WorldWideScience

Sample records for future energy conversion

  1. Challenges of Iran's energy conversion agreements in future competitive market

    International Nuclear Information System (INIS)

    Sobhiyah, M.H.; Kashtiban, Y.Kh.

    2008-01-01

    Extensive need for electricity and lack of enough governmental resources for the development of related infrastructures forced the Iranian Government to invite private investors and to sign Energy Conversion Agreement (ECA) in the form of build-operate-transfer (BOT) and build-operate-own (BOO) contracts with them. Accordingly, electricity purchase would be based on a guaranteed price. Changes in some laws in 2007 caused the management of the ECAs and electricity purchase based on guaranteed price to face challenges. Shortening the commercial operation period of the earlier ECAs and signing some new short-term ECAs were the steps taken by the authorities to resolve the problems. By shortening the ECAs' commercial operation period, it is likely to cause serious problems concerning the payments of the project companies, because of shortages in the government's financial resources. The findings of the present viewpoint suggest signing of new long-term contracts (20 years long) in the form of a combinational agreement for buying the produced electricity with a guaranteed price (in the first 5 years) and supplying it in the competitive power market (for the following years) would be a better way to reduce the problems

  2. Food waste-to-energy conversion technologies: current status and future directions.

    Science.gov (United States)

    Pham, Thi Phuong Thuy; Kaushik, Rajni; Parshetti, Ganesh K; Mahmood, Russell; Balasubramanian, Rajasekhar

    2015-04-01

    Food waste represents a significantly fraction of municipal solid waste. Proper management and recycling of huge volumes of food waste are required to reduce its environmental burdens and to minimize risks to human health. Food waste is indeed an untapped resource with great potential for energy production. Utilization of food waste for energy conversion currently represents a challenge due to various reasons. These include its inherent heterogeneously variable compositions, high moisture contents and low calorific value, which constitute an impediment for the development of robust, large scale, and efficient industrial processes. Although a considerable amount of research has been carried out on the conversion of food waste to renewable energy, there is a lack of comprehensive and systematic reviews of the published literature. The present review synthesizes the current knowledge available in the use of technologies for food-waste-to-energy conversion involving biological (e.g. anaerobic digestion and fermentation), thermal and thermochemical technologies (e.g. incineration, pyrolysis, gasification and hydrothermal oxidation). The competitive advantages of these technologies as well as the challenges associated with them are discussed. In addition, the future directions for more effective utilization of food waste for renewable energy generation are suggested from an interdisciplinary perspective. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Direct Conversion of Energy.

    Science.gov (United States)

    Corliss, William R.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Direct energy conversion involves energy transformation without moving parts. The concepts of direct and dynamic energy conversion plus the laws governing energy conversion are investigated. Among the topics…

  4. Elements of energy conversion

    CERN Document Server

    Russell, Charles R

    2013-01-01

    Elements of Energy Conversion brings together scattered information on the subject of energy conversion and presents it in terms of the fundamental thermodynamics that apply to energy conversion by any process. Emphasis is given to the development of the theory of heat engines because these are and will remain most important power sources. Descriptive material is then presented to provide elementary information on all important energy conversion devices. The book contains 10 chapters and opens with a discussion of forms of energy, energy sources and storage, and energy conversion. This is foll

  5. Microbial Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Merry [American Society for Microbiology (ASM), Washington, DC (United States); Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2006-10-01

    The American Academy of Microbiology convened a colloquium March 10-12, 2006, in San Francisco, California, to discuss the production of energy fuels by microbial conversions. The status of research into various microbial energy technologies, the advantages and disadvantages of each of these approaches, research needs in the field, and education and training issues were examined, with the goal of identifying routes for producing biofuels that would both decrease the need for fossil fuels and reduce greenhouse gas emissions. Currently, the choices for providing energy are limited. Policy makers and the research community must begin to pursue a broader array of potential energy technologies. A diverse energy portfolio that includes an assortment of microbial energy choices will allow communities and consumers to select the best energy solution for their own particular needs. Funding agencies and governments alike need to prepare for future energy needs by investing both in the microbial energy technologies that work today and in the untested technologies that will serve the world’s needs tomorrow. More mature bioprocesses, such as ethanol production from starchy materials and methane from waste digestors, will find applications in the short term. However, innovative techniques for liquid fuel or biohydrogen production are among the longer term possibilities that should also be vigorously explored, starting now. Microorganisms can help meet human energy needs in any of a number of ways. In their most obvious role in energy conversion, microorganisms can generate fuels, including ethanol, hydrogen, methane, lipids, and butanol, which can be burned to produce energy. Alternatively, bacteria can be put to use in microbial fuel cells, where they carry out the direct conversion of biomass into electricity. Microorganisms may also be used some day to make oil and natural gas technologies more efficient by sequestering carbon or by assisting in the recovery of oil and

  6. Energy conversion alternatives study

    Science.gov (United States)

    Shure, L. T.

    1979-01-01

    Comparison of coal based energy systems is given. Study identifies and compares various advanced energy conversion systems using coal or coal derived fuels for baselaoad electric power generation. Energy Conversion Alternatives Study (ECAS) reports provede government, industry, and general public with technically consistent basis for comparison of system's options of interest for fossilfired electric-utility application.

  7. Energy conversion statics

    CERN Document Server

    Messerle, H K; Declaris, Nicholas

    2013-01-01

    Energy Conversion Statics deals with equilibrium situations and processes linking equilibrium states. A development of the basic theory of energy conversion statics and its applications is presented. In the applications the emphasis is on processes involving electrical energy. The text commences by introducing the general concept of energy with a survey of primary and secondary energy forms, their availability, and use. The second chapter presents the basic laws of energy conversion. Four postulates defining the overall range of applicability of the general theory are set out, demonstrating th

  8. Energy futures

    International Nuclear Information System (INIS)

    Treat, J.E.

    1990-01-01

    This book provides fifteen of the futures industry's leading authorities with broader background in both theory and practice of energy futures trading in this updated text. The authors review the history of the futures market and the fundamentals of trading, hedging, and technical analysis; then they update you with the newest trends in energy futures trading - natural gas futures, options, regulations, and new information services. The appendices outline examples of possible contracts and their construction

  9. Solar energy conversion systems

    CERN Document Server

    Brownson, Jeffrey R S

    2013-01-01

    Solar energy conversion requires a different mind-set from traditional energy engineering in order to assess distribution, scales of use, systems design, predictive economic models for fluctuating solar resources, and planning to address transient cycles and social adoption. Solar Energy Conversion Systems examines solar energy conversion as an integrative design process, applying systems thinking methods to a solid knowledge base for creators of solar energy systems. This approach permits different levels of access for the emerging broad audience of scientists, engineers, architects, planners

  10. Challenges of Iran's energy conversion agreements in future competitive market

    Energy Technology Data Exchange (ETDEWEB)

    Sobhiyah, M.H.; Kashtiban, Y.Kh. [Project Management Department, Tarbiat Modares University, Jalale Ale-Ahmad Avenue, Tehran (Iran)

    2008-08-15

    Extensive need for electricity and lack of enough governmental resources for the development of related infrastructures forced the Iranian Government to invite private investors and to sign Energy Conversion Agreement (ECA) in the form of build-operate-transfer (BOT) and build-operate-own (BOO) contracts with them. Accordingly, electricity purchase would be based on a guaranteed price. Changes in some laws in 2007 caused the management of the ECAs and electricity purchase based on guaranteed price to face challenges. Shortening the commercial operation period of the earlier ECAs and signing some new short-term ECAs were the steps taken by the authorities to resolve the problems. By shortening the ECAs' commercial operation period, it is likely to cause serious problems concerning the payments of the project companies, because of shortages in the government's financial resources. The findings of the present viewpoint suggest signing of new long-term contracts (20 years long) in the form of a combinational agreement for buying the produced electricity with a guaranteed price (in the first 5 years) and supplying it in the competitive power market (for the following years) would be a better way to reduce the problems. (author)

  11. Evolution of energy conversion plants

    International Nuclear Information System (INIS)

    Osnaghi, C.

    2001-01-01

    The paper concerns the evolution and the future development of energy conversion plants and puts into evidence the great importance of the scientific and technological improvement in machines design, in order to optimize the use of energy resources and to improve ambient compatibility [it

  12. Status and future opportunities for conversion of synthesis gas to liquid energy fuels: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mills, G. (Delaware Univ., Newark, DE (United States). Center for Catalytic Science and Technology)

    1993-05-01

    The manufacture of liquid energy fuels from syngas (a mixture of H[sub 2] and CO, usually containing CO[sub 2]) is of growing importance and enormous potential because: (1) Abundant US supplies of coal, gas, and biomass can be used to provide the needed syngas. (2) The liquid fuels produced, oxygenates or hydrocarbons, can help lessen environmental pollution. Indeed, oxygenates are required to a significant extent by the Clean Air Act Amendments (CAAA) of 1990. (3) Such liquid synfuels make possible high engine efficiencies because they have high octane or cetane ratings. (4) There is new, significantly improved technology for converting syngas to liquid fuels and promising opportunities for further improvements. This is the subject of this report. The purpose of this report is to provide an account and evaluative assessment of advances in the technology for producing liquid energy fuels from syngas and to suggest opportunities for future research deemed promising for practical processes. Much of the improved technology for selective synthesis of desired fuels from syngas has resulted from advances in catalytic chemistry. However, novel process engineering has been particularly important recently, utilizing known catalysts in new configurations to create new catalytic processes. This report is an update of the 1988 study Catalysts for Fuels from Syngas: New Directions for Research (Mills 1988), which is included as Appendix A. Technology for manufacture of syngas is not part of this study. The manufacture of liquid synfuels is capital intensive. Thus, in evaluating advances in fuels technology, focus is on the potential for improved economics, particularly on lowering plant investment costs. A second important criteria is the potential for environmental benefits. The discussion is concerned with two types of hydrocarbon fuels and three types of oxygenate fuels that can be synthesized from syngas. Seven alternative reaction pathways are involved.

  13. Electrochemical solar energy conversion

    International Nuclear Information System (INIS)

    Gerischer, H.

    1991-01-01

    The principles of solar energy conversion in photoelectrochemical cells are briefly reviewed. Cells for the generation of electric power and for energy storage in form of electrochemical energy are described. These systems are compared with solid state photovoltaic devices, and the inherent difficulties for the operation of the electrochemical systems are analyzed. (author). 28 refs, 10 figs

  14. Photovoltaic solar energy conversion

    CERN Document Server

    Bauer, Gottfried H

    2015-01-01

    This concise primer on photovoltaic solar energy conversion invites readers to reflect on the conversion of solar light into energy at the most fundamental level and encourages newcomers to the field to help find meaningful answers on how photovoltaic solar energy conversion can work (better), eventually contributing to its ongoing advancement. The book is based on lectures given to graduate students in the Physics Department at the University of Oldenburg over the last two decades, yet also provides an easy-to-follow introduction for doctoral and postdoctoral students from related disciplines such as the materials sciences and electrical engineering. Inspired by classic textbooks in the field, it reflects the author’s own ideas on how to understand, visualize and eventually teach the microscopic physical mechanisms and effects, while keeping the text as concise as possible so as to introduce interested readers to the field and balancing essential knowledge with open questions.

  15. Ocean wave energy conversion

    CERN Document Server

    McCormick, Michael E

    2007-01-01

    This volume will prove of vital interest to those studying the use of renewable resources. Scientists, engineers, and inventors will find it a valuable review of ocean wave mechanics as well as an introduction to wave energy conversion. It presents physical and mathematical descriptions of the nine generic wave energy conversion techniques, along with their uses and performance characteristics.Author Michael E. McCormick is the Corbin A. McNeill Professor of Naval Engineering at the U.S. Naval Academy. In addition to his timely and significant coverage of possible environmental effects associa

  16. Magnetohydrodynamic energy conversion

    International Nuclear Information System (INIS)

    Rosa, R.J.

    1987-01-01

    The object of this book is to present a review of the basic principles and practical aspects of magnetohydrodynamic (MHD) energy conversion. The author has tried to give qualitative semiphysical arguments where possible for the benefit of the reader who is unfamiliar with plasma physics. The aim of MHD energy conversion is to apply to a specific practical goal a part of what has become a vast area of science called plasma physics. The author has attempted to note in the text where a broader view might be fruitful and to give appropriate references

  17. Energy Futures

    DEFF Research Database (Denmark)

    Davies, Sarah Rachael; Selin, Cynthia

    2012-01-01

    foresight and public and stakeholder engagement are used to reflect on?and direct?the impacts of new technology. In this essay we draw on our experience of anticipatory governance, in the shape of the ?NanoFutures? project on energy futures, to present a reflexive analysis of engagement and deliberation. We...... draw out five tensions of the practice of deliberation on energy technologies. Through tracing the lineages of these dilemmas, we discuss some of the implications of these tensions for the practice of civic engagement and deliberation in a set of questions for this community of practitioner-scholars....

  18. Future mission opportunities and requirements for advanced space photovoltaic energy conversion technology

    Science.gov (United States)

    Flood, Dennis J.

    1990-01-01

    The variety of potential future missions under consideration by NASA will impose a broad range of requirements on space solar arrays, and mandates the development of new solar cells which can offer a wide range of capabilities to mission planners. Major advances in performance have recently been achieved at several laboratories in a variety of solar cell types. Many of those recent advances are reviewed, the areas are examined where possible improvements are yet to be made, and the requirements are discussed that must be met by advanced solar cell if they are to be used in space. The solar cells of interest include single and multiple junction cells which are fabricated from single crystal, polycrystalline and amorphous materials. Single crystal cells on foreign substrates, thin film single crystal cells on superstrates, and multiple junction cells which are either mechanically stacked, monolithically grown, or hybrid structures incorporating both techniques are discussed. Advanced concentrator array technology for space applications is described, and the status of thin film, flexible solar array blanket technology is reported.

  19. Topological insulator materials and nanostructures for future electronics, spintronics and energy conversion

    International Nuclear Information System (INIS)

    Kantser, Valeriu

    2011-01-01

    Two fundamental electrons attributes in materials and nanostructures - charge and spin - determine their electronic properties. The processing of information in conventional electronic devices is based only on the charge of the electrons. Spin electronics, or spintronics, uses the spin of electrons, as well as their charge, to process information. Metals, semiconductors and insulators are the basic materials that constitute the components of electronic devices, and these have been transforming all aspects of society for over a century. In contrast, magnetic metals, half-metals, magnetic semiconductors, dilute magnetic semiconductors and magnetic insulators are the materials that will form the basis for spintronic devices. Materials with topological band structure attributes and having a zero-energy band gap surface states are a special class of these materials that exhibit some fascinating and superior electronic properties compared to conventional materials allowing to combine both charge and spin functionalities. This article reviews a range of topological insulator materials and nanostructures with tunable surface states, focusing on nanolayered and nanowire like structures. These materials and nanostructures all have intriguing physical properties and numerous potential practical applications in spintronics, electronics, optics and sensors.

  20. Wind energy conversion system

    Science.gov (United States)

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  1. Solar energy conversion

    CERN Document Server

    Likhtenshtein, Gertz I

    2012-01-01

    Finally filling a gap in the literature for a text that also adopts the chemist?s view of this hot topic, Prof Likhtenshtein, an experienced author and internationally renowned scientist, considers different physical and engineering aspects in solar energy conversion. From theory to real-life systems, he shows exactly which chemical reactions take place when converting light energy, providing an overview of the chemical perspective from fundamentals to molecular harvesting systems and solar cells. This essential guide will thus help researchers in academia and industry better understa

  2. Energies of the future

    International Nuclear Information System (INIS)

    2005-12-01

    This document takes stock on the researches concerning the energies of the future. The hydrogen and the fuel cells take the main part with also the new fuels. Some researches programs are detailed as the costs decrease of the hydrogen engines, the design of an hydrogen production reactor from ethanol or the conversion of 95% of ethanol in gaseous hydrogen. (A.L.B.)

  3. Advanced medium-voltage bidirectional dc-dc conversion systems for future electric energy delivery and management systems

    Science.gov (United States)

    Fan, Haifeng

    2011-12-01

    The distributed renewable energy generation and utilization are constantly growing, and are expected to be integrated with the conventional grid. The growing pressure for innovative solutions will demand power electronics to take an even larger role in future electric energy delivery and management systems, since power electronics are required for the conversion and control of electric energy by most dispersed generation systems Furthermore, power electronics systems can provide additional intelligent energy management, grid stability and power quality capabilities. Medium-voltage isolated dc-dc converter will become one of the key interfaces for grid components with moderate power ratings. To address the demand of medium voltage (MV) and high power capability for future electric energy delivery and management systems, the power electronics community and industry have been reacting in two different ways: developing semiconductor technology or directly connecting devices in series/parallel to reach higher nominal voltages and currents while maintaining conventional converter topologies; and by developing new converter topologies with traditional semiconductor technology, known as multilevel converters or modular converters. The modular approach uses the well-known, mature, and cheaper power semiconductor devices by adopting new converter topologies. The main advantages of the modular approach include: significant improvement in reliability by introducing desired level of redundancy; standardization of components leading to reduction in manufacturing cost and time; power systems can be easily reconfigured to support varying input-output specifications; and possibly higher efficiency and power density of the overall system. Input-series output-parallel (ISOP) modular configuration is a good choice to realize MV to low voltage (LV) conversion for utility application. However, challenges still remain. First of all, for the high-frequency MV utility application, the low

  4. Thermodynamics and energy conversion

    CERN Document Server

    Struchtrup, Henning

    2014-01-01

    This textbook gives a thorough treatment of engineering thermodynamics with applications to classical and modern energy conversion devices.   Some emphasis lies on the description of irreversible processes, such as friction, heat transfer and mixing, and the evaluation of the related work losses. Better use of resources requires high efficiencies, therefore the reduction of irreversible losses should be seen as one of the main goals of a thermal engineer. This book provides the necessary tools.   Topics include: car and aircraft engines,  including Otto, Diesel and Atkinson cycles, by-pass turbofan engines, ramjet and scramjet;  steam and gas power plants, including advanced regenerative systems, solar tower, and compressed air energy storage; mixing and separation, including reverse osmosis, osmotic powerplants, and carbon sequestration; phase equilibrium and chemical equilibrium, distillation, chemical reactors, combustion processes, and fuel cells; the microscopic definition of entropy.    The book i...

  5. Complete biocycle for solar energy conversion, storage, fuel and power generation, and coal conservation for future use

    International Nuclear Information System (INIS)

    Srivastava, S.C.

    1993-01-01

    A complete carbon biocycle has been described, starting from coal in in situ condition in coal seams underground. Various steps involved are: (i) Biogasification of coal to methane, using a consortia of bacteria, has been reported. A group of bacteria degrades complex structure of coal to simpler structure. This simpler structure of coal, is then converted to methane by methanogens; (ii) Biophotolysis of methane and associated biodegradation, results in products, such as hydrogen and oxygen for use in fuel cells for power generation; (iii) Bioconversion of products so obtained is carried out to produce methanol or methane that could be used as fuel or recycled; (iv) In complete biocycle some methane is converted to biomass. In order to replace this methane, coal is converted to methane using group of bacteria, only to the extent methane has been converted to biomass; (v) The biomass so produced could be dumped underground from where coal has been gasified. Alternatively it could be burnt as fuel or else used as substitute of protein in animal food. Detailed concept of proposed technology for: (a) an alternative to conventional coal mining, (b) generation of power using products of bioconversion in fuel cell, and (c) conversation of solar energy for generation of alternative source of fuel and power, has been discussed. Possibility of developing a biofuel cell for conversion of solar energy through bioelectrochemical route has been suggested. (author). 48 refs., 3 figs

  6. Geothermal energy conversion facility

    Energy Technology Data Exchange (ETDEWEB)

    Kutscher, C.F.

    1997-12-31

    With the termination of favorable electricity generation pricing policies, the geothermal industry is exploring ways to improve the efficiency of existing plants and make them more cost-competitive with natural gas. The Geothermal Energy Conversion Facility (GECF) at NREL will allow researchers to study various means for increasing the thermodynamic efficiency of binary cycle geothermal plants. This work has received considerable support from the US geothermal industry and will be done in collaboration with industry members and utilities. The GECF is being constructed on NREL property at the top of South Table Mountain in Golden, Colorado. As shown in Figure 1, it consists of an electrically heated hot water loop that provides heating to a heater/vaporizer in which the working fluid vaporizes at supercritical or subcritical pressures as high as 700 psia. Both an air-cooled and water-cooled condenser will be available for condensing the working fluid. In order to minimize construction costs, available equipment from the similar INEL Heat Cycle Research Facility is being utilized.

  7. HYDROKINETIC ENERGY CONVERSION SYSTEMS: PROSPECTS ...

    African Journals Online (AJOL)

    eobe

    Hydrokinetic energy conversion systems utilize the kinetic energy of flowing water bodies with little or no head to generate ... generator. ... Its principle of operation is analogous to that of wind ..... Crisis-solar and wind power systems, 2009,.

  8. Ocean energy conversion - A reality

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.

    -depth analysis of application and achievements of OTEC, tidal energy, impact of astronomical forces on tide, prospects of tidal power plants, wave energy conversion and its mathematical approach for both linear and non-linear waves, economic viability, problems...

  9. Direct conversion of fusion energy

    International Nuclear Information System (INIS)

    Johansson, Markus

    2003-03-01

    Deuterium and tritium are expected to be used as fuel in the first fusion reactors. Energy is released as kinetic energy of ions and neutrons, when deuterium reacts with tritium. One way to convert the kinetic energy to electrical energy, is to let the ions and neutrons hit the reactor wall and convert the heat that is caused by the particle bombardment to electrical energy with ordinary thermal conversion. If the kinetic energy of the ions instead is converted directly to electrical energy, a higher efficiency of the energy conversion is possible. The majority of the fusion energy is released as kinetic energy of neutrons, when deuterium reacts with tritium. Fusion reactions such as the D-D reactions, the D- 3 He reaction and the p- 11 B reaction, where a larger part of the fusion energy becomes kinetic energy of charged particles, appears therefore more suitable for direct conversion. Since they have lower reactivity than the D-T reaction, they need a larger βB 2 0 to give sufficiently high fusion power density. Because of this, the fusion configurations spherical torus (ST) and field-reversed configuration (FRC), where high β values are possible, appear interesting. Rosenbluth and Hinton come to the conclusion that efficient direct conversion isn't possible in closed field line systems and that open geometries, which facilitate direct conversion, provide inadequate confinement for D- 3 He. It is confirmed in this study that it doesn't seem possible to achieve as high direct conversion efficiency in closed systems as in open systems. ST and FRC fusion power plants that utilize direct conversion seem however interesting. Calculations with the help of Maple indicate that the reactor parameters needed for a D-D ST and a D 3 He ST hopefully are possible to achieve. The best energy conversion option for a D-D or D 3 He ST appears to be direct electrodynamic conversion (DEC) together with ordinary thermal conversion or liquid metal MHD conversion (LMMHD). For a D

  10. Direct conversion of fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Markus

    2003-03-01

    Deuterium and tritium are expected to be used as fuel in the first fusion reactors. Energy is released as kinetic energy of ions and neutrons, when deuterium reacts with tritium. One way to convert the kinetic energy to electrical energy, is to let the ions and neutrons hit the reactor wall and convert the heat that is caused by the particle bombardment to electrical energy with ordinary thermal conversion. If the kinetic energy of the ions instead is converted directly to electrical energy, a higher efficiency of the energy conversion is possible. The majority of the fusion energy is released as kinetic energy of neutrons, when deuterium reacts with tritium. Fusion reactions such as the D-D reactions, the D-{sup 3}He reaction and the p-{sup 11}B reaction, where a larger part of the fusion energy becomes kinetic energy of charged particles, appears therefore more suitable for direct conversion. Since they have lower reactivity than the D-T reaction, they need a larger {beta}B{sup 2}{sub 0} to give sufficiently high fusion power density. Because of this, the fusion configurations spherical torus (ST) and field-reversed configuration (FRC), where high {beta} values are possible, appear interesting. Rosenbluth and Hinton come to the conclusion that efficient direct conversion isn't possible in closed field line systems and that open geometries, which facilitate direct conversion, provide inadequate confinement for D-{sup 3}He. It is confirmed in this study that it doesn't seem possible to achieve as high direct conversion efficiency in closed systems as in open systems. ST and FRC fusion power plants that utilize direct conversion seem however interesting. Calculations with the help of Maple indicate that the reactor parameters needed for a D-D ST and a D{sub 3} He ST hopefully are possible to achieve. The best energy conversion option for a D-D or D{sub 3} He ST appears to be direct electrodynamic conversion (DEC) together with ordinary thermal conversion

  11. Future energy, exotic energy

    Energy Technology Data Exchange (ETDEWEB)

    Dumon, R

    1974-01-01

    The Detroit Energy Conference has highlighted the declining oil reserves, estimated worldwide at 95 billion tons vs. an annual rate of consumption of over 3 billion tons. The present problem is one of price; also, petroleum seems too valuable to be simply burned. New sources must come into action before 1985. The most abundant is coal, with 600 billion tons of easily recoverable reserves; then comes oil shale with a potential of 400 billion tons of oil. Exploitation at the rate of 55 go 140 million tons/yr is planned in the U.S. after 1985. More exotic and impossible to estimate quantitatively are such sources as wind, tides, and the thermal energy of the oceans--these are probably far in the future. The same is true of solar and geothermal energy in large amounts. The only other realistic energy source is nuclear energy: the European Economic Community looks forward to covering 60% of its energy needs from nuclear energy in the year 2000. Even today, from 400 mw upward, a nuclear generating plant is more economical than a fossil fueled one. Conservation will become the byword, and profound changes in society are to be expected.

  12. Ocean thermal-energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Ford, G; Niblett, C; Walker, L

    1983-03-01

    Ocean thermal-energy conversion (OTEC) is a novel 'alternative' energy technology that has created much interest in a number of countries; namely, the USA, Japan, France, Sweden, Holland, India and most recently, the UK. In particular, the first three of these have had programmes to develop the required technology. However, most interest has been centred in the USA, where the current hiatus in Federal funding provides a timely opportunity to assess progress. This paper offers a survey of the prevailing position there; outlining the outstanding technical and associated problems, and likely future developments. Non-USA programmes are only mentioned to contrast them with the American position. At present, it does not appear that OTEC plants will be commercially viable on a widespread basis even in the tropics. This is particularly true of the larger plants (400 MWe, MWe = megawatts of electrical energy, the final output of a power station) towards which the American programme is ultimately geared. There does seem to be a strong possibility that small OTEC plants, around 40 MWe or less, can be commercial in certain circumstances. This would be possible when one or, preferably, more of the following conditions are met: (i) where a land-based rather than 'at sea' plant is possible, (ii) where alternative energy supplies are at a premium, i.e. islands or regions without indigenous energy supplies, and (iii) where conditions are such that an OTEC plant could operate in conjunction with either or both an aquaculture or desalination plant.

  13. Photosynthetic energy conversion efficiency: setting a baseline for gauging future improvements in important food and biofuel crops.

    Science.gov (United States)

    Slattery, Rebecca A; Ort, Donald R

    2015-06-01

    The conversion efficiency (ε(c)) of absorbed radiation into biomass (MJ of dry matter per MJ of absorbed photosynthetically active radiation) is a component of yield potential that has been estimated at less than half the theoretical maximum. Various strategies have been proposed to improve ε(c), but a statistical analysis to establish baseline ε(c) levels across different crop functional types is lacking. Data from 164 published ε(c) studies conducted in relatively unstressed growth conditions were used to determine the means, greatest contributors to variation, and genetic trends in ε(c )across important food and biofuel crop species. ε(c) was greatest in biofuel crops (0.049-0.066), followed by C4 food crops (0.046-0.049), C3 nonlegumes (0.036-0.041), and finally C3 legumes (0.028-0.035). Despite confining our analysis to relatively unstressed growth conditions, total incident solar radiation and average growing season temperature most often accounted for the largest portion of ε(c) variability. Genetic improvements in ε(c), when present, were less than 0.7% per year, revealing the unrealized potential of improving ε(c) as a promising contributing strategy to meet projected future agricultural demand. © 2015 American Society of Plant Biologists. All Rights Reserved.

  14. Energy conversion at dipolarization fronts

    Science.gov (United States)

    Khotyaintsev, Yu. V.; Divin, A.; Vaivads, A.; André, M.; Markidis, S.

    2017-02-01

    We use multispacecraft observations by Cluster in the Earth's magnetotail and 3-D particle-in-cell simulations to investigate conversion of electromagnetic energy at the front of a fast plasma jet. We find that the major energy conversion is happening in the Earth (laboratory) frame, where the electromagnetic energy is being transferred from the electromagnetic field to particles. This process operates in a region with size of the order several ion inertial lengths across the jet front, and the primary contribution to E·j is coming from the motional electric field and the ion current. In the frame of the front we find fluctuating energy conversion with localized loads and generators at sub-ion scales which are primarily related to the lower hybrid drift instability excited at the front; however, these provide relatively small net energy conversion.

  15. Wind Energy Conversion Systems Technology and Trends

    CERN Document Server

    2012-01-01

    Wind Energy Conversion System covers the technological progress of wind energy conversion systems, along with potential future trends. It includes recently developed wind energy conversion systems such as multi-converter operation of variable-speed wind generators, lightning protection schemes, voltage flicker mitigation and prediction schemes for advanced control of wind generators. Modeling and control strategies of variable speed wind generators are discussed, together with the frequency converter topologies suitable for grid integration. Wind Energy Conversion System also describes offshore farm technologies including multi-terminal topology and space-based wind observation schemes, as well as both AC and DC based wind farm topologies. The stability and reliability of wind farms are discussed, and grid integration issues are examined in the context of the most recent industry guidelines. Wind power smoothing, one of the big challenges for transmission system operators, is a particular focus. Fault ride th...

  16. Environmental effects of energy conversion

    International Nuclear Information System (INIS)

    Hansmeyer, K.H.; Fortak, H.; Knoepp, H.; Lindackers, K.H.; Schafhausen, F.; Schoedel, J.P.

    1984-01-01

    The article presents an analysis of energy conversion systems by the ''Council of Environmental Experts'' in order to correct the erroneous assumption that small energy conversion systems will also be small-scale and negligible emitters of pollutants. The additional pollution caused by Neurath power plant is considered to be low, at least in its immediate vicinity, owing to the implementation of the most recent technical developments. The environmental effects of energy conversion processes are discussed, including the waste heat problem and processes for water-cooling of power plants. General aspects of a new concept of energy taxation are discussed which is to reduce energy consumption. The problem of radioactive waste is discussed from spent fuel storage and reprocessing to the decommissioning of older power plants. The author points out that also new fossil-fuel technologies will pollute the environment. (orig.) [de

  17. Flow energy conversion system

    International Nuclear Information System (INIS)

    Sargsyan, R.A.

    2011-01-01

    A cost-effective hydropower system called here Flow Energy Converter was developed, patented, manufactured and tested for water pumping, electricity generation and other purposes especially useful for the rural communities. The system consists of water-driven turbine with plane-surface blades, power transmission means and pump and/or generator. Working sample of the Flow Energy Converter was designed and manufactured at the Institute of Radio Physics and Electronics

  18. Solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Kistler, J.

    1981-08-05

    The photovoltaic generator is the central part of all solar systems. Flat solar cells embedded in glass are preferred which can also convert diffuse solar radiation. Hybrid modules generate electrical and thermal energy simultaneously. With decreasing generator cost, the cost of energy storage becomes critical. Development activities are mostly directed on the development of stationary lead accumulator batteries and the electronic charging and protective systems. The block diagram of the current converter is presented, and applications of solar systems in domestic heating engineering, transportation technology, communications, and hydrological engineering. Solar villages are recommended which, established in bilateral cooperation with Third World authorities, may demonstrate the advantages of solar energy in heat and electric power generation.

  19. Solar energy conversion. Chemical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Likhtenshtein, Gertz [Ben-Gurion Univ. of the Negev, Beersheba (Israel). Dept. of Chemistry

    2012-07-01

    Finally filling a gap in the literature for a text that also adopts the chemist's view of this hot topic, Professor Likhtenshtein, an experienced author and internationally renowned scientist, considers different physical and engineering aspects in solar energy conversion. From theory to real-life systems, he shows exactly which chemical reactions take place when converting light energy, providing an overview of the chemical perspective from fundamentals to molecular harvesting systems and solar cells. This essential guide will thus help researchers in academia and industry better understand solar energy conversion, and so ultimately help this promising, multibillion euro/dollar field to expand. (orig.)

  20. Energy conversion and utilization technologies

    International Nuclear Information System (INIS)

    1988-01-01

    The DOE Energy Conversion and Utilization Technologies (ECUT) Program continues its efforts to expand the generic knowledge base in emerging technological areas that support energy conservation initiatives by both the DOE end-use sector programs and US private industry. ECUT addresses specific problems associated with the efficiency limits and capabilities to use alternative fuels in energy conversion and end-use. Research is aimed at understanding and improving techniques, processes, and materials that push the thermodynamic efficiency of energy conversion and usage beyond the state of the art. Research programs cover the following areas: combustion, thermal sciences, materials, catalysis and biocatalysis, and tribology. Six sections describe the status of direct contact heat exchange; the ECUT biocatalysis project; a computerized tribology information system; ceramic surface modification; simulation of internal combustion engine processes; and materials-by-design. These six sections have been indexed separately for inclusion on the database. (CK)

  1. Photovoltaic conversion of laser energy

    Science.gov (United States)

    Stirn, R. J.

    1976-01-01

    The Schottky barrier photovoltaic converter is suggested as an alternative to the p/n junction photovoltaic devices for the conversion of laser energy to electrical energy. The structure, current, output, and voltage output of the Schottky device are summarized. The more advanced concepts of the multilayer Schottky barrier cell and the AMOS solar cell are briefly considered.

  2. Energy Conversion and Storage Program

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  3. Autonomous renewable energy conversion system

    Energy Technology Data Exchange (ETDEWEB)

    Valtchev, V. [Technical University of Varna (Bulgaria). Dept. of Electronics; Bossche, A. van den; Ghijselen, J.; Melkebeek, J. [University of Gent (Belgium). Dept. of Electrical Power Engineering

    2000-02-01

    This paper briefly reviews the need for renewable power generation and describes a medium-power Autonomous Renewable Energy Conversion System (ARECS), integrating conversion of wind and solar energy sources. The objectives of the paper are to extract maximum power from the proposed wind energy conversion scheme and to transfer this power and the power derived by the photovoltaic system in a high efficiency way to a local isolated load. The wind energy conversion operates at variable shaft speed yielding an improved annual energy production over constant speed systems. An induction generator (IG) has been used because of its reduced cost, robustness, absence of separate DC source for excitation, easier dismounting and maintenance. The maximum energy transfer of the wind energy is assured by a simple and reliable control strategy adjusting the stator frequency of the IG so that the power drawn is equal to the peak power production of the wind turbine at any wind speed. The presented control strategy also provides an optimal efficiency operation of the IG by applying a quadratic dependence between the IG terminal voltage and frequency V {approx} f{sup 2}. For improving the total system efficiency, high efficiency converters have been designed and implemented. The modular principle of the proposed DC/DC conversion provides the possibility for modifying the system structure depending on different conditions. The configuration of the presented ARECS and the implementation of the proposed control algorithm for optimal power transfer are fully discussed. The stability and dynamic performance as well as the different operation modes of the proposed control and the operation of the converters are illustrated and verified on an experimental prototype. (author)

  4. Solar Energy - An Option for Future Energy Production

    Science.gov (United States)

    Glaser, Peter E.

