WorldWideScience

Sample records for future energy systems

  1. Bio energy: Bio energy in the Energy System of the Future

    International Nuclear Information System (INIS)

    Finden, Per; Soerensen, Heidi; Wilhelmsen, Gunnar

    2001-01-01

    This is Chapter 7, the final chapter, of the book ''Bio energy - Environment, technique and market''. Its main sections are: (1) Factors leading to changes in the energy systems, (2) The energy systems of the future, globally, (3) The future energy system in Norway and (4) Norwegian energy policy at the crossroads

  2. Future development of nuclear energy systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Nuclear energy development in Japan has passed about 30 years, and reaches to a step to supply about 35 % of total electric power demand. However, together with globalization of economic and technical development, its future progressing method is required for its new efforts. Among such conditions, when considering a state of future type nuclear energy application, its contribution to further environmental conservation and international cooperation is essential, and it is required for adoption to such requirement how it is made an energy source with excellent economics.The Research Committee on 'Engineering Design on Nuclear Energy Systems' established under recognition in 1998 has been carried out some discussions on present and future status of nuclear energy development. And so forth under participation of outer specialists. Here were summarized on two year's committee actions containing them and viewpoints of nuclear industries, popularization of nuclear system technology, and so forth. (G.K.)

  3. Integration of renewable and conventional energies. How to design future energy systems?

    Energy Technology Data Exchange (ETDEWEB)

    Hellinger, Rolf [Siemens AG, Erlangen (Germany). CT RTC PET

    2015-07-01

    The worldwide increasing energy demand, especially in the economically emerging countries, and the climate change are a major challenge for the energy supply. One of the most severe challenges is the reduction of carbon dioxide emissions which can also be seen in the planned investment for energy systems. At the same time, energy systems worldwide are in transition, driven by market and technology trends. As a consequence of these trends, the complexity of future energy systems will extremely increase. The paper outlines a new approach for sustainable, reliable and affordable energy systems of the future, based on technologies, available and under development, which combine different forms of energy.

  4. Integration of renewable and conventional energies. How to design future energy systems?

    International Nuclear Information System (INIS)

    Hellinger, Rolf

    2015-01-01

    The worldwide increasing energy demand, especially in the economically emerging countries, and the climate change are a major challenge for the energy supply. One of the most severe challenges is the reduction of carbon dioxide emissions which can also be seen in the planned investment for energy systems. At the same time, energy systems worldwide are in transition, driven by market and technology trends. As a consequence of these trends, the complexity of future energy systems will extremely increase. The paper outlines a new approach for sustainable, reliable and affordable energy systems of the future, based on technologies, available and under development, which combine different forms of energy.

  5. Potential future waste-to-energy systems

    OpenAIRE

    Thorin, Eva; Guziana, Bozena; Song, Han; Jääskeläinen, Ari; Szpadt, Ryszard; Vasilic, Dejan; Ahrens, Thorsten; Anne, Olga; Lõõnik, Jaan

    2012-01-01

    This report discusses potential future systems for waste-to-energy production in the Baltic Sea Region, and especially for the project REMOWE partner regions, the County of Västmanland in Sweden, Northern Savo in Finland, Lower Silesia in Poland, western part of Lithuania and Estonia. The waste-to-energy systems planned for in the partner regions are combustion of municipal solid waste (MSW) and solid recovered fuels from household and industry as well as anaerobic digestion of sewage sludge ...

  6. Fuel cells and electrolysers in future energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad

    be considered which fuels such technologies can utilise and how these fuels can be distributed. Natural gas is not an option in future renewable energy systems and the de‐ mand for gaseous fuels, such as biogas or syngas, will increase significantly. Hence, fuel cell CHP plants represent a more fuel...... of transport, battery electric vehicles are more suitable than hydrogen fuel cell vehicles in future energy system. Battery electric ve‐ hicles may, for a part of the transport demand, have limitations in their range. Hybrid tech‐ nologies may provide a good option, which can combine the high fuel efficiency......Efficient fuel cells and electrolysers are still at the development stage. In this dissertation, future developed fuel cells and electrolysers are analysed in future renewable energy sys‐ tems. Today, most electricity, heat and transport demands are met by combustion tech‐ nologies. Compared...

  7. Electric energy storage systems for future hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kemper, Hans; Huelshorst, Thomas [FEV Motorentechnik GmbH, Aachen (Germany); Sauer, Dirk Uwe [Elektrochemische Energiewandlung und Speichersystemtechnik, ISEA, RWTH Aachen Univ. (Germany)

    2008-07-01

    Electric energy storage systems play a key role in today's and even more in future hybrid and electric vehicles. They enable new additional functionalities like Start/Stop, regenerative braking or electric boost and pure electric drive. This article discusses properties and requirements of battery systems like power provision, energy capacity, life time as a function of the hybrid concepts and the real operating conditions of the today's and future hybrid drivetrains. Battery cell technology, component sizing, system design, operating strategy safety measures and diagnosis, modularity and vehicle integration are important battery development topics. A final assessment will draw the conclusion that future drivetrain concepts with higher degree of electrician will be significantly dependent on the progress of battery technology. (orig.)

  8. Risoe energy report 8. The intelligent energy system infrastructure for the future

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Soenderberg Petersen, L. (eds.)

    2009-09-15

    This report is volume 8 in a series started in 2002, and will take its point of reference in the need for the development of a highly flexible and intelligent energy system infrastructure which facilitates substantial higher amounts of renewable energy than today's energy systems. This intelligent and flexible infrastructure is a prerequisite in achieving the goals set up by IPCC in 2007 on CO{sub 2} reductions as well as ensuring the future security of energy supply in all regions of the world. The report presents a generic approach for future infrastructure issues on local, regional and global scale with focus on the energy system. The report is based on chapters and updates from Risoe Energy Report 1 - 7, as well as input from contributors to the DTU Climate Change Technology workshops and available international literature and reports. (author)

  9. The role of district heating in future renewable energy systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Möller, Bernd; Mathiesen, Brian Vad

    2010-01-01

    Based on the case of Denmark, this paper analyses the role of district heating in future Renewable Energy Systems. At present, the share of renewable energy is coming close to 20 per cent. From such point of departure, the paper defines a scenario framework in which the Danish system is converted...... to 100 per cent Renewable Energy Sources (RES) in the year 2060 including reductions in space heating demands by 75 per cent. By use of a detailed energy system analysis of the complete national energy system, the consequences in relation to fuel demand, CO2 emissions and cost are calculated for various...... as in a potential future system based 100 per cent on renewable energy....

  10. Role of nuclear fusion in future energy systems and the environment under future uncertainties

    International Nuclear Information System (INIS)

    Tokimatsu, Koji; Fujino, Jun'ichi; Konishi, Satoshi; Ogawa, Yuichi; Yamaji, Kenji

    2003-01-01

    Debates about whether or not to invest heavily in nuclear fusion as a future innovative energy option have been made within the context of energy technology development strategies. This is because the prospects for nuclear fusion are quite uncertain and the investments therefore carry the risk of quite large regrets, even though investment is needed in order to develop the technology. The timeframe by which nuclear fusion could become competitive in the energy market has not been adequately studied, nor has roles of the nuclear fusion in energy systems and the environment. The present study has two objectives. One is to reveal the conditions under which nuclear fusion could be introduced economically (hereafter, we refer to such introductory conditions as breakeven prices) in future energy systems. The other objective is to evaluate the future roles of nuclear fusion in energy systems and in the environment. Here we identify three roles that nuclear fusion will take on when breakeven prices are achieved: (i) a portion of the electricity market in 2100, (ii) reduction of annual global total energy systems cost, and (iii) mitigation of carbon tax (shadow price of carbon) under CO 2 constraints. Future uncertainties are key issues in evaluating nuclear fusion. Here we treated the following uncertainties: energy demand scenarios, introduction timeframe for nuclear fusion, capacity projections of nuclear fusion, CO 2 target in 2100, capacity utilization ratio of options in energy/environment technologies, and utility discount rates. From our investigations, we conclude that the presently designed nuclear fusion reactors may be ready for economical introduction into energy systems beginning around 2050-2060, and we can confirm that the favorable introduction of the reactors would reduce both the annual energy systems cost and the carbon tax (the shadow price of carbon) under a CO 2 concentration constraint

  11. Hydrogen Storage Technologies for Future Energy Systems.

    Science.gov (United States)

    Preuster, Patrick; Alekseev, Alexander; Wasserscheid, Peter

    2017-06-07

    Future energy systems will be determined by the increasing relevance of solar and wind energy. Crude oil and gas prices are expected to increase in the long run, and penalties for CO 2 emissions will become a relevant economic factor. Solar- and wind-powered electricity will become significantly cheaper, such that hydrogen produced from electrolysis will be competitively priced against hydrogen manufactured from natural gas. However, to handle the unsteadiness of system input from fluctuating energy sources, energy storage technologies that cover the full scale of power (in megawatts) and energy storage amounts (in megawatt hours) are required. Hydrogen, in particular, is a promising secondary energy vector for storing, transporting, and distributing large and very large amounts of energy at the gigawatt-hour and terawatt-hour scales. However, we also discuss energy storage at the 120-200-kWh scale, for example, for onboard hydrogen storage in fuel cell vehicles using compressed hydrogen storage. This article focuses on the characteristics and development potential of hydrogen storage technologies in light of such a changing energy system and its related challenges. Technological factors that influence the dynamics, flexibility, and operating costs of unsteady operation are therefore highlighted in particular. Moreover, the potential for using renewable hydrogen in the mobility sector, industrial production, and the heat market is discussed, as this potential may determine to a significant extent the future economic value of hydrogen storage technology as it applies to other industries. This evaluation elucidates known and well-established options for hydrogen storage and may guide the development and direction of newer, less developed technologies.

  12. The role of Solar thermal in Future Energy Systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Hansen, Kenneth

    This report deals with solar thermal technologies and investigates possible roles for solar thermal in future energy systems for four national energy systems; Germany, Austria, Italy and Denmark. The project period started in January 2014 and finished by October 2017. This report is based...

  13. Vision of future energy networks - Final report; Vision of future energy networks - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, K.; Andersson, G.

    2008-07-01

    In the framework of the project 'Vision of Future Networks', models and methods have been developed that enable a greenfield approach for energy systems with multiple energy carriers. Applying a greenfield approach means that no existing infrastructure is taken into account when designing the energy system, i.e. the system is virtually put up on a green field. The developed models refer to the impacts of energy storage on power systems with stochastic generation, to the integrated modelling and optimization of multi-carrier energy systems, to reliability considerations of future energy systems as well as to possibilities of combined transmission of multiple energy carriers. Key concepts, which have been developed in the framework of this project, are the Energy Hub (for the conversion and storage of energy) and the Energy Interconnector (for energy transmission). By means of these concepts, it is possible to design structures for future energy systems being able to cope with the growing requirements regarding energy supply. (author)

  14. The role of fuel cells and electrolysers in future efficient energy systems

    DEFF Research Database (Denmark)

    Hendriksen, Peter Vang; Vad Mathiesen, Brian; Pedersen, Allan Schrøder

    2012-01-01

    Fuel cells can increase the efficiency of the energy system and electrolysers can help enable a de-carbonisation of the energy supply. In this chapter we explain the role of fuel cells in future energy systems together with the role of electrolysers in smart energy systems with increasing penetra...... penetrations of intermittent renewable resources in the electricity grid increases the demand for smart energy systems.......Fuel cells can increase the efficiency of the energy system and electrolysers can help enable a de-carbonisation of the energy supply. In this chapter we explain the role of fuel cells in future energy systems together with the role of electrolysers in smart energy systems with increasing...

  15. The generation IV nuclear reactor systems - Energy of future

    International Nuclear Information System (INIS)

    Ohai, Dumitru; Jianu, Adrian

    2006-01-01

    Ten nations joined within the Generation IV International Forum (GIF), agreeing on a framework for international cooperation in research. Their goal is to develop future-generation nuclear energy systems that can be licensed, constructed, and operated in an economically competitive way while addressing the issues of safety, proliferation, and other public perception concerns. The objective is for the Gen IV systems to be available for deployment by 2030. Using more than 100 nuclear experts from its 10 member nations, the GIF has developed a Gen IV Technology Roadmap to guide the research and development of the world's most advanced, efficient and safe nuclear power systems. The Gen IV Technology Roadmap calls for extensive research and development of six different potential future reactor systems. These include water-cooled, gas-cooled, liquid metal-cooled and nonclassical systems. One or more of these reactor systems will provide the best combination of safety, reliability, efficiency and proliferation resistance at a competitive cost. The main goals for the Gen IV Nuclear Energy Systems are: - Provide sustainable energy generation that meets clean air objectives and promotes long-term availability of systems and effective fuel use for worldwide energy production; - Minimize and manage their nuclear waste and noticeably reduce the long-term stewardship burden in the future, improving the protection of public health and the environment; - Increase the assurance that these reactors are very unattractive and the least desirable route for diversion or theft of weapons-usable materials, and provide increased protection against acts of terrorism; - Have a clear life-cycle cost advantage over other energy sources; - Have a level of financial risk comparable to other energy projects; - Excel in safety and reliability; - Have a low likelihood and degree of reactor core damage. (authors)

  16. Advanced Reactor Systems and Future Energy Market Needs

    International Nuclear Information System (INIS)

    Magwood, W.; Keppler, J.H.; Paillere, Henri; ); Gogan, K.; Ben Naceur, K.; Baritaud, M.; ); Shropshire, D.; ); Wilmshurst, N.; Janssens, A.; Janes, J.; Urdal, H.; Finan, A.; Cubbage, A.; Stoltz, M.; Toni, J. de; Wasylyk, A.; Ivens, R.; Paramonov, D.; Franceschini, F.; Mundy, Th.; Kuran, S.; Edwards, L.; Kamide, H.; Hwang, I.; Hittner, D.; ); Levesque, C.; LeBlanc, D.; Redmond, E.; Rayment, F.; Faudon, V.; Finan, A.; Gauche, F.

    2017-04-01

    It is clear that future nuclear systems will operate in an environment that will be very different from the electricity systems that accompanied the fast deployment of nuclear power plants in the 1970's and 1980's. As countries fulfil their commitment to de-carbonise their energy systems, low-carbon sources of electricity and in particular variable renewables, will take large shares of the overall generation capacities. This is challenging since in most cases, the timescale for nuclear technology development is far greater than the speed at which markets and policy/regulation frameworks can change. Nuclear energy, which in OECD countries is still the largest source of low-carbon electricity, has a major role to play as a low-carbon dispatchable technology. In its 2 degree scenarios, the International Energy Agency (IEA) projects that nuclear capacity globally could reach over 900 GW by 2050, with a share of electricity generation rising from less than 11% today to about 16%. Nuclear energy could also play a role in the decarbonization of the heat sector, by targeting non-electric applications. The workshop discussed how energy systems are evolving towards low-carbon systems, what the future of energy market needs are, the changing regulatory framework from both the point of view of safety requirements and environmental constraints, and how reactor developers are taking these into account in their designs. In terms of technology, the scope covered all advanced reactor systems under development today, including evolutionary light water reactors (LWRs), small modular reactors (SMRs) - whether LWR technology-based or not, and Generation IV (Gen IV) systems. This document brings together the available presentations (slides) of the workshop

  17. Modelling the existing Irish energy-system to identify future energy costs and the maximum wind penetration feasible

    DEFF Research Database (Denmark)

    Connolly, D.; Lund, Henrik; Mathiesen, Brian Vad

    2010-01-01

    energy- system to future energy costs by considering future fuel prices, CO2 prices, and different interest rates. The final investigation identifies the maximum wind penetration feasible on the 2007 Irish energy- system from a technical and economic perspective, as wind is the most promising fluctuating...... for the existing Irish energy-system is approximately 30% from both a technical and economic perspective based on 2020 energy prices. Future studies will use the model developed in this study to show that higher wind penetrations can be achieved if the existing energy-system is modified correctly. Finally...... renewable resource available in Ireland. It is concluded that the reference model simulates the Irish energy-system accurately, the annual fuel costs for Ireland’s energy could increase by approximately 58% from 2007 to 2020 if a business-as-usual scenario is followed, and the optimum wind penetration...

  18. Advances in molten salt electrochemistry towards future energy systems

    International Nuclear Information System (INIS)

    Ito, Yasuhiko

    2005-01-01

    This review article describes some selected novel molten salt electrochemical processes which have been created/developed by the author and his coworkers, with emphasis on the applications towards future energy systems. After showing a perspective of the applications of molten salt electrochemistry from the viewpoints of energy and environment, several selected topics are described in detail, which include nitride fuel cycle in a nuclear field, hydrogen energy system coupled with ammonia economy, thermally regenerative fuel cell systems, novel Si production process for solar cell and novel molten salt electrochemical processes for various energy and environment related functional materials including nitrides, rare earth-transition metal alloys, fine particles obtained by plasma-induced electrolysis, and carbon film. And finally, the author stresses again, the importance and potential of molten salt electrochemistry, and encourages young students, scientists and researchers to march in a procession hand in hand towards a bright future of molten salts. (author)

  19. Risoe energy report 7. Future low carbon energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Soenderberg Petersen, L. (eds.)

    2008-10-15

    This Risoe Energy Report, the seventh of a series that began in 2002, takes as its point of reference the recommendations of the Intergovernmental Panel on Climate Change (IPCC) in 2007. The IPCC states that if anticipated climate change is to remain in the order of 2 to 3 degrees centigrades over the next century, the world's CO{sub 2} emissions would have to peak within the next 10-15 years and ultimately be reduced to approximately 50% of their present level by the middle of the century. The IPCC states further that this would be possible, provided that serious action is taken now. The different regions and countries of the world are in various states of development, and hence have different starting points for contributing to these reductions in CO{sub 2} emissions. This report presents state-of-the-art and development perspectives for energy supply technologies, new energy systems, end-use energy efficiency improvements and new policy measures. It also includes estimates of the CO{sub 2} reduction potentials for different technologies. The technologies are characterized with regard to their ability to contribute either to ensuring a peak in CO{sub 2} emissions within 10-15 years, or to long-term CO{sub 2} reductions. The report outlines the current and likely future composition of energy systems in Denmark, and examines three groups of countries: i) Europe and the other OECD member nations; ii) large and rapidly growing developing economies, notably India and China; iii) typical least developed countries, such as many African nations. The report emphasises how future energy developments and systems might be composed in these three country groupings, and to what extent the different technologies might contribute. The report addresses the need for research and demonstration together with market incentives, and policy measures with focus on initiatives that can promote the development towards CO{sub 2} reductions. Specifically, the report identifies system

  20. Eating energy-Identifying possibilities for reduced energy use in the future food supply system

    International Nuclear Information System (INIS)

    Wallgren, Christine; Hoejer, Mattias

    2009-01-01

    This paper explores the possibilities for reducing future energy use for eating to a sustainable level. A backcasting approach is used to generate an image of the future where energy use for eating is 60% lower in 2050 than in 2000. The currently known potential to reduce energy use in the food supply system for producing, transporting, storing, cooking and eating food is explored and described in terms of a number of distinct changes that are numbered consecutively and presented in both a quantitative and qualitative way. Sweden is used as the case and all data regarding energy use apply for Swedish conditions. An exercise like this illustrates the possible outcome of taking sustainability seriously. If sustainability is to be achieved, some images of the future are needed so that potential targets can be identified. This paper does not present forecasts, but illustrates the kind of changes needed in order to achieve sustainable energy use in the food system.

  1. Risoe energy report 4: The future energy system - distributed production and use

    International Nuclear Information System (INIS)

    Larsen, Hans; Soenderberg Petersen, L.

    2005-10-01

    The world is facing major challenges in providing energy services to meet the future needs of the developed world and the growing needs of developing countries. These challenges are exacerbated by the need to provide energy services with due respect to economic growth, sustainability and security of supply. Today, the world's energy system is based mainly on oil, gas and coal, which together supply around 80% of our primary energy. Only around 0.5% of primary energy comes from renewable sources such as wind, solar and geothermal. Despite the rapid development of new energy technologies, the world will continue to depend on fossil fuels for several decades to come - and global primary energy demand is forecasted to grow by 60% between 2002 and 2030. The expected post Kyoto targets call for significant CO 2 reductions, increasing the demand to decouple the energy and transport systems from fossil fuels. There is a strong need for closer links between electricity, heat and other energy carriers, including links to the transport sector. On a national scale Denmark has three main characteristics. Firstly, it has a diverse and distributed energy system based on the power grid, the district heating grid and the natural gas grid. Secondly, renewable energy, especially wind power, plays an increasingly important role in the Danish energy system. Thirdly, Denmark's geographical location allows it to act as a buffer between the energy systems of the European continent and the Nordic countries. Energy systems can be made more robust by decentralising both power generation and control. Distributed generation (DG) is characterised by a variety of energy production technologies integrated into the electricity supply system, and the ability of different segments of the grid to operate autonomously. The use of a more distributed power generation system would be an important element in the protection of the consumers against power interruptions and blackouts, whether caused by

  2. Air quality and future energy system planning

    Science.gov (United States)

    Sobral Mourao, Zenaida; Konadu, Dennis; Lupton, Rick

    2016-04-01

    Ambient air pollution has been linked to an increasing number of premature deaths throughout the world. Projected increases in demand for food, energy resources and manufactured products will likely contribute to exacerbate air pollution with an increasing impact on human health, agricultural productivity and climate change. Current events such as tampering emissions tests by VW car manufacturers, failure to comply with EU Air Quality directives and WHO guidelines by many EU countries, the problem of smog in Chinese cities and new industrial emissions regulations represent unique challenges but also opportunities for regulators, local authorities and industry. However current models and practices of energy and resource use do not consider ambient air impacts as an integral part of the planing process. Furthermore the analysis of drivers, sources and impacts of air pollution is often fragmented, difficult to understand and lacks effective visualization tools that bring all of these components together. This work aims to develop a model that links impacts of air quality on human health and ecosystems to current and future developments in the energy system, industrial and agricultural activity and patterns of land use. The model will be added to the ForeseerTM tool, which is an integrated resource analysis platform that has been developed at the University of Cambridge initially with funding from BP and more recently through the EPSRC funded Whole Systems Energy Modeling (WholeSEM) project. The basis of the tool is a set of linked physical models for energy, water and land, including the technologies that are used to transform these resources into final services such as housing, food, transport and household goods. The new air quality model will explore different feedback effects between energy, land and atmospheric systems with the overarching goal of supporting better communication about the drivers of air quality and to incorporate concerns about air quality into

  3. Scenario-based roadmapping assessing nuclear technology development paths for future nuclear energy system scenarios

    International Nuclear Information System (INIS)

    Van Den Durpel, Luc; Roelofs, Ferry; Yacout, Abdellatif

    2009-01-01

    Nuclear energy may play a significant role in a future sustainable energy mix. The transition from today's nuclear energy system towards a future more sustainable nuclear energy system will be dictated by technology availability, energy market competitiveness and capability to achieve sustainability through the nuclear fuel cycle. Various scenarios have been investigated worldwide each with a diverse set of assumptions on the timing and characteristics of new nuclear energy systems. Scenario-based roadmapping combines the dynamic scenario-analysis of nuclear energy systems' futures with the technology roadmap information published and analysed in various technology assessment reports though integrated within the nuclear technology roadmap Nuclear-Roadmap.net. The advantages of this combination is to allow mutual improvement of scenario analysis and nuclear technology roadmapping providing a higher degree of confidence in the assessment of nuclear energy system futures. This paper provides a description of scenario-based roadmapping based on DANESS and Nuclear-Roadmap.net. (author)

  4. Modelling the existing Irish energy-system to identify future energy costs and the maximum wind penetration feasible

    International Nuclear Information System (INIS)

    Connolly, D.; Leahy, M.; Lund, H.; Mathiesen, B.V.

    2010-01-01

    In this study a model of the Irish energy-system was developed using EnergyPLAN based on the year 2007, which was then used for three investigations. The first compares the model results with actual values from 2007 to validate its accuracy. The second illustrates the exposure of the existing Irish energy-system to future energy costs by considering future fuel prices, CO 2 prices, and different interest rates. The final investigation identifies the maximum wind penetration feasible on the 2007 Irish energy-system from a technical and economic perspective, as wind is the most promising fluctuating renewable resource available in Ireland. It is concluded that the reference model simulates the Irish energy-system accurately, the annual fuel costs for Ireland's energy could increase by approximately 58% from 2007 to 2020 if a business-as-usual scenario is followed, and the optimum wind penetration for the existing Irish energy-system is approximately 30% from both a technical and economic perspective based on 2020 energy prices. Future studies will use the model developed in this study to show that higher wind penetrations can be achieved if the existing energy-system is modified correctly. Finally, these results are not only applicable to Ireland, but also represent the issues facing many other countries. (author)

  5. Risoe energy report 4: The future energy system - distributed production and use

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Soenderberg Petersen, L.

    2005-10-01

    The world is facing major challenges in providing energy services to meet the future needs of the developed world and the growing needs of developing countries. These challenges are exacerbated by the need to provide energy services with due respect to economic growth, sustainability and security of supply. Today, the world's energy system is based mainly on oil, gas and coal, which together supply around 80% of our primary energy. Only around 0.5% of primary energy comes from renewable sources such as wind, solar and geothermal. Despite the rapid development of new energy technologies, the world will continue to depend on fossil fuels for several decades to come - and global primary energy demand is forecasted to grow by 60% between 2002 and 2030. The expected post Kyoto targets call for significant CO{sub 2} reductions, increasing the demand to decouple the energy and transport systems from fossil fuels. There is a strong need for closer links between electricity, heat and other energy carriers, including links to the transport sector. On a national scale Denmark has three main characteristics. Firstly, it has a diverse and distributed energy system based on the power grid, the district heating grid and the natural gas grid. Secondly, renewable energy, especially wind power, plays an increasingly important role in the Danish energy system. Thirdly, Denmark's geographical location allows it to act as a buffer between the energy systems of the European continent and the Nordic countries. Energy systems can be made more robust by decentralising both power generation and control. Distributed generation (DG) is characterised by a variety of energy production technologies integrated into the electricity supply system, and the ability of different segments of the grid to operate autonomously. The use of a more distributed power generation system would be an important element in the protection of the consumers against power interruptions and blackouts, whether

  6. Impacts of Renewable Energy Quota System on China's Future Power Sector

    DEFF Research Database (Denmark)

    Xiong, Weiming; Zhang, Da; Mischke, Peggy

    2014-01-01

    As the biggest carbon emitting sector which produces 44% of current national carbon emission in China, the coal-dominated power sector has a tremendous potential for CO2 mitigation in the next two decades. Renewable energy quota system is currently discussed as a potential future policy instrument...... for the power sector, which requires certain fraction of renewable energy in total power generation for each province and grid zone. The quantitative studies on renewable energy quota for China are still very limited. Based on a least-cost and technology-rich power generation and transmission expansion model...... for China, this study examines the impacts of renewable energy quota system and carbon cap policy instruments on the future Chinese power sector. Various scenarios are examined toward 2030 and their future power generation mix, capacity installations and carbon emission are discussed. This study concludes...

  7. Joint optimisation of the future Danish waste and energy system

    DEFF Research Database (Denmark)

    Münster, Marie; Pizarro, Amalia Rosa; Salvucci, Raffaele

    2015-01-01

    in future scenarios with higher biomass consumption, where the average heat prices are higher. In both scenarios, biogas produced from organic waste is upgraded and fed into the natural gas grid and waste is incinerated rather than being centrally sorted in a material recovery facility.......In this article the impact of the future development of the energy system on the feasibility of waste treatment options is analysed. In the article two different optimization tools are used: a regional electricity model (Balmorel) and a national waste treatment and district heating model (Opti......Waste). When performing optimization by minimizing the socio-economic costs, into future energy systems with high wind power production, it proves feasible primarily to incinerate waste in large scale combined heat and power (CHP) plants, whereas more incineration takes place in decentralized CHP plants...

  8. DTU international energy report 2013. Energy storage options for future sustainable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Hvidtfeldt Larsen, H.; Soenderberg Petersen, L. (eds.)

    2013-11-01

    One of the great challenges in the transition to a non-fossil energy system with a high share of fluctuating renewable energy sources such as solar and wind is to align consumption and production in an economically satisfactory manner. Energy storage could provide the necessary balancing power to make this possible. This energy report addresses energy storage from a broad perspective: It analyses smaller stores that can be used locally in for example heat storage in the individual home or vehicle, such as electric cars or hydrogen cars. The report also addresses decentralized storage as flywheels and batteries linked to decentralized energy systems. In addition it addresses large central storages as pumped hydro storage and compressed air energy storage and analyse this in connection with international transmission and trading over long distances. The report addresses electrical storage, thermal storage and other forms of energy storage, for example conversion of biomass to liquid fuel and conversion of solar energy directly into hydrogen, as well as storage in transmission, grid storage etc. Finally, the report covers research, innovation and the future prospects and addresses the societal challenges and benefits of the use of energy storage. (Author)

  9. A brief history and the possible future of urban energy systems

    International Nuclear Information System (INIS)

    Rutter, Paul; Keirstead, James

    2012-01-01

    Modern cities depend on energy systems to deliver a range of services such as heating, cooling, lighting, mobility, communications, and so on. This article examines how these urban energy systems came to be, tracing the major transitions from the earliest settlements through to today's fossil-fuelled cities. The underlying theme is “increasing efficiency under constraints” with each transition marked by increasing energy efficiency in service provision, increasing per capita energy use, increasing complexity in the energy system's structure, with innovations driven by a strategic view of the overall system, and accompanied by wider changes in technology and society. In developed countries, the future of urban energy systems is likely to continue many of these trends, with increased efficiency being driven by the constraints of climate change and rising fuel prices. Both supply and demand side technologies are discussed as potential solutions to these issues, with different impacts on the urban environment and its citizens. However in developing countries, rising urban populations and access to basic energy services will drive the next transition. - Highlights: ► Urban energy system transitions in history are reviewed. ► Common features include increased per capita energy use, growing system complexity, and technological innovation. ► Future transitions will be shaped by the constraints of climate change, rising fuel prices, and urbanisation. ► Long-term sustainability depends on ability to innovate rapidly; opportunities exist on supply and demand sides.

  10. Priority order in using biomass resources - Energy systems analyses of future scenarios for Denmark

    DEFF Research Database (Denmark)

    Kwon, Pil Seok; Østergaard, Poul Alberg

    2013-01-01

    . This article compares the value of using biomass as a heat source and for electricity generation in a 100% renewable energy system context. The comparison is done by assuming an incremental decrease in the biomass available for the electricity and heat sector, respectively. The assumed scenarios......According to some future Danish energy scenarios, biomass will become one of the two main pillars of the future energy system accompanied by wind power. The biomass can be used for generating heat and electricity, and as a transportation fuel in a future energy system according to the scenarios...... for the decrease of biomass are made by use of an hourly energy system analysis model, EnergyPLAN. The results are shown in terms of system configuration, biomass fuel efficiency, system cost, and impacts on the export of electricity. It is concluded that the reduction of biomass in the heat sector is better than...

  11. Energy sources for future. Change to a sustainable energy system

    International Nuclear Information System (INIS)

    Morris, C.

    2005-01-01

    Can Germany give up gasoline and power from coal or nuclear energy and how much does it cost? The book does away with all common misunderstandings due to renewable energy sources and describes a compatible model for a sustainable energy mixing in future. Nevertheless fossil fuels are not denounced but seen as a platform for the advanced system. The author explains first why objections to renewable energy sources base on bad information, and pursues quite an other argumentation as such authors emphasizing the potential of these energy sources. Than he shows in detail the possibility of the optimal energy mixing for biomass, solar power, wind power, geothermal energy, hydropower and energy efficiency. The environment will reward us for this and instead buying expensive resources from foreign countries we will create work places at home. The number of big power plants - taking into account safety risks - will decrease and small units of on-site power generation feeded with this renewable sources will play more and more an important role. (GL) [de

  12. The Energy System of the Future is Smart and Flexible

    DEFF Research Database (Denmark)

    Pallesen, Trine; Karnøe, Peter; Holm Jacobsen, Peter

    and policy makers are debating the possible organization of a system based on 100% renewables and the market design providing the best ‘fit’ for this system. Despite controversies, one thing seems clear: the energy system of the future is smart and flexible. But what smart and flexible means – and how...

  13. Solar/electric heating systems for the future energy system

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Dannemand, M.; Perers, B. [and others

    2013-05-15

    The aim of the project is to elucidate how individual heating units for single family houses are best designed in order to fit into the future energy system. The units are based on solar energy, electrical heating elements/heat pump, advanced heat storage tanks and advanced control systems. Heat is produced by solar collectors in sunny periods and by electrical heating elements/heat pump. The electrical heating elements/heat pump will be in operation in periods where the heat demand cannot be covered by solar energy. The aim is to use the auxiliary heating units when the electricity price is low, e.g. due to large electricity production by wind turbines. The unit is equipped with an advanced control system where the control of the auxiliary heating is based on forecasts of the electricity price, the heat demand and the solar energy production. Consequently, the control is based on weather forecasts. Three differently designed heating units are tested in a laboratory test facility. The systems are compared on the basis of: 1) energy consumption for the auxiliary heating; 2) energy cost for the auxiliary heating; 3) net utilized solar energy. Starting from a normal house a solar combi system (for hot water and house heating) can save 20-30% energy cost, alone, depending on sizing of collector area and storage volume. By replacing the heat storage with a smart tank based on electric heating elements and a smart control based on weather/load forecast and electricity price information 24 hours ahead, another 30-40% can be saved. That is: A solar heating system with a solar collector area of about 10 m{sup 2}, a smart tank based on electric heating element and a smart control system, can reduce the energy costs of the house by at least 50%. No increase of heat storage volume is needed to utilize the smart control. The savings in % are similar for different levels of building insulation. As expected a heat pump in the system can further reduce the auxiliary electricity

  14. Risø energy report 4. The future energy system - distributed production and use

    DEFF Research Database (Denmark)

    Larsen, Hans Hvidtfeldt; Sønderberg Petersen, Leif

    2005-01-01

    technologies or fuel cells. Furthermore the following developments are expected: -closer link between supply and end-use -closer link between the various energy carriers distributed through grids such aselectricity, heat, natural gas and maybe hydrogen in the future -increased energy trade across national...... and the distribution of energy through grids such as those used for natural gas, electricity, districtheating and hydrogen. The focus is on industrialised countries, but the report also deals with specific points relevant to developing countries, such as isolated energy systems. The transport sector is discussed only...

  15. Editorial : Introduction to Energy Strategy Reviews theme issue “Future Energy Systems and Market Integration of Wind Power”

    NARCIS (Netherlands)

    Lund, H.; Weijermars, R.

    2013-01-01

    Energy Strategy Reviews (ESR) provides a peer-reviewed publication platformto evaluate strategy options for tomorrow’s energy systems. The focus in this special issue is on “Future Energy Systems and Market Integration of Wind Power” and possible solutions are highlighted from the strategy viewpoint

  16. Low Temperature District Heating for Future Energy Systems

    DEFF Research Database (Denmark)

    Ford, Rufus; Pietruschka, Dirk; Sipilä, Kari

    participants being VTT Technical Research Centre of Finland (VTT), Technical University of Denmark (DTU), Norwegian University of Science and Technology (NTNU), Stuttgart Technology University of Applied Sciences (HFT) and SSE Enterprise in United Kingdom. The demonstration cases described in the report......This report titled “Case studies and demonstrations” is the subtask D report of the IEA DHC|CHP Annex TS1 project “Low Temperature District Heating for Future Energy Systems” carried out between 2013 and 2016. The project was led by Fraunhofer Institute for Building Physics (IBP) with the other...... include examples on low temperature district heating systems, solar heating in a district heating system, heat pump based heat supply and energy storages for both peak load management and for seasonal heat storage. Some demonstrations have been implemented while others are at planning phase...

  17. The role of Carbon Capture and Storage in a future sustainable energy system

    DEFF Research Database (Denmark)

    Lund, Henrik; Mathiesen, Brian Vad

    2012-01-01

    systems, the number of utilisation hours of power and CHP plants will have to decrease substantially due to the energy efficiency measures in combination with the inclusion of renewable energy power inputs from wind and similar resources. Consequently, no power or CHP plants exist in future sustainable......This paper presents the results of adding a CCS(Carbon Capture and Storage) plant including an underground CO2 storage to a well described and well documented vision of converting the present Danish fossil based energy system into a future sustainable energy system made by the Danish Society...... huge construction costs with the expectation of long lifetimes. Consequently, the CCS has to operate as part of large-scale power or CHP plants with high utilisation hours for the CCS investment to come even close to being feasible. However, seen in the light of transforming to sustainable energy...

  18. Next generation of energy production systems; Lancement pour les systemes du futur

    Energy Technology Data Exchange (ETDEWEB)

    Rouault, J.; Garnier, J.C. [CEA Saclay Dir. de l' Energie Nucleaire DEN, 91 - Gif sur Yvette (France); Carre, F. [CEA Saclay, Dir. du Developpement et de l' Innovation Nucleares - DDIN, 91 - Gif Sur Yvette (France)] [and others

    2003-07-01

    This document gathers the slides that have been presented at the Gedepeon conference. Gedepeon is a research group involving scientists from Cea (French atomic energy commission), CNRS (national center of scientific research), EDF (electricity of France) and Framatome that is devoted to the study of new energy sources and particularly to the study of the future generations of nuclear systems. The contributions have been classed into 9 topics: 1) gas cooled reactors, 2) molten salt reactors (MSBR), 3) the recycling of plutonium and americium, 4) reprocessing of molten salt reactor fuels, 5) behavior of graphite under radiation, 6) metallic materials for molten salt reactors, 7) refractory fuels of gas cooled reactors, 8) the nuclear cycle for the next generations of nuclear systems, and 9) organization of research programs on the new energy sources.

  19. Denmark`s energy futures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The stated aim of the document published by the Danish Ministry of Environment and Energy and the Danish Energy Agency is that it should form the basis for a broad public debate on the country`s future energy policy. The report has four main objectives: 1. To describe, with emphasis on the environment and the market, challenges that the energy sector will have to face in the future. 2. To illustrate the potentials for saving energy and for utilising energy sources and supply systems. 3. To present two scenarios of extreme developmental positions; the first where maximum effort is expended on increasing energy efficiency and the utilization of renewable energy and the second where no new initiative is taken and change occurs only when progress in available technology is exploited and 4. To raise a number of questions about our future way of living. Following the extensive summary, detailed information is given under the headings of: Challenges of the energy sector, Energy consumption and conservation, Energy consumption in the transport sector, Energy resources, Energy supply and production, Development scenario, and Elements of Strategy. The text is illustrated with maps, graphs and coloured photographs etc. (AB)

  20. Comparison of future energy scenarios for Denmark: IDA 2050, CEESA (Coherent Energy and Environmental System Analysis), and Climate Commission 2050

    International Nuclear Information System (INIS)

    Kwon, Pil Seok; Østergaard, Poul Alberg

    2012-01-01

    Scenario-making is becoming an important tool in energy policy making and energy systems analyses. This article probes into the making of scenarios for Denmark by presenting a comparison of three future scenarios which narrate 100% renewable energy system for Denmark in 2050; IDA 2050, Climate Commission 2050, and CEESA (Coherent Energy and Environmental System Analysis). Generally, although with minor differences, the scenarios suggest the same technological solutions for the future such as expansion of biomass usage and wind power capacity, integration of transport sector into the other energy sectors. The methodologies used in two academic scenarios, IDA 2050 and CEESA, are compared. The main differences in the methodologies of IDA 2050 and CEESA are found in the estimation of future biomass potential, transport demand assessment, and a trial to examine future power grid in an electrical engineering perspective. The above-mentioned methodologies are compared in an evolutionary perspective to determine if the methodologies reflect the complex reality well. The results of the scenarios are also assessed within the framework of “radical technological change” in order to show which future scenario assumes more radical change within five dimensions of technology; technique, knowledge, organization, product, and profit. -- Highlights: ► Three future scenarios for Danish future in 2050 are compared. ► All of these scenarios suggest the same solutions for the future with minor differences. ► There are differences in methodologies for IDA 2050 and CEESA such as biomass, transport, and power grid. ► The contents of scenarios are assessed which scenario assume more radical technological change in the future.

  1. Total energy system in the future

    International Nuclear Information System (INIS)

    Hijikata, K.

    1994-01-01

    The possibility of improving the thermal efficiency of energy systems from an exergy point of view is discussed. In total energy systems, we should employ multi-pass recycling consisting of thermal and chemical energies. The recycling system is supported by electrical energy, which is provided by a renewable energy source or by excess commercial electric power. This total energy system should be considered not only in one country, but all around the globe. (author). 6 figs., 4 tabs., 8 refs

  2. The Integration of Sustainable Transport into Future Renewable Energy Systems in China

    DEFF Research Database (Denmark)

    Liu, Wen

    use are largely lost in the current fossil fuel dominated energy systems. Sustainable transport development requires solutions from an overall renewable energy system in which integration of large-scale intermittent renewable energy needs assistance. Technologies of alternative vehicle fuels...... in transport may play a role in furthering such integration. The objective of this research is to make a contribution to the development of methodologies to identify and develop future sustainable transport systems as well as to apply such methodologies to the case of China. In particular, the methodological...... development focuses on 1) identifying suitable transport technologies and strategies based on renewable energy and 2) evaluating such technologies from the perspective of overall renewable energy system integration. For this purpose, a methodological framework involving the research fields of both...

  3. Toward sustainable energy futures

    Energy Technology Data Exchange (ETDEWEB)

    Pasztor, J. (United Nations Environment Programme, Nairobi (Kenya))

    1990-01-01

    All energy systems have adverse as well as beneficial impacts on the environment. They vary in quality, quantity, in time and in space. Environmentally sensitive energy management tries to minimize the adverse impacts in an equitable manner between different groups in the most cost-effective ways. Many of the enviornmental impacts of energy continue to be externalized. Consequently, these energy systems which can externalize their impacts more easily are favoured, while others remain relatively expensive. The lack of full integration of environmental factors into energy policy and planning is the overriding problem to be resolved before a transition towards sustainable energy futures can take place. The most pressing problem in the developing countries relates to the unsustainable and inefficient use of biomass resources, while in the industrialized countries, the major energy-environment problems arise out of the continued intensive use of fossil fuel resources. Both of these resource issues have their role to play in climate change. Although there has been considerable improvement in pollution control in a number of situations, most of the adverse impacts will undoubtedly increase in the future. Population growth will lead to increased demand, and there will also be greater use of lower grade fuels. Climate change and the crisis in the biomass resource base in the developing countries are the most critical energy-environment issues to be resolved in the immediate future. In both cases, international cooperation is an essential requirement for successful resolution. 26 refs.

  4. Impacts of Renewable Energy Quota System on China's Future Power Sector

    OpenAIRE

    Xiong, Weiming; Zhang, Da; Mischke, Peggy; Zhang, Xiliang

    2014-01-01

    As the biggest carbon emitting sector which produces 44% of current national carbon emission in China, the coal-dominated power sector has a tremendous potential for CO2 mitigation in the next two decades. Renewable energy quota system is currently discussed as a potential future policy instrument for the power sector, which requires certain fraction of renewable energy in total power generation for each province and grid zone. The quantitative studies on renewable energy quota for China are ...

  5. Comparison of future energy scenarios for Denmark

    DEFF Research Database (Denmark)

    Kwon, Pil Seok; Østergaard, Poul Alberg

    2012-01-01

    Scenario-making is becoming an important tool in energy policy making and energy systems analyses. This article probes into the making of scenarios for Denmark by presenting a comparison of three future scenarios which narrate 100% renewable energy system for Denmark in 2050; IDA 2050, Climate...... Commission 2050, and CEESA (Coherent Energy and Environmental System Analysis). Generally, although with minor differences, the scenarios suggest the same technological solutions for the future such as expansion of biomass usage and wind power capacity, integration of transport sector into the other energy...

  6. Energy futures

    International Nuclear Information System (INIS)

    Treat, J.E.

    1990-01-01

    This book provides fifteen of the futures industry's leading authorities with broader background in both theory and practice of energy futures trading in this updated text. The authors review the history of the futures market and the fundamentals of trading, hedging, and technical analysis; then they update you with the newest trends in energy futures trading - natural gas futures, options, regulations, and new information services. The appendices outline examples of possible contracts and their construction

  7. Optimization of use of waste in the future energy system

    International Nuclear Information System (INIS)

    Muenster, Marie; Meibom, Peter

    2011-01-01

    Alternative uses of waste for energy production become increasingly interesting when considered from two perspectives, that of waste management and the energy system perspective. This paper presents the results of an enquiry into the use of waste in a future energy system. The analysis was performed using the energy system analysis model, Balmorel. The study is focused on Germany and the Nordic countries and demonstrates the optimization of both investments and production within the energy systems. The results present cost optimization excluding taxation concerning the use of waste for energy production in Denmark in a 2025 scenario with 48% renewable energy. Investments in a range of waste conversion technologies are facilitated, including waste incineration, co-combustion with coal, anaerobic digestion, and gasification. The most economically feasible solutions are found to be incineration of mixed waste, anaerobic digestion of organic waste, and gasification of part of the potential RDF (refuse derived fuel) for CHP (combined heat and power) production, while the remaining part is co-combusted with coal. Co-combustion mainly takes place in new coal-fired power plants, allowing investments to increase in comparison with a situation where only investments in waste incineration are allowed. -- Highlights: → The analysis is based on hourly chronological time steps, thereby taking dynamic properties of the energy system into account. → The system analyzed includes both the heat and the electricity market, which is important when analyzing e.g. CHP technologies. → The surrounding countries, which form part of the same electricity market, are included in the analysis. → New innovative Waste-to-Energy production plants have been modeled to allow for a more efficient and flexible use of waste. → The analysis includes economical optimization of operation and of investments in production and transmission of both electricity and heat.

  8. Keeping an eye on reliability : The organizational requirements of future renewable energy systems

    NARCIS (Netherlands)

    Scholten, D.J.

    2012-01-01

    The reliable operation of energy infrastructures is more than just a technical matter. It is also dependent upon the organizational structure that enables and constrains entities in their management of operations. Yet this lesson seems forgotten in our planning of future renewable energy systems.

  9. Future Energy Grid. Migration paths into the energy Internet; Future Energy Grid. Migrationspfade ins Internet der Energie

    Energy Technology Data Exchange (ETDEWEB)

    Appelrath, Hans-Juergen [Oldenburg Univ. (Germany); Kagermann, Henning [acatech - Deutsche Akademie der Technikwissenschaften, Berlin (Germany). Hauptstadtbuero; Mayer, Christoph (eds.) [OFFIS e.V., Oldenburg (Germany)

    2012-07-01

    The present study describes the migration path that must be taken up to the year 2030 in pursuit of the Future Energy Grid. For this purpose it has explored what possible future scenarios must be taken into account along the migration path. The following key factors were identified in preparation of drawing up scenarios: expansion of the electrical infrastructure; system-wide availability of an information and communication technology infrastructure; flexibilisation of consumption; energy mix; new services and products; final consumer costs; and standardisation and political framework conditions. These eight key factors were combined with each other in different variants to give three consistent scenarios for the year 2030.

  10. A scenario analysis of future energy systems based on an energy flow model represented as functionals of technology options

    International Nuclear Information System (INIS)

    Kikuchi, Yasunori; Kimura, Seiichiro; Okamoto, Yoshitaka; Koyama, Michihisa

    2014-01-01

    Highlights: • Energy flow model was represented as the functionals of technology options. • Relationships among available technologies can be visualized by developed model. • Technology roadmapping can be incorporated into the model as technical scenario. • Combination of technologies can increase their contribution to the environment. - Abstract: The design of energy systems has become an issue all over the world. A single optimal system cannot be suggested because the availability of infrastructure and resources and the acceptability of the system should be discussed locally, involving all related stakeholders in the energy system. In particular, researchers and engineers of technologies related to energy systems should be able to perform the forecasting and roadmapping of future energy systems and indicate quantitative results of scenario analyses. We report an energy flow model developed for analysing scenarios of future Japanese energy systems implementing a variety of feasible technology options. The model was modularized and represented as functionals of appropriate technology options, which enables the aggregation and disaggregation of energy systems by defining functionals for single technologies, packages integrating multi-technologies, and mini-systems such as regions implementing industrial symbiosis. Based on the model, the combinations of technologies on both energy supply and demand sides can be addressed considering not only the societal scenarios such as resource prices, economic growth and population change but also the technical scenarios including the development and penetration of energy-related technologies such as distributed solid oxide fuel cells in residential sectors and new-generation vehicles, and the replacement and shift of current technologies such as heat pumps for air conditioning and centralized power generation. The developed model consists of two main modules; namely, a power generation dispatching module for the

  11. Nuclear energy of the future, solar energy of the future: some convergencies

    International Nuclear Information System (INIS)

    Flamant, G.

    2006-01-01

    Most medium- and long-term energy scenarios foresee the joint development of renewable and nuclear energies. In other words, the energy sources must be as various as possible. Among the renewable energy sources, the solar energy presents the highest development potential, even if today the biomass and wind energies are quantitatively more developed. In France, the solar power generation is ensured by photovoltaic systems. However, the thermodynamical conversion of solar energy (using concentrating systems) represents an enormous potential at the world scale and several projects of solar plants are in progress in Spain and in the USA. The advantages of this solution are numerous: high efficiency of thermodynamic cycles, possibility of heat storage and hybridization (solar/fuels), strong potential of innovation. Moreover, the solar concentrators allow to reach temperatures higher than 1000 deg. C and thus allow to foresee efficient thermochemical cycles for hydrogen generation. The future solar plants will have to be efficient, reliable and will have to be able to meet the energy demand. In order to reach high thermodynamic cycle efficiencies, it is necessary to increase the temperature of the hot source and to design combined cycles. These considerations are common to the communities of researchers and engineers of both the solar thermal and nuclear industries. Therefore, the future development of generation 4 nuclear power plants and of generation 3 solar plants are conditioned by the resolution of similar problems, like the coolants (molten salts and gases), the materials (metals and ceramics), the heat transfers (hydrogen generation), and the qualification of systems (how solar concentrators can help to perform qualification tests of nuclear materials). Short communication. (J.S.)

  12. Unraveling the Importance of Climate Change Resilience in Planning the Future Sustainable Energy System

    Science.gov (United States)

    Tarroja, B.; AghaKouchak, A.; Forrest, K.; Chiang, F.; Samuelsen, S.

    2017-12-01

    In response to concerns regarding the environmental impacts of the current energy resource mix, significant research efforts have been focused on determining the future energy resource mix to meet emissions reduction and environmental sustainability goals. Many of these studies focus on various constraints such as costs, grid operability requirements, and environmental performance, and develop different plans for the rollout of energy resources between the present and future years. One aspect that has not yet been systematically taken into account in these planning studies, however, is the potential impacts that changing climates may have on the availability and performance of key energy resources that compose these plans. This presentation will focus on a case study for California which analyzes the impacts of climate change on the greenhouse gas emissions and renewable resource utilization of an energy resource plan developed by Energy Environmental Economics for meeting the state's year 2050 greenhouse gas goal of 80% reduction in emissions by the year 2050. Specifically, climate change impacts on three aspects of the energy system are investigated: 1) changes in hydropower generation due to altered precipitation, streamflow and runoff patterns, 2) changes in the availability of solar thermal and geothermal power plant capacity due to shifting water availability, and 3) changes in the residential and commercial electric building loads due to increased temperatures. These impacts were discovered to cause the proposed resource plan to deviate from meeting its emissions target by up to 5.9 MMT CO2e/yr and exhibit a reduction in renewable resource penetration of up to 3.1% of total electric energy. The impacts of climate change on energy system performance were found to be mitigated by increasing the flexibility of the energy system through increased storage and electric load dispatchability. Overall, this study highlights the importance of taking into account and

  13. Why Synthetic Fuels Are Necessary in Future Energy Systems

    Directory of Open Access Journals (Sweden)

    I. A. Grant Wilson

    2017-07-01

    Full Text Available We propose a hypothesis that fuels will continue to be critical elements of future energy systems. The reasons behind this are explored, such as the immense benefits conferred by fuels from their low cost of storage, transport, and handling, and especially in the management of the seasonal swing in heating demand for a country with a summer and winter season such as the UK. Empirical time-series data from Great Britain are used to examine the seasonal nature of the demand for liquid fuels, natural gas, and electricity, with the aid of a daily Shared Axis Energy Diagram. The logic of the continued need of fuels is examined, and the advantages and disadvantages of synthetic fuels are considered in comparison to fossil fuels.

  14. Why Synthetic Fuels Are Necessary in Future Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, I. A. Grant, E-mail: grant.wilson@sheffield.ac.uk [UK Centre for Carbon Dioxide Utilisation, Chemical & Biological Engineering, Sir Robert Hadfield Building, The University of Sheffield, Sheffield (United Kingdom); UK Energy Research Centre (UKERC), London (United Kingdom); Styring, Peter [UK Centre for Carbon Dioxide Utilisation, Chemical & Biological Engineering, Sir Robert Hadfield Building, The University of Sheffield, Sheffield (United Kingdom)

    2017-07-24

    We propose a hypothesis that fuels will continue to be critical elements of future energy systems. The reasons behind this are explored, such as the immense benefits conferred by fuels from their low cost of storage, transport, and handling, and especially in the management of the seasonal swing in heating demand for a country with a summer and winter season such as the UK. Empirical time-series data from Great Britain are used to examine the seasonal nature of the demand for liquid fuels, natural gas, and electricity, with the aid of a daily Shared Axis Energy Diagram. The logic of the continued need of fuels is examined, and the advantages and disadvantages of synthetic fuels are considered in comparison to fossil fuels.

  15. Fusion energy - an abundant energy source for the future

    DEFF Research Database (Denmark)

    Fusion energy is the fundamental energy source of the Universe, as the energy of the Sun and the stars are produced by fusion of e.g. hydrogen to helium. Fusion energy research is a strongly international endeavor aiming at realizing fusion energy production in power plants on Earth. Reaching...... this goal, mankind will have a sustainable base load energy source with abundant resources, having no CO2 release, and with no longlived radioactive waste. This presentation will describe the basics of fusion energy production and the status and future prospects of the research. Considerations...... of integration into the future electricity system and socio-economic studies of fusion energy will be presented, referring to the programme of Socio-Economic Research on Fusion (SERF) under the European Fusion Energy Agreement (EFDA)....

  16. Transition of Future Energy System Infrastructure; through Power-to-Gas Pathways

    Directory of Open Access Journals (Sweden)

    Azadeh Maroufmashat

    2017-07-01

    Full Text Available Power-to-gas is a promising option for storing interment renewables, nuclear baseload power, and distributed energy and it is a novel concept for the transition to increased renewable content of current fuels with an ultimate goal of transition to a sustainable low-carbon future energy system that interconnects power, transportation sectors and thermal energy demand all together. The aim of this paper is to introduce different Power-to-gas “pathways”, including Power to Hydrogen, Power to Natural Gas End-users, Power to Renewable Content in Petroleum Fuel, Power to Power, Seasonal Energy Storage to Electricity, Power to Zero Emission Transportation, Power to Seasonal Storage for Transportation, Power to Micro grid, Power to Renewable Natural Gas (RNG to Pipeline (“Methanation”, and Power to Renewable Natural Gas (RNG to Seasonal Storage. In order to compare the different pathways, the review of key technologies of Power-to-gas systems are studied and the qualitative efficiency and benefits of each pathway is investigated from the technical points of view. Moreover, different Power-to-gas pathways are discussed as an energy policy option that can be implemented to transition towards a lower carbon economy for Ontario’s energy systems.

  17. Nuclear energy in our future

    International Nuclear Information System (INIS)

    Hennies, H.H.

    1988-01-01

    Nuclear energy for electricity generation will extend its market portion in Europe in the coming decades because: 1) its economic and/or environment-relevant advantages compared with the fossil energy sources are so explicit that the latter will no longer be competitive; 2) the improvements of the system engineering, which are presently being implemented and are to be expected in the future, will enhance the safety facilities to the extent that accident risk will cease to be a decisive factor; 3) energy-saving effects or the use of solar energy will not provide an appropriate large scale alternative for coal and/or nuclear energy; 4) the problems of radioactive waste disposal will be definitely solved within the foreseeable future. Considering all the technological systems available the light water reactor will continue to dominate. The change to the breeder reactor is not yet under discussion because of the medium-term guaranteed uranium supply. The use of nuclear technology in the heating market will depend for the moment on the availability and cost of oil and gas development. In principle nuclear energy can play an important role also in this sector

  18. Solar energy futures in a Western European context

    Energy Technology Data Exchange (ETDEWEB)

    Nakicenovic, N; Messner, S

    1983-02-01

    The study considers three limiting scenarios that specify possible but not necessarily likely transitions to sustainable energy futures for Western Europe. Two scenarios consider exclusively solar futures--one based on centralized solar technologies (Hard scenario) and the other on decentralized, user-oriented technologies (Soft scenario). The third scenario, based on nuclear technologies, incorporates an intermediate degree of centralization in the energy system and serves as a comparison to the two exclusively solar scenarios. All three scenarios lead to sustainable energy futures before the year 2100, which is the time horizon of the study. While all three scenarios eliminate Western Europe's dependence on domestic and foreign fossil energy sources, the Hard Solar scenario requires substantial imports of solar produced hydrogen. The scenarios are based on dynamic balances of energy demand and supply using detailed models to achieve consistency. The overall implications of each scenario are that fundamental but different changes of the whole energy system, economic structure and life-styles are necessary in order to achieve sustainable energy futures in Western Europe.

  19. Solar energy futures in a Western European context

    Energy Technology Data Exchange (ETDEWEB)

    Nakicenovic, N; Messner, S

    1983-02-01

    The study considers three limiting scenarios that specify possible but not necessarily likely transitions to sustainable energy future for Western Europe. Two scenarios consider exclusively solar futures - one based on centralized solar technologies (hard scenario) and the other on decentralized, user-oriented technologies (soft scenario). The third scenario, based on nuclear technologies, incorporates an intermediate degree of centralization in the energy system and serves as a comparison to the two exclusively solar scenarios. All three scenarios lead to sustainable energy futures before the year 2100, which is the time horizon of the study. While all three scenarios eliminate Western Europe's dependence on domestic and foreign fossil energy sources, the Hard Solar scenario requires substantial imports of solar produced hydrogen. The scenarios are based on dynamic balances of energy demand and supply using detailed models to achieve consistency. The overall implications of each scenario are that fundamental but different changes of the whole energy system, economic structure and life-styles are necessary in order to achieve sustainable energy futures in Western Europe.

