all other factors in the immediate environment, including in particular concentrations and exchange rates of biochemical species and hydrodynamic shear. The latter criteria imply the need for gravity-independent mechanisms to provide for mass transport between the cells and their environment. Available flight hardware has largely determined the experimental design and scientific objectives of spaceflight cell and tissue culture studies carried out to date. Simple culture vessels have yielded important quantitative data, and helped establish in vitro models of cell locomotion, growth and differentiation in various mammalian cell types including embryonic lung cells [6], lymphocytes [2,8], and renal cells [7,31]. Studies done using bacterial cells established the first correlations between gravity-dependent factors such as cell settling velocity and diffusional distance and the respective cell responses [12]. The development of advanced bioreactors for microgravity cell and tissue culture and for tissue engineering has benefited both research areas and provided relevant in vitro model systems for studies of astronaut

  20. Centrifuge-simulated suborbital spaceflight in subjects with cardiac implanted devices.

    Science.gov (United States)

    Blue, Rebecca S; Reyes, David P; Castleberry, Tarah L; Vanderploeg, James M

    2015-04-01

    Future commercial spaceflight participants (SFPs) with conditions requiring personal medical devices represent a unique challenge. The behavior under stress of cardiac implanted devices (CIDs) such as pacemakers is of special concern. No known data currently exist on how such devices may react to the stresses of spaceflight. We examined the responses of two volunteer subjects with CIDs to G forces in a centrifuge to evaluate how similar potential commercial SFPs might tolerate the forces of spaceflight. Two subjects, 75- and 79-yr-old men with histories of atrial fibrillation and implanted dual-lead, rate-responsive pacemakers, underwent seven centrifuge runs over 2 d. Day 1 consisted of two +Gz runs (peak = +3.5 Gz, run 2) and two +Gx runs (peak = +6.0 Gx, run 4). Day 2 consisted of three runs approximating suborbital spaceflight profiles (combined +Gx/+Gz). Data collected included blood pressures, electrocardiograms, pulse oximetry, neurovestibular exams, and postrun questionnaires regarding motion sickness, disorientation, greyout, and other symptoms. Despite both subjects' significant medical histories, neither had abnormal physiological responses. Post-spin analysis demonstrated no lead displacement, damage, or malfunction of either CID. Potential risks to SFPs with CIDs include increased arrhythmogenesis, lead displacement, and device damage. There are no known prior studies of individuals with CIDs exposed to accelerations anticipated during the dynamic phases of suborbital spaceflight. These cases demonstrate that even individuals with significant medical histories and implanted devices can tolerate the acceleration exposures of commercial spaceflight. Further investigation will determine which personal medical devices present significant risks during suborbital flight and beyond.

  1. The effectiveness of RNAi in Caenorhabditis elegans is maintained during spaceflight.

    Directory of Open Access Journals (Sweden)

    Timothy Etheridge

    Full Text Available BACKGROUND: Overcoming spaceflight-induced (pathophysiologic adaptations is a major challenge preventing long-term deep space exploration. RNA interference (RNAi has emerged as a promising therapeutic for combating diseases on Earth; however the efficacy of RNAi in space is currently unknown. METHODS: Caenorhabditis elegans were prepared in liquid media on Earth using standard techniques and treated acutely with RNAi or a vector control upon arrival in Low Earth Orbit. After culturing during 4 and 8 d spaceflight, experiments were stopped by freezing at -80°C until analysis by mRNA and microRNA array chips, microscopy and Western blot on return to Earth. Ground controls (GC on Earth were simultaneously grown under identical conditions. RESULTS: After 8 d spaceflight, mRNA expression levels of components of the RNAi machinery were not different from that in GC (e.g., Dicer, Argonaute, Piwi; P>0.05. The expression of 228 microRNAs, of the 232 analysed, were also unaffected during 4 and 8 d spaceflight (P>0.05. In spaceflight, RNAi against green fluorescent protein (gfp reduced chromosomal gfp expression in gonad tissue, which was not different from GC. RNAi against rbx-1 also induced abnormal chromosome segregation in the gonad during spaceflight as on Earth. Finally, culture in RNAi against lysosomal cathepsins prevented degradation of the muscle-specific α-actin protein in both spaceflight and GC conditions. CONCLUSIONS: Treatment with RNAi works as effectively in the space environment as on Earth within multiple tissues, suggesting RNAi may provide an effective tool for combating spaceflight-induced pathologies aboard future long-duration space missions. Furthermore, this is the first demonstration that RNAi can be utilised to block muscle protein degradation, both on Earth and in space.

  2. Bridging the Gap: Use of Spaceflight Technologies for Earth-Based Problems

    Science.gov (United States)

    Brinley, Alaina; Vidlak, Carissa; Davis, Jeffrey R.

    2012-01-01

    Spaceflight is colloquially deemed, the final frontier, or the last area which humans have not yet explored in great depth. While this is true, there are still many regions on Earth that remain isolated from the urban, socially and electronically connected world. Because travelling to space requires a great deal of foresight, engineers are required to think creatively in order to invent technologies that are durable enough to withstand the rigors of the unique and often treacherous environment of outer space. The innovations that are a result of spaceflight designs can often be applied to life on Earth, particularly in the rural, isolated communities found throughout the world. The NASA Human Health and Performance Center (NHHPC) is a collaborative, virtual forum that connects businesses, non-profit organizations, academia, and government agencies to allow for better distribution of ideas and technology between these entities (http://www.nasa.gov/offices/NHHPC). There are many technologies that have been developed for spaceflight that can be readily applied to rural communities on Earth. For example, water filtration systems designed for spaceflight must be robust and easily repaired; therefore, a system with these qualifications may be used in rural areas on Earth. This particular initiative seeks to connect established, non-profit organizations working in isolated communities throughout the world with NASA technologies devised for spaceflight. These technologies could include water purification systems, solar power generators, or telemedicine techniques. Applying innovative, spaceflight technologies to isolated communities on Earth provides greater benefits from the same research dollars, thus fulfilling the Space Life Science motto at Johnson Space Center: Exploring Space and Enhancing Life. This paper will discuss this NHHPC global outreach initiative and give examples based on the recent work of the organization.

  3. Non-Equilibrium Plasma Applications for Water Purification Supporting Human Spaceflight and Terrestrial Point-of-Use

    Science.gov (United States)

    Blankson, Isaiah M.; Foster, John E.; Adamovsky, Grigory

    2016-01-01

    2016 NASA Glenn Technology Day Panel Presentation on May 24, 2016. The panel description is: Environmental Impact: NASA Glenn Water Capabilities Both global water scarcity and water treatment concerns are two of the most predominant environmental issues of our time. Glenn researchers share insights on a snow sensing technique, hyper spectral imaging of Lake Erie algal blooms, and a discussion on non-equilibrium plasma applications for water purification supporting human spaceflight and terrestrial point-of-use. The panel moderator will be Bryan Stubbs, Executive Director of the Cleveland Water Alliance.

  4. Changes in the immune system during and after spaceflight

    Science.gov (United States)

    Taylor, G. R.; Konstantinova, I.; Sonnenfeld, G.; Jennings, R.

    1997-01-01

    The results of immunological analyses before, during and after spaceflight, have established the fact that spaceflight can result in a blunting of the immune mechanisms of human crew members and animal test species. There is some evidence that the immune function changes in short-term flights resemble those occurring after acute stress, while the changes during long-term flights resemble those caused by chronic stress. In addition, this blunting of the immune function occurs concomitant with a relative increase in potentially infectious microorganisms in the space cabin environment. This combination of events results in an increased probability of inflight infectious events. The realization of this probability has been shown to be partially negated by the judicious use of a preflight health stabilization program and other operational countermeasures. The continuation of these countermeasures, as well as microbial and immunological monitoring, are recommended for continued spaceflight safety.

  5. Subject anxiety and psychological considerations for centrifuge-simulated suborbital spaceflight.

    Science.gov (United States)

    Mulcahy, Robert A; Blue, Rebecca S; Vardiman, Johnené L; Mathers, Charles H; Castleberry, Tarah L; Vanderploeg, James M

    2014-08-01

    Anxiety and psychological concerns may pose a challenge to future commercial spaceflight. To help identify potential measures of anxiousness and indicators of flight-related stress, the psychiatric histories and anxiousness responses of volunteers exposed to G forces in centrifuge-simulated spaceflight acceleration profiles were examined. Over 2 d, 86 individuals (63 men, 23 women), 20-78 yr old, underwent up to 7 centrifuge runs. Day 1 consisted of two +G(z) runs (peak = +3.5 G(z)) and two +Gx runs (peak = +6.0 G(x)). Day 2 consisted of three runs approximating suborbital spaceflight profiles (combined +G(x) and +G(z)). Hemodynamic data were collected during the profiles. Subjects completed a retrospective self-report anxiety questionnaire. Medical monitors identified individuals exhibiting varying degrees of anxiousness during centrifuge exposure, medical histories of psychiatric disease, and other potential indicators of psychological intolerance of spaceflight. The retrospective survey identified 18 individuals self-reporting anxiousness, commonly related to unfamiliarity with centrifuge acceleration and concerns regarding medical history. There were 12 individuals (5 men, 7 women, average age 46.2 yr) who were observed to have anxiety that interfered with their ability to complete training; of these, 4 reported anxiousness on their questionnaire and 9 ultimately completed the centrifuge profiles. Psychiatric history was not significantly associated with anxious symptoms. Anxiety is likely to be a relevant and potentially disabling problem for commercial spaceflight participants; however, positive psychiatric history and self-reported symptoms did not predict anxiety during centrifuge performance. Symptoms of anxiousness can often be ameliorated through training and coaching. Even highly anxious individuals are likely capable of tolerating commercial spaceflight.

  6. Research progress on the space-flight mutation breeding of woodyplant

    International Nuclear Information System (INIS)

    Cui Binbin; Sun Yuhan; Li Yun

    2013-01-01

    The space-flight mutation breeding conception, characteristics, mutagenic effects, research progress at home and abroad in woody plant were reviewed in this paper. Compared with crops, although the research of the woody plants space-flight mutation breeding in China started later, but it has developed rapidly and has gotten certain achievement. Now the satellite and high-altitude balloon experiment were conducted with over 20 tree species such as Populus ussuriensis and 50 flower species such as Paeonia suffruticosa. The above work will has profound significance for space-flight breeding technology application on woody plants. In the end, this thesis analyzes the prospect in the future from four aspects such as using woody plants asexual reproduction characteristic, strengthening the space mutation mechanism study, enhancing new space mutation varieties screen and strengthening ornamental specific types selection. This thesis also thinks that the space mutation breeding is expected to become an effective way in woody plant genetic breeding. (authors)

  7. Genetic dissection of the Arabidopsis spaceflight transcriptome: Are some responses dispensable for the physiological adaptation of plants to spaceflight?

    Directory of Open Access Journals (Sweden)

    Anna-Lisa Paul

    Full Text Available Experimentation on the International Space Station has reached the stage where repeated and nuanced transcriptome studies are beginning to illuminate the structural and metabolic differences between plants grown in space compared to plants on the Earth. Genes that are important in establishing the spaceflight responses are being identified, their roles in spaceflight physiological adaptation are increasingly understood, and the fact that different genotypes adapt differently is recognized. However, the basic question of whether these spaceflight responses are actually required for survival has yet to be posed, and the fundamental notion that spaceflight responses may be non-adaptive has yet to be explored. Therefore the experiments presented here were designed to ask if portions of the plant spaceflight response can be genetically removed without causing loss of spaceflight survival and without causing increased stress responses. The CARA experiment compared the spaceflight transcriptome responses in the root tips of two Arabidopsis ecotypes, Col-0 and WS, as well as that of a PhyD mutant of Col-0. When grown with the ambient light of the ISS, phyD plants displayed a significantly reduced spaceflight transcriptome response compared to Col-0, suggesting that altering the activity of a single gene can actually improve spaceflight adaptation by reducing the transcriptome cost of physiological adaptation. The WS genotype showed an even simpler spaceflight transcriptome response in the ambient light of the ISS, more broadly indicating that the plant genotype can be manipulated to reduce the cost of spaceflight adaptation, as measured by transcriptional response. These differential genotypic responses suggest that genetic manipulation could further reduce, or perhaps eliminate the metabolic cost of spaceflight adaptation. When plants were germinated and then left in the dark on the ISS, the WS genotype actually mounted a larger transcriptome response

  8. Human Spaceflight: Activities for the Intermediate and Junior High Student.

    Science.gov (United States)

    Hartsfield, John W.; Hartsfield, Kendra J.

    Since its beginning, space science has created high interest and continues to prod the imagination of students. This activity packet, which has been designed to enhance the curriculum and challenge gifted students, contains background information on spaceflight as well as 24 interdisciplinary classroom activities, 3 crossword puzzles, and 3 word…

  9. Machine Learning Approaches to Increasing Value of Spaceflight Omics Databases

    Science.gov (United States)

    Gentry, Diana

    2017-01-01

    soon enable unique insight into which measured phenomena correlate to biological mechanisms that are truly affected by spaceflight conditions; which are most likely to be confounded by other variables; and which are insufficiently characterized, significantly increasing existing and future science return from ISS and spaceflight missions.

  10. Human Factors, Habitability and Environmental Health and the Human Integration Design Handbook. Volume 2

    Science.gov (United States)

    Houbec, Keith; Tillman, Barry; Connolly, Janis

    2010-01-01

    For decades, Space Life Sciences and NASA as an Agency have considered NASA-STD-3000, Man-Systems Integration Standards, a significant contribution to human spaceflight programs and to human-systems integration in general. The document has been referenced in numerous design standards both within NASA and by organizations throughout the world. With research program and project results being realized, advances in technology and new information in a variety of topic areas now available, the time arrived to update this extensive suite of requirements and design information. During the past several years, a multi-NASA center effort has been underway to write the update to NASA-STD-3000 with standards and design guidance that would be applicable to all future human spaceflight programs. NASA-STD-3001 - Volumes 1 and 2 - and the Human Integration Design Handbook (HIDH) were created. Volume 1, Crew Health, establishes NASA s spaceflight crew health standards for the pre-flight, in-flight, and post-flight phases of human spaceflight. Volume 2, Human Factors, Habitability and Environmental Health, focuses on the requirements of human-system integration and how the human crew interacts with other systems, and how the human and the system function together to accomplish the tasks for mission success. The HIDH is a compendium of human spaceflight history and knowledge, and provides useful background information and research findings. And as the HIDH is a stand-alone companion to the Standards, the maintenance of the document has been streamlined. This unique and flexible approach ensures that the content is current and addresses the fundamental advances of human performance and human capabilities and constraints research. Current work focuses on the development of new sections of Volume 2 and collecting updates to the HIDH. The new sections in development expand the scope of the standard and address mission operations and support operations. This effort is again collaboration

  11. Humans vs Hardware: The Unique World of NASA Human System Risk Assessment

    Science.gov (United States)

    Anton, W.; Havenhill, M.; Overton, Eric

    2016-01-01

    Understanding spaceflight risks to crew health and performance is a crucial aspect of preparing for exploration missions in the future. The research activities of the Human Research Program (HRP) provide substantial evidence to support most risk reduction work. The Human System Risk Board (HSRB), acting on behalf of the Office of Chief Health and Medical Officer (OCHMO), assesses these risks and assigns likelihood and consequence ratings to track progress. Unfortunately, many traditional approaches in risk assessment such as those used in the engineering aspects of spaceflight are difficult to apply to human system risks. This presentation discusses the unique aspects of risk assessment from the human system risk perspective and how these limitations are accommodated and addressed in order to ensure that reasonable inputs are provided to support the OCHMO's overall risk posture for manned exploration missions.

  12. Bone Loss During Spaceflight: Available Models and Counter-Measures

    Science.gov (United States)

    Morris, Jonathan; Bach, David; Geller, David

    2015-01-01

    There is ongoing concern for human health during spaceflights. Of particular interest is the uncoupling of bone remodeling and its resultant effect on calcium metabolism and bone loss. The calculated average loss of bone mineral density (BMD) is approximately 1-1.5% per month of spaceflight. The effect of decreased BMD on associated fractures in astronauts is not known. Currently on the International Space Station (ISS), bone loss is managed through dietary supplements and modifications and resistance exercise regimen. As the duration of space flights increases, a review of the current methods available for the prevention of bone loss is warranted. The goal of this project is to review and summarize recent studies that have focused on maintaining BMD during exposure to microgravity. Interventions were divided into physical (Table 1), nutritional (Table 2), or pharmacologic (Table 3) categories. Physical modalities included resistance exercise, low level vibration, and low intensity pulsed ultrasound. Nutritional interventions included altering protein, salt, and fat intake; and vitamin D supplementation. Pharmacologic interventions included the use of bisphosphonates and beta blockers. Studies reported outcomes based on bone density determined by DXA bone scan, micro-architecture of histology and microCT, and serum and urine markers of bone turnover. The ground analog models utilized to approximate osseous physiology in microgravity included human patients previously paralyzed or subjects confined to bedrest. Ground analog animal models include paralysis, immobilization and ovariectomies. As a result of the extensive research performed there is a multi-modality approach available for the management of BMD during spaceflight that includes resistance training, nutrition and dietary supplements. However, there is a paucity of literature describing a formalized tiered protocol to guide investigators through the progression from animal models to human patient ground

  13. Spaceflight and Simulated Microgravity Increases Virulence of the Known Bacterial Pathogen S. Marcescens

    Science.gov (United States)

    Clemens-Grisham, Rachel Andrea; Bhattacharya, Sharmila; Wade, William

    2016-01-01

    After spaceflight, the number of immune cells is reduced in humans. In other research models, including Drosophila, not only is there a reduction in the number of plasmatocytes, but expression of immune-related genes is also changed after spaceflight. These observations suggest that the immune system is compromised after exposure to microgravity. It has also been reported that there is a change in virulence of some bacterial pathogens after spaceflight. We recently observed that samples of gram-negative S. marcescens retrieved from spaceflight is more virulent than ground controls, as determined by reduced survival and increased bacterial growth in the host. We were able to repeat this finding of increased virulence after exposure to simulated microgravity using the rotating wall vessel, a ground based analog to microgravity. With the ground and spaceflight samples, we looked at involvement of the Toll and Imd pathways in the Drosophila host in fighting infection by ground and spaceflight samples. We observed that Imd-pathway mutants were more susceptible to infection by the ground bacterial samples, which aligns with the known role of this pathway in fighting infections by gram-negative bacteria. When the Imd-pathway mutants were infected with the spaceflight sample, however, they exhibited the same susceptibility as seen with the ground control bacteria. Interestingly, all mutant flies show the same susceptibility to the spaceflight bacterial sample as do wild type flies. This suggests that neither humoral immunity pathway is effectively able to counter the increased pathogenicity of the space-flown S. marcescens bacteria.

  14. Muscle sarcomere lesions and thrombosis after spaceflight and suspension unloading

    Energy Technology Data Exchange (ETDEWEB)

    Riley, D.A.; Ellis, S.; Giometti, C.S.; Hoh, J.F.Y.; Ilyina-Kakueva, E.I.; Oganov, V.S.; Slocum, G.R.; Bain, J.L.W.; Sedlak, F.R. (Argonne National Lab., IL (United States))

    1992-08-01

    Extended exposure of humans to spaceflight produces a progressive loss of skeletal muscle strength. This process must be understood to design effective countermeasures. The present investigation examined hindlimb muscles from flight rats killed as close to landing as possible. Spaceflight and tail suspension-hindlimb unloading (unloaded) produced significant decreases in fiber cross-sectional areas of the adductor longus (AL), a slow-twitch antigravity muscle. However, the mean wet weight of the flight AL muscles was near normal, whereas that of the suspension unloaded AL muscles was significantly reduced. Interstitial edema within the flight AL, but not in the unloaded AL, appeared to account for this apparent disagreement.In both conditions, the slow-twitch oxidative fibers atrophied more than the fast-twitch oxidative-glycolytic fibers. Microcirculation was also compromised by spaceflight, such that there was increased formation of thrombi in the postcapillary venules and capillaries.

  15. Spaceflight Causes Increased Virulence of Serratia Marcescens on a Drosophila Melanogaster Host

    Science.gov (United States)

    Bhattacharya, Sharmila; Wade, William; Clemens-Grisham, Rachel; Hosamani, Ravikumar; Bhardwaj, Shilpa R.; Lera, Matthew P.; Gresser, Amy L.

    2015-01-01

    Drosophila melanogaster, or the fruit fly, has long been an important organism for Earth-based research, and is now increasingly utilized as a model system to understand the biological effects of spaceflight. Studies in Drosophila melanogaster have shown altered immune responses in 3rd instar larvae and adult males following spaceflight, changes similar to those observed in astronauts. In addition, spaceflight has also been shown to affect bacterial physiology, as evidenced by studies describing altered virulence of Salmonella typhimurium following spaceflight and variation in biofilm growth patterns for the opportunistic pathogen Pseudomonas aeruginosa during flight. We recently sent Serratia marcescens Db11, a Drosophila pathogen and an opportunistic human pathogen, to the ISS on SpaceX-5 (Fruit Fly Lab-01). S. marcescens samples were stored at 4degC for 24 days on-orbit and then allowed to grow for 120 hours at ambient station temperature before being returned to Earth. Upon return, bacteria were isolated and preserved in 50% glycerol or RNAlater. Storage, growth, and isolation for ground control samples were performed using the same procedures. Spaceflight and ground samples stored in 50% glycerol were diluted and injected into 5-7-day-old ground-born adult D. melanogaster. Lethality was significantly greater in flies injected with the spaceflight samples compared to those injected with ground bacterial samples. These results indicate a shift in the virulence profile of the spaceflight S. marcescens Db11 and will be further assessed with molecular biological analyses. Our findings strengthen the conclusion that spaceflight impacts the virulence of bacterial pathogens on model host organisms such as the fruit fly. This research was supported by NASA's ISS Program Office (ISSPO) and Space Life and Physical Sciences Research and Applications (SLPSRA).

  16. Spaceflight-Induced Intracranial Hypertension and Visual Impairment: Pathophysiology and Countermeasures.

    Science.gov (United States)

    Zhang, Li-Fan; Hargens, Alan R

    2018-01-01

    Visual impairment intracranial pressure (VIIP) syndrome is considered an unexplained major risk for future long-duration spaceflight. NASA recently redefined this syndrome as Spaceflight-Associated Neuro-ocular Syndrome (SANS). Evidence thus reviewed supports that chronic, mildly elevated intracranial pressure (ICP) in space (as opposed to more variable ICP with posture and activity on Earth) is largely accounted for by loss of hydrostatic pressures and altered hemodynamics in the intracranial circulation and the cerebrospinal fluid system. In space, an elevated pressure gradient across the lamina cribrosa, caused by a chronic but mildly elevated ICP, likely elicits adaptations of multiple structures and fluid systems in the eye which manifest themselves as the VIIP syndrome. A chronic mismatch between ICP and intraocular pressure (IOP) in space may acclimate the optic nerve head, lamina cribrosa, and optic nerve subarachnoid space to a condition that is maladaptive to Earth, all contributing to the pathogenesis of space VIIP syndrome. Relevant findings help to evaluate whether artificial gravity is an appropriate countermeasure to prevent this seemingly adverse effect of long-duration spaceflight. Copyright © 2018 the American Physiological Society.

  17. Ophthalmic changes and increased intracranial pressure associated with long duration spaceflight: An emerging understanding

    Science.gov (United States)

    Marshall-Bowman, Karina; Barratt, Michael R.; Gibson, C. Robert

    2013-06-01

    clinical issues to date for the human spaceflight community, and a comprehensive understanding of the issue at whole is critical to ensure safe space exploration in the future.

  18. BION-M 1: First continuous blood pressure monitoring in mice during a 30-day spaceflight

    Science.gov (United States)

    Andreev-Andrievskiy, Alexander; Popova, Anfisa; Lloret, Jean-Christophe; Aubry, Patrick; Borovik, Anatoliy; Tsvirkun, Daria; Vinogradova, Olga; Ilyin, Eugeniy; Gauquelin-Koch, Guillemette; Gharib, Claude; Custaud, Marc-Antoine

    2017-05-01

    Animals are an essential component of space exploration and have been used to demonstrate that weightlessness does not disrupt essential physiological functions. They can also contribute to space research as models of weightlessness-induced changes in humans. Animal research was an integral component of the 30-day automated Russian biosatellite Bion-M 1 space mission. The aim of the hemodynamic experiment was to estimate cardiovascular function in mice, a species roughly 3000 times smaller than humans, during prolonged spaceflight and post-flight recovery, particularly, to investigate if mice display signs of cardiovascular deconditioning. For the first time, heart rate (HR) and blood pressure (BP) were continuously monitored using implantable telemetry during spaceflight and recovery. Decreased HR and unchanged BP were observed during launch, whereas both HR and BP dropped dramatically during descent. During spaceflight, BP did not change from pre-flight values. However, HR increased, particularly during periods of activity. HR remained elevated after spaceflight and was accompanied by increased levels of exercise-induced tachycardia. Loss of three of the five mice during the flight as a result of the hardware malfunction (unrelated to the telemetry system) and thus the limited sample number constitute the major limitation of the study. For the first time BP and HR were continuously monitored in mice during the 30-day spaceflight and 7-days of post-flight recovery. Cardiovascular deconditioning in these tiny quadruped mammals was reminiscent of that in humans. Therefore, the loss of hydrostatic pressure in space, which is thought to be the initiating event for human cardiovascular adaptation in microgravity, might be of less importance than other physiological mechanisms. Further experiments with larger number of mice are needed to confirm these findings.

  19. Toll mediated infection response is altered by gravity and spaceflight in Drosophila.

    Directory of Open Access Journals (Sweden)

    Katherine Taylor

    Full Text Available Space travel presents unlimited opportunities for exploration and discovery, but requires better understanding of the biological consequences of long-term exposure to spaceflight. Immune function in particular is relevant for space travel. Human immune responses are weakened in space, with increased vulnerability to opportunistic infections and immune-related conditions. In addition, microorganisms can become more virulent in space, causing further challenges to health. To understand these issues better and to contribute to design of effective countermeasures, we used the Drosophila model of innate immunity to study immune responses in both hypergravity and spaceflight. Focusing on infections mediated through the conserved Toll and Imd signaling pathways, we found that hypergravity improves resistance to Toll-mediated fungal infections except in a known gravitaxis mutant of the yuri gagarin gene. These results led to the first spaceflight project on Drosophila immunity, in which flies that developed to adulthood in microgravity were assessed for immune responses by transcription profiling on return to Earth. Spaceflight alone altered transcription, producing activation of the heat shock stress system. Space flies subsequently infected by fungus failed to activate the Toll pathway. In contrast, bacterial infection produced normal activation of the Imd pathway. We speculate on possible linkage between functional Toll signaling and the heat shock chaperone system. Our major findings are that hypergravity and spaceflight have opposing effects, and that spaceflight produces stress-related transcriptional responses and results in a specific inability to mount a Toll-mediated infection response.

  20. Clinical Herpes Zoster in Antarctica as a Model for Spaceflight.

    Science.gov (United States)

    Reyes, David P; Brinley, Alaina A; Blue, Rebecca S; Gruschkus, Stephen K; Allen, Andrew T; Parazynski, Scott E

    2017-08-01

    Antarctica is a useful analog for spaceflight, as both environments are remote, isolated, and with limited resources. While previous studies have demonstrated increased asymptomatic viral shedding in both the Antarctic and spaceflight environments, clinical manifestations of reactivated viral disease have been less frequently identified. We sought to identify the incidence of clinical herpes zoster from viral reactivation in the Antarctic winter-over population. Medical records from the 2014 winter season were reviewed for the incidence of zoster in U.S. Antarctic personnel and then compared to the age-matched U.S. Five cases of clinical herpes zoster occurred in the Antarctic Station population of 204 persons, for an incidence of 33.3 per 1000 person-years vs. 3.2 per 1000 person-years in the general population. Four cases were in persons under age 40, yielding an incidence of 106.7 per 1000 person-years in persons ages 30-39 compared to an incidence of 2.0 per 1000 person-years in the same U.S. age group. Immune suppression due to the stressful Antarctic environment may have contributed to the increased incidence of herpes zoster in U.S. Antarctic personnel during the winter of 2014. Working and living in isolated, confined, and extreme environments can cause immune suppression, reactivating latent viruses and increasing viral shedding and symptomatic disease. Such changes have been observed in other austere environments, including spaceflight, suggesting that clinical manifestations of viral reactivation may be seen in future spaceflight.Reyes DP, Brinley AA, Blue RS, Gruschkus SK, Allen AT, Parazynski SE. Clinical herpes zoster in Antarctica as a model for spaceflight. Aerosp Med Hum Perform. 2017; 88(8):784-788.

  1. Alterations in the Spectrum of Spontaneous Rifampicin-Resistance Mutations in the Bacillus subtilis rpoB Gene after Cultivation in the Human Spaceflight Environment.

    Science.gov (United States)

    Fajardo-Cavazos, Patricia; Leehan, Joshua D; Nicholson, Wayne L

    2018-01-01

    The effect of Bacillus subtilis exposure to the human spaceflight environment on growth, mutagenic frequency, and spectrum of mutations to rifampicin resistance (Rif R ) was investigated. B. subtilis cells were cultivated in Biological Research in Canister-Petri Dish Fixation Units (BRIC-PDFUs) on two separate missions to the International Space Station (ISS), dubbed BRIC-18 and BRIC-21, with matching asynchronous ground controls. No statistically significant difference in either growth or in the frequency of mutation to Rif R was found in either experiment. However, nucleotide sequencing of the Rif R regions of the rpoB gene from Rif R mutants revealed dramatic differences in the spectrum of mutations between flight (FL) and ground control (GC) samples, including two newly discovered rpoB alleles in the FL samples (Q137R and L489S). The results strengthen the idea that exposure to the human spaceflight environment causes unique stresses on bacteria, leading to alterations in their mutagenic potential.

  2. Alterations in the Spectrum of Spontaneous Rifampicin-Resistance Mutations in the Bacillus subtilis rpoB Gene after Cultivation in the Human Spaceflight Environment

    Directory of Open Access Journals (Sweden)

    Patricia Fajardo-Cavazos

    2018-02-01

    Full Text Available The effect of Bacillus subtilis exposure to the human spaceflight environment on growth, mutagenic frequency, and spectrum of mutations to rifampicin resistance (RifR was investigated. B. subtilis cells were cultivated in Biological Research in Canister-Petri Dish Fixation Units (BRIC-PDFUs on two separate missions to the International Space Station (ISS, dubbed BRIC-18 and BRIC-21, with matching asynchronous ground controls. No statistically significant difference in either growth or in the frequency of mutation to RifR was found in either experiment. However, nucleotide sequencing of the RifR regions of the rpoB gene from RifR mutants revealed dramatic differences in the spectrum of mutations between flight (FL and ground control (GC samples, including two newly discovered rpoB alleles in the FL samples (Q137R and L489S. The results strengthen the idea that exposure to the human spaceflight environment causes unique stresses on bacteria, leading to alterations in their mutagenic potential.

  3. Prototype Development of a Tradespace Analysis Tool for Spaceflight Medical Resources.

    Science.gov (United States)

    Antonsen, Erik L; Mulcahy, Robert A; Rubin, David; Blue, Rebecca S; Canga, Michael A; Shah, Ronak

    2018-02-01

    The provision of medical care in exploration-class spaceflight is limited by mass, volume, and power constraints, as well as limitations of available skillsets of crewmembers. A quantitative means of exploring the risks and benefits of inclusion or exclusion of onboard medical capabilities may help to inform the development of an appropriate medical system. A pilot project was designed to demonstrate the utility of an early tradespace analysis tool for identifying high-priority resources geared toward properly equipping an exploration mission medical system. Physician subject matter experts identified resources, tools, and skillsets required, as well as associated criticality scores of the same, to meet terrestrial, U.S.-specific ideal medical solutions for conditions concerning for exploration-class spaceflight. A database of diagnostic and treatment actions and resources was created based on this input and weighed against the probabilities of mission-specific medical events to help identify common and critical elements needed in a future exploration medical capability. Analysis of repository data demonstrates the utility of a quantitative method of comparing various medical resources and skillsets for future missions. Directed database queries can provide detailed comparative estimates concerning likelihood of resource utilization within a given mission and the weighted utility of tangible and intangible resources. This prototype tool demonstrates one quantitative approach to the complex needs and limitations of an exploration medical system. While this early version identified areas for refinement in future version development, more robust analysis tools may help to inform the development of a comprehensive medical system for future exploration missions.Antonsen EL, Mulcahy RA, Rubin D, Blue RS, Canga MA, Shah R. Prototype development of a tradespace analysis tool for spaceflight medical resources. Aerosp Med Hum Perform. 2018; 89(2):108-114.

  4. Interleukin-6 and intercellular cell adhesion molecule-1 expression remains elevated in revived live endothelial cells following spaceflight.

    Science.gov (United States)

    Muid, S; Froemming, G R A; Ali, A M; Nawawi, H

    2013-12-01

    The effects of spaceflight on cardiovascular health are not necessarily seen immediately after astronauts have returned but can be delayed. It is important to investigate the long term effects of spaceflight on protein and gene expression of inflammation and endothelial activation as a predictor for the development of atherosclerosis and potential cardiovascular problems. The objectives of this study were to investigate the (a) protein and gene expression of inflammation and endothelial activation, (b) expression of nuclear factor kappa B (NFκB), signal transducer and activator of transcription-3 (STAT-3) and endothelial nitric oxide synthase (eNOS) in human umbilical vein endothelial cells (HUVEC) 3 months post-space flight travel compared to ground controls. HUVEC cultured on microcarriers in fluid processing apparatus were flown to the International Space Station (ISS) by the Soyuz TMA-11 rocket. After landing, the cells were detached from microcarriers and recultured in T-25 cm(2) culture flasks (Revived HUVEC). Soluble protein expression of IL-6, TNF-α, ICAM-1, VCAM-1 and e-selectin were measured by ELISA. Gene expression of these markers and in addition NFκB, STAT-3 and eNOS were measured. Spaceflight induced IL-6 and ICAM-1 remain elevated even after 3 months post spaceflight travel and this is mediated via STAT-3 pathway. The downregulation of eNOS expression in revived HUVEC cells suggests a reduced protection of the cells and the surrounding vessels against future insults that may lead to atherosclerosis. It would be crucial to explore preventive measures, in relation to atherosclerosis and its related complications.

  5. The Effects of Orbital Spaceflight on Human Osteoblastic Cell Physiology and Gene Expression

    Science.gov (United States)

    Turner, R. T.

    1999-01-01

    The purpose of the proposed study is to establish whether changes in gravitational loading have a direct effect on osteoblasts to regulate TGF-6 expression. The effects of spaceflight and reloading on TGF-B MRNA and peptide levels will be studied in a newly developed line of immortalized human fetal osteoblasts (HFOB) transfected with an SV-40 temperature dependent mutant to generate proliferating, undifferentiated hFOB cells at 33-34 C and a non-proliferating, differentiated HFOB cells at 37-39'C. Unlike previous cell culture models, HFOB cells have unlimited proliferative capacity yet can be precisely regulated to differentiate into mature cells which express mature osteoblast function. If isolated osteoblasts respond to changes in mechanical loading in a manner similar to their response in animals, the cell system could provide a powerful model to investigate the signal transduction pathway for gravitational loading.

  6. Introducing the potential of antimicrobial materials for human and robotic spaceflight activities

    Science.gov (United States)

    Hahn, Claudia; Reitz, Guenther; Moeller, Ralf; Rettberg, Petra; Hans, Michael; Muecklich, Frank

    their relative short reaction time, long efficiency and functionality, broad application to reduce (micro-)biological contamination, high inactivation rates, sustainability, and avoidance of microbial resistance. Methods like contact killing measurement are one of the reliable ways to examine the effect of metal surfaces on the inactivation of microorganisms. We conducted contact killing experiments, in which we exposed human-associated microorganisms like Escherichia coli and Staphylococcus sp. on copper and stainless steel to detect and evaluate the potential incorporation of those materials in future spacecraft components. In contrast to an exposure on stainless steel microorganisms exposed on copper died within a few hours and therefore do not have the ability to proliferate, build protecting biofilms or even survive. The application of different surfaces and antimicrobial substances such as copper and silver, as well as testing other model organisms are still under examination. The results of our experiments are also very promising to other research areas, e.g., clinical application. Here, we would like to present our first data and ideas on the utilization of antimicrobial metal-based surfaces for human and robotic spaceflight activities as a beneficial method to reduce microbial contamination. \\underline{References} Horneck G et al. (2010) Space microbiology. Microbiol. Mol. Biol. Rev. 74:121-156. Vaishampayan P et al. (2013) New perspectives on viable microbial communities in low-biomass cleanroom environments. ISME J. 7:312-324. van Houdt R et al. (2012) Microbial contamination monitoring and control during human space missions. Planet. Space Sci. 60:115-120.

  7. Multicultural factors for international spaceflight.

    Science.gov (United States)

    Kring, J P

    2001-06-01

    Spaceflight operations, including the International Space Station (ISS) and a mission to Mars, depend on international cooperation. Accordingly, safety, performance, and mission success rely on how well crews and operational personnel with different cultural backgrounds operate together. This paper outlines 10 areas related to spaceflight that are influenced by the national culture and backgrounds of personnel: (a) Communication, (b) Cognition and Decision Making, (c) Technology Interfacing, (d) Interpersonal Interactions, (e) Work, Management, and Leadership Style, (f) Personal Hygiene and Clothing, (g) Food Preparation and Meals, (h) Religion and Holidays, (i) Recreation, and (j) Habitat Aesthetics. Research findings and recommendations are presented, as well as a multicultural training approach to reduce potential challenges for long-duration spaceflight.

  8. Black molecular adsorber coatings for spaceflight applications

    Science.gov (United States)

    Abraham, Nithin S.; Hasegawa, Mark M.; Straka, Sharon A.

    2014-09-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  9. A proposed profile of the effective leader in human spaceflight based on findings from analog environments.

    Science.gov (United States)

    Nicholas, J M; Penwell, L W

    1995-01-01

    This paper presents a literature review of leader characteristics and associated outcomes from four environments considered as analogs to long-duration spaceflight: aviation, submersibles, polar stations, and expeditions. Evidence from 23 sources indicates that, despite differences in the analog settings, effective leaders share a common core of personal traits and leadership-style attributes. The general profile that emerges is a person who works hard to achieve mission objectives, is optimistic, holds the respect of the crew, ordinarily uses participative decision-making but takes charge during critical situations, is sensitive to and makes crew members feel valued for their expertise and their personal qualities, and maintains group harmony and cohesion. Results have implications for selecting leaders for future long-duration space missions.

  10. Terrestrial Spaceflight Analogs: Antarctica

    Science.gov (United States)

    Crucian, Brian

    2013-01-01

    Alterations in immune cell distribution and function, circadian misalignment, stress and latent viral reactivation appear to persist during Antarctic winterover at Concordia Station. Some of these changes are similar to those observed in Astronauts, either during or immediately following spaceflight. Others are unique to the Concordia analog. Based on some initial immune data and environmental conditions, Concordia winterover may be an appropriate analog for some flight-associated immune system changes and mission stress effects. An ongoing smaller control study at Neumayer III will address the influence of the hypoxic variable. Changes were observed in the peripheral blood leukocyte distribution consistent with immune mobilization, and similar to those observed during spaceflight. Alterations in cytokine production profiles were observed during winterover that are distinct from those observed during spaceflight, but potentially consistent with those observed during persistent hypobaric hypoxia. The reactivation of latent herpesviruses was observed during overwinter/isolation, that is consistently associated with dysregulation in immune function.

  11. Evidence based selection of probiotic strains to promote astronaut health or alleviate symptoms of illness on long duration spaceflight missions.

    Science.gov (United States)

    Douglas, G L; Voorhies, A A

    2017-10-13

    Spaceflight impacts multiple aspects of human physiology, which will require non-invasive countermeasures as mission length and distance from Earth increases and the capability for external medical intervention decreases. Studies on Earth have shown that probiotics have the potential to improve some of the conditions that have manifested during spaceflight, such as gastrointestinal distress, dermatitis, and respiratory infections. The constraints and risks of spaceflight make it imperative that probiotics are carefully selected based on their strain-specific benefits, doses, delivery mechanisms, and relevance to likely crew conditions prior to evaluation in astronauts. This review focuses on probiotics that have been incorporated into healthy human gastrointestinal microbiomes and associated clinically with improvements in inflammatory state or alleviation of symptoms of crew-relevant illness. These studies provide an evidence base for probiotic selection with the greatest potential to support crew health and well-being in spaceflight.

  12. Thirty days of spaceflight does not alter murine calvariae structure despite increased Sost expression.

    Science.gov (United States)

    Macaulay, Timothy R; Siamwala, Jamila H; Hargens, Alan R; Macias, Brandon R

    2017-12-01

    Previously our laboratory documented increases in calvaria bone volume and thickness in mice exposed to 15 days of spaceflight aboard the NASA Shuttle mission STS-131. However, the tissues were not processed for gene expression studies to determine what bone formation pathways might contribute to these structural adaptations. Therefore, this study was designed to investigate both the structural and molecular changes in mice calvariae after a longer duration of spaceflight. The primary purpose was to determine the calvaria bone volume and thickness of mice exposed to 30 days of spaceflight using micro-computed tomography for comparison with our previous findings. Because sclerostin, the secreted glycoprotein of the Sost gene, is a potent inhibitor of bone formation, our second aim was to quantify Sost mRNA expression using quantitative PCR. Calvariae were obtained from six mice aboard the Russian 30-day Bion-M1 biosatellite and seven ground controls. In mice exposed to 30 days of spaceflight, calvaria bone structure was not significantly different from that of their controls (bone volume was about 5% lower in spaceflight mice, p = 0.534). However, Sost mRNA expression was 16-fold (16.4 ± 0.4, p < 0.001) greater in the spaceflight group than that in the ground control group. Therefore, bone formation may have been suppressed in mice exposed to 30 days of spaceflight. Genetic responsiveness (e.g. sex or strain of animals) or in-flight environmental conditions other than microgravity (e.g. pCO 2 levels) may have elicited different bone adaptations in STS-131 and Bion-M1 mice. Although structural results were not significant, this study provides biochemical evidence that calvaria mechanotransduction pathways may be altered during spaceflight, which could reflect vascular and interstitial fluid adaptations in non-weight bearing bones. Future studies are warranted to elucidate the processes that mediate these effects and the factors responsible for discordant

  13. Thirty days of spaceflight does not alter murine calvariae structure despite increased Sost expression

    Directory of Open Access Journals (Sweden)

    Timothy R. Macaulay

    2017-12-01

    Full Text Available Previously our laboratory documented increases in calvaria bone volume and thickness in mice exposed to 15 days of spaceflight aboard the NASA Shuttle mission STS-131. However, the tissues were not processed for gene expression studies to determine what bone formation pathways might contribute to these structural adaptations. Therefore, this study was designed to investigate both the structural and molecular changes in mice calvariae after a longer duration of spaceflight. The primary purpose was to determine the calvaria bone volume and thickness of mice exposed to 30 days of spaceflight using micro-computed tomography for comparison with our previous findings. Because sclerostin, the secreted glycoprotein of the Sost gene, is a potent inhibitor of bone formation, our second aim was to quantify Sost mRNA expression using quantitative PCR. Calvariae were obtained from six mice aboard the Russian 30-day Bion-M1 biosatellite and seven ground controls. In mice exposed to 30 days of spaceflight, calvaria bone structure was not significantly different from that of their controls (bone volume was about 5% lower in spaceflight mice, p = 0.534. However, Sost mRNA expression was 16-fold (16.4 ± 0.4, p < 0.001 greater in the spaceflight group than that in the ground control group. Therefore, bone formation may have been suppressed in mice exposed to 30 days of spaceflight. Genetic responsiveness (e.g. sex or strain of animals or in-flight environmental conditions other than microgravity (e.g. pCO2 levels may have elicited different bone adaptations in STS-131 and Bion-M1 mice. Although structural results were not significant, this study provides biochemical evidence that calvaria mechanotransduction pathways may be altered during spaceflight, which could reflect vascular and interstitial fluid adaptations in non-weight bearing bones. Future studies are warranted to elucidate the processes that mediate these effects and the factors responsible

  14. Evaluation of Mid-Size Male Hybrid III Models for use in Spaceflight Occupant Protection Analysis

    Science.gov (United States)

    Putnam, J.; Somers, J.; Wells, J.; Newby, N.; Currie-Gregg, N.; Lawrence, C.

    2016-01-01

    Introduction: In an effort to improve occupant safety during dynamic phases of spaceflight, the National Aeronautics and Space Administration (NASA) has worked to develop occupant protection standards for future crewed spacecraft. One key aspect of these standards is the identification of injury mechanisms through anthropometric test devices (ATDs). Within this analysis, both physical and computational ATD evaluations are required to reasonably encompass the vast range of loading conditions any spaceflight crew may encounter. In this study the accuracy of publically available mid-size male HIII ATD finite element (FE) models are evaluated within applicable loading conditions against extensive sled testing performed on their physical counterparts. Methods: A series of sled tests were performed at the Wright Patterson Air force Base (WPAFB) employing variations of magnitude, duration, and impact direction to encompass the dynamic loading range for expected spaceflight. FE simulations were developed to the specifications of the test setup and driven using measured acceleration profiles. Both fast and detailed FE models of the mid-size male HIII were ran to quantify differences in their accuracy and thus assess the applicability of each within this field. Results: Preliminary results identify the dependence of model accuracy on loading direction, magnitude, and rate. Additionally the accuracy of individual response metrics are shown to vary across each model within evaluated test conditions. Causes for model inaccuracy are identified based on the observed relationships. Discussion: Computational modeling provides an essential component to ATD injury metric evaluation used to ensure the safety of future spaceflight occupants. The assessment of current ATD models lays the groundwork for how these models can be used appropriately in the future. Identification of limitations and possible paths for improvement aid in the development of these effective analysis tools.

  15. Global transcriptomic analysis suggests carbon dioxide as an environmental stressor in spaceflight: A systems biology GeneLab case study.

    Science.gov (United States)

    Beheshti, Afshin; Cekanaviciute, Egle; Smith, David J; Costes, Sylvain V

    2018-03-08

    Spaceflight introduces a combination of environmental stressors, including microgravity, ionizing radiation, changes in diet and altered atmospheric gas composition. In order to understand the impact of each environmental component on astronauts it is important to investigate potential influences in isolation. Rodent spaceflight experiments involve both standard vivarium cages and animal enclosure modules (AEMs), which are cages used to house rodents in spaceflight. Ground control AEMs are engineered to match the spaceflight environment. There are limited studies examining the biological response invariably due to the configuration of AEM and vivarium housing. To investigate the innate global transcriptomic patterns of rodents housed in spaceflight-matched AEM compared to standard vivarium cages we utilized publicly available data from the NASA GeneLab repository. Using a systems biology approach, we observed that AEM housing was associated with significant transcriptomic differences, including reduced metabolism, altered immune responses, and activation of possible tumorigenic pathways. Although we did not perform any functional studies, our findings revealed a mild hypoxic phenotype in AEM, possibly due to atmospheric carbon dioxide that was increased to match conditions in spaceflight. Our investigation illustrates the process of generating new hypotheses and informing future experimental research by repurposing multiple space-flown datasets.

  16. The SCD - Stem Cell Differentiation ESA Project: Preparatory Work for the Spaceflight Mission

    Science.gov (United States)

    Versari, Silvia; Barenghi, Livia; van Loon, Jack; Bradamante, Silvia

    2016-04-01

    Due to spaceflight, astronauts experience serious, weightlessness-induced bone loss because of an unbalanced process of bone remodeling that involves bone marrow mesenchymal stem cells (BMSCs), as well as osteoblasts, osteocytes, and osteoclasts. The effects of microgravity on osteo-cells have been extensively studied, but it is only recently that consideration has been given to the role of BMSCs. Previous researches indicated that human BMSCs cultured in simulated microgravity (sim-μg) alter their proliferation and differentiation. The spaceflight opportunities for biomedical experiments are rare and suffer from a number of operative constraints that could bias the validity of the experiment itself, but remain a unique opportunity to confirm and explain the effects due to microgravity, that are only partially activated/detectable in simulated conditions. For this reason, we carefully prepared the SCD - STEM CELLS DIFFERENTIATION experiment, selected by the European Space Agency (ESA) and now on the International Space Station (ISS). Here we present the preparatory studies performed on ground to adapt the project to the spaceflight constraints in terms of culture conditions, fixation and storage of human BMSCs in space aiming at satisfying the biological requirements mandatory to retrieve suitable samples for post-flight analyses. We expect to understand better the molecular mechanisms governing human BMSC growth and differentiation hoping to outline new countermeasures against astronaut bone loss.

  17. Inflight Pharmacokinetic and Pharmacodynamic Responses to Medications Commonly Used in Spaceflight

    Science.gov (United States)

    Wotring, V. E.; Derendorf, H.; Kast, J.; Barger, L.; Basner, M.

    2016-01-01

    Researchers do not know if medications act the same in the spaceflight environment as they do on Earth. Aspects of the spaceflight environment (low gravity, radiation exposure, closed environment, stress) have been shown to alter human physiology. Some of these physiological changes could be expected to alter either pharmacokinetics (PK, how the body absorbs, distributes, metabolizes and excretes administered medications) or pharmacodynamics (PD, receptors or signaling systems that are the targets of medication action). Anecdotal data has suggested that, at least for certain medications or indications, inflight medication efficacy is poor. In order to prepare for exploration missions where speedy evacuation to Earth may not be a possibility, the likelihood of unexpected medication action must be determined.

  18. Comparative transcriptomics indicate changes in cell wall organization and stress response in seedlings during spaceflight.

    Science.gov (United States)

    Johnson, Christina M; Subramanian, Aswati; Pattathil, Sivakumar; Correll, Melanie J; Kiss, John Z

    2017-08-21

    Plants will play an important role in the future of space exploration as part of bioregenerative life support. Thus, it is important to understand the effects of microgravity and spaceflight on gene expression in plant development. We analyzed the transcriptome of Arabidopsis thaliana using the Biological Research in Canisters (BRIC) hardware during Space Shuttle mission STS-131. The bioinformatics methods used included RMA (robust multi-array average), MAS5 (Microarray Suite 5.0), and PLIER (probe logarithmic intensity error estimation). Glycome profiling was used to analyze cell wall composition in the samples. In addition, our results were compared to those of two other groups using the same hardware on the same mission (BRIC-16). In our BRIC-16 experiments, we noted expression changes in genes involved in hypoxia and heat shock responses, DNA repair, and cell wall structure between spaceflight samples compared to the ground controls. In addition, glycome profiling supported our expression analyses in that there was a difference in cell wall components between ground control and spaceflight-grown plants. Comparing our studies to those of the other BRIC-16 experiments demonstrated that, even with the same hardware and similar biological materials, differences in results in gene expression were found among these spaceflight experiments. A common theme from our BRIC-16 space experiments and those of the other two groups was the downregulation of water stress response genes in spaceflight. In addition, all three studies found differential regulation of genes associated with cell wall remodeling and stress responses between spaceflight-grown and ground control plants. © 2017 Botanical Society of America.

  19. Manned spaceflight log II—2006–2012

    CERN Document Server

    Shayler, David J

    2013-01-01

    April 12, 1961 "Attention! This is Radio Moscow speaking...The world's first satellite spaceship, Vostock, with a man aboard, was put into orbit round the Earth." Soviet Union cosmonaut Yuri A. Gagarin becomes the first person to fly in space, completing one orbit in 108 minutes. April 5, 2001 As NASA prepares to fly the final Shuttle missions to the International Space Station, Russia launches Soyuz TMA 21 (code-named 'Yuri Gagarin') with the 28th ISS Expedition crew aboard, celebrating 50 years of manned spaceflight. Meanwhile, in China, preparations continue for launching the nation's first Space Station (called Tiangong 1 - or Heavenly Palace 1) later in the year. The sixth decade of manned spaceflight orbital operations has truly began. At this point in the history of human space exploration, it is timely to review the first five decades of adventure and look forward to the next decade and what it might bring. Several notable anniversaries celebrated in 2011 make it the right time to reflect and pay homa...

  20. Human and Robotic Space Mission Use Cases for High-Performance Spaceflight Computing

    Science.gov (United States)

    Some, Raphael; Doyle, Richard; Bergman, Larry; Whitaker, William; Powell, Wesley; Johnson, Michael; Goforth, Montgomery; Lowry, Michael

    2013-01-01

    Spaceflight computing is a key resource in NASA space missions and a core determining factor of spacecraft capability, with ripple effects throughout the spacecraft, end-to-end system, and mission. Onboard computing can be aptly viewed as a "technology multiplier" in that advances provide direct dramatic improvements in flight functions and capabilities across the NASA mission classes, and enable new flight capabilities and mission scenarios, increasing science and exploration return. Space-qualified computing technology, however, has not advanced significantly in well over ten years and the current state of the practice fails to meet the near- to mid-term needs of NASA missions. Recognizing this gap, the NASA Game Changing Development Program (GCDP), under the auspices of the NASA Space Technology Mission Directorate, commissioned a study on space-based computing needs, looking out 15-20 years. The study resulted in a recommendation to pursue high-performance spaceflight computing (HPSC) for next-generation missions, and a decision to partner with the Air Force Research Lab (AFRL) in this development.

  1. Enhancing Interdisciplinary Human System Risk Research Through Modeling and Network Approaches

    Science.gov (United States)

    Mindock, Jennifer; Lumpkins, Sarah; Shelhamer, Mark

    2015-01-01

    NASA's Human Research Program (HRP) supports research to reduce human health and performance risks inherent in future human space exploration missions. Understanding risk outcomes and contributing factors in an integrated manner allows HRP research to support development of efficient and effective mitigations from cross-disciplinary perspectives, and to enable resilient human and engineered systems for spaceflight. The purpose of this work is to support scientific collaborations and research portfolio management by utilizing modeling for analysis and visualization of current and potential future interdisciplinary efforts.

  2. Innate Immune Responses of Drosophila melanogaster Are Altered by Spaceflight

    Science.gov (United States)

    Marcu, Oana; Lera, Matthew P.; Sanchez, Max E.; Levic, Edina; Higgins, Laura A.; Shmygelska, Alena; Fahlen, Thomas F.; Nichol, Helen; Bhattacharya, Sharmila

    2011-01-01

    Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways. PMID:21264297

  3. Innate immune responses of Drosophila melanogaster are altered by spaceflight.

    Directory of Open Access Journals (Sweden)

    Oana Marcu

    2011-01-01

    Full Text Available Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways.

  4. Effects of spaceflight on murine skeletal muscle gene expression

    Science.gov (United States)

    Allen, David L.; Bandstra, Eric R.; Harrison, Brooke C.; Thorng, Seiha; Stodieck, Louis S.; Kostenuik, Paul J.; Morony, Sean; Lacey, David L.; Hammond, Timothy G.; Leinwand, Leslie L.; Argraves, W. Scott; Bateman, Ted A.; Barth, Jeremy L.

    2009-01-01

    Spaceflight results in a number of adaptations to skeletal muscle, including atrophy and shifts toward faster muscle fiber types. To identify changes in gene expression that may underlie these adaptations, we used both microarray expression analysis and real-time polymerase chain reaction to quantify shifts in mRNA levels in the gastrocnemius from mice flown on the 11-day, 19-h STS-108 shuttle flight and from normal gravity controls. Spaceflight data also were compared with the ground-based unloading model of hindlimb suspension, with one group of pure suspension and one of suspension followed by 3.5 h of reloading to mimic the time between landing and euthanization of the spaceflight mice. Analysis of microarray data revealed that 272 mRNAs were significantly altered by spaceflight, the majority of which displayed similar responses to hindlimb suspension, whereas reloading tended to counteract these responses. Several mRNAs altered by spaceflight were associated with muscle growth, including the phosphatidylinositol 3-kinase regulatory subunit p85α, insulin response substrate-1, the forkhead box O1 transcription factor, and MAFbx/atrogin1. Moreover, myostatin mRNA expression tended to increase, whereas mRNA levels of the myostatin inhibitor FSTL3 tended to decrease, in response to spaceflight. In addition, mRNA levels of the slow oxidative fiber-associated transcriptional coactivator peroxisome proliferator-associated receptor (PPAR)-γ coactivator-1α and the transcription factor PPAR-α were significantly decreased in spaceflight gastrocnemius. Finally, spaceflight resulted in a significant decrease in levels of the microRNA miR-206. Together these data demonstrate that spaceflight induces significant changes in mRNA expression of genes associated with muscle growth and fiber type. PMID:19074574

  5. Deep Space Spaceflight Hazards Effects on Cognition, Behavioral Health, and Behavioral Biomarkers in Humans

    Science.gov (United States)

    Williams, T. J.; Norsk, P.; Zwart, S.; Crucian, B.; Simonsen, L. C.; Antonsen, E.

    2018-02-01

    Deep Space Gateway missions provide testing grounds to identify the risk of both behavioral performance and cognitive perturbations caused by stressors of spaceflight such as radiation, fluid shifts, sleep deprivation, chronic stress, and others.

  6. Human Adaptation to Space: Space Physiology and Countermeasures

    Science.gov (United States)

    Fogarty, Jennifer

    2009-01-01

    This viewgraph presentation reviews human physiological responses to spaceflight, and the countermeasures taken to prevent adverse effects of manned space flight. The topics include: 1) Human Spaceflight Experience; 2) Human Response to Spaceflight; 3) ISS Expeditions 1-16; 4) Countermeasure; and 5) Biomedical Data;

  7. Spaceflight Effect on White Matter Structural Integrity

    Science.gov (United States)

    Lee, Jessica K.; Kopplemans, Vincent; Paternack, Ofer; Bloomberg, Jacob J.; Mulavara, Ajitkumar P.; Seidler, Rachael D.

    2017-01-01

    Recent reports of elevated brain white matter hyperintensity (WMH) counts and volume in postflight astronaut MRIs suggest that further examination of spaceflight's impact on the microstructure of brain white matter is warranted. To this end, retrospective longitudinal diffusion-weighted MRI scans obtained from 15 astronauts were evaluated. In light of the recent reports of microgravity-induced cephalad fluid shift and gray matter atrophy seen in astronauts, we applied a technique to estimate diffusion tensor imaging (DTI) metrics corrected for free water contamination. This approach enabled the analysis of white matter tissue-specific alterations that are unrelated to fluid shifts, occurring from before spaceflight to after landing. After spaceflight, decreased fractional anisotropy (FA) values were detected in an area encompassing the superior and inferior longitudinal fasciculi and the inferior fronto-occipital fasciculus. Increased radial diffusivity (RD) and decreased axial diffusivity (AD) were also detected within overlapping regions. In addition, FA values in the corticospinal tract decreased and RD measures in the precentral gyrus white matter increased from before to after flight. The results show disrupted structural connectivity of white matter in tracts involved in visuospatial processing, vestibular function, and movement control as a result of spaceflight. The findings may help us understand the structural underpinnings of the extensive spaceflight-induced sensorimotor remodeling. Prospective longitudinal assessment of the white matter integrity in astronauts is needed to characterize the evolution of white matter microstructural changes associated with spaceflight, their behavioral consequences, and the time course of recovery. Supported by a grant from the National Space Biomedical Research Institute, NASA NCC 9-58.

  8. Effect Of Spaceflight On Microbial Gene Expression And Virulence: Preliminary Results From Microbe Payload Flown On-Board STS-115

    Science.gov (United States)

    Wilson, J. W.; HonerzuBentrup, K,; Schurr, M. J.; Buchanan, K.; Morici, L.; Hammond, T.; Allen, P.; Baker, C.; Ott, C. M.; Nelman-Gonzalez M.; hide

    2007-01-01

    Human presence in space, whether permanent or temporary, is accompanied by the presence of microbes. However, the extent of microbial changes in response to spaceflight conditions and the corresponding changes to infectious disease risk is unclear. Previous studies have indicated that spaceflight weakens the immune system in humans and animals. In addition, preflight and in-flight monitoring of the International Space Station (ISS) and other spacecraft indicates the presence of opportunistic pathogens and the potential of obligate pathogens. Altered antibiotic resistance of microbes in flight has also been shown. As astronauts and cosmonauts live for longer periods in a closed environment, especially one using recycled water and air, there is an increased risk to crewmembers of infectious disease events occurring in-flight. Therefore, understanding how the space environment affects microorganisms and their disease potential is critically important for spaceflight missions and requires further study. The goal of this flight experiment, operationally called MICROBE, is to utilize three model microbial pathogens, Salmonella typhimurium, Pseudomonas aeruginosa, and Candida albicans to examine the global effects of spaceflight on microbial gene expression and virulence attributes. Specifically, the aims are (1) to perform microarray-mediated gene expression profiling of S. typhimurium, P. aeruginosa, and C. albicans, in response to spaceflight in comparison to ground controls and (2) to determine the effect of spaceflight on the virulence potential of these microorganisms immediately following their return from spaceflight using murine models. The model microorganisms were selected as they have been isolated from preflight or in-flight monitoring, represent different degrees of pathogenic behavior, are well characterized, and have sequenced genomes with available microarrays. In particular, extensive studies of S. typhimurium by the Principal Investigator, Dr. Nickerson

  9. Physiological and Functional Alterations after Spaceflight and Bed Rest.

    Science.gov (United States)

    Mulavara, Ajitkumar P; Peters, Brian T; Miller, Chris A; Kofman, Igor S; Reschke, Millard F; Taylor, Laura C; Lawrence, Emily L; Wood, Scott J; Laurie, Steven S; Lee, Stuart M C; Buxton, Roxanne E; May-Phillips, Tiffany R; Stenger, Michael B; Ploutz-Snyder, Lori L; Ryder, Jeffrey W; Feiveson, Alan H; Bloomberg, Jacob J

    2018-04-03

    Exposure to microgravity causes alterations in multiple physiological systems, potentially impacting the ability of astronauts to perform critical mission tasks. The goal of this study was to determine the effects of spaceflight on functional task performance and to identify the key physiological factors contributing to their deficits. A test battery comprised of 7 functional tests and 15 physiological measures was used to investigate the sensorimotor, cardiovascular and neuromuscular adaptations to spaceflight. Astronauts were tested before and after 6-month spaceflights. Subjects were also tested before and after 70 days of 6° head-down bed rest, a spaceflight analog, to examine the role of axial body unloading on the spaceflight results. These subjects included Control and Exercise groups to examine the effects of exercise during bed rest. Spaceflight subjects showed the greatest decrement in performance during functional tasks that required the greatest demand for dynamic control of postural equilibrium which was paralleled by similar decrements in sensorimotor tests that assessed postural and dynamic gait control. Other changes included reduced lower limb muscle performance and increased heart rate to maintain blood pressure. Exercise performed during bed rest prevented detrimental change in neuromuscular and cardiovascular function, however, both bed rest groups experienced functional and balance deficits similar to spaceflight subjects. Bed rest data indicates that body support unloading experienced during spaceflight contributes to postflight postural control dysfunction. Further, the bed rest results in the Exercise group of subjects confirm that resistance and aerobic exercises performed during spaceflight can play an integral role in maintaining neuromuscular and cardiovascular function, which can help in reducing decrements in functional performance. These results indicate that a countermeasure to mitigate postflight postural control dysfunction is

  10. Immune changes in test animals during spaceflight

    Science.gov (United States)

    Lesnyak, A. T.; Sonnenfeld, G.; Rykova, M. P.; Meshkov, D. O.; Mastro, A.; Konstantinova, I.

    1993-01-01

    Over the past two decades, it has become apparent that changes in immune parameters occur in cosmonauts and astronauts after spaceflight. Therefore, interest has been generated in the use of animal surrogates to better understand the nature and extent of these changes, the mechanism of these changes, and to allow the possible development of countermeasures. Among the changes noted in animals after spaceflight are alterations in lymphocytic blastogenesis, cytokine function, natural killer cell activity, and colony-stimulating factors. The nature and significance of spaceflight-induced changes in immune responses will be the focus of this review.

  11. Human Factors Interface with Systems Engineering for NASA Human Spaceflights

    Science.gov (United States)

    Wong, Douglas T.