    1972-01-01

    Discusses the exponential growth of energy consumption and future consequences. Possible methods of converting solar energy to power such as direct energy conversion, focusing collectors, selective rediation absorbers, ocean thermal gradient, and space solar power are considered. (DF)

  5. Algal Energy Conversion and Capture

    Science.gov (United States)

    Hazendonk, P.

    2015-12-01

    We address the potential for energy conversions and capture for: energy generation; reduction in energy use; reduction in greenhouse gas emissions; remediation of water and air pollution; protection and enhancement of soil fertility. These processes have the potential to sequester carbon at scales that may have global impact. Energy conversion and capture strategies evaluate energy use and production from agriculture, urban areas and industries, and apply existing and emerging technologies to reduce and recapture energy embedded in waste products. The basis of biocrude production from Micro-algal feedstocks: 1) The nutrients from the liquid fraction of waste streams are concentrated and fed into photo bioreactors (essentially large vessels in which microalgae are grown) along with CO2 from flue gasses from down stream processes. 2) The algae are processed to remove high value products such as proteins and beta-carotenes. The advantage of algae feedstocks is the high biomass productivity is 30-50 times that of land based crops and the remaining biomass contains minimal components that are difficult to convert to biocrude. 3) The remaining biomass undergoes hydrothermal liquefaction to produces biocrude and biochar. The flue gasses of this process can be used to produce electricity (fuel cell) and subsequently fed back into the photobioreactor. The thermal energy required for this process is small, hence readily obtained from solar-thermal sources, and furthermore no drying or preprocessing is required keeping the energy overhead extremely small. 4) The biocrude can be upgraded and refined as conventional crude oil, creating a range of liquid fuels. In principle this process can be applied on the farm scale to the municipal scale. Overall, our primary food production is too dependent on fossil fuels. Energy conversion and capture can make food production sustainable.

  6. The Carbon Nanotube Fibers for Optoelectric Conversion and Energy Storage

    Directory of Open Access Journals (Sweden)

    Yongfeng Luo

    2014-01-01

    Full Text Available This review summarizes recent studies on carbon nanotube (CNT fibers for weavable device of optoelectric conversion and energy storage. The intrinsic properties of individual CNTs make the CNT fibers ideal candidates for optoelectric conversion and energy storage. Many potential applications such as solar cell, supercapacitor, and lithium ion battery have been envisaged. The recent advancement in CNT fibers for optoelectric conversion and energy storage and the current challenge including low energy conversion efficiency and low stability and future direction of the energy fiber have been finally summarized in this paper.

  7. Energy conversion using hydrogen PEM fuel cells

    International Nuclear Information System (INIS)

    Stoenescu, D.; Patularu, L.; Culcer, M.; Lazar, R.; Mirica, D.; Varlam, M.; Carcadea, E.; Stefanescu, I.

    2004-01-01

    It is well known that hydrogen is the most promising solution of future energy, both for long and medium term strategies. Hydrogen can be produced using many primary sources (naphthalene, natural gas, methanol, coal, biomass), solar cells power, etc. It can be burned or chemically reacted having a high yield of energy conversion and is a non-polluted fuel. This paper presents the results obtained by ICSI Rm. Valcea in an experimental-demonstrative conversion energy system consisting in a catalytic methane reforming plant for hydrogen production and three synthesis gas purification units in order to get pure hydrogen with a CO level lower than 10 ppm that finally feeds a hydrogen fuel stock. (authors)

  8. Future of energy

    International Nuclear Information System (INIS)

    Wright, John

    2005-01-01

    Australia has one of the most cost-effective energy conversion and delivery systems in the world. We are blessed with abundant, high-quality fossil fuels consisting mainly of coal, gas and (diminishing) oil resources. However, this past blessing is also a future curse as this fuel mix, coupled with limits to hydroelectric growth and no nuclear generation capacity, has endowed Australia with one of the highest greenhouse gas (GHG) emissions per unit of GDP in the developed world (currently 43 per cent above the International Energy Agency average). This prompted Claude Mandil, head of the IEA, to observe: 'Environmental sustainability represent Australia's greatest energy challenge, with high and growing carbon dioxide emissions.' The challenge for Australia is how to make the massive cuts in GHG emissions required to minimise our world trade risks (which will come at a cost, and put pressure on our energy cost-effectiveness) while maintaining an internationally competitive energy sector. This challenge is exacerbated by a healthy national growth rate which will be accompanied by at least a 50 per cent growth in energy demand by 2020, with a doubling by 2050. Electricity industry projections predict an investment in new generation capacity well in excess of $30 billion to keep up with demand over the next two decades. The stark reality is that if we con tinue to supply and use energy the way we do now, we may as well forget about stabilising our GHG emissions from the energy sector, let alone reducing them in the future. This urgent situation presents a huge opportunity for the introduction of new and improved low-emission energy conversion technologies and demand management systems that vastly reduce GHG emissions per unit of productivity - in fact, an opportunity to transform Australia's energy sector to levels of innovation, social acceptance and environmental performance that has no precedent in this country. We have little choice other than to make a start. Are

  9. High temperature thermoelectric energy conversion

    International Nuclear Information System (INIS)

    Wood, C.

    1986-01-01

    Considerable advances were made in the late '50's and early early '60's in the theory and development of materials for high-temperature thermoelectric energy conversion. This early work culminated in a variety of materials, spanning a range of temperatures, with the product of the figure of merit, Z, and temperature, T, i.e., the dimensionless figure of merit, ZT, of the order of one. This experimental limitation appeared to be universal and led a number of investigators to explore the possibility that a ZT - also represents a theoretical limitation. It was found not to be so

  10. Energy conversion in polyelectrolyte hydrogels

    Science.gov (United States)

    Olvera de La Cruz, Monica; Erbas, Aykut; Olvera de la Cruz Team

    Energy conversion and storage have been an active field of research in nanotechnology parallel to recent interests towards renewable energy. Polyelectrolyte (PE) hydrogels have attracted considerable attention in this field due to their mechanical flexibility and stimuli-responsive properties. Ideally, when a hydrogel is deformed, applied mechanical work can be converted into electrostatic, elastic and steric-interaction energies. In this talk, we discuss the results of our extensive molecular dynamics simulations of PE hydrogels. We demonstrate that, on deformation, hydrogels adjust their deformed state predominantly by altering electrostatic interactions between their charged groups rather than excluded-volume and bond energies. This is due to the hydrogel's inherent tendency to preserve electro-neutrality in its interior, in combination with correlations imposed by backbone charges. Our findings are valid for a wide range of compression ratios and ionic strengths. The electrostatic-energy alterations that we observe in our MD simulations may induce pH or redox-potential changes inside the hydrogels. The resulting energetic difference can be harvested, for instance, analogously to a Carnot engine, or facilitated for sensor applications. Center for Bio-inspired Energy Science (CBES).

  11. 2nd Workshop on the Chemistry of Energy Conversion

    CERN Document Server

    2016-01-01

    A sustainable energy future that does not rely on fossil fuels requires the advances of new materials design and development with efficient energy conversion. However, materials development is still at its infancy. There is an imperative to develop new energy conversion strategies. In Nature, plants harness sunlight and convert them into chemical energy. The ability to mimic Nature by combining synthetic nanoscopic and molecular components to produce chemical fuels is the Holy Grail to achieve sustainable energy production.​ The Institute of Advanced Studies (IAS) and the School of Physical and Mathematical Sciences (SPMS), NTU, are jointly organizing this workshop. We aim to create dialogues among scientists in the energy conversion field, with the ultimate goal of facilitating breakthroughs in materials design for energy conversion. It will also bring the expertise on Chemistry of Energy Conversion to the door steps of the materials research community in Singapore and also provide a platform for partic...

  12. Electromagnetic wave energy conversion research

    Science.gov (United States)

    Bailey, R. L.; Callahan, P. S.

    1975-01-01

    Known electromagnetic wave absorbing structures found in nature were first studied for clues of how one might later design large area man-made radiant-electric converters. This led to the study of the electro-optics of insect dielectric antennae. Insights were achieved into how these antennae probably operate in the infrared 7-14um range. EWEC theoretical models and relevant cases were concisely formulated and justified for metal and dielectric absorber materials. Finding the electromagnetic field solutions to these models is a problem not yet solved. A rough estimate of losses in metal, solid dielectric, and hollow dielectric waveguides indicates future radiant-electric EWEC research should aim toward dielectric materials for maximum conversion efficiency. It was also found that the absorber bandwidth is a theoretical limitation on radiant-electric conversion efficiency. Ideally, the absorbers' wavelength would be centered on the irradiating spectrum and have the same bandwith as the irradiating wave. The EWEC concept appears to have a valid scientific basis, but considerable more research is needed before it is thoroughly understood, especially for the complex randomly polarized, wide band, phase incoherent spectrum of the sun. Specific recommended research areas are identified.

  13. Energy futures-2

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This book covers the proceedings of the Symposium on Energy Futures II. Topics covered include: The National Energy Strategy; The Gas and petroleum industry; energy use in the paper industry; solar energy technology; hydroelectric power; biomass/waste utilization; engine emissions testing laboratories; integrated coal gassification-combined-cycle power plants

  14. Mobile energy sharing futures

    DEFF Research Database (Denmark)

    Worgan, Paul; Knibbe, Jarrod; Plasencia, Diego Martinez

    2016-01-01

    We foresee a future where energy in our mobile devices can be shared and redistributed to suit our current task needs. Many of us are beginning to carry multiple mobile devices and we seek to re-evaluate the traditional view of a mobile device as only accepting energy. In our vision, we can...... sharing futures....

  15. Fundamentals of thermophotovoltaic energy conversion

    CERN Document Server

    Chubb, Donald L

    2007-01-01

    This is a text book presenting the fundamentals of thermophotovoltaic(TPV) energy conversion suitable for an upper undergraduate or first year graduate course. In addition it can serve as a reference or design aid for engineers developing TPV systems. Mathematica design programs for interference filters and a planar TPV system are included on a CD-Rom disk. Each chapter includes a summary and concludes with a set of problems. The first chapter presents the electromagnetic theory and radiation transfer theory necessary to calculate the optical properties of the components in a TPV optical cavity. Using a simplified model, Chapter 2 develops expressions for the maximum efficiency and power density for an ideal TPV system. The next three chapters consider the three major components in a TPV system; the emitter, filter and photovoltaic(PV) array. Chapter 3 applies the electromagnetic theory and radiation transfer theory presented in Chapter 1 in the calculation of spectral emittance. From the spectral emittance t...

  16. Optimization theory for ballistic energy conversion

    NARCIS (Netherlands)

    Xie, Yanbo; Versluis, Michel; Van Den Berg, Albert; Eijkel, Jan C.T.

    2016-01-01

    The growing demand of renewable energy stimulates the exploration of new materials and methods for clean energy. We recently demonstrated a high efficiency and power density energy conversion mechanism by using jetted charged microdroplets, termed as ballistic energy conversion. Hereby, we model and

  17. The alternative energy future

    International Nuclear Information System (INIS)

    Spitzley, H.

    1989-02-01

    The alternative energy future can be achieved only by making energy conservation programmes successful, and by fully committing to the utilization of soft energy sources. This is the perspective drawn by the author who in this book investigates the fundamentals of an ecologically and socially sound energy policy for the future. Looking at California, USA, where completely near concepts have been put to work in the energy sector since the mid-seventies, the author shows how it can be done, by rewarding energy conserving activities, using available energy sources more efficiently, developing the means for renewable energy exploitation wherever appropriate. A turn in energy policy is feasible also in West Germany, both in technical and political terms. Starting from the experience gained in the USA, the author presents an outline of options and potentials of a new energy strategy for the Federal Republic of Germany. (orig./HP) [de

  18. World Energy Future

    International Nuclear Information System (INIS)

    Forbes, A.; Van der Linde, C.; Nicola, S.

    2009-01-01

    In the section World Energy Future of this magazine two articles, two interviews and one column are presented. The article 'A green example to the world' refers briefly to the second World Future Energy Summit in Abu Dhabi, which was held from 18-21 January, 2009. The second article, 'Green Utopia in the desert' attention is paid to the Abu Dhabi government-driven Masdar Initiative. The two interviews concern an interview with BP Alternative Energy ceo Vivienne Cox, and an interview with the founder and CEO of New Energy Finance Michael Liebreich. The column ('An efficient response') focuses on the impact of the economic crisis on energy policy

  19. Tropospheric effects of energy conversion

    International Nuclear Information System (INIS)

    Derwent, R.G.

    1992-01-01

    The tropospheric concentrations of a number of trace gases are increasing due to man's activities. For some trace gases, their atmospheric life cycles are not fully understood and it is difficult to be certain about the role of man's activities. Emissions from the energy industries and energy conversion processes represent an important subset of source terms in these life cycles, along with agriculture, deforestation, cement manufacture, biomass burning, process industries and natural biospheric processes. Global Warming Potentials (GWPs) allow the tropospheric effects of a range of climate forcing trace gases to be assessed on a comparable basis. If a short term view of the commitment to global warming is adopted then the contribution from other trace gases may approach and exceed that of carbon dioxide, itself. Over longer time horizons, the long atmospheric lifetime of carbon dioxide shows through as a major influence and the contributions from the other trace gases appear to be much smaller, representing an additional 13-18% contribution on top of that from CO 2 itself

  20. NASA-OAST program in photovoltaic energy conversion

    Science.gov (United States)

    Mullin, J. P.; Flood, D. J.

    1982-01-01

    The NASA program in photovoltaic energy conversion includes research and technology development efforts on solar cells, blankets, and arrays. The overall objectives are to increase conversion efficiency, reduce mass, reduce cost, and increase operating life. The potential growth of space power requirements in the future presents a major challenge to the current state of technology in space photovoltaic systems.

  1. The future of energy

    CERN Document Server

    Towler, Brian F

    2014-01-01

    Using the principle that extracting energy from the environment always involves some type of impact on the environment, The Future of Energy discusses the sources, technologies, and tradeoffs involved in meeting the world's energy needs. A historical, scientific, and technical background set the stage for discussions on a wide range of energy sources, including conventional fossil fuels like oil, gas, and coal, as well as emerging renewable sources like solar, wind, geothermal, and biofuels. Readers will learn that there are no truly ""green"" energy sources-all energy usage involves some trad

  2. Future of US Energy

    Energy Technology Data Exchange (ETDEWEB)

    Cragg, C.; Nicola, S.; Kemfert, C.

    2009-01-15

    Barack Obama has promised to boost renewable energy sources and energy efficiency and to join the global effort to curb climate change. But he also looks upon domestic energy in terms of national security. These two priorities clash in important ways. One thing is certain: US energy policy is about to change drastically - and global energy relations along with them. In this section of the magazine two articles are dedicated to the future of energy in the USA. In between the articles is a column on the question if climate protection creates jobs.

  3. Future of US Energy

    International Nuclear Information System (INIS)

    Cragg, C.; Nicola, S.; Kemfert, C.

    2009-01-01

    Barack Obama has promised to boost renewable energy sources and energy efficiency and to join the global effort to curb climate change. But he also looks upon domestic energy in terms of national security. These two priorities clash in important ways. One thing is certain: US energy policy is about to change drastically - and global energy relations along with them. In this section of the magazine two articles are dedicated to the future of energy in the USA. In between the articles is a column on the question if climate protection creates jobs

  4. Energy Conversion Alternatives Study (ECAS)

    Science.gov (United States)

    1977-01-01

    ECAS compared various advanced energy conversion systems that can use coal or coal-derived fuels for baseload electric power generation. It was conducted in two phases. Phase 1 consisted of parametric studies. From these results, 11 concepts were selected for further study in Phase 2. For each of the Phase 2 systems and a common set of ground rules, performance, cost, environmental intrusion, and natural resource requirements were estimated. In addition, the contractors defined the state of the associated technology, identified the advances required, prepared preliminary research and development plans, and assessed other factors that would affect the implementation of each type of powerplant. The systems studied in Phase 2 include steam systems with atmospheric- and pressurized-fluidized-bed boilers; combined cycle gas turbine/steam systems with integrated gasifiers or fired by a semiclean, coal derived fuel; a potassium/steam system with a pressurized-fluidized-bed boiler; a closed-cycle gas turbine/organic system with a high-temperature, atmospheric-fluidized-bed furnace; a direct-coal-fired, open- cycle magnetohydrodynamic/steam system; and a molten-carbonate fuel cell/steam system with an integrated gasifier. The sensitivity of the results to changes in the ground rules and the impact of uncertainties in capital cost estimates were also examined.

  5. Principles of energy conversion, second edition

    International Nuclear Information System (INIS)

    Culp, A.W. Jr.

    1991-01-01

    This book is organized under the following headings: Energy classification, sources, utilization, economics and terminology; Principal fuels for energy conversion; Production of thermal energy; Fossil-fuel systems (such as steam generators, etc.); Nuclear reactor design and operation; The environmental impact of power plant operation; Production of mechanical energy; Production of electrical energy; and Energy storage

  6. Energies of the future

    International Nuclear Information System (INIS)

    Matthoefer, H.

    1977-01-01

    This paper outlines the general principles of the energy policy of the Federal Government. The main points of emphasis are stressed, and the limits of energy supply for the ever-growing demand without new options are pointed out. For the future, a reasonable extension of nuclear power is required. Solar energy and energy conservation are no alternatives. The tendency of this papar points to the 2nd amendment of the energy programme of the Federal Government that will soon be published. (UA) 891 UA [de

  7. Biomass energy: its important and future trends

    International Nuclear Information System (INIS)

    Rao, P.S.

    1997-01-01

    The development of photo-biological energy conversion systems has long-term implication from the energy, wood fibre and chemical points etc. Power generation through biomass combustion and gasification has proved to be very successful venture. The energy needs of the people in the remote, rural and even urban areas of the country can be met economically by the energy from the renewable source such as biomass. The biomass energy is full of opportunities, and future trends are emerging towards renewable energy

  8. Energy conversion and management principles and applications

    CERN Document Server

    Petrecca, Giovanni

    2014-01-01

    This book provides an overall view of energy conversion and management in industry and in buildings by following the streams of energy from the site boundaries to the end users. Written for an audience of both practitioners and faculty/students, Energy Conversion and Management: Principles and Applications presents general principles of energy conversion and energy sources, both traditional and renewable, in a broad range of facilities such as electrical substations, boiler plants, heat and power plants, electrical networks, thermal fluid distributions lines and insulations, pumps and fans, ai

  9. Advances in wind energy conversion technology

    CERN Document Server

    Sathyajith, Mathew

    2011-01-01

    The technology of generating energy from wind has significantly changed during the past five years. The book brings together all the latest aspects of wind energy conversion technology - from wind resource analysis to grid integration of generated electricity.

  10. Graphene for thermoelectronic solar energy conversion

    Science.gov (United States)

    De, Dilip K.; Olukunle, Olawole C.

    2017-08-01

    Graphene is a high temperature material which can stand temperature as high as 4600 K in vacuum. Even though its work function is high (4.6 eV) the thermionic emission current density at such temperature is very high. Graphene is a wonderful material whose work function can be engineered as desired. Kwon et al41 reported a chemical approach to reduce work function of graphene using K2CO3, Li2CO3, Rb2CO3, Cs2CO3. The work functions are reported to be 3.7 eV, 3.8 eV, 3.5 eV and 3.4 eV. Even though they did not report the high temperature tolerance of such alkali metal carbonate doped graphene, their works open a great promise for use of pure graphene and doped graphene as emitter (cathode) and collector (anode) in a solar thermionic energy converter. This paper discusses the dynamics of solar energy conversion to electrical energy using thermionic energy converter with graphene as emitter and collector. We have considered parabolic mirror concentrator to focus solar energy onto the emitter to achieve temperature around 4300 K. Our theoretical calculations and the modelling show that efficiency as high as 55% can easily be achieved if space-charge problem can be reduced and the collector can be cooled to certain proper temperature. We have discussed methods of controlling the associated space-charge problems. Richardson-Dushman equation modified by the authors have been used in this modelling. Such solar energy conversion would reduce the dependence on silicon solar panel and has great potential for future applications.

  11. World Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, A.; Van der Linde, C.; Nicola, S.

    2009-03-15

    In the section World Energy Future of this magazine two articles, two interviews and one column are presented. The article 'A green example to the world' refers briefly to the second World Future Energy Summit in Abu Dhabi, which was held from 18-21 January, 2009. The second article, 'Green Utopia in the desert' attention is paid to the Abu Dhabi government-driven Masdar Initiative. The two interviews concern an interview with BP Alternative Energy ceo Vivienne Cox, and an interview with the founder and CEO of New Energy Finance Michael Liebreich. The column ('An efficient response') focuses on the impact of the economic crisis on energy policy.

  12. Toward sustainable energy futures

    Energy Technology Data Exchange (ETDEWEB)

    Pasztor, J. (United Nations Environment Programme, Nairobi (Kenya))

    1990-01-01

    All energy systems have adverse as well as beneficial impacts on the environment. They vary in quality, quantity, in time and in space. Environmentally sensitive energy management tries to minimize the adverse impacts in an equitable manner between different groups in the most cost-effective ways. Many of the enviornmental impacts of energy continue to be externalized. Consequently, these energy systems which can externalize their impacts more easily are favoured, while others remain relatively expensive. The lack of full integration of environmental factors into energy policy and planning is the overriding problem to be resolved before a transition towards sustainable energy futures can take place. The most pressing problem in the developing countries relates to the unsustainable and inefficient use of biomass resources, while in the industrialized countries, the major energy-environment problems arise out of the continued intensive use of fossil fuel resources. Both of these resource issues have their role to play in climate change. Although there has been considerable improvement in pollution control in a number of situations, most of the adverse impacts will undoubtedly increase in the future. Population growth will lead to increased demand, and there will also be greater use of lower grade fuels. Climate change and the crisis in the biomass resource base in the developing countries are the most critical energy-environment issues to be resolved in the immediate future. In both cases, international cooperation is an essential requirement for successful resolution. 26 refs.

  13. Our future energy

    Energy Technology Data Exchange (ETDEWEB)

    2011-11-15

    The Danish Government's plan ''Our Future Energy'' seeks to create green growth and help the country convert to 100 percent renewable energy use by 2050. The Danish Government in November 2011 presented its plan for how the country can secure its energy future. Titled ''Our Future Energy'', the strategy presents specific measures for fulfilling the Government's goal of stimulating green growth. The plan is based on the previous government's Energy Strategy 2050, but raises the bar higher. The long-term goal of the plan is to implement an energy and transport network that relies solely on renewable energy sources. By 2020, the initiatives will lead to extensive reductions in energy consumption, making it possible for half of the country's electricity consumption to be covered by wind power. Coal is to be phased out of Danish power plants by 2030. And by 2035, all electricity and heating will be generated using renewable sources. (Author)

  14. The future of energy

    International Nuclear Information System (INIS)

    Romer, A.

    2001-01-01

    The article discusses not only the future of energy and resource consumption in various areas of the world, but also its development over the centuries since the industrial revolution. The present situation, with large discrepancies between the energy consumption of industrialised nations and the developing countries is examined. Social and environmental aspects are discussed and the sustainable use of the Earth's resources and the inconsistencies in this area is looked at. Rather than adopting a moralistic approach, the article appeals to man's powers of innovation and sense of responsibility in order to develop solutions to today's and future energy supply problems. The article is richly illustrated with diagrams and graphs on world energy and social statistics

  15. Direct Energy Conversion Literature Abstracts

    Science.gov (United States)

    1962-12-01

    TMMOELECTRIC 6 CONVERSION SYSTEMS. compiled by Edda 7p.. Aug.1960. (Spec. Bibl. 430) Barber. 48p., Mar. 1962. (Lit. Search 392) (Contract NAS 7-100) Covers...2865 BaranskiiP.I ............... 2905, 2945 Brogan, T.R. .............. 3322 Barber, Edda ................. . 2866 Brooklyn Polytechnic

  16. Materials in energy conversion, harvesting, and storage

    CERN Document Server

    Lu, Kathy

    2014-01-01

    First authored book to address materials' role in the quest for the next generation of energy materials Energy balance, efficiency, sustainability, and so on, are some of many facets of energy challenges covered in current research. However, there has not been a monograph that directly covers a spectrum of materials issues in the context of energy conversion, harvesting and storage. Addressing one of the most pressing problems of our time, Materials in Energy Conversion, Harvesting, and Storage illuminates the roles and performance requirements of materials in energy an

  17. Entropy fluxes, endoreversibility, and solar energy conversion

    Science.gov (United States)

    de Vos, A.; Landsberg, P. T.; Baruch, P.; Parrott, J. E.

    1993-09-01

    A formalism illustrating the conversion of radiation energy into work can be obtained in terms of energy and entropy fluxes. Whereas the Landsberg equality was derived for photothermal conversion with zero bandgap, a generalized inequality for photothermal/photovoltaic conversion with a single, but arbitrary, bandgap was deduced. This result was derived for a direct energy and entropy balance. The formalism of endoreversible dynamics was adopted in order to show the correlation with the latter approach. It was a surprising fact that the generalized Landsberg inequality was derived by optimizing some quantity W(sup *), which obtains it maximum value under short-circuit condition.

  18. Energy Conversion & Storage Program, 1993 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1994-06-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: production of new synthetic fuels; development of high-performance rechargeable batteries and fuel cells; development of high-efficiency thermochemical processes for energy conversion; characterization of complex chemical processes and chemical species; and the study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  19. Recent Progress on Integrated Energy Conversion and Storage Systems.

    Science.gov (United States)

    Luo, Bin; Ye, Delai; Wang, Lianzhou

    2017-09-01

    Over the last few decades, there has been increasing interest in the design and construction of integrated energy conversion and storage systems (IECSSs) that can simultaneously capture and store various forms of energies from nature. A large number of IECSSs have been developed with different combination of energy conversion technologies such as solar cells, mechanical generators and thermoelectric generators and energy storage devices such as rechargeable batteries and supercapacitors. This review summarizes the recent advancements to date of IECSSs based on different energy sources including solar, mechanical, thermal as well as multiple types of energies, with a special focus on the system configuration and working mechanism. With the rapid development of new energy conversion and storage technologies, innovative high performance IECSSs are of high expectation to be realised for diverse practical applications in the near future.

  20. Future energy perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Halsnaes, K.; Christensen, J.M. [Risoe National Lab., Systems Analysis Dept., Roskilde (Denmark)

    2002-10-01

    Future energy perspectives: 1) The global energy consumption will continue to grow primarily in developing countries, their share of global energy consumption will grow from approx. 35% in 1990 to 60% in 2050. 2) Policy focus will be primarily on environmental concerns in the industrial countries and on energy for development and access to energy for the poor in developing countries. 3) With global climate concerns and the implementation of the Kyoto protocol, global environment issues will have increased prominence in energy sector priorities. 4) Fossil fuel resources are on a global level still abundant and prices are expected to be relatively low in the short to medium term. 5) Energy supply security has for geopolitical reasons become an increasing concern especially in the US and the EU. 6) Significant investments are required to ensure development of new clean energy technologies for introduction in the medium to long term. 7) Market reforms are being implemented in almost all regions of the world changing both the investment and policy regimes. 8) International studies (IPCC and WEC) have analysed several alternative energy scenarios Alternative policies and priorities can lead to a wide range of different energy futures. 9) WEC middle scenario B, from 1990 to 2050; predicts growth in GDP 3.5 times and primary energy consumption 2.2 times and CO{sub 2} 1.5 times. This scenario is expecting supply to be dominated by fossil fuel (80% in 1990 and still 65% in 2050), with high share of natural gas and nuclear with slow growth in renewable energy. 10) A more radical scenario (C1) is expecting renewable energy such as biomass, solar and wind to contribute 27% in 2050; declining oil and coal; increased use of natural gas and a minor contribution from nuclear. A development path like this require significant near-term investments in technology research and development. 11) The large increase in global energy demand in the next century will require large investments

  1. Future energy perspectives

    International Nuclear Information System (INIS)

    Halsnaes, K.; Christensen, J.M.

    2002-01-01

    Future energy perspectives: 1) The global energy consumption will continue to grow primarily in developing countries, their share of global energy consumption will grow from approx. 35% in 1990 to 60% in 2050. 2) Policy focus will be primarily on environmental concerns in the industrial countries and on energy for development and access to energy for the poor in developing countries. 3) With global climate concerns and the implementation of the Kyoto protocol, global environment issues will have increased prominence in energy sector priorities. 4) Fossil fuel resources are on a global level still abundant and prices are expected to be relatively low in the short to medium term. 5) Energy supply security has for geopolitical reasons become an increasing concern especially in the US and the EU. 6) Significant investments are required to ensure development of new clean energy technologies for introduction in the medium to long term. 7) Market reforms are being implemented in almost all regions of the world changing both the investment and policy regimes. 8) International studies (IPCC and WEC) have analysed several alternative energy scenarios Alternative policies and priorities can lead to a wide range of different energy futures. 9) WEC middle scenario B, from 1990 to 2050; predicts growth in GDP 3.5 times and primary energy consumption 2.2 times and CO 2 1.5 times. This scenario is expecting supply to be dominated by fossil fuel (80% in 1990 and still 65% in 2050), with high share of natural gas and nuclear with slow growth in renewable energy. 10) A more radical scenario (C1) is expecting renewable energy such as biomass, solar and wind to contribute 27% in 2050; declining oil and coal; increased use of natural gas and a minor contribution from nuclear. A development path like this require significant near-term investments in technology research and development. 11) The large increase in global energy demand in the next century will require large investments. The

  2. Compact Energy Conversion Module, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This STTR project delivers a compact vibration-based Energy Conversion Module (ECM) that powers sensors for purposes such as structural health monitoring (SHM). NASA...

  3. Compact energy conversion module, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This STTR project delivers a compact vibration-based Energy Conversion Module (ECM) that powers sensors for purposes like structural health monitoring (SHM). NASA...

  4. NASA-OAST photovoltaic energy conversion program

    Science.gov (United States)

    Mullin, J. P.; Loria, J. C.

    1984-01-01

    The NASA program in photovoltaic energy conversion research is discussed. Solar cells, solar arrays, gallium arsenides, space station and spacecraft power supplies, and state of the art devices are discussed.

  5. Urban energy conversion and its effects

    International Nuclear Information System (INIS)

    Geiger, B.

    1981-01-01

    The extent to which the building up and energy conversion affect the quality and energy economy of living space is shown by the example of Munich. The comparison of the energy economy of various ecological systems give qualified information for assessing the thermal loading in densely inhabited areas and show the basic differences between built-up and country areas. (DG) [de

  6. Energy Conversion and Storage Requirements for Hybrid Electric Aircraft

    Science.gov (United States)

    Misra, Ajay

    2016-01-01

    Among various options for reducing greenhouse gases in future large commercial aircraft, hybrid electric option holds significant promise. In the hybrid electric aircraft concept, gas turbine engine is used in combination with an energy storage system to drive the fan that propels the aircraft, with gas turbine engine being used for certain segments of the flight cycle and energy storage system being used for other segments. The paper will provide an overview of various energy conversion and storage options for hybrid electric aircraft. Such options may include fuel cells, batteries, super capacitors, multifunctional structures with energy storage capability, thermoelectric, thermionic or a combination of any of these options. The energy conversion and storage requirements for hybrid electric aircraft will be presented. The role of materials in energy conversion and storage systems for hybrid electric aircraft will be discussed.

  7. The Energy Future.

    Science.gov (United States)

    Newman, John; Bonino, Christopher A; Trainham, James A

    2018-06-07

    The foreseeable energy future will be driven by economics of known technologies and the desire to reduce CO 2 emissions to the atmosphere. Renewable energy options are compared with each other and with the use of fossil fuels with carbon capture and sequestration (CCS). Economic analysis is used to determine the best of several alternatives. One can disagree on the detailed costs, including externalities such as climate change and air and water pollution. But the differences in capital and operating costs between known technologies are so significant that one can draw clear conclusions. Results show that renewable energy cannot compete with fossil fuels on a cost basis alone because energy is intrinsic to the molecule, except for hydroelectricity. However, fossil fuels are implicated in climate change. Using renewable energy exclusively, including transportation and electricity needs, could reduce the standard of living in the United States by 43% to 62%, which would correspond to the level in about 1970. If capture and sequester of CO 2 are implemented, the cost of using fossil fuels will increase, but they beat renewable energy handily as an economic way to produce clean energy.

  8. Electrical Systems for Wave Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Bostroem, Cecilia

    2011-07-01

    Wave energy is a renewable energy source with a large potential to contribute to the world's electricity production. There exist several technologies on how to convert the energy in the ocean waves into electric energy. The wave energy converter (WEC) presented in this thesis is based on a linear synchronous generator. The generator is placed on the seabed and driven by a point absorbing buoy on the ocean surface. Instead of having one large unit, several smaller units are interconnected to increase the total installed power. To convert and interconnect the power from the generators, marine substations are used. The marine substations are placed on the seabed and convert the fluctuating AC from the generators into an AC suitable for grid connection. The work presented in the thesis focuses on the first steps in the electric energy conversion, converting the voltage out from the generators into DC, which have an impact on the WEC's ability to absorb and produce power. The purpose has been to investigate how the generator will operate when it is subjected to different load cases and to obtain guidelines on how future systems could be improved. Offshore experiments and simulations have been done on full scale generators connected to four different loads, i.e. one linear resistive load and three different non-linear loads representing different cases for grid connected WECs. The results show that the power can be controlled and optimized by choosing a suitable system for the WEC. It is not obvious which kind of system is the most preferable, since there are many different parameters that have an impact on the system performance, such as the size of the buoy, how the generator is designed, the number of WECs, the highest allowed complexity of the system, costs and so on. Therefore, the design of the electrical system should preferably be carried out in parallel with the design of the WEC in order to achieve an efficient system

  9. Wind energy conversion 1994. Proceedings

    International Nuclear Information System (INIS)

    Elliot, G.

    1995-01-01

    At the British Wind Energy Association's 16th Annual Conference, held in Stirling, over 60 high quality papers were presented, including a session devoted to 'Wind Energy in Scotland'. Under the Non Fossil Fuel Obligation (NFFO) wind energy has experienced rapid growth in England and Wales and with Scotland now having its own 'Scottish Renewables Obligation' (SRO) the opportunity to tap one of Europe's most important renewable energy resources now exists. The main contemporary issues concerning wind farming today, namely technical, social, economic and environmental were examined in the Geoff Pontin Memorial Lecture, which focused on these aspects in the context of grid integrated wind energy development. The remaining conference themes included machine development, aerodynamics and control, small machines, fatigue and dynamics, public attitudes, noise emissions, electrical integration, resource measurement, and standards, safety and planning. (author)

  10. Synergistic energy conversion process using nuclear energy and fossil fuels

    International Nuclear Information System (INIS)

    Hori, Masao

    2007-01-01

    Because primary energies such as fossil fuels, nuclear energy and renewable energy are limited in quantity of supply, it is necessary to use available energies effectively for the increase of energy demand that is inevitable this century while keeping environment in good condition. For this purpose, an efficient synergistic energy conversion process using nuclear energy and fossil fuels together converted to energy carriers such are electricity, hydrogen, and synthetic fuels seems to be effective. Synergistic energy conversion processes containing nuclear energy were surveyed and effects of these processes on resource saving and the CO 2 emission reduction were discussed. (T.T.)

  11. Energy production, conversion, storage, conservation, and coupling

    CERN Document Server

    Demirel, Yaşar

    2012-01-01

    Understanding the sustainable use of energy in various processes is an integral part of engineering and scientific studies, which rely on a sound knowledge of energy systems. Whilst many institutions now offer degrees in energy-related programs, a comprehensive textbook, which introduces and explains sustainable energy systems and can be used across engineering and scientific fields, has been lacking. Energy: Production, Conversion, Storage, Conservation, and Coupling provides the reader with a practical understanding of these five main topic areas of energy including 130 examples and over 600 practice problems. Each chapter contains a range of supporting figures, tables, thermodynamic diagrams and charts, while the Appendix supplies the reader with all the necessary data including the steam tables. This new textbook presents a clear introduction of basic vocabulary, properties, forms, sources, and balances of energy before advancing to the main topic areas of: • Energy production and conversion in importa...