  20. Factors that influence consumers' acceptance of future energy systems : the effects of adjustment type, production level, and price

    NARCIS (Netherlands)

    Leijten, Fenna R. M.; Bolderdijk, Jan Willem; Keizer, Kees; Gorsira, Madelijne; van der Werff, Ellen; Steg, Linda

    2014-01-01

    To promote the successful introduction of sustainable energy systems, more insight is needed into factors influencing consumer's acceptance of future energy systems. A questionnaire study among 139 Dutch citizens (aged 18-85) was conducted. Participants rated the acceptability of energy systems made

  1. Proceedings. Future Energy - Resources, Distribution and Use

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Leading abstract. The goals of the Norwegian Academy of Technological Sciences (NTVA) are to promote research, education and development within technological and related sciences, for the benefit of the Norwegian society and for the development of Norwegian industry. Future energy policy and Global climate change are major issues in the Norwegian discussion today. The answers given have great influence on our industry and involve huge technological challenges. In the current situation NTVA wishes to contribute to the development of new technology. In 1998 the Norwegian Academy of Technological Sciences organized the seminar ''Do We Understand Global Climate Change''. NTVA have now followed this up with a seminar on the Energy System, one of the major sources of manmade greenhouse gases. The world's demand for energy increases with improvements in our standards of living. The cleaning of emissions from production processes requires more energy. A modem information and communication society requires more energy. A new life style with increased use of all kinds of motorized tools is also leading to growth in energy consumption. Due to the risk in this human contribution to global warming, a major shift in the Energy System towards environmental sustain ability is being discussed. Changing the Energy System will require large investments in know-how and technology development, and it will take a long time to alter the rigid infrastructure of our existing Energy System. The road to the ''Clean Energy Society'' probably cannot be built by prescribing the use of one technology only. It makes a lot more sense to encourage competition between different technologies and then let experience and the market decide the winners. It will also be important to invest in the development of robust knowledge that can be applied within a broad spectrum of possible development scenarios during the next decades. Society's attitudes towards the environment, energy and the use of resources

  2. Proceedings. Future Energy - Resources, Distribution and Use

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Leading abstract. The goals of the Norwegian Academy of Technological Sciences (NTVA) are to promote research, education and development within technological and related sciences, for the benefit of the Norwegian society and for the development of Norwegian industry. Future energy policy and Global climate change are major issues in the Norwegian discussion today. The answers given have great influence on our industry and involve huge technological challenges. In the current situation NTVA wishes to contribute to the development of new technology. In 1998 the Norwegian Academy of Technological Sciences organized the seminar ''Do We Understand Global Climate Change''. NTVA have now followed this up with a seminar on the Energy System, one of the major sources of manmade greenhouse gases. The world's demand for energy increases with improvements in our standards of living. The cleaning of emissions from production processes requires more energy. A modem information and communication society requires more energy. A new life style with increased use of all kinds of motorized tools is also leading to growth in energy consumption. Due to the risk in this human contribution to global warming, a major shift in the Energy System towards environmental sustain ability is being discussed. Changing the Energy System will require large investments in know-how and technology development, and it will take a long time to alter the rigid infrastructure of our existing Energy System. The road to the ''Clean Energy Society'' probably cannot be built by prescribing the use of one technology only. It makes a lot more sense to encourage competition between different technologies and then let experience and the market decide the winners. It will also be important to invest in the development of robust knowledge that can be applied within a broad spectrum of possible development scenarios during the next decades. Society's attitudes towards

  3. Our future energy

    Energy Technology Data Exchange (ETDEWEB)

    2011-11-15

    The Danish Government's plan ''Our Future Energy'' seeks to create green growth and help the country convert to 100 percent renewable energy use by 2050. The Danish Government in November 2011 presented its plan for how the country can secure its energy future. Titled ''Our Future Energy'', the strategy presents specific measures for fulfilling the Government's goal of stimulating green growth. The plan is based on the previous government's Energy Strategy 2050, but raises the bar higher. The long-term goal of the plan is to implement an energy and transport network that relies solely on renewable energy sources. By 2020, the initiatives will lead to extensive reductions in energy consumption, making it possible for half of the country's electricity consumption to be covered by wind power. Coal is to be phased out of Danish power plants by 2030. And by 2035, all electricity and heating will be generated using renewable sources. (Author)

  4. Sources, availability and costs of future energy

    International Nuclear Information System (INIS)

    Hart, R.G.

    1977-08-01

    An attempt is made to put the future energy scene in perspective by quantitatively examining energy resources, energy utilization and energy costs. Available data on resources show that conventional oil and gas are in short supply and that alternative energy sources are going to have to replace oil and gas in the not too distant future. Cost/applications assessments indicate that a mix of energy sources are likely to best meet our energy needs of the future. Hydro, nuclear and coal are all practical alternatives for meeting electrical needs and electricity is a practical alternative for space heating. Coal appears to be the most practical alternative for meeting much of the industrial energy need and frontier oil or oil from the tar sands appear to be the most practical alternatives for meeting the transportation need. Solar energy shows promise of meeting some of the space heating load in Canada if economical energy storage systems can be developed. The general conclusion is that the basic energy problem is energy conversion. (author)

  5. Future waste treatment and energy systems – examples of joint scenarios

    DEFF Research Database (Denmark)

    Münster, Marie; Finnveden, G.; Wenzel, H.

    2013-01-01

    of scenarios is recommended, too, in order to adapt to the methods and tools of different disciplines, such as developing predictive scenarios with general equilibrium tools and analysing explorative scenarios with energy system analysis tools. Furthermore, as marginals identified in differing future......Development and use of scenarios for large interdisciplinary projects is a complicated task. This article provides practical examples of how it has been carried out in two projects addressing waste management and energy issues respectively. Based on experiences from the two projects......, recommendations are made for an approach concerning development of scenarios in projects dealing with both waste management and energy issues. Recommendations are given to develop and use overall scenarios for the project and leave room for sub-scenarios in parts of the project. Combining different types...

  6. Evaluating the benefits of an electrical energy storage system in a future smart grid

    International Nuclear Information System (INIS)

    Wade, N.S.; Taylor, P.C.; Lang, P.D.; Jones, P.R.

    2010-01-01

    Interest in electrical energy storage systems is increasing as the opportunities for their application become more compelling in an industry with a back-drop of ageing assets, increasing distributed generation and a desire to transform networks into Smart Grids. A field trial of an energy storage system designed and built by ABB is taking place on a section of 11 kV distribution network operated by EDF Energy Networks in Great Britain. This paper reports on the findings from simulation software developed at Durham University that evaluates the benefits brought by operating an energy storage system in response to multiple events on multiple networks. The tool manages the allocation of a finite energy resource to achieve the most beneficial shared operation across two adjacent areas of distribution network. Simulations account for the key energy storage system parameters of capacity and power rating. Results for events requiring voltage control and power flow management show how the choice of operating strategy influences the benefits achieved. The wider implications of these results are discussed to provide an assessment of the role of electrical energy storage systems in future Smart Grids.

  7. The study on the role of very high temperature reactor and nuclear process heat utilization in future energy systems

    International Nuclear Information System (INIS)

    Yasukawa, Shigeru; Mankin, Shuichi; Sato, Osamu; Tadokoro, Yoshihiro; Nakano, Yasuyuki; Nagano, Takao; Yamaguchi, Kazuo; Ueno, Seiichi.

    1987-11-01

    The objectives of the systems analysis study on ''The Role of High Temperature Nuclear Heat in Future Energy Systems'' under the cooperative research program between Japan Atomic Energy Research Institute and the Massachusetts Institute of Technology are to analyze the effect and the impact of introduction of high temperature nuclear heat in Japanese long-term energy systems aiming at zero environmental emissions from view points of energy supply/demand, economy progress, and environmental protection, and to show the potentials of involved technologies and to extract the associated problems necessary for research and developments. This report describes the results being obtained in these three years from 1985. The present status of our energy system are explained at first, then, our findings concerning on analytical approach, method for analysis, view points to the future, scenario state space, reference energy systems, evolving technologies in it, and results analyzed are described. (author)

  8. Multiple Energy System Analysis of Smart Energy Systems

    DEFF Research Database (Denmark)

    Thellufsen, Jakob Zinck

    2015-01-01

    thermal grids and smart gas grids, Smart Energy Systems moves the flexibility away from the fuel as is the case in current energy systems and into the system itself. However, most studies applying a Smart Energy System approach deals with analyses for either single countries or whole continents......To eliminate the use of fossil fuels in the energy sector it is necessary to transition to future 100% renewable energy systems. One approach for this radical change in our energy systems is Smart Energy Systems. With a focus on development and interaction between smart electricity grids, smart......, but it is unclear how regions, municipalities, and communities should deal with these national targets. It is necessary to be able to provide this information since Smart Energy Systems utilize energy resources and initiatives that have strong relations to local authorities and communities, such as onshore wind...

  9. Efficient integration of renewable energy into future energy systems. Development of European energy infrastructures in the period 2030 to 2050

    Energy Technology Data Exchange (ETDEWEB)

    Funk, Carolin; Uhlig, Jeanette; Zoch, Immo (eds.)

    2011-10-15

    In consideration of strategic climate mitigation, energy security and economic competitiveness goals, the EU passed the Directive 2009/28/EC, including a binding target of 20 per cent renewable energy consumption in the EU by 2020. This target is comprehensive and includes energy generation, transport, heating and cooling sectors. In 2008, renewable energy consumption in the EU was about 10 per cent. So meeting the 20 per cent renewable energy objective will require massive changes in energy production, transmission and consumption in the EU. Furthermore, it is obvious that the development of the energy system will not stop in 2020, but that it will continue towards 2050 and beyond. Over the past century, the European electricity system was developed in line with a national utilit y perspective which heavily emphasised large, centralised conventional power production. Investment decisions for new energy infrastructure and technology were typically made at the national level. In the future, much more energy production will be based on local or regional renewable energy sources (RES). Many consumers may also become energy producers feeding into the infrastructures. Transnational energy transfers will gain in importance. These changes will require very different electricity and gas infrastructures and decision-making processes from today. Lack of infrastructure capacity is already a barrier for the further deployment of RES-based energy production in some regions in Europe. (orig.)

  10. Stand-alone power systems for the future: Optimal design, operation and control of solar-hydrogen energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Ulleberg, Oeystein

    1998-12-31

    This thesis gives a systematic review of the fundamentals of energy systems, the governing physical and chemical laws related to energy, inherent characteristics of energy system, and the availability of the earth`s energy. It shows clearly why solar-hydrogen systems are one of the most viable options for the future. The main subject discussed is the modelling of SAPS (Stand-Alone Power Systems), with focus on photovoltaic-hydrogen energy systems. Simulation models for a transient simulation program are developed for PV-H{sub 2} components, including models for photovoltaics, water electrolysis, hydrogen storage, fuel cells, and secondary batteries. A PV-H{sub 2} demonstration plant in Juelich, Germany, is studied as a reference plant and the models validated against data from this plant. Most of the models developed were found to be sufficiently accurate to perform short-term system simulations, while all were more than accurate enough to perform long-term simulations. Finally, the verified simulation models are used to find the optimal operation and control strategies of an existing PV-H{sub 2} system. The main conclusion is that the simulation methods can be successfully used to find optimal operation and control strategies for a system with fixed design, and similar methods could be used to find alternative system designs. 148 refs., 78 figs., 31 tabs.

  11. Stand-alone power systems for the future: Optimal design, operation and control of solar-hydrogen energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Ulleberg, Oeystein

    1999-12-31

    This thesis gives a systematic review of the fundamentals of energy systems, the governing physical and chemical laws related to energy, inherent characteristics of energy system, and the availability of the earth`s energy. It shows clearly why solar-hydrogen systems are one of the most viable options for the future. The main subject discussed is the modelling of SAPS (Stand-Alone Power Systems), with focus on photovoltaic-hydrogen energy systems. Simulation models for a transient simulation program are developed for PV-H{sub 2} components, including models for photovoltaics, water electrolysis, hydrogen storage, fuel cells, and secondary batteries. A PV-H{sub 2} demonstration plant in Juelich, Germany, is studied as a reference plant and the models validated against data from this plant. Most of the models developed were found to be sufficiently accurate to perform short-term system simulations, while all were more than accurate enough to perform long-term simulations. Finally, the verified simulation models are used to find the optimal operation and control strategies of an existing PV-H{sub 2} system. The main conclusion is that the simulation methods can be successfully used to find optimal operation and control strategies for a system with fixed design, and similar methods could be used to find alternative system designs. 148 refs., 78 figs., 31 tabs.

  12. World Energy Future

    International Nuclear Information System (INIS)

    Forbes, A.; Van der Linde, C.; Nicola, S.

    2009-01-01

    In the section World Energy Future of this magazine two articles, two interviews and one column are presented. The article 'A green example to the world' refers briefly to the second World Future Energy Summit in Abu Dhabi, which was held from 18-21 January, 2009. The second article, 'Green Utopia in the desert' attention is paid to the Abu Dhabi government-driven Masdar Initiative. The two interviews concern an interview with BP Alternative Energy ceo Vivienne Cox, and an interview with the founder and CEO of New Energy Finance Michael Liebreich. The column ('An efficient response') focuses on the impact of the economic crisis on energy policy

  13. A comparative study of ammonia energy systems as a future energy carrier, with particular reference to vehicle use in Japan

    International Nuclear Information System (INIS)

    Miura, Daisuke; Tezuka, Tetsuo

    2014-01-01

    The choice of secondary energy carriers, such as electricity, hydrogen and ammonia, influences not only economic and environmental performances but also the reliability of an entire energy system. This article focuses on ammonia because of its excellent property in energy storage, and assesses the relative advantages of several ammonia energy systems for vehicle use in Japan by estimating energy efficiency, CO 2 emissions, and the supply cost of several ammonia energy paths, which are then compared with alternative paths using different energy carriers including hydrogen and electricity. The article also discusses inherent merits and challenges of ammonia energy systems and identifies directions for future research and development. Using ammonia as an energy carrier was demonstrated to be competitive in terms of efficiency, CO 2 emissions and supply cost for energy systems requiring fairly large numbers of storage days. This assessment shows that the use of ammonia in an energy system can improve the continuity of the energy supply in a country or region with insecurity of supply. On the other hand, we argue that further technical improvements and cost reduction associated with both conventional and unconventional ammonia production is imperative for using ammonia in a normal energy system. - Highlights: • We assess merits of energy supply systems using ammonia as an energy carrier. • Comparison with hydrogen or electricity-based energy systems was carried out. • We find ammonia is competitive when requiring large numbers of storage days. • The use of ammonia in energy systems can improve the continuity of energy supply. • Technical improvements are needed to make ammonia attractive in normal systems

  14. How a future energy world could look?

    Directory of Open Access Journals (Sweden)

    Ewert M.

    2012-10-01

    Full Text Available The future energy system will change significantly within the next years as a result of the following Mega Trends: de-carbonization, urbanization, fast technology development, individualization, glocalization (globalization and localization and changing demographics. Increasing fluctuating renewable production will change the role of non-renewable generation. Distributed energy from renewables and micro generation will change the direction of the energy flow in the electricity grids. Production will not follow demand but demand has to follow production. This future system is enabled by the fast technical development of information and communication technologies which will be present in the entire system. In this paper the results of a comprehensive analysis with different scenarios is summarized. Tools were used like the analysis of policy trends in the European countries, modelling of the European power grid, modelling of the European power markets and the analysis of technology developments with cost reduction potentials. With these tools the interaction of the main actors in the energy markets like conventional generation and renewable generation, grid transport, electricity storage including new storage options from E-Mobility, Power to Gas, Compressed Air Energy storage and demand side management were considered. The potential application of technologies and investments in new energy technologies were analyzed within existing frameworks and markets as well as new business models in new markets with different frameworks. In the paper the over all trend of this analysis is presented by describing a potential future energy world. This world represents only one of numerous options with comparable characteristics.

  15. How a future energy world could look?

    Science.gov (United States)

    Ewert, M.

    2012-10-01

    The future energy system will change significantly within the next years as a result of the following Mega Trends: de-carbonization, urbanization, fast technology development, individualization, glocalization (globalization and localization) and changing demographics. Increasing fluctuating renewable production will change the role of non-renewable generation. Distributed energy from renewables and micro generation will change the direction of the energy flow in the electricity grids. Production will not follow demand but demand has to follow production. This future system is enabled by the fast technical development of information and communication technologies which will be present in the entire system. In this paper the results of a comprehensive analysis with different scenarios is summarized. Tools were used like the analysis of policy trends in the European countries, modelling of the European power grid, modelling of the European power markets and the analysis of technology developments with cost reduction potentials. With these tools the interaction of the main actors in the energy markets like conventional generation and renewable generation, grid transport, electricity storage including new storage options from E-Mobility, Power to Gas, Compressed Air Energy storage and demand side management were considered. The potential application of technologies and investments in new energy technologies were analyzed within existing frameworks and markets as well as new business models in new markets with different frameworks. In the paper the over all trend of this analysis is presented by describing a potential future energy world. This world represents only one of numerous options with comparable characteristics.

  16. World Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, A.; Van der Linde, C.; Nicola, S.

    2009-03-15

    In the section World Energy Future of this magazine two articles, two interviews and one column are presented. The article 'A green example to the world' refers briefly to the second World Future Energy Summit in Abu Dhabi, which was held from 18-21 January, 2009. The second article, 'Green Utopia in the desert' attention is paid to the Abu Dhabi government-driven Masdar Initiative. The two interviews concern an interview with BP Alternative Energy ceo Vivienne Cox, and an interview with the founder and CEO of New Energy Finance Michael Liebreich. The column ('An efficient response') focuses on the impact of the economic crisis on energy policy.

  17. Energy Futures

    DEFF Research Database (Denmark)

    Davies, Sarah Rachael; Selin, Cynthia

    2012-01-01

    foresight and public and stakeholder engagement are used to reflect on?and direct?the impacts of new technology. In this essay we draw on our experience of anticipatory governance, in the shape of the ?NanoFutures? project on energy futures, to present a reflexive analysis of engagement and deliberation. We...... draw out five tensions of the practice of deliberation on energy technologies. Through tracing the lineages of these dilemmas, we discuss some of the implications of these tensions for the practice of civic engagement and deliberation in a set of questions for this community of practitioner-scholars....

  18. A multi evaporator desalination system operated with thermocline energy for future sustainability

    KAUST Repository

    Shahzad, Muhammad Wakil

    2017-05-05

    All existing commercial seawater desalination processes, i.e. thermally-driven and membrane-based reverse osmosis (RO), are operated with universal performance ratios (UPR) varying up to 105, whilst the UPR for an ideal or thermodynamic limit (TL) of desalination is at 828. Despite slightly better UPRs for the RO plants, all practical desalination plants available, hitherto, operate at only less than 12% of the TL, rendering them highly energy intensive and unsustainable for future sustainability. More innovative desalination methods must be sought to meet the needs of future sustainable desalination and these methods should attain an upper UPR bound of about 25 to 30% of the TL. In this paper, we examined the efficacy of a multi-effect distillation (MED) system operated with thermocline energy from the sea; a proven desalination technology that can exploit the narrow temperature gradient of 20°C all year round created between the warm surface seawater and the cold-seawater at depths of about 300–600m. Such a seawater thermocline (ST)-driven MED system, simply called the ST-MED process, has the potential to achieve up to 2 folds improvement in desalination efficiency over the existing methods, attaining about 18.8% of the ideal limit. With the major energy input emanated from the renewable solar, the ST-MED is truly a “green desalination” method of low global warming potential, best suited for tropical coastal shores having bathymetry depths of 300m or more.

  19. Strategies towards a 100% renewable energy system for Denmark in the Future Climate Project

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad

    2009-01-01

    energy system by the year 2050 are presented. Two short term transition target years in the process towards this goal are analysed for 2015 and 2030. The analyses reveal that implementing energy savings, renewable energy and more efficient conversion technologies can have positive socioeconomic effects......, create employment and potentially lead to large earnings on exports. If externalities such as health effects etc. are included, even more benefits can be expected. 100 per cent renewable energy systems will be technically possible in the future, and may even be economically beneficial compared......Greenhouse gas mitigation strategies are generally considered costly with world leaders often engaging in debate concerning the costs of mitigation and the distribution of these costs between different countries. In this paper, the analyses and results of the design of a 100 per cent renewable...

  20. Global Energy Assessment. Toward a Sustainable Future

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, T B; Nakicenovic, N; Patwardhan, A; Gomez-Echeverri, L [eds.

    2012-11-01

    The Global Energy Assessment (GEA) brings together over 300 international researchers to provide an independent, scientifically based, integrated and policy-relevant analysis of current and emerging energy issues and options. It has been peer-reviewed anonymously by an additional 200 international experts. The GEA assesses the major global challenges for sustainable development and their linkages to energy; the technologies and resources available for providing energy services; future energy systems that address the major challenges; and the policies and other measures that are needed to realize transformational change toward sustainable energy futures. The GEA goes beyond existing studies on energy issues by presenting a comprehensive and integrated analysis of energy challenges, opportunities and strategies, for developing, industrialized and emerging economies. This volume is an invaluable resource for energy specialists and technologists in all sectors (academia, industry and government) as well as policymakers, development economists and practitioners in international organizations and national governments.

  1. Shaping a sustainable energy future for India: Management challenges

    International Nuclear Information System (INIS)

    Bhattacharyya, Subhes C.

    2010-01-01

    Most of the studies on the Indian energy sector focus on the possible future scenarios of Indian energy system development without considering the management dimension to the problem-how to ensure a smooth transition to reach the desired future state. The purpose of this paper is to highlight some sector management concerns to a sustainable energy future in the country. The paper follows a deductive approach and reviews the present status and possible future energy outlooks from the existing literature. This is followed by a strategy outline to achieve long-term energy sustainability. Management challenges on the way to such a sustainable future are finally presented. The paper finds that the aspiration of becoming an economic powerhouse and the need to eradicate poverty will necessarily mean an increase in energy consumption unless a decoupling of energy and GDP growth is achieved. Consequently, the energy future of the country is eminently unsustainable. A strategy focussing on demand reduction, enhanced access, use of local resources and better management practices is proposed here. However, a sustainable path faces a number of challenges from the management and policy perspectives.

  2. Energy futures-2

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This book covers the proceedings of the Symposium on Energy Futures II. Topics covered include: The National Energy Strategy; The Gas and petroleum industry; energy use in the paper industry; solar energy technology; hydroelectric power; biomass/waste utilization; engine emissions testing laboratories; integrated coal gassification-combined-cycle power plants

  3. Future waste treatment and energy systems – examples of joint scenarios

    International Nuclear Information System (INIS)

    Münster, M.; Finnveden, G.; Wenzel, H.

    2013-01-01

    Highlights: • Approach for use of scenarios dealing with both waste management and energy issues. • Overall scenarios for the common project and sub-scenarios in parts of the project. • Combining different types of scenarios to the tools of different disciplines. • Use of explorative external scenarios based on marginals for consequential LCA. - Abstract: Development and use of scenarios for large interdisciplinary projects is a complicated task. This article provides practical examples of how it has been carried out in two projects addressing waste management and energy issues respectively. Based on experiences from the two projects, recommendations are made for an approach concerning development of scenarios in projects dealing with both waste management and energy issues. Recommendations are given to develop and use overall scenarios for the project and leave room for sub-scenarios in parts of the project. Combining different types of scenarios is recommended, too, in order to adapt to the methods and tools of different disciplines, such as developing predictive scenarios with general equilibrium tools and analysing explorative scenarios with energy system analysis tools. Furthermore, as marginals identified in differing future background systems determine the outcomes of consequential life cycle assessments (LCAs), it is considered advisable to develop and use explorative external scenarios based on possible marginals as a framework for consequential LCAs. This approach is illustrated using an on-going Danish research project

  4. Advanced reactors and future energy market needs

    International Nuclear Information System (INIS)

    Paillere, Henri; )

    2017-01-01

    Based on the results of a very well-attended international workshop on 'Advanced Reactor Systems and Future Energy Market Needs' that took place in April 2017, the NEA has embarked on a two-year study with the objective of analysing evolving energy market needs and requirements, as well as examining how well reactor technologies under development today will fit into tomorrow's low-carbon world. The NEA Expert Group on Advanced Reactor Systems and Future Energy Market Needs (ARFEM) held its first meeting on 5-6 July 2017 with experts from Canada, France, Italy, Japan, Korea, Poland, Romania, Russia and the United Kingdom. The outcome of the study will provide much needed insight into how well nuclear can fulfil its role as a key low-carbon technology, and help identify challenges related to new operational, regulatory or market requirements

  5. Toward an energy surety future.

    Energy Technology Data Exchange (ETDEWEB)

    Tatro, Marjorie L.; Jones, Scott A.; Covan, John Morgan; Kuswa, Glenn W.; Menicucci, David F.; Robinett, Rush D. III (.; )

    2005-10-01

    Because of the inevitable depletion of fossil fuels and the corresponding release of carbon to the environment, the global energy future is complex. Some of the consequences may be politically and economically disruptive, and expensive to remedy. For the next several centuries, fuel requirements will increase with population, land use, and ecosystem degradation. Current or projected levels of aggregated energy resource use will not sustain civilization as we know it beyond a few more generations. At the same time, issues of energy security, reliability, sustainability, recoverability, and safety need attention. We supply a top-down, qualitative model--the surety model--to balance expenditures of limited resources to assure success while at the same time avoiding catastrophic failure. Looking at U.S. energy challenges from a surety perspective offers new insights on possible strategies for developing solutions to challenges. The energy surety model with its focus on the attributes of security and sustainability could be extrapolated into a global energy system using a more comprehensive energy surety model than that used here. In fact, the success of the energy surety strategy ultimately requires a more global perspective. We use a 200 year time frame for sustainability because extending farther into the future would almost certainly miss the advent and perfection of new technologies or changing needs of society.

  6. What is the fast track to future energy systems with lower CO2 emissions? Main findings and recommendations from Workshop on Future Energy Systems, Technical University of Denmark, 19 - 20 November 2008

    Energy Technology Data Exchange (ETDEWEB)

    Soenderberg Petersen, L.; Larsen, Hans (eds.)

    2009-04-15

    As part of the DTU Climate Change Technologies programme, DTU arranges a series of workshops and conferences on climate change technology focusing on assessment of and adaptation to climate changes as well as on mitigation of green house gasses (GHG). Each workshop target a specific problem area. This workshop focuses on the challenges for the future energy system from a Danish perspective as well as world wide with regard to both technology needs and policy measures with particular focus on identifying a fast track to energy systems with lower CO{sub 2} emissions. In the coming years, energy systems will be changed to consist of a combination of central units and smaller decentralized units - to a large extent based on renewable energy. At the same time there will be close links between the supply of energy and the individual end user of energy. These links will be based on extensive use of information and communication technology. This will allow end users to respond adequately to price signals and use the electricity for loading electric cars, laundry etc. while the electricity prices are low due to for example surplus of wind generated electricity. The workshop assessed the perspectives for a rapid development of energy systems with more renewable energy in order to reduce CO{sub 2} emissions. Furthermore, the workshop gives recommendations for the implementation of such energy systems. The recommendations are targeted at the research community, industry and public authorities. The recommendations include opportunities for synergy between the research community, the government and the energy industry as well as public authorities. This report presents summary and recommendations from the workshop. (au)

  7. Sustainable uranium energy - an optional future

    International Nuclear Information System (INIS)

    Meneley, D.

    2015-01-01

    After 50 plus years of working on uranium fission principles and application, it is a bit hard for me to talk about anything else - but I'll give it a try. To start, I solemnly promise not to recommend to you any new reactor design - be it small, medium, modular, or large. The Uranium-fuelled power plant will be discussed ONLY as a finished product. Note that this sketch is an optional future. Ontario will, of course, take it or leave it, in whole or in part. This paper concentrates on future potential achievements of the CANDU nuclear energy systems. In the past, this venture has produced several modular systems, ranging from small (NPD and CANDU 3), medium (CANDU 6 and 6E) and large (Bruce, Darlington, and CANDU 9). All of these projects are more Ol' less finished products, and yet the CANDU concept still has broad scope for refinement and upgrading. This paper is, however, not about nuclear technology per se, but rather it is about what nuclear energy can do, both now and in the future. What does Ontario need to do next, in the line of technology applications that can help deal with the negative aspects of human-induced climate change? What energy systems can be installed to sustain the wealth and prosperity that Ontario's citizens now enjoy? What are the opportunities and the engineering challenges ahead of us? I do wish to apologize in advance for errors and omissions, and can only hope that missed details do not detract nor completely destroy an optimistic vision. Energy engineering is my game. Economics is not my specialty though it is an integral part of every engineering project. It is likely that the topic of economics will dominate the future choice of world energy supply, whatever that choice may be. Some people claim that the decisive factor dominating decisions with respect to uranium energy will be fear. In fact many opponents of the associated technology aim to induce fear as their main guiding theme. On the contrary, it is more reasonable to expect

  8. Sustainable uranium energy - an optional future

    Energy Technology Data Exchange (ETDEWEB)

    Meneley, D. [Univ. of Ontario Inst. of Tech., Oshawa, Ontario (Canada)

    2015-06-15

    After 50 plus years of working on uranium fission principles and application, it is a bit hard for me to talk about anything else - but I'll give it a try. To start, I solemnly promise not to recommend to you any new reactor design - be it small, medium, modular, or large. The Uranium-fuelled power plant will be discussed ONLY as a finished product. Note that this sketch is an optional future. Ontario will, of course, take it or leave it, in whole or in part. This paper concentrates on future potential achievements of the CANDU nuclear energy systems. In the past, this venture has produced several modular systems, ranging from small (NPD and CANDU 3), medium (CANDU 6 and 6E) and large (Bruce, Darlington, and CANDU 9). All of these projects are more Ol' less finished products, and yet the CANDU concept still has broad scope for refinement and upgrading. This paper is, however, not about nuclear technology per se, but rather it is about what nuclear energy can do, both now and in the future. What does Ontario need to do next, in the line of technology applications that can help deal with the negative aspects of human-induced climate change? What energy systems can be installed to sustain the wealth and prosperity that Ontario's citizens now enjoy? What are the opportunities and the engineering challenges ahead of us? I do wish to apologize in advance for errors and omissions, and can only hope that missed details do not detract nor completely destroy an optimistic vision. Energy engineering is my game. Economics is not my specialty though it is an integral part of every engineering project. It is likely that the topic of economics will dominate the future choice of world energy supply, whatever that choice may be. Some people claim that the decisive factor dominating decisions with respect to uranium energy will be fear. In fact many opponents of the associated technology aim to induce fear as their main guiding theme. On the contrary, it is more

  9. Biomass energy: its important and future trends

    International Nuclear Information System (INIS)

    Rao, P.S.

    1997-01-01

    The development of photo-biological energy conversion systems has long-term implication from the energy, wood fibre and chemical points etc. Power generation through biomass combustion and gasification has proved to be very successful venture. The energy needs of the people in the remote, rural and even urban areas of the country can be met economically by the energy from the renewable source such as biomass. The biomass energy is full of opportunities, and future trends are emerging towards renewable energy

  10. Estimation of energy storage capacity in power system in japan under future demand and supply factors

    International Nuclear Information System (INIS)

    Kurihara, Ikuo; Tanaka, Toshikatsu

    1996-01-01

    The desirable capacity of future energy storage facility in power system in Japan is discussed in this paper, putting emphasis on future new electric demand/supply factors such as CO 2 emission problems and social structure change. The two fundamental demand scenarios are considered; one is base case scenario which extrapolates the trend until now and the other is social structure change scenario. The desirable capacity of the energy storage facility is obtained from the result of optimum generation mix which minimizes the yearly expenses of the target year (2030 and 2050). The result shows that the optimum capacity of energy storage facility is about 10 to 15%. The social structure change and demand side energy storage have great influences on the optimum capacity of supply side storage. The former increases storage capacity. The latter reduces it and also contributes to the reduction of generation cost. Suppression of CO 2 emission basically affects to reduce the storage capacity. The load following operation of nuclear plant also reduces the optimum storage capacity in the case it produces surplus energy at night. Though there exist many factors which increase or decrease the capacity of energy storage facility, as a whole, it is concluded that the development of new energy storage technology is necessary for future. (author)

  11. Future nuclear energy scenarios for Europe

    International Nuclear Information System (INIS)

    Roelofs, F.; Van Heek, A.

    2010-01-01

    Nuclear energy is back on the agenda worldwide. In order to prepare for the next decades and to set priorities in nuclear R and D and investment, market share scenarios are evaluated. This allows to identify the triggers which influence the market penetration of future nuclear reactor technologies. To this purpose, scenarios for a future nuclear reactor park in Europe have been analysed applying an integrated dynamic process modelling technique. Various market share scenarios for nuclear energy are derived including sub-variants with regard to the intra-nuclear options taken, e.g. introduction date of Gen-III (i.e. EPR) and Gen-IV (i.e. SCWR, HTR, FR) reactors, level of reprocessing, and so forth. The assessment was undertaken using the DANESS code which allows to provide a complete picture of mass-flow and economics of the various nuclear energy system scenarios. The analyses show that the future European nuclear park will exist of combinations of Gen-III and Gen-IV reactors. This mix will always consist of a set of reactor types each having its specific strengths. Furthermore, the analyses highlight the triggers influencing the choice between different nuclear energy deployment scenarios. In addition, a dynamic assessment is made with regard to manpower requirements for the construction of a future nuclear fleet in the different scenarios. (authors)

  12. Maturity effects in energy futures

    Energy Technology Data Exchange (ETDEWEB)

    Serletis, Apostolos (Calgary Univ., AB (CA). Dept. of Economics)

    1992-04-01

    This paper examines the effects of maturity on future price volatility and trading volume for 129 energy futures contracts recently traded in the NYMEX. The results provide support for the maturity effect hypothesis, that is, energy futures prices to become more volatile and trading volume increases as futures contracts approach maturity. (author).

  13. Improving energy decisions towards better scientific policy advice for a safe and secure future energy system

    CERN Document Server

    Droste-Franke, Bert; Kaiser, M; Schreurs, Miranda; Weber, Christoph; Ziesemer, Thomas

    2015-01-01

    Managing a successful transition of the current energy supply system to less carbon emitting options, ensuring a safe and secure supply during the whole process and in the long term, is one of the largest challenges of our time. Various approaches and first implementations show that it is not only technological issue, but also a matter of societal acceptance and acceptability, considering basic ethic values of the society. The main foci of the book are, thus, to develop an understanding about the specific challenges of the scientific policy advice in the area, to explore typical current approaches for the analysis of future energy systems and to develop criteria for the quality assessment and guidelines for the improvement of such studies. The book provides assistance to the interpretation of existing studies and guidelines for setting up and carrying out new analyses as well as for communicating and applying the results. Thereby, it aims to support the involved actors such as the respective scientific expert...

  14. Design principles and requirements for the ICT of future smart energy systems; Designprinzipien und Anforderungen an die IKT fuer intelligente Energiesysteme der Zukunft

    Energy Technology Data Exchange (ETDEWEB)

    Eger, Kolja [Siemens AG, Muenchen (Germany). Corporate Technology; Mohr, Werner [Nokia Siemens Networks Management International GmbH, Muenchen (Germany)

    2012-07-01

    The information and communication technology (ICT) is a key enabling technology for Smart Grids. With respect to very short innovation cycles for ICT compared to longer innovation cycles for the transition of the energy system there is a huge challenge to develop and exploit the potential of future ICT and their application in a future intelligent energy system. Different ICT technologies, such as Internet of Things or Cloud Computing are intensively being discussed. They can be summarized under the term ''Future Internet''. The EU project FINSENY is investigating the potential of Future Internet concepts and technologies in particular for Smart Energy systems. A series of design principles and the necessary ICT are developed, which are described in this paper. These design principles such as open interfaces, security-by-design, simplicity, maintenance, auto-configuration and modularity are of general nature. They will remain despite technology developments. Furthermore, several design principles are not only applicable to ICT but they are also related to design principles of intelligent energy systems like decentralized energy generation systems. (orig.)

  15. Energy System Analysis of 100 Per cent Renewable Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Mathiesen, Brian Vad

    2007-01-01

    This paper presents the methodology and results of the overall energy system analysis of a 100 per cent renewable energy system. The input for the systems is the result of a project of the Danish Association of Engineers, in which 1600 participants during more than 40 seminars discussed...... and designed a model for the future energy system of Denmark, putting emphasis on energy efficiency, CO2 reduction, and industrial development. The energy system analysis methodology includes hour by hour computer simulations leading to the design of flexible energy systems with the ability to balance...... the electricity supply and demand and to exchange electricity productions on the international electricity markets. The results are detailed system designs and energy balances for two energy target years: year 2050 with 100 per cent renewable energy from biomass and combinations of wind, wave and solar power...

  16. Multicriteria Spatial Decision Support Systems for Future Urban Energy Retrofitting Scenarios

    Directory of Open Access Journals (Sweden)

    Patrizia Lombardi

    2017-07-01

    Full Text Available Nowadays, there is an increasing concern about sustainable urban energy development taking into account national priorities of each city. Many cities have started to define future strategies and plans to reduce energy consumption and greenhouse gas emissions. Urban energy scenarios involve the consideration of a wide range of conflicting criteria, both socio-economic and environmental ones. Moreover, decision-makers (DMs require proper tools that can support their choices in a context of multiple stakeholders and a long-term perspective. In this context, Multicriteria Spatial Decision Support Systems (MC-SDSS are often used in order to define and analyze urban scenarios since they support the comparison of different solutions, based on a combination of multiple factors. The main problem, in relation to urban energy retrofitting scenarios, is the lack of appropriate knowledge and evaluation criteria. The latter are crucial for delivering and assessing urban energy scenarios through a MC-SDSS tool. The main goal of this paper is to analyze and test two different methods for the definition and ranking of the evaluation criteria. More specifically, the paper presents an on-going research study related to the development of a MC-SDSS tool able to identify and evaluate alternative energy urban scenarios in a long-term period perspective. This study refers to two Smart City and Communities research projects, namely: DIMMER (District Information Modeling and Management for Energy Reduction and EEB (Zero Energy Buildings in Smart Urban Districts.

  17. Solar energy systems: assessment of present and future potential

    International Nuclear Information System (INIS)

    Kuehne, H.-M.; Aulich, H.

    1992-01-01

    This paper discusses the present state and the future potential of solar thermal and photovoltaic (PV) technologies, and examines both the environmental implications of these technologies and the economics which determine their viability in the energy market. Although some significant cost reductions have been achieved, particularly in PV technology, solar conversion technologies are still not generally competitive against conventional fuels, and future cost reductions may be limited. It is argued that fiscal measures will be necessary if solar conversion technologies are to make a significant global impact. (Author)

  18. The modelling of future energy scenarios for Denmark

    DEFF Research Database (Denmark)

    Kwon, Pil Seok

    2014-01-01

    within a time frame of two hours and approx. 7% of the electricity demand can be moved within a time frame of 24 hours. The system benefit at the assessed amount of flexible demand is limited however. Results from the other analysis indicate that in order to have a significant impact on the energy system...... performance, more than a quarter of the classic electricity demand would need to be flexible within a month, which is highly unlikely to happen. For the investigation of the energy system model, EnergyPLAN, which is used for two scenario analyses, two questions are asked; “what is the value of future...... for the important but uncertain areas biomass and flexible demand are performed. Thirdly, modelling-related issues are investigated with a focus on the effect of future forecasting assumption and differences between a predefined priority order and order determined by given efficiencies and constraints...

  19. Mobile energy sharing futures

    DEFF Research Database (Denmark)

    Worgan, Paul; Knibbe, Jarrod; Plasencia, Diego Martinez

    2016-01-01

    We foresee a future where energy in our mobile devices can be shared and redistributed to suit our current task needs. Many of us are beginning to carry multiple mobile devices and we seek to re-evaluate the traditional view of a mobile device as only accepting energy. In our vision, we can...... sharing futures....

  20. Hydrogen and fuel cells. Towards a sustainable energy future

    International Nuclear Information System (INIS)

    Edwards, P.P.; Kuznetsov, V.L.; David, W.I.F.; Brandon, N.P.

    2008-01-01

    A major challenge - some would argue, the major challenge facing our planet today - relates to the problem of anthropogenic-driven climate change and its inextricable link to our global society's present and future energy needs [King, D.A., 2004. Environment - climate change science: adapt, mitigate, or ignore? Science 303, 176-177]. Hydrogen and fuel cells are now widely regarded as one of the key energy solutions for the 21st century. These technologies will contribute significantly to a reduction in environmental impact, enhanced energy security (and diversity) and creation of new energy industries. Hydrogen and fuel cells can be utilised in transportation, distributed heat and power generation, and energy storage systems. However, the transition from a carbon-based (fossil fuel) energy system to a hydrogen-based economy involves significant scientific, technological and socioeconomic barriers to the implementation of hydrogen and fuel cells as clean energy technologies of the future. This paper aims to capture, in brief, the current status, key scientific and technical challenges and projection of hydrogen and fuel cells within a sustainable energy vision of the future. We offer no comments here on energy policy and strategy. Rather, we identify challenges facing hydrogen and fuel cell technologies that must be overcome before these technologies can make a significant contribution to cleaner and more efficient energy production processes. (author)

  1. The alternative energy future

    International Nuclear Information System (INIS)

    Spitzley, H.

    1989-02-01

    The alternative energy future can be achieved only by making energy conservation programmes successful, and by fully committing to the utilization of soft energy sources. This is the perspective drawn by the author who in this book investigates the fundamentals of an ecologically and socially sound energy policy for the future. Looking at California, USA, where completely near concepts have been put to work in the energy sector since the mid-seventies, the author shows how it can be done, by rewarding energy conserving activities, using available energy sources more efficiently, developing the means for renewable energy exploitation wherever appropriate. A turn in energy policy is feasible also in West Germany, both in technical and political terms. Starting from the experience gained in the USA, the author presents an outline of options and potentials of a new energy strategy for the Federal Republic of Germany. (orig./HP) [de

  2. Application and Development of Energy System Optimisation Models to Meet Challenges of the Future

    DEFF Research Database (Denmark)

    Balyk, Olexandr

    ) and the nature of the issues that are dealt with (i.e. high degree of uncertainly with regard to future technology characteristics, global policy development on climate mitigation, etc.). Additionally, geographic information systems are used in one of the papers to conduct a spatial analysis for estimating wind...... energy, and an increased climate change mitigation potential.Other results highlight among others, the possible future roles of individual technologies (i.e. wind power in Denmark and carbon capture and storage in China) in the climate constrained world, the difficulty to achieve the 2°C target agreed...

  3. The study on the role of very high temperature reactor and nuclear process heat utilization in future energy systems

    International Nuclear Information System (INIS)

    Yasukawa, Sigeru; Mankin, Shuichi; Tadokoro, Yoshihiro; Sato, Osamu; Yamaguchi, Kazuo; Ueno, Seiichi

    1986-11-01

    This report describes the analytical results being made in the study on the role of Very High Temperature Reactor and nuclear process heat utilization in future energy system, which is aimed at zero emission. In the former part of the report, the modeling of the reference energy system, main characteristics of energy technologies, and scenario indicators as well as system behavioral objectives for optimization are explained. In the latter part, analytical results such as the time-period variation of overall energy utilization efficiency, energy supply/demand structure in long-terms, energy contribution and economic competition of new energy technologies, environmental effluents released through verious energy activities, impacts to and from national economy, and some sensitivity analyses, are reviewed. (author)

  4. Current and future industrial energy service characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

    1980-10-01

    Current and future energy demands, end uses, and cost used to characterize typical applications and resultant services in the industrial sector of the United States and 15 selected states are examined. A review and evaluation of existing industrial energy data bases was undertaken to assess their potential for supporting SERI research on: (1) market suitability analysis, (2) market development, (3) end-use matching, (3) industrial applications case studies, and (4) identification of cost and performance goals for solar systems and typical information requirements for industrial energy end use. In reviewing existing industrial energy data bases, the level of detail, disaggregation, and primary sources of information were examined. The focus was on fuels and electric energy used for heat and power purchased by the manufacturing subsector and listed by 2-, 3-, and 4-digit SIC, primary fuel, and end use. Projections of state level energy prices to 1990 are developed using the energy intensity approach. The effects of federal and state industrial energy conservation programs on future industrial sector demands were assessed. Future end-use energy requirements were developed for each 4-digit SIC industry and were grouped as follows: (1) hot water, (2) steam (212 to 300/sup 0/F, each 100/sup 0/F interval from 300 to 1000/sup 0/F, and greater than 1000/sup 0/F), and (3) hot air (100/sup 0/F intervals). Volume I details the activities performed in this effort.

  5. Energy storage in future power systems

    DEFF Research Database (Denmark)

    Rasmussen, Claus Nygaard; Østergaard, Jacob; Divya, K. C.

    2011-01-01

    Most sources of renewable power are characterised by uncontrollable and chaotic variations in power output. We here look at how energy storage may benefit renewable power generation by making it available in periods with little or no intermittent generation and thereby prevent additional conventi......Most sources of renewable power are characterised by uncontrollable and chaotic variations in power output. We here look at how energy storage may benefit renewable power generation by making it available in periods with little or no intermittent generation and thereby prevent additional...... conventional generation form being used. In addition to this, one of the strongest concerns in relation to renewable power is the instability in the electric power system that it may introduce as a result of large and relatively fast power fluctuations. An additional benefit of energy storage is therefore its...

  6. The impacts of wind technology advancement on future global energy

    International Nuclear Information System (INIS)

    Zhang, Xiaochun; Ma, Chun; Song, Xia; Zhou, Yuyu; Chen, Weiping

    2016-01-01

    Highlights: • Integrated assessment model perform a series of scenarios of technology advances. • Explore the potential roles of wind energy technology advance in global energy. • Technology advance impacts on energy consumption and global low carbon market. • Technology advance influences on global energy security and stability. - Abstract: To avoid additional global warming and environmental damage, energy systems need to rely on the use of low carbon technologies like wind energy. However, supply uncertainties, production costs, and energy security are the main factors considered by the global economies when reshaping their energy systems. Here, we explore the potential roles of wind energy technology advancement in future global electricity generations, costs, and energy security. We use an integrated assessment model performing a series of technology advancement scenarios. The results show that double of the capital cost reduction causes 40% of generation increase and 10% of cost ​decrease on average in the long-term global wind electricity market. Today’s technology advancement could bring us the benefit of increasing electricity production in the future 40–50 years, and decreasing electricity cost in the future 90–100 years. The technology advancement of wind energy can help to keep global energy security and stability. An aggressive development and deployment of wind energy could in the long-term avoid 1/3 of gas and 1/28 of coal burned, and keep 1/2 biomass and 1/20 nuclear fuel saved from the global electricity system. The key is that wind resources are free and carbon-free. The results of this study are useful in broad coverage ranges from innovative technologies and systems of renewable energy to the economic industrial and domestic use of energy with no or minor impact on the environment.

  7. A study of the status and future of superconducting magnetic energy storage in power systems

    International Nuclear Information System (INIS)

    Xue, X D; Cheng, K W E; Sutanto, D

    2006-01-01

    Superconducting magnetic energy storage (SMES) systems offering flexible, reliable, and fast acting power compensation are applicable to power systems to improve power system stabilities and to advance power qualities. The authors have summarized researches on SMES applications to power systems. Furthermore, various SMES applications to power systems have been described briefly and some crucial schematic diagrams and equations are given. In addition, this study presents valuable suggestions for future studies of SMES applications to power systems. Hence, this paper is helpful for co-researchers who want to know about the status of SMES applications to power systems. (topical review)

  8. Canada's energy future : 2008 workshop summary

    International Nuclear Information System (INIS)

    2008-01-01

    The National Energy Board hosted this Energy Futures Workshop as a follow-up to its report entitled Canada's Energy Future: Reference Case and Scenarios to 2030, which focused on emerging trends in energy supply and demand. Various energy futures that may be available to Canadians up to the year 2030 were examined. This workshop addressed issues regarding the growing demand for energy, the adequacy of future energy supplies, and related issues of greenhouse gas emissions, emerging technologies, energy infrastructure and energy exports. The workshop was attended by 18 experts who presented their diverse views on long-term energy issues. The sessions of the workshop focused on external and key geopolitical issues that will influence Canadian energy markets; the adoption of alternative and emerging sources of energy; outlook for Canadian oil supply, including oil sands development, reservoir quality, and financial, environmental and technological issues; issues in electricity generation and transmission; gas market dynamics; and carbon dioxide capture and storage and the associated benefits and challenges. There was general consensus that global and Canadian energy markets will remain in a state of flux. Crude oil prices are likely to remain high and volatile. The combination of maturing energy resource basins and geopolitical tensions has created uncertainty about future availability and access to global energy resources. 2 figs., 3 appendices

  9. Energy Futures Synthesis for West-Wide Section 368 Energy Corridors

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, Barbara L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gagne, Douglas A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cook, Jeffrey J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Greco, Tessa M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-05-01

    To comply with Section 368(a) of the Energy Policy Act of 2005 (EPAct), the U.S. Bureau of Land Management (BLM) and the U.S. Forest Service designated 6,000 miles of energy corridors on public and national forest lands in the western United States in 2009. The corridors, commonly referred to as 'West-wide' or 'Section 368' energy corridors, are intended as preferred locations for future siting of electric transmission and distribution lines and for oil, gas, and hydrogen pipelines. In response to a lawsuit filed by several organizations over the corridor designations, the BLM, Forest Service, and the U.S. Department of Energy entered into a Settlement Agreement, directing the formation of the Section 368 Interagency Workgroup to periodically review the energy corridors on a regional basis. In conducting the reviews, the Workgroup identifies new, relevant, existing, publicly available information to make recommendations for revisions, deletions, and additions to the Section 368 energy corridors. This report synthesizes information in available contemporary transmission, pipeline, and energy future studies to inform the regional reviews by providing a snapshot of what the western energy and transmission system will look like generally 10-15 years in the future. After an overview of the western grid implications, the analysis narrows to Region 2 and Region 3 of the BLM Section 368 energy corridors and focuses on the implications of potential developments in the oil, natural gas, and electricity markets in Colorado, New Mexico, Utah, and portions of Arizona and Nevada that could inform the current regional review. This analysis will help inform the Workgroup on potential development within existing corridors and the need for new corridors that have not yet been designated.

  10. Distributed technologies in California's energy future. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, M.; Craig, P.; McGuire, C.B.; Simmons, M. (eds.)

    1977-09-01

    This interim report contains eight of the eighteen chapters included in the complete report. In Chapter I, pertinent data, facts, and observations are made following an initial summary. Chapter II is an introduction, citing especially the writings of Amory Lovins. The criteria used in defining distributed systems, suggested by Lovins, are that the technologies be renewable, environmentally benign, local, subject to graceful failure, foolproof, flexible, comprehensible, and matched in energy quality. The following chapters are: The Energy Predicament; The California Setting; Energy Resources for California's Future; Alternative Energy Futures for California; Issues and Problems; and Directions for Future Work. Six appendices deal with residential heating loads and air conditioning, allocations, co-generation, population projections, and the California wind energy resource. (MCW)

  11. The future of energy

    International Nuclear Information System (INIS)

    Romer, A.

    2001-01-01

    The article discusses not only the future of energy and resource consumption in various areas of the world, but also its development over the centuries since the industrial revolution. The present situation, with large discrepancies between the energy consumption of industrialised nations and the developing countries is examined. Social and environmental aspects are discussed and the sustainable use of the Earth's resources and the inconsistencies in this area is looked at. Rather than adopting a moralistic approach, the article appeals to man's powers of innovation and sense of responsibility in order to develop solutions to today's and future energy supply problems. The article is richly illustrated with diagrams and graphs on world energy and social statistics

  12. RETHINKING THE FUTURE GRID: INTEGRATED NUCLEAR-RENEWABLE ENERGY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    S.M. Bragg-Sitton; R. Boardman

    2014-12-01

    The 2013 electricity generation mix in the United States consisted of ~13% renewables (hydropower, wind, solar, geothermal), 19% nuclear, 27% natural gas, and 39% coal. In the 2011 State of the Union Address, President Obama set a clean energy goal for the nation: “By 2035, 80 percent of America’s electricity will come from clean energy sources. Some folks want wind and solar. Others want nuclear, clean coal and natural gas. To meet this goal we will need them all.” The U.S. Department of Energy (DOE) Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) recognize that “all of the above” means that we are called to best utilize all available clean energy sources. To meet the stated environmental goals for electricity generation and for the broader energy sector, there is a need to transform the energy infrastructure of the U.S. and elsewhere. New energy systems must be capable of significantly reducing environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. A concept being advanced by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product. For the purposes of the present work, the hybrid system would

  13. Small and Shaping the Future Energy Eco-house System

    Science.gov (United States)

    Furukawa, Ryuzo; Takahashi, Hideyuki; Sato, Yoshinori; Sasaki, Hiroshi; Isu, Norifumi; Ohtsuka, Masuo; Tohji, Kazuyuki

    2010-11-01

    The objective of this research is to develop the elemental technology of the small and thin energy collection system from water, wind, and others in the house, and examine them at the eco-house which will be built at Tohoku University on March 2010. This small energy storage system will contribute to reduce 10% of greenhouse gas emission from household electricity. This project is done by three following groups. 1st group (NEC-Tokin Co. Ltd.) will develop the technologies on the accumulation of electric power pressured from low electric power in which electricity is generated and on the cooperation with AC power supply used for domestic use for this eco-house system. 2nd group (INAX Co. Ltd.) will develop the elemental technology of the slight energy collection system from tap water in the home using a small hydroelectric generator for this eco-house system. 3rd group (Shoei Co. Ltd.) will develop the technologies on existent magnetic gear device, health appliances (Exercise bike), wind power generator, for this eco-house system. Tokoku University compiles these groups. Furthermore, I develop a search of unused small energy and the use technology, and propose a new energy supply system using solar cell and Li ion secondary battery.

  14. The nuclear energy of the future: the researches and the objectives; L'energie nucleaire du futur: quelles recherches pour quels objectifs?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Today energy problems are global problems. That is why the new generation of energy production by nuclear power must be realized basely on serious forecasts at a world scale. The nuclear energy presents many trumps for an energetic answer, at long-dated, concerning the environment and the resources. This will be for two main conditions: the ability to answer the public opinion anxiety and the development of new systems more high- performance in terms of safety and economy in the framework of the sustainable development and the non proliferation policy. These subjects are at the earth of the CEA missions. This document proposes a detailed presentation of the nuclear origins, the fuel and its cycle, the radioactive wastes and their management,the dismantling and the decommissioning of the nuclear installations, the challenges of the nuclear safety, the energy in the world, the nuclear economy, the nuclear in the world, the researches of the future, the third generation reactors, the research on radioactive wastes, the fuel cycle of the nuclear systems of the future, the uranium resources, the generation four forum, the gas coolant reactors, the thorium, hybrid systems and the thermonuclear fusion. (A.L.B.)

  15. Future of energy

    International Nuclear Information System (INIS)

    Wright, John

    2005-01-01

    Australia has one of the most cost-effective energy conversion and delivery systems in the world. We are blessed with abundant, high-quality fossil fuels consisting mainly of coal, gas and (diminishing) oil resources. However, this past blessing is also a future curse as this fuel mix, coupled with limits to hydroelectric growth and no nuclear generation capacity, has endowed Australia with one of the highest greenhouse gas (GHG) emissions per unit of GDP in the developed world (currently 43 per cent above the International Energy Agency average). This prompted Claude Mandil, head of the IEA, to observe: 'Environmental sustainability represent Australia's greatest energy challenge, with high and growing carbon dioxide emissions.' The challenge for Australia is how to make the massive cuts in GHG emissions required to minimise our world trade risks (which will come at a cost, and put pressure on our energy cost-effectiveness) while maintaining an internationally competitive energy sector. This challenge is exacerbated by a healthy national growth rate which will be accompanied by at least a 50 per cent growth in energy demand by 2020, with a doubling by 2050. Electricity industry projections predict an investment in new generation capacity well in excess of $30 billion to keep up with demand over the next two decades. The stark reality is that if we con tinue to supply and use energy the way we do now, we may as well forget about stabilising our GHG emissions from the energy sector, let alone reducing them in the future. This urgent situation presents a huge opportunity for the introduction of new and improved low-emission energy conversion technologies and demand management systems that vastly reduce GHG emissions per unit of productivity - in fact, an opportunity to transform Australia's energy sector to levels of innovation, social acceptance and environmental performance that has no precedent in this country. We have little choice other than to make a start. Are

  16. Renewable Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Mathiesen, Brian Vad; Connolly, David

    2014-01-01

    on the electricity sector, smart energy systems include the entire energy system in its approach to identifying suitable energy infrastructure designs and operation strategies. The typical smart grid sole focus on the electricity sector often leads to the conclusion that transmission lines, flexible electricity......This paper presents the learning of a series of studies that analyse the problems and perspectives of converting the present energy system into a 100 % renewable energy system using a smart energy systems approach. As opposed to, for instance, the smart grid concept, which takes a sole focus...... are to be found when the electricity sector is combined with the heating and cooling sectors and/or the transportation sector. Moreover, the combination of electricity and gas infrastructures may play an important role in the design of future renewable energy systems. The paper illustrates why electricity smart...

  17. Residential heat pumps in the future Danish energy system

    DEFF Research Database (Denmark)

    Petrovic, Stefan; Karlsson, Kenneth Bernard

    2016-01-01

    for politically agreed targets which include: at least 50% of electricity consumption from wind power starting from 2020, fossil fuel free heat and power sector from 2035 and 100% renewable energy system starting from 2050. Residential heat pumps supply around 25% of total residential heating demand after 2035......Denmark is striving towards 100% renewable energy system in 2050. Residential heat pumps are expected to be a part of that system.We propose two novel approaches to improve the representation of residential heat pumps: Coefficients of performance (COPs) are modelled as dependent on air and ground...... temperature while installation of ground-source heat pumps is constrained by available ground area. In this study, TIMES-DK model is utilised to test the effects of improved modelling of residential heat pumps on the Danish energy system until 2050.The analysis of the Danish energy system was done...

  18. Distributed technologies in California's energy future: A preliminary report. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, M.; Craig, P.; McGuire, C.B.; Simmons, M. (eds.)

    1977-09-01

    The chapters in Volume 2 of Distributed Energy Systems in California's Future are: Environmental Impacts of Alternative Energy Technologies for California; Land Use Configurations and the Utilization of Distributive Energy Technology; Land Use Implications of a Dispersed Energy Path; Belief, Behavior, and Technologies as Driving Forces in Transitional Stages--The People Problem in Dispersed Energy Futures; Development of an Energy Attitude Survey; Interventions to Influence Firms Toward the Adoption of ''Soft'' Energy Technology; The Entry of Small Firms into Distributed Technology Energy Industries; Short-Term Matching of Supply and Demand in Electrical Systems with Renewable Sources; Vulnerability of Renewable Energy Systems; and District Heating for California.