    2009-01-01

    This paper summarizes the past and present successes of the Habitability and Human Factors Branch (HHFB) at NASA Johnson Space Center s Space Life Sciences Directorate (SLSD) in including the Human-As-A-System (HAAS) model in many NASA programs and what steps to be taken to integrate the Human-Centered Design Philosophy (HCDP) into NASA s Systems Engineering (SE) process. The HAAS model stresses systems are ultimately designed for the humans; the humans should therefore be considered as a system within the systems. Therefore, the model places strong emphasis on human factors engineering. Since 1987, the HHFB has been engaging with many major NASA programs with much success. The HHFB helped create the NASA Standard 3000 (a human factors engineering practice guide) and the Human Systems Integration Requirements document. These efforts resulted in the HAAS model being included in many NASA programs. As an example, the HAAS model has been successfully introduced into the programmatic and systems engineering structures of the International Space Station Program (ISSP). Success in the ISSP caused other NASA programs to recognize the importance of the HAAS concept. Also due to this success, the HHFB helped update NASA s Systems Engineering Handbook in December 2007 to include HAAS as a recommended practice. Nonetheless, the HAAS model has yet to become an integral part of the NASA SE process. Besides continuing in integrating HAAS into current and future NASA programs, the HHFB will investigate incorporating the Human-Centered Design Philosophy (HCDP) into the NASA SE Handbook. The HCDP goes further than the HAAS model by emphasizing a holistic and iterative human-centered systems design concept.

  12. Use of the Aromascan(TM) Instrument for Nonsubjective Evaluation of Rodent Spaceflight Hardware

    Science.gov (United States)

    Scribner, K. A.; Steele, M. K.; Hinds, W. E.; Dalton, Bonnie P. (Technical Monitor)

    1997-01-01

    This report describes the verification and utilization of the AromaScan(TM) (Hollis, NH) instrument for the ground-based evaluation of odor containment by various spaceflight habitats developed at NASA's Ames Research Center (ARC). The AromaScan(TM) instrument is an electronic odor detection system consisting of 32 polymer sensors that respond differentially to 10 different chemical groups present in an air sample. The AromaScan(TM) system also includes neural network software for constructing a database of known odors, against which an unknown odor can be compared. At present, the standard method for characterizing rodent odor containment during the development and testing of spaceflight hardware is the use of a human odor assessment panel. However, this can be a very time consuming and costly process, and the results are inherently subjective. The AromaScan(TM) system should produce more consistent and objective results, as well as a cost savings in the long term. To test and verify the AromaScan(TM) instrument, daily air samples will be collected from the exhaust port of rodent habitats, during experiment development tests, then injected into the instrument and used to create a database of recognizable odors. Human sniff tests will be performed in conjunction with the AromaScan(TM) analysis, and the results will be correlated. We will then teach the neural network to differentiate between an acceptable and an unacceptable odor profile, as defined by the human sniff test, and to be able to accurately identify an odor that would not pass a sniff panel. The results of our efforts will be to verify that the AromaScan(TM) system is a valuable alternative to human sniff panel assessments for the early iterative process of designing and testing rodent waste filters for spaceflight. Acceptance by a human panel will remain one of the final criteria for successful rodent habitat development.

  13. On Representative Spaceflight Instrument and Associated Instrument Sensor Web Framework

    Science.gov (United States)

    Kizhner, Semion; Patel, Umeshkumar; Vootukuru, Meg

    2007-01-01

    Sensor Web-based adaptation and sharing of space flight mission resources, including those of the Space-Ground and Control-User communication segment, could greatly benefit from utilization of heritage Internet Protocols and devices applied for Spaceflight (SpaceIP). This had been successfully demonstrated by a few recent spaceflight experiments. However, while terrestrial applications of Internet protocols are well developed and understood (mostly due to billions of dollars in investments by the military and industry), the spaceflight application of Internet protocols is still in its infancy. Progress in the developments of SpaceIP-enabled instrument components will largely determine the SpaceIP utilization of those investments and acceptance in years to come. Likewise SpaceIP, the development of commercial real-time and instrument colocated computational resources, data compression and storage, can be enabled on-board a spacecraft and, in turn, support a powerful application to Sensor Web-based design of a spaceflight instrument. Sensor Web-enabled reconfiguration and adaptation of structures for hardware resources and information systems will commence application of Field Programmable Arrays (FPGA) and other aerospace programmable logic devices for what this technology was intended. These are a few obvious potential benefits of Sensor Web technologies for spaceflight applications. However, they are still waiting to be explored. This is because there is a need for a new approach to spaceflight instrumentation in order to make these mature sensor web technologies applicable for spaceflight. In this paper we present an approach in developing related and enabling spaceflight instrument-level technologies based on the new concept of a representative spaceflight Instrument Sensor Web (ISW).

  14. A Psychiatric Formulary for Long-Duration Spaceflight.

    Science.gov (United States)

    Friedman, Eric; Bui, Brian

    2017-11-01

    Behavioral health is essential for the safety, well-being, and performance of crewmembers in both human spaceflight and Antarctic exploration. Over the past five decades, psychiatric issues have been documented in orbital spaceflight. In Antarctica, literature suggests up to 5% of wintering crewmembers could meet criteria for a psychiatric illness, including mood disorders, stressor-related disorders, sleep-wake disorders, and substance-related disorders. Experience from these settings indicates that psychiatric disorders on deep space missions must be anticipated. An important part of planning for the psychological health of crewmembers is the onboard provision of psychotropic drugs. These medications have been available on orbital missions. A greater variety and supply of these drugs exist at Antarctic facilities. The size and diversity of a deep space psychiatric formulary will be greater than that provided on orbital missions. Drugs to be provisioned include anxiolytics, antidepressants, mood stabilizers, antipsychotics, and hypnotics. Each drug category should include different medications, providing diverse pharmacokinetic, pharmacodynamic, and side effect profiles. The formulary itself should be rigorously controlled, given the abuse potential of some medications. In-flight treatment strategies could include psychological monitoring of well-being and early intervention for significant symptoms. Psychiatric emergencies would be treated aggressively with behavioral and pharmacological interventions to de-escalate potentially hazardous situations. On long-duration space missions, a robust psychiatric formulary could provide crewmembers autonomy and flexibility in treating a range of behavioral issues from depression to acute psychosis. This will contribute to the safety, health, and performance of crewmembers, and to mission success.Friedman E, Bui B. A psychiatric formulary for long-duration spaceflight. Aerosp Med Hum Perform. 2017; 88(11):1024-1033.

  15. Intracranial Fluid Redistribution During a Spaceflight Analog

    Science.gov (United States)

    Koppelmans, Vincent; Pasternak, Ofer; Bloomberg, Jacob J.; De Dios, Yiri E.; Wood, Scott J.; Riascos, Roy; Reuter-Lorenz, Patrica A.; Kofman, Igor S.; Mulavara, Ajitkumar P.; Seidler, Rachael D.

    2017-01-01

    The neural correlates of spaceflight-induced sensorimotor impairments are unknown. Head down-tilt bed rest (HDBR) serves as a microgravity analog because it mimics the headward fluid shift and limb unloading of spaceflight. We investigated focal brain white matter (WM) changes and fluid shifts during 70 days of 6 deg HDBR in 16 subjects who were assessed pre (2x), during (3x), and post-HDBR (2x). Changes over time were compared to those in control subjects (n=12) assessed four times over 90 days. Diffusion MRI was used to assess WM microstructure and fluid shifts. Free-Water Imaging, derived from diffusion MRI, was used to quantify the distribution of intracranial extracellular free water (FW). Additionally, we tested whether WM and FW changes correlated with changes in functional mobility and balance measures. HDBR resulted in FW increases in fronto-temporal regions and decreases in posterior-parietal regions that largely recovered by two weeks post-HDBR. WM microstructure was unaffected by HDBR. FW decreased in the post-central gyrus and precuneus. We previously reported that gray matter increases in these regions were associated with less HDBR-induced balance impairment, suggesting adaptive structural neuroplasticity. Future studies are warranted to determine causality and underlying mechanisms.

  16. Spaceflight-relevant stem education and outreach: Social goals and priorities

    Science.gov (United States)

    Caldwell, Barrett S.

    2015-07-01

    This paper is based on a presentation and conference proceedings paper given at the 65th International Astronautical Congress. The paper addresses concerns in education and public outreach (EPO) in science, technology, engineering and mathematics (STEM). The author serves as a Director of a US statewide NASA-funded Space Grant Consortium, with responsibilities to coordinate funding for undergraduate scholarships, graduate fellowships, and program awards. Space Grant is a national NASA network of STEM EPO programs including over 1000 higher education, outreach center, science museum, local government, and corporate partners. As a Space Grant Director, the author interacts with a variety of levels of STEM literacy and sophistication among members of the public. A number of interactions highlight the need for STEM EPO leaders to speak directly to a variety of social goals and priorities. Spaceflight is largely seen as an appealing and potentially desirable STEM application. However, members of the public are often unclear and ill-informed regarding relative expense, relative benefit, and relative breadth of domains of expertise that are relevant to the spaceflight enterprise. In response (and resulting in further disconnects between STEM specialists and the public), focused STEM professionals frequently over-emphasize their own technical specialty and its priority in general because of its importance to that professional. These potential divides in the attempt to share and connect STEM related goals and priorities are discussed as an elaboration of invitations to discuss spacefaring in "futures forum" contexts. Spaceflight can be seen as addressing a combination of "actualization" and "aspirational" goals at social and societal levels. Maslow's hierarchy of needs distinguishes between "basic needs" and "actualization" as a higher-order need. Another aspect of spaceflight is aspirational-it speaks to hopes and desires for levels of flexibility and capability at the

  17. Spaceflight of HUVEC: An Integrated eXperiment- SPHINX Onboard the ISS

    Science.gov (United States)

    Versari, S.; Maier, J. A. M.; Norfini, A.; Zolesi, V.; Bradamante, S.

    2013-02-01

    The spaceflight orthostatic challenge can promote in astronauts inadequate cardiovascular responses defined as cardiovascular deconditioning. In particular, disturbance of endothelial functions are known to lead to altered vascular performances, being the endothelial cells crucial in the maintenance of the functional integrity of the vascular wall. In order to evaluate whether weightlessness affects endothelial functions, we designed, developed, and performed the experiment SPHINX - SPaceflight of HUVEC: an INtegrated eXperiment - where HUVEC (Human Umbilical Vein Endothelial Cells) were selected as a macrovascular cell model system. SPHINX arrived at the International Space Station (ISS) onboard Progress 40P, and was processed inside Kubik 6 incubator for 7 days. At the end, all of the samples were suitably fixed and preserved at 6°C until return on Earth on Soyuz 23S.

  18. The Effects of Spaceflight and a Spaceflight Analog on Neurocognitive Perfonnance: Extent, Longevity, and Neural Bases

    Science.gov (United States)

    Seidler, R. D.; Mulavara, A. P.; Koppelmans, V.; Erdeniz, B.; Kofman, I. S.; DeDios, Y. E.; Szecsy, D. L.; Riascos-Castaneda, R. F.; Wood, S. J.; Bloomberg, J. J.

    2014-01-01

    We are conducting ongoing experiments in which we are performing structural and functional magnetic resonance brain imaging to identify the relationships between changes in neurocognitive function and neural structural alterations following a six month International Space Station mission and following 70 days exposure to a spaceflight analog, head down tilt bedrest. Our central hypothesis is that measures of brain structure, function, and network integrity will change from pre to post intervention (spaceflight, bedrest). Moreover, we predict that these changes will correlate with indices of cognitive, sensory, and motor function in a neuroanatomically selective fashion. Our interdisciplinary approach utilizes cutting edge neuroimaging techniques and a broad ranging battery of sensory, motor, and cognitive assessments that will be conducted pre flight, during flight, and post flight to investigate potential neuroplastic and maladaptive brain changes in crewmembers following long-duration spaceflight. Success in this endeavor would 1) result in identification of the underlying neural mechanisms and operational risks of spaceflight-induced changes in behavior, and 2) identify whether a return to normative behavioral function following re-adaptation to Earth's gravitational environment is associated with a restitution of brain structure and function or instead is supported by substitution with compensatory brain processes. With the bedrest study, we will be able to determine the neural and neurocognitive effects of extended duration unloading, reduced sensory inputs, and increased cephalic fluid distribution. This will enable us to parse out the multiple mechanisms contributing to any spaceflight-induced neural structural and behavioral changes that we observe in the flight study. In this presentation I will discuss preliminary results from six participants who have undergone the bed rest protocol. These individuals show decrements in balance and functional mobility

  19. Changes of cytokines during a spaceflight analog--a 45-day head-down bed rest.

    Directory of Open Access Journals (Sweden)

    Xi Xu

    Full Text Available Spaceflight is associated with deregulation in the immune system. Head-down bed rest (HDBR at -6° is believed to be the most practical model for examining multi-system responses to microgravity in humans during spaceflight. In the present study, a 45-day HDBR was performed to investigate the alterations in human immune cell distributions and their functions in response to various stimuli. The effect of countermeasure, Rhodiola rosea (RR treatment, was also examined. A significant decrease of interferon-γ (IFN-γ and interleukin-17 (IL-17 productions by activated T cells, increase of IL-1β and IL-18 by activated B and myeloid cells were observed during HDBR. The upregulation of serum cortisol was correlated with the changes of IL-1 family cytokines. In addition, a significant increase of memory T and B cell and regulatory T cells (Treg were also detected. The uptake of RR further decreased IFN-γ level and slowed down the upregulation of IL-1 family cytokines. These data suggest that for prolonged HDBR and spaceflight, the decreased protective T cell immunity and enhanced proinflammatory cytokines should be closely monitored. The treatment with RR may play an important role in suppressing proinflammatory cytokines but not in boosting protective T cell immunity.

  20. Changes of Cytokines during a Spaceflight Analog - a 45-Day Head-Down Bed Rest

    Science.gov (United States)

    Zhang, Shusong; Pang, Xuewen; Liu, Hongju; Li, Li; Sun, Xiuyuan; Zhang, Yu; Wu, Hounan; Chen, Xiaoping; Ge, Qing

    2013-01-01

    Spaceflight is associated with deregulation in the immune system. Head-down bed rest (HDBR) at -6° is believed to be the most practical model for examining multi-system responses to microgravity in humans during spaceflight. In the present study, a 45-day HDBR was performed to investigate the alterations in human immune cell distributions and their functions in response to various stimuli. The effect of countermeasure, Rhodiola rosea (RR) treatment, was also examined. A significant decrease of interferon-γ (IFN-γ) and interleukin-17 (IL-17) productions by activated T cells, increase of IL-1β and IL-18 by activated B and myeloid cells were observed during HDBR. The upregulation of serum cortisol was correlated with the changes of IL-1 family cytokines. In addition, a significant increase of memory T and B cell and regulatory T cells (Treg) were also detected. The uptake of RR further decreased IFN-γ level and slowed down the upregulation of IL-1 family cytokines. These data suggest that for prolonged HDBR and spaceflight, the decreased protective T cell immunity and enhanced proinflammatory cytokines should be closely monitored. The treatment with RR may play an important role in suppressing proinflammatory cytokines but not in boosting protective T cell immunity. PMID:24143230

  1. Considerations on private human access to space from an institutional point of view

    Science.gov (United States)

    Hufenbach, Bernhard

    2013-12-01

    Private human access to space as discussed in this article addresses two market segments: suborbital flight and crew flights to Low Earth Orbit. The role of entrepreneurs, the technical complexity, the customers, the market conditions as well as the time to market in these two segments differ significantly. Space agencies take currently a very different approach towards private human access to space in both segments. Analysing the outcome of broader inter-agency deliberations on the future of human spaceflight and exploration, performed e.g. in the framework of the International Space Exploration Coordination Group, enables to derive some common general views on this topic. Various documents developed by inter-agency working groups recognise the general strategic importance for enabling private human access to space for ensuring a sustainable future of human spaceflight, although the specific definition of private human access and approaches vary. ESA has performed some reflections on this subject throughout the last 5 years. While it gained through these reflections a good understanding on the opportunities and implications resulting from the development of capabilities and markets for Private Human Access, limited concrete activities have been initiated in relation to this topic as of today.

  2. Spaceflight Affects Postnatal Development of the Aortic Wall in Rats

    Directory of Open Access Journals (Sweden)

    Shin-ichiro Katsuda

    2014-01-01

    Full Text Available We investigated effect of microgravity environment during spaceflight on postnatal development of the rheological properties of the aorta in rats. The neonate rats were randomly divided at 7 days of age into the spaceflight, asynchronous ground control, and vivarium control groups (8 pups for one dam. The spaceflight group rats at 9 days of age were exposed to microgravity environment for 16 days. A longitudinal wall strip of the proximal descending thoracic aorta was subjected to stress-strain and stress-relaxation tests. Wall tensile force was significantly smaller in the spaceflight group than in the two control groups, whereas there were no significant differences in wall stress or incremental elastic modulus at each strain among the three groups. Wall thickness and number of smooth muscle fibers were significantly smaller in the spaceflight group than in the two control groups, but there were no significant differences in amounts of either the elastin or collagen fibers among the three groups. The decreased thickness was mainly caused by the decreased number of smooth muscle cells. Plastic deformation was observed only in the spaceflight group in the stress-strain test. A microgravity environment during spaceflight could affect postnatal development of the morphological and rheological properties of the aorta.

  3. Synthetic torpor: A method for safely and practically transporting experimental animals aboard spaceflight missions to deep space

    Science.gov (United States)

    Griko, Yuri; Regan, Matthew D.

    2018-02-01

    Animal research aboard the Space Shuttle and International Space Station has provided vital information on the physiological, cellular, and molecular effects of spaceflight. The relevance of this information to human spaceflight is enhanced when it is coupled with information gleaned from human-based research. As NASA and other space agencies initiate plans for human exploration missions beyond low Earth orbit (LEO), incorporating animal research into these missions is vitally important to understanding the biological impacts of deep space. However, new technologies will be required to integrate experimental animals into spacecraft design and transport them beyond LEO in a safe and practical way. In this communication, we propose the use of metabolic control technologies to reversibly depress the metabolic rates of experimental animals while in transit aboard the spacecraft. Compared to holding experimental animals in active metabolic states, the advantages of artificially inducing regulated, depressed metabolic states (called synthetic torpor) include significantly reduced mass, volume, and power requirements within the spacecraft owing to reduced life support requirements, and mitigated radiation- and microgravity-induced negative health effects on the animals owing to intrinsic physiological properties of torpor. In addition to directly benefitting animal research, synthetic torpor-inducing systems will also serve as test beds for systems that may eventually hold human crewmembers in similar metabolic states on long-duration missions. The technologies for inducing synthetic torpor, which we discuss, are at relatively early stages of development, but there is ample evidence to show that this is a viable idea and one with very real benefits to spaceflight programs. The increasingly ambitious goals of world's many spaceflight programs will be most quickly and safely achieved with the help of animal research systems transported beyond LEO; synthetic torpor may

  4. Immune Modulation in Normal Human Peripheral Blood Mononuclear Cells (PBMCs) (Lymphocytes) in Response to Benzofuran-2-Carboxylic Acid Derivative KMEG during Spaceflight

    Science.gov (United States)

    Okoro, Elvis; Mann, Vivek; Ellis, Ivory; Mansoor, Elvedina; Olamigoke, Loretta; Marriott, Karla Sue; Denkins, Pamela; Williams, Willie; Sundaresan, Alamelu

    2017-08-01

    Microgravity and radiation exposure during space flight have been widely reported to induce the suppression of normal immune system function, and increase the risk of cancer development in humans. These findings pose a serious risk to manned space missions. Interestingly, recent studies have shown that benzofuran-2-carboxylic acid derivatives can inhibit the progression of some of these devastating effects on earth and in modeled microgravity. However, these studies had not assessed the impacts of benzofuran-2- carboxylic acid and its derivatives on global gene expression under spaceflight conditions. In this study, the ability of a specific benzofuran-2-carboxylic acid derivative (KMEG) to confer protection from radiation and restore normal immune function was investigated following exposure to space flight conditions on the ISS. Normal human peripheral blood mononuclear cells (lymphocytes) treated with 10 µ g/ml of KMEG together with untreated control samples were flown on Nanoracks hardware on Spacex-3 flight. The Samples were returned one month later and gene expression was analyzed. A 1g-ground control experiment was performed in parallel at the Kennedy spaceflight center. The first overall subtractive unrestricted analysis revealed 78 genes, which were differentially expressed in space flight KMEG, untreated lymphocytes as compared to the corresponding ground controls. However, in KMEG-treated space flight lymphocytes, there was an increased expression of a group of genes that mediate increased transcription, translation and innate immune system mediating functions of lymphocytes as compared to KMEG-untreated samples. Analysis of genes related to T cell proliferation in spaceflight KMEG-treated lymphocytes compared to 1g-ground KMEG- treated lymphocytes revealed six T cell proliferation and signaling genes to be significantly upregulated (p trafficking, promote early response, mediating C-myc related proliferation, promote antiapoptotic activity and protects

  5. Programmatic Considerations to Reduce the Risk of Adverse Renal Stone Events in Spaceflight

    Science.gov (United States)

    Antonsen, Erik; Pietrzyk, Robert

    2017-01-01

    Introduction: Microgravity exposure may alter the likelihood that astronauts will experience renal stones. The potential risk includes both acute and chronic health issues, with the potential for significant impact on mission objectives. Methods: To understand the role of the NASA's Human Research Program (HRP) research agenda in both preventing and addressing renal stones in spaceflight, current astronaut epidemiologic data and a summary of programmatic considerations are reviewed. Results: Although there has never been a symptomatic renal stone event in a U.S. crewmember during spaceflight, urine chemistry has been altered - likely due to induced changes in renal physiology as a result of exposure to microgravity. This may predispose astronauts to stone formation, leading the HRP to conduct and sponsor research to: 1) understand the risk of stone formation in space; 2) prevent stones from forming; and 3) address stones that may form by providing novel diagnostic and therapeutic approaches. Discussion: The development of a renal stone during spaceflight is a significant medical concern that requires the HRP to minimize this risk by providing the ability to prevent, diagnose, monitor and treat the condition during spaceflight. A discussion of the risk as NASA understands it is followed by an overview of the multiple mitigations currently under study, including novel ultrasound techniques for stone detection and manipulation, and how they may function as part of a larger exploration medical system.

  6. Launch Pad Escape System Design (Human Spaceflight)

    Science.gov (United States)

    Maloney, Kelli

    2011-01-01

    A launch pad escape system for human spaceflight is one of those things that everyone hopes they will never need but is critical for every manned space program. Since men were first put into space in the early 1960s, the need for such an Emergency Escape System (EES) has become apparent. The National Aeronautics and Space Administration (NASA) has made use of various types of these EESs over the past 50 years. Early programs, like Mercury and Gemini, did not have an official launch pad escape system. Rather, they relied on a Launch Escape System (LES) of a separate solid rocket motor attached to the manned capsule that could pull the astronauts to safety in the event of an emergency. This could only occur after hatch closure at the launch pad or during the first stage of flight. A version of a LES, now called a Launch Abort System (LAS) is still used today for all manned capsule type launch vehicles. However, this system is very limited in that it can only be used after hatch closure and it is for flight crew only. In addition, the forces necessary for the LES/LAS to get the capsule away from a rocket during the first stage of flight are quite high and can cause injury to the crew. These shortcomings led to the development of a ground based EES for the flight crew and ground support personnel as well. This way, a much less dangerous mode of egress is available for any flight or ground personnel up to a few seconds before launch. The early EESs were fairly simple, gravity-powered systems to use when thing's go bad. And things can go bad very quickly and catastrophically when dealing with a flight vehicle fueled with millions of pounds of hazardous propellant. With this in mind, early EES designers saw such a passive/unpowered system as a must for last minute escapes. This and other design requirements had to be derived for an EES, and this section will take a look at the safety design requirements had to be derived for an EES, and this section will take a look at

  7. Past and future application of solid-state detectors in manned spaceflight

    International Nuclear Information System (INIS)

    Reitz, G.

    2006-01-01

    The radiation exposure in space missions can be reduced by careful mission planning and appropriate measures, such as provision of a radiation shelter, but it cannot be eliminated. The reason for that is the high penetration capability of the radiation components owing to their high energies. Radiation is therefore an acknowledged primary concern for manned spaceflight and is a potentially limiting factor for long-term orbital and interplanetary missions. The radiation environment is a complex mixture of charged particles of solar and galactic origin and of the radiation belts, as well as of secondary particles produced in interactions of the galactic cosmic particles with the nuclei of atmosphere of the earth. The complexity even increases by placing a spacecraft into this environment owing to the interaction of the radiation components with the shielding material. Therefore it is a challenge to provide for appropriate measurements in this radiation field, coping with the limited resources on experiment power and mass. Solid-state dosemeters were already chosen for measurements in the first manned flights. Thermoluminescence dosemeters (TLDs) and plastic nuclear track detectors (PNTD) especially found a preferred application because they are light-weighted, need no power supply and they are tissue-equivalent. Most of the data available until 1996 were gathered by using these passive detectors; this especially holds for heavy ion particle spectra. The systems, supplemented by converter foils or fission detectors and bubble detectors, provide information on dose, particle flux-, energy- and linear energy transfer spectra of the ionising radiation and neutron fluxes and doses. From 1989, silicon detectors were used for dose and flux measurements and later on for particle spectrometry. Silicon detectors were demonstrated as a powerful tool for the description of space radiation environment. Optical simulated luminescence (OSL) detectors have now been introduced as a

  8. Human Exploration Science Office (KX) Overview

    Science.gov (United States)

    Calhoun, Tracy A.

    2014-01-01

    The Human Exploration Science Office supports human spaceflight, conducts research, and develops technology in the areas of space orbital debris, hypervelocity impact technology, image science and analysis, remote sensing, imagery integration, and human and robotic exploration science. NASA's Orbital Debris Program Office (ODPO) resides in the Human Exploration Science Office. ODPO provides leadership in orbital debris research and the development of national and international space policy on orbital debris. The office is recognized internationally for its measurement and modeling of the debris environment. It takes the lead in developing technical consensus across U.S. agencies and other space agencies on debris mitigation measures to protect users of the orbital environment. The Hypervelocity Impact Technology (HVIT) project evaluates the risks to spacecraft posed by micrometeoroid and orbital debris (MMOD). HVIT facilities at JSC and White Sands Test Facility (WSTF) use light gas guns, diagnostic tools, and high-speed imagery to quantify the response of spacecraft materials to MMOD impacts. Impact tests, with debris environment data provided by ODPO, are used by HVIT to predict risks to NASA and commercial spacecraft. HVIT directly serves NASA crew safety with MMOD risk assessments for each crewed mission and research into advanced shielding design for future missions. The Image Science and Analysis Group (ISAG) supports the International Space Station (ISS) and commercial spaceflight through the design of imagery acquisition schemes (ground- and vehicle-based) and imagery analyses for vehicle performance assessments and mission anomaly resolution. ISAG assists the Multi-Purpose Crew Vehicle (MPCV) Program in the development of camera systems for the Orion spacecraft that will serve as data sources for flight test objectives that lead to crewed missions. The multi-center Imagery Integration Team is led by the Human Exploration Science Office and provides

  9. A truly international lunar base as the next logical step for human spaceflight

    Science.gov (United States)

    Bonneville, Richard

    Recent fora (e.g. the ISECG’s Global Exploration Roadmap) have highlighted a human mission to Mars as the long term goal for space exploration, with intermediate stages such as missions to the Moon and/or to asteroids. But actually a human mission to Mars will not be feasible before several decades, whereas in the meantime robotic missions will be able to provide an enormous amount of information on the history and the environment of the red planet, at a rather moderate cost. And if we consider missions to asteroids, introducing a human in the loop will require a considerably higher complexity and cost than using robots, with no significant additional benefit. The only sensible and feasible objective of a near-term human spaceflight program would be the edification of a lunar base, under the condition that this base is built as a true international venture. Science will not be the main driver; it has to be acknowledged from the beginning that the true main goal will be peace and a nucleus of international cooperation between the big countries. The ISS in the 1990’s had illustrated a calmed relation between the USA, together with Europe, Canada and Japan, and Russia. A lunar base should be the symbol of a similar calmed relation between the same partners and China. For the benefit of all humankind this extra continent, the Moon, will be used only for peaceful purposes, like Antarctica today, and will not become the theatre or the stake of conflicts. The financial cost of that venture will be high, but not that high if it is compared with the cost of recent wars; so let us go to the Moon, OK, but let us get there together.

  10. Commercial spaceflight participant G-force tolerance during centrifuge-simulated suborbital flight.

    Science.gov (United States)

    Blue, Rebecca S; Riccitello, Jon M; Tizard, Julia; Hamilton, Richard J; Vanderploeg, James M

    2012-10-01

    Medical knowledge of the human body in microgravity and hypergravity is based upon studies of healthy individuals well-conditioned for such environments. Little data exist regarding the effects of spaceflight on untrained commercial passengers. We examined the responses of potential spaceflight participants (SFP) to centrifuge G-force exposure. There were 77 individuals (65 men, 12 women), 22-88 yr old, who underwent 6 centrifuge runs over 48 h. Day 1 consisted of two +Gz runs (peak = 3.5+Gz, run 2) and two +Gx runs (peak = 6.0+Gx, run 4). Day 2 consisted of two runs approximating a suborbital spaceflight profile. Data included blood pressure, electrocardiogram, and postrun questionnaires regarding motion sickness, disorientation, greyout, and other symptoms. Of the 77 participants, average age was 50.4 +/- 12.7 yr. Average heart rate (HR) varied by sex and direction of G-exposure (+Gz: F 150 +/- 19, M 123 +/- 27; +Gx: F 135 +/- 30, M 110 +/- 27). Age and peak HR were inversely related (HR 120: 47.1 +/- 10.9 yr). HR during peak G-exposure for the final run was associated with post-run imbalance (no imbalance: HR 126 +/- 26, imbalance: HR 145 +/- 21); no other significant hemodynamic change, sex, or age variation was associated with imbalance. Age and greyout were inversely associated; there was no association between greyout and vital sign change, sex, or G-force magnitude. Baseline/pretrial mean arterial pressure (MAP) was not associated with any symptoms. The results suggest that most individuals with well-controlled medical conditions can withstand acceleration forces involved in launch/landing profiles of commercial spaceflight vehicles. Further investigation will help refine which conditions present significant risk during suborbital flight and beyond.

  11. Vitamin K status in spaceflight and ground-based models of spaceflight

    Science.gov (United States)

    Bone loss is a well-documented change during and after long-duration spaceflight. Many types of countermeasures to bone loss have been proposed, including vitamin K supplementation. The objective of this series of studies was to measure change in vitamin K status in response to microgravity under a ...

  12. The current state of bone loss research: data from spaceflight and microgravity simulators.

    Science.gov (United States)

    Nagaraja, Mamta Patel; Risin, Diana

    2013-05-01

    Bone loss is a well documented phenomenon occurring in humans both in short- and in long-term spaceflights. This phenomenon can be also reproduced on the ground in human and animals and also modeled in cell-based analogs. Since space flights are infrequent and expensive to study the biomedical effects of microgravity on the human body, much of the known pathology of bone loss comes from experimental studies. The most commonly used in vitro simulators of microgravity are clinostats while in vivo simulators include the bed rest studies in humans and hindlimb unloading experiments in animals. Despite the numerous reports that have documented bone loss in wide ranges in multiple crew members, the pathology remains a key concern and development of effective countermeasures is still a major task. Thus far, the offered modalities have not shown much success in preventing or alleviating bone loss in astronauts and cosmonauts. The objective of this review is to capture the most recent research on bone loss from spaceflights, bed rest and hindlimb unloading, and in vitro studies utilizing cellular models in clinostats. Additionally, this review offers projections on where the research has to focus to ensure the most rapid development of effective countermeasures. Copyright © 2012 Wiley Periodicals, Inc.

  13. Sleep-Wake Actigraphy and Light Exposure During Spaceflight-Long

    Science.gov (United States)

    Czeisler, Charles A.; Barger, Laura K.; Wright, Kenneth P., Jr.; Ronda, Joseph

    2009-01-01

    Sleep-Wake Actigraphy and Light Exposure During Spaceflight-Long (Sleep-Long) will examine the effects of spaceflight and ambient light exposure on the sleep-wake cycles of the crew members during long-duration stays on the space station.

  14. ARG1 Functions in the Physiological Adaptation of Undifferentiated Plant Cells to Spaceflight

    Science.gov (United States)

    Zupanska, Agata K.; Schultz, Eric R.; Yao, JiQiang; Sng, Natasha J.; Zhou, Mingqi; Callaham, Jordan B.; Ferl, Robert J.; Paul, Anna-Lisa

    2017-11-01

    Scientific access to spaceflight and especially the International Space Station has revealed that physiological adaptation to spaceflight is accompanied or enabled by changes in gene expression that significantly alter the transcriptome of cells in spaceflight. A wide range of experiments have shown that plant physiological adaptation to spaceflight involves gene expression changes that alter cell wall and other metabolisms. However, while transcriptome profiling aptly illuminates changes in gene expression that accompany spaceflight adaptation, mutation analysis is required to illuminate key elements required for that adaptation. Here we report how transcriptome profiling was used to gain insight into the spaceflight adaptation role of Altered response to gravity 1 (Arg1), a gene known to affect gravity responses in plants on Earth. The study compared expression profiles of cultured lines of Arabidopsis thaliana derived from wild-type (WT) cultivar Col-0 to profiles from a knock-out line deficient in the gene encoding ARG1 (ARG1 KO), both on the ground and in space. The cell lines were launched on SpaceX CRS-2 as part of the Cellular Expression Logic (CEL) experiment of the BRIC-17 spaceflight mission. The cultured cell lines were grown within 60 mm Petri plates in Petri Dish Fixation Units (PDFUs) that were housed within the Biological Research In Canisters (BRIC) hardware. Spaceflight samples were fixed on orbit. Differentially expressed genes were identified between the two environments (spaceflight and comparable ground controls) and the two genotypes (WT and ARG1 KO). Each genotype engaged unique genes during physiological adaptation to the spaceflight environment, with little overlap. Most of the genes altered in expression in spaceflight in WT cells were found to be Arg1-dependent, suggesting a major role for that gene in the physiological adaptation of undifferentiated cells to spaceflight.

  15. SpaceX making commercial spaceflight a reality

    CERN Document Server

    Seedhouse, Erik

    2013-01-01

    2012 - the year when the first ever privately-developed spacecraft visited the International Space Station. This is the story of how one company is transforming commercial space flight. It describes the extraordinary feats of engineering and human achievement that have resulted in the world's first fully reusable launch vehicles and the prospect of human travel to Mars. SpaceX - The First Ten Years: - explores the philosophy behind the success of SpaceX; - explains the practical management that enables SpaceX to keep it simple, reliable, and affordable; - details the developmentof the Falcon 1, Falcon 9 and Falcon Heavy rockets and the technology of the Merlin engines; - describes the collaboration with NASA; - introduces current SpaceX projects, including the Grasshopper reusable launch vehicle and the Stratolaunch System. SpaceX - The First Ten Years is a portrait of one of the most spectacular spaceflight triumphs of the 21st century, one that is laying the foundation for humanity to become a spacefaring c...

  16. Post-Spaceflight (STS-135 Mouse Splenocytes Demonstrate Altered Activation Properties and Surface Molecule Expression.

    Directory of Open Access Journals (Sweden)

    Shen-An Hwang

    Full Text Available Alterations in immune function have been documented during or post-spaceflight and in ground based models of microgravity. Identification of immune parameters that are dysregulated during spaceflight is an important step in mitigating crew health risks during deep space missions. The in vitro analysis of leukocyte activity post-spaceflight in both human and animal species is primarily focused on lymphocytic function. This report completes a broader spectrum analysis of mouse lymphocyte and monocyte changes post 13 days orbital flight (mission STS-135. Analysis includes an examination in surface markers for cell activation, and antigen presentation and co-stimulatory molecules. Cytokine production was measured after stimulation with T-cell mitogen or TLR-2, TLR-4, or TLR-5 agonists. Splenocyte surface marker analysis immediate post-spaceflight and after in vitro culture demonstrated unique changes in phenotypic populations between the flight mice and matched treatment ground controls. Post-spaceflight splenocytes (flight splenocytes had lower expression intensity of CD4+CD25+ and CD8+CD25+ cells, lower percentage of CD11c+MHC II+ cells, and higher percentage of CD11c+MHC I+ populations compared to ground controls. The flight splenocytes demonstrated an increase in phagocytic activity. Stimulation with ConA led to decrease in CD4+ population but increased CD4+CD25+ cells compared to ground controls. Culturing with TLR agonists led to a decrease in CD11c+ population in splenocytes isolated from flight mice compared to ground controls. Consequently, flight splenocytes with or without TLR-agonist stimulation showed a decrease in CD11c+MHC I+, CD11c+MHC II+, and CD11c+CD86+ cells compared to ground controls. Production of IFN-γ was decreased and IL-2 was increased from ConA stimulated flight splenocytes. This study demonstrated that expression of surface molecules can be affected by conditions of spaceflight and impaired responsiveness persists under

  17. NASA Human Health and Performance Strategy

    Science.gov (United States)

    Davis, Jeffrey R.

    2012-01-01

    In May 2007, what was then the Space Life Sciences Directorate, issued the 2007 Space Life Sciences Strategy for Human Space Exploration. In January 2012, leadership and key directorate personnel were once again brought together to assess the current and expected future environment against its 2007 Strategy and the Agency and Johnson Space Center goals and strategies. The result was a refined vision and mission, and revised goals, objectives, and strategies. One of the first changes implemented was to rename the directorate from Space Life Sciences to Human Health and Performance to better reflect our vision and mission. The most significant change in the directorate from 2007 to the present is the integration of the Human Research Program and Crew Health and Safety activities. Subsequently, the Human Health and Performance Directorate underwent a reorganization to achieve enhanced integration of research and development with operations to better support human spaceflight and International Space Station utilization. These changes also enable a more effective and efficient approach to human system risk mitigation. Since 2007, we have also made significant advances in external collaboration and implementation of new business models within the directorate and the Agency, and through two newly established virtual centers, the NASA Human Health and Performance Center and the Center of Excellence for Collaborative Innovation. Our 2012 Strategy builds upon these successes to address the Agency's increased emphasis on societal relevance and being a leader in research and development and innovative business and communications practices. The 2012 Human Health and Performance Vision is to lead the world in human health and performance innovations for life in space and on Earth. Our mission is to enable optimization of human health and performance throughout all phases of spaceflight. All HH&P functions are ultimately aimed at achieving this mission. Our activities enable

  18. Spaceflight 1.94 Micron Tm Fiber Laser Transmitter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Fibertek will develop a spaceflight prototype 1940 nm, 100 W thulium (Tm) laser suitable for NASA spaceflight and long-duration unmanned aerial vehicle (UAV)...

  19. Femoral Head Bone Loss Following Short and Long-Duration Spaceflight

    Science.gov (United States)

    Blaber, Elizabeth A.; Cheng-Campbell, Margareth A.; Almeida, Eduardo A. C.

    2016-01-01

    Exposure to mechanical unloading during spaceflight is known to have significant effects on the musculoskeletal system. Our ongoing studies with the mouse bone model have identified the failure of normal stem cell-based tissue regeneration, in addition to tissue degeneration, as a significant concern for long-duration spaceflight, especially in the mesenchymal and hematopoietic tissue lineages. The 30-day BionM1 and the 37-day Rodent Research 1 (RR1) missions enabled the possibility of studying these effects in long-duration microgravity experiments. We hypothesized that the inhibition of stem cell-based tissue regeneration in short-duration spaceflight would continue during long-duration spaceflight and furthermore would result in significant tissue alterations. MicroCT analysis of BionM1 femurs revealed 31 decrease in bone volume ratio, a 14 decrease in trabecular thickness, and a 20 decrease in trabecular number in the femoral head of space-flown mice. Furthermore, high-resolution MicroCT and immunohistochemical analysis of spaceflight tissues revealed a severe disruption of the epiphyseal boundary, resulting in endochondral ossification of the femoral head and perforation of articular cartilage by bone. This suggests that spaceflight in microgravity may cause rapid induction of an aging-like phenotype with signs of osteoarthritic disease in the hip joint. However, mice from RR1 exhibited significant bone loss in the femoral head but did not exhibit the severe aging and disease-like phenotype observed during BionM1. This may be due to increased physical activity in the RH hardware. Immunohistochemical analysis of the epiphyseal plate and investigation of cellular proliferation and differentiation pathways within the marrow compartment and whole bone tissue is currently being conducted to determine alterations in stem cell-based tissue regeneration between these experiments. Our results show that the observed inhibition of stem cell-based tissue regeneration

  20. Alterations in adaptive immunity persist during long-duration spaceflight

    Science.gov (United States)

    Crucian, Brian; Stowe, Raymond P; Mehta, Satish; Quiriarte, Heather; Pierson, Duane; Sams, Clarence

    2015-01-01

    Background: It is currently unknown whether immune system alterations persist during long-duration spaceflight. In this study various adaptive immune parameters were assessed in astronauts at three intervals during 6-month spaceflight on board the International Space Station (ISS). AIMS: To assess phenotypic and functional immune system alterations in astronauts participating in 6-month orbital spaceflight. Methods: Blood was collected before, during, and after flight from 23 astronauts participating in 6-month ISS expeditions. In-flight samples were returned to Earth within 48 h of collection for immediate analysis. Assays included peripheral leukocyte distribution, T-cell function, virus-specific immunity, and mitogen-stimulated cytokine production profiles. Results: Redistribution of leukocyte subsets occurred during flight, including an elevated white blood cell (WBC) count and alterations in CD8+ T-cell maturation. A reduction in general T-cell function (both CD4+ and CD8+) persisted for the duration of the 6-month spaceflights, with differential responses between mitogens suggesting an activation threshold shift. The percentage of CD4+ T cells capable of producing IL-2 was depressed after landing. Significant reductions in mitogen-stimulated production of IFNγ, IL-10, IL-5, TNFα, and IL-6 persisted during spaceflight. Following lipopolysaccharide (LPS) stimulation, production of IL-10 was reduced, whereas IL-8 production was increased during flight. Conclusions: The data indicated that immune alterations persist during long-duration spaceflight. This phenomenon, in the absence of appropriate countermeasures, has the potential to increase specific clinical risks for crewmembers during exploration-class deep space missions. PMID:28725716

  1. Spaceflight 1.94 micron Tm Fiber Laser Transmitter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Fibertek proposes to develop a spaceflight prototype 1940 nm, 100 W thulium (Tm) laser suitable for NASA spaceflight and long-duration unmanned aerial vehicle (UAV)...

  2. Spaceflight modulates gene expression in the whole blood of astronauts.

    Science.gov (United States)

    Barrila, Jennifer; Ott, C Mark; LeBlanc, Carly; Mehta, Satish K; Crabbé, Aurélie; Stafford, Phillip; Pierson, Duane L; Nickerson, Cheryl A

    2016-01-01

    Astronauts are exposed to a unique combination of stressors during spaceflight, which leads to alterations in their physiology and potentially increases their susceptibility to disease, including infectious diseases. To evaluate the potential impact of the spaceflight environment on the regulation of molecular pathways mediating cellular stress responses, we performed a first-of-its-kind pilot study to assess spaceflight-related gene-expression changes in the whole blood of astronauts. Using an array comprised of 234 well-characterized stress-response genes, we profiled transcriptomic changes in six astronauts (four men and two women) from blood preserved before and immediately following the spaceflight. Differentially regulated transcripts included those important for DNA repair, oxidative stress, and protein folding/degradation, including HSP90AB1 , HSP27 , GPX1 , XRCC1 , BAG-1 , HHR23A , FAP48 , and C-FOS . No gender-specific differences or relationship to number of missions flown was observed. This study provides a first assessment of transcriptomic changes occurring in the whole blood of astronauts in response to spaceflight.

  3. The Effects of Long-Duration Spaceflight on Training Retention and Transfer

    Science.gov (United States)

    Barshi, Immanuel; Healy, Alice; Dempsey, Donna L.; McGuire, Kerry M.; Landon, Lauren B.

    2018-01-01

    examining future needs, and by using current practices in spaceflight training as test beds, this research project is mitigating program risks and generating templates and requirements to meet future training needs.

  4. The Vision of Human Spaceflight

    Science.gov (United States)

    Mendell, Wendell

    2005-01-01

    First, we live in a world where change is the norm, not the exception. The scientific revolution springing from quantum mechanics yielded new understanding of solid state physics leading to stunning advances in computation, communication, and transportation. Two World Wars and one Cold War introduced massive governmental investment in research and development. The unusual pragmatic and classless entrepreneurship of U.S. society promoted commercialization and innovative marketing of new technology. As a result, the 20th Century experienced a constantly accelerating culture of change. Those societies that accepted and embraced the new capabilities dominated commercially and militarily; those that did not fell behind. I remember when there was no color television, when there were no personal computers, when there was no email, when there was no World Wide Web, when there were no cell phones. Now many of us cannot live without these things. Change has become the measure of success. Our children anticipate the future and do not expect it to look like the past. Secondly, our elementary school students are fascinated by dinosaurs, ghosts, and space. Astronauts create excitement. None question that humans will be in space in their future. They see it every week, even every day, in stories on television. To be an astronaut is considered a legitimate ambition. They see space travel to be an adventure just as our grandparents saw exploring Africa or the polar regions to be an adventure into the unknown. Third, we live in a time when our understanding of the space environment makes us realize that the existence of our species is one large impact away from extinction. We understand that our population explosion is changing our home planet in fundamental ways and that wars over terrestrial resources may be less than two generations away. We feel more connected to our space neighborhood than ever before. Many nations of the world are looking outward toward our Moon in an

  5. Calysto: Risk Management for Commercial Manned Spaceflight

    Science.gov (United States)

    Dillaman, Gary

    2012-01-01

    The Calysto: Risk Management for Commercial Manned Spaceflight study analyzes risk management in large enterprises and how to effectively communicate risks across organizations. The Calysto Risk Management tool developed by NASA's Kennedy Space Center's SharePoint team is used and referenced throughout the study. Calysto is a web-base tool built on Microsoft's SharePoint platform. The risk management process at NASA is examined and incorporated in the study. Using risk management standards from industry and specific organizations at the Kennedy Space Center, three methods of communicating and elevating risk are examined. Each method describes details of the effectiveness and plausibility of using the method in the Calysto Risk Management Tool. At the end of the study suggestions are made for future renditions of Calysto.

  6. From Space to Earth – Spaceflight for new Knowledge and Innovations

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    In his presentation, titled "From Space to Earth – Spaceflight for new Knowledge and Innovations", Prof. Ernst Messerschmid will begin with his own spaceflight experience on the U.S. Space Shuttle Challenger in 1985 for the German Spacelab D1 Mission. With a few examples he will illustrate the relevance of using the microgravity environment for a wide range of multidisciplinary experiments. This is followed by a description of the International Space Station, the European contribution to the ISS, and how astronauts live and work over several months in space. In the next two decades, humanity will strive to fly back to the Moon, to asteroids and later on to Mars. New systems for transportation and infrastructure will form a complex mission scenario, operated by robotic systems and later by astronauts. Today a wide range of scientific or technological objectives are carried out in space, mostly through international cooperation. Commercial missions are funded by the private sector. Space is now a scienti...

  7. Effect of Spaceflight on the Circadian Rhythm, Lifespan and Gene Expression of Drosophila melanogaster

    Science.gov (United States)

    Xu, Kanyan

    2015-01-01

    Space travelers are reported to experience circadian rhythm disruption during spaceflight. However, how the space environment affects circadian rhythm is yet to be determined. The major focus of this study was to investigate the effect of spaceflight on the Drosophila circadian clock at both the behavioral and molecular level. We used China’s Shenzhou-9 spaceship to carry Drosophila. After 13 days of spaceflight, behavior tests showed that the flies maintained normal locomotor activity rhythm and sleep pattern. The expression level and rhythm of major clock genes were also unaffected. However, expression profiling showed differentially regulated output genes of the circadian clock system between space flown and control flies, suggesting that spaceflight affected the circadian output pathway. We also investigated other physiological effects of spaceflight such as lipid metabolism and lifespan, and searched genes significantly affected by spaceflight using microarray analysis. These results provide new information on the effects of spaceflight on circadian rhythm, lipid metabolism and lifespan. Furthermore, we showed that studying the effect of spaceflight on gene expression using samples collected at different Zeitgeber time could obtain different results, suggesting the importance of appropriate sampling procedures in studies on the effects of spaceflight. PMID:25798821

  8. Effect of spaceflight on the circadian rhythm, lifespan and gene expression of Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Lingling Ma

    Full Text Available Space travelers are reported to experience circadian rhythm disruption during spaceflight. However, how the space environment affects circadian rhythm is yet to be determined. The major focus of this study was to investigate the effect of spaceflight on the Drosophila circadian clock at both the behavioral and molecular level. We used China's Shenzhou-9 spaceship to carry Drosophila. After 13 days of spaceflight, behavior tests showed that the flies maintained normal locomotor activity rhythm and sleep pattern. The expression level and rhythm of major clock genes were also unaffected. However, expression profiling showed differentially regulated output genes of the circadian clock system between space flown and control flies, suggesting that spaceflight affected the circadian output pathway. We also investigated other physiological effects of spaceflight such as lipid metabolism and lifespan, and searched genes significantly affected by spaceflight using microarray analysis. These results provide new information on the effects of spaceflight on circadian rhythm, lipid metabolism and lifespan. Furthermore, we showed that studying the effect of spaceflight on gene expression using samples collected at different Zeitgeber time could obtain different results, suggesting the importance of appropriate sampling procedures in studies on the effects of spaceflight.

  9. Spaceflight hardware for conducting plant growth experiments in space: the early years 1960-2000

    Science.gov (United States)

    Porterfield, D. M.; Neichitailo, G. S.; Mashinski, A. L.; Musgrave, M. E.

    2003-01-01

    The best strategy for supporting long-duration space missions is believed to be bioregenerative life support systems (BLSS). An integral part of a BLSS is a chamber supporting the growth of higher plants that would provide food, water, and atmosphere regeneration for the human crew. Such a chamber will have to be a complete plant growth system, capable of providing lighting, water, and nutrients to plants in microgravity. Other capabilities include temperature, humidity, and atmospheric gas composition controls. Many spaceflight experiments to date have utilized incomplete growth systems (typically having a hydration system but lacking lighting) to study tropic and metabolic changes in germinating seedlings and young plants. American, European, and Russian scientists have also developed a number of small complete plant growth systems for use in spaceflight research. Currently we are entering a new era of experimentation and hardware development as a result of long-term spaceflight opportunities available on the International Space Station. This is already impacting development of plant growth hardware. To take full advantage of these new opportunities and construct innovative systems, we must understand the results of past spaceflight experiments and the basic capabilities of the diverse plant growth systems that were used to conduct these experiments. The objective of this paper is to describe the most influential pieces of plant growth hardware that have been used for the purpose of conducting scientific experiments during the first 40 years of research. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  10. Aging and Spaceflight: Catalase Targeted to Mitochondria Alters Skeletal Structure and Responses to Musculoskeletal Disuse

    Science.gov (United States)

    Globus, Ruth K.; Tahimic, Candice; Schreurs, Ann-Sofie

    2018-01-01

    Microgravity and ionizing radiation in the spaceflight environment pose multiple challenges to homeostasis and may contribute to cellular stress. Effects may include increased generation of reactive oxygen species (ROS), DNA damage and repair error, cell cycle arrest, cell senescence or death. Our central hypothesis is that prolonged exposure to the spaceflight environment leads to excess production of ROS and oxidative damage, culminating in accelerated tissue degeneration which resembles aging. The main goal of this project is to determine the importance of cellular redox defense for physiological adaptations and tissue degeneration in the space environment. To accomplish this, we will use both wildtype (WT) mice and a well-established, genetically-engineered animal model (mCAT mice) which displays extended lifespan (Schriner et al. 2005). The animal model selected to test these ideas is engineered to quench ROS in mitochondria by targeted over-expression of the human catalase gene to the mitochondrial matrix. We showed previously that mCAT mice express the catalase transgene in skeletal tissues, bone forming osteoblasts, and bone resorbing osteoclasts. In addition, mCAT mice also display increased catalase activity in bone. Our findings revealed that exposure of adult, male, C57Bl/6J mice to simulated spaceflight (hindlimb unloading and gamma radiation) led to an increase in markers of oxidative damage (malondialdehyde, 4-hydroxynonenol) in skeletal tissue of WT mice but not mCAT mice. To extend our hypothesis to other, spaceflight-relevant tissues, we are performing a ground-based study simulating 30 days of spaceflight by hindlimb unloading to determine potential protective effects of mitochondrial catalase activity on aging of multiple tissues (cardiovascular, nervous and skeletal).

  11. Sleep-Wake Actigraphy and Light Exposure During Spaceflight - Short

    Science.gov (United States)

    Czeisler, Charles A.; Wright, Kenneth P., Jr.; Ronda, Joseph

    2009-01-01

    Sleep-Wake Actigraphy and Light Exposure During Spaceflight - Short (Sleep-Short) will examine the effects of spaceflight on the sleep of the astronauts during space shuttle missions. Advancing state-of-the-art technology for monitoring, diagnosing and assessing treatment of sleep patterns is vital to treating insomnia on Earth and in space.

  12. Spaceflight participant visits CERN!

    CERN Multimedia

    Kathryn Coldham

    2016-01-01

    On 15 July, CERN welcomed spaceflight participant Anousheh Ansari.   Anousheh Ansari’s grin stretches from ear to ear, during an intriguing conversation with Nobel laureate Samuel C.C. Ting at AMS POCC. (Image: Maximilien Brice/CERN) Iranian-American Anousheh Ansari was the first-ever female spaceflight participant, spending eight days on the International Space Station (ISS) in 2006. She now has a new addition to her list of extraordinary sights ­– the home of the world’s largest particle accelerator: CERN.   On 15 July, Anousheh Ansari came to CERN and, unsurprisingly, visited the control room of the experiment attached to the ISS: the AMS. At the AMS Payload Operations Control Centre (AMS POCC) on CERN’s Prévessin site, she met the Nobel laureate Samuel Ting, spokesperson of the AMS experiment. Ansari and her accompanying guests were thrilled to expand their knowledge about CERN, its research and its...

  13. Safety Criteria for the Private Spaceflight Industry

    Science.gov (United States)

    Quinn, Andy; Maropoulos, Paul

    2010-09-01

    The Federal Aviation Administration(FAA) Office of Commercial Space Transportation(AST) has set specific rules and generic guidelines to cover experimental and operational flights by industry forerunners such as Virgin Galactic and XCOR. One such guideline Advisory Circular(AC) 437.55-1[1] contains exemplar hazard analyses for spacecraft designers and operators to follow under an experimental permit. The FAA’s rules and guidelines have also been ratified in a report to the United States Congress, Analysis of Human Space Flight Safety[2] which cites that the industry is too immature and has ‘insufficient data’ to be proscriptive and that ‘defining a minimum set of criteria for human spaceflight service providers is potentially problematic’ in order not to ‘stifle the emerging industry’. The authors of this paper acknowledge the immaturity of the industry and discuss the problematic issues that Design Organisations and Operators now face.

  14. NASA Human Health and Performance Information Architecture Panel

    Science.gov (United States)

    Johnson-Throop, Kathy; Kadwa, Binafer; VanBaalen, Mary

    2014-01-01

    The Human Health and Performance (HH&P) Directorate at NASA's Johnson Space Center has a mission to enable optimization of human health and performance throughout all phases of spaceflight. All HH&P functions are ultimately aimed at achieving this mission. Our activities enable mission success, optimizing human health and productivity in space before, during, and after the actual spaceflight experience of our crews, and include support for ground-based functions. Many of our spaceflight innovations also provide solutions for terrestrial challenges, thereby enhancing life on Earth.

  15. Critical Technology Determination for Future Human Space Flight

    Science.gov (United States)

    Mercer, Carolyn R.; Vangen, Scott D.; Williams-Byrd, Julie A.; Stecklein, Jonette M.; Rahman, Shamim A.; Rosenthal, Matthew E.; Hornyak, David M.; Alexander, Leslie; Korsmeyer, David J.; Tu, Eugene L.; hide

    2012-01-01

    As the National Aeronautics and Space Administration (NASA) prepares to extend human presence throughout the solar system, technical capabilities must be developed to enable long duration flights to destinations such as near Earth asteroids, Mars, and extended stays on the Moon. As part of the NASA Human Spaceflight Architecture Team, a Technology Development Assessment Team has identified a suite of critical technologies needed to support this broad range of missions. Dialog between mission planners, vehicle developers, and technologists was used to identify a minimum but sufficient set of technologies, noting that needs are created by specific mission architecture requirements, yet specific designs are enabled by technologies. Further consideration was given to the re-use of underlying technologies to cover multiple missions to effectively use scarce resources. This suite of critical technologies is expected to provide the needed base capability to enable a variety of possible destinations and missions. This paper describes the methodology used to provide an architecture-driven technology development assessment ("technology pull"), including technology advancement needs identified by trade studies encompassing a spectrum of flight elements and destination design reference missions.

  16. Effect of spaceflight on the isotonic contractile properties of single skeletal muscle fibers in the rhesus monkey

    Science.gov (United States)

    Fitts, R. H.; Romatowski, J. G.; Blaser, C.; De La Cruz, L.; Gettelman, G. J.; Widrick, J. J.

    2000-01-01

    Experiments from both Cosmos and Space Shuttle missions have shown weightlessness to result in a rapid decline in the mass and force of rat hindlimb extensor muscles. Additionally, despite an increased maximal shortening velocity, peak power was reduced in rat soleus muscle post-flight. In humans, declines in voluntary peak isometric ankle extensor torque ranging from 15-40% have been reported following long- and short-term spaceflight and prolonged bed rest. Complete understanding of the cellular events responsible for the fiber atrophy and the decline in force, as well as the development of effective countermeasures, will require detailed knowledge of how the physiological and biochemical processes of muscle function are altered by spaceflight. The specific purpose of this investigation was to determine the extent to which the isotonic contractile properties of the slow- and fast-twitch fiber types of the soleus and gastrocnemius muscles of rhesus monkeys (Macaca mulatta) were altered by a 14-day spaceflight.

  17. Changes of the eye during long-term spaceflight. Review

    Directory of Open Access Journals (Sweden)

    I. A. Makarov

    2016-01-01

    Full Text Available The review includes the publications of the scientific literature on the eye change during long-term spaceflight. The any eye changes such as visual impairment, hyperopic shift in refraction, changes in the intraocular pressure, increased the intracranial pressure, globe flattening, choroidal folding, optic disc edema, and optic nerve kinking and other changes were reported. The main cause of eye disorders, in all probability, is the increase of the intracranial pressure during long-term spaceflight. The reasons of the increased intracranial pressure are a collection of various factors of adaptation mechanisms in the body to weightless conditions. The leading role in the development of intracranial hypertension takes a redistribution of the body fluids (blood and lymph in the direction of the head, but the opportunities and the effect of other factors are present. Also the displacement and increase of the internal organs volume of the chest can cause external compression of the jugular veins, increasing the pressure of the blood in them, and as the result to lead to the increase of the intracranial pressure. The role of trigger such mechanisms in the development of the intracranial hypertension in the microgravity environment as anatomical predisposition of the body, race, metabolic changes under the influence of high carbon dioxide content in the different compartments of the station, high sodium intake, the enzyme dysfunction, weight exercises of the astronauts was discussed. However, the pathogenic mechanisms is currently still under investigation. An important role in the study of the adaptation mechanisms is given to research not only before and after the flight, but also during the space flight. The accumulated knowledge and experience about the changes in organs and systems in the conditions of human adaptation to microgravity will help answer many questions related to the implementation of the long spaceflights.

  18. Radiation protection for human interplanetary spaceflight and planetary surface operations

    Energy Technology Data Exchange (ETDEWEB)

    Clark, B.C. [Armed Forces Radiobiology Research Inst., Bethesda, MD (United States)]|[DLR Inst. of Aerospace Medicine, Cologne (Germany)]|[NASA, Goddard Space Flight Center, Greenbelt, MD (United States)

    1993-12-31

    Radiation protection issues are reviewed for five categories of radiation exposure during human missions to the moon and Mars: trapped radiation belts, galactic cosmic rays, solar flare particle events, planetary surface emissions, and on-board radiation sources. Relative hazards are dependent upon spacecraft and vehicle configurations, flight trajectories, human susceptibility, shielding effectiveness, monitoring and warning systems, and other factors. Crew cabins, interplanetary mission modules, surface habitats, planetary rovers, and extravehicular mobility units (spacesuits) provide various degrees of protection. Countermeasures that may be taken are reviewed relative to added complexity and risks that they could entail, with suggestions for future research and analysis.

  19. Spaceflight Activates Lipotoxic Pathways in Mouse Liver.

    Directory of Open Access Journals (Sweden)

    Karen R Jonscher

    Full Text Available Spaceflight affects numerous organ systems in the body, leading to metabolic dysfunction that may have long-term consequences. Microgravity-induced alterations in liver metabolism, particularly with respect to lipids, remain largely unexplored. Here we utilize a novel systems biology approach, combining metabolomics and transcriptomics with advanced Raman microscopy, to investigate altered hepatic lipid metabolism in mice following short duration spaceflight. Mice flown aboard Space Transportation System -135, the last Shuttle mission, lose weight but redistribute lipids, particularly to the liver. Intriguingly, spaceflight mice lose retinol from lipid droplets. Both mRNA and metabolite changes suggest the retinol loss is linked to activation of PPARα-mediated pathways and potentially to hepatic stellate cell activation, both of which may be coincident with increased bile acids and early signs of liver injury. Although the 13-day flight duration is too short for frank fibrosis to develop, the retinol loss plus changes in markers of extracellular matrix remodeling raise the concern that longer duration exposure to the space environment may result in progressive liver damage, increasing the risk for nonalcoholic fatty liver disease.

  20. Spaceflight Activates Lipotoxic Pathways in Mouse Liver

    Science.gov (United States)

    Jonscher, Karen R.; Alfonso-Garcia, Alba; Suhalim, Jeffrey L.; Orlicky, David J.; Potma, Eric O.; Ferguson, Virginia L.; Bouxsein, Mary L.; Bateman, Ted A.; Stodieck, Louis S.; Levi, Moshe; Friedman, Jacob E.; Gridley, Daila S.; Pecaut, Michael J.

    2016-01-01

    Spaceflight affects numerous organ systems in the body, leading to metabolic dysfunction that may have long-term consequences. Microgravity-induced alterations in liver metabolism, particularly with respect to lipids, remain largely unexplored. Here we utilize a novel systems biology approach, combining metabolomics and transcriptomics with advanced Raman microscopy, to investigate altered hepatic lipid metabolism in mice following short duration spaceflight. Mice flown aboard Space Transportation System -135, the last Shuttle mission, lose weight but redistribute lipids, particularly to the liver. Intriguingly, spaceflight mice lose retinol from lipid droplets. Both mRNA and metabolite changes suggest the retinol loss is linked to activation of PPARα-mediated pathways and potentially to hepatic stellate cell activation, both of which may be coincident with increased bile acids and early signs of liver injury. Although the 13-day flight duration is too short for frank fibrosis to develop, the retinol loss plus changes in markers of extracellular matrix remodeling raise the concern that longer duration exposure to the space environment may result in progressive liver damage, increasing the risk for nonalcoholic fatty liver disease. PMID:27097220

  1. Incidence of Epstein-Barr Virus in Astronaut Saliva During Spaceflight

    Science.gov (United States)

    Payne, Deborah A.; Mehta, Satish K.; Tyring, Stephen K.; Stowe, Raymond P.; Pierson, Duane L.

    1998-01-01

    Astronauts experience psychological and physical stresses that may result in re-activation of latent viruses during spaceflight, potentially increasing the risk of disease among crew members. The shedding of Epstein-Barr virus (EBV) in the saliva of astronauts will increase during spaceflight. A total of 534 saliva specimens were collected from 11 EBV-seropositive astronauts before, during, and after four space shuttle missions. The presence of EBV DNA in saliva, assessed by polymerase chain reaction (PCR), was used to determine shedding patterns before, during, and after spaceflight. EBV DNA was detected more frequently before flight than during (p less than 0.001) or after (p less than 0.01) flight. No significant difference between the in-flight and postflight periods was detected in the frequency of occurrence of EBV DNA. The increased frequency of shedding of EBV before flight suggests that stress levels may be greater before launch than during or after spaceflight.