  12. The future of energy

    International Nuclear Information System (INIS)

    Rubbia, C.

    2000-01-01

    The interest of politicians, businessmen, technologists, scientists and the people at large is focused today on the problem of energy. Everybody will agree on the fact that energy is necessary for the future of mankind. But many tend to paraphrase this by saying that energy is necessary evil. No objection to the necessity: but an analysis of the motivations for regarding energy as evil reveals some Freudian undertones. This scepticism towards technology, as a solution to the rising environmental concerns, perceived as a Faustian deal, after centuries of a passionate technical endeavour deeply engraved in the conception of the world, is a curious phenomenon to say the least. All these problems and the associated concerns are serious: the inevitable growth of energy consumption under the sheer momentum of society and the very human expectations of the poor, may indeed add enough yeast to make them leaven beyond control. However, like in the case of famine, illness etc., also here science and technology should be trusted; indeed there are reasonable expectations that, combined, they will have the possibility of solving also this problem, in full accord with the economic, dynamic and technical constraints that a working system has to comply with

  13. The future of energy

    International Nuclear Information System (INIS)

    Rubbia, C.

    2001-01-01

    The interest of politicians, businessmen, technologists, scientists and the people at large is focused today on the problem of energy. Everybody will agree on the fact that energy is necessary for the future of mankind. But many tend to paraphrase this by saying that energy is necessary evil. No objection to the necessity: but an analysis of the motivations for regarding energy as evil reveals some Freudian undertones. This scepticism towards technology, as a solution to the rising environmental concerns, perceived as a Faustian deal, after centuries of a passionate technical endeavour deeply engraved in the conception of the world, is a curious phenomenon to say the least. All these problems and the associated concerns are serious: the inevitable growth of energy consumption under the sheer momentum of society and the very human expectations of the poor, may indeed add enough yeast to make them leaven beyond control. However, like in the case of famine, illness etc., also here science and technology should be trusted; indeed there are reasonable expectations that, combined, they will have the possibility of solving also this problem, in full accord with the economic, dynamic and technical constraints that a working system has to comply with

  14. The future of energy

    Energy Technology Data Exchange (ETDEWEB)

    Rubbia, C. [ENEA, Rome (Italy)

    2000-07-01

    The interest of politicians, businessmen, technologists, scientists and the people at large is focused today on the problem of energy. Everybody will agree on the fact that energy is necessary for the future of mankind. But many tend to paraphrase this by saying that energy is necessary evil. No objection to the necessity: but an analysis of the motivations for regarding energy as evil reveals some Freudian undertones. This scepticism towards technology, as a solution to the rising environmental concerns, perceived as a Faustian deal, after centuries of a passionate technical endeavour deeply engraved in the conception of the world, is a curious phenomenon to say the least. All these problems and the associated concerns are serious: the inevitable growth of energy consumption under the sheer momentum of society and the very human expectations of the poor, may indeed add enough yeast to make them leaven beyond control. However, like in the case of famine, illness etc., also here science and technology should be trusted; indeed there are reasonable expectations that, combined, they will have the possibility of solving also this problem, in full accord with the economic, dynamic and technical constraints that a working system has to comply with.

  15. Energy future 2050

    Energy Technology Data Exchange (ETDEWEB)

    Syri, S; Kainiemi, L; Riikonen, V [Aalto Univ. School of Engineering, Espoo (Finland). Dept. of Energy Technology

    2011-07-01

    The track was organized by the Department of Energy Technology, School of Engineering, at Aalto University. Energy future 2050 -track introduced participants to the global long-term challenges of achieving a sustainable energy supply. According to the Intergovernmental Panel on Climate Change (IPCC), effective climate change mitigation would require the global greenhouse gas emissions to be reduced by 50-85% from the present level by 2050. For industrialized countries, this would probably mean a practically carbon-neutral economy and energy supply, as developing countries need more possibilities for growth and probably enter stricter emission reduction commitments with some delay. In the beginning of the workshop, students were introduced to global energy scenarios and the challenge of climate change mitigation. Students worked in three groups with the following topics: How to gain public acceptance of Carbon (dioxide) Capture and Storage (CCS) ? Personal emissions trading as a tool to achieve deep emission cuts, How to get rid of fossil fuel subsidies? Nordic cases are peat use in Finland and Sweden. (orig.)

  16. Securing India's energy future

    International Nuclear Information System (INIS)

    Raghuraman, V.

    2009-01-01

    India's development aspirations are challenged by energy security and climate change considerations. The integrated energy policy clearly deliberates the need to intensify all energy options with emphasis on maximizing indigenous coal production, harnessing hydropower, increasing adoption of renewables, intensifying hydrocarbon exploration and production and anchoring nuclear power development to meet the long-term requirements. The report also emphasizes the need to secure overseas hydrocarbon and coal assets. Subsequently the National Action Plan on climate change has underscored the need to wean away from fossil fuels, the ambitious National Solar Mission is a case in point. Ultimately securing India's energy future lies in clean coal, safe nuclear and innovative solar. Coal is the key energy option in the foreseeable future. Initiatives are needed to take lead role in clean coal technologies, in-situ coal gasification, tapping coal bed methane, coal to liquids and coal to gas technologies. There is need to intensify oil exploration by laying the road-map to open acreage to unlock the hydrocarbon potential. Pursue alternate routes based on shale, methane from marginal fields. Effectively to use oil diplomacy to secure and diversify sources of supply including trans-national pipelines and engage with friendly countries to augment strategic resources. Technologies to be accessed and developed with international co-operation and financial assistance. Public-Private Partnerships, in collaborative R and D projects need to be accelerated. Nuclear share of electricity generation capacity to be increased 6 to 7% of 63000 MW by 2031-32 and further to 25% (300000 MW) capacity by 2050 is to be realized by operationalizing the country's thorium programme. Nuclear renaissance has opened up opportunities for the Indian industry to meet not only India's requirements but also participate in the global nuclear commerce; India has the potential to emerge as a manufacturing hub

  17. Electrochemistry of Nanocomposite Materials for Energy Conversion

    OpenAIRE

    Boni, Alessandro

    2016-01-01

    Energy is the most relevant technological issue that the world experiences today, and the development of efficient technologies able to store and convert energy in different forms is urgently needed. The storage of electrical energy is of major importance and electrochemical processes are particularly suited for the demanding task of an efficient inter-conversion. A potential strategy is to store electricity into the chemical bonds of electrogenerated fuels, like hydrogen and/or energy-den...

  18. Energy technology sources, systems and frontier conversion

    CERN Document Server

    Ohta, Tokio

    1994-01-01

    This book provides a concise and technical overview of energy technology: the sources of energy, energy systems and frontier conversion. As well as serving as a basic reference book for professional scientists and students of energy, it is intended for scientists and policy makers in other disciplines (including practising engineers, biologists, physicists, economists and managers in energy related industries) who need an up-to-date and authoritative guide to the field of energy technology.Energy systems and their elemental technologies are introduced and evaluated from the view point

  19. OPTIMIZATION OF AEOLIAN ENERGY CONVERSION ...

    African Journals Online (AJOL)

    30 juin 2010 ... wind energy based on a criterion optimization that must maintain specific speed of the turbine at optimum speed which corresponds to the maximum power ... ainsi que la structure et les méthodes de contrôle-commande ...

  20. Polymers for energy storage and conversion

    CERN Document Server

    Mittal, Vikas

    2013-01-01

    One of the first comprehensive books to focus on the role of polymers in the burgeoning energy materials market Polymers are increasingly finding applications in the areas of energy storage and conversion. A number of recent advances in the control of the polymer molecular structure which allows the polymer properties to be more finely tuned have led to these advances and new applications. Polymers for Energy Storage and Conversion assimilates these advances in the form of a comprehensive text that includes the synthesis and properties of a large number of polymer systems for

  1. Optical Energy Transfer and Conversion System

    Science.gov (United States)

    Hogan, Bartholomew P. (Inventor); Stone, William C. (Inventor)

    2018-01-01

    An optical energy transfer and conversion system comprising a fiber spooler and an electrical power extraction subsystem connected to the spooler with an optical waveguide. Optical energy is generated at and transferred from a base station through fiber wrapped around the spooler, and ultimately to the power extraction system at a remote mobility platform for conversion to another form of energy. The fiber spooler may reside on the remote mobility platform which may be a vehicle, or apparatus that is either self-propelled or is carried by a secondary mobility platform either on land, under the sea, in the air or in space.

  2. Synchronous generator wind energy conversion control system

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, A.L.R. [Wind Energy Group, Recife (Brazil); Lima, A.M.N.; Jacobina, C.B.; Simoes, F.J. [DEE, Campina Grande (Brazil)

    1996-12-31

    This paper presents the performance evaluation and the design of the control system of a WECS (Wind Energy Conversion System) that employs a synchronous generator based on its digital simulation. The WECS discussed in this paper is connected to the utility grid through two Pulse Width Modulated (PWM) power converters. The structure of the proposed WECS enables us to achieve high performance energy conversion by: (i) maximizing the wind energy capture and (ii) minimizing the reactive power flowing between the grid and the synchronous generator. 8 refs., 19 figs.

  3. Power production with direct energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Rochau, G.; Lipinski, R.; Polansky, G.; Seidel, D.; Slutz, S. [Sandia National Labs., Albuquerque, NM (United States); Morrow, C. [Morrow Consulting, Albuquerque, NM (United States); Anghaie, S. [Florida Univ., Gainesville, FL (United States); Beller, D. [Los Alamos National Lab., NM (United States); Brown, L. [General Atomic Co., San Diego, CA (United States); Parish, T. [Texas A and M Univ., College Station, TX (United States). Dept. of Nuclear Engineering

    2001-07-01

    The direct energy conversion (DEC) project has as its main goal the development of a direct energy conversion process suitable for commercial development. We define direct energy conversion as any fission process that returns usable energy without using an intermediate thermal process. During the first phase of study, nine different concepts were investigated and 3 were selected: 1) quasi-spherical magnetically insulated fission electrode cell, 2) fission fragment magnetic collimator, and 3) gaseous core reactor with MHD generator. Selection was based on efficiency and feasibility. The realization of their potential requires an investment in both technically and commercially oriented research. The DEC project has a process in place to take one of these concepts forward and to outline the road map for further development. (A.C.)

  4. Power production with direct energy conversion

    International Nuclear Information System (INIS)

    Rochau, G.; Lipinski, R.; Polansky, G.; Seidel, D.; Slutz, S.; Morrow, C.; Anghaie, S.; Beller, D.; Brown, L.; Parish, T.

    2001-01-01

    The direct energy conversion (DEC) project has as its main goal the development of a direct energy conversion process suitable for commercial development. We define direct energy conversion as any fission process that returns usable energy without using an intermediate thermal process. During the first phase of study, nine different concepts were investigated and 3 were selected: 1) quasi-spherical magnetically insulated fission electrode cell, 2) fission fragment magnetic collimator, and 3) gaseous core reactor with MHD generator. Selection was based on efficiency and feasibility. The realization of their potential requires an investment in both technically and commercially oriented research. The DEC project has a process in place to take one of these concepts forward and to outline the road map for further development. (A.C.)

  5. Ocean thermal energy conversion: Perspective and status

    Science.gov (United States)

    Thomas, Anthony; Hillis, David L.

    The use of the thermal gradient between the warm surface waters and the deep cold waters of tropical oceans was first proposed by J. A. d'Arsonval in 1881 and tried unsuccessfully by George Claude in 1930. Interest in Ocean Thermal Energy Conversion (OTEC) and other renewable energy sources revived in the 1970s as a result of oil embargoes. At that time, the emphasis was on large floating plants miles from shore producing 250 to 400 MW for maintained grids. When the problems of such plants became better understood and the price of oil reversed its upward trend, the emphasis shifted to smaller (10 MW) shore based plants on tropical islands. Such plants would be especially attractive if they produce fresh water as a by-product. During the past 15 years, major progress has been made in converting OTEC unknowns into knowns. Mini-OTEC proved the closed cycle concept. Cost effective heat exchanger concepts were identified. An effective biofouling control technique was discovered. Aluminum was determined to be promising for OTEC heat exchangers. Heat transfer augmentation techniques were identified, which promised a reduction on heat exchanger size and cost. Fresh water was produced by an OTEC open cycle flash evaporator, using the heat energy in the seawater itself. The current R and D emphasis is on the design and construction of a test facility to demonstrate the technical feasibility of the open cycle process. The 10 MW shore-based, closed cycle plant can be built with today's technology; with the incorporation of a flash evaporator, it will produce fresh water as well as electrical power; both valuable commodities on many tropical islands. The open cycle process has unknowns that require solution before the technical feasibility can be demonstrated. The economic viability of either cycle depends on reducing the capital costs of OTEC plants and on future trends in the costs of conventional energy sources.

  6. Frontiers of Energy Storage and Conversion

    Directory of Open Access Journals (Sweden)

    Jiajun Chen

    2014-09-01

    Full Text Available This special issue of Inorganics features a Forum for novel materials and approaches for electrochemical energy storage and conversion. Diminishing non-renewable fossil fuels and the resulting unattainability of environment have made us search new sustainable energy resources and develop technology for efficient utilization of such resources. Green energy sources, such as solar, hydroelectric, thermal and wind energy are partially replacing fossil fuels as means to generate power. Inorganic (solid state materials are key in the development of advanced devices for the efficient storage and conversion of energy. The grand challenge facing the inorganic chemist is to discover, design rationally and utilize advanced technological materials made from earth-abound elements for these energy storage and conversion processes. Recent spectacular progress in inorganic materials synthesis, characterization, and computational screening has greatly advanced this field, which drove us to edit this issue to provide a window to view the development of this field for the community. This special issue comprises research articles, which highlights some of the most recent advances in new materials for energy storage and conversion. [...

  7. US energy conversion and use characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Imhoff, C.H.; Liberman, A.; Ashton, W.B.

    1982-02-01

    The long-range goal of the Energy Conversion and Utilization Technology (ECUT) Program is to enhance energy productivity in all energy-use sectors by supporting research on improved efficiency and fuel switching capability in the conversion and utilization of energy. Regardless of the deficiencies of current information, a summary of the best available energy-use information is needed now to support current ECUT program planning. This document is the initial draft of this type of summary and serves as a data book that will present current and periodically updated descriptions of the following aspects of energy use: gross US energy consumption in each major energy-use sector; energy consumption by fuel type in each sector; energy efficiency of major equipment/processes; and inventories, replacement rates, and use patterns for major energy-using capital stocks. These data will help the ECUT program staff perform two vital planning functions: determine areas in which research to improve energy productivity might provide significant energy savings or fuel switching and estimate the actual effect that specific research projects may have on energy productivity and conservation. Descriptions of the data sources and examples of the uses of the different types of data are provided in Section 2. The energy-use information is presented in the last four sections; Section 3 contains general, national consumption data; and Sections 4 through 6 contain residential/commercial, industrial, and transportation consumption data, respectively. (MCW)

  8. Energy conversion in natural and artificial photosynthesis.

    Science.gov (United States)

    McConnell, Iain; Li, Gonghu; Brudvig, Gary W

    2010-05-28

    Modern civilization is dependent upon fossil fuels, a nonrenewable energy source originally provided by the storage of solar energy. Fossil-fuel dependence has severe consequences, including energy security issues and greenhouse gas emissions. The consequences of fossil-fuel dependence could be avoided by fuel-producing artificial systems that mimic natural photosynthesis, directly converting solar energy to fuel. This review describes the three key components of solar energy conversion in photosynthesis: light harvesting, charge separation, and catalysis. These processes are compared in natural and in artificial systems. Such a comparison can assist in understanding the general principles of photosynthesis and in developing working devices, including photoelectrochemical cells, for solar energy conversion. 2010 Elsevier Ltd. All rights reserved.

  9. Surface Plasmon-Assisted Solar Energy Conversion.

    Science.gov (United States)

    Dodekatos, Georgios; Schünemann, Stefan; Tüysüz, Harun

    2016-01-01

    The utilization of localized surface plasmon resonance (LSPR) from plasmonic noble metals in combination with semiconductors promises great improvements for visible light-driven photocatalysis, in particular for energy conversion. This review summarizes the basic principles of plasmonic photocatalysis, giving a comprehensive overview about the proposed mechanisms for enhancing the performance of photocatalytically active semiconductors with plasmonic devices and their applications for surface plasmon-assisted solar energy conversion. The main focus is on gold and, to a lesser extent, silver nanoparticles in combination with titania as semiconductor and their usage as active plasmonic photocatalysts. Recent advances in water splitting, hydrogen generation with sacrificial organic compounds, and CO2 reduction to hydrocarbons for solar fuel production are highlighted. Finally, further improvements for plasmonic photocatalysts, regarding performance, stability, and economic feasibility, are discussed for surface plasmon-assisted solar energy conversion.

  10. Energy conversion & storage program. 1995 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1996-06-01

    The 1995 annual report discusses laboratory activities in the Energy Conversion and Storage (EC&S) Program. The report is divided into three categories: electrochemistry, chemical applications, and material applications. Research performed in each category during 1995 is described. Specific research topics relate to the development of high-performance rechargeable batteries and fuel cells, the development of high-efficiency thermochemical processes for energy conversion, the characterization of new chemical processes and complex chemical species, and the study and application of novel materials related to energy conversion and transmission. Research projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials and deposition technologies, and advanced methods of analysis.

  11. Silicon nanowires for photovoltaic solar energy conversion.

    Science.gov (United States)

    Peng, Kui-Qing; Lee, Shuit-Tong

    2011-01-11

    Semiconductor nanowires are attracting intense interest as a promising material for solar energy conversion for the new-generation photovoltaic (PV) technology. In particular, silicon nanowires (SiNWs) are under active investigation for PV applications because they offer novel approaches for solar-to-electric energy conversion leading to high-efficiency devices via simple manufacturing. This article reviews the recent developments in the utilization of SiNWs for PV applications, the relationship between SiNW-based PV device structure and performance, and the challenges to obtaining high-performance cost-effective solar cells.

  12. MATERIALS REQUIREMENTS FOR THERMIONIC ENERGY CONVERSION

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R. C.; Skeen, C. H.

    1963-03-15

    The fundamentals of the thermionic energy conversion and its potential applications are reviewed. Materials problems associated with thermionic emitters are considered in relation to the following: work function; emissivity; vaporization; thermal, mechanical, and electrical properties; chemical stability; permeation; and stability under nuclear radiation. Cesium purity and materials suitable for collectors, electrical leads, support structures, insulators, and seals are also discussed. Experimental work on problems involved is reviewed. It is concluded that significant developments have occurred recently in all areas of thermionic energy conversion. (40 references) (A.G.W.)

  13. Maturity effects in energy futures

    Energy Technology Data Exchange (ETDEWEB)

    Serletis, Apostolos (Calgary Univ., AB (CA). Dept. of Economics)

    1992-04-01

    This paper examines the effects of maturity on future price volatility and trading volume for 129 energy futures contracts recently traded in the NYMEX. The results provide support for the maturity effect hypothesis, that is, energy futures prices to become more volatile and trading volume increases as futures contracts approach maturity. (author).

  14. Energy conversion technology by chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, I W; Yoon, K S; Cho, B W [Korea Inst. of Science and Technology, Seoul (Korea, Republic of); and others

    1996-12-01

    The sharp increase in energy usage according to the industry development has resulted in deficiency of energy resources and severe pollution problems. Therefore, development of the effective way of energy usage and energy resources of low pollution is needed. Development of the energy conversion technology by chemical processes is also indispensable, which will replace the pollutant-producing and inefficient mechanical energy conversion technologies. Energy conversion technology by chemical processes directly converts chemical energy to electrical one, or converts heat energy to chemical one followed by heat storage. The technology includes batteries, fuel cells, and energy storage system. The are still many problems on performance, safety, and manufacturing of the secondary battery which is highly demanded in electronics, communication, and computer industries. To overcome these problems, key components such as carbon electrode, metal oxide electrode, and solid polymer electrolyte are developed in this study, followed by the fabrication of the lithium secondary battery. Polymer electrolyte fuel cell, as an advanced power generating apparatus with high efficiency, no pollution, and no noise, has many applications such as zero-emission vehicles, on-site power plants, and military purposes. After fabricating the cell components and operating the single cells, the fundamental technologies in polymer electrolyte fuel cell are established in this study. Energy storage technology provides the safe and regular heat energy, irrespective of the change of the heat energy sources, adjusts time gap between consumption and supply, and upgrades and concentrates low grade heat energy. In this study, useful chemical reactions for efficient storage and transport are investigated and the chemical heat storage technology are developed. (author) 41 refs., 90 figs., 20 tabs.

  15. Crafting our energy future

    International Nuclear Information System (INIS)

    van Schagen, Frank

    2005-01-01

    The new Asia-Pacific Greenhouse Agreement offers Australia a great opportunity to take full advantage of both its brains and its energy resources. The energy debate is often, simplistically, characterised as coal versus nuclear, or non-renewables versus renewables. In reality we will need a mix of energy sources to power our economy, cleanly, into the future. The issues are cost, environmental protection, national security, skills and security of energy supply. If we wish our economy to continue growing at present rates, we will need 50 per cent more energy in 2030 than we use today - and it is not too soon to start planning how we will produce it. We have around 500 years' supply of coal resources at present rates of usage. Power generation from coal is capable of achieving zero, or near zero, carbon emissions using technologies such as oxy-fuel combustion or IGCC (integrated gasification combined cycle). In both, C0 2 can be captured and stored underground. The greenhouse debate has revived interest in nuclear power generation. The cost of generating electricity with nuclear is similar to clean coal. However, we would have to start a nuclear power industry from a very small base, buying costly generation plant and training or importing an entire, highly-skilled workforce, in competition with other countries. Waste disposal is an issue for both coal and nuclear. For coal, the main option is carbon capture and its storage in deep saline aquifers. This technology is well understood and widely used by the oil and gas industry but we have to determine the most suitable places and techniques, and we have to build the infrastructure. Nuclear waste storage is also well-understood. Which technology we choose depends on an evaluation of both short and long term risks for the community and environment. One thing that Australia must get right is the economics. The wrong decision will cost us jobs, if not entire industries and regions. While renewables like solar and wind are

  16. In silico designing of power conversion efficient organic lead dyes for solar cells using todays innovative approaches to assure renewable energy for future

    Science.gov (United States)

    Kar, Supratik; Roy, Juganta K.; Leszczynski, Jerzy

    2017-06-01

    Advances in solar cell technology require designing of new organic dye sensitizers for dye-sensitized solar cells with high power conversion efficiency to circumvent the disadvantages of silicon-based solar cells. In silico studies including quantitative structure-property relationship analysis combined with quantum chemical analysis were employed to understand the primary electron transfer mechanism and photo-physical properties of 273 arylamine organic dyes from 11 diverse chemical families explicit to iodine electrolyte. The direct quantitative structure-property relationship models enable identification of the essential electronic and structural attributes necessary for quantifying the molecular prerequisites of 11 classes of arylamine organic dyes, responsible for high power conversion efficiency of dye-sensitized solar cells. Tetrahydroquinoline, N,N'-dialkylaniline and indoline have been least explored classes under arylamine organic dyes for dye-sensitized solar cells. Therefore, the identified properties from the corresponding quantitative structure-property relationship models of the mentioned classes were employed in designing of "lead dyes". Followed by, a series of electrochemical and photo-physical parameters were computed for designed dyes to check the required variables for electron flow of dye-sensitized solar cells. The combined computational techniques yielded seven promising lead dyes each for all three chemical classes considered. Significant (130, 183, and 46%) increment in predicted %power conversion efficiency was observed comparing with the existing dye with highest experimental %power conversion efficiency value for tetrahydroquinoline, N,N'-dialkylaniline and indoline, respectively maintaining required electrochemical parameters.

  17. Systems and methods for wave energy conversion

    Science.gov (United States)

    MacDonald, Daniel G.; Cantara, Justin; Nathan, Craig; Lopes, Amy M.; Green, Brandon E.

    2017-02-28

    Systems for wave energy conversion that have components that can survive the harsh marine environment and that can be attached to fixed structures, such as a pier, and having the ability to naturally adjust for tidal height and methods for their use are presented.

  18. WIND ENERGY CONVERSION SYSTEMS - A TECHNICAL REVIEW

    Directory of Open Access Journals (Sweden)

    N. RAMESH BABU

    2013-08-01

    Full Text Available Wind power production has been under the main focus for the past decade in power production and tremendous amount of research work is going on renewable energy, specifically on wind power extraction. Wind power provides an eco-friendly power generation and helps to meet the national energy demand when there is a diminishing trend in terms of non-renewable resources. This paper reviews the modeling of Wind Energy Conversion Systems (WECS, control strategies of controllers and various Maximum Power Point Tracking (MPPT technologies that are being proposed for efficient production of wind energy from the available resource.

  19. Novel Nuclear Powered Photocatalytic Energy Conversion

    International Nuclear Information System (INIS)

    White, John R.; Kinsmen, Douglas; Regan, Thomas M.; Bobek, Leo M.

    2005-01-01

    The University of Massachusetts Lowell Radiation Laboratory (UMLRL) is involved in a comprehensive project to investigate a unique radiation sensing and energy conversion technology with applications for in-situ monitoring of spent nuclear fuel (SNF) during cask transport and storage. The technology makes use of the gamma photons emitted from the SNF as an inherent power source for driving a GPS-class transceiver that has the ability to verify the position and contents of the SNF cask. The power conversion process, which converts the gamma photon energy into electrical power, is based on a variation of the successful dye-sensitized solar cell (DSSC) design developed by Konarka Technologies, Inc. (KTI). In particular, the focus of the current research is to make direct use of the high-energy gamma photons emitted from SNF, coupled with a scintillator material to convert some of the incident gamma photons into photons having wavelengths within the visible region of the electromagnetic spectrum. The high-energy gammas from the SNF will generate some power directly via Compton scattering and the photoelectric effect, and the generated visible photons output from the scintillator material can also be converted to electrical power in a manner similar to that of a standard solar cell. Upon successful implementation of an energy conversion device based on this new gammavoltaic principle, this inherent power source could then be utilized within SNF storage casks to drive a tamper-proof, low-power, electronic detection/security monitoring system for the spent fuel. The current project has addressed several aspects associated with this new energy conversion concept, including the development of a base conceptual design for an inherent gamma-induced power conversion unit for SNF monitoring, the characterization of the radiation environment that can be expected within a typical SNF storage system, the initial evaluation of Konarka's base solar cell design, the design and

  20. Organometallics and related molecules for energy conversion

    CERN Document Server

    Wong, Wai-Yeung

    2015-01-01

    This book presents a critical perspective of the applications of organometallic compounds (including those with metal or metalloid elements) and other related metal complexes as versatile functional materials in the transformation of light into electricity (solar energy conversion) and electricity into light (light generation in light emitting diode), in the reduction of carbon dioxide to useful chemicals, as well as in the safe and efficient production and utilization of hydrogen, which serves as an energy storage medium (i.e. energy carrier). This book focuses on recent research developmen

  1. Energy for the future

    International Nuclear Information System (INIS)

    Hammond, A.L.; Metz, W.D.; Maygh, T.H.II.

    1975-01-01

    A review of the most important conceivable possibilities today of producing and converting energy is given. Furthermore, the energy transfer as well as possibilities for the economical use of energy are dealt with. A presentation of the research priorities characterizes the present state of the energy policy

  2. Socially responsible energy futures

    International Nuclear Information System (INIS)

    Starr, C.

    1979-01-01

    After examining briefly the usual positions of nuclear critics and nuclear proponents, Dr. Starr says that the proponents (of whom he is one) have a broader case for nuclear power not thus far effectively advanced - a case based chiefly on a visible concern with social values and the future welfare of humanity. Such a broader case for nuclear power has always existed - a case based on motivations that initially spurred development of this energy resource over the past several decades, but one that has tended to be neglected in the public debate. A concern to avoid worldwide catastrophe is central to this broader case for nuclear power. The threat is perceived as resulting directly from the pending unavailability of petroleum and natural gas at a reasonable cost. This unavailability could lead to global tensions and political instabilities, economic crises, and, ultimately, to military conflicts based on need to obtain and control liquid-fuel resources. It is felt that past history and current events substantiate the threat inherent in the international struggle for raw materials. The broader - and more compelling - case for nuclear power lies in its potential for removing a major threat to the peace, stability, and welfare of the world that is inherent in the growing scarcity of petroleum and natural gas resources and in the limited geographical availability of coal. The catastrophe that could be avoided is at least as threatening as the one projected by those who oppose the use of nuclear power, and, Dr. Starr argues, more realistic in its potential for world-shattering impacts

  3. Energy Conversion at Micro and Nanoscale

    International Nuclear Information System (INIS)

    Gammaitoni, Luca

    2014-01-01

    Energy management is considered a task of strategic importance in contemporary society. It is a common fact that the most successful economies of the planet are the economies that can transform and use large quantities of energy. In this talk we will discuss the role of energy with specific attention to the processes that happens at micro and nanoscale. The description of energy conversion processes at these scales requires approaches that go way beyond the standard equilibrium termodynamics of macroscopic systems. In this talk we will address from a fundamental point of view the physics of the dissipation of energy and will focus our attention to the energy transformation processes that take place in the modern micro and nano information and communication devices

  4. Particle Discrimination Experiment for Direct Energy Conversion

    International Nuclear Information System (INIS)

    Yasaka, Y.; Kiriyama, Y.; Yamamoto, S.; Takeno, H.; Ishikawa, M.

    2005-01-01

    A direct energy conversion system designed for D- 3 He fusion reactor based on a field reversed configuration employs a venetian-blind type converter for thermal ions to produce DC power and a traveling wave type converter for fusion protons to produce RF power. It is therefore necessary to separate, discriminate, and guide the particle species. For this purpose, a cusp magnetic field is proposed, in which the electrons are deflected and guided along the field line to the line cusp, while the ions pass through the point cusp. A small-scale experimental device was used to study the basic characteristics of discrimination of electrons and ions in the cusp magnetic field. Ions separated from electrons are guided to an ion collector, which is operated as a one-stage direct energy converter. The conversion efficiency was measured for cases with different values of mean and spread of ion energy. These experiments successfully demonstrate direct energy conversion from plasma beams using particle discrimination by a cusp magnetic field

  5. Basic and applied research related to the technology of space energy conversion systems, 1982 - 1983

    Science.gov (United States)

    Hertzberg, A.

    1983-01-01

    Topics on solar energy conversion concepts and applications are discussed. An overview of the current status and future utilization of radiation receivers for electrical energy generation, liquid droplet radiation systems, and liquid droplet heat exchangers is presented.

  6. Ultrafast Electron Dynamics in Solar Energy Conversion.

    Science.gov (United States)

    Ponseca, Carlito S; Chábera, Pavel; Uhlig, Jens; Persson, Petter; Sundström, Villy

    2017-08-23

    Electrons are the workhorses of solar energy conversion. Conversion of the energy of light to electricity in photovoltaics, or to energy-rich molecules (solar fuel) through photocatalytic processes, invariably starts with photoinduced generation of energy-rich electrons. The harvesting of these electrons in practical devices rests on a series of electron transfer processes whose dynamics and efficiencies determine the function of materials and devices. To capture the energy of a photogenerated electron-hole pair in a solar cell material, charges of opposite sign have to be separated against electrostatic attractions, prevented from recombining and being transported through the active material to electrodes where they can be extracted. In photocatalytic solar fuel production, these electron processes are coupled to chemical reactions leading to storage of the energy of light in chemical bonds. With the focus on the ultrafast time scale, we here discuss the light-induced electron processes underlying the function of several molecular and hybrid materials currently under development for solar energy applications in dye or quantum dot-sensitized solar cells, polymer-fullerene polymer solar cells, organometal halide perovskite solar cells, and finally some photocatalytic systems.

  7. EPR's energy conversion system. Alstom's solutions

    International Nuclear Information System (INIS)

    Ledermann, P.

    2009-01-01

    ARABELLE steam turbines have been developed by Alstom to be used as the energy conversion system of light water reactors with high output power like the N4 PWR and the EPR. ARABELLE turbines cumulate 200.000 hours of service with a reliability ratio of 99.97 per cent. This series of slides presents the main features of the turbine including: the use of the simple flux, the very large shape of low pressure blades, the technology of welded rotors. The other main equipment like the alternator, the condenser, the moisture separator-reheaters, the circulating pumps that Alstom integrates in the energy conversion system have benefited with technological improvements that are also presented. (A.C.)

  8. Air Turbines for Wave Energy Conversion

    Directory of Open Access Journals (Sweden)

    Manabu Takao

    2012-01-01

    Full Text Available This paper describes the present status of the art on air turbines, which could be used for wave energy conversion. The air turbines included in the paper are as follows: Wells type turbines, impulse turbines, radial turbines, cross-flow turbine, and Savonius turbine. The overall performances of the turbines under irregular wave conditions, which typically occur in the sea, have been compared by numerical simulation and sea trial. As a result, under irregular wave conditions it is found that the running and starting characteristics of the impulse type turbines could be superior to those of the Wells turbine. Moreover, as the current challenge on turbine technology, the authors explain a twin-impulse turbine topology for wave energy conversion.

  9. The Energy Conversation: The First 3 Years

    Science.gov (United States)

    2009-07-01

    emerging clear and present reality] 7“Facing the Hard Truths about Energy” National Petroleum Council, 2007. www.npchardtruthsreport.org 8 Verrastro and...commuting five days/week, dispersing eight tons of pollutants into the environment and using 233 hours for travel to and from work w Telecommuting three... The Energy Conversation the first 3 years Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of

  10. Multifunctional Energy Storage and Conversion Devices.

    Science.gov (United States)

    Huang, Yan; Zhu, Minshen; Huang, Yang; Pei, Zengxia; Li, Hongfei; Wang, Zifeng; Xue, Qi; Zhi, Chunyi

    2016-10-01

    Multifunctional energy storage and conversion devices that incorporate novel features and functions in intelligent and interactive modes, represent a radical advance in consumer products, such as wearable electronics, healthcare devices, artificial intelligence, electric vehicles, smart household, and space satellites, etc. Here, smart energy devices are defined to be energy devices that are responsive to changes in configurational integrity, voltage, mechanical deformation, light, and temperature, called self-healability, electrochromism, shape memory, photodetection, and thermal responsivity. Advisable materials, device designs, and performances are crucial for the development of energy electronics endowed with these smart functions. Integrating these smart functions in energy storage and conversion devices gives rise to great challenges from the viewpoint of both understanding the fundamental mechanisms and practical implementation. Current state-of-art examples of these smart multifunctional energy devices, pertinent to materials, fabrication strategies, and performances, are highlighted. In addition, current challenges and potential solutions from materials synthesis to device performances are discussed. Finally, some important directions in this fast developing field are considered to further expand their application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Thermoelectric Energy Conversion: Materials, Devices, and Systems

    International Nuclear Information System (INIS)

    Chen, Gang

    2015-01-01

    This paper will present a discussion of challenges, progresses, and opportunities in thermoelectric energy conversion technology. We will start with an introduction to thermoelectric technology, followed by discussing advances in thermoelectric materials, devices, and systems. Thermoelectric energy conversion exploits the Seebeck effect to convert thermal energy into electricity, or the Peltier effect for heat pumping applications. Thermoelectric devices are scalable, capable of generating power from nano Watts to mega Watts. One key issue is to improve materials thermoelectric figure- of-merit that is linearly proportional to the Seebeck coefficient, the square of the electrical conductivity, and inversely proportional to the thermal conductivity. Improving the figure-of-merit requires good understanding of electron and phonon transport as their properties are often contradictory in trends. Over the past decade, excellent progresses have been made in the understanding of electron and phonon transport in thermoelectric materials, and in improving existing and identify new materials, especially by exploring nanoscale size effects. Taking materials to real world applications, however, faces more challenges in terms of materials stability, device fabrication, thermal management and system design. Progresses and lessons learnt from our effort in fabricating thermoelectric devices will be discussed. We have demonstrated device thermal-to-electrical energy conversion efficiency ∼10% and solar-thermoelectric generator efficiency at 4.6% without optical concentration of sunlight (Figure 1) and ∼8-9% efficiency with optical concentration. Great opportunities exist in advancing materials as well as in using existing materials for energy efficiency improvements and renewable energy utilization, as well as mobile applications. (paper)

  12. Energy for the future

    International Nuclear Information System (INIS)

    Sethna, H.N.