  19. A review and future prospects of renewable energy in the global energy system

    Institute of Scientific and Technical Information of China (English)

    D Yogi GOSWAMI; John & Naida Ramil Professor; Co-Director

    2008-01-01

    Global energy consumption in the last half century has rapidly increased and is expected to continue to grow over the next 50 years, however, with significant differences. The past increase was stimulated by relatively "cheap" fossil fuels and increased rates of industrialization in North America, Europe and Japan; yet while energy consumption in these countries continues to increase, additional factors make the picture for the next 50 years more complex. These additional complicating factors include China and India's rapid increase in energy use as they represent about a third of the world's population; the expected depletion of oil resources in the near future; and, the effect of human activities on global climate change. On the positive side, the renewable energy (RE) technologies of wind, bio-fuels, solar thermal and photovoltaics (PV) are finally showing maturity and the ultimate promise of cost competitiveness.

  20. Main tendencies meeting future energy demands

    International Nuclear Information System (INIS)

    Flach, G.; Riesner, W.; Ufer, D.

    1989-09-01

    The economic development in the German Democratic Republic within the preceding 10 years has proved that future stable economic growth of about 4 to 4.5% per annum is only achievable by ways including methods of saving resources. This requires due to the close interdependences between the social development and the level of the development in the energy sector long-term growth rates of the national income of 4 to 4.5% per annum at primary energy growth rates of less than 1% per annum. It comprises three main tendencies: 1. Organization of a system with scientific-technical, technological, economic structural-political and educational measures ensuring in the long term less increase of the energy demand while keeping the economic growth at a constant level. 2. The long-term moderate extension and modernization of the GDR's energy basis is characterized by continuing use of the indigenous brown coal resources for the existing power plant capacities and for district heating. 3. The use of modern and safe nuclear power technologies defines a new and in future more and more important element of the energy basis. Currently about 10% of electricity in the GDR are covered by nuclear energy, in 2000 it will be one third, after 2000 the growth process will continue. The experience shows: If conditions of deepened scientific consideration of all technological processes and the use of modern diagnosis and computer technologies as well as permanent improvement of the safety-technological components and equipment are guaranteed an increasing use of such systems for the production of electricity and heat is socially acceptable. Ensuring a high level of education and technical training of everyone employed in the nuclear energy industry, strict safety restrictions and independent governmental control of these restrictions are important preconditions for the further development in this field. 3 refs, 5 tabs

  1. The future of energy use

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.; O' Keefe, P.; Snape, C.

    1994-12-15

    An analysis of the use of different forms of energy and its environmental and social impacts. Giving an overview of the development of different forms of energy provision and patterns of supply and demand, this book shows how enduse applies to energy industries, how the environment and social costs of energy use have to be introduced into energy planning and accounting and the crucial role of efficiency. Case studies will include the transport and building sectors of industrial economies, the use of stoves and woodfuel and agroforestry planning in developing countries. It will then examine the different forms of energy - conventional, nuclear and renewable - concluding by setting out different energy futures and the policy requirements for sustainable futures. (author)

  2. Energy security impacts of a severe drought on the future Finnish energy system.

    Science.gov (United States)

    Jääskeläinen, Jaakko; Veijalainen, Noora; Syri, Sanna; Marttunen, Mika; Zakeri, Behnam

    2018-07-01

    Finland updated its Energy and Climate Strategy in late 2016 with the aim of increasing the share of renewable energy sources, increasing energy self-sufficiency and reducing greenhouse gas emissions. Concurrently, the issue of generation adequacy has grown more topical, especially since the record-high demand peak in Finland in January 2016. This paper analyses the Finnish energy system in years 2020 and 2030 by using the EnergyPLAN simulation tool to model whether different energy policy scenarios result in a plausible generation inadequacy. Moreover, as the Nordic energy system is so heavily dependent on hydropower production, we model and analyse the impacts of a severe drought on the Finnish energy system. We simulate hydropower availability according to the weather of the worst drought of the last century (in 1939-1942) with Finnish Environment Institute's Watershed Simulation and Forecasting System and we analyse the indirect impacts via reduced availability of electricity imports based on recent realised dry periods. Moreover, we analyse the environmental impacts of hydropower production during the drought and peak demand period and the impacts of climate change on generation adequacy in Finland. The results show that the scenarios of the new Energy and Climate Strategy result in an improved generation adequacy comparing to the current situation. However, a severe drought similar to that experienced in 1940s could cause a serious energy security threat. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Future energy, exotic energy

    Energy Technology Data Exchange (ETDEWEB)

    Dumon, R

    1974-01-01

    The Detroit Energy Conference has highlighted the declining oil reserves, estimated worldwide at 95 billion tons vs. an annual rate of consumption of over 3 billion tons. The present problem is one of price; also, petroleum seems too valuable to be simply burned. New sources must come into action before 1985. The most abundant is coal, with 600 billion tons of easily recoverable reserves; then comes oil shale with a potential of 400 billion tons of oil. Exploitation at the rate of 55 go 140 million tons/yr is planned in the U.S. after 1985. More exotic and impossible to estimate quantitatively are such sources as wind, tides, and the thermal energy of the oceans--these are probably far in the future. The same is true of solar and geothermal energy in large amounts. The only other realistic energy source is nuclear energy: the European Economic Community looks forward to covering 60% of its energy needs from nuclear energy in the year 2000. Even today, from 400 mw upward, a nuclear generating plant is more economical than a fossil fueled one. Conservation will become the byword, and profound changes in society are to be expected.

  4. The nuclear energy of the future: the researches and the objectives; L'energie nucleaire du futur: quelles recherches pour quels objectifs?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Today energy problems are global problems. That is why the new generation of energy production by nuclear power must be realized basely on serious forecasts at a world scale. The nuclear energy presents many trumps for an energetic answer, at long-dated, concerning the environment and the resources. This will be for two main conditions: the ability to answer the public opinion anxiety and the development of new systems more high- performance in terms of safety and economy in the framework of the sustainable development and the non proliferation policy. These subjects are at the earth of the CEA missions. This document proposes a detailed presentation of the nuclear origins, the fuel and its cycle, the radioactive wastes and their management,the dismantling and the decommissioning of the nuclear installations, the challenges of the nuclear safety, the energy in the world, the nuclear economy, the nuclear in the world, the researches of the future, the third generation reactors, the research on radioactive wastes, the fuel cycle of the nuclear systems of the future, the uranium resources, the generation four forum, the gas coolant reactors, the thorium, hybrid systems and the thermonuclear fusion. (A.L.B.)

  5. Nuclear energy, energy of the future or bad solution?

    International Nuclear Information System (INIS)

    2003-01-01

    The document presents the speeches of the debate on the nuclear energy solution for the future, presented during the meeting of the 6 may in Rennes, in the framework of the National Debate on the energies. The debate concerns the risks assessment and control, the solutions for the radioactive wastes, the foreign examples and the future of the nuclear energy. (A.L.B.)

  6. Innovative thermal energy harvesting for future autonomous applications

    Science.gov (United States)

    Monfray, Stephane

    2013-12-01

    As communicating autonomous systems market is booming, the role of energy harvesting will be a key enabler. As example, heat is one of the most abundant energy sources that can be converted into electricity in order to power circuits. Harvesting systems that use wasted heat open new ways to power autonomous sensors when the energy consumption is low, or to create systems of power generators when the conversion efficiency is high. The combination of different technologies (low power μ-processors, μ-batteries, radio, sensors...) with new energy harvesters compatible with large varieties of use-cases with allow to address this booming market. Thanks to the conjunction of ultra-low power electronic development, 3D technologies & Systems in Package approaches, the integration of autonomous sensors and electronics with ambient energy harvesting will be achievable. The applications are very wide, from environment and industrial sensors to medical portable applications, and the Internet of things may also represent in the future a several billions units market.

  7. Innovative thermal energy harvesting for future autonomous applications

    International Nuclear Information System (INIS)

    Monfray, Stephane

    2013-01-01

    As communicating autonomous systems market is booming, the role of energy harvesting will be a key enabler. As example, heat is one of the most abundant energy sources that can be converted into electricity in order to power circuits. Harvesting systems that use wasted heat open new ways to power autonomous sensors when the energy consumption is low, or to create systems of power generators when the conversion efficiency is high. The combination of different technologies (low power μ-processors, μ-batteries, radio, sensors...) with new energy harvesters compatible with large varieties of use-cases with allow to address this booming market. Thanks to the conjunction of ultra-low power electronic development, 3D technologies and Systems in Package approaches, the integration of autonomous sensors and electronics with ambient energy harvesting will be achievable. The applications are very wide, from environment and industrial sensors to medical portable applications, and the Internet of things may also represent in the future a several billions units market

  8. Role of LNG in an optimized hybrid energy network : part I. Increased operational flexibility for the future energy system by integration of decentralized LNG regasification with a CHP

    NARCIS (Netherlands)

    Montoya Cardona, Juliana; de Rooij, Marietta; Dam, Jacques

    2017-01-01

    The future energy system could benefit from the integration of the independent gas, heat and electricity infrastructures. In addition to an increase in exergy efficiency, such a Hybrid Energy Network (HEN) could support the increase of intermittent renewable energy sources by offering increased

  9. The future of energy

    International Nuclear Information System (INIS)

    Rubbia, C.

    2000-01-01

    The interest of politicians, businessmen, technologists, scientists and the people at large is focused today on the problem of energy. Everybody will agree on the fact that energy is necessary for the future of mankind. But many tend to paraphrase this by saying that energy is necessary evil. No objection to the necessity: but an analysis of the motivations for regarding energy as evil reveals some Freudian undertones. This scepticism towards technology, as a solution to the rising environmental concerns, perceived as a Faustian deal, after centuries of a passionate technical endeavour deeply engraved in the conception of the world, is a curious phenomenon to say the least. All these problems and the associated concerns are serious: the inevitable growth of energy consumption under the sheer momentum of society and the very human expectations of the poor, may indeed add enough yeast to make them leaven beyond control. However, like in the case of famine, illness etc., also here science and technology should be trusted; indeed there are reasonable expectations that, combined, they will have the possibility of solving also this problem, in full accord with the economic, dynamic and technical constraints that a working system has to comply with

  10. The future of energy

    International Nuclear Information System (INIS)

    Rubbia, C.

    2001-01-01

    The interest of politicians, businessmen, technologists, scientists and the people at large is focused today on the problem of energy. Everybody will agree on the fact that energy is necessary for the future of mankind. But many tend to paraphrase this by saying that energy is necessary evil. No objection to the necessity: but an analysis of the motivations for regarding energy as evil reveals some Freudian undertones. This scepticism towards technology, as a solution to the rising environmental concerns, perceived as a Faustian deal, after centuries of a passionate technical endeavour deeply engraved in the conception of the world, is a curious phenomenon to say the least. All these problems and the associated concerns are serious: the inevitable growth of energy consumption under the sheer momentum of society and the very human expectations of the poor, may indeed add enough yeast to make them leaven beyond control. However, like in the case of famine, illness etc., also here science and technology should be trusted; indeed there are reasonable expectations that, combined, they will have the possibility of solving also this problem, in full accord with the economic, dynamic and technical constraints that a working system has to comply with

  11. The future of energy

    Energy Technology Data Exchange (ETDEWEB)

    Rubbia, C. [ENEA, Rome (Italy)

    2000-07-01

    The interest of politicians, businessmen, technologists, scientists and the people at large is focused today on the problem of energy. Everybody will agree on the fact that energy is necessary for the future of mankind. But many tend to paraphrase this by saying that energy is necessary evil. No objection to the necessity: but an analysis of the motivations for regarding energy as evil reveals some Freudian undertones. This scepticism towards technology, as a solution to the rising environmental concerns, perceived as a Faustian deal, after centuries of a passionate technical endeavour deeply engraved in the conception of the world, is a curious phenomenon to say the least. All these problems and the associated concerns are serious: the inevitable growth of energy consumption under the sheer momentum of society and the very human expectations of the poor, may indeed add enough yeast to make them leaven beyond control. However, like in the case of famine, illness etc., also here science and technology should be trusted; indeed there are reasonable expectations that, combined, they will have the possibility of solving also this problem, in full accord with the economic, dynamic and technical constraints that a working system has to comply with.

  12. The future of energy use

    International Nuclear Information System (INIS)

    Lameiras, Fernando Soares

    1996-01-01

    Humanity will not face shortage of energy, but may face problems with its use, because every energy source has restrictions. Fossil fuels change the climate,nuclear energy increases the radioactivity and can be used to manufacture weapons, solar energy is very scattered, and geothermal energy is yet not well known. Delicate political issues emerge in this scenario. Due to the magnitude of energy used by many countries, isolated energy policies can disturb all planet. This may delay decisions and result in the lack of energy supply, hindering the development of many regions, or in conflict between countries. In this paper, some analyses and considerations are presented about the future of energy use, including some axiologic features. The role of nuclear energy is analysed, because, maybe, for the first time a energy source was target of axiologic issues that have affected the growth of its demand. These issues are yet to be internalized by other energy sources in the future. (author)

  13. Systems of the future; Les systemes du futur

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-01-15

    The world population growth will impact largely on the energy and electric power demand in the future. Facing the decrease of the hydrocarbons reserves, the international community decided to work together to develop a new generation of nuclear systems. In this context, coordinated researches are realized first with a short dated objective on the development of innovations for PWR type reactors and second with a middle dated on the development of new systems in an international framework (essentially Generation IV). Theses research programs are presented below. The first part is devoted to the different generation of reactors (I to IV) and to the third generation; the second part deals with the international framework of the researches, the french strategy and the european dimension. (A.L.B.)

  14. Intelligent DC Homes in Future Sustainable Energy Systems

    DEFF Research Database (Denmark)

    Diaz, Enrique Rodriguez; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.

    2016-01-01

    aligned with the new energy strategy. A microgrid easy the integration of renewable energy sources and energy storage systems at the consumption level, aiming to increase power quality, reliability and efficiency. On top of this, the increasing of DC-based loads has re-opened the discussion of DC vs AC......The evidences that climate change is real, and the fact that it is most likely caused by human-related activities, has made the international community to considered a new energy model. Europe has led the initiative of moving away from fossil fuels to renewable energies, where other powerful...... countries, as USA and China, are lagging behind, and still highly rely on coal, gas and oil as a source of energy. Europe has set ambitious goals for 2020 regarding the increase of renewable energy production, energy efficiency, and greenhouse gas emission reduction. The concept of a microgrid is perfectly...

  15. Indicator based sustainability analysis of future energy situation of Santiago de Chile

    OpenAIRE

    Stelzer, Volker; Quintero, Adriana; Vargas, Luis; Paredes, Gonzalo; Simon, Sonja; Nienhaus, Kristina; Kopfmüller, Jürgen

    2014-01-01

    Up to now, the Chilean Energy system has fulfilled the energy needs of Santiago de Chile considerably well. However, development trends of the current system impose significant future risks on the energy system. A detailed sustainability analysis of the energy sector of the Metropolitan Region of Santiago de Chile was conducted, using selected energy indicators and a distance-to-target approach. Risks for the sustainable development of the energy sector are detected, such...

  16. Nuclear energy - the future climate

    International Nuclear Information System (INIS)

    Ash, Eric Sir

    2000-01-01

    In June 1999, a report entitled Nuclear Energy-The Future Climate was published and was the result of a collaboration between the Royal Society and the Royal Academy of Engineering. The report was the work of a group of nine people, made up of scientists, engineers and an economist, whose purpose was to attempt a new and objective look at the total energy scene and specifically the future role of nuclear energy. This paper discusses the findings of that report. (author)

  17. Energy Storage and Smart Energy Systems

    Directory of Open Access Journals (Sweden)

    Poul Alberg Østergaard

    2016-12-01

    Full Text Available It is often highlighted how the transition to renewable energy supply calls for significant electricity storage. However, one has to move beyond the electricity-only focus and take a holistic energy system view to identify optimal solutions for integrating renewable energy. In this paper, an integrated cross-sector approach is used to determine the most efficient and least-cost storage options for the entire renewable energy system concluding that the best storage solutions cannot be found through analyses focusing on the individual sub-sectors. Electricity storage is not the optimum solution to integrate large inflows of fluctuating renewable energy, since more efficient and cheaper options can be found by integrating the electricity sector with other parts of the energy system and by this creating a Smart Energy System. Nevertheless, this does not imply that electricity storage should be disregarded but that it will be needed for other purposes in the future.

  18. Energy in the world: The present situation and future options

    International Nuclear Information System (INIS)

    Rogner, H.H.

    1989-01-01

    It is reported that the most notable changes on the world energy scene since 1973 concerned the shift in OPEC's role from a base to a swing producer, the disruption of the fast market penetration of nuclear power and the impacts caused by the technical advances at essentially all stages of the energy system. Further, several parts of the world witnessed a strong environmental movement which attracted public attention to the conduct of the energy industry and its social implications and environmental consequences. The lecture illuminates these events in some detail and evaluate their impacts on present and future energy demand, supply and trade patterns. The future energy outlook includes two fundamentally different scenarios. Each scenario in itself appears internally consistent. The diverging projections of future energy demand and supply mixes underlying these scenarios are the result of the inclusion/omission of technical change or dynamics of technology into the analyses. 19 refs, 22 figs

  19. Future implications of China's energy-technology choices

    International Nuclear Information System (INIS)

    Larson, E.D.; Wu Zongxin; DeLaquil, Pat; Chen Wenying; Gao Pengfei

    2003-01-01

    This paper summarizes an assessment of future energy-technology strategies for China that explored the prospects for China to continue its social and economic development while ensuring national energy-supply security and promoting environmental sustainability over the next 50 years. The MARKAL energy-system modeling tool was used to build a model of China's energy system representing all sectors of the economy and including both energy conversion and end-use technologies. Different scenarios for the evolution of the energy system from 1995 to 2050 were explored, enabling insights to be gained into different energy development choices. The analysis indicates a business-as-usual strategy that relies on coal combustion technologies would not be able to meet all environmental and energy security goals. However, an advanced technology strategy emphasizing (1) coal gasification technologies co-producing electricity and clean liquid and gaseous energy carriers (polygeneration), with below-ground storage of some captured CO 2 ; (2) expanded use of renewable energy sources (especially wind and modern biomass); and (3) end-use efficiency would enable China to continue social and economic development through at least the next 50 years while ensuring security of energy supply and improved local and global environmental quality. Surprisingly, even when significant limitations on carbon emissions were stipulated, the model calculated that an advanced energy technology strategy using our technology-cost assumptions would not incur a higher cumulative (1995-2050) total discounted energy system cost than the business-as-usual strategy. To realize such an advanced technology strategy, China will need policies and programs that encourage the development, demonstration and commercialization of advanced clean energy conversion technologies and that support aggressive end-use energy efficiency improvements

  20. Solar Energy - An Option for Future Energy Production

    Science.gov (United States)

    Glaser, Peter E.

    1972-01-01

    Discusses the exponential growth of energy consumption and future consequences. Possible methods of converting solar energy to power such as direct energy conversion, focusing collectors, selective rediation absorbers, ocean thermal gradient, and space solar power are considered. (DF)

  1. Finding synergy between local competitiveness and global sustainability to provide a future to nuclear energy

    International Nuclear Information System (INIS)

    Van Den Durpel, Luc; Yacout, Abdellatif; Wade, Dave

    2008-01-01

    The world's future energy needs will require a mix of energy conversion technologies matched to the local energy market needs while also responding to both local and global socio-political concerns, e.g. energy security, environmental impact, safety and non-proliferation. There is growing recognition worldwide that nuclear energy should not only be part of the solution but maybe as well play a larger share in future's energy supply. The sustainability of future nuclear energy systems is hereby important and a variety of studies have already shown that sustainability of nuclear energy from a resource perspective is achievable via the nuclear fuel cycle though where economic sustainability is essentially defined by the nuclear power plants. The main challenge in deploying sustainable nuclear energy systems will be to find synergies between this local competitiveness of nuclear power plants and the global resource sustainability defined via the nuclear fuel cycle. Both may go hand-in-hand in the long-term but may need government guidance in starting the transition towards such future sustainable nuclear energy systems. (authors)

  2. Constitutional compatibility of energy systems

    International Nuclear Information System (INIS)

    Rossnagel, A.

    1983-01-01

    The paper starts from the results of the Enquiry Commission on 'Future Nuclear Energy Policy' of the 8th Federal German Parliament outlining technically feasible energy futures in four 'pathways'. For the purpose of the project, which was to establish the comparative advantages and disadvantages of different energy systems, these four scenarios were reduced to two alternatives: cases K (= nuclear energy) and S (= solar energy). The question to Ge put is: Which changes within our legal system will be ushered in by certain technological developments and how do these changes relate to the legal condition intended so far. Proceeding in this manner will not lead to the result of a nuclear energy system or a solar energy system being in conformity or in contradiction with the constitutional law, but will provide a catalogue of implications orientated to the aims of legal standards: a person deciding in favour of a nuclear energy system or a solar energy system supports this or that development of constitutional policy, and a person purishing this or that aim of legal policy should be consistent and decide in favour of this or that energy system. The investigation of constitutional compatibility leads to the question what effects different energy systems will have on the forms of political intercourse laid down in the constitutional law, which are orientated to models of a liberal constitutional tradition of citizens. (orig./HSCH) [de

  3. Creating a sustainable energy future for Australia

    International Nuclear Information System (INIS)

    Sonneborn, C.L.

    1995-01-01

    A joint industry approach is needed to put in place a sustainable energy system that is economically and technologically feasible. The industry sectors involved must include the renewable energy industry, energy efficiency industry and the natural gas industry. Conventional forecasts of energy futures make far less use of these industries than is economically and technically feasible. Existing forecasts make the trade off between acceptable levels of economic growth, limitation of greenhouse gases and dependence on coal and oil appear more difficult than they actually are and overlook the benefits of sustainable energy industry development. This paper outlines how national gains from carefully targeted action can exceed national losses while substantially reducing greenhouse gases and creating jobs at zero or negative costs. (author). 3 figs., 27 refs

  4. Food, Paper, Wood, or Energy? Global Trends and Future Swedish Forest Use

    Directory of Open Access Journals (Sweden)

    Erik Westholm

    2010-12-01

    Full Text Available This paper presents a futures study of international forest trends. The study, produced as part of the Swedish Future Forest program, focuses on global changes of importance for future Swedish forest use. It is based on previous international research, policy documents, and 24 interviews with selected key experts and/or actors related to the forest sector, and its findings will provide a basis for future research priorities. The forest sector, here defined as the economic, social, and cultural contributions to life and human welfare derived from forest and forest-based activities, faces major change. Four areas stand out as particularly important: changing energy systems, emerging international climate policies, changing governance systems, and shifting global land use systems. We argue that global developments are, and will be, important for future Swedish forest use. The forest sector is in transition and forest-, energy, climate- and global land use issues are likely to become increasingly intertwined. Therefore, the “forest sector” must be disembedded and approached as an open system in interplay with other systems.

  5. The future of energy

    CERN Document Server

    Towler, Brian F

    2014-01-01

    Using the principle that extracting energy from the environment always involves some type of impact on the environment, The Future of Energy discusses the sources, technologies, and tradeoffs involved in meeting the world's energy needs. A historical, scientific, and technical background set the stage for discussions on a wide range of energy sources, including conventional fossil fuels like oil, gas, and coal, as well as emerging renewable sources like solar, wind, geothermal, and biofuels. Readers will learn that there are no truly ""green"" energy sources-all energy usage involves some trad

  6. Future of US Energy

    Energy Technology Data Exchange (ETDEWEB)

    Cragg, C.; Nicola, S.; Kemfert, C.

    2009-01-15

    Barack Obama has promised to boost renewable energy sources and energy efficiency and to join the global effort to curb climate change. But he also looks upon domestic energy in terms of national security. These two priorities clash in important ways. One thing is certain: US energy policy is about to change drastically - and global energy relations along with them. In this section of the magazine two articles are dedicated to the future of energy in the USA. In between the articles is a column on the question if climate protection creates jobs.

  7. Future of US Energy

    International Nuclear Information System (INIS)

    Cragg, C.; Nicola, S.; Kemfert, C.

    2009-01-01

    Barack Obama has promised to boost renewable energy sources and energy efficiency and to join the global effort to curb climate change. But he also looks upon domestic energy in terms of national security. These two priorities clash in important ways. One thing is certain: US energy policy is about to change drastically - and global energy relations along with them. In this section of the magazine two articles are dedicated to the future of energy in the USA. In between the articles is a column on the question if climate protection creates jobs

  8. Future energy perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Halsnaes, K.; Christensen, J.M. [Risoe National Lab., Systems Analysis Dept., Roskilde (Denmark)

    2002-10-01

    Future energy perspectives: 1) The global energy consumption will continue to grow primarily in developing countries, their share of global energy consumption will grow from approx. 35% in 1990 to 60% in 2050. 2) Policy focus will be primarily on environmental concerns in the industrial countries and on energy for development and access to energy for the poor in developing countries. 3) With global climate concerns and the implementation of the Kyoto protocol, global environment issues will have increased prominence in energy sector priorities. 4) Fossil fuel resources are on a global level still abundant and prices are expected to be relatively low in the short to medium term. 5) Energy supply security has for geopolitical reasons become an increasing concern especially in the US and the EU. 6) Significant investments are required to ensure development of new clean energy technologies for introduction in the medium to long term. 7) Market reforms are being implemented in almost all regions of the world changing both the investment and policy regimes. 8) International studies (IPCC and WEC) have analysed several alternative energy scenarios Alternative policies and priorities can lead to a wide range of different energy futures. 9) WEC middle scenario B, from 1990 to 2050; predicts growth in GDP 3.5 times and primary energy consumption 2.2 times and CO{sub 2} 1.5 times. This scenario is expecting supply to be dominated by fossil fuel (80% in 1990 and still 65% in 2050), with high share of natural gas and nuclear with slow growth in renewable energy. 10) A more radical scenario (C1) is expecting renewable energy such as biomass, solar and wind to contribute 27% in 2050; declining oil and coal; increased use of natural gas and a minor contribution from nuclear. A development path like this require significant near-term investments in technology research and development. 11) The large increase in global energy demand in the next century will require large investments

  9. Future energy perspectives

    International Nuclear Information System (INIS)

    Halsnaes, K.; Christensen, J.M.

    2002-01-01

    Future energy perspectives: 1) The global energy consumption will continue to grow primarily in developing countries, their share of global energy consumption will grow from approx. 35% in 1990 to 60% in 2050. 2) Policy focus will be primarily on environmental concerns in the industrial countries and on energy for development and access to energy for the poor in developing countries. 3) With global climate concerns and the implementation of the Kyoto protocol, global environment issues will have increased prominence in energy sector priorities. 4) Fossil fuel resources are on a global level still abundant and prices are expected to be relatively low in the short to medium term. 5) Energy supply security has for geopolitical reasons become an increasing concern especially in the US and the EU. 6) Significant investments are required to ensure development of new clean energy technologies for introduction in the medium to long term. 7) Market reforms are being implemented in almost all regions of the world changing both the investment and policy regimes. 8) International studies (IPCC and WEC) have analysed several alternative energy scenarios Alternative policies and priorities can lead to a wide range of different energy futures. 9) WEC middle scenario B, from 1990 to 2050; predicts growth in GDP 3.5 times and primary energy consumption 2.2 times and CO 2 1.5 times. This scenario is expecting supply to be dominated by fossil fuel (80% in 1990 and still 65% in 2050), with high share of natural gas and nuclear with slow growth in renewable energy. 10) A more radical scenario (C1) is expecting renewable energy such as biomass, solar and wind to contribute 27% in 2050; declining oil and coal; increased use of natural gas and a minor contribution from nuclear. A development path like this require significant near-term investments in technology research and development. 11) The large increase in global energy demand in the next century will require large investments. The

  10. Nuclear energy, energy for the present and the future

    International Nuclear Information System (INIS)

    Arredondo S, C.

    2008-01-01

    In this work we will try to show that nuclear energy can contribute to the generation energy in the present and the future, considering that its effect on the climatic change is relatively low and that the fuels that uses are available a large scale. At the moment it is had already commercial thermal fission reactors , there are also them of fast fission that allow the fuel rearing, although these last ones in much smaller number, with both types of fission nuclear reactors can be obtained a very important contribution to the generation of energy at world-wide level during the time that is necessary so that it is developed, constructs and operates the first commercial fusion reactor. The energy that is generated in the present and future must come from different sources, which require to be reliable, to have little effect on the environment, to have wide reserves of fuels and to be viable from an economic and social point of view, they must be viable and safe. Between possible alternative energies it is counted on the lot, the wind one, the geothermal one, originating of the tides and some others. An energy that must be considered so that it has arrived at his maturity and he is already able to contribute widely to cover the present needs and future it is nuclear energy, as much the originating one of the fission of a heavy centre like obtained when fusing two light centers. On base in the nuclear fuel reserves at world-wide level a simple calculation takes control of the lapse in which energy by means of the nuclear fission in rearing can be generated reactors expresses demonstrating that the time sufficient to finish to the investigation and development of fusion reactors which they generate energy in economic, safe and reliable form. Combining these two options the nuclear energy can be considered the future like for the present and the future with practically null effects in the climatic change. (Author)

  11. Energies of the future

    International Nuclear Information System (INIS)

    Matthoefer, H.

    1977-01-01

    This paper outlines the general principles of the energy policy of the Federal Government. The main points of emphasis are stressed, and the limits of energy supply for the ever-growing demand without new options are pointed out. For the future, a reasonable extension of nuclear power is required. Solar energy and energy conservation are no alternatives. The tendency of this papar points to the 2nd amendment of the energy programme of the Federal Government that will soon be published. (UA) 891 UA [de

  12. Towards a future-proof energy system for the Netherlands; Naar een toekomstbestendig energiesysteem voor Nederland

    Energy Technology Data Exchange (ETDEWEB)

    Weterings, R.; Van Harmelen, T.; Gjaltema, J.; Jongeneel, S.; Manshanden, W.; Poliakov, E. [TNO Behavioural and Societal Sciences, Delft (Netherlands); Faaij, A.; Van den Broek, M.; Dengerink, J. [Copernicus Instituut, Universiteit Utrecht, Utrecht (Netherlands); Londo, M.; Schoots, K. [ECN Beleidsstudies, Amsterdam (Netherlands)

    2013-03-15

    The analysis performed has two goals: (1) mapping of the most important opportunities and threats of the transition to a sustainable energy supply for the economy and society of the Netherlands, and (2) identify where significant gaps are in the knowledge that is required for a transition to a future-proof energy system for Netherlands [Dutch] De uitgevoerde analyse heeft twee doelen: (1) In beeld brengen van de belangrijkste kansen en bedreigingen van de transitie naar een duurzame energievoorziening voor economie en samenleving van Nederland; en (2) Nagaan waar belangrijke lacunes liggen in de benodigde kennis voor een transitie naar een toekomstbestendig energiesysteem in Nederland.

  13. Energy in India's Future: Insights

    International Nuclear Information System (INIS)

    Lesourne, J.; Ramsay, W.C.; Jaureguy-Naudin, Maite; Boillot, Jean-Joseph; Autheman, Nicolas; Ruet, Joel; Siddiqui, Zakaria; Zaleski, C. Pierre; Cruciani, Michel

    2009-01-01

    In the decades following India's independence from British rule in 1947, the West's image of India was summarized in three simple cliches: the world's largest democracy, an impoverished continent, and economic growth hampered by a fussy bureaucracy and the caste system, all in a context of a particular religion. These cliches are perhaps one of the reasons that the success of India's green revolution was recognized so late, a revolution that allowed the country to develop its agricultural sector and to feed its population. Since the 1990's, the easing of planning constraints have liberated the Indian economy and allowed it to embark on a more significant path of growth. New cliches have begun to replace the old: India will become a second China and, lagging by 10 to 20 years, will follow the same trajectory, with its development marked more by services and the use of renewable energy. However, these trends will not prevent primary energy demand from exploding. On the contrary, India faces difficult choices on how it increases clean, secure, affordable energy to all its citizens. Many of the choices are the same as found elsewhere, but on a scale matched only by China. The IFRI European Governance and Geopolitics of Energy Project intends this study to deepen public understanding of the magnitude of India's challenges. Various aspects of the serious energy problems are studied throughout this monograph. The authors have written freely on these matters without attempting to reconcile their different viewpoints. The first chapter, by Maite Jaureguy-Naudin and Jacques Lesourne, presents an overview of India's present and future energy system. The authors follow a prudent but realistic view of India's future. The second chapter, by Jean-Joseph Boillot, a French expert on India who has published several books and articles on this subject, and Nicolas Autheman, research fellow, describes in greater detail the specifics of India's economy and the actors who are now present

  14. Smart bioenergy technologies and concepts for a more flexible bioenergy provision in future energy systems

    CERN Document Server

    2015-01-01

    Biomass is a vital source of renewable energy, because it offers a wide range of established and potential methods for energy generation. It is also an important facet of the progression toward a sustainable energy future. The need for further development in the provision of bioenergy is underlined by challenges affecting the biomass resource base, including rising demand for biomass for food, feed, materials and fuel. This is underlined by significant concerns over factors relating to land, such as soil, nutrients and biodiversity. This book examines and analyzes Germany's decade-long initiative toward implementation of an active policy for the transition of the energy system to make greater use of renewable energy sources, which has resulted in a significant increase in the amount of biomass used for electricity, heat and transport fuel. The book begins with a review of market and resource base issues, and moves on to analyze the technical options for a more integrated bioenergy use. The analysis spans the ...

  15. The Vision of the Role of Hydrogen in Energy Supply in the Future

    International Nuclear Information System (INIS)

    Barbir, F.

    2008-01-01

    Europe is in a very difficult situation regarding the future of energy supply because it is highly dependent on import of oil and natural gas. In addition, because of environmental pollution, global climate changes, ?nite World reserves of fossil fuels and geo-political implications of distribution of those reserves, such an energy system is not sustainable. The need for inevitable changes in energy supply is becoming more and more obvious. This includes not only a change of the energy sources, but also in energy carriers and technologies for their conversion into useful forms of energy, as well as a change in the ways energy is used today. Based on present knowledge, the only energy sources that satisfy the sustainability requirements are the renewable energy sources - direct solar insolation and its consequences (wind, hydro, biomass). As the renewable energy sources cannot be utilized directly in most of applications there is a need for such energy carriers which can be produced from renewable energy sources and which can satisfy all the energy needs at the end use, again satisfying the sustainability requirements. Electricity is one of such energy carrier which may be used in most but not in all applications. There is a need for other energy carriers in the form of fuels which can be stored and used, for example, in the transportation sector. This is a role that hydrogen can fulfill in a future energy system - hydrogen satisfies the conditions of sustainability, can be produced from renewable energy sources and together with electricity can satisfy all energy needs. Although the role of hydrogen in a future energy system can be envisioned with some certainty, the problem is the transition, i.e. switching from the present energy system based on fossil fuels to the future energy system based on renewable energy sources. Of course, such transition cannot happen overnight, but the question is where and how to start and at which pace to proceed. Insistence on short

  16. Smart energy and smart energy systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Østergaard, Poul Alberg; Connolly, David

    2017-01-01

    In recent years, the terms “Smart Energy” and “Smart Energy Systems” have been used to express an approach that reaches broader than the term “Smart grid”. Where Smart Grids focus primarily on the electricity sector, Smart Energy Systems take an integrated holistic focus on the inclusion of more...... sectors (electricity, heating, cooling, industry, buildings and transportation) and allows for the identification of more achievable and affordable solutions to the transformation into future renewable and sustainable energy solutions. This paper first makes a review of the scientific literature within...... the field. Thereafter it discusses the term Smart Energy Systems with regard to the issues of definition, identification of solu- tions, modelling, and integration of storage. The conclusion is that the Smart Energy System concept represents a scientific shift in paradigms away from single-sector thinking...

  17. Alberta's clean energy future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This paper deals with the future of clean energy in Alberta. With the present economic growth of the oil sands industry in Alberta, it is expected that there will be very considerable increases in job opportunities and GDP in both Canada and US. The challenges include high-energy demand and reduction of the carbon footprint. Alberta has adopted certain approaches to developing renewable and alternate forms of energy as well as to increasing the efficiency of present energy use and raising environmental consciousness in energy production. Three areas where the effects of clean energy will be felt are energy systems, climate change, and regional impacts, for instance on land, water, and wildlife. Alberta's regulatory process is shown by means of a flow chart. Aspects of oil sands environmental management include greenhouse gas targets, air quality assurance, and water quality monitoring, among others. Steps taken by Alberta to monitor and improve air quality and water management are listed. In conclusion, the paper notes that significant amounts of money are being pumped into research and development for greenhouse gas and water management projects.

  18. Optimal planning of integrated multi-energy systems

    DEFF Research Database (Denmark)

    van Beuzekom, I.; Gibescu, M.; Pinson, Pierre

    2017-01-01

    In this paper, a mathematical approach for the optimal planning of integrated energy systems is proposed. In order to address the challenges of future, RES-dominated energy systems, the model deliberates between the expansion of traditional energy infrastructures, the integration...... and sustainability goals for 2030 and 2045. Optimal green- and brownfield designs for a district's future integrated energy system are compared using a one-step, as well as a two-step planning approach. As expected, the greenfield designs are more cost efficient, as their results are not constrained by the existing...

  19. EnerFuture: Long Term Energy Scenarios 'Understanding our energy future'. Key graphs and analysis, Enerdata - Global Energy Forecasting

    International Nuclear Information System (INIS)

    2011-01-01

    Enerdata analyses 4 future energy scenarios accounting for 2 economic growth assumptions combined with 2 alternative carbon emission mitigation policies. In this study, a series of analyses supported by graphs assess the energy consumption and intensity forecasts in emerging and developed markets. In particular, one analysis is dedicated to energies competition, including gas, coal and renewable energies. (authors)

  20. The energy future to 2020

    International Nuclear Information System (INIS)

    Boy de la Tour, X.

    1999-01-01

    The energy future will continue for a long time to be dominated by fossil fuels, particularly oil and gas, which will still account for over half the energy supply in 202. Between now and then, the increasing share of the developing countries in he demand for energy will significantly alter energy geopolitics

  1. Renewable energy sources - the opportunity for a safer future

    International Nuclear Information System (INIS)

    Prodrom, Andrei; Federenciuc, Dumitru; Ignat, Vasile; Dobre, Paul

    2004-01-01

    The researches have shown that the potential of renewable energy sources is huge as they can in principle meet many times the world's energy demand. Renewable energy sources such as biomass, wind, solar, hydropower and geothermal can provide energy services based on the use of local available resources. Starting from this fact, a transition to renewable-based energy systems is looking increasingly likely as their costs have dropped while the price of oil and gas continue to fluctuate. In the past 30 years, the sales of solar and wind energy systems continued to increase because the capital and electricity production costs decreased simultaneously with the performance enhancement. It is becoming clear that future growth in the energy sector will be primarily in the renewable energy systems and to some extent natural gas-based systems and not in conventional oil and coal sources. It is also important to have governmental assistance and popular support in developing these alternate energy sources, that among others, reduce local and global atmospheric emissions, provide commercially attractive options, particularly in developing countries and rural areas and create the transition to the energy sector of the future. This paper tries to approach the renewable energy sources currently analyzed by the experts, emphasizing their strengths and weaknesses. The conventional energy sources based on oil, coal and natural gas have proven to be highly effective drivers of economic progress but at the same time damaging to the environment and human health. Furthermore they tend to be cyclical in nature, due to the effects of oligopoly in production and distribution. These traditional fossil fuel-based energy sources are facing increasing pressure on environmental issues, among these the future reduction of greenhouse gas specified in the Kyoto Protocol. Renewable energy sources currently supply between 15 - 20% of world's total energy demand. This supply is dominated by biomass

  2. Hydrogen: Its Future Role in the Nation's Energy Economy.

    Science.gov (United States)

    Winsche, W E; Hoffman, K C; Salzano, F J

    1973-06-29

    In examining the potential role of hydrogen in the energy economy of the future, we take an optimistic view. All the technology required for implementation is feasible but a great deal of development and refinement is necessary. A pessimistic approach would obviously discourage further thinking about an important and perhaps the most reasonable alternative for the future. We have considered a limited number of alternative energy systems involving hydrogen and have shown that hydrogen could be a viable secondary source of energy derived from nuclear power; for the immediate future, hydrogen could be derived from coal. A hydrogen supply system could have greater flexibility and be competitive with a more conventional all-electric delivery system. Technological improvements could make hydrogen as an energy source an economic reality. The systems examined in this article show how hydrogen can serve as a general-purpose fuel for residential and automotive applications. Aside from being a source of heat and motive power, hydrogen could also supply the electrical needs of the household via fuel cells (19), turbines, or conventional "total energy systems." The total cost of energy to a residence supplied with hydrogen fuel depends on the ratio of the requirements for direct fuel use to the requirements for electrical use. A greater direct use of hydrogen as a fuel without conversion to electricity reduces the overall cost of energy supplied to the household because of the greater expense of electrical transmission and distribution. Hydrogen fuel is especially attractive for use in domestic residential applications where the bulk of the energy requirement is for thermal energy. Although a considerable amount of research is required before any hydrogen energy delivery system can be implemented, the necessary developments are within the capability of present-day technology and the system could be made attractive economically .Techniques for producing hydrogen from water by

  3. Solar/electric heating systems for the future energy system

    DEFF Research Database (Denmark)

    Furbo, Simon; Dannemand, Mark; Perers, Bengt

    elements/heat pump, advanced heat storage tanks and advanced control systems. Heat is produced by solar collectors in sunny periods and by electrical heating elements/heat pump. The electrical heating elements/heat pump will be in operation in periods where the heat demand cannot be covered by solar energy....... The aim is to use the auxiliary heating units when the electricity price is low, e.g. due to large electricity production by wind turbines. The unit is equipped with an advanced control system where the control of the auxiliary heating is based on forecasts of the electricity price, the heat demand...

  4. Future UK markets for stand-alone renewable energy systems

    International Nuclear Information System (INIS)

    Paish, O.

    1999-01-01

    A study to identify and quantify the market for stand-alone renewable energy supplies of power (photovoltaics, wind and micro-hydro electricity systems) was described. The study focused on small systems, generally less than a few kW installed capacity. It was suggested that in the UK, the emphasis on grid-connected renewable energy technologies (RETs) has blurred the fact that it is 'off-grid' renewable systems that can offer more immediate real commercial markets for the renewables business. With the likelihood of a significant increase in demand for renewables world wide over the next ten years, the UK needs to make a special effort to become involved

  5. Rethinking the Future Grid: Integrated Nuclear Renewable Energy Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, S. M.; Boardman, R.; Ruth, M.; Zinaman, O.; Forsberg, C.

    2015-01-01

    The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. One concept under consideration by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and transportation sectors. This integration concept has been referred to as a 'hybrid system' that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product.

  6. World Energy Scenarios: Composing energy futures to 2050

    International Nuclear Information System (INIS)

    Frei, Christoph; Whitney, Rob; Schiffer, Hans-Wilhelm; Rose, Karl; Rieser, Dan A.; Al-Qahtani, Ayed; Thomas, Philip; Turton, Hal; Densing, Martin; Panos, Evangelos; Volkart, Kathrin

    2013-01-01

    The World Energy Scenarios: Composing energy futures to 2050 is the result of a three-year study conducted by over 60 experts from nearly 30 countries, with modelling provided by the Paul Scherrer Institute. The report assesses two contrasting policy scenarios, the more consumer driven Jazz scenario and the more voter-driven Symphony scenario with a key differentiator being the ability of countries to pass through the Doha Climate Gateway. The WEC scenarios use an explorative approach to assess what is actually happening in the world now, to help gauge what will happen in the future and the real impact of today's choices on tomorrow's energy landscape. Rather than telling policy-makers and senior energy leaders what to do in order to achieve a specific policy goal, the WEC's World Energy Scenarios allow them to test the key assumptions that decision-makers decide to better shape the energy of tomorrow This document includes the French and English versions of the executive summary and the English version of the full report

  7. The Global Climate and Energy Project at Stanford University: Fundamental Research Towards Future Energy Technologies

    Science.gov (United States)

    Milne, Jennifer L.; Sassoon, Richard E.; Hung, Emilie; Bosshard, Paolo; Benson, Sally M.

    The Global Climate and Energy Project (GCEP), at Stanford University, invests in research with the potential to lead to energy technologies with lower greenhouse gas emissions than current energy technologies. GCEP is sponsored by four international companies, ExxonMobil, GE, Schlumberger, and Toyota and supports research programs in academic institutions worldwide. Research falls into the broad areas of carbon based energy systems, renewables, electrochemistry, and the electric grid. Within these areas research efforts are underway that are aimed at achieving break-throughs and innovations that greatly improve efficiency, performance, functionality and cost of many potential energy technologies of the future including solar, batteries, fuel cells, biofuels, hydrogen storage and carbon capture and storage. This paper presents a summary of some of GCEP's activities over the past 7 years with current research areas of interest and potential research directions in the near future.

  8. A Tale of Three District Energy Systems: Metrics and Future Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Pass, Rebecca Zarin; Wetter, Michael; Piette, Mary Ann

    2017-08-01

    Improving the sustainability of cities is crucial for meeting climate goals in the next several decades. One way this is being tackled is through innovation in district energy systems, which can take advantage of local resources and economies of scale to improve the performance of whole neighborhoods in ways infeasible for individual buildings. These systems vary in physical size, end use services, primary energy resources, and sophistication of control. They also vary enormously in their choice of optimization metrics while all under the umbrella-goal of improved sustainability. This paper explores the implications of choice of metric on district energy systems using three case studies: Stanford University, the University of California at Merced, and the Richmond Bay campus of the University of California at Berkeley. They each have a centralized authority to implement large-scale projects quickly, while maintaining data records, which makes them relatively effective at achieving their respective goals. Comparing the systems using several common energy metrics reveals significant differences in relative system merit. Additionally, a novel bidirectional heating and cooling system is presented. This system is highly energy-efficient, and while more analysis is required, may be the basis of the next generation of district energy systems.

  9. Africa energy future: Alternative scenarios and their implications for sustainable development strategies

    International Nuclear Information System (INIS)

    Ouedraogo, Nadia S.

    2017-01-01

    The long-term forecasting of energy supply and demand is of prime importance in Africa due to the steady increase in energy requirements, the non-availability of sufficient resources, the high dependence on fossil-fuels to meet these requirements, and the global concerns over the energy-induced environmental issues. This paper is concerned with modelling possible future paths for Africa's energy future and the related emissions. Future energy demand is forecasted based on socio-economic variables such as gross domestic product, income per capita, population, and urbanisation. The Long-range Energy Alternative Planning System (LEAP) modelling framework is employed to analyse and project energy demand and the related emissions under alternative strategies for the period of 2010–2040. Results of scenarios including business-as-usual (BAU) policies, moderate energy access and accelerate energy access policies, renewable energies promotion and energy efficiency policies and their environmental implications are provided. The study provides some policy insights and identifies synergies and trade-offs relating to the potential for energy policies to promote universal energy access, enable a transition to renewable energy, and mitigate climate change for a sustainable development. - Highlights: • Possible future paths for Africa's energy future and the related emissions are modelled. • Scenarios using an adaptation of Schwartz's scenario approach, under LEAP are developed. • Under the current energy policies, the universal access to modern energy will not be met by 2030. • Policies to accelerate the changes in energy structure are required for sustainable development. • Investing in Energy efficient strategies has emerged as one of the best solution.

  10. Future of nuclear energy research

    International Nuclear Information System (INIS)

    Fuketa, Toyojiro

    1989-09-01

    In spite of the easing of worldwide energy supply and demand situation in these years, we believe that research efforts towards the next generation nuclear energy are indispensably necessary. Firstly, the nuclear colleagues believe that nuclear energy is the best major energy source from many points of view including the global environmental viewpoint. Secondly, in the medium- and long-range view, there will once again be a high possibility of a tight supply and demand situation for oil. Thirdly, nuclear energy is the key energy source to overcome the vulnerability of the energy supply structure in industrialized countries like Japan where virtually no fossil energy source exists. In this situation, nuclear energy is a sort of quasi-domestic energy as a technology-intensive energy. Fourthly, the intensive efforts to develop the nuclear technology in the next generation will give rise to a further evolution in science and technology in the future. A few examples of medium- and long-range goals of the nuclear energy research are development of new types of reactors which can meet various needs of energy more flexibly and reliably than the existing reactors, fundamental and ultimate solution of the radioactive waste problems, creation and development of new types of energy production systems which are to come beyond the fusion, new development in the biological risk assessment of the radiation effects and so on. In order to accomplish those goals it is quite important to introduce innovations in such underlying technologies as materials control in more microscopic manners, photon and particle beam techniques, accelerator engineering, artificial intelligence, and so on. 32 refs, 2 figs

  11. Energy future Santa Cruz: A citizens' plan for energy self-reliance

    Science.gov (United States)

    Cohn, J.; Stayton, R.

    The results of a grassroots energy conservation project which involved more than 3,100 residents of Santa Cruz, California, is discussed. Citizens attended forums and town meetings to suggest ideas for solving the community's energy problems. These ideas were then evaluated by the Energy Future Advisory Board and compiled into the Energy Future Plan. The energy plan covers such topics as new residences, residential retrofit, automobile efficiency, farm efficiency, commercial greenhouses, local food production, commercial efficiency, land use planning, energy education and financing, and solar, wind, and ocean energy. An energy implementation guide and glossary are included.

  12. The impact of future energy demand on renewable energy production – Case of Norway

    International Nuclear Information System (INIS)

    Rosenberg, Eva; Lind, Arne; Espegren, Kari Aamodt

    2013-01-01

    Projections of energy demand are an important part of analyses of policies to promote conservation, efficiency, technology implementation and renewable energy production. The development of energy demand is a key driver of the future energy system. This paper presents long-term projections of the Norwegian energy demand as a two-step methodology of first using activities and intensities to calculate a demand of energy services, and secondly use this as input to the energy system model TIMES-Norway to optimize the Norwegian energy system. Long-term energy demand projections are uncertain and the purpose of this paper is to illustrate the impact of different projections on the energy system. The results of the analyses show that decreased energy demand results in a higher renewable fraction compared to an increased demand, and the renewable energy production increases with increased energy demand. The most profitable solution to cover increased demand is to increase the use of bio energy and to implement energy efficiency measures. To increase the wind power production, an increased renewable target or higher electricity export prices have to be fulfilled, in combination with more electricity export. - Highlights: • Projections to 2050 of Norwegian energy demand services, carriers and technologies. • Energy demand services calculated based on intensities and activities. • Energy carriers and technologies analysed by TIMES-Norway. • High renewable target results in more wind power production and electricity export. • Increased energy efficiency is important for a high renewable fraction

  13. Global Renewable Energy-Based Electricity Generation and Smart Grid System for Energy Security

    Science.gov (United States)

    Islam, M. A.; Hasanuzzaman, M.; Rahim, N. A.; Nahar, A.; Hosenuzzaman, M.

    2014-01-01

    Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration. PMID:25243201

  14. Global renewable energy-based electricity generation and smart grid system for energy security.

    Science.gov (United States)

    Islam, M A; Hasanuzzaman, M; Rahim, N A; Nahar, A; Hosenuzzaman, M

    2014-01-01

    Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration.

  15. Global Renewable Energy-Based Electricity Generation and Smart Grid System for Energy Security

    Directory of Open Access Journals (Sweden)

    M. A. Islam

    2014-01-01

    Full Text Available Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration.

  16. Integrated energy systems and local energy markets

    DEFF Research Database (Denmark)

    Lund, Henrik; Münster, Ebbe

    2006-01-01

    Significant benefits are connected with an increase in the flexibility of the Danish energy system. On the one hand, it is possible to benefit from trading electricity with neighbouring countries, and on the other, Denmark will be able to make better use of wind power and other types of renewable...... energy in the future. This paper presents the analysis of different ways of increasing flexibility in the Danish energy system by the use of local regulation mechanisms. This strategy is compared with the opposite extreme, i.e. trying to solve all balancing problems via electricity trade...

  17. Energy supplies and future engines for land, sea, and air.

    Science.gov (United States)

    Wilson, David Gordon

    2012-06-01

    The years 2012 and beyond seem likely to record major changes in energy use and power generation. The Japanese tsunami has resulted in large countries either scaling back or abolishing the future use of nuclear energy. The discovery of what seems like vast amounts of economically deliverable natural gas has many forecasting a rapid switch from coal- to gas-fired generating plants. On the other hand, environmentalists have strong objections to the production of natural gas and of petroleum by hydraulic fracturing from shale, or by extraction of heavy oil. They believe that global warming from the use of fossil fuels is now established beyond question. There has been rapid progress in the development of alternative energy supplies, particularly from on-shore and off-shore wind. Progress toward a viable future energy mix has been slowed by a U.S. energy policy that seems to many to be driven by politics. The author will review the history of power and energy to put all of the above in context and will look at possible future developments. He will propose what he believes to be an idealized energy policy that could result in an optimum system that would be arrived at democratically.

  18. Rational expectations, risk and efficiency in energy futures markets

    Energy Technology Data Exchange (ETDEWEB)

    Serletis, Apostolos (Calgary Univ., AB (CA). Dept. of Economics)

    1991-04-01

    Conditional on the hypothesis that energy futures markets are efficient or rational, this paper uses Fama's regression approach to measure the information in energy futures prices about future spot prices and time varying premiums. The paper finds that the premium and expected future spot price components of energy futures prices are negatively correlated and that most of the variation in futures prices is variation in expected premiums. (author).

  19. Energy Systems in the Era of Energy Vectors A Key to Define, Analyze and Design Energy Systems Beyond Fossil Fuels

    CERN Document Server

    Orecchini, Fabio

    2012-01-01

    What lies beyond the era of fossil fuels? While most answers focus on different primary energy resources, Energy Systems in the Era of Energy Vectors provides a completely new approach. Instead of providing a traditional consumption analysis of classical primary energy resources such as oil, coal, nuclear power and gas, Energy Systems in the Era of Energy Vectors describes and assesses energy technologies, markets and future strategies, focusing on their capacity to produce, exchange, and use energy vectors. Special attention is given to the renewable energy resources available in different areas of the world and made exploitable by the integration of energy vectors in the global energy system. Clear definitions of energy vectors and energy systems are used as the basis for a complete explanation and assessment of up-to-date, available technologies for energy resources, transport and storage systems, conversion and use. The energy vectors scheme allows the potential realisation of a worldwide sustainable ener...

  20. Energy costs and society: the high price of future energy

    Energy Technology Data Exchange (ETDEWEB)

    Appleby, A J

    1976-06-01

    Society will not be able to afford nonfossil fuel energy in the future without a major restructuring of industrial activity, involving a complete rethinking of the basis of our present social and economic establishment. This restructuring must be combined with the evident necessity of policies of population restriction and controls in the form of international allocation of the dwindling supply of raw materials, including fossil (and, in future, nonfossil) primary energy. Only by such means, and by adopting a very low-growth future, can some moderate degree of standard of living be expected to be perpetuated for at least a few generations in the industrialized countries, especially in the case of those that are major energy importers at present. This type of future will also be of more help to the third world than one involving the now impossible ideal of a spiraling energy growth rate. The society which, on an optimistic view, will emerge toward the end of the fossil fuel era, will be supplied with abundant, though efficiently applied, energy, and will survive with natural products and by economizing its recylced mineral resources. The approach to this goal will require political leadership, serious education of the public, and a real population policy, all on a world-wide scale. (Conclusions)

  1. Solar energy utilizing technology for future cities

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Kei

    1987-11-20

    This report proposes solar energy utilizing technologies for future cities, centering on a system that uses Fresnel lenses and optical fiber cables. This system selects out beams in the visible range and the energy can be sent to end terminals constantly as long as sunlight is available. Optical energy is concentrated 4,000-fold. The system can provide long-distance projection of parallel rays. It will be helpful for efficient utilization of light in cities and can increase the degree of freedom in carrying out urban development. The total efficiency for the introduction into optical fiber can be up to 40 percent. With no heating coil incorporated, there is no danger of fire. The standard size of a light condenser is 2 m in dome diameter and 2.5 m in height. Auxiliary artificial light is used for backup purposes when it is cloudy. Heat pumps operating on solar thermal energy are employed to maintain air conditioning for 24 hours a day in order to ensure the establishment of an environment where residential areas exist in the neighborhood of office areas. Seven automatic solar light collection and transfer systems are currently in practical use at the Arc Hills building. The combination of Fresnel lens and optical fiber is more than six times as high in efficiency as a reflecting mirror. (5 figs, 3 tabs, 8 photos, 6 refs)

  2. A multi evaporator desalination system operated with thermocline energy for future sustainability

    KAUST Repository

    Shahzad, Muhammad Wakil; Burhan, Muhammad; Ghaffour, NorEddine; Ng, Kim Choon

    2017-01-01

    ) of desalination is at 828. Despite slightly better UPRs for the RO plants, all practical desalination plants available, hitherto, operate at only less than 12% of the TL, rendering them highly energy intensive and unsustainable for future sustainability. More

  3. Future of energy managers groups

    Energy Technology Data Exchange (ETDEWEB)

    Henshaw, T.

    1979-07-01

    The objectives of the Energy Managers Groups, formed to provide a regular opportunity for industry and commerce to exchange views and experiences on energy conservation matters are discussed. Group procedure, liaison and cooperation, government support, and options for the future are discussed. (MCW)

  4. The Energy Future.

    Science.gov (United States)

    Newman, John; Bonino, Christopher A; Trainham, James A

    2018-06-07

    The foreseeable energy future will be driven by economics of known technologies and the desire to reduce CO 2 emissions to the atmosphere. Renewable energy options are compared with each other and with the use of fossil fuels with carbon capture and sequestration (CCS). Economic analysis is used to determine the best of several alternatives. One can disagree on the detailed costs, including externalities such as climate change and air and water pollution. But the differences in capital and operating costs between known technologies are so significant that one can draw clear conclusions. Results show that renewable energy cannot compete with fossil fuels on a cost basis alone because energy is intrinsic to the molecule, except for hydroelectricity. However, fossil fuels are implicated in climate change. Using renewable energy exclusively, including transportation and electricity needs, could reduce the standard of living in the United States by 43% to 62%, which would correspond to the level in about 1970. If capture and sequester of CO 2 are implemented, the cost of using fossil fuels will increase, but they beat renewable energy handily as an economic way to produce clean energy.

  5. Technical Design of Flexible Sustainable Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik

    2003-01-01

    The paper presents technical designs of potential future flexible energy systems in Denmark, which will be able both to balance production and demand and to secure voltage and frequency requirements on the grid.......The paper presents technical designs of potential future flexible energy systems in Denmark, which will be able both to balance production and demand and to secure voltage and frequency requirements on the grid....