  2. Z-2 Space Suit: A Case Study in Human Spaceflight Public Outreach

    Science.gov (United States)

    McFarland, Shane M.

    2016-01-01

    NASA Johnson Space Center's Z-series of planetary space suit prototypes is an iterative development platform with a Mars-forward design philosophy, targeting a Mars surface mission in the mid-2030s. The first space suit assembly, called the Z-1, was delivered in 2012. While meeting the project's stated requirements and objectives, the general public's reception primarily focused on the color scheme, which vaguely invoked similarity to a certain animated cartoon character. The public at large has and continues to be exposed to varying space suit design aesthetics from popular culture and low TRL technology maturation efforts such as mechanical counterpressure. The lesson learned was that while the design aesthetic is not important from an engineering perspective, the perception of the public is important for NASA and human spaceflight in general. For the Z-2 space suit, an integrated public outreach strategy was employed to engage, excite and educate the public on the current technology of space suits and NASA's plans moving forward. The keystone of this strategy was a public vote on three different suit cover layer aesthetics, the winner of which would be used as inspiration in fabrication. Other components included social media, university collaboration, and select media appearances, the cumulative result of which, while intangible in its benefit, was ultimately a positive effect in terms of the image of NASA as well as the dissemination of information vital to dispelling public misconceptions.

  3. Spaceflight Modulates Gene Expression in Astronauts

    Data.gov (United States)

    National Aeronautics and Space Administration — Astronauts are exposed to a unique combination of stressors during spaceflight which leads to alterations in their physiology and potentially increases their...

  4. Frequent premature ventricular contractions in an orbital spaceflight participant.

    Science.gov (United States)

    Jennings, Richard T; Stepanek, Jan P; Scott, Luis R; Voronkov, Yury I

    2010-06-01

    Commercial spaceflight participants on orbital flights typically are older than career astronauts and they often have medical conditions that have not been studied at high g or in microgravity. This is a case report of a 56-yr-old orbital spaceflight participant with essential tremor and frequent premature ventricular contractions that occurred at rates up to 7000 per day. Before training and spaceflight, he was required to complete extensive clinical investigations to demonstrate normal cardiac structures and the absence of cardiac pathology. The evaluation included signal averaged ECG, transthoracic stress echocardiography, exercise tolerance tests, electrophysiological studies, cardiac MRI, electron beam CT, Holter monitoring, and overnight oximetry. While no cardiac pathology was demonstrated, the Russian medical team required that the PVCs be treated prior to training and spaceflight. For the initial flight, a selective beta-1 receptor beta blocker was used and for the second a calcium channel blocker was used in combination with a nonselective beta blocker for tremor control. Analogue environment testing assured that this combination of medications was compatible. The spaceflight participant's PVCs were incompletely suppressed with a low-dose selective beta-1 blocker, but were well suppressed by a calcium channel blocker. He tolerated in-flight periodic use of a nonselective beta blocker in combination with a calcium channel blocker. In-flight ECG and blood pressure monitoring results were normal, and an ECG obtained midmission and on landing day showed successful PVC suppression. He did not have any cardiac difficulty with launch, on-orbit operations, entry, or recovery

  5. Distributed System for Spaceflight Biomedical Support

    Data.gov (United States)

    National Aeronautics and Space Administration — Our project investigated whether a software platform could integrate as wide a variety of devices and data types as needed for spaceflight biomedical support. The...

  6. NASA, Building Tomorrow's Future

    Science.gov (United States)

    Mango, Edward

    2011-01-01

    We, as NASA, continue to Dare Mighty Things. Here we are in October. In my country, the United States of America, we celebrate the anniversary of Christopher Columbus's arrival in the Americas, which occurred on October 12, 1492. His story, although happening over 500 years ago, is still very valid today. It is a part of the American spirit; part of the international human spirit. Columbus is famous for discovering the new world we now call America, but he probably never envisioned what great discoveries would be revealed many generations later. But in order for Columbus to begin his great adventure, he needed a business plan. Ho would he go about obtaining the funds and support necessary to build, supply, and man the ships required for his travels? He had a lot of obstacles and distractions. He needed a strong, internal drive to achieve his plans and recruit a willing crew of explorers also ready to risk their all for the unknown journey ahead. As Columbus set sail, he said "By prevailing over all obstacles and distractions, one may unfailingly arrive at his chosen goal or destination." Columbus may not have known he was on a journey for all human exploration. Recently, Charlie Bolden, the NASA Administrator, said, "Human exploration is and has always been about making life better for humans on Earth." Today, NASA and the U.S. human spaceflight program hold many of the same attributes as did Columbus and his contemporaries - a willing, can-do spirit. We are on the threshold of exciting new times in space exploration. Like Columbus, we need a business plan to take us into the future. We need to design the best ships and utilize the best designers, with their past knowledge and experience, to build those ships. We need funding and support from governments to achieve these goals of space exploration into the unknown. NASA does have that business plan, and it is an ambitious plan for human spaceflight and exploration. Today, we have a magnificent spaceflight

  7. Effect of vibrational stress and spaceflight on regulation of heat shock proteins hsp70 and hsp27 in human lymphocytes (Jurkat)

    Science.gov (United States)

    Cubano, L. A.; Lewis, M. L.

    2001-01-01

    Heat shock protein levels are increased in cells as a result of exposure to stress. To determine whether heat shock protein regulation could be used to evaluate stress in cells during spaceflight, the response of Jurkat cells to spaceflight and simulated space shuttle launch vibration was investigated by evaluating hsp70 and hsp27 gene expression. Gene expression was assessed by reverse transcription-polymerase chain reaction using mRNA extracted from vibrated, nonvibrated, space-flown, and ground control cells. Results indicate that mechanical stresses of vibration and low gravity do not up-regulate the mRNA for hsp70, although the gene encoding hsp27 is up-regulated by spaceflight but not by vibration. In ground controls, the mRNA for hsp70 and hsp27 increased with time in culture. We conclude that hsp70 gene expression is a useful indicator of stress related to culture density but is not an indicator of the stresses of launch vibration or microgravity. Up-regulation of hsp27 gene expression in microgravity is a new finding.

  8. Using and Distributing Spaceflight Data: The Johnson Space Center Life Sciences Data Archive

    Science.gov (United States)

    Cardenas, J. A.; Buckey, J. C.; Turner, J. N.; White, T. S.; Havelka,J. A.

    1995-01-01

    Life sciences data collected before, during and after spaceflight are valuable and often irreplaceable. The Johnson Space Center Life is hard to find, and much of the data (e.g. Sciences Data Archive has been designed to provide researchers, engineers, managers and educators interactive access to information about and data from human spaceflight experiments. The archive system consists of a Data Acquisition System, Database Management System, CD-ROM Mastering System and Catalog Information System (CIS). The catalog information system is the heart of the archive. The CIS provides detailed experiment descriptions (both written and as QuickTime movies), hardware descriptions, hardware images, documents, and data. An initial evaluation of the archive at a scientific meeting showed that 88% of those who evaluated the catalog want to use the system when completed. The majority of the evaluators found the archive flexible, satisfying and easy to use. We conclude that the data archive effectively provides key life sciences data to interested users.

  9. Analogs and the BHP Risk Reduction Strategy for Future Spaceflight Missions

    Science.gov (United States)

    Whitmire, Sandra; Leveton, Lauren

    2011-01-01

    In preparation for future exploration missions to distant destinations (e.g., Moon, Near Earth Objects (NEO), and Mars), the NASA Human Research Program s (HRP) Behavioral Health and Performance Element (BHP) conducts and supports research to address four human health risks: Risk of Behavioral Conditions; Risk of Psychiatric Conditions; Risk of Performance Decrements Due to Inadequate Cooperation, Coordination, Communication, and Psychosocial Adaptation within a Team; and Risk of Performance Errors due to Sleep Loss, Fatigue, Circadian Desynchronization, and Work Overload (HRP Science Management Plan, 2008). BHP Research, in collaboration with internal and external research investigators, as well as subject matter experts within NASA operations including flight surgeons, astronauts, and mission planners and others within the Mission Operations Directorate (MOD), identifies knowledge and technology gaps within each Risk. BHP Research subsequently manages and conducts research tasks to address and close the gaps, either through risk assessment and quantification, or the development of countermeasures and monitoring technologies. The resulting deliverables, in many instances, also support current Medical Operations and/or Mission Operations for the International Space Station (ISS).

  10. Spaceflight and Neurosurgery: A Comprehensive Review of the Relevant Literature.

    Science.gov (United States)

    Swinney, Christian C; Allison, Zain

    2018-01-01

    Spaceflight and the associated gravitational fluctuations may impact various components of the central nervous system. These include changes in intracranial pressure, the spine, and neurocognitive performance. The implications of altered astronaut performance on critical spaceflight missions are potentially significant. The current body of research on this important topic is extremely limited, and a comprehensive review has not been published. Herein, the authors address this notable gap, as well as the role of the neurosurgeon in optimizing potential diagnostic and therapeutic modalities. A literature search was conducted using the PubMed, EMBASE, and Google Scholar databases, with no time constraints. Significant manuscripts on physiologic changes associated with spaceflight and microgravity were identified and reviewed. Manifestations were separated into 1 of 3 general categories, including changes in intracranial pressure, the spine, and neurocognitive performance. A comprehensive literature review yielded 27 studies with direct relevance to the impact of microgravity and spaceflight on nervous system physiology. This included 7 studies related to intracranial pressure fluctuations, 17 related to changes in the spinal column, and 3 related to neurocognitive change. The microgravity environment encountered during spaceflight impacts intracranial physiology. This includes changes in intracranial pressure, the spinal column, and neurocognitive performance. Herein, we present a systematic review of the published literature on this issue. Neurosurgeons should have a key role in the continued study of this important topic, contributing to both diagnostic and therapeutic understanding. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Increased nutritional quality of plants for long-duration spaceflight missions through choice of plant variety and manipulation of growth conditions

    Science.gov (United States)

    Cohu, Christopher M.; Lombardi, Elizabeth; Adams, William W.; Demmig-Adams, Barbara

    2014-02-01

    Low levels of radiation during spaceflight increase the incidence of eye damage and consumption of certain carotenoids (especially zeaxanthin), via a whole-food-based diet (rather than from supplements), is recommended to protect human vision against radiation damage. Availability of fresh leafy produce has, furthermore, been identified as desirable for morale during long spaceflight missions. We report that only trace amounts of zeaxanthin are retained post-harvest in leaves grown under conditions conducive to rapid plant growth. We show that growth of plants under cool temperatures and very high light can trigger a greater retention of zeaxanthin, while, however, simultaneously retarding plant growth. We here introduce a novel growth condition—low growth light supplemented with several short daily light pulses of higher intensity—that also triggers zeaxanthin retention, but without causing any growth retardation. Moreover, two plant varieties with different hardiness exhibited a different propensity for zeaxanthin retention. These findings demonstrate that growth light environment and plant variety can be exploited to simultaneously optimize nutritional quality (with respect to zeaxanthin and two other carotenoids important for human vision, lutein and β-carotene) as well as biomass production of leafy greens suitable as bioregenerative systems for long-duration manned spaceflight missions.

  12. Spaceflight Radiation Health program at the Lyndon B. Johnson Space Center

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.S.; Badhwar, G.D.; Golightly, M.J.; Hardy, A.C.; Konradi, A.; Yang, T.C.

    1993-12-01

    The Johnson Space Center leads the research and development activities that address the health effects of space radiation exposure to astronaut crews. Increased knowledge of the composition of the environment and of the biological effects of space radiation is required to assess health risks to astronaut crews. The activities at the Johnson Space Center range from quantification of astronaut exposures to fundamental research into the biological effects resulting from exposure to high energy particle radiation. The Spaceflight Radiation Health Program seeks to balance the requirements for operational flexibility with the requirement to minimize crew radiation exposures. The components of the space radiation environment are characterized. Current and future radiation monitoring instrumentation is described. Radiation health risk activities are described for current Shuttle operations and for research development program activities to shape future analysis of health risk.

  13. Spaceflight Radiation Health program at the Lyndon B. Johnson Space Center

    International Nuclear Information System (INIS)

    Johnson, A.S.; Badhwar, G.D.; Golightly, M.J.; Hardy, A.C.; Konradi, A.; Yang, T.C.

    1993-12-01

    The Johnson Space Center leads the research and development activities that address the health effects of space radiation exposure to astronaut crews. Increased knowledge of the composition of the environment and of the biological effects of space radiation is required to assess health risks to astronaut crews. The activities at the Johnson Space Center range from quantification of astronaut exposures to fundamental research into the biological effects resulting from exposure to high energy particle radiation. The Spaceflight Radiation Health Program seeks to balance the requirements for operational flexibility with the requirement to minimize crew radiation exposures. The components of the space radiation environment are characterized. Current and future radiation monitoring instrumentation is described. Radiation health risk activities are described for current Shuttle operations and for research development program activities to shape future analysis of health risk

  14. Spaceflight influences both mucosal and peripheral cytokine production in PTN-Tg and wild type mice.

    Directory of Open Access Journals (Sweden)

    Justin L McCarville

    Full Text Available Spaceflight is associated with several health issues including diminished immune efficiency. Effects of long-term spaceflight on selected immune parameters of wild type (Wt and transgenic mice over-expressing pleiotrophin under the human bone-specific osteocalcin promoter (PTN-Tg were examined using the novel Mouse Drawer System (MDS aboard the International Space Station (ISS over a 91 day period. Effects of this long duration flight on PTN-Tg and Wt mice were determined in comparison to ground controls and vivarium-housed PTN-Tg and Wt mice. Levels of interleukin-2 (IL-2 and transforming growth factor-beta1 (TGF-β1 were measured in mucosal and systemic tissues of Wt and PTN-Tg mice. Colonic contents were also analyzed to assess potential effects on the gut microbiota, although no firm conclusions could be made due to constraints imposed by the MDS payload and the time of sampling. Spaceflight-associated differences were observed in colonic tissue and systemic lymph node levels of IL-2 and TGF-β1 relative to ground controls. Total colonic TGF-β1 levels were lower in Wt and PTN-Tg flight mice in comparison to ground controls. The Wt flight mouse had lower levels of IL-2 and TGF-β1 compared to the Wt ground control in both the inguinal and brachial lymph nodes, however this pattern was not consistently observed in PTN-Tg mice. Vivarium-housed Wt controls had higher levels of active TGF-β1 and IL-2 in inguinal lymph nodes relative to PTN-Tg mice. The results of this study suggest compartmentalized effects of spaceflight and on immune parameters in mice.

  15. Expression of p53-regulated proteins in human cultured lymphoblastoid TSCE5 and WTK1 cell lines during spaceflight

    International Nuclear Information System (INIS)

    Takahashi, Akihisa; Suzuki, Hiromi; Shimazu, Toru; Omori, Katsunori; Ishioka, Noriaki; Ohnishi, Takeo; Seki, Masaya; Hashizume, Toko

    2012-01-01

    The aim of this study was to determine the biological effects of space radiations, microgravity, and the interaction of them on the expression of p53-regulated proteins. Space experiments were performed with two human cultured lymphoblastoid cell lines: one line (TSCE5) bears a wild-type p53 gene status, and another line (WTK1) bears a mutated p53 gene status. Under 1 gravity or microgravity conditions, the cells were grown in the cell biology experimental facility (CBEF) of the International Space Station for 8 days without experiencing the stress during launching and landing because the cells were frozen during these periods. Ground control samples were simultaneously cultured for 8 days in the CBEF on the ground for 8 days. After spaceflight, protein expression was analyzed using a Panorama TM Ab MicroArray protein chips. It was found that p53-dependent up-regulated proteins in response to space radiations and space environment were MeCP2 (methyl CpG binding protein 2), and Notch1 (Notch homolog 1), respectively. On the other hand, p53-dependent down-regulated proteins were TGF-β, TWEAKR (tumor necrosis factor-like weak inducer of apoptosis receptor), phosho-Pyk2 (Proline-rich tyrosine kinase 2), and 14-3-3θ/τ which were affected by microgravity, and DR4 (death receptor 4), PRMT1 (protein arginine methyltransferase 1) and ROCK-2 (Rho-associated, coiled-coil containing protein kinase 2) in response to space radiations. ROCK-2 was also suppressed in response to the space environment. The data provides the p53-dependent regulated proteins by exposure to space radiations and/or microgravity during spaceflight. Our expression data revealed proteins that might help to advance the basic space radiation biology. (author)

  16. Drosophila melanogaster gene expression changes after spaceflight.

    Data.gov (United States)

    National Aeronautics and Space Administration — Gene expression levels were determined in 3rd instar and adult Drosophila melanogaster reared during spaceflight to elucidate the genetic and molecular mechanisms...

  17. Tolerance of centrifuge-simulated suborbital spaceflight in subjects with implanted insulin pumps.

    Science.gov (United States)

    Levin, Dana R; Blue, Rebecca S; Castleberry, Tarah L; Vanderploeg, James M

    2015-04-01

    With commercial spaceflight comes the possibility of spaceflight participants (SFPs) with significant medical conditions. Those with previously untested medical conditions, such as diabetes mellitus (DM) and the use of indwelling medical devices, represent a unique challenge. It is unclear how SFPs with such devices will react to the stresses of spaceflight. This case report describes two subjects with Type I DM using insulin pumps who underwent simulated dynamic phases of spaceflight via centrifuge G force exposure. Two Type I diabetic subjects with indwelling Humalog insulin pumps, a 23-yr-old man averaging 50 u of Humalog daily and a 27-yr-old man averaging 60 u of Humalog daily, underwent seven centrifuge runs over 48 h. Day 1 consisted of two +Gz runs (peak = +3.5 Gz, run 2) and two +Gx runs (peak = +6.0 Gx, run 4). Day 2 consisted of three runs approximating suborbital spaceflight profiles (combined +Gx and +Gz). Data collected included blood pressure, electrocardiogram, pulse oximetry, neurovestibular evaluation, and questionnaires regarding motion sickness, disorientation, greyout, and other symptoms. Neither subject experienced adverse clinical responses to the centrifuge exposure. Both maintained blood glucose levels between 110-206 mg · dl(-1). Potential risks to SFPs with insulin pump dependent DM include hypo/hyperglycemia, pump damage, neurovestibular dysfunction, skin breakdown, and abnormal stress responses. A search of prior literature did not reveal any previous studies of individuals with DM on insulin pumps exposed to prolonged accelerations. These cases suggest that individuals with conditions dependent on continuous medication delivery might tolerate the accelerations anticipated for commercial spaceflight.

  18. Behavioral Health and Performance at NASA JSC: Recent Successes and Future Plan for BHP Research and Operations

    Science.gov (United States)

    Leveton, L. B.; VanderArk, S. T.

    2014-01-01

    The Behavioral Health and Performance discipline at NASA Johnson Space Center is organized into two distinct Divisions (Biomedical Research and Environmental Science Division and Space and Clinical Operations Division) but is integrated and interrelated in its day-to-day work. Ongoing operations supporting NASA's spaceflight goals benefit from the research portfolios that address risks to mission success. Similarly, these research portfolios are informed by operations to ensure investigations stay relevant given the dynamic environment of spaceflight. There are many success stories that can be presented where initial work begun as a BHP Research project, and funded through the Human Research Program, was fully implemented in operations or addressed an operational need. Examples include improving effectiveness of the debriefings used within Mission Control by the Mission Operations Directorate and countermeasures for fatigue management. There is also ongoing collaboration with research and operations for developing selection methods for future generation astronauts, and to enhance and inform the current family support function. The objective of this panel is to provide examples of recent success stories, describe areas where close collaboration is benefitting ongoing research and operations, and summarize how this will come together as NASA plans for the one year ISS mission - a unique opportunity for both BHP operations and research to learn more about preparing and supporting crewmembers for extended missions in space. The proposed panel will be comprised of six presentations, each describing a unique aspect of research or operations and the benefits to current and future spaceflight.

  19. Contribution of Spaceflight Environmental Factors to Vision Risks

    Science.gov (United States)

    Zanello, Susana B.

    2011-01-01

    The risk of visual impairment and elevated intracranial pressure as a result of low-earth orbit microgravity exposure has directed our attention and research efforts to the eye. While the alterations observed in astronauts returning from long duration missions include vision and neuroanatomical changes observed by non-invasive methods, other effects and subsequent tissue responses at the molecular and cellular level can only be studied by accessing the tissue itself. As a result of this need, several studies are currently taking place within the Human and Health Countermeasures Element (HHC) that use animal models for eye research. The rodent eye has many similarities to the human eye, and both rats and mice have historically been used as models of human eye disease, aiding in the identification of the disease genes, elucidation of mechanisms of disease, as well as in the assessment of therapeutic treatments. These studies attempt to answer two central questions in the etiology of possible vision alterations in the environment of space exploration missions. The first is: what effects and response mechanisms take place in the different eye structures at the cellular and molecular level? The second question is directed to elucidate the contribution of the various environmental stressors (radiation, nutrition, fluid shift) to these effects. Collaborative approaches with internal and external investigators have allowed performing these studies in a most cost-effective fashion, providing preliminary data and laying the bases for testing further hypotheses in future and specifically designed animal experiments. From a study centered on the radioadaptive response in mice, we have learned that the retina responds to low and high dose gamma radiation by elevating antioxidant-related genes at early time points (4hrs) and that this response returns to control levels after 1 day post-irradiation. We are expanding this research with another collaborative study that investigates

  20. Fiber Optic Cables for Transmission of High-Power Laser Pulses in Spaceflight Applications

    Science.gov (United States)

    Thomes, W. J., Jr.; Ott, M. N.; Chuska, R. F.; Switzer, R. C.; Blair, D. E.

    2010-01-01

    Lasers with high peak power pulses are commonly used in spaceflight missions for a wide range of applications, from LIDAR systems to optical communications. Due to the high optical power needed, the laser has to be located on the exterior of the satellite or coupled through a series of free space optics. This presents challenges for thermal management, radiation resistance, and mechanical design. Future applications will require multiple lasers located close together, which further complicates the design. Coupling the laser energy into a fiber optic cable allows the laser to be relocated to a more favorable position on the spacecraft. Typical fiber optic termination procedures are not sufficient for injection of these high-power laser pulses without catastrophic damage to the fiber endface. In the current study, we will review the causes of fiber damage during high-power injection and discuss our new manufacturing procedures that overcome these issues to permit fiber use with high reliability in these applications. We will also discuss the proper methods for launching the laser pulses into the fiber to avoid damage and how this is being implemented for current spaceflight missions.

  1. Fiber optic cables for transmission of high-power laser pulses in spaceflight applications

    Science.gov (United States)

    Thomes, W. J.; Ott, M. N.; Chuska, R. F.; Switzer, R. C.; Blair, D. E.

    2017-11-01

    Lasers with high peak power pulses are commonly used in spaceflight missions for a wide range of applications, from LIDAR systems to optical communications. Due to the high optical power needed, the laser has to be located on the exterior of the satellite or coupled through a series of free space optics. This presents challenges for thermal management, radiation resistance, and mechanical design. Future applications will require multiple lasers located close together, which further complicates the design. Coupling the laser energy into a fiber optic cable allows the laser to be relocated to a more favorable position on the spacecraft. Typical fiber optic termination procedures are not sufficient for injection of these high-power laser pulses without catastrophic damage to the fiber endface. In the current study, we will review the causes of fiber damage during high-power injection and discuss our new manufacturing procedures that overcome these issues to permit fiber use with high reliability in these applications. We will also discuss the proper methods for launching the laser pulses into the fiber to avoid damage and how this is being implemented for current spaceflight missions.

  2. How Spacecraft Fly Spaceflight Without Formulae

    CERN Document Server

    Swinerd, Graham

    2009-01-01

    About half a century ago a small satellite, Sputnik 1, was launched. The satellite did very little other than to transmit a radio signal to announce its presence in orbit. However, this humble beginning heralded the dawn of the Space Age. Today literally thousands of robotic spacecraft have been launched, many of which have flown to far-flung regions of the Solar System carrying with them the human spirit of scientific discovery and exploration. Numerous other satellites have been launched in orbit around the Earth providing services that support our technological society on the ground. How Spacecraft Fly: Spaceflight Without Formulae by Graham Swinerd focuses on how these spacecraft work. The book opens with a historical perspective of how we have come to understand our Solar System and the Universe. It then progresses through orbital flight, rocket science, the hostile environment within which spacecraft operate, and how they are designed. The concluding chapters give a glimpse of what the 21st century may ...

  3. Effects and Responses to Spaceflight in the Mouse Retina

    Science.gov (United States)

    Zanello, Susana B.; Theriot, Corey; Westby, Christian; Boyle, Richard

    2011-01-01

    Several stress environmental factors are combined in a unique fashion during spaceflight, affecting living beings widely across their physiological systems. Recently, attention has been placed on vision changes in astronauts returning from long duration missions. Alterations include hyperoptic shift, globe flattening, choroidal folds and optic disc edema, which are probably associated with increased intracranial pressure. These observations justify a better characterization of the ocular health risks associated with spaceflight. This study investigates the impact of spaceflight on the biology of the mouse retina. Within a successful tissue sharing effort, eyes from albino Balb/cJ mice aboard STS-133 were collected for histological analysis and gene expression profiling of the retina at 1 and 7 days after landing. Both vivarium and AEM (Animal Enclosure Module) mice were used as ground controls. Oxidative stress-induced DNA damage was higher in the flight samples compared to controls on R+1, and decreased on R+7. A trend toward higher oxidative and cellular stress response gene expression was also observed on R+1 compared to AEM controls, and these levels decreased on R+7. Several genes coding for key antioxidant enzymes, namely, heme-oxygenase-1, peroxiredoxin, and catalase, were among those upregulated after flight. Likewise, NF B and TGFbeta1, were upregulated in one flight specimen that overall showed the most elevated oxidative stress markers on R+1. In addition, retinas from vivarium control mice evidenced higher oxidative stress markers, NF B and TGFbeta1, likely due to the more intense illumination in vivarium cages versus the AEM. These preliminary data suggest that spaceflight represents a source of environmental stress that translates into oxidative and cellular stress in the retina, which is partially reversible upon return to Earth. Further work is needed to dissect the contribution of the various spaceflight factors (microgravity, radiation) and to

  4. Plant growth strategies are remodeled by spaceflight

    Directory of Open Access Journals (Sweden)

    Paul Anna-Lisa

    2012-12-01

    Full Text Available Abstract Background Arabidopsis plants were grown on the International Space Station within specialized hardware that combined a plant growth habitat with a camera system that can capture images at regular intervals of growth. The Imaging hardware delivers telemetric data from the ISS, specifically images received in real-time from experiments on orbit, providing science without sample return. Comparable Ground Controls were grown in a sister unit that is maintained in the Orbital Environment Simulator at Kennedy Space Center. One of many types of biological data that can be analyzed in this fashion is root morphology. Arabidopsis seeds were geminated on orbit on nutrient gel Petri plates in a configuration that encouraged growth along the surface of the gel. Photos were taken every six hours for the 15 days of the experiment. Results In the absence of gravity, but the presence of directional light, spaceflight roots remained strongly negatively phototropic and grew in the opposite direction of the shoot growth; however, cultivars WS and Col-0 displayed two distinct, marked differences in their growth patterns. First, cultivar WS skewed strongly to the right on orbit, while cultivar Col-0 grew with little deviation away from the light source. Second, the Spaceflight environment also impacted the rate of growth in Arabidopsis. The size of the Flight plants (as measured by primary root and hypocotyl length was uniformly smaller than comparably aged Ground Control plants in both cultivars. Conclusions Skewing and waving, thought to be gravity dependent phenomena, occur in spaceflight plants. In the presence of an orienting light source, phenotypic trends in skewing are gravity independent, and the general patterns of directional root growth typified by a given genotype in unit gravity are recapitulated on orbit, although overall growth patterns on orbit are less uniform. Skewing appears independent of axial orientation on the ISS – suggesting

  5. Redox Signaling and Its Impact on Skeletal and Vascular Responses to Spaceflight

    Directory of Open Access Journals (Sweden)

    Candice G. T. Tahimic

    2017-10-01

    Full Text Available Spaceflight entails exposure to numerous environmental challenges with the potential to contribute to both musculoskeletal and vascular dysfunction. The purpose of this review is to describe current understanding of microgravity and radiation impacts on the mammalian skeleton and associated vasculature at the level of the whole organism. Recent experiments from spaceflight and ground-based models have provided fresh insights into how these environmental stresses influence mechanisms that are related to redox signaling, oxidative stress, and tissue dysfunction. Emerging mechanistic knowledge on cellular defenses to radiation and other environmental stressors, including microgravity, are useful for both screening and developing interventions against spaceflight-induced deficits in bone and vascular function.

  6. Redox Signaling and Its Impact on Skeletal and Vascular Responses to Spaceflight

    Science.gov (United States)

    Tahimic, Candice; Globus, Ruth K.

    2018-01-01

    Spaceflight entails exposure to numerous environmental challenges with the potential to contribute to both musculoskeletal and vascular dysfunction. The purpose of this review is to describe current understanding of microgravity and radiation impacts on the mammalian skeleton and associated vasculature at the level of the whole organism. Recent experiments from spaceflight and groundbased models have provided fresh insights into how these environmental stresses influence mechanisms that are related to redox signaling, oxidative stress, and tissue dysfunction. Emerging mechanistic knowledge on cellular defenses to radiation and other environmental stressors, including microgravity, are useful for both screening and developing interventions against spaceflight-induced deficits in bone and vascular function.

  7. Evidence Report: Risk of Bone Fracture due to Spaceflight-Induced Changes to Bone

    Science.gov (United States)

    Sibonga, Jean D.; Evans, Harlan J.; Smith, Scott A.; Spector, Elisabeth R.; Yardley, Greg; Myer, Jerry

    2017-01-01

    Given that spaceflight may induce adverse changes in bone ultimate strength with respect to mechanical loads during and post-mission, there is a possibility a fracture may occur for activities otherwise unlikely to induce fracture prior to initiating spaceflight.

  8. Falls and Fall-Prevention in Older Persons: Geriatrics Meets Spaceflight!

    Science.gov (United States)

    Goswami, Nandu

    2017-01-01

    This paper provides a general overview of key physiological consequences of microgravity experienced during spaceflight and of important parallels and connections to the physiology of aging. Microgravity during spaceflight influences cardiovascular function, cerebral autoregulation, musculoskeletal, and sensorimotor system performance. A great deal of research has been carried out to understand these influences and to provide countermeasures to reduce the observed negative consequences of microgravity on physiological function. Such research can inform and be informed by research related to physiological changes and the deterioration of physiological function due to aging. For example, head-down bedrest is used as a model to study effects of spaceflight deconditioning due to reduced gravity. As hospitalized older persons spend up to 80% of their time in bed, the deconditioning effects of bedrest confinement on physiological functions and parallels with spaceflight deconditioning can be exploited to understand and combat both variations of deconditioning. Deconditioning due to bed confinement in older persons can contribute to a downward spiral of increasing frailty, orthostatic intolerance, falls, and fall-related injury. As astronauts in space spend substantial amounts of time carrying out exercise training to counteract the microgravity-induced deconditioning and to counteract orthostatic intolerance on return to Earth, it is logical to suggest some of these interventions for bed-confined older persons. Synthesizing knowledge regarding deconditioning due to reduced gravitational stress in space and deconditioning during bed confinement allows for a more comprehensive approach that can incorporate aspects such as (mal-) nutrition, muscle strength and function, cardiovascular (de-) conditioning, and cardio-postural interactions. The impact of such integration can provide new insights and lead to methods of value for both space medicine and geriatrics (Geriatrics

  9. Carotid and Femoral Arterial Wall Distensibility During Long-Duration Spaceflight.

    Science.gov (United States)

    Arbeille, Philippe; Provost, Romain; Zuj, Kathryn

    2017-10-01

    This study aimed to assess changes in common carotid (CA) and superficial femoral (FA) arterial stiffness during long-duration spaceflight. Ultrasound imaging was used to investigate the CA and FA of 10 astronauts preflight (PRE), on flight day 15 (FD15), after 4-5 mo (FD4-5m), and 4 d after return to Earth (R+4). Arterial wall properties were assessed through the calculation of strain, stiffness (β), pressure-strain elastic modulus (Ep), and distensibility (DI). Stiffness indices were assessed for potential correlations to measurements of intima-media thickness (IMT). Significant effects of spaceflight were found for all CA stiffness indices, indicating an increase in arterial stiffness. CA strain was reduced by 34 ± 31% on FD15 and 50 ± 16% on FD4-5m and remained reduced by 42 ± 14% on R+4 with respect to PRE values. On FD4-5m, with respect to PRE values, DI was reduced by 46 ± 25% and β and Ep were increased by 124 ± 95% and 118 ± 92%, respectively. FA arterial stiffness indices appeared to show similar changes; however, a main effect of spaceflight was only found for strain. Correlation analysis showed weak but significant relationships between measurements of CA IMT and arterial stiffness indices, but no relationships were found for FA measurements. The observed change in CA and FA stiffness indices suggest that spaceflight results in an increase in arterial stiffness. That these changes were not strongly related to measurements of IMT suggests the possibility of different mechanisms contributing to the observed results.Arbeille P, Provost R, Zuj K. Carotid and femoral arterial wall distensibility during long-duration spaceflight. Aerosp Med Hum Perform. 2017; 88(10):924-930.

  10. Physical Training for Long-Duration Spaceflight.

    Science.gov (United States)

    Loehr, James A; Guilliams, Mark E; Petersen, Nora; Hirsch, Natalie; Kawashima, Shino; Ohshima, Hiroshi

    2015-12-01

    Physical training has been conducted on the International Space Station (ISS) for the past 10 yr as a countermeasure to physiological deconditioning during spaceflight. Each member space agency has developed its own approach to creating and implementing physical training protocols for their astronauts. We have divided physical training into three distinct phases (preflight, in-flight, and postflight) and provided a description of each phase with its constraints and limitations. We also discuss how each member agency (NASA, ESA, CSA, and JAXA) prescribed physical training for their crewmembers during the first 10 yr of ISS operations. It is important to understand the operational environment, the agency responsible for the physical training program, and the constraints and limitations associated with spaceflight to accurately design and implement exercise training or interpret the exercise data collected on ISS. As exploration missions move forward, resolving agency differences in physical training programs will become important to maximizing the effectiveness of exercise as a countermeasure and minimizing any mission impacts.

  11. Fish Inner Ear Otolith Growth Under Real Microgravity (Spaceflight) and Clinorotation

    Science.gov (United States)

    Anken, Ralf; Brungs, Sonja; Grimm, Dennis; Knie, Miriam; Hilbig, Reinhard

    2016-06-01

    Using late larval stages of cichlid fish ( Oreochromis mossambicus) we have shown earlier that the biomineralization of otoliths is adjusted towards gravity by means of a neurally guided feedback loop. Centrifuge experiments, e.g., revealed that increased gravity slows down otolith growth. Microgravity thus should yield an opposite effect, i.e., larger than normal otoliths. Consequently, late larval cichlids (stage 14, vestibular system operational) were subjected to real microgravity during the 12 days FOTON-M3 spaceflight mission (OMEGAHAB-hardware). Controls were kept at 1 g on ground within an identical hardware. Animals of another batch were subsequently clinorotated within a submersed fast-rotating clinostat with one axis of rotation (2d-clinostat), a device regarded to simulate microgravity. Temperature and light conditions were provided in analogy to the spaceflight experiment. Controls were maintained at 1 g within the same aquarium. After all experiments, animals had reached late stage 21 (fish can swim freely). Maintenance under real microgravity during spaceflight resulted in significantly larger than normal otoliths (both lapilli and sagittae, involved in sensing gravity and the hearing process, respectively). This result is fully in line with an earlier spaceflight study in the course of which otoliths from late-staged swordtails Xiphophorus helleri were analyzed. Clinorotation resulted in larger than 1 g sagittae. However, no effect on lapilli was obtained. Possibly, an effect was present but too light to be measurable. Overall, spaceflight obviously induces an adaptation of otolith growth, whereas clinorotation does not fully mimic conditions of microgravity regarding late larval cichlids.

  12. Dysrhythmias in Laypersons During Centrifuge-Simulated Suborbital Spaceflight.

    Science.gov (United States)

    Suresh, Rahul; Blue, Rebecca S; Mathers, Charles H; Castleberry, Tarah L; Vanderploeg, James M

    2017-11-01

    There are limited data on cardiac dysrhythmias in laypersons during hypergravity exposure. We report layperson electrocardiograph (ECG) findings and tolerance of dysrhythmias during centrifuge-simulated suborbital spaceflight. Volunteers participated in varied-length centrifuge training programs of 2-7 centrifuge runs over 0.5-2 d, culminating in two simulated suborbital spaceflights of combined +Gz and +Gx (peak +4.0 Gz, +6.0 Gx, duration 5 s). Monitors recorded pre- and post-run mean arterial blood pressure (MAP), 6-s average heart rate (HR) collected at prespecified points during exposures, documented dysrhythmias observed on continuous 3-lead ECG, self-reported symptoms, and objective signs of intolerance on real-time video monitoring. Participating in the study were 148 subjects (43 women). Documented dysrhythmias included sinus pause (N = 5), couplet premature ventricular contractions (N = 4), bigeminy (N = 3), accelerated idioventricular rhythm (N = 1), and relative bradycardia (RB, defined as a transient HR drop of >20 bpm; N = 63). None were associated with subjective symptoms or objective signs of acceleration intolerance. Episodes of RB occurred only during +Gx exposures. Subjects had a higher post-run vs. pre-run MAP after all exposures, but demonstrated no difference in pre- and post-run HR. RB was more common in men, younger individuals, and subjects experiencing more centrifuge runs. Dysrhythmias in laypersons undergoing simulated suborbital spaceflight were well tolerated, though RB was frequently noted during short-duration +Gx exposure. No subjects demonstrated associated symptoms or objective hemodynamic sequelae from these events. Even so, heightened caution remains warranted when monitoring dysrhythmias in laypersons with significant cardiopulmonary disease or taking medications that modulate cardiac conduction.Suresh R, Blue RS, Mathers CH, Castleberry TL, Vanderploeg JM. Dysrhythmias in laypersons during centrifuge-stimulated suborbital

  13. Space Life Sciences at NASA: Spaceflight Health Policy and Standards

    Science.gov (United States)

    Davis, Jeffrey R.; House, Nancy G.

    2006-01-01

    In January 2005, the President proposed a new initiative, the Vision for Space Exploration. To accomplish the goals within the vision for space exploration, physicians and researchers at Johnson Space Center are establishing spaceflight health standards. These standards include fitness for duty criteria (FFD), permissible exposure limits (PELs), and permissible outcome limits (POLs). POLs delineate an acceptable maximum decrement or change in a physiological or behavioral parameter, as the result of exposure to the space environment. For example cardiovascular fitness for duty standards might be a measurable clinical parameter minimum that allows successful performance of all required duties. An example of a permissible exposure limit for radiation might be the quantifiable limit of exposure over a given length of time (e.g. life time radiation exposure). An example of a permissible outcome limit might be the length of microgravity exposure that would minimize bone loss. The purpose of spaceflight health standards is to promote operational and vehicle design requirements, aid in medical decision making during space missions, and guide the development of countermeasures. Standards will be based on scientific and clinical evidence including research findings, lessons learned from previous space missions, studies conducted in space analog environments, current standards of medical practices, risk management data, and expert recommendations. To focus the research community on the needs for exploration missions, NASA has developed the Bioastronautics Roadmap. The Bioastronautics Roadmap, NASA's approach to identification of risks to human space flight, revised baseline was released in February 2005. This document was reviewed by the Institute of Medicine in November 2004 and the final report was received in October 2005. The roadmap defines the most important research and operational needs that will be used to set policy, standards (define acceptable risk), and

  14. Fibroblast Growth Factor 23 in Long-Duration Spaceflight

    Science.gov (United States)

    Bokhari, R.; Zwart, S. R.; Fields, E.; Heer, M.; Sibonga, J.; Smith, S. M.

    2015-01-01

    Many nutritional factors influence bone, from the basics of calcium and vitamin D, to factors which influence bone through acid/base balance, including protein, sodium, and more. Fibroblast growth factor 23 (FGF23) is a recently identified factor, secreted from osteocytes, which is involved in classic (albeit complex) feedback loops controlling phosphorus homeostasis through both vitamin D and parathyroid hormone (PTH) (1, 2). As osteocytes are gravity sensing cells, it is important to determine if there are changes in FGF23 during spaceflight. In extreme cases, such as chronic kidney disease, FGF23 levels are highly elevated. FGF23 imbalances, secondary to dietary influences, may contribute to skeletal demineralization and kidney stone risk during spaceflight.

  15. Point-of-Care Ultrasound for Pulmonary Concerns in Remote Spaceflight Triage Environments.

    Science.gov (United States)

    Johansen, Benjamin D; Blue, Rebecca S; Castleberry, Tarah L; Antonsen, Erik L; Vanderploeg, James M

    2018-02-01

    With the development of the commercial space industry, growing numbers of spaceflight participants will engage in activities with a risk for pulmonary injuries, including pneumothorax, ebullism, and decompression sickness, as well as other concomitant trauma. Medical triage capabilities for mishaps involving pulmonary conditions have not been systematically reviewed. Recent studies have advocated the use of point-of-care ultrasound to screen for lung injury or illness. The operational utility of portable ultrasound systems in disaster relief and other austere settings may be relevant to commercial spaceflight. A systematic review of published literature was conducted concerning the use of point-of-care pulmonary ultrasound techniques in austere environments, including suggested examination protocols for triage and diagnosis. Recent studies support the utility of pulmonary ultrasound examinations when performed by skilled operators, and comparability of the results to computed tomography and chest radiography for certain conditions, with important implications for trauma management in austere environments. Pulmonary injury and illness are among the potential health risks facing spaceflight participants. Implementation of point-of-care ultrasound protocols could aid in the rapid diagnosis, triage, and treatment of such conditions. Though operator-dependent, ultrasound, with proper training, experience, and equipment, could be a valuable tool in the hands of a first responder supporting remote spaceflight operations.Johansen BD, Blue RS, Castleberry TL, Antonsen EL, Vanderploeg JM. Point-of-care ultrasound for pulmonary concerns in remote spaceflight triage environments. Aerosp Med Hum Perform. 2018; 89(2):122-129.

  16. Ocular Counter Rolling in Astronauts After Short- and Long-Duration Spaceflight.

    Science.gov (United States)

    Reschke, Millard F; Wood, Scott J; Clément, Gilles

    2018-05-17

    Ocular counter-rolling (OCR) is a reflex generated by the activation of the gravity sensors in the inner ear that stabilizes gaze and posture during head tilt. We compared the OCR measures that were obtained in 6 astronauts before, during, and after a spaceflight lasting 4-6 days with the OCR measures obtained from 6 astronauts before and after a spaceflight lasting 4-9 months. OCR in the short-duration fliers was measured using the afterimage method during head tilt at 15°, 30°, and 45°. OCR in the long-duration fliers was measured using video-oculography during whole body tilt at 25°. A control group of 7 subjects was used to compare OCR measures during head tilt and whole body tilt. No OCR occurred during head tilt in microgravity, and the response returned to normal within 2 hours of return from short-duration spaceflight. However, the amplitude of OCR was reduced for several days after return from long-duration spaceflight. This decrease in amplitude was not accompanied by changes in the asymmetry of OCR between right and left head tilt. These results indicate that the adaptation  of otolith-driven reflexes to microgravity is a long-duration process.

  17. Humanly space objects-Perception and connection with the observer

    Science.gov (United States)

    Balint, Tibor S.; Hall, Ashley

    2015-05-01

    Expanding humanity into space is an inevitable step in our quest to explore our world. Yet space exploration is costly, and the awaiting environment challenges us with extreme cold, heat, vacuum and radiation, unlike anything encountered on Earth. Thus, the few pioneers who experience it needed to be well protected throughout their spaceflight. The resulting isolation heightens the senses and increases the desire to make humanly connections with any other perceived manifestation of life. Such connections may occur via sensory inputs, namely vision, touch, sound, smell, and taste. This then follows the process of sensing, interpreting, and recognizing familiar patterns, or learning from new experiences. The desire to connect could even transfer to observed objects, if their movements and characteristics trigger the appropriate desires from the observer. When ordered in a familiar way, for example visual stimuli from lights and movements of an object, it may create a perceived real bond with an observer, and evoke the feeling of surprise when the expected behavior changes to something no longer predictable or recognizable. These behavior patterns can be designed into an object and performed autonomously in front of an observer, in our case an astronaut. The experience may introduce multiple responses, including communication, connection, empathy, order, and disorder. While emotions are clearly evoked in the observer and may seem one sided, in effect the object itself provides a decoupled bond, connectivity and communication between the observer and the artist-designer of the object. In this paper we will discuss examples from the field of arts and other domains, including robotics, where human perception through object interaction was explored, and investigate the starting point for new innovative design concepts and future prototype designs, that extend these experiences beyond the boundaries of Earth, while taking advantage of remoteness and the zero gravity

  18. Effects of Long Duration Spaceflight on Venous and Arterial Compliance in Astronants

    Science.gov (United States)

    Platts, Steven; Ribeiro, L. Christine

    2014-01-01

    1. Project Overview Visual impairment and intracranial pressure (VIIP) is a spaceflight-associated medical condition affecting at least a third of American astronauts who have flown International Space Station (ISS) missions. VIIP is defined primarily by visual acuity deficits and anatomical changes to eye structures. In some astronauts, eye-related changes do not revert back to the preflight state upon return to Earth. Our team will study some of the possible causes for this syndrome. This will be achieved by reviewing previous astronaut data for factors that may predispose astronauts to higher rates of developing this syndrome or greater severity of symptoms. Additionally, we will conduct 3 separate experiments that will characterize vessels in the head and neck and measure the effects of the experimental conditions on ocular structures and function. 2. Technical Summary The primary objective of this study is to determine whether vascular compliance is altered by spaceflight and whether such adaptations are related to the incidence of the VIIP. In particular, we will measure ocular parameters and vascular compliance in vessels of the head and neck in astronauts who have no spaceflight experience (Ground), in astronauts before, during, and after spaceflight (Flight), and in bed rest subjects with conditions similar to spaceflight (Bed Rest). Additionally, we will analyze astronaut data from the Lifetime Surveillance of Astronaut Health (LSAH) archives to determine which factors might be predictive of the development of VIIP (Data Mining). The project will be conducted in four separate, but related parts. Hypothesis The central hypothesis of this proposal is that exposure to the spaceflight environment aboard the ISS may lead to development of the VIIP syndrome (increased intracranial pressure and impaired visual acuity) and that this may be related to alterations in venous and/or arterial compliance in the head and neck. Specific Aims 1. To determine whether

  19. Intracranial Fluid Redistribution But No White Matter Microstructural Changes During a Spaceflight Analog.

    Science.gov (United States)

    Koppelmans, Vincent; Pasternak, Ofer; Bloomberg, Jacob J; Dios, Yiri E De; Wood, Scott J; Riascos, Roy; Reuter-Lorenz, Patricia A; Kofman, Igor S; Mulavara, Ajitkumar P; Seidler, Rachael D

    2017-06-09

    The neural correlates of spaceflight-induced sensorimotor impairments are unknown. Head down-tilt bed rest (HDBR) serves as a microgravity analog because it mimics the headward fluid shift and axial body unloading of spaceflight. We investigated focal brain white matter (WM) changes and fluid shifts during 70 days of 6° HDBR in 16 subjects who were assessed pre (2x), during (3x), and post-HDBR (2x). Changes over time were compared to those in control subjects (n = 12) assessed four times over 90 days. Diffusion MRI was used to assess WM microstructure and fluid shifts. Free-Water Imaging was used to quantify distribution of intracranial extracellular free water (FW). Additionally, we tested whether WM and FW changes correlated with changes in functional mobility and balance measures. HDBR resulted in FW increases in fronto-temporal regions and decreases in posterior-parietal regions that largely recovered by two weeks post-HDBR. WM microstructure was unaffected by HDBR. FW decreases in the post-central gyrus and precuneus correlated negatively with balance changes. We previously reported that gray matter increases in these regions were associated with less HDBR-induced balance impairment, suggesting adaptive structural neuroplasticity. Future studies are warranted to determine causality and underlying mechanisms.

  20. Centrifuge-Simulated Suborbital Spaceflight in a Subject with Cardiac Malformation.

    Science.gov (United States)

    Blue, Rebecca S; Blacher, Eric; Castleberry, Tarah L; Vanderploeg, James M

    2015-11-01

    Commercial spaceflight participants (SFPs) will introduce new medical challenges to the aerospace community, with unique medical conditions never before exposed to the space environment. This is a case report regarding the response of a subject with multiple cardiac malformations, including aortic insufficiency, pulmonary atresia, pulmonary valve replacement, ventricular septal defect (post-repair), and pulmonary artery stenosis (post-dilation), to centrifuge acceleration simulating suborbital flight. A 23-yr-old man with a history of multiple congenital cardiac malformations underwent seven centrifuge runs over 2 d. Day 1 consisted of two +G(z) runs (peak = +3.5 G(z), run 2) and two +G(x) runs (peak = +6.0 G(x), run 4). Day 2 consisted of three runs approximating suborbital spaceflight profiles (combined +G(x) and +G(z)). Data collected included blood pressure, electrocardiogram, pulse oximetry, neurovestibular exams, and post-run questionnaires regarding motion sickness, disorientation, greyout, and other symptoms. Despite the subject's significant medical history, he tolerated the acceleration profiles well and demonstrated no significant abnormal physiological responses. Potential risks to SFPs with aortic insufficiency, artificial heart valves, or valvular insufficiency include lower +G(z) tolerance, earlier symptom onset, and ineffective mitigation strategies such as anti-G straining maneuvers. There are no prior studies of prolonged accelerations approximating spaceflight in such individuals. This case demonstrates tolerance of acceleration profiles in an otherwise young and healthy individual with significant cardiac malformations, suggesting that such conditions may not necessarily preclude participation in commercial spaceflight.

  1. Tolerance of centrifuge-simulated suborbital spaceflight by medical condition.

    Science.gov (United States)

    Blue, Rebecca S; Pattarini, James M; Reyes, David P; Mulcahy, Robert A; Garbino, Alejandro; Mathers, Charles H; Vardiman, Johnené L; Castleberry, Tarah L; Vanderploeg, James M

    2014-07-01

    We examined responses of volunteers with known medical disease to G forces in a centrifuge to evaluate how potential commercial spaceflight participants (SFPs) might tolerate the forces of spaceflight despite significant medical history. Volunteers were recruited based upon suitability for each of five disease categories (hypertension, cardiovascular disease, diabetes, lung disease, back or neck problems) or a control group. Subjects underwent seven centrifuge runs over 2 d. Day 1 consisted of two +G(z) runs (peak = +3.5 G(z), Run 2) and two +G(x), runs (peak = +6.0 G(x), Run 4). Day 2 consisted of three runs approximating suborbital spaceflight profiles (combined +G(x) and +G(z), peak = +6.0 G(x)/+4.0 G(z)). Data collected included blood pressure, electrocardiogram, pulse oximetry, neurovestibular exams, and post-run questionnaires regarding motion sickness, disorientation, grayout, and other symptoms. A total of 335 subjects registered for participation, of which 86 (63 men, 23 women, age 20-78 yr) participated in centrifuge trials. The most common causes for disqualification were weight and severe and uncontrolled medical or psychiatric disease. Five subjects voluntarily withdrew from the second day of testing: three for anxiety reasons, one for back strain, and one for time constraints. Maximum hemodynamic values recorded included HR of 192 bpm, systolic BP of 217 mmHg, and diastolic BP of 144 mmHg. Common subjective complaints included grayout (69%), nausea (20%), and chest discomfort (6%). Despite their medical history, no subject experienced significant adverse physiological responses to centrifuge profiles. These results suggest that most individuals with well-controlled medical conditions can withstand acceleration forces of launch and re-entry profiles of current commercial spaceflight vehicles.

  2. Role of Mitochondrial Oxidative Stress in Spaceflight-Induced Tissue Degeneration

    Science.gov (United States)

    Torres, Samantha M.; Schreurs, Ann-Sofie; Truong, Tiffany A.; Tahimic, Candice; Globus, Ruth

    2017-01-01

    Microgravity and ionizing radiation in the spaceflight environment poses multiple challenges to homeostasis and may contribute to cellular stress. Effects may include increased generation of reactive oxygen species (ROS), DNA damage and repair error, cell cycle arrest, cell senescence or death. Our central hypothesis is that prolonged exposure to the spaceflight environment leads to the excess production of ROS and oxidative damage, culminating in accelerated tissue degeneration. The main goal of this project is to determine the importance of cellular redox defense for physiological adaptations and tissue degeneration in the space environment.

  3. Falls and Fall-Prevention in Older Persons: Geriatrics Meets Spaceflight!

    Directory of Open Access Journals (Sweden)

    Nandu Goswami

    2017-10-01

    Full Text Available This paper provides a general overview of key physiological consequences of microgravity experienced during spaceflight and of important parallels and connections to the physiology of aging. Microgravity during spaceflight influences cardiovascular function, cerebral autoregulation, musculoskeletal, and sensorimotor system performance. A great deal of research has been carried out to understand these influences and to provide countermeasures to reduce the observed negative consequences of microgravity on physiological function. Such research can inform and be informed by research related to physiological changes and the deterioration of physiological function due to aging. For example, head-down bedrest is used as a model to study effects of spaceflight deconditioning due to reduced gravity. As hospitalized older persons spend up to 80% of their time in bed, the deconditioning effects of bedrest confinement on physiological functions and parallels with spaceflight deconditioning can be exploited to understand and combat both variations of deconditioning. Deconditioning due to bed confinement in older persons can contribute to a downward spiral of increasing frailty, orthostatic intolerance, falls, and fall-related injury. As astronauts in space spend substantial amounts of time carrying out exercise training to counteract the microgravity-induced deconditioning and to counteract orthostatic intolerance on return to Earth, it is logical to suggest some of these interventions for bed-confined older persons. Synthesizing knowledge regarding deconditioning due to reduced gravitational stress in space and deconditioning during bed confinement allows for a more comprehensive approach that can incorporate aspects such as (mal- nutrition, muscle strength and function, cardiovascular (de- conditioning, and cardio-postural interactions. The impact of such integration can provide new insights and lead to methods of value for both space medicine and

  4. Minimal support technology and in situ resource utilization for risk management of planetary spaceflight missions

    Science.gov (United States)

    Murphy, K. L.; Rygalov, V. Ye.; Johnson, S. B.

    2009-04-01

    All artificial systems and components in space degrade at higher rates than on Earth, depending in part on environmental conditions, design approach, assembly technologies, and the materials used. This degradation involves not only the hardware and software systems but the humans that interact with those systems. All technological functions and systems can be expressed through functional dependence: [Function]˜[ERU]∗[RUIS]∗[ISR]/[DR];where [ERU]efficiency (rate) of environmental resource utilization[RUIS]resource utilization infrastructure[ISR]in situ resources[DR]degradation rateThe limited resources of spaceflight and open space for autonomous missions require a high reliability (maximum possible, approaching 100%) for system functioning and operation, and must minimize the rate of any system degradation. To date, only a continuous human presence with a system in the spaceflight environment can absolutely mitigate those degradations. This mitigation is based on environmental amelioration for both the technology systems, as repair of data and spare parts, and the humans, as exercise and psychological support. Such maintenance now requires huge infrastructures, including research and development complexes and management agencies, which currently cannot move beyond the Earth. When considering what is required to move manned spaceflight from near Earth stations to remote locations such as Mars, what are the minimal technologies and infrastructures necessary for autonomous restoration of a degrading system in space? In all of the known system factors of a mission to Mars that reduce the mass load, increase the reliability, and reduce the mission’s overall risk, the current common denominator is the use of undeveloped or untested technologies. None of the technologies required to significantly reduce the risk for critical systems are currently available at acceptable readiness levels. Long term interplanetary missions require that space programs produce a craft

  5. Workplace Social Support and Behavioral Health Prior to Long-Duration Spaceflight.

    Science.gov (United States)

    Deming, Charlene A; Vasterling, Jennifer J

    2017-06-01

    Preparation and training for long-duration spaceflight bring with them psychosocial stressors potentially affecting the well-being and performance of astronauts, before and during spaceflight. Social support from within the workplace may mitigate behavioral health concerns arising during the preflight period and enhance resiliency before and during extended missions. The purpose of this review was to evaluate evidence addressing the viability of workplace social support as a pre-mission countermeasure, specifically addressing: 1) the observed relationships between workplace social support and behavioral health; 2) perceived need, acceptability, and format preference for workplace social support among high-achievers; 3) potential barriers to delivery/receipt of workplace social support; 4) workplace social support interventions; and 5) delivery timeframe and anticipated duration of workplace social support countermeasure benefits. We conducted an evidence review examining workplace social support in professional contexts sharing one or more characteristics with astronauts and spaceflight. Terms included populations of interest, social support constructs, and behavioral health outcomes. Abstracts of matches were subsequently reviewed for relevance and quality. Research findings demonstrate clear associations between workplace social support and behavioral health, especially following exposure to stress. Further, studies indicate strong need for support and acceptability of support countermeasures, despite barriers. Our review revealed two general formats for providing support (i.e., direct provision of support and training to optimize skills in provision and receipt of support) with potential differentiation of expected duration of benefits, according to format. Workplace social support countermeasures hold promise for effective application during pre-mission phases of long-duration spaceflight. Specific recommendations are provided.Deming CA, Vasterling JJ

  6. Spaceflight Alters Bacterial Gene Expression and Virulence and Reveals Role for Global Regulator Hfq

    Science.gov (United States)

    Wilson, J. W.; Ott, C. M.; zuBentrup, K. Honer; Ramamurthy R.; Quick, L.; Porwollik, S.; Cheng, P.; McClellan, M.; Tsaprailis, G.; Radabaugh, T.; hide

    2007-01-01

    A comprehensive analysis of both the molecular genetic and phenotypic responses of any organism to the spaceflight environment has never been accomplished due to significant technological and logistical hurdles. Moreover, the effects of spaceflight on microbial pathogenicity and associated infectious disease risks have not been studied. The bacterial pathogen Salmonella typhimurium was grown aboard Space Shuttle mission STS-115 and compared to identical ground control cultures. Global microarray and proteomic analyses revealed 167 transcripts and 73 proteins changed expression with the conserved RNA-binding protein Hfq identified as a likely global regulator involved in the response to this environment. Hfq involvement was confirmed with a ground based microgravity culture model. Spaceflight samples exhibited enhanced virulence in a murine infection model and extracellular matrix accumulation consistent with a biofilm. Strategies to target Hfq and related regulators could potentially decrease infectious disease risks during spaceflight missions and provide novel therapeutic options on Earth.

  7. Protein and Essential Amino Acids to Protect Musculoskeletal Health during Spaceflight: Evidence of a Paradox?

    Directory of Open Access Journals (Sweden)

    Kyle J. Hackney

    2014-07-01

    Full Text Available Long-duration spaceflight results in muscle atrophy and a loss of bone mineral density. In skeletal muscle tissue, acute exercise and protein (e.g., essential amino acids stimulate anabolic pathways (e.g., muscle protein synthesis both independently and synergistically to maintain neutral or positive net muscle protein balance. Protein intake in space is recommended to be 12%–15% of total energy intake (≤1.4 g∙kg−1∙day−1 and spaceflight is associated with reduced energy intake (~20%, which enhances muscle catabolism. Increasing protein intake to 1.5–2.0 g∙kg−1∙day−1 may be beneficial for skeletal muscle tissue and could be accomplished with essential amino acid supplementation. However, increased consumption of sulfur-containing amino acids is associated with increased bone resorption, which creates a dilemma for musculoskeletal countermeasures, whereby optimizing skeletal muscle parameters via essential amino acid supplementation may worsen bone outcomes. To protect both muscle and bone health, future unloading studies should evaluate increased protein intake via non-sulfur containing essential amino acids or leucine in combination with exercise countermeasures and the concomitant influence of reduced energy intake.

  8. Analysis of Cell Proliferation in Newt (Pleurodeles waltl) Tissue Regeneration during Spaceflight in Foton M-2

    Science.gov (United States)

    Almeida, E. A. C.; Roden, C.; Phillips, J. A.; Yusuf, R.; Globus, R. K.; Searby, N.; Vercoutere, W.; Morey-Holton, E.; Tairbekov, M.; Grigoryan, N.; hide

    2006-01-01

    Terrestrial organisms exposed to microgravity during spaceflight expe rience musculoskeletal degeneration. It is still not understood if lo nger-term exposures to microgravity induce degeneration in other tiss ues, and if these effects are also observed in neutrally buoyant aqu atic organisms that may be pre-adapted to mechanical unloading. The " Regeneration" experiment conducted collaboratively between Russian an d US scientists for 16 days in the Russian Foton M-2 spaceflight soug ht to test the hypothesis that microgravity alters the proliferation of cells in regenerating tail tissue of the newt Pleurodeles waltl. Our initial results indicate that we successfUlly delivered the proli feration marker 5-bromo-2'-deoxy Uridine (BrdU) during spaceflight, and that it was incorporated in the nuclei of cells in regenerating tis sues. Cells in spaceflight tail regenerates proliferated at a slight ly slower rate and were more undifferentiated than those in ground sy nchronous controls. In addition, the size of regenerating tails from spaceflight was smaller than synchronous controls. However, onboard temperature recordings show that the temperature in spaceflight was a bout 2 C lower than ground synchronous controls, possibly explaining the observed differences. Additional post-facto ground controls at ma tched temperatures will correctly determine the effects of spaceflig ht on regenerative cell proliferation in the newt.

  9. Universe, human immortality and future human evaluation

    CERN Document Server

    Bolonkin, Alexander

    2011-01-01

    This book debates the universe, the development of new technologies in the 21st century and the future of the human race. Dr Bolonkin shows that a human soul is only the information in a person's head. He offers a new unique method for re-writing the main brain information in chips without any damage to the human brain. This is the scientific prediction of the non-biological (electronic) civilization and immortality of the human being. Such a prognosis is predicated upon a new law, discovered by the author, for the development of complex systems. According to this law, every self-copying system tends to be more complex than the previous system, provided that all external conditions remain the same. The consequences are disastrous: humanity will be replaced by a new civilization created by intellectual robots (which Dr Bolonkin refers to as "E-humans" and "E-beings"). These creatures, whose intellectual and mechanical abilities will far exceed those of man, will require neither food nor oxygen to sustain their...

  10. Exploration of Habitability Factors Influencing Short Duration Spaceflight: Structured Postflight Interviews of Shuttle Crewmembers

    Science.gov (United States)

    Locke, James; Leveton, Lauren; Keeton, Kathryn; Whitmire, Alexandra

    2009-01-01

    Astronauts report significant difficulties with sleep during Space missions. Psychological, physiological, and habitability factors are all thought to play a role in spaceflight insomnia. Crewmembers gain experience with the spaceflight sleep environment as their missions progress, but this knowledge is not formally collected and communicated to subsequent crews. This lack of information transfer prevents crews from optimizing their capability to sleep during mission, which leads to fatigue and its potentially deleterious effects. The goal of this project is astronauts with recent spaceflight experience to gather their knowledge of and insights into sleep in Space. Structured interviews consisting of standardized closed and open-ended questionnaires are administered to astronauts who have flown on the Space Shuttle since the Columbia disaster. It is hoped that review and analysis of the pooled responses to the interview questions will lead to greater understanding of the sleep environment during short duration spaceflight, with attention placed on problem aspects and their potential solutions.

  11. The Next Spaceflight Solar Irradiance Sensor: TSIS

    Science.gov (United States)

    Kopp, Greg; Pilewskie, Peter; Richard, Erik

    2016-05-01

    The Total and Spectral Solar Irradiance Sensor (TSIS) will continue measurements of the solar irradiance with improved accuracies and stabilities over extant spaceflight instruments. The two TSIS solar-observing instruments include the Total Irradiance Monitor (TIM) and the Spectral Irradiance Monitor (SIM) for measuring total- and spectral- solar-irradiance, respectively. The former provides the net energy powering the Earth’s climate system while the latter helps attribute where that energy is absorbed by the Earth’s atmosphere and surface. Both spaceflight instruments are assembled and being prepared for integration on the International Space Station. With operations commencing in late 2017, the TSIS is intended to overlap with NASA’s ongoing SOlar Radiation and Climate Experiment (SORCE) mission, which launched in 2003 and contains the first versions of both the TIM and SIM instruments, as well as with the TSI Calibration Transfer Experiment (TCTE), which began total solar irradiance measurements in 2013. We summarize the TSIS’s instrument improvements and intended solar-irradiance measurements.