    1981-01-01

    The very existence of modern civilization is dependent on the supply of energy which comes from sun, geothermal energy sources, hydroelectricity, tides, ocean winds and nuclear sources. Potential of these sources for long-term solution of man's energy problems is examined. Nuclear source of energy is discussed in detail and other sources are dealt in brief. Fission reactor system which is now generating power on commercial basis is described. The work being done on thermonuclear fusion reactor system to make it a practical system is surveyed. Research programs on laser and particle beam fusion are described. (M.G.B.)

  13. Sources, availability and costs of future energy

    International Nuclear Information System (INIS)

    Hart, R.G.

    1977-08-01

    An attempt is made to put the future energy scene in perspective by quantitatively examining energy resources, energy utilization and energy costs. Available data on resources show that conventional oil and gas are in short supply and that alternative energy sources are going to have to replace oil and gas in the not too distant future. Cost/applications assessments indicate that a mix of energy sources are likely to best meet our energy needs of the future. Hydro, nuclear and coal are all practical alternatives for meeting electrical needs and electricity is a practical alternative for space heating. Coal appears to be the most practical alternative for meeting much of the industrial energy need and frontier oil or oil from the tar sands appear to be the most practical alternatives for meeting the transportation need. Solar energy shows promise of meeting some of the space heating load in Canada if economical energy storage systems can be developed. The general conclusion is that the basic energy problem is energy conversion. (author)

  14. The future of energy use

    International Nuclear Information System (INIS)

    Lameiras, Fernando Soares

    1996-01-01

    Humanity will not face shortage of energy, but may face problems with its use, because every energy source has restrictions. Fossil fuels change the climate,nuclear energy increases the radioactivity and can be used to manufacture weapons, solar energy is very scattered, and geothermal energy is yet not well known. Delicate political issues emerge in this scenario. Due to the magnitude of energy used by many countries, isolated energy policies can disturb all planet. This may delay decisions and result in the lack of energy supply, hindering the development of many regions, or in conflict between countries. In this paper, some analyses and considerations are presented about the future of energy use, including some axiologic features. The role of nuclear energy is analysed, because, maybe, for the first time a energy source was target of axiologic issues that have affected the growth of its demand. These issues are yet to be internalized by other energy sources in the future. (author)

  15. Materials science for solar energy conversion systems

    CERN Document Server

    Granqvist, CG

    1991-01-01

    Rapid advances in materials technology are creating many novel forms of coatings for energy efficient applications in solar energy. Insulating heat mirrors, selective absorbers, transparent insulation and fluorescent concentrators are already available commercially. Radiative cooling, electrochromic windows and polymeric light pipes hold promise for future development, while chemical and photochemical processes are being considered for energy storage. This book investigates new material advances as well as applications, costs, reliability and industrial production of existing materials. Each c

  16. Renewable Energies, Present & Future

    Institute of Scientific and Technical Information of China (English)

    X. S. Cai

    2005-01-01

    Fossil fuels are major cause of environmental destruction in pollutions. It has created much needed momentum for renewable energies, which are environmentally benign, generated locally, and can play a significant role in developing economy. As a sustainable energy sources, it can grow at a rapid pace to meet increasing demands for electricity in a cost-effective way.

  17. Energy for the future

    International Nuclear Information System (INIS)

    1982-01-01

    The history of electrical energy production in Ontario and the surge of energy needs; water, coal and nuclear power are discussed. A look at CRNL, NPD, Pickering A and Bruce B stations is presented. The fission process is explained as well

  18. The energy future to 2020

    International Nuclear Information System (INIS)

    Boy de la Tour, X.

    1999-01-01

    The energy future will continue for a long time to be dominated by fossil fuels, particularly oil and gas, which will still account for over half the energy supply in 202. Between now and then, the increasing share of the developing countries in he demand for energy will significantly alter energy geopolitics

  19. Nanoscale Materials and Architectures for Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Grulke, Eric A. [Univ. of Kentucky, Lexington, KY (United States); Sunkara, Mahendra K. [University of Louisville, KY (United States)

    2011-05-25

    The Kentucky EPSCoR Program supported an inter-university, multidisciplinary energy-related research cluster studying nanomaterials for converting solar radiation and residual thermal energy to electrical energy and hydrogen. It created a collaborative center of excellence based on research expertise in nanomaterials, architectures, and their synthesis. The project strengthened and improved the collaboration between the University of Louisville, the University of Kentucky, and NREL. The cluster hired a new faculty member for ultra-fast transient spectroscopy, and enabled the mentoring of one research scientist, two postdoctoral scholars and ten graduate students. Work was accomplished with three focused cluster projects: organic and photoelectrochemical solar cells, solar fuels, and thermionic energy conversion.

  20. The Future of Energy

    International Nuclear Information System (INIS)

    Browne, John

    2006-01-01

    The idea of an energy crisis is fuelled by some legitimate concerns-security of supplies, climate change-and some groundless ones, be it the depletion of oil resources, the predatory nature of big oil companies, the link between energy prices and recession, or the role of the resources released by the producers. Many of these problems could be solved by a global market of increasing integration

  1. Nuclear energy - the future climate

    International Nuclear Information System (INIS)

    Ash, Eric Sir

    2000-01-01

    In June 1999, a report entitled Nuclear Energy-The Future Climate was published and was the result of a collaboration between the Royal Society and the Royal Academy of Engineering. The report was the work of a group of nine people, made up of scientists, engineers and an economist, whose purpose was to attempt a new and objective look at the total energy scene and specifically the future role of nuclear energy. This paper discusses the findings of that report. (author)

  2. Contemplating future energy options

    International Nuclear Information System (INIS)

    Pooley, D.

    2005-01-01

    All political parties in the UK accept that we should move away from our reliance on fossil fuels towards a much greater use of alternative energy technologies. Nuclear power is one of these but finds minimal support in the political spectrum. The article reviews the European Commission's Advisory Group on Energy submission to the EC's report entitled 'Key Tasks for European Energy R and D'. The 'strength and weaknesses' of the various 'alternative energy' systems (including nuclear power) are summarised and then the key R and D tasks which, if they are carried out successfully, should make the eight selected technologies significantly more attractive. However, the message here is clear enough: there are no easy options, only a range of very imperfect possibilities, despite what enthusiastic proponents of each may say. Nuclear fission is certainly one of the most attractive options available, but the industry needs to continue to strive to eliminate the possibility of significant off-site releases, whether caused by plant failure or by human error or intention, and to prove beyond reasonable doubt the safety of high-level radioactive waste disposal. (author)

  3. Carbon aerogel electrodes for direct energy conversion

    Science.gov (United States)

    Mayer, Steven T.; Kaschmitter, James L.; Pekala, Richard W.

    1997-01-01

    A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome.

  4. China's energy future

    International Nuclear Information System (INIS)

    Horsnell, Paul

    1997-01-01

    The influence of China's growing energy demand on world oil markets is considered. Starting from a very low base of energy consumption per capita, China's potential for growth in oil demand is likely still to be subject to the extremely strong impact of a stop-go economic policy in which the availability of oil is used as a macroeconomic control variable to counter inflation. This has led to considerable monthly variations in oil import levels. While this situation continues, the buying pressure from China will tend to alternate between a trickle and a flood with consequent destabilizing impacts on the market. The markets potentially involved are those of Asia, the Middle East, West Africa and the Mediterranean with knock-on effects in the North Sea and Rotterdam. China is likely to constitute a major indirect force in these markets as a volatile source of demand at the margin. (UK)

  5. Assessment of tidal and wave energy conversion technologies in Canada

    International Nuclear Information System (INIS)

    2009-01-01

    This paper presented an attractive option to help meet Canada's future energy needs, notably the vast and energetic Atlantic, Pacific and Arctic coastal waters which make ocean renewable energy, particularly tidal in-stream energy conversion (TISEC) and wave energy conversion (WEC). There is much uncertainty regarding the possible environmental impacts associated with their deployment and operation. In support of commercial development of the industry, a review of scientific knowledge was needed for the development of policy and regulations consistent with Canada's conservation and sustainability priorities. In April 2009, Fisheries and Oceans Canada (DFO) hosted a two-day national science advisory process meeting in order to determine the current state of knowledge on the environmental impacts of tidal and wave energy conversion technologies and their application in the Canadian context based on published reports. Potential mitigation measures were identified and the feasibility of developing a relevant Canadian statement of practice was determined. This report presented an assessment and analysis of wave power, including the impacts on physical processes; impacts on habitat characteristics; impacts on water quality; impacts of noise and vibrations; impacts of electromagnetic fields; impacts of physical encounters; cumulative impacts; and mitigation measures. It was concluded that there is a recognized need to develop and maintain national and regional georeferenced, interoperable, standards-based databases that enable access by governments, developers, academics, non-governmental organizations and the general public. 1 ref., 1 fig.

  6. Covalent Organic Framework Electrocatalysts for Clean Energy Conversion.

    Science.gov (United States)

    Lin, Chun-Yu; Zhang, Detao; Zhao, Zhenghang; Xia, Zhenhai

    2018-02-01

    Covalent organic frameworks (COFs) are promising for catalysis, sensing, gas storage, adsorption, optoelectricity, etc. owning to the unprecedented combination of large surface area, high crystallinity, tunable pore size, and unique molecular architecture. Although COFs are in their initial research stage, progress has been made in the design and synthesis of COF-based electrocatalysis for the oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, and CO 2 reduction in energy conversion and fuel generation. Design principles are also established for some of the COF materials toward rational design and rapid screening of the best electrocatalysts for a specific application. Herein, the recent advances in the design and synthesis of COF-based catalysts for clean energy conversion and storage are presented. Future research directions and perspectives are also being discussed for the development of efficient COF-based electrocatalysts. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Denmark`s energy futures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The stated aim of the document published by the Danish Ministry of Environment and Energy and the Danish Energy Agency is that it should form the basis for a broad public debate on the country`s future energy policy. The report has four main objectives: 1. To describe, with emphasis on the environment and the market, challenges that the energy sector will have to face in the future. 2. To illustrate the potentials for saving energy and for utilising energy sources and supply systems. 3. To present two scenarios of extreme developmental positions; the first where maximum effort is expended on increasing energy efficiency and the utilization of renewable energy and the second where no new initiative is taken and change occurs only when progress in available technology is exploited and 4. To raise a number of questions about our future way of living. Following the extensive summary, detailed information is given under the headings of: Challenges of the energy sector, Energy consumption and conservation, Energy consumption in the transport sector, Energy resources, Energy supply and production, Development scenario, and Elements of Strategy. The text is illustrated with maps, graphs and coloured photographs etc. (AB)

  8. Direct energy conversion of radiation energy in fusion reactor

    International Nuclear Information System (INIS)

    Yamaguchi, S.; Iiyoshi, A.; Motojima, O.; Okamoto, M.; Sudo, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-11-01

    Direct energy conversion from plasma heat flux has been studied. Since major parts of fusion energy in the advanced fusion reactor are radiation and charged particle energies, the flexible design of the blanket is possible. We discuss the potentiality of the thermoelectric element that generates electricity by temperature gradient in conductors. A strong magnetic field is used to confine the fusion plasma, therefore, it is appropriate to consider the effect of the magnetic field. We propose a new element which is called Nernst element. The new element needs the magnetic field and the temperature gradient. We compare the efficiency of these two elements in a semiconductor model. Finally, a direct energy conversion are mentioned. (author)

  9. Direct energy conversion of radiation energy in fusion reactor

    Science.gov (United States)

    Yamaguchi, S.; Iiyoshi, A.; Motojima, O.; Okamoto, M.; Sudo, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-11-01

    Direct energy conversion from plasma heat flux has been studied. Since major parts of fusion energy in the advanced fusion reactor are radiation and charged particle energies, the flexible design of the blanket is possible. We discuss the potentiality of the thermoelectric element that generates electricity by temperature gradient in conductors. A strong magnetic field is used to confine the fusion plasma, therefore, it is appropriate to consider the effect of the magnetic field. We propose a new element which is called Nernst element. The new element needs the magnetic field and the temperature gradient. We compare the efficiency of these two elements in a semiconductor model. Finally, a direct energy conversion are mentioned.

  10. Direct energy conversion of radiation energy in fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, S.; Iiyoshi, A.; Motojima, O.; Okamoto, M.; Sudo, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-11-01

    Direct energy conversion from plasma heat flux has been studied. Since major parts of fusion energy in the advanced fusion reactor are radiation and charged particle energies, the flexible design of the blanket is possible. We discuss the potentiality of the thermoelectric element that generates electricity by temperature gradient in conductors. A strong magnetic field is used to confine the fusion plasma, therefore, it is appropriate to consider the effect of the magnetic field. We propose a new element which is called Nernst element. The new element needs the magnetic field and the temperature gradient. We compare the efficiency of these two elements in a semiconductor model. Finally, a direct energy conversion are mentioned. (author).

  11. A Conversation on Zero Net Energy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Torcellini, Paul A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Eley, Charles [Consultant; Gupta, Smita [Itron; McHugh, Jon [McHugh Energy Consultants; Lui, Bing [Pacific Northwest National Laboratory; Higgins, Cathy [New Buildings Institute; Iplikci, Jessica [Energy Trust of Oregon; Rosenberg, Michael [Pacific Northwest National Laboratory

    2017-06-01

    Recently, zero net energy (ZNE) buildings have moved from state-of-the-art small project demonstrations to a more widely adopted approach across the country among various building types and sizes. States such as California set policy goals of all new residential construction to be NZE by 2020 and all commercial buildings to be NZE by 2030. However, the market for designing, constructing, and operating ZNE buildings is still relatively small. We bring together distinguished experts to share their thoughts on making ZNE buildings more widespread and mainstream from a broad perspective, including governments, utilities, energy-efficiency research institutes, and building owners. This conversation also presents the benefits of ZNE and ways to achieve that goal in the design and operation of buildings. The following is a roundtable conducted by ASHRAE Journal and Bing Liu with Charles Eley, Smita Gupta, Cathy Higgins, Jessica Iplikci, Jon McHugh, Michael Rosenberg, and Paul Torcellini.

  12. Solar thermal energy conversion to electrical power

    International Nuclear Information System (INIS)

    Trinh, Anh-Khoi; González, Ivan; Fournier, Luc; Pelletier, Rémi; Sandoval V, Juan C.; Lesage, Frédéric J.

    2014-01-01

    The conversion of solar energy to electricity currently relies primarily on the photovoltaic effect in which photon bombardment of photovoltaic cells drives an electromotive force within the material. Alternatively, recent studies have investigated the potential of converting solar radiation to electricity by way of the Seebeck effect in which charge carrier mobility is generated by an asymmetric thermal differential. The present study builds upon these latest advancements in the state-of-the-art of thermoelectric system management by combining solar evacuated tube technology with commercially available Bismuth Telluride semiconductor modules. The target heat source is solar radiation and the target heat sink is thermal convection into the ambient air relying on wind aided forced convection. These sources of energy are reproduced in a laboratory controlled environment in order to maintain a thermal dipole across a thermoelectric module. The apparatus is then tested in a natural environment. The novelty of the present work lies in a net thermoelectric power gain for ambient environment applications and an experimental validation of theoretical electrical characteristics relative to a varying electrical load. - Highlights: • Solar radiation maintains a thermal tension which drives an electromotive force. • Voltage, current and electric power are reported and discussed. • Theoretical optimal thermoelectric conversion predictions are presented. • Theory is validated with experimentally measured data

  13. Integrated solar capacitors for energy conversion and storage

    Institute of Scientific and Technical Information of China (English)

    Ruiyuan Liu; Yuqiang Liu; Haiyang Zou; Tao Song; Baoquan Sun

    2017-01-01

    Solar energy is one of the most popular clean energy sources and is a promising alternative to fulfill the increasing energy demands of modern society.Solar cells have long been under intensive research attention for harvesting energy from sunlight with a high power-conversion efficiency and low cost.However,the power outputs of photovoltaic devices suffer from fluctuations due to the intermittent instinct of the solar radiation.Integrating solar cells and energystorage devices as self-powering systems may solve this problem through the simultaneous storage of the electricity and manipulation of the energy output.This review summarizes the research progress in the integration of new-generation solar cells with supercapacitors,with emphasis on the structures,materials,performance,and new design features.The current challenges and future prospects are discussed with the aim of expanding research and development in this field.

  14. Technology assessment of wind energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Meier, B. W.; Merson, T. J.

    1980-09-01

    Environmental data for wind energy conversion systems (WECSs) have been generated in support of the Technology Assessment of Solar Energy (TASE) program. Two candidates have been chosen to characterize the WECS that might be deployed if this technology makes a significant contribution to the national energy requirements. One WECS is a large machine of 1.5-MW-rated capacity that can be used by utilities. The other WECS is a small machine that is characteristic of units that might be used to meet residential or small business energy requirements. Energy storage systems are discussed for each machine to address the intermittent nature of wind power. Many types of WECSs are being studied and a brief review of the technology is included to give background for choosing horizontal axis designs for this study. Cost estimates have been made for both large and small systems as required for input to the Strategic Environmental Assessment Simulation (SEAS) computer program. Material requirements, based on current generation WECSs, are discussed and a general discussion of environmental impacts associated with WECS deployment is presented.

  15. Biomass energy conversion: conventional and advanced technologies

    Energy Technology Data Exchange (ETDEWEB)

    Young, B C; Hauserman, W B [Energy and Environmental Research Center, University of North Dakota, Grand Forks, ND (United States)

    1995-12-01

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  16. Biomass energy conversion: conventional and advanced technologies

    International Nuclear Information System (INIS)

    Young, B.C.; Hauserman, W.B.

    1995-01-01

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  17. The future of energy use

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.; O' Keefe, P.; Snape, C.

    1994-12-15

    An analysis of the use of different forms of energy and its environmental and social impacts. Giving an overview of the development of different forms of energy provision and patterns of supply and demand, this book shows how enduse applies to energy industries, how the environment and social costs of energy use have to be introduced into energy planning and accounting and the crucial role of efficiency. Case studies will include the transport and building sectors of industrial economies, the use of stoves and woodfuel and agroforestry planning in developing countries. It will then examine the different forms of energy - conventional, nuclear and renewable - concluding by setting out different energy futures and the policy requirements for sustainable futures. (author)

  18. Designing Energy Conversion Systems for the Next Decade

    Directory of Open Access Journals (Sweden)

    Slobodan N. Vukosavić

    2012-12-01

    Full Text Available Sustainable growth in energy consumption requires transition to clean and green energy sources and energy systems. Environment friendly and renewable energy systems deal with electrical energy and rely on efficient electrical power converters. High power electronics is the key technology to deal with the next generation of electrical energy systems. The door to future breakthroughs in high power electronics is opened by major improvement in semiconductor power devices and their packaging technologies. New materials allow for much higher junction temperatures and higher operating voltages. Most importantly, advanced power semiconductor devices and novel converter topology open the possibility to increase the energy efficiency of power conversion and reduce the amount of heat. Although the waste heat created by high power converters can be put to use by adding on to heating systems, this option is not always available and the conversion losses are mostly wasted. At the same time, wasted heat is a form of pollution that threatens the environment. Another task for high power converters is efficient harvesting of renewable energy sources, such as the wind energy and the sun. Intermittent in nature, they pose a difficult task to power converter topology and controls. Eventually, high power converters are entering power distribution and transmission networks. With their quick reaction, with fast communication between the grid nodes and with advanced controllability of high power converters, a number of innovations can be introduced, facilitating the power system control and allowing for optimizations and loss reduction. Coined smart grid, this solution comprises two key elements, and these are intelligent controls and large static power converters. At virtually no cost, smart grids allow for a better utilization of available resources and it enlarges the stable operating range of the transmission systems. Therefore, it is of interest to review the

  19. Simulation of diesel engine energy conversion processes

    Directory of Open Access Journals (Sweden)

    А. С. Афанасьев

    2016-12-01

    Full Text Available In order to keep diesel engines in good working order the troubleshooting methods shall be improved. For their further improvement by parameters of associated processes a need has arisen to develop a diesel engine troubleshooting method based on time parameters of operating cycle. For such method to be developed a computational experiment involving simulation of diesel engine energy conversion processes has been carried out. The simulation was based on the basic mathematical model of reciprocating internal combustion engines, representing a closed system of equations and relationships. The said model has been supplemented with the engine torque dynamics taking into account the current values of in-cylinder processes with different amounts of fuel injected, including zero feed.The torque values obtained by the in-cylinder pressure conversion does not account for mechanical losses, which is why the base simulation program has been supplemented with calculations for the friction and pumping forces. In order to determine the indicator diagram of idle cylinder a transition to zero fuel feed mode and exclusion of the combustion process from calculation have been provisioned.

  20. Nuclear energy facing the future

    International Nuclear Information System (INIS)

    Laue, H.J.

    1982-01-01

    In conjunction with the 25th anniversary of the establishment of the IAEA, the contribution that nuclear energy can make to future world energy requirements is discussed and nuclear power generation statistics examined with especial reference to data on capacity and outages. (U.K.)

  1. Future of energy managers groups

    Energy Technology Data Exchange (ETDEWEB)

    Henshaw, T.

    1979-07-01

    The objectives of the Energy Managers Groups, formed to provide a regular opportunity for industry and commerce to exchange views and experiences on energy conservation matters are discussed. Group procedure, liaison and cooperation, government support, and options for the future are discussed. (MCW)

  2. Revisit ocean thermal energy conversion system

    International Nuclear Information System (INIS)

    Huang, J.C.; Krock, H.J.; Oney, S.K.

    2003-01-01

    The earth, covered more than 70.8% by the ocean, receives most of its energy from the sun. Solar energy is transmitted through the atmosphere and efficiently collected and stored in the surface layer of the ocean, largely in the tropical zone. Some of the energy is re-emitted to the atmosphere to drive the hydrologic cycle and wind. The wind field returns some of the energy to the ocean in the form of waves and currents. The majority of the absorbed solar energy is stored in vertical thermal gradients near the surface layer of the ocean, most of which is in the tropical region. This thermal energy replenished each day by the sun in the tropical ocean represents a tremendous pollution-free energy resource for human civilization. Ocean Thermal Energy Conversion (OTEC) technology refers to a mechanical system that utilizes the natural temperature gradient that exists in the tropical ocean between the warm surface water and the deep cold water, to generate electricity and produce other economically valuable by-products. The science and engineering behind OTEC have been studied in the US since the mid-seventies, supported early by the U.S. Government and later by State and private industries. There are two general types of OTEC designs: closed-cycle plants utilize the evaporation of a working fluid, such as ammonia or propylene, to drive the turbine-generator, and open-cycle plants use steam from evaporated sea water to run the turbine. Another commonly known design, hybrid plants, is a combination of the two. OTEC requires relatively low operation and maintenance costs and no fossil fuel consumption. OTEC system possesses a formidable potential capacity for renewable energy and offers a significant elimination of greenhouse gases in producing power. In addition to electricity and drinking water, an OTEC system can produce many valuable by-products and side-utilizations, such as: hydrogen, air-conditioning, ice, aquaculture, and agriculture, etc. The potential of these

  3. Engineered nanomaterials for solar energy conversion.

    Science.gov (United States)

    Mlinar, Vladan

    2013-02-01

    Understanding how to engineer nanomaterials for targeted solar-cell applications is the key to improving their efficiency and could lead to breakthroughs in their design. Proposed mechanisms for the conversion of solar energy to electricity are those exploiting the particle nature of light in conventional photovoltaic cells, and those using the collective electromagnetic nature, where light is captured by antennas and rectified. In both cases, engineered nanomaterials form the crucial components. Examples include arrays of semiconductor nanostructures as an intermediate band (so called intermediate band solar cells), semiconductor nanocrystals for multiple exciton generation, or, in antenna-rectifier cells, nanomaterials for effective optical frequency rectification. Here, we discuss the state of the art in p-n junction, intermediate band, multiple exciton generation, and antenna-rectifier solar cells. We provide a summary of how engineered nanomaterials have been used in these systems and a discussion of the open questions.

  4. Localized Oscillatory Energy Conversion in Magnetopause Reconnection

    Science.gov (United States)

    Burch, J. L.; Ergun, R. E.; Cassak, P. A.; Webster, J. M.; Torbert, R. B.; Giles, B. L.; Dorelli, J. C.; Rager, A. C.; Hwang, K.-J.; Phan, T. D.; Genestreti, K. J.; Allen, R. C.; Chen, L.-J.; Wang, S.; Gershman, D.; Le Contel, O.; Russell, C. T.; Strangeway, R. J.; Wilder, F. D.; Graham, D. B.; Hesse, M.; Drake, J. F.; Swisdak, M.; Price, L. M.; Shay, M. A.; Lindqvist, P.-A.; Pollock, C. J.; Denton, R. E.; Newman, D. L.

    2018-02-01

    Data from the NASA Magnetospheric Multiscale mission are used to investigate asymmetric magnetic reconnection at the dayside boundary between the Earth's magnetosphere and the solar wind. High-resolution measurements of plasmas and fields are used to identify highly localized ( 15 electron Debye lengths) standing wave structures with large electric field amplitudes (up to 100 mV/m). These wave structures are associated with spatially oscillatory energy conversion, which appears as alternatingly positive and negative values of J · E. For small guide magnetic fields the wave structures occur in the electron stagnation region at the magnetosphere edge of the electron diffusion region. For larger guide fields the structures also occur near the reconnection X-line. This difference is explained in terms of channels for the out-of-plane current (agyrotropic electrons at the stagnation point and guide field-aligned electrons at the X-line).

  5. Systems Engineering Model for ART Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Cruz, Carmen Margarita [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rochau, Gary E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilson, Mollye C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    The near-term objective of the EC team is to establish an operating, commercially scalable Recompression Closed Brayton Cycle (RCBC) to be constructed for the NE - STEP demonstration system (demo) with the lowest risk possible. A systems engineering approach is recommended to ensure adequate requirements gathering, documentation, and mode ling that supports technology development relevant to advanced reactors while supporting crosscut interests in potential applications. A holistic systems engineering model was designed for the ART Energy Conversion program by leveraging Concurrent Engineering, Balance Model, Simplified V Model, and Project Management principles. The resulting model supports the identification and validation of lifecycle Brayton systems requirements, and allows designers to detail system-specific components relevant to the current stage in the lifecycle, while maintaining a holistic view of all system elements.

  6. Theoretical efficiency limits for thermoradiative energy conversion

    International Nuclear Information System (INIS)

    Strandberg, Rune

    2015-01-01

    A new method to produce electricity from heat called thermoradiative energy conversion is analyzed. The method is based on sustaining a difference in the chemical potential for electron populations above and below an energy gap and let this difference drive a current through an electric circuit. The difference in chemical potential originates from an imbalance in the excitation and de-excitation of electrons across the energy gap. The method has similarities to thermophotovoltaics and conventional photovoltaics. While photovoltaic cells absorb thermal radiation from a body with higher temperature than the cell itself, thermoradiative cells are hot during operation and emit a net outflow of photons to colder surroundings. A thermoradiative cell with an energy gap of 0.25 eV at a temperature of 500 K in surroundings at 300 K is found to have a theoretical efficiency limit of 33.2%. For a high-temperature thermoradiative cell with an energy gap of 0.4 eV, a theoretical efficiency close to 50% is found while the cell produces 1000 W/m 2 has a temperature of 1000 K and is placed in surroundings with a temperature of 300 K. Some aspects related to the practical implementation of the concept are discussed and some challenges are addressed. It is, for example, obvious that there is an upper boundary for the temperature under which solid state devices can work properly over time. No conclusions are drawn with regard to such practical boundaries, because the work is aimed at establishing upper limits for ideal thermoradiative devices

  7. OPTIMIZATION OF AEOLIAN ENERGY CONVERSION OPTIMISATION DE LA CONVERSION DE L’ENERGIE EOLIENNE

    Directory of Open Access Journals (Sweden)

    Y. Soufi

    2015-08-01

    Full Text Available The use of renewable energy increases, because people are increasingly concerned with environmental issues. Among renewable, wind power is now widely used. Their study showed that a value of wind speed, there is a maximum mechanical power supplied by the turbine. So, power is supplied are particularly changes with maximum speed.However, the objective of this paper is to present an algorithm for optimal conversion of wind energy based on a criterion optimization that must maintain specific speed of the turbine at optimum speed which corresponds to the maximum power provided by the steady wind turbine. To this end, the object is to preserve the position of any static operating point on the characteristic of optimal.To validate the model and algorithm for optimal conversion of wind energy, a series of numerical simulations carried out using the software MatLab Simulink will be presented is discussed.

  8. Vision of future energy networks - Final report; Vision of future energy networks - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, K.; Andersson, G.

    2008-07-01

    In the framework of the project 'Vision of Future Networks', models and methods have been developed that enable a greenfield approach for energy systems with multiple energy carriers. Applying a greenfield approach means that no existing infrastructure is taken into account when designing the energy system, i.e. the system is virtually put up on a green field. The developed models refer to the impacts of energy storage on power systems with stochastic generation, to the integrated modelling and optimization of multi-carrier energy systems, to reliability considerations of future energy systems as well as to possibilities of combined transmission of multiple energy carriers. Key concepts, which have been developed in the framework of this project, are the Energy Hub (for the conversion and storage of energy) and the Energy Interconnector (for energy transmission). By means of these concepts, it is possible to design structures for future energy systems being able to cope with the growing requirements regarding energy supply. (author)

  9. Photovoltaic and thermal energy conversion for solar powered satellites

    Science.gov (United States)

    Von Tiesenhausen, G. F.

    1976-01-01

    A summary is provided concerning the most important aspects of present investigations related to a use of solar power satellites (SPS) as a future source of terrestrial energy. General SPS characteristics are briefly considered, early work is reviewed, and a description of current investigations is presented. System options presently under study include a photovoltaic array, a thermionic system, and a closed Brayton cycle. Attention is given to system reference options, basic building blocks, questions of system analysis and engineering, photovoltaic conversion, and the utility interface. It is concluded that an SPS may be cost effective compared to terrestrial systems by 1995.

  10. Iron disulfide for solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Ennaoui, A. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Fiechter, S. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Pettenkofer, C. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Alonso-Vante, N. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Bueker, K. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Bronold, M. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Hoepfner, C. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Tributsch, H. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany))

    1993-05-01

    Pyrite (E[sub g] = 0.95 eV) is being developed as a solar energy material due to its environmental compatibility and its very high light absorption coefficient. A compilation of material, electronic and interfacial chemical properties is presented, which is considered relevant for quantum energy conversion. In spite of intricate problems existing within material chemistry, high quantum efficiencies for photocurrent generation (> 90%) and high photovoltages ([approx] 500 mV) have been observed with single crystal electrodes and thin layers respectively. The most interesting aspect of this study is the use of pyrite as an ultrathin (10-20 nm) layer sandwiched between large gap p-type and n-type materials in a p-i-n like structure. Such a system, in which the pyrite layer only acts as photon absorber and mediates injection of excited electrons can be defined as sensitization solar cell. The peculiar electron transfer properties of pyrite interfaces, facilitating interfacial coordination chemical pathways, may turn out to be very helpful. Significant research challenges are discussed in the hope of attracting interest in the development of solar cells from this abundant material. (orig.)

  11. Photovoltaic conversion of the solar energy

    International Nuclear Information System (INIS)

    Gordillo G, Gerardo

    1998-01-01

    In this work, a short description of the basic aspect of the performance of homojunction solar cells and of the technological aspects of the fabrication of low cost thin film solar cells is made. Special emphasis on the historical aspects of the evolution of the conversion efficiency of photovoltaic devices based on crystalline silicon, amorphous silicon, Cd Te and CulnSe 2 is also made. The state of art of the technology of photovoltaic devices and modules is additionally presented. The contribution to the development of high efficiency solar cells and modules, carried out by research centers of universities such us: Stuttgart university (Germany), Stockholm university (Sweden), University of South Florida (USA), university of south gales (Australia), by the national renewable energy laboratory of USA and by research centers of companies such us: Matsushita (Japan), BP-solar (England), Boeing (USA), Arco solar (USA), Siemens (Germany) etc. are specially emphasized. Additionally, a section concerning economical aspect of the photovoltaic generation of electric energy is enclosed. In this section an overview of the evolution of price and world market of photovoltaic system is presented

  12. Fundamental formulae for wave-energy conversion.

    Science.gov (United States)

    Falnes, Johannes; Kurniawan, Adi

    2015-03-01

    The time-average wave power that is absorbed from an incident wave by means of a wave-energy conversion (WEC) unit, or by an array of WEC units-i.e. oscillating immersed bodies and/or oscillating water columns (OWCs)-may be mathematically expressed in terms of the WEC units' complex oscillation amplitudes, or in terms of the generated outgoing (diffracted plus radiated) waves, or alternatively, in terms of the radiated waves alone. Following recent controversy, the corresponding three optional expressions are derived, compared and discussed in this paper. They all provide the correct time-average absorbed power. However, only the first-mentioned expression is applicable to quantify the instantaneous absorbed wave power and the associated reactive power. In this connection, new formulae are derived that relate the 'added-mass' matrix, as well as a couple of additional reactive radiation-parameter matrices, to the difference between kinetic energy and potential energy in the water surrounding the immersed oscillating WEC array. Further, a complex collective oscillation amplitude is introduced, which makes it possible to derive, by a very simple algebraic method, various simple expressions for the maximum time-average wave power that may be absorbed by the WEC array. The real-valued time-average absorbed power is illustrated as an axisymmetric paraboloid defined on the complex collective-amplitude plane. This is a simple illustration of the so-called 'fundamental theorem for wave power'. Finally, the paper also presents a new derivation that extends a recently published result on the direction-average maximum absorbed wave power to cases where the WEC array's radiation damping matrix may be singular and where the WEC array may contain OWCs in addition to oscillating bodies.

  13. Direct energy conversion of radiation energy in fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, S.; Iiyoshi, A.; Motojima, O.; Okamoto, M.; Sudo, S. [National Inst. for Fusion Science, Nagoya (Japan); Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1994-12-31

    Direct energy conversion from plasma heat flux has been studied. Since major parts of fusion energy in the advanced fusion reactor are radiation and charged particle energies, the flexible design of the blanket is possible. We discuss the potentiality of the thermoelectric element that generate electricity by temperature gradient in conductors. A Strong magnetic field is used to confine the fusion plasma, therefore, it is appropriate to consider the effect of the magnetic field. We propose a new element which is called Nernst element. The new element needs the magnetic field and the temperature gradient. We compare the efficiency of these two elements in a semiconductor model. Finally, a direct energy converter are mentioned. (author).