  6. Three solar urban futures: characterization of a future community under three energy-supply scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Milne, M; Adelson, M; Corwin, R

    1979-10-01

    This study examines a hypothetical city of 100,000 people in the year 2025 based on three initially given energy-supply scenarios: Future 1 specifying approximately 6% of the city's demand being met by solar technologies; Future 2 specifying about 25%; and Future 3 seeking maximum use of solar technologies. These three versions of the hypothetical city are to be identical in terms of population, goods and services produced, and energy demand. Their differences are compared in terms of physical layout, environmental quality, socio-economics, and quality of life. It is concluded that in Future 1 and Future 2, the city's residential, commercial, and industrial sectors can easily meet the on-site energy-collection requirements of the given supply scenarios. In Future 3, the Solar City, the residential sector can be totally energy self-sufficient (collecting all needed energy on-site), and the commercial sector can collect 59.7% of its energy requirement. Passive design of buildings plays a large part in these results. The industrial sector can collect on-site only 18.2% of its energy needs. In what is called Future 3A, all three sectors of the hypothetical city can be 100% energy self-sufficient if the land area available for various types of solar collectors is increased 34.5%; the commercial sector needs 650 additional acres, while the industrial sector needs 2800 acres, provided that moderate temperature energy (250/sup 0/F to 600/sup 0/F) is adequate to meet industrial process needs.

  7. Use of Danish Heat Atlas and energy system models for exploring renewable energy scenarios

    DEFF Research Database (Denmark)

    Petrovic, Stefan; Karlsson, Kenneth Bernard

    2013-01-01

    networks in relation with significant heat saving measures that are capital intensive infrastructure investments require highly detailed decision - support tools. The Heat Atlas for Denmark provides a highly detailed database and includes heat demand and possible heat savings for about 2.5 million...... buildings with associated costs included. Energy systems modelling tools that incorporate economic, environmental, energy and engineering analysis of future energy systems are considered crucial for quantitative assessment of transitional scenarios towards future milestones, such as (i) EU 2020 goals...... of reducing greenhouse gas emissions, increasing share of renewable energy and improving energy efficiency and (ii) Denmark’s 2050 goals of covering entire energy supply by renewable energy. Optimization and simulation energy system models are currently used in Denmark. The present paper tends to provide...

  8. Energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Haefele, W [Nuclear Research Centre, Applied Systems Analysis and Reactor Physics, Karlsruhe (Germany); International Institute for Applied Systems Analysis, Laxenburg (Austria)

    1974-07-01

    Up to the present the production, transmission and distribution of energy has been considered mostly as a fragmented problem; at best only subsystems have been considered. Today the scale of energy utilization is increasing rapidly, and correspondingly, the reliance of societies on energy. Such strong quantitative increases influence the qualitative nature of energy utilization in most of its aspects. Resources, reserves, reliability and environment are among the key words that may characterize the change in the nature of the energy utilization problem. Energy can no longer be considered an isolated technical and economical problem, rather it is embedded in the ecosphere and the society-technology complex. Restraints and boundary conditions have to be taken into account with the same degree of attention as in traditional technical problems, for example a steam turbine. This results in a strong degree of interweaving. Further, the purpose of providing energy becomes more visible, that is, to make survival possible in a civilized and highly populated world on a finite globe. Because of such interweaving and finiteness it is felt that energy should be considered as a system and therefore the term 'energy systems' is used. The production of energy is only one component of such a system; the handling of energy and the embedding of energy into the global and social complex in terms of ecology, economy, risks and resources are of similar importance. he systems approach to the energy problem needs more explanation. This paper is meant to give an outline of the underlying problems and it is hoped that by so doing the wide range of sometimes confusing voices about energy can be better understood. Such confusion starts already with the term 'energy crisis'. Is there an energy crisis or not? Much future work is required to tackle the problems of energy systems. This paper can only marginally help in that respect. But it is hoped that it will help understand the scope of the

  9. Energy systems

    International Nuclear Information System (INIS)

    Haefele, W.

    1974-01-01

    Up to the present the production, transmission and distribution of energy has been considered mostly as a fragmented problem; at best only subsystems have been considered. Today the scale of energy utilization is increasing rapidly, and correspondingly, the reliance of societies on energy. Such strong quantitative increases influence the qualitative nature of energy utilization in most of its aspects. Resources, reserves, reliability and environment are among the key words that may characterize the change in the nature of the energy utilization problem. Energy can no longer be considered an isolated technical and economical problem, rather it is embedded in the ecosphere and the society-technology complex. Restraints and boundary conditions have to be taken into account with the same degree of attention as in traditional technical problems, for example a steam turbine. This results in a strong degree of interweaving. Further, the purpose of providing energy becomes more visible, that is, to make survival possible in a civilized and highly populated world on a finite globe. Because of such interweaving and finiteness it is felt that energy should be considered as a system and therefore the term 'energy systems' is used. The production of energy is only one component of such a system; the handling of energy and the embedding of energy into the global and social complex in terms of ecology, economy, risks and resources are of similar importance. he systems approach to the energy problem needs more explanation. This paper is meant to give an outline of the underlying problems and it is hoped that by so doing the wide range of sometimes confusing voices about energy can be better understood. Such confusion starts already with the term 'energy crisis'. Is there an energy crisis or not? Much future work is required to tackle the problems of energy systems. This paper can only marginally help in that respect. But it is hoped that it will help understand the scope of the

  10. Integrated electrofuels and renewable energy systems

    DEFF Research Database (Denmark)

    Ridjan, Iva

    energy into chemical energy by means of electrolysers, thus connecting fluctuating renewable energy to the vast amount of fuel storage already available in today’s energy systems. The conducted research indicates that electrofuels for heavy-duty transportation are technically and economically viable...... in energy systems and could play an important role in future energy systems. The cross-sector approach in the fuel production, by redirecting the excess electricity to the transport sector, is creating the flexibility and storage buffer for fluctuating electricity. The key concern in the short term should...

  11. Nuclear energy facing the future

    International Nuclear Information System (INIS)

    Laue, H.J.

    1982-01-01

    In conjunction with the 25th anniversary of the establishment of the IAEA, the contribution that nuclear energy can make to future world energy requirements is discussed and nuclear power generation statistics examined with especial reference to data on capacity and outages. (U.K.)

  12. The Economics of America's Energy Future.

    Science.gov (United States)

    Simmons, Henry

    This is an Energy Research and Development Administration (ERDA) pamphlet which reviews economic and technical considerations for the future development of energy sources. Included are sections on petroleum, synthetic fuels, oil shale, nuclear power, geothermal power, and solar energy. Also presented are data pertaining to U.S. energy production…

  13. Key Factors in Planning a Sustainable Energy Future Including Hydrogen and Fuel Cells

    Science.gov (United States)

    Hedstrom, Lars; Saxe, Maria; Folkesson, Anders; Wallmark, Cecilia; Haraldsson, Kristina; Bryngelsson, Marten; Alvfors, Per

    2006-01-01

    In this article, a number of future energy visions, especially those basing the energy systems on hydrogen, are discussed. Some often missing comparisons between alternatives, from a sustainability perspective, are identified and then performed for energy storage, energy transportation, and energy use in vehicles. It is shown that it is important…

  14. Deciding the Future: Energy Policy Scenarios to 2050

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-15

    This WEC study is bottom-up regional view of our energy future focusing on policies to ensure energy sustainability. Experts from five regions and all energy domains worked together to produce four different scenarios to predict how differing levels of cooperation and government involvement would affect the energy future of the world.

  15. Energy future 2050

    Energy Technology Data Exchange (ETDEWEB)

    Syri, S; Kainiemi, L; Riikonen, V [Aalto Univ. School of Engineering, Espoo (Finland). Dept. of Energy Technology

    2011-07-01

    The track was organized by the Department of Energy Technology, School of Engineering, at Aalto University. Energy future 2050 -track introduced participants to the global long-term challenges of achieving a sustainable energy supply. According to the Intergovernmental Panel on Climate Change (IPCC), effective climate change mitigation would require the global greenhouse gas emissions to be reduced by 50-85% from the present level by 2050. For industrialized countries, this would probably mean a practically carbon-neutral economy and energy supply, as developing countries need more possibilities for growth and probably enter stricter emission reduction commitments with some delay. In the beginning of the workshop, students were introduced to global energy scenarios and the challenge of climate change mitigation. Students worked in three groups with the following topics: How to gain public acceptance of Carbon (dioxide) Capture and Storage (CCS) ? Personal emissions trading as a tool to achieve deep emission cuts, How to get rid of fossil fuel subsidies? Nordic cases are peat use in Finland and Sweden. (orig.)

  16. 21st century's energy: hydrogen energy system

    International Nuclear Information System (INIS)

    Veziroglu, T. N.

    2007-01-01

    Fossil fuels (i.e., petroleum, natural gas and coal), which meet most of the world's energy demand today, are being depleted fast. Also, their combustion products are causing the global problems, such as the greenhouse effect, ozone layer depletion, acid rains and pollution, which are posing great danger for our environment and eventually for the life in our planet. Many engineers and scientists agree that the solution to these global problems would be to replace the existing fossil fuel system by the Hydrogen Energy System. Hydrogen is a very efficient and clean fuel. Its combustion will produce no greenhouse gases, no ozone layer depleting chemicals, little or no acid rain ingredients and pollution. Hydrogen, produced from renewable energy (e.g., solar) sources, would result in a permanent energy system, which we would never have to change. However, there are other energy systems proposed for the post-petroleum era, such as a synthetic fossil fuel system. In this system, synthetic gasoline and synthetic natural gas will be produced using abundant deposits of coal. In a way, this will ensure the continuation of the present fossil fuel system. The two possible energy systems for the post-fossil fuel era (i.e., the solar hydrogen energy system and the synthetic fossil fuel system) are compared with the present fossil fuel system by taking into consideration production costs, environmental damages and utilization efficiencies. The results indicate that the solar hydrogen energy system is the best energy system to ascertain a sustainable future, and it should replace the fossil fuel system before the end of the 21st Century

  17. 21st Century's energy: Hydrogen energy system

    International Nuclear Information System (INIS)

    Veziroglu, T. Nejat; Sahin, Suemer

    2008-01-01

    Fossil fuels (i.e., petroleum, natural gas and coal), which meet most of the world's energy demand today, are being depleted fast. Also, their combustion products are causing the global problems, such as the greenhouse effect, ozone layer depletion, acid rains and pollution, which are posing great danger for our environment and eventually for the life in our planet. Many engineers and scientists agree that the solution to these global problems would be to replace the existing fossil fuel system by the hydrogen energy system. Hydrogen is a very efficient and clean fuel. Its combustion will produce no greenhouse gases, no ozone layer depleting chemicals, little or no acid rain ingredients and pollution. Hydrogen, produced from renewable energy (e.g., solar) sources, would result in a permanent energy system, which we would never have to change. However, there are other energy systems proposed for the post-petroleum era, such as a synthetic fossil fuel system. In this system, synthetic gasoline and synthetic natural gas will be produced using abundant deposits of coal. In a way, this will ensure the continuation of the present fossil fuel system. The two possible energy systems for the post-fossil fuel era (i.e., the solar-hydrogen energy system and the synthetic fossil fuel system) are compared with the present fossil fuel system by taking into consideration production costs, environmental damages and utilization efficiencies. The results indicate that the solar-hydrogen energy system is the best energy system to ascertain a sustainable future, and it should replace the fossil fuel system before the end of the 21st century

  18. The intelligent energy system for tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Morthorst, Poul Erik; Bindslev, Henrik; Sonderberg Petersen, Leif

    2010-09-15

    In a future energy system non-fossil fuels have taken the lead, end-use technologies are highly efficient and closely interlinked to supply through intelligent energy systems. Climate change issues, security of supply and economic development need to be pursued concurrently. This calls for flexible and intelligent energy system infrastructures that effectively accommodate large amounts of fluctuating renewable energy and let the end-user interact with the supply through advanced ICT. The second important characteristic is intelligent integration of the entire transport sector. The third key area is advanced energy storage facilities in the system and the introduction of super-grids.

  19. Advanced medium-voltage bidirectional dc-dc conversion systems for future electric energy delivery and management systems

    Science.gov (United States)

    Fan, Haifeng

    2011-12-01

    The distributed renewable energy generation and utilization are constantly growing, and are expected to be integrated with the conventional grid. The growing pressure for innovative solutions will demand power electronics to take an even larger role in future electric energy delivery and management systems, since power electronics are required for the conversion and control of electric energy by most dispersed generation systems Furthermore, power electronics systems can provide additional intelligent energy management, grid stability and power quality capabilities. Medium-voltage isolated dc-dc converter will become one of the key interfaces for grid components with moderate power ratings. To address the demand of medium voltage (MV) and high power capability for future electric energy delivery and management systems, the power electronics community and industry have been reacting in two different ways: developing semiconductor technology or directly connecting devices in series/parallel to reach higher nominal voltages and currents while maintaining conventional converter topologies; and by developing new converter topologies with traditional semiconductor technology, known as multilevel converters or modular converters. The modular approach uses the well-known, mature, and cheaper power semiconductor devices by adopting new converter topologies. The main advantages of the modular approach include: significant improvement in reliability by introducing desired level of redundancy; standardization of components leading to reduction in manufacturing cost and time; power systems can be easily reconfigured to support varying input-output specifications; and possibly higher efficiency and power density of the overall system. Input-series output-parallel (ISOP) modular configuration is a good choice to realize MV to low voltage (LV) conversion for utility application. However, challenges still remain. First of all, for the high-frequency MV utility application, the low

  20. Future energy supplies. Lessons from the world energy outlook 2001. Insights

    International Nuclear Information System (INIS)

    Cattier, F.

    2002-01-01

    At a global level, primary energy resources are amply sufficient to meet the growing needs expected over the coming decades. Energy supplies may however be affected by economic, technological or political conditions. Supplies of oil and natural gas will be dependent in particular on the carrying out of the necessary investments in the field of development, production capacity, transport and distribution within a suitable time. The future for coal is above all linked to future environmental policies to be put in place and on the capacity of 'clean' coal technologies to respond to these. Due to their costs, which remain high, and to a lack of incentive policies, renewable energy sources should find it difficult to gain a major share of world energy markets. Finally, the future for nuclear energy remains dependent upon policies concerning security of supply or the fight against climatic change. (author)

  1. The nuclear energy of the future: the researches and the objectives

    International Nuclear Information System (INIS)

    2005-01-01

    Today energy problems are global problems. That is why the new generation of energy production by nuclear power must be realized basely on serious forecasts at a world scale. The nuclear energy presents many trumps for an energetic answer, at long-dated, concerning the environment and the resources. This will be for two main conditions: the ability to answer the public opinion anxiety and the development of new systems more high- performance in terms of safety and economy in the framework of the sustainable development and the non proliferation policy. These subjects are at the earth of the CEA missions. This document proposes a detailed presentation of the nuclear origins, the fuel and its cycle, the radioactive wastes and their management,the dismantling and the decommissioning of the nuclear installations, the challenges of the nuclear safety, the energy in the world, the nuclear economy, the nuclear in the world, the researches of the future, the third generation reactors, the research on radioactive wastes, the fuel cycle of the nuclear systems of the future, the uranium resources, the generation four forum, the gas coolant reactors, the thorium, hybrid systems and the thermonuclear fusion. (A.L.B.)

  2. The energy future: cards on the table

    International Nuclear Information System (INIS)

    Chevalier, Jean-Marie; Derdevet, Michel; Geoffron, Patrice

    2012-01-01

    Since the Fukushima accident, energy policies have been revisited in many nuclearized countries. The energy debate is complex and must encompass several levels of reflection: an international level marked by the energy/climate equation, and by energy resources economy and geopolitics; a European level because we have made the commitment to build a common electricity and gas energy market; a national level where some strategic priorities can be put forward by governments and populations; a local level where energy-related experiments are more and more frequent. Thus, energy choices cannot be made within the single national and governmental frame any longer. At the international scale, it has become urgent to develop low-carbon energy systems. In the framework of the inevitable implementation of a responsible energy policy, the authors examine the main qualities that energy industries should develop: a safe, real-price and environmentally-friendly energy. These qualities must fit with a European framework capable to use complementarities in a perspective of competitiveness, environmental liability and short-, medium- and long-term security of supplies. All new opportunities for companies, in France and abroad, will develop in this framework as well. The energy future question has become essential and must be dealt beyond the national frame and in close relation with the climate question

  3. Modelling energy systems for developing countries

    International Nuclear Information System (INIS)

    Urban, F.; Benders, R.M.J.; Moll, H.C.

    2007-01-01

    Developing countries' energy use is rapidly increasing, which affects global climate change and global and regional energy settings. Energy models are helpful for exploring the future of developing and industrialised countries. However, energy systems of developing countries differ from those of industrialised countries, which has consequences for energy modelling. New requirements need to be met by present-day energy models to adequately explore the future of developing countries' energy systems. This paper aims to assess if the main characteristics of developing countries are adequately incorporated in present-day energy models. We first discuss these main characteristics, focusing particularly on developing Asia, and then present a model comparison of 12 selected energy models to test their suitability for developing countries. We conclude that many models are biased towards industrialised countries, neglecting main characteristics of developing countries, e.g. the informal economy, supply shortages, poor performance of the power sector, structural economic change, electrification, traditional bio-fuels, urban-rural divide. To more adequately address the energy systems of developing countries, energy models have to be adjusted and new models have to be built. We therefore indicate how to improve energy models for increasing their suitability for developing countries and give advice on modelling techniques and data requirements

  4. Energy Choices. Choices for the future energy use; Vaegval Energi. Vaegval foer framtidens energianvaendning

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Kenneth; Fjaellman, Ted; Sjoegren, Helena (eds.)

    2009-03-15

    The primary objective of this energy project is to prepare data for decision-makers to show what practical measures can be taken to reduce emissions of greenhouse gases. Energy users play a key role in this task. It is the users who pay for and directly or indirectly choose how much and which energy we are using. We should be using energy in an efficient way in order to develop both our society and our industry. With regard to transport we see great potential for increased efficiency in plug-in hybrids and electric cars. But logistics also play an important role. In this area there is, among other things, a need for purchasers and sellers to jointly plan their requirements and deliveries. This would mean that more energy efficient forms of goods transport, such as the railways, could be used to a greater extent than is currently the case. In order to achieve increased efficiency in industry with high energy consumption, we are proposing that the Programme for Energy Efficiency be expanded to also include heating and new policy instruments that target the most energy-consuming processes. Low-energy buildings constitute systems of different technical solutions which have to work in unison to ensure that the effects of the energy saving subsystems are not lost. At the same time, a low-energy building has to function together with energy systems to supply surplus power to the electricity network. Private individuals, too, need to widen their system boundaries in their everyday life when it comes to choosing the services or products they buy, so that greater consideration is given to total energy consumption during the manufacture and active lifetime of the product or service in question. For society to become more energy efficient, analyses and measures need to take an overarching approach and ensure that subsystems work together to avoid sub optimisations. More than individual technical solutions are required to meet future challenges concerning the energy sector. It

  5. Ab-sorption machines for heating and cooling in future energy systems - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tozer, R.; Gustafsson, M.

    2000-12-15

    After the Executive Summary and a brief introductory chapter, Chapter 2, Sorption Technologies for Heating and Cooling in Future Energy Systems, reviews the main types of sorption systems. Chapter 3, Market Segmentation, then considers the major segments of the market including residential, commercial/institutional and industrial, and the types of sorption hardware most suitable to each. The highly important residential and commercial/institutional markets are mostly concerned with air-conditioning of buildings. More applications are identified and discussed for the industrial market, including refrigeration, food-storage cooling, process cooling, and process heating at various temperature ranges from hot water for hand-washing to high-temperature (greater than 130C). Other interesting industrial applications are absorption cooling or heating combined with co-generation, desiccant cooling, gas turbine inlet air cooling, combining absorption chillers with district heating systems, direct-fired absorption heat pumps (AHPs), and a closed greenhouse concept being developed for that economically important sector in the Netherlands. Most of the sorption market at this time comprises direct-fired absorption chillers, or hot water or steam absorption chillers indirectly driven by direct-fired boilers. Throughout the report, this category of absorption chillers is referred to generically as 'direct-fired'. In addition, this report covers absorption (reversible) heat pumps, absorption heat transformers, compression-absorption heat pumps, and adsorption chillers and heat pumps. Adsorption systems together with desiccant systems are also addressed. Chapter 4, Factors Affecting the Market, considers economic, environmental and policy issues. The geographical make-up of the world sorption market is then reviewed, followed by a number of practical operating and control considerations. These include vacuum requirements, crystallisation, corrosion, maintenance, health and

  6. Securing India's energy future

    International Nuclear Information System (INIS)

    Raghuraman, V.

    2009-01-01

    India's development aspirations are challenged by energy security and climate change considerations. The integrated energy policy clearly deliberates the need to intensify all energy options with emphasis on maximizing indigenous coal production, harnessing hydropower, increasing adoption of renewables, intensifying hydrocarbon exploration and production and anchoring nuclear power development to meet the long-term requirements. The report also emphasizes the need to secure overseas hydrocarbon and coal assets. Subsequently the National Action Plan on climate change has underscored the need to wean away from fossil fuels, the ambitious National Solar Mission is a case in point. Ultimately securing India's energy future lies in clean coal, safe nuclear and innovative solar. Coal is the key energy option in the foreseeable future. Initiatives are needed to take lead role in clean coal technologies, in-situ coal gasification, tapping coal bed methane, coal to liquids and coal to gas technologies. There is need to intensify oil exploration by laying the road-map to open acreage to unlock the hydrocarbon potential. Pursue alternate routes based on shale, methane from marginal fields. Effectively to use oil diplomacy to secure and diversify sources of supply including trans-national pipelines and engage with friendly countries to augment strategic resources. Technologies to be accessed and developed with international co-operation and financial assistance. Public-Private Partnerships, in collaborative R and D projects need to be accelerated. Nuclear share of electricity generation capacity to be increased 6 to 7% of 63000 MW by 2031-32 and further to 25% (300000 MW) capacity by 2050 is to be realized by operationalizing the country's thorium programme. Nuclear renaissance has opened up opportunities for the Indian industry to meet not only India's requirements but also participate in the global nuclear commerce; India has the potential to emerge as a manufacturing hub

  7. Perspective on the French closed fuel cycle: Open towards energy future and sustainability

    International Nuclear Information System (INIS)

    Tinturier, Bernard; Debes, Michel; Delbecq, Jean-Michel

    2006-01-01

    Energy sustainability and nuclear energy nowadays are far reaching issues with many implications and as a consequence, any long term sustainable strategy needs to be flexible. In France, nuclear energy (427 TWh in 2004, 80% of national electricity production) is a major asset for clean electricity production and for meeting Kyoto protocol objective in France. The decision to build a future EPR reactor in France has been taken. Regarding back end and fuel cycle, the current reprocessing and recycling strategy, with the existing industrial system (Cogema La Hague and Melox), has proven to be reliable and efficient. It enables to meet sustainability requirements, now and in the long run: ensuring a good management of high level waste through vitrification, reducing the amount of nuclear spent fuel in interim storage, recycling valuable nuclear material (Pu), keeping the possibility to use Pu concentrated in MOX spent fuel to start FBR in the future. To maintain this possibility for the far future, EDF considers that the Generation IV program is of major importance in order to develop future fast reactors able to use plutonium and to ensure a full utilization of uranium resource, while optimizing high level waste management. EDF strategy is to keep the nuclear option open in the future, with a two-steps approach for the renewal of the current nuclear fleet: first, around 2020, with the launching of generation III reactors like EPR, and second, depending on the energy demand, launching of Generation IV systems, around 2040 or beyond. To meet this energy prospect, R and D efforts must be devoted to fast breeder reactors (sodium cooled, which benefits already from industrial experience, and gas cooled, under consideration for R and D). Globally, this strategy is open to future progress and optimisation as needed to meet long term energy sustainability. It appears the necessity of a good consistency between all the components of the nuclear system: reactors, fuel cycle

  8. EnerFuture Energy Scenarios to 2035 'Understanding our Energy Future'. Key graphs and analysis, Enerdata - Global Energy Forecasting - February 2014

    International Nuclear Information System (INIS)

    2014-01-01

    The EnerFuture service provides projections to 2035 of energy supply and demand across the world, powered by the POLES model, to help you with what to expect in the energy industry in the mid-term. Our energy forecasting team have developed three key energy scenarios (Balance, Emergence and Renaissance) to illustrate possible futures. Balance scenario: Balance provides an outlook of the energy system up to 2035 based on current policies and trends. Sustained growth of China and other emerging countries is a powerful driver of global energy demand, but confirmed energy policy commitments in several regions play a key role in controlling the pace of growth. However, non-coordinated policies result in soaring CO_2 emissions across the world and energy prices rise. Emergence scenario: This scenario explores the implications of more stringent climate policies, with more ambitious efforts on energy efficiency, initiatives to phase out fossil fuel subsidies and a real emergence of renewable technologies. Europe goes beyond its -20% targets by 2020, and the OECD and emerging countries meet their Copenhagen objectives. Following this, a new green deal is launched to reduce world emissions by a factor of 2 by 2050. Renaissance scenario: With strong efforts in the exploitation and production of unconventional oil and gas resources, the world encounters a fossil fuels renaissance with the appearance of new key actors and ultimately new geopolitical configurations changing the energy independence of several countries. For climate efforts, this new paradigm leads to progressively weaker policies. Further analysis and key findings are available here: - Increasing economic activity and wealth drives energy consumption, in a balance between energy prices and innovation; - As Non-OECD exceeds OECD oil demand, massive financial flows underlie the shifts in global oil trade; - Optimistic resource assumptions and moderate production costs would lead to an oil production Renaissance

  9. Renewable energies: an initiation guidebook to the energies of the future; Les energies renouvelables: un guide d'initiation sur les energies du futur

    Energy Technology Data Exchange (ETDEWEB)

    Walisiewicz, M.

    2003-07-01

    This book reveals the economical, political and environmental dimensions of the present day energy situation and makes a status of the available technical solutions and of the future prospects. Content: energy addiction; reserves distribution; growth limits; technical problems; nuclear energy: a false promise?; the renewable resources; hydraulic energy; wind power; sun light for lighting; green generators; ground energy; alternative realities; glossary, index. (J.S.)

  10. Energy Systems and Technologies for the coming Century

    DEFF Research Database (Denmark)

    Sønderberg Petersen, Leif; Larsen, Hans Hvidtfeldt

    for the extended utilisation of sustainable energy - Distributed energy production technologies such as fuel cells, hydrogen, bioenergy, wind, hydro, wave, solar and geothermal - Centralised energy production technologies such as clean coal technologies, CCS and nuclear - Renewable energy for the transport sector......Risø International Energy Conference 2011 took place 10 – 12 May 2011. The conference focused on: - Future global energy development options, scenarios and policy issues - Intelligent energy systems of the future, including the interaction between supply and end-use - New and emerging technologies...... and its integration in the energy system The proceedings are prepared from papers presented at the conference and received with corrections, if any, until the final deadline on 20-04-2011....

  11. Decisions on the way to the future energy market

    International Nuclear Information System (INIS)

    Schulten, R.

    1975-01-01

    The transition to new energy systems, and in this connection the obligatory restructuring of the energy market, will take at last 30 years, as completely new techniques will have to be developed. The energy demand is at present on the increase and will be saturated in about 80 years' time. Recommendations regarding the primary energies to be used in the FRG in the future came to the effect that the import of liquid fossil fuels should be decreased and the money thus saved be spent on further developing the use of nuclear energy combined with inland coal and on the creation of new jobs resulting from this. New en ergy systems which are to be considered: a) nuclear district heating in the form of chemically bound energy, b) coal gasification, c) short-distance supply with hot water, and d) the release of the secondary energy carrier hydrogen by means of the at present still hypothetical thermolysis of water. The real problems resulting from the use of nuclear energy are waste disposal, nuclear fusion, and nuclear fuel supply. Some energy centers located over the whole of the FRG could be in a position to solve these problems in an optimal way. The article ends by going into the question of when a new energy system will be introduced. (GG/LN) [de

  12. Energy system analysis of 100% renewable energy systems-The case of Denmark in years 2030 and 2050

    DEFF Research Database (Denmark)

    Lund, Henrik; Mathiesen, Brian Vad

    2009-01-01

    for two energy target years: year 2050 with 100% renewable energy from biomass and combinations of wind, wave and solar power; and year 2030 with 50% renewable energy, emphasising the first important steps on the way. The conclusion is that a 100% renewable energy supply based on domestic resources......This paper presents the methodology and results of the overall energy system analysis of a 100% renewable energy system. The input for the systems is the result of a project of the Danish Association of Engineers, in which 1600 participants during more than 40 seminars discussed and designed...... a model for the future energy system of Denmark. The energy system analysis methodology includes hour by hour computer simulations leading to the design of flexible energy systems with the ability to balance the electricity supply and demand. The results are detailed system designs and energy balances...

  13. Modeling the Greek energy system: Scenarios of clean energy use and their implications

    International Nuclear Information System (INIS)

    Roinioti, Argiro; Koroneos, Christopher; Wangensteen, Ivar

    2012-01-01

    The Greek energy system is one of the most carbon intensive energy systems in Europe. Hydrocarbons and solid fuels (lignite) cover over 80% of the final energy demand. The main objective of this work is to build energy scenarios for the future – with a focus on the electricity production system – and explore how these scenarios are reflected in economic, environmental terms and in terms of energy efficiency. The main tool which is used in the scenario analysis is LEAP (Long range Energy Alternatives Planning System). The scenarios are essentially the result of developing “storylines” driven by the uncertainties which cannot be controlled by the analysts or decision makers, and technical and non-technical options the analyst or decision maker may choose from. A set of uncertainties is considered as a possible future or storyline, and one or more options can be selected as a possible strategy. The combination of a storyline and a specific strategy gives a scenario. The main uncertainties for the Greek energy system are identified and various technical options are explored. Rather than using a model which leads to optimum strategies from a set of alternatives, the model in use will apply different strategies. - Highlights: ► A demand-driven approach was used to build energy scenarios for the Greek interconnected system. ► Each Scenario consists of a possible future and a strategy. ► High RES penetration will decrease CO 2 emissions but it will also increase capital cost. ► Carbon intensity is reduced in all the scenarios.

  14. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis

    DEFF Research Database (Denmark)

    Münster, Marie; Meibom, Peter

    2010-01-01

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy...... production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments...... and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO2 quota costs are analysed. It is demonstrated that the waste...

  15. Multifunctional Composites for Future Energy Storage in Aerospace Structures

    Directory of Open Access Journals (Sweden)

    Till Julian Adam

    2018-02-01

    Full Text Available Multifunctionalization of fiber-reinforced composites, especially by adding energy storage capabilities, is a promising approach to realize lightweight structural energy storages for future transport vehicles. Compared to conventional energy storage systems, energy density can be increased by reducing parasitic masses of non-energy-storing components and by benefitting from the composite meso- and microarchitectures. In this paper, the most relevant existing approaches towards multifunctional energy storages are reviewed and subdivided into five groups by distinguishing their degree of integration and their scale of multifunctionalization. By introducing a modified range equation for battery-powered electric aircrafts, possible range extensions enabled by multifunctionalization are estimated. Furthermore, general and aerospace specific potentials of multifunctional energy storages are discussed. Representing an intermediate degree of structural integration, experimental results for a multifunctional energy-storing glass fiber-reinforced composite based on the ceramic electrolyte Li1.4Al0.4Ti1.6(PO43 are presented. Cyclic voltammetry tests are used to characterize the double-layer behavior combined with galvanostatic charge–discharge measurements for capacitance calculation. The capacitance is observed to be unchanged after 1500 charge–discharge cycles revealing a promising potential for future applications. Furthermore, the mechanical properties are assessed by means of four-point bending and tensile tests. Additionally, the influence of mechanical loads on the electrical properties is also investigated, demonstrating the storage stability of the composites.

  16. Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    Energy Technology Data Exchange (ETDEWEB)

    Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

    2013-03-01

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  17. A Perspective of Energy Codes and Regulations for the Buildings of the Future

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Michael [Pacific Northwest National Laboratory,2032 Todd Street,Eugene, OR 97405e-mail: michael.rosenberg@pnnl.gov; Jonlin, Duane [Seattle Department ofConstruction and Inspections,P.O. Box 34019,Seattle, WA 98124e-mail: duane.jonlin@seattle.gov; Nadel, Steven [American Council for anEnergy-Efficient Economy,529 14th Street NW #600,Washington, DC 20045e-mail: snadel@aceee.org

    2016-10-13

    Today’s building energy codes focus on prescriptive requirements for features of buildings that are directly controlled by the design and construction teams and verifiable by municipal inspectors. Although these code requirements have had a significant impact, they fail to influence a large slice of the building energy use pie – including not only miscellaneous plug loads, cooking equipment and commercial/industrial processes, but the maintenance and optimization of the code-mandated systems as well. Currently, code compliance is verified only through the end of construction, and there are no limits or consequences for the actual energy use in an occupied building. In the future, our suite of energy regulations will likely expand to include building efficiency, energy use or carbon emission budgets over their full life cycle. Intelligent building systems, extensive renewable energy, and a transition from fossil fuel to electric heating systems will likely be required to meet ultra-low-energy targets. This paper lays out the authors’ perspectives on how buildings may evolve over the course of the 21st century and the roles that codes and regulations will play in shaping those buildings of the future.

  18. Renewable: A key component of our global energy future

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, D.

    1995-12-31

    Inclusion of renewable energy sources in national and international energy strategies is a key component of a viable global energy future. The global energy balance is going to shift radically in the near future brought about by significant increases in population in China and India, and increases in the energy intensity of developing countries. To better understand the consequences of such global shifts in energy requirements and to develop appropriate energy strategies to respond to these shifts, we need to look at the factors driving choices among supply options by geopolitical consumers and the impact these factors can have on the future energy mix.

  19. Can the future, world-wide energy supply be achieved without nuclear energy?

    International Nuclear Information System (INIS)

    Kugeler, K.

    1995-01-01

    In the future the world-wide energy demand is going to increase considerably. The use of nuclear energy will continuously grow if the demand of climate researchers for a reduction of the world-wide CO 2 emission is fulfilled and if the possible contribution of regenerative energy sources is assessed realistically. In the future a world-wide use of nuclear energy will be realised according to even higher safety standards. The modification of the German Atom Law, which determines the limitation of damage caused to the reactor plant for future reactors fulfils this demand. The efforts in the field of nuclear technical development will concentrate on the proof of the required safety properties. (orig.) [de

  20. Cities for smart environmental and energy futures. Impacts on architecture and technology

    Energy Technology Data Exchange (ETDEWEB)

    Rassia, Stamatina T. [ETH Zuerich (Switzerland). Inst. of Technology in Architecture; Pardalos, Panos M. (eds.) [Florida Univ., Gainesville, FL (United States). Dept. of Industrial and Systems Engneering

    2014-07-01

    Strategies for energy conservation in smart cities. Up-to-date presentation of on-going research. Innovative ideas for sustainable design. Cities for Smart Environmental and Energy Futures presents works written by eminent international experts from a variety of disciplines including architecture, engineering and related fields. Due to the ever-increasing focus on sustainable technologies, alternative energy sources, and global social and urban issues, interest in the energy systems for cities of the future has grown in a wealth of disciplines. Some of the special features of this book include new findings on the city of the future from the macro to the micro level. These range from urban sustainability to indoor urbanism, and from strategies for cities and global climate change to material properties. The book is intended for graduate students and researchers active in architecture, engineering, the social and computational sciences, building physics and related fields.

  1. Efficient district heating in the future energy system. Final report; Effektiv fjernvarme i fremtidens energisystem. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    The purpose of this project is to illustrate how district heating can develop its role in the future Danish energy system, for example by reducing energy losses and the dynamic use of common technologies such as cogeneration and heat storage, and less widespread technologies such as heat pumps, geothermal heating, and cooling. The aim is also to analyse how electricity and district heating can interact more effectively, and to point out how framework conditions are important for district heating's continued development and efficiency. In the project, a linear optimization model is developed and applied as to analyse the interaction between district heating supply on the one hand, and energy savings, CO{sub 2} targets, wind power and the international electricity market on the other hand. Furthermore, more close-case operational analyses of district heating systems have been made in Ringkoebing and the metropolitan area, based on data from the district heating companies. Finally, a wide range of challenges for district heating in the long term were discussed and analysed during meetings with the project's reference group, including the need for development and demonstration projects. (ln)

  2. Perspectives on future high energy physics

    International Nuclear Information System (INIS)

    Samios, N.P.

    1996-01-01

    The author states two general ways in which one must proceed in an attempt to forecast the future of high energy physics. The first is to utilize the state of knowledge in the field and thereby provide theoretical and experimental guidance on future directions. The second approach is technical, namely, how well can one do in going to higher energies with present techniques or new accelerator principles. He concludes that the future strategy is straightforward. The present accelerator facilities must be upgraded and run to produce exciting and forefront research. At the same time, the theoretical tools should be sharpened both extrapolating from lower energies (100 GeV) to high (multi TeV) and vice versa. The US should be involved in the LHC, both in the accelerator and experimental areas. There should be an extensive R and D program on accelerators for a multi-TeV capability, emphasizing e + e - and μ + μ - colliders. Finally, the international cooperative activities should be strengthened and maintained

  3. The future of nuclear energy in Europe

    International Nuclear Information System (INIS)

    Polie, P.

    1996-01-01

    An overview of current situation and future trends in nuclear energy production in Europe is made. Main factors characterizing differences in atomic policy of each particular European country are discussed. They are: readiness of the governments to implement a long-term energy policy; technical, economical and energy aspects; public opinion. Future development of new power plants is connected with overproduction of electricity, safety operation of present NPP, reduction of CO 2 emissions and public opinion. The energy policy of the European Union is also discussed and the necessity of transparency in industrial strategy of the governments is outlined

  4. Lasers and future high energy colliders

    International Nuclear Information System (INIS)

    Parsa, Z.

    1998-02-01

    Future high energy colliders, directions for particle physics and relationship to new technology such as lasers are discussed. Experimental approaches to explore New Physics with emphasis on the utility of high energy colliders are also discussed

  5. Scenarios for total utilisation of hydrogen as an energy carrier in the future Danish energy system. Final report; Scenarier for samlet udnyttelse af brint som energibaerer i Danmarks fremtidige energisystem. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Hauge Petersen, A; Engberg Pedersen, T; Joergensen, K [and others

    2001-04-01

    This is the final report from a project performed for the Danish Energy Agency under its Hydrogen Programme. The project, which within the project group goes by the abbreviated title 'Hydrogen as an energy carrier', constructs and analyses different total energy scenarios for introducing hydrogen as an energy carrier, as energy storage medium and as a fuel in the future Danish energy system. The primary aim of the project is to study ways of handling the large deficits and surpluses of electricity from wind energy expected in the future Danish energy system. System-wide aspects of the choice of hydrogen production technologies, distribution methods, infrastructure requirements and conversion technologies are studied. Particularly, the possibility of using in the future the existing Danish natural gas distribution grid for carrying hydrogen will be assessed. For the year 2030, two scenarios are constructed: One using hydrogen primarily in the transportation sector, the other using it as a storage option for the centralised power plants still in operation by this year. For the year 2050, where the existing fossil power plants are expected to have been phased out completely, the scenarios for two possible developments are investigated: Either, there is a complete decentralisation of the use of hydrogen, converting and storing electricity surpluses into hydrogen in individual buildings, for later use in vehicles or regeneration of power and heat. Or, some centralised infrastructure is retained, such as hydrogen cavern stores and a network of vehicle hydrogen filling stations. The analysis is used to identify the components in an implementation strategy, for the most interesting scenarios, including a time sequence of necessary decisions and technology readiness. The report is in Danish, because it is part of the dissemination effort of the Hydrogen Committee, directed at the Danish population in general and the Danish professional community in particular. (au)

  6. Scenarios for total utilisation of hydrogen as an energy carrier in the future Danish energy system. Final report; Scenarier for samlet udnyttelse af brint som energibaerer i Danmarks fremtidige energisystem. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Hauge Petersen, A.; Engberg Pedersen, T.; Joergensen, K. (and others)

    2001-04-01

    This is the final report from a project performed for the Danish Energy Agency under its Hydrogen Programme. The project, which within the project group goes by the abbreviated title 'Hydrogen as an energy carrier', constructs and analyses different total energy scenarios for introducing hydrogen as an energy carrier, as energy storage medium and as a fuel in the future Danish energy system. The primary aim of the project is to study ways of handling the large deficits and surpluses of electricity from wind energy expected in the future Danish energy system. System-wide aspects of the choice of hydrogen production technologies, distribution methods, infrastructure requirements and conversion technologies are studied. Particularly, the possibility of using in the future the existing Danish natural gas distribution grid for carrying hydrogen will be assessed. For the year 2030, two scenarios are constructed: One using hydrogen primarily in the transportation sector, the other using it as a storage option for the centralised power plants still in operation by this year. For the year 2050, where the existing fossil power plants are expected to have been phased out completely, the scenarios for two possible developments are investigated: Either, there is a complete decentralisation of the use of hydrogen, converting and storing electricity surpluses into hydrogen in individual buildings, for later use in vehicles or regeneration of power and heat. Or, some centralised infrastructure is retained, such as hydrogen cavern stores and a network of vehicle hydrogen filling stations. The analysis is used to identify the components in an implementation strategy, for the most interesting scenarios, including a time sequence of necessary decisions and technology readiness. The report is in Danish, because it is part of the dissemination effort of the Hydrogen Committee, directed at the Danish population in general and the Danish professional community in particular. (au)

  7. 17. Kassel symposium energy systems technology. Structures and grids for the future energy supply; 17. Kasseler Symposium Energie-Systemtechnik. Strukturen und Netze fuer die Energieversorgung von Morgen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Within the 17th Kassel symposium from 11th to 12th October, 2012, in Kassel (Federal Republic of Germany), the following lectures were held: (1) E-Energy - the art of flexibilization between market and regulation (Michael Wedler); (2) The model region Harz (Florian Schloegl); (3) The role of IKT at the transformation of the energy supply - Chances for new business ideas (Arnold Picot); (4) Standardized connection of plants to IEC 61850 (Martin Winter); (5) Implementation of a IKT infrastructure for a virtual power plant in the model region Harz (Manuel Wickert); (6) OGEMA2.0 - Smart grid meets smart home (David Nestle); (7) Evaluation of the grid stability of a purely regenerative power supply (Kaspar Knorr); (8) Biogas plants and storage for the integration of renewable energies (Patrick Hochloff); (9) moma Architecture and functions in the intelligent energy system (Andreas Kiessling); (10) Power hub - showing the full potential of the VPP technology (Andreas Bjerre); (11) Implementation of electricity grids, heat grids and traffic grids - Potentials, requirements and efficiencies (Wolfram Wellssow); (12) Exploration of the regional distribution grid as a basis for the implementation of smart grids using the RegModHarz project as an example (Christian Roehrig); (13) New design and works management of distribution grids in decentralized supply structures (Martin Braun); (14) Advantages and challenges of the coupling of natural gas distribution systems and power distribution systems (Herbert Bauer); (15) Acceptance of renewable energies in the region Harz (Amelie Fechner); (16) Business models for a future 100 per cent supply of renewable energies (Peer Ritter).

  8. Comprehensive assessment of the role and potential for solar thermal in future energy systems

    DEFF Research Database (Denmark)

    Hansen, Kenneth; Mathiesen, Brian Vad

    2018-01-01

    to the energy system configurations. Solar thermal benefits reduce when moving towards a high-renewable energy system as other renewable energy sources start competing with solar thermal on energy prices and energy system flexibility. The findings can be applied to a diversity of energy systems also beyond...

  9. Fusion in the energy system

    DEFF Research Database (Denmark)

    Fusion energy is the fundamental energy source of the Universe, as the energy of the Sun and the stars are produced by fusion of e.g. hydrogen to helium. Fusion energy research is a strongly international endeavor aiming at realizing fusion energy production in power plants on Earth. Reaching...... of integration into the future electricity system and socio-economic studies of fusion energy will be presented, referring to the programme of Socio-Economic Research on Fusion (SERF) under the European Fusion Energy Agreement (EFDA)....

  10. Energy Harvesting from Aerodynamic Instabilities: Current prospect and Future Trends

    Science.gov (United States)

    Bashir, M.; Rajendran, P.; Khan, S. A.

    2018-01-01

    This paper evaluates the layout and advancement of energy harvesting based on aerodynamic instabilities of an aircraft. Vibration and thermoelectric energy harvesters are substantiated as most suitable alternative low-power sources for aerospace applications. Furthermore, the facility associated with the aircraft applications in harvesting the mechanical vibrations and converting it to electric energy has fascinated the researchers. These devices are designed as an alternative to a battery-based solution especially for small aircrafts, wireless structural health monitoring for aircraft systems, and harvester plates employed in UAVs to enhance the endurance and operational flight missions. We will emphasize on various sources of energy harvesting that are designed to come from aerodynamic flow-induced vibrations, specific attention is then given at those technologies that may offer, today or in the near future, a potential benefit to reduce both the cost and emissions of the aviation industry. The advancements achieved in the energy harvesting based on aerodynamic instabilities show very good scope for many piezoelectric harvesters in the field of aerospace, specifically green aviation technology in the future.

  11. Energy Systems With Renewable Hydrogen Compared to Direct Use of Renewable Energy in Austria

    International Nuclear Information System (INIS)

    Gerfried Jungmeier; Kurt Konighofer; Josef Spitzer; R Haas; A Ajanovic

    2006-01-01

    The current Austrian energy system has a renewable energy share of 20% - 11% hydropower and 9 % biomass - of total primary energy consumption. Whereas a possible future introduction of renewable hydrogen must be seen in the context of current energy policies in Austria e.g. increase of energy efficiency and use of renewable energy, reduction of greenhouse gas emissions. The aim of the research project is a life cycle based comparison of energy systems with renewable hydrogen from hydropower, wind, photovoltaic and biomass compared to the direct use of renewable energy for combined heat and power applications and transportation services. In particular this paper focuses on the main question, if renewable energy should be used directly or indirectly via renewable hydrogen. The assessment is based on a life cycle approach to analyse the energy efficiency, the material demand, the greenhouse gas emissions and economic aspects e.g. energy costs and some qualitative aspects e.g. energy service. The overall comparison of the considered energy systems for transportation service and combined heat and electricity application shows, that renewable hydrogen might be beneficial mainly for transportation services, if the electric vehicle will not be further developed to a feasibly wide-spread application for transportation service in future. For combined heat and electricity production there is no advantage of renewable hydrogen versus the direct use of renewable energy. Conclusions for Austria are therefore: 1) renewable hydrogen is an interesting energy carrier and might play an important role in a future sustainable Austrian energy system; 2) renewable hydrogen applications look most promising in the transportation sector; 3) renewable hydrogen applications will be of low importance for combined heat and electricity applications, as existing technologies for direct use of renewable energy for heat and electricity are well developed and very efficient; 4) In a future '100

  12. Nuclear energy, energy of the future or bad solution?; Energie nucleaire, energie d'avenir ou fausse solution?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The document presents the speeches of the debate on the nuclear energy solution for the future, presented during the meeting of the 6 may in Rennes, in the framework of the National Debate on the energies. The debate concerns the risks assessment and control, the solutions for the radioactive wastes, the foreign examples and the future of the nuclear energy. (A.L.B.)

  13. Four European energy futures. The next 50 years

    International Nuclear Information System (INIS)

    Bruggink, J.J.C.

    2005-05-01

    Scenario analysis articulates our hopes and fears for the future. It should help in understanding the nature of the driving events and forces affecting the future and the uncertainties determining their potential impacts. Two major events would dramatically change the urgency and direction of energy innovation in Europe: the arrival of a global peak in oil production and the failure of global climate change policies. The first part of this essay deals with the plausibility of such driving events. On the basis of a critical look at the arguments of the oil peak doomsayers and the environmental anti-globalists it is concluded that both events are plausible and would have major consequences for energy transitions in Europe. Accordingly, the future course of European energy transitions is described in four contrasting scenarios: FIREWALLED EUROPE - Oil production peaks in the period 2010-2020. No viable post-Kyoto climate change policy emerges. The European energy sector turns back to coal and nuclear in the next 50 years; FOSSIL TRADE - Oil production follows oil demand smoothly in the period 2010-2020. No viable post-Kyoto climate change policy emerges. The European energy sector continues business as usual in the next 50 years; SUSTAINABLE TRADE - Oil production peaks in the period 2010-2020. Post-Kyoto climate policies develop effectively. The European energy sector turns to large-scale trade in renewables in the next 50 years; and FENCELESS EUROPE - Oil production follows oil demand smoothly in the period 2010-2020. Post-Kyoto climate policies develop effectively. The European energy sector diversifies strongly keeping all options open for the next 50 years. The major part of this essay concerns the storylines for these four scenarios at the global level of socio-political landscapes, at the European level of energy regime transitions and at the national level for innovation systems. As the names of the scenarios suggest the-prospects for international trade in

  14. Long-range prospects of world energy demands and future energy sources

    International Nuclear Information System (INIS)

    Kozaki, Yasuji

    1998-01-01

    The long-range prospects for world energy demands are reviewed, and the major factors which are influential in relation to energy demands are discussed. The potential for various kinds of conventional and new energy sources such as fossil fuels, solar energies, nuclear fission, and fusion energies to need future energy demands is also discussed. (author)

  15. Challenges for future energy usage

    International Nuclear Information System (INIS)

    Rebhan, E.

    2009-01-01

    In the last 2000 years the world's population and the worldwide total energy consumption have been continuously increasing, at a rate even greater than exponential. By now a situation has been reached in which energy resources are running short, which for a long time have been treated as though they were almost inexhaustible. The ongoing growth of the world's population and a growing hunger for energy in underdeveloped and emerging countries imply that the yearly overall energy consumption will continue to grow, by about 1.6 percent every year so that it would have doubled by 2050. This massive energy consumption has led to and is progressively leading to severe changes in our environment and is threatening a climatic state that, for the last 10 000 years, has been unusually benign. The coincidence of the shortage of conventional energy resources with the hazards of an impending climate change is a dangerous threat to the well-being of all, but it is also a challenging opportunity for improvements in our energy usage. On a global scale, conventional methods such as the burning of coal, gas and oil or the use of nuclear fission will still dominate for some time. In their case, the challenge consists in making them more efficient and environmentally benign, and using them only where and when it is unavoidable. Alternative energies must be expanded and economically improved. Among these, promising techniques such as solar thermal and geothermal energy production should be promoted from a shadow existence and further advanced. New technologies, for instance nuclear fusion or transmutation of radioactive nuclear waste, are also quite promising. Finally, a careful analysis of the national and global energy flow systems and intelligent energy management, with emphasis on efficiency, overall effectiveness and sustainability, will acquire increasing importance. Thereby, economic viability, political and legal issues as well as moral aspects such as fairness to disadvantaged

  16. I want to know future energy

    International Nuclear Information System (INIS)

    Lee, Eun Cheol

    2009-04-01

    This book introduces future energy. These are the contents ; sun light which is infinite energy, hydrogen has siblings, good point of nuclear fusion, hydrogen fueled vehicle and imaginative power, application of infinite solar energy, who discovers hydrogen, sunlight generation which can make electricity from sunlight, people against wind power generation, making energy from sea, generation using wave power, making electricity from temperature differential of sea, what is bio energy, the reason that bio energy rare uses and bio fuel that people make.

  17. The Hurst exponent in energy futures prices

    Science.gov (United States)

    Serletis, Apostolos; Rosenberg, Aryeh Adam

    2007-07-01

    This paper extends the work in Elder and Serletis [Long memory in energy futures prices, Rev. Financial Econ., forthcoming, 2007] and Serletis et al. [Detrended fluctuation analysis of the US stock market, Int. J. Bifurcation Chaos, forthcoming, 2007] by re-examining the empirical evidence for random walk type behavior in energy futures prices. In doing so, it uses daily data on energy futures traded on the New York Mercantile Exchange, over the period from July 2, 1990 to November 1, 2006, and a statistical physics approach-the ‘detrending moving average’ technique-providing a reliable framework for testing the information efficiency in financial markets as shown by Alessio et al. [Second-order moving average and scaling of stochastic time series, Eur. Phys. J. B 27 (2002) 197-200] and Carbone et al. [Time-dependent hurst exponent in financial time series. Physica A 344 (2004) 267-271; Analysis of clusters formed by the moving average of a long-range correlated time series. Phys. Rev. E 69 (2004) 026105]. The results show that energy futures returns display long memory and that the particular form of long memory is anti-persistence.

  18. Energy for a righteous world with a safe future

    International Nuclear Information System (INIS)

    Rose, D.J.

    1977-01-01

    We are in charge of our energy future and thus of the future itself. Energy decisions in the past were made on a too narrow and short-term basis, and we can daily clearly observe their inadequacy. The policy's quality does not correspond to the significance of the problem. A greater approximation leads to a consequent policy of the development of energy alternatives, of which some considerably deviate from those which would result at a closer look. This lecture deals with two aspects of the problem, both concern the future of nuclear energy. The first aspect treats extensively the energy possibilities available to the world in the future; the second deals more with the problem of the acceptibility of nuclear energy, reprocessing of nuclear fuels, the relationship to atomic armament and the thus involved problems. (orig.) [de

  19. Control Architecture for Future Power Systems

    DEFF Research Database (Denmark)

    Heussen, Kai

    for assessment of control architecture of electric power systems with a means-ends perspective. Given this purpose-oriented understanding of a power system, the increasingly stochastic nature of this problem shall be addressed and approaches for robust, distributed control will be proposed and analyzed....... The introduction of close-to-real-time markets is envisioned to enable fast distributed resource allocation while guaranteeing system stability. Electric vehicles will be studied as a means of distributed reversible energy storage and a flexible power electronic interface, with application to the case......This project looks at control of future electric power grids with a high proportion of wind power and a large number of decentralized power generation, consumption and storage units participating to form a reliable supply of electrical energy. The first objective is developing a method...

  20. Future Automotive Systems Technology Simulator (FASTSim)

    Energy Technology Data Exchange (ETDEWEB)

    2018-04-11

    An advanced vehicle powertrain systems analysis tool, the Future Automotive Systems Technology Simulator (FASTSim) provides a simple way to compare powertrains and estimate the impact of technology improvements on light-, medium- and heavy-duty vehicle efficiency, performance, cost, and battery life. Created by the National Renewable Energy Laboratory, FASTSim accommodates a range of vehicle types - including conventional vehicles, electric-drive vehicles, and fuel cell vehicles - and is available for free download in Microsoft Excel and Python formats.

  1. Perspectives on future high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Samios, N.P.

    1996-12-31

    The author states two general ways in which one must proceed in an attempt to forecast the future of high energy physics. The first is to utilize the state of knowledge in the field and thereby provide theoretical and experimental guidance on future directions. The second approach is technical, namely, how well can one do in going to higher energies with present techniques or new accelerator principles. He concludes that the future strategy is straightforward. The present accelerator facilities must be upgraded and run to produce exciting and forefront research. At the same time, the theoretical tools should be sharpened both extrapolating from lower energies (100 GeV) to high (multi TeV) and vice versa. The US should be involved in the LHC, both in the accelerator and experimental areas. There should be an extensive R and D program on accelerators for a multi-TeV capability, emphasizing e{sup +}e{sup {minus}} and {mu}{sup +}{mu}{sup {minus}} colliders. Finally, the international cooperative activities should be strengthened and maintained.

  2. The vision of a future energy supply network

    International Nuclear Information System (INIS)

    Koeppel, G.; Favre-Perrod, P.; Geidl, M.; Kloeckl, B.

    2005-01-01

    This article discusses a concept developed within the framework of a project entitled 'Vision of Future Energy Networks' carried out at the Swiss Federal Institute of Technology in Zurich. The project looked at the possibility of using synergies between various energy carriers and systems. Network topologies are discussed that can cope with the distributed production of energy in installations featuring technologies such as combined heat and power, micro gas turbines and wind-power installations. The topics discussed include the use of a large amount of such distributed generation capacity and which network topologies and storage requirements would be necessary for their operation. Also, under the title 'energy hubs', possible synergies with other forms of energy use are examined. The modelling, dimensioning and use of such hubs are dealt with for various scenarios, ranging from single family homes through to combinations of industrial complexes and whole residential areas. Questions of reliability are addressed and the idea of an 'Energy Interconnector' that supplies electrical, chemical and thermal energy is introduced

  3. U.S. energy outlook and future energy impacts

    Science.gov (United States)

    Hamburger, Randolph John

    2011-12-01

    Energy markets were not immune to the 2007 financial crisis. Growth in the Indian and Chinese economies is placing strains on global energy supplies that could force a repeat of the 2008 price spike of $145/bbl for crude oil. Emerging market growth coupled with inefficiencies, frictions, and speculation in the energy markets has the potential to create drastic economic shocks throughout the world. The 2007 economic crisis has pushed back investment in energy projects where a low-growth scenario in world GDP could create drastic price increases in world energy prices. Without a long-term energy supply plan, the U.S. is destined to see growth reduced and its trade imbalances continue to deteriorate with increasing energy costs. Analysis of the U.S. natural gas futures markets and the impact of financial speculation on natural gas market pricing determined that financial speculation adds to price movements in the energy markets, which could cause violent swings in energy prices.

  4. Future Transportation with Smart Grids and Sustainable Energy

    Directory of Open Access Journals (Sweden)

    Gustav R. Grob

    2009-10-01

    Full Text Available Transportation is facing fundamental change due to the rapid depletion of fossil fuels, environmental and health problems, the growing world population, rising standards of living with more individual mobility and the globalization of trade with its increasing international transport volume. To cope with these serious problems benign, renewable energy systems and much more efficient drives must be multiplied as rapidly as possible to replace the polluting combustion engines with their much too low efficiency and high fuel logistics cost. Consequently the vehicles of the future must be non-polluting and super-efficient, i.e. electric. The energy supply must come via smart grids from clean energy sources not affecting the health, climate and biosphere. It is shown how this transition to the clean, sustainable energy age is possible, feasible and why it is urgent. The important role of international ISO, IEC and ITU standards and the need for better legislation by means of the Global Energy Charter for Sustainable Development are also highlighted.