  12. Breeding of the nucleus sterile lines of rice by spaceflight inducement

    International Nuclear Information System (INIS)

    Guo Guangrong; Guo Feng; Cheng Legen; Zheng Shen

    2004-01-01

    A spaceflight in planet was arranged for the nucleus sterile line Peiai 64S in order to breed mutants. 60 Co-γ-rays irraidaiton is a comparison treatment. The whitenessed seedling rate of generation M 2 of the spaceflight treatments is much higher than of the 60 Co-γ-rays treatment. There is no remarkable difference in variance frequency of the seedling height and the bearing period of M 2 between the treatment. The whitenessed seedling rate and the sterile pollen rate of M 2 of both two treatments are remarkably higher than that with no treatment. The possible scale of increasing hetgerogamy rate, the genetic reasons for the increased outcrossing rate is pointed out on the purpose of breeding of the nucleus sterile lines. The risk on the application of the nucleus sterile lines with high hererogamy rate in production is also primarily evaluated. The results shows that spaceflight inducements is an effective way in breeding. (authors)

  13. A Model of Chronic Exposure to Unpredictable Mild Socio-Environmental Stressors Replicates Some Spaceflight-Induced Immunological Changes

    Directory of Open Access Journals (Sweden)

    Fanny Gaignier

    2018-05-01

    Full Text Available During spaceflight, astronauts face radiations, mechanical, and socio-environmental stressors. To determine the impact of chronic socio-environmental stressors on immunity, we exposed adult male mice to chronic unpredictable mild psychosocial and environmental stressors (CUMS model for 3 weeks. This duration was chosen to simulate a long flight at the human scale. Our data show that this combination of stressors induces an increase of serum IgA, a reduction of normalized splenic mass and tends to reduce the production of pro-inflammatory cytokines, as previously reported during or after space missions. However, CUMS did not modify major splenic lymphocyte sub-populations and the proliferative responses of splenocytes suggesting that these changes could be due to other factors such as gravity changes. Thus, CUMS, which is an easy to implement model, could contribute to deepen our understanding of some spaceflight-associated immune alterations and could be useful to test countermeasures.

  14. Fatigue Management in Spaceflight Operations

    Science.gov (United States)

    Whitmire, Alexandra

    2011-01-01

    Sleep loss and fatigue remain an issue for crewmembers working on the International Space Station, and the ground crews who support them. Schedule shifts on the ISS are required for conducting mission operations. These shifts lead to tasks being performed during the biological night, and sleep scheduled during the biological day, for flight crews and the ground teams who support them. Other stressors have been recognized as hindering sleep in space; these include workload, thinking about upcoming tasks, environmental factors, and inadequate day/night cues. It is unknown if and how other factors such as microgravity, carbon dioxide levels, or increased radiation, may also play a part. Efforts are underway to standardize and provide care for crewmembers, ground controllers and other support personnel. Through collaborations between research and operations, evidenced-based clinical practice guidelines are being developed to equip flight surgeons with the tools and processes needed for treating circadian desynchrony (and subsequent sleep loss) caused by jet lag and shift work. The proper implementation of countermeasures such as schedules, lighting protocols, and cognitive behavioral education can hasten phase shifting, enhance sleep and optimize performance. This panel will focus on Fatigue Management in Spaceflight Operations. Speakers will present on research-based recommendations and technologies aimed at mitigating sleep loss, circadian desynchronization and fatigue on-orbit. Gaps in current mitigations and future recommendations will also be discussed.

  15. Pleurodeles Waltl Humoral Immune Response under Spaceflight Conditions

    Science.gov (United States)

    Bascove, Matthieu; Touche, Nadege; Frippiat, Jean-Pol

    2008-06-01

    The immune system is an important regulatory mechanism affected by spaceflights. In a previous work, we performed a first study of the humoral immune response induced by the immunization of Pleurodeles waltl during a 5 months stay onboard the Mir space station. This analysis indicated that heavy-chain variable domains of specific IgM are encoded by genes of the VHII and VHVI families. However, the contributions of these two families to IgM heavy-chains are different in flown animals [1]. To better understand this immune response modification, we have now determined how individual VH genes have been used to build specific IgM binding sites in animals immunized on earth or in space. This new study revealed quantitative and qualitative modifications in VH genes expression. These data confirm that a spaceflight might affect the humoral response.

  16. Parallel Detection of Multiple Biomarkers During Spaceflight, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Maintaining the health of astronauts during extended spaceflight is critical to the success of the mission. Radiation Monitoring Devices, Inc. (RMD) proposes an...

  17. Spaceflight 2 um Tm Fiber MOPA Amplifier, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Fibertek proposes to design, develop, and test a spaceflight prototype 2051 nm thulium (Tm)-doped fiber amplifier (TDFA) optical master oscillator power amplifier...

  18. JSC Human Life Sciences Project

    Science.gov (United States)

    1998-01-01

    This section of the Life and Microgravity Spacelab (LMS) publication includes articles entitled: (1) E029 - Magnetic Resonance Imaging after Exposure to Microgravity; (2) E030 - Extended Studies of Pulmonary Function in Weightlessness; (3) E074 - Direct Measurement of the Initial Bone Response to Spaceflight in Humans; (4) E401 - The Effects of Microgravity on Skeletal Muscle Contractile Properties; (5) E407 - Effects of Microgravity on the Biochemical and Bioenergetic Characteristics of Human Skeletal Muscle; (6) E410 - Torso Rotation Experiment; (7) E920 - Effect of Weightlessness on Human Single Muscle Fiber Function; (8) E948 - Human Sleep, Circadian Rhythms and Performance in Space; (9) E963 - Microgravity Effects on Standardized Cognitive Performance Measures; and (10) E971 - Measurement of Energy Expenditures During Spaceflight Using the Doubly Labeled Water Method

  19. Effect of spaceflight hardware on the skeletal properties of ground control mice

    Science.gov (United States)

    Bateman, Ted; Lloyd, Shane; Dunlap, Alex; Ferguson, Virginia; Simske, Steven; Stodieck, Louis; Livingston, Eric

    Introduction: Spaceflight experiments using mouse or rat models require habitats that are specifically designed for the microgravity environment. During spaceflight, rodents are housed in a specially designed stainless steel meshed cage with gravity-independent food and water delivery systems and constant airflow to push floating urine and feces towards a waste filter. Differences in the housing environment alone, not even considering the spaceflight environment itself, may lead to physiological changes in the animals contained within. It is important to characterize these cage differences so that results from spaceflight experiments can be more reliably compared to studies from other laboratories. Methods: For this study, we examined the effect of NASA's Animal Enclosure Module (AEM) spaceflight hardware on the skeletal properties of 8-week-old female C57BL/6J mice. This 13-day experiment, conducted on the ground, modeled the flight experiment profile of the CBTM-01 payload on STS-108, with standard vivarium-housed mice being compared to AEM-housed mice (n = 12/group). Functional differences were compared via mechanical testing, micro-hardness indentation, microcomputed tomography, and mineral/matrix composition. Cellular changes were examined by serum chemistry, histology, quantitative histomorphometry, and RT-PCR. A Student's t-test was utilized, with the level of Type I error set at 95 Results: There was no change in elastic, maximum, or fracture force mechanical properties at the femur mid-diaphysis, however, structural stiffness was -17.5 Conclusions: Housing mice in the AEM spaceflight hardware had minimal effects on femur cortical bone properties. However, trabecular bone at the proximal tibia in AEM mice experi-enced large increases in microarchitecture and mineral composition. Increases in bone density were accompanied by reductions in bone-forming osteoblasts and bone-resorbing osteoclasts, representing a general decline in bone turnover at this site

  20. Medical judgement analogue studies with applications to spaceflight crew medical officer.

    Science.gov (United States)

    McCarroll, Michele L; Ahmed, Rami A; Schwartz, Alan; Gothard, Michael David; Atkinson, Steven Scott; Hughes, Patrick; Brito, Jose Cepeda; Assad, Lori; Myers, Jerry; George, Richard L

    2017-10-01

    The National Aeronautics and Space Administration (NASA) developed plans for potential emergency conditions from the Exploration Medical Conditions List. In an effort to mitigate conditions on the Exploration Medical Conditions List, NASA implemented a crew medical officer (CMO) designation for eligible astronauts. This pilot study aims to add knowledge that could be used in the Integrated Medical Model. An analogue population was recruited for two categories: administrative physicians (AP) representing the physician CMOs and technical professionals (TP) representing the non-physician CMOs. Participants completed four medical simulations focused on abdominal pain: cholecystitis (CH) and renal colic (RC) and chest pain: cardiac ischaemia (STEMI; ST-segment elevation myocardial infarction) and pneumothorax (PX). The Medical Judgment Metric (MJM) was used to evaluate medical decision making. There were no significant differences between the AP and TP groups in age, gender, race, ethnicity, education and baseline heart rate. Significant differences were noted in MJM average rater scores in AP versus TP in CH: 13.0 (±2.25), 4.5 (±0.48), p=<0.001; RC: 12.3 (±2.66), 4.8 (±0.94); STEMI: 12.1 (±3.33), 4.9 (±0.56); and PX: 13.5 (±2.53), 5.3 (±1.01), respectively. There could be a positive effect on crew health risk by having a physician CMO. The MJM demonstrated the ability to quantify medical judgement between the two analogue groups of spaceflight CMOs. Future studies should incorporate the MJM in a larger analogue population study to assess the medical risk for spaceflight crewmembers.

  1. Dammarane Sapogenins Ameliorates Neurocognitive Functional Impairment Induced by Simulated Long-Duration Spaceflight

    Directory of Open Access Journals (Sweden)

    Xiaorui Wu

    2017-05-01

    Full Text Available Increasing evidence indicates the occurrence of cognitive impairment in astronauts under spaceflight compound conditions, but the underlying mechanisms and countermeasures need to be explored. In this study, we found that learning and memory abilities were significantly reduced in rats under a simulated long-duration spaceflight environment (SLSE, which includes microgravity, isolation confinement, noises, and altered circadian rhythms. Dammarane sapogenins (DS, alkaline hydrolyzed products of ginsenosides, can enhance cognition function by regulating brain neurotransmitter levels and inhibiting SLSE-induced neuronal injury. Bioinformatics combined with experimental verification identified that the PI3K-Akt-mTOR pathway was inhibited and the MAPK pathway was activated during SLSE-induced cognition dysfunction, whereas DS substantially ameliorated the changes in brain. These findings defined the characteristics of SLSE-induced cognitive decline and the mechanisms by which DS improves it. The results provide an effective candidate for improving cognitive function in spaceflight missions.

  2. The effect of spaceflight on growth of Ulocladium chartarum colonies on the international space station.

    Directory of Open Access Journals (Sweden)

    Ioana Gomoiu

    Full Text Available The objectives of this 14 days experiment were to investigate the effect of spaceflight on the growth of Ulocladium chartarum, to study the viability of the aerial and submerged mycelium and to put in evidence changes at the cellular level. U. chartarum was chosen for the spaceflight experiment because it is well known to be involved in biodeterioration of organic and inorganic substrates covered with organic deposits and expected to be a possible contaminant in Spaceships. Colonies grown on the International Space Station (ISS and on Earth were analysed post-flight. This study clearly indicates that U. chartarum is able to grow under spaceflight conditions developing, as a response, a complex colony morphotype never mentioned previously. We observed that spaceflight reduced the rate of growth of aerial mycelium, but stimulated the growth of submerged mycelium and of new microcolonies. In Spaceships and Space Stations U. chartarum and other fungal species could find a favourable environment to grow invasively unnoticed in the depth of surfaces containing very small amount of substrate, posing a risk factor for biodegradation of structural components, as well as a direct threat for crew health. The colony growth cycle of U. chartarum provides a useful eukaryotic system for the study of fungal growth under spaceflight conditions.

  3. Innovative Technologies for Human Exploration: Opportunities for Partnerships and Leveraging Novel Technologies External to NASA

    Science.gov (United States)

    Hay, Jason; Mullins, Carie; Graham, Rachael; Williams-Byrd, Julie; Reeves, John D.

    2011-01-01

    Human spaceflight organizations have ambitious goals for expanding human presence throughout the solar system. To meet these goals, spaceflight organizations have to overcome complex technical challenges for human missions to Mars, Near Earth Asteroids, and other distant celestial bodies. Resolving these challenges requires considerable resources and technological innovations, such as advancements in human health and countermeasures for space environments; self-sustaining habitats; advanced power and propulsion systems; and information technologies. Today, government space agencies seek cooperative endeavors to reduce cost burdens, improve human exploration capabilities, and foster knowledge sharing among human spaceflight organizations. This paper looks at potential opportunities for partnerships and spin-ins from economic sectors outside the space industry. It highlights innovative technologies and breakthrough concepts that could have significant impacts on space exploration and identifies organizations throughout the broader economy that specialize in these technologies.

  4. Molecular Mechanisms of Circadian Regulation During Spaceflight

    Science.gov (United States)

    Zanello, S. B.; Boyle, R.

    2012-01-01

    The physiology of both vertebrates and invertebrates follows internal rhythms coordinated in phase with the 24-hour daily light cycle. This circadian clock is governed by a central pacemaker, the suprachiasmatic nucleus (SCN) in the brain. However, peripheral circadian clocks or oscillators have been identified in most tissues. How the central and peripheral oscillators are synchronized is still being elucidated. Light is the main environmental cue that entrains the circadian clock. Under the absence of a light stimulus, the clock continues its oscillation in a free-running condition. In general, three functional compartments of the circadian clock are defined. The vertebrate retina contains endogenous clocks that control many aspects of retinal physiology, including retinal sensitivity to light, neurohormone synthesis (melatonin and dopamine), rod disk shedding, signalling pathways and gene expression. Neurons with putative local circadian rhythm generation are found among all the major neuron populations in the mammalian retina. In the mouse, clock genes and function are more localized to the inner retinal and ganglion cell layers. The photoreceptor, however, secrete melatonin which may still serve a an important circadian signal. The reception and transmission of the non-visual photic stimulus resides in a small subpopulation (1-3%) or retinal ganglion cells (RGC) that express the pigment melanopsin (Opn4) and are called intrisically photoreceptive RGC (ipRGC). Melanopsin peak absorption is at 420 nm and all the axons of the ipRGC reach the SCN. A common countermeasure for circadian re-entrainment utilizes blue-green light to entrain the circadian clock and mitigate the risk of fatigue and health and performance decrement due to circadian rhythm disruption. However, an effective countermeasure targeting the photoreceptor system requires that the basic circadian molecular machinery remains intact during spaceflight. We hypothesize that spaceflight may affect ip

  5. Genes Required for Survival in Microgravity Revealed by Genome-Wide Yeast Deletion Collections Cultured during Spaceflight

    Directory of Open Access Journals (Sweden)

    Corey Nislow

    2015-01-01

    Full Text Available Spaceflight is a unique environment with profound effects on biological systems including tissue redistribution and musculoskeletal stresses. However, the more subtle biological effects of spaceflight on cells and organisms are difficult to measure in a systematic, unbiased manner. Here we test the utility of the molecularly barcoded yeast deletion collection to provide a quantitative assessment of the effects of microgravity on a model organism. We developed robust hardware to screen, in parallel, the complete collection of ~4800 homozygous and ~5900 heterozygous (including ~1100 single-copy deletions of essential genes yeast deletion strains, each carrying unique DNA that acts as strain identifiers. We compared strain fitness for the homozygous and heterozygous yeast deletion collections grown in spaceflight and ground, as well as plus and minus hyperosmolar sodium chloride, providing a second additive stressor. The genome-wide sensitivity profiles obtained from these treatments were then queried for their similarity to a compendium of drugs whose effects on the yeast collection have been previously reported. We found that the effects of spaceflight have high concordance with the effects of DNA-damaging agents and changes in redox state, suggesting mechanisms by which spaceflight may negatively affect cell fitness.

  6. Rapid Electrochemical Detection and Identification of Microbiological and Chemical Contaminants for Manned Spaceflight Project

    Science.gov (United States)

    Pierson, Duane; Botkin, Douglas; Gazda, Daniel

    2014-01-01

    Microbial control in the spacecraft environment is a daunting task, especially in the presence of human crew members. Currently, assessing the potential crew health risk associated with a microbial contamination event requires return of representative environmental samples that are analyzed in a ground-based laboratory. It is therefore not currently possible to quickly identify microbes during spaceflight. This project addresses the unmet need for spaceflight-compatible microbial identification technology. The electrochemical detection and identification platform is expected to provide a sensitive, specific, and rapid sample-to-answer capability for in-flight microbial monitoring that can distinguish between related microorganisms (pathogens and non-pathogens) as well as chemical contaminants. This will dramatically enhance our ability to monitor the spacecraft environment and the health risk to the crew. Further, the project is expected to eliminate the need for sample return while significantly reducing crew time required for detection of multiple targets. Initial work will focus on the optimization of bacterial detection and identification. The platform is designed to release nucleic acids (DNA and RNA) from microorganisms without the use of harmful chemicals. Bacterial DNA or RNA is captured by bacteria-specific probe molecules that are bound to a microelectrode, and that capture event can generate a small change in the electrical current (Lam, et al. 2012. Anal. Chem. 84(1): 21-5.). This current is measured, and a determination is made whether a given microbe is present in the sample analyzed. Chemical detection can be accomplished by directly applying a sample to the microelectrode and measuring the resulting current change. This rapid microbial and chemical detection device is designed to be a low-cost, low-power platform anticipated to be operated independently of an external power source, characteristics optimal for manned spaceflight and areas where power

  7. Gene-metabolite profile integration to understand the cause of spaceflight induced immunodeficiency.

    Science.gov (United States)

    Chakraborty, Nabarun; Cheema, Amrita; Gautam, Aarti; Donohue, Duncan; Hoke, Allison; Conley, Carolynn; Jett, Marti; Hammamieh, Rasha

    2018-01-01

    Spaceflight presents a spectrum of stresses very different from those associated with terrestrial conditions. Our previous study (BMC Genom. 15 : 659, 2014) integrated the expressions of mRNAs, microRNAs, and proteins and results indicated that microgravity induces an immunosuppressive state that can facilitate opportunistic pathogenic attack. However, the existing data are not sufficient for elucidating the molecular drivers of the given immunosuppressed state. To meet this knowledge gap, we focused on the metabolite profile of spaceflown human cells. Independent studies have attributed cellular energy deficiency as a major cause of compromised immunity of the host, and metabolites that are closely associated with energy production could be a robust signature of atypical energy fluctuation. Our protocol involved inoculation of human endothelial cells in cell culture modules in spaceflight and on the ground concurrently. Ten days later, the cells in space and on the ground were exposed to lipopolysaccharide (LPS), a ubiquitous membrane endotoxin of Gram-negative bacteria. Nucleic acids, proteins, and metabolites were collected 4 and 8 h post-LPS exposure. Untargeted profiling of metabolites was followed by targeted identification of amino acids and knowledge integration with gene expression profiles. Consistent with the past reports associating microgravity with increased energy expenditure, we identified several markers linked to energy deficiency, including various amino acids such as tryptophan, creatinine, dopamine, and glycine, and cofactors such as lactate and pyruvate. The present study revealed a molecular architecture linking energy metabolism and immunodeficiency in microgravity. The energy-deficient condition potentially cascaded into dysregulation of protein metabolism and impairment of host immunity. This project is limited by a small sample size. Although a strict statistical screening was carefully implemented, the present results further emphasize

  8. Behavioral Assessment of Spaceflight Effects on Neurocognitive Performance: Extent and Longevity

    Science.gov (United States)

    De Dios, Y. E.; Kofman, I. S.; Gadd, N. E.; Kreutzberg, G. A.; Peters, B. T.; Taylor, L. C.; Campbell, D. J.; Wood, S. J.; Bloomberg, J. J.; Seidler, R. D.; hide

    2017-01-01

    Exposure to the microgravity environment during spaceflight missions impacts crewmembers' sensorimotor function. Bock et al. [1] studied the cognitive demands of human sensorimotor performance and dual tasking during long duration missions and concluded that both stress and scarcity of cognitive resources required for sensorimotor adaptation may be responsible for these deficits during spaceflight. Therefore, in consideration of the health and performance of crewmembers in- and post-flight, we are conducting this study to investigate the effects of spaceflight on the extent, longevity and neural bases of sensorimotor, cognitive, and neural changes. The data presented will focus on the behavioral measures that were collected pre-, in- and post-flight including spatial cognition, processing speed, bimanual coordination, functional mobility, computerized dynamic posturography (CDP), and vibrotactile induced vestibular evoked myogenic potential (VEMP). To date, data were collected over the course of two pre-flight sessions and four post-flight sessions on five crewmembers (n=13) using the protocol described in Koppelmans et al. [2]. Balance control was assessed using CDP, with eyes closed and a sway-referenced base of support (Sensory Organization Test 5), with and without head movements in the pitch plane. Spatial working memory was assessed using Thurston's Card Rotation Test and a Mental Rotation Test. The Rod and Frame Test was performed to test visual dependence. The Digit Symbol Substitution Test was performed to evaluate processing speed, and the Purdue Pegboard Task was performed to test bimanual coordination. Vestibular function was assessed by eliciting ocular VEMP via a hand held striker on the side of the head as subjects lay supine on a gurney. Subjects also performed the Functional Mobility Test of walking through an obstacle course to assess rate of early motor learning. Data were also collected on the same crewmembers during three in-flight sessions on

  9. A Delphi-Based Framework for systems architecting of in-orbit exploration infrastructure for human exploration beyond Low Earth Orbit

    Science.gov (United States)

    Aliakbargolkar, Alessandro; Crawley, Edward F.

    2014-01-01

    The current debate in the U.S. Human Spaceflight Program focuses on the development of the next generation of man-rated heavy lift launch vehicles. While launch vehicle systems are of critical importance for future exploration, a comprehensive analysis of the entire exploration infrastructure is required to avoid costly pitfalls at early stages of the design process. This paper addresses this need by presenting a Delphi-Based Systems Architecting Framework for integrated architectural analysis of future in-orbit infrastructure for human space exploration beyond Low Earth Orbit. The paper is structured in two parts. The first part consists of an expert elicitation study to identify objectives for the in-space transportation infrastructure. The study was conducted between November 2011 and January 2012 with 15 senior experts involved in human spaceflight in the United States and Europe. The elicitation study included the formation of three expert panels representing exploration, science, and policy stakeholders engaged in a 3-round Delphi study. The rationale behind the Delphi approach, as imported from social science research, is discussed. Finally, a novel version of the Delphi method is presented and applied to technical decision-making and systems architecting in the context of human space exploration. The second part of the paper describes a tradespace exploration study of in-orbit infrastructure coupled with a requirements definition exercise informed by expert elicitation. The uncertainties associated with technical requirements and stakeholder goals are explicitly considered in the analysis. The outcome of the expert elicitation process portrays an integrated view of perceived stakeholder needs within the human spaceflight community. Needs are subsequently converted into requirements and coupled to the system architectures of interest to analyze the correlation between exploration, science, and policy goals. Pareto analysis is used to identify architectures

  10. Effects of spaceflight and Insulin-like Growth Factor-1 on rat bone properties

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, T.A.; Ayers, R.A.; Spetzler, M.L.; Simske, S.J. [BioServe Space Technologies University of Colorado Boulder, Colorado80309-0429 (United States); Zimmerman, R.J. [Chiron Corporation 4560 Horton Street Emeryville, California94608-2916 (United States)

    1997-01-01

    Spaceflight induces bone degradation which is analogous to an accelerated onset of osteoporosis in humans (Tilton {ital et al.}, 1980). In rats, decreased bone formation is indicative of reduced osteoblast activity (Morey and Baylink, 1978). Chiron Corporation (Emeryville, CA) is interested in using the microgravity environment of low-Earth-orbit to test its therapeutic drug, Insulin-like Growth Factor-1 (IGF-1). This pharmaceutic is known to promote osteoblast activity (Schmid {ital et al.}, 1984) and therefore may encourage bone growth in rats. Chiron sponsored the Immune.3 payload on STS-73 (May 19{endash}29, 1996) through its Center for Space Commercialization (CSC) partner BioServe Space Technologies (University of Colorado and Kansas State University) to investigate the effects of IGF-1 on mitigating the skeletal degradation that affects rats and humans during spaceflight. Twelve rats were flown for 10 days using two Animal Enclosure Modules (AEMs) provided by NASA Ames Research Center. Of the twelve, six received 1.4 mg/day of IGF-1; the other six saline. Sixteen vivarium ground controls received the same treatment on a one day delay. Rat femora and tibiae were examined for bone mineral density via DXA scan. Femora and humeri were measured for physical and compositional properties, as well as mechanically tested in three point flexure. Quantitative histomorphometric examination of tibiae, humeri, fibulae, ribs and cranial bone; and microhardness testing on tibiae and humeri are currently in progress. Flight humeri and vivarium femora were significantly larger than their counterparts; however, significant differences in mechanical properties and mineral density were not concurrent to these mass changes. {copyright} {ital 1997 American Institute of Physics.}

  11. Spaceflight Effects on Cytochrome P450 Content in Mouse Liver.

    Directory of Open Access Journals (Sweden)

    Natalia Moskaleva

    Full Text Available Hard conditions of long-term manned spaceflight can affect functions of many biological systems including a system of drug metabolism. The cytochrome P450 (CYP superfamily plays a key role in the drug metabolism. In this study we examined the hepatic content of some P450 isoforms in mice exposed to 30 days of space flight and microgravity. The CYP content was established by the mass-spectrometric method of selected reaction monitoring (SRM. Significant changes in the CYP2C29, CYP2E1 and CYP1A2 contents were detected in mice of the flight group compared to the ground control group. Within seven days after landing and corresponding recovery period changes in the content of CYP2C29 and CYP1A2 returned to the control level, while the CYP2E1 level remained elevated. The induction of enzyme observed in the mice in the conditions of the spaceflight could lead to an accelerated biotransformation and change in efficiency of pharmacological agents, metabolizing by corresponding CYP isoforms. Such possibility of an individual pharmacological response to medication during long-term spaceflights and early period of postflight adaptation should be taken into account in space medicine.

  12. Psychosocial and Psychophysiological Strain in Extended Spaceflight Simulation

    Czech Academy of Sciences Publication Activity Database

    Šolcová, Iva

    2004-01-01

    Roč. 46, č. 3 (2004), s. 179-186 ISSN 0039-3320 R&D Projects: GA ČR GA406/03/1168 Institutional research plan: CEZ:AV0Z7025918 Keywords : spaceflight simulation * enforced confinement * psychosocial burden Subject RIV: AN - Psychology Impact factor: 0.274, year: 2004

  13. EVA Human Health and Performance Benchmarking Study Overview and Development of a Microgravity Protocol

    Science.gov (United States)

    Norcross, Jason; Jarvis, Sarah; Bekdash, Omar; Cupples, Scott; Abercromby, Andrew

    2017-01-01

    The primary objective of this study is to develop a protocol to reliably characterize human health and performance metrics for individuals working inside various EVA suits under realistic spaceflight conditions. Expected results and methodologies developed during this study will provide the baseline benchmarking data and protocols with which future EVA suits and suit configurations (e.g., varied pressure, mass, center of gravity [CG]) and different test subject populations (e.g., deconditioned crewmembers) may be reliably assessed and compared. Results may also be used, in conjunction with subsequent testing, to inform fitness-for-duty standards, as well as design requirements and operations concepts for future EVA suits and other exploration systems.

  14. Evidence Report: Risk of Spaceflight Associated Neuro-ocular Syndrome (SANS)

    Science.gov (United States)

    Stenger, Michael B.; Tarver, William J.; Brunstetter, Tyson; Gibson, Charles Robert; Laurie, Steven S.; Lee, Stuart M. C.; Macias, Brandon R.; Mader, Thomas H.; Otto, Christian; Smith, Scott M.; hide

    2017-01-01

    A subset of astronauts develop neuro-ocular structural and functional changes during prolonged periods of spaceflight that may lead to additional neurologic and ocular consequences upon return to Earth.

  15. Modulation of Pleurodeles waltl DNA polymerase mu expression by extreme conditions encountered during spaceflight.

    Directory of Open Access Journals (Sweden)

    Véronique Schenten

    Full Text Available DNA polymerase µ is involved in DNA repair, V(DJ recombination and likely somatic hypermutation of immunoglobulin genes. Our previous studies demonstrated that spaceflight conditions affect immunoglobulin gene expression and somatic hypermutation frequency. Consequently, we questioned whether Polμ expression could also be affected. To address this question, we characterized Polμ of the Iberian ribbed newt Pleurodeles waltl and exposed embryos of that species to spaceflight conditions or to environmental modifications corresponding to those encountered in the International Space Station. We noted a robust expression of Polμ mRNA during early ontogenesis and in the testis, suggesting that Polμ is involved in genomic stability. Full-length Polμ transcripts are 8-9 times more abundant in P. waltl than in humans and mice, thereby providing an explanation for the somatic hypermutation predilection of G and C bases in amphibians. Polμ transcription decreases after 10 days of development in space and radiation seem primarily involved in this down-regulation. However, space radiation, alone or in combination with a perturbation of the circadian rhythm, did not affect Polμ protein levels and did not induce protein oxidation, showing the limited impact of radiation encountered during a 10-day stay in the International Space Station.

  16. Using Human Capital Planning to Predict Future Talent Needs

    Science.gov (United States)

    Ruse, Donald; Jansen, Karen

    2008-01-01

    Human capital planning is an important tool in predicting future talent needs and sustaining organizational excellence over the long term. This article examines the concept of human capital planning and outlines how institutions can use HCP to identify the type and number of talent needed both now and in the future, recognize and prioritize talent…

  17. Effects of Spaceflight on Cells of Bone Marrow Origin

    Directory of Open Access Journals (Sweden)

    Engin Özçivici

    2013-03-01

    Full Text Available Once only a subject for science fiction novels, plans for establishing habitation on space stations, the Moon, and distant planets now appear among the short-term goals of space agencies. This article reviews studies that present biomedical issues that appear to challenge humankind for long-term spaceflights. With particularly focus on cells of bone marrow origin, studies involving changes in bone, immune, and red blood cell populations and their functions due to extended weightlessness were reviewed. Furthermore, effects of mechanical disuse on primitive stem cells that reside in the bone marrow were also included in this review. Novel biomedical solutions using space biotechnology will be required in order to achieve the goal of space exploration without compromising the functions of bone marrow, as spaceflight appears to disrupt homeostasis for all given cell types.

  18. Immune System Dysregulation and Herpesvirus Reactivation Persist During Long-Duration Spaceflight

    Science.gov (United States)

    Crucian, B. E.; Mehta, S.; Stowe, R. P.; Uchakin, P.; Quiriarte, H.; Pierson, D.; Sams, C. F.

    2011-01-01

    This poster presentation reviews a study that is designed to address immune system dysregulation and the risk to crewmembers in long duration exploration class missions. This study will address these objectives: (1) Determine the status of adaptive immunity physiological stress, viral immunity, latent herpesvirus reactivation in astronauts during 6 month missions to the International Space Station; (2) determine the clinical risk related to immune dysregulation for exploration class spaceflight; and (3) determine an appropriate monitoring strategy for spaceflight-associated immune dysfunction that could be used for the evaluation of countermeasures. The study anticipates 17 subjects, and for this presentation, (midpoint study data) 10 subjects are reviewed.

  19. Research issues for radiation protection for man during prolonged spaceflight

    International Nuclear Information System (INIS)

    Conklin, J.J.; Hagan, M.P.

    1987-01-01

    Stassinopoulos has shown that for a 5-year period during solar maximum, the solar flare predictive model (SOLPRO) predicts four anomalously large solar flares with 89% confidence. When the solar flare hazard is added to the other radiation hazards in space, radiation poses a formidable challenge to providing a safe permanent presence in space. From this it is clear that there are many unknown questions about space radiation, particularly involving HZE particles and the interaction of other space stressors with radiation. Despite the challenge, the authors are optimistic that the problems can be solved. NASA has achieved an extraordinary record of radiation safety during the first 25 years of spaceflight. During the next 25 years in space, the radiobiological challenge will be significantly greater, but so will the rewards. There are many tools that can be applied with current and future technologies. It is their opinion that the problems will be solved, and they require only the commitment to solve them

  20. Robonaut 2 and Watson: Cognitive Dexterity for Future Exploration

    Science.gov (United States)

    Badger, Julia M.; Strawser, Philip; Farrell, Logan; Goza, S. Michael; Claunch, Charles A.; Chancey, Raphael; Potapinski, Russell

    2018-01-01

    Future exploration missions will dictate a level of autonomy never before experienced in human spaceflight. Mission plans involving the uncrewed phases of complex human spacecraft in deep space will require a coordinated autonomous capability to be able to maintain the spacecraft when ground control is not available. One promising direction involves embedding intelligence into the system design both through the employment of state-of-the-art system engineering principles as well as through the creation of a cognitive network between a smart spacecraft or habitat and embodiments of cognitive agents. The work described here details efforts to integrate IBM's Watson and other cognitive computing services into NASA Johnson Space Center (JSC)'s Robonaut 2 (R2) anthropomorphic robot. This paper also discusses future directions this work will take. A cognitive spacecraft management system that is able to seamlessly collect data from subsystems, determine corrective actions, and provide commands to enable those actions is the end goal. These commands could be to embedded spacecraft systems or to a set of robotic assets that are tied into the cognitive system. An exciting collaboration with Woodside provides a promising Earth-bound testing analog, as controlling and maintaining not normally manned off-shore platforms have similar constraints to the space missions described.

  1. Adaptation of the Skeletal System during Long-duration Spaceflight

    Science.gov (United States)

    Sibonga, Jean D.; Cavanagh, Peter R.; Lang, Thomas F.; LeBlanc, Adrian D.; Schneider, Victor S.; Shackelford, Linda C.; Smith, Scott M.; Vico, Laurence

    2008-01-01

    This review will highlight evidence from crew members flown on space missions greater than 90 days to suggest that the adaptations of the skeletal system to mechanical unloading may predispose crew members to an accelerated onset of osteoporosis after return to Earth. By definition, osteoporosis is a skeletal disorder - characterized by low bone mineral density and structural deterioration - that reduces the ability of bones to resist fracture under the loading of normal daily activities. Involutional or agerelated osteoporosis is readily recognized as a syndrome afflicting the elderly population because of the insipid and asymptomatic nature of bone loss that does not typically manifest as fractures until after age approximately 60. It is not the thesis of this review to suggest that spaceflight-induced bone loss is similar to bone loss induced by metabolic bone disease; rather this review draws parallels between the rapid and earlier loss in females that occurs with menopause and the rapid bone loss in middle-aged crew members that occurs with spaceflight unloading and how the cumulative effects of spaceflight and ageing could be detrimental, particularly if skeletal effects are totally or partially irreversible. In brief, this report will provide detailed evidence that long-duration crew members, exposed to the weightlessness of space for the typical long-duration (4-6 months) mission on Mir or the International Space Station -- 1. Display bone resorption that is aggressive, that targets normally weight-bearing skeletal sites, that is uncoupled to bone formation and that results in areal BMD deficits that can range between 6-20% of preflight BMD; 2. Display compartment-specific declines in volumetric BMD in the proximal femur (a skeletal site of clinical interest) that significantly reduces its compressive and bending strength and which may account for the loss in hip bone strength (i.e., force to failure); 3. Recover BMD over a post-flight time period that

  2. The catecholamine response to spaceflight: role of diet and gender

    Science.gov (United States)

    Stein, T. P.; Wade, C. E.

    2001-01-01

    Compared with men, women appear to have a decreased sympathetic nervous system (SNS) response to stress. The two manifestations where the sexual dimorphism has been the most pronounced involve the response of the SNS to fluid shifts and fuel metabolism during exercise. The objectives of this study were to investigate whether a similar sexual dimorphism was found in the response to spaceflight. To do so, we compared catecholamine excretion by male and female astronauts from two similar shuttle missions, Spacelab Life Sciences 1 (SLS1, 1991) and 2 (SLS2, 1993) for evidence of sexual dimorphism. To evaluate the variability of the catecholamine response in men, we compared catecholamine excretion from the two SLS missions against the 1996 Life and Microgravity Sciences Mission (LMS) and the 1973 Skylab missions. RESULTS: No gender- or mission-dependent changes were found with epinephrine. Separating out the SLS1/2 data by gender shows that norepinephrine excretion was essentially unchanged with spaceflight in women (98 +/- 10%; n = 3) and substantially decreased with the men (41 +/- 9%; n = 4, P gender-specific effects. We conclude that norepinephrine excretion during spaceflight is both mission and gender dependent. Men show the greater response, with at least three factors being involved, a response to microgravity, energy balance, and the ratio of carbohydrate to fat in the diet.

  3. Response of carausius morosus to spaceflight environment

    Energy Technology Data Exchange (ETDEWEB)

    Reitz, G.; Bucker, H.; Facius, R.; Horneck, G. (DFVLR-Institute for Aerospace Medicine, 5000 Koeln 90, FRG (DE)); Ruther, W. (University of Marburg, 3550 Marburg, FRG (DE)); Beaujean, R. (University Kiel, 2300 Kiel 1, FRG (DE)); Heinrich, W. (University of Siegen, 5900 Siegen 21, FRG (DE))

    1989-05-15

    Already during the early biosatellite program, a synergistic action of radiation and spaceflight factors---probably microgravity---was observed in disturbances of development of Dropsophila larvae, such as chromosome translocations and body anomalies. Radiation was applied by an onboard source of gamma-radiation. The synergism was supposed to be due to an increase in chromosome breakage followed by a loss or exchange of genetic information.

  4. Response of carausius morosus to spaceflight environment

    International Nuclear Information System (INIS)

    Reitz, G.; Bucker, H.; Facius, R.; Horneck, G.; Ruther, W.; Beaujean, R.; Heinrich, W.

    1989-01-01

    Already during the early biosatellite program, a synergistic action of radiation and spaceflight factors---probably microgravity---was observed in disturbances of development of Dropsophila larvae, such as chromosome translocations and body anomalies. Radiation was applied by an onboard source of gamma-radiation. The synergism was supposed to be due to an increase in chromosome breakage followed by a loss or exchange of genetic information

  5. Integrating spaceflight human system risk research

    Science.gov (United States)

    Mindock, Jennifer; Lumpkins, Sarah; Anton, Wilma; Havenhill, Maria; Shelhamer, Mark; Canga, Michael

    2017-10-01

    NASA is working to increase the likelihood of exploration mission success and to maintain crew health, both during exploration missions and long term after return to Earth. To manage the risks in achieving these goals, a system modelled after a Continuous Risk Management framework is in place. ;Human System Risks; (Risks) have been identified, and 32 are currently being actively addressed by NASA's Human Research Program (HRP). Research plans for each of HRP's Risks have been developed and are being executed. Inter-disciplinary ties between the research efforts supporting each Risk have been identified; however, efforts to identify and benefit from these connections have been mostly ad hoc. There is growing recognition that solutions developed to address the full set of Risks covering medical, physiological, behavioural, vehicle, and organizational aspects of exploration missions must be integrated across Risks and disciplines. This paper discusses how a framework of factors influencing human health and performance in space is being applied as the backbone for bringing together sometimes disparate information relevant to the individual Risks. The resulting interrelated information enables identification and visualization of connections between Risks and research efforts in a systematic and standardized manner. This paper also discusses the applications of the visualizations and insights into research planning, solicitation, and decision-making processes.

  6. Visions of human futures in space and SETI

    Science.gov (United States)

    Wright, Jason T.; Oman-Reagan, Michael P.

    2018-04-01

    We discuss how visions for the futures of humanity in space and SETI are intertwined, and are shaped by prior work in the fields and by science fiction. This appears in the language used in the fields, and in the sometimes implicit assumptions made in discussions of them. We give examples from articulations of the so-called Fermi Paradox, discussions of the settlement of the Solar System (in the near future) and the Galaxy (in the far future), and METI. We argue that science fiction, especially the campy variety, is a significant contributor to the `giggle factor' that hinders serious discussion and funding for SETI and Solar System settlement projects. We argue that humanity's long-term future in space will be shaped by our short-term visions for who goes there and how. Because of the way they entered the fields, we recommend avoiding the term `colony' and its cognates when discussing the settlement of space, as well as other terms with similar pedigrees. We offer examples of science fiction and other writing that broaden and challenge our visions of human futures in space and SETI. In an appendix, we use an analogy with the well-funded and relatively uncontroversial searches for the dark matter particle to argue that SETI's lack of funding in the national science portfolio is primarily a problem of perception, not inherent merit.

  7. Camera aboard 'Friendship 7' photographs John Glenn during spaceflight

    Science.gov (United States)

    1962-01-01

    A camera aboard the 'Friendship 7' Mercury spacecraft photographs Astronaut John H. Glenn Jr. during the Mercury-Atlas 6 spaceflight (00302-3); Photographs Glenn as he uses a photometer to view the sun during sunsent on the MA-6 space flight (00304).

  8. Future for nuclear data research. Human resources

    International Nuclear Information System (INIS)

    Baba, Mamoru

    2006-01-01

    A comment is given on the problem of human resources to support the future nuclear data activity which will be indispensable for advanced utilization of nuclear energy and radiations. Emphasis is put in the importance of the functional organization among the nuclear data center (JAEA), industries and universities for provision of human resources. (author)

  9. Mini-magnetosphere plasma experiment for space radiation protection in manned spaceflight

    International Nuclear Information System (INIS)

    Jia Xianghong; Xu Feng; Jia Shaoxia; Wan Jun; Wang Shouguo

    2012-01-01

    With the development of Chinese manned spaceflight, the planetary missions will become true in the future. The protection of astronauts from cosmic radiation is an unavoidable problem that should be considered. There are many revolutionary ideas for shielding including Electrostatic Fields, Confined Magnetic Field, Unconfined Magnetic Field and Plasma Shielding etc. The concept using cold plasma to expand a magnetic field was recommended for further assessment. Magnetic field inflation was produced by the injection of plasma onto the magnetic field. The method can be used to deflect charged ions and to reduce space radiation dose. It can supply the suitable radiation protection for astronauts and spacecraft. Principle experiments demonstrated that the magnetic field was inflated by the injection of the plasma in the vacuum chamber and the magnetic field intensity strengthened with the increasing of input RF power in this paper. The mechanism should be studied in following steps. (authors)

  10. A platform for real-time online health analytics during spaceflight

    Science.gov (United States)

    McGregor, Carolyn

    Monitoring the health and wellbeing of astronauts during spaceflight is an important aspect of any manned mission. To date the monitoring has been based on a sequential set of discontinuous samplings of physiological data to support initial studies on aspects such as weightlessness, and its impact on the cardiovascular system and to perform proactive monitoring for health status. The research performed and the real-time monitoring has been hampered by the lack of a platform to enable a more continuous approach to real-time monitoring. While any spaceflight is monitored heavily by Mission Control, an important requirement within the context of any spaceflight setting and in particular where there are extended periods with a lack of communication with Mission Control, is the ability for the mission to operate in an autonomous manner. This paper presents a platform to enable real-time astronaut monitoring for prognostics and health management within space medicine using online health analytics. The platform is based on extending previous online health analytics research known as the Artemis and Artemis Cloud platforms which have demonstrated their relevance for multi-patient, multi-diagnosis and multi-stream temporal analysis in real-time for clinical management and research within Neonatal Intensive Care. Artemis and Artemis Cloud source data from a range of medical devices capable of transmission of the signal via wired or wireless connectivity and hence are well suited to process real-time data acquired from astronauts. A key benefit of this platform is its ability to monitor their health and wellbeing onboard the mission as well as enabling the astronaut's physiological data, and other clinical data, to be sent to the platform components at Mission Control at each stage when that communication is available. As a result, researchers at Mission Control would be able to simulate, deploy and tailor predictive analytics and diagnostics during the same spaceflight for

  11. Characterization of Evidence for Human System Risk Assessment

    Science.gov (United States)

    Steinberg, S. L.; Van Baalen, M.; Rossi, M.; Riccio, G.; Romero, E.; Francisco, D.

    2016-01-01

    Understanding the kinds of evidence available and using the best evidence to answer a question is critical to evidenced-based decision-making, and it requires synthesis of evidence from a variety of sources. Categorization of human system risks in spaceflight, in particular, focuses on how well the integration and interpretation of all available evidence informs the risk statement that describes the relationship between spaceflight hazards and an outcome of interest. A mature understanding and categorization of these risks requires: 1) sufficient characterization of risk, 2) sufficient knowledge to determine an acceptable level of risk (i.e., a standard), 3) development of mitigations to meet the acceptable level of risk, and 4) identification of factors affecting generalizability of the evidence to different design reference missions. In the medical research community, evidence is often ranked by increasing confidence in findings gleaned from observational and experimental research (e.g., "levels of evidence"). However, an approach based solely on aspects of experimental design is problematic in assessing human system risks for spaceflight. For spaceflight, the unique challenges and opportunities include: (1) The independent variables in most evidence are the hazards of spaceflight, such as space radiation or low gravity, which cannot be entirely duplicated in terrestrial (Earth-based) analogs, (2) Evidence is drawn from multiple sources including medical and mission operations, Lifetime Surveillance of Astronaut Health (LSAH), spaceflight research (LSDA), and relevant environmental & terrestrial databases, (3) Risk metrics based primarily on LSAH data are typically derived from available prevalence or incidence data, which may limit rigorous interpretation, (4) The timeframe for obtaining adequate spaceflight sample size (n) is very long, given the small population, (5) Randomized controlled trials are unattainable in spaceflight, (6) Collection of personal and

  12. Sex-Specific Effects of Unpredictable Variable Prenatal Stress: Implications for Mammalian Developmental Programming During Spaceflight

    Science.gov (United States)

    Talyansky, Y.; Moyer, E. L.; Oijala, E.; Baer, L. A.; Ronca, A. E.

    2016-01-01

    During adaptation to the microgravity environment, adult mammals experience stress mediated by the Hypothalamic-Pituitary-Adrenal axis. In our previous studies of pregnant rats exposed to 2-g hypergravity via centrifugation, we reported decreased corticosterone and increased body mass and leptin in adult male, but not female, offspring. In this study, we utilized Unpredictable Variable Prenatal Stress to simulate the stressors of spaceflight by exposing dams to different stressors. Stress response modulation occurs via both positive and negative feedback in the hypothalamus, anterior pituitary gland, and adrenal cortex resulting in the differential release of corticosterone (CORT), a murine analog to human cortisol.

  13. Human Performance Metrics for Spacesuit Evaluation

    Data.gov (United States)

    National Aeronautics and Space Administration — Introduction: Human spaceflight and exploration beyond low-earth orbit requires providing crewmembers life support systems in various extreme environments, such as...

  14. Growth Protocols for Etiolated Soybeans Germinated within BRIC-60 Canisters Under Spaceflight Conditions

    Science.gov (United States)

    Levine, H. G.; Sharek, J. A.; Johnson, K. M.; Stryjewski, E. C.; Prima, V. I.; Martynenko, O. I.; Piastuch, W. C.

    As part of the GENEX (Gene Expression) spaceflight experiment, protocols were developed to optimize the inflight germination and subsequent growth of 192 soybean (Glycine max cv McCall) seeds during STS-87. We describe a method which provided uniform growth and development of etiolated seedlings while eliminating root and shoot restrictions for short-term (4-7 day) experiments. Final seedling growth morphologies and the gaseous CO2 and ethylene levels present both on the last day in space and at the time of recovery within the spaceflight and ground control BRIC-60 canisters are presented

  15. Human futures amongst robot teachers?

    DEFF Research Database (Denmark)

    Nørgård, Rikke Toft; Bhroin, Niamh Ni; Ess, Charles Melvin

    2017-01-01

    In 2009 the world’s first robot teacher, Saya, was introduced into a classroom. Saya could express six basic emotions and shout orders like 'be quiet'. Since 2009, instructional robot technologies have emerged around the world and it is estimated that robot teachers may become a regular...... technological feature in the classroom and even 'take over' from human teachers within the next ten to fifteen years.   The paper set out to examine some of the possible ethical implications for human futures in relation to the immanent rise of robot teachers. This is done through combining perspectives...... on technology coming from design, science and technology, education, and philosophy (McCarthy & Wright, 2004; Jasanoff, 2016; Selwyn 2016; Verbeek, 2011). The framework calls attention to how particular robot teachers institute certain educational, experiential and existential terrains within which human...

  16. Risk Management in the Human Spaceflight Program

    Science.gov (United States)

    Hoffman, William

    2009-01-01

    The contents include:1) NASA Mission and Organization; 2) Major Mission Failures and Causes; 3) Cultural Changes Resulting from Failures; 3) Safety at NASA Today; 4) Best Safety Practices; 5) Safety Challenges; and 6) Future Commitment.

  17. Distance and Size Perception in Astronauts during Long-Duration Spaceflight

    Directory of Open Access Journals (Sweden)

    Gilles Clément

    2013-12-01

    Full Text Available Exposure to microgravity during spaceflight is known to elicit orientation illusions, errors in sensory localization, postural imbalance, changes in vestibulo-spinal and vestibulo-ocular reflexes, and space motion sickness. The objective of this experiment was to investigate whether an alteration in cognitive visual-spatial processing, such as the perception of distance and size of objects, is also taking place during prolonged exposure to microgravity. Our results show that astronauts on board the International Space Station exhibit biases in the perception of their environment. Objects’ heights and depths were perceived as taller and shallower, respectively, and distances were generally underestimated in orbit compared to Earth. These changes may occur because the perspective cues for depth are less salient in microgravity or the eye-height scaling of size is different when an observer is not standing on the ground. This finding has operational implications for human space exploration missions.

  18. The future of future-oriented cognition in non-humans: theory and the empirical case of the great apes.

    Science.gov (United States)

    Osvath, Mathias; Martin-Ordas, Gema

    2014-11-05

    One of the most contested areas in the field of animal cognition is non-human future-oriented cognition. We critically examine key underlying assumptions in the debate, which is mainly preoccupied with certain dichotomous positions, the most prevalent being whether or not 'real' future orientation is uniquely human. We argue that future orientation is a theoretical construct threatening to lead research astray. Cognitive operations occur in the present moment and can be influenced only by prior causation and the environment, at the same time that most appear directed towards future outcomes. Regarding the current debate, future orientation becomes a question of where on various continua cognition becomes 'truly' future-oriented. We question both the assumption that episodic cognition is the most important process in future-oriented cognition and the assumption that future-oriented cognition is uniquely human. We review the studies on future-oriented cognition in the great apes to find little doubt that our closest relatives possess such ability. We conclude by urging that future-oriented cognition not be viewed as expression of some select set of skills. Instead, research into future-oriented cognition should be approached more like research into social and physical cognition. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  19. Sustained Accelerated Idioventricular Rhythm in a Centrifuge-Simulated Suborbital Spaceflight.

    Science.gov (United States)

    Suresh, Rahul; Blue, Rebecca S; Mathers, Charles; Castleberry, Tarah L; Vanderploeg, James M

    2017-08-01

    Hypergravitational exposures during human centrifugation are known to provoke dysrhythmias, including sinus dysrhythmias/tachycardias, premature atrial/ventricular contractions, and even atrial fibrillations or flutter patterns. However, events are generally short-lived and resolve rapidly after cessation of acceleration. This case report describes a prolonged ectopic ventricular rhythm in response to high G exposure. A previously healthy 30-yr-old man voluntarily participated in centrifuge trials as a part of a larger study, experiencing a total of 7 centrifuge runs over 48 h. Day 1 consisted of two +Gz runs (peak +3.5 Gz, run 2) and two +Gx runs (peak +6.0 Gx, run 4). Day 2 consisted of three runs approximating suborbital spaceflight profiles (combined +Gx and +Gz). Hemodynamic data collected included blood pressure, heart rate, and continuous three-lead electrocardiogram. Following the final acceleration exposure of the last Day 2 run (peak +4.5 Gx and +4.0 Gz combined, resultant +6.0 G), during a period of idle resting centrifuge activity (resultant vector +1.4 G), the subject demonstrated a marked change in his three-lead electrocardiogram from normal sinus rhythm to a wide-complex ectopic ventricular rhythm at a rate of 91-95 bpm, consistent with an accelerated idioventricular rhythm (AIVR). This rhythm was sustained for 2 m, 24 s before reversion to normal sinus. The subject reported no adverse symptoms during this time. While prolonged, the dysrhythmia was asymptomatic and self-limited. AIVR is likely a physiological response to acceleration and can be managed conservatively. Vigilance is needed to ensure that AIVR is correctly distinguished from other, malignant rhythms to avoid inappropriate treatment and negative operational impacts.Suresh R, Blue RS, Mathers C, Castleberry TL, Vanderploeg JM. Sustained accelerated idioventricular rhythm in a centrifuge-simulated suborbital spaceflight. Aerosp Med Hum Perform. 2017; 88(8):789-793.

  20. The Effects of Training on Anxiety and Task Performance in Simulated Suborbital Spaceflight.

    Science.gov (United States)

    Blue, Rebecca S; Bonato, Frederick; Seaton, Kimberly; Bubka, Andrea; Vardiman, Johnené L; Mathers, Charles; Castleberry, Tarah L; Vanderploeg, James M

    2017-07-01

    In commercial spaceflight, anxiety could become mission-impacting, causing negative experiences or endangering the flight itself. We studied layperson response to four varied-length training programs (ranging from 1 h-2 d of preparation) prior to centrifuge simulation of launch and re-entry acceleration profiles expected during suborbital spaceflight. We examined subject task execution, evaluating performance in high-stress conditions. We sought to identify any trends in demographics, hemodynamics, or similar factors in subjects with the highest anxiety or poorest tolerance of the experience. Volunteers participated in one of four centrifuge training programs of varied complexity and duration, culminating in two simulated suborbital spaceflights. At most, subjects underwent seven centrifuge runs over 2 d, including two +Gz runs (peak +3.5 Gz, Run 2) and two +Gx runs (peak +6.0 Gx, Run 4) followed by three runs approximating suborbital spaceflight profiles (combined +Gx and +Gz, peak +6.0 Gx and +4.0 Gz). Two cohorts also received dedicated anxiety-mitigation training. Subjects were evaluated on their performance on various tasks, including a simulated emergency. Participating in 2-7 centrifuge exposures were 148 subjects (105 men, 43 women, age range 19-72 yr, mean 39.4 ± 13.2 yr, body mass index range 17.3-38.1, mean 25.1 ± 3.7). There were 10 subjects who withdrew or limited their G exposure; history of motion sickness was associated with opting out. Shorter length training programs were associated with elevated hemodynamic responses. Single-directional G training did not significantly improve tolerance. Training programs appear best when high fidelity and sequential exposures may improve tolerance of physical/psychological flight stressors. The studied variables did not predict anxiety-related responses to these centrifuge profiles.Blue RS, Bonato F, Seaton K, Bubka A, Vardiman JL, Mathers C, Castleberry TL, Vanderploeg JM. The effects of training on anxiety

  1. Spaceflight adaptation requires organ specific alterations in the proteomes of Arabidopsis

    Data.gov (United States)

    National Aeronautics and Space Administration — Life in spaceflight demonstrates remarkable adaptive processes within the specialized environments of space vehicles which are subject to the myriad of attending and...

  2. What Justifies a Future with Humans in It?

    Science.gov (United States)

    Murphy, Timothy F

    2016-11-01

    Antinatalist commentators recommend that humanity bring itself to a close, on the theory that pain and suffering override the value of any possible life. Other commentators do not require the voluntary extinction of human beings, but they defend that outcome if people were to choose against having children. Against such views, Richard Kraut has defended a general moral obligation to people the future with human beings until the workings of the universe render such efforts impossible. Kraut advances this view on the grounds that we are obliged to exercise beneficence toward others and on the grounds that the goods available in human lives are morally compelling. This account ultimately succeeds in making no more than a prima facie defense of human perpetuation because considerations of beneficence could override - in some cases probably should - override any duty to perpetuate human beings. While the goods of human life may be distinctive, they cannot serve as reason-giving in regard to their own perpetuation. Ironically, the exercise of beneficence may authorize the extinction of human beings, if it becomes possible to enhance the goods available to human descendants in a way that moves them away from human nature as now given. The defense of a morally obligatory and strictly human future remains elusive, even as it becomes morally desirable to work against Fateful Catastrophes, those human-caused events that threaten to extinguish existing lives already good and enriching for their bearers. © 2016 John Wiley & Sons Ltd.

  3. Protein expression changes caused by spaceflight as measured for 18 Russian cosmonauts.

    Science.gov (United States)

    M Larina, Irina; Percy, Andrew J; Yang, Juncong; Borchers, Christoph H; M Nosovsky, Andrei; I Grigoriev, Anatoli; N Nikolaev, Evgeny

    2017-08-15

    The effects of spaceflight on human physiology is an increasingly studied field, yet the molecular mechanisms driving physiological changes remain unknown. With that in mind, this study was performed to obtain a deeper understanding of changes to the human proteome during space travel, by quantitating a panel of 125 proteins in the blood plasma of 18 Russian cosmonauts who had conducted long-duration missions to the International Space Station. The panel of labeled prototypic tryptic peptides from these proteins covered a concentration range of more than 5 orders of magnitude in human plasma. Quantitation was achieved by a well-established and highly-regarded targeted mass spectrometry approach involving multiple reaction monitoring in conjunction with stable isotope-labeled standards. Linear discriminant function analysis of the quantitative results revealed three distinct groups of proteins: 1) proteins with post-flight protein concentrations remaining stable, 2) proteins whose concentrations recovered slowly, or 3) proteins whose concentrations recovered rapidly to their pre-flight levels. Using a systems biology approach, nearly all of the reacting proteins could be linked to pathways that regulate the activities of proteases, natural immunity, lipid metabolism, coagulation cascades, or extracellular matrix metabolism.

  4. One-month spaceflight compromises the bone microstructure, tissue-level mechanical properties, osteocyte survival and lacunae volume in mature mice skeletons.

    Science.gov (United States)

    Gerbaix, Maude; Gnyubkin, Vasily; Farlay, Delphine; Olivier, Cécile; Ammann, Patrick; Courbon, Guillaume; Laroche, Norbert; Genthial, Rachel; Follet, Hélène; Peyrin, Françoise; Shenkman, Boris; Gauquelin-Koch, Guillemette; Vico, Laurence

    2017-06-01

    The weightless environment during spaceflight induces site-specific bone loss. The 30-day Bion-M1 mission offered a unique opportunity to characterize the skeletal changes after spaceflight and an 8-day recovery period in mature male C57/BL6 mice. In the femur metaphysis, spaceflight decreased the trabecular bone volume (-64% vs. Habitat Control), dramatically increased the bone resorption (+140% vs. Habitat Control) and induced marrow adiposity invasion. At the diaphysis, cortical thinning associated with periosteal resorption was observed. In the Flight animal group, the osteocyte lacunae displayed a reduced volume and a more spherical shape (synchrotron radiation analyses), and empty lacunae were highly increased (+344% vs. Habitat Control). Tissue-level mechanical cortical properties (i.e., hardness and modulus) were locally decreased by spaceflight, whereas the mineral characteristics and collagen maturity were unaffected. In the vertebrae, spaceflight decreased the overall bone volume and altered the modulus in the periphery of the trabecular struts. Despite normalized osteoclastic activity and an increased osteoblast number, bone recovery was not observed 8 days after landing. In conclusion, spaceflight induces osteocyte death, which may trigger bone resorption and result in bone mass and microstructural deterioration. Moreover, osteocyte cell death, lacunae mineralization and fatty marrow, which are hallmarks of ageing, may impede tissue maintenance and repair.

  5. The Ethics of Human Spaceflight

    Science.gov (United States)

    Zoloth, Laurie

    2005-01-01

    This chapter intends to lay out some essential ethics questions that might frame the next step of space exploration. In this, I undertake two sorts of tasks. The first is to respond to the core ethic question: Is it ethical to travel in space? The second, assuming for the moment that I can convince you that the first premise can be justified, is to comment on what ethical challenges will face us there. It is appropriate to have a philosopher comment on this at the fortieth anniversary celebration, since it was also in 1962 that the National Academy of Science first convened a panel of philosophers to comment on space travel. They asked at that time whether it was indeed a worthwhile pursuit to travel in space and what might be expected of such an effort. What is at stake in any such boundary crossing is how the changing of essential human perimeters changes our own moral status. Will such boundary crossing worsen our human condition, or will it enhance it? In this way, the geopolitical quest is then linked to the quest for ontology, Pisarro hunting for the fountain of youth, for gold, and for territory. What follows are a series of ethical claims that link the problem of discovery in the larger world and the attendant ethical dilemmas of our explorations, as well as how this exploration alters our concepts of life on Earth. In this, the role of the ethicist is to function as both a skeptic and a stranger, aware of the optimism of science and the pessimism of philosophy.

  6. Combined Effects of Spaceflight and Age in Astronauts as Assessed by Areal Bone Mineral Density [BMD] and Trabecular Bone Score

    Science.gov (United States)

    Sibonga, Jean D.; Spector, Elizabeth R.; Ploutz-Snyder, R.; Evans, H. J.; King, L.; Watts, N. B.; Hans, D.; Smith, S. A.

    2013-01-01

    Spaceflight is a potential risk factor for secondary osteoporosis in astronauts. Although lumbar spine (LS) BMD declines rapidly, more than expected for age, there have been no fragility fractures in astronauts that can clearly be attributed to spaceflight. Recently, astronauts have been returning from 6-month spaceflights with absolute BMD still above young adult mean BMD. In spite of these BMD measurements, we project that the rapid loss in bone mass over long-duration spaceflight affects the bone microarchitecture of the LS which might predispose astronauts to premature vertebral fractures. Thus, we evaluated TBS, a novel texture index correlated with vertebral bone microarchitecture, as a means of monitoring changes to bone microarchitecture in astronauts as they age. We previously reported that TBS detects an effect of spaceflight (6-month duration), independent of BMD, in 51 astronauts (47+/-4 y) (Smith et al, J Clin Densitometry 2014). Hence, TBS was evaluated in serial DXA scans (Hologic Discovery W) conducted triennially in all active and retired astronauts and more frequently (before spaceflight, after spaceflight and until recovery) in the subset of astronauts flying 4-6- month missions. We used non-linear models to describe trends in observations (BMD or TBS) plotted as a function of astronaut age. We fitted 1175 observations of 311 astronauts, pre-flight and then postflight starting 3 years after landing or after astronaut's BMD for LS was restored to within 2% of preflight BMD. Observations were then grouped and defined as follows: 1) LD: after exposure to at least one long-duration spaceflight > 100 days and 2) SD: before LD and after exposure to at least one short-duration spaceflight < 30 days. Data from males and females were analyzed separately. Models of SD observations revealed that TBS and BMD had similar curvilinear declines with age for both male and female astronauts. However, models of LD observations showed TBS declining with age while

  7. The Astronaut-Athlete: Optimizing Human Performance in Space.

    Science.gov (United States)

    Hackney, Kyle J; Scott, Jessica M; Hanson, Andrea M; English, Kirk L; Downs, Meghan E; Ploutz-Snyder, Lori L

    2015-12-01

    It is well known that long-duration spaceflight results in deconditioning of neuromuscular and cardiovascular systems, leading to a decline in physical fitness. On reloading in gravitational environments, reduced fitness (e.g., aerobic capacity, muscular strength, and endurance) could impair human performance, mission success, and crew safety. The level of fitness necessary for the performance of routine and off-nominal terrestrial mission tasks remains an unanswered and pressing question for scientists and flight physicians. To mitigate fitness loss during spaceflight, resistance and aerobic exercise are the most effective countermeasure available to astronauts. Currently, 2.5 h·d, 6-7 d·wk is allotted in crew schedules for exercise to be performed on highly specialized hardware on the International Space Station (ISS). Exercise hardware provides up to 273 kg of loading capability for resistance exercise, treadmill speeds between 0.44 and 5.5 m·s, and cycle workloads from 0 and 350 W. Compared to ISS missions, future missions beyond low earth orbit will likely be accomplished with less vehicle volume and power allocated for exercise hardware. Concomitant factors, such as diet and age, will also affect the physiologic responses to exercise training (e.g., anabolic resistance) in the space environment. Research into the potential optimization of exercise countermeasures through use of dietary supplementation, and pharmaceuticals may assist in reducing physiological deconditioning during long-duration spaceflight and have the potential to enhance performance of occupationally related astronaut tasks (e.g., extravehicular activity, habitat construction, equipment repairs, planetary exploration, and emergency response).