  14. Direct energy conversion of radiation energy in fusion reactor

    International Nuclear Information System (INIS)

    Yamaguchi, S.; Iiyoshi, A.; Motojima, O.; Okamoto, M.; Sudo, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1994-01-01

    Direct energy conversion from plasma heat flux has been studied. Since major parts of fusion energy in the advanced fusion reactor are radiation and charged particle energies, the flexible design of the blanket is possible. We discuss the potentiality of the thermoelectric element that generate electricity by temperature gradient in conductors. A Strong magnetic field is used to confine the fusion plasma, therefore, it is appropriate to consider the effect of the magnetic field. We propose a new element which is called Nernst element. The new element needs the magnetic field and the temperature gradient. We compare the efficiency of these two elements in a semiconductor model. Finally, a direct energy converter are mentioned. (author)

  15. Demonstrating Energy Conversion with Piezoelectric Crystals and a Paddle Fan

    Science.gov (United States)

    Rakbamrung, Prissana; Putson, Chatchai; Muensit, Nantakan

    2014-01-01

    A simple energy conversion system--particularly, the conversion of mechanical energy into electrical energy by using shaker flashlights--has recently been presented. This system uses hand generators, consisting of a magnet in a tube with a coil wrapped around it, and acts as an ac source when the magnet passes back and forth through the coil.…

  16. Organohalide Perovskites for Solar Energy Conversion.

    Science.gov (United States)

    Lin, Qianqian; Armin, Ardalan; Burn, Paul L; Meredith, Paul

    2016-03-15

    Lead-based organohalide perovskites have recently emerged as arguably the most promising of all next generation thin film solar cell technologies. Power conversion efficiencies have reached 20% in less than 5 years, and their application to other optoelectronic device platforms such as photodetectors and light emitting diodes is being increasingly reported. Organohalide perovskites can be solution processed or evaporated at low temperatures to form simple thin film photojunctions, thus delivering the potential for the holy grail of high efficiency, low embedded energy, and low cost photovoltaics. The initial device-driven "perovskite fever" has more recently given way to efforts to better understand how these materials work in solar cells, and deeper elucidation of their structure-property relationships. In this Account, we focus on this element of organohalide perovskite chemistry and physics in particular examining critical electro-optical, morphological, and architectural phenomena. We first examine basic crystal and chemical structure, and how this impacts important solar-cell related properties such as the optical gap. We then turn to deeper electronic phenomena such as carrier mobilities, trap densities, and recombination dynamics, as well as examining ionic and dielectric properties and how these two types of physics impact each other. The issue of whether organohalide perovskites are predominantly nonexcitonic at room temperature is currently a matter of some debate, and we summarize the evidence for what appears to be the emerging field consensus: an exciton binding energy of order 10 meV. Having discussed the important basic chemistry and physics we turn to more device-related considerations including processing, morphology, architecture, thin film electro-optics and interfacial energetics. These phenomena directly impact solar cell performance parameters such as open circuit voltage, short circuit current density, internal and external quantum efficiency

  17. Assessing the future of energy

    International Nuclear Information System (INIS)

    Moncomble, J.E.

    2015-01-01

    The World Energy Council has designed 2 tools named Jazz and Symphonie that allow the assessment of the potential impacts of energy choices on the future in terms of climate warming, investments, energy mix,... The Jazz roadmap aims at energy equity which means individual access to energy at a reasonable cost while the Symphonie roadmap focuses on environmental issues through appropriate practice and coordinated international policies. Both tools are integrated it means that they describe a whole world by most of its aspects: population, GDP per capita, number of cars by inhabitant, economic growth... A basic application of both tools shows that in 2050 the nuclear power will have increased (compared to today's level) but the share of nuclear power in the energy mix will have decreased for Jazz and increased for Symphonie. (A.C.)

  18. Toward an energy surety future.

    Energy Technology Data Exchange (ETDEWEB)

    Tatro, Marjorie L.; Jones, Scott A.; Covan, John Morgan; Kuswa, Glenn W.; Menicucci, David F.; Robinett, Rush D. III (.; )

    2005-10-01

    Because of the inevitable depletion of fossil fuels and the corresponding release of carbon to the environment, the global energy future is complex. Some of the consequences may be politically and economically disruptive, and expensive to remedy. For the next several centuries, fuel requirements will increase with population, land use, and ecosystem degradation. Current or projected levels of aggregated energy resource use will not sustain civilization as we know it beyond a few more generations. At the same time, issues of energy security, reliability, sustainability, recoverability, and safety need attention. We supply a top-down, qualitative model--the surety model--to balance expenditures of limited resources to assure success while at the same time avoiding catastrophic failure. Looking at U.S. energy challenges from a surety perspective offers new insights on possible strategies for developing solutions to challenges. The energy surety model with its focus on the attributes of security and sustainability could be extrapolated into a global energy system using a more comprehensive energy surety model than that used here. In fact, the success of the energy surety strategy ultimately requires a more global perspective. We use a 200 year time frame for sustainability because extending farther into the future would almost certainly miss the advent and perfection of new technologies or changing needs of society.

  19. Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 1, Overview

    Energy Technology Data Exchange (ETDEWEB)

    Butner, R.S.; Elliott, D.C.; Sealock, L.J. Jr.; Pyne, J.W.

    1988-12-01

    Pacific Northwest Laboratory has completed an initial investigation of the effects of physical and chemical properties of biomass feedstocks relative to their performance in biomass energy conversion systems. Both biochemical conversion routes (anaerobic digestion and ethanol fermentation) and thermochemical routes (combustion, pyrolysis, and gasification) were included in the study. Related processes including chemical and physical pretreatment to improve digestibility, and size and density modification processes such as milling and pelletizing were also examined. This overview report provides background and discussion of feedstock and conversion relationships, along with recommendations for future research. The recommendations include (1) coordinate production and conversion research programs; (2) quantify the relationship between feedstock properties and conversion priorities; (3) develop a common framework for evaluating and characterizing biomass feedstocks; (4) include conversion effects as part of the criteria for selecting feedstock breeding programs; and (5) continue emphasis on multiple feedstock/conversion options for biomass energy systems. 9 refs., 3 figs., 2 tabs.

  20. Fusion: Energy for the future

    International Nuclear Information System (INIS)

    1991-05-01

    Fusion, which occurs in the sun and the stars, is a process of transforming matter into energy. If we can harness the fusion process on Earth, it opens the way to assuring that future generations will not want for heat and electric power. The purpose of this booklet is to introduce the concept of fusion energy as a viable, environmentally sustainable energy source for the twenty-first century. The booklet presents the basic principles of fusion, the global research and development effort in fusion, and Canada's programs for fusion research and development

  1. Nano-materials for solar energy conversion

    International Nuclear Information System (INIS)

    Davenas, J.; Boiteux, G.; Ltaief, A.; Barlier, V.

    2006-01-01

    Nano-materials present an important development potential in the field of photovoltaic conversion in opening new outlooks in the reduction of the solar energy cost. The organic or hybrid solar cells principle is based on the electron-hole pairs dissociation, generated under solar radiation on a conjugated polymer, by chemical species acting as electrons acceptors. The two ways based on fullerenes dispersion or on TiO 2 particles in a semi-conductor polymer (MEH-PPV, PVK) are discussed. The acceptors concentration is high in order to allow the conduction of the electrons on a percolation way, the polymer providing the holes conduction. A new preparation method of the mixtures MEH-PPV/fullerenes based on the use of specific solvents has allowed to produce fullerenes having nano-metric sizes ranges. It has then been possible to decrease the fullerenes concentration allowing the dissociation and the transport of photoinduced charges. The way based on the in-situ generation of TiO 2 from an organometallic precursor has allowed to obtain dispersions of nano-metric inorganic particles. The optimization of the photovoltaic properties of these nano-composites requires a particular adjustment of their composition and size ranges leading to a better control of the synthesis processes. (O.M.)

  2. Future of nuclear energy research

    International Nuclear Information System (INIS)

    Fuketa, Toyojiro

    1989-09-01

    In spite of the easing of worldwide energy supply and demand situation in these years, we believe that research efforts towards the next generation nuclear energy are indispensably necessary. Firstly, the nuclear colleagues believe that nuclear energy is the best major energy source from many points of view including the global environmental viewpoint. Secondly, in the medium- and long-range view, there will once again be a high possibility of a tight supply and demand situation for oil. Thirdly, nuclear energy is the key energy source to overcome the vulnerability of the energy supply structure in industrialized countries like Japan where virtually no fossil energy source exists. In this situation, nuclear energy is a sort of quasi-domestic energy as a technology-intensive energy. Fourthly, the intensive efforts to develop the nuclear technology in the next generation will give rise to a further evolution in science and technology in the future. A few examples of medium- and long-range goals of the nuclear energy research are development of new types of reactors which can meet various needs of energy more flexibly and reliably than the existing reactors, fundamental and ultimate solution of the radioactive waste problems, creation and development of new types of energy production systems which are to come beyond the fusion, new development in the biological risk assessment of the radiation effects and so on. In order to accomplish those goals it is quite important to introduce innovations in such underlying technologies as materials control in more microscopic manners, photon and particle beam techniques, accelerator engineering, artificial intelligence, and so on. 32 refs, 2 figs

  3. Future of high energy physics

    International Nuclear Information System (INIS)

    Panofsky, W.K.H.

    1984-06-01

    A rough overview is given of the expectations for the extension of high energy colliders and accelerators into the xtremely high energy range. It appears likely that the SSC or something like it will be the last gasp of the conventional method of producing high energy proton-proton collisions using synchrotron rings with superconducting magnets. It is likely that LEP will be the highest energy e+e - colliding beam storage ring built. The future beyond that depends on the successful demonstrations of new technologies. The linear collider offers hope in this respect for some extension in energy for electrons, and maybe even for protons, but is too early to judge whether, by how much, or when such an extension will indeed take place

  4. Conversion of zero point energy into high-energy photons

    Energy Technology Data Exchange (ETDEWEB)

    Ivlev, B. I. [Universidad Autonoma de San Luis Potosi, Instituto de Fisica, Av. Manuel Nava No. 6, Zona Universitaria, 78290 San Luis Potosi, SLP (Mexico)

    2016-11-01

    An unusual phenomenon, observed in experiments is studied. X-ray laser bursts of keV energy are emitted from a metal where long-living states, resulting in population inversion, are totally unexpected. Anomalous electron-photon states are revealed to be formed inside the metal. These states are associated with narrow, 10{sup -11} cm, potential well created by the local reduction of zero point electromagnetic energy. In contrast to analogous van der Waals potential well, leading to attraction of two hydrogen atoms, the depth of the anomalous well is on the order of 1 MeV. The states in that well are long-living which results in population inversion and subsequent laser generation observed. The X-ray emission, occurring in transitions to lower levels, is due to the conversion of zero point electromagnetic energy. (Author)

  5. Nuclear energy in our future

    International Nuclear Information System (INIS)

    Hennies, H.H.

    1988-01-01

    Nuclear energy for electricity generation will extend its market portion in Europe in the coming decades because: 1) its economic and/or environment-relevant advantages compared with the fossil energy sources are so explicit that the latter will no longer be competitive; 2) the improvements of the system engineering, which are presently being implemented and are to be expected in the future, will enhance the safety facilities to the extent that accident risk will cease to be a decisive factor; 3) energy-saving effects or the use of solar energy will not provide an appropriate large scale alternative for coal and/or nuclear energy; 4) the problems of radioactive waste disposal will be definitely solved within the foreseeable future. Considering all the technological systems available the light water reactor will continue to dominate. The change to the breeder reactor is not yet under discussion because of the medium-term guaranteed uranium supply. The use of nuclear technology in the heating market will depend for the moment on the availability and cost of oil and gas development. In principle nuclear energy can play an important role also in this sector

  6. Fiscal 1998 research report. Research on energy conversion technology using biomass resources; 1998 nendo chosa hokokusho. Biomass shigen wo genryo to suru energy henkan gijutsu ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Feasibility study was made on construction of the new energy production system by thermochemical conversion or combination of thermochemical and biological conversions of agricultural, fishery and organic waste system biomass resources. This report first outlines types and characteristics of biomass over the world, proposes the classification method of biomass from the viewpoint of biomass energy use, and shows the introduction scenario of biomass energy. The energy potential is calculated of agricultural waste, forestry waste and animal waste as the most promising biomass energy resources, and the biomass energy potential of energy plantation is estimated. The present and future of biochemical energy conversion technologies are viewed. The present and future of thermochemical energy conversion technologies are also viewed. Through evaluation of every conversion technology, the difference in feature between each conversion technology was clarified, and the major issues for further R and D were showed. (NEDO)

  7. Photovoltaic and photoelectrochemical conversion of solar energy.

    Science.gov (United States)

    Grätzel, Michael

    2007-04-15

    The Sun provides approximately 100,000 terawatts to the Earth which is about 10000 times more than the present rate of the world's present energy consumption. Photovoltaic cells are being increasingly used to tap into this huge resource and will play a key role in future sustainable energy systems. So far, solid-state junction devices, usually made of silicon, crystalline or amorphous, and profiting from the experience and material availability resulting from the semiconductor industry, have dominated photovoltaic solar energy converters. These systems have by now attained a mature state serving a rapidly growing market, expected to rise to 300 GW by 2030. However, the cost of photovoltaic electricity production is still too high to be competitive with nuclear or fossil energy. Thin film photovoltaic cells made of CuInSe or CdTe are being increasingly employed along with amorphous silicon. The recently discovered cells based on mesoscopic inorganic or organic semiconductors commonly referred to as 'bulk' junctions due to their three-dimensional structure are very attractive alternatives which offer the prospect of very low cost fabrication. The prototype of this family of devices is the dye-sensitized solar cell (DSC), which accomplishes the optical absorption and the charge separation processes by the association of a sensitizer as light-absorbing material with a wide band gap semiconductor of mesoporous or nanocrystalline morphology. Research is booming also in the area of third generation photovoltaic cells where multi-junction devices and a recent breakthrough concerning multiple carrier generation in quantum dot absorbers offer promising perspectives.

  8. The future of energy use

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.; O`Keefe, P.; Snape, C. [University of Northumbria, Newcastle upon Tyne (United Kingdom). Photovoltaics Application Centre

    1995-12-31

    The book gives a comprehensive analysis of the history and use of different forms of energy, their environmental and social impacts and, in particular, their economic costs and the future of their supply. It examines all the major forms of energy - conventional fuels such as oil and coal, nuclear power and alternative and renewable sources - and includes case studies on the transport and building sectors in the North and agroforestry and fuelwood problems in the South. The authors discuss the development of energy provision and patterns of supply and demand, and examine the use of end-use analyses. They look at the ways in which social and environmental costs should be introduced into energy planning and accounting, and emphasise the crucial role of efficiency to limit over-consumption. 91 refs., 100 figs., 62 tabs.

  9. Renewable energy systems advanced conversion technologies and applications

    CERN Document Server

    Luo, Fang Lin

    2012-01-01

    Energy conversion techniques are key in power electronics and even more so in renewable energy source systems, which require a large number of converters. Renewable Energy Systems: Advanced Conversion Technologies and Applications describes advanced conversion technologies and provides design examples of converters and inverters for renewable energy systems-including wind turbine and solar panel energy systems. Learn Cutting-Edge Techniques for Converters and Inverters Setting the scene, the book begins with a review of the basics of astronomy and Earth physics. It then systematically introduc

  10. Summary of State-of-the-Art Power Conversion Systems for Energy Storage Applications

    Energy Technology Data Exchange (ETDEWEB)

    Atcitty, S.; Gray-Fenner, A.; Ranade, S.

    1998-09-01

    The power conversion system (PCS) is a vital part of many energy storage systems. It serves as the interface between the storage device, an energy source, and an AC load. This report summarizes the results of an extensive study of state-of-the-art power conversion systems used for energy storage applications. The purpose of the study was to investigate the potential for cost reduction and performance improvement in these power conversion systems and to provide recommendations for fiture research and development. This report provides an overview of PCS technology, a description of several state-of-the-art power conversion systems and how they are used in specific applications, a summary of four basic configurations for l:he power conversion systems used in energy storage applications, a discussion of PCS costs and potential cost reductions, a summary of the stancku-ds and codes relevant to the technology, and recommendations for future research and development.

  11. Nuclear energy, future of ecology?

    International Nuclear Information System (INIS)

    Comby, B.

    1995-01-01

    This work can surprise; because it is said that nuclear energy is the only one that will allow to satisfy the energy needs of the planet by reducing the pollution. It gives answers on: Chernobyl accident, the existence of natural radioactivity, the comparison between natural radioactivity and medical, military and industrial irradiation, the pollution of our environment, the petroleum whom reserves are going to decrease, the advantages of the 'clever' nuclear and the disadvantages of the 'dustbin' nuclear, why some of ecologists are favourable to the nuclear, the effects of radiations on health, the foods irradiation, the wastes processing and the future of our planet. (N.C.)

  12. Challenges for future energy usage

    International Nuclear Information System (INIS)

    Rebhan, E.

    2009-01-01

    In the last 2000 years the world's population and the worldwide total energy consumption have been continuously increasing, at a rate even greater than exponential. By now a situation has been reached in which energy resources are running short, which for a long time have been treated as though they were almost inexhaustible. The ongoing growth of the world's population and a growing hunger for energy in underdeveloped and emerging countries imply that the yearly overall energy consumption will continue to grow, by about 1.6 percent every year so that it would have doubled by 2050. This massive energy consumption has led to and is progressively leading to severe changes in our environment and is threatening a climatic state that, for the last 10 000 years, has been unusually benign. The coincidence of the shortage of conventional energy resources with the hazards of an impending climate change is a dangerous threat to the well-being of all, but it is also a challenging opportunity for improvements in our energy usage. On a global scale, conventional methods such as the burning of coal, gas and oil or the use of nuclear fission will still dominate for some time. In their case, the challenge consists in making them more efficient and environmentally benign, and using them only where and when it is unavoidable. Alternative energies must be expanded and economically improved. Among these, promising techniques such as solar thermal and geothermal energy production should be promoted from a shadow existence and further advanced. New technologies, for instance nuclear fusion or transmutation of radioactive nuclear waste, are also quite promising. Finally, a careful analysis of the national and global energy flow systems and intelligent energy management, with emphasis on efficiency, overall effectiveness and sustainability, will acquire increasing importance. Thereby, economic viability, political and legal issues as well as moral aspects such as fairness to disadvantaged

  13. The future of nuclear energy

    International Nuclear Information System (INIS)

    Cockcroft, J.; Bhabha, H.J.; Goldschmidt, B.

    1959-01-01

    A public discussion on the future of nuclear energy was organized by the Director General of the International Atomic Energy Agency in Vienna on 22 September 1959 in conjunction with the third regular session of the Agency's General Conference. The three eminent scientists who participated in the discussion - Dr. Homi J. Bhabha of India, Sir John Cockcroft of the United Kingdom and Dr. Bertrand Goldschmidt of France - are members of the Agency's Scientific Advisory Committee. The Secretary of the Committee, Dr. Henry Seligman, Deputy Director General of IAEA, acted as moderator. The meeting was presided over by the Director General, Mr. Sterling Cole. The discussion began with opening statements by the three scientists surveying recent developments, current trends and future possibilities. After these general statements, they answered a number of questions from the audience. A record of the discussion, including the opening statements as well as the questions and answers, is contained in this special number of the IAEA Bulletin. (author)

  14. Semiconductor Nanowires and Nanotubes for Energy Conversion

    Science.gov (United States)

    Fardy, Melissa Anne

    In recent years semiconductor nanowires and nanotubes have garnered increased attention for their unique properties. With their nanoscale dimensions comes high surface area and quantum confinement, promising enhancements in a wide range of applications. 1-dimensional nanostructures are especially attractive for energy conversion applications where photons, phonons, and electrons come into play. Since the bohr exciton radius and phonon and electron mean free paths are on the same length scales as nanowire diameters, optical, thermal, and electrical properties can be tuned by simple nanowire size adjustments. In addition, the high surface area inherent to nanowires and nanotubes lends them towards efficient charge separation and superior catalytic performance. In thermoelectric power generation, the nanoscale wire diameter can effectively scatter phonons, promoting reductions in thermal conductivity and enhancements in the thermoelectric figure of merit. To that end, single-crystalline arrays of PbS, PbSe, and PbTe nanowires have been synthesized by a chemical vapor transport approach. The electrical and thermal transport properties of the nanowires were characterized to investigate their potential as thermoelectric materials. Compared to bulk, the lead chalcogenide nanowires exhibit reduced thermal conductivity below 100 K by up to 3 orders of magnitude, suggesting that they may be promising thermoelectric materials. Smaller diameters and increased surface roughness are expected to give additional enhancements. The solution-phase synthesis of PbSe nanowires via oriented attachment of nanoparticles enables facile surface engineering and diameter control. Branched PbSe nanowires synthesized by this approach showed near degenerately doped charge carrier concentrations. Compared to the bulk, the PbSe nanowires exhibited a similar Seebeck coefficient and a significant reduction in thermal conductivity in the temperature range 20 K to 300 K. Thermal annealing of the Pb

  15. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 3: Energy conversion subsystems and components. Part 1: Bottoming cycles and materials of construction

    Science.gov (United States)

    Shah, R. P.; Solomon, H. D.

    1976-01-01

    Energy conversion subsystems and components were evaluated in terms of advanced energy conversion systems. Results of the bottoming cycles and materials of construction studies are presented and discussed.

  16. Experimental Research of a New Wave Energy Conversion Device

    Science.gov (United States)

    Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Chen, Gewei

    2018-01-01

    With the increasing tension of contemporary social energy, the development and utilization of renewable energy has become an important development direction. As an important part of renewable energy, wave energy has the characteristics of green environmental protection and abundant reserves, attracting more investment and research. For small marine equipment energy supply problem, this paper puts forward a micro wave energy conversion device as the basic of heaving motion of waves in the ocean. This paper designed a new type of power output device can solve the micro wave energy conversion problem.

  17. Rectenna session: Micro aspects. [energy conversion

    Science.gov (United States)

    Gutmann, R. J.

    1980-01-01

    Two micro aspects of the rectenna design are addressed: evaluation of the degradation in net rectenna RF to DC conversion efficiency due to power density variations across the rectenna (power combining analysis) and design of Yagi-Uda receiving elements to reduce rectenna cost by decreasing the number of conversion circuits (directional receiving elements). The first of these micro aspects involves resolving a fundamental question of efficiency potential with a rectenna, while the second involves a design modification with a large potential cost saving.

  18. Resonant spin-flavor conversion of supernova neutrinos: Dependence on presupernova models and future prospects

    Science.gov (United States)

    Ando, Shin'ichiro; Sato, Katsuhiko

    2003-07-01

    We study the resonant spin-flavor (RSF) conversion of supernova neutrinos, which is induced by the interaction between the nonzero neutrino magnetic moment and the supernova magnetic fields, and its dependence on presupernova models. As the presupernova models, we adopt the latest ones by Woosley, Heger, and Weaver, and, further, models with both solar and zero metallicity are investigated. Since the (1-2Ye) profile of the new presupernova models, which is responsible for the RSF conversion, suddenly drops at the resonance region, the completely adiabatic RSF conversion is not realized, even if μνB0=(10-12μB)(1010 G), where B0 is the strength of the magnetic field at the surface of the iron core. In particular for the model with zero metallicity, the conversion is highly nonadiabatic in the high energy region, reflecting the (1-2Ye) profile of the model. In calculating the flavor conversion, we find that the shock wave propagation, which changes density profiles drastically, is a much more severe problem than it is for the pure Mikheyev-Smirnov-Wolfenstein (MSW) conversion case. This is because the RSF effect occurs at a far deeper region than the MSW effect. To avoid the uncertainty concerning the shock propagation, we restrict our discussion to 0.5 s after the core bounce (and for more conservative discussion, 0.25 s), during which the shock wave is not expected to affect the RSF region. We also evaluate the energy spectrum at the Super-Kamiokande detector for various models using the calculated conversion probabilities, and find that it is very difficult to obtain useful information on the supernova metallicities and magnetic fields or on the neutrino magnetic moment from the supernova neutrino observation. Future prospects are also discussed.

  19. The future of nuclear energy

    International Nuclear Information System (INIS)

    Schmidt-Kuester, W.J.

    2000-01-01

    Europe is one of the world leaders in nuclear technology advancement. The development of spent fuel reprocessing is but one example of this. This process continues today with the development by France and Germany of the European Pressurised-Water Reactor. Nuclear research and development work is continuing in Europe, and must be continued in the future, if Europe is to retain its world leadership position in the technological field and on the commercial front. If we look at the benefits, which nuclear energy has to offer, in economic and environmental terms, 1 support the view that nuclear is an energy source whose time has come again. This is not some fanciful notion or wishful thinking. There is clear evidence of greater long-term reliance on nuclear energy. Perhaps we do not see new nuclear plants springing up in Europe, but we do see ambitious nuclear power development programmes underway in places like China, Japan and Korea. Closer to home, Finland is seriously considering the construction of a new nuclear unit. Elsewhere, in Europe and the US, we see a growing trend towards nuclear plant life extension and plant upgrades geared towards higher production capacity. These are all signs that nuclear will be around for a long time to come and that nuclear will indeed have a future

  20. Hydrogen, energy of the future?

    International Nuclear Information System (INIS)

    Alleau, Th.

    2007-01-01

    A cheap, non-polluting energy with no greenhouse gas emissions and unlimited resources? This is towards this fantastic future that this book brings us, analyzing the complex but promising question of hydrogen. The scientific and technical aspects of production, transport, storage and distribution raised by hydrogen are thoroughly reviewed. Content: I) Energy, which solutions?: 1 - hydrogen, a future; 2 - hydrogen, a foreseeable solution?; II) Hydrogen, an energy vector: 3 - characteristics of hydrogen (physical data, quality and drawbacks); 4 - hydrogen production (from fossil fuels, from water, from biomass, bio-hydrogen generation); 5 - transport, storage and distribution of hydrogen; 6 - hydrogen cost (production, storage, transport and distribution costs); III) Fuel cells and ITER, utopias?: 7 - molecular hydrogen uses (thermal engines and fuel cells); 8 - hydrogen and fusion (hydrogen isotopes, thermonuclear reaction, ITER project, fusion and wastes); IV) Hydrogen acceptability: 9 - risk acceptability; 10 - standards and regulations; 11 - national, European and international policies about hydrogen; 12 - big demonstration projects in France and in the rest of the world; conclusion. (J.S.)

  1. Coal: Energy for the future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

  2. The state of the art of wind energy conversion systems and technologies: A review

    International Nuclear Information System (INIS)

    Cheng, Ming; Zhu, Ying

    2014-01-01

    Highlights: • This paper reviews the state of the art of wind energy conversion systems. • Different types of common wind energy conversion systems are classified and compared. • The four most popular MPPT control methods are reviewed and compared. • The latest development of wind energy conversion technologies is introduced. • Future trends of the wind energy conversion technologies are discussed. - Abstract: This paper gives a comprehensive review of the state of the art of wind energy conversion systems (WECS) and technologies, with an emphasis on wind power generator and control. First, different types of common WECSs are classified according to their features and drive train types. The WECSs are compared on the basis of the volume, weight, cost, efficiency, system reliability and fault ride through capability. The maximum power point tracking (MPPT) control, which aims to make the generator speed meet an optimum value to ensure the maximum energy yield, plays a key role in the variable speed WECSs. A comprehensive review and comparison of the four most popular MPPT control methods are carried out and improvements for each method are presented. Furthermore, the latest development of wind energy conversion technologies is introduced, such as the brushless doubly fed induction generator (BDFIG), the stator permanent magnet synchronous generators, the magnetic-geared generators, dual power flow WECS with the electrical variable transmission (EVT) machine, and direct grid-connected WECS. Finally, the future trends of the technologies are discussed

  3. Scenarios of future energy intensities

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    In this chapter, the authors present scenarios of potential change in energy intensities in the OECD countries and in the Soviet Union. These scenarios are meant to illustrate how intensities might evolve over the next 20 years given different conditions with respect to energy prices, energy-efficiency policies, and other key factors. Changes in intensity will also be affected by the rates of growth and stock turnover in each sector. They have not tried to forecast how activity levels and structure will evolve. However, the OECD scenarios assume a world in which GDP averages growth in the 2-3%/year range, with some differences among countries. For the Soviet Union, the degree and pace of intensity decline will be highly dependent on the success of the transition to a market economy; each scenario explicitly envisions a different degree of success. They have not constructed comparable scenarios for the developing countries. The scenarios presented in this chapter do not predict what will happen in the future. They believe, however, that they illustrate a plausible set of outcomes if energy prices, policies, programs, and other factors evolve as described in each case. With higher energy prices and vigorous policies and programs, intensities in the OECD countries in 2010 could be nearly 50% less on average than the level where trends seem to be point. In the former Soviet Union, a combination of rapid, successful economic reform and extra effort to improve energy efficiency might result in average intensity being nearly 40% less than in a slow reform case. And in the LDCs, a mixture of sound policies, programs, and energy pricing reform could also lead to intensities being far lower than they would be otherwise. 8 refs., 10 figs., 1 tab

  4. Direct energy conversion - state of the art in 1981

    International Nuclear Information System (INIS)

    Euler, K.J.

    1981-01-01

    Contemporary research and development of direct energy conversion (D.E.C.) started about 25 years ago. Having considered possibilities, cost, and advantages, the efforts have become more and more steady during the last decade. It has been recognized that, in most cases, D.E.C. methods will serve only as electricity sources for special application. This is true for radioisotopic generators used in space and submarine technologies, for thermoelectric devices used in air defence and along desert pipelines, and for thermionic convertors used in television satellites. Thus, the goal, to introduce these D.E.C. units in large scale manufacture has not been reached, and will not be reached even in the future. Only magneto-hydrodynamic channels exhibit a certain innovation potential as topping devices in advanced thermal power stations. Fuel cells will not be treated here, solar cells only mentioned briefly. (orig.) [de

  5. Energy in India's Future: Insights

    International Nuclear Information System (INIS)

    Lesourne, J.; Ramsay, W.C.; Jaureguy-Naudin, Maite; Boillot, Jean-Joseph; Autheman, Nicolas; Ruet, Joel; Siddiqui, Zakaria; Zaleski, C. Pierre; Cruciani, Michel

    2009-01-01

    In the decades following India's independence from British rule in 1947, the West's image of India was summarized in three simple cliches: the world's largest democracy, an impoverished continent, and economic growth hampered by a fussy bureaucracy and the caste system, all in a context of a particular religion. These cliches are perhaps one of the reasons that the success of India's green revolution was recognized so late, a revolution that allowed the country to develop its agricultural sector and to feed its population. Since the 1990's, the easing of planning constraints have liberated the Indian economy and allowed it to embark on a more significant path of growth. New cliches have begun to replace the old: India will become a second China and, lagging by 10 to 20 years, will follow the same trajectory, with its development marked more by services and the use of renewable energy. However, these trends will not prevent primary energy demand from exploding. On the contrary, India faces difficult choices on how it increases clean, secure, affordable energy to all its citizens. Many of the choices are the same as found elsewhere, but on a scale matched only by China. The IFRI European Governance and Geopolitics of Energy Project intends this study to deepen public understanding of the magnitude of India's challenges. Various aspects of the serious energy problems are studied throughout this monograph. The authors have written freely on these matters without attempting to reconcile their different viewpoints. The first chapter, by Maite Jaureguy-Naudin and Jacques Lesourne, presents an overview of India's present and future energy system. The authors follow a prudent but realistic view of India's future. The second chapter, by Jean-Joseph Boillot, a French expert on India who has published several books and articles on this subject, and Nicolas Autheman, research fellow, describes in greater detail the specifics of India's economy and the actors who are now present

  6. Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Neil; Yang, Peidong

    2013-01-23

    Semiconductor nanowires (NW) possess several beneficial properties for efficient conversion of solar energy into electricity and chemical energy. Due to their efficient absorption of light, short distances for minority carriers to travel, high surface-to-volume ratios, and the availability of scalable synthesis methods, they provide a pathway to address the low cost-to-power requirements for wide-scale adaptation of solar energy conversion technologies. Here we highlight recent progress in our group towards implementation of NW components as photovoltaic and photoelectrochemical energy conversion devices. An emphasis is placed on the unique properties of these one-dimensional (1D) structures, which enable the use of abundant, low-cost materials and improved energy conversion efficiency compared to bulk devices.

  7. Examination of spent fuel radiation energy conversion for electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haneol; Yim, Man-Sung, E-mail: msyim@kaist.ac.kr

    2016-04-15

    Highlights: • Utilizing conversion of radiation energy of spent fuel to electric energy. • MCNPX modeling and experiment were used to estimate energy conversion. • The converted energy may be useful for nuclear security applications. • The converted energy may be utilized for safety applications through energy storage. - Abstract: Supply of electricity inside nuclear power plant is one of the most important considerations for nuclear safety and security. In this study, generation of electric energy by converting radiation energy of spent nuclear fuel was investigated. Computational modeling work by using MCNPX 2.7.0 code along with experiment was performed to estimate the amount of electric energy generation. The calculation using the developed modeling work was validated through comparison with an integrated experiment. The amount of electric energy generation based on a conceptual design of an energy conversion module was estimated to be low. But the amount may be useful for nuclear security applications. An alternative way of utilizing the produced electric energy could be considered for nuclear safety application through energy storage. Further studies are needed to improve the efficiency of the proposed energy conversion concept and to examine the issue of radiation damage and economic feasibility.

  8. Pristine Metal-Organic Frameworks and their Composites for Energy Storage and Conversion.

    Science.gov (United States)

    Liang, Zibin; Qu, Chong; Guo, Wenhan; Zou, Ruqiang; Xu, Qiang

    2017-11-22

    Metal-organic frameworks (MOFs), a new class of crystalline porous organic-inorganic hybrid materials, have recently attracted increasing interest in the field of energy storage and conversion. Herein, recent progress of MOFs and MOF composites for energy storage and conversion applications, including photochemical and electrochemical fuel production (hydrogen production and CO 2 reduction), water oxidation, supercapacitors, and Li-based batteries (Li-ion, Li-S, and Li-O 2 batteries), is summarized. Typical development strategies (e.g., incorporation of active components, design of smart morphologies, and judicious selection of organic linkers and metal nodes) of MOFs and MOF composites for particular energy storage and conversion applications are highlighted. A broad overview of recent progress is provided, which will hopefully promote the future development of MOFs and MOF composites for advanced energy storage and conversion applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Energy conversion device with support member having pore channels

    Science.gov (United States)

    Routkevitch, Dmitri [Longmont, CO; Wind, Rikard A [Johnstown, CO

    2014-01-07

    Energy devices such as energy conversion devices and energy storage devices and methods for the manufacture of such devices. The devices include a support member having an array of pore channels having a small average pore channel diameter and having a pore channel length. Material layers that may include energy conversion materials and conductive materials are coaxially disposed within the pore channels to form material rods having a relatively small cross-section and a relatively long length. By varying the structure of the materials in the pore channels, various energy devices can be fabricated, such as photovoltaic (PV) devices, radiation detectors, capacitors, batteries and the like.

  10. Space electric power design study. [laser energy conversion

    Science.gov (United States)

    Martini, W. R.

    1976-01-01

    The conversion of laser energy to electrical energy is discussed. Heat engines in which the laser heats the gas inside the engine through a window as well as heat engines in which the gas is heated by a thermal energy storage reservoir which has been heated by laser radiation are both evaluated, as well as the necessary energy storage, transmission and conversion components needed for a full system. Preliminary system concepts are presented and a recommended development program is outlined. It appears possible that a free displacer Stirling engine operating directly a linear electric generator can convert 65% of the incident laser energy into electricity.