  5. Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    Energy Technology Data Exchange (ETDEWEB)

    Grenzeback, L. R. [Cambridge Systematics Inc., Cambridge, MA (United States); Brown, A. [Cambridge Systematics Inc., Cambridge, MA (United States); Fischer, M. J. [Cambridge Systematics Inc., Cambridge, MA (United States); Hutson, N. [Cambridge Systematics Inc., Cambridge, MA (United States); Lamm, C. R. [Cambridge Systematics Inc., Cambridge, MA (United States); Pei, Y. L. [Cambridge Systematics Inc., Cambridge, MA (United States); Vimmerstedt, L. [Cambridge Systematics Inc., Cambridge, MA (United States); Vyas, A. D. [Cambridge Systematics Inc., Cambridge, MA (United States); Winebrake, J. J. [Cambridge Systematics Inc., Cambridge, MA (United States)

    2013-03-01

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and by extrapolation, to nearly 30.2 billion tons in 2050, requiring ever-greater amounts of energy. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand; the possible trends and 2050 outlook for these factors, and their anticipated effect on freight demand and related energy use. After describing federal policy actions that could influence freight demand, the report then summarizes the available analytical models for forecasting freight demand, and identifies possible areas for future action.

  6. Renewable energy for sustainable electrical energy system in India

    International Nuclear Information System (INIS)

    Mallah, Subhash; Bansal, N.K.

    2010-01-01

    Present trends of electrical energy supply and demand are not sustainable because of the huge gap between demand and supply in foreseeable future in India. The path towards sustainability is exploitation of energy conservation and aggressive use of renewable energy systems. Potential of renewable energy technologies that can be effectively harnessed would depend on future technology developments and breakthrough in cost reduction. This requires adequate policy guidelines and interventions in the Indian power sector. Detailed MARKAL simulations, for power sector in India, show that full exploitation of energy conservation potential and an aggressive implementation of renewable energy technologies lead to sustainable development. Coal and other fossil fuel (gas and oil) allocations stagnated after the year 2015 and remain constant up to 2040. After the year 2040, the requirement for coal and gas goes down and carbon emissions decrease steeply. By the year 2045, 25% electrical energy can be supplied by renewable energy and the CO 2 emissions can be reduced by 72% as compared to the base case scenario. (author)

  7. Emerging nuclear energy systems: Economic challenge: Revision 1

    International Nuclear Information System (INIS)

    Nuckolls, J.H.

    1986-01-01

    Future nuclear energy systems may achieve substantially lower energy costs than those of existing fossil energy systems and comparable capital costs. Such low cost nuclear energy would provide a strong economic incentive to minimize the use of fossil fuels. If these low cost nuclear energy systems emerge in the next few decades, 21st century civilization may be able to avert potentially disastrous CO 2 induced global climate changes. 12 refs., 1 fig

  8. Present condition and the future of photovoltaic generating systems. Part 5. Future perspective of photovoltaic power systems; Taiyo hikarihatsuden system no genjo to shorai. 5. Taiyo hikarihatsuden system no shorai tenbo

    Energy Technology Data Exchange (ETDEWEB)

    Horigome, T

    1994-12-20

    In this paper, as the future perspective of photovoltaic power systems, the establishment of the legal environment for the popularization of the photovoltaic power systems in large amounts and the future prediction of the popularization of power generation are described. Specially the following grand ideas are introduced: building in high seas regeneratable energy transformation plants with solar energy as the main energy, generating combined power of photovoltaic, solar heat, wave and temperature difference of the sea water, biomass, solar-bio power generating without CO2 exhaustion, building hard solar plants to produce electricity, hydrogen, methanol and fresh water from regeneratable energy, and breeding fish, shells and see weed in the sea pasture land under the plants, which are the so called `Energy sea pasture high breed plants (REPO Plan)` and also space power generating i.e. setting up special satellites for solar power generation in synchronous orbits, generating power through solar batteries or solar heat and then transmitting it to the earth through microwave. 12 refs., 4 figs.

  9. TRADING ACTIVITY AND PRICES IN ENERGY FUTURES MARKET

    Directory of Open Access Journals (Sweden)

    Aysegul Ates

    2016-04-01

    Full Text Available This paper aims to examine trading activity and the relationship between futures trading activity by trader type and energy price movements in three energy futures markets –natural gas, crude oil and heating oil. We find that the level of net positions of speculators are positively related to future returns and in contrast net positions of hedgers are negatively related to futures price changes in all three markets. The changes in net positions are relatively more informative compare to the level of net positions in predicting price changes in related markets.

  10. Small Wind Energy Systems

    DEFF Research Database (Denmark)

    Simoes, Marcelo; Farret, Felix Alberto; Blaabjerg, Frede

    2015-01-01

    devices, and a centralized distribution control. In order to establish a small wind energy system it is important to observe the following: (i) Attending the energy requirements of the actual or future consumers; (ii) Establishing civil liabilities in case of accidents and financial losses due to shortage...... or low quality of energy; (iii) Negotiating collective conditions to interconnect the microgrid with the public network or with other sources of energy that is independent of wind resources; (iv) Establishing a performance criteria of power quality and reliability to end-users, in order to reduce costs...... and guaranteeing an acceptable energy supply. This paper discuss how performance is affected by local conditions and random nature of the wind, power demand profiles, turbine related factors, and presents the technical issues for implementing a self-excited induction generator system, or a permanent magnet based...

  11. Forbidden love. A French position on the future of nuclear energy

    International Nuclear Information System (INIS)

    Jaureguy-Naudin, Maite

    2013-01-01

    The French electricity supply system is based on nuclear energy, with three quarters of total electricity production originating from nuclear power plants. The sector has grown continuously over a period of 60 years. For a long time the realms of politics and science were in consensus about the use of nuclear energy for civil purposes, but now the French nuclear dogma is increasingly being called into question as a result of the disaster in Fukushima, the German decision to phase out nuclear energy and European energy policy in general. How will France shape its future energy policy given these altered framework conditions?

  12. Fusion: Energy for the future

    International Nuclear Information System (INIS)

    1991-05-01

    Fusion, which occurs in the sun and the stars, is a process of transforming matter into energy. If we can harness the fusion process on Earth, it opens the way to assuring that future generations will not want for heat and electric power. The purpose of this booklet is to introduce the concept of fusion energy as a viable, environmentally sustainable energy source for the twenty-first century. The booklet presents the basic principles of fusion, the global research and development effort in fusion, and Canada's programs for fusion research and development

  13. Outlook and application analysis of energy storage in power system with high renewable energy penetration

    Science.gov (United States)

    Feng, Junshu; Zhang, Fuqiang

    2018-02-01

    To realize low-emission and low-carbon energy production and consumption, large-scale development and utilization of renewable energy has been put into practice in China. And it has been recognized that power system of future high renewable energy shares can operate more reliably with the participation of energy storage. Considering the significant role of storage playing in the future power system, this paper focuses on the application of energy storage with high renewable energy penetration. Firstly, two application modes are given, including demand side application mode and centralized renewable energy farm application mode. Afterwards, a high renewable energy penetration scenario of northwest region in China is designed, and its production simulation with application of energy storage in 2050 has been calculated and analysed. Finally, a development path and outlook of energy storage is given.

  14. The Future of Nuclear Energy As a Primary Source for Clean Hydrogen Energy System in Developing Countries

    International Nuclear Information System (INIS)

    Ahmed, K.; Shaaban, H.

    2007-01-01

    The limited availability of fossil fuels compared to the increasing demand and the connected environmental questions have become topics of growing importance and international attention. Many other clean alternative sources of energy are available, but most of them are either relatively undeveloped technologically or are not yet fully utilized. Also, there is a need for a medium which can carry the produced energy to the consumer in a convenient and environmentally acceptable way. In this study, a fission reactor as a primary energy source with hydrogen as an energy carrier is suggested. An assessment of hydrogen production from nuclear energy is presented. A complete nuclear-electro-hydrogen energy system is proposed for a medium size city (population of 500,000). The whole energy requirement is assessed including residential, industrial and transportation energies. A preliminary economical and environmental impact study is performed on the proposed system. The presented work could be used as a nucleus for a feasibility study for applying this system in any newly established city

  15. Report of the CEA visiting committee on R and D for future nuclear energy systems, May 11-13, 2005

    International Nuclear Information System (INIS)

    Brechet, Y.; Ebbesen, T.; Fujiie, Y.; Richter, B.; Stormer, H.; Zinkle, S.J.

    2005-01-01

    This was the fifth meeting of the Visiting Committee of the CEA since its creation in year 2000. The first meeting gave members of the committee a broad overview of the entire spectrum of CEA research and subsequent meetings have focused on specific topics. These included the nuclear fuel cycle, biology, and micro and nano technologies. This meeting focused on research and development for future nuclear energy systems. The main division of CEA concerned with this topic is the Nuclear Energy Division. Some of the laboratories of the Technological Research and Matter Science Divisions are also involved in areas such as materials and basic nuclear data. The report deals with the fuels and waste, the SFR (Sodium Fast Reactor) and GFR (Gas Fast Reactor) programs, the Very High temperature reactor (VHTR), the actinide separation, the materials, the irradiation tests facilities and the personnel for the future. (A.L.B.)

  16. Report of the CEA visiting committee on R and D for future nuclear energy systems, May 11-13, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Brechet, Y. [Institut National Polytechnique, ENSEEG/LTPCM, 38 - Grenoble (France); Ebbesen, T. [Universite Louis Pasteur, ISIS, 67 - Strasbourg (France); Fujiie, Y. [Nuclear Salon Fuj-ie (Japan); Richter, B. [Director Emeritus, Stanford Linear Accelerator Center (United States); Stormer, H. [Columbia Univ., Dept. of Physics (United States); Zinkle, S.J. [Oac Ridge National Laboratory, Metals and Ceramics Div. (United States)

    2005-07-01

    This was the fifth meeting of the Visiting Committee of the CEA since its creation in year 2000. The first meeting gave members of the committee a broad overview of the entire spectrum of CEA research and subsequent meetings have focused on specific topics. These included the nuclear fuel cycle, biology, and micro and nano technologies. This meeting focused on research and development for future nuclear energy systems. The main division of CEA concerned with this topic is the Nuclear Energy Division. Some of the laboratories of the Technological Research and Matter Science Divisions are also involved in areas such as materials and basic nuclear data. The report deals with the fuels and waste, the SFR (Sodium Fast Reactor) and GFR (Gas Fast Reactor) programs, the Very High temperature reactor (VHTR), the actinide separation, the materials, the irradiation tests facilities and the personnel for the future. (A.L.B.)

  17. Energy for the future

    International Nuclear Information System (INIS)

    Sethna, H.N.

    1981-01-01

    The very existence of modern civilization is dependent on the supply of energy which comes from sun, geothermal energy sources, hydroelectricity, tides, ocean winds and nuclear sources. Potential of these sources for long-term solution of man's energy problems is examined. Nuclear source of energy is discussed in detail and other sources are dealt in brief. Fission reactor system which is now generating power on commercial basis is described. The work being done on thermonuclear fusion reactor system to make it a practical system is surveyed. Research programs on laser and particle beam fusion are described. (M.G.B.)

  18. Energy Systems Analysis of Waste to Energy Technologies by use of EnergyPLAN

    DEFF Research Database (Denmark)

    Münster, Marie

    Even when policies of waste prevention, re-use and recycling are prioritised, a fraction of waste will still be left which can be used for energy recovery. This report asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste......-to-Energy technologies are compared with a focus on fuel efficiency, CO2 reductions and costs. The comparison is made by conducting detailed energy system analyses of the present system as well as a potential future Danish energy system with a large share of combined heat and power and wind power. The study shows...... the potential of using waste for the production of transport fuels such as upgraded biogas and petrol made from syngas. Biogas and thermal gasification technologies are interesting alternatives to waste incineration and it is recommended to support the use of biogas based on manure and organic waste. It is also...

  19. The Transforming Mobility Ecosystem: Enabling in Energy-Efficient Future

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-01-31

    Over the next decade, the transportation sector is poised for rapid change, propelled toward a new mobility future by strong technology currents and the confluence of prevailing megatrends. These major forces hold the promise of shaping a new mobility future – one that unlocks tremendous economic value, provides unprecedented gains in safety, offers affordable and equal accessibility, and enables the transition to energy-efficient transport of people and goods. They come, however, with cautionary viewpoints on energy consumption of the entire sector, necessitating the need to carefully guide the emergent future. This report examines four possible mobility futures that could exist in 2050 and the positive and negative impacts of these futures on energy consumption and the broader economy.

  20. ThinkHome Energy Efficiency in Future Smart Homes

    Directory of Open Access Journals (Sweden)

    Reinisch Christian

    2011-01-01

    Full Text Available Abstract Smart homes have been viewed with increasing interest by both home owners and the research community in the past few years. One reason for this development is that the use of modern automation technology in the home or building promises considerable savings of energy, therefore, simultaneously reducing the operational costs of the building over its whole lifecycle. However, the full potential of smart homes still lies fallow, due to the complexity and diversity of the systems, badly engineered and configured installations, as well as the frequent problem of suboptimal control strategies. Summarized, these problems converge to two undesirable conditions in the "not-so-smart" home: energy consumption is still higher than actually necessary and users are unable to yield full comfort in their automated homes. This work puts its focus on alleviating the current problems by proposing a comprehensive system concept, that shall ensure that smart homes can keep their promise in the future. The system operates on an extensive knowledge base that stores all information needed to fulfill the goals of energy efficiency and user comfort. Its intelligence is implemented as and within a multiagent system that also caters for the system's openness to the outside world. As a first evaluation, a profile-based control strategy for thermal comfort is developed and verified by means of simulation.

  1. Hydrogen, energy of the future?

    International Nuclear Information System (INIS)

    Alleau, Th.

    2007-01-01

    A cheap, non-polluting energy with no greenhouse gas emissions and unlimited resources? This is towards this fantastic future that this book brings us, analyzing the complex but promising question of hydrogen. The scientific and technical aspects of production, transport, storage and distribution raised by hydrogen are thoroughly reviewed. Content: I) Energy, which solutions?: 1 - hydrogen, a future; 2 - hydrogen, a foreseeable solution?; II) Hydrogen, an energy vector: 3 - characteristics of hydrogen (physical data, quality and drawbacks); 4 - hydrogen production (from fossil fuels, from water, from biomass, bio-hydrogen generation); 5 - transport, storage and distribution of hydrogen; 6 - hydrogen cost (production, storage, transport and distribution costs); III) Fuel cells and ITER, utopias?: 7 - molecular hydrogen uses (thermal engines and fuel cells); 8 - hydrogen and fusion (hydrogen isotopes, thermonuclear reaction, ITER project, fusion and wastes); IV) Hydrogen acceptability: 9 - risk acceptability; 10 - standards and regulations; 11 - national, European and international policies about hydrogen; 12 - big demonstration projects in France and in the rest of the world; conclusion. (J.S.)

  2. Assessing the future of energy

    International Nuclear Information System (INIS)

    Moncomble, J.E.

    2015-01-01

    The World Energy Council has designed 2 tools named Jazz and Symphonie that allow the assessment of the potential impacts of energy choices on the future in terms of climate warming, investments, energy mix,... The Jazz roadmap aims at energy equity which means individual access to energy at a reasonable cost while the Symphonie roadmap focuses on environmental issues through appropriate practice and coordinated international policies. Both tools are integrated it means that they describe a whole world by most of its aspects: population, GDP per capita, number of cars by inhabitant, economic growth... A basic application of both tools shows that in 2050 the nuclear power will have increased (compared to today's level) but the share of nuclear power in the energy mix will have decreased for Jazz and increased for Symphonie. (A.C.)

  3. Energy Survival Guide. Insight in energy and outlook for the future

    International Nuclear Information System (INIS)

    Hermans, J.

    2008-12-01

    This book is written for everyone who wishes to distinguish the sense and nonsense in the area of energy. Are all those energy saving tips useful? Is a train really more efficient than a passenger car? Are all those talks about climate change justified? What do those wind turbines deliver? Will solar panels ever become profitable? Is nuclear energy justifiable? Why are we not exploiting wave energy? Will we still be able to drive cars in the future? This book provides the answers. It offers insight in where we stand and gives an outlook on how the future generation should proceed. It lists the facts and gives a complete view with clear conclusions. And there are separate frames for those who wish to check things. [mk] [nl

  4. Potential of renewable energy systems in China

    DEFF Research Database (Denmark)

    Liu, Wen; Lund, Henrik; Mathiesen, Brian Vad

    2011-01-01

    Along with high-speed economic development and increasing energy consumption, the Chinese Government faces a growing pressure to maintain the balance between energy supply and demand. In 2009, China has become both the largest energy consumer and CO2 emitting country in the world. In this case...... system has demonstrated the possibility of converting into a 100% renewable energy system. This paper discusses the perspective of renewable energy in China firstly, and then analyses whether it is suitable to adopt similar methodologies applied in other countries as China approaches a renewable energy...... system. The conclusion is that China’s domestic renewable energy sources are abundant and show the possibility to cover future energy demand; the methodologies used to analyse a 100% renewable energy system are applicable in China. Therefore, proposing an analysis of a 100% renewable energy system...

  5. Integrated environmental assessment of future energy scenarios based on economic equilibrium models

    International Nuclear Information System (INIS)

    Igos, E.; Rugani, B.; Rege, S.; Benetto, E.; Drouet, L.; Zachary, D.; Haas, T.

    2014-01-01

    The future evolution of energy supply technologies strongly depends on (and affects) the economic and environmental systems, due to the high dependency of this sector on the availability and cost of fossil fuels, especially on the small regional scale. This paper aims at presenting the modeling system and preliminary results of a research project conducted on the scale of Luxembourg to assess the environmental impact of future energy scenarios for the country, integrating outputs from partial and computable general equilibrium models within hybrid Life Cycle Assessment (LCA) frameworks. The general equilibrium model for Luxembourg, LUXGEM, is used to evaluate the economic impacts of policy decisions and other economic shocks over the time horizon 2006-2030. A techno-economic (partial equilibrium) model for Luxembourg, ETEM, is used instead to compute operation levels of various technologies to meet the demand for energy services at the least cost along the same timeline. The future energy demand and supply are made consistent by coupling ETEM with LUXGEM so as to have the same macro-economic variables and energy shares driving both models. The coupling results are then implemented within a set of Environmentally-Extended Input-Output (EE-IO) models in historical time series to test the feasibility of the integrated framework and then to assess the environmental impacts of the country. Accordingly, a dis-aggregated energy sector was built with the different ETEM technologies in the EE-IO to allow hybridization with Life Cycle Inventory (LCI) and enrich the process detail. The results show that the environmental impact slightly decreased overall from 2006 to 2009. Most of the impacts come from some imported commodities (natural gas, used to produce electricity, and metalliferous ores and metal scrap). The main energy production technology is the combined-cycle gas turbine plant 'Twinerg', representing almost 80% of the domestic electricity production in Luxembourg

  6. Nuclear systems of the future: international forum generation 4 and research and development projects at the Cea; Systemes nucleaires du futur: forum international generation 4 et projets de R et D du CEA

    Energy Technology Data Exchange (ETDEWEB)

    Carre, F

    2003-07-01

    To advance nuclear energy to meet future energy needs, ten countries have agreed to develop a future generation of nuclear energy systems, known as Generation 4. A technology road map to guide the Generation 4 effort was begun. This document presents the goals for these nuclear systems and the research programs of the Cea on the gas technology, GT-MHR, VHTR and GFR and the other systems as sodium Fast Neutron reactors, supercritical water and space nuclear. (A.L.B.)

  7. Future of high energy physics

    International Nuclear Information System (INIS)

    Panofsky, W.K.H.

    1984-06-01

    A rough overview is given of the expectations for the extension of high energy colliders and accelerators into the xtremely high energy range. It appears likely that the SSC or something like it will be the last gasp of the conventional method of producing high energy proton-proton collisions using synchrotron rings with superconducting magnets. It is likely that LEP will be the highest energy e+e - colliding beam storage ring built. The future beyond that depends on the successful demonstrations of new technologies. The linear collider offers hope in this respect for some extension in energy for electrons, and maybe even for protons, but is too early to judge whether, by how much, or when such an extension will indeed take place

  8. Energy future Santa Cruz. A citizens plan for energy self-reliance: Executive summary

    Science.gov (United States)

    Cohn, J.; Stayton, R.

    A grassroots energy conservation project which involved more than 3100 residents of Santa Cruz, California, is discussed. Citizens attended forums and town meetings to suggest ideas for solving the community's energy problems. These ideas were then evaluated by the Energy Future Advisory Board and compiled into the Energy Future Plan. The plan covers such topics as new residences, residential retrofit, automobile efficiency, farm efficiency, commercial greenhouses, local food production, commercial efficiency, land use planning, energy eduction and financing, and solar, wind, and ocean energy. If the plan is successfully implemented, the energy that the community is projected to use in 1991 can be lowered by 24 to 35 percent.

  9. EASETECH Energy: Life Cycle Assessment of current and future Danish power systems

    DEFF Research Database (Denmark)

    Turconi, Roberto; Damgaard, Anders; Bisinella, Valentina

    A new life cycle assessment (LCA) model software has been developed by DTU Environment, to facilitate detailed LCA of energy technologies. The model, EASETECH Energy, is dedicated to the specific technologies needed to assess energy production and energy systems and provides an unprecedented...

  10. Smart meters. Smart metering. A solution module for a future-oriented energy system; Intelligente Zaehler. Smart Metering. Ein Loesungsbaustein fuer ein zukunftsfaehiges Energiesystem

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, Nadia; Seidl, Hans [comps.

    2011-12-15

    The German Energy Agency GmbH (Berlin, Federal Republic of Germany) reports on smart metering as a solution module for a future-oriented energy system by means of the following contributions: (1) Key role for smart meters; (2) What is smart metering? (3) Implementation of smart metering in Europe; (4) The market development to date in Germany; (5) Practical experiences with smart metering in Germany; (6) Frequently asked questions; (7) Smart metering in intelligent networks; (8) Legal framework conditions; (9) Data security and data protection in the utilisation of smart meters; (10) Ongoing information; (11) Efficient energy systems.

  11. Solar energy in progress and future research trends

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Zekai [Istanbul Technical Univ., Dept. of Meteorology, Istanbul (Turkey)

    2004-07-01

    Extensive fossil fuel consumption in almost all human activities led to some undesirable phenomena such as atmospheric and environmental pollutions, which have not been experienced before in known human history. Consequently, global warming, greenhouse affect, climate change, ozone layer depletion and acid rain terminologies started to appear in the literature frequently. Since 1970, it has been understood scientifically by experiments and researches that these phenomena are closely related to fossil fuel uses because they emit greenhouse gases such as carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) which hinder the long wave terrestrial radiation to escape into space, and consequently, the earth troposphere becomes warmer. In order to avoid further impacts of these phenomena, the two concentrative alternatives are either to improve the fossil fuel quality with reductions in their harmful emissions into the atmosphere or more significantly to replace fossil fuel usage as much as possible with environmentally friendly, clean and renewable energy sources. Among these sources, solar energy comes at the top of the list due to its abundance, and more evenly distribution in nature than any other renewable energy types such as wind, geothermal, hydro, wave and tidal energies. It must be the main and common purpose of humanity to sustain environment for the betterment of future generations with sustainable energy developments. On the other hand, the known limits of fossil fuels compel the societies of the world in the long run to work jointly for their gradual replacement by renewable energy alternatives rather than the quality improvement of fossil sources. Solar radiation is an integral part of different renewable energy resources. It is the main and continuous input variable from practically inexhaustible sun. Solar energy is expected to play a very significant role in the future especially in developing countries, but it has also potential prospects for developed

  12. Systems of the future

    International Nuclear Information System (INIS)

    2006-01-01

    The world population growth will impact largely on the energy and electric power demand in the future. Facing the decrease of the hydrocarbons reserves, the international community decided to work together to develop a new generation of nuclear systems. In this context, coordinated researches are realized first with a short dated objective on the development of innovations for PWR type reactors and second with a middle dated on the development of new systems in an international framework (essentially Generation IV). Theses research programs are presented below. The first part is devoted to the different generation of reactors (I to IV) and to the third generation; the second part deals with the international framework of the researches, the french strategy and the european dimension. (A.L.B.)

  13. Managing urban energy system: A case of Suzhou in China

    International Nuclear Information System (INIS)

    Liang Sai; Zhang Tianzhu

    2011-01-01

    Managing urban energy system is vital for energy conservation and CO 2 reduction. Integrating energy input-output model with carbon emission pinch analysis, we propose a framework for managing urban energy system. This framework could analyze current energy demands and CO 2 emissions, predict their future possibilities and optimize energy mix of key sectors under CO 2 emission constraints. Key sectors are identified by the energy input-output table from both direct and accumulative perspectives. Moreover, taking Suzhou, a typical manufacturing center and export-oriented city in China, as a case example, energy metabolism of Suzhou in 2020 is predicted using energy input-output model. And three sectors named Coking, Smelting and pressing of metals and Production and supply of electric power are identified to have big effects on CO 2 emissions. Subsequently, energy mix of three identified key sectors is optimized under CO 2 emission constraints by the carbon emission pinch analysis. According to the results, clean energy sources will occupy a great position in Suzhou's future energy demands. And the reuse of wastes as energy sources should be limited to achieve CO 2 mitigation targets. Finally, policy implications of results and future work are discussed. - Research highlights: → We construct a framework for sustainable energy system management. → We apply the framework in a typical manufacturing center named Suzhou in China. → Key sectors for CO 2 emissions are identified, and energy mix is optimized. → Policy implications of results and future work are discussed.

  14. Energy systems and technologies for the coming century. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Soenderberg Petersen, L; Larsen, Hans [eds.

    2011-05-15

    Risoe International Energy Conference 2011 took place 10 - 12 May 2011. The conference focused on: 1) Future global energy development options, scenarios and policy issues. 2) Intelligent energy systems of the future, including the interaction between supply and end-use. 3) New and emerging technologies for the extended utilisation of sustainable energy. 4) Distributed energy production technologies such as fuel cells, hydrogen, bioenergy, wind, hydro, wave, solar and geothermal. 5) Centralised energy production technologies such as clean coal technologies, CCS and nuclear. 6) Renewable energy for the transport sector and its integration in the energy system The proceedings are prepared from papers presented at the conference and received with corrections, if any, until the final deadline on 20-04-2011. (Author)

  15. Journal of the two worlds. Energies of the future; Revue des deux mondes. Les energies du futur

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Confusion and irrationality are the two master-words of today's debates about energies and their impact on safety, environment, ethic and society. On the other hand, reports about urgent decisions to be taken are piling up (wastes reprocessing, future of nuclear energy, European policy etc..). This book analyzes the possible scenarios and the energy challenges at the year 2030 and 2050 vistas. (J.S.)

  16. The Japanese energy sector: Current situation, and future paths

    International Nuclear Information System (INIS)

    Takase, Kae; Suzuki, Tatsujiro

    2011-01-01

    As the world's third leading economy and a major importer of fuels, the choice of future energy paths and policies that Japan makes in the next few years will have a significant influence on the energy security of the world as a whole, and of the Northeast Asia region in particular. In this article we describe the current status of and recent trends in the Japanese energy sector, including energy demand and supply by fuel and by sector. We then discuss the current energy policy situation in Japan, focusing on policies related to climate change targets, renewable energy development and deployment, liberalization of energy markets, and the evolution of the Japanese nuclear power sector. The final section of the article presents the structure of the Japan LEAP (long-range energy alternatives planning software system) dataset, describes several alternative energy paths for Japan - with an emphasis on alternative paths for nuclear power development and GHG emission abatement - and touches upon key current issues of energy policy facing Japan, as reflected in the modeling inputs and results.

  17. The Japanese energy sector: Current situation, and future paths

    Energy Technology Data Exchange (ETDEWEB)

    Takase, Kae, E-mail: kae@gdl.jp [Governance Design Laboratory, Inc., 2301 City Tower Bashamichi 5-71 Onoe-cho, Naka-ku, Yokohama, Kanagawa 231-0015 (Japan); Suzuki, Tatsujiro [University of Tokyo, Graduate School of Public Policy, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0081 (Japan)

    2011-11-15

    As the world's third leading economy and a major importer of fuels, the choice of future energy paths and policies that Japan makes in the next few years will have a significant influence on the energy security of the world as a whole, and of the Northeast Asia region in particular. In this article we describe the current status of and recent trends in the Japanese energy sector, including energy demand and supply by fuel and by sector. We then discuss the current energy policy situation in Japan, focusing on policies related to climate change targets, renewable energy development and deployment, liberalization of energy markets, and the evolution of the Japanese nuclear power sector. The final section of the article presents the structure of the Japan LEAP (long-range energy alternatives planning software system) dataset, describes several alternative energy paths for Japan - with an emphasis on alternative paths for nuclear power development and GHG emission abatement - and touches upon key current issues of energy policy facing Japan, as reflected in the modeling inputs and results.

  18. Future of nuclear energy is promising

    International Nuclear Information System (INIS)

    Stritar, A.

    1999-01-01

    Paper is trying to clearly present the facts about World nuclear energy production in the past and in the future. The production has increased in last ten years for about 26% and will continue to grow. After next ten years we can expect between 12,5% and 25% higher production than this year. Therefore we, nuclear professionals, should not be pessimistic. We should strive not to use negative words in our communications between ourselves and especially to general public. Instead, we should proudly underline our achievements in the past and prospects for the future stressing all the benefits of this type of energy production.(author)

  19. Renewable Energy Programmes in India: Status and Future Prospects

    International Nuclear Information System (INIS)

    Agarwal, Ram Kumar

    2010-09-01

    Renewable energy sources and technologies have potential to provide solutions to the long-standing energy problems being faced by the developing countries. The renewable energy sources like wind energy, solar energy, biomass energy and fuel cell technology can be used to overcome energy shortage in India. To meet the energy requirement for such a fast growing economy, India will require an assured supply of 3-4 times more energy than the total energy consumed today. The renewable energy is one of the options to meet this requirement. India is increasingly adopting responsible renewable energy techniques and taking positive steps towards carbon emissions, cleaning the air and ensuring a more sustainable future. In India, from the last two and half decades there has been a vigorous pursuit of activities relating to research, development, demonstration, production and application of a variety of renewable energy technologies for use in different sectors. In this paper, efforts have been made to summarize the availability, current status, major achievements and future potentials of renewable energy options in India. This paper also assesses specific policy interventions for overcoming the barriers and enhancing deployment of renewable energy devices for the future. (author)

  20. A hydrogen economy - an answer to future energy problems

    International Nuclear Information System (INIS)

    Seifritz, W.

    1975-01-01

    ''The Theme was THEME''. This was the headline of The Hydrogen Economy Miami Energy Conference which was the first international conference of this type and which took place in Miami, March 18-20, 1974. For the first time, about 700 participants from all over the western world discussed all the ramifications and aspects of a hydrogen based economy. Non-fossil hydrogen, produced from water by either electrolysis or by direct use of process heat from a nuclear source is a clean, all-synthetic, automatically recyclable, and inexhaustible fuel. It may support the World's future energy requirements beyond the present self limited fossil-fuel era. A large number of papers and news were presented on this conference reflecting this effort. The following article is intended to report on the highlights of the conference and to give a survey on the present state of the art in the hydrogen field. Furthermore, the author includes his own ideas and conclusions predominantly by taking into account the trends in the development of future nuclear reactor systems and symbiotic high-temperature-reactor/breeder strategies being the primary energy input of a hydrogen economy and providing a most promising avenue for solving both the World's energy and environmental (entropy) problems. (Auth.)

  1. Integrating the views and perceptions of UK energy professionals in future energy scenarios to inform policymakers

    International Nuclear Information System (INIS)

    Parkes, Gareth; Spataru, Catalina

    2017-01-01

    The Energy Institute (EI) developed its first Energy Barometer survey in 2015 which aims to understand professionals’ views and opinions of energy priorities, policies and technologies. 543 UK energy professionals from across the energy sector were surveyed. Following the survey, 79% of UK energy professionals believe their sector is not effectively communicating with the public. This suggests there is an urgent need to better understand how to use surveys in a more methodological way. Developed in conjunction with the EI, this paper presents the Energy Barometer survey methodology and results to achieve a better understanding of UK energy professionals’ current perceptions and future priorities. The paper makes two contributions to enhance the UK's energy debate. First, it provides the first results in a longitudinal assessment of energy professionals’ views of energy policy issues and discusses the implications for future policymaking. Second, it identifies opportunities for Energy Barometer findings to feed into scenarios development. A comparison with other studies was undertaken. It has been shown that the views of professionals working across the sector are aligned with decentralised approaches to decarbonisation. In particular, professionals expect action from policymakers to coordinate, engage with and encourage investment in energy efficiency. - Highlights: • 543 UK energy professionals from across the energy sector were surveyed. • Aiming to better understand views and opinions of energy priorities, policies and technologies. • A comparison of the methodology and results with other studies was undertaken. • Considers contributions of results to energy system scenario development. • Identifies particular need for increased energy efficiency investment.

  2. Energies of the future

    International Nuclear Information System (INIS)

    2005-12-01

    This document takes stock on the researches concerning the energies of the future. The hydrogen and the fuel cells take the main part with also the new fuels. Some researches programs are detailed as the costs decrease of the hydrogen engines, the design of an hydrogen production reactor from ethanol or the conversion of 95% of ethanol in gaseous hydrogen. (A.L.B.)

  3. The future cost of electrical energy storage based on experience rates

    Science.gov (United States)

    Schmidt, O.; Hawkes, A.; Gambhir, A.; Staffell, I.

    2017-08-01

    Electrical energy storage could play a pivotal role in future low-carbon electricity systems, balancing inflexible or intermittent supply with demand. Cost projections are important for understanding this role, but data are scarce and uncertain. Here, we construct experience curves to project future prices for 11 electrical energy storage technologies. We find that, regardless of technology, capital costs are on a trajectory towards US$340 ± 60 kWh-1 for installed stationary systems and US$175 ± 25 kWh-1 for battery packs once 1 TWh of capacity is installed for each technology. Bottom-up assessment of material and production costs indicates this price range is not infeasible. Cumulative investments of US$175-510 billion would be needed for any technology to reach 1 TWh deployment, which could be achieved by 2027-2040 based on market growth projections. Finally, we explore how the derived rates of future cost reduction influence when storage becomes economically competitive in transport and residential applications. Thus, our experience-curve data set removes a barrier for further study by industry, policymakers and academics.

  4. Towards a sustainable future of energy

    International Nuclear Information System (INIS)

    Castro Diaz-Balart, Fidel

    1999-01-01

    The only form of having a future energy insurance is to find a road environmentally sustainable to take place and to use the energy. Their production and non alone use should be compatible with the environmental priorities of the society but rather they should be organized in such a way that they have a social consent, under the principle that so that there is economic development an economic and sure energy supply it should exist

  5. Energy storage systems: power grid and energy market use cases

    Directory of Open Access Journals (Sweden)

    Komarnicki Przemysław

    2016-09-01

    Full Text Available Current power grid and market development, characterized by large growth of distributed energy sources in recent years, especially in Europa, are according energy storage systems an increasingly larger field of implementation. Existing storage technologies, e.g. pumped-storage power plants, have to be upgraded and extended by new but not yet commercially viable technologies (e.g. batteries or adiabatic compressed air energy storage that meet expected demands. Optimal sizing of storage systems and technically and economically optimal operating strategies are the major challenges to the integration of such systems in the future smart grid. This paper surveys firstly the literature on the latest niche applications. Then, potential new use case and operating scenarios for energy storage systems in smart grids, which have been field tested, are presented and discussed and subsequently assessed technically and economically.

  6. Renewable Energy Devices and Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ionel, Dan M.

    2015-01-01

    In this paper, essential statistics demonstrating the increasing role of renewable energy generation are firstly discussed. A state of the art review section covers fundamentals of wind turbines and PV systems. Included are schematic diagrams illustrating the main components and system topologies...... and the fundamental and increasing role of power electronics as an enabler for renewable energy integration, and for the future power system and smart grid. Recent examples of research and development, including new devices and system installations for utility power plants, as well for as residential and commercial......, fuel cells, and storage with batteries and hydrogen, respectively. Recommended further readings on topics of electric power engineering for renewable energy are included in a final section. This paper also represents an editorial introduction for two special issues of the Electric Power Component...

  7. Economic Impacts of Future Changes in the Energy System - National Perspectives

    DEFF Research Database (Denmark)

    Glynn, James; Fortes, Patrícia; Krook-Riekkola, Anna

    2015-01-01

    climate change. This chapter summarises modelling methodologies developed in the ETSAP community to assess economic impacts of decarbonising energy systems at a national level. The preceding chapter focuses on a global perspective. The modelling studies outlined here show that burden sharing rules...... and national revenue recycling schemes for carbon tax are critical for the long-term viability of economic growth and equitable engagement on combating climate change. Traditional computable general equilibrium models and energy systems models solved in isolation can misrepresent the long run carbon cost...

  8. Energy in India's Future: Insights

    Energy Technology Data Exchange (ETDEWEB)

    Lesourne, J.; Ramsay, W.C.; Jaureguy-Naudin, Maite; Boillot, Jean-Joseph; Autheman, Nicolas; Ruet, Joel; Siddiqui, Zakaria; Zaleski, C. Pierre; Cruciani, Michel

    2009-07-01

    In the decades following India's independence from British rule in 1947, the West's image of India was summarized in three simple cliches: the world's largest democracy, an impoverished continent, and economic growth hampered by a fussy bureaucracy and the caste system, all in a context of a particular religion. These cliches are perhaps one of the reasons that the success of India's green revolution was recognized so late, a revolution that allowed the country to develop its agricultural sector and to feed its population. Since the 1990's, the easing of planning constraints have liberated the Indian economy and allowed it to embark on a more significant path of growth. New cliches have begun to replace the old: India will become a second China and, lagging by 10 to 20 years, will follow the same trajectory, with its development marked more by services and the use of renewable energy. However, these trends will not prevent primary energy demand from exploding. On the contrary, India faces difficult choices on how it increases clean, secure, affordable energy to all its citizens. Many of the choices are the same as found elsewhere, but on a scale matched only by China. The IFRI European Governance and Geopolitics of Energy Project intends this study to deepen public understanding of the magnitude of India's challenges. Various aspects of the serious energy problems are studied throughout this monograph. The authors have written freely on these matters without attempting to reconcile their different viewpoints. The first chapter, by Maite Jaureguy-Naudin and Jacques Lesourne, presents an overview of India's present and future energy system. The authors follow a prudent but realistic view of India's future. The second chapter, by Jean-Joseph Boillot, a French expert on India who has published several books and articles on this subject, and Nicolas Autheman, research fellow, describes in greater detail the specifics of India

  9. The future of energy and climate

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    The talk will review some of the basic facts about the history and present status of the use of energy and its climatic consequences. It is clear that the world will have to change its way of energy production, the sooner the better. Because of the difficulty of storing electric energy, by far the best energy source for the future is thermal solar from the deserts, with overnight thermal storage. I will give some description of the present status of the technologies involved and end up with a pilot project for Europe and North Africa.

  10. Hydropower and the world's energy future

    International Nuclear Information System (INIS)

    2000-11-01

    The potential role of hydropower in the context of world-wide demographic growth and increasing demand for energy, and the benefits inherent in hydroelectric power in comparison with other energy options are discussed. Environmental and social impacts, and examples of mitigation measures are reviewed. Recommendations regarding best practices in the future development of hydroelectric power projects proposed

  11. Technical challenges to energy systems' operation and markets

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, P.; Meibom, P.; Gehrke, O. [Risoe National Lab. (Denmark); Oestergaard, J. [Technical Univ. of Denmark (Denmark)

    2006-11-15

    A future energy system that includes a high proportion of renewable energy will be expected to meet the same requirements for security of supply and economic efficiency as the energy systems of today, while delivering better environmental performance, especially with regard to CO{sub 2} emissions. Security of supply refers to the long-term reliability of fuel supply; especially in power systems, it also covers short-term requirements for system stability and adequacy. Economic efficiency is concerned with getting the best from the significant amounts of money, human capital and natural resources involved in an energy system. Integral to economic efficiency in energy systems is the presence of well-functioning markets for energy services. The variability and reduced predictability of a number of renewable energy sources, notably wind power, create specific challenges for future energy systems compared to those of today. Power transmission will also become an issue, as the areas with good potential for wind power and wave energy are often located some distance from the centres of power consumption. This chapter describes the challenges involved, and possible solutions to these, with a focus on power systems. The chapter is divided into two sections reflecting the fact that some challenges relate to managing the power system in its normal operation mode, whereas others are specific to fault conditions. (au)

  12. Classifying the future of universes with dark energy

    International Nuclear Information System (INIS)

    Chiba, Takeshi; Takahashi, Ryuichi; Sugiyama, Naoshi

    2005-01-01

    We classify the future of the universe for general cosmological models including matter and dark energy. If the equation of state of dark energy is less then -1, the age of the universe becomes finite. We compute the rest of the age of the universe for such universe models. The behaviour of the future growth of matter density perturbation is also studied. We find that the collapse of the spherical overdensity region is greatly changed if the equation of state of dark energy is less than -1

  13. Nuclear Energy - Hydrogen Production - Fuel Cell: A Road Towards Future China's Sustainable Energy Strategy

    International Nuclear Information System (INIS)

    Zhiwei Zhou

    2006-01-01

    Sustainable development of Chinese economy in 21. century will mainly rely on self-supply of clean energy with indigenous natural resources. The burden of current coal-dominant energy mix and the environmental stress due to energy consumptions has led nuclear power to be an indispensable choice for further expanding electricity generation capacity in China and for reducing greenhouse effect gases emission. The application of nuclear energy in producing substitutive fuels for road transportation vehicles will also be of importance in future China's sustainable energy strategy. This paper illustrates the current status of China's energy supply and the energy demand required for establishing a harmonic and prosperous society in China. In fact China's energy market faces following three major challenges, namely (1) gaps between energy supply and demand; (2) low efficiency in energy utilization, and (3) severe environmental pollution. This study emphasizes that China should implement sustainable energy development policy and pay great attention to the construction of energy saving recycle economy. Based on current forecast, the nuclear energy development in China will encounter a high-speed track. The demand for crude oil will reach 400-450 million tons in 2020 in which Chinese indigenous production will remain 180 million tons. The increase of the expected crude oil will be about 150 million tons on the basis of 117 million tons of imported oil in 2004 with the time span of 15 years. This demand increase of crude oil certainly will influence China's energy supply security and to find the substitution will be a big challenge to Chinese energy industry. This study illustrates an analysis of the market demands to future hydrogen economy of China. Based on current status of technology development of HTGR in China, this study describes a road of hydrogen production with nuclear energy. The possible technology choices in relation to a number of types of nuclear reactors are

  14. A Romanian energy system model and a nuclear reduction strategy

    DEFF Research Database (Denmark)

    Gota, Dan-Ioan; Lund, Henrik; Miclea, Liviu

    2011-01-01

    This paper presents a model of the Romanian energy system with the purpose of providing a tool for the analysis of future sustainable energy strategies. The model represents the total national energy system and is detailed to the level of hourly demand and production in order to be able to analyse...... the consequences of adding fluctuating renewable energy sources to the system. The model has been implemented into the EnergyPLAN tool and has been validated in order to determine if it can be used as a reference model for other simulations. In EnergyPLAN, two different future strategy scenarios for the Romanian...... energy system are compared to the actual data of Romania of year 2008. First, a comparison is made between the 2008 model and the 2013 strategy scenario corresponding to the grid of the Romanian transmission system operator (TSO) Transelectrica. Then, a comparison is made to a second strategy scenario...

  15. Fusion power in a future low carbon global electricity system

    DEFF Research Database (Denmark)

    Cabal, H.; Lechón, Y.; Bustreo, C.

    2017-01-01

    Fusion is one of the technologies that may contribute to a future, low carbon, global energy supply system. In this article we investigate the role that it may play under different scenarios. The global energy model ETM (originally EFDA TIMES Model) has been used to analyse the participation...

  16. Electric grid stability and the design of sustainable energy systems

    DEFF Research Database (Denmark)

    Lund, Henrik

    2005-01-01

    The article presents technical designs of potential future flexible energy systems, which will be able both to balance production and demand and to secure voltage and frequency requirements on the grid.......The article presents technical designs of potential future flexible energy systems, which will be able both to balance production and demand and to secure voltage and frequency requirements on the grid....

  17. A View on Future Building System Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2011-04-01

    This chapter presents what a future environment for building system modeling and simulation may look like. As buildings continue to require increased performance and better comfort, their energy and control systems are becoming more integrated and complex. We therefore focus in this chapter on the modeling, simulation and analysis of building energy and control systems. Such systems can be classified as heterogeneous systems because they involve multiple domains, such as thermodynamics, fluid dynamics, heat and mass transfer, electrical systems, control systems and communication systems. Also, they typically involve multiple temporal and spatial scales, and their evolution can be described by coupled differential equations, discrete equations and events. Modeling and simulating such systems requires a higher level of abstraction and modularisation to manage the increased complexity compared to what is used in today's building simulation programs. Therefore, the trend towards more integrated building systems is likely to be a driving force for changing the status quo of today's building simulation programs. Thischapter discusses evolving modeling requirements and outlines a path toward a future environment for modeling and simulation of heterogeneous building systems.A range of topics that would require many additional pages of discussion has been omitted. Examples include computational fluid dynamics for air and particle flow in and around buildings, people movement, daylight simulation, uncertainty propagation and optimisation methods for building design and controls. For different discussions and perspectives on the future of building modeling and simulation, we refer to Sahlin (2000), Augenbroe (2001) and Malkawi and Augenbroe (2004).

  18. Future nuclear energy utilization in view of the Swiss economy

    International Nuclear Information System (INIS)

    Kuendig, M.

    1990-01-01

    The tried and proven system of dividing duties between government and business should be continued. A double 'no', preserving the legal basis for the future use of nuclear energy, should therefore be the answer to the two bills aimed against it in Switzerland. Conservation, research and substitution efforts of private industry can be rewarded by providing the necessary framework. The creation of indirect incentives should further support these efforts, without federal intervention. For this reason and with the same resoluteness, the 'energy article' has to be rejected. (author)

  19. Comparing Waste-to-Energy technologies by applying energy system analysis

    DEFF Research Database (Denmark)

    Münster, Marie; Lund, Henrik

    2010-01-01

    Even when policies of waste prevention, re-use and recycling are prioritised a fraction of waste will still be left which can be used for energy recovery. This article asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste......-to-Energy technologies are compared with a focus on fuel efficiency, CO2 reductions and costs. The comparison is carried out by conducting detailed energy system analyses of the present as well as a potential future Danish energy system with a large share of combined heat and power as well as wind power. The study shows...... potential of using waste for the production of transport fuels. Biogas and thermal gasification technologies are hence interesting alternatives to waste incineration and it is recommended to support the use of biogas based on manure and organic waste. It is also recommended to support research...

  20. Smart Cities and National Energy Systems

    DEFF Research Database (Denmark)

    Thellufsen, Jakob Zinck

    Energy system analysis follows two tracks, either through plans for future transitions of national energy systems, or local development of smart cities and regions. These two tracks seldom overlap. National plans neglect the local implementation of intermittent renewable technology and use of local...... resources, and smart cities and local development do not relate to national targets and fail to evaluate sub-optimization. Thus, there is a need for approaches that help researchers creating links between country analyses and local energy system transitions. This paper investigates the effects...... of such an approach, by investigating Western Denmark. By splitting Western Denmark into regions, it is possible to create individual energy systems for each region. Through interconnection, these regions can exchange electricity with each other. This enables analyses of interaction between smart cities and national...

  1. A Review of Cyber-Physical Energy System Security Assessment

    DEFF Research Database (Denmark)

    Rasmussen, Theis Bo; Yang, Guangya; Nielsen, Arne Hejde

    2017-01-01

    Increasing penetration of renewable energy resources (RES) and electrification of services by implementing distributed energy resources (DER) has caused a paradigm shift in the operation of the power system. The controllability of the power system is predicted to be shifted from the generation side...... to the consumption side. This transition entails that the future power system evolves into a complex cyber-physical energy system (CPES) with strong interactions between the power, communication and neighboring energy systems. Current power system security assessment methods are based on centralized computation...

  2. The future of nuclear energy

    International Nuclear Information System (INIS)

    Cockcroft, J.; Bhabha, H.J.; Goldschmidt, B.

    1959-01-01

    A public discussion on the future of nuclear energy was organized by the Director General of the International Atomic Energy Agency in Vienna on 22 September 1959 in conjunction with the third regular session of the Agency's General Conference. The three eminent scientists who participated in the discussion - Dr. Homi J. Bhabha of India, Sir John Cockcroft of the United Kingdom and Dr. Bertrand Goldschmidt of France - are members of the Agency's Scientific Advisory Committee. The Secretary of the Committee, Dr. Henry Seligman, Deputy Director General of IAEA, acted as moderator. The meeting was presided over by the Director General, Mr. Sterling Cole. The discussion began with opening statements by the three scientists surveying recent developments, current trends and future possibilities. After these general statements, they answered a number of questions from the audience. A record of the discussion, including the opening statements as well as the questions and answers, is contained in this special number of the IAEA Bulletin. (author)

  3. The role of cogeneration systems in sustainability of energy

    International Nuclear Information System (INIS)

    Çakir, Uğur; Çomakli, Kemal; Yüksel, Fikret

    2012-01-01

    Highlights: ► Energy source on the world is tending to run out day by day while the energy need of humanity is increasing simultaneously. ► There are two ways to overcome this problem; one of them is renewable energy sources like solar or wind energy systems. ► The other way is like cogeneration systems. ► Cogeneration system is one of the ways to save the energy and use the energy efficiently. ► A case study is made for a hospital to present the sustainability aspects of cogeneration systems. - Abstract: Cogeneration system (CHP) is one of the ways to save the energy and use the energy efficiently. When compared to separate fossil-fired generation of heat and electricity, CHP may result in a consistent energy conservation (usually ranging from 10% to 30%) while the avoided CO 2 emissions are, as a first approximation, similar to the amount of energy saving. In terms of sustainability, one of the primary considerations is energy efficiency. Sustainable energy is considered as a kind of energy which is renewable and continuous, meaning that the use of such energy can potentially be kept up well into the future without causing harmful repercussions for future generations. In this study, environmental benefits and sustainability aspects of cogeneration systems and importance of those systems to the use of sustainable energy are underlined. To support this idea, first we have referred some scientific studies previously made on cogeneration systems and then we have used our own case study. The case study made on gas engined cogeneration system was applied for a hospital to show the sustainability aspects of cogeneration systems.

  4. The future of energy use

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.; O`Keefe, P.; Snape, C. [University of Northumbria, Newcastle upon Tyne (United Kingdom). Photovoltaics Application Centre

    1995-12-31

    The book gives a comprehensive analysis of the history and use of different forms of energy, their environmental and social impacts and, in particular, their economic costs and the future of their supply. It examines all the major forms of energy - conventional fuels such as oil and coal, nuclear power and alternative and renewable sources - and includes case studies on the transport and building sectors in the North and agroforestry and fuelwood problems in the South. The authors discuss the development of energy provision and patterns of supply and demand, and examine the use of end-use analyses. They look at the ways in which social and environmental costs should be introduced into energy planning and accounting, and emphasise the crucial role of efficiency to limit over-consumption. 91 refs., 100 figs., 62 tabs.

  5. Future indoor light and associated energy consumption based on professionals' visions: A practice- and network-oriented analysis

    DEFF Research Database (Denmark)

    Franceschini, Simone; Borup, Mads; Rosales-Carreón, Jesús

    2018-01-01

    Through the insight and visions of Danish lighting experts, this manuscript investigates relationships between future lighting technologies and practices and the expected impacts on energy and lighting consumption. The light-emitting diode (LED) will be the dominant technology of the future smart...... light systems. Though, energy efficiency is expected to improve, new market players will appear and new lighting opportunites will be exploited that, in turn, will increase the demand for light. A rebound effect is expected. The overall impact on the future consumption of energy is uncertain, so we...

  6. Global economics/energy/environmental (E3) modeling of long-term nuclear energy futures

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Davidson, J.W.; Bathke, C.G.; Arthur, E.D.; Wagner, R.L. Jr.

    1997-01-01

    A global energy, economics, environment (E 3 ) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Using this model, consistent nuclear energy scenarios are constructed. A spectrum of future is examined at two levels in a hierarchy of scenario attributes in which drivers are either external or internal to nuclear energy. Impacts of a range of nuclear fuel-cycle scenarios are reflected back to the higher-level scenario attributes. An emphasis is placed on nuclear materials inventories (in magnitude, location, and form) and their contribution to the long-term sustainability of nuclear energy and the future competitiveness of both conventional and advanced nuclear reactors

  7. East Germany's future energy economy

    Energy Technology Data Exchange (ETDEWEB)

    Tjon, F; Zuehlke, R [Technische Univ. Berlin (Germany, F.R.). FG Energie und Rohstoffwirtschaft

    1991-01-01

    Since unification, the former German Democratic Republic has had to face major changes, one of which concerns the energy supply system. A secure energy supply system is an absolute requirement for the political and economical development of this Republic. Its former strategy of 'autarkical' energy supply until the end of 1989 was one of the factors which led to an economic downfall. This essay gives an overview of the major structural changes to the economy which have occurred since unification. First, the former energy situation is described and the status quo analyzed. Then, efforts in reorganizing the present energy supply system are outlined. Finally, new perspectives and strategies are described. The aspects taken into consideration include: energy price deregulation; European fossil fuel marketing trends; investments for the build up of an efficient energy supply system; and the creation of surcharges for environmental pollution abatement, in particular, the reduction of carbon and sulfur dioxide emissions.

  8. Science and defense 2003: the future on-board energies; Science et defense 2003: les futures energies embarquees

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Since 1983, the DGA (delegation of armament) organizes the colloquium ''Science and defense'' in the domains of the scientific research and the defense. The 2003 colloquium took place in Paris on December 2 and 3 and concerns the future portable energies. This paper is a summary presentation of the presented topics: the needs and the developments for the portable energies, the state of the art of the mini and micro energy sources and their limitations, the energy materials which strongly provide energy by chemical transformation, the new energy sources of medium power, the environmental impacts. The budget devoted to these researches in 2002 by the DGA, are also presented. (A.L.B.)

  9. Coal: Energy for the future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

  10. Energy Requirements by the Water Sector in the Southwestern US: Past, Present, and Future

    Science.gov (United States)

    Averyt, K.; Yates, D. N.; Meldrum, J.

    2014-12-01

    Climate, energy, and water are fundamentally linked such that shifts in one sector have cascading impacts on the others. Consideration of the integrated system is necessary to fully understand the individual risk profile of each sector. In defining vulnerabilities and potential adaptations, the policy and regulatory environment must be considered alongside the biological and physical systems. Take, for example, the Southwestern U.S., a naturally arid system, where water availability is declining as a consequence of climate change and population growth. Adaptations by the water sector to convey, store, and develop new water sources (e.g. desalination, groundwater pumping, water-reuse) are strategies designed to enhance sustainability of the sector. But, the energy requirements embedded in these management techniques pose challenges to electric utilities. West wide, approximately 20% of total electricity generation goes toward supplying and heating water. If future investments made by the water sector to deal with changing supply and demand regimes continue to follow current trends, the dependence of water on energy availability will grow, meaning that the water supply will be increasingly reliant on the electricity system. Here, we use the example of long-term aridity and the recent drought in the Western US to illustrate the tradeoffs and challenges inherent at the nexus between energy and water. We present long-term trends in the energy intensity of water supplies in the Southwestern US, with a specific focus on groundwater systems. Projected energy requirements for proposed and future conveyance systems are discussed. The potential impacts of reduced flows on the Colorado River on the energy demands for groundwater pumping in the Lower Colorado River Basin are highlighted.

  11. Energy consumption in the food supply system

    DEFF Research Database (Denmark)

    Kamp, Andreas; Østergård, Hanne; Hauggaard-Nielsen, Henrik

    2016-01-01

    Historically, productivity gains have been possible by the application of energy intensive technologies. In the future, new technologies and practices based on energy from renewable resources are central for the development of our food supply system and they will contribute in two different ways....... As the energy sector increasingly bases energy supply on renewable sources, the energy requirements of the food sector will automatically substitute renewable energy for non-renewable energy in all stages of food supply. In principle, the food sector does not need to change if renewable energy is sufficient...... and available as the energy carriers that we are used to today. We may think of this as passive adaptation. A passive adaptation strategy may support a development towards the image ‘high input – high output’. The food sector, however, may also actively adapt to a future without fossil fuels and change...

  12. Future energy demand in Laos. Scenario alternatives for development

    Energy Technology Data Exchange (ETDEWEB)

    Luukkanen, J.; Kouphokham, K.; Panula-Ontto, J. [and others

    2012-07-01

    Energy production in Laos is still dominated by traditional fuels. Fuelwood in the main source of energy and most of the energy is consumed at households for cooking. Increase in the number of cars and motorbikes is rapidly increasing the use of imported petroleum products. Electrification is one of the central targets of the Lao government. The electrification rate has increased fast in Laos and in the year 2010 over 70 % households had electricity supply. The target is to have 90 % access to electricity by the year 2020. The World Bank regards the electrification of Lao PDR to be a success story. This paper deals with the present and future energy consumption in Laos. First the historical trends of energy use in different sectors are analysed. The future scenarios are constructed using LaoLinda model. Four different future alternative development paths are analysed using the model results. The energy use data source for the analysis is from the Ministry of Energy and Mines (MEM) of Lao PDR. Economic and other data is from the Department of Statistics of Lao PDR.

  13. Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling

    Science.gov (United States)

    Pehl, Michaja; Arvesen, Anders; Humpenöder, Florian; Popp, Alexander; Hertwich, Edgar G.; Luderer, Gunnar

    2017-12-01

    Both fossil-fuel and non-fossil-fuel power technologies induce life-cycle greenhouse gas emissions, mainly due to their embodied energy requirements for construction and operation, and upstream CH4 emissions. Here, we integrate prospective life-cycle assessment with global integrated energy-economy-land-use-climate modelling to explore life-cycle emissions of future low-carbon power supply systems and implications for technology choice. Future per-unit life-cycle emissions differ substantially across technologies. For a climate protection scenario, we project life-cycle emissions from fossil fuel carbon capture and sequestration plants of 78-110 gCO2eq kWh-1, compared with 3.5-12 gCO2eq kWh-1 for nuclear, wind and solar power for 2050. Life-cycle emissions from hydropower and bioenergy are substantial (˜100 gCO2eq kWh-1), but highly uncertain. We find that cumulative emissions attributable to upscaling low-carbon power other than hydropower are small compared with direct sectoral fossil fuel emissions and the total carbon budget. Fully considering life-cycle greenhouse gas emissions has only modest effects on the scale and structure of power production in cost-optimal mitigation scenarios.

  14. Can anything better come along? Reflections on the deep future of hydrogen-electricity systems

    International Nuclear Information System (INIS)

    Scott, D. S.