  8. Human Exploration using Real-Time Robotic Operations (HERRO): A space exploration strategy for the 21st century

    Science.gov (United States)

    Schmidt, George R.; Landis, Geoffrey A.; Oleson, Steven R.

    2012-11-01

    This paper presents an exploration strategy for human missions beyond Low Earth Orbit (LEO) and the Moon that combines the best features of human and robotic spaceflight. This "Human Exploration using Real-time Robotic Operations" (HERRO) strategy refrains from placing humans on the surfaces of the Moon and Mars in the near-term. Rather, it focuses on sending piloted spacecraft and crews into orbit around Mars and other exploration targets of interest, and conducting astronaut exploration of the surfaces using telerobots and remotely-controlled systems. By eliminating the significant communications delay or "latency" with Earth due to the speed of light limit, teleoperation provides scientists real-time control of rovers and other sophisticated instruments. This in effect gives them a "virtual presence" on planetary surfaces, and thus expands the scientific return at these destinations. HERRO mitigates several of the major issues that have hindered the progress of human spaceflight beyond Low Earth Orbit (LEO) by: (1) broadening the range of destinations for near-term human missions; (2) reducing cost and risk through less complexity and fewer man-rated elements; (3) offering benefits of human-equivalent in-situ cognition, decision-making and field-work on planetary bodies; (4) providing a simpler approach to returning samples from Mars and planetary surfaces; and (5) facilitating opportunities for international collaboration through contribution of diverse robotic systems. HERRO provides a firm justification for human spaceflight—one that expands the near-term capabilities of scientific exploration while providing the space transportation infrastructure needed for eventual human landings in the future.

  9. Human Spaceflight Conjunction Assessment: Lessons Learned

    Science.gov (United States)

    Smith, Jason T.

    2011-01-01

    This viewgraph presentation reviews the process of a human space flight conjunction assessment and lessons learned from the more than twelve years of International Space Station (ISS) operations. Also, the application of these lessons learned to a recent ISS conjunction assessment with object 84180 on July 16, 2009 is also presented.

  10. Technology assessment for Spaceship Two, space tourism, and private spaceflight

    Science.gov (United States)

    Hancock, Randy

    A seven-step technology assessment was conducted to address questions regarding the significance and likely consequences associated with the introduction of Spaceship Two, space tourism, and private spaceflight. Impacts were assessed across four categories: the Role and Functions of Government, Private Industry Factors, Cultural and Societal Impacts, and the Time Frame in which these impacts were anticipated to occur. The technology assessment findings were compared to the results of expert interviews that addressed the sane four categories. The researcher noted that, while there was overwhelming agreement between the technology assessment's primary impacts and the expert interview responses, there were several differences. The technology assessment and interviewees agreed that the federal government would likely be both a regulator and user of private spaceflight. Both agreed that business partnerships would be key in pursuing private spaceflight. There was also consensus that, as market forces come to bear, ticket prices would drop and a larger market and broader passenger demographic would emerge. The technology assessment and experts agreed that an accident, especially one early in the industry's evolution, could be disastrous. Both agreed that private spaceflight can serve as a inspiration to students and be a positive influence in society, and both agreed that the start of passenger flights should take place in the 2010 - 2012 timeframe. Due to the potentially disastrous consequences of an accident, there was agreement between the technology assessment and experts on the value of flight and ground crew training, driven by insurance carriers and federal mandate. Most differences between the technology assessment's findings and the expert interview responses were due to omission, rather than direct disagreement. However, this was not the case in every instance. The most significant difference between the technology assessment and the experts involved the

  11. Lessons learned about spaceflight and cell biology experiments

    Science.gov (United States)

    Hughes-Fulford, Millie

    2004-01-01

    Conducting cell biology experiments in microgravity can be among the most technically challenging events in a biologist's life. Conflicting events of spaceflight include waiting to get manifested, delays in manifest schedules, training astronauts to not shake your cultures and to add reagents slowly, as shaking or quick injection can activate signaling cascades and give you erroneous results. It is important to select good hardware that is reliable. Possible conflicting environments in flight include g-force and vibration of launch, exposure of cells to microgravity for extended periods until hardware is turned on, changes in cabin gases and cosmic radiation. One should have an on-board 1-g control centrifuge in order to eliminate environmental differences. Other obstacles include getting your funding in a timely manner (it is not uncommon for two to three years to pass between notification of grant approval for funding and actually getting funded). That said, it is important to note that microgravity research is worthwhile since all terrestrial life evolved in a gravity field and secrets of biological function may only be answered by removing the constant of gravity. Finally, spaceflight experiments are rewarding and worth your effort and patience.

  12. A Consideration of Human Resource Management Future

    OpenAIRE

    Samad Nasiri; Sahar Valikhanfard Zanjani

    2012-01-01

    The prediction of future events, at best, is a risky endeavor. Researchers and theorists have different views about what will happen to human resource managers. Most research has been done on topics of technology, intellectual capital, and government regulation, workforce demographic changes, shrinking organizations, international management and globalization. It is evident that all the issues mentioned play a very important role in human resource management over the coming decades, and some ...

  13. Cardiac atrophy after bed rest and spaceflight

    Science.gov (United States)

    Perhonen, M. A.; Franco, F.; Lane, L. D.; Buckey, J. C.; Blomqvist, C. G.; Zerwekh, J. E.; Peshock, R. M.; Weatherall, P. T.; Levine, B. D.

    2001-01-01

    Cardiac muscle adapts well to changes in loading conditions. For example, left ventricular (LV) hypertrophy may be induced physiologically (via exercise training) or pathologically (via hypertension or valvular heart disease). If hypertension is treated, LV hypertrophy regresses, suggesting a sensitivity to LV work. However, whether physical inactivity in nonathletic populations causes adaptive changes in LV mass or even frank atrophy is not clear. We exposed previously sedentary men to 6 (n = 5) and 12 (n = 3) wk of horizontal bed rest. LV and right ventricular (RV) mass and end-diastolic volume were measured using cine magnetic resonance imaging (MRI) at 2, 6, and 12 wk of bed rest; five healthy men were also studied before and after at least 6 wk of routine daily activities as controls. In addition, four astronauts were exposed to the complete elimination of hydrostatic gradients during a spaceflight of 10 days. During bed rest, LV mass decreased by 8.0 +/- 2.2% (P = 0.005) after 6 wk with an additional atrophy of 7.6 +/- 2.3% in the subjects who remained in bed for 12 wk; there was no change in LV mass for the control subjects (153.0 +/- 12.2 vs. 153.4 +/- 12.1 g, P = 0.81). Mean wall thickness decreased (4 +/- 2.5%, P = 0.01) after 6 wk of bed rest associated with the decrease in LV mass, suggesting a physiological remodeling with respect to altered load. LV end-diastolic volume decreased by 14 +/- 1.7% (P = 0.002) after 2 wk of bed rest and changed minimally thereafter. After 6 wk of bed rest, RV free wall mass decreased by 10 +/- 2.7% (P = 0.06) and RV end-diastolic volume by 16 +/- 7.9% (P = 0.06). After spaceflight, LV mass decreased by 12 +/- 6.9% (P = 0.07). In conclusion, cardiac atrophy occurs during prolonged (6 wk) horizontal bed rest and may also occur after short-term spaceflight. We suggest that cardiac atrophy is due to a physiological adaptation to reduced myocardial load and work in real or simulated microgravity and demonstrates the plasticity

  14. Biological filters and their use in potable water filtration systems in spaceflight conditions

    Science.gov (United States)

    Thornhill, Starla G.; Kumar, Manish

    2018-05-01

    Providing drinking water to space missions such as the International Space Station (ISS) is a costly requirement for human habitation. To limit the costs of water transport, wastewater is collected and purified using a variety of physical and chemical means. To date, sand-based biofilters have been designed to function against gravity, and biofilms have been shown to form in microgravity conditions. Development of a universal silver-recycling biological filter system that is able to function in both microgravity and full gravity conditions would reduce the costs incurred in removing organic contaminants from wastewater by limiting the energy and chemical inputs required. This paper aims to propose the use of a sand-substrate biofilter to replace chemical means of water purification on manned spaceflights.

  15. Effects of Weightlessness on Human Fluid and Electrolyte Physiology

    Science.gov (United States)

    Leach, Carolyn S.; Johnson, Philip C., Jr.

    1991-01-01

    The changes that occur in human fluid and electrolyte physiology during the acute and adaptive phases of adaptation to spaceflight are summarized. A number of questions remain to be answered. At a time when plasma volume and extracellular fluid volume are contracted and salt and water intake is unrestricted. ADH does not correct the volume deficit and serum sodium decreases. Change in secretion or activity of a natriuretic factor during spaceflight is one possible explanation. Recent identification of a polypeptide hormone produced in cardiac muscle cells which is natiuretic, is hypotensive, and has an inhibitory effect on renin and aldosterone secretion has renewed interest in the role of a natriuretic factor. The role of this atrial natriuretic factor (ANF) in both long- and short-term variation in extracellular volumes and in the inability of the kidney to bring about an escape from the sodium-retaining state accompanying chronic cardiac dysfunction makes it reasonable to look for a role of ANF in the regulation of sodium during exposure to microgravity. Prostaglandin-E is another hormone that may antagonize the action of ADH. Assays of these hormones will be performed on samples from crew members in the future.

  16. Spaceflight-induced synaptic modifications within hair cells of the mammalian utricle.

    Science.gov (United States)

    Sultemeier, David R; Choy, Kristel R; Schweizer, Felix E; Hoffman, Larry F

    2017-06-01

    Exposure to the microgravity conditions of spaceflight alleviates the load normally imposed by the Earth's gravitational field on the inner ear utricular epithelia. Previous ultrastructural investigations have shown that spaceflight induces an increase in synapse density within hair cells of the rat utricle. However, the utricle exhibits broad physiological heterogeneity across different epithelial regions, and it is unknown whether capabilities for synaptic plasticity generalize to hair cells across its topography. To achieve systematic and broader sampling of the epithelium than was previously conducted, we used immunohistochemistry and volumetric image analyses to quantify synapse distributions across representative utricular regions in specimens from mice exposed to spaceflight (a 15-day mission of the space shuttle Discovery). These measures were compared with similarly sampled Earth-bound controls. Following paraformaldehyde fixation and microdissection, immunohistochemistry was performed on intact specimens to label presynaptic ribbons (anti-CtBP2) and postsynaptic receptor complexes (anti-Shank1A). Synapses were identified as closely apposed pre- and postsynaptic puncta. Epithelia from horizontal semicircular canal cristae served as "within-specimen" controls, whereas utricles and cristae from Earth-bound cohorts served as experimental controls. We found that synapse densities decreased in the medial extrastriolae of microgravity specimens compared with experimental controls, whereas they were unchanged in the striolae and horizontal cristae from the two conditions. These data demonstrate that structural plasticity was topographically localized to the utricular region that encodes very low frequency and static changes in linear acceleration, and illuminates the remarkable capabilities of utricular hair cells for synaptic plasticity in adapting to novel gravitational environments. NEW & NOTEWORTHY Spaceflight imposes a radically different sensory environment

  17. Marked exacerbation of orthostatic intolerance after long- vs. short-duration spaceflight in veteran astronauts

    Science.gov (United States)

    Meck, J. V.; Reyes, C. J.; Perez, S. A.; Goldberger, A. L.; Ziegler, M. G.

    2001-01-01

    OBJECTIVE: The incidence of postflight orthostatic intolerance after short-duration spaceflight is about 20%. However, the incidence after long-duration spaceflight was unknown. The purpose of this study was to test the hypothesis that orthostatic intolerance is more severe after long-duration than after short-duration flight. METHODS: We performed tilt tests on six astronauts before and after long-duration (129-190 days) spaceflights and compared these data with data obtained during stand tests before and after previous short-duration missions. RESULTS: Five of the six astronauts studied became presyncopal during tilt testing after long-duration flights. Only one had become presyncopal during stand testing after short-duration flights. We also compared the long-duration flight tilt test data to tilt test data from 20 different astronauts who flew on the short-duration Shuttle missions that delivered and recovered the astronauts to and from the Mir Space Station. Five of these 20 astronauts became presyncopal on landing day. Heart rate responses to tilt were no different between astronauts on long-duration flights and astronauts on short-duration flights, but long-duration subjects had lower stroke volumes and cardiac outputs than short-duration presyncopal subjects, suggesting a possible decrease in cardiac contractile function. One subject had subnormal norepinephrine release with upright posture after the long flight but not after the short flight. Plasma volume losses were not greater after long flights. CONCLUSION: Long-duration spaceflight markedly increases orthostatic intolerance, probably with multiple contributing factors.

  18. Dynamic Simulation of Human Thermoregulation and Heat Transfer for Spaceflight Applications

    Science.gov (United States)

    Miller, Thomas R.; Nelson, David A.; Bue, Grant; Kuznetz, Lawrence

    2011-01-01

    Models of human thermoregulation and heat transfer date from the early 1970s and have been developed for applications ranging from evaluating thermal comfort in spacecraft and aircraft cabin environments to predicting heat stress during EVAs. Most lumped or compartment models represent the body as an assemblage cylindrical and spherical elements which may be subdivided into layers to describe tissue heterogeneity. Many existing models are of limited usefulness in asymmetric thermal environments, such as may be encountered during an EVA. Conventional whole-body clothing models also limit the ability to describe local surface thermal and evaporation effects in sufficient detail. A further limitation is that models based on a standard man model are not readily scalable to represent large or small subjects. This work describes development of a new human thermal model derived from the 41-node man model. Each segment is divided into four concentric, constant thickness cylinders made up of a central core surrounded by muscle, fat, and skin, respectively. These cylinders are connected by the flow of blood from a central blood pool to each part. The central blood pool is updated at each time step, based on a whole-body energy balance. Results show the model simulates core and surface temperature histories, sweat evaporation and metabolic rates which generally are consistent with controlled exposures of human subjects. Scaling rules are developed to enable simulation of small and large subjects (5th percentile and 95th percentile). Future refinements will include a clothing model that addresses local surface insulation and permeation effects and developing control equations to describe thermoregulatory effects such as may occur with prolonged weightlessness or with aging.

  19. Comparison of the spaceflight transcriptome of four commonly used Arabidopsis thaliana ecotypes

    Data.gov (United States)

    National Aeronautics and Space Administration — This experiment compared the spaceflight transcriptomes of four commonly used natural variants (ecotypes) of Arabidopsis thaliana using RNAseq. In nature Arabidopsis...

  20. Development and Validation of the Cognition Test Battery for Spaceflight.

    Science.gov (United States)

    Basner, Mathias; Savitt, Adam; Moore, Tyler M; Port, Allison M; McGuire, Sarah; Ecker, Adrian J; Nasrini, Jad; Mollicone, Daniel J; Mott, Christopher M; McCann, Thom; Dinges, David F; Gur, Ruben C

    2015-11-01

    Sustained high-level cognitive performance is of paramount importance for the success of space missions, which involve environmental, physiological, and psychological stressors that may affect brain functions. Despite subjective symptom reports of cognitive fluctuations in spaceflight, the nature of neurobehavioral functioning in space has not been clarified. We developed a computerized cognitive test battery (Cognition) that has sensitivity to multiple cognitive domains and was specifically designed for the high-performing astronaut population. Cognition consists of 15 unique forms of 10 neuropsychological tests that cover a range of cognitive domains, including emotion processing, spatial orientation, and risk decision making. Cognition is based on tests known to engage specific brain regions as evidenced by functional neuroimaging. Here we describe the first normative and acute total sleep deprivation data on the Cognition test battery as well as several efforts underway to establish the validity, sensitivity, feasibility, and acceptability of Cognition. Practice effects and test-retest variability differed substantially between the 10 Cognition tests, illustrating the importance of normative data that both reflect practice effects and differences in stimulus set difficulty in the population of interest. After one night without sleep, medium to large effect sizes were observed for 3 of the 10 tests addressing vigilant attention (Cohen's d = 1.00), cognitive throughput (d = 0.68), and abstract reasoning (d = 0.65). In addition to providing neuroimaging-based novel information on the effects of spaceflight on a range of cognitive functions, Cognition will facilitate comparing the effects of ground-based analogues to spaceflight, increase consistency across projects, and thus enable meta-analyses.

  1. Cryogenic Fiber Optic Assemblies for Spaceflight Environments: Design, Manufacturing, Testing, and Integration

    Science.gov (United States)

    Thomes, W. Joe; Ott, Melanie N.; Chuska, Richard; Switzer, Robert; Onuma, Eleanya; Blair, Diana; Frese, Erich; Matyseck, Marc

    2016-01-01

    Fiber optic assemblies have been used on spaceflight missions for many years as an enabling technology for routing, transmitting, and detecting optical signals. Due to the overwhelming success of NASA in implementing fiber optic assemblies on spaceflight science-based instruments, system scientists increasingly request fibers that perform in extreme environments while still maintaining very high optical transmission, stability, and reliability. Many new applications require fiber optic assemblies that will operate down to cryogenic temperatures as low as 20 Kelvin. In order for the fiber assemblies to operate with little loss in optical throughput at these extreme temperatures requires a system level approach all the way from how the fiber assembly is manufactured to how it is held, routed, and integrated. The NASA Goddard Code 562 Photonics Group has been designing, manufacturing, testing, and integrating fiber optics for spaceflight and other high reliability applications for nearly 20 years. Design techniques and lessons learned over the years are consistently applied to developing new fiber optic assemblies that meet these demanding environments. System level trades, fiber assembly design methods, manufacturing, testing, and integration will be discussed. Specific recent examples of ground support equipment for the James Webb Space Telescope (JWST); the Ice, Cloud and Land Elevation Satellite-2 (ICESat-2); and others will be included.

  2. NASA Human System Risk Assessment Process

    Science.gov (United States)

    Francisco, D.; Romero, E.

    2016-01-01

    NASA utilizes an evidence based system to perform risk assessments for the human system for spaceflight missions. The center of this process is the multi-disciplinary Human System Risk Board (HSRB). The HSRB is chartered from the Chief Health and Medical Officer (OCHMO) at NASA Headquarters. The HSRB reviews all human system risks via an established comprehensive risk and configuration management plan based on a project management approach. The HSRB facilitates the integration of human research (terrestrial and spaceflight), medical operations, occupational surveillance, systems engineering and many other disciplines in a comprehensive review of human system risks. The HSRB considers all factors that influence human risk. These factors include pre-mission considerations such as screening criteria, training, age, sex, and physiological condition. In mission factors such as available countermeasures, mission duration and location and post mission factors such as time to return to baseline (reconditioning), post mission health screening, and available treatments. All of the factors influence the total risk assessment for each human risk. The HSRB performed a comprehensive review of all potential inflight medical conditions and events and over the course of several reviews consolidated the number of human system risks to 30, where the greatest emphasis is placed for investing program dollars for risk mitigation. The HSRB considers all available evidence from human research and, medical operations and occupational surveillance in assessing the risks for appropriate mitigation and future work. All applicable DRMs (low earth orbit for 6 and 12 months, deep space for 30 days and 1 year, a lunar mission for 1 year, and a planetary mission for 3 years) are considered as human system risks are modified by the hazards associated with space flight such as microgravity, exposure to radiation, distance from the earth, isolation and a closed environment. Each risk has a summary

  3. The role of automatic control in future interplanetary spaceflight

    Science.gov (United States)

    Scull, J. R.; Moore, J. W.

    1976-01-01

    The paper reviews the guidance and automatic control techniques used in previous U.S. and Soviet lunar and planetary exploration spacecraft, and examines the objectives and requirements of potential future interplanetary missions from the viewpoint of their further demands on automatic control technology. These missions include the Venus orbital imaging radar mission, the Pioneer Mars penetrator mission, the Mars surface sample return mission, Pioneer Saturn/Uranus/Titan probe missions, the Mariner Jupiter orbiter with daughter satellite, and comet and asteroid missions.

  4. The Future Human Being – What is it like?

    Directory of Open Access Journals (Sweden)

    Matusevych Tetiana

    2012-04-01

    Full Text Available Realization of permanent transformational transitions has brought to necessity to apprehend complex ontological issues of a new reality for development of a complex strategy for adequate opposition to challenges faced by the humanity. Understanding the role of education in the formation and development of a future human being ranks first among these issues. In this article I have analyzed modern directions of futuristic apprehension of a sense of transformational changes of a man (transhumanism, theory of androgyny, represented a key role of the philosophy of education in development of an image of the future human being, and determined main characteristics of a personality of planetary-cosmic type, system of his personal, local and global interactions.

  5. The DNA damage response of C. elegans affected by gravity sensing and radiosensitivity during the Shenzhou-8 spaceflight

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Ying [Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Shushanhu Road 350, Hefei 230031 (China); Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Shushanhu Road 350, Hefei 230031 (China); Xu, Dan; Zhao, Lei [Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026 (China); Sun, Yeqing, E-mail: yqsun@dlmu.edu.cn [Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026 (China)

    2017-01-15

    Highlights: • Extrinsic condition and intrinsic sensitivity both affect responses to spaceflight. • Protein phosphorylation/dephosphorylation is sensitive to μg and space radiation. • Microgravity affects transcription depending on dystrophin gene dys-1 in C.elegans. • Loss-function of apoptotic gene ced-1 leads protective responses to space radiation. - Abstract: Space radiation and microgravity are recognized as primary and inevitable risk factors for humans traveling in space, but the reports regarding their synergistic effects remain inconclusive and vary across studies due to differences in the environmental conditions and intrinsic biological sensitivity. Thus, we studied the synergistic effects on transcriptional changes in the global genome and DNA damage response (DDR) by using dys-1 mutant and ced-1 mutant of C. elegans, which respectively presented microgravity-insensitivity and radiosensitivity when exposure to spaceflight condition (SF) and space radiation (SR). The dys-1 mutation induced similar transcriptional changes under both conditions, including the transcriptional distribution and function of altered genes. The majority of alterations were related to metabolic shift under both conditions, including transmembrane transport, lipid metabolic processes and proteolysis. Under SF and SR conditions, 12/14 and 10/13 altered pathways, respectively, were both grouped in the metabolism category. Out of the 778 genes involved in DDR, except eya-1 and ceh-34, 28 altered genes in dys-1 mutant showed no predicted protein interactions, or anti-correlated miRNAs during spaceflight. The ced-1 mutation induced similar changes under SF and SR; however, these effects were stronger than those of the dys-1 mutant. The additional genes identified were related to phosphorous/phosphate metabolic processes and growth rather than, metabolism, especially for environmental information processing under SR. Although the DDR profiles were significantly changed under

  6. The DNA damage response of C. elegans affected by gravity sensing and radiosensitivity during the Shenzhou-8 spaceflight

    International Nuclear Information System (INIS)

    Gao, Ying; Xu, Dan; Zhao, Lei; Sun, Yeqing

    2017-01-01

    Highlights: • Extrinsic condition and intrinsic sensitivity both affect responses to spaceflight. • Protein phosphorylation/dephosphorylation is sensitive to μg and space radiation. • Microgravity affects transcription depending on dystrophin gene dys-1 in C.elegans. • Loss-function of apoptotic gene ced-1 leads protective responses to space radiation. - Abstract: Space radiation and microgravity are recognized as primary and inevitable risk factors for humans traveling in space, but the reports regarding their synergistic effects remain inconclusive and vary across studies due to differences in the environmental conditions and intrinsic biological sensitivity. Thus, we studied the synergistic effects on transcriptional changes in the global genome and DNA damage response (DDR) by using dys-1 mutant and ced-1 mutant of C. elegans, which respectively presented microgravity-insensitivity and radiosensitivity when exposure to spaceflight condition (SF) and space radiation (SR). The dys-1 mutation induced similar transcriptional changes under both conditions, including the transcriptional distribution and function of altered genes. The majority of alterations were related to metabolic shift under both conditions, including transmembrane transport, lipid metabolic processes and proteolysis. Under SF and SR conditions, 12/14 and 10/13 altered pathways, respectively, were both grouped in the metabolism category. Out of the 778 genes involved in DDR, except eya-1 and ceh-34, 28 altered genes in dys-1 mutant showed no predicted protein interactions, or anti-correlated miRNAs during spaceflight. The ced-1 mutation induced similar changes under SF and SR; however, these effects were stronger than those of the dys-1 mutant. The additional genes identified were related to phosphorous/phosphate metabolic processes and growth rather than, metabolism, especially for environmental information processing under SR. Although the DDR profiles were significantly changed under

  7. Spaceflight Activates Autophagy Programs and the Proteasome in Mouse Liver.

    Science.gov (United States)

    Blaber, Elizabeth A; Pecaut, Michael J; Jonscher, Karen R

    2017-09-27

    Increased oxidative stress is an unavoidable consequence of exposure to the space environment. Our previous studies showed that mice exposed to space for 13.5 days had decreased glutathione levels, suggesting impairments in oxidative defense. Here we performed unbiased, unsupervised and integrated multi-'omic analyses of metabolomic and transcriptomic datasets from mice flown aboard the Space Shuttle Atlantis. Enrichment analyses of metabolite and gene sets showed significant changes in osmolyte concentrations and pathways related to glycerophospholipid and sphingolipid metabolism, likely consequences of relative dehydration of the spaceflight mice. However, we also found increased enrichment of aminoacyl-tRNA biosynthesis and purine metabolic pathways, concomitant with enrichment of genes associated with autophagy and the ubiquitin-proteasome. When taken together with a downregulation in nuclear factor (erythroid-derived 2)-like 2-mediated signaling, our analyses suggest that decreased hepatic oxidative defense may lead to aberrant tRNA post-translational processing, induction of degradation programs and senescence-associated mitochondrial dysfunction in response to the spaceflight environment.

  8. Spaceflight Activates Autophagy Programs and the Proteasome in Mouse Liver

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Blaber

    2017-09-01

    Full Text Available Increased oxidative stress is an unavoidable consequence of exposure to the space environment. Our previous studies showed that mice exposed to space for 13.5 days had decreased glutathione levels, suggesting impairments in oxidative defense. Here we performed unbiased, unsupervised and integrated multi-‘omic analyses of metabolomic and transcriptomic datasets from mice flown aboard the Space Shuttle Atlantis. Enrichment analyses of metabolite and gene sets showed significant changes in osmolyte concentrations and pathways related to glycerophospholipid and sphingolipid metabolism, likely consequences of relative dehydration of the spaceflight mice. However, we also found increased enrichment of aminoacyl-tRNA biosynthesis and purine metabolic pathways, concomitant with enrichment of genes associated with autophagy and the ubiquitin-proteasome. When taken together with a downregulation in nuclear factor (erythroid-derived 2-like 2-mediated signaling, our analyses suggest that decreased hepatic oxidative defense may lead to aberrant tRNA post-translational processing, induction of degradation programs and senescence-associated mitochondrial dysfunction in response to the spaceflight environment.

  9. Temazepam, but not zolpidem, causes orthostatic hypotension in astronauts after spaceflight

    Science.gov (United States)

    Shi, Shang-Jin; Garcia, Kathleen M.; Meck, Janice V.

    2003-01-01

    Insomnia is a common symptom, not only in the adult population but also in many astronauts. Hypnotics, such as temazepam (a benzodiazepine) and zolpidem (an imidazopyridine), are often taken to relieve insomnia. Temazepam has been shown clinically to have hemodynamic side effects, particularly in the elderly; however, the mechanism is not clear. Zolpidem does not cause hemodynamic side effects. The purpose of this study was to determine whether the use of different hypnotics during spaceflight might contribute significantly to the high incidence of postflight orthostatic hypotension, and to compare the findings in astronauts with clinical research. Astronauts were separated into three groups: control (n = 40), temazepam (15 or 30 mg; n = 9), and zolpidem (5 or 10 mg; n = 8). In this study, temazepam and zolpidem were only taken the night before landing. The systolic and diastolic blood pressures and heart rates of the astronauts were measured during stand tests before spaceflight and on landing day. On landing day, systolic pressure decreased significantly and heart rate increased significantly in the temazepam group, but not in the control group or in the zolpidem group. Temazepam may aggravate orthostatic hypotension after spaceflight when astronauts are hemodynamically compromised. Temazepam should not be the initial choice as a sleeping aid for astronauts. These results in astronauts may help to explain the hemodynamic side effects in the elderly who are also compromised. Zolpidem may be a better choice as a sleeping aid in these populations.

  10. Spaceflight induces both transient and heritable alterations in DNA methylation and gene expression in rice (Oryza sativa L.)

    Energy Technology Data Exchange (ETDEWEB)

    Ou Xiufang [Key Laboratory of Molecular Epigenetic of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024 (China); Long Likun [Inspection and Quarantine Technology Centre of Zhongshan Entry-Exit Inspection and Quarantine Bureau, Zhongshan 528400, Guangdong Province (China); Zhang Yunhong; Xue Yiqun; Liu Jingchun; Lin Xiuyun [Key Laboratory of Molecular Epigenetic of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024 (China); Liu Bao [Key Laboratory of Molecular Epigenetic of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024 (China)], E-mail: baoliu6677@yahoo.com.cn

    2009-03-09

    Spaceflight represents a complex environmental condition in which several interacting factors such as cosmic radiation, microgravity and space magnetic fields are involved, which may provoke stress responses and jeopardize genome integrity. Given the inherent property of epigenetic modifications to respond to intrinsic as well as external perturbations, it is conceivable that epigenetic markers like DNA methylation may undergo alterations in response to spaceflight. We report here that extensive alteration in both DNA methylation and gene expression occurred in rice plants subjected to a spaceflight, as revealed by a set of characterized sequences including 6 transposable elements (TEs) and 11 cellular genes. We found that several features characterize the alterations: (1) All detected alterations are hypermethylation events; (2) whereas alteration in both CG and CNG methylation occurred in the TEs, only alteration in CNG methylation occurred in the cellular genes; (3) alteration in expression includes both up- and down-regulations, which did not show a general correlation with alteration in methylation; (4) altered methylation patterns in both TEs and cellular genes are heritable to progenies at variable frequencies; however, stochastic reversion to wild-type patterns and further de novo changes in progenies are also apparent; and (5) the altered expression states in both TEs and cellular genes are also heritable to selfed progenies but with markedly lower transmission frequencies than altered DNA methylation states. Furthermore, we found that a set of genes encoding for the various putative DNA methyltransferases, 5-methylcytosine DNA glycosylases, the SWI/SNF chromatin remodeller (DDM1) and siRNA-related proteins are extremely sensitive to perturbation by spaceflight, which might be an underlying cause for the altered methylation patterns in the space-flown plants. We discuss implications of spaceflight-induced epigenetic variations with regard to health safety

  11. Spaceflight induces both transient and heritable alterations in DNA methylation and gene expression in rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Ou Xiufang; Long Likun; Zhang Yunhong; Xue Yiqun; Liu Jingchun; Lin Xiuyun; Liu Bao

    2009-01-01

    Spaceflight represents a complex environmental condition in which several interacting factors such as cosmic radiation, microgravity and space magnetic fields are involved, which may provoke stress responses and jeopardize genome integrity. Given the inherent property of epigenetic modifications to respond to intrinsic as well as external perturbations, it is conceivable that epigenetic markers like DNA methylation may undergo alterations in response to spaceflight. We report here that extensive alteration in both DNA methylation and gene expression occurred in rice plants subjected to a spaceflight, as revealed by a set of characterized sequences including 6 transposable elements (TEs) and 11 cellular genes. We found that several features characterize the alterations: (1) All detected alterations are hypermethylation events; (2) whereas alteration in both CG and CNG methylation occurred in the TEs, only alteration in CNG methylation occurred in the cellular genes; (3) alteration in expression includes both up- and down-regulations, which did not show a general correlation with alteration in methylation; (4) altered methylation patterns in both TEs and cellular genes are heritable to progenies at variable frequencies; however, stochastic reversion to wild-type patterns and further de novo changes in progenies are also apparent; and (5) the altered expression states in both TEs and cellular genes are also heritable to selfed progenies but with markedly lower transmission frequencies than altered DNA methylation states. Furthermore, we found that a set of genes encoding for the various putative DNA methyltransferases, 5-methylcytosine DNA glycosylases, the SWI/SNF chromatin remodeller (DDM1) and siRNA-related proteins are extremely sensitive to perturbation by spaceflight, which might be an underlying cause for the altered methylation patterns in the space-flown plants. We discuss implications of spaceflight-induced epigenetic variations with regard to health safety

  12. Systematic Analysis of mRNA and miRNA Expression of 3D-Cultured Neural Stem Cells (NSCs in Spaceflight

    Directory of Open Access Journals (Sweden)

    Yi Cui

    2018-01-01

    Full Text Available Recently, with the development of the space program there are growing concerns about the influence of spaceflight on tissue engineering. The purpose of this study was thus to determine the variations of neural stem cells (NSCs during spaceflight. RNA-Sequencing (RNA-Seq based transcriptomic profiling of NSCs identified many differentially expressed mRNAs and miRNAs between space and earth groups. Subsequently, those genes with differential expression were subjected to bioinformatic evaluation using gene ontology (GO, Kyoto Encyclopedia of Genes and Genomes pathway (KEGG and miRNA-mRNA network analyses. The results showed that NSCs maintain greater stemness ability during spaceflight although the growth rate of NSCs was slowed down. Furthermore, the results indicated that NSCs tended to differentiate into neuron in outer space conditions. Detailed genomic analyses of NSCs during spaceflight will help us to elucidate the molecular mechanisms behind their differentiation and proliferation when they are in outer space.

  13. Spaceflight-induced vertebral bone loss in ovariectomized rats is associated with increased bone marrow adiposity and no change in bone formation

    Science.gov (United States)

    Keune, Jessica A; Philbrick, Kenneth A; Branscum, Adam J; Iwaniec, Urszula T; Turner, Russell T

    2016-01-01

    There is often a reciprocal relationship between bone marrow adipocytes and osteoblasts, suggesting that marrow adipose tissue (MAT) antagonizes osteoblast differentiation. MAT is increased in rodents during spaceflight but a causal relationship between MAT and bone loss remains unclear. In the present study, we evaluated the effects of a 14-day spaceflight on bone mass, bone resorption, bone formation, and MAT in lumbar vertebrae of ovariectomized (OVX) rats. Twelve-week-old OVX Fischer 344 rats were randomly assigned to a ground control or flight group. Following flight, histological sections of the second lumbar vertebrae (n=11/group) were stained using a technique that allowed simultaneous quantification of cells and preflight fluorochrome label. Compared with ground controls, rats flown in space had 32% lower cancellous bone area and 306% higher MAT. The increased adiposity was due to an increase in adipocyte number (224%) and size (26%). Mineral apposition rate and osteoblast turnover were unchanged during spaceflight. In contrast, resorption of a preflight fluorochrome and osteoclast-lined bone perimeter were increased (16% and 229%, respectively). The present findings indicate that cancellous bone loss in rat lumbar vertebrae during spaceflight is accompanied by increased bone resorption and MAT but no change in bone formation. These findings do not support the hypothesis that increased MAT during spaceflight reduces osteoblast activity or lifespan. However, in the context of ovarian hormone deficiency, bone formation during spaceflight was insufficient to balance increased resorption, indicating defective coupling. The results are therefore consistent with the hypothesis that during spaceflight mesenchymal stem cells are diverted to adipocytes at the expense of forming osteoblasts. PMID:28725730

  14. Development and Validation of the Cognition Test Battery for Spaceflight

    Science.gov (United States)

    Basner, Mathias; Savitt, Adam; Moore, Tyler M.; Port, Allison M.; McGuire, Sarah; Ecker, Adrian J.; Nasrini, Jad; Mollicone, Daniel J.; Mott, Christopher M.; McCann, Thom; Dinges, David F.; Gur, Ruben C.

    2015-01-01

    Background Sustained high-level cognitive performance is of paramount importance for the success of space missions, which involve environmental, physiological and psychological stressors that may affect brain functions. Despite subjective symptom reports of cognitive fluctuations in spaceflight, the nature of neurobehavioral functioning in space has not been clarified. Methods We developed a computerized cognitive test battery (Cognition) that has sensitivity to multiple cognitive domains and was specifically designed for the high-performing astronaut population. Cognition consists of 15 unique forms of 10 neuropsychological tests that cover a range of cognitive domains including emotion processing, spatial orientation, and risk decision making. Cognition is based on tests known to engage specific brain regions as evidenced by functional neuroimaging. Here we describe the first normative and acute total sleep deprivation data on the Cognition test battery as well as several efforts underway to establish the validity, sensitivity, feasibility, and acceptability of Cognition. Results Practice effects and test-retest variability differed substantially between the 10 Cognition tests, illustrating the importance of normative data that both reflect practice effects and differences in stimulus set difficulty in the population of interest. After one night without sleep, medium to large effect sizes were observed for 3 of the 10 tests addressing vigilant attention (Cohen’s d=1.00), cognitive throughput (d=0.68), and abstract reasoning (d=0.65). Conclusions In addition to providing neuroimaging-based novel information on the effects of spaceflight on a range of cognitive functions, Cognition will facilitate comparing the effects of ground-based analogs to spaceflight, increase consistency across projects, and thus enable meta-analyses. PMID:26564759

  15. Radiation pollution: present and future perplexities about human rights

    International Nuclear Information System (INIS)

    Kumar, Raj; Bharti, Mukesh

    2012-01-01

    Out of the several pollutions included in environmental pollution, the radiation pollution is also a part of this, which is most damageable and serious for the society. Historical evidences reveal about the devastating effects of radiation pollution on human being. No form of pollution exists in the world which influences the human race with its devastating affects for more than one generation except radiation pollution. The radiation pollution affects human health in several ways. It is a man made problem and also affects human rights of masses for which state are responsible ultimately. The radiation pollution affects a big spectrum of human rights. The sources of radiation pollution and its impact on human health may be different according to the sources. These sources may be classified as electronic goods, Nuclear tests, Nuclear war, Reactors and thermal plants etc. Although we have some legal provisions to handle the problem of radiation pollution but there is no specific laws available for the protection and promotion of human rights from radiation pollution in the lights of international human rights principles. At present, there is no human right oriented policy framework is available to protect and promote the human rights of the radiation pollutions sufferers. The paper explores Present and Future Perplexities about Human Rights. It also tells about the available legal framework, state obligations and judicial responses for radiation pollution. The paper concludes with some suggestions in the light of present and future perplexities about human rights. (author)

  16. Evidence Report: Risk of Inadequate Human-Computer Interaction

    Science.gov (United States)

    Holden, Kritina; Ezer, Neta; Vos, Gordon

    2013-01-01

    Human-computer interaction (HCI) encompasses all the methods by which humans and computer-based systems communicate, share information, and accomplish tasks. When HCI is poorly designed, crews have difficulty entering, navigating, accessing, and understanding information. HCI has rarely been studied in an operational spaceflight context, and detailed performance data that would support evaluation of HCI have not been collected; thus, we draw much of our evidence from post-spaceflight crew comments, and from other safety-critical domains like ground-based power plants, and aviation. Additionally, there is a concern that any potential or real issues to date may have been masked by the fact that crews have near constant access to ground controllers, who monitor for errors, correct mistakes, and provide additional information needed to complete tasks. We do not know what types of HCI issues might arise without this "safety net". Exploration missions will test this concern, as crews may be operating autonomously due to communication delays and blackouts. Crew survival will be heavily dependent on available electronic information for just-in-time training, procedure execution, and vehicle or system maintenance; hence, the criticality of the Risk of Inadequate HCI. Future work must focus on identifying the most important contributing risk factors, evaluating their contribution to the overall risk, and developing appropriate mitigations. The Risk of Inadequate HCI includes eight core contributing factors based on the Human Factors Analysis and Classification System (HFACS): (1) Requirements, policies, and design processes, (2) Information resources and support, (3) Allocation of attention, (4) Cognitive overload, (5) Environmentally induced perceptual changes, (6) Misperception and misinterpretation of displayed information, (7) Spatial disorientation, and (8) Displays and controls.

  17. Latent viral reactivation is associated with changes in plasma antimicrobial protein concentrations during long-duration spaceflight

    Science.gov (United States)

    Spielmann, G.; Laughlin, M. S.; Kunz, H.; Crucian, B. E.; Quiriarte, H. D.; Mehta, S. K.; Pierson, D. L.; Simpson, R. J.

    2018-05-01

    Long duration spaceflights are associated with profound dysregulation of the immune system and latent viral reactivations. However, little is known on the impact of long duration spaceflight on innate immunity which raises concerns on crewmembers' ability to fight infections during a mission. The aim of this study was to determine the effects of spaceflight on plasma antimicrobial proteins (AMPs) and how these changes impact latent herpesvirus reactivations. Plasma, saliva and urine samples were obtained from 23 crewmembers before, during and after a 6-month mission on the International Space Station (ISS). Plasma AMP concentrations were determined by ELISA, and saliva Epstein-Barr virus (EBV) and varicella zoster virus (VZV) and urine cytomegalovirus (CMV) DNA levels were quantified by Real-Time PCR. There was a non-significant increase in plasma HNP1-3 and LL-37 during the early and middle stages of the missions, which was significantly associated with changes in viral DNA during and after spaceflight. Plasma HNP1-3 and Lysozyme increased at the late mission stages in astronauts who had exhibited EBV and VZV reactivations during the early flight stages. Following return to Earth and during recovery, HNP1-3 and lysozyme concentrations were associated with EBV and VZV viral DNA levels, reducing the magnitude of viral reactivation. Reductions in plasma LL-37 upon return were associated with greater CMV reactivation. This study shows that biomarkers of innate immunity appeared to be partially restored after 6-months in space and suggests that following adaptation to the space environment, plasma HNP1-3 and lysozyme facilitate the control of EBV and VZV reactivation rate and magnitude in space and upon return on earth. However, the landing-associated decline in plasma LL-37 may enhance the rate of CMV reactivation in astronauts following spaceflight, potentially compromising crewmember health after landing.

  18. The future of human rights impact assessments of trade agreements

    NARCIS (Netherlands)

    Walker, S.M.

    2009-01-01

    The Future of Human Rights Impact Assessments of Trade Agreements develops a methodology for human rights impact assessments of trade agreements and considers whether there is any value in using the methodology on a sustained basis to ensure that the human dimensions of international trade are taken

  19. Influence of Prolonged Spaceflight on Heart Rate and Oxygen Uptake Kinetics

    Science.gov (United States)

    Hoffmann, U.; Moore, A.; Drescher, U.

    2013-02-01

    During prolonged spaceflight, physical training is used to minimize cardiovascular deconditioning. Measurement of the kinetics of cardiorespiratory parameters, in particular the kinetic analysis of heart rate, respiratory and muscular oxygen uptake, provides useful information with regard to the efficiency and regulation of the cardiorespiratory system. Practically, oxygen uptake kinetics can only be measured at the lung site (V’O2 resp). The dynamics of V’O2 resp, however, is not identical with the dynamics at the site of interest: skeletal muscle. Eight Astronauts were tested pre- and post-flight using pseudo random binary workload changes between 30 and 80 W. Their kinetic responses of heart rate, respiratory as well as muscular V’O2 kinetics were estimated by using time-series analysis. Statistical analysis revealed that the kinetic responses of respiratory as well as muscular V’O2 kinetics are slowed post-flight than pre-flight. Heart rate seems not to be influenced following flight. The influence of other factors (e. g. astronauts’ exercise training) may impact these parameters and is an area for future studies.

  20. A Quantitative Human Spacecraft Design Evaluation Model for Assessing Crew Accommodation and Utilization

    Science.gov (United States)

    Fanchiang, Christine

    Crew performance, including both accommodation and utilization factors, is an integral part of every human spaceflight mission from commercial space tourism, to the demanding journey to Mars and beyond. Spacecraft were historically built by engineers and technologists trying to adapt the vehicle into cutting edge rocketry with the assumption that the astronauts could be trained and will adapt to the design. By and large, that is still the current state of the art. It is recognized, however, that poor human-machine design integration can lead to catastrophic and deadly mishaps. The premise of this work relies on the idea that if an accurate predictive model exists to forecast crew performance issues as a result of spacecraft design and operations, it can help designers and managers make better decisions throughout the design process, and ensure that the crewmembers are well-integrated with the system from the very start. The result should be a high-quality, user-friendly spacecraft that optimizes the utilization of the crew while keeping them alive, healthy, and happy during the course of the mission. Therefore, the goal of this work was to develop an integrative framework to quantitatively evaluate a spacecraft design from the crew performance perspective. The approach presented here is done at a very fundamental level starting with identifying and defining basic terminology, and then builds up important axioms of human spaceflight that lay the foundation for how such a framework can be developed. With the framework established, a methodology for characterizing the outcome using a mathematical model was developed by pulling from existing metrics and data collected on human performance in space. Representative test scenarios were run to show what information could be garnered and how it could be applied as a useful, understandable metric for future spacecraft design. While the model is the primary tangible product from this research, the more interesting outcome of

  1. The Complete Book of Spaceflight: From Apollo 1 to Zero Gravity

    Science.gov (United States)

    Darling, David

    2002-11-01

    A commanding encyclopedia of the history and principles of spaceflight-from earliest conceptions to faster-than-light galaxy-hopping Here is the first truly comprehensive guide to space exploration and propulsion, from the first musings of the Greeks to current scientific speculation about interstellar travel using "warp drives" and wormholes. Space buffs will delight in its in-depth coverage of all key manned and unmanned missions and space vehicles-past, present, and projected-and its clear explanations of the technologies involved. Over the course of more than 2,000 extensively cross-referenced entries, astronomer David Darling also provides fascinating insights into the cultural development of spaceflight. In vivid accounts of the major characters and historical events involved, he provides fascinating tales of early innovators, the cross-pollination that has long existed between science fiction and science fact, and the sometimes obscure links between geopolitics, warfare, and advances in rocketry.

  2. Spaceflight Activates Protein Kinase C Alpha Signaling and Modifies the Developmental Stage of Human Neonatal Cardiovascular Progenitor Cells.

    Science.gov (United States)

    Baio, Jonathan; Martinez, Aida F; Bailey, Leonard; Hasaniya, Nahidh; Pecaut, Michael J; Kearns-Jonker, Mary

    2018-02-12

    Spaceflight impacts cardiovascular function in astronauts; however, its impact on cardiac development and the stem cells that form the basis for cardiac repair is unknown. Accordingly, further research is needed to uncover the potential relevance of such changes to human health. Using simulated microgravity (SMG) generated by two-dimensional clinorotation and culture aboard the International Space Station (ISS), we assessed the effects of mechanical unloading on human neonatal cardiovascular progenitor cell (CPC) developmental properties and signaling. Following 6-7 days of SMG and 12 days of ISS culture, we analyzed changes in gene expression. Both environments induced the expression of genes that are typically associated with an earlier state of cardiovascular development. To understand the mechanism by which such changes occurred, we assessed the expression of mechanosensitive small RhoGTPases in SMG-cultured CPCs and observed decreased levels of RHOA and CDC42. Given the effect of these molecules on intracellular calcium levels, we evaluated changes in noncanonical Wnt/calcium signaling. After 6-7 days under SMG, CPCs exhibited elevated levels of WNT5A and PRKCA. Similarly, ISS-cultured CPCs exhibited elevated levels of calcium handling and signaling genes, which corresponded to protein kinase C alpha (PKCα), a calcium-dependent protein kinase, activation after 30 days. Akt was activated, whereas phosphorylated extracellular signal-regulated kinase levels were unchanged. To explore the effect of calcium induction in neonatal CPCs, we activated PKCα using hWnt5a treatment on Earth. Subsequently, early cardiovascular developmental marker levels were elevated. Transcripts induced by SMG and hWnt5a-treatment are expressed within the sinoatrial node, which may represent embryonic myocardium maintained in its primitive state. Calcium signaling is sensitive to mechanical unloading and directs CPC developmental properties. Further research both in space and on Earth

  3. NASA 14 Day Undersea Missions: A Short-Duration Spaceflight Analog for Immune System Dysregulation

    Science.gov (United States)

    Crucian, B. E.; Stowe, R. P.; Mehta, S. K.; Quiriarte, H.; Pierson, D. L.; Sams, C. F.

    2010-01-01

    BACKGROUND Spaceflight-associated immune dysregulation (SAID) occurs during spaceflight and may represent specific clinical risks for exploration-class missions. An appropriate ground analog for spaceflight-associated immune dysregulation would offer a platform for ground-evaluation of various potential countermeasures. This study evaluated the NASA Undersea Mission Operations ( NEEMO ), consisting of 14 day undersea deployment at the Aquarius station, as an analog for SAID. Sixteen Aquanauts from missions NEEMO-12, 13 and 14 participated in the study. RESULTS Mid-mission alterations leukocyte distribution occurred, including granulocytosis and elevations in central-memory CD8+ T-cells. General T cell function was reduced during NEEMO missions in roughly 50% of subjects. Secreted cytokines profiles were evaluated following whole blood stimulation with CD3/CD28 (T cells) or LPS (monocytes). T cell production of IFNg, IL-5, IL-10, IL-2, TNFa and IL-6 were all reduced before and during the mission. Conversely, monocyte production of TNFa, IL-10, IL-6, IL-1b and IL-8 were elevated during mission, moreso at the MD-14 timepoint. Antibodies to Epstein-Barr virus (EBV) viral capsid antigen and early antigen were increased in approximately 40% of the subjects. Changes in EBV tetramer-positive CD8+ T-cells exhibited a variable pattern. Antibodies against Cytomegalovirus (CMV) were marginally increased during the mission. Herpesvirus reactivation was determined by PCR. EBV viral load was generally elevated at L-6. Higher levels of salivary EBV were found during the NEEMO mission than before and after as well as than the healthy controls. No VZV or CMV was found in any pre, during and after NEEMO mission or control samples. Plasma cortisol was elevated at L-6. CONCLUSION Unfortunately, L-6 may be too near to mission start to be an appropriate baseline measurement. The general immune changes in leukocyte distribution, T cell function, cytokine production, virus specific

  4. The Stability of Bioactive Compounds in Spaceflight Foods

    Science.gov (United States)

    Cooper, M. R.; Douglas, G. L.

    2017-01-01

    The status and stability of bioactive compounds in the processed and shelf-stable spaceflight food system have not previously been investigated though the presence of such compounds in aged space foods could have health significance for crews on long duration exploration missions. Over forty foods - either existing International Space Station (ISS) food provisioning items, newly developed foods for spaceflight, or commercially-available ready-to-eat foods - that were predicted to have a relatively high concentrations of one or more bioactive compounds (lycopene, lutein, omega-3 fatty acids, phenolics, sterols, and/or flavonoids) were selected for the study. Food samples were sent overnight to the Food Composition Laboratory of the Linus Pauling Institute at Oregon State University (Corvallis, OR) for bioactive compound analysis. Three packages of each product were blended together for the analysis to reduce package-to-package variability. All ISS food items and commercial foods were analyzed initially and after 12 and 24 months of 21degC storage. Food development occurred in a staggered fashion, so data collection for the newly developed foods continues. Lastly, sensory evaluation and additional temperature storage data (4degC, 35degC) for select foods were collected to establish additional stability parameters. Efficacious concentrations of lycopene, lutein, and omega-3 fatty acids were measured in limited spaceflight foods; two grams of sterols a day may be difficult to achieve with the current space diet. Total polyphenol delivery appears stable and adequate, but individual phenolic compounds vary in stability and were not specifically evaluated in this study. The data suggests that some bioactive compounds, like lycopene and lutein, degrade and then plateau at some equilibrium concentration. The anthocyanin stability appears to be related to storage temperature and food matrix, and lutein stability in leafy vegetables may be impacted by storage temperature

  5. Automated fault-management in a simulated spaceflight micro-world

    Science.gov (United States)

    Lorenz, Bernd; Di Nocera, Francesco; Rottger, Stefan; Parasuraman, Raja

    2002-01-01

    BACKGROUND: As human spaceflight missions extend in duration and distance from Earth, a self-sufficient crew will bear far greater onboard responsibility and authority for mission success. This will increase the need for automated fault management (FM). Human factors issues in the use of such systems include maintenance of cognitive skill, situational awareness (SA), trust in automation, and workload. This study examine the human performance consequences of operator use of intelligent FM support in interaction with an autonomous, space-related, atmospheric control system. METHODS: An expert system representing a model-base reasoning agent supported operators at a low level of automation (LOA) by a computerized fault finding guide, at a medium LOA by an automated diagnosis and recovery advisory, and at a high LOA by automate diagnosis and recovery implementation, subject to operator approval or veto. Ten percent of the experimental trials involved complete failure of FM support. RESULTS: Benefits of automation were reflected in more accurate diagnoses, shorter fault identification time, and reduced subjective operator workload. Unexpectedly, fault identification times deteriorated more at the medium than at the high LOA during automation failure. Analyses of information sampling behavior showed that offloading operators from recovery implementation during reliable automation enabled operators at high LOA to engage in fault assessment activities CONCLUSIONS: The potential threat to SA imposed by high-level automation, in which decision advisories are automatically generated, need not inevitably be counteracted by choosing a lower LOA. Instead, freeing operator cognitive resources by automatic implementation of recover plans at a higher LOA can promote better fault comprehension, so long as the automation interface is designed to support efficient information sampling.

  6. Incidence of clinical symptoms during long-duration orbital spaceflight

    Directory of Open Access Journals (Sweden)

    Crucian B

    2016-11-01

    Full Text Available Brian Crucian,1 Adriana Babiak-Vazquez,2 Smith Johnston,1 Duane L Pierson,1 C Mark Ott,1 Clarence Sams1 1Biomedical Research and Environmental Sciences Division, NASA-Johnson Space Center, 2Epidemiology/Lifetime Surveillance of Astronaut Health, KBR-Wyle, Houston, TX, USA Background: The environment of spaceflight may elevate an astronaut’s clinical risk for specific diseases. The purpose of this study was to derive, as accurately as currently possible, an assessment of in-flight clinical “incidence” data, based on observed clinical symptoms in astronauts on board the International Space Station (ISS.Methods: Electronic medical records were examined from 46 long-duration ISS crew members, each serving approximately a 6-month mission on board the ISS, constituting 20.57 total flight years. Incidence for immunological-related adverse health events or relevant clinical symptoms was tabulated in a non-identifiable fashion. Event categories included infectious diseases, allergies, and rashes/hypersensitivities. A subsequent re-evaluation of more notable events, either of prolonged duration or unresponsive to treatment, was performed.Results: For the disease/symptom categories used in this evaluation, the ISS incidence rate was 3.40 events per flight year. Skin rashes were the most reported event (1.12/flight year followed by upper respiratory symptoms (0.97/flight year and various other (non-respiratory infectious processes. During flight, 46% of crew members reported an event deemed “notable”. Among the notable events, 40% were classified as rashes/hypersensitivities. Characterization of on-orbit rashes manifested as redness with irritation, and could present on a variety of body locations.Conclusion: Based on reported symptoms, astronauts experience adverse medical events of varying severity during long-duration spaceflights. The data suggests caution, from both a vehicle design and biomedical countermeasures perspective, as space

  7. MIT January Operational Internship Experience 2011

    Science.gov (United States)

    DeLatte, Danielle; Furhmann, Adam; Habib, Manal; Joujon-Roche, Cecily; Opara, Nnaemeka; Pasterski, Sabrina Gonzalez; Powell, Christina; Wimmer, Andrew

    2011-01-01

    This slide presentation reviews the 2011 January Operational Internship experience (JOIE) program which allows students to study operational aspects of spaceflight, how design affects operations and systems engineering in practice for 3 weeks. Topics include: (1) Systems Engineering (2) NASA Organization (3) Workforce Core Values (4) Human Factors (5) Safety (6) Lean Engineering (7) NASA Now (8) Press, Media, and Outreach and (9) Future of Spaceflight.

  8. Intraocular Lens Use in an Astronaut During Long Duration Spaceflight.

    Science.gov (United States)

    Mader, Thomas H; Gibson, C Robert; Schmid, Josef F; Lipsky, William; Sargsyan, Ashot E; Garcia, Kathleen; Williams, Jeffrey N

    2018-01-01

    The purpose of this paper is to report the first use of an intraocular lens (IOL) in an astronaut during long duration spaceflight (LDSF). An astronaut developed a unilateral cataract and underwent phacoemulsification with insertion of an acrylic IOL. Approximately 15 mo later he flew on a Soyuz spacecraft to the International Space Station (ISS), where he successfully completed a 6-mo mission. Ocular examination, including ultrasound (US), was performed before, during, and after his mission and he was questioned regarding visual changes during each portion of his flight. We documented no change in IOL position during his space mission. This astronaut reported excellent and stable vision during liftoff, entry into microgravity (MG), 6 mo on the ISS, descent, and landing. Our results suggest that modern IOLs are stable, effective, and well tolerated during LDSF.Mader TH, Gibson CR, Schmid JF, Lipsky W, Sargsyan AE, Garcia K, Williams JN. Intraocular lens use in an astronaut during long duration spaceflight. Aerosp Med Hum Perform. 2018; 89(1):63-65.

  9. Orbital Hub: a concept for human spaceflight beyond ISS operations

    Science.gov (United States)

    Jahnke, Stephan S.; Maiwald, Volker; Philpot, Claudia; Quantius, Dominik; Romberg, Oliver; Seboldt, Wolfgang; Vrakking, Vincent; Zeidler, Conrad

    2018-04-01

    The International Space Station (ISS) is the greatest endeavour in low-Earth orbit since the beginning of the space age and the culmination of human outposts like Skylab and Mir. While a clear schedule has yet to be drafted, it is expected that ISS will cease operation in the 2020s. What could be the layout for a human outpost in LEO with lessons learnt from ISS? What are the use cases and applications of such an outpost in the future? The System Analysis Space Segment group of the German Aerospace Center investigated these and other questions and developed the Orbital Hub concept. In this paper an overview is presented of how the overall concept has been derived and its properties and layouts are described. Starting with a workshop involving the science community, the scientific requirements have been derived and Strawman payloads have been defined for use in further design activities. These design activities focused on Concurrent Engineering studies, where besides DLR employees participants from the industry and astronauts were involved. The result is an expandable concept that is composed of two main parts, the Base Platform, home for a permanent crew of up to three astronauts, and the Free Flyer, an uncrewed autonomous research platform. This modular approach provides one major advantage: the decoupling of the habitat and payload leading to increased quality of the micro-gravity environment. The former provides an environment for human physiology experiments, while the latter allows science without the perturbations caused by a crew, e.g. material experiments or Earth observation. The Free Flyer is designed to operate for up to 3 months on its own, but can dock with the space station for maintenance and experiment servicing. It also has a hybrid propulsion system, chemical and electrical, for different applications. The hub's design allows launch with just three launches, as the total mass of all the hub parts is about 60,000 kg. The main focus of the design is

  10. Fibroblast Growth Factor-23 in Bed Rest and Spaceflight

    Science.gov (United States)

    Bokhari, R.; Zwart, S. R; Fields, E.; Heer, M.; Sibonga, J.; Smith, S. M.

    2014-01-01

    Many nutritional factors influence bone, from the basics of calcium and vitamin D, to factors which influence bone through acid/base balance, including protein, sodium, and more. Fibroblast growth factor 23 (FGF23) is a recently identified factor, secreted from osteocytes, which is involved in classic (albeit complex) feedback loops controlling phosphorus homeostasis through both vitamin D and parathyroid hormone (PTH) (1, 2). As osteocytes are gravity sensing cells, it is important to determine if there are changes in FGF23 during spaceflight. In extreme cases, such as chronic kidney disease, FGF23 levels are highly elevated. FGF23 imbalances, secondary to dietary influences, may contribute to skeletal demineralization and kidney stone risk during spaceflight. Presented with an imbalanced dietary phosphorus to calcium ratio, increased secretion of FGF23 will inhibit renal phosphorus reabsorption, resulting in increased excretion and reduced circulating phosphorus. Increased intake and excretion of phosphorus is associated with increased kidney stone risk in both the terrestrial and microgravity environments. Highly processed foods and carbonated beverages are associated with higher phosphorus content. Ideally, the dietary calcium to phosphorus ratio should be at minimum 1:1. Nutritional requirements for spaceflight suggest that this ratio not be less than 0.67 (3), while the International Space Station (ISS) menu provides 1020 mg Ca and 1856 mg P, for a ratio of 0.55 (3). Subjects in NASA's bed rest studies, by design, have consumed intake ratios much closer to 1.0 (4). FGF23 also has an inhibitory influence on PTH secretion and 1(alpha)-hydroxylase, both of which are required for activating vitamin D with the conversion of 25-hydroxyvitamin D to 1,25-dihydroxyvitamin D. Decreased 1,25-dihydroxyvitamin D will result in decreased intestinal phosphorus absorption, and increased urinary phosphorus excretion (via decreased renal reabsorption). Should a decrease in 1

  11. Prevalence of Sleep Deficiency and Hypnotic Use Among Astronauts Before, During and After Spaceflight: An Observational Study

    Science.gov (United States)

    Barger, Laura K.; Flynn-Evans, Erin E.; Kubey, Alan; Walsh, Lorcan; Ronda, Joseph M.; Wang, Wei; Wright, Kenneth P.; Czeisler, Charles A.

    2014-01-01

    Background Sleep deprivation and fatigue are common subjective complaints among astronauts. We conducted the first large-scale evaluation of objectively-estimated sleep of astronauts on both short- and long-duration spaceflight missions. Methods Allnon-Russian crewmembers assigned to space shuttle flights with inflight experiments from July 2001 until July 2011 or ISS Expeditions from 2006 –2011 were eligible to participate. We objectively assessed, via wrist actigraphy and daily logs, sleep-wake timing of 64 astronauts on 80 Space Shuttle missions, encompassing 26 Space Transportation System flights (1,063 inflight days), and 21 astronauts on the International Space Station (ISS) (3,248 inflight days) and, for each astronaut, during two Earth-based data-collection intervals prior to and one following spaceflight (4,013 ground-based days). Findings Astronauts attempted and obtained significantly less actigraphically-estimated sleep per night on space shuttle missions (7·35 ± 0·47 and 5·96 ± 0·56 hours, respectively), in the 11-days before spaceflight (7·35 ± 0·51 and 6·04 ± 0·72 hours, respectively) and even three months before spaceflight (7·40 ± 0·59 and 6·29 ± 0·67 hours, respectively) than they did upon their return to Earth (8·01 ± 0·78 and 6·74 ± 0·91 hours, respectively) (p Astronauts on ISS missions also obtained significantly less sleep three months prior (6.41 ± 0.65), in the 11 days prior (5.86 ± 0.94) and during spaceflight (6.09 ± 0.67 hours), as compared to the first week post-mission (6.95 ± 1.04 hours; p astronauts was prevalent not only during space shuttle and ISS missions, but also throughout a 3-month pre-flight training interval. Despite chronic sleep curtailment, sleeping pill use was pervasive during spaceflight. As chronic sleep loss produces performance decrements, these findings highlight the need for development of effective counter measures to promote sleep. Funding The study was supported by NASA

  12. Ductility of Individual Trabeculae as a Measurement of Bone Quality to Predict Risk of Fracture

    Data.gov (United States)

    National Aeronautics and Space Administration — The success and safety of future human spaceflight exploration must overcome the physiological challenges of long exposure to reduced gravity environments. Research...

  13. The Digital Future of Humanities through the Lens of DIY Culture

    DEFF Research Database (Denmark)

    Roued-Cunliffe, Henriette

    2017-01-01

    This paper asks the question: Do the humanities by necessity have a digital future? It argues that the answer to this question is both yes and no. The argument looks through the lens of DIY culture as an attempt to try and understand the future for the humanities in terms of both cultural material...... and processes. The argument is made first by examining the case of information sharing within DIY culture as an expression of current day cultural material. Secondly, it illustrated how traditional humanities scholarship, such as reading ancient documents, compares to it’s DIY equivalent within family history...