  11. Feasibility study on conversion and storage of solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Senghaphan, W; Tunsiri, P; Trivijitkasem, P; Ratanathammaphan, K

    1982-01-01

    A study has been conducted on the energy conversion system from solar energy to mechanical energy and on the efficiency of energy storage by an ordinary battery. The conversion system makes use of a thermal cycle, that is to say, the solar energy is collected as heat, and this heat makes suitable working substances evaporate into vapor with volume and pressure which can be used to drive the turbine resulting in mechanical energy. The vapor which passes through the turbine will have reduced pressure and reduced temperature and will be recondensed into liquid after passing through a suitable radiator. This liquid can be pumped back into the hot part of the conversion system with little energy. It is found by this study that the turbine could be operated by using acetone as working substance with a 80-90/sup 0/C source of heat. In the energy conversion system from solar energy to electrical energy, it is essential to provide for an energy storage, so that energy can be used in the absence of sunshine. To store energy by using a batter is one of the convenient methods. Therefore the efficiency of the batteries has been studied. Owing to incompleteness of the researched system, a conventional DC power supply has been used for charging the batteries. It is found that the efficiency of the charging and discharging cycle of batteries is about 40-60%.

  12. Microfluidic energy conversion by application of two phase flow

    NARCIS (Netherlands)

    Xie, Yanbo

    2013-01-01

    We investigated the energy conversion performance by the streaming potential using totally different approaches. By introducing gas bubbles, which can be considered as perfect insulators, the internal electrical resistance of the system can be increased, decreasing the conduction current. Following

  13. Advanced Reactor Technology/Energy Conversion Project FY17 Accomplishments.

    Energy Technology Data Exchange (ETDEWEB)

    Rochau, Gary E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    The purpose of the ART Energy Conversion (EC) Project is to provide solutions to convert the heat from an advanced reactor to useful products that support commercial application of the reactor designs.

  14. (Nuclear) energy policy in future

    International Nuclear Information System (INIS)

    1982-01-01

    With this report the German Federal Diet submits the final results of the opinion-forming and decision-making process concerning the recommendations made by the investigation committee 'Future Nuclear Energy Policy' in June 1980. By means of this report it is intended to point out to an interested public the difficult and time-consuming process of parliamentary decision-making. This report is also to be seen as the final opinion delivered on the recommendations made by the investigation committee. The recommendations were to continue to pursue the peaceful use of nuclear energy, the necessity and technical justifiability of which had basically been approved by all parliamentary groups. In view of the import of the subject and in recognition of the work done by the investigation committee, the German Parliament has thoroughly discussed the report and has reviewed the analyses and recommendations in conjunction with other political fields to be considered. One part of the recommendations was taken up almost unanimously. As far as the safety of nuclear installations is concerned, the investigation committee could not submit any new findings which would give reasons for modifying the hitherto positive assessment of the safety of nuclear installations. The recommendations of the investigation committee mainly referred to the decision-making process in the field of energy policy which will effect the next decade. What fundamental decisions are to be made until when was pointed out as well as the findings and experience to be made until then. (orig./HP) [de

  15. EXAMINING A SERIES RESONANT INVERTER CIRCUIT TO USE IN THE PHOTOVOLTAIC ENERGY CONVERSION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Engin ÇETİN

    2004-03-01

    Full Text Available As we know, solar energy is the energy source which is environment friendly, renewable, and can be found easily. Particularly, in the recent years, interest on producing electrical energy by alternative energy sources increased because of the fact that underground sources are not enough to produce energy in the future and also these sources cause enviromental pollution. The solar energy is one of the most popular one among the alternative energy sources. Photovoltaic systems produce the electrical energy from the sunlight. In this study, a series resonant inverter circuit which is used in the photovoltaic energy conversion systems has been examined.Effects of the series resonant inverter circuit on the photovoltaic energy conversion system have been investigated and examined

  16. Achieving sustainable biomass conversion to energy and bio products

    International Nuclear Information System (INIS)

    Matteson, G. C.

    2009-01-01

    The present effort in to maximize biomass conversion-to-energy and bio products is examined in terms of sustain ability practices. New goals, standards in practice, measurements and certification are needed for the sustainable biomass industry. Sustainable practices produce biomass energy and products in a manner that is secure, renewable, accessible locally, and pollution free. To achieve sustainable conversion, some new goals are proposed. (Author)

  17. Ballistic energy conversion: physical modeling and optical characterization

    NARCIS (Netherlands)

    Xie, Yanbo; Bos, Diederik; van der Meulen, Mark-Jan; van der Meulen, Mark-Jan; Versluis, Michel; van den Berg, Albert; Eijkel, Jan C.T.

    2016-01-01

    The growing demand for renewable energy stimulates the exploration of new materials and methods for clean energy, a process which is boosted by nanoscience and emerging nanotechnologies. Recently a high efficiency and high power density energy conversion mechanism was demonstrated through the use of

  18. Proceedings of the 30. intersociety energy conversion engineering conference. Volume 1

    International Nuclear Information System (INIS)

    Goswami, D.Y.; Kannberg, L.D.; Somasundaram, S.

    1995-01-01

    This conference provides a forum to present and discuss the engineering aspects of energy conversion, advanced and unconventional energy systems and devices, energy conversion and utilization, environmental issues and policy implications on research, development, and implementation of technologies. The solution for a sustainable future will lie in a mix of all of the available energy resources (renewable and non-renewable) and diverse energy conversion technologies that will maintain quality of life in a sustainable manner. The 129 papers in Volume 1 deal with aerospace power and are divided into the following topical sections: Aircraft power; Aerospace power systems; Batteries for aerospace power; Computer simulation; Power electronics; Power management; Space solar power; Space power systems; Space energy statics/dynamics; Space power--requirements and issues; Space Station power; Terrestrial applications of space power; Thermal management; Wireless transmission; Space nuclear power; Bimodal propulsion; Electric propulsion; Solar thermal; and Solar bimodal. All papers have been processed separately for inclusion on the data base

  19. Conversion of biomass into energy source

    International Nuclear Information System (INIS)

    Antonescu, S.; Garjoaba, M.; Antonescu, A.

    2005-01-01

    This study assists the identification of possible application and markets of the CHP-plants in the NAS states, and forms the first part of a detailed study on economical and ecological prospects of small scale and large heat pipe reformers in NAS. It is well known that the energy strategy of the European Union, foresees the increase of the participation of the renewable energy from the total of the energy resources of the European Union, up to 12% in 2010. This participation is of a great importance for the adequate reduction of green house effect gases. From the energy production point of view it is proven the fact that in 2010 the production of renewable energy will be: electricity - 675 tWh; heat - 80 Mtoe (930 TWh). From the above mentioned energy demand, the biomass will cover: electricity - 230 TWh-34,1%; heat - 75 Mtoe (93,8%)

  20. Solar energy systems: assessment of present and future potential

    International Nuclear Information System (INIS)

    Kuehne, H.-M.; Aulich, H.

    1992-01-01

    This paper discusses the present state and the future potential of solar thermal and photovoltaic (PV) technologies, and examines both the environmental implications of these technologies and the economics which determine their viability in the energy market. Although some significant cost reductions have been achieved, particularly in PV technology, solar conversion technologies are still not generally competitive against conventional fuels, and future cost reductions may be limited. It is argued that fiscal measures will be necessary if solar conversion technologies are to make a significant global impact. (Author)

  1. Teaching on ocean-wave-energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Falnes, J. [Norges teknisk-naturvitskaplege univ., Inst. for fysikk, Trondheim (Norway)

    2001-07-01

    Ocean-wave energy utilisation has for 27 years been a university research subject, in which the author has been active from the first year. In this paper he presents some information related to his teaching on the subject during many of these years. This includes teaching on the pre-university level and, in particular, development of the wave-energy module for an educational CD-ROM on sustainable technology and renewable energy. Education of the general public is very important. On the other hand teaching of doctor students and other wave-energy researchers is also a subject of the paper. (au)

  2. Biomass energy conversion workshop for industrial executives

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The rising costs of energy and the risks of uncertain energy supplies are increasingly familiar problems in industry. Bottom line profits and even the simple ability to operate can be affected by spiralling energy costs. An often overlooked alternative is the potential to turn industrial waste or residue into an energy source. On April 9 and 10, 1979, in Claremont, California, the Solar Energy Research Institute (SERI), the California Energy Commission (CEC), and the Western Solar Utilization Network (WSUN) held a workshop which provided industrial managers with current information on using residues and wastes as industrial energy sources. Successful industrial experiences were described by managers from the food processing and forest product industries, and direct combustion and low-Btu gasification equipment was described in detail. These speakers' presentations are contained in this document. Some major conclusions of the conference were: numerous current industrial applications of wastes and residues as fuels are economic and reliable; off-the-shelf technologies exist for converting biomass wastes and residues to energy; a variety of financial (tax credits) and institutional (PUC rate structures) incentives can help make these waste-to-energy projects more attractive to industry. However, many of these incentives are still being developed and their precise impact must be evaluated on a case-by-case basis.

  3. Renewable Energy Operation and Conversion Schemes

    DEFF Research Database (Denmark)

    Spagnuolo, Giovanni; Petrone, Giovanni; Araujo, Samuel Vasconcelos

    2010-01-01

    A short summary of some speeches given during Seminar on Renewable Energy system (SERENE) is presented. The contributions have been mainly focused on power electronics for photovoltaic (PV) and sea wave energies, pointing out some aspects related to efficiency, reliability, and grid integration. ...

  4. Photonic Crystal Emitters for Thermophotovoltaic Energy Conversion

    International Nuclear Information System (INIS)

    Stelmakh, Veronika; Chan, Walker R; Joannopoulos, John D; Celanovic, Ivan; Ghebrebrhan, Michael; Soljacic, Marin

    2015-01-01

    This paper reports the design, fabrication, and characterization of 2D photonic crystal (PhC) thermal emitters for a millimeter-scale hydrocarbon TPV microgenerator as a possible replacement for batteries in portable microelectronics, robotics, etc. In our TPV system, combustion heats a PhC emitter to incandescence and the resulting radiation is converted by a low-bandgap TPV cell. The PhC tailors the photonic density of states to produce spectrally confined thermal emission that matches the bandgap of the TPV cell, enabling high heat-to-electricity conversion efficiency. The work builds on a previously developed fabrication process to produce a square array of cylindrical cavities in a metal substrate. We will present ongoing incremental improvements in the optical and thermo-mechanical properties, the fabrication process, and the system integration, as recently combined with fabrication using novel materials, such as sputtered coatings, to enable a monolithic system. (paper)

  5. Teaching elementary thermodynamics and energy conversion: Opinions

    International Nuclear Information System (INIS)

    Gaggioli, Richard A.

    2010-01-01

    This presentation deals with innovation in teaching and understanding of thermodynamic principles. Key features of the approach being advocated are: (a) postulation of the existence of entropy, (b) explicitly associating energy transfers with other transports, (c) stating the 2nd Law in terms of Gibbs' available-energy, (d) systematic use of software such as EES. The paper outlines and elaborates upon an introductory course. Major headings in the course are: basic concepts: properties, additive properties and balances, primitive properties, energy, 1st Law. entropy, elementary academic applications of balances, available-energy, second law, exergy, thermostatic property relations, EES. Applications to processes, fluid flow, Heat transfer, thermochemical. Applications to devices, single-process, compound-process, systems (consisting of devices and processes functioning together).

  6. Emerging electrochemical energy conversion and storage technologies

    Science.gov (United States)

    Badwal, Sukhvinder P. S.; Giddey, Sarbjit S.; Munnings, Christopher; Bhatt, Anand I.; Hollenkamp, Anthony F.

    2014-01-01

    Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation, and storage; pollution control/monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time, and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges. PMID:25309898

  7. Supramolecular Structures for Photochemical Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Gust, Devens; Moore, Thomas A.; Moore, Ana L.

    2003-08-26

    OAK B188 The goal of this project is to mimic the energy transduction processes by which photosynthetic organisms harvest sunlight and convert it to forms of energy that are more easily used and stored. The results may lead to new technologies for solar energy harvesting based on the natural photosynthetic process. They may also enrich our understanding and control of photosynthesis in living organisms, and lead to methods for increasing natural biomass production, carbon dioxide removal, and oxygen generation. In our work to date, we have learned how to make synthetic antenna and reaction center molecules that absorb light and undergo photoinduced electron transfer to generate long-lived, energetic charge-separated states. We have assembled a prototype system in which artificial reaction centers are inserted into liposomes (artificial cell-like constructs), where they carry out light-driven transmembrane translocation of hydrogen ions to generate proton motive force. By insertion of natural ATP synthase into the liposomal bilayer, this proton motive force has been used to power the synthesis of ATP. ATP is a natural biological energy currency. We are carrying out a systematic investigation of these artificial photosynthetic energy harvesting constructs in order to understand better how they operate. In addition, we are exploring strategies for reversing the direction of the light-powered proton pumping. Most recently, we have extended these studies to develop a light-powered transmembrane calcium ion pump that converts sunlight into energy stored as a calcium ion concentration gradient across a lipid bilayer.

  8. Supporting Current Energy Conversion Projects through Numerical Modeling

    Science.gov (United States)

    James, S. C.; Roberts, J.

    2016-02-01

    The primary goals of current energy conversion (CEC) technology being developed today are to optimize energy output and minimize environmental impact. CEC turbines generate energy from tidal and current systems and create wakes that interact with turbines located downstream of a device. The placement of devices can greatly influence power generation and structural reliability. CECs can also alter the environment surrounding the turbines, such as flow regimes, sediment dynamics, and water quality. These alterations pose potential stressors to numerous environmental receptors. Software is needed to investigate specific CEC sites to simulate power generation and hydrodynamic responses of a flow through a CEC turbine array so that these potential impacts can be evaluated. Moreover, this software can be used to optimize array layouts that yield the least changes to the environmental (i.e., hydrodynamics, sediment dynamics, and water quality). Through model calibration exercises, simulated wake profiles and turbulence intensities compare favorably to the experimental data and demonstrate the utility and accuracy of a fast-running tool for future siting and analysis of CEC arrays in complex domains. The Delft3D modeling tool facilitates siting of CEC projects through optimization of array layouts and evaluation of potential environmental effect all while provide a common "language" for academics, industry, and regulators to be able to discuss the implications of marine renewable energy projects. Given the enormity of any full-scale marine renewable energy project, it necessarily falls to modeling to evaluate how array operations must be addressed in an environmental impact statement in a way that engenders confidence in the assessment of the CEC array to minimize environmental effects.

  9. Experimental-demonstrative system for energy conversion using hydrogen fuel cell - preliminary results

    International Nuclear Information System (INIS)

    Stoenescu, D.; Stefanescu, I.; Patularu, I.; Culcer, M.; Lazar, R.E.; Carcadea, E.; Mirica, D. . E-mail address of corresponding author: daniela@icsi.ro; Stoenescu, D.)

    2005-01-01

    It is well known that hydrogen is the most promising solution of future energy, both for long and medium term strategies. Hydrogen can be produced using many primary sources (natural gas, methane, biomass, etc.), it can be burned or chemically react having a high yield of energy conversion, being a non-polluted fuel. This paper presents the preliminary results obtained by ICSI Rm. Valcea in an experimental-demonstrative conversion energy system made by a sequence of hydrogen purification units and a CO removing reactors until a CO level lower than 10ppm, that finally feeds a hydrogen fuel stack. (author)

  10. Decomposing Fuel Economy and Greenhouse Gas Regulatory Standards in the Energy Conversion Efficiency and Tractive Energy Domain

    Energy Technology Data Exchange (ETDEWEB)

    Pannone, Greg [Novation Analytics; Thomas, John F [ORNL; Reale, Michael [Novation Analytics; Betz, Brian [Novation Analytics

    2017-01-01

    The three foundational elements that determine mobile source energy use and tailpipe carbon dioxide (CO2) emissions are the tractive energy requirements of the vehicle, the on-cycle energy conversion efficiency of the propulsion system, and the energy source. The tractive energy requirements are determined by the vehicle's mass, aerodynamic drag, tire rolling resistance, and parasitic drag. Oncycle energy conversion of the propulsion system is dictated by the tractive efficiency, non-tractive energy use, kinetic energy recovery, and parasitic losses. The energy source determines the mobile source CO2 emissions. For current vehicles, tractive energy requirements and overall energy conversion efficiency are readily available from the decomposition of test data. For future applications, plausible levels of mass reduction, aerodynamic drag improvements, and tire rolling resistance can be transposed into the tractive energy domain. Similarly, by combining thermodynamic, mechanical efficiency, and kinetic energy recovery fundamentals with logical proxies, achievable levels of energy conversion efficiency can be established to allow for the evaluation of future powertrain requirements. Combining the plausible levels of tractive energy and on-cycle efficiency provides a means to compute sustainable vehicle and propulsion system scenarios that can achieve future regulations. Using these principles, the regulations established in the United States (U.S.) for fuel consumption and CO2 emissions are evaluated. Fleet-level scenarios are generated and compared to the technology deployment assumptions made during rule-making. When compared to the rule-making assumptions, the results indicate that a greater level of advanced vehicle and propulsion system technology deployment will be required to achieve the model year 2025 U.S. standards for fuel economy and CO2 emissions.

  11. A rationale plan for conversion of Malaysia for solar hydrogen energy system and its benefits

    International Nuclear Information System (INIS)

    Ludin, N.A.; Kamaruddin, W.N.; Kamaruzzaman Sopian; Verizoglu, T.N.

    2006-01-01

    It expected that early in the next century, Malaysia production of petroleum and natural gas will peak, and thereafter production will decline. In parallel with this production decline, Malaysia income from fossil fuels will start to decline, which would hurt the economy. One possible solution for Malaysia is the of Malaysia is the conversion to a hydrogen energy system. In order to move towards a sustainable hydrogen energy system, a future strategy must be outlined, followed, and continually revised. This paper will underline the available hydrogen technologies for production, storage, delivery, conversion, transportation and end use energy applications for the implementation of hydrogen energy system. Therefore, this paper will also emphasis the key success factors to drive the rationale plan for conversion to hydrogen energy system for Malaysia

  12. A Conversation on Zero Net Energy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Eley, Charles; Gupta, Smita; Torcellini, Paul; Mchugh, Jon; Liu, Bing; Higgins, Cathy; Iplikci, Jessica; Rosenberg, Michael I.

    2017-06-30

    The submitted Roundtable discussion covers zero net energy (ZNE) buildings and their expansion into the market as a more widely adopted approach for various building types and sizes. However, the market is still small, and this discussion brings together distinguished researchers, designers, policy makers, and program administrations to represent the key factors making ZNE building more widespread and mainstream from a broad perspective, including governments, utilities, energy-efficiency research institutes, and building owners. This roundtable was conducted by the ASHRAE Journal with Bing Liu, P.E., Member ASHRAE, Charles Eley, FAIA, P.E., Member ASHRAE; Smita Gupta, Itron; Cathy Higgins, New Buildings Institute; Jessica Iplikci, Energy Trust of Oregon; Jon McHugh, P.E., Member ASHRAE; Michael Rosenberg, Member ASHRAE; and Paul Torcellini, Ph.D., P.E., NREL.

  13. Rotating flux compressor for energy conversion

    International Nuclear Information System (INIS)

    Chowdhuri, P.; Linton, T.W.; Phillips, J.A.

    1983-01-01

    The rotating flux compressor (RFC) converts rotational kinetic energy into an electrical output pulse which would have higher energy than the electrical energy initially stored in the compressor. An RFC has been designed in which wedge-shaped rotor blades pass through the air gaps between successive turns of a solenoid, the stator. Magnetic flux is generated by pulsing the stator solenoids when the inductance is a maximum, i.e., when the flux fills the stator-solenoid volume. Connecting the solenoid across a load conserves the flux which is compressed within the small volume surrounding the stator periphery when the rotor blades cut into the free space between the stator plates, creating a minimum-inductance condition. The unique features of this design are: (1) no electrical connections (brushes) to the rotor; (2) no conventional windings; and (3) no maintenance. The device has been tested up to 5000 rpm of rotor speed

  14. Proceedings of the 30. intersociety energy conversion engineering conference. Volume 2

    International Nuclear Information System (INIS)

    Goswami, D.Y.; Kannberg, L.D.; Somasundaram, S.

    1995-01-01

    This conference provides a forum to present and discuss the engineering aspects of energy conversion, advanced and unconventional energy systems and devices, energy conversion and utilization, environmental issues and policy implications on research, development, and implementation of technologies. The solution for a sustainable future will lie in a mix of all of the available energy resources (renewable and non-renewable) and diverse energy conversion technologies that will maintain quality of life in a sustainable manner. The 100 papers in Volume 2 are divided into the following topical sections: (1) Environmental impact--Impacts and technologies; (2) Energy systems--Electric/hybrid vehicle technology; Transportation system assessments; Simulation and modeling of systems; Cogeneration and other energy systems; Thermal energy storage applications; Fluids and heat transfer topics; Demand-side management in buildings; and Energy management; (3) Policy impacts on energy--Developing countries and Global; (4) Renewable energy sources--Solar and geothermal power; Solar thermal power; Photovoltaics; Biomass power; Solar thermal; and Renewable energy--status and future. All papers have been processed separately for inclusion on the data base

  15. Physical Limits of Solar Energy Conversion in the Earth System.

    Science.gov (United States)

    Kleidon, Axel; Miller, Lee; Gans, Fabian

    2016-01-01

    Solar energy provides by far the greatest potential for energy generation among all forms of renewable energy. Yet, just as for any form of energy conversion, it is subject to physical limits. Here we review the physical limits that determine how much energy can potentially be generated out of sunlight using a combination of thermodynamics and observed climatic variables. We first explain how the first and second law of thermodynamics constrain energy conversions and thereby the generation of renewable energy, and how this applies to the conversions of solar radiation within the Earth system. These limits are applied to the conversion of direct and diffuse solar radiation - which relates to concentrated solar power (CSP) and photovoltaic (PV) technologies as well as biomass production or any other photochemical conversion - as well as solar radiative heating, which generates atmospheric motion and thus relates to wind power technologies. When these conversion limits are applied to observed data sets of solar radiation at the land surface, it is estimated that direct concentrated solar power has a potential on land of up to 11.6 PW (1 PW=10(15) W), whereas photovoltaic power has a potential of up to 16.3 PW. Both biomass and wind power operate at much lower efficiencies, so their potentials of about 0.3 and 0.1 PW are much lower. These estimates are considerably lower than the incoming flux of solar radiation of 175 PW. When compared to a 2012 primary energy demand of 17 TW, the most direct uses of solar radiation, e.g., by CSP or PV, have thus by far the greatest potential to yield renewable energy requiring the least space to satisfy the human energy demand. Further conversions into solar-based fuels would be reduced by further losses which would lower these potentials. The substantially greater potential of solar-based renewable energy compared to other forms of renewable energy simply reflects much fewer and lower unavoidable conversion losses when solar

  16. Energy analysis of biochemical conversion processes of biomass to bioethanol

    Energy Technology Data Exchange (ETDEWEB)

    Bakari, M.; Ngadi, M.; Bergthorson, T. [McGill Univ., Ste-Anne-de-Bellevue, PQ (Canada). Dept. of Bioresource Engineering

    2010-07-01

    Bioethanol is among the most promising of biofuels that can be produced from different biomass such as agricultural products, waste and byproducts. This paper reported on a study that examined the energy conversion of different groups of biomass to bioethanol, including lignocelluloses, starches and sugar. Biochemical conversion generally involves the breakdown of biomass to simple sugars using different pretreatment methods. The energy needed for the conversion steps was calculated in order to obtain mass and energy efficiencies for the conversions. Mass conversion ratios of corn, molasses and rice straw were calculated as 0.3396, 0.2300 and 0.2296 kg of bioethanol per kg of biomass, respectively. The energy efficiency of biochemical conversion of corn, molasses and rice straw was calculated as 28.57, 28.21 and 31.33 per cent, respectively. The results demonstrated that lignocelluloses can be efficiently converted with specific microorganisms such as Mucor indicus, Rhizopus oryzae using the Simultaneous Saccharification and Fermentation (SSF) methods.

  17. Aerodynamic Aspects of Wind Energy Conversion

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær

    2011-01-01

    This article reviews the most important aerodynamic research topics in the field of wind energy. Wind turbine aerodynamics concerns the modeling and prediction of aerodynamic forces, such as performance predictions of wind farms, and the design of specific parts of wind turbines, such as rotor...

  18. Direct energy conversion for fusion reactors

    International Nuclear Information System (INIS)

    Barr, W.L.

    1977-01-01

    Complex multistage plasma converters were tested at efficiencies approaching 90% at low energies and powers, and simpler, more cost-effective versions at 65% efficiency. Laboratory tests of neutral-beam direct converters at 15 keV and 2 kW gave 70% efficiency. A 120-keV, 1.5-MW version is being tested

  19. Innovative Breakwaters Design for Wave Energy Conversion

    DEFF Research Database (Denmark)

    Vicinanza, Diego; Stagonas, D.; Müller, G.

    2012-01-01

    the rubble mound breakwaters and seawalls related activity and the energy demand of small human communities. Wave loadings and overtopping on a seawall and rubble mound breakwater with front reservoir are discussed on the basis of physical 2-D model tests carried out at University of Southampton (UK...

  20. Experimental facility for explosive energy conversion into coherent microwave radiation

    International Nuclear Information System (INIS)

    Vdovin, V.A.; Korzhenevskij, A.V.; Cherepenin, V.A.

    2003-01-01

    The explosive energy conversion into the microwave radiation energy is considered with application of the explosion magnetic generator, heavy-current electron accelerator and Cherenkov microwave range generator. The electron accelerator formed the beam of 33 cm in diameter and current of ∼ 25 kA. The electrodynamic system of the SHF-generator has the diameter of ∼ 35 cm and it is accomplished in the form of the periodical nonuniform dielectric. The proposed explosive energy conversion scheme makes it possible to obtain the radiation capacity of approximately 100 MW in the 3-cm wave range by the pulse duration of ∼ 800 ns [ru

  1. Expansionary economic effects of energy conversion under stagnation

    International Nuclear Information System (INIS)

    Ono, Yoshiyasu

    2013-01-01

    After the Fukushima disaster, energy conversion such as nuclear power phaseout and deployment of renewable energy or survival of nuclear power had been actively argued pro and con. Both sides admitted extra costs were needed but their economic effects would be contrary dependent on business state. Under better economy, extra costs would be actual burden of total economy. Under stagnation as was long in Japan at present, extra costs brought about expansion of employment and economy with simulated consumption increase. Industry conversion would occur such industry intensively using power would depreciate and energy conserved industry would grow. Difference of power use intensity between industries made difficult in energy conversion because present Japanese industry constitution was mostly formed based on cheap power cost for industry use. Even taking account of international competition, the same would be true by adjusting finance balance sheet and currency exchange rate. (T. Tanaka)

  2. Role of Bioreactors in Microbial Biomass and Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liang [Chongqing University, Chongqing, China; Zhang, Biao [Chongqing University, Chongqing, China; Zhu, Xun [Chongqing University, Chongqing, China; Chang, Haixing [Chongqing University of Technology; Ou, Shawn [ORNL; Wang, HONG [Chongqing University, Chongqing, China

    2018-04-01

    Bioenergy is the world’s largest contributor to the renewable and sustainable energy sector, and it plays a significant role in various energy industries. A large amount of research has contributed to the rapidly evolving field of bioenergy and one of the most important topics is the use of the bioreactor. Bioreactors play a critical role in the successful development of technologies for microbial biomass cultivation and energy conversion. In this chapter, after a brief introduction to bioreactors (basic concepts, configurations, functions, and influencing factors), the applications of the bioreactor in microbial biomass, microbial biofuel conversion, and microbial electrochemical systems are described. Importantly, the role and significance of the bioreactor in the bioenergy process are discussed to provide a better understanding of the use of bioreactors in managing microbial biomass and energy conversion.

  3. The energy future in France?

    International Nuclear Information System (INIS)

    Rebut, Paul Henri

    2013-01-01

    In this contribution, the author indicates figures for primary energy sources in France, outlines what is expected from a source of energy, and discusses the energy transformation efficiency. He addresses the case of electricity production and consumption, production costs for the different sources, nuclear energy, primary fluid mechanical energies, issue of intermittency and storage, photovoltaic, storage, subsidies and purchase obligation for EDF, fossil energies and carbon dioxide production. He questions the possibility of reduction of energy consumption, evokes and criticizes the French energy policy concerning electricity production, and possibilities of energy saving in housing and in transports, and by developing smart grids

  4. Standard Terminology Relating to Photovoltaic Solar Energy Conversion

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This terminology pertains to photovoltaic (radiant-to-electrical energy conversion) device performance measurements and is not a comprehensive list of terminology for photovoltaics in general. 1.2 Additional terms used in this terminology and of interest to solar energy may be found in Terminology E 772.

  5. Conversion of solar energy into heat

    International Nuclear Information System (INIS)

    Devin, B.; Etievant, C.

    1975-01-01

    Argument prevails regarding the main parameters involved in the definition of installations designed to convert by means of a thermal machine, solar energy into electrical or mechanical energy. Between the temperature of the cold source and the stagnation temperature, there exists an optimal temperature which makes for the maximum efficiency of the collector/thermal machine unit. The optimal operating conditions for different types of collector are examined. Optimization of the surface of the collector is dealt with in particular. The structure and cost of solar installations are also analyzed with some examples as basis: solar pumps of 1 to 25kW, a 50MWe electrosolar plant. The cost involves three main elements: the collector, the thermal unit and the heat storage device. The latter is necessary for the integration of diurnal and nocturnal fluctuations of isolation. It is shown that thermal storage is economically payable only under certain conditions [fr

  6. The Research and Development of the Radioisotope Energy Conversion System

    International Nuclear Information System (INIS)

    Steinfelds, E.V.; Ghosh, T.K.; Prelas, M.A.; Tompson, R.V.; Loyalka, S.K.

    2001-01-01

    The project of developing radioisotope energy conversion system (RECS) involves analytical computational assisted design and modeling and also laboratory research. The computational analysis consists of selecting various geometries and materials for the main RECS container and the internally located radioisotope, computing the fluxes of the beta (-) particles and of the visible (or ultraviolet) photons produced by the beta (-) s, computing the transport of these photons to the photovoltaic cells, and computing the overall efficiency of useful conversion of the radioisotope power

  7. Carbon nanomaterials for advanced energy conversion and storage.

    Science.gov (United States)

    Dai, Liming; Chang, Dong Wook; Baek, Jong-Beom; Lu, Wen

    2012-04-23

    It is estimated that the world will need to double its energy supply by 2050. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. Comparing to conventional energy materials, carbon nanomaterials possess unique size-/surface-dependent (e.g., morphological, electrical, optical, and mechanical) properties useful for enhancing the energy-conversion and storage performances. During the past 25 years or so, therefore, considerable efforts have been made to utilize the unique properties of carbon nanomaterials, including fullerenes, carbon nanotubes, and graphene, as energy materials, and tremendous progress has been achieved in developing high-performance energy conversion (e.g., solar cells and fuel cells) and storage (e.g., supercapacitors and batteries) devices. This article reviews progress in the research and development of carbon nanomaterials during the past twenty years or so for advanced energy conversion and storage, along with some discussions on challenges and perspectives in this exciting field. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Energy Conversion and Storage Program. 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  9. Questions of economics. [solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Graeff, P

    1976-05-01

    The essay deals with questions of profitability in connection with the use of solar energy to heat buildings or to prepare hot water. The total problem is approached from 3 points of view: 1. General national economy point of view: Judgment by politicians determines the possibilities of support by the government. 2. The business economy aspect: Here the most important matter is to construct the plants with dimensions permitting to obtain the highest profits possible. 3. The financing model: possible incentives must be taken into consideration as well as technical aspects, e.g. the service life of the plants.

  10. Geomagnetic activity effects on plasma sheet energy conversion

    Directory of Open Access Journals (Sweden)

    M. Hamrin

    2010-10-01

    Full Text Available In this article we use three years (2001, 2002, and 2004 of Cluster plasma sheet data to investigate what happens to localized energy conversion regions (ECRs in the plasma sheet during times of high magnetospheric activity. By examining variations in the power density, E·J, where E is the electric field and J is the current density obtained by Cluster, we have studied the influence on Concentrated Load Regions (CLRs and Concentrated Generator Regions (CGRs from variations in the geomagnetic disturbance level as expressed by the Kp, the AE, and the Dst indices. We find that the ECR occurrence frequency increases during higher magnetospheric activities, and that the ECRs become stronger. This is true both for CLRs and for CGRs, and the localized energy conversion therefore concerns energy conversion in both directions between the particles and the fields in the plasma sheet. A higher geomagnetic activity hence increases the general level of energy conversion in the plasma sheet. Moreover, we have shown that CLRs live longer during magnetically disturbed times, hence converting more electromagnetic energy. The CGR lifetime, on the other hand, seems to be unaffected by the geomagnetic activity level. The evidence for increased energy conversion during geomagnetically disturbed times is most clear for Kp and for AE, but there are also some indications that energy conversion increases during large negative Dst. This is consistent with the plasma sheet magnetically mapping to the auroral zone, and therefore being more tightly coupled to auroral activities and variations in the AE and Kp indices, than to variations in the ring current region as described by the Dst index.

  11. DTU international energy report 2013. Energy storage options for future sustainable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Hvidtfeldt Larsen, H.; Soenderberg Petersen, L. (eds.)

    2013-11-01

    One of the great challenges in the transition to a non-fossil energy system with a high share of fluctuating renewable energy sources such as solar and wind is to align consumption and production in an economically satisfactory manner. Energy storage could provide the necessary balancing power to make this possible. This energy report addresses energy storage from a broad perspective: It analyses smaller stores that can be used locally in for example heat storage in the individual home or vehicle, such as electric cars or hydrogen cars. The report also addresses decentralized storage as flywheels and batteries linked to decentralized energy systems. In addition it addresses large central storages as pumped hydro storage and compressed air energy storage and analyse this in connection with international transmission and trading over long distances. The report addresses electrical storage, thermal storage and other forms of energy storage, for example conversion of biomass to liquid fuel and conversion of solar energy directly into hydrogen, as well as storage in transmission, grid storage etc. Finally, the report covers research, innovation and the future prospects and addresses the societal challenges and benefits of the use of energy storage. (Author)

  12. Nuclear energy of the future, solar energy of the future: some convergencies

    International Nuclear Information System (INIS)

    Flamant, G.

    2006-01-01

    Most medium- and long-term energy scenarios foresee the joint development of renewable and nuclear energies. In other words, the energy sources must be as various as possible. Among the renewable energy sources, the solar energy presents the highest development potential, even if today the biomass and wind energies are quantitatively more developed. In France, the solar power generation is ensured by photovoltaic systems. However, the thermodynamical conversion of solar energy (using concentrating systems) represents an enormous potential at the world scale and several projects of solar plants are in progress in Spain and in the USA. The advantages of this solution are numerous: high efficiency of thermodynamic cycles, possibility of heat storage and hybridization (solar/fuels), strong potential of innovation. Moreover, the solar concentrators allow to reach temperatures higher than 1000 deg. C and thus allow to foresee efficient thermochemical cycles for hydrogen generation. The future solar plants will have to be efficient, reliable and will have to be able to meet the energy demand. In order to reach high thermodynamic cycle efficiencies, it is necessary to increase the temperature of the hot source and to design combined cycles. These considerations are common to the communities of researchers and engineers of both the solar thermal and nuclear industries. Therefore, the future development of generation 4 nuclear power plants and of generation 3 solar plants are conditioned by the resolution of similar problems, like the coolants (molten salts and gases), the materials (metals and ceramics), the heat transfers (hydrogen generation), and the qualification of systems (how solar concentrators can help to perform qualification tests of nuclear materials). Short communication. (J.S.)

  13. Proceedings of the 25th intersociety energy conversion engineering conference

    International Nuclear Information System (INIS)

    Nelson, P.A.; Schertz, W.W.; Till, R.H.