    2006-01-01

    Sometimes, for some things, we can project the deep future better than tomorrow. This is particularly relevant to our energy system where, if we focus on energy currencies, looking further out allows us to leap the tangles of today's conventional wisdom, vested mantras and ill-found hopes. We will first recall the rationale that sets out why - by the time the 22. century rolls around - hydrogen and electricity will have become civilizations staple energy currencies. Building on this dual-currency inevitability we'll then evoke the wisdom that, while we never know everything about the future we always know something. For future energy systems that 'something' is the role and nature of the energy currencies. From this understanding, our appreciation of the deep future can take shape - at least for infrastructures, energy sources and some imbedded technologies - but not service-delivery widgets. The long view provides more than mere entertainment. It should form the basis of strategies for today that, in turn, will avoid setbacks and blind alleys on our journey to tomorrow. Some people accept that hydrogen and electricity will be our future, but only 'until something better comes along.' The talk will conclude with logic that explains the response: 'No! Nothing better will ever come along.'. (authors)

  15. Can anything better come along? Reflections on the deep future of hydrogen-electricity systems

    International Nuclear Information System (INIS)

    Scott, D.S.

    2004-01-01

    'Full text:' Sometimes, for some things, we can project the deep future better than tomorrow. This is particularly relevant to our energy system where, if we focus on energy currencies, looking further out allows us to leap the tangles of today's conventional wisdom, vested mantras and ill-found hopes. We will first recall the rationale that sets out why - by the time the 22nd century rolls around - hydrogen and electricity will have become civilization's staple energy currencies. Building on this dual-currencies inevitability we'll then evoke the wisdom that, we never know everything about the future but we always know something. For future energy systems that 'something' is the role and nature of the energy currencies. From this understanding, our appreciation of the deep future can take shape - at least for infrastructures, energy sources and some imbedded technologies-but not service-delivery widgets. The long view provides more than mere entertainment. It should form the basis of strategies for today that, in turn, will avoid blind alleys on our journey to tomorrow. Some people accept that hydrogen and electricity will be our future, but only 'until something better comes along.' The talk will conclude with logic that explains the response: No, nothing better will ever come along. (author)

  16. Finnish energy technologies for the future

    International Nuclear Information System (INIS)

    2007-01-01

    The global energy sector is going through major changes: the need for energy is growing explosively, while at the same time climate change is forcing US to find new, and cleaner, ways to generate energy. Finland is one of the forerunners in energy technology development, partly because of its northern location and partly thanks to efficient innovations. A network of centres of expertise was established in Finland in 1994 to boost the competitiveness and internationalisation of Finnish industry and, consequently, that of the EU region. During the expertise centre programme period 2007-2013, substantial resources will be allocated to efficient utilisation of top level expertise in thirteen selected clusters of expertise. The energy cluster, focusing on developing energy technologies for the future, is one of these

  17. Future of forest energy in Europe in 2030

    Energy Technology Data Exchange (ETDEWEB)

    Riala, M.; Asikainen, A.

    2012-07-01

    The need to increase the use of forest energy is connected to the EU goals for use of renewable energy. If the targets are to be reached, forest energy should play a role. The share of forest energy out of all renewable energy will vary between countries. This study focuses on the future of forest energy. The method chosen was a two-round dissensus-based Delphi. The respondents consisted of members of the COST action FP 0902 and in the second round also of members of the RoK-FOR programme. Most of the respondents were experts in the field of forestry, from more than 20 countries. The first section of the survey addressed the issue of trends and operational environment. The respondents assessed the likelihood and desirability of several trends happening by 2030. They also, for example, estimated the increase in use of forest energy and the constraints to its use. There seemed to be a strong belief in technological development and beneficial policy interventions, but the respondents also recognised the problematic competitive situation in relation to other sources of energy. In terms of technological development, the experts saw that the main challenge to address is transport and logistics. This included a wide range of different issues, such as the handling of bulky, low-value product in an efficient way. The experts saw greatest development potential in improving energy density before transport, and multi-tree handling. Driver-assisting systems would be particularly useful in helping with the planning of felling, e.g. in the case of placing of tracks. Labour shortages are also a pertinent issue. The respondents gave many suggestions on ways to attract new workers to forestry, for example by increasing the salary to the level of manufacturing industry, and by promoting forestry as an environmentally friendly and technologically advanced employer. Overall, this report describes some alternative future prospects, which could be achieved by decisive action. Hopefully

  18. Developing a Model of the Irish Energy-System

    DEFF Research Database (Denmark)

    Connolly, David; Lund, Henrik; Mathiesen, Brian Vad

    2009-01-01

    to create the model as it accounts for all sectors that need to be considered for integrating large penetrations of renewable energy: the electricity, heat and transport sectors. Before various alternative energy-systems could be investigated for Ireland, a reference model of the existing system needed...... is a vital step due to the scale of the change required for large-scale renewable penetrations. In this paper, a model of the Irish energy system is created to identify how Ireland can transform from a fossil-fuel to a renewable energy-system. The energy-systems-analysis tool, EnergyPLAN, was chosen...... to be created. This paper focuses on the construction of this reference model, in terms of the data gathered, the assumptions made and the accuracy achieved. In future work, this model will be used to investigate alternative energy-systems for Ireland, with the aim to determine the most effective energy system...

  19. Balmorel open source energy system model

    DEFF Research Database (Denmark)

    Wiese, Frauke; Bramstoft, Rasmus; Koduvere, Hardi

    2018-01-01

    As the world progresses towards a cleaner energy future with more variable renewable energy sources, energy system models are required to deal with new challenges. This article describes design, development and applications of the open source energy system model Balmorel, which is a result...... of a long and fruitful cooperation between public and private institutions within energy system research and analysis. The purpose of the article is to explain the modelling approach, to highlight strengths and challenges of the chosen approach, to create awareness about the possible applications...... of Balmorel as well as to inspire to new model developments and encourage new users to join the community. Some of the key strengths of the model are the flexible handling of the time and space dimensions and the combination of operation and investment optimisation. Its open source character enables diverse...

  20. Comparison of strategies for model predictive control for home heating in future energy systems

    DEFF Research Database (Denmark)

    Vogler-Finck, Pierre Jacques Camille; Popovski, Petar; Wisniewski, Rafal

    2017-01-01

    Model predictive control is seen as one of the key future enabler in increasing energy efficiency in buildings. This paper presents a comparison of the performance of the control for different formulations of the objective function. This comparison is made in a simulation study on a single buildi...

  1. Fueling our future : strategic energy policy opportunities for Canada : outcomes report

    International Nuclear Information System (INIS)

    Lepine, G.; Poisson, Y.

    2005-01-01

    Canada's economic future is closely linked to its energy future. This report relates outcomes from a conference aimed at understanding the issues and challenges facing the energy sector. The goal of the conference was to promote a dialogue on a national approach to meeting Canada's energy needs. Participants at the conference agreed that ensuring a sustainable energy supply was an overarching challenge. Both unconventional and traditional sources of energy will be needed for supply and export in the future. The development of new sources of both conventional and unconventional energy was a priority. Investments in technological advancement held the key to future development. A consensus emerged that increased energy efficiency is necessary along with strong, articulate energy policies. Market-based decision-making should work in combination with the public sector. The complex regulatory approval process is seen as a serious challenge to Canada's energy future and collaboration is crucial to the success of Canada's energy strategy, with provincial, territorial and federal commitment. Environmental considerations are a significant component, with increased attention paid to issues of climate change in the face of increased demand. Discrepancies in policy and the legally binding Kyoto Protocol were discussed with reference to regulations, policy and tax incentives. A zero-emission future was suggested. Frameworks and policy guidelines are seen as necessary for future advancement, as well as high-level political commitment. It was concluded that more discussion between industry, environmental Non-Government Organizations (NGOs), senior policy makers and advisors is necessary to address energy issues and begin moving forward. Conference agendas, participant lists, biographies and presentation notes were also included

  2. High energy physics advisory panel's subpanel on vision for the future of high-energy physics

    International Nuclear Information System (INIS)

    1994-05-01

    This report was requested by the Secretary of Energy to (1) define a long-term program for pursuing the most important high-energy physics goals since the termination of the Superconducting Super Collider (SSC) project, (2) assess the current US high-energy physics program, and (3) make recommendations regarding the future of the field. Subjects on which recommendations were sought and which the report addresses were: high-energy physics funding priorities; facilitating international collaboration for future construction of large high-energy physics facilities; optimizing uses of the investment made in the SSC; how to encourage displaced scientists and engineers to remain in high-energy physics and to attract young scientists to enter the field in the future. The report includes a description of the state of high-energy physics research in the context of history, a summary of the SSC project, and documentation of the report's own origins and development

  3. Distributed Energy Systems in California's Future: A Preliminary Report Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Balderston, F.; Blatman, P.; Bradshaw, T.; Brown, P.; Carroll, O.; Christensen, M.; Craig, P.; Finnegan, S.; Glassey, R.; Greene, B.; Groth, A.; Gruener, G.; Holdren, J.; Horovitz, M.; Hoos, I.; Kahn, E.; Kanin, J.; Klein, W.; LaPorte, T.; Lucarelli, B.; McGuire, B.; Mintzer, I.; Moyer, G.; Nader, L.; Nathans, R.; Palacio, J.; Pollock, P.; Rich, C.; Rochlin, G.; Rosow, G.; Rubin, B.; Schutz, H.; Simmons, M.; Smith, P.; Tourinho, O.; Twiss, R.; Vine, E.; Wilson, N.

    1977-09-01

    The construction and use of energy technologies produce environmental and social consequences that are neither desired nor, for the most part, incorporated in the economic costs charged for the energy supplied. Although it is now essentially universally recognized that these 'externalities' or (broadly defined) 'social costs' must somehow be taken into account in the processes by which society chooses among alternative energy options, it is less widely appreciated that these costs - not resource limits or narrow economics - actually define the energy dilemma in the long term. It is important to try to make clear at the outset why this is so. The energy problem resides fundamentally in the fact that the relation between energy and well-being is two-sided. The application of energy as a productive input to the economy, yielding desired goods and services, contributes to well-being; the environmental and social costs of getting and using energy subtract from it. At some level of energy use, and for a given mix of technologies of energy supply, further increases in energy supply will produce incremental social and environmental costs greater than the incremental economic benefits - that is, growth begins to do more harm than good (Holdren, 1977; Committee on Nuclear and Alternative Energy Systems, 1977). This level can be said to define a rational 'limit to growth', as distinct from a strictly physical one. That such a level, beyond which energy growth no longer pays, exists in principle for any mix of technologies of supply and end-use is easily shown from basic economics and physical science; predicting its magnitude exactly is much harder, the more so because social costs even less quantifiable than environmental ones may dominate. Lovins (1976, 1977) evidently believes that the United States is already near or beyond the point, given the 'hard' energy technologies on which it relies, where further growth hurts more than it

  4. Potential Evaluation of Energy Supply System in Grid Power System, Commercial, and Residential Sectors by Minimizing Energy Cost

    Science.gov (United States)

    Oda, Takuya; Akisawa, Atushi; Kashiwagi, Takao

    If the economic activity in the commercial and residential sector continues to grow, improvement in energy conversion efficiencies of energy supply systems is necessary for CO2 mitigation. In recent years, the electricity driven hot water heat pump (EDHP) and the solar photo voltaic (PV) are commercialized. The fuel cell (FC) of co-generation system (CGS) for the commercial and residential sector will be commercialized in the future. The aim is to indicate the ideal energy supply system of the users sector, which both manages the economical cost and CO2 mitigation, considering the grid power system. In the paper, cooperative Japanese energy supply systems are modeled by linear-programming. It includes the grid power system and energy systems of five commercial sectors and a residential sector. The demands of sectors are given by the objective term for 2005 to 2025. 24 hours load for each 3 annual seasons are considered. The energy systems are simulated to be minimize the total cost of energy supply, and to be mitigate the CO2 discharge. As result, the ideal energy system at 2025 is shown. The CGS capacity grows to 30% (62GW) of total power system, and the EDHP capacity is 26GW, in commercial and residential sectors.

  5. A conceptual framework for future-proofing the energy performance of buildings

    International Nuclear Information System (INIS)

    Georgiadou, Maria Christina; Hacking, Theophilus; Guthrie, Peter

    2012-01-01

    This paper presents a review undertaken to understand the concept of ‘future-proofing’ the energy performance of buildings. The long lifecycles of the building stock, the impacts of climate change and the requirements for low carbon development underline the need for long-term thinking from the early design stages. ‘Future-proofing’ is an emerging research agenda with currently no widely accepted definition amongst scholars and building professionals. In this paper, it refers to design processes that accommodate explicitly full lifecycle perspectives and energy trends and drivers by at least 2050, when selecting energy efficient measures and low carbon technologies. A knowledge map is introduced, which explores the key axes (or attributes) for achieving a ‘future-proofed’ energy design; namely, coverage of sustainability issues, lifecycle thinking, and accommodating risks and uncertainties that affect the energy consumption. It is concluded that further research is needed so that established building energy assessment methods are refined to better incorporate future-proofing. The study follows an interdisciplinary approach and is targeted at design teams with aspirations to achieve resilient and flexible low-energy buildings over the long-term. - Highlights: ► We examine the concept of ‘future-proofing’ the energy performance of buildings. ► It reconciles sustainability issues, lifecycle thinking, risks and uncertainties. ► A knowledge map with axes and types of ‘future-proofed’ solutions is presented. ► The energy design process should adopt full lifecycle considerations. ► Design for flexibility, use of dynamic models and futures techniques are suggested.

  6. A Study on stabilization of energy supply and demand using foreign futures market

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Won Chul; Lee, Sung Keun [Korea Energy Economics Institute, Euiwang (Korea)

    1999-02-01

    This study seeks to minimize financial cost related to the price stabilization and the supply and demand stabilization. In order to accomplish this, it derives a theoretical model of supply hedging to minimize fluctuation risk of price and financial cost intended for crude oil and LNG. Through the positive analysis based on this, it analyzes quantitatively the economic effect of utilizing foreign futures market. It shows the decline of average and divergence of supply cost. Despite the economic effect of utilizing a futures market, the degree of utilizing energy futures market of related firms in Korea appeared to be insufficient. To raise the utilization of trading in futures, the followings were suggested. Firstly, cost reduction and sharing relating information can be designed through the joint participation among allied enterprises. Secondly, energy futures transaction center in Korea can be established or trading linkage based on the existing international trading system can be built. Thirdly, it is possible to subsidize related cost by making a loan from trading in futures. Lastly, the participating directly in a futures market at government level can be considered. (author). 61 refs., 57 figs., 22 tabs.

  7. Balancing Fiscal, Energy, and Environmental Concerns: Analyzing the Policy Options for California’s Energy and Economic Future

    Directory of Open Access Journals (Sweden)

    Edward Manderson

    2013-03-01

    Full Text Available This study estimates the fiscal, energy, and environmental tradeoffs involved in supplying California’s future energy needs. An integrated framework is developed whereby an econometric forecasting system of California energy demand is coupled with engineering-economic models of energy supply, and economic impacts are estimated using input-output models of the California economy. A baseline scenario in which California relies on imported electricity to meet future demand is then compared against various energy supply development scenarios over the forecast horizon (2012–2035. The results indicate that if California implements its renewable portfolio standard (RPS, there will be a substantial net cost in terms of value added, employment, and state tax revenues because the economic benefits of building capacity are outweighed by higher energy prices. Although carbon emissions fall, the cost per ton of avoided emissions is well above market prices. Building out natural gas fired generation capacity also leads to losses compared to the baseline, although the impacts are relatively minor. Meanwhile, a strategy of replacing imported crude oil and natural gas with domestic production using indigenous resources increases gross state product, employment, and tax revenues, with minimal impact on carbon emissions. This option could, therefore, help mitigate the costs of California meeting its RPS commitment.

  8. Regional Energy Planning Tool for Renewable Integrated Low-Energy District Heating Systems

    DEFF Research Database (Denmark)

    Tol, Hakan; Dincer, Ibrahim; Svendsen, Svend

    2013-01-01

    Low-energy district heating systems, operating at low temperature of 55 °C as supply and 25°C as return, can be the energy solution as being the prevailing heating infrastructure in urban areas, considering future energy schemesaiming at increased exploitation of renewable energy sources together...... with low-energy houses in focus with intensified energy efficiency measures. Employing low-temperature operation allows the ease to exploit not only any type of heat source but also low-grade sources, i.e., renewable and industrial waste heat, which would otherwise be lost. In this chapter, a regional...... energy planning tool is described considered with various energy conversion systems based on renewable energy sources to be supplied to an integrated energy infrastructure involving a low-energy district heating, a district cooling, and an electricity grid. The developed tool is performed for two case...

  9. Agriculture and Energy 2030. How will farming adapt to future energy challenges?

    International Nuclear Information System (INIS)

    Portet, Fabienne; Herault, Bruno

    2010-04-01

    Energy is a major element in the competitiveness and sustainability of the French farming sector. It stands at the heart of a new model for productive and ecologically responsible agriculture. In this regard, it has been a central focus for various programmes and action plans conducted by the Ministry of Food, Agriculture and Fisheries: among others, the Energy Performance Plan (PPE) launched in 2009. The Agriculture and Energy 2030 exercise is part of this process and is directed at highlighting opportunities and risks for the agricultural sector where energy is concerned over the next twenty years. The present note describes the main links between agricultural activities and energy-related issues, in addition to the approach to strategic foresight that has been adopted. Strategic foresight is neither totally scientific nor pure imagination; it starts out from past and present facts in order to anticipate probable futures and prepare the way for decisions capable of facilitating or preventing the advent of those futures. (authors)

  10. Feasibility study on renewable energy systems and selected insulation applications : smart solutions for energy saving

    OpenAIRE

    Cuadra Fonseca, Sergio

    2013-01-01

    Energy represents a big challenge for future generations; not only mineral and fossil energy sources are being exhausted, but also GHG emissions pollute the environment and disrupt life natural cycles bringing serious irreversible impacts on earth. Renewable energy sources, on the other hand, are unexhausted and free of pollution; solar power systems play an important role in the generation of clean energy, being one of the most cost-effective solutions. Besides, solar power systems have ...

  11. Reorganization of the Ministries and Agencies and future nuclear energy policy in Japan

    International Nuclear Information System (INIS)

    Kitagishi, Tatsuro; Suzuki, Tatsujiro; Enomoto, Toshiaki; Kawase, Kazuharu; Izuriha, Isao; Shimohirao, Isao; Sakurai, Jun

    2001-01-01

    Japanese governmental Ministries and Agencies were reorganized to a system of one Cabinet Office and twelve Ministries and Agencies on January 6, 2001, by reformation after an interval of about a half of century. Together with this reformation, for an organization executing nuclear energy administration, the Cabinet Office, the Ministry of Education Culture, Sports, Science and Technology, and the Ministry of Economy, Trade and Industry (METI) started. Especially, at the METI, the 'Nuclear Energy Safety and Security Agency' was newly established to unitarity manage safety regulation of the nuclear energy facilities, to enforce system to upgrading of their safety Here were introduced on every content of the organization in the nuclear energy administration, to follow its future subjects under some items on new system and its development, new organization play in liberalization market, expectation to nuclear energy administration at the new system, question on national nuclear safety countermeasure from a standpoint of landing site, stable supply system of electric power, and expectation to suitable safety regulation to secure safety of old nuclear facilities. (G.K.)

  12. The future of nuclear energy

    International Nuclear Information System (INIS)

    Schmidt-Kuester, W.J.

    2000-01-01

    Europe is one of the world leaders in nuclear technology advancement. The development of spent fuel reprocessing is but one example of this. This process continues today with the development by France and Germany of the European Pressurised-Water Reactor. Nuclear research and development work is continuing in Europe, and must be continued in the future, if Europe is to retain its world leadership position in the technological field and on the commercial front. If we look at the benefits, which nuclear energy has to offer, in economic and environmental terms, 1 support the view that nuclear is an energy source whose time has come again. This is not some fanciful notion or wishful thinking. There is clear evidence of greater long-term reliance on nuclear energy. Perhaps we do not see new nuclear plants springing up in Europe, but we do see ambitious nuclear power development programmes underway in places like China, Japan and Korea. Closer to home, Finland is seriously considering the construction of a new nuclear unit. Elsewhere, in Europe and the US, we see a growing trend towards nuclear plant life extension and plant upgrades geared towards higher production capacity. These are all signs that nuclear will be around for a long time to come and that nuclear will indeed have a future

  13. Potential impacts of energy efficiency policies in the U.S. industry: Results from the clean energy futures study

    International Nuclear Information System (INIS)

    Worrell, Ernst; Price, Lynn

    2001-01-01

    Scenarios for a Clean Energy Future (CEF) studied the role that efficient clean energy technologies can play in meeting the economic and environmental challenges for our future energy supply. The study describes a portfolio of policies that would motivate energy users and businesses to invest in innovative energy efficient technologies. On the basis of the portfolios, two policy scenarios have been developed, i.e. a moderate scenario and an advanced scenario. We focus on the industrial part of the CEF-study. The studied policies include a wide scope of activities, which are organized under the umbrella of voluntary industrial sector agreements. The policies for the policy scenarios have been modeled using the National Energy Modeling System (CEF-NEMS). Under the reference scenario industrial energy use would grow to 41 Quads in 2020, compared to 34.8 Quads in 1997, with an average improvement of the energy intensity by 1.1% per year. In the Moderate scenario the annual improvement is a bout 1.5%/year, leading to primary energy use of 37.8 Quads in 2020, resulting in 10% lower CO2 emissions by 2020 compared to the reference scenario. In the Advanced scenario the annual improvement increases to 1.8% per year, leading to primary energy use of 34.3 Quads in 2020, and 29% lower CO2 emissions. We report on the policies, assumptions and results for industry

  14. CITIES: Centre for IT-Intelligent Energy Systems in Cities

    DEFF Research Database (Denmark)

    Herrmann, Ivan Tengbjerg; O'Connell, Niamh; Heller, Alfred

    2014-01-01

    and aims at developing methodologies and ICT solutions for the analysis, operation, planning and development of fully integrated urban energy systems. A holistic research approach will be developed, to provide solutions at all levels between the appliance and the overall system, and at all-time scales...... between operations and planning. This extended abstract outlines the challenges to be met by city and energy planning bodies in an energy efficient future. The necessity of novel, data driven and IT intelligent solutions is stressed. A focus is placed on energy system planning in systems with high...

  15. GIS-Based Planning and Modeling for Renewable Energy: Challenges and Future Research Avenues

    Directory of Open Access Journals (Sweden)

    Bernd Resch

    2014-05-01

    Full Text Available In the face of the broad political call for an “energy turnaround”, we are currently witnessing three essential trends with regard to energy infrastructure planning, energy generation and storage: from planned production towards fluctuating production on the basis of renewable energy sources, from centralized generation towards decentralized generation and from expensive energy carriers towards cost-free energy carriers. These changes necessitate considerable modifications of the energy infrastructure. Even though most of these modifications are inherently motivated by geospatial questions and challenges, the integration of energy system models and Geographic Information Systems (GIS is still in its infancy. This paper analyzes the shortcomings of previous approaches in using GIS in renewable energy-related projects, extracts distinct challenges from these previous efforts and, finally, defines a set of core future research avenues for GIS-based energy infrastructure planning with a focus on the use of renewable energy. These future research avenues comprise the availability base data and their “geospatial awareness”, the development of a generic and unified data model, the usage of volunteered geographic information (VGI and crowdsourced data in analysis processes, the integration of 3D building models and 3D data analysis, the incorporation of network topologies into GIS, the harmonization of the heterogeneous views on aggregation issues in the fields of energy and GIS, fine-grained energy demand estimation from freely-available data sources, decentralized storage facility planning, the investigation of GIS-based public participation mechanisms, the transition from purely structural to operational planning, data privacy aspects and, finally, the development of a new dynamic power market design.

  16. Energy Choices. Choices for future technology development

    International Nuclear Information System (INIS)

    Billfalk, Lennart; Haegermark, Harald

    2009-03-01

    In the next few years political decisions lie ahead in Sweden and the EU regarding the detailed formulation of the EU's so-called 20-20-20 targets and accompanying EU directives. Talks on a new international post-2012 climate agreement are imminent. The EU targets involve reducing emissions of greenhouse gases by 20 per cent, increasing the proportion of renewable energy by 20 per cent and improving energy efficiency by 20 per cent - all by the year 2020. According to the analysis of the consequences of the targets that the Technology Development Group has commissioned, the reduction in carbon dioxide in the stationary energy system in the Nordic region will be 40 per cent, not 20 per cent, if all the EU targets are to be achieved. The biggest socio-economic cost is associated with achieving the efficiency target, followed by the costs associated with achieving the renewable energy target and the CO 2 target. On the basis of this analysis and compilations about technology development, we want to highlight the following important key issues: Does Sweden want to have the option of nuclear power in the future or not? How to choose good policy instruments for new electricity production and networks? How best to reduce the carbon dioxide emissions of the transport sector and how to develop control and incentive measures that promote such a development? We are proposing the following: Carry out a more in-depth analysis of the consequences of the EU targets, so that the policy instruments produce the best combination as regards climate, economy and security of supply. To achieve the EU targets would require large investments in electricity production, particularly renewable energy, and in electricity networks. Internationally harmonized policy instruments and other incentive measures are required in order for the necessary investments to take place. The policy instruments have to provide a level playing field for all players in the energy sector. The large investments

  17. The challenge of greening energy systems

    International Nuclear Information System (INIS)

    Joseph, A.; Hughes, L.

    2006-01-01

    The current state of world energy supply and demand was examined along with future challenges facing population growth, economic growth, energy-demand growth, fossil energy supply, technology improvements, renewable energy solutions, and conservation measures. It was suggested that in order to implement cleaner and greener energy technology, it is important to understand the nature of global energy systems. The challenge of defining the related ideologies of green energy and sustainability was discussed. In this paper, green energy was defined as indicating environmental compatibility with little or no negative environmental impact. This differs from the concept of sustainability, which was defined as an action that can be repeated continuously without depleting or diminishing resources. In general, green energy options include most technologies that do not involve fossil fuels. However, this paper considered a spectrum of shades of green with some options being low-impact and cleaner, and others having high environmental impacts. As an example, the authors presented the ongoing debate over nuclear energy and hydro power. Although both energy sources can be sustainable over hundreds of years, they may or may not be environmentally compatible because they are often considered to have problematic attributes. Energy from renewable sources currently accounts for less than 20 per cent of world primary energy supply because price and implementation challenges in the renewables sector do not generally compare well to other energy sources. With high energy-demands beginning to strain finite fossil-energy supplies, the energy sector is now subject to more frequent disruptions and price fluctuations. Future growth from emerging economies will demand more energy and resources. This paper also emphasized that the proportion of green sources of energy has not increased substantially in the past 3 decades, and despite many technological advances, there continue to be significant

  18. The challenge of greening energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, A.; Hughes, L. [Dalhousie Univ., Halifax, NS (Canada). Dept. of Electrical and Computer Engineering, Energy Research Group

    2006-07-01

    The current state of world energy supply and demand was examined along with future challenges facing population growth, economic growth, energy-demand growth, fossil energy supply, technology improvements, renewable energy solutions, and conservation measures. It was suggested that in order to implement cleaner and greener energy technology, it is important to understand the nature of global energy systems. The challenge of defining the related ideologies of green energy and sustainability was discussed. In this paper, green energy was defined as indicating environmental compatibility with little or no negative environmental impact. This differs from the concept of sustainability, which was defined as an action that can be repeated continuously without depleting or diminishing resources. In general, green energy options include most technologies that do not involve fossil fuels. However, this paper considered a spectrum of shades of green with some options being low-impact and cleaner, and others having high environmental impacts. As an example, the authors presented the ongoing debate over nuclear energy and hydro power. Although both energy sources can be sustainable over hundreds of years, they may or may not be environmentally compatible because they are often considered to have problematic attributes. Energy from renewable sources currently accounts for less than 20 per cent of world primary energy supply because price and implementation challenges in the renewables sector do not generally compare well to other energy sources. With high energy-demands beginning to strain finite fossil-energy supplies, the energy sector is now subject to more frequent disruptions and price fluctuations. Future growth from emerging economies will demand more energy and resources. This paper also emphasized that the proportion of green sources of energy has not increased substantially in the past 3 decades, and despite many technological advances, there continue to be significant

  19. Growing America's Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    The emerging U.S. bioenergy industry provides a secure and growing supply of transportation fuels, biopower, and bioproducts produced from a range of abundant, renewable biomass resources. Bioenergy can help ensure a secure, sustainable, and economically sound future by reducing U.S. dependence on foreign oil, developing domestic clean energy sources, and generating domestic green jobs. Bioenergy can also help address growing concerns about climate change by reducing greenhouse gas emissions to create a healthier environment for current and future generations.

  20. System-of-Systems Approach for Integrated Energy Systems Modeling and Simulation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Saurabh; Ruth, Mark; Pratt, Annabelle; Lunacek, Monte; Krishnamurthy, Dheepak; Jones, Wesley

    2015-08-21

    Today’s electricity grid is the most complex system ever built—and the future grid is likely to be even more complex because it will incorporate distributed energy resources (DERs) such as wind, solar, and various other sources of generation and energy storage. The complexity is further augmented by the possible evolution to new retail market structures that provide incentives to owners of DERs to support the grid. To understand and test new retail market structures and technologies such as DERs, demand-response equipment, and energy management systems while providing reliable electricity to all customers, an Integrated Energy System Model (IESM) is being developed at NREL. The IESM is composed of a power flow simulator (GridLAB-D), home energy management systems implemented using GAMS/Pyomo, a market layer, and hardware-in-the-loop simulation (testing appliances such as HVAC, dishwasher, etc.). The IESM is a system-of-systems (SoS) simulator wherein the constituent systems are brought together in a virtual testbed. We will describe an SoS approach for developing a distributed simulation environment. We will elaborate on the methodology and the control mechanisms used in the co-simulation illustrated by a case study.

  1. [Review of wireless energy transmission system for total artificial heart].

    Science.gov (United States)

    Zhang, Chi; Yang, Ming

    2009-11-01

    This paper sums up the fundamental structure of wireless energy transmission system for total artificial heart, and compares the key parameters and performance of some representative systems. After that, it is discussed that the future development trend of wireless energy transmission system for total artificial heart.

  2. Energy and future Internet; Energia e futura internet

    Energy Technology Data Exchange (ETDEWEB)

    Lovasz, Gergoe; Niedermeier, Florian; Beri, Andreas; Meers, Hermann de [Universidade de Passau (Germany)

    2012-06-15

    One of the main concern related with future of Internet as far the elevated energy consumption of the infrastructure, which includes the energy supply for the servers and equipment need to refrigerate the necessary hardware.

  3. Renewable Energy Systems: Technology Overview and Perspectives

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ionel, Dan M.; Yang, Yongheng

    2017-01-01

    In this chapter, essential statistics demonstrating the increasing role of renewable energy generation are first discussed. A state-of-the-art review section covers the fundamentals of wind turbine and photovoltaic (PV) systems. Schematic diagrams illustrating the main components and system topol......, including PV and concentrating solar power; wave energy; fuel cells; and storage with batteries and hydrogen, respectively. Recommended further readings on topics of electric power engineering for renewable energy are included in the final section.......In this chapter, essential statistics demonstrating the increasing role of renewable energy generation are first discussed. A state-of-the-art review section covers the fundamentals of wind turbine and photovoltaic (PV) systems. Schematic diagrams illustrating the main components and system...... topologies are included. Also, the increasing role of power electronics is explained as an enabler for renewable energy integration and for future power systems and smart grids. Recent examples of research and development, including new devices and system installations for utility power plants...

  4. Options for Kentucky's Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    Larry Demick

    2012-11-01

    Three important imperatives are being pursued by the Commonwealth of Kentucky: ? Developing a viable economic future for the highly trained and experienced workforce and for the Paducah area that today supports, and is supported by, the operations of the US Department of Energy’s (DOE’s) Paducah Gaseous Diffusion Plant (PGDP). Currently, the PGDP is scheduled to be taken out of service in May, 2013. ? Restructuring the economic future for Kentucky’s most abundant indigenous resource and an important industry – the extraction and utilization of coal. The future of coal is being challenged by evolving and increasing requirements for its extraction and use, primarily from the perspective of environmental restrictions. Further, it is important that the economic value derived from this important resource for the Commonwealth, its people and its economy is commensurate with the risks involved. Over 70% of the extracted coal is exported from the Commonwealth and hence not used to directly expand the Commonwealth’s economy beyond the severance taxes on coal production. ? Ensuring a viable energy future for Kentucky to guarantee a continued reliable and affordable source of energy for its industries and people. Today, over 90% of Kentucky’s electricity is generated by burning coal with a delivered electric power price that is among the lowest in the United States. Anticipated increased environmental requirements necessitate looking at alternative forms of energy production, and in particular electricity generation.

  5. Symposium report of Inter-COE international symposium on energy systems

    International Nuclear Information System (INIS)

    2006-10-01

    The symposium of the title aims to discuss a comprehensive possibility of energy system technologies for future society utilizing both specialties of five COEs in energy technology field. The symposium topics include, 'Primary energy production', 'Energy conversion, storage and transportation', 'Energy materials', 'Energy system' by specialists from the COEs. Posters were presented by doctoral course students and others in the COEs, in addition special session 'Energy Research and Human Resources Development'. (J.P.N.)

  6. Smart Energy Systems for coherent 100% renewable energy and transport solutions

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Connolly, David

    2015-01-01

    The hypothesis of this paper is that in order to identify least cost solutions of the integration of fluctuating renewable energy sources into current or future 100% renewable energy supplies one has to take a Smart Energy Systems approach. This paper outline why and how to do so. Traditionally......, significant focus is put on the electricity sector alone to solve the renewable energy integration puzzle. Smart grid research traditionally focuses on ICT, smart meters, electricity storage technologies, and local (electric) smart grids. In contrast, the Smart Energy System focuses on merging the electricity......, heating and transport sectors, in combination with various intra-hour, hourly, daily, seasonal and biannual storage options, to create the flexibility necessary to integrate large penetrations of fluctuating renewable energy. However, in this paper we present the development and design of coherent Smart...

  7. Global economics/energy/environmental (E{sup 3}) modeling of long-term nuclear energy futures

    Energy Technology Data Exchange (ETDEWEB)

    Krakowski, R.A.; Davidson, J.W.; Bathke, C.G.; Arthur, E.D.; Wagner, R.L. Jr.

    1997-09-01

    A global energy, economics, environment (E{sup 3}) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Using this model, consistent nuclear energy scenarios are constructed. A spectrum of future is examined at two levels in a hierarchy of scenario attributes in which drivers are either external or internal to nuclear energy. Impacts of a range of nuclear fuel-cycle scenarios are reflected back to the higher-level scenario attributes. An emphasis is placed on nuclear materials inventories (in magnitude, location, and form) and their contribution to the long-term sustainability of nuclear energy and the future competitiveness of both conventional and advanced nuclear reactors.

  8. Modular Energy Storage System for Alternative Energy Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Janice [Magna Electronics Inc., Auburn Hills, MI (United States); Ervin, Frank [Magna Electronics Inc., Auburn Hills, MI (United States)

    2012-05-15

    of design alternatives and the impact of changes. Refinement of models was accomplished through correlation studies to measured data obtained from functioning hardware. Specifically, correlation and characterization of the boost converter resulted in a model that was effectively used to determine overall VEMS performance. The successful development of the boost converter can be attributed to utilization of previously proven technologies and adapting to meet the VEMS requirements. This program provided significant improvement in development time of various generations of boost converters. The software strategies and testing results support the development of current energy management systems and directly contribute to the future of similar, commercial products at Magna E-Car Systems. Because of this development project, Magna E-Car Systems is able to offer automotive customers a boost converter system with reduced time to market and decreased product cost, thus transferring the cost and timing benefits to the end use consumer.

  9. Future prospects for renewable energy sources in a global frame

    International Nuclear Information System (INIS)

    Lund, P.

    1992-06-01

    The objective of this study has been to evaluate the possibilities of some new energy sources (solar, wind) in the future world energy supply. We intend to prepare future projections accounting for limitations in infrastructure, time and material inputs. One underlying assumption in the analyses is that new technologies will see an early market introduction in the near future which would continue up to year 2020. During these 30 years, there will still be technological developments leading to a much better manufacturability, mass production, and hence reduced costs. In year 2020, the industrial and economic infrastructure of new energy sources would be mature for a major penetration into the world energy market starting to substitute existing energy sources mainly for environmental reasons. This scenario will be suported by more factual information and data in the following chapters. Each new energy technology will be handled separately. (Quittner)

  10. Energy systems analysis of waste to energy technologies by use of EnergyPLAN

    Energy Technology Data Exchange (ETDEWEB)

    Muenster, M.

    2009-04-15

    Even when policies of waste prevention, re-use and recycling are prioritised, a fraction of waste will still be left which can be used for energy recovery. This report asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste-to-Energy technologies are compared with a focus on fuel efficiency, CO{sub 2} reductions and costs. The comparison is made by conducting detailed energy system analyses of the present system as well as a potential future Danish energy system with a large share of combined heat and power and wind power. The study shows the potential of using waste for the production of transport fuels such as upgraded biogas and petrol made from syngas. Biogas and thermal gasification technologies are interesting alternatives to waste incineration and it is recommended to support the use of biogas based on manure and organic waste. It is also recommended to support research into gasification of waste without the addition of coal and biomass. Together, the two solutions may contribute to an alternate use of one third of the waste which is currently incinerated. The remaining fractions should still be incinerated with priority given to combined heat and power plants with high electrical efficiencies. (author)

  11. Choices for A Brighter Future: Perspectives on Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    NREL

    1999-09-30

    The report discusses the perspectives on the evolving U.S. electricity future, the renewable electric technology portfolio, the regional outlook, and the opportunities to move forward. Renewables are at a critical juncture as the domestic electricity marketplace moves toward an era of increased choice and greater diversity. The cost and performance of these technologies have improved dramatically over the past decade, yet their market penetration has stalled as the power industry grapples with the implications of the emerging competitive marketplace. Renewable energy technologies already contribute to the global energy mix and are ready to make an even greater contribution in the future. However, the renewables industry faces critical market uncertainties, both domestically and internationally, as policy commitments to renewables at both the federal and state levels are being reshaped to match the emerging competitive marketplace. The energy decisions that we make, or fail to make, today will have long-lasting implications. We can act now to ensure that renewable energy will play a major role in meeting the challenges of the evolving energy future. We have the power to choose.

  12. Transport and energy policy. Looking to the future

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, T [European Commission (Belgium)

    1996-12-01

    In the quest of filling human needs, transport and energy do not appear to be the most exciting territories. They come in only later in the vast chain of commodities and services necessary in the smooth operation of a modern market economy. However, current concerns about pollution and the future of our planet have lifted these issues to the top of the agenda. The objective of this paper is to give a glance at the complexity of possible futures facing us. Indeed, one of the main objectives is to show that there are different paths to be taken and we can influence our future. Furthermore, it will be shown that a key element in planning for different futures is the proper choice of energy policy objectives and instruments. An even bigger impact could be expected from the changing paradigms in transport demand patterns. (au)

  13. ASAS centennial paper: net energy systems for beef cattle--concepts, application, and future models.

    Science.gov (United States)

    Ferrell, C L; Oltjen, J W

    2008-10-01

    Development of nutritional energetics can be traced to the 1400s. Lavoisier established relationships among O(2) use, CO(2) production and heat production in the late 1700s, and the laws of thermodynamics and law of Hess were discovered during the 1840s. Those discoveries established the fundamental bases for nutritional energetics and enabled the fundamental entity ME = retained energy + heat energy to be established. Objectives became: 1) to establish relationships between gas exchange and heat energy, 2) to devise bases for evaluation of foods that could be related to energy expenditures, and 3) to establish causes of energy expenditures. From these endeavors, the basic concepts of energy partitioning by animals were developed, ultimately resulting in the development of feeding systems based on NE concepts. The California Net Energy System, developed for finishing beef cattle, was the first to be based on retained energy as determined by comparative slaughter and the first to use 2 NE values (NE(m) and NE(g)) to describe feed and animal requirements. The system has been broadened conceptually to encompass life cycle energy requirements of beef cattle and modified by the inclusion of numerous adjustments to address factors known to affect energy requirements and value of feed to meet those needs. The current NE system remains useful but is empirical and static in nature and thus fails to capture the dynamics of energy utilization by diverse animals as they respond to changing environmental conditions. Consequently, efforts were initiated to develop dynamic simulation models that captured the underlying biology and thus were sensitive to variable genetic and environmental conditions. Development of a series of models has been described to show examples of the conceptual evolution of dynamic, mechanistic models and their applications. Generally with each new system, advances in prediction accuracy came about by adding new terms to conceptually validated models

  14. Emerging nuclear energy systems and nuclear weapon proliferation

    International Nuclear Information System (INIS)

    Gsponer, A.; Sahin, S.; Jasani, B.

    1983-01-01

    Generally when considering problems of proliferation of nuclear weapons, discussions are focused on horizontal proliferation. However, the emerging nuclear energy systems currently have an impact mainly on vertical proliferation. The paper indicates that technologies connected with emerging nuclear energy systems, such as fusion reactors and accelerators, enhance the knowledge of thermonuclear weapon physics and will enable production of military useful nuclear materials (including some rare elements). At present such technologies are enhancing the arsenal of the nuclear weapon states. But one should not forget the future implications for horizontal proliferation of nuclear weapons as some of the techniques will in the near future be within the technological and economic capabilities of non-nuclear weapon states. Some of these systems are not under any international control. (orig.) [de

  15. Current Status and Future Potential of Energy Derived from Chinese Agricultural Land: A Review

    Directory of Open Access Journals (Sweden)

    Ningning Zhai

    2015-01-01

    Full Text Available Energy crisis is receiving attention with regard to the global economy and environmental sustainable development. Developing new energy resources to optimize the energy supply structure has become an important measure to prevent energy shortage as well as achieving energy conservation and emission reduction in China. This study proposed the concept of energy agriculture and constructed an energy agricultural technical support system based on the analysis of energy supply and demand and China’s foreign dependence on energy resources, combined with the function of agriculture in the energy field. Manufacturing technology equipment and agricultural and forestry energy, including crop or forestry plants and animal feces, were used in the system. The current status and future potential of China’s marginal land resources, energy crop germplasm resources, and agricultural and forestry waste energy-oriented resources were analyzed. Developing the function of traditional agriculture in food production may promote China’s social, economic, and environmental sustainable development and achieve energy saving and emission reduction.

  16. Crafting our energy future

    International Nuclear Information System (INIS)

    van Schagen, Frank

    2005-01-01

    The new Asia-Pacific Greenhouse Agreement offers Australia a great opportunity to take full advantage of both its brains and its energy resources. The energy debate is often, simplistically, characterised as coal versus nuclear, or non-renewables versus renewables. In reality we will need a mix of energy sources to power our economy, cleanly, into the future. The issues are cost, environmental protection, national security, skills and security of energy supply. If we wish our economy to continue growing at present rates, we will need 50 per cent more energy in 2030 than we use today - and it is not too soon to start planning how we will produce it. We have around 500 years' supply of coal resources at present rates of usage. Power generation from coal is capable of achieving zero, or near zero, carbon emissions using technologies such as oxy-fuel combustion or IGCC (integrated gasification combined cycle). In both, C0 2 can be captured and stored underground. The greenhouse debate has revived interest in nuclear power generation. The cost of generating electricity with nuclear is similar to clean coal. However, we would have to start a nuclear power industry from a very small base, buying costly generation plant and training or importing an entire, highly-skilled workforce, in competition with other countries. Waste disposal is an issue for both coal and nuclear. For coal, the main option is carbon capture and its storage in deep saline aquifers. This technology is well understood and widely used by the oil and gas industry but we have to determine the most suitable places and techniques, and we have to build the infrastructure. Nuclear waste storage is also well-understood. Which technology we choose depends on an evaluation of both short and long term risks for the community and environment. One thing that Australia must get right is the economics. The wrong decision will cost us jobs, if not entire industries and regions. While renewables like solar and wind are

  17. Energy system analyses of the marginal energy technology in life cycle assessments

    DEFF Research Database (Denmark)

    Mathiesen, B.V.; Münster, Marie; Fruergaard, Thilde

    2007-01-01

    in historical and potential future energy systems. Subsequently, key LCA studies of products and different waste flows are analysed in relation to the recom- mendations in consequential LCA. Finally, a case of increased waste used for incineration is examined using an energy system analysis model......In life cycle assessments consequential LCA is used as the “state-of-the-art” methodology, which focuses on the consequences of decisions made in terms of system boundaries, allocation and selection of data, simple and dynamic marginal technology, etc.(Ekvall & Weidema 2004). In many LCA studies...... marginal technology? How is the marginal technology identified and used today? What is the consequence of not using energy system analy- sis for identifying the marginal energy technologies? The use of the methodology is examined from three angles. First, the marginal electricity technology is identified...

  18. International nuclear energy law - present and future

    International Nuclear Information System (INIS)

    Barrie, G.N.

    1988-01-01

    International nuclear energy law, as discussed in this article, is the law relating to the global, peaceful uses of nuclear science and technology. The position of nuclear law in the wide realm of law itself as well as the present status of nuclear legislation is assessed. This article also covers the development of international nuclear energy law, from the first nuclear law - the New Zealand Atomic Energy Act of 1945-, the present and the future. National and international organizations concerned with nuclear energy and their contribribution to nuclear law are reviewed

  19. Risks from electricity generation systems in the far future. Proceedings of a technical committee meeting on approaches for estimating and comparing risks from energy systems in the far future. Working material

    International Nuclear Information System (INIS)

    1998-01-01

    Comparative risk assessment of the health and environmental impacts of electricity generation systems can be used for providing information for decisions concerning choice of electricity generation systems and regulation of the systems. Since the beginning of 1990s, there have been several major studies of comparative risk assessment that have advanced the methodology and knowledge for the assessment of health and environmental impacts of electricity production systems. In those studies, many methodological issues were identified, and it was found that one of the major issues that influenced the results was the time period included in the risk assessment. In the results of recent studies, the impacts for long time periods are influential because of the accumulation of the impacts for more than 100 years and the large uncertainties in the estimations. Examples of such long term impacts are those from global climate change and potential impacts from radionuclides ad non-radioactive pollutants originating from nuclear and other electricity generation systems. It is generally expected that the estimates for longer term impacts have greater uncertainty. In order to enhance the comparative risk studies and the application of the results, the methodology and key issues for estimating the impacts for future :generations should be investigated, and approaches for the assessments should be established. In this connection, the IAEA Technical Committee Meeting TCM on Approaches for Estimating and Comparing Risks from Energy Systems in the Far Future was held at the IAEA Headquarters in Vienna, Austria, from 6 to 10 October 1997. This material contains the proceedings of the TCM held in October 1997, and the latest draft of the technical report, Long-Term Risks from Electricity Generation Systems

  20. Nuclear energy, future of ecology?

    International Nuclear Information System (INIS)

    Comby, B.

    1995-01-01

    This work can surprise; because it is said that nuclear energy is the only one that will allow to satisfy the energy needs of the planet by reducing the pollution. It gives answers on: Chernobyl accident, the existence of natural radioactivity, the comparison between natural radioactivity and medical, military and industrial irradiation, the pollution of our environment, the petroleum whom reserves are going to decrease, the advantages of the 'clever' nuclear and the disadvantages of the 'dustbin' nuclear, why some of ecologists are favourable to the nuclear, the effects of radiations on health, the foods irradiation, the wastes processing and the future of our planet. (N.C.)

  1. Nuclear systems of the future: international forum generation 4 and research and development projects at the Cea

    International Nuclear Information System (INIS)

    Carre, F.

    2003-01-01

    To advance nuclear energy to meet future energy needs, ten countries have agreed to develop a future generation of nuclear energy systems, known as Generation 4. A technology road map to guide the Generation 4 effort was begun. This document presents the goals for these nuclear systems and the research programs of the Cea on the gas technology, GT-MHR, VHTR and GFR and the other systems as sodium Fast Neutron reactors, supercritical water and space nuclear. (A.L.B.)

  2. The future of energy lies in more innovation

    International Nuclear Information System (INIS)

    Dormoy, Jean-Luc

    2011-10-01

    The author discusses the issue of energy which is at the heart of more general issues on crisis, on the future of our societies, on the political future, and on the role of science and technology. He notably discusses the issue of the quantity of available energy. Some state that this quantity cannot increase as resources are finite and as, until now, there is no other storable energies than the fossil ones. The author also comments some rather pessimistic publications made by the Club of Rome, a group of scientists, economists, industrials and public servants of more than 50 countries. However, notably in the USA, some still want to invest in energy in order to find out how to produce always more energy. He evokes the issue of the environmental consequences of an almost infinite growth of industrial activities. The author then comments some theories about energy efficiency, notably the rebound effect. He discusses the questions raised by technological innovation as a possible solution: which technologies and how?

  3. Modeling of long-term energy system of Japan

    International Nuclear Information System (INIS)

    Gotoh, Yoshitaka; Sato, Osamu; Tadokoro, Yoshihiro

    1999-07-01

    In order to analyze the future potential of reducing carbon dioxide emissions, the long-term energy system of Japan was modeled following the framework of the MARKAL model, and the database of energy technology characteristics was developed. First, a reference energy system was built by incorporating all important energy sources and technologies that will be available until the year 2050. This system consists of 25 primary energy sources, 33 technologies for electric power generation and/or low temperature heat production, 97 technologies for energy transformation, storage, and distribution, and 170 end-use technologies. Second, the database was developed for the characteristics of individual technologies in the system. The characteristic data consists of input and output of energy carriers, efficiency, availability, lifetime, investment cost, operation and maintenance cost, CO 2 emission coefficient, and others. Since a large number of technologies are included in the system, this report focuses modeling of a supply side, and involves the database of energy technologies other than for end-use purposes. (author)

  4. International cooperation in advanced nuclear systems. An option for the future

    International Nuclear Information System (INIS)

    Dee, J.B.; Kupitz, J.; O'Hara, F.

    1986-10-01

    Long-term energy problems are shared by all countries through world trade, and only a global solution can alleviate the anticipated future energy supply shortages for all. The only non-polluting, technologically-proven future energy supply options are offered by advanced nuclear power systems that utilize uranium and thorium as fertile fuel materials. For this reason, every major country with a nuclear power industry has a development programme for fast breeder and/or advanced converter nuclear power reactors. In these programmes international ventures have become the rule rather that the exception. The development of special district heating reactor systems is progressing as a CMEA collaboration. In the field of fast breeder reactors such ventures include the SNR-300, the FBTF, the Superphenix, and also the commercialization programmes BN-800/1600 (COMECON) and the Superphenix-II (ARGO group). The basic objective of the IAEA is to enlarge the contribution of atomic energy to peace, health and prosperity around the world. For those Member States with development programmes the Agency promotes status and planning, to share experience on prototype plant operation, and to cooperate in identifying critical development issues. For Member States without major programmes, the Agency compiles authoritative and objective world-wide plant data, publishes reports on world-wide development status, coordinates small exploratory research programmes and provides technical assistance through expert services and equipment procurement. By providing the only existing global forum for promoting East-West and North-South inter-communication these IAEA activities encourage cooperation between countries engaged in development and inform countries interested to know more about the role of advanced reactors for meeting their future energy needs, which will become today's energy needs in the not-too-distant future

  5. High energy physics advisory panel`s subpanel on vision for the future of high-energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This report was requested by the Secretary of Energy to (1) define a long-term program for pursuing the most important high-energy physics goals since the termination of the Superconducting Super Collider (SSC) project, (2) assess the current US high-energy physics program, and (3) make recommendations regarding the future of the field. Subjects on which recommendations were sought and which the report addresses were: high-energy physics funding priorities; facilitating international collaboration for future construction of large high-energy physics facilities; optimizing uses of the investment made in the SSC; how to encourage displaced scientists and engineers to remain in high-energy physics and to attract young scientists to enter the field in the future. The report includes a description of the state of high-energy physics research in the context of history, a summary of the SSC project, and documentation of the report`s own origins and development.

  6. Energy in transition, 1985-2010. Final report of the Committee on Nuclear and Alternative Energy Systems, National Research Council

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    This exhaustive study, in assessing the roles of nuclear and alternative energy systems in the nation's energy future, focuses on the period between 1985 and 2010. Its intent is to illuminate the kinds of options the nation may wish to keep open in the future and to describe the actions, policies, and R and D programs that may be required to do so. The timing and the context of these decisions depend not only on the technical, social, and economic features of energy-supply technologies, but also on assumptions about future demand for energy and the possibilities for energy conservation through changes in consumption patterns and improved efficiency of the supply and end-use systems. The committee developed a three-tiered functional structure for the project. The first tier was CONAES itself, whose report embodies the ultimate findings, conclusions, and judgments of the study. To provide scientific and engineering data and economic analyses for the committee, a second tier of four panels was appointed by the committee to examine (1) energy demand and conservation, (2) energy supply and delivery systems, (3) risks and impacts of energy supply and use, and (4) various models of possible future energy systems and decision making. Each panel in turn established a number of resource groups - some two dozen in all - to address in detail an array of more particular matters. Briefly stated, recommended strategies are: (1) increased energy conservation; (2) expansion of the nation's balanced coal and nuclear electrical generation base; (3) retention of the breeder option; (4) stimulation of fluid energy development; and (5) immediate increase in research and development of new energy options to ensure availability over the long term.

  7. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, A. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Patel, D. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Bertram, K. M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  8. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  9. Potential of renewable energy systems in China

    International Nuclear Information System (INIS)

    Liu, Wen; Lund, Henrik; Mathiesen, Brian Vad; Zhang, Xiliang

    2011-01-01

    Along with high-speed economic development and increasing energy consumption, the Chinese Government faces a growing pressure to maintain the balance between energy supply and demand. In 2009, China has become both the largest energy consumer and CO 2 emitting country in the world. In this case, the inappropriate energy consumption structure should be changed. As an alternative, a suitable infrastructure for the implementation of renewable energy may serve as a long-term sustainable solution. The perspective of a 100% renewable energy system has been analyzed and discussed in some countries previously. In this process, assessment of domestic renewable energy sources is the first step. Then appropriate methodologies are needed to perform energy system analyses involving the integration of more sustainable strategies. Denmark may serve as an example of how sustainable strategies can be implemented. The Danish system has demonstrated the possibility of converting into a 100% renewable energy system. This paper discusses the perspective of renewable energy in China firstly, and then analyses whether it is suitable to adopt similar methodologies applied in other countries as China approaches a renewable energy system. The conclusion is that China's domestic renewable energy sources are abundant and show the possibility to cover future energy demand; the methodologies used to analyse a 100% renewable energy system are applicable in China. Therefore, proposing an analysis of a 100% renewable energy system in China is not unreasonable. (author)

  10. Qualitative Description of Electric Power System Future States

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, Trevor D.; Corbin, Charles D.

    2018-03-06

    The simulation and evaluation of transactive systems depends to a large extent on the context in which those efforts are performed. Assumptions regarding the composition of the electric power system, the regulatory and policy environment, the distribution of renewable and other distributed energy resources (DERs), technological advances, and consumer engagement all contribute to, and affect, the evaluation of any given transactive system, regardless of its design. It is our position that the assumptions made about the state of the future power grid will determine, to some extent, the systems ultimately deployed, and that the transactive system itself may play an important role in the evolution of the power system.

  11. On the Future High Energy Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir [Fermilab

    2015-09-28

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of the next generation collider facilities have been proposed and are currently under consideration for the medium and far-future of accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance potential and cost range.

  12. Tomorrow's Mores. The International System, Geopolitical Changes and Energy

    International Nuclear Information System (INIS)

    Hoogeveen, F.; Perlot, W.

    2005-12-01

    The objective of this study is to provide an analysis of key geopolitical changes in the international system, with particular attention for energy issues and the EU, and on the basis of this analysis define possible energy futures up until 2020. Four sub-objectives have been identified: (1) to understand the international system and the main actors shaping it; (2) to understand an actor's energy policy and how energy policy is determined; (3) to identify the most important developments within the energy system; and (4) to understand the EU's position in the changing geopolitical landscape. Chapter 2 describes the theoretical and analytical framework used for the study. In this chapter important theoretical notions and assumptions are explained. It starts with a quadrants model combining two axes of uncertainty (multilateral-uni/bilateral and politics-economy). It continues with the foundation, consisting of key factors of analysis and assumptions about an actor's energy policy, underlying the analysis and the positioning of actors in the quadrants. It also contains a section on scenario studies. Chapter 3 provides an overview of the developments in the energy sector, with a focus on challenges, risks and problems with relevance to foreign policy and geopolitics. The chapter is based on the information on energy carriers, EU energy policy and important energy issues that is discussed in further detail in Annex A, B and C, respectively. Chapter 4 analyses the geopolitical landscape, starting with a description of the international system prior to 1989. It contains an analysis of the present situation and presents three possible energy futures towards 2020. Past, present and future are analysed on the basis of the quadrants model. The chapter includes a description of the most important actors. In Chapter 5 the analysis of chapter 4 is used to look at the case of the European Union. The current place and role of the EU is discussed. The implications for the EU of a

  13. Energy Hub’s Structural and Operational Optimization for Minimal Energy Usage Costs in Energy Systems

    Directory of Open Access Journals (Sweden)

    Thanh Tung Ha

    2018-03-01

    Full Text Available The structural and optimal operation of an Energy Hub (EH has a tremendous influence on the hub’s performance and reliability. This paper envisions an innovative methodology that prominently increases the synergy between structural and operational optimization and targets system cost affordability. The generalized energy system structure is presented theoretically with all selective hub sub-modules, including electric heater (EHe and solar sources block sub-modules. To minimize energy usage cost, an energy hub is proposed that consists of 12 kinds of elements (i.e., energy resources, conversion, and storage functions and is modeled mathematically in a General Algebraic Modeling System (GAMS, which indicates the optimal hub structure’s corresponding elements with binary variables (0, 1. Simulation results contrast with 144 various scenarios established in all 144 categories of hub structures, in which for each scenario the corresponding optimal operation cost is previously calculated. These case studies demonstrate the effectiveness of the suggested model and methodology. Finally, avenues for future research are also prospected.

  14. Economic Impacts of Future Changes in the Energy System - Global Perspectives

    DEFF Research Database (Denmark)

    Glynn, James; Fortes, Patrícia; Krook-Riekkola, Anna

    2015-01-01

    climate change. This chapter summarises modelling methodologies developed in the ETSAP community to assess economic impacts of decarbonising energy systems at a global level. The next chapter of this book focuses on a national perspective. The range of economic impacts is regionally dependent upon...... the stage of economic development, the level of industrialisation, energy intensity of exports, and competition effects due to rates of relative decarbonisation. Developed nation’s decarbonisation targets are estimated to result in a manageable GDP loss in the region of 2 % by 2050. Energy intensive export...... driven developing countries such as China and India, and fossil fuel exporting nations can expect significantly higher GDP loss of up to 5 % GDP per year by mid-century....