  14. Relationships Between Vestibular Measures as Potential Predictors for Spaceflight Sensorimotor Adaptation

    Science.gov (United States)

    Clark, T. K.; Peters, B.; Gadd, N. E.; De Dios, Y. E.; Wood, S.; Bloomberg, J. J.; Mulavara, A. P.

    2016-01-01

    Introduction: During space exploration missions astronauts are exposed to a series of novel sensorimotor environments, requiring sensorimotor adaptation. Until adaptation is complete, sensorimotor decrements occur, affecting critical tasks such as piloted landing or docking. Of particularly interest are locomotion tasks such as emergency vehicle egress or extra-vehicular activity. While nearly all astronauts eventually adapt sufficiently, it appears there are substantial individual differences in how quickly and effectively this adaptation occurs. These individual differences in capacity for sensorimotor adaptation are poorly understood. Broadly, we aim to identify measures that may serve as pre-flight predictors of and individual's adaptation capacity to spaceflight-induced sensorimotor changes. As a first step, since spaceflight is thought to involve a reinterpretation of graviceptor cues (e.g. otolith cues from the vestibular system) we investigate the relationships between various measures of vestibular function in humans. Methods: In a set of 15 ground-based control subjects, we quantified individual differences in vestibular function using three measures: 1) ocular vestibular evoked myogenic potential (oVEMP), 2) computerized dynamic posturography and 3) vestibular perceptual thresholds. oVEMP responses are elicited using a mechanical stimuli approach. Computerized dynamic posturography was used to quantify Sensory Organization Tests (SOTs), including SOT5M which involved performing pitching head movements while balancing on a sway-reference support surface with eyes closed. We implemented a vestibular perceptual threshold task using the tilt capabilities of the Tilt-Translation Sled (TTS) at JSC. On each trial, the subject was passively roll-tilted left ear down or right ear down in the dark and verbally provided a forced-choice response regarding which direction they felt tilted. The motion profile was a single-cycle sinusoid of angular acceleration with a

  15. Arg1 functions in the physiological adaptation of undifferentiated plant cells to spaceflight

    Data.gov (United States)

    National Aeronautics and Space Administration — In this study transcriptome profiling was used to gain insight into the spaceflight adaptation role of Altered response to gravity-1 (Arg1) a gene known to affect...

  16. Effects of spaceflight on the immunoglobulin repertoire of unimmunized C57BL/6 mice

    Data.gov (United States)

    National Aeronautics and Space Administration — Spaceflight has been shown to suppress the adaptive immune response altering the distribution and function of lymphocyte populations. B lymphocytes express highly...

  17. Future human health research directions for the Canadian Northern Contaminants Program

    Science.gov (United States)

    Donaldson, Shawn G.; Curren, Meredith S.; Adlard, Bryan; Provost, Jonathan; Leech, Tara; Tikhonov, Constantine; Feeley, Mark; Tomlinson, Scott; Shearer, Russel

    2013-01-01

    Studies conducted in the mid-1980s and early 1990s demonstrated that persistent organic pollutants (POPs) and metals were reaching the Arctic ecosystem at unexpectedly high levels, many of which had no Arctic or Canadian sources. Epidemiological and toxicological studies in Canada and in other countries have found that these contaminants may pose a risk to human health. The objective of this paper is to provide the foundation for the discussion on future northern human health research under the Northern Contaminants Program (NCP) in Canada. This short discussion of human health priorities will help guide a path forward for future northern human health research in Canada to address on-going and new health concerns related to contaminants exposure in the Canadian Arctic. PMID:24282784

  18. The Kantian Insight on the Future of the Humanities

    Science.gov (United States)

    Leone, Carlos

    2006-01-01

    This article makes the case for the relevance of Kant's perception in "The Contest of the Faculties" of the Humanities (as Philosophy) both to the university and to society in general. It illustrates this point by commenting on 20th-century essays by such diverse thinkers as Freud, Weber and Hayek. It suggests that the future of the Humanities is…

  19. Nuclear data for assessment of activation of scintillator materials during spaceflight

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, C.S.; (Goddard Space Flight Center, Greenbelt, MD); Trombka, J.I.; Seltzer, S.M.

    1975-10-01

    A calculation is outlined which predicts energy-loss spectra observed in detector materials due to the decay of radioactive nuclides which are produced by particle irradiation in spaceflight. The input decay schemes and cross-section requirements are described. Examples are given from the Apollo gamma-ray spectrometer experiments. 4 figures, 1 table. (auth)

  20. Nuclear data for assessment of activation of scintillator materials during spaceflight

    International Nuclear Information System (INIS)

    Dyer, C.S.; Trombka, J.I.; Seltzer, S.M.

    1975-01-01

    A calculation is outlined which predicts energy-loss spectra observed in detector materials due to the decay of radioactive nuclides which are produced by particle irradiation in spaceflight. The input decay schemes and cross-section requirements are described. Examples are given from the Apollo gamma-ray spectrometer experiments. 4 figures, 1 table

  1. Optical Metal Oxide Multilayers with Optimal Transparency and Mechanical Properties

    Data.gov (United States)

    National Aeronautics and Space Administration — The future of long-term human spaceflight and deep space exploration hinges on the development of reliable and efficient materials for extreme environments. Within...

  2. BRIC-23 GeneLab Process Verification Test: Staphylococcus aureus transcriptomic proteomic and metabolomic data

    Data.gov (United States)

    National Aeronautics and Space Administration — Microbes interact with humans in complex ways and understanding how they respond to the spaceflight environment is important to the success of future manned...

  3. BRIC-23 GeneLab Process Verification Test: Bacillus subtilis transcriptomic proteomic and metabolomic data

    Data.gov (United States)

    National Aeronautics and Space Administration — Microbes interact with humans in complex ways and understanding how they respond to the spaceflight environment is important to the success of future manned...

  4. Invited review: gender issues related to spaceflight: a NASA perspective

    Science.gov (United States)

    Harm, D. L.; Jennings, R. T.; Meck, J. V.; Powell, M. R.; Putcha, L.; Sams, C. P.; Schneider, S. M.; Shackelford, L. C.; Smith, S. M.; Whitson, P. A.

    2001-01-01

    This minireview provides an overview of known and potential gender differences in physiological responses to spaceflight. The paper covers cardiovascular and exercise physiology, barophysiology and decompression sickness, renal stone risk, immunology, neurovestibular and sensorimotor function, nutrition, pharmacotherapeutics, and reproduction. Potential health and functional impacts associated with the various physiological changes during spaceflight are discussed, and areas needing additional research are highlighted. Historically, studies of physiological responses to microgravity have not been aimed at examining gender-specific differences in the astronaut population. Insufficient data exist in most of the discipline areas at this time to draw valid conclusions about gender-specific differences in astronauts, in part due to the small ratio of women to men. The only astronaut health issue for which a large enough data set exists to allow valid conclusions to be drawn about gender differences is orthostatic intolerance following shuttle missions, in which women have a significantly higher incidence of presyncope during stand tests than do men. The most common observation across disciplines is that individual differences in physiological responses within genders are usually as large as, or larger than, differences between genders. Individual characteristics usually outweigh gender differences per se.

  5. Space immunology - Past, present and future

    Science.gov (United States)

    Coulter, Gary R.; Taylor, Gerald R.; Sonnenfeld, Gerald

    1989-01-01

    Research results on the causes and mechanisms of change in immune systems during spaceflight are briefly reviewed. The most reliable conclusion from the sparse existing data is that postflight crew members exhibit a transient neutrophilia, eosinopenia, monocytopenia, reduced numbers of circulating T cells, and an often pronounced decrease in the ability of their T cells to respond to mitogen stimulation. Clinically, no direct predictive relationship between any of these measurements and increased health risk or disease has been established. Future areas of research are suggested in light of NASA's emerging requirements to support long-duration missions.

  6. Investigation of changes in body chemical composition of rats after the spaceflight by the negatively charged muons

    International Nuclear Information System (INIS)

    Arlt, R.-D.; Evseev, V.S.; Ortlepp, H.G.; Sabirov, B.M.; Haupt, H.

    1978-01-01

    A body chemical composition of three white rats of the ''Wistar'' line has been investigated by the muonic x-ray spectroscopy technique, sojourned during three weeks in the spaceflight on earth artificial satellites ''Cosmos-605'' and ''Cosmos-690''. It is shown that a chemical composition of these animals has not been changed after the spaceflight. The obtained results confirm the hypothesis by that due to the influence of space flight on alive organism apparently no carrying out of heavy elements from an organism is happened, but their redistribution between various tissues of the body occurs

  7. Preparation of A Spaceflight: Apoptosis Search in Sutured Wound Healing Models

    Directory of Open Access Journals (Sweden)

    Stefan Riwaldt

    2017-12-01

    Full Text Available To prepare the ESA (European Space Agency spaceflight project “Wound healing and Sutures in Unloading Conditions”, we studied mechanisms of apoptosis in wound healing models based on ex vivo skin tissue cultures, kept for 10 days alive in serum-free DMEM/F12 medium supplemented with bovine serum albumin, hydrocortisone, insulin, ascorbic acid and antibiotics at 32 °C. The overall goal is to test: (i the viability of tissue specimens; (ii the gene expression of activators and inhibitors of apoptosis and extracellular matrix components in wound and suture models; and (iii to design analytical protocols for future tissue specimens after post-spaceflight download. Hematoxylin-Eosin and Elastica-van-Gieson staining showed a normal skin histology with no signs of necrosis in controls and showed a normal wound suture. TdT-mediated dUTP-biotin nick end labeling for detecting DNA fragmentation revealed no significant apoptosis. No activation of caspase-3 protein was detectable. FASL, FADD, CASP3, CASP8, CASP10, BAX, BCL2, CYC1, APAF1, LAMA3 and SPP1 mRNAs were not altered in epidermis and dermis samples with and without a wound compared to 0 day samples (specimens investigated directly post-surgery. BIRC5, CASP9, and FN1 mRNAs were downregulated in epidermis/dermis samples with and/or without a wound compared to 0 day samples. BIRC2, BIRC3 were upregulated in 10 day wound samples compared to 0 day samples in epidermis/dermis. RELA/FAS mRNAs were elevated in 10 day wound and no wound samples compared to 0 day samples in dermis. In conclusion, we demonstrate that it is possible to maintain live skin tissue cultures for 10 days. The viability analysis showed no significant signs of cell death in wound and suture models. The gene expression analysis demonstrated the interplay of activators and inhibitors of apoptosis and extracellular matrix components, thereby describing important features in ex vivo sutured wound healing models. Collectively, the

  8. Preparation of A Spaceflight: Apoptosis Search in Sutured Wound Healing Models.

    Science.gov (United States)

    Riwaldt, Stefan; Monici, Monica; Graver Petersen, Asbjørn; Birk Jensen, Uffe; Evert, Katja; Pantalone, Desiré; Utpatel, Kirsten; Evert, Matthias; Wehland, Markus; Krüger, Marcus; Kopp, Sascha; Frandsen, Sofie; Corydon, Thomas; Sahana, Jayashree; Bauer, Johann; Lützenberg, Ronald; Infanger, Manfred; Grimm, Daniela

    2017-12-03

    To prepare the ESA (European Space Agency) spaceflight project "Wound healing and Sutures in Unloading Conditions", we studied mechanisms of apoptosis in wound healing models based on ex vivo skin tissue cultures, kept for 10 days alive in serum-free DMEM/F12 medium supplemented with bovine serum albumin, hydrocortisone, insulin, ascorbic acid and antibiotics at 32 °C. The overall goal is to test: (i) the viability of tissue specimens; (ii) the gene expression of activators and inhibitors of apoptosis and extracellular matrix components in wound and suture models; and (iii) to design analytical protocols for future tissue specimens after post-spaceflight download. Hematoxylin-Eosin and Elastica-van-Gieson staining showed a normal skin histology with no signs of necrosis in controls and showed a normal wound suture. TdT-mediated dUTP-biotin nick end labeling for detecting DNA fragmentation revealed no significant apoptosis. No activation of caspase-3 protein was detectable. FASL , FADD , CASP3 , CASP8 , CASP10 , BAX , BCL2 , CYC1 , APAF1 , LAMA3 and SPP1 mRNAs were not altered in epidermis and dermis samples with and without a wound compared to 0 day samples (specimens investigated directly post-surgery). BIRC5 , CASP9 , and FN1 mRNAs were downregulated in epidermis/dermis samples with and/or without a wound compared to 0 day samples. BIRC2 , BIRC3 were upregulated in 10 day wound samples compared to 0 day samples in epidermis/dermis. RELA/FAS mRNAs were elevated in 10 day wound and no wound samples compared to 0 day samples in dermis. In conclusion, we demonstrate that it is possible to maintain live skin tissue cultures for 10 days. The viability analysis showed no significant signs of cell death in wound and suture models. The gene expression analysis demonstrated the interplay of activators and inhibitors of apoptosis and extracellular matrix components, thereby describing important features in ex vivo sutured wound healing models. Collectively, the performed

  9. Effects of spaceflight on the immunoglobulin repertoire of unimmunized C57BL/6 mice

    Science.gov (United States)

    Ward, Claire; Rettig, Trisha A.; Hlavacek, Savannah; Bye, Bailey A.; Pecaut, Michael J.; Chapes, Stephen K.

    2018-02-01

    Spaceflight has been shown to suppress the adaptive immune response, altering the distribution and function of lymphocyte populations. B lymphocytes express highly specific and highly diversified receptors, known as immunoglobulins (Ig), that directly bind and neutralize pathogens. Ig diversity is achieved through the enzymatic splicing of gene segments within the genomic DNA of each B cell in a host. The collection of Ig specificities within a host, or Ig repertoire, has been increasingly characterized in both basic research and clinical settings using high-throughput sequencing technology (HTS). We utilized HTS to test the hypothesis that spaceflight affects the B-cell repertoire. To test this hypothesis, we characterized the impact of spaceflight on the unimmunized Ig repertoire of C57BL/6 mice that were flown aboard the International Space Station (ISS) during the Rodent Research One validation flight in comparison to ground controls. Individual gene segment usage was similar between ground control and flight animals, however, gene segment combinations and the junctions in which gene segments combine was varied among animals within and between treatment groups. We also found that spontaneous somatic mutations in the IgH and Igκ gene loci were not increased. These data suggest that space flight did not affect the B cell repertoire of mice flown and housed on the ISS over a short period of time.

  10. Our cosmic future : humanity's fate in the universe

    Science.gov (United States)

    Prantzos, Nikos

    2000-04-01

    What is humankind's ultimate fate and destiny in the Universe? Can human life and intelligence go on forever? This captivating and unparalleled book explores the future of the human race in the Universe, for centuries, millennia, and eons to come. Nikos Prantzos, distinguished astrophysicist and popular science writer, focuses not on what will be done, but on what could be done in light of our current knowledge and the speculations of eminent scientists. While he employs many concepts from physics, Prantzos also provides historical accounts of such ideas as terraforming, asteroid mining, interstellar travel, astroengineering, and eschatology, discussing their philosophical and social implications. Moreover, he uses the work of well known science and science-fiction writers--including Verne, Wells, Clarke, Tsiolkovsky, and Dyson--to illustrate many possibilities and concepts. Our Cosmic Future offers compelling answers to such intriguing questions as: Should we return to the Moon and eventually colonize Mars and other planets in our solar system? Why haven't we encountered an extraterrestrial civilization up to this time in our history? How can we avoid various cosmic threats, such as asteroid collisions and supernova explosions? Could we escape the remote, yet certain, death of the Sun? What will eventually happen to stars, our Galaxy, distant galaxies, and the Universe itself? With its artful blend of historical, scientific accounts and themes from classic works of science fiction, Our Cosmic Future is a spellbinding work that will enchant all readers interested in space travel and colonization, cosmology, and humankind's future prospects in the Cosmos.

  11. [Crisis and future of humanity].

    Science.gov (United States)

    Bellver Capella, Vicente

    2012-09-01

    We live in troubling times. The economic crisis fills us with anxiety. Young, unemployed and throes to finish living worse fear that their parents are not able to take charge of the situation. What has happened to that Spain and Europe, less than four years ago seemed to land of opportunities for native and foreign, have become hostile territories? The economic crisis does not explain everything; It is only a symptom that the basis on which we were building the future were not as firm. It is true that the crisis has brought to bare the obscenity of speculative financial capitalism. It is also true that this crisis can be the great opportunity to build the world on a human and sustainable economic basis, i.e.,just the opposite of the current submission to the dictatorship of the financial markets. But the contemporary crisis has deep and extensive roots. I will refer to other crises, as important or more than the economic one, because to glimpse the future it is essential to carefully track the present and discover the "weak signals" the latent opportunities that await we become them realities.

  12. Safe physical human robot interaction- past, present and future

    International Nuclear Information System (INIS)

    Pervez, Aslam; Ryu, Jeha

    2008-01-01

    When a robot physically interacts with a human user, the requirements should be drastically changed. The most important requirement is the safety of the human user in the sense that robot should not harm the human in any situation. During the last few years, research has been focused on various aspects of safe physical human robot interaction. This paper provides a review of the work on safe physical interaction of robotic systems sharing their workspace with human users (especially elderly people). Three distinct areas of research are identified: interaction safety assessment, interaction safety through design, and interaction safety through planning and control. The paper then highlights the current challenges and available technologies and points out future research directions for realization of a safe and dependable robotic system for human users

  13. Modeling Operations Costs for Human Exploration Architectures

    Science.gov (United States)

    Shishko, Robert

    2013-01-01

    Operations and support (O&S) costs for human spaceflight have not received the same attention in the cost estimating community as have development costs. This is unfortunate as O&S costs typically comprise a majority of life-cycle costs (LCC) in such programs as the International Space Station (ISS) and the now-cancelled Constellation Program. Recognizing this, the Constellation Program and NASA HQs supported the development of an O&S cost model specifically for human spaceflight. This model, known as the Exploration Architectures Operations Cost Model (ExAOCM), provided the operations cost estimates for a variety of alternative human missions to the moon, Mars, and Near-Earth Objects (NEOs) in architectural studies. ExAOCM is philosophically based on the DoD Architecture Framework (DoDAF) concepts of operational nodes, systems, operational functions, and milestones. This paper presents some of the historical background surrounding the development of the model, and discusses the underlying structure, its unusual user interface, and lastly, previous examples of its use in the aforementioned architectural studies.

  14. The Effects of Guided Imagery on Heart Rate Variability in Simulated Spaceflight Emergency Tasks Performers

    Directory of Open Access Journals (Sweden)

    Zhang Yijing

    2015-01-01

    Full Text Available Objectives. The present study aimed to investigate the effects of guided imagery training on heart rate variability in individuals while performing spaceflight emergency tasks. Materials and Methods. Twenty-one student subjects were recruited for the experiment and randomly divided into two groups: imagery group (n=11 and control group (n=10. The imagery group received instructor-guided imagery (session 1 and self-guided imagery training (session 2 consecutively, while the control group only received conventional training. Electrocardiograms of the subjects were recorded during their performance of nine spaceflight emergency tasks after imagery training. Results. In both of the sessions, the root mean square of successive differences (RMSSD, the standard deviation of all normal NN (SDNN, the proportion of NN50 divided by the total number of NNs (PNN50, the very low frequency (VLF, the low frequency (LF, the high frequency (HF, and the total power (TP in the imagery group were significantly higher than those in the control group. Moreover, LF/HF of the subjects after instructor-guided imagery training was lower than that after self-guided imagery training. Conclusions. Guided imagery was an effective regulator for HRV indices and could be a potential stress countermeasure in performing spaceflight tasks.

  15. The Effects of Guided Imagery on Heart Rate Variability in Simulated Spaceflight Emergency Tasks Performers

    Science.gov (United States)

    Yijing, Zhang; Xiaoping, Du; Fang, Liu; Xiaolu, Jing; Bin, Wu

    2015-01-01

    Objectives. The present study aimed to investigate the effects of guided imagery training on heart rate variability in individuals while performing spaceflight emergency tasks. Materials and Methods. Twenty-one student subjects were recruited for the experiment and randomly divided into two groups: imagery group (n = 11) and control group (n = 10). The imagery group received instructor-guided imagery (session 1) and self-guided imagery training (session 2) consecutively, while the control group only received conventional training. Electrocardiograms of the subjects were recorded during their performance of nine spaceflight emergency tasks after imagery training. Results. In both of the sessions, the root mean square of successive differences (RMSSD), the standard deviation of all normal NN (SDNN), the proportion of NN50 divided by the total number of NNs (PNN50), the very low frequency (VLF), the low frequency (LF), the high frequency (HF), and the total power (TP) in the imagery group were significantly higher than those in the control group. Moreover, LF/HF of the subjects after instructor-guided imagery training was lower than that after self-guided imagery training. Conclusions. Guided imagery was an effective regulator for HRV indices and could be a potential stress countermeasure in performing spaceflight tasks. PMID:26137491

  16. Mimicking the effects of spaceflight on bone: Combined effects of disuse and chronic low-dose rate radiation exposure on bone mass in mice

    Science.gov (United States)

    Yu, Kanglun; Doherty, Alison H.; Genik, Paula C.; Gookin, Sara E.; Roteliuk, Danielle M.; Wojda, Samantha J.; Jiang, Zhi-Sheng; McGee-Lawrence, Meghan E.; Weil, Michael M.; Donahue, Seth W.

    2017-11-01

    During spaceflight, crewmembers are subjected to biomechanical and biological challenges including microgravity and radiation. In the skeleton, spaceflight leads to bone loss, increasing the risk of fracture. Studies utilizing hindlimb suspension (HLS) as a ground-based model of spaceflight often neglect the concomitant effects of radiation exposure, and even when radiation is accounted for, it is often delivered at a high-dose rate over a very short period of time, which does not faithfully mimic spaceflight conditions. This study was designed to investigate the skeletal effects of low-dose rate gamma irradiation (8.5 cGy gamma radiation per day for 20 days, amounting to a total dose of 1.7 Gy) when administered simultaneously to disuse from HLS. The goal was to determine whether continuous, low-dose rate radiation administered during disuse would exacerbate bone loss in a murine HLS model. Four groups of 16 week old female C57BL/6 mice were studied: weight bearing + no radiation (WB+NR), HLS + NR, WB + radiation exposure (WB+RAD), and HLS+RAD. Surprisingly, although HLS led to cortical and trabecular bone loss, concurrent radiation exposure did not exacerbate these effects. Our results raise the possibility that mechanical unloading has larger effects on the bone loss that occurs during spaceflight than low-dose rate radiation.

  17. Consciousness in humans and non-human animals: recent advances and future directions.

    Science.gov (United States)

    Boly, Melanie; Seth, Anil K; Wilke, Melanie; Ingmundson, Paul; Baars, Bernard; Laureys, Steven; Edelman, David B; Tsuchiya, Naotsugu

    2013-10-31

    This joint article reflects the authors' personal views regarding noteworthy advances in the neuroscience of consciousness in the last 10 years, and suggests what we feel may be promising future directions. It is based on a small conference at the Samoset Resort in Rockport, Maine, USA, in July of 2012, organized by the Mind Science Foundation of San Antonio, Texas. Here, we summarize recent advances in our understanding of subjectivity in humans and other animals, including empirical, applied, technical, and conceptual insights. These include the evidence for the importance of fronto-parietal connectivity and of "top-down" processes, both of which enable information to travel across distant cortical areas effectively, as well as numerous dissociations between consciousness and cognitive functions, such as attention, in humans. In addition, we describe the development of mental imagery paradigms, which made it possible to identify covert awareness in non-responsive subjects. Non-human animal consciousness research has also witnessed substantial advances on the specific role of cortical areas and higher order thalamus for consciousness, thanks to important technological enhancements. In addition, much progress has been made in the understanding of non-vertebrate cognition relevant to possible conscious states. Finally, major advances have been made in theories of consciousness, and also in their comparison with the available evidence. Along with reviewing these findings, each author suggests future avenues for research in their field of investigation.

  18. The SCD - Stem Cell Differentiation ESA project: preparatory work for the spaceflight mission

    NARCIS (Netherlands)

    Versari, S.; Barenghi, L.; van Loon, J.; Bradamante, S.

    2016-01-01

    Due to spaceflight, astronauts experience serious, weightlessness-induced bone loss because of an unbalanced process of bone remodeling that involves bone marrow mesenchymal stem cells (BMSCs), as well as osteoblasts, osteocytes, and osteoclasts. The effects of microgravity on osteo-cells have been

  19. Development of a step-down method for altering male C57BL/6 mouse housing density and hierarchical structure: Preparations for spaceflight studies

    Science.gov (United States)

    Scofield, David C.; Rytlewski, Jeffrey D.; Childress, Paul; Shah, Kishan; Tucker, Aamir; Khan, Faisal; Peveler, Jessica; Li, Ding; McKinley, Todd O.; Chu, Tien-Min G.; Hickman, Debra L.; Kacena, Melissa A.

    2018-05-01

    This study was initiated as a component of a larger undertaking designed to study bone healing in microgravity aboard the International Space Station (ISS). Spaceflight experimentation introduces multiple challenges not seen in ground studies, especially with regard to physical space, limited resources, and inability to easily reproduce results. Together, these can lead to diminished statistical power and increased risk of failure. It is because of the limited space, and need for improved statistical power by increasing sample size over historical numbers, NASA studies involving mice require housing mice at densities higher than recommended in the Guide for the Care and Use of Laboratory Animals (National Research Council, 2011). All previous NASA missions in which mice were co-housed, involved female mice; however, in our spaceflight studies examining bone healing, male mice are required for optimal experimentation. Additionally, the logistics associated with spaceflight hardware and our study design necessitated variation of density and cohort make up during the experiment. This required the development of a new method to successfully co-house male mice while varying mouse density and hierarchical structure. For this experiment, male mice in an experimental housing schematic of variable density (Spaceflight Correlate) analogous to previously established NASA spaceflight studies was compared to a standard ground based housing schematic (Normal Density Controls) throughout the experimental timeline. We hypothesized that mice in the Spaceflight Correlate group would show no significant difference in activity, aggression, or stress when compared to Normal Density Controls. Activity and aggression were assessed using a novel activity scoring system (based on prior literature, validated in-house) and stress was assessed via body weights, organ weights, and veterinary assessment. No significant differences were detected between the Spaceflight Correlate group and the

  20. Is skeletal muscle ready for long-term spaceflight and return to gravity?

    Science.gov (United States)

    Riley, D. A.

    1999-01-01

    It is now clear that prevention of muscle debilitation during spaceflight will require a broader approach than simple exercise aimed at strengthening of the muscle fibers. The levels of several hormones and receptors are altered by unloading and must be returned to homeostasis. Pharmacotherapy and gene transfer strategies to raise the relative level of structural proteins may minimize the problems faced by astronauts in readapting to Earth-gravity. Up to now, we have only minimally exploited microgravity for advancing our understanding of muscle biology. A research laboratory in the space station with a centrifuge facility (gravity control) is essential for conducting basic research in this field. Microgravity has proven an excellent tool for noninvasively perturbing the synthesis of muscle proteins in the search for molecular signals and gene regulatory factors influencing differentiation, growth, maintenance and atrophy of muscle. Understanding the relation between blood flow and interstitial edema and between workload and subsequent structural failure are but two important problems that require serious attention. The roles of hormones and growth factors in regulating gene expression and their microgravity-induced altered production are other urgent issues to pursue. These types of studies will yield information that advances basic knowledge of muscle biology and offers insights into countermeasure design. This knowledge is likely to assist rehabilitation of diseased or injured muscles in humans on Earth, especially individuals in the more vulnerable aging population and persons participating in strenuous sports. Will the skeletal muscle system be prepared for the increased exposure to microgravity and the return to gravity loading without injury when space station is operational? The answer depends in large part on continued access to space and funding of ground-based models and flight experiments. The previous two decades of spaceflight research have described

  1. Psychosocial value of space simulation for extended spaceflight

    Science.gov (United States)

    Kanas, N.

    1997-01-01

    There have been over 60 studies of Earth-bound activities that can be viewed as simulations of manned spaceflight. These analogs have involved Antarctic and Arctic expeditions, submarines and submersible simulators, land-based simulators, and hypodynamia environments. None of these analogs has accounted for all the variables related to extended spaceflight (e.g., microgravity, long-duration, heterogeneous crews), and some of the stimulation conditions have been found to be more representative of space conditions than others. A number of psychosocial factors have emerged from the simulation literature that correspond to important issues that have been reported from space. Psychological factors include sleep disorders, alterations in time sense, transcendent experiences, demographic issues, career motivation, homesickness, and increased perceptual sensitivities. Psychiatric factors include anxiety, depression, psychosis, psychosomatic symptoms, emotional reactions related to mission stage, asthenia, and postflight personality, and marital problems. Finally, interpersonal factors include tension resulting from crew heterogeneity, decreased cohesion over time, need for privacy, and issues involving leadership roles and lines of authority. Since future space missions will usually involve heterogeneous crews working on complicated objectives over long periods of time, these features require further study. Socio-cultural factors affecting confined crews (e.g., language and dialect, cultural differences, gender biases) should be explored in order to minimize tension and sustain performance. Career motivation also needs to be examined for the purpose of improving crew cohesion and preventing subgrouping, scapegoating, and territorial behavior. Periods of monotony and reduced activity should be addressed in order to maintain morale, provide meaningful use of leisure time, and prevent negative consequences of low stimulation, such as asthenia and crew member withdrawal

  2. A primary report on honeybee space-flight breeding

    International Nuclear Information System (INIS)

    Guo Jun; Shi Wei; Ding Guiling; Lv Liping; Liu Zhiguang

    2009-01-01

    The semen of honeybees (Apis mellifera ligustica and Apis mellifera carnica) was carried by the recoverable satellite for a spaceflight and was inseminated instrumentally to the virgin queens after returning to the earth. The preliminary results showed that both the vitality of the sperm and the survival rate of SP 1 queen were lower than those of the control. Obvious variations in morphology appeared on the progeny workers of queens in SP 2 and in SP 3 generations, but most of variation were unfavorable. Mutants with desirable characters were not found after the space fight. (authors)

  3. Low power CAMAC and NIM modular systems for spaceflight use on Shuttle and Spacelab missions

    Energy Technology Data Exchange (ETDEWEB)

    Trainor, J.H.; Kaminski, T.J.; Ehrmann, C.H.

    1977-02-01

    The advent of the Shuttle launch vehicle and Spacelab have resulted in adequate weight and volume such that experiment electronics can be implemented at relatively low cost using spaceflight versions of CAMAC and NIM modules. Studies of 10 modules by manufacturers have shown that power reduction overall by a factor of approximately 3 can be accomplished. This is adequate both from the point of view of consumption and temperature rise in vacuum. Our studies have shown that a stock of approximately 45 module types is required and a listing is given. The changes required in these modules in order to produce spaceflight versions are described. And finally, the further studies, prototyping and testing leading to eventual flight qualification are described.

  4. Modeling for Integrated Science Management and Resilient Systems Development

    Science.gov (United States)

    Shelhamer, M.; Mindock, J.; Lumpkins, S.

    2014-01-01

    Many physiological, environmental, and operational risks exist for crewmembers during spaceflight. An understanding of these risks from an integrated perspective is required to provide effective and efficient mitigations during future exploration missions that typically have stringent limitations on resources available, such as mass, power, and crew time. The Human Research Program (HRP) is in the early stages of developing collaborative modeling approaches for the purposes of managing its science portfolio in an integrated manner to support cross-disciplinary risk mitigation strategies and to enable resilient human and engineered systems in the spaceflight environment. In this talk, we will share ideas being explored from fields such as network science, complexity theory, and system-of-systems modeling. Initial work on tools to support these explorations will be discussed briefly, along with ideas for future efforts.

  5. Elements of a regulatory strategy for the consideration of future human actions in safety assessments

    International Nuclear Information System (INIS)

    Wilmot, R.D.; Wickham, S.M.; Galson, D.A.

    1999-09-01

    The objective of this report is to discuss issues that should be considered in the development of a regulatory strategy for assessing future human actions in any forthcoming license application for a deep repository for spent fuel in Sweden and for sites of other repositories. The report comprises an outline of key issues concerning the treatment of future human actions in safety assessment, reviews of regulatory developments, recent safety assessments and supporting studies, and international initiatives on the treatment of future human actions in safety assessment, and the principal elements of a regulatory strategy. Performance assessments (PAs) are generally accepted as providing illustrations of system performance under given sets of assumptions. The results of PAs are clearer and easier to understand if certain large uncertainties are accounted for by determining performance under several different sets of assumptions or scenarios, each of which defines a possible evolution of the disposal system. A number of assumptions can be made that would restrict the scope of an assessment without reducing the credibility of the corresponding safety case. Reducing speculation about technological development, by assuming that the techniques used in future human activities are similar to those currently in use in the region or at similar sites, will simplify the assessment. A distinction is generally made between inadvertent and intentional intrusion, with intentional activities excluded because society cannot protect future populations from their own actions if they understand the potential consequences. A division of human activities into 'recent and ongoing' and 'future' activities considers not only the timing of the activities but also the degree of control or influence that can be imposed on them. Recent and ongoing human activities are those that affect an area beyond the immediate vicinity of the disposal facility and which neither the proponent nor the regulator

  6. Genome-Wide Expression Analysis of Reactive Oxygen Species Gene Network in Mizuna Plants Grown in Long-Term Spaceflight

    Science.gov (United States)

    Sugimoto, Manabu; Gusev, Oleg; Wheeler, Raymond; Levinskikh, Margarita; Sychev, Vladimir; Bingham, Gail; Hummerick, Mary; Oono, Youko; Matsumoto, Takashi; Yazawa, Takayuki

    We have developed a plant growth system, namely Lada, which was installed in ISS to study and grow plants, including vegetables in a spaceflight environment. We have succeeded in cultivating Mizuna, tomato, pea, radish, wheat, rice, and barley in long-term spaceflight. Transcription levels of superoxide dismutase, glutamyl transferase, catalase, and ascorbate peroxidase were increased in the barley germinated and grown for 26 days in Lada, though the whole-plant growth and development of the barley in spaceflight were the same as in the ground control barley. In this study, we investigated the response of the ROS gene network in Mizuna, Brassica rapa var. nipposinica, cultivated under spaceflight condition. Seeds of Mizuna were sown in the root module of LADA aboard the Zvezda module of ISS and the seedlings were grown under 24h lighting in the leaf chamber. After 27 days of cultivation, the plants were harvested and stored at -80(°) C in MELFI aboard the Destiny module, and were transported to the ground at < -20(°) C in GLACIER aboard Space Shuttle. Ground control cultivation was carried out under the same conditions in LADA. Total RNA isolated from leaves was subjected to mRNA-Seq using next generation sequencing (NGS) technology. A total of 20 in 32 ROS oxidative marker genes were up-regulated, including high expression of four hallmarks, and preferentially expressed genes associated with ROS-scavenging including thioredoxin, glutaredoxin, and alternative oxidase genes. In the transcription factors of the ROS gene network, MEKK1-MKK4-MPK3, OXI1-MKK4-MPK3, and OXI1-MPK3 of MAP cascades, induction of WRKY22 by MEKK1-MKK4-MPK3 cascade, induction of WRKY25 and repression of Zat7 by Zat12 were suggested. These results revealed that the spaceflight environment induced oxidative stress and the ROS gene network activation in the space-grown Mizuna.

  7. Preparing for the High Frontier: The Role and Training of NASA Astronauts in the Post- Space Shuttle Era

    Science.gov (United States)

    2011-01-01

    In May 2010, the National Research Council (NRC) was asked by NASA to address several questions related to the Astronaut Corps. The NRC s Committee on Human Spaceflight Crew Operations was tasked to answer several questions: 1. How should the role and size of the activities managed by the Johnson Space Center Flight Crew Operations Directorate change after space shuttle retirement and completion of the assembly of the International Space Station (ISS)? 2. What are the requirements for crew-related ground-based facilities after the Space Shuttle program ends? 3. Is the fleet of aircraft used for training the Astronaut Corps a cost-effective means of preparing astronauts to meet the requirements of NASA s human spaceflight program? Are there more cost-effective means of meeting these training requirements? Although the future of NASA s human spaceflight program has garnered considerable discussion in recent years and there is considerable uncertainty about what the program will involve in the coming years, the committee was not tasked to address whether human spaceflight should continue or what form it should take. The committee s task restricted it to studying activities managed by the Flight Crew Operations Directorate or those closely related to its activities, such as crew-related ground-based facilities and the training aircraft.

  8. The Role and Training of NASA Astronauts in the Post-Shuttle Era

    Science.gov (United States)

    2011-01-01

    In May 2010 the National Research Council (NRC) was asked by NASA to address several questions related to the Astronaut Corps. The NRC's Committee on Human Spaceflight Crew Operations was tasked to: 1. How should the role and size of the activities managed by the Johnson Space Center Flight Crew Operations Directorate change following space shuttle retirement and completion of the assembly of the International Space Station (ISS)? 2. What are the requirements for crew-related ground-based facilities after the Space Shuttle program ends? 3. Is the fleet of aircraft used for training the Astronaut Corps a cost-effective means of preparing astronauts to meet the requirements of NASA's human spaceflight program? Are there more cost-effective means of meeting these training requirements? Although the future of NASA's human spaceflight program has garnered considerable discussion in recent years, and there is considerable uncertainty about what that program will involve in the coming years, the committee was not tasked to address whether or not human spaceflight should continue, or what form it should take. The committee's task restricted it to studying those activities managed by the Flight Crew Operations Directorate, or those closely related to its activities, such as crew-related ground-based facilities and the training aircraft.

  9. Development of the DL/H-1 full pressure suit for private spaceflight

    Science.gov (United States)

    León, Pablo de; Harris, Gary L.

    2010-06-01

    The objective of this paper is to detail the need for full pressure suits to protect spaceflight participants during the experimental phases of flight testing of new space vehicles. It also details the objectives, historical background, basis for design, problems encountered by the designers and final development of the DL/H-1 full pressure suit. It will include justification for its use and results of the initial tests in the high altitude chamber and spacecraft simulator at the J.D. Odegard School of Aerospace Sciences at the University of North Dakota. For the test flights of early commercial space vehicles and tourist suborbital spacecrafts, emergency protection from the rarified air of the upper atmosphere and the vacuum of low Earth orbit almost certainly will be a requirement. Suborbital vehicles could be operating in "space equivalent conditions" for as long as 30 min to as much as several hours. In the case of cabin pressure loss, without personal protection, catastrophic loss of crew and vehicle could result. This paper explains the different steps taken by the authors who designed and built a preflight hardware pressure suit that can meet the physiological and comfort requirements of the tourist suborbital industry and the early commercial private spaceflight community. The suborbital tourist and commercial spaceflight industry have unique problems confronting the pressure suit builder such as unpressurized comfort, reasonable expense, unique sizing of the general population, decompression complications of persons not fitting a past military physiology profile and equipment weight issues. In addition, the lack of a certifying agency or guidance from international or national aviation authorities has created the opportunity for the emerging civilian pressure suit industry to create a new safety standard by which it can regulate itself in the same way the recreational SCUBA diving industry has since the late 1950s.

  10. Elements of a regulatory strategy for the consideration of future human actions in safety assessments

    Energy Technology Data Exchange (ETDEWEB)

    Wilmot, R.D.; Wickham, S.M.; Galson, D.A. [Galson Sciences Ltd, Oakham (United Kingdom)

    1999-09-01

    The objective of this report is to discuss issues that should be considered in the development of a regulatory strategy for assessing future human actions in any forthcoming license application for a deep repository for spent fuel in Sweden and for sites of other repositories. The report comprises an outline of key issues concerning the treatment of future human actions in safety assessment, reviews of regulatory developments, recent safety assessments and supporting studies, and international initiatives on the treatment of future human actions in safety assessment, and the principal elements of a regulatory strategy. Performance assessments (PAs) are generally accepted as providing illustrations of system performance under given sets of assumptions. The results of PAs are clearer and easier tounderstand if certain large uncertainties are accounted for by determining performance under several different sets of assumptions or scenarios, each of which defines a possible evolution of the disposal system. A number of assumptions can be made that would restrict the scope of an assessment without reducing the credibility of the corresponding safety case. Reducing speculation about technological development, by assuming that the techniques used in future human activities are similar to those currently in use in the region or at similar sites, will simplify the assessment. A distinction is generally made between inadvertent and intentional intrusion, with intentional activities excluded because society cannot protect future populations from their own actions if they understand the potential consequences. A division of human activities into 'recent and ongoing' and 'future' activities considers not only the timing of the activities but also the degree of control or influence that can be imposed on them. Recent and ongoing human activities are those that affect an area beyond the immediate vicinity of the disposal facility and which neither the proponent

  11. Genes Required for Survival in Microgravity Revealed by Genome-Wide Yeast Deletion Collections Cultured during Spaceflight

    Data.gov (United States)

    National Aeronautics and Space Administration — Spaceflight is a unique environment with profound effects on biological systems including tissue redistribution and musculoskeletal stresses. However the more subtle...

  12. BRIC-21: Global Transcriptome Profiling to Identify Cellular Stress Mechanisms Responsible for Spaceflight-Induced Antibiotic Resistance

    Science.gov (United States)

    Nicholson, Wayne L.; Fajardo-Cavazos, Patricia

    2015-01-01

    Comparisons of spaceflight stress responses in Bacillus subtilis spores and Staphylococcus epidermidis cells to ground-based controls will be conducted to uncover alterations in their antibiotic susceptibility.

  13. Effect of long-term actual spaceflight on the expression of key genes encoding serotonin and dopamine system

    Science.gov (United States)

    Popova, Nina; Shenkman, Boris; Naumenko, Vladimir; Kulikov, Alexander; Kondaurova, Elena; Tsybko, Anton; Kulikova, Elisabeth; Krasnov, I. B.; Bazhenova, Ekaterina; Sinyakova, Nadezhda

    The effect of long-term spaceflight on the central nervous system represents important but yet undeveloped problem. The aim of our work was to study the effect of 30-days spaceflight of mice on Russian biosatellite BION-M1 on the expression in the brain regions of key genes of a) serotonin (5-HT) system (main enzymes in 5-HT metabolism - tryptophan hydroxylase-2 (TPH-2), monoamine oxydase A (MAO A), 5-HT1A, 5-HT2A and 5-HT3 receptors); b) pivotal enzymes in DA metabolism (tyrosine hydroxylase, COMT, MAO A, MAO B) and D1, D2 receptors. Decreased expression of genes encoding the 5-HT catabolism (MAO A) and 5-HT2A receptor in some brain regions was shown. There were no differences between “spaceflight” and control mice in the expression of TPH-2 and 5-HT1A, 5-HT3 receptor genes. Significant changes were found in genetic control of DA system. Long-term spaceflight decreased the expression of genes encoding the enzyme in DA synthesis (tyrosine hydroxylase in s.nigra), DA metabolism (MAO B in the midbrain and COMT in the striatum), and D1 receptor in hypothalamus. These data suggested that 1) microgravity affected genetic control of 5-HT and especially the nigrostriatal DA system implicated in the central regulation of muscular tonus and movement, 2) the decrease in the expression of genes encoding key enzyme in DA synthesis, DA degradation and D1 receptor contributes to the movement impairment and dyskinesia produced by the spaceflight. The study was supported by Russian Foundation for Basic Research grant No. 14-04-00173.

  14. Modelling of the Nutrient Medium for Plants Cultivation in Spaceflight

    Science.gov (United States)

    Nechitailo, Galina S.

    2016-07-01

    MODELLING OF THE NUTRIENT MEDIUM FOR PLANTS CULTIVATION IN SPACEFLIGHT Nechitajlo G.S.*, Rakhmetova A.A.**, Bogoslovskaja O.A.**, Ol'hovskay I.P.**, Glushchenko N.N.** *Emanuel Institute of Biochemical Physics of Russian Academy of Sciences (IBCP RAS) mail: spacemal@mail.ru **V.L. Talrose Institute for Energy Problems of Chemical Physics of Russian Academy of Science (INEPCP RAS) mail: nnglu@ mail.ru The valuable life and fruitful activity of cosmonauts and researchers in conditions of spaceflights and prolonged work at space stations are only possible with creating life area providing fresh air, natural food, comfortable psychological conditions, etc. The solution of that problem under space conditions seems impossible without use of high nano- and biotechnologies for plants growth. A priority should be given not only to choose species of growth plants in space, but also to improve conditions for their growth which includes optimal nourishing components for plants, preparation of nutrient mediums, illumination and temperature. We are deeply convinced that just manipulations with growing conditions for cultivated plants, but not genes changes, is a guarantee of success in the decision of this problem. For improving the method of plants growing on the artificial nutrient medium with balanced content of components, being necessary for growth and development of plants, we added essential metal elements: Fe, Zn, Cu - in an electroneutral state in the form of nanoparticles instead of sulfates or other easily dissolving salts. Nanoparticulated metals are known to have a number of advantages in comparison with salts: metals in an electroneutral form are characterized with the prolonged and multifunctional action, low toxicity per se and appearing to be much below the toxicity of the same metals in the ionic forms, accumulation as a reserve being used in biotic dozes, active distribution in bodies and organs of plants and stimulation of vital processes. A high reactivity

  15. Spaceflight Systems Training: A Comparison and Contrasting of Techniques for Training Ground Operators and Onboard Crewmembers

    Science.gov (United States)

    Balmain, Clinton; Fleming, Mark

    2009-01-01

    future manned spaceflight efforts.

  16. The Impact and Future of Arts and Humanities Research

    NARCIS (Netherlands)

    Benneworth, Paul Stephen; Gulbrandsen, Magnus; Hazelkorn, Ellen

    2016-01-01

    Drawing on original international research by a cross-European social science team, this book makes an important contribution to the discussion about the future of arts and humanities research. It explores the responses of these fields to the growing range of questions being asked about the value,

  17. Interpersonal and group processes in long-term spaceflight crews: perspectives from social and organizational psychology.

    Science.gov (United States)

    Dion, Kenneth L

    2004-07-01

    The issues of interpersonal and group processes in long-term spacecrews from the perspectives of social and organizational psychology are considered here. A contrast between the Amundsen vs. Scott expeditions to the South Pole 90 yrs. ago highlights the importance of personnel selection and attention to interpersonal and group dynamics in expeditions to extreme and dangerous environments, such as long-term spaceflights today. Under the rubric of personnel selection, some further psychological "select-in" and "select-out" criteria are suggested, among them implicit measures of human motivation, intergroup attitudes ("implicit" and "explicit" measures of prejudice, social dominance orientation, and right-wing authoritarianism), attachment styles, and dispositional hardiness. The situational interview and the idea of "selection for teams," drawn from current advances in organizational psychology, are recommended for selecting members for future spacecrews. Under the rubrics of interpersonal and group processes, the social relations model is introduced as a technique for modeling and understanding interdependence among spacecrew members and partialling out variance in behavioral and perceptual data into actor/perceiver, partner/target, and relationship components. Group cohesion as a multidimensional construct is introduced, along with a consideration of the groupthink phenomenon and its controversial link to cohesion. Group composition issues are raised with examples concerning cultural heterogeneity and gender composition. Cultural value dimensions, especially power distance and individual-collectivism, should be taken into account at both societal and psychological levels in long-term space missions. Finally, intergroup processes and language issues in crews are addressed. The recategorization induction from the common ingroup identity model is recommended as a possible intervention for overcoming and inhibiting intergroup biases within spacecrews and between space

  18. The Past, Present, and Future of Human Centromere Genomics

    Directory of Open Access Journals (Sweden)

    Megan E. Aldrup-MacDonald

    2014-01-01

    Full Text Available The centromere is the chromosomal locus essential for chromosome inheritance and genome stability. Human centromeres are located at repetitive alpha satellite DNA arrays that compose approximately 5% of the genome. Contiguous alpha satellite DNA sequence is absent from the assembled reference genome, limiting current understanding of centromere organization and function. Here, we review the progress in centromere genomics spanning the discovery of the sequence to its molecular characterization and the work done during the Human Genome Project era to elucidate alpha satellite structure and sequence variation. We discuss exciting recent advances in alpha satellite sequence assembly that have provided important insight into the abundance and complex organization of this sequence on human chromosomes. In light of these new findings, we offer perspectives for future studies of human centromere assembly and function.

  19. Human dignity and the future of the voluntary active euthanasia debate in South Africa.

    Science.gov (United States)

    Jordaan, Donrich W

    2017-04-25

    The issue of voluntary active euthanasia was thrust into the public policy arena by the Stransham-Ford lawsuit. The High Court legalised voluntary active euthanasia - however, ostensibly only in the specific case of Mr Stransham-Ford. The Supreme Court of Appeal overturned the High Court judgment on technical grounds, not on the merits. This means that in future the courts can be approached again to consider the legalisation of voluntary active euthanasia. As such, Stransham-Ford presents a learning opportunity for both sides of the legalisation divide. In particular, conceptual errors pertaining to human dignity were made in Stransham-Ford, and can be avoided in future. In this article, I identify these errors and propose the following three corrective principles to inform future debate on the subject: (i) human dignity is violable; (ii) human suffering violates human dignity; and (iii) the 'natural' causes of suffering due to terminal illness do not exclude the application of human dignity.

  20. Human dignity and the future of the voluntary active euthanasia debate in South Africa

    Directory of Open Access Journals (Sweden)

    Donrich W Jordaan

    2017-05-01

    Full Text Available The issue of voluntary active euthanasia was thrust into the public policy arena by the Stransham-Ford lawsuit. The High Court legalised voluntary active euthanasia – however, ostensibly only in the specific case of Mr Stransham-Ford. The Supreme Court of Appeal overturned the High Court judgment on technical grounds, not on the merits. This means that in future the courts can be approached again to consider the legalisation of voluntary active euthanasia. As such, Stransham-Ford presents a learning opportunity for both sides of the legalisation divide. In particular, conceptual errors pertaining to human dignity were made in Stransham-Ford, and can be avoided in future. In this article, I identify these errors and propose the following three corrective principles to inform future debate on the subject: (i human dignity is violable; (ii human suffering violates human dignity; and (iii the ‘natural’ causes of suffering due to terminal illness do not exclude the application of human dignity.

  1. Orthostatic blood pressure control before and after spaceflight, determined by time-domain baroreflex method

    NARCIS (Netherlands)

    Gisolf, J.; Immink, R. V.; van Lieshout, J. J.; Stok, W. J.; Karemaker, J. M.

    2005-01-01

    Reduction in plasma volume is a major contributor to orthostatic tachycardia and hypotension after spaceflight. We set out to determine time- and frequency-domain baroreflex (BRS) function during preflight baseline and venous occlusion and postflight orthostatic stress, testing the hypothesis that a

  2. Heart rate variability and short duration spaceflight: relationship to post-flight orthostatic intolerance

    Directory of Open Access Journals (Sweden)

    Blaber Andrew P

    2004-04-01

    Full Text Available Abstract Background Upon return from space many astronauts experience symptoms of orthostatic intolerance. Research has implicated altered autonomic cardiovascular regulation due to spaceflight with further evidence to suggest that there might be pre-flight autonomic indicators of post-flight orthostatic intolerance. We used heart rate variability (HRV to determine whether autonomic regulation of the heart in astronauts who did or did not experience post-flight orthostatic intolerance was different pre-flight and/or was differentially affected by short duration (8 – 16 days spaceflight. HRV data from ten-minute stand tests collected from the 29 astronauts 10 days pre-flight, on landing day and three days post-flight were analysed using coarse graining spectral analysis. From the total power (PTOT, the harmonic component was extracted and divided into high (PHI: >0.15 Hz and low (PLO: = 0.15 Hz frequency power regions. Given the distribution of autonomic nervous system activity with frequency at the sinus node, PHI/PTOT was used as an indicator of parasympathetic activity; PLO/PTOT as an indicator of sympathetic activity; and, PLO/PHI as an estimate of sympathovagal balance. Results Twenty-one astronauts were classified as finishers, and eight as non-finishers, based on their ability to remain standing for 10 minutes on landing day. Pre-flight, non-finishers had a higher supine PHI/PTOT than finishers. Supine PHI/PTOT was the same pre-flight and on landing day in the finishers; whereas, in the non-finishers it was reduced. The ratio PLO/PHI was lower in non-finishers compared to finishers and was unaffected by spaceflight. Pre-flight, both finishers and non-finishers had similar supine values of PLO/PTOT, which increased from supine to stand. Following spaceflight, only the finishers had an increase in PLO/PTOT from supine to stand. Conclusions Both finishers and non-finishers had an increase in sympathetic activity with stand on pre

  3. Water Recovery from Brines to Further Close the Water Recovery Loop in Human Spaceflight

    Science.gov (United States)

    Jackson, W. Andrew; Barta, Daniel J.; Anderson, Molly S.; Lange, Kevin E.; Hanford, Anthony J.; Shull, Sarah A.; Carter, D. Layne

    2014-01-01

    Further closure of water recovery systems will be necessary for future long duration human exploration missions. NASA's Space Technology Roadmap for Human Health, Life Support and Habitation Systems specified a milestone to advance water management technologies during the 2015 to 2019 timeframe to achieve 98% H2O recovery from a mixed wastewater stream containing condensate, urine, hygiene, laundry, and water derived from waste. This goal can only be achieved by either reducing the amount of brines produced by a water recovery system or by recovering water from wastewater brines. NASA convened a Technical Interchange Meeting (TIM) on the topic of Water Recovery from Brines (WRB) that was held on January14-15th, 2014 at Johnson Space Center. Objectives of the TIM were to review systems and architectures that are sources of brines and the composition of brines they produce, review the state of the art in NASA technology development and perspectives from other industries, capture the challenges and difficulties in developing brine processing hardware, identify key figures of merit and requirements to focus technology development and evaluate candidate technologies, and identify other critical issues including microgravity sensitivity, and concepts of operation, safety. This paper represents an initial summary of findings from the workshop.

  4. The Significant Incidents and Close Calls in Human Space Flight Chart: Lessons Learned Gone Viral

    Science.gov (United States)

    Wood, Bill; Pate, Dennis; Thelen, David

    2010-01-01

    This presentation will explore the surprising history and events that transformed a mundane spreadsheet of historical spaceflight incidents into a popular and widely distributed visual compendium of lessons learned. The Significant Incidents and Close Calls in Human Space Flight Chart (a.k.a. The Significant Incidents Chart) is a popular and visually captivating reference product that has arisen from the work of the Johnson Space Center (JSC) Safety and Mission Assurance (S&MA) Flight Safety Office (FSO). It began as an internal tool intended to increase our team s awareness of historical and modern space flight incidents. Today, the chart is widely recognized across the agency as a reference tool. It appears in several training and education programs. It is used in familiarization training in the JSC Building 9 Mockup Facility and is seen by hundreds of center visitors each week. The chart visually summarizes injuries, fatalities, and close calls sustained during the continuing development of human space flight. The poster-sized chart displays over 100 total events that have direct connections to human space flight endeavors. The chart is updated periodically. The update process itself has become a collaborative effort. Many people, spanning multiple NASA organizations, have provided suggestions for additional entries. The FSO maintains a growing list of subscribers who have requested to receive updates. The presenters will discuss the origins and motivations behind the significant incidents chart. A review of the inclusion criteria used to select events will be offered. We will address how the chart is used today by S&MA and offer a vision of how it might be used by other organizations now and in the future. Particular emphasis will be placed on features of the chart that have met with broad acceptance and have helped spread awareness of the most important lessons in human spaceflight.

  5. The future of intelligent manufacturing systems and human factors

    NARCIS (Netherlands)

    Vink, P.; Stahre, J.

    2006-01-01

    In this paper the results of a 3 year European project are described. In this project 20 experts in the field of human factors define the most promising way of using the European work force in manufacturing in the future. Based on discussions between the experts and participating companies and

  6. Technology Investment Agendas to Expand Human Space Futures

    Science.gov (United States)

    Sherwood, Brent

    2012-01-01

    The paper develops four alternative core-technology advancement specifications, one for each of the four strategic goal options for government investment in human space flight. Already discussed in the literature, these are: Explore Mars; Settle the Moon; accelerate commercial development of Space Passenger Travel; and enable industrial scale-up of Space Solar Power for Earth. In the case of the Explore Mars goal, the paper starts with the contemporary NASA accounting of ?55 Mars-enabling technologies. The analysis decomposes that technology agenda into technologies applicable only to the Explore Mars goal, versus those applicable more broadly to the other three options. Salient technology needs of all four options are then elaborated to a comparable level of detail. The comparison differentiates how technologies or major developments that may seem the same at the level of budget lines or headlines (e.g., heavy-lift Earth launch) would in fact diverge widely if developed in the service of one or another of the HSF goals. The paper concludes that the explicit choice of human space flight goal matters greatly; an expensive portfolio of challenging technologies would not only enable a particular option, it would foreclose the others. Technologies essential to enable human exploration of Mars cannot prepare interchangeably for alternative futures; they would not allow us to choose later to Settle the Moon, unleash robust growth of Space Passenger Travel industries, or help the transition to a post-petroleum future with Space Solar Power for Earth. The paper concludes that a decades-long decision in the U.S.--whether made consciously or by default--to focus technology investment toward achieving human exploration of Mars someday would effectively preclude the alternative goals in our lifetime.

  7. Planetary Protection Knowledge Gaps for Human Extraterrestrial Missions Workshop Booklet - 2015

    Science.gov (United States)

    Fonda, Mark L.

    2015-01-01

    Although NASA's preparations for the Apollo lunar missions had only a limited time to consider issues associated with the protection of the Moon from biological contamination and the quarantine of the astronauts returning to Earth, they learned many valuable lessons (both positive and negative) in the process. As such, those efforts represent the baseline of planetary protection preparations for sending humans to Mars. Neither the post-Apollo experience or the Shuttle and other follow-on missions of either the US or Russian human spaceflight programs could add many additional insights to that baseline. Current mission designers have had the intervening four decades for their consideration, and in that time there has been much learned about human-associated microbes, about Mars, and about humans in space that has helped prepare us for a broad spectrum of considerations regarding potential biological contamination in human Mars missions and how to control it. This paper will review the approaches used in getting this far, and highlight some implications of this history for the future development of planetary protection provisions for human missions to Mars. The role of NASA and ESA's planetary protection offices, and the aegis of COSPAR have been particularly important in the ongoing process.

  8. The Importance of HRA in Human Space Flight: Understanding the Risks

    Science.gov (United States)

    Hamlin, Teri

    2010-01-01

    Human performance is critical to crew safety during space missions. Humans interact with hardware and software during ground processing, normal flight, and in response to events. Human interactions with hardware and software can cause Loss of Crew and/or Vehicle (LOCV) through improper actions, or may prevent LOCV through recovery and control actions. Humans have the ability to deal with complex situations and system interactions beyond the capability of machines. Human Reliability Analysis (HRA) is a method used to qualitatively and quantitatively assess the occurrence of human failures that affect availability and reliability of complex systems. Modeling human actions with their corresponding failure probabilities in a Probabilistic Risk Assessment (PRA) provides a more complete picture of system risks and risk contributions. A high-quality HRA can provide valuable information on potential areas for improvement, including training, procedures, human interfaces design, and the need for automation. Modeling human error has always been a challenge in part because performance data is not always readily available. For spaceflight, the challenge is amplified not only because of the small number of participants and limited amount of performance data available, but also due to the lack of definition of the unique factors influencing human performance in space. These factors, called performance shaping factors in HRA terminology, are used in HRA techniques to modify basic human error probabilities in order to capture the context of an analyzed task. Many of the human error modeling techniques were developed within the context of nuclear power plants and therefore the methodologies do not address spaceflight factors such as the effects of microgravity and longer duration missions. This presentation will describe the types of human error risks which have shown up as risk drivers in the Shuttle PRA which may be applicable to commercial space flight. As with other large PRAs

  9. Incidence of clinical symptoms during long-duration orbital spaceflight.

    Science.gov (United States)

    Crucian, Brian; Babiak-Vazquez, Adriana; Johnston, Smith; Pierson, Duane L; Ott, C Mark; Sams, Clarence

    2016-01-01

    The environment of spaceflight may elevate an astronaut's clinical risk for specific diseases. The purpose of this study was to derive, as accurately as currently possible, an assessment of in-flight clinical "incidence" data, based on observed clinical symptoms in astronauts on board the International Space Station (ISS). Electronic medical records were examined from 46 long-duration ISS crew members, each serving approximately a 6-month mission on board the ISS, constituting 20.57 total flight years. Incidence for immunological-related adverse health events or relevant clinical symptoms was tabulated in a non-identifiable fashion. Event categories included infectious diseases, allergies, and rashes/hypersensitivities. A subsequent re-evaluation of more notable events, either of prolonged duration or unresponsive to treatment, was performed. For the disease/symptom categories used in this evaluation, the ISS incidence rate was 3.40 events per flight year. Skin rashes were the most reported event (1.12/flight year) followed by upper respiratory symptoms (0.97/flight year) and various other (non-respiratory) infectious processes. During flight, 46% of crew members reported an event deemed "notable". Among the notable events, 40% were classified as rashes/hypersensitivities. Characterization of on-orbit rashes manifested as redness with irritation, and could present on a variety of body locations. Based on reported symptoms, astronauts experience adverse medical events of varying severity during long-duration spaceflights. The data suggests caution, from both a vehicle design and biomedical countermeasures perspective, as space agencies plan for prolonged deep space exploration missions.

  10. Alteration of gene expression profiles in skeletal muscle of rats exposed to microgravity during a spaceflight

    Science.gov (United States)

    Taylor, Wayne E.; Bhasin, Shalender; Lalani, Rukhsana; Datta, Anuj; Gonzalez-Cadavid, Nestor F.

    2002-01-01

    To clarify the mechanism of skeletal muscle wasting during spaceflights, we investigated whether intramuscular gene expression profiles are affected, by using DNA microarray methods. Male rats sent on the 17-day NASA STS-90 Neurolab spaceflight were sacrificed 24 hours after return to earth (MG group). Ground control rats were maintained for 17 days in flight-simulated cages (CS group). Spaceflight induced a 19% and 23% loss of tibialis anterior and gastrocnemius muscle mass, respectively, as compared to ground controls. Muscle RNA was analyzed by the Clontech Atlas DNA expression array in four rats, with two MG/ CS pairs for the tibialis anterior, and one pair for the gastrocnemius. Alterations in gene expression were verified for selected genes by reverse-transcription PCR. In both muscles of MG rats, mRNAs for 12 genes were up-regulated by over 2-fold, and 38 were down-regulated compared to controls. There was inhibition of genes for cell proliferation and growth factor cascades, including cell cycle genes and signal transduction proteins, such as p21 Cip1, retinoblastoma (Rb), cyclins G1/S, -E and -D3, MAP kinase 3, MAD3, and ras related protein RAB2. These data indicate that following exposure to microgravity, there is downregulation of genes involved in regulation of muscle satellite cell replication.

  11. Numerical simulation of aerobic exercise as a countermeasure in human spaceflight

    Science.gov (United States)

    Perez-Poch, Antoni

    -term microgravity exposure on the human body. Potential countermeasures such as physical exercise can also be evaluated as an induced perturbation into the system. Relevant results are compatible with existing data, and are of valuable interest as an assessment of the efficacy of aerobic exercise as a countermeasure in future missions to Mars.

  12. RNAseq analysis reveals pathways and candidate genes associated with salinity tolerance in a spaceflight-induced wheat mutant.

    Science.gov (United States)

    Xiong, Hongchun; Guo, Huijun; Xie, Yongdun; Zhao, Linshu; Gu, Jiayu; Zhao, Shirong; Li, Junhui; Liu, Luxiang

    2017-06-02

    Salinity stress has become an increasing threat to food security worldwide and elucidation of the mechanism for salinity tolerance is of great significance. Induced mutation, especially spaceflight mutagenesis, is one important method for crop breeding. In this study, we show that a spaceflight-induced wheat mutant, named salinity tolerance 1 (st1), is a salinity-tolerant line. We report the characteristics of transcriptomic sequence variation induced by spaceflight, and show that mutations in genes associated with sodium ion transport may directly contribute to salinity tolerance in st1. Furthermore, GO and KEGG enrichment analysis of differentially expressed genes (DEGs) between salinity-treated st1 and wild type suggested that the homeostasis of oxidation-reduction process is important for salt tolerance in st1. Through KEGG pathway analysis, "Butanoate metabolism" was identified as a new pathway for salinity responses. Additionally, key genes for salinity tolerance, such as genes encoding arginine decarboxylase, polyamine oxidase, hormones-related, were not only salt-induced in st1 but also showed higher expression in salt-treated st1 compared with salt-treated WT, indicating that these genes may play important roles in salinity tolerance in st1. This study presents valuable genetic resources for studies on transcriptome variation caused by induced mutation and the identification of salt tolerance genes in crops.