    1990-01-01

    This book contains the proceedings of the 25th intersociety energy conversion engineering conference. Volume 1 is organized under the following headings: space power systems requirements and issues, space power systems; space power systems 2; space nuclear power reactors space nuclear reactor technology I; space nuclear reactor technology II; reactor technology; isotopic fueled power systems I, isotopic fueled power systems II, space power automation; space power automation II, space power automation III; space power automation IV; space power automation V; power systems hardware and design selection, power components, pulse power, power management and distribution, power management and distribution II, power management and distribution III; space energy conversion: solar dynamic, space energy conversion: static and dynamic, space solar array technology, advanced space solar cells

  14. Polyaniline (PANi based electrode materials for energy storage and conversion

    Directory of Open Access Journals (Sweden)

    Huanhuan Wang

    2016-09-01

    Full Text Available Polyaniline (PANi as one kind of conducting polymers has been playing a great role in the energy storage and conversion devices besides carbonaceous materials and metallic compounds. Due to high specific capacitance, high flexibility and low cost, PANi has shown great potential in supercapacitor. It alone can be used in fabricating an electrode. However, the inferior stability of PANi limits its application. The combination of PANi and other active materials (carbon materials, metal compounds or other polymers can surpass these intrinsic disadvantages of PANi. This review summarizes the recent progress in PANi based composites for energy storage/conversion, like application in supercapacitors, rechargeable batteries, fuel cells and water hydrolysis. Besides, PANi derived nitrogen-doped carbon materials, which have been widely employed as carbon based electrodes/catalysts, are also involved in this review. PANi as a promising material for energy storage/conversion is deserved for intensive study and further development.

  15. Optimizing Energy Conversion: Magnetic Nano-materials

    Science.gov (United States)

    McIntyre, Dylan; Dann, Martin; Ilie, Carolina C.

    2015-03-01

    We present herein the work started at SUNY Oswego as a part of a SUNY 4E grant. The SUNY 4E Network of Excellence has awarded SUNY Oswego and collaborators a grant to carry out extensive studies on magnetic nanoparticles. The focus of the study is to develop cost effective rare-earth-free magnetic materials that will enhance energy transmission performance of various electrical devices (solar cells, electric cars, hard drives, etc.). The SUNY Oswego team has started the preliminary work for the project and graduate students from the rest of the SUNY 4E team (UB, Alfred College, Albany) will continue the project. The preliminary work concentrates on analyzing the properties of magnetic nanoparticle candidates, calculating molecular orbitals and band gap, and the fabrication of thin films. SUNY 4E Network of Excellence Grant.

  16. Renewable energy based catalytic CH4 conversion to fuels

    NARCIS (Netherlands)

    Baltrusaitis, Jonas; Jansen, I.; Schuttlefield, J.D.S.

    2014-01-01

    Natural gas is envisioned as a primary source of hydrocarbons in the foreseeable future. With the abundance of shale gas, the main concerns have shifted from the limited hydrocarbon availability to the sustainable methods of CH4 conversion to fuels. This is necessitated by high costs of natural gas

  17. Functionalization of graphene for efficient energy conversion and storage.

    Science.gov (United States)

    Dai, Liming

    2013-01-15

    As global energy consumption accelerates at an alarming rate, the development of clean and renewable energy conversion and storage systems has become more important than ever. Although the efficiency of energy conversion and storage devices depends on a variety of factors, their overall performance strongly relies on the structure and properties of the component materials. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. As a building block for carbon materials of all other dimensionalities (such as 0D buckyball, 1D nanotube, 3D graphite), the two-dimensional (2D) single atomic carbon sheet of graphene has emerged as an attractive candidate for energy applications due to its unique structure and properties. Like other materials, however, a graphene-based material that possesses desirable bulk properties rarely features the surface characteristics required for certain specific applications. Therefore, surface functionalization is essential, and researchers have devised various covalent and noncovalent chemistries for making graphene materials with the bulk and surface properties needed for efficient energy conversion and storage. In this Account, I summarize some of our new ideas and strategies for the controlled functionalization of graphene for the development of efficient energy conversion and storage devices, such as solar cells, fuel cells, supercapacitors, and batteries. The dangling bonds at the edge of graphene can be used for the covalent attachment of various chemical moieties while the graphene basal plane can be modified via either covalent or noncovalent functionalization. The asymmetric functionalization of the two opposite surfaces of individual graphene sheets with different moieties can lead to the self-assembly of graphene sheets into hierarchically structured materials. Judicious

  18. Rare-earth magnet applications in energy conversion

    International Nuclear Information System (INIS)

    Tripathi, K.C.

    1998-01-01

    In recent years there has been considerable progress in the field of development and variety of new applications of rare-earth and rare-earth transition metal magnets. High energy content Nd-Fe-B magnet system which competes with superconducting magnets is very promising for the use in energy conversion machines, levitation systems, magnetic resonance investigation and other magnetic applications. Energy conversion machines such as motors and generators are of interest in this context. Motor converts electrical energy into mechanical energy using permanent magnets and ferromagnetic materials as its components. Electric generator converts mechanical energy into electricity using permanent magnets and ferromagnetic material. In both cases symmetry and symmetry breaking play an important role. Symmetry exists above curie temperature, as temperature is lowered symmetry is broken due to spontaneous magnetisation. Author and coworkers developed some new and highest efficiency, permanent magnet based, electronically controlled, dynamically synchronised pulsed dc linear and rotational motors which are briefly described here. Based on such experience and considering field interactions inside material under dynamical conditions and special geometrical situations, order-disorder processes, symmetry breaking and energy transfer on the basis of manifold aspects as a cooperative many body interaction, thermal fluctuations, zero-point energy, dissipation of energy, entropy exchange are discussed in context of conversion of environmental heat into electricity as suggested by Tripathi earlier. (orig.)

  19. Light energy conversion by photocatalytic reaction

    Energy Technology Data Exchange (ETDEWEB)

    Fujishima, Akira; Yamagata, Sadamu [Univ. of Tokyo (Japan)

    1989-01-01

    The photocatalytic reaction, to be made to a suspended semiconductor powder system, was explained in summary. By using semiconductor as an electrode for the electrolyzation, etc. and projecting light on it to generate photoelectromotive force, a photocell can be composed. eg., by composing titanium oxide electrode, n-type semiconductor and platinum electrode, and irradiating light on the former electrode to generate electric current, oxygen and hydrogen are produced from the titanium oxide electrode and platinum electrode, respectively, which means the possibility of obtainment of clean energy from water as raw material. Such a wet type photocell, easy to produce, is active also in research. With white titanium oxide powder being suspended in water solution, hydrogen is produced by projecting light into it. Such a semiconductor is called photocatalyst, in which the research has been widely developed, mainly by taking notice of the hydrogen production on reduction side, since 1972. The photocatalysis using colloid and, differently, that doing heteropolyacid are also taken notice of. 24 refs., 6 figs.

  20. Photoassisted electrolysis of water - Conversion of optical to chemical energy

    Science.gov (United States)

    Wrighton, M. S.; Bolts, J. M.; Kaiser, S. W.; Ellis, A. B.

    1976-01-01

    A description is given of devices, termed photoelectrochemical cells, which can, in principle, be used to directly convert light to fuels and/or electricity. The fundamental principles on which the photoelectrochemical cell is based are related to the observation that irradiation of a semiconductor electrode in an electrochemical cell can result in the flow of an electric current in the external circuit. Attention is given to the basic mechanisms involved, the energy conversion efficiency, the advantages of photoelectrochemical cells, and the results of investigations related to the study of energy conversion via photoelectrochemical cells.

  1. Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion.

    Science.gov (United States)

    Wang, Changlong; Astruc, Didier

    2014-01-01

    This review provides the basic concepts, an overall survey and the state-of-the art of plasmon-based nanogold photocatalysis using visible light including fundamental understanding and major applications to organic reactions and clean energy-conversion systems. First, the basic concepts of localized surface plasmon resonance (LSPR) are recalled, then the major preparation methods of AuNP-based plasmonic photocatalysts are reviewed. The major part of the review is dedicated to the latest progress in the application of nanogold plasmonic photocatalysis to organic transformations and energy conversions, and the proposed mechanisms are discussed. In conclusion, new challenges and perspectives are proposed and analyzed.

  2. A review of electrohydrodynamic casting energy conversion polymer composites

    Directory of Open Access Journals (Sweden)

    Yong X. Gan

    2018-03-01

    Full Text Available This paper provides a brief review on manufacturing polymer composite materials through the nontraditional electrohydrodynamic (EHD casting approach. First, the EHD technology will be introduced. Then, typical functional polymer composite materials including thermoelectric and photoelectric energy conversion polymers and their composites will be presented. Specifically, how to make composite materials containing functional nanoparticles will be discussed. Converting polymeric fibers into partially carbonized fiber composites will also be shown. The latest research results of polymeric composite materials with energy conversion and sensing functions will be given.

  3. Anticipated Future Interaction and Conversational Memory Using Participants and Observers.

    Science.gov (United States)

    Benoit, Pamela J.; Benoit, William L.

    1994-01-01

    Finds that subjects with a choice about whether to interact with their partner again (or with one of the persons they observed) remembered less in general than those expecting to interact with the same person or with a different person. Participants remembered significantly more conversational information using cued recall than observers, and…

  4. Global energy context: future scenarios

    International Nuclear Information System (INIS)

    Beretta, Gian Paolo

    2006-01-01

    After a brief analysis of the history of global energy consumption, this paper discusses a plausible scenario of energy needs and related carbon emissions for the rest of the century. The global outlook and the probable evolution of several factors that impact on energy policy considerations - even on the local scale - demonstrate the great complexity and planetary dimension of the problems, as well as the almost certain sterility of out-of-context domestic energy-policy measures [it

  5. Energy consumption: Past, present, future

    Science.gov (United States)

    1973-01-01

    The energy consumption history of the United States and the changes which could occur in consumption characteristics in the next 50 years are presented. The various sources of energy are analyzed to show the limitations involved in development and utilization as a function of time available. Several scenarios were prepared to show the consumption and supply of energy under varying conditions.

  6. Ocean Thermal Energy Conversion (OTEC) Programmatic Environmental Analysis--Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    1980-01-01

    The programmatic environmental analysis is an initial assessment of Ocean Thermal Energy Conversion (OTEC) technology considering development, demonstration and commercialization. It is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties. This volume contains these appendices: Appendix A -- Deployment Scenario; Appendix B -- OTEC Regional Characterization; and Appendix C -- Impact and Related Calculations.

  7. Direct energy conversion system for D-3He fusion

    International Nuclear Information System (INIS)

    Tomita, Y.; Shu, L.Y.; Momota, H.

    1993-11-01

    A novel and highly efficient direct energy conversion system is proposed for utilizing D- 3 He fueled fusion. In order to convert kinetic energy of ions, we applied a pair of direct energy conversion systems each of which has a cusp-type DEC and a traveling wave DEC (TWDEC). In a cusp-type DEC, electrons are separated from the escaping ions at the first line-cusp and the energy of thermal ion components is converted at the second cusp DEC. The fusion protons go through the cusp-type DEC and arrive at the TWDEC, which principle is similar to 'LINAC.' The energy of fusion protons is recovered to electricity with an efficiency of more than 70%. These DECs bring about the high efficient fusion plant. (author)

  8. Theoretical studies of thermionic conversion of solar energy with graphene as emitter and collector

    Science.gov (United States)

    Olawole, Olukunle C.; De, Dilip Kumar

    2018-01-01

    Thermionic energy conversion (TEC) using nanomaterials is an emerging field of research. It is known that graphene can withstand temperatures as high as 4600 K in vacuum, and it has been shown that its work function can be engineered from a high value (for monolayer/bilayer) of 4.6 eV to as low as 0.7 eV. Such attractive electronic properties (e.g., good electrical conductivity and high dielectric constant) make engineered graphene a good candidate as an emitter and collector in a thermionic energy converter for harnessing solar energy efficiently. We have used a modified Richardson-Dushman equation and have adopted a model where the collector temperature could be controlled through heat extraction in a calculated amount and a magnet can be attached on the back surface of the collector for future control of the space-charge effect. Our work shows that the efficiency of solar energy conversion also depends on power density falling on the emitter surface, and that a power conversion efficiency of graphene-based solar TEC as high as 55% can be easily achieved (in the absence of the space-charge effect) through proper choice of work functions, collector temperature, and emissivity of emitter surfaces. Such solar energy conversion would reduce our dependence on silicon solar panels and offers great potential for future renewable energy utilization.

  9. Efficient electrochemical CO2 conversion powered by renewable energy.

    Science.gov (United States)

    Kauffman, Douglas R; Thakkar, Jay; Siva, Rajan; Matranga, Christopher; Ohodnicki, Paul R; Zeng, Chenjie; Jin, Rongchao

    2015-07-22

    The catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8-1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 10(6) molCO2 molcatalyst(-1) during a multiday (36 h total hours) CO2 electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 10(6) and 4 × 10(6) molCO2 molcatalyst(-1) were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient

  10. Alternative Energy Development and China's Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Nina; Fridley, David

    2011-06-15

    In addition to promoting energy efficiency, China has actively pursued alternative energy development as a strategy to reduce its energy demand and carbon emissions. One area of particular focus has been to raise the share of alternative energy in China’s rapidly growing electricity generation with a 2020 target of 15% share of total primary energy. Over the last ten years, China has established several major renewable energy regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear, hydro, geothermal and biomass power as well as biofuels and coal alternatives. This study thus seeks to examine China’s alternative energy in terms of what has and will continue to drive alternative energy development in China as well as analyze in depth the growth potential and challenges facing each specific technology. This study found that despite recent policies enabling extraordinary capacity and investment growth, alternative energy technologies face constraints and barriers to growth. For relatively new technologies that have not achieved commercialization such as concentrated solar thermal, geothermal and biomass power, China faces technological limitations to expanding the scale of installed capacity. While some alternative technologies such as hydropower and coal alternatives have been slowed by uneven and often changing market and policy support, others such as wind and solar PV have encountered physical and institutional barriers to grid integration. Lastly, all alternative energy technologies face constraints in human resources and raw material resources including land and water, with some facing supply limitations in critical elements such as uranium for nuclear, neodymium for wind and rare earth metals for advanced solar PV. In light of China’s potential for and barriers to growth, the resource and energy requirement for alternative energy technologies were modeled and scenario analysis

  11. Sustainable Energy Future - Nordic Perspective

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen

    1998-01-01

    This invited paper first outlines the methodologies applied in analysing the energy savings potentials, as applied to a Nordic and a European case study. Afterwards are shown results for how a high quality of life can be achieved with an energy consumption only a small fraction of the present in ...... in Europe. The energy policy in Denmark since 1973 is outlined, including the activities and the roles of NGOs. Finally are described some of the difficulties of implementing energy saving policies, especially in combination with increasing liberalization of the energy market....

  12. Energy conversion processes for the use of geothermal heat

    Energy Technology Data Exchange (ETDEWEB)

    Minder, R. [Minder Energy Consulting, Oberlunkhofen (Switzerland); Koedel, J.; Schaedle, K.-H.; Ramsel, K. [Gruneko AG, Basel (Switzerland); Girardin, L.; Marechal, F. [Swiss Federal Institute of Technology (EPFL), Laboratory for industrial energy systems (LENI), Lausanne (Switzerland)

    2007-03-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made on energy conversion processes that can be used when geothermal heat is to be used. The study deals with both theoretical and practical aspects of the conversion of geothermal heat to electricity. The report is divided into several parts and covers general study, practical experience, planning and operation of geothermal power plants as well as methodology for the optimal integration of energy conversion systems in geothermal power plants. In the first part, the specific properties and characteristics of geothermal resources are discussed. Also, a general survey of conversion processes is presented with special emphasis on thermo-electric conversion. The second part deals with practical aspects related to planning, construction and operation of geothermal power plant. Technical basics, such as relevant site-specific conditions, drilling techniques, thermal water or brine quality and materials requirements. Further, planning procedures are discussed. Also, operation and maintenance aspects are examined and some basic information on costs is presented. The third part of the report presents the methodology and results for the optimal valorisation of the thermodynamic potential of deep geothermal systems.

  13. East Germany's future energy economy

    Energy Technology Data Exchange (ETDEWEB)

    Tjon, F; Zuehlke, R [Technische Univ. Berlin (Germany, F.R.). FG Energie und Rohstoffwirtschaft

    1991-01-01

    Since unification, the former German Democratic Republic has had to face major changes, one of which concerns the energy supply system. A secure energy supply system is an absolute requirement for the political and economical development of this Republic. Its former strategy of 'autarkical' energy supply until the end of 1989 was one of the factors which led to an economic downfall. This essay gives an overview of the major structural changes to the economy which have occurred since unification. First, the former energy situation is described and the status quo analyzed. Then, efforts in reorganizing the present energy supply system are outlined. Finally, new perspectives and strategies are described. The aspects taken into consideration include: energy price deregulation; European fossil fuel marketing trends; investments for the build up of an efficient energy supply system; and the creation of surcharges for environmental pollution abatement, in particular, the reduction of carbon and sulfur dioxide emissions.

  14. Energy harvesting solar, wind, and ocean energy conversion systems

    CERN Document Server

    Khaligh, Alireza

    2009-01-01

    Also called energy scavenging, energy harvesting captures, stores, and uses ""clean"" energy sources by employing interfaces, storage devices, and other units. Unlike conventional electric power generation systems, renewable energy harvesting does not use fossil fuels and the generation units can be decentralized, thereby significantly reducing transmission and distribution losses. But advanced technical methods must be developed to increase the efficiency of devices in harvesting energy from environmentally friendly, ""green"" resources and converting them into electrical energy.Recognizing t

  15. Canada's energy future : 2008 workshop summary

    International Nuclear Information System (INIS)

    2008-01-01

    The National Energy Board hosted this Energy Futures Workshop as a follow-up to its report entitled Canada's Energy Future: Reference Case and Scenarios to 2030, which focused on emerging trends in energy supply and demand. Various energy futures that may be available to Canadians up to the year 2030 were examined. This workshop addressed issues regarding the growing demand for energy, the adequacy of future energy supplies, and related issues of greenhouse gas emissions, emerging technologies, energy infrastructure and energy exports. The workshop was attended by 18 experts who presented their diverse views on long-term energy issues. The sessions of the workshop focused on external and key geopolitical issues that will influence Canadian energy markets; the adoption of alternative and emerging sources of energy; outlook for Canadian oil supply, including oil sands development, reservoir quality, and financial, environmental and technological issues; issues in electricity generation and transmission; gas market dynamics; and carbon dioxide capture and storage and the associated benefits and challenges. There was general consensus that global and Canadian energy markets will remain in a state of flux. Crude oil prices are likely to remain high and volatile. The combination of maturing energy resource basins and geopolitical tensions has created uncertainty about future availability and access to global energy resources. 2 figs., 3 appendices

  16. Lasers and future high energy colliders

    International Nuclear Information System (INIS)

    Parsa, Z.

    1998-02-01

    Future high energy colliders, directions for particle physics and relationship to new technology such as lasers are discussed. Experimental approaches to explore New Physics with emphasis on the utility of high energy colliders are also discussed

  17. Energy Storage System with Voltage Equalization Strategy for Wind Energy Conversion

    Directory of Open Access Journals (Sweden)

    Cheng-Tao Tsai

    2012-07-01

    Full Text Available In this paper, an energy storage system with voltage equalization strategy for wind energy conversion is presented. The proposed energy storage system provides a voltage equalization strategy for series-connected lead-acid batteries to increase their total storage capacity and lifecycle. In order to draw the maximum power from the wind energy, a perturbation-and-observation method and digital signal processor (DSP are incorporated to implement maximum power point tracking (MPPT algorithm and power regulating scheme. In the proposed energy storage system, all power switches have zero-voltage-switching (ZVS feature at turn-on transition. Therefore, the conversion efficiency can be increased. Finally, a prototype energy storage system for wind energy conversion is built and implemented. Experimental results have verified the performance and feasibility of the proposed energy storage system for wind energy conversion.

  18. Energy sources for the future

    Energy Technology Data Exchange (ETDEWEB)

    Duggan, J.L.; Cloutier, R.J. (eds.)

    1977-04-01

    The symposium program was designed for college faculty members who are teaching or plan to teach energy courses at their educational institutions. Lectures were presented on socio-economic aspects of energy development, fusion reactors, solar energy, coal-fired power plants, nuclear power, radioactive waste disposal, and radiation hazards. A separate abstract was prepared for each of 16 of the 18 papers presented; two papers were processed earlier: Residential Energy Use Alternatives to the Year 2000, by Eric Hurst (EAPA 2:257; ERA 1:25978) and The Long-Term Prospects for Solar Energy, by W. G. Pollard (EAPA 3:1008). Fourteen of the papers are included in Energy Abstracts for Policy Analysis. (EAPA).

  19. Nuclear energy, understand the future

    International Nuclear Information System (INIS)

    Bauquis, P.R.; Barre, B.

    2006-01-01

    In spite of its first use for military needs, the nuclear became a substitution energy, especially for the electric power production. For many scientist the nuclear seems to be the main part to the world energy supply in an economic growth context, provided the radioactive wastes problems is solved. From the military origins to the electric power generation, this book explains the technical economical and political aspects of the nuclear energy. (A.L.B.)

  20. Energy Efficiency in Future PONs

    DEFF Research Database (Denmark)

    Reschat, Halfdan; Laustsen, Johannes Russell; Wessing, Henrik

    2012-01-01

    There is a still increasing tendency to give energy efficiency a high priority, even in already low energy demanding systems. This is also the case for Passive Optical Networks (PONs) for which many different methods for saving energy are proposed. This paper uses simulations to evaluate three...... proposed power saving solutions for PONs which use sleep mechanisms for saving power. The discovered advantages and disadvantages of these methods are then used as a basis for proposing a new solution combining different techniques in order to increase the energy efficiency further. This novel solution...

  1. Numerical Simulation of Energy Conversion Mechanism in Electric Explosion

    Science.gov (United States)

    Wanjun, Wang; Junjun, Lv; Mingshui, Zhu; Qiubo, Fu; EFIs Integration R&D Group Team

    2017-06-01

    Electric explosion happens when micron-scale metal films such as copper film is stimulated by short-time current pulse, while generating high temperature and high pressure plasma. The expansion process of the plasma plays an important role in the study of the generation of shock waves and the study of the EOS of matter under high pressure. In this paper, the electric explosion process is divided into two stages: the energy deposition stage and the quasi-isentropic expansion stage, and a dynamic EOS of plasma considering the energy replenishment is established. On this basis, flyer driven by plasma is studied numerically, the pressure and the internal energy of plasma in the energy deposition stage and the quasi - isentropic expansion stage are obtained by comparing the velocity history of the flyer with the experimental results. An energy conversion model is established, and the energy conversion efficiency of each process is obtained, and the influence of impedance matching relationship between flyer and metal plasma on the energy conversion efficiency is proposed in this paper.

  2. Energy Conversion Loops for Flux-Switching PM Machine Analysis

    Directory of Open Access Journals (Sweden)

    E. Ilhan

    2012-10-01

    Full Text Available Induction and synchronous machines have traditionally been the first choice of automotive manufacturers for electric/hybrid vehicles. However, these conventional machines are not able anymore to meet the increasing demands for a higher energy density due to space limitation in cars. Flux-switching PM (FSPM machines with their high energy density are very suitable to answer this demand. In this paper, the energy conversion loop technique is implemented on FSPM for the first time. The energy conversion technique is a powerful tool for the visualization of machine characteristics, both linear and nonlinear. Further, the technique provides insight into the torque production mechanism. A stepwise explanation is given on how to create these loops for FSPM along with the machine operation.

  3. Piezoelectric ribbons printed onto rubber for flexible energy conversion.

    Science.gov (United States)

    Qi, Yi; Jafferis, Noah T; Lyons, Kenneth; Lee, Christine M; Ahmad, Habib; McAlpine, Michael C

    2010-02-10

    The development of a method for integrating highly efficient energy conversion materials onto stretchable, biocompatible rubbers could yield breakthroughs in implantable or wearable energy harvesting systems. Being electromechanically coupled, piezoelectric crystals represent a particularly interesting subset of smart materials that function as sensors/actuators, bioMEMS devices, and energy converters. Yet, the crystallization of these materials generally requires high temperatures for maximally efficient performance, rendering them incompatible with temperature-sensitive plastics and rubbers. Here, we overcome these limitations by presenting a scalable and parallel process for transferring crystalline piezoelectric nanothick ribbons of lead zirconate titanate from host substrates onto flexible rubbers over macroscopic areas. Fundamental characterization of the ribbons by piezo-force microscopy indicates that their electromechanical energy conversion metrics are among the highest reported on a flexible medium. The excellent performance of the piezo-ribbon assemblies coupled with stretchable, biocompatible rubber may enable a host of exciting avenues in fundamental research and novel applications.

  4. Energy conversion of biomass in coping with global warming

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Shin-ya; Ogi, Tomoko; Minowa, Tomoaki [National Inst. for Resources and Environment, Tsukuba, Ibaraki (Japan)

    1993-12-31

    The main purpose of the present paper is to propose energy conversion technologies of biomass in coping with global warming. Among thermochemical conversion, liquid fuel production by high pressure process is mainly introduced. Biomass is a term used to describe materials of biological origin, either purpose-grown or arising as by-products, residues or wastes from forestry, agriculture and food processing. Such biomass is a renewable energy sources dependent on solar energy. Through photosynthesis, plants converts carbon dioxide into organic materials used in their growth. Energy can be recovered from the plant materials by several processes, the simplest way is burning in air. As far as biomass is used in this way, there is no atmospheric accumulation of carbon dioxide making no effect on the Greenhouse Effect, provided that the cycle of regrowth and burning is sustained.

  5. Proceedings of the 27th intersociety energy conversion engineering conference

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This book contains the proceedings of the 27th Intersociety Energy Conversion Engineering Conference. Topics included: Stirling Cycle Analysis; Stirling Cycle Models; Stirling Refrigerators/Heat Pumps and Cryocoolers; Domestic Policy; Efficiency/Conservation; Stirling Solar Terrestrial; Stirling Component Technology; Environmental Impacts; Renewable Resource Systems; Stirling Power Generation; Stirling Heat Transport System Technology; and Stirling Cycle Loss Understanding

  6. Gate controlled high efficiency ballistic energy conversion system

    NARCIS (Netherlands)

    Xie, Yanbo; Bos, Diederik; de Boer, Hans L.; van den Berg, Albert; Eijkel, Jan C.T.; Zengerle, R.

    2013-01-01

    Last year we demonstrated the microjet ballistic energy conversion system[1]. Here we show that the efficiency of such a system can be further improved by gate control. With gate control the electrical current generation is enhanced a hundred times with respect to the current generated from the zeta

  7. Exploring driving forces and liquid properties for electrokinetic energy conversion

    NARCIS (Netherlands)

    Nguyen, Trieu

    2015-01-01

    This thesis presents an effort to understand electrokinetic energy conversion systems which are based on motion of ionic charges in micro- and nano-confinements. In particular, both experimentally and theoretically the utilization of different kind of liquids was investigated to convert mechanical

  8. Solar Program Assessment: Environmental Factors - Ocean Thermal Energy Conversion.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This report presents the environmental problems which may arise with the further development of Ocean Thermal Energy Conversion, one of the eight Federally-funded solar technologies. To provide a background for this environmental analysis, the history and basic concepts of the technology are reviewed, as are its economic and resource requirements.…

  9. Proceedings of the 25th Intersociety Energy Conversion Engineering Conference

    International Nuclear Information System (INIS)

    Nelson, P.A.; Schertz, W.W.; Till, R.H.

    1990-01-01

    This book contains papers presented at a conference on energy conversion engineering. Topics covered include: USAF space power requirements, modelling of the dynamics of a low speed gas-liquid heat engine, and comparative assessment of single-axis force generation mechanisms for superconducting suspensions

  10. Nuclear energy: basics, present, future

    Directory of Open Access Journals (Sweden)

    Ricotti M. E

    2013-06-01

    Full Text Available The contribution is conceived for non-nuclear experts, intended as a synthetic and simplified overview of the technology related to energy by nuclear fission. At the end of the paper, the Reader will find a minimal set of references, several of them on internet, useful to start deepening the knowledge on this challenging, complex, debated albeit engaging energy source.

  11. The Future of Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    Kubik, Michelle [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2006-01-01

    A comprehensive assessment of enhanced, or engineered, geothermal systems was carried out by an 18-member panel assembled by the Massachusetts Institute of Technology (MIT) to evaluate the potential of geothermal energy becoming a major energy source for the United States.

  12. The Economics of America's Energy Future.

    Science.gov (United States)

    Simmons, Henry

    This is an Energy Research and Development Administration (ERDA) pamphlet which reviews economic and technical considerations for the future development of energy sources. Included are sections on petroleum, synthetic fuels, oil shale, nuclear power, geothermal power, and solar energy. Also presented are data pertaining to U.S. energy production…

  13. I want to know future energy

    International Nuclear Information System (INIS)

    Lee, Eun Cheol

    2009-04-01

    This book introduces future energy. These are the contents ; sun light which is infinite energy, hydrogen has siblings, good point of nuclear fusion, hydrogen fueled vehicle and imaginative power, application of infinite solar energy, who discovers hydrogen, sunlight generation which can make electricity from sunlight, people against wind power generation, making energy from sea, generation using wave power, making electricity from temperature differential of sea, what is bio energy, the reason that bio energy rare uses and bio fuel that people make.

  14. Review of direct energy conversion for fusion reactors

    International Nuclear Information System (INIS)

    Barr, W.L.; Moir, R.W.

    1976-01-01

    The direct conversion to electrical energy of the energy carried by the leakage plasma from a fusion reactor and by the ions that are not converted to neutrals in a neutral-beam injector is discussed. The conversion process is electrostatic deceleration and direct particle collection as distinct from plasma expansion against a time-varying magnetic field or conversion in an EXB duct (both MHD). Relatively simple 1-stage plasma direct converters are discussed which can have efficiencies of about 50 percent. More complex and costly (measured in $/kW) 2-, 3-, 4-, and 22-stage concepts have been tested at efficiencies approaching 90 percent. Beam direct converters have been tested at 15 keV and 2 kW of power at 70 +- 2 percent efficiency, and a test of a 120-keV, 1-MW version is being prepared. Designs for a 120-keV, 4-MW unit are presented. The beam direct converter, besides saving on power supplies and on beam dumps, should raise the efficiency of creating a neutral beam from 40 percent without direct conversion to 70 percent with direct conversion for a 120-keV deuterium beam. The technological limits determining power handling and lifetime such as space-charge effects, heat removal, electrode material, sputtering, blistering, voltage holding, and insulation design, are discussed. The application of plasma direct converters to toroidal plasma confinement concepts is also discussed

  15. The Future of Nuclear Energy

    International Nuclear Information System (INIS)

    Alonso, A.

    2005-01-01

    Current nuclear energy represents 23.5% of the total electrical power available within the OECD countries. This is the energy offering the lowest costs to generate, it does not emit greenhouse-effect fumes nor does it contribute to global warming, however, it does generate radioactive and toxic waste which society perceives as an unacceptable risk. For this reason the development of new nuclear installation in Europe is at a stand still or moving backward. Truthful information and social participation in decisions is the best way to achieve the eradication of the social phobia produced by this energy source. (Author)

  16. Nano Sensing and Energy Conversion Using Surface Plasmon Resonance (SPR

    Directory of Open Access Journals (Sweden)

    Iltai (Isaac Kim

    2015-07-01

    Full Text Available Nanophotonic technique has been attracting much attention in applications of nano-bio-chemical sensing and energy conversion of solar energy harvesting and enhanced energy transfer. One approach for nano-bio-chemical sensing is surface plasmon resonance (SPR imaging, which can detect the material properties, such as density, ion concentration, temperature, and effective refractive index in high sensitivity, label-free, and real-time under ambient conditions. Recent study shows that SPR can successfully detect the concentration variation of nanofluids during evaporation-induced self-assembly process. Spoof surface plasmon resonance based on multilayer metallo-dielectric hyperbolic metamaterials demonstrate SPR dispersion control, which can be combined with SPR imaging, to characterize high refractive index materials because of its exotic optical properties. Furthermore, nano-biophotonics could enable innovative energy conversion such as the increase of absorption and emission efficiency and the perfect absorption. Localized SPR using metal nanoparticles show highly enhanced absorption in solar energy harvesting. Three-dimensional hyperbolic metamaterial cavity nanostructure shows enhanced spontaneous emission. Recently ultrathin film perfect absorber is demonstrated with the film thickness is as low as ~1/50th of the operating wavelength using epsilon-near-zero (ENZ phenomena at the wavelength close to SPR. It is expected to provide a breakthrough in sensing and energy conversion applications using the exotic optical properties based on the nanophotonic technique.

  17. Nuclear energy, energy of the future or bad solution?

    International Nuclear Information System (INIS)

    2003-01-01

    The document presents the speeches of the debate on the nuclear energy solution for the future, presented during the meeting of the 6 may in Rennes, in the framework of the National Debate on the energies. The debate concerns the risks assessment and control, the solutions for the radioactive wastes, the foreign examples and the future of the nuclear energy. (A.L.B.)

  18. Nuclear energy and its future

    International Nuclear Information System (INIS)

    Cook, D.J.

    1990-01-01

    The status of nuclear power in the world and its future are briefly discussed. It is shown that nuclear power capacity is increasing in the Asian and Pacific rim region and that new reactor designs, with the increased emphasis on safety and standardisation, could make nuclear power a more acceptable option in the future. The author also outlines the Australian Nuclear Science and Technology Organization wide range of skills and facilities which are bringing the benefits of nuclear science and technology to Australia. These include: the development of Synroc as an advanced second generation waste management; production of radiotracers for biomedical researches and environmental problems; application of gamma irradiation in industry and of ion beam analysis in biology, archaeology, semi-conductor and environmental science. 2 tabs

  19. Method and device for current driven electric energy conversion

    DEFF Research Database (Denmark)

    2012-01-01

    Device comprising an electric power converter circuit for converting electric energy. The converter circuit comprises a switch arrangement with two or more controllable electric switches connected in a switching configuration and controlled so as to provide a current drive of electric energy from...... configurations such as half bridge buck, full bridge buck, half bridge boost, or full bridge boost. A current driven conversion is advantageous for high efficient energy conversion from current sources such as solar cells or where a voltage source is connected through long cables, e.g. powerline cables for long...... an associated electric source connected to a set of input terminals. This is obtained by the two or more electric swiches being connected and controlled to short-circuit the input terminals during a part of a switching period. Further, a low pass filter with a capacitor and an inductor are provided to low pass...

  20. Magnetic energy storage and conversion in the solar atmosphere

    Science.gov (United States)

    Spicer, D. S.; Mariska, J. T.; Boris, J. P.

    1986-01-01

    According to the approach employed in this investigation, particularly important simple configurations of magnetic field and plasma are identified, and it is attempted to achieve an understanding of the large-scale dynamic processes and transformations which these systems can undergo. Fundamental concepts are discussed, taking into account aspects of magnetic energy generation, ideal MHD theory, non-MHD properties, the concept of 'anomalous' resistivity, and global electrodynamic coupling. Questions of magnetically controlled energy conversion are examined, giving attention to magnetic modifications of plasma transport, the transition region structure and flows, channeling and acceleration of plasma, channeling and dissipation of MHD waves, and anomalous dissipation of field-aligned currents. A description of the characteristics of magnetohydrodynamic energy conversion is also provided, and outstanding questions are discussed.

  1. Nuclear energy in the future

    International Nuclear Information System (INIS)

    Chaussade, J.P.