  15. Re-materialising energy use through transparent monitoring systems

    International Nuclear Information System (INIS)

    Burgess, Jacquelin; Nye, Michael

    2008-01-01

    This paper reviews the effect of transparent energy monitoring systems on the purchasing, production and energy use behaviour of consumers and producers. Relevant literature is explored on the linkages between feedback, risk and responsibility, knowledge, economic drivers, and sustainable energy consumption. Drawing on international as well as UK-specific experiences, the paper focuses on the prospects for current and future energy monitoring systems to 're-materialise' energy use in economic and environmental terms that are more meaningful, and thus more behaviourally significant, to a substantially wider range of energy users than today's. Appliance labelling, smart metering and carbon footprint analyses are explored as case studies

  16. Sustainable automotive energy system in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiliang (ed.) [Tsinghua Univ. Beijing (China). China Automotive Energy Research Center

    2013-06-01

    The latest research available on automotive energy system analysis in China. Thorough introduction on automotive energy system in China. Provides the broad perspective to aid in planning sustainable road transport in China. Sustainable Automotive Energy System in China aims at identifying and addressing the key issues of automotive energy in China in a systematic way, covering demography, economics, technology and policy, based on systematic and in-depth, multidisciplinary and comprehensive studies. Five scenarios of China's automotive energy development are created to analyze the possible contributions in the fields of automotive energy, vehicle fuel economy improvement, electric vehicles, fuel cell vehicles and the 2nd generation biofuel development. Thanks to this book, readers can gain a better understanding of the nature of China's automotive energy development and be informed about: (1) the current status of automotive energy consumption, vehicle technology development, automotive energy technology development and policy; (2) the future of automotive energy development, fuel consumption, propulsion technology penetration and automotive energy technology development, and (3) the pathways of sustainable automotive energy transformation in China, in particular, the technological and the policy-related options. This book is intended for researchers, engineers and graduates students in the low-carbon transportation and environmental protection field.

  17. Embedded Systems for Smart Appliances and Energy Management

    CERN Document Server

    Neumann, Peter; Mahlknecht, Stefan

    2013-01-01

    This book provides a comprehensive introduction to embedded systems for smart appliances and energy management, bringing together for the first time a multidisciplinary blend of topics from embedded systems, information technology and power engineering.  Coverage includes challenges for future resource distribution grids, energy management in smart appliances, micro energy generation, demand response management, ultra-low power stand by, smart standby and communication networks in home and building automation.   Provides a comprehensive, multidisciplinary introduction to embedded systems for smart appliances and energy management; Equips researchers and engineers with information required to succeed in designing energy management for smart appliances; Includes coverage of resource distribution grids, energy management in smart appliances, micro energy generation, demand response management, ultra-low power stand by, smart standby and communication networks in home and building automation.  

  18. Designing Energy Conversion Systems for the Next Decade

    Directory of Open Access Journals (Sweden)

    Slobodan N. Vukosavić

    2012-12-01

    Full Text Available Sustainable growth in energy consumption requires transition to clean and green energy sources and energy systems. Environment friendly and renewable energy systems deal with electrical energy and rely on efficient electrical power converters. High power electronics is the key technology to deal with the next generation of electrical energy systems. The door to future breakthroughs in high power electronics is opened by major improvement in semiconductor power devices and their packaging technologies. New materials allow for much higher junction temperatures and higher operating voltages. Most importantly, advanced power semiconductor devices and novel converter topology open the possibility to increase the energy efficiency of power conversion and reduce the amount of heat. Although the waste heat created by high power converters can be put to use by adding on to heating systems, this option is not always available and the conversion losses are mostly wasted. At the same time, wasted heat is a form of pollution that threatens the environment. Another task for high power converters is efficient harvesting of renewable energy sources, such as the wind energy and the sun. Intermittent in nature, they pose a difficult task to power converter topology and controls. Eventually, high power converters are entering power distribution and transmission networks. With their quick reaction, with fast communication between the grid nodes and with advanced controllability of high power converters, a number of innovations can be introduced, facilitating the power system control and allowing for optimizations and loss reduction. Coined smart grid, this solution comprises two key elements, and these are intelligent controls and large static power converters. At virtually no cost, smart grids allow for a better utilization of available resources and it enlarges the stable operating range of the transmission systems. Therefore, it is of interest to review the

  19. Evaluation of alternative future energy scenarios for Brazil using an energy mix model

    Science.gov (United States)

    Coelho, Maysa Joppert

    The purpose of this study is to model and assess the performance and the emissions impacts of electric energy technologies in Brazil, based on selected economic scenarios, for a time frame of 40 years, taking the year of 1995 as a base year. A Base scenario has been developed, for each of three economic development projections, based upon a sectoral analysis. Data regarding the characteristics of over 300 end-use technologies and 400 energy conversion technologies have been collected. The stand-alone MARKAL technology-based energy-mix model, first developed at Brookhaven National Laboratory, was applied to a base case study and five alternative case studies, for each economic scenario. The alternative case studies are: (1) minimum increase in the thermoelectric contribution to the power production system of 20 percent after 2010; (2) extreme values for crude oil price; (3) minimum increase in the renewable technologies contribution to the power production system of 20 percent after 2010; (4) uncertainty on the cost of future renewable conversion technologies; and (5) model is forced to use the natural gas plants committed to be built in the country. Results such as the distribution of fuel used for power generation, electricity demand across economy sectors, total CO2 emissions from burning fossil fuels for power generation, shadow price (marginal cost) of technologies, and others, are evaluated and compared to the Base scenarios previous established. Among some key findings regarding the Brazilian energy system it may be inferred that: (1) diesel technologies are estimated to be the most cost-effective thermal technology in the country; (2) wind technology is estimated to be the most cost-effective technology to be used when a minimum share of renewables is imposed to the system; and (3) hydroelectric technologies present the highest cost/benefit relation among all conversion technologies considered. These results are subject to the limitations of key input

  20. Comparative analysis of hourly and dynamic power balancing models for validating future energy scenarios

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan R.; Heussen, Kai; Østergaard, Poul Alberg

    2011-01-01

    Energy system analyses on the basis of fast and simple tools have proven particularly useful for interdisciplinary planning projects with frequent iterations and re-evaluation of alternative scenarios. As such, the tool “EnergyPLAN” is used for hourly balanced and spatially aggregate annual......, the model is verified on the basis of the existing energy mix on Bornholm as an islanded energy system. Future energy scenarios for the year 2030 are analysed to study a feasible technology mix for a higher share of wind power. Finally, the results of the hourly simulations are compared to dynamic frequency...... simulations incorporating the Vehicle-to-grid technology. The results indicate how the EnergyPLAN model may be improved in terms of intra-hour variability, stability and ancillary services to achieve a better reflection of energy and power capacity requirements....

  1. Wind Energy Conversion Systems Technology and Trends

    CERN Document Server

    2012-01-01

    Wind Energy Conversion System covers the technological progress of wind energy conversion systems, along with potential future trends. It includes recently developed wind energy conversion systems such as multi-converter operation of variable-speed wind generators, lightning protection schemes, voltage flicker mitigation and prediction schemes for advanced control of wind generators. Modeling and control strategies of variable speed wind generators are discussed, together with the frequency converter topologies suitable for grid integration. Wind Energy Conversion System also describes offshore farm technologies including multi-terminal topology and space-based wind observation schemes, as well as both AC and DC based wind farm topologies. The stability and reliability of wind farms are discussed, and grid integration issues are examined in the context of the most recent industry guidelines. Wind power smoothing, one of the big challenges for transmission system operators, is a particular focus. Fault ride th...

  2. Design for Reliability in Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Zhou, Dao; Sangwongwanich, Ariya

    2017-01-01

    Power electronics are widely used in renewable energy systems to achieve lower cost of energy, higher efficiency and high power density. At the same time, the high reliability of the power electronics products is demanded, in order to reduce the failure rates and ensure cost-effective operation...... of the renewable energy systems. This paper thus describes the basic concepts used in reliability engineering, and presents the status and future trends of Design for Reliability (DfR) in power electronics, which is currently undergoing a paradigm shift to a physics-of-failure approach. Two case studies of a 2 MW...

  3. Building sustainable energy systems: the role of nuclear-derived hydrogen

    International Nuclear Information System (INIS)

    Hans-Holger Rogner; Sanborn Scott, D.

    2001-01-01

    Global climate change is the most critical environmental threat of the 21. century. As evidenced in the preliminary draft of the Intergovernmental Panel on Climate Change (IPCC) new Third Assessment Report (TAR), the scientific support for this conclusion is both extensive and growing. In this paper we first review features of the 21. century energy system - how that system evolved and where it seems to be taking us, unless there are clear and aggressive multinational initiatives to mitigate and then reverse the contribution that today's energy system makes to the risks of global climate change. The paper then turns to the extensive deployment of the two non-carbon based energy currencies electricity and hydrogen, which we will call hydricity, that we believe are essential for future reductions in anthropogenic carbon dioxide (CO 2 ) emissions. Of these two, hydrogen will be the newcomer to energy systems. Popular thinking often identifies renewable as the category of energy sources that can provide electricity and hydrogen in sufficient quantities, although much of the public does not realize there will still be a need for a chemical currency to allow renewable to power the market where carbon is most difficult to mitigate, transportation. Renewable, however, while able to make important contributions to future energy supplies, cannot realistically provide the magnitude of energy that will be required. The paper outlines the quantitative limits to the overall renewable contribution and argues that the large-scale deployment of nuclear fission will be essential for meeting future energy needs while limiting greenhouse gas (GHG) emissions. (authors)

  4. Future perspective of nuclear energy utilization and expected role of HTGR. JAERI's energy systems analysis research

    International Nuclear Information System (INIS)

    Sato, Osamu

    1996-01-01

    Studies have been made in JAERI in order to assess the possibility of using nuclear energy symbiotically with fossil and biomass fuels, and to evaluate its implications for the environment. The application system of high temperature nuclear heat has been designed for this purpose with various technology options. The core of the system is a set of technologies for hydrogen production and its application to produce clean and convenient fuels from fossil or biomass sources. The results of analytical studies using the MARKAL model have indicated sufficient possibilities of combining nuclear energy effectively with fossil or biomass fuels via hydrogen produced by high temperature nuclear heat. In addition to providing clean and convenient liquid fuels on a large scale, the combined system will contribute to the substantial reduction of long-term CO 2 emissions. The relatively high cost of this system will be well justified when CO 2 emission penalties are taken into account. (J.P.N.)

  5. Nuclear energy in the world future

    International Nuclear Information System (INIS)

    Haefele, W.; Jaek, W.

    1983-01-01

    Starting from the actual position in the electricity market nuclear energy will grow up to the stabilizing factor in this field. The market penetration of breeding and fusion systems, therefore, will be the next important milestones of nuclear energy development. On the other hand nuclear energy as well as the electric grid itself are good examples for the reconstruction of the non-electric energy market which is dominated by resource and environmental problems. To overcome these problems the installation of a refining step for fossil energy resources and a new transport system besides the electric grid are the next steps toward a crisis-proof energy supply system. (orig.) [de

  6. The impact of electric vehicles on the outlook of future energy system

    Science.gov (United States)

    Zhuk, A.; Buzoverov, E.

    2018-02-01

    Active promotion of electric vehicles (EVs) and technology of fast EV charging in the medium term may cause significant peak loads on the energy system, what necessitates making strategic decisions related to the development of generating capacities, distribution networks with EV charging infrastructure, and priorities in the development of battery electric vehicles and vehicles with electrochemical generators. The paper analyses one of the most significant aspects of joint development of electric transport system and energy system in the conditions of substantial growth of energy consumption by EVs. The assessments of per-unit-costs of operation and depreciation of EV power unit were made, taking into consideration the expenses of electric power supply. The calculations show that the choice of electricity buffering method for EV fast charging depends on the character of electricity infrastructure in the region where the electric transport is operating. In the conditions of high density of electricity network and a large number of EVs, the stationary storage facilities or the technology of distributed energy storage in EV batteries - vehicle-to-grid (V2G) technology may be used for buffering. In the conditions of low density and low capacity of electricity networks, the most economical solution could be usage of EVs with traction power units based on the combination of air-aluminum electrochemical generator and a buffer battery of small capacity.

  7. The future energy situation in the Netherlands

    International Nuclear Information System (INIS)

    1980-01-01

    This book is the result of a study into the future energy situation in the Netherlands, performed by the electricity companies in the country. The first five chapters sketch the framework within which energy policy is currently forced to operate. Further technical and physical conditions are considered in the following six chapters, including environmental and safety aspects. A prognosis for energy demand in the Netherlands until the end of the century is presented and five different scenarios are discussed, as means of supplying this demand. Nuclear energy is one of the sources considered throughout the text. (C.F.)

  8. Risks of disaster in the energy system

    International Nuclear Information System (INIS)

    Kristoferson, L.; Kjellstroem, B.; Svenningsson, P.J.

    1986-10-01

    The perception of environmental effects and risks is discussed concerning the difficulties to making objective comparisons between different energy sources. Risks may influence the choice of strategies of the replacement of nuclear electric power in the Swedish energy system. Risks for major accidents and disasters to occur at a small level of probability are presented concerning the existing or future energy sources. The choice of strategies is discussed by means of calculated examples

  9. What are the factors that could influence the future of work with regard to energy systems and the built environment?

    International Nuclear Information System (INIS)

    Pratt, Andy C.

    2008-01-01

    The aim of this paper is to examine which factors in energy systems and the built environment could influence the future of work. In addition, it looks at trends in relation to corporate demands for space and its specifications, and considers what the scope is for integrating business and industry within the dwelling landscape. It seeks to consider these questions on a 50-year time horizon. The paper begins by discussing the challenge of prediction of future trends, especially in a field apparently so reliant upon technological change and innovation. Because of these problems, the paper concerns itself not with picking technologies but rather with questions about the social adoption of technologies and their applications. It highlights a spectrum of coordinating mechanisms in society that are likely to be critical in shaping the future implications of built environment forms and the consequential use of energy. The scenarios discussed arise from the intersection of two tendencies: concentration versus dispersal, and local versus globally focused growth of city regions. The challenges identified in this report are associated with 'lock-in' to past governance modes of the built environment, exacerbated by rapidly changing demand structures. Demand is not simply changing in volume but also in character. The shifts that will need to be dealt with concern a fundamental issue: how activities are coordinated in society

  10. 3rd annual biomass energy systems conference

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    The main objectives of the 3rd Annual Biomass Energy Systems Conference were (1) to review the latest research findings in the clean fuels from biomass field, (2) to summarize the present engineering and economic status of Biomass Energy Systems, (3) to encourage interaction and information exchange among people working or interested in the field, and (4) to identify and discuss existing problems relating to ongoing research and explore opportunities for future research. Abstracts for each paper presented were edited separately. (DC)

  11. An approach to a self-consistent nuclear energy system

    International Nuclear Information System (INIS)

    Fujii-e, Yoichi; Arie, Kazuo; Endo, Hiroshi

    1992-01-01

    A nuclear energy system should provide a stable supply of energy without endangering the environment or humans. If there is fear about exhausting world energy resources, accumulating radionuclides, and nuclear reactor safety, tension is created in human society. Nuclear energy systems of the future should be able to eliminate fear from people's minds. In other words, the whole system, including the nuclear fuel cycle, should be self-consistent. This is the ultimate goal of nuclear energy. If it can be realized, public acceptance of nuclear energy will increase significantly. In a self-consistent nuclear energy system, misunderstandings between experts on nuclear energy and the public should be minimized. The way to achieve this goal is to explain using simple logic. This paper proposes specific targets for self-consistent nuclear energy systems and shows that the fast breeder reactor (FBR) lies on the route to attaining the final goal

  12. Achievement report on research and development in the Sunshine Project in fiscal 1977. Studies on hydrogen energy total systems and the safety assuring technologies thereon (Studies on hydrogen energy total systems); 1977 nendo suiso energy total system to sono hoan gijutsu ni kansuru kenkyu seika hokokusho. Suiso energy total system no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-01

    A numerical model was prepared to express fields and size of hydrogen energy introduction in Japan's energy systems in the future. Dividing Japan into 13 weather sections, one to two energy bases (import and secondary production bases in coastal areas) were assumed on each section. Secondary energies produced in these energy bases are transported to intermediate bases, from which the energies are distributed into cities and consumed. For the purpose of simplification, final consumption departments are hypothesized to exist in these intermediate bases. Parameters that characterize the flows on networks in the processes of supply, distribution, production, storage, transportation and utilization are divided largely into energy efficiency and cost of the processes. The amount of energy demand in each final consumption department was defined as an amount to maximize the expected effects as a result of having satisfied the demand. The result of trial calculations revealed that, as long as the hydrogen to be introduced is limited to hydrogen produced via electrolysis using thermally generated power, the hydrogen introduction into the future energy systems is difficult in terms of economic performance. (NEDO)

  13. Hydrogen, an energy carrier with a future

    International Nuclear Information System (INIS)

    Zimmer, K.H.

    1975-01-01

    The inefficient use, associated with pollutants, of the fossil energy carriers coal, crude oil and natural gas, will deplete resources, if the energy demand increases exponentially, in the not-too-distant future. That is the reason why the hydrogen-energy concept gains in importance. This requires drastic changes in structure in a lot of technological fields. This task is only to be mastered if there is cooperation between all special fields, in order to facilitate the economical production, distribution and utilization of hydrogen. (orig.) [de

  14. Images of Canadian futures: the role of conservation and renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Sewell, W R.D.; Foster, H D

    1976-01-01

    The industrial, cultural, and environmental future of Canada will be formed directly by the alternatives selected today to provide future energy needs. This study was undertaken on the premise that a view of the implications for the future will lead to a more optimistic prospect for Canada. Several scenarios are considered as an aid to future policy making. It is considered that it will be necessary to look to renewable energy sources to contribute a larger share of the energy used in Canada. This signals the possibility that a less wasteful and hopefully more environmentally appropriate pattern of development may emerge in response to the changing energy situation. By adopting an improvement of the ratio of useful work performed to the total non-renewable energy expended as a major objective, Canadian society could maintain its viablility without undue sacrifice. For example, Canada could cover part of the anticipated energy shortfall by widespread conservation, extensive construction, and/or massive and expensive energy imports. If the current rate of increase in energy demands could be reduced through conservation measures by one per cent per annum, a saving of 150,000 barrels of oil per day would accrue by 1990. Two of the alternatives noted above would result either in an enormous commitment of capital resources and/or a major adverse trade balance. As a consequence, they have prophetic significance for future Canadian economic growth, social flexibility, and individual freedom. 111 refs., 6 figs., 4 tabs.

  15. Future possibilities with intermediate-energy neutron beams

    International Nuclear Information System (INIS)

    Brady, F.P.

    1987-01-01

    Future possibilities for using neutrons of intermediate energies (50 - 200 MeV) as a probe of the nucleus are discussed. Some of the recent thinking concerning a systematic approach for studying elastic and inelastic scattering of electrons and hadrons and the important role of medium- and intermediate-energy neutrons in such a programme is reviewed. The advantages of neutrons in this energy range over neutrons with lower energies and over intermediate-energy pions for determining nuclear-transition and ground state densities, and for distinguishing proton from neutron density (isovector sensitivity), are noted. The important role of (n,p) charge exchange reactions in nuclear excitation studies is also reviewed. Experimental methods for utilizing neutrons as probes in elastic, inelastic, and charge exchange studies at these energies are discussed

  16. A Carbon-Free Energy Future

    Science.gov (United States)

    Linden, H. R.; Singer, S. F.

    2001-12-01

    desirable for other economic uses. A hydrogen-based energy future is inevitable as low-cost sources of petroleum and natural gas become depleted with time. However, such fundamental changes in energy systems will take time to accomplish. Coal may survive for a longer time but may not be able to compete as the century draws to a close.

  17. Towards the sustainable energy system. The future of the transition policy for energy and environment

    International Nuclear Information System (INIS)

    Bruggink, J.J.C.

    2006-11-01

    Inaugural speech at the occasion of the acceptance of the office for Energy Transition and Sustainable Development at the Faculty of Earth and Life Sciences of the Vrije Universiteit in Amsterdam, Netherlands, November 21, 2006. The transition policy in the Netherlands towards a sustainable energy supply system succeeded in creating a basis in the Dutch society, although at the cost of making clear choices with regard to concrete projects, new policy tools and financial means. In order to accelerate those choices the Dutch government needs to take decisive measures [nl

  18. Empirical analysis for Distributed Energy Resources' impact on future distribution network

    DEFF Research Database (Denmark)

    Han, Xue; Sandels, Claes; Zhu, Kun

    2012-01-01

    There has been a large body of statements claiming that the large scale deployment of Distributed Energy Resources (DERs) will eventually reshape the future distribution grid operation in various ways. Thus, it is interesting to introduce a platform to interpret to what extent the power system...... operation will be alternated. In this paper, quantitative results in terms of how the future distribution grid will be changed by the deployment of distributed generation, active demand and electric vehicles, are presented. The analysis is based on the conditions for both a radial and a meshed distribution...... network. The input parameters are based on the current and envisioned DER deployment scenarios proposed for Sweden....

  19. American’s Energy Future: An Analysis of the Proposed Energy Policy Plans in Presidential Election

    Directory of Open Access Journals (Sweden)

    Ming-Hsun Cheng

    2016-11-01

    Full Text Available As the leader of the largest economy, President of the United States has substantive influence on addressing climate change problems. However, a presidential election is often dominated by issues other than energy problems. This paper focuses on the 2016 presidential election, and examines the energy plans proposed by the leading Democrat and Republican candidates. Our data from the Iowa caucus survey in January 2016 suggests that voters were more concerned about terrorism and economic issues than environmental issues. We then compare the Democratic and Republican candidate’s view of America’s energy future, and evaluate their proposed renewable energy targets. We find that the view on renewable energy is polarized between Democratic and Republican candidates, while candidates from both parties agree on the need for energy efficiency. Results from our ordinal least squares regression models suggests that Democratic candidates have moderate to ambitious goals for developing solar and other renewables. The Republican candidates favor fossil fuels and they choose not to provide any specific target for developing renewable energy. In addition, this trend of party polarization has grown more significant when compared with the past three presidential elections. Our observation suggests that energy policies need to be discussed more often regarding the diversification and decarbonization of the nation’s energy system.

  20. Energy Choices. Choices for future technology development; Vaegval Energi. Vaegval foer framtidens teknikutveckling

    Energy Technology Data Exchange (ETDEWEB)

    Billfalk, Lennart; Haegermark, Harald (eds.)

    2009-03-15

    In the next few years political decisions lie ahead in Sweden and the EU regarding the detailed formulation of the EU's so-called 20-20-20 targets and accompanying EU directives. Talks on a new international post-2012 climate agreement are imminent. The EU targets involve reducing emissions of greenhouse gases by 20 per cent, increasing the proportion of renewable energy by 20 per cent and improving energy efficiency by 20 per cent - all by the year 2020. According to the analysis of the consequences of the targets that the Technology Development Group has commissioned, the reduction in carbon dioxide in the stationary energy system in the Nordic region will be 40 per cent, not 20 per cent, if all the EU targets are to be achieved. The biggest socio-economic cost is associated with achieving the efficiency target, followed by the costs associated with achieving the renewable energy target and the CO{sub 2} target. On the basis of this analysis and compilations about technology development, we want to highlight the following important key issues: Does Sweden want to have the option of nuclear power in the future or not? How to choose good policy instruments for new electricity production and networks? How best to reduce the carbon dioxide emissions of the transport sector and how to develop control and incentive measures that promote such a development? We are proposing the following: Carry out a more in-depth analysis of the consequences of the EU targets, so that the policy instruments produce the best combination as regards climate, economy and security of supply. To achieve the EU targets would require large investments in electricity production, particularly renewable energy, and in electricity networks. Internationally harmonized policy instruments and other incentive measures are required in order for the necessary investments to take place. The policy instruments have to provide a level playing field for all players in the energy sector. The large

  1. GREENLYS. Grenoble and Lyon experiment with smart energy of the future

    International Nuclear Information System (INIS)

    2015-01-01

    businesses, cloud-based services and a smart gateway monitors and controls building loads, onsite renewable energy production, an energy storage system, and the heating and cooling system. The system evaluates and arbitrates between load curtailment requests and variable energy pricing. It then automatically implements actions such as temporarily turning off non-critical equipment, adjusting thermostats, or consuming more renewable or stored energy. Actions are managed intelligently to maintain comfort and productivity. In the case of emergency, the end user has the ability to override any automated action. The GreenLys project will also study ways to control and minimize the grid impacts of electric vehicle charging. Electric vehicles represent a new and growing load on the grid infrastructure, but can also represent a flexible source of stored energy that can be re-injected into the grid when needed. The GreenLys project will make it easy for businesses and homeowners to use their energy flexibility to cut costs and help the grid improve stability. In this way, the region can look forward to a reliable, efficient and green energy future. GreenLys benefits from the support of the cities of Grenoble and Lyon and their respective Metropolitan areas. Grenoble and Lyon offer an exceptional testing ground and ecosystem containing eco-neighborhoods that are forerunners of the smart, sustainable city of the future. This document presents the GreenLys experiment in these two cities in the form of 6 sheets dealing with: 1 - Making the residential citizen a key player in managing the demand for energy; 2 - Commercial sites are trialling an innovative smart energy management solution; 3 - Trialling innovative technologies on the grid to assist energy transition; 4 - Trialling and modelling the flexibility aggregator function in association with other stakeholders in the electricity supply chain; 5 - Optimising integration of decentralised means of generating renewable sources of

  2. Nuclear energy - option for the future. Proceedings

    International Nuclear Information System (INIS)

    1996-01-01

    The goal of this conference was to analyse the future national and international problems arising with energy supplies with regard to the large mass flows and CO 2 flows involved in the use of nuclear energy. The following topics are dealt with: - nuclear energy, world-wide energy management and developments in Europe and Asia - disposal and ultimate waste disposal, plutonium management, an assessment of the Chernobyl accident 10 years on - new reactor developments in the energy mix - the costs arising with nuclear energy in the energy mix. In view of the demand made by climate researchers, to reduce CO 2 , and the additional construction work planned in the eastern and Asian areas, it will remain necessary for the Federal Republic of Germany,too, to maintain the know-how and technology for nuclear energy generation. (orig./DG)

  3. World energy: Building a sustainable future

    Energy Technology Data Exchange (ETDEWEB)

    Schipper, L.; Meyers, S.

    1992-04-01

    As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world`s major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

  4. World energy: Building a sustainable future

    Energy Technology Data Exchange (ETDEWEB)

    Schipper, L.; Meyers, S.

    1992-04-01

    As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world's major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

  5. A Framework for Supporting Organizational Transition Processes Towards Sustainable Energy Systems

    Science.gov (United States)

    Buch, Rajesh

    Economic development over the last century has driven a tripling of the world's population, a twenty-fold increase in fossil fuel consumption, and a tripling of traditional biomass consumption. The associated broad income and wealth inequities are retaining over 2 billion people in poverty. Adding to this, fossil fuel combustion is impacting the environment across spatial and temporal scales and the cost of energy is outpacing all other variable costs for most industries. With 60% of world energy delivered in 2008 consumed by the commercial and industrial sector, the fragmented and disparate energy-related decision making within organizations are largely responsible for the inefficient and impacting use of energy resources. The global transition towards sustainable development will require the collective efforts of national, regional, and local governments, institutions, the private sector, and a well-informed public. The leadership role in this transition could be provided by private and public sector organizations, by way of sustainability-oriented organizations, cultures, and infrastructure. The diversity in literature exemplifies the developing nature of sustainability science, with most sustainability assessment approaches and frameworks lacking transformational characteristics, tending to focus on analytical methods. In general, some shortfalls in sustainability assessment processes include lack of: · thorough stakeholder participation in systems and stakeholder mapping, · participatory envisioning of future sustainable states, · normative aggregation of results to provide an overall measure of sustainability, and · influence within strategic decision-making processes. Specific to energy sustainability assessments, while some authors aggregate results to provide overall sustainability scores, assessments have focused solely on energy supply scenarios, while including the deficits discussed above. This paper presents a framework for supporting

  6. The ‘soft’ importance of energy modelling tools and their absence in Albania’s delivery strategy of energy system

    International Nuclear Information System (INIS)

    Qystri, Arber; Koço, Marpol

    2015-01-01

    Energy is essential for all human activities, and its availability is critical to economic and social development. Energy is the engine for the production of goods and services across all economic sectors. Lack of energy is a contributing factor to the poverty of individuals, communities, nations and regions. Energy mix visions and strategies are determining an important part of our world’s future prosperity and welfare. Choices made now are important for future generations. Energy trend forecasting, scenarios and system analysis have matured into powerful modelling tools for providing advice on optimizing our future energy solutions. The choice of the model and its effectiveness for developing energy supply strategies critically depend on the underlying vision for achieving a future energy mix. Knowledge advancement and exchange are more important than ever before, because this will stimulate and optimize the vision sharing and further the integration of today’s diverse energy strategies. In this regard, in Albania there is an absence in applying this tools. This article aims to demonstrate the vital importance of this tools to create a sustainable future, moreover in Albania where the energy sector is facing financial and management difficulties and lack of vision. Key words: energy, energy models, tools, sustainable energy, energy sector, energy strategy

  7. Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future

    Energy Technology Data Exchange (ETDEWEB)

    Brogan, J. J.; Aeppli, A. E.; Beagan, D. F.; Brown, A.; Fischer, M. J.; Grenzeback, L. R.; McKenzie, E.; Vimmerstedt, L.; Vyas, A. D.; Witzke, E.

    2013-03-01

    Truck, rail, water, air, and pipeline modes each serve a distinct share of the freight transportation market. The current allocation of freight by mode is the product of technologic, economic, and regulatory frameworks, and a variety of factors -- price, speed, reliability, accessibility, visibility, security, and safety -- influence mode. Based on a comprehensive literature review, this report considers how analytical methods can be used to project future modal shares and offers insights on federal policy decisions with the potential to prompt shifts to energy-efficient, low-emission modes. There are substantial opportunities to reduce the energy used for freight transportation, but it will be difficult to shift large volumes from one mode to another without imposing considerable additional costs on businesses and consumers. This report explores federal government actions that could help trigger the shifts in modal shares needed to reduce energy consumption and emissions. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  8. Diversification and localization of energy systems for sustainable development and energy security

    International Nuclear Information System (INIS)

    Xianguo Li

    2005-01-01

    The dominance of a single-energy system inevitably leads to excessive burden on, and eventually weakening, a particular aspect of the environment, and can cause environmental fatigue and failure (permanent damage) or even catastrophe if dominated for too long; thus it inevitably poses the health and environmental risk. This is the case for our currently fossil-fuel-based energy systems. In fact, each energy system, including renewables and alternative fuels, has its own unique adverse impact on the environment, as dictated by the second law of thermodynamics. A truly sustainable development may be achieved with the diversification and localization of energy sources and systems if the adverse impact of each energy system is sufficiently small and well within the tolerance limit of the environment. Energy diversification and localization would also provide a security for the energy supply and distribution as well for the energy consumers - a specifically important issue in the wake of blackout (electric power failure) in the Northeastern states to the Midwest of the United States and part of Canada on August 14, 2003. The idea of diversified energy systems for the good of humanity and environment is similar to many analogies in other fields, such as bio-diversity is the best means to prevent the spread and damage of diseases and pests, and diversified investment is the best strategy to guarantee the overall best investment return. It is concluded that the diversification and localization of energy systems is the best future energy systems that would be environmentally compatible, and allow for sustainable development as well as energy security for both supply and distribution to the energy consumers. (Author)

  9. Diversification and localization of energy systems for sustainable development and energy security

    International Nuclear Information System (INIS)

    Li Xianguo

    2005-01-01

    The dominance of a single-energy system inevitably leads to excessive burden on, and eventually weakening, a particular aspect of the environment, and can cause environmental fatigue and failure (permanent damage) or even catastrophe if dominated for too long; thus it inevitably poses the health and environmental risk. This is the case for our currently fossil-fuel-based energy systems. In fact, each energy system, including renewables and alternative fuels, has its own unique adverse impact on the environment, as dictated by the second law of thermodynamics. A truly sustainable development may be achieved with the diversification and localization of energy sources and systems if the adverse impact of each energy system is sufficiently small and well within the tolerance limit of the environment. Energy diversification and localization would also provide a security for the energy supply and distribution as well for the energy consumers - a specifically important issue in the wake of blackout (electric power failure) in the Northeastern states to the Midwest of the United States and part of Canada on August 14, 2003. The idea of diversified energy systems for the good of humanity and environment is similar to many analogies in other fields, such as bio-diversity is the best means to prevent the spread and damage of diseases and pests, and diversified investment is the best strategy to guarantee the overall best investment return. It is concluded that the diversification and localization of energy systems is the best future energy systems that would be environmentally compatible, and allow for sustainable development as well as energy security for both supply and distribution to the energy consumers

  10. Evolving energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Mills, E.

    1991-04-01

    This thesis presents scenarios of future energy systems, a cost-benefit analysis of measures to avoid greenhouse-gas emissions, an analysis of the effect of energy prices on end-use efficiencies and fuel choices, and an evaluation of financial-incentive programs designed to induce investments in efficient energy use. Twelve integrated energy supply/demand scenarios for the Swedish heat-and-power sector are presented to illustrate the potential for improvements in end-use efficiency and increased utilization of renewable energy sources. The results show that greenhouse-gas emissions could be reduced by 35 per cent from 1987 levels by 2010, with a net economic benefit compared to a business-as-usual scenario. A generalized methodology for calculating the net costs of reducing greenhouse-gas emissions is applied to a variety of fuel choices and energy end-use technologies. A key finding is that a combination of increased end-use efficiencies and use of renewable energy systems is required to achieve maximum cost-effective emissions reductions. End-use efficiencies and inter-fuel competition in Denmark and Sweden are compared during a time period in which real electricity prices were declining in Sweden and increasing in Denmark. Despite these different price environments, efficiencies and choices of heating fuels did not generally develop as expected according to economic theory. The influences of counter-price and non-price factors are important in understanding this outcome. Relying on prices alone injects considerable uncertainty into the energy planning process, and precludes efficiency improvements and fuel choices attainable with other mechanisms. Incentive programs can be used to promote energy-efficient technologies. Utilities in Europe have recently offered financial incentives intended to stimulate the adoption of compact-fluorescent lamps. These programs have been cost-effective in comparison to new electric supply. (au).

  11. Current and future plans for wind energy development on San Clemente Island, California

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, P.J.F. [RLA Consulting, Inc., Bothell, WA (United States); Cable, S.B. [Naval Facilities Engineering Service Center, Port Hueneme, CA (United States)

    1996-12-31

    The Navy is considering possible ways to maximize the use of wind energy technology for power supply to their auxiliary landing field and other facilities on San Clemente Island. A summary of their past analysis and future considerations is presented. An analysis was performed regarding the technical and economic feasibility of installing and operating a sea-water pumped hydro/wind energy system to provide for all of the island`s electric power needs. Follow-on work to the feasibility study include wind resource monitoring as well as procurement and preliminary design activities for a first-phase wind-diesel installation. Future plans include the consideration of alternative siting arrangements and the introduction of on-island fresh water production. 3 refs., 4 figs.

  12. Future energy communities : How community norms shape individual adoption and acceptability of sustainable energy systems

    NARCIS (Netherlands)

    Milovanovic, Marko; Steg, Emmalina; Spears, Russell

    2013-01-01

    Most research on factors influencing the acceptability and adoption of sustainable energy systems is focused on individual-level factors such as personal norms, values, and attitudes. Some researchers have considered the effects of social factors such as descriptive and injunctive norms, but little

  13. Is the climate system an anticipatory system that minimizes free energy?

    Science.gov (United States)

    Rubin, Sergio; Crucifix, Michel

    2017-04-01

    All systems, whether they are alive or not are structured determined systems, i.e. their present states [x (t)] depends of past states [x (t - α)]. However it has been suggested [Rosen, 1985; Friston, 2013] that systems that contain life are capable of anticipation and active inference. The underlying principle is that state changes in living systems are best modelled as a function of past and future states [ x(t) = f (x (t - α), x(t), x (t + β)) ]. The reason for this is that living systems contain a predictive model of their ambiance on which they are active: they appear to model their ambiance to preserve their integrity and homeorhesis. We therefore formulate the following hypothesis: can the climate system be interpreted as an anticipatory system that minimizes free energy? Can its variability (catastrophe, bifurcation and/or tipping points) be interpreted in terms of active inference and anticipation failure? Here we present a mathematical formulation of the climate system as an anticipatory system that minimizes free energy and its possible implication in the future climate predictability. References Rosen, R. (1985). Anticipatory systems. In Anticipatory systems (pp. 313-370). Springer New York. Friston, K. (2013). Life as we know it. Journal of the Royal Society Interface, 10(86), 20130475.

  14. World Energy Projection System model documentation

    International Nuclear Information System (INIS)

    Hutzler, M.J.; Anderson, A.T.

    1997-09-01

    The World Energy Projection System (WEPS) was developed by the Office of Integrated Analysis and Forecasting within the Energy Information Administration (EIA), the independent statistical and analytical agency of the US Department of Energy. WEPS is an integrated set of personal computer based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product GDP), and about the rate of incremental energy requirements met by natural gas, coal, and renewable energy sources (hydroelectricity, geothermal, solar, wind, biomass, and other renewable resources). Projections produced by WEPS are published in the annual report, International Energy Outlook. This report documents the structure and procedures incorporated in the 1998 version of the WEPS model. It has been written to provide an overview of the structure of the system and technical details about the operation of each component of the model for persons who wish to know how WEPS projections are produced by EIA

  15. World Energy Projection System model documentation

    Energy Technology Data Exchange (ETDEWEB)

    Hutzler, M.J.; Anderson, A.T.

    1997-09-01

    The World Energy Projection System (WEPS) was developed by the Office of Integrated Analysis and Forecasting within the Energy Information Administration (EIA), the independent statistical and analytical agency of the US Department of Energy. WEPS is an integrated set of personal computer based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product GDP), and about the rate of incremental energy requirements met by natural gas, coal, and renewable energy sources (hydroelectricity, geothermal, solar, wind, biomass, and other renewable resources). Projections produced by WEPS are published in the annual report, International Energy Outlook. This report documents the structure and procedures incorporated in the 1998 version of the WEPS model. It has been written to provide an overview of the structure of the system and technical details about the operation of each component of the model for persons who wish to know how WEPS projections are produced by EIA.

  16. The empirical relationship between energy futures prices and exchange rates

    International Nuclear Information System (INIS)

    Sadorsky, P.

    2000-01-01

    This paper investigates the interaction between energy futures prices and exchange rates. Results are presented to show that futures prices for crude oil, heating oil and unleaded gasoline are co-integrated with a trade-weighted index of exchange rates. This is important because it means that there exists a long-run equilibrium relationship between these four variables. Granger causality results for both the long- and short-run are presented. Evidence is also presented that suggests exchange rates transmit exogenous shocks to energy futures prices. 22 refs

  17. Susceptibility of SCADA systems and the energy sector

    Science.gov (United States)

    Goike, Lindsay

    The research in this paper focused on analyzing SCADA systems in the energy sector for susceptibility to cyber attacks, in furtherance of providing suggestions to mitigate current and future cyber attacks. The research will be addressing the questions: how are SCADA systems susceptible to cyber attacks, and what are the suggested ways to mitigate both current and future cyber attacks. The five main categories of security vulnerabilities facing current SCADA systems were found to be: connectivity to the Internet, failure to plan, interdependency of sectors, numerous different types of threats, and outdated software. Some of the recommendations mentioned to mitigate current and future risks were: virtual private networks, risk assessments, increased physical security, updating of software, and firewalls.

  18. Designing and visualizing the water-energy-food nexus system

    Science.gov (United States)

    Endo, A.; Kumazawa, T.; Yamada, M.; Kato, T.

    2017-12-01

    The objective of this study is to design and visualize a water-energy-food nexus system to identify the interrelationships between water-energy-food (WEF) resources and to understand the subsequent complexity of WEF nexus systems holistically, taking an interdisciplinary approach. Object-oriented concepts and ontology engineering methods were applied according to the hypothesis that the chains of changes in linkages between water, energy, and food resources holistically affect the water-energy-food nexus system, including natural and social systems, both temporally and spatially. The water-energy-food nexus system that is developed is significant because it allows us to: 1) visualize linkages between water, energy, and food resources in social and natural systems; 2) identify tradeoffs between these resources; 3) find a way of using resources efficiently or enhancing the synergy between the utilization of different resources; and 4) aid scenario planning using economic tools. The paper also discusses future challenges for applying the developed water-energy-food nexus system in other areas.

  19. Can renewable energy power the future?

    International Nuclear Information System (INIS)

    Moriarty, Patrick; Honnery, Damon

    2016-01-01

    Fossil fuels face resource depletion, supply security, and climate change problems; renewable energy (RE) may offer the best prospects for their long-term replacement. However, RE sources differ in many important ways from fossil fuels, particularly in that they are energy flows rather than stocks. The most important RE sources, wind and solar energy, are also intermittent, necessitating major energy storage as these sources increase their share of total energy supply. We show that estimates for the technical potential of RE vary by two orders of magnitude, and argue that values at the lower end of the range must be seriously considered, both because their energy return on energy invested falls, and environmental costs rise, with cumulative output. Finally, most future RE output will be electric, necessitating radical reconfiguration of existing grids to function with intermittent RE. - Highlights: •Published estimates for renewable energy (RE) technical potential vary 100-fold. •Intermittent wind and solar energy dominate total RE potential. •We argue it is unlikely that RE can meet existing global energy use. •The need to maintain ecosystem services will reduce global RE potential. •The need for storage of intermittent RE will further reduce net RE potential.

  20. Energy and the future of human settlement patterns: theory, models and empirical considerations

    Energy Technology Data Exchange (ETDEWEB)

    Zucchetto, J

    1983-11-01

    A review of the diverse literature pertaining to the organization of human settlements is presented with special emphasis on the influence that energy may have on concentration vs. dispersal of human populations. A simple, abstract energy-based model of urban growth is presented in order to capture some of the qualitative behavior of competition between urban core and peripheral regions. Empirical difficulties associated with the determination of energy consumption and population density are illustrated with an analysis of counties in Florida. There is no hard evidence that large urban systems are inherently more energy efficient than small ones are so that a future world of energy scarcity cannot be said to imply a selection for urban agglomeration.

  1. EPAUS9R - An Energy Systems Database for use with the Market Allocation (MARKAL) Model

    Science.gov (United States)

    EPA’s MARKAL energy system databases estimate future-year technology dispersals and associated emissions. These databases are valuable tools for exploring a variety of future scenarios for the U.S. energy-production systems that can impact climate change c

  2. Integrated energy systems and local energy markets

    International Nuclear Information System (INIS)

    Lund, Henrik; Muenster, Ebbe

    2006-01-01

    Significant benefits are connected with an increase in the flexibility of the Danish energy system. On the one hand, it is possible to benefit from trading electricity with neighbouring countries, and on the other, Denmark will be able to make better use of wind power and other types of renewable energy in the future. This paper presents the analysis of different ways of increasing flexibility in the Danish energy system by the use of local regulation mechanisms. This strategy is compared with the opposite extreme, i.e. trying to solve all balancing problems via electricity trade on the international market. The conclusion is that it is feasible for the Danish society to include the CHP plants in the balancing of fluctuating wind power. There are major advantages in equipping small CHP plants as well as the large CHP plants with heat pumps. By doing so, it will be possible to increase the share of wind power from the present 20 to 40% without causing significant problems of imbalance between electricity consumption and production. Investment in increased flexibility is in itself profitable. Furthermore, the feasibility of wind power is improved

  3. A Global Look at Future Trends in the Renewable Energy Resource

    Science.gov (United States)

    Chen, S.; Freedman, J. M.; Kirk-Davidoff, D. B.; Brower, M.

    2017-12-01

    With the aggressive deployment of utility-scale and distributed generation of wind and solar energy systems, an accurate estimate of the uncertainty associated with future resource trends and plant performance is crucial in maintaining financial integrity in the renewable energy markets. With continuing concerns regarding climate change, the move towards energy resiliency, and the cost-competitiveness of renewables, a rapidly expanding fleet of utility-scale wind and solar power facilities and distributed generation of both resources is now being incorporated into the electric distribution grid. Although solar and wind account for about 3% of global power production, renewable energy is now and will continue to be the world's fastest-growing energy source. With deeper penetration of renewables, confidence in future power production output on a spectrum of temporal and spatial scales is crucial to grid stability for long-term planning and achieving national and international targets in the reduction of greenhouse gas emissions. Here, we use output from a diverse subset of Earth System Models (Climate Model Inter-comparison Project-Phase 5 members) to produce projected trends and uncertainties in regional and global seasonal and inter-annual wind and solar power production and respective capacity factors through the end of the 21st century. Our trends and uncertainty analysis focuses on the Representative Concentration Pathways (RCP) 4.5 and RCP 8.5 scenarios. For wind and solar energy production estimates, we extract surface layer wind (extrapolated to hub height), irradiance, cloud fraction, and temperature (air temperature affects density [hence wind power production] and the efficiency of photovoltaic [PV] systems), output from the CMIP5 ensemble mean fields for the period 2020 - 2099 and an historical baseline for POR of 1986 - 2005 (compared with long-term observations and the ERA-Interim Reanalysis). Results include representative statistics such as the

  4. Technology utilization and energy efficiency: Lessons learned and future prospects

    International Nuclear Information System (INIS)

    Rosenberg, N.

    1992-01-01

    The concept of energy efficiency within the context of economic and environmental policy making is quite complex. Relatively poor economic performance ratings can weaken the validity of some energy supply systems which tend to reduce energy inputs for specific volumes of output, but don't minimize total cost per unit product; and industry is often slow to adopt new technologies, even those proven to reduce total costs. In this paper, the problems connected with growth in energy requirements in relation to product are first examined within the context of world economic performance history. Three key elements are shown to explain the differences in energy intensity and consumption typology among various countries, i.e., availability of energy sources, prices and government policies. Reference is made to the the role of recent energy prices and policies in the United States whose industrialization has been directly connected with the vast availability of some energy sources. In delineating possible future energy scenarios, the paper cites the strong influence of long term capital investment on the timing of the introduction of energy efficient technologies into industrial process schemes. It illustrates the necessity for flexibility in new energy strategies which are to take advantage the opportunities offered by a wide range of alternative energy sources now being made available through technological innovation

  5. Future spacecraft propulsion systems. Enabling technologies for space exploration. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Czysz, Paul A. [St. Louis Univ., MO (United States). Oliver L. Parks Endowed Chair in Aerospace Engineering; Bruno, Claudio [Univ. degli Studi di Roma (Italy). Dipt. di Meccanica e Aeronautica

    2009-07-01

    In this second edition of Future Spacecraft Propulsion Systems, the authors demonstrate the need to break free from the old established concepts of expendable rockets, using chemical propulsion, and to develop new breeds of launch vehicle capable of both launching payloads into orbit at a dramatically reduced cost and for sustained operations in low-Earth orbit. The next steps to establishing a permanent 'presence' in the Solar System beyond Earth are the commercialisation of sustained operations on the Moon and the development of advanced nuclear or high-energy space propulsion systems for Solar System exploration out to the boundary of interstellar space. In the future, high-energy particle research facilities may one day yield a very high-energy propulsion system that will take us to the nearby stars, or even beyond. Space is not quiet: it is a continuous series of nuclear explosions that provide the material for new star systems to form and provide the challenge to explore. This book provides an assessment of the industrial capability required to construct and operate the necessary spacecraft. Time and distance communication and control limitations impose robotic constraints. Space environments restrict human sustained presence and put high demands on electronic, control and materials systems. This comprehensive and authoritative book puts spacecraft propulsion systems in perspective, from earth orbit launchers to astronomical/space exploration vehicles. It includes new material on fusion propulsion, new figures and updates and expands the information given in the first edition. (orig.)

  6. OECD/IEA/ETSAP energy-environment systems analysis

    International Nuclear Information System (INIS)

    Yasukawa, Shigeru; Sato, Osamu; Tadokoro, Yoshihiro; Nagano, Takao; Shiraki, Hajimu; Shimoyamada, Yoshinori

    1988-12-01

    Fuel supply and demand mix as well as energy technology configuration are analyzed by the MARKAL model for the future Japanese energy system, when reduction of environmental emissions is taken into consideration. The Reference Energy System (RES) covers whole sectors, i.e., fuel conversion and energy transformation, industry, residential and commercial, and transportation sectors. Environmental emissions considered here are SOx, NOx, CO 2 , and radio activity, and the time horizon is an interval from 1985 to 2030. Both SOx and NOx emission can be reduced much by present art of reduction measures. From the view points of cost effectiveness, abatement technologies including fluegas treatments take the highest priority and fuel switching and technology substitution follow in this order. For CO 2 reduction, both nuclear and renewable energy technologies are essential among them. (author)

  7. Smart energy control systems for sustainable buildings

    CERN Document Server

    Spataru, Catalina; Howlett, Robert; Jain, Lakhmi

    2017-01-01

    There is widespread interest in the way that smart energy control systems, such as assessment and monitoring techniques for low carbon, nearly-zero energy and net positive buildings can contribute to a Sustainable future, for current and future generations. There is a turning point on the horizon for the supply of energy from finite resources such as natural gas and oil become less reliable in economic terms and extraction become more challenging, and more unacceptable socially, such as adverse public reaction to ‘fracking’. Thus, in 2016 these challenges are having a major influence on the design, optimisation, performance measurements, operation and preservation of: buildings, neighbourhoods, cities, regions, countries and continents. The source and nature of energy, the security of supply and the equity of distribution, the environmental impact of its supply and utilization, are all crucial matters to be addressed by suppliers, consumers, governments, industry, academia, and financial institutions. Thi...

  8. Public Opinion Survey-Energy-The Present and the Future

    International Nuclear Information System (INIS)

    Pejic Bach, M.; Pevec, D.; Bace, M.; Trontl, K.; Jecmenica, R.; Matijevic, M.; Lebegner, J.

    2008-01-01

    During the academic year 2007/08 the Department of Applied Physics of the Faculty of Electrical Engineering and Computing conducted a public opinion survey entitled 'Energy - The Present and the Future' among student population of 1439 individuals age 18-20. The tested population consisted of the University of Zagreb nine faculties' students: the Faculty of Electrical Engineering and Computing - 367 students, the Faculty of Food Technology and Biotechnology - 149 students, the Faculty of Chemical Engineering and Technology - 118 students, the Faculty of Civil Engineering - 102 students, the Faculty of Philosophy - 100 students, the Faculty of Science - 50 students, the Medical School - 217 students, the School of Dental Medicine - 108 students, and the Faculty of Economics and Business - 228 students. The questions in the survey covered several different energy issues, including the present and the future energy resources, the acceptability of different fuel type power plants, the environmental protection and global warming, the radioactivity, the waste issues, as well as reliable information sources. The basic results of survey analysis for nuclear oriented questions are reported in this paper. Although participants expressed high level of formal environmental awareness, their choices and attitudes are in a contradiction to claimed eco-orientation, as well as to the scientific facts. The discrepancies are particularly noticeable in parts of the survey dealing with the nuclear energy and the nuclear power plants. The radioactive waste management, proved to be a potential stumbling-stone for the entire nuclear program. The participants are demonstrating deep lack of knowledge which results in the radioactive waste management becoming the main source of fear from the nuclear technology in general. A very disturbing attitude is a belief that the nuclear energy is non-economic, environmentally unacceptable and operationally unsafe source of energy. Such an attitude

  9. Power Converters and Control of Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Teodorescu, Remus; Chen, Zhe

    2004-01-01

    The global electrical energy consumption is steadily rising and therefore a continuous demand to increase the power generation capacity. A significant percentage of the required capacity increase can be based on renewable energy sources. Wind turbine technology, as the most cost effective renewable...... energy conversion system, will play an important part in our future energy supply. But other sources like microturbines, photovoltaics and fuel cell systems may also be serious contributor to the power supply. Characteristically, power electronics will be an efficient and important interface to the grid...... for the renewables and this paper will first briefly discuss three different alternative/renewable energy sources. Next, various configurations of small and medium power conversion topologies are presented including their control (mainly for PV-systems). Finally wind turbine configuration and their control...

  10. Energy: What About the Future? Easy Energy Reader, Book IV.

    Science.gov (United States)

    Information Planning Associates, Inc., Rockville, MD.

    Four articles about future energy technologies and problems comprise this collection of readings intended for the junior high school language arts curriculum. Each entry has been scored for readability according to the Gunning Fog Index. By referring to these ratings, a teacher can provide students with increasingly more challenging reading…

  11. From water to water, hydrogen as a renewable energy vector for the future

    International Nuclear Information System (INIS)

    Gillet, A.C.

    2000-01-01

    The most important property of hydrogen is that it is the cleanest fuel. Its combustion produces only water and a small amount of NO x . No acid rain, no greenhouse effect, no ozone layer depletion, no particulates aerosols. It seems then ideally suited for the conversion to renewable energy. Hydrogen has now established it self as a clean choice for an environmentally compatible energy system. It can provide a sustainable future for building, industrial and transport sectors of human activities. On average, it has about 20-30% higher combustion efficiency than fossil fuels and can produce electricity directly in fuel cells. In combination with solar PV- and hydro-electrolysis, it is compatible with land area requirements on a worldwide basis. If fossil fuels combustion environmental damage is taken into account, the hydrogen energy system is already cost effective. The question is thus no longer , but, and soon, will hydrogen energy become a practical solution to sustainable energy development. (Author)

  12. Intelligent Energy Management System for PV-Battery-based Microgrids in Future DC Homes

    Science.gov (United States)

    Chauhan, R. K.; Rajpurohit, B. S.; Gonzalez-Longatt, F. M.; Singh, S. N.

    2016-06-01

    This paper presents a novel intelligent energy management system (IEMS) for a DC microgrid connected to the public utility (PU), photovoltaic (PV) and multi-battery bank (BB). The control objectives of the proposed IEMS system are: (i) to ensure the load sharing (according to the source capacity) among sources, (ii) to reduce the power loss (high efficient) in the system, and (iii) to enhance the system reliability and power quality. The proposed IEMS is novel because it follows the ideal characteristics of the battery (with some assumptions) for the power sharing and the selection of the closest source to minimize the power losses. The IEMS allows continuous and accurate monitoring with intelligent control of distribution system operations such as battery bank energy storage (BBES) system, PV system and customer utilization of electric power. The proposed IEMS gives the better operational performance for operating conditions in terms of load sharing, loss minimization, and reliability enhancement of the DC microgrid.

  13. Future-Proofed Energy Design Approaches for Achieving Low-Energy Homes: Enhancing the Code for Sustainable Homes

    Directory of Open Access Journals (Sweden)

    Maria Christina Georgiadou

    2014-09-01

    Full Text Available Under the label “future-proofing”, this paper examines the temporal component of sustainable construction as an unexplored, yet fundamental ingredient in the delivery of low-energy domestic buildings. The overarching aim is to explore the integration of future-proofed design approaches into current mainstream construction practice in the UK, focusing on the example of the Code for Sustainable Homes (CSH tool. Regulation has been the most significant driver for achieving the 2016 zero-carbon target; however, there is a gap between the appeal for future-proofing and the lack of effective implementation by building professionals. Even though the CSH was introduced as the leading tool to drive the “step-change” required for achieving zero-carbon new homes by 2016 and the single national standard to encourage energy performance beyond current statutory minima, it lacks assessment criteria that explicitly promote a futures perspective. Based on an established conceptual model of future-proofing, 14 interviews with building practitioners in the UK were conducted to identify the “feasible” and “reasonably feasible” future-proofed design approaches with the potential to enhance the “Energy and CO2 Emissions” category of the CSH. The findings are categorised under three key aspects; namely: coverage of sustainability issues; adopting lifecycle thinking; and accommodating risks and uncertainties and seek to inform industry practice and policy-making in relation to building energy performance.

  14. Representation of variable renewable energy sources in TIMER, an aggregated energy system simulation model

    NARCIS (Netherlands)

    de Boer, Harmen Sytze (H S.).; van Vuuren, Detlef (D P.).

    2017-01-01

    The power system is expected to play an important role in climate change mitigation. Variable renewable energy (VRE) sources, such as wind and solar power, are currently showing rapid growth rates in power systems worldwide, and could also be important in future mitigation strategies. It is

  15. Alternative future energy pathways: Assessment of the potential of innovative decentralised energy systems in the UK

    International Nuclear Information System (INIS)

    Chmutina, Ksenia; Goodier, Chris I.

    2014-01-01

    In order to meet its 2050 target of 80% carbon emissions reduction, the UK is facing a challenge of restructuring its energy system, possibly by introducing more decentralised energy (DE) systems. Following semi-structured interviews, four exemplar international cases have been critiqued in order to investigate the variety and interrelationship of the drivers and barriers involved during their implementation, and then compared with the barriers and drivers that can potentially affect the implementation of similar projects in the UK context. The impacts of the barriers on the outcomes of these projects were evaluated, and recommendations were presented on overcoming these barriers if replicating similar projects in the UK context. Governance drivers play the most significant role, whereas financial drivers (commonly believed to be crucial), are deemed to play a lesser role. Social, governance and financial barriers rather than technological barriers constitute the central problem areas for the increased adoption of DE. The drivers and barriers experienced in the international cases were similar to those anticipated in the UK. The case studies present a high potential for replication and scaling up in the UK context and demonstrate that the increased implementation of DE systems could also enhance social and governance benefits. - Highlights: • This paper examines four international urban decentralised energy initiatives. • Drivers and barriers are found to be highly diverse but similar to the ones in the UK. • Governance drivers play the most significant role. • Increased implementation of DE systems can enhance social and governance benefits

  16. Transforming and Building the Future Energy Industry

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Vernon

    1998-12-31

    The petroleum industry is experiencing unprecedented change: increasing competition within a global context, deregulation in the European gas market, technological innovation that will fundamentally alter the economics of the industry. Sustainable Development, the challenge of balancing the Financial, Social and Environmental demands: collectively these demands are fundamentally altering the future shape of the industry. In this presentation the author describes his perspectives on the impact of change on the future shape of the energy industry in the years to come

  17. Transforming and Building the Future Energy Industry

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Vernon

    1999-12-31

    The petroleum industry is experiencing unprecedented change: increasing competition within a global context, deregulation in the European gas market, technological innovation that will fundamentally alter the economics of the industry. Sustainable Development, the challenge of balancing the Financial, Social and Environmental demands: collectively these demands are fundamentally altering the future shape of the industry. In this presentation the author describes his perspectives on the impact of change on the future shape of the energy industry in the years to come

  18. What Is Energy Systems Integration? | Energy Systems Integration Facility |

    Science.gov (United States)

    NREL What Is Energy Systems Integration? What Is Energy Systems Integration? Energy systems integration (ESI) is an approach to solving big energy challenges that explores ways for energy systems to Research Community NREL is a founding member of the International Institute for Energy Systems Integration

  19. Economic analysis model for total energy and economic systems

    International Nuclear Information System (INIS)

    Shoji, Katsuhiko; Yasukawa, Shigeru; Sato, Osamu

    1980-09-01

    This report describes framing an economic analysis model developed as a tool of total energy systems. To prospect and analyze future energy systems, it is important to analyze the relation between energy system and economic structure. We prepared an economic analysis model which was suited for this purpose. Our model marks that we can analyze in more detail energy related matters than other economic ones, and can forecast long-term economic progress rather than short-term economic fluctuation. From view point of economics, our model is longterm multi-sectoral economic analysis model of open Leontief type. Our model gave us appropriate results for fitting test and forecasting estimation. (author)

  20. The future of energy in the European Union

    International Nuclear Information System (INIS)

    Robles, C.