  13. BRIC-17 Mapping Spaceflight-Induced Hypoxic Signaling and Response in Plants

    Science.gov (United States)

    Gilroy, Simon; Choi, Won-Gyu; Swanson, Sarah

    2012-01-01

    Goals of this work are: (1) Define global changes in gene expression patterns in Arabidopsis plants grown in microgravity using whole genome microarrays (2) Compare to mutants resistant to low oxygen challenge using whole genome microarrays Also measuring root and shoot size Outcomes from this research are: (1) Provide fundamental information on plant responses to the stresses inherent in spaceflight (2) Potential for informing on genetic strategies to engineer plants for optimal growth in space

  14. Dietary acid load and bone turnover during long-duration spaceflight and bed rest.

    Science.gov (United States)

    Zwart, Sara R; Rice, Barbara L; Dlouhy, Holly; Shackelford, Linda C; Heer, Martina; Koslovsky, Matthew D; Smith, Scott M

    2018-05-01

    Bed rest studies document that a lower dietary acid load is associated with lower bone resorption. We tested the effect of dietary acid load on bone metabolism during spaceflight. Controlled 4-d diets with a high or low animal protein-to-potassium (APro:K) ratio (High and Low diets, respectively) were given to 17 astronauts before and during spaceflight. Each astronaut had 1 High and 1 Low diet session before flight and 2 High and 2 Low sessions during flight, in addition to a 4-d session around flight day 30 (FD30), when crew members were to consume their typical in-flight intake. At the end of each session, blood and urine samples were collected. Calcium, total protein, energy, and sodium were maintained in each crew member's preflight and in-flight controlled diets. Relative to preflight values, N-telopeptide (NTX) and urinary calcium were higher during flight, and bone-specific alkaline phosphatase (BSAP) was higher toward the end of flight. The High and Low diets did not affect NTX, BSAP, or urinary calcium. Dietary sulfur and age were significantly associated with changes in NTX. Dietary sodium and flight day were significantly associated with urinary calcium during flight. The net endogenous acid production (NEAP) estimated from the typical dietary intake at FD30 was associated with loss of bone mineral content in the lumbar spine after the mission. The results were compared with data from a 70-d bed rest study, in which control (but not exercising) subjects' APro:K was associated with higher NTX during bed rest. Long-term lowering of NEAP by increasing vegetable and fruit intake may protect against changes in loss of bone mineral content during spaceflight when adequate calcium is consumed, particularly if resistive exercise is not being performed. This trial was registered at clinicaltrials.gov as NCT01713634.

  15. The Pathway to a Safe and Effective Spaceflight Medication Formulary: Expert Review Panel Recommendations

    Science.gov (United States)

    Daniels, V. R.; Bayuse, T. M.; Mulcahy, R. A.; McGuire, R. K. M.; Antonsen, E. L.

    2018-01-01

    Exploration spaceflight poses several challenges to the provision of a comprehensive medication formulary. This formulary must accommodate the size and space limitations of the spacecraft, while addressing individual medication needs and preferences of the crew, consequences of a degrading inventory over time, the inability to resupply used or expired medications, and the need to forecast the best possible medication candidates to treat conditions that may occur. The Exploration Medical Capability (ExMC) Element's Pharmacy Project Team has developed a research plan (RP) that is focused on evidence-based models and theories as well as new diagnostic tools, treatments, or preventive measures aimed to ensure an available, safe, and effective pharmacy sufficient to manage potential medical threats during exploration spaceflight. Here, we will discuss the ways in which the ExMC Pharmacy Project Team pursued expert evaluation and guidance, and incorporated acquired insight into an achievable research pathway, reflected in the revised RP.

  16. [Application prospect of human-artificial intelligence system in future manned space flight].

    Science.gov (United States)

    Wei, Jin-he

    2003-01-01

    To make the manned space flight more efficient and safer, a concept of human-artificial (AI) system is proposed in the present paper. The task of future manned space flight and the technique requirement with respect to the human-AI system development were analyzed. The main points are as follows: 1)Astronaut and AI are complementary to each other functionally; 2) Both symbol AI and connectionist AI should be included in the human-AI system, but expert system and Soar-like system are used mainly inside the cabin, the COG-like robots are mainly assigned for EVA either in LEO flight or on the surface of Moon or Mars; 3) The human-AI system is hierarchical in nature with astronaut at the top level; 4) The complex interfaces between astronaut and AI are the key points for running the system reliably and efficiently. As the importance of human-AI system in future manned space flight and the complexity of related technology, it is suggested that the R/D should be planned as early as possible.

  17. Review of primary spaceflight-induced and secondary reloading-induced changes in slow antigravity muscles of rats

    Science.gov (United States)

    Riley, D. A.

    We have examined the light and electron microscopic properties of hindlimb muscles of rats flown in space for 1-2 weeks on Cosmos biosatellite flights 1887 and 2044 and Space Shuttle missions Spacelab-3, Spacelab Life Sciences-1 and Spacelab Life Sciences-2. Tissues were obtained both inflight and postflight permitting definition of primary microgravity-induced changes and secondary reentry and gravity reloading-induced alterations. Spaceflight causes atrophy and expression of fast fiber characteristics in slow antigravity muscles. The stresses of reentry and reloading reveal that atrophic muscles show increased susceptibility to interstitial edema and ischemic-anoxic necrosis as well as muscle fiber tearing with disruption of contractile proteins. These results demonstrate that the effects of spaceflight on skeletal muscle are multifaceted, and major changes occur both inflight and following return to Earth's gravity.

  18. Phenotypic and gene expression responses of E. coli to antibiotics during spaceflight

    Science.gov (United States)

    Zea, Luis

    Bacterial susceptibility to antibiotics has been shown in vitro to be reduced during spaceflight; however, the underlying mechanisms responsible for this outcome are not fully understood. In particular, it is not yet clear whether this observed response is due to increased drug resistance (a microbial defense response) or decreased drug efficacy (a microgravity biophysical mass transport effect). To gain insight into the differentiation between these two potential causes, an investigation was undertaken onboard the International Space Station (ISS) in 2014 termed Antibiotic Effectiveness in Space-1 (AES-1). For this purpose, E. coli was challenged with two antibiotics, Gentamicin Sulfate and Colistin Sulfate, at concentrations higher than those needed to inhibit growth on Earth. Phenotypic parameters (cell size, cell envelope thickness, population density and lag phase duration) and gene expression were compared between the spaceflight samples and ground controls cultured in varying levels of drug concentration. It was observed that flight samples proliferated in antibiotic concentrations that were inhibitory on Earth, growing on average to a 13-fold greater concentration than matched 1g controls. Furthermore, at the highest drug concentrations in space, E. coli cells were observed to aggregate into visible clusters. In spaceflight, cell size was significantly reduced, translating to a decrease in cell surface area to about one half of the ground controls. Smaller cell surface area can in turn proportionally reduce the rate of antibiotic molecules reaching the cell. Additionally, it was observed that genes --- in some cases more than 2000 --- were overexpressed in space with respect to ground controls. Up-regulated genes include poxB, which helps catabolize glucose into organic acids that alter acidity around and inside the cell, and the gadABC family genes, which confer resistance to extreme acid conditions. The next step is to characterize the mechanisms behind

  19. Reorienting the future role of the religión: humanize humanity. The role of the religión in society of the future will be purely spiritual

    Directory of Open Access Journals (Sweden)

    José María Vigil

    2015-04-01

    Full Text Available The post-Religional paradigm enables emerge in many people, questions about the future of religiosity and religions. The author confronts himself with this concern and tries to control, in a concrete way, the possibilities of a future for religions. In order, and as a starting point, the current process of secularization and the new and growing social phenomenon of 'no religion', this article analyzes the profound changes that are occurring in this time of transition. Then makes a proposal for extension and conversion of the old anthropological concept of spirituality to redirect it towards human depth. In presenting these profound changes, this new concept of spirituality seeks to understand the dimensions and functions that religions are no longer able to keep in post agrarian society what is to come, contributing with ideas and suggestions to deploy creativity with the central task from which religions should reorient and focus, that is, the task of humanizing humanity.

  20. The past, present, and future of soils and human health studies

    Science.gov (United States)

    Brevik, E. C.; Sauer, T. J.

    2015-01-01

    The idea that human health is tied to the soil is not a new one. As far back as circa 1400 BC the Bible depicts Moses as understanding that fertile soil was essential to the well-being of his people. In 400 BC the Greek philosopher Hippocrates provided a list of things that should be considered in a proper medical evaluation, including the properties of the local ground. By the late 1700s and early 1800s, American farmers had recognized that soil properties had some connection to human health. In the modern world, we recognize that soils have a distinct influence on human health. We recognize that soils influence (1) food availability and quality (food security), (2) human contact with various chemicals, and (3) human contact with various pathogens. Soils and human health studies include investigations into nutrient supply through the food chain and routes of exposure to chemicals and pathogens. However, making strong, scientific connections between soils and human health can be difficult. There are multiple variables to consider in the soil environment, meaning traditional scientific studies that seek to isolate and manipulate a single variable often do not provide meaningful data. The complete study of soils and human health also involves many different specialties such as soil scientists, toxicologists, medical professionals, anthropologists, etc. These groups do not traditionally work together on research projects, and do not always effectively communicate with one another. Climate change and how it will affect the soil environment/ecosystem going into the future is another variable affecting the relationship between soils and health. Future successes in soils and human health research will require effectively addressing difficult issues such as these.

  1. Long-Duration Spaceflight Increases Depth Ambiguity of Reversible Perspective Figures

    Science.gov (United States)

    Clément, Gilles; Allaway, Heather C. M.; Demel, Michael; Golemis, Adrianos; Kindrat, Alexandra N.; Melinyshyn, Alexander N.; Merali, Tahir; Thirsk, Robert

    2015-01-01

    The objective of this study was to investigate depth perception in astronauts during and after spaceflight by studying their sensitivity to reversible perspective figures in which two-dimensional images could elicit two possible depth representations. Other ambiguous figures that did not give rise to a perception of illusory depth were used as controls. Six astronauts and 14 subjects were tested in the laboratory during three sessions for evaluating the variability of their responses in normal gravity. The six astronauts were then tested during four sessions while on board the International Space Station for 5–6 months. They were finally tested immediately after return to Earth and up to one week later. The reaction time decreased throughout the sessions, thus indicating a learning effect. However, the time to first percept reversal and the number of reversals were not different in orbit and after the flight compared to before the flight. On Earth, when watching depth-ambiguous perspective figures, all subjects reported seeing one three-dimensional interpretation more often than the other, i.e. a ratio of about 70–30%. In weightlessness this asymmetry gradually disappeared and after 3 months in orbit both interpretations were seen for the same duration. These results indicate that the perception of “illusory” depth is altered in astronauts during spaceflight. This increased depth ambiguity is attributed to the lack of the gravitational reference and the eye-ground elevation for interpreting perspective depth cues. PMID:26146839

  2. Effects of spaceflight on the muscles of the murine shoulder.

    Science.gov (United States)

    Shen, Hua; Lim, Chanteak; Schwartz, Andrea G; Andreev-Andrievskiy, Alexander; Deymier, Alix C; Thomopoulos, Stavros

    2017-12-01

    Mechanical loading is necessary for the development and maintenance of the musculoskeletal system. Removal of loading via microgravity, paralysis, or bed rest leads to rapid loss of muscle mass and function; however, the molecular mechanisms that lead to these changes are largely unknown, particularly for the spaceflight (SF) microgravity environment. Furthermore, few studies have explored these effects on the shoulder, a dynamically stabilized joint with a large range of motion; therefore, we examined the effects of microgravity on mouse shoulder muscles for the 15-d Space Transportation System (STS)-131, 13-d STS-135, and 30-d Bion-M1 missions. Mice from STS missions were euthanized within 4 h after landing, whereas mice from the Bion-M1 mission were euthanized within 14 h after landing. The motion-generating deltoid muscle was more sensitive to microgravity than the joint-stabilizing rotator cuff muscles. Mice from the STS-131 mission exhibited reduced myogenic ( Myf5 and -6 ) and adipogenic ( Pparg , Cebpa , and Lep ) gene expression, whereas either no change or an increased expression of these genes was observed in mice from the Bion-M1 mission. In summary, muscle responses to microgravity were muscle-type specific, short-duration SF caused dramatic molecular changes to shoulder muscles and responses to reloading upon landing were rapid.-Shen, H., Lim, C., Schwartz, A. G., Andreev-Andrievskiy, A., Deymier, A. C., Thomopoulos, S. Effects of spaceflight on the muscles of the murine shoulder. © FASEB.

  3. Long-Duration Spaceflight Increases Depth Ambiguity of Reversible Perspective Figures.

    Directory of Open Access Journals (Sweden)

    Gilles Clément

    Full Text Available The objective of this study was to investigate depth perception in astronauts during and after spaceflight by studying their sensitivity to reversible perspective figures in which two-dimensional images could elicit two possible depth representations. Other ambiguous figures that did not give rise to a perception of illusory depth were used as controls. Six astronauts and 14 subjects were tested in the laboratory during three sessions for evaluating the variability of their responses in normal gravity. The six astronauts were then tested during four sessions while on board the International Space Station for 5-6 months. They were finally tested immediately after return to Earth and up to one week later. The reaction time decreased throughout the sessions, thus indicating a learning effect. However, the time to first percept reversal and the number of reversals were not different in orbit and after the flight compared to before the flight. On Earth, when watching depth-ambiguous perspective figures, all subjects reported seeing one three-dimensional interpretation more often than the other, i.e. a ratio of about 70-30%. In weightlessness this asymmetry gradually disappeared and after 3 months in orbit both interpretations were seen for the same duration. These results indicate that the perception of "illusory" depth is altered in astronauts during spaceflight. This increased depth ambiguity is attributed to the lack of the gravitational reference and the eye-ground elevation for interpreting perspective depth cues.

  4. Integrated Human Futures Modeling in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Passell, Howard D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Aamir, Munaf Syed [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bernard, Michael Lewis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Beyeler, Walter E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fellner, Karen Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hayden, Nancy Kay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jeffers, Robert Fredric [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Keller, Elizabeth James Kistin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Malczynski, Leonard A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, Michael David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Silver, Emily [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tidwell, Vincent C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Villa, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vugrin, Eric D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Engelke, Peter [Atlantic Council, Washington, D.C. (United States); Burrow, Mat [Atlantic Council, Washington, D.C. (United States); Keith, Bruce [United States Military Academy, West Point, NY (United States)

    2016-01-01

    The Integrated Human Futures Project provides a set of analytical and quantitative modeling and simulation tools that help explore the links among human social, economic, and ecological conditions, human resilience, conflict, and peace, and allows users to simulate tradeoffs and consequences associated with different future development and mitigation scenarios. In the current study, we integrate five distinct modeling platforms to simulate the potential risk of social unrest in Egypt resulting from the Grand Ethiopian Renaissance Dam (GERD) on the Blue Nile in Ethiopia. The five platforms simulate hydrology, agriculture, economy, human ecology, and human psychology/behavior, and show how impacts derived from development initiatives in one sector (e.g., hydrology) might ripple through to affect other sectors and how development and security concerns may be triggered across the region. This approach evaluates potential consequences, intended and unintended, associated with strategic policy actions that span the development-security nexus at the national, regional, and international levels. Model results are not intended to provide explicit predictions, but rather to provide system-level insight for policy makers into the dynamics among these interacting sectors, and to demonstrate an approach to evaluating short- and long-term policy trade-offs across different policy domains and stakeholders. The GERD project is critical to government-planned development efforts in Ethiopia but is expected to reduce downstream freshwater availability in the Nile Basin, fueling fears of negative social and economic impacts that could threaten stability and security in Egypt. We tested these hypotheses and came to the following preliminary conclusions. First, the GERD will have an important short-term impact on water availability, food production, and hydropower production in Egypt, depending on the short- term reservoir fill rate. Second, the GERD will have a very small impact on

  5. Comparative proteomic analysis of rice after seed ground simulated radiation and spaceflight explains the radiation effects of space environment

    Science.gov (United States)

    Wang, Wei; Shi, Jinming; Liang, Shujian; Lei, Huang; Shenyi, Zhang; Sun, Yeqing

    In previous work, we compared the proteomic profiles of rice plants growing after seed space-flights with ground controls by two-dimensional difference gel electrophoresis (2-D DIGE) and found that the protein expression profiles were changed after seed space environment exposures. Spaceflight represents a complex environmental condition in which several interacting factors such as cosmic radiation, microgravity and space magnetic fields are involved. Rice seed is in the process of dormant of plant development, showing high resistance against stresses, so the highly ionizing radiation (HZE) in space is considered as main factor causing biological effects to seeds. To further investigate the radiation effects of space environment, we performed on-ground simulated HZE particle radiation and compared between the proteomes of seed irra-diated plants and seed spaceflight (20th recoverable satellite) plants from the same rice variety. Space ionization shows low-dose but high energy particle effects, for searching the particle effects, ground radiations with the same low-dose (2mGy) but different liner energy transfer (LET) values (13.3KeV/µm-C, 30KeV/µm-C, 31KeV/µm-Ne, 62.2KeV/µm-C, 500Kev/µm-Fe) were performed; using 2-D DIGE coupled with clustering and principle component analysis (PCA) for data process and comparison, we found that the holistic protein expression patterns of plants irradiated by LET-62.2KeV/µm carbon particles were most similar to spaceflight. In addition, although space environment presents a low-dose radiation (0.177 mGy/day on the satellite), the equivalent simulated radiation dose effects should still be evaluated: radiations of LET-62.2KeV/µm carbon particles with different cumulative doses (2mGy, 20mGy, 200mGy, 2000mGy) were further carried out and resulted that the 2mGy radiation still shared most similar proteomic profiles with spaceflight, confirming the low-dose effects of space radiation. Therefore, in the protein expression level

  6. Plastics, the environment and human health: current consensus and future trends

    OpenAIRE

    Thompson, Richard C.; Moore, Charles J.; vom Saal, Frederick S.; Swan, Shanna H.

    2009-01-01

    Plastics have transformed everyday life; usage is increasing and annual production is likely to exceed 300 million tonnes by 2010. In this concluding paper to the Theme Issue on Plastics, the Environment and Human Health, we synthesize current understanding of the benefits and concerns surrounding the use of plastics and look to future priorities, challenges and opportunities. It is evident that plastics bring many societal benefits and offer future technological and medical advances. However...

  7. Closed Environment Module - Modularization and extension of the Virtual Habitat

    Science.gov (United States)

    Plötner, Peter; Czupalla, Markus; Zhukov, Anton

    2013-12-01

    The Virtual Habitat (V-HAB), is a Life Support System (LSS) simulation, created to perform dynamic simulation of LSS's for future human spaceflight missions. It allows the testing of LSS robustness by means of computer simulations, e.g. of worst case scenarios.

  8. A statistical model of future human actions

    International Nuclear Information System (INIS)

    Woo, G.

    1992-02-01

    A critical review has been carried out of models of future human actions during the long term post-closure period of a radioactive waste repository. Various Markov models have been considered as alternatives to the standard Poisson model, and the problems of parameterisation have been addressed. Where the simplistic Poisson model unduly exaggerates the intrusion risk, some form of Markov model may have to be introduced. This situation may well arise for shallow repositories, but it is less likely for deep repositories. Recommendations are made for a practical implementation of a computer based model and its associated database. (Author)

  9. Space Toxicology: Environmental Health Considerations during Spaceflight Operations and Potential Paths for Research

    Science.gov (United States)

    Khan-Mayberry, Noreen N.; Sundaresan, Alemalu

    2009-01-01

    Space Toxicology is a specialized discipline for spaceflight, space habitation and occupation of celestial bodies including planets, moons and asteroids [1]. Astronaut explorers face unique challenges to their health while working and living with limited resources for rescue and medical care during space operation. At its core the practice of space toxicology to identify, assess and predict potential chemical contaminants and limit the astronaut s exposure to these environmental factors in order to protect crew health. Space toxicologists are also charged with setting safe exposure limits that will protect the astronaut against a multitude of chemical exposures, in a physiologically altered state. In order to maintain sustained occupation in space, toxicological risks are gauged and managed within the context of isolation, continual exposures, reuse of air and water, limited rescue options, and the necessary use of highly toxic compounds required for propulsion. As the space program move towards human presence and exploration other celestial bodies in situ toxicological risks, such as inhalation of unusual and/or reactive mineral dusts must also be analyzed and controlled. Placing humans for long-term presence in space creates several problems and challenges to the long-term health of the crew, such as bone-loss and immunological challenges and has spurred research into acute, chronic and episodic exposure of the pulmonary system to mineral dusts [2]. NASA has demonstrated that lunar soil contains several types of reactive dusts, including an extremely fine respirable component. In order to protect astronaut health, NASA is now investigating the toxicity of this unique class of dusts. Understanding how these reactive components behave "biochemically" in a moisture-rich pulmonary environment will aid in determining how toxic these particles are to humans. The data obtained from toxicological examination of lunar dusts will determine the human risk criteria for lunar

  10. Pale blue dot a vision of the human future in space

    CERN Document Server

    Sagan, Carl

    1994-01-01

    In Cosmos, the late astronomer Carl Sagan cast his gaze over the magnificent mystery of the Universe and made it accessible to millions of people around the world. Now in this stunning sequel, Carl Sagan completes his revolutionary journey through space and time. Future generations will look back on our epoch as the time when the human race finally broke into a radically new frontier--space. In Pale Blue Dot Sagan traces the spellbinding history of our launch into the cosmos and assesses the future that looms before us as we move out into our own solar system and on to distant galaxies beyond. The exploration and eventual settlement of other worlds is neither a fantasy nor luxury, insists Sagan, but rather a necessary condition for the survival of the human race.

  11. Preliminary Analysis of ISS Maintenance History and Implications for Supportability of Future Missions

    Science.gov (United States)

    Watson, Kevin J.; Robbins, William W.

    2004-01-01

    The International Space Station (ISS) enables the study of supportability issues associated with long-duration human spaceflight. The ISS is a large, complex spacecraft that must be maintained by its crew. In contrast to the Space Shuttle Orbiter vehicle, but similar to spacecraft that will be component elements of future missions beyond low-Earth orbit, ISS does not return to the ground for servicing and provisioning of spares is severely constrained by transportation limits. Although significant technical support is provided by ground personnel, all hands-on maintenance tasks are performed by the crew. It is expected that future missions to distant destinations will be further limited by lack of resupply opportunities and will, eventually, become largely independent of ground support. ISS provides an opportunity to begin learning lessons that will enable future missions to be successful. Data accumulated over the first several years of ISS operations have been analyzed to gain a better understanding of maintenance-related workload. This analysis addresses both preventive and corrective maintenance and includes all U.S segment core systems. Systems and tasks that are major contributors to workload are identified. As further experience accrues, lessons will be learned that will influence future system designs so that they require less maintenance and, when maintenance is required, it can be performed more efficiently. By heeding the lessons of ISS it will be possible to identify system designs that should be more robust and point towards advances in both technology and design that will offer the greatest return on investment.

  12. Towards human exploration of space: The THESEUS review series on immunology research priorities.

    Science.gov (United States)

    Frippiat, Jean-Pol; Crucian, Brian E; de Quervain, Dominique J-F; Grimm, Daniela; Montano, Nicola; Praun, Siegfried; Roozendaal, Benno; Schelling, Gustav; Thiel, Manfred; Ullrich, Oliver; Choukèr, Alexander

    2016-01-01

    Dysregulation of the immune system occurs during spaceflight and may represent a crew health risk during exploration missions because astronauts are challenged by many stressors. Therefore, it is crucial to understand the biology of immune modulation under spaceflight conditions in order to be able to maintain immune homeostasis under such challenges. In the framework of the THESEUS project whose aim was to develop an integrated life sciences research roadmap regarding human space exploration, experts working in the field of space immunology, and related disciplines, established a questionnaire sent to scientists around the world. From the review of collected answers, they deduced a list of key issues and provided several recommendations such as a maximal exploitation of currently available resources on Earth and in space, and to increase increments duration for some ISS crew members to 12 months or longer. These recommendations should contribute to improve our knowledge about spaceflight effects on the immune system and the development of countermeasures that, beyond astronauts, could have a societal impact.

  13. Digital Human Modeling

    Science.gov (United States)

    Dischinger, H. Charles, Jr.

    2017-01-01

    The development of models to represent human characteristics and behaviors in human factors is broad and general. The term "model" can refer to any metaphor to represent any aspect of the human; it is generally used in research to mean a mathematical tool for the simulation (often in software, which makes the simulation digital) of some aspect of human performance and for the prediction of future outcomes. This section is restricted to the application of human models in physical design, e.g., in human factors engineering. This design effort is typically human interface design, and the digital models used are anthropometric. That is, they are visual models that are the physical shape of humans and that have the capabilities and constraints of humans of a selected population. They are distinct from the avatars used in the entertainment industry (movies, video games, and the like) in precisely that regard: as models, they are created through the application of data on humans, and they are used to predict human response; body stresses workspaces. DHM enable iterative evaluation of a large number of concepts and support rapid analysis, as compared with use of physical mockups. They can be used to evaluate feasibility of escape of a suited astronaut from a damaged vehicle, before launch or after an abort (England, et al., 2012). Throughout most of human spaceflight, little attention has been paid to worksite design for ground workers. As a result of repeated damage to the Space Shuttle which adversely affected flight safety, DHM analyses of ground assembly and maintenance have been developed over the last five years for the design of new flight systems (Stambolian, 2012, Dischinger and Dunn Jackson, 2014). The intent of these analyses is to assure the design supports the work of the ground crew personnel and thereby protect the launch vehicle. They help the analyst address basic human factors engineering questions: can a worker reach the task site from the work platform

  14. A Method for Preparing Spaceflight RNAlater-Fixed Arabidopsis thaliana (Brassicaceae Tissue for Scanning Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Eric R. Schultz

    2013-07-01

    Full Text Available Premise of the study: In spaceflight experiments, tissues for morphologic study are fixed in 3% glutaraldehyde, while tissues for molecular study are fixed in RNAlater; thus, an experiment containing both study components requires multiple fixation strategies. The possibility of using RNAlater-fixed materials for standard SEM-based morphometric investigation was explored to expand the library of tissues available for analysis and maximize usage of samples returned from spaceflight, but these technologies have wide application to any situation where recovery of biological resources is limited. Methods and Results: RNAlater-fixed samples were desalinated in distilled water, dehydrated through graded methanol, plunged into liquid ethane, and transferred to cryovials for freeze-substitution. Sample tissues were critical point dried, mounted, sputter-coated, and imaged. Conclusions: The protocol resulted in acceptable SEM images from RNAlater-fixed Arabidopsis thaliana tissue. The majority of the tissues remained intact, including general morphology and finer details such as root hairs and trichomes.

  15. Decreased otolith-mediated vestibular response in 25 astronauts induced by long-duration spaceflight.

    Science.gov (United States)

    Hallgren, Emma; Kornilova, Ludmila; Fransen, Erik; Glukhikh, Dmitrii; Moore, Steven T; Clément, Gilles; Van Ombergen, Angelique; MacDougall, Hamish; Naumov, Ivan; Wuyts, Floris L

    2016-06-01

    The information coming from the vestibular otolith organs is important for the brain when reflexively making appropriate visual and spinal corrections to maintain balance. Symptoms related to failed balance control and navigation are commonly observed in astronauts returning from space. To investigate the effect of microgravity exposure on the otoliths, we studied the otolith-mediated responses elicited by centrifugation in a group of 25 astronauts before and after 6 mo of spaceflight. Ocular counterrolling (OCR) is an otolith-driven reflex that is sensitive to head tilt with regard to gravity and tilts of the gravito-inertial acceleration vector during centrifugation. When comparing pre- and postflight OCR, we found a statistically significant decrease of the OCR response upon return. Nine days after return, the OCR was back at preflight level, indicating a full recovery. Our large study sample allows for more general physiological conclusions about the effect of prolonged microgravity on the otolith system. A deconditioned otolith system is thought to be the cause of several of the negative effects seen in returning astronauts, such as spatial disorientation and orthostatic intolerance. This knowledge should be taken into account for future long-term space missions. Copyright © 2016 the American Physiological Society.

  16. Key Future Engineering Capabilities for Human Capital Retention

    Science.gov (United States)

    Sivich, Lorrie

    Projected record retirements of Baby Boomer generation engineers have been predicted to result in significant losses of mission-critical knowledge in space, national security, and future scientific ventures vital to high-technology corporations. No comprehensive review or analysis of engineering capabilities has been performed to identify threats related to the specific loss of mission-critical knowledge posed by the increasing retirement of tenured engineers. Archival data from a single diversified Fortune 500 aerospace manufacturing engineering company's engineering career database were analyzed to ascertain whether relationships linking future engineering capabilities, engineering disciplines, and years of engineering experience could be identified to define critical knowledge transfer models. Chi square, logistic, and linear regression analyses were used to map patterns of discipline-specific, mission-critical knowledge using archival data of engineers' perceptions of engineering capabilities, key developmental experiences, and knowledge learned from their engineering careers. The results from the study were used to document key engineering future capabilities. The results were then used to develop a proposed human capital retention plan to address specific key knowledge gaps of younger engineers as veteran engineers retire. The potential for social change from this study involves informing leaders of aerospace engineering corporations on how to build better quality mentoring or succession plans to fill the void of lost knowledge from retiring engineers. This plan can secure mission-critical knowledge for younger engineers for current and future product development and increased global competitiveness in the technology market.

  17. 12th Man in Space Symposium: The Future of Humans in Space. Abstract Volume

    Science.gov (United States)

    1997-01-01

    The National Aeronautics and Space Administration (NASA) is pleased to host the 12th IAA Man in Space Symposium. A truly international forum, this symposium brings together scientists, engineers, and managers interested in all aspects of human space flight to share the most recent research results and space agency planning related to the future of humans in space. As we look out at the universe from our own uniquely human perspective, we see a world that we affect at the same time that it affects us. Our tomorrows are highlighted by the possibilities generated by our knowledge, our drive, and our dreams. This symposium will examine our future in space from the springboard of our achievements.

  18. Effects of high-orbit spaceflight on signaling cascades and apoptosis in immune cells from mice flied on board the BION-M1 satellite

    Science.gov (United States)

    Novoselova, Elena; Shenkman, Boris; Lunin, Sergey; Parfenyuk, Svetlana; Novoselova, Tatyana; Fesenko, Eugeny

    The study was designed to evaluate immune cell activity in male C57bl mice after a 30-day high-orbit spaceflight (550 km, higher than conventional manned spaceflights) on board the BION-M1 satellite (Roskosmos Program, Russia). For the present study, thymus, spleens and plasma samples were collected from mice 12 h after landing and, additionally, 7 days subsequently. Assessing the activity of NF-kappaB signaling cascade by measuring Rel A (p65) protein phosphorylation in splenic lymphocytes, we showed that the NF-kappaB activity was significantly increased at 12 h after landing. Contrariwise, one week after landing, the NF-kappaB activity was markedly decreased, even below to the control values. Interestingly, after landing there were no significant changes in SAPK/JNK cascade activity in splenic lymphocytes as well as in the expression of transcription factor IRF3 in thymus cells. To assess the apoptosis status in thymus lymphocytes, levels of p53 protein and its phosphorylated form were measured in thymic lymphocytes. It is known that p53 plays an important role in the cellular response to DNA damage, genomic aberrations, and other characteristic of apoptosis. The results showed that the high-orbit spaceflight environment caused some increase in level of p53 protein, but most notably, activated phosphorylated form of p53 protein. Calculated ratio of active and inactive forms of the protein (ph-p53/p53) 12 h after landing increased by more than 2-fold, indicating the apparent induction of apoptosis in thymus cells. Interestingly, 7 days after the landing, this ratio was not restored, but rather increased: the specified ratio was 4 times higher as compared to the ground-based control. We can conclude that response to the prolonged high-orbit spaceflight is not like the classic "stress response", which is usually observed under various stressful factors. It is known that the stress response is surely accompanied by increased SAPK/JNK cascade activity as well as the

  19. The Human Dimension -- Habitability AustroMars 2006

    Science.gov (United States)

    Haeuplik, S.; Imhof, B.

    2007-10-01

    Whether a cellular phone, a laptop computer or a spacecraft there are always two sides to an interface: a system side and a human side, and thus two sets of goals must be defined. In spaceflight, these two set of goals are defined for the technical system and the human system within its full scope. The human dimension is vital for a human mission if the mission should be successful. As the technical system is, compared with the human system less complex. The, and the focus up to now has hence been on the technical system; more understanding has been created and more knowledge has been developed. For future long duration human missions to which we are looking ahead when planning for outposts on the Moon and Mars, the human system has to play an equal role. The environment for which space architects are planning demands an extremely economical use of time, material and resources for the astronauts on mission, as well as attempts a maximum integration of environmental conditions and user requirements in design decisions, but also the mutual influence between humans and their environment, between active and passive systems. Human needs are always the same regardless of whether we are on the planet or in outer space. And they are a very architectural topic. Architecture is the three-dimensional creation of a shelter for humans supporting their needs and expanding their culture. Factors such as habitability (which include but are not limited to colour, smell, surface material tactility, food and the human -- machine interface), socio-psychological factors (which include crew selection and training, heterogeneity versus homogeneity of the crew, coping with stress, group dynamics, cognitive strategies, cultural background of the crew and its implications), culture and thus the resulting proportion of inhabitable space and it's functionality are a few topics of the complex theme 'Human Dimension'.

  20. Comparison of Spares Logistics Analysis Techniques for Long Duration Human Spaceflight

    Science.gov (United States)

    Owens, Andrew; de Weck, Olivier; Mattfeld, Bryan; Stromgren, Chel; Cirillo, William

    2015-01-01

    As the durations and distances involved in human exploration missions increase, the logistics associated with the repair and maintenance becomes more challenging. Whereas the operation of the International Space Station (ISS) depends upon regular resupply from the Earth, this paradigm may not be feasible for future missions. Longer mission durations result in higher probabilities of component failures as well as higher uncertainty regarding which components may fail, and longer distances from Earth increase the cost of resupply as well as the speed at which the crew can abort to Earth in the event of an emergency. As such, mission development efforts must take into account the logistics requirements associated with maintenance and spares. Accurate prediction of the spare parts demand for a given mission plan and how that demand changes as a result of changes to the system architecture enables full consideration of the lifecycle cost associated with different options. In this paper, we utilize a range of analysis techniques - Monte Carlo, semi-Markov, binomial, and heuristic - to examine the relationship between the mass of spares and probability of loss of function related to the Carbon Dioxide Removal System (CRS) for a notional, simplified mission profile. The Exploration Maintainability Analysis Tool (EMAT), developed at NASA Langley Research Center, is utilized for the Monte Carlo analysis. We discuss the implications of these results and the features and drawbacks of each method. In particular, we identify the limitations of heuristic methods for logistics analysis, and the additional insights provided by more in-depth techniques. We discuss the potential impact of system complexity on each technique, as well as their respective abilities to examine dynamic events. This work is the first step in an effort that will quantitatively examine how well these techniques handle increasingly more complex systems by gradually expanding the system boundary.

  1. Radiation biodosimetry: Applications for spaceflight

    Science.gov (United States)

    Blakely, W. F.; Miller, A. C.; Grace, M. B.; McLeland, C. B.; Luo, L.; Muderhwa, J. M.; Miner, V. L.; Prasanna, P. G. S.

    The multiparametric dosimetry system that we are developing for medical radiological defense applications could be adapted for spaceflight environments. The system complements the internationally accepted personnel dosimeters and cytogenetic analysis of chromosome aberrations, considered the best means of documenting radiation doses for health records. Our system consists of a portable hematology analyzer, molecular biodosimetry using nucleic acid and antigen-based diagnostic equipment, and a dose assessment management software application. A dry-capillary tube reagent-based centrifuge blood cell counter (QBC Autoread Plus, Beckon Dickinson Bioscience) measures peripheral blood lymphocytes and monocytes, which could determine radiation dose based on the kinetics of blood cell depletion. Molecular biomarkers for ionizing radiation exposure (gene expression changes, blood proteins) can be measured in real time using such diagnostic detection technologies as miniaturized nucleic acid sequences and antigen-based biosensors, but they require validation of dose-dependent targets and development of optimized protocols and analysis systems. The Biodosimetry Assessment Tool, a software application, calculates radiation dose based on a patient's physical signs and symptoms and blood cell count analysis. It also annotates location of personnel dosimeters, displays a summary of a patient's dosimetric information to healthcare professionals, and archives the data for further use. These radiation assessment diagnostic technologies can have dual-use applications supporting general medical-related care.

  2. Development of Bone Remodeling Model for Spaceflight Bone Physiology Analysis

    Science.gov (United States)

    Pennline, James A.; Werner, Christopher R.; Lewandowski, Beth; Thompson, Bill; Sibonga, Jean; Mulugeta, Lealem

    2015-01-01

    Current spaceflight exercise countermeasures do not eliminate bone loss. Astronauts lose bone mass at a rate of 1-2% a month (Lang et al. 2004, Buckey 2006, LeBlanc et al. 2007). This may lead to early onset osteoporosis and place the astronauts at greater risk of fracture later in their lives. NASA seeks to improve understanding of the mechanisms of bone remodeling and demineralization in 1g in order to appropriately quantify long term risks to astronauts and improve countermeasures. NASA's Digital Astronaut Project (DAP) is working with NASA's bone discipline to develop a validated computational model to augment research efforts aimed at achieving this goal.

  3. Cardiovascular Aspects of Space Shuttle Flights: At the Heart of Three Decades of American Spaceflight Experience

    Science.gov (United States)

    Charles, John B.; Platts, S. H.

    2011-01-01

    The advent of the Space Shuttle era elevated cardiovascular deconditioning from a research topic in gravitational physiology to a concern with operational consequences during critical space mission phases. NASA has identified three primary cardiovascular risks associate with short-duration (less than 18 d) spaceflight: orthostatic intolerance; decreased maximal oxygen uptake; and cardiac arrhythmias. Orthostatic hypotension (OH) was observed postflight in Mercury astronauts, studied in Gemini and Apollo astronauts, and tracked as it developed in-flight during Skylab missions. A putative hypotensive episode in the pilot during an early shuttle landing, and well documented postflight hypotension in a quarter of crewmembers, catalyzed NASA's research effort to understand its mechanisms and develop countermeasures. Shuttle investigations documented the onset of OH, tested mechanistic hypotheses, and demonstrated countermeasures both simple and complex. Similarly, decreased aerobic capacity in-flight threatened both extravehicular activity and post-landing emergency egress. In one study, peak oxygen uptake and peak power were significantly decreased following flights. Other studies tested hardware and protocols for aerobic conditioning that undergird both current practice on long-duration International Space Station (ISS) missions and plans for interplanetary expeditions. Finally, several studies suggest that cardiac arrhythmias are of less concern during short-duration spaceflight than during long-duration spaceflight. Duration of the QT interval was unchanged and the frequency of premature atrial and ventricular contractions was actually shown to decrease during extravehicular activity. These investigations on short-duration Shuttle flights have paved the way for research aboard long-duration ISS missions and beyond. Efforts are already underway to study the effects of exploration class missions to asteroids and Mars.

  4. Summary of current issues regarding space flight habitability.

    Science.gov (United States)

    Novak, J B

    2000-09-01

    One of the implicit, yet often under-emphasized qualities of human tended spaceflight is the habitability of the spacecraft and mission. This document summarizes some of the points that characterize the current status of this topic. In addition, the summary concludes with goals for future development for this issue.

  5. Betsy Pugel, Tiny houses: Planetary protection-focused materials selection for spaceflight hardware surfaces

    OpenAIRE

    Schriml, Lynn

    2017-01-01

    Betsy Pugel, National Aeronautics and Space Administration Tiny houses: Planetary protection-focused materials selection for spaceflight hardware surfacesOn October 10-12th, 2017 the Alfred P. Sloan Foundation and The National Academies of Sciences, Engineering and Medicine co-hosting MoBE 2017 (Microbiology of the Built Environment Research and Applications Symposium) at the National Academy of Sciences Building to present the current state-of-the-science in understanding the formation and ...

  6. The Role of Cis-Lunar Space in Future Global Space Exploration

    Science.gov (United States)

    Bobskill, Marianne R.; Lupisella, Mark L.

    2012-01-01

    Cis-lunar space offers affordable near-term opportunities to help pave the way for future global human exploration of deep space, acting as a bridge between present missions and future deep space missions. While missions in cis-lunar space have value unto themselves, they can also play an important role in enabling and reducing risk for future human missions to the Moon, Near-Earth Asteroids (NEAs), Mars, and other deep space destinations. The Cis-Lunar Destination Team of NASA's Human Spaceflight Architecture Team (HAT) has been analyzing cis-lunar destination activities and developing notional missions (or "destination Design Reference Missions" [DRMs]) for cis-lunar locations to inform roadmap and architecture development, transportation and destination elements definition, operations, and strategic knowledge gaps. The cis-lunar domain is defined as that area of deep space under the gravitational influence of the earth-moon system. This includes a set of earth-centered orbital locations in low earth orbit (LEO), geosynchronous earth orbit (GEO), highly elliptical and high earth orbits (HEO), earth-moon libration or "Lagrange" points (E-ML1 through E-ML5, and in particular, E-ML1 and E-ML2), and low lunar orbit (LLO). To help explore this large possibility space, we developed a set of high level cis-lunar mission concepts in the form of a large mission tree, defined primarily by mission duration, pre-deployment, type of mission, and location. The mission tree has provided an overall analytical context and has helped in developing more detailed design reference missions that are then intended to inform capabilities, operations, and architectures. With the mission tree as context, we will describe two destination DRMs to LEO and GEO, based on present human space exploration architectural considerations, as well as our recent work on defining mission activities that could be conducted with an EML1 or EML2 facility, the latter of which will be an emphasis of this

  7. Human Research Program Advanced Exercise Concepts (AEC) Overview

    Science.gov (United States)

    Perusek, Gail; Lewandowski, Beth; Nall, Marsha; Norsk, Peter; Linnehan, Rick; Baumann, David

    2015-01-01

    Exercise countermeasures provide benefits that are crucial for successful human spaceflight, to mitigate the spaceflight physiological deconditioning which occurs during exposure to microgravity. The NASA Human Research Program (HRP) within the Human Exploration and Operations Mission Directorate (HEOMD) is managing next generation Advanced Exercise Concepts (AEC) requirements development and candidate technology maturation to Technology Readiness Level (TRL) 7 (ground prototyping and flight demonstration) for all exploration mission profiles from Multi Purpose Crew Vehicle (MPCV) Exploration Missions (up to 21 day duration) to Mars Transit (up to 1000 day duration) missions. These validated and optimized exercise countermeasures systems will be provided to the ISS Program and MPCV Program for subsequent flight development and operations. The International Space Station (ISS) currently has three major pieces of operational exercise countermeasures hardware: the Advanced Resistive Exercise Device (ARED), the second-generation (T2) treadmill, and the cycle ergometer with vibration isolation system (CEVIS). This suite of exercise countermeasures hardware serves as a benchmark and is a vast improvement over previous generations of countermeasures hardware, providing both aerobic and resistive exercise for the crew. However, vehicle and resource constraints for future exploration missions beyond low Earth orbit will require that the exercise countermeasures hardware mass, volume, and power be minimized, while preserving the current ISS capabilities or even enhancing these exercise capabilities directed at mission specific physiological functional performance and medical standards requirements. Further, mission-specific considerations such as preservation of sensorimotor function, autonomous and adaptable operation, integration with medical data systems, rehabilitation, and in-flight monitoring and feedback are being developed for integration with the exercise

  8. The Arabidopsis spaceflight transcriptome: a comparison of whole plants to discrete root hypocotyl and shoot responses to the orbital environment

    Data.gov (United States)

    National Aeronautics and Space Administration — Arabidopsis thaliana was evaluated for its response to the spaceflight environment in three replicated experiments on the International Space Station. Two approaches...

  9. Three-Dimensional Normal Human Neural Progenitor Tissue-Like Assemblies: A Model for Persistent Varicell-Zoster Virus Infection and Platform to Study Viral Infectivity and Oxidative Stress and Damage

    Science.gov (United States)

    Goodwin, T. J.; McCarthy, M.; Osterrieder, N.; Cohrs, R. J.; Kaufer, B. B.

    2014-01-01

    The environment of space results in a multitude of challenges to the human physiology that present barriers to extended habitation and exploration. Over 40 years of investigation to define countermeasures to address space flight adaptation has left gaps in our knowledge regarding mitigation strategies partly due to the lack of investigative tools, monitoring strategies, and real time diagnostics to understand the central causative agent(s) responsible for physiologic adaptation and maintaining homeostasis. Spaceflight-adaptation syndrome is the combination of space environmental conditions and the synergistic reaction of the human physiology. Our work addresses the role of oxidative stress and damage (OSaD) as a negative and contributing Risk Factor (RF) in the following areas of combined spaceflight related dysregulation: i) radiation induced cellular damage [1], [2] ii) immune impacts and the inflammatory response [3], [4] and iii) varicella zoster virus (VZV) reactivation [5]. Varicella-zoster (VZV)/Chicken Pox virus is a neurotropic human alphaherpesvirus resulting in varicella upon primary infection, suppressed by the immune system becomes latent in ganglionic neurons, and reactivates under stress events to re-express in zoster and possibly shingles. Our laboratory has developed a complex threedimensional (3D) normal human neural tissue model that emulates several characteristics of the human trigeminal ganglia (TG) and allows the study of combinatorial experimentation which addresses, simultaneously, OSaD associated with Spaceflight adaptation and habitation [6].

  10. Modification of Motion Perception and Manual Control Following Short-Durations Spaceflight

    Science.gov (United States)

    Wood, S. J.; Vanya, R. D.; Esteves, J. T.; Rupert, A. H.; Clement, G.

    2011-01-01

    Adaptive changes during space flight in how the brain integrates vestibular cues with other sensory information can lead to impaired movement coordination and spatial disorientation following G-transitions. This ESA-NASA study was designed to examine both the physiological basis and operational implications for disorientation and tilt-translation disturbances following short-duration spaceflights. The goals of this study were to (1) examine the effects of stimulus frequency on adaptive changes in motion perception during passive tilt and translation motion, (2) quantify decrements in manual control of tilt motion, and (3) evaluate vibrotactile feedback as a sensorimotor countermeasure.

  11. Spaceflight-Induced Intracranial Hypertension: An Overview

    Science.gov (United States)

    Traver, William J.

    2011-01-01

    This slide presentation is an overview of the some of the known results of spaceflight induced intracranial hypertension. Historical information from Gemini 5, Apollo, and the space shuttle programs indicated that some vision impairment was reported and a comparison between these historical missions and present missions is included. Optic Disc Edema, Globe Flattening, Choroidal Folds, Hyperopic Shifts and Raised Intracranial Pressure has occurred in Astronauts During and After Long Duration Space Flight. Views illustrate the occurrence of Optic Disc Edema, Globe Flattening, and Choroidal Folds. There are views of the Arachnoid Granulations and Venous return, and the question of spinal or venous compliance issues is discussed. The question of increased blood flow and its relation to increased Cerebrospinal fluid (CSF) is raised. Most observed on-orbit papilledema does not progress, and this might be a function of plateau homeostasis for the higher level of intracranial pressure. There are seven cases of astronauts experiencing in flight and post flight symptoms, which are summarized and follow-up is reviewed along with a comparison of the treatment options. The question is "is there other involvement besides vision," and other Clinical implications are raised,

  12. Human space flight and future major space astrophysics missions: servicing and assembly

    Science.gov (United States)

    Thronson, Harley; Peterson, Bradley M.; Greenhouse, Matthew; MacEwen, Howard; Mukherjee, Rudranarayan; Polidan, Ronald; Reed, Benjamin; Siegler, Nicholas; Smith, Hsiao

    2017-09-01

    Some concepts for candidate future "flagship" space observatories approach the payload limits of the largest launch vehicles planned for the next few decades, specifically in the available volume in the vehicle fairing. This indicates that an alternative to autonomous self-deployment similar to that of the James Webb Space Telescope will eventually be required. Moreover, even before this size limit is reached, there will be significant motivation to service, repair, and upgrade in-space missions of all sizes, whether to extend the life of expensive facilities or to replace outworn or obsolete onboard systems as was demonstrated so effectively by the Hubble Space Telescope program. In parallel with these challenges to future major space astronomy missions, the capabilities of in-space robotic systems and the goals for human space flight in the 2020s and 2030s offer opportunities for achieving the most exciting science goals of the early 21st Century. In this paper, we summarize the history of concepts for human operations beyond the immediate vicinity of the Earth, the importance of very large apertures for scientific discovery, and current capabilities and future developments in robot- and astronaut-enabled servicing and assembly.

  13. The Past, Present and Future of Human Computer Interaction

    KAUST Repository

    Churchill, Elizabeth

    2018-01-16

    Human Computer Interaction (HCI) focuses on how people interact with, and are transformed by computation. Our current technology landscape is changing rapidly. Interactive applications, devices and services are increasingly becoming embedded into our environments. From our homes to the urban and rural spaces, we traverse everyday. We are increasingly able toヨoften required toヨmanage and configure multiple, interconnected devices and program their interactions. Artificial intelligence (AI) techniques are being used to create dynamic services that learn about us and others, that make conclusions about our intents and affiliations, and that mould our digital interactions based in predictions about our actions and needs, nudging us toward certain behaviors. Computation is also increasingly embedded into our bodies. Understanding human interactions in the everyday digital and physical context. During this lecture, Elizabeth Churchill -Director of User Experience at Google- will talk about how an emerging landscape invites us to revisit old methods and tactics for understanding how people interact with computers and computation, and how it challenges us to think about new methods and frameworks for understanding the future of human-centered computation.

  14. Space Human Activity and Education of Spiritual Persons of Space Other Planetary Future in the Third Millennium

    Directory of Open Access Journals (Sweden)

    Natalia Polischuk

    2014-07-01

    Full Text Available In clause an object of research are prospects of the further space human activity and education of spiritual persons аnother the planetary future, knowledge of the Universe and social progress of a human civilization during an anthropological space age. Proves, that only in unity of reason and spirituality of mankind probably space other planetary future of a human civilization. It is found out, that the strategic purpose of philosophy of formation – is a formation of space other planetary type of the person as image of the person of the future. The concept of the perfect high spiritual moral person as image of the person of space other planetary future which education system and philosophy of formation should bring up already today is offered. Also new anthropological space concepts which can be used in philosophy of formation and to space science are entered.

  15. Effects of spaceflight on rhesus quadrupedal locomotion after return to 1G

    Science.gov (United States)

    Recktenwald, M. R.; Hodgson, J. A.; Roy, R. R.; Riazanski, S.; McCall, G. E.; Kozlovskaya, I.; Washburn, D. A.; Fanton, J. W.; Edgerton, V. R.; Rumbaugh, D. M. (Principal Investigator)

    1999-01-01

    Effects of spaceflight on Rhesus quadrupedal locomotion after return to 1G. Locomotor performance, activation patterns of the soleus (Sol), medial gastrocnemius (MG), vastus lateralis (VL), and tibialis anterior (TA) and MG tendon force during quadrupedal stepping were studied in adult Rhesus before and after 14 days of either spaceflight (n = 2) or flight simulation at 1G (n = 3). Flight simulation involved duplication of the spaceflight conditions and experimental protocol in a 1G environment. Postflight, but not postsimulation, electromyographic (EMG) recordings revealed clonus-like activity in all muscles. Compared with preflight, the cycle period and burst durations of the primary extensors (Sol, MG, and VL) tended to decrease postflight. These decreases were associated with shorter steps. The flexor (TA) EMG burst duration postflight was similar to preflight, whereas the burst amplitude was elevated. Consequently, the Sol:TA and MG:TA EMG amplitude ratios were lower following flight, reflecting a "flexor bias." Together, these alterations in mean EMG amplitudes reflect differential adaptations in motor-unit recruitment patterns of flexors and extensors as well as fast and slow motor pools. Shorter cycle period and burst durations persisted throughout the 20-day postflight testing period, whereas mean EMG returned to preflight levels by 17 days postflight. Compared with presimulation, the simulation group showed slight increases in the cycle period and burst durations of all muscles. Mean EMG amplitude decreased in the Sol, increased in the MG and VL, and was unchanged in the TA. Thus adaptations observed postsimulation were different from those observed postflight, indicating that there was a response unique to the microgravity environment, i.e., the modulations in the nervous system controlling locomotion cannot merely be attributed to restriction of movement but appear to be the result of changes in the interpretation of load-related proprioceptive feedback

  16. Dynamic adaptation of cardiac baroreflex sensitivity to prolonged exposure to microgravity: data from a 16-day spaceflight

    NARCIS (Netherlands)

    Di Rienzo, Marco; Castiglioni, Paolo; Iellamo, Ferdinando; Volterrani, Maurizio; Pagani, Massimo; Mancia, Giuseppe; Karemaker, John M.; Parati, Gianfranco

    2008-01-01

    Di Rienzo M, Castiglioni P, Iellamo F, Volterrani M, Pagani M, Mancia G, Karemaker JM, Parati G. Dynamic adaptation of cardiac baroreflex sensitivity to prolonged exposure to microgravity: data from a 16-day spaceflight. J Appl Physiol 105: 1569-1575, 2008. First published August 28, 2008;

  17. Spaceflight effects on T lymphocyte distribution, function and gene expression

    Science.gov (United States)

    Gridley, Daila S.; Slater, James M.; Luo-Owen, Xian; Rizvi, Asma; Chapes, Stephen K.; Stodieck, Louis S.; Ferguson, Virginia L.; Pecaut, Michael J.

    2009-01-01

    The immune system is highly sensitive to stressors present during spaceflight. The major emphasis of this study was on the T lymphocytes in C57BL/6NTac mice after return from a 13-day space shuttle mission (STS-118). Spleens and thymuses from flight animals (FLT) and ground controls similarly housed in animal enclosure modules (AEM) were evaluated within 3–6 h after landing. Phytohemagglutinin-induced splenocyte DNA synthesis was significantly reduced in FLT mice when based on both counts per minute and stimulation indexes (P < 0.05). Flow cytometry showed that CD3+ T and CD19+ B cell counts were low in spleens from the FLT group, whereas the number of NK1.1+ natural killer (NK) cells was increased (P < 0.01 for all three populations vs. AEM). The numerical changes resulted in a low percentage of T cells and high percentage of NK cells in FLT animals (P < 0.05). After activation of spleen cells with anti-CD3 monoclonal antibody, interleukin-2 (IL-2) was decreased, but IL-10, interferon-γ, and macrophage inflammatory protein-1α were increased in FLT mice (P < 0.05). Analysis of cancer-related genes in the thymus showed that the expression of 30 of 84 genes was significantly affected by flight (P < 0.05). Genes that differed from AEM controls by at least 1.5-fold were Birc5, Figf, Grb2, and Tert (upregulated) and Fos, Ifnb1, Itgb3, Mmp9, Myc, Pdgfb, S100a4, Thbs, and Tnf (downregulated). Collectively, the data show that T cell distribution, function, and gene expression are significantly modified shortly after return from the spaceflight environment. PMID:18988762

  18. Human evolution: humanistic selection and looking to the future.

    Science.gov (United States)

    Krsiak, Miloslav

    2006-10-01

    Cultural evolution has predominated over biological evolution in modern man (Homo sapiens sapiens). Cultural evolution differs from biological evolution not only by inheritance of acquired characteristics but also, as is proposed in the present essay, by another kind of selection mechanism. Whereas selection in biological evolution is executed according to a criterion of reproductive success (the natural selection), selection in cultural evolution appears to be carried out according to human and humanistic criteria (success or fitness in meeting human needs, interests and humanistic values--"humanistic selection"). Many humanistic needs or values do not seem to be prerequisite for reproductive success, yet some of them (e.g. a need for freedom) seem to be inborn. Innateness, humanistic selection (decisive at a community level) and hierarchy of some human needs, interests and values appear to give cultural evolution a generally upward trend although long periods of stagnation or even regression may occur. Modern humans appear to be still at the early stage of their cultural evolution. A further cultural evolution of man appears to be, in contrast to biological evolution, predictable (with an optimistic outlook) and testable. The problem is that the hopeful result of this test will probably be known only in the fairly remote future provided that this species will not become extinct before that.

  19. Spaceflight on the Bion-M1 biosatellite alters cerebral artery vasomotor and mechanical properties in mice

    Science.gov (United States)

    Sofronova, Svetlana I.; Tarasova, Olga S.; Gaynullina, Dina; Borzykh, Anna A.; Behnke, Bradley J.; Stabley, John N.; McCullough, Danielle J.; Maraj, Joshua J.; Hanna, Mina; Muller-Delp, Judy M.; Vinogradova, Olga L.

    2015-01-01

    Conditions during spaceflight, such as the loss of the head-to-foot gravity vector, are thought to potentially alter cerebral blood flow and vascular resistance. The purpose of the present study was to determine the effects of long-term spaceflight on the functional, mechanical, and structural properties of cerebral arteries. Male C57BL/6N mice were flown 30 days in a Bion-M1 biosatellite. Basilar arteries isolated from spaceflight (SF) (n = 6), habitat control (HC) (n = 6), and vivarium control (VC) (n = 16) mice were used for in vitro functional and mechanical testing and histological structural analysis. The results demonstrate that vasoconstriction elicited through a voltage-gated Ca2+ mechanism (30–80 mM KCl) and thromboxane A2 receptors (10−8 − 3 × 10−5 M U46619) are lower in cerebral arteries from SF mice. Inhibition of Rho-kinase activity (1 μM Y27632) abolished group differences in U46619-evoked contractions. Endothelium-dependent vasodilation elicited by acetylcholine (10 μM, 2 μM U46619 preconstriction) was virtually absent in cerebral arteries from SF mice. The pressure-diameter relation was lower in arteries from SF mice relative to that in HC mice, which was not related to differences in the extracellular matrix protein elastin or collagen content or the elastin/collagen ratio in the basilar arteries. Diameter, medial wall thickness, and medial cross-sectional area of unpressurized basilar arteries were not different among groups. These results suggest that the microgravity-induced attenuation of both vasoconstrictor and vasodilator properties may limit the range of vascular control of cerebral perfusion or impair the distribution of brain blood flow during periods of stress. PMID:25593287

  20. Crew Roles and Interactions in Scientific Space Exploration

    Science.gov (United States)

    Love, Stanley G.; Bleacher, Jacob E.

    2013-01-01

    Future piloted space exploration missions will focus more on science than engineering, a change which will challenge existing concepts for flight crew tasking and demand that participants with contrasting skills, values, and backgrounds learn to cooperate as equals. In terrestrial space flight analogs such as Desert Research And Technology Studies, engineers, pilots, and scientists can practice working together, taking advantage of the full breadth of all team members training to produce harmonious, effective missions that maximize the time and attention the crew can devote to science. This paper presents, in a format usable as a reference by participants in the field, a successfully tested crew interaction model for such missions. The model builds upon the basic framework of a scientific field expedition by adding proven concepts from aviation and human spaceflight, including expeditionary behavior and cockpit resource management, cooperative crew tasking and adaptive leadership and followership, formal techniques for radio communication, and increased attention to operational considerations. The crews of future spaceflight analogs can use this model to demonstrate effective techniques, learn from each other, develop positive working relationships, and make their expeditions more successful, even if they have limited time to train together beforehand. This model can also inform the preparation and execution of actual future spaceflights.

  1. Regulating private human suborbital flight at the international and European level: Tendencies and suggestions

    Science.gov (United States)

    Masson-Zwaan, Tanja; Moro-Aguilar, Rafael

    2013-12-01

    In the context of the FAST20XX project (Future High-Altitude High-Speed Transport) that started in 2009 under the 7th Framework Programme of the European Union (EU), the authors reexamined the legal status of private human suborbital flight, and researched whether it might be regulated as aviation or as spaceflight. International space law is ambiguous as to accommodating suborbital activities. While some provisions of the UN outer space treaties would seem to exclude them, generally there is not any explicit condition in terms of reaching orbit as a requirement for application. International air law presents equal difficulties in dealing with this activity. The classic definition of "aircraft" as contained in the Annexes to the Chicago Convention does not really encompass the kind of rocket-powered vehicles that are envisaged here. As a result, it is unclear whether the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS), the International Civil Aviation Organization (ICAO), or both could be involved in an eventual international regulation of suborbital flight. In the absence of a uniform international regime, each state has the sovereign right to regulate human suborbital flights operating within its airspace. So far, two practical solutions have been realised or proposed, and will be analyzed. On the one hand, the USA granted power for regulation and licensing over private human suborbital flight to the Office of Commercial Space Transportation of the Federal Aviation Administration (FAA/AST). Subsequent regulations by the FAA have set out a series of requirements for companies that want to operate these flights, enabling a market to develop. On the other side of the Atlantic, both the European Space Agency (ESA) and a group of representatives of the European Aviation Safety Agency (EASA) of the European Union (EU) seem to rather regard this activity as aviation, potentially subject to the regulation and certification competences of EASA

  2. Transcriptional and proteomic response of Pseudomonas aeruginosa PAO1 to spaceflight conditions involves Hfq regulation and reveals a role for oxygen

    Data.gov (United States)

    National Aeronautics and Space Administration — Characterization of bacterial behavior in the microgravity environment of spaceflight is of importance towards risk assessment and prevention of infectious disease...

  3. Characterization of disuse skeletal muscle atrophy and the efficacy of a novel muscle atrophy countermeasure during spaceflight and simulated microgravity

    Science.gov (United States)

    Hanson, Andrea Marie

    Humans are an integral part of the engineered systems that will enable return to the Moon and eventually travel to Mars. Major advancements in countermeasure development addressing deleterious effects of microgravity and reduced gravity on the musculoskeletal system need to be made to ensure mission safety and success. The primary objectives of this dissertation are to advance the knowledge and understanding of skeletal muscle atrophy, and support development of novel countermeasures for disuse atrophy to enable healthy long-duration human spaceflight. Models simulating microgravity and actual spaceflight were used to examine the musculoskeletal adaptations during periods of unloading. Myostatin inhibition, a novel anti-atrophy drug therapy, and exercise were examined as a means of preventing and recovering from disuse atrophy. A combination of assays was used to quantify adaptation responses to unloading and examine efficacy of the countermeasures. Body and muscle masses were collected to analyze systemic changes due to treatments. Hindlimb strength and individual muscle forces were measured to demonstrate functional adaptations to treatments. Muscle fiber morphology and myosin heavy chain (MHC) expression was examined to identify adaptations at the cellular level. Protein synthesis signals insulin-like growth factor-1 (IGF-1), Akt, and p70s6 kinase; and the degradation signals Atrogin-1 and MuRF-1 were examined to identify adaptations at the molecular level that ultimately lead to muscle hypertrophy and atrophy. A time course study provided a thorough characterization of the adaptation of skeletal muscle during unloading in C57BL/6 mice, and baseline data for comparison to and evaluation of subsequent studies. Time points defining the on-set and endpoints of disuse muscle atrophy were identified to enable characterization of rapid vs. long-term responses of skeletal muscle to hindlimb suspension. Unloading-induced atrophy primarily resulted from increased protein

  4. A Rigid Mid-Lift-to-Drag Ratio Approach to Human Mars Entry, Descent, and Landing

    Science.gov (United States)

    Cerimele, Christopher J.; Robertson, Edward A.; Sostaric, Ronald R.; Campbell, Charles H.; Robinson, Phil; Matz, Daniel A.; Johnson, Breanna J.; Stachowiak, Susan J.; Garcia, Joseph A.; Bowles, Jeffrey V.; hide

    2017-01-01

    Current NASA Human Mars architectures require delivery of approximately 20 metric tons of cargo to the surface in a single landing. A proposed vehicle type for performing the entry, descent, and landing at Mars associated with this architecture is a rigid, enclosed, elongated lifting body shape that provides a higher lift-to-drag ratio (L/D) than a typical entry capsule, but lower than a typical winged entry vehicle (such as the Space Shuttle Orbiter). A rigid Mid-L/D shape has advantages for large mass Mars EDL, including loads management, range capability during entry, and human spaceflight heritage. Previous large mass Mars studies have focused more on symmetric and/or circular cross-section Mid-L/D shapes such as the ellipsled. More recent work has shown performance advantages for non-circular cross section shapes. This paper will describe efforts to design a rigid Mid-L/D entry vehicle for Mars which shows mass and performance improvements over previous Mid-L/D studies. The proposed concept, work to date and evolution, forward path, and suggested future strategy are described.