    1997-01-01

    Two of the three European Union founding treaties have a marked energy nature but, however, at the present time, the EU lacks a Common Energy Policy, Starting with this paradox, the European Parliament Member Robles Piquer uses this article, which reproduces the lecture he gave at the CSN, to proffer his view of the future of energy which the EU will have and that which it should have, in this opinion. (Author)

  1. Problems of future energy market planning and optimization

    International Nuclear Information System (INIS)

    Lelek, V.; Jaluvka, D.

    2007-01-01

    Probable development of energy market is described in the article and special attention is devoted to the nuclear energy, which not only consume, but also produce raw material and how to proceed to avoid crises in supply. Problems of future energy supply of heat, liquid fuel, electricity are described. Expected effect will be jump in prices or regulated supply to equalize supply and use. It can completely change our standard consideration of profit

  2. Rethinking EU energy security considering past trends and future prospects

    NARCIS (Netherlands)

    Amineh, Mehdi P.; Crijns - Graus, Wina

    2014-01-01

    EU energy policy objectives are directed at three highly interdependent areas: energy supply security, competitiveness and decarbonization to prevent climate change. In this paper, we focus on the issue of energy supply security. Security of energy supply for the immediate and medium-term future is

  3. Smart Energy 2010. Innovative, ICT-oriented concepts for the energy sector of future; Smart Energy 2010. Innovative, IKT-orientierte Konzepte fuer den Energiesektor der Zukunft

    Energy Technology Data Exchange (ETDEWEB)

    Grossmann, Uwe; Kunold, Ingo (eds.)

    2010-07-01

    Architectures of energy information systems, smart metering, transfer and energy data, data security and safety, demand profiles, demand response, tariffs, segmentation of customers and customer feedback are examined within this volume. Thirteen papers contain the reports of practitioners and researchers from enterprises and research institutions on their work. The main focus of this book is on three topics ''smart metering'', ''IKT-architectures for energy distribution grids'' and ''energy markets and energy end customers''. New developments will be presented and critically examined. On the one hand this volume addresses researchers and practitioners from enterprises and research institutions, on the other hand teachers and students dealing with questions concerning the energy market of the future. (orig.)

  4. Natural gas central to world's future energy mix

    International Nuclear Information System (INIS)

    Carson, M.M.

    1997-01-01

    Continued growth in demand for natural gas is one of three pillars around which the energy mix of the future will take shape and upon which energy strategies should be based. The others are consumption efficiency and growth of renewable energy sources. This paper evaluates world energy supply and demand and includes an analysis of world pipeline gas, electricity, and LNG trends. The paper discusses the natural gas resource, proved reserves, reserves growth, gas prices and demand, country demand trends, world energy use, gas pipeline construction, power generation, electricity consumption and prices, and global carbon emissions

  5. Crystal Ball: On the Future High Energy Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir [Fermilab

    2015-09-20

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of next generation collider facilities have been proposed and are currently under consideration for the medium- and far-future of the accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance reach and cost range. We briefly review such post-LHC options as linear e+e- colliders in Japan (ILC) or at CERN (CLIC), muon collider, and circular lepton or hadron colliders in China (CepC/SppC) and Europe (FCC). We conclude with a look into ultimate energy reach accelerators based on plasmas and crystals, and some perspectives for the far future of accelerator-based particle physics.

  6. Costly waiting for the future gas energy

    International Nuclear Information System (INIS)

    1999-01-01

    The article discusses solutions while waiting for the pollution free gas power plant and points out that Norway will have to import Danish power from coal and Swedish nuclear energy for a long time yet. Various future scenarios are mentioned

  7. On the way towards smart energy supply in cities: The impact of interconnecting geographically distributed district heating grids on the energy system

    DEFF Research Database (Denmark)

    Dominkovic, D. F.; Bačeković, I.; Sveinbjörnsson, D.

    2017-01-01

    assessed. Moreover, the impact of industrial waste heat on the DH supply was also assessed. In the reference year (2013) two out of four interconnections proved to be economically viable. The results for the future energy system (2029) showed that interconnecting geographically distributed DH grids reduces...... of the future energy supply system with interconnected DH grids and installed industrial waste heat recuperation results in the lowest primary energy demand, emissions and costs. Finally, the benefits of the interconnected DH grid, in terms of system flexibility, CO2 emissions, total costs and energy efficiency...... primary energy supply by 9.5%, CO2 emissions by 11.1% and total system costs by 6.3%. Inclusion of industrial waste heat in the fully interconnected DH grid reduced primary energy supply for an additional 3%, CO2 emissions for an additional 2.2% and total system costs for an additional 1.3%. The case...

  8. Future plant of basic research for nuclear energy by university researchers

    International Nuclear Information System (INIS)

    Shibata, Toshikazu

    1984-01-01

    National Committee for Nuclear Energy Research, Japan Science Council has completed a future plan for basic nuclear energy research by university researchers. The JSC has recommended the promotion of basic research for nuclear energy based on the plan in 1983. The future plan consists of four main research fields, namely, (1) improvements of reactor safety, (2) down stream, (3) thorium fuel reactors, and (4) applications of research reactor and radioisotopes. (author)

  9. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis.

    Science.gov (United States)

    Münster, M; Meibom, P

    2010-12-01

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO(2) quota costs are analysed. It is demonstrated that the waste incineration continues to treat the largest amount of waste. Investments in new waste incineration capacity may, however, be superseded by investments in new Waste-to-Energy technologies, particularly those utilising sorted fractions such as organic waste and refuse derived fuel. The changed use of waste proves to always affect a combination of technologies. What is affected varies among the different Waste-to-Energy technologies and is furthermore dependent on the CO(2) quota costs and on the geographical scope. The necessity for investments in flexibility measures varies with the different technologies such as storage of heat and waste as well as expansion of district heating networks. Finally, inflexible technologies such as nuclear power plants are shown to be affected. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Next generation of energy production systems

    International Nuclear Information System (INIS)

    Rouault, J.; Garnier, J.C.; Carre, F.

    2003-01-01

    This document gathers the slides that have been presented at the Gedepeon conference. Gedepeon is a research group involving scientists from Cea (French atomic energy commission), CNRS (national center of scientific research), EDF (electricity of France) and Framatome that is devoted to the study of new energy sources and particularly to the study of the future generations of nuclear systems. The contributions have been classed into 9 topics: 1) gas cooled reactors, 2) molten salt reactors (MSBR), 3) the recycling of plutonium and americium, 4) reprocessing of molten salt reactor fuels, 5) behavior of graphite under radiation, 6) metallic materials for molten salt reactors, 7) refractory fuels of gas cooled reactors, 8) the nuclear cycle for the next generations of nuclear systems, and 9) organization of research programs on the new energy sources

  11. Fiscal 1976 Sunshine Project result report. Research on solar energy utilization systems (total system); 1976 nendo taiyo energy riyo system chosa kenkyu seika hokokusho. Total system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    For every solar energy utilization field, its background, feasibility, impact in practical use, and R and D policy in Japan were studied. Heating and hot water supply by solar energy are already practical because of less technical problems and reasonable profitability, and cooling is also practical as far as a technical viewpoint. At present, the technical level of solar heat power generation is in the stage of basic technology, however, in the future, development of economically reasonable systems will be demanded as well as establishment of its technology. The most difficult problem for realizing practical solar cell power generation systems is cost reduction. It is also another problem that a big demand of Si for solar cells further exceeds the current yield of Si in a semiconductor industry. A small-scale hybrid solar cell power generation system applicable to the roof of general residences is already feasible. Although a solar furnace is still poor in application to industrial fields, it is expected as the leading part for a future solar heat chemical industry. (NEDO)

  12. Better Policies Accelerate Clean Energy Transition. Policy brief - Focus on energy system flexibility

    DEFF Research Database (Denmark)

    Karimi, Farid; Lund, Peter; Skytte, Klaus

    2018-01-01

    The use of variable renewable energy sources will increase in the Nordic and Baltic countries in the future. This will call for increased flexibility in the electricity market to ensure both high energy security and efficient use of renewable power in all circumstances. The barriers and hence also...... policies to energy system flexibility are numerous. In this brief, we focus on policy recommendations for two important barriers to flexibility in the Nordic electricity market, namely insufficient market signals to some stakeholders, and uneven market frameworks for different renewable energy resources...

  13. Global Energy Scenarios to 2040. Understanding our energy future - 2016 Edition

    International Nuclear Information System (INIS)

    2016-01-01

    The energy world is in rapid evolution, driven in particular by policy developments (like the INDCs agreed at COP-21) but also economic, geopolitical, technological as well as social considerations. Enerdata regularly produces scenario based energy outlooks to analyze and forecast the supply and demand of energy commodities, energy prices, as well as the impact of climate change and energy policies on energy markets and their consequences for the energy industry. After the COP-21 in Paris, Enerdata has again done such an exercise. The Ener-Blue scenario provides an outlook of energy systems up to 2040 based on the achievement of the 2030 targets defined in the INDCs as announced at the COP-21. Ener-Green explores the implications of more stringent energy and climate policies to limit the global temperature increase at around 1.5-2 deg. C by the end of the century. Finally, Ener-Brown describes a world with abundant fossil fuel resource and durably low energy prices, affecting the entire energy system over a long period. These different scenarios explore the consequences on energy supply and demand, energy mix, energy prices by fuel and region, as well as the implications on climate issues. In the Ener-Blue scenario, the future energy mix remains dominated by fossil fuels, but INDCs planned policies regarding climate mitigation, energy efficiency and renewable energy sources lead to a diversification towards other sources of energy. Among others, the EU successfully achieves its triple objective of its climate and energy package, while China and India expand their renewable capacities to achieve their renewable targets. Within this international context of climate coordinated policies, CO_2 emission growth slows down. However, the efforts defined in INDCs are not ambitious enough to limit the increase of the average global temperature to 2 deg. C in 2050, but these efforts are compatible with 3-4 deg. C objective. In the Ener-Green scenario, there is a clear

  14. Modeling Smart Energy Systems for Model Predictive Control

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Poulsen, Niels Kjølstad; Madsen, Henrik

    2012-01-01

    as it is produced requires a very exible and controllable power consumption. Examples of controllable electric loads are heat pumps in buildings and Electric Vehicles (EVs) that are expected to play a large role in the future danish energy system. These units in a smart energy system can potentially oer exibility...... on a time scale ranging from seconds to several days by moving power consumption, exploiting thermal inertia or battery storage capacity, respectively. Using advanced control algorithms these systems are able to reduce their own electricity costs by planning ahead and moving consumption to periods...... future price should also be available in order for the individual units to plan ahead in the most feasible way. This is necessary since Economic MPCs do not respond to the absolute cost of electricity, but to variations of the price over the prediction horizon. Economic MPC is ideal for price responsive...

  15. Energy Comes Together in Denmark: The Key to a Future Fossil-Free Danish Power System

    DEFF Research Database (Denmark)

    Meibom, Peter; Hilger, Klaus Baggesen; Madsen, Henrik

    2013-01-01

    The transition of the Danish energy system to a system based only on renewable energy in 2050 carries many challenges. For Denmark to become independent of fossil energy sources, wind power and biomass are expected to become the main sources of energy. Onshore and offshore wind farms are expected...... to provide the majority of electricity, and biomass and electricity are expected to become the major sources of heating. On the way toward the 100% renewable goal in 2050, the Danish government has proposed a 2035 midterm goal to cover the energy consumption for power and heat with renewables....

  16. Energy white paper: Our energy future - Creating a low carbon economy

    International Nuclear Information System (INIS)

    2003-02-01

    Energy is vital to a modern economy. We need energy to heat and light our homes, to help us travel and to power our businesses. Our economy has also benefited hugely from our country's resources of fossil fuels - coal, oil and gas. However, our energy system faces new challenges. Energy can no longer be thought of as a short-term domestic issue. Climate change - largely caused by burning fossil fuels - threatens major consequences in the UK and worldwide, most seriously for the poorest countries who are least able to cope. Our energy supplies will increasingly depend on imported gas and oil from Europe and beyond. At the same time, we need competitive markets to keep down costs and keep energy affordable for our businesses, industries, and households. This white paper addresses those challenges. It gives a new direction for energy policy. We need urgent global action to tackle climate change. We are showing leadership by putting the UK on a path to a 60% reduction in its carbon dioxide emissions by 2050. And, because this country cannot solve this problem alone, we will work internationally to secure the major cuts in emissions that will be needed worldwide. Our analysis suggests that, by working with others, the costs of action will be acceptable - and the costs of inaction are potentially much greater. And as we move to a new, low carbon economy, there are major opportunities for our businesses to become world leaders in the technologies we will need for the future - such as fuel cells, offshore wind and tidal power. Science and technology are vital, and we will be supporting further research and development in these areas. In parallel, we need access to a wide range of energy sources and technologies and a robust infrastructure to bring the energy to where we want to use it. We will maintain competitive markets in the UK and press for further liberalisation in Europe. And we renew our commitment that no household in Britain should be living in fuel poverty by

  17. Energy efficiency in Serbia national energy efficiency program: Strategy and priorities for the future

    Directory of Open Access Journals (Sweden)

    Oka Simeon

    2006-01-01

    Full Text Available Energy system in Serbia, in the whole energy chain, from exploitation of primary energy sources, transformations in electric power plants and district heating plants, energy (electric and heat transmission and distribution to final users, and up to final energy consumption, is faced with a number of irrational and inefficient behavior and processes. In order to fight with such situation National Energy Efficiency Program, financed by the Ministry of Science and Environmental Protection has been founded in 2001. Basic facts about status of energy sector in Serbia, with special emphasis on the energy efficiency and use of renewable energy sources have been given in the review paper published in the issue No. 2, 2006 of this journal. In present paper new strategy and priorities of the National Energy Efficiency Program for the future period from 2006 to 2008, and beyond, is presented. This strategy and priorities are mainly based on the same concept and principles as previous, but new reality and new and more simulative economic and financial environment in energy sector made by the Energy low (accepted by Parliament in 2004 and Strategy of Development of Energy Sector in Republic Serbia up to 2015 (accepted by the Parliament in May 2005, have been taken into account. Also, responsibilities that are formulated in the Energy Community Treaty signed by the South-East European countries, and also coming from documents and directives of the European Community and Kyoto Protocol are included in new strategy. Once again necessity of legislative framework and influence of regulations and standards, as well as of the governmental support, has been pointed out if increased energy efficiency and increased use of renewable energy sources are expected. .

  18. Renewable sources of energy in Africa: status of development and future contribution to the energy mix

    International Nuclear Information System (INIS)

    Mwanza, P.N.; Pashkov, Y.V.

    1995-01-01

    Renewable sources of energy in Africa are widely regarded as alternatives to fossil fuels. Being an abundant indigenous reserve, they offer considerable savings of foreign exchange. Also, they are usually regarded as environmentally friendly and thus do not contribute significantly to the greenhouse effect. However, present contributions of renewable energy to the African energy supply remain negligible despite substantial claims often made about the potential scope for renewable energy forms. This paper is based on a comprehensive study undertaken by the United Nations Economic Commission for Africa in 1993-94. The assessment of renewable energy contributions to the energy mix has been made based on data obtained from African countries. A formula reflecting new and renewable sources of energy (NRSE) utilisation was developed and an attempt was made to delineate some zones with identical patterns of utilisation. Some of the difficulties encountered in the dissemination of NRSE and incentives introduced by African countries are also discussed. The conclusion is that African countries acknowledge the role of NRSE technologies in the development of future world energy systems. Yet the probability of NRSE assuming a greater share in energy supplies within the next two decades in Africa is doubtful. (author) 3 tabs., 1 fig., 7 refs

  19. The implications of future building scenarios for long-term building energy research and development

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, W.T.

    1986-12-01

    This report presents a discussion of alternative future scenarios of the building environment to the year 2010 and assesses the implications these scenarios present for long-term building energy R and D. The scenarios and energy R and D implications derived from them are intended to serve as the basis from which a strategic plan can be developed for the management of R and D programs conducted by the Office of Buildings and Community Systems, US Department of Energy. The scenarios and analysis presented here have relevance not only for government R and D programs; on the contrary, it is hoped that the results of this effort will be of interest and useful to researchers in both private and public sector organizations that deal with building energy R and D. Making R and D decisions today based on an analysis that attempts to delineate the nexus of events 25 years in the future are clearly decisions made in the face of uncertainty. Yet, the effective management of R and D programs requires a future-directed understanding of markets, technological developments, and environmental factors, as well as their interactions. The analysis presented in this report is designed to serve that need. Although the probability of any particular scenario actually occurring is uncertain, the scenarios to be presented are sufficiently robust to set bounds within which to examine the interaction of forces that will shape the future building environment.

  20. Multi-component nuclear energy system to meet requirement of self-consistency

    International Nuclear Information System (INIS)

    Saito, Masaki; Artisyuk, Vladimir; Shmelev, Anotolii; Korovin, Yorii

    2000-01-01

    Environmental harmonization of nuclear energy technology is considered as an absolutely necessary condition in its future successful development for peaceful use. Establishment of Self-Consistent Nuclear Energy System, that simultaneously meets four requirements - energy production, fuel production, burning of radionuclides and safety, strongly relies on the neutron excess generation. Implementation of external non-fission based neutron sources into fission energy system would open the possibility of approaching Multicomponent Self-Consistent Nuclear Energy System with unlimited fuel resources, zero radioactivity release and high protection against uncontrolled proliferation of nuclear materials. (author)

  1. Energy and human activity: Steps toward a sustainable future

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The potential for improving energy efficiency is enormous, but exploitation of this resource has slowed in recent years. This is regrettable for several reasons. First, not incorporating higher efficiency now often means passing up opportunities that will be more expensive or even impossible to implement in the future. This is especially true for long-lived capital, such as new buildings. Second, reduced research and development into new efficiency options will make it more difficult to accelerate the pace of efficiency improvements in the future. Finally, the flow of more efficient technologies to the non-OECD countries will be hindered by the slowdown in efficiency improvement in the OECD countries. Well-designed policies can help recapture the momentum that has been lost. Some key steps for stimulating more careful use of energy are: rationalize energy pricing and gradually internalize environmental externalities; improve present energy-using capital; implement energy-efficiency standards or agreements for new products and buildings; encourage higher energy efficiency in new products and buildings; promote international cooperation for R ampersand D technology transfer; adjust policies that encourage energy-intensive activities; and promote population restraint worldwide. 25 refs

  2. Critical and precious materials consumption and requirement in wind energy system in the EU 27

    International Nuclear Information System (INIS)

    Kim, Junbeum; Guillaume, Bertrand; Chung, Jinwook; Hwang, Yongwoo

    2015-01-01

    Graphical abstract: Critical and precious materials requirement in the wind energy system in the EU 27 by 2020. - Highlights: • The critical and precious materials consumption were calculated in wind energy system in the EU 27. • The future requirement of critical and precious materials was estimated in the EU 27 by 2020. • Fluorspar, silver, magnesium, indium, gold and tantalum are the mainly used and required materials. • This research approach could be applied to other industrial sectors as well as other renewable technology. - Abstract: Critical materials as well as rare earth elements and precious metals such as platinum, gold and silver are used significantly for computer hard disk drives, mobile phones, hybrid electric vehicles, batteries, renewable energy system and many other applications. It is therefore important to quantify and estimate both current stocks and flows of such materials, as well as future requirement for industries and economies. In this study, which is focused on wind energy system in the European Union (EU) 27, the current consumption and future requirement of critical and precious materials were calculated and estimated using the wind power production dataset from ecoinvent and data from National Renewable Energy Action Plan (NREAP). It is shown that fluorspar has been the most consumed material to date, and will probably be the most required material in the future. Among other critical and valuable materials, the main materials used for current wind energy system are silver, magnesium, indium, gold and tantalum. These materials will also be required significantly by 2020 for the wind energy system in the EU 27. It is argued that these results should be connected to the future energy and material policy and management

  3. Hydrogen energy and fuel cells. A vision of our future

    International Nuclear Information System (INIS)

    2003-01-01

    Hydrogen and fuel cells are seen by many as key solutions for the 21 century, enabling clean efficient production of power and heat from a range of primary energy sources. The High Level Group for Hydrogen and Fuel Cells Technologies was initiated in October 2002 by the Vice President of the European Commission, Loyola de Palacio, Commissioner for Energy and Transport, and Mr Philippe Busquin, Commissioner for Research. The group was invited to formulate a collective vision on the contribution that hydrogen and fuel cells could make to the realisation of sustainable energy systems in future. The report highlights the need for strategic planning and increased effort on research, development and deployment of hydrogen and fuel cell technologies. It also makes wide-ranging recommendations for a more structured approach to European Energy policy and research, for education and training, and for developing political and public awareness. Foremost amongst its recommendations is the establishment of a European Hydrogen and Fuel Cell Technology Partnership and Advisory Council to guide the process. (author)

  4. Hydrogen energy and fuel cells. A vision of our future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Hydrogen and fuel cells are seen by many as key solutions for the 21 century, enabling clean efficient production of power and heat from a range of primary energy sources. The High Level Group for Hydrogen and Fuel Cells Technologies was initiated in October 2002 by the Vice President of the European Commission, Loyola de Palacio, Commissioner for Energy and Transport, and Mr Philippe Busquin, Commissioner for Research. The group was invited to formulate a collective vision on the contribution that hydrogen and fuel cells could make to the realisation of sustainable energy systems in future. The report highlights the need for strategic planning and increased effort on research, development and deployment of hydrogen and fuel cell technologies. It also makes wide-ranging recommendations for a more structured approach to European Energy policy and research, for education and training, and for developing political and public awareness. Foremost amongst its recommendations is the establishment of a European Hydrogen and Fuel Cell Technology Partnership and Advisory Council to guide the process. (author)

  5. Coal and nuclear power: Illinois' energy future

    International Nuclear Information System (INIS)

    1982-01-01

    This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations

  6. Energy as form giver: conservation technologies in architecture's future

    Energy Technology Data Exchange (ETDEWEB)

    Vosbeck, R R

    1981-07-01

    The need to conserve energy has changed architecture, which now has distinct energy-conscious designs and a new design vocabulary. Future designs will consider how energy affects buildings and minimize the impact in siting and landscaping decisions. Existing buildings must also be accommodated. No building performance standards exist yet that allow architects to be creative, although architects are working more closely with engineers and builders. Earth-sheltering designs will have to overcome psychological barriers, but the opportunities to preserve open space and views will improve their acceptability. The American Institute of Archiects will assume leadership in this area, but it will not take over all the research programs abandoned by the Reagan administration. Future housing will be more compact, grouped, and closely integrated. (DCK)

  7. Globalization of the energy sector: Environmental challenges and options for future actions

    Energy Technology Data Exchange (ETDEWEB)

    Benavides, Pablo

    1998-12-01

    This publication relates to environmental challenges of the energy sector and options for future action. Following themes are discussed: Globalisation of the energy sector; environmental challenges; the challenge of climate change; options for future action

  8. The Mineral Question: How Energy and Technology Will Determine the Future of Mining

    International Nuclear Information System (INIS)

    Bardi, Ugo

    2013-01-01

    Almost 150 years after that Jevons (1866) published his paper “The Coal Question” a debate on mineral depletion has been ongoing between two main schools of thought: one that sees depletion as an important problem for the near future and another that sees technology and human ingenuity as making depletion only a problem for the remote future. Today, however, we have created intellectual tools that permit us to frame the problem on the basis of physical factors, in particular on the basis of thermodynamics. The present paper examines the problem of mineral depletion from a broad viewpoint, with a specific view on the role of energy in the mining and production processes. The conclusion is that energy is a fundamental factor in determining how long we can expect the supply of mineral resources to last at the present prices and production levels. The rapid depletion of our main energy resources, fossil fuels, is creating a serious supply problem that is already being felt in terms of high prices of all mineral commodities. Technology can mitigate the problem, but not solve it. In a non-remote future, the world’s industrial system will have to undergo fundamental changes in order to adapt to a reduced supply of mineral commodities.

  9. Nuclear systems of the future. Stakes, R and D strategy, and international cooperation; Les systemes nucleaires du futur. Enjeux, strategie de recherche et developpement, et cooperation internationale

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    As demonstrated by prospective studies, nuclear energy will represent a decisive contribution in the future energy mix. The long-term strategy of development of nuclear energy requires to foresee a new generation of nuclear systems, named generation 4. The goal of these new systems is to optimize the use of nuclear fuels, to minimize the generation of wastes and to enlarge the field of applications of nuclear energy to other applications like: hydrogen and synthetic fuels generation, heat generation for the industry etc. This document presents the French R and D strategy on nuclear systems of 4. generation that has been approved by the public authorities. This strategy follows three axes: a priority research on fast neutron systems with fuel recycle (sodium fast reactors (SFR) and gas fast reactors (GFR)), a research on key-technologies for the supply of very high temperature heat (very high temperature reactor (VHTR), fast and thermal neutron reactors, and water decomposition processes), and a continuation of researches on PWR reactors improvement. An integral recycling of all actinides in fast neutron reactors requires the development of new fuel reprocessing and fuel re-fabrication processes. A reference scenario for the progressive renewal of French nuclear facilities foresees the simultaneous development of fast neutron systems and the start-up of a new spent fuel reprocessing plant. France in involved in the development of the SFR, GFR and VHTR systems thanks to its participation to the Generation 4 international forum and to bilateral cooperation with other big nuclear partners like Russia and China. One of the main stakes of the French nuclear industry is to be able to invest in the R and D of future nuclear systems in order to valorize the experience gained so far in sodium FBR systems and in fuel cycle processes. (J.S.)

  10. Modelling the energy future of Switzerland after the phase out of nuclear power plants

    Science.gov (United States)

    Diaz, Paula; Van Vliet, Oscar

    2015-04-01

    In September 2013, the Swiss Federal Office of Energy (SFOE) published the final report of the proposed measures in the context of the Energy Strategy 2050 (ES2050). The ES2050 draws an energy scenario where the nuclear must be substituted by alternative sources. This implies a fundamental change in the energy system that has already been questioned by experts, e.g. [Piot, 2014]. Therefore, we must analyse in depth the technical implications of change in the Swiss energy mix from a robust baseload power such as nuclear, to an electricity mix where intermittent sources account for higher rates. Accomplishing the ES2050 imply difficult challenges, since nowadays nuclear power is the second most consumed energy source in Switzerland. According to the SFOE, nuclear accounts for a 23.3% of the gross production, only surpassed by crude oil products (43.3%). Hydropower is the third source more consumed, representing approximately the half of the nuclear (12.2%). Considering that Switzerland has almost reached the maximum of its hydropower capacity, renewables are more likely to be the alternative when the nuclear phase out takes place. Hence, solar and wind power will play an important role in the future Swiss energy mix, even though currently new renewables account for only 1.9% of the gross energy consumption. In this study we look for realistic and efficient combinations of energy resources to substitute nuclear power. Energy modelling is a powerful tool to design an energy system with high energy security that avoids problems of intermittency [Mathiesen & Lund, 2009]. In Switzerland, energy modelling has been used by the government [Abt et. al., 2012] and also has significant relevance in academia [Mathys, 2012]. Nevertheless, we detected a gap in the study of the security in energy scenarios [Busser, 2013]. This study examines the future electricity production of Switzerland using Calliope, a multi-scale energy systems model, developed at Imperial College, London and

  11. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    International Nuclear Information System (INIS)

    Dixon, B.W.; Piet, S.J.

    2004-01-01

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository. There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected

  12. Second Strategic Energy Review. Securing our Energy Future

    International Nuclear Information System (INIS)

    2008-11-01

    Europe has agreed a forward-looking political agenda to achieve its core energy objectives of sustainability, competitiveness and security of supply. This agenda means substantial change in Europe's energy system over the next years, with public authorities, energy regulators, infrastructure operators, the energy industry and citizens all actively involved. It means choices and investments during a time of much change in global energy markets and international relations. The European Commission has therefore proposed a wide-ranging energy package which gives a new boost to energy security in Europe, i.e. putting forward a new strategy to build up energy solidarity among Member States and a new policy on energy networks to stimulate investment in more efficient, low-carbon energy networks; proposing a Energy Security and Solidarity Action Plan to secure sustainable energy supplies in the EU and looking at the challenges that Europe will face between 2020 and 2050; adopting a package of energy efficiency proposals aims to make energy savings in key areas, such as reinforcing energy efficiency legislation on buildings and energy-using products. All relevant and related documents with regard to the Second Strategic Energy Review can be found through this site

  13. Realisable scenarios for a future electricity supply based 100% on renewable energies

    International Nuclear Information System (INIS)

    Czisch, G.; Giebel, G.

    2007-01-01

    In view of the resource and climate problems, it seems obvious that we must transform our energy system into one using only renewable energies. But questions arise how such a system should be structured, which techniques should be used and, of course, how costly it might be. These questions were the focus of a study which investigated the cost optimum of a future renewable electricity supply for Europe and its closer Asian and African neighbourhood. The resulting scenarios are based on a broad data basis of the electricity consumption and for renewable energies. A linear optimisation determines the best system configuration and temporal dispatch of all components. The outcome of the scenarios can be considered as being a scientific breakthrough since it proves that a totally renewable electricity supply is possible even with current technology and at the same time is affordable for our national economies. In the conservative base case scenario, wind power would dominate the production spread over the better wind areas within the whole supply area, connected with the demand centres via HVDC transmission. The transmission system, furthermore, powerfully integrates the existing storage hydropower to provide for backup co-equally assisted by biomass power and supported by solar thermal electricity. The main results of the different scenarios can be summarized as follows: 1) A totally renewable electricity supply for Europe and its neighbourhood is possible and affordable. 2) Electricity import from non-European neighbour countries can be a very valuable and substantial component of a future supply. 3) Smoothing effects by the use of sources at locations in different climate zones improve the security of the supply and reduce the costs. 4) A large-scale co-operation of many different countries opens up for the possibility to combine the goals of development policy and climate politics in a multilateral win-win strategy. To aid implementation, an international extension

  14. The future of nuclear energy in the enlarged European Union

    International Nuclear Information System (INIS)

    Comsa, Olivia; Mingiuc, C.; Paraschiva, M.V.

    2002-01-01

    The paper presents an analysis of the future of nuclear energy at the European level taking into account the main factors which influence its development among which the most important are: - enlargement of EU to 30 member states with different energy structure; - the increase of energy consumption; - the constant increasing of external dependence for energy which is estimated at 70% in the next 20-30 years; - liberalisation of the energy sources and supply sector; - environmental concerns, including climate change. In the Green Paper, nuclear is grouped together with coal, oil, gas and renewables as 'less than perfect' energy options and together with coal it is classed as an 'undesirable' and referred to as a 'source of energy in doubt ' which is ' tainted by the original sin of dual usage (civil and military) in the fuel cycle'. The final conclusion is 'the future of nuclear energy in Europe is uncertain'. It depends on several factors beyond energy demand; including: a solution to the problems of managing nuclear waste, the economic viability of the new generation of power stations, the safety of reactors in Eastern Europe, in particular applicant countries and policies to combat global warming. The 'essential questions' for nuclear is 'How can the community develop fusion technology and reactors for the future, reinforce nuclear safety and find a solution to the problem of nuclear waste?' There are a number of very important factors that will influence the future of nuclear energy inside the European Union. The first and foremost of these is continuing the safe operation of the existing nuclear facilities. The second is the demand for energy, in particular electricity. The third is the nuclear sector's ability to meet a share of this demand in a competitive way. If the demand materialises, there are likely to be reactors available that can further improve nuclear competitiveness while maintaining its recent excellent safety record. It will be the market that

  15. Flexible Biogas in Future Energy Systems—Sleeping Beauty for a Cheaper Power Generation

    Directory of Open Access Journals (Sweden)

    Markus Lauer

    2018-03-01

    Full Text Available The increasing proportion of intermittent renewable energies asks for further technologies for balancing demand and supply in the energy system. In contrast to other countries, Germany is characterized by a high installed capacity of dispatchable biogas plants. For this paper, we analyzed the total system costs varying biogas extension paths and modes of operation for the period of 2016–2035 by using a non-linear optimization model. We took variable costs of existing conventional power plants, as well as variable costs and capital investments in gas turbines, Li-ion batteries, and pumped-storage plants into account. Without the consideration of the costs for biogas plants, an increasing proportion of biogas plants, compared to their phase out, reduces the total system costs. Furthermore, their flexible power generation should be as flexible as possible. The lowest total system costs were calculated in an extension path with the highest rate of construction of new biogas plants. However, the highest marginal utility was assessed by a medium proportion of flexible biogas plants. In conclusion, biogas plants can be a cost-effective option to integrate intermittent renewable energies into the electricity system. The optimal extension path of biogas plants depends on the future installed capacities of conventional and renewable energies.

  16. Energy Systems Studies Program annual report, fiscal year 1976

    Energy Technology Data Exchange (ETDEWEB)

    Beller, M. (ed.)

    1976-06-01

    This is the fourth annual progress report of the Energy Systems Studies Program supported at Brookhaven National Laboratory by the Energy Research and Development Administration (ERDA), Office of the Assistant Administrator for Planning and Analysis. The program is coordinated under the designation of a National Center for Analysis of Energy Systems (NCAES). Five working groups with specific program responsibilities are: policy analysis, economic analysis, biomedical and environmental assessment, technology assessment, and energy data and models. Future scenarios of the implementation of groups of technologies and new resources are developed. The socio-economic and environmental consequences are analyzed in detail and impact analyses are performed. Progress during FY 1976 is summarized in the following areas: energy system model development; energy-economic model development; technology assessments and support; economic analyses; and energy model data base activities. The program plan for FY 1977 is presented. (MCW)

  17. Low Temperature District Heating for Future Energy Systems

    DEFF Research Database (Denmark)

    Schmidt, Dietrich; Kallert, Anna; Blesl, Markus

    2017-01-01

    of the building stock. Low temperature district heating (LTDH) can contribute significantly to a more efficient use of energy resources as well as better integration of renewable energy (e.g. geothermal or solar heat), and surplus heat (e.g. industrial waste heat) into the heating sector. LTDH offers prospects......The building sector is responsible for more than one third of the final energy consumption of societies and produces the largest amount of greenhouse gas emissions of all sectors. This is due to the utilisation of combustion processes of mainly fossil fuels to satisfy the heating demand...... for both the demand side (community building structure) and the supply side (network properties or energy sources). Especially in connection with buildings that demand only low temperatures for space heating. The utilisation of lower temperatures reduces losses in pipelines and can increase the overall...

  18. Energy in Latin America: Present and future

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Johnny N; Sheffield, John W [University of Missouri-Rolla (United States)

    1997-07-01

    The primary focus of this paper is on the analysis of the current situation of energy production and consumption in the region as a whole, to examine the determinants of energy supply and demand growth, and to forecast the future growth of energy production, consumption, and balances. Since the growth of oil demand in Latin American countries themselves began to accelerate in the early 1990s, the lack of investment and development and the consequence shrinking base of Latin America's energy exports may pose serious challenges to North America, where dependence on the Middle Eastern oil and gas is growing. This paper attempts to present different scenarios and strategies to tackle the problem of Latin America's future net energy supply. [Spanish] El enfoque principal de este articulo es sobre la base de la situacion actual de la produccion y consumo de energia en la region como un todo, para examinar las determinantes del suministro de energia y el crecimiento de la demanda y la prediccion del crecimiento futuro de la produccion de energia, consumo y balances. Desde el crecimiento de la demanda del petroleo, en los paises latinoamericanos, ellos mismos empezaron a acelerar a principios de los 90s, la falta de inversion y desarrollo y la consecuencia del encogimiento de la base de las exportaciones de energia de Latinoamerica podrian imponer serios retos a Norte America, en donde la dependencia del petroleo y del gas del Medio-Oeste esta creciendo. Este articulo intenta presentar diferentes escenarios y estrategias para atacar el problema del suministro neto de energia de Latinoamerica.

  19. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    International Nuclear Information System (INIS)

    Brent W. Dixon; Steven J. Piet

    2004-01-01

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository (63,000 MTiHM commercial, 7,000 MT non-commercial). There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected. The first step in understanding the need for different spent fuel management approaches is to understand the size of potential spent fuel inventories. A full range of potential futures for domestic commercial nuclear energy is considered. These energy futures are as follows: 1. Existing License Completion - Based on existing spent fuel inventories plus extrapolation of future plant-by-plant discharges until the end of each operating license, including known license extensions. 2. Extended License Completion - Based on existing spent fuel inventories plus a plant-by-plant extrapolation of future discharges assuming on all operating plants having one 20-year extension. 3. Continuing Level Energy Generation - Based on extension of the current ∼100 GWe installed commercial base and average spent fuel discharge of 2100 MT/yr through the year 2100. 4. Continuing Market Share Generation - Based on a 1.8% compounded growth of the electricity market through the year 2100, matched by growing nuclear capacity and associated spent fuel discharge. 5. Growing Market Share Generation - Extension of current nuclear capacity and associated spent fuel discharge through 2100 with 3.2% growth representing 1.5% market growth (all energy, not just electricity) and 1.7% share growth. Share growth results in

  20. The Future of Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    Kubik, Michelle [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2006-01-01

    A comprehensive assessment of enhanced, or engineered, geothermal systems was carried out by an 18-member panel assembled by the Massachusetts Institute of Technology (MIT) to evaluate the potential of geothermal energy becoming a major energy source for the United States.

  1. Power Electronics – Key Technology for Renewable Energy Systems – Status and Future

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Yang, Yongheng; Ma, Ke

    2013-01-01

    play an essential role. Using highly efficient power electronics in power generation, power transmission/ distribution and end-user application, together with advanced control solutions, can pave the way for renewable energies. In view of this, some of the most emerging renewable energies, e.g. wind......The energy paradigms in many countries (e.g. Germany and Denmark) have experienced a significant change from fossil-based resources to clean renewables in the past few decades. The scenario of highly penetrated renewables is going to be further enhanced. This requires that the production......, distribution and use of the energy should be as technological efficient as possible and incentives to save energy at the end-user should also be streng-thened. In order to realize the transition smoothly and effectively, energy conversion systems, currently based on power electronics technology, will again...

  2. Synergies in the Asian energy system: Climate change, energy security, energy access and air pollution

    International Nuclear Information System (INIS)

    Vliet, Oscar van; Krey, Volker; McCollum, David; Pachauri, Shonali; Nagai, Yu; Rao, Shilpa; Riahi, Keywan

    2012-01-01

    We use the MESSAGE model to examine multiple dimensions of sustainable development for three Asian regions in a set of scenarios developed for the Asian Modelling Exercise. Using climate change mitigation as a starting point for the analysis, we focus on the interaction of climate and energy with technology choice, energy security, energy access, and air pollution, which often have higher policy priority than climate change. Stringent climate policies drive the future energy supply in Asia from being dominated by coal and oil to a more diversified system based mostly on natural gas, coal with CCS, nuclear and renewable energy. The increase in diversity helps to improve the energy security of individual countries and regions. Combining air pollution control policies and universal energy access policies with climate policy can further help to reduce both outdoor and indoor air pollution related health impacts. Investments into the energy system must double by 2030 to achieve stringent climate goals, but are largely offset by lower costs for O and M and air pollution abatement. Strong focus on end-use efficiency also helps lowering overall total costs and allows for limiting or excluding supply side technologies from the mitigation portfolio. Costs of additional energy access policies and measures are a small fraction of total energy system costs. - Highlights: ► Half of added investments in energy offset by lower costs for O and M and air pollution. ► Costs for achieving universal energy access much smaller than energy system costs. ► Combined emissions and access policies further reduce air pollution impacts on health. ► Strong focus on end-use efficiency allows for more flexibility on energy sources. ► Stringent climate policy can improve energy security of Asian regions.

  3. Achievement report for fiscal 1981 on Sunshine Program-entrusted research and development. Research on hydrogen energy total system; 1981 nendo suiso energy total system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    In this research, studies are conducted relative to the time point, form, and magnitude of the introduction of hydrogen into Japan's total energy system. The research aims to construct a hydrogen energy total system consisting of hydrogen energy subsystems to be available in the future and to clearly define the stage at which transfer to the target system will be carried out. In the research for fiscal 1981, studies continue about the feasibility of hydrogen as automobile and aviation fuels and as a material for use in chemical engineering, about conversion into each other of hydrogen and various synthetic fuels and electric power with which hydrogen will have to compete in the domain into which it will be supplied, and about technologies of their utilization for comparison between such energies in the search for their interchangeability. Surveys are conducted on technical data about local energies. The Yakushima island is chosen, for instance, and a conceptual hydrogen energy base is constructed there and the cost for the construction is estimated. At the last part, the feasibility of the introduction of hydrogen into Japan's energy system in the future is discussed for assessment. (NEDO)

  4. Political electricity: What future for nuclear energy

    International Nuclear Information System (INIS)

    Price, T.

    1993-01-01

    Political Electricity first reviews the history of nuclear power development in nine countries (USA, France, Japan, UK, West Germany, Sweden, Italy, Switzerland, Australia). Second the book analyses major issues shaping the future of the industry: nuclear power economincs, nuclear hazards, alternative energy economics, and greenhouse gas constraints

  5. Energy System Analysis of Large-Scale Integration of Wind Power

    International Nuclear Information System (INIS)

    Lund, Henrik

    2003-11-01

    The paper presents the results of two research projects conducted by Aalborg University and financed by the Danish Energy Research Programme. Both projects include the development of models and system analysis with focus on large-scale integration of wind power into different energy systems. Market reactions and ability to exploit exchange on the international market for electricity by locating exports in hours of high prices are included in the analyses. This paper focuses on results which are valid for energy systems in general. The paper presents the ability of different energy systems and regulation strategies to integrate wind power, The ability is expressed by three factors: One factor is the degree of electricity excess production caused by fluctuations in wind and CHP heat demands. The other factor is the ability to utilise wind power to reduce CO 2 emission in the system. And the third factor is the ability to benefit from exchange of electricity on the market. Energy systems and regulation strategies are analysed in the range of a wind power input from 0 to 100% of the electricity demand. Based on the Danish energy system, in which 50 per cent of the electricity demand is produced in CHP, a number of future energy systems with CO 2 reduction potentials are analysed, i.e. systems with more CHP, systems using electricity for transportation (battery or hydrogen vehicles) and systems with fuel-cell technologies. For the present and such potential future energy systems different regulation strategies have been analysed, i.e. the inclusion of small CHP plants into the regulation task of electricity balancing and grid stability and investments in electric heating, heat pumps and heat storage capacity. Also the potential of energy management has been analysed. The results of the analyses make it possible to compare short-term and long-term potentials of different strategies of large-scale integration of wind power

  6. Energy for the future. New solutions - made in Germany

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    Today we are once again in the middle of a new industrial and energy technology revolution. From a technology point of view, it is even a huge positive, as it opens up new markets for new and more energy and natural efficient solutions. Under this aspect, the paper under considerations consists of the following contributions: (a) From grassroots movement to political power; (b) Constructive experimentation; (c) Degrees for a green future (German universities offer a wide variety of courses in renewable energy); (d) Climbing the green career ladder (Diverse career opportunities in the renewable energy sector); (e) Natural power plants: Energy you can count on (German researchers successfully focus on the sun's energy); (f) Concentrated energy from the ocean (Dynamic development of wind energy in Germany); (g) Powerful waves and extraordinary treasures (German water experts are in demand all over the world); (h) Designer diesel and deep heat (Germany leads the fields in biofuels); (i) Sending the right signals (Climate protection as an opportunity for change); (k) Car today, bike tomorrow (Environmental psychologist Ellen Matthies); (l) The secret lies under the Bonnet (Hybrid technology paves the way for ''clean'' buses and trains); (m) Pioneering the ''silent'' car (Researchers put their foot on the accelerator for electromobility); (n) The school of the future (Students at RWTH Aachen University design an energy project for the classroom).

  7. Entropy, pumped-storage and energy system finance

    Science.gov (United States)

    Karakatsanis, Georgios

    2015-04-01

    Pumped-storage holds a key role for integrating renewable energy units with non-renewable fuel plants into large-scale energy systems of electricity output. An emerging issue is the development of financial engineering models with physical basis to systematically fund energy system efficiency improvements across its operation. A fundamental physically-based economic concept is the Scarcity Rent; which concerns the pricing of a natural resource's scarcity. Specifically, the scarcity rent comprises a fraction of a depleting resource's full price and accumulates to fund its more efficient future use. In an integrated energy system, scarcity rents derive from various resources and can be deposited to a pooled fund to finance the energy system's overall efficiency increase; allowing it to benefit from economies of scale. With pumped-storage incorporated to the system, water upgrades to a hub resource, in which the scarcity rents of all connected energy sources are denominated to. However, as available water for electricity generation or storage is also limited, a scarcity rent upon it is also imposed. It is suggested that scarcity rent generation is reducible to three (3) main factors, incorporating uncertainty: (1) water's natural renewability, (2) the energy system's intermittent components and (3) base-load prediction deviations from actual loads. For that purpose, the concept of entropy is used in order to measure the energy system's overall uncertainty; hence pumped-storage intensity requirements and generated water scarcity rents. Keywords: pumped-storage, integration, energy systems, financial engineering, physical basis, Scarcity Rent, pooled fund, economies of scale, hub resource, uncertainty, entropy Acknowledgement: This research was funded by the Greek General Secretariat for Research and Technology through the research project Combined REnewable Systems for Sustainable ENergy DevelOpment (CRESSENDO; grant number 5145)

  8. Development and implementation of nuclear energy in energy system in Yugoslavia

    International Nuclear Information System (INIS)

    Ljubic, V.; Vukovic, D.; Vrhovac, S.

    1986-01-01

    All electrical demand analyses made in the last years show that besides hydro and thermal power plants in further development of electric power supply system in Yugoslavia, it will be necessary to approach successively with implementation of nuclear power plants. Quite a number of scientific and professional analyses have been done with the purpose to make the necessary conditions for the construction of nuclear power plants in the future. By reason of extra complexity and the necessity of the large amount of investment, it was concluded that the implementation, of nuclear energy in Yugoslavia has to be planned on uniform policy in development and uniform technological-technical concept. In the paper all till now finished activities in implementation of nuclear power plants in energy sector in Yugoslavia as well as planned future activities have been described. (author)

  9. Changes in the Global Energy System: Implications for China's International Strategic Environment

    Directory of Open Access Journals (Sweden)

    Zhang Chi

    2015-12-01

    Full Text Available This article briefly discusses major reasons for the slump of international oil prices and provides a prediction for the future development of international oil prices, before analyzing the three factors leading to significant changes of the global energy system, namely the eastward shift of the world energy consumption centre, the emergence of the United States as a major oil producer and the dramatic waning of the Organization of Petroleum Exporting Countries’ (OPEC influence. These factors and developments are shaping a new order of the global energy strategic landscape and exerting profound influence on China’s international strategic environment. In the foreseeable future, these changes of the global energy system would bring China more uncertainties regarding the country’s oil imports from the Middle East, more strategic pressure from the United States, while promoting China’s leverage on the global energy system and international relations.

  10. Models of Energy Saving Systems

    DEFF Research Database (Denmark)

    Nørgård, Jørgen Stig

    1999-01-01

    only. The need for including also the economic policy in the energy planning is illustrated with what is termed the efficiency pittfall. This points towards difficulties in imaging an integrated resource planning combined with a liberalized market. The three variable parameters, population, energy...... service level and technology are demonstrated as the main determinants of future energy consumption. In the concluding remarks, the main flaws of present energy policy and some visions of the future are discussed....

  11. Smart energy systems and 4th generation district heating

    DEFF Research Database (Denmark)

    Lund, Henrik; Duic, Neven; Østergaard, Poul Alberg

    2016-01-01

    scientific understanding on how we can design and implement a suitable and least-cost transformation into a sustainable energy future. The concept of Smart Energy Systems emphasizes the importance of being coherent and cross-sectoral when the best solutions are to be found and how this also calls......This editorial gives an introduction to the important relationship between Smart Energy Systems and 4th Generation District Heating and presents a number of selected papers from the 1st International Conference on the topic. All of the papers elaborate on or otherwise contribute to the theoretical...... for the active inclusion of the heating and cooling sectors. The concept of 4th Generation District Heating emphasizes that district heating and cooling are both important elements but also technologies that have to be developed further into a 4th generation version to be able to fulfil their roles in future...

  12. Towards fully renewable energy systems - Experience and trends in Denmark

    DEFF Research Database (Denmark)

    Pinson, Pierre; Mitridati, Lesia Marie-Jeanne Mariane; Ordoudis, Christos

    2017-01-01

    .g., wind and solar. Denmark is a country that invested early in wind energy, rapidly proposing very ambitious goals for the future of its energy system and global energy usage. While the case of Denmark is specific due to its limited size and good interconnections, there may still be a lot to learn from...

  13. Energy Systems Integration Facility News | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems Integration Facility News Energy Systems Integration Facility Energy Dataset A massive amount of wind data was recently made accessible online, greatly expanding the Energy's National Renewable Energy Laboratory (NREL) has completed technology validation testing for Go

  14. Renewables Global Futures Report: Great debates towards 100% renewable energy

    International Nuclear Information System (INIS)

    Teske, Sven; Fattal, Alex; Lins, Christine; Hullin, Martin; Williamson, Laura E.

    2017-01-01

    The first version of REN21's Renewables Global Futures Report (GFR) published in January 2013 identified a panorama of likely future debates related to the renewable energy transition. As a reflection of the wide range of contemporary thinking by the many experts interviewed for the report, it did not present just one vision of the future but rather a 'mosaic' of insights. Given the positive feedback in response to the first edition, a new edition has been prepared, continuing where the last one left off. The objective of this report is to gather opinions about the feasibility of a 100% renewable energy future, and the macro-economic impacts it would entail. In so doing, the report reflects on the debates of 2013, and tracks their evolution to the present time. Some remain, some have changed, some have been overtaken by progress, and new ones have arisen. They are summarised here as the Great Debates in renewable energy. The questionnaire for the survey was developed in close cooperation between the REN21 Secretariat, the Institute for Sustainable Future (ISF) of the University of Technology Sydney/Australia (UTS) and the Institute for Advanced Sustainability Studies (IASS) in Potsdam/Germany. It covered the following topics: 1. How much renewables?; 2. Power sector; 3. Heating and cooling; 4. Transport; 5. Storage; 6. Demand-side management and energy efficiency; 7. Integration of sectors; 8. Macro-economic considerations; 9. Technology and costs; 10. Policy; 11. Cities; 12. Distributed renewable energy/energy access; 13. Barriers/challenges/enablers. 114 experts were interviewed in total; the average interview time was approximately one hour. The interviews were conducted between May and October 2016. The questionnaire was also mirrored in an online version and used both by interviewers and interviewees to record the interview process. Interviewees were selected from the following regions: Africa, Australia and Oceania, China, Europe, India, Japan, Latin America

  15. Future development of the electricity systems with distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    Bayod-Rujula, Angel A. [Department of Electrical Engineering, Centro Politecnico Superior, University of Zaragoza, C/Maria de Luna, 3, 50018 Zaragoza (Spain)

    2009-03-15

    Electrical power systems have been traditionally designed taking energy from high-voltage levels, and distributing it to lower voltage level networks. There are large generation units connected to transmission networks. But in the future there will be a large number of small generators connected to the distribution networks. Efficient integration of this distributed generation requires network innovations. A development of active distribution network management, from centralised to more distributed system management, is needed. Information, communication, and control infrastructures will be needed with increasing complexity of system management. Some innovative concepts such as microgrids and virtual utilities will be presented. (author)

  16. Energy mix of the future will be a mosaic

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, G.

    2000-06-30

    Research into alternative energy sources is being undertaken by several of the large petroleum companies, including PanCanadian Petroleum, PetroCanada, Royal Dutch Shell, BP and Suncor Energy, an indication of the anticipated importance of renewables in the energy mix of the future. Clean electricity generation facilities fuelled by natural gas is one of the areas of interest to PanCanadian Petroleum and TransCanada Pipelines, while PetroCanada is diversifying into biofuels. Worldwide, Royal Dutch Shell has proclaimed renewables as one of its core businesses, budgeting US$500 million for renewable energy research over the next five years. BPSolarex, a subsidiary of British Petroleum, is well on the way to becoming the world's largest manufacturer and marketer of solar technology, while Suncor Energy of Calgary earmarked $100 million over the next five years to research in producing fuel from biomass, conversion of waste to energy, capture of carbon dioxide, and solar and wind power. The driving force behind these efforts is the significant global pressure to reduce greenhouse gas emissions and to meet the commitments undertaken at the 1997 Kyoto Climate Change Conference. Equally important is the recognition of the finite character of conventional energy sources, and the the various scenarios designed by diverse organizations to show the impact of new energy technologies on how people live and work, and how people, goods and resources move. For example, the scenarios developed by the Energy Technologies Futures Program of Natural Resources Canada are designed to provoke discussion of strategic directions and to challenge current thinking about energy consumption, efficiency and conservation. These scenarios identifiy a range of possible outcomes, depending on industry and government efforts to balance the pillars of sustainable development, i. e. the economy, society and the environment. Industry is taking an increasing interest in these projections as shown

  17. Energy mix of the future will be a mosaic

    International Nuclear Information System (INIS)

    Chandler, G.

    2000-01-01

    Research into alternative energy sources is being undertaken by several of the large petroleum companies, including PanCanadian Petroleum, PetroCanada, Royal Dutch Shell, BP and Suncor Energy, an indication of the anticipated importance of renewables in the energy mix of the future. Clean electricity generation facilities fuelled by natural gas is one of the areas of interest to PanCanadian Petroleum and TransCanada Pipelines, while PetroCanada is diversifying into biofuels. Worldwide, Royal Dutch Shell has proclaimed renewables as one of its core businesses, budgeting US$500 million for renewable energy research over the next five years. BPSolarex, a subsidiary of British Petroleum, is well on the way to becoming the world's largest manufacturer and marketer of solar technology, while Suncor Energy of Calgary earmarked $100 million over the next five years to research in producing fuel from biomass, conversion of waste to energy, capture of carbon dioxide, and solar and wind power. The driving force behind these efforts is the significant global pressure to reduce greenhouse gas emissions and to meet the commitments undertaken at the 1997 Kyoto Climate Change Conference. Equally important is the recognition of the finite character of conventional energy sources, and the the various scenarios designed by diverse organizations to show the impact of new energy technologies on how people live and work, and how people, goods and resources move. For example, the scenarios developed by the Energy Technologies Futures Program of Natural Resources Canada are designed to provoke discussion of strategic directions and to challenge current thinking about energy consumption, efficiency and conservation. These scenarios identifiy a range of possible outcomes, depending on industry and government efforts to balance the pillars of sustainable development, i. e. the economy, society and the environment. Industry is taking an increasing interest in these projections as shown by the

  18. Distributed Energy Systems: Security Implications of the Grid of the Future

    Energy Technology Data Exchange (ETDEWEB)

    Stamber, Kevin L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kelic, Andjelka [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Taylor, Robert A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Henry, Jordan M [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stamp, Jason E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-01

    Distributed Energy Resources (DER) are being added to the nation's electric grid, and as penetration of these resources increases, they have the potential to displace or offset large-scale, capital-intensive, centralized generation. Integration of DER into operation of the traditional electric grid requires automated operational control and communication of DER elements, from system measurement to control hardware and software, in conjunction with a utility's existing automated and human-directed control of other portions of the system. Implementation of DER technologies suggests a number of gaps from both a security and a policy perspective. This page intentionally left blank.

  19. Economic MPC for a linear stochastic system of energy units

    DEFF Research Database (Denmark)

    Jørgensen, John Bagterp; Sokoler, Leo Emil; Standardi, Laura

    2016-01-01

    This paper summarizes comprehensively the work in four recent PhD theses from the Technical University of Denmark related to Economic MPC of future power systems. Future power systems will consist of a large number of decentralized power producers and a large number of controllable power consumers...... in addition to stochastic power producers such as wind turbines and solar power plants. Control of such large scale systems requires new control algorithms. In this paper, we formulate the control of such a system as an Economic Model Predictive Control (MPC) problem. When the power producers and controllable...... power consumers have linear dynamics, the Economic MPC may be expressed as a linear program. We provide linear models for a number of energy units in an energy system, formulate an Economic MPC for coordination of such a system. We indicate how advances in computational MPC makes the solutions...

  20. Energy Revolution. A Sustainable Pathway to a Clean Energy Future for Europe. A European Energy Scenario for EU-25

    International Nuclear Information System (INIS)

    Teske, S.; Baker, C.

    2005-09-01

    Greenpeace and the Institute of Technical Thermodynamics, Department of Systems Analysis and Technology Assessment of the German Aerospace Center (DLR),have developed a blueprint for the EU energy supply that shows how Europe can lead the way to a sustainable pathway to a clean energy future. The Greenpeace energy revolution scenario demonstrates that phasing out nuclear power and massively reducing CO2-emissions is possible. The scenario comes close to a fossil fuels phase-out by aiming for a 80% CO2 emissions reduction by 2050.The pathway in this scenario achieves this phase-out in a relatively short time-frame without using technological options (such as 'clean coal') that are ultimately dead ends, deflecting resources from the real solutions offered by renewable energy. Whilst there are many technical options that will allow us to meet short-term EU Kyoto targets (-8% GHG by 2010), these may have limited long-term potential. The Greenpeace Energy Revolution Scenario shows that in the long run, renewable energy will be cheaper than conventional energy sources and reduce EU's dependence from world market prices from imported fossil and nuclear fuels.The rapid growth of renewable energy technologies will lead to a large investment in new technologies.This dynamic market growth will result in a shift of employment opportunities from conventional energy-related industries to new occupational fields in the renewable energy industry. Renewable energy is expected to provide about 700,000 jobs in the field of electricity generation from renewable energy sources by 2010