  5. Network Analysis of Rodent Transcriptomes in Spaceflight

    Science.gov (United States)

    Ramachandran, Maya; Fogle, Homer; Costes, Sylvain

    2017-01-01

    Network analysis methods leverage prior knowledge of cellular systems and the statistical and conceptual relationships between analyte measurements to determine gene connectivity. Correlation and conditional metrics are used to infer a network topology and provide a systems-level context for cellular responses. Integration across multiple experimental conditions and omics domains can reveal the regulatory mechanisms that underlie gene expression. GeneLab has assembled rich multi-omic (transcriptomics, proteomics, epigenomics, and epitranscriptomics) datasets for multiple murine tissues from the Rodent Research 1 (RR-1) experiment. RR-1 assesses the impact of 37 days of spaceflight on gene expression across a variety of tissue types, such as adrenal glands, quadriceps, gastrocnemius, tibalius anterior, extensor digitorum longus, soleus, eye, and kidney. Network analysis is particularly useful for RR-1 -omics datasets because it reinforces subtle relationships that may be overlooked in isolated analyses and subdues confounding factors. Our objective is to use network analysis to determine potential target nodes for therapeutic intervention and identify similarities with existing disease models. Multiple network algorithms are used for a higher confidence consensus.

  6. Developing Personalized Sensorimotor Adaptability Countermeasures for Spaceflight

    Science.gov (United States)

    Mulavara, A. P.; Seidler, R. D.; Peters, B.; Cohen, H. S.; Wood, S.; Bloomberg, J. J.

    2016-01-01

    Astronauts experience sensorimotor disturbances during their initial exposure to microgravity and during the re-adaptation phase following a return to an Earth-gravitational environment. Interestingly, astronauts who return from spaceflight show substantial differences in their abilities to readapt to a gravitational environment. The ability to predict the manner and degree to which individual astronauts would be affected would improve the effectiveness of countermeasure training programs designed to enhance sensorimotor adaptability. In this paper we will be presenting results from our ground-based study that show how behavioral, brain imaging and genomic data may be used to predict individual differences in sensorimotor adaptability to novel sensorimotor environments. This approach will allow us to better design and implement sensorimotor adaptability training countermeasures against decrements in post-mission adaptive capability that are customized for each crewmember's sensory biases, adaptive capacity, brain structure, functional capacities, and genetic predispositions. The ability to customize adaptability training will allow more efficient use of crew time during training and will optimize training prescriptions for astronauts to ensure expected outcomes.

  7. The Speculative Neuroscience of the Future Human Brain

    Directory of Open Access Journals (Sweden)

    Robert A. Dielenberg

    2013-05-01

    Full Text Available The hallmark of our species is our ability to hybridize symbolic thinking with behavioral output. We began with the symmetrical hand axe around 1.7 mya and have progressed, slowly at first, then with greater rapidity, to producing increasingly more complex hybridized products. We now live in the age where our drive to hybridize has pushed us to the brink of a neuroscientific revolution, where for the first time we are in a position to willfully alter the brain and hence, our behavior and evolution. Nootropics, transcranial direct current stimulation (tDCS, transcranial magnetic stimulation (TMS, deep brain stimulation (DBS and invasive brain mind interface (BMI technology are allowing humans to treat previously inaccessible diseases as well as open up potential vistas for cognitive enhancement. In the future, the possibility exists for humans to hybridize with BMIs and mobile architectures. The notion of self is becoming increasingly extended. All of this to say: are we in control of our brains, or are they in control of us?

  8. The Effects of Long Duration Bed Rest as a Spaceflight Analogue on Resting State Sensorimotor Network Functional Connectivity and Neurocognitive Performance

    Science.gov (United States)

    Cassady, K.; Koppelmans, V.; Yuan, P.; Cooke, K.; De Dios, Y.; Stepanyan, V.; Szecsy, D.; Gadd, N.; Wood, S.; Reuter-Lorenz, P.; hide

    2015-01-01

    Long duration spaceflight has been associated with detrimental alterations in human sensorimotor systems and neurocognitive performance. Prolonged exposure to a head-down tilt position during long duration bed rest can resemble several effects of the microgravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The question of whether microgravity affects other central nervous system functions such as brain functional connectivity and its relationship with neurocognitive performance is largely unknown, but of potential importance to the health and performance of astronauts both during and post-flight. The aims of the present study are 1) to identify changes in sensorimotor resting state functional connectivity that occur with extended bed rest exposure, and to characterize their recovery time course; 2) to evaluate how these neural changes correlate with neurocognitive performance. Resting-state functional magnetic resonance imaging (rsfMRI) data were collected from 17 male participants. The data were acquired through the NASA bed rest facility, located at the University of Texas Medical Branch (Galveston, TX). Participants remained in bed with their heads tilted down six degrees below their feet for 70 consecutive days. RsfMRI data were obtained at seven time points: 7 and 12 days before bed rest; 7, 50, and 65 days during bed rest; and 7 and 12 days after bed rest. Functional connectivity magnetic resonance imaging (fcMRI) analysis was performed to measure the connectivity of sensorimotor networks in the brain before, during, and post-bed rest. We found a decrease in left putamen connectivity with the pre- and post-central gyri from pre bed rest to the last day in bed rest. In addition, vestibular cortex connectivity with the posterior cingulate cortex decreased from pre to post bed rest. Furthermore, connectivity between cerebellar right superior posterior fissure and other cerebellar regions decreased from

  9. Contents of a regulatory strategy for assessing future human actions in the safety evaluation of a repository for spent fuels

    International Nuclear Information System (INIS)

    Wilmot, R.D.; Wickham, S.M.; Galson, D.A.

    2001-08-01

    The objective of this report is to discuss issues that should be considered in the development of a regulatory strategy for assessing future human actions in any forthcoming license application for a deep repository for spent fuel in Sweden and for sites of other repositories. The report comprises an outline of key issues concerning the treatment of future human actions in safety assessment, reviews of regulatory developments, recent safety assessments and supporting studies, and international initiatives on the treatment of future human actions in safety assessment, and the principal elements of a regulatory strategy. Performance assessments (PAs) are generally accepted as providing illustrations of system performance under given sets of assumptions. The results of PAs are clearer and easier to understand if certain large uncertainties are accounted for by determining performance under several different sets of assumptions or scenarios, each of which defines a possible evolution of the disposal system. A number of assumptions can be made that would restrict the scope of an assessment without reducing the credibility of the corresponding safety case. Reducing speculation about technological development, by assuming that the techniques used in future human activities are similar to those currently in use in the region or at similar sites, will simplify the assessment. A distinction is generally made between inadvertent and intentional intrusion, with intentional activities excluded because society cannot protect future populations from their own actions if they understand the potential consequences. A division of human activities into 'recent and ongoing' and 'future' activities considers not only the timing of the activities but also the degree of control or influence that can be imposed on them. Recent and ongoing human activities are those that affect an area beyond the immediate vicinity of the disposal facility and which neither the proponent nor the regulator

  10. EcAMSat: Effect of Space-Flight on Antibiotic Resistance of a Pathogenic Bacterium and its Genetic Basis

    Science.gov (United States)

    Matin, A. C.; Benoit, M.; Chin. M.; Chinn, T. N.; Cohen, A.; Friedericks, C.; Henschke, M. B.; Keyhan, M.; Lera, M. P.; Padgen, M. R.; hide

    2015-01-01

    Human immune response is compromised in space and incidence of urinary tract infections (UTI) in astronauts has been reported. We have found that the causative agent of UTI, the uropathogenic Escherichia coli, becomes more resistant to gentamicin (Gm), which is commonly used to treat this disease, under modeled microgravity conditions (MMG), the increase being controlled by the stress response master regulator, ss. While the wild type bacterium becomes virtually invincible under MMG, the strain missing this sigma factor barely survives. We report here preparatory ground work for testing this finding in space flight on a nanosatellite. We have shown that the effect of Gm treatment on culture viability is directly correlated to increased Alamar Blue (AB) reduction; we have identified conditions to keep the experimental elements - the bacterial cultures, Gm, and AB - in a state of viability and potency to permit successful spaceflight experimentation given the necessary constraints. Spaceflight kinetics of AB reduction will be transmitted from the satellite via telemetry. The PharmaSat hardware previously used for space experimentation with yeast was modified to permit studies with bacteria by reducing the filter pore size and increasing fluidics volume to enable more fluid exchanges. Several verification tests have been run using the nanosatellite's flight software and prototype hardware. Cells were grown to stationary phase to induce the ss-controlled stress resistance and treated with Gm. Without Gm, the mutant took longer than the wild type to reduce the AB; this time difference increased almost 8 fold at 55 µg/mL Gm concentration. Thus, using flight hardware the mutant shows similarly increased sensitivity to Gm compared to the wild type to that found in our pilot microtiter plate experiments. Previous inflight experiments have given contradictory results concerning bacterial antibiotic resistance; none has yet explored the involvement of specific genes in this

  11. Exercise countermeasures for long-duration spaceflight: muscle- and intensity-specific considerations

    Science.gov (United States)

    Trappe, Todd

    2012-07-01

    On-orbit and ground-based microgravity simulation studies have provided a wealth of information regarding the efficacy of exercise countermeasures for protecting skeletal muscle and cardiovascular function during long-duration spaceflights. While it appears that exercise will be the central component to maintaining skeletal muscle and cardiovascular health of astronauts, the current exercise prescription is not completely effective and is time consuming. This lecture will focus on recent exercise physiology studies examining high intensity, low volume exercise in relation to muscle specific and cardiovascular health. These studies provide the basis of the next generation exercise prescription currently being implemented during long-duration space missions on the International Space Station.

  12. Human-Centered Design Capability

    Science.gov (United States)

    Fitts, David J.; Howard, Robert

    2009-01-01

    For NASA, human-centered design (HCD) seeks opportunities to mitigate the challenges of living and working in space in order to enhance human productivity and well-being. Direct design participation during the development stage is difficult, however, during project formulation, a HCD approach can lead to better more cost-effective products. HCD can also help a program enter the development stage with a clear vision for product acquisition. HCD tools for clarifying design intent are listed. To infuse HCD into the spaceflight lifecycle the Space and Life Sciences Directorate developed the Habitability Design Center. The Center has collaborated successfully with program and project design teams and with JSC's Engineering Directorate. This presentation discusses HCD capabilities and depicts the Center's design examples and capabilities.

  13. 2015 Sensorimotor Risk Standing Review Panel Evidence and Status Review For: the Risk of Impaired Control of Spacecraft/Associated Systems and Decreased Mobility Due to Vestibular/Sensorimotor Alterations Associated with Spaceflight

    Science.gov (United States)

    Steinberg, Susan

    2015-01-01

    The 2015 Sensorimotor Risk Standing Review Panel (from here on referred to as the SRP) participated in a WebEx/teleconference with members of the Human Health Countermeasures (HHC) Element, representatives from the Human Research Program (HRP), NASA Headquarters, and NASA Research and Education Support Services (NRESS) on December 17, 2015 (list of participants is in Section VI of this report). The SRP reviewed the new Evidence Report for the Risk of Impaired Control of Spacecraft/Associated Systems and Decreased Mobility Due to Vestibular/Sensorimotor Alterations Associated with Spaceflight (from here on referred to as the 2015 Sensorimotor Evidence Report), and also received a status review of the Risk. The opening section of the 2015 Sensorimotor Evidence Report provides written descriptions of various incidents that have occurred during space missions. In most of these incidents, the main underlying contributing factors are not easy to identify unambiguously. For example, in section 1.9, a number of falls occurred while astronauts were walking on the moon. It is not clear to the SRP, however, why they fell. It is only possible to extrapolate from likely specific psychophysical or physiological abnormalities, but how these abnormalities were determined, and how they were directly responsible for the falls is unclear to the SRP. Section 2.1.2 on proprioception is very interesting, but the functional significance of the abnormalities detected is not clear. The SRP sees this as a problem throughout the report: a mapping between the component abnormalities identified and the holistic behaviors that are most relevant, for example, controlling the vehicle, and locomotion during egress, is generally lacking. The SRP thinks the cognitive section is too strongly focused on vestibular functioning. The SRP questions the notion that the main cognitive effects are mainly attributable to reversible vestibular changes induced by spaceflight. The SRP thinks that there can also

  14. Human factors measurement for future air traffic control systems.

    Science.gov (United States)

    Langan-Fox, Janice; Sankey, Michael J; Canty, James M

    2009-10-01

    This article provides a critical review of research pertaining to the measurement of human factors (HF) issues in current and future air traffic control (ATC). Growing worldwide air traffic demands call for a radical departure from current ATC systems. Future systems will have a fundamental impact on the roles and responsibilities of ATC officers (ATCOs). Valid and reliable methods of assessing HF issues associated with these changes, such as a potential increase (or decrease) in workload, are of utmost importance for advancing theory and for designing systems, procedures, and training. We outline major aviation changes and how these relate to five key HF issues in ATC. Measures are outlined, compared, and evaluated and are followed by guidelines for assessing these issues in the ATC domain. Recommendations for future research are presented. A review of the literature suggests that situational awareness and workload have been widely researched and assessed using a variety of measures, but researchers have neglected the areas of trust, stress, and boredom. We make recommendations for use of particular measures and the construction of new measures. It is predicted that, given the changing role of ATCOs and profound future airspace requirements and configurations, issues of stress, trust, and boredom will become more significant. Researchers should develop and/or refine existing measures of all five key HF issues to assess their impact on ATCO performance. Furthermore, these issues should be considered in a holistic manner. The current article provides an evaluation of research and measures used in HF research on ATC that will aid research and ATC measurement.

  15. Bioavailability of Promethazine during Spaceflight

    Science.gov (United States)

    Boyd, Jason L.; Wang, Zuwei; Putcha, Lakshmi

    2009-01-01

    Promethazine (PMZ) is the choice anti-motion sickness medication for treating space motion sickness (SMS) during flight. The side effects associated with PMZ include dizziness, drowsiness, sedation, and impaired psychomotor performance which could impact crew performance and mission operations. Early anecdotal reports from crewmembers indicate that these central nervous system side effects of PMZ are absent or greatly attenuated in microgravity, potentially due to changes in pharmacokinetics (PK) and pharmacodynamics in microgravity. These changes could also affect the therapeutic effectiveness of drugs in general and PMZ, in particular. In this investigation, we examined bioavailability and associated pharmacokinetics of PMZ in astronauts during and after space flight. Methods. Nine astronauts received, per their preference, PMZ (25 or 50 mg as intramuscular injection, oral tablet, or rectal suppository) on flight day one for the treatment of SMS and subsequently collected saliva samples and completed sleepiness scores for 72 h post dose. Thirty days after the astronauts returned to Earth, they repeated the protocol. Bioavailability and PK parameters were calculated and compared between flight and ground. Results. Maximum concentration (Cmax) was lower and time to reach Cmax (tmax) was longer in flight than on the ground. Area under the curve (AUC), a measure of bioavailability, was lower and biological half-life (t1/2) was longer in flight than on the ground. Conclusion. Results indicate that bioavailability of PMZ is reduced during spaceflight. Number of samples, sampling method, and sampling schedule significantly affected PK parameter estimates.

  16. Cellular Response to Bleomycin-Induced DNA Damage in Human Fibroblast Cells in Space

    Science.gov (United States)

    Lu, Tao; Zhang, Ye; Wong, Michael; Stodieck, Louis; Karouia, Fathi; Wu, Honglu

    2015-01-01

    Outside the protection of the geomagnetic field, astronauts and other living organisms are constantly exposed to space radiation that consists of energetic protons and other heavier charged particles. Whether spaceflight factors, microgravity in particular, have effects on cellular responses to DNA damage induced by exposure to radiation or cytotoxic chemicals is still unknown, as is their impact on the radiation risks for astronauts and on the mutation rate in microorganisms. Although possible synergistic effects of space radiation and other spaceflight factors have been investigated since the early days of the human space program, the published results were mostly conflicting and inconsistent. To investigate effects of spaceflight on cellular responses to DNA damages, human fibroblast cells flown to the International Space Station (ISS) were treated with bleomycin for three hours in the true microgravity environment, which induced DNA damages including double-strand breaks (DSB) similar to the ionizing radiation. Damages in the DNA were measured by the phosphorylation of a histone protein H2AX (g-H2AX), which showed slightly more foci in the cells on ISS than in the ground control. The expression of genes involved in DNA damage response was also analyzed using the PCR array. Although a number of the genes, including CDKN1A and PCNA, were significantly altered in the cells after bleomycin treatment, no significant difference in the expression profile of DNA damage response genes was found between the flight and ground samples. At the time of the bleomycin treatment, the cells on the ISS were found to be proliferating faster than the ground control as measured by the percentage of cells containing positive Ki-67 signals. Our results suggested that the difference in g-H2AX focus counts between flight and ground was due to the faster growth rate of the cells in space, but spaceflight did not affect initial transcriptional responses of the DNA damage response genes to

  17. An interdisciplinary review of current and future approaches to improving human-predator relations.

    Science.gov (United States)

    Pooley, S; Barua, M; Beinart, W; Dickman, A; Holmes, G; Lorimer, J; Loveridge, A J; Macdonald, D W; Marvin, G; Redpath, S; Sillero-Zubiri, C; Zimmermann, A; Milner-Gulland, E J

    2017-06-01

    In a world of shrinking habitats and increasing competition for natural resources, potentially dangerous predators bring the challenges of coexisting with wildlife sharply into focus. Through interdisciplinary collaboration among authors trained in the humanities, social sciences, and natural sciences, we reviewed current approaches to mitigating adverse human-predator encounters and devised a vision for future approaches to understanding and mitigating such encounters. Limitations to current approaches to mitigation include too much focus on negative impacts; oversimplified equating of levels of damage with levels of conflict; and unsuccessful technical fixes resulting from failure to engage locals, address hidden costs, or understand cultural (nonscientific) explanations of the causality of attacks. An emerging interdisciplinary literature suggests that to better frame and successfully mitigate negative human-predator relations conservation professionals need to consider dispensing with conflict as the dominant framework for thinking about human-predator encounters; work out what conflicts are really about (they may be human-human conflicts); unravel the historical contexts of particular conflicts; and explore different cultural ways of thinking about animals. The idea of cosmopolitan natures may help conservation professionals think more clearly about human-predator relations in both local and global context. These new perspectives for future research practice include a recommendation for focused interdisciplinary research and the use of new approaches, including human-animal geography, multispecies ethnography, and approaches from the environmental humanities notably environmental history. Managers should think carefully about how they engage with local cultural beliefs about wildlife, work with all parties to agree on what constitutes good evidence, develop processes and methods to mitigate conflicts, and decide how to monitor and evaluate these. Demand for

  18. Field Test: Results of Tandem Walk Performance Following Long-Duration Spaceflight

    Science.gov (United States)

    Rosenberg, M. J. F.; Reschke, M. F.; Cerisano, J. M.; Kofman, I. S.; Fisher, E. A.; Gadd, N. E.; May-Phillips, T. R.; Lee, S. M. C.; Laurie, S. S.; Stenger, M. B.; hide

    2016-01-01

    invaluable information on the performance capabilities of astronauts during the first 24 hours after returning from long-duration spaceflight that can be used in planning future Mars, or other deep-space missions with unassisted landings. FT will determine the average sensorimotor recovery timeline and inform return-to-duty guidelines for unassisted landings.

  19. Human mortality effects of future concentrations of tropospheric ozone

    International Nuclear Information System (INIS)

    West, J.; Szopa, S.; Hauglustaine, D.A.

    2007-01-01

    Here we explore the effects of projected future changes in global ozone concentrations on premature human mortality, under three scenarios for 2030. We use daily surface ozone concentrations from a global atmospheric transport and chemistry model, and ozone-mortality relationships from daily time-series studies. The population-weighted annual average 8-h daily maximum ozone is projected to increase, relative to the present, in each of ten world regions under the SRES A2 scenario and the current legislation (CLE) scenario, with the largest growth in tropical regions, while decreases are projected in each region in the maximum feasible reduction (MFR) scenario. Emission reductions in the CLE scenario, relative to A2, are estimated to reduce about 190,000 premature human mortalities globally in 2030, with the most avoided mortalities in Africa. The MFR scenario will avoid about 460,000 premature mortalities relative to A2 in 2030, and 270,000 relative to CLE, with the greatest reductions in South Asia. (authors)

  20. Expanding the Description of Spaceflight Effects beyond Bone Mineral Density [BMD]: Trabecular Bone Score [TBS] in ISS Astronauts

    Science.gov (United States)

    Sibonga, J. D.; Spector, E. R.; King, L. J.; Evans, H. J.; Smith, S. A.

    2014-01-01

    Dual-energy x-ray absorptiometry [DXA] is the widely-applied bone densitometry method used to diagnose osteoporosis in a terrestrial population known to be at risk for age-related bone loss. This medical test, which measures areal bone mineral density [aBMD] of clinically-relevant skeletal sites (e.g., hip and spine), helps the clinician to identify which persons, among postmenopausal women and men older than 50 years, are at high risk for low trauma or fragility fractures and might require an intervention. The most recognized osteoporotic fragility fracture is the vertebral compression fracture which can lead to kyphosis or hunched backs typically seen in the elderly. DXA measurement of BMD however is recognized to be insufficient as a sole index for assessing fracture risk. DXA's limitation may be related to its inability to monitor changes in structural parameters, such as trabecular vs. cortical bone volumes, bone geometry or trabecular microarchitecture. Hence, in order to understand risks to human health and performance due to space exposure, NASA needs to expand its measurements of bone to include other contributors to skeletal integrity. To this aim, the Bone and Mineral Lab conducted a pilot study for a novel measurement of bone microarchitecture that can be obtained by retrospective analysis of DXA scans. Trabecular Bone Score (TBS) assesses changes to trabecular microarchitecture by measuring the grey color "texture" information extracted from DXA images of the lumbar spine. An analysis of TBS in 51 ISS astronauts was conducted to assess if TBS could detect 1) an effect of spaceflight and 2) a response to countermeasures independent of DXA BMD. In addition, changes in trunk body lean tissue mass and in trunk body fat tissue mass were also evaluated to explore an association between body composition, as impacted by ARED exercise, and bone microarchitecture. The pilot analysis of 51 astronaut scans of the lumbar spine suggests that, following an ISS

  1. Humans on the International Space Station-How Research, Operations, and International Collaboration are Leading to New Understanding of Human Physiology and Performance in Microgravity

    Science.gov (United States)

    Ronbinson, Julie A.; Harm, Deborah L.

    2009-01-01

    As the International Space Station (ISS) nears completion, and full international utilization is achieved, we are at a scientific crossroads. ISS is the premier location for research aimed at understanding the effects of microgravity on the human body. For applications to future human exploration, it is key for validation, quantification, and mitigation of a wide variety of spaceflight risks to health and human performance. Understanding and mitigating these risks is the focus of NASA s Human Research Program. However, NASA s approach to defining human research objectives is only one of many approaches within the ISS international partnership (including Roscosmos, the European Space Agency, the Canadian Space Agency, and the Japan Aerospace Exploration Agency). Each of these agencies selects and implements their own ISS research, with independent but related objectives for human and life sciences research. Because the science itself is also international and collaborative, investigations that are led by one ISS partner also often include cooperative scientists from around the world. The operation of the ISS generates significant additional data that is not directly linked to specific investigations. Such data comes from medical monitoring of crew members, life support and radiation monitoring, and from the systems that have been implemented to protect the health of the crew (such as exercise hardware). We provide examples of these international synergies in human research on ISS and highlight key early accomplishments that derive from these broad interfaces. Taken as a whole, the combination of diverse research objectives, operational data, international sharing of research resources on ISS, and scientific collaboration provide a robust research approach and capability that no one partner could achieve alone.

  2. Human System Risk Management - Tools of our Trade

    Science.gov (United States)

    Ott, C. Mark

    2009-01-01

    The risk of infectious disease to select individuals has historically been difficult to predict in either spaceflight or on Earth with health care efforts relying on broad-based prevention and post-infection treatment. Over the past 10 years, quantitative microbial risk assessment evaluations have evolved to formalize the assessment process and quantify the risk. This process of hazard identification, exposure assessment, dose-response assessment, and risk characterization has been applied by the water and food safety industries to address the public health impacts associated with the occurrence of and human exposure to pathogens in water and food for the development of preventive strategies for microbial disease. NASA is currently investigating the feasibility of using these techniques to better understand the risks to astronauts and refine their microbiological requirements. To assess these techniques, NASA began an evaluation of the potable water system on the International Space Station to determine how the microbial risk from water consumption during flight differed from terrestrial sources, such as municipal water systems. The ultimate goal of this work is to optimize microbial requirements which would minimize unnecessary cargo and use of crew time, while still protecting the health of the crew. Successful demonstration of this risk assessment framework with the water system holds the potential to maximize the use of available resources during spaceflight missions and facilitate investigations into the evaluation of other routes of infection, such as through the spaceflight foods system.

  3. Future of Mechatronics and Human

    Science.gov (United States)

    Harashima, Fumio; Suzuki, Satoshi

    This paper mentions circumstance of mechatronics that sustain our human society, and introduces HAM(Human Adaptive Mechatronics)-project as one of research projects to create new human-machine system. The key point of HAM is skill, and analysis of skill and establishment of assist method to enhance total performance of human-machine system are main research concerns. As study of skill is an elucidation of human itself, analyses of human higher function are significant. In this paper, after surveying researches of human brain functions, an experimental analysis of human characteristic in machine operation is shown as one example of our research activities. We used hovercraft simulator as verification system including observation, voluntary motion control and machine operation that are needed to general machine operation. Process and factors to become skilled were investigated by identification of human control characteristics with measurement of the operator's line-of sight. It was confirmed that early switching of sub-controllers / reference signals in human and enhancement of space perception are significant.

  4. Fluid Shifts Before, During and After Prolonged Space Flight and Their Association with Intracranial Pressure and Visual Impairment

    Science.gov (United States)

    Stenger, Michael; Hargens, Alan; Dulchavsky, Scott

    2014-01-01

    Future human space travel will primarily consist of long duration missions onboard the International Space Station or exploration class missions to Mars, its moons, or nearby asteroids. Current evidence suggests that long duration missions might increase risk of permanent ocular structural and functional changes, possibly due to increased intracranial pressure resulting from a spaceflight-induced cephalad (headward) fluid shift.

  5. United States Military Space: Into the Twenty-First Century

    Science.gov (United States)

    2002-01-01

    famous and articulate spokesmen for planetary science; Pale Blue Dot : A Vision of the Human Future in Space (New York: Random House, 1994) was one...and defining human characteristic. Carl Sagan is a primary spokesman for those who view spaceflight in scientific and ecological terms and see it as...Spacefaring Civilization (New York: Jeremy P. Tarcher/Putnam, 1999). Carl Sagan cofounded the Planetary Society in 1980 and was one of the most

  6. And the Humans Save the Day or Maybe They Ruin It: The Importance of Humans in the Loop

    Science.gov (United States)

    DeMott, Diana; Boyer, Roger; Bigler, Mark

    2017-01-01

    Flying a mission in space requires a massive commitment of resources, and without the talent and commitment of the people involved in this effort we would never leave the atmosphere of Earth. When we use the phrase "humans in the loop", it could apply to almost any endeavor since everything starts with humans developing a concept, completing the design process, building or implementing a product and using the product to achieve a goal or purpose. Narrowing the focus to spaceflights, there are a variety of individuals involved throughout the preparations for flight and the flight itself. All of the humans involved add value and support for program success. The purpose of this paper focuses on how a Probabilistic Risk Assessment (PRA) accounts for the human in the loop for potential missions using a technique called Human Reliability Analysis (HRA). Human actions can increase or decrease the overall risk via initiating events or mitigating them, thus removing the human from the loop doesn't always lower the risk.

  7. Human Use Index (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Human land uses may have major impacts on ecosystems, affecting biodiversity, habitat, air and water quality. The human use index (also known as U-index) is the...

  8. NASA 14 Day Undersea Missions: A Short-Duration Spaceflight Analog for Immune System Dysregulation?

    Science.gov (United States)

    Crucian, B. E.; Stowe, R. P.; Mehta, S. K.; Chouker, A.; Feuerecker, M.; Quiriarte, H.; Pierson, D. L.; Sams, C. F.

    2011-01-01

    This poster paper reviews the use of 14 day undersea missions as a possible analog for short duration spaceflight for the study of immune system dysregulation. Sixteen subjects from the the NASA Extreme Enviro nment Mission Operations (NEEMO) 12, 13 and 14 missions were studied for immune system dysregulation. The assays that are presented in this poster are the Virleukocyte subsets, the T Cell functions, and the intracellular/secreted cytokine profiles. Other assays were performed, but are not included in this presntation.

  9. ESA strategy for human exploration and the Lunar Lander Mission

    Science.gov (United States)

    Gardini, B.

    As part of ESAs Aurora Exploration programme, the Agency has defined, since 2001, a road map for exploration in which, alongside robotic exploration missions, the International Space Station (ISS) and the Moon play an essential role on the way to other destinations in the Solar System, ultimately to a human mission to Mars in a more distant future. In the frame of the Human Spaceflight programme the first European Lunar Lander Mission, with a launch date on 2018, has been defined, targeting the lunar South Pole region to capitalize on unique illumination conditions and provide the opportunity to carry out scientific investigations in a region of the Moon not explored so far. The Phase B1 industrial study, recently initiated, will consolidate the mission design and prepare the ground for the approval of the full mission development phase at the 2012 ESA Council at Ministerial. This paper describes the mission options which have been investigated in the past Phase A studies and presents the main activities foreseen in the Phase B1 to consolidate the mission design, including a robust bread-boards and technology development programme. In addition, the approach to overcoming the mission's major technical and environmental challenges and the activities to advance the definition of the payload elements will be described.

  10. Some statistical issues important to future developments in human radiation research

    International Nuclear Information System (INIS)

    Vaeth, Michael

    1991-01-01

    Using his two years experience at the Radiation Effects Research Foundation at Hiroshima, the author tries to outline some of the areas of statistics where methodologies relevant to the future developments in human radiation research are likely to be found. Problems related to statistical analysis of existing data are discussed, together with methodological developments in non-parametric and semi-parametric regression modelling, and interpretation and presentation of results. (Author)

  11. Preparation of human resources for future nuclear energy using FBNR as the instrument of learning

    International Nuclear Information System (INIS)

    Sefidvash, Farhang; Espinoza, Patricio; Guerrero, Victor Hugo

    2015-01-01

    An increasing number of developing countries are showing interest to become the emerging countries to nuclear energy. Most of these countries lack human resources and adequate infrastructures to enter such a venture. The principle objective of activities of FBNR Group is to train human resources for the countries that at the present lack the necessary conditions, but aim at the future clean and safe nuclear energy through the fourth generation and INPRO compatible nuclear reactors. The preparation for the future nuclear energy is done through development of innovative nuclear reactor that meets the INPRO philosophies and criteria. These countries may or may not have decided as yet to utilize nuclear energy, but are interested to gain a strong educational foundation for their future. The research and development of a small innovative nuclear reactor FBNR is used as the instrument for learning. The young scientists will learn how to be innovative with the vision of INPRO philosophy and criteria.

  12. Preparation of human resources for future nuclear energy using FBNR as the instrument of learning

    Energy Technology Data Exchange (ETDEWEB)

    Sefidvash, Farhang; Espinoza, Patricio; Guerrero, Victor Hugo [Escuela Politecnica Nacional (EPN), Quito (Ecuador); and others

    2015-11-15

    An increasing number of developing countries are showing interest to become the emerging countries to nuclear energy. Most of these countries lack human resources and adequate infrastructures to enter such a venture. The principle objective of activities of FBNR Group is to train human resources for the countries that at the present lack the necessary conditions, but aim at the future clean and safe nuclear energy through the fourth generation and INPRO compatible nuclear reactors. The preparation for the future nuclear energy is done through development of innovative nuclear reactor that meets the INPRO philosophies and criteria. These countries may or may not have decided as yet to utilize nuclear energy, but are interested to gain a strong educational foundation for their future. The research and development of a small innovative nuclear reactor FBNR is used as the instrument for learning. The young scientists will learn how to be innovative with the vision of INPRO philosophy and criteria.

  13. 21 Days head-down bed rest induces weakening of cell-mediated immunity - Some spaceflight findings confirmed in a ground-based analog.

    Science.gov (United States)

    Kelsen, Jens; Bartels, Lars Erik; Dige, Anders; Hvas, Christian Lodberg; Frings-Meuthen, Petra; Boehme, Gisela; Thomsen, Marianne Kragh; Fenger-Grøn, Morten; Dahlerup, Jens Frederik

    2012-08-01

    Several studies indicate a weakening of cell-mediated immunity (CMI) and reactivation of latent herpes viruses during spaceflight. We tested the hypothesis that head-down bed rest (HDBR), a ground-based analog of spaceflight, mimics the impact of microgravity on human immunity. Seven healthy young males underwent two periods of 3 weeks HDBR in the test facility of the German Aerospace Center. As a nutritional countermeasure aimed against bone demineralisation, 90 mmol potassium bicarbonate (KHCO(3)) was administered daily in a crossover design. Blood samples were drawn on five occasions. Whole blood was stimulated with antigen i.e. Candida albicans, purified protein derivative (PPD) tuberculin, tetanus toxoid and Cytomegalovirus (CMV) (CMV-QuantiFERON). Flow cytometric analysis included CD4(+)CD25(+)CD127(-)FOXP3(+) regulatory T cells (Tregs), γδ T cells, B cells, NK cells and dendritic cells. In one of the two bed rest periods, we observed a significant decrease in production of interleukin-2 (IL-2), interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) following phytohemagglutinin (PHA) stimulation, with a rapid normalization being observed after HDBR. The cytokine levels showed a V-shaped pattern that led to a relativeTh2-shift in cytokine balance. Only three individuals responded to the specific T cell antigens without showing signs of an altered response during HDBR, nor did we observe reactivation of CMV or Epstein-Barr virus (EBV). Of unknown significance, dietary supplementation with KHCO(3) counteracted the decrease in IL-2 levels during HDBR, while there was no impact on other immunological parameters. We conclude that discrete alterations in CMI may be induced by HDBR in selected individuals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Rodent Habitat On ISS: Spaceflight Effects On Mouse Behavior

    Science.gov (United States)

    Ronca, A. E.; Moyer, E. L.; Talyansky, Y.; Padmanabhan, S.; Choi, S.; Gong, C.; Globus, R. K.

    2016-01-01

    habitat, circling, multi-lap circling and group-circling. Once begun, mice did not regress to flipping behavior or other previous behavioral milestones for the remainder of flight. An overall upward trend in circling frequency, rate, duration, participation, and organization was observed over the course of the 37-day spaceflight experiment. In this presentation, we will summarize qualitative observations and quantitative comparisons of mice in microgravity and 1g conditions. Behavioral analyses provide important insights into the overall health and adaptation of mice to the space environment, and identify unique behaviors and social interactions to guide future habitat development and research on rodents in space.

  15. A statistical method (cross-validation) for bone loss region detection after spaceflight

    Science.gov (United States)

    Zhao, Qian; Li, Wenjun; Li, Caixia; Chu, Philip W.; Kornak, John; Lang, Thomas F.

    2010-01-01

    Astronauts experience bone loss after the long spaceflight missions. Identifying specific regions that undergo the greatest losses (e.g. the proximal femur) could reveal information about the processes of bone loss in disuse and disease. Methods for detecting such regions, however, remains an open problem. This paper focuses on statistical methods to detect such regions. We perform statistical parametric mapping to get t-maps of changes in images, and propose a new cross-validation method to select an optimum suprathreshold for forming clusters of pixels. Once these candidate clusters are formed, we use permutation testing of longitudinal labels to derive significant changes. PMID:20632144

  16. Effects of spaceflight on hypothalamic peptide systems controlling pituitary growth hormone dynamics

    Science.gov (United States)

    Sawchenko, P. E.; Arias, C.; Krasnov, I.; Grindeland, R. E.; Vale, W.

    1992-01-01

    Possible effects of reduced gravity on central hypophysiotropic systems controlling growth hormone (GH) secretion were investigated in rats flown on Cosmos 1887 and 2044 biosatellites. Immunohistochemical (IHC)staining for the growth hormone-releasing factor (GRF), somatostatin (SS), and other hypothalamic hormones was performed on hypothalami obtained from rats. IHC analysis was complemented by quantitative in situ assessments of mRNAs encoding the precursors for these hormones. Data obtained suggest that exposure to microgravity causes a preferential reduction in GRF peptide and mRNA levels in hypophysiotropic neurons, which may contribute to impared GH secretion in animals subjected to spaceflight. Effects of weightlessness are not mimicked by hindlimb suspension in this system.

  17. Attitudes of Future Human Service Professionals: The Effects of Victim and Helper Qualities.

    Science.gov (United States)

    Liebkind, Karmela; Eranen, Liisa

    2001-01-01

    Investigates the attitudes of future members in human service professions toward victims, based on the qualities effected by trauma victims and their helpers. Reports that the high-trauma and poorly adapted victims elicited more negative attitudes than did the low-trauma and well-adapted victims. (CMK)

  18. Addressing Human System Risks to Future Space Exploration

    Science.gov (United States)

    Paloski, W. H.; Francisco, D. R.; Davis, J. R.

    2015-01-01

    NASA is contemplating future human exploration missions to destinations beyond low Earth orbit, including the Moon, deep-space asteroids, and Mars. While we have learned much about protecting crew health and performance during orbital space flight over the past half-century, the challenges of these future missions far exceed those within our current experience base. To ensure success in these missions, we have developed a Human System Risk Board (HSRB) to identify, quantify, and develop mitigation plans for the extraordinary risks associated with each potential mission scenario. The HSRB comprises research, technology, and operations experts in medicine, physiology, psychology, human factors, radiation, toxicology, microbiology, pharmacology, and food sciences. Methods: Owing to the wide range of potential mission characteristics, we first identified the hazards to human health and performance common to all exploration missions: altered gravity, isolation/confinement, increased radiation, distance from Earth, and hostile/closed environment. Each hazard leads to a set of risks to crew health and/or performance. For example the radiation hazard leads to risks of acute radiation syndrome, central nervous system dysfunction, soft tissue degeneration, and carcinogenesis. Some of these risks (e.g., acute radiation syndrome) could affect crew health or performance during the mission, while others (e.g., carcinogenesis) would more likely affect the crewmember well after the mission ends. We next defined a set of design reference missions (DRM) that would span the range of exploration missions currently under consideration. In addition to standard (6-month) and long-duration (1-year) missions in low Earth orbit (LEO), these DRM include deep space sortie missions of 1 month duration, lunar orbital and landing missions of 1 year duration, deep space journey and asteroid landing missions of 1 year duration, and Mars orbital and landing missions of 3 years duration. We then

  19. Human error in maintenance: An investigative study for the factories of the future

    International Nuclear Information System (INIS)

    Dhillon, B S

    2014-01-01

    This paper presents a study of human error in maintenance. Many different aspects of human error in maintenance considered useful for the factories of the future are studied, including facts, figures, and examples; occurrence of maintenance error in equipment life cycle, elements of a maintenance person's time, maintenance environment and the causes for the occurrence of maintenance error, types and typical maintenance errors, common maintainability design errors and useful design guidelines to reduce equipment maintenance errors, maintenance work instructions, and maintenance error analysis methods

  20. Post-Flight Back Pain Following International Space Station Missions: Evaluation of Spaceflight Risk Factors

    Science.gov (United States)

    Laughlin, Mitzi S.; Murray, Jocelyn D.; Wear, Mary L.; Van Baalen, Mary

    2016-01-01

    Back pain during spaceflight has often been attributed to the lengthening of the spinal column due to the absence of gravity during both short and long-duration missions. Upon landing and re-adaptation to gravity, the spinal column reverts back to its original length thereby causing some individuals to experience pain and muscular spasms, while others experience no ill effects. With International Space Station (ISS) missions, cases of back pain and injury are more common post-flight, but little is known about the potential risk factors.

  1. Deep Space Spaceflight: The Challenge of Crew Performance in Autonomous Operations

    Science.gov (United States)

    Thaxton, S. S.; Williams, T. J.; Norsk, P.; Zwart, S.; Crucian, B.; Antonsen, E. L.

    2018-02-01

    Distance from Earth and limited communications in future missions will increase the demands for crew autonomy and dependence on automation, and Deep Space Gateway presents an opportunity to study the impacts of these increased demands on human performance.

  2. Handling of future human actions in the safety assessment SR-Site

    International Nuclear Information System (INIS)

    2010-12-01

    This report documents the future human actions, FHA, considered in the long-term safety analysis of a KBS-3 repository. The report is one of the supporting documents to the safety assessment SR-Site (see further the Main report /SKB 2011/). The purpose of this report is to provide an account of general considerations concerning FHA, the methodology applied in SR-Site to assess FHA, the aspects of FHA needed to be considered in the evaluation of their impact on a deep geological repository and to select and analyse representative scenarios for illustrative consequence analysis. The main focus of this report is a time period when institutional control has ceased to be effective, thereby permitting inadvertent intrusion. However, a brief discussion of the earlier period when the repository has been closed, sealed and continuously kept under institutional control is also provided. General The potential exposure to large quantities of radiotoxic material is an inescapable consequence of the deposition of spent nuclear fuel in a final repository, and consequently intrusion into the repository needs to be considered in repository design and safety assessment. In accordance with ICRP recommendations /ICRP 2000/, intrusion in the post-closure phase of institutional control and beyond is primarily prevented through the design of the repository. In addition to that there will presumably continue to be safeguards measures, preservation of information (record keeping) and possibly some sort of markers placed at the site. During the institutional control period, activities at the site have to be restricted or directed if they have the potential to interfere with or hinder surveillance of the site, but this does not necessarily rule out all forms of access to the area. Also the fact that the repository contains fissile materials is an important aspect. Control of safeguards measures will most likely be upheld by national as well as international agencies. Furthermore, the

  3. Handling of future human actions in the safety assessment SR-Site

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-15

    This report documents the future human actions, FHA, considered in the long-term safety analysis of a KBS-3 repository. The report is one of the supporting documents to the safety assessment SR-Site (see further the Main report /SKB 2011/). The purpose of this report is to provide an account of general considerations concerning FHA, the methodology applied in SR-Site to assess FHA, the aspects of FHA needed to be considered in the evaluation of their impact on a deep geological repository and to select and analyse representative scenarios for illustrative consequence analysis. The main focus of this report is a time period when institutional control has ceased to be effective, thereby permitting inadvertent intrusion. However, a brief discussion of the earlier period when the repository has been closed, sealed and continuously kept under institutional control is also provided. General The potential exposure to large quantities of radiotoxic material is an inescapable consequence of the deposition of spent nuclear fuel in a final repository, and consequently intrusion into the repository needs to be considered in repository design and safety assessment. In accordance with ICRP recommendations /ICRP 2000/, intrusion in the post-closure phase of institutional control and beyond is primarily prevented through the design of the repository. In addition to that there will presumably continue to be safeguards measures, preservation of information (record keeping) and possibly some sort of markers placed at the site. During the institutional control period, activities at the site have to be restricted or directed if they have the potential to interfere with or hinder surveillance of the site, but this does not necessarily rule out all forms of access to the area. Also the fact that the repository contains fissile materials is an important aspect. Control of safeguards measures will most likely be upheld by national as well as international agencies. Furthermore, the

  4. Who is Responsible for Future Teachers’ Training on Human Rights in the Faculties of Education?

    Directory of Open Access Journals (Sweden)

    Elkin Darío Agudelo Colorado

    2015-04-01

    Full Text Available DOI: http://dx.doi.org/10.17227/01234870.41folios103.116 This reflection article, derived from a research process about social representations of Human Rights in a group of students, explores the process of knowledge and experience that undergraduate students from Universidad Distrital have during their training process to become teachers. It shows how the field of social representation originates in the daily life experiences of students (both in the university and beyond where they become aware of Human Rights violation experiences. They begin to question the meaning, significance, usefulness and purpose of rights in the contexts of societies like Colombia and particularly, in a Faculty dedicated to the teacher training. Likewise, the lack of a political will to make Human Rights Education (HRE more visible and tangible in the curricula for future teachers is questioned, as well as the educational projects in Faculties of Education. Finally, the paper suggests some key ideas to enhance future teachers’ training from a HRE perspective.

  5. Humanizing outer space: architecture, habitability, and behavioral health

    Science.gov (United States)

    Harrison, Albert A.

    2010-03-01

    Space architecture is the theory and practice of designing and building environments for humans in outer space. In our present century professional astronauts and cosmonauts will remain a focus for space architects, but new designs must better accommodate passengers (tourists and industrial workers) and settlers who set forth to establish off-world societies. Psychologists and architects can work together to assure good spaceflight behavioral health, defined by a lack of neuropsychiatric dysfunction, and the presence of high levels of personal adjustment, cordial interpersonal relations, and positive interactions with the physical and social environments. By designing and constructing facilities that are occupant centered and activity oriented, architects increase habitability thereby decreasing environmental challenges to behavioral health. Simulators and spaceflight-analogous environments make it possible to test design solutions prior to their deployment in space. This paper concludes with suggestions for increasing collaboration between architects and psychologists. These include increased sharing of hypotheses and data, articulating complementary research styles, and mutual advocacy for early, potent, and sustained involvement in mission planning and execution.

  6. Challenges in Clinical Management of Radiation-Induced Illnesses in Exploration Spaceflight

    Science.gov (United States)

    Blue, Rebecca; Chancellor, Jeffery; Suresh, Rahul; Carnell, Lisa; Reyes, David; Nowadly, Craig; Antonsen, Erik

    2018-01-01

    Historical solar particle events (SPEs) provide context for some understanding of acute radiation exposure risk to astronauts traveling outside of low Earth orbit. Modeling of potential doses delivered to exploration crewmembers anticipates limited radiation-induced health impacts, including prodromal symptoms of nausea, emesis, and fatigue, but suggests that more severe clinical manifestations are unlikely. Recent large animal-model research in space-analogs closely mimicking SPEs has identified coagulopathic events independent of the hematopoietic sequelae of higher radiation doses, similar in manifestation to disseminated intravascular coagulation (DIC). We explored the challenges of clinical management of radiation-related clinical manifestations, using currently accepted modeling techniques and anticipated physiological sequelae, to identify medical capabilities needed to successfully manage SPE-induced radiation illnesses during exploration spaceflight.

  7. Recent radiobiological findings from spaceflight and ground-based studies - an overview

    Energy Technology Data Exchange (ETDEWEB)

    Buecker, H.; Facius, R.

    1980-01-01

    An a priori risk assessment of radiobiological effects remains uncertain due to the unpredictable solar flare contribution to the low LET radiation or the unknown reaction mechanisms of heavy ions. Tests suggest that mechanisms inherent to biological systems may be impeded by physiological and psychological stress during spaceflight. The discovery of heavy ion induced late effects in rabbits demonstrates what might be experienced during longer space missions. The evidence for a specific radiobiological reaction mechanism of heavy ions as encountered in space is discussed. A report by Kovalev and Markelov (1979) on LET spectra is reviewed, and the use of absorbed dose as the quantity of reference in estimating an average radiobiological quality factor representative of cosmic particle radiation is criticized.

  8. Effect of 12-Day Spaceflight on Brain of Thick-Toed Geckos

    Science.gov (United States)

    Proshchina, A. E.; Karlamova, A. S.; Barabanovet, V. M.; Godovalova, O. S.; Guilimova, V. I.; Krivova, Y. S.; Makarov, A. N.; Nikitin, V. B.; Savelieva, E. S.; Saveliev, S. V.

    2008-06-01

    In the frames of Russian-American joint space experiment onboard Foton-M3 satellite there was undertaken a study of spaceflight influence on brain of the thick-toed gecko (Pachydactylus turneri Gray, 1864). Serial brain sections were stained according to Nissl and also the immunohistochemical method with antibodies to NGF-receptor (p75NGFR), CD95 (also known as Fas and APO-1), glial fibrillary acidic protein (GFAP) and transferrin-receptor (CD71). Detailed examination of the sections of rhombencephalon revealed cytological changes in the neuron bodies of vestibular nuclei inside the flight group. Immunohistochemicaly we found the increase density of CD95 and p75NGFR and decrease of GFAP expression in medial cortex and epithalamus in flight group compared both control.

  9. Standards-Based Wireless Sensor Networking Protocols for Spaceflight Applications

    Science.gov (United States)

    Wagner, Raymond S.

    2010-01-01

    Wireless sensor networks (WSNs) have the capacity to revolutionize data gathering in both spaceflight and terrestrial applications. WSNs provide a huge advantage over traditional, wired instrumentation since they do not require wiring trunks to connect sensors to a central hub. This allows for easy sensor installation in hard to reach locations, easy expansion of the number of sensors or sensing modalities, and reduction in both system cost and weight. While this technology offers unprecedented flexibility and adaptability, implementing it in practice is not without its difficulties. Recent advances in standards-based WSN protocols for industrial control applications have come a long way to solving many of the challenges facing practical WSN deployments. In this paper, we will overview two of the more promising candidates - WirelessHART from the HART Communication Foundation and ISA100.11a from the International Society of Automation - and present the architecture for a new standards-based sensor node for networking and applications research.

  10. Life cycle evaluation of spaceflight qualified nickel-hydrogen batteries

    Energy Technology Data Exchange (ETDEWEB)

    Coates, D.K.; Brill, J.N. [Eagle-Picher Industries, Inc., Joplin, MO (United States). Advanced Systems Operation

    1995-12-31

    Life cycle test results are summarized from more than 300 spaceflight qualified nickel-hydrogen (NiH{sub 2}) battery cells currently on life test. Cells ranging in size from 4 ampere-hours (Ah) to 120 Ah are being tested under a variety of conditions to support current NiH{sub 2} battery applications. Results to date include 55,600 accelerated LEO cycles at 30% DOD; 102,840 accelerated LEO cycles at 15% DOD; 44,900 cycles under a real-time LEO profile; 44,100 cycles in real-time LEO; 30 accelerated GEO eclipse seasons and 7 real-time GEO eclipse seasons, both at 75% DOD maximum. Alternative separator materials have completed more than 40,000 charge/discharge cycles in accelerated LEO testing and advanced design electrocatalytic hydrogen electrodes have completed more than 16,000 cycles in real-time LEO testing. Common pressure vessel cell designs have completed 18,000 cycles in real-time LEO testing at 45% DOD.

  11. Physicochemical and biological technologies for future exploration missions

    Science.gov (United States)

    Belz, S.; Buchert, M.; Bretschneider, J.; Nathanson, E.; Fasoulas, S.

    2014-08-01

    Life Support Systems (LSS) are essential for human spaceflight. They are the key element for humans to survive, to live and to work in space. Ambitious goals of human space exploration in the next 40 years like a permanently crewed surface habitat on Moon or a manned mission to Mars require technologies which allow for a reduction of system and resupply mass. Enhancements of existing technologies, new technological developments and synergetic components integration help to close the oxygen, water and carbon loops. In order to design the most efficient LSS architecture for a given mission scenario, it is important to follow a dedicated design process: definition of requirements, selection of candidate technologies, development of possible LSS architectures and characterisation of LSS architectures by system drivers and evaluation of the LSS architectures. This paper focuses on the approach of a synergetic integration of Polymer Electrolyte Membrane Fuel Cells (PEFC) and microalgae cultivated in photobioreactors (PBR). LSS architectures and their benefits for selected mission scenarios are demonstrated. Experiments on critical processes and interfaces were conducted and result in engineering models for a PEFC and PBR system which fulfil the requirements of a synergetic integrative environment. The PEFC system (about 1 kW) can be operated with cabin air enriched by stored or biologically generated oxygen instead of pure oxygen. This offers further advantages with regard to thermal control as high oxygen concentrations effect a dense heat production. The PBR system consists of an illuminated cultivation chamber (about 5 l), a nutrients supply and harvesting and analytics units. Especially the chamber enables a microgravity adapted cultivation of microalgae. However, the peripheral units still have to be adapted in order to allow for a continuous and automated cultivation and harvesting. These automation processes will be tested and evaluated by means of a parabolic

  12. Evaluation of the Accuracy of Astroskin as a Behavioral Health Self-Monitoring System for Spaceflight

    Science.gov (United States)

    Kumar, Arun; Levin, Edwin; Cowings, Patricia; Toscano, William B.

    2015-01-01

    In space, there is a need to monitor astronauts' vital signs and assess their readiness to perform specific tasks during a mission. Currently, NASA does not have the capability to noninvasively monitor crew for extended periods of time. The Canadian Space Agency is working with the Psychophysiology Lab at NASA ARC to determine if the Astroskin could be used as a solution to this problem. Astroskin, a commercially available garment with built-in biosensors, can be comfortably worn under clothing or a spacesuit and relay information to the crewman's own mobile device. Data can also be sent wirelessly to the on-board Exploration Medical System. To determine if Astroskin meets requirements for health monitoring, it must first be validated in spaceflight analog environments. In the current study Astroskin data will be compared to traditional biomedical instrument measures of electrocardiography (ECG), respiration rate, and systolic blood pressure. The data will be recorded during Autogenic Feedback Training Exercise (AFTE), which is a type of physiological self-regulation training designed for astronauts. The data will also be recorded during simulations of the Orion spacecraft re-entry. The results to date suggest that Astroskin is a suitable ambulatory monitoring system that allows astronauts to self-diagnose and self-regulate adverse autonomic nervous system responses to sustained exposure to microgravity of spaceflight.

  13. Bouncing Towards the Future with Kangaroo Panze: Human Media Interaction in Music Education

    NARCIS (Netherlands)

    Turkenburg, W; Wassink, D.; Reidsma, Dennis; van Dijk, Elisabeth M.A.G.; Jansen, L.; Nijholt, Antinus

    2008-01-01

    This article introduces some opportunities we see for the use of novel technologies in music education, now and in the future. Not in substituting the human artistic work, but rather in tools supporting the training of musicians and e.g. in cases were some skills become rare or underdeveloped and

  14. Anaesthesia in austere environments: literature review and considerations for future space exploration missions.

    Science.gov (United States)

    Komorowski, Matthieu; Fleming, Sarah; Mawkin, Mala; Hinkelbein, Jochen

    2018-01-01

    Future space exploration missions will take humans far beyond low Earth orbit and require complete crew autonomy. The ability to provide anaesthesia will be important given the expected risk of severe medical events requiring surgery. Knowledge and experience of such procedures during space missions is currently extremely limited. Austere and isolated environments (such as polar bases or submarines) have been used extensively as test beds for spaceflight to probe hazards, train crews, develop clinical protocols and countermeasures for prospective space missions. We have conducted a literature review on anaesthesia in austere environments relevant to distant space missions. In each setting, we assessed how the problems related to the provision of anaesthesia (e.g., medical kit and skills) are dealt with or prepared for. We analysed how these factors could be applied to the unique environment of a space exploration mission. The delivery of anaesthesia will be complicated by many factors including space-induced physiological changes and limitations in skills and equipment. The basic principles of a safe anaesthesia in an austere environment (appropriate training, presence of minimal safety and monitoring equipment, etc.) can be extended to the context of a space exploration mission. Skills redundancy is an important safety factor, and basic competency in anaesthesia should be part of the skillset of several crewmembers. The literature suggests that safe and effective anaesthesia could be achieved by a physician during future space exploration missions. In a life-or-limb situation, non-physicians may be able to conduct anaesthetic procedures, including simplified general anaesthesia.

  15. Next Steps Toward Understanding Human Habitation of Space: Environmental Impacts and Mechanisms

    Science.gov (United States)

    Globus, Ruth

    2016-01-01

    Entry into low earth orbit and beyond causes profound shifts in environmental conditions that have the potential to influence human productivity, long term health, and even survival. We now have evidence that microgravity, radiation and/or confinement in space can lead to demonstrably detrimental changes in the cardiovascular (e.g. vessel function, orthostatic intolerance), musculoskeletal (muscle atrophy, bone loss) and nervous (eye, neurovestibular) systems of astronauts. Because of both the limited number of astronauts who have flown (especially females) and the high degree of individual variability in the human population, important unanswered questions about responses to the space environment remain: What are the sex differences with respect to specific physiological systems? Are the responses age-dependent and/or reversible after return to Earth? Do observed detrimental changes that resemble accelerated aging progress continuously over time or plateau? What are the mechanisms of the biological responses? Answering these important questions certainly demands a multi-pronged approach, and the study of multicellular model organisms (such as rodents and flies) already has provided opportunities for exploring those questions in some detail. Recent long duration spaceflight experiments with rodents show that mice in space provide a mammalian model that uniquely combines the influence of reduced gravitational loading with increased physical activity. In addition, multiple investigators have shown that ground-based models that simulate aspects of spaceflight (including rodent hind limb unloading to mimic weightlessness and exposure to ionizing radiation), cause various transient and persistent detrimental consequences in multiple physiological systems. In general, we have found that adverse skeletal effects of simulated weightlessness and space radiation when combined, can be quantitatively, if not qualitatively, different from the influence of each environmental

  16. EcAMSat and BioSentinel: Autonomous Bio Nanosatellites Addressing Strategic Knowledge Gaps for Manned Spaceflight Beyond LEO

    Science.gov (United States)

    Padgen, Mike

    2017-01-01

    Manned missions beyond low Earth orbit (LEO) require that several strategic knowledge gaps about the effects of space travel on the human body be addressed. NASA Ames Research Center has been the leader in developing autonomous bio nanosatellites, including past successful missions for GeneSat, PharmaSat, and OOREOS, that tackled some of these issues. These nanosatellites provide in situ measurements, which deliver insight into the dynamic changes in cell behavior in microgravity. In this talk, two upcoming bio nanosatellites developed at Ames, the E. coli Antimicrobial Satellite (EcAMSat) and BioSentinel, will be discussed. Both satellites contain microfluidic systems that precisely deliver nutrients to the microorganisms stored within wells of fluidic cards. Each well, in turn, has its own 3-color LED and detector system which is used to monitor changes in metabolic activity with alamarBlue, a redox indicator, and the optical density of the cells. EcAMSat investigates the effects of microgravity on bacterial resistance to antimicrobial drugs, vital knowledge for understanding how to maintain the health of astronauts in long-term and beyond LEO spaceflight. The behavior of wild type and mutant uropathic E. coli will be compared in microgravity and with ground data to help understand the molecular mechanisms behind antibiotic resistance and how these phenotypes might change in space. BioSentinel seeks to directly measure the effects of space radiation on budding yeast S. cerevisiae, particularly double strand breaks (DSB). While hitching a ride on the SLS EM-1 mission (Orions first unmanned mission to the moon) in 2018, BioSentinel will be kicked off and enter into a heliocentric orbit, becoming the first study of the effects of radiation on living organisms outside LEO since the Apollo program. The yeast are stored in eighteen independent 16-well microfluidic cards, which will be individually activated over the 12 month mission duration. In addition to the wild

  17. Chromosome mechanics of fungi under spaceflight conditions--tetrad analysis of two-factor crosses between spore color mutants of Sordaria macrospora.

    Science.gov (United States)

    Hahn, A; Hock, B

    1999-01-01

    Spore color mutants of the fungus Sordaria macrospora Auersw. were crossed under spaceflight conditions on the space shuttle to MIR mission S/MM 05 (STS-81). The arrangement of spores of different colors in the asci allowed conclusions on the influence of spaceflight conditions on sexual recombination in fungi. Experiments on a 1-g centrifuge in space and in parallel on the ground were used for controls. The samples were analyzed microscopically on their return to earth. Each fruiting body was assessed separately. Statistical analysis of the data showed a significant increase in gene recombination frequencies caused by the heavy ion particle stream in space radiation. The lack of gravity did not influence crossing-over frequencies. Hyphae of the flown samples were assessed for DNA strand breaks. No increase in damage was found compared with the ground samples. It was shown that S. macrospora is able to repair radiation-induced DNA strand breaks within hours.

  18. Evidence-Based Recommendations for Optimizing Light in Day-to-Day Spaceflight Operations

    Science.gov (United States)

    Whitmire, Alexandra; Leveton, Lauren; Barger, Laura; Clark, Toni; Bollweg, Laura; Ohnesorge, Kristine; Brainard, George

    2015-01-01

    NASA Behavioral Health and Performance Element (BHP) personnel have previously reported on efforts to transition evidence-based recommendations for a flexible lighting system on the International Space Station (ISS). Based on these recommendations, beginning in 2016 the ISS will replace the current fluorescent-based lights with an LED-based system to optimize visual performance, facilitate circadian alignment, promote sleep, and hasten schedule shifting. Additional efforts related to lighting countermeasures in spaceflight operations have also been underway. As an example, a recent BHP research study led by investigators at Harvard Medical School and Brigham and Women's Hospital, evaluated the acceptability, feasibility, and effectiveness of blue-enriched light exposure during exercise breaks for flight controllers working the overnight shift in the Mission Control Center (MCC) at NASA Johnson Space Center. This effort, along with published laboratory studies that have demonstrated the effectiveness of appropriately timed light for promoting alertness, served as an impetus for new light options, and educational protocols for flight controllers. In addition, a separate set of guidelines related to the light emitted from electronic devices, were provided to the Astronaut Office this past year. These guidelines were based on an assessment led by NASA's Lighting Environment Test Facility that included measuring the spectral power distribution, irradiance, and radiance of light emitted from ISS-grade laptops and I-Pads, as well as Android devices. Evaluations were conducted with and without the use of off-the-shelf screen filters as well as a software application that touts minimizing the short-wave length of the visible light spectrum. This presentation will focus on the transition for operations process related to lighting countermeasures in the MCC, as well as the evidence to support recommendations for optimal use of laptops, I-Pads, and Android devices during all

  19. Reducing the likelihood of future human activities that could affect geologic high-level waste repositories

    International Nuclear Information System (INIS)

    1984-05-01

    The disposal of radioactive wastes in deep geologic formations provides a means of isolating the waste from people until the radioactivity has decayed to safe levels. However, isolating people from the wastes is a different problem, since we do not know what the future condition of society will be. The Human Interference Task Force was convened by the US Department of Energy to determine whether reasonable means exist (or could be developed) to reduce the likelihood of future human unintentionally intruding on radioactive waste isolation systems. The task force concluded that significant reductions in the likelihood of human interference could be achieved, for perhaps thousands of years into the future, if appropriate steps are taken to communicate the existence of the repository. Consequently, for two years the task force directed most of its study toward the area of long-term communication. Methods are discussed for achieving long-term communication by using permanent markers and widely disseminated records, with various steps taken to provide multiple levels of protection against loss, destruction, and major language/societal changes. Also developed is the concept of a universal symbol to denote Caution - Biohazardous Waste Buried Here. If used for the thousands of non-radioactive biohazardous waste sites in this country alone, a symbol could transcend generations and language changes, thereby vastly improving the likelihood of successful isolation of all buried biohazardous wastes

  20. Reducing the likelihood of future human activities that could affect geologic high-level waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    1984-05-01

    The disposal of radioactive wastes in deep geologic formations provides a means of isolating the waste from people until the radioactivity has decayed to safe levels. However, isolating people from the wastes is a different problem, since we do not know what the future condition of society will be. The Human Interference Task Force was convened by the US Department of Energy to determine whether reasonable means exist (or could be developed) to reduce the likelihood of future human unintentionally intruding on radioactive waste isolation systems. The task force concluded that significant reductions in the likelihood of human interference could be achieved, for perhaps thousands of years into the future, if appropriate steps are taken to communicate the existence of the repository. Consequently, for two years the task force directed most of its study toward the area of long-term communication. Methods are discussed for achieving long-term communication by using permanent markers and widely disseminated records, with various steps taken to provide multiple levels of protection against loss, destruction, and major language/societal changes. Also developed is the concept of a universal symbol to denote Caution - Biohazardous Waste Buried Here. If used for the thousands of non-radioactive biohazardous waste sites in this country alone, a symbol could transcend generations and language changes, thereby vastly improving the likelihood of successful isolation of all buried biohazardous wastes.