    1994-01-01

    Nuclear energy plays a major role in the French economy because of the lack of fossil fuels on the French territory. About 75% of the French electric power is of nuclear origin. This paper gives an analysis of the French public attitude about nuclear energy and the methods used by the nuclear industrialists to better the electro-nuclear image. Communication, advertising and transparency are the best attitudes for a suitable public information and are necessary to reduce the public anxiety after the Chernobyl accident. Television advertising, magazines and organized visits of nuclear installations have allowed to explain the interest of nuclear energy in the environmental reduction of pollutants. However, public information must include the topic about nuclear wastes to remain credible. (J.S.)

  2. Renewable energy shaping our future

    NARCIS (Netherlands)

    Zeiler, W.

    2010-01-01

    ISES, de International Solar Energy Society is een wereldwijde organisatie met ongeveer 4.000 Leden. Hoogtepunt van de ISES-activiteiten is steeds weer het tweejaarlijkse Solar World Congres waarin deskundigen hun ervaringen uitwisselen. Dit jaar werd de 29e conferentie in Johannesburg gehouden en

  3. Renewable Energy Supply for Power Dominated, Energy Intense Production Processes - A Systematic Conversion Approach for the Anodizing Process

    Science.gov (United States)

    >D Stollenwerk, T Kuvarakul, I Kuperjans,

    2013-06-01

    European countries are highly dependent on energy imports. To lower this import dependency effectively, renewable energies will take a major role in future energy supply systems. To assist the national and inter-European efforts, extensive changes towards a renewable energy supply, especially on the company level, will be unavoidable. To conduct this conversion in the most effective way, the methodology developed in this paper can support the planning procedure. It is applied to the energy intense anodizing production process, where the electrical demand is the governing factor for the energy system layout. The differences between the classical system layout based on the current energy procurement and an approach with a detailed load-time-curve analysis, using process decomposition besides thermodynamic optimization, are discussed. The technical effects on the resulting energy systems are shown besides the resulting energy supply costs which will be determined by hourly discrete simulation.

  4. Renewable Energy Supply for Power Dominated, Energy Intense Production Processes – A Systematic Conversion Approach for the Anodizing Process

    International Nuclear Information System (INIS)

    Stollenwerk, D; Kuvarakul, T; Kuperjans, I

    2013-01-01

    European countries are highly dependent on energy imports. To lower this import dependency effectively, renewable energies will take a major role in future energy supply systems. To assist the national and inter-European efforts, extensive changes towards a renewable energy supply, especially on the company level, will be unavoidable. To conduct this conversion in the most effective way, the methodology developed in this paper can support the planning procedure. It is applied to the energy intense anodizing production process, where the electrical demand is the governing factor for the energy system layout. The differences between the classical system layout based on the current energy procurement and an approach with a detailed load-time-curve analysis, using process decomposition besides thermodynamic optimization, are discussed. The technical effects on the resulting energy systems are shown besides the resulting energy supply costs which will be determined by hourly discrete simulation.

  5. Comparison of future energy scenarios for Denmark

    DEFF Research Database (Denmark)

    Kwon, Pil Seok; Østergaard, Poul Alberg

    2012-01-01

    Scenario-making is becoming an important tool in energy policy making and energy systems analyses. This article probes into the making of scenarios for Denmark by presenting a comparison of three future scenarios which narrate 100% renewable energy system for Denmark in 2050; IDA 2050, Climate...... Commission 2050, and CEESA (Coherent Energy and Environmental System Analysis). Generally, although with minor differences, the scenarios suggest the same technological solutions for the future such as expansion of biomass usage and wind power capacity, integration of transport sector into the other energy...

  6. Nuclear energy has a future

    International Nuclear Information System (INIS)

    Sorin, F.

    2012-01-01

    Nuclear energy appears to be a main asset to France in the context of the worldwide economic slump. Nuclear power provides a cheap electricity that spares the buying power of households and increases the competitiveness of French enterprises. Nuclear industry with major companies like EDF, AREVA and CEA and 450 small and medium-sized enterprises, represents a core resistant to industrial decline. Nuclear industry is a good provider of work and globally it represents 2% of all the jobs in France. Concerning the trade balance, nuclear power plays twice; first by exporting equipment and services for a value of 7 billions euros a year and secondly by sparing the cost of energy imports that would be necessary if nuclear power was not here which is estimated to 20 billions euros a year. (A.C.)

  7. Leverage effect in energy futures

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav

    2014-01-01

    Roč. 45, č. 1 (2014), s. 1-9 ISSN 0140-9883 R&D Projects: GA ČR(CZ) GP14-11402P Grant - others:GA ČR(CZ) GAP402/11/0948 Program:GA Institutional support: RVO:67985556 Keywords : energy commodities * leverage effect * volatility * long-term memory Subject RIV: AH - Economics Impact factor: 2.708, year: 2014 http://library.utia.cas.cz/separaty/2014/E/kristoufek-0433531.pdf

  8. Global Energy Assessment. Toward a Sustainable Future

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, T B; Nakicenovic, N; Patwardhan, A; Gomez-Echeverri, L [eds.

    2012-11-01

    The Global Energy Assessment (GEA) brings together over 300 international researchers to provide an independent, scientifically based, integrated and policy-relevant analysis of current and emerging energy issues and options. It has been peer-reviewed anonymously by an additional 200 international experts. The GEA assesses the major global challenges for sustainable development and their linkages to energy; the technologies and resources available for providing energy services; future energy systems that address the major challenges; and the policies and other measures that are needed to realize transformational change toward sustainable energy futures. The GEA goes beyond existing studies on energy issues by presenting a comprehensive and integrated analysis of energy challenges, opportunities and strategies, for developing, industrialized and emerging economies. This volume is an invaluable resource for energy specialists and technologists in all sectors (academia, industry and government) as well as policymakers, development economists and practitioners in international organizations and national governments.

  9. Coal, energy of the future

    International Nuclear Information System (INIS)

    Lepetit, V.; Guezel, J.Ch.

    2006-01-01

    Coal is no longer considered as a 'has been' energy source. The production and demand of coal is growing up everywhere in the world because it has some strategic and technological advantages with respect to other energy sources: cheap, abundant, available everywhere over the world, in particular in countries with no geopolitical problems, and it is independent of supplying infrastructures (pipelines, terminals). Its main drawback is its polluting impact (dusts, nitrogen and sulfur oxides, mercury and CO 2 ). The challenge is to develop clean and high efficiency coal technologies like supercritical steam power plants or combined cycle coal gasification plants with a 50% efficiency, and CO 2 capture and sequestration techniques (post-combustion, oxy-combustion, chemical loop, integrated gasification gas combined cycle (pre-combustion)). Germany, who will abandon nuclear energy by 2021, is massively investing in the construction of high efficiency coal- and lignite-fired power plants with pollution control systems (denitrification and desulfurization processes, dust precipitators). (J.S.)

  10. THE FUTURE OF GEOTHERMAL ENERGY

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Renner

    2006-11-01

    Recent national focus on the value of increasing our supply of indigenous, renewable energy underscores the need for reevaluating all alternatives, particularly those that are large and welldistributed nationally. This analysis will help determine how we can enlarge and diversify the portfolio of options we should be vigorously pursuing. One such option that is often ignored is geothermal energy, produced from both conventional hydrothermal and Enhanced (or engineered) Geothermal Systems (EGS). An 18-member assessment panel was assembled in September 2005 to evaluate the technical and economic feasibility of EGS becoming a major supplier of primary energy for U.S. base-load generation capacity by 2050. This report documents the work of the panel at three separate levels of detail. The first is a Synopsis, which provides a brief overview of the scope, motivation, approach, major findings, and recommendations of the panel. At the second level, an Executive Summary reviews each component of the study, providing major results and findings. The third level provides full documentation in eight chapters, with each detailing the scope, approach, and results of the analysis and modeling conducted in each area.

  11. On the Energy Conversion Efficiency of Piezoelectric Vibration Energy Harvesting Devices

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Eun [Catholic University of Daegu, Kyungsan (Korea, Republic of)

    2015-05-15

    To properly design and assess a piezoelectric vibration energy harvester, it is necessary to consider the application of an efficiency measure of energy conversion. The energy conversion efficiency is defined in this work as the ratio of the electrical output power to the mechanical input power for a piezoelectric vibration energy harvester with an impedance-matched load resistor. While previous research works employed the electrical output power for approximate impedance-matched load resistance, this work derives an efficiency measure considering optimally matched resistance. The modified efficiency measure is validated by comparing it with finite element analysis results for piezoelectric vibration energy harvesters with three different values of the electro-mechanical coupling coefficient. New findings on the characteristics of energy conversion and conversion efficiency are also provided for the two different impedance matching methods.

  12. The Energy Conversion Analysis of HTR Gas Turbine System

    International Nuclear Information System (INIS)

    Utaja

    2000-01-01

    The energy conversion analysis of HTR gas turbine system by hand calculation is tedious work and need much time. This difficulty comes from the repeated thermodynamic process calculation, both on compression or expansion of the cycle. To make the analysis faster and wider variable analyzed, HTR-1 programme is used. In this paper, the energy conversion analysis of HTR gas turbine system by HTR-1 will be described. The result is displayed as efficiency curve and block diagram with the input and output temperature of the component. This HTR-1 programme is developed by Basic language programming and be compiled by Visual Basic 5.0 . By this HTR-1 programme, the efficiency, specific power and effective compression of the amount of gas can be recognized fast. For example, for CO 2 gas between 40 o C and 700 o C, the compression on maximum efficiency is 4.6 and the energy specific is 18.9 kcal/kg, while the temperature changing on input and output of the component can be traced on monitor. This process take less than one second, while the manual calculation take more than one hour. It can be concluded, that the energy conversion analysis of the HTR gas turbine system by HTR-1 can be done faster and more variable analyzed. (author)

  13. Adaptability of solar energy conversion systems on ships

    Science.gov (United States)

    Visa, I.; Cotorcea, A.; Neagoe, M.; Moldovan, M.

    2016-08-01

    International trade of goods largely uses maritime/transoceanic ships driven by engines using fossil fuels. This two centuries tradition is technologically mature but significantly adds to the CO2 emissions; therefore, recent trends focus on on-board implementation of systems converting the solar energy into power (photovoltaic systems) or heat (solar-thermal systems). These systems are carbon-emissions free but are still under research and plenty of effort is devoted to fast reach maturity and feasibility. Unlike the systems implemented in a specific continental location, the design of solar energy conversion systems installed on shipboard has to face the problem generated by the system base motion along with the ship travelling on routes at different latitudes: the navigation direction and sense and roll-pitch combined motion with reduced amplitude, but with relatively high frequency. These raise highly interesting challenges in the design and development of mechanical systems that support the maximal output in terms of electricity or heat. The paper addresses the modelling of the relative position of a solar energy conversion surface installed on a ship according to the current position of the sun; the model is based on the navigation trajectory/route, ship motion generated by waves and the relative sun-earth motion. The model describes the incidence angle of the sunray on the conversion surface through five characteristic angles: three used to define the ship orientation and two for the solar angles; based on, their influence on the efficiency in solar energy collection is analyzed by numerical simulations and appropriate recommendations are formulated for increasing the solar energy conversion systems adaptability on ships.

  14. Thermodynamic limits to the conversion of blackbody radiation by quantum systems. [with application to solar energy conversion devices

    Science.gov (United States)

    Buoncristiani, A. M.; Smith, B. T.; Byvik, C. E.

    1982-01-01

    Using general thermodynamic arguments, we analyze the conversion of the energy contained in the radiation from a blackbody to useful work by a quantum system. We show that the energy available for conversion is bounded above by the change in free energy in the incident and reradiated fields and that this free energy change depends upon the temperature of the receiving device. Universal efficiency curves giving the ultimate thermodynamic conversion efficiency of the quantum system are presented in terms of the blackbody temperature and the temperature and threshold energy of the quantum system. Application of these results is made to a variety of systems including biological photosynthetic, photovoltaic, and photoelectrochemical systems.

  15. Advanced materials and coatings for energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    St Pierre, George R. [Ohio State Univ., Materials Science and Engineering Dept., Columbus, OH (United States)

    1997-12-31

    Following an historical review of the development of high-temperature alloys for energy conversion systems including turbine engines, some of the current advances in single crystal materials, intermetallics, metal-matrix composites, and ceramic-matrix composites are discussed. Particular attention is directed at creep phenomena, fatigue properties and oxidation resistance. Included within the discussions is the current status of carbon/carbon composites as potential high-temperature engineering materials and the development of coating systems for thermal barrier and oxidation protection. The specific influences of combustion gas compositions, i.e., oxidation potential, sulfur, halides, etc. are discussed. A current list of eligible advanced materials and coatings systems is presented and assessed. Finally, the critical failure mechanism and life-prediction parameters for some of the new classes of advanced structural materials are elaborated with the view to achieving affordability and extended life with a high degree of reliability. Examples are drawn from a variety of energy conversion systems. (Author)

  16. The total flow concept for geothermal energy conversion

    Science.gov (United States)

    Austin, A. L.

    1974-01-01

    A geothermal development project has been initiated at the Lawrence Livermore Laboratory (LLL) to emphasize development of methods for recovery and conversion of the energy in geothermal deposits of hot brines. Temperatures of these waters vary from 150 C to more than 300 C with dissolved solids content ranging from less than 0.1% to over 25% by weight. Of particular interest are the deposits of high-temperature/high-salinity brines, as well as less saline brines, known to occur in the Salton Trough of California. Development of this resource will depend on resolution of the technical problems of brine handling, scale and precipitation control, and corrosion/erosion resistant systems for efficient conversion of thermal to electrical energy. Research experience to date has shown these problems to be severe. Hence, the LLL program emphasizes development of an entirely different approach called the Total Flow concept.

  17. Innovative oxide materials for electrochemical energy conversion and oxygen separation

    Science.gov (United States)

    Belousov, V. V.

    2017-10-01

    Ion-conducting solid metal oxides are widely used in high-temperature electrochemical devices for energy conversion and oxygen separation. However, liquid metal oxides possessing unique electrochemical properties still remain of limited use. The review demonstrates the potential for practical applications of molten oxides. The transport properties of molten oxide materials are discussed. The emphasis is placed on the chemical diffusion of oxygen in the molten oxide membrane materials for electrochemical energy conversion and oxygen separation. The thermodynamics of these materials is considered. The dynamic polymer chain model developed to describe the oxygen ion transport in molten oxides is discussed. Prospects for further research into molten oxide materials are outlined. The bibliography includes 145 references.

  18. Ocean Thermal Energy Conversion (OTEC) program. FY 1977 program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    An overview is given of the ongoing research, development, and demonstration efforts. Each of the DOE's Ocean Thermal Energy Conversion projects funded during fiscal year 1977 (October 1, 1976 through September 30, 1977) is described and each project's status as of December 31, 1977 is reflected. These projects are grouped as follows: program support, definition planning, engineering development, engineering test and evaluation, and advanced research and technology. (MHR)

  19. Electrochemical energy conversion: methanol fuel cell as example

    Directory of Open Access Journals (Sweden)

    Vielstich Wolf

    2003-01-01

    Full Text Available Thermodynamic and kinetic limitations of the electrochemical energy conversion are presented for the case of a methanol/oxygen fuel cell. The detection of intermediates and products is demonstrated using insitu FTIR spectroscopy and online mass spectrometry. The bifunctional catalysis of methanol oxydation by PtRu model surfaces is explained. The formation of HCOOH and HCHO via parallel reaction pathways is discussed. An example of DMFC system technology is presented.

  20. U. S. Fusion Energy Future

    International Nuclear Information System (INIS)

    Schmidt, John A.; Jassby, Dan; Larson, Scott; Pueyo, Maria; Rutherford, Paul H.

    2000-01-01

    Fusion implementation scenarios for the US have been developed. The dependence of these scenarios on both the fusion development and implementation paths has been assessed. A range of implementation paths has been studied. The deployment of CANDU fission reactors in Canada and the deployment of fission reactors in France have been assessed as possible models for US fusion deployment. The waste production and resource (including tritium) needs have been assessed. The conclusion that can be drawn from these studies is that it is challenging to make a significant impact on energy production during this century. However, the rapid deployment of fission reactors in Canada and France support fusion implementation scenarios for the US with significant power production during this century. If the country can meet the schedule requirements then the resource needs and waste production are found to be manageable problems

  1. One-dimension-based spatially ordered architectures for solar energy conversion.

    Science.gov (United States)

    Liu, Siqi; Tang, Zi-Rong; Sun, Yugang; Colmenares, Juan Carlos; Xu, Yi-Jun

    2015-08-07

    The severe consequences of fossil fuel consumption have resulted in a need for alternative sustainable sources of energy. Conversion and storage of solar energy via a renewable method, such as photocatalysis, holds great promise as such an alternative. One-dimensional (1D) nanostructures have gained attention in solar energy conversion because they have a long axis to absorb incident sunlight yet a short radial distance for separation of photogenerated charge carriers. In particular, well-ordered spatially high dimensional architectures based on 1D nanostructures with well-defined facets or anisotropic shapes offer an exciting opportunity for bridging the gap between 1D nanostructures and the micro and macro world, providing a platform for integration of nanostructures on a larger and more manageable scale into high-performance solar energy conversion applications. In this review, we focus on the progress of photocatalytic solar energy conversion over controlled one-dimension-based spatially ordered architecture hybrids. Assembly and classification of these novel architectures are summarized, and we discuss the opportunity and future direction of integration of 1D materials into high-dimensional, spatially organized architectures, with a perspective toward improved collective performance in various artificial photoredox applications.

  2. Energy Conversion in Imploding Z-Pinch Plasma

    International Nuclear Information System (INIS)

    Fisher, V.I.; Gregorian, L.; Davara, G.; Kroupp, E.; Bernshtam, V.A.; Ralchenko, Yu. V.; Starobinets, A.; Maron, Y.

    2002-01-01

    Due to important applications, Z-pinches became a subject of extensive studies. In these studies, main attention is directed towards improvement in efficiency of electric energy conversion into high-power radiation burst. At present, knowledge available on physics of Z-pinch operation, plasma motion, atomic kinetics, and energy conversion is mainly knowledge of numerical simulation results. We believe further progress require (i) experimental determination of spatial distribution and time history of thermodynamic parameters and magnetic field, as well as (ii) utilization of this data for experiment-based calculation of r,t-distribution of driving forces, mass and energy fluxes, and local energy deposition rates due to each of contributing mechanisms, what provides an insight into a process of conversion of stored electric energy into radiation burst. Moreover, experimentally determined r, t-distribution of parameters may serve for verification of computer programs developed for simulation of Z-pinch operation and optimization of radiation output. Within this research program we performed detailed spectroscopic study of plasmas imploding in modest-size (25 kV, 5 kJ, 1.2 μs quaterperiod) gas-puff Z-pinch. This facility has reasonably high repetition rate and provides good reproducibility of results. Consistent with plasma ionization degree in the implosion period, measurements are performed in UV-visible spectral range. Observation of spectral lines emitted at various azimuthal angles f showed no dependence on f. Dependence on axial coordinate z is found to be weak in near-anode half of the anode-cathode gap. Based on these observations and restricting the measurements to near-anode half of the gap, an evolution of parameters is studied in time and radial coordinate r only. In present talk we report on determination of radial component of plasma hydrodynamic velocity u r (r,t), magnetic field B ζ (r,t), electron density n e (r,t), density of ions in various

  3. Characteristic of oil palm residue for energy conversion system

    International Nuclear Information System (INIS)

    Muharnif; Zainal, Z.A.

    2006-01-01

    Malaysia is the major producer of palm oil in the world. It produces 8.5 tones per year (8.5 x 10 6 ty -1 ) of palm oil from 38.6 x 10 6 ty - 1 of fresh fruit bunches. Palm oil production generates large amounts of process residue such as fiber (5.4 x 10 6 ty - 1 ), shell (2.3 x 10 6 ty - 1 ), and empty fruit bunches (8.8 x 10 6 ty - 1 ). A large fraction of the fiber and much of the shell are used as fuel to generate process steam and electricity. The appropriate energy conversion system depends on the characteristic of the oil palm residue. In this paper, a description of characteristic of the oil palm residue is presented. The types of the energy conversion system presented are stoker type combustor and gasified. The paper focuses on the pulverized biomass material and the use of fluidized bed gasified. In the fluidized bed gasified, the palm shell and fiber has to be pulverized before feeding into gasified. For downdraft gasified and furnace, the palm shell and fiber can be used directly into the reactor for energy conversion. The heating value, burning characteristic, ash and moisture content of the oil palm residue are other parameters of the study

  4. Renewable energy: power for a sustainable future

    International Nuclear Information System (INIS)

    Kaygusuz, Kamil

    2001-01-01

    By the end of the 21 century, according to United National projections, the number of people on the earth is likely to have approximately doubled. How can a world of 10 to 12 billion people be provided with adequate supplies of energy, cleanly, safely and substantially? There is a growing consensus that renewable energy sources will be a very important part of the answer. The growing interest in 'renewables' has been prompted in part, by increasing concern over the pollution, resource depletion and possible climate change implications of our continuing use of conventional fossil and nuclear fuels. But recent technological developments have also improved the cost-effectiveness of many of the renewables, making their economic prospects look increasingly attractive. It describes the achievements and progress made in hydropower, biomass conversion, geothermal, solar thermal technology, wind energy conversion and the increasing usage of photovoltaics. It is evident that global warming is setting in and is going to change the climate as well as the terrain of many countries unless drastic measures are taken. The Kyoto meeting emphasised the importance of limiting CO 2 emissions and to abide by some form of agreement to reduce emissions. Present study concludes that renewable energy penetration into the energy market is much faster than was expected in recent years and by 2030, 15-20 percent of our prime energy will be met by renewable energy. (Author)

  5. The future of nuclear energy in Europe

    International Nuclear Information System (INIS)

    Polie, P.

    1996-01-01

    An overview of current situation and future trends in nuclear energy production in Europe is made. Main factors characterizing differences in atomic policy of each particular European country are discussed. They are: readiness of the governments to implement a long-term energy policy; technical, economical and energy aspects; public opinion. Future development of new power plants is connected with overproduction of electricity, safety operation of present NPP, reduction of CO 2 emissions and public opinion. The energy policy of the European Union is also discussed and the necessity of transparency in industrial strategy of the governments is outlined

  6. Costly waiting for the future gas energy

    International Nuclear Information System (INIS)

    1999-01-01

    The article discusses solutions while waiting for the pollution free gas power plant and points out that Norway will have to import Danish power from coal and Swedish nuclear energy for a long time yet. Various future scenarios are mentioned

  7. The future of wind energy

    International Nuclear Information System (INIS)

    Koughnett, K. Van

    2003-01-01

    This presentation provided a brief history of wind power through the ages, and culminated with a look at installed capacity in 2002. Vision Quest has been in the wind power business since 1980, and the first turbines were installed in 1997. The company operates 40 per cent of Canada's wind capacity. Vision Quest became part of TransAlta in December 2002, the largest non-regulated electric generation and marketing company in Canada. The reasons for investing in wind power were briefly reviewed. The author then examined the physics of wind power and wind energy resources. The key resource issues were identified as being resource availability and constancy, which is similar to oil and gas exploration. Utility scale turbines were described. The pros and cons of larger turbines were compared, and it was shown that larger turbines offer better economics, a higher capacity factor and fewer turbines to permit. Manufacturers are focused on larger machines for offshore. The various permitting authorities and their areas of responsibility were listed, from municipal, provincial and federal levels. The key drivers are: wind speed, installed cost of equipment, revenue, operating expense, and financial expense. Project risks include: power purchase agreements, technology risk, financial risk, construction risk, regulation, operating risks, dependence on third parties, and reliance on advisors. Some of the challenges facing Vision Quest are being early, permitting, electric grid interconnection, openness of markets, market supply, demand forces, and getting capital costs down. tabs., figs

  8. Future implications of China's energy-technology choices

    International Nuclear Information System (INIS)

    Larson, E.D.; Wu Zongxin; DeLaquil, Pat; Chen Wenying; Gao Pengfei

    2003-01-01

    This paper summarizes an assessment of future energy-technology strategies for China that explored the prospects for China to continue its social and economic development while ensuring national energy-supply security and promoting environmental sustainability over the next 50 years. The MARKAL energy-system modeling tool was used to build a model of China's energy system representing all sectors of the economy and including both energy conversion and end-use technologies. Different scenarios for the evolution of the energy system from 1995 to 2050 were explored, enabling insights to be gained into different energy development choices. The analysis indicates a business-as-usual strategy that relies on coal combustion technologies would not be able to meet all environmental and energy security goals. However, an advanced technology strategy emphasizing (1) coal gasification technologies co-producing electricity and clean liquid and gaseous energy carriers (polygeneration), with below-ground storage of some captured CO 2 ; (2) expanded use of renewable energy sources (especially wind and modern biomass); and (3) end-use efficiency would enable China to continue social and economic development through at least the next 50 years while ensuring security of energy supply and improved local and global environmental quality. Surprisingly, even when significant limitations on carbon emissions were stipulated, the model calculated that an advanced energy technology strategy using our technology-cost assumptions would not incur a higher cumulative (1995-2050) total discounted energy system cost than the business-as-usual strategy. To realize such an advanced technology strategy, China will need policies and programs that encourage the development, demonstration and commercialization of advanced clean energy conversion technologies and that support aggressive end-use energy efficiency improvements

  9. Recommended methods for evaluating the benefits of ECUT Program outputs. [Energy Conversion and Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Levine, L.O.; Winter, C.

    1986-03-01

    This study was conducted to define and develop techniques that could be used to assess the complete spectrum of positive effects resulting from the Energy Conversion and Utilization Technologies (ECUT) Program activities. These techniques could then be applied to measure the benefits from past ECUT outputs. In addition, the impact of future ECUT outputs could be assessed as part of an ongoing monitoring process, after sufficient time has elapsed to allow their impacts to develop.

  10. Conversion of concentrated solar thermal energy into chemical energy.

    Science.gov (United States)

    Tamaura, Yutaka

    2012-01-01

    When a concentrated solar beam is irradiated to the ceramics such as Ni-ferrite, the high-energy flux in the range of 1500-2500 kW/m(2) is absorbed by an excess Frenkel defect formation. This non-equilibrium state defect is generated not by heating at a low heating-rate (30 K/min), but by irradiating high flux energy of concentrated solar beam rapidly at a high heating rate (200 K/min). The defect can be spontaneously converted to chemical energy of a cation-excess spinel structure (reduced-oxide form) at the temperature around 1773 K. Thus, the O(2) releasing reaction (α-O(2) releasing reaction) proceeds in two-steps; (1) high flux energy of concentrated solar beam absorption by formation of the non-equilibrium Frenkel defect and (2) the O(2) gas formation from the O(2-) in the Frenkel defect even in air atmosphere. The 2nd step proceeds without the solar radiation. We may say that the 1st step is light reaction, and 2nd step, dark reaction, just like in photosynthesis process.

  11. Nanostructured materials for advanced energy conversion and storage devices

    Science.gov (United States)

    Aricò, Antonino Salvatore; Bruce, Peter; Scrosati, Bruno; Tarascon, Jean-Marie; van Schalkwijk, Walter

    2005-05-01

    New materials hold the key to fundamental advances in energy conversion and storage, both of which are vital in order to meet the challenge of global warming and the finite nature of fossil fuels. Nanomaterials in particular offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. This review describes some recent developments in the discovery of nanoelectrolytes and nanoelectrodes for lithium batteries, fuel cells and supercapacitors. The advantages and disadvantages of the nanoscale in materials design for such devices are highlighted.

  12. Electrohydrodynamics: a high-voltage direct energy conversion process

    International Nuclear Information System (INIS)

    Brun, S.

    1967-04-01

    This analysis consists of a theoretical and practical study of a high-tension electrical power generator based on the Van de Graaff generator principle, the main difference being that the charges produced are transported by a gas in motion and not by a belt. The electrical and thermal properties of such a generator are studied, as well as the difficult problem of the production of the ionised particles used in the conversion. A certain number of results already published on this process for converting kinetic energy into electrical energy is given, as well as some possible applications in the field of space technology. (author) [fr

  13. Longitudinal density modulation and energy conversion in intense beams

    International Nuclear Information System (INIS)

    Harris, J. R.; Neumann, J. G.; Tian, K.; O'Shea, P. G.

    2007-01-01

    Density modulation of charged particle beams may occur as a consequence of deliberate action, or may occur inadvertently because of imperfections in the particle source or acceleration method. In the case of intense beams, where space charge and external focusing govern the beam dynamics, density modulation may, under some circumstances, be converted to velocity modulation, with a corresponding conversion of potential energy to kinetic energy. Whether this will occur depends on the properties of the beam and the initial modulation. This paper describes the evolution of discrete and continuous density modulations on intense beams and discusses three recent experiments related to the dynamics of density-modulated electron beams

  14. Metal oxide-carbon composites for energy conversion and storage

    Science.gov (United States)

    Perera, Sanjaya Dulip

    The exponential growth of the population and the associated energy demand requires the development of new materials for sustainable energy conversion and storage. Expanding the use of renewable energy sources to generate electricity is still not sufficient enough to fulfill the current energy demand. Electricity generation by wind and solar is the most promising alternative energy resources for coal and oil. The first part of the dissertation addresses an alternative method for preparing TiO2 nanotube based photoanodes for DSSCs. This would involve smaller diameter TiO2 nanotubes (˜10 nm), instead of nanoparticles or electrochemically grown larger nanotubes. Moreover, TiO2 nanotube-graphene based photocatalysts were developed to treat model pollutants. In the second part of this dissertation, the development of electrical energy storage systems, which provide high storage capacity and power output using low cost materials are discussed. Among different types of energy storage systems, batteries are the most convenient method to store electrical energy. However, the low power performance of batteries limits the application in different types of electrical energy storage. The development of electrical energy storage systems, which provide high storage capacity and power output using low cost materials are discussed.

  15. An efficiency booster for energy conversion in natural circulation loops

    International Nuclear Information System (INIS)

    Wang, Dongqing; Jiang, Jin

    2016-01-01

    Highlights: • Low driving power conversion efficiency of natural circulation loops is proved. • The low conversion efficiency leads to low heat transfer capacity of such loops. • An efficiency booster is designed with turbine to increase the efficiency. • Performance of the proposed booster has been numerically simulated. • The booster drastically enhances heat transfer capacity of such loops. - Abstract: In this paper, the capacity of a natural circulation loop for transferring heat from a heat source to a heat sink has been analyzed. It is concluded that the capacity of the natural circulation loop depends on the conversion efficiency of the thermal energy from the heat source to the driving force for the circulation of the flow. The low conversion efficiency leading to weak driving force in such loops has been demonstrated analytically and validated through simulation results. This issue has resulted in a low heat transfer capacity in the circulation loop. To increase the heat transfer capacity, one has to improve this efficiency. To meet such a need, a novel efficiency booster has been developed in this paper. The booster essentially increases the flow driving force and hence significantly improves the overall heat transfer capacity. Design and analysis of this booster have been performed in detail. The performance has been examined through extensive computer simulations. It is concluded that the booster can indeed drastically improve the heat transfer capacity of the natural circulation loop.

  16. An efficiency booster for energy conversion in natural circulation loops

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongqing, E-mail: wangdongqing@stu.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Beijing Computational Science Research Center, Beijing 100084 (China); Jiang, Jin, E-mail: jjiang@eng.uwo.ca [Department of Electrical and Computer Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada); Beijing Computational Science Research Center, Beijing 100084 (China)

    2016-08-01

    Highlights: • Low driving power conversion efficiency of natural circulation loops is proved. • The low conversion efficiency leads to low heat transfer capacity of such loops. • An efficiency booster is designed with turbine to increase the efficiency. • Performance of the proposed booster has been numerically simulated. • The booster drastically enhances heat transfer capacity of such loops. - Abstract: In this paper, the capacity of a natural circulation loop for transferring heat from a heat source to a heat sink has been analyzed. It is concluded that the capacity of the natural circulation loop depends on the conversion efficiency of the thermal energy from the heat source to the driving force for the circulation of the flow. The low conversion efficiency leading to weak driving force in such loops has been demonstrated analytically and validated through simulation results. This issue has resulted in a low heat transfer capacity in the circulation loop. To increase the heat transfer capacity, one has to improve this efficiency. To meet such a need, a novel efficiency booster has been developed in this paper. The booster essentially increases the flow driving force and hence significantly improves the overall heat transfer capacity. Design and analysis of this booster have been performed in detail. The performance has been examined through extensive computer simulations. It is concluded that the booster can indeed drastically improve the heat transfer capacity of the natural circulation loop.

  17. Future development of nuclear energy systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Nuclear energy development in Japan has passed about 30 years, and reaches to a step to supply about 35 % of total electric power demand. However, together with globalization of economic and technical development, its future progressing method is required for its new efforts. Among such conditions, when considering a state of future type nuclear energy application, its contribution to further environmental conservation and international cooperation is essential, and it is required for adoption to such requirement how it is made an energy source with excellent economics.The Research Committee on 'Engineering Design on Nuclear Energy Systems' established under recognition in 1998 has been carried out some discussions on present and future status of nuclear energy development. And so forth under participation of outer specialists. Here were summarized on two year's committee actions containing them and viewpoints of nuclear industries, popularization of nuclear system technology, and so forth. (G.K.)

  18. Solar energy conversion by photocatalytic overall water splitting

    KAUST Repository

    Takanabe, Kazuhiro

    2015-07-04

    Summary: Solar energy is abundant and renewable energy: however, extensive conversion of the solar energy can only be achieved by large-scale collection of solar flux. The technology that satisfies this requirement must be as simple as possible to reduce capital cost. Overall water splitting (OWS) by powder-form photocatalysts directly produces H2 as a chemical energy in a single reactor, which does not require any complicated parabolic mirrors and electronic devices. Because of its simplicity and low capital cost, it has tremendous potential to become the major technology of solar energy conversion. To achieve the OWS efficiently, the development of efficient photocatalysts is mandatory. The OWS hotocatalysis involves the electrocatalys is for both water reduction and oxidation on the surafce of photocatalysts, which is driven by particular semiconductors that absorb photons to generate excited carriers. Such photocatalysts must be designed to maximize the charge separation efficiency at the catalyst-semiconductor and semiconductor-electrolyte interface. In addition the low-overpotential electrocatalyts towards water redox reactions should be insensitive to the back-reaction of the produced H2 and O2 that produces H2O. In this presentation, some recent progress on the topic of the OWS in our group will be discussed.

  19. An estimate of spherical impactor energy transfer for mechanical frequency up-conversion energy harvester

    Directory of Open Access Journals (Sweden)

    L. R. Corr

    2016-08-01

    Full Text Available Vibration energy harvesters, which use the impact mechanical frequency up-conversion technique, utilize an impactor, which gains kinetic energy from low frequency ambient environmental vibrations, to excite high frequency systems that efficiently convert mechanical energy to electrical energy. To take full advantage of the impact mechanical frequency up-conversion technique, it is prudent to understand the energy transfer from the low frequency excitations, to the impactor, and finally to the high frequency systems. In this work, the energy transfer from a spherical impactor to a multi degree of freedom spring / mass system, due to Hertzian impact, is investigated to gain insight on how best to design impact mechanical frequency up-conversion energy harvesters. Through this academic work, it is shown that the properties of the contact (or impact area, i.e., radius of curvature and material properties, only play a minor role in energy transfer and that the equivalent mass of the target system (i.e., the spring / mass system dictates the total amount of energy transferred during the impact. The novel approach of utilizing the well-known Hertzian impact methodology to gain an understanding of impact mechanical frequency up-conversion energy harvesters has made it clear that the impactor and the high frequency energy generating systems must be designed together as one system to ensure maximum energy transfer, leading to efficient ambient vibration energy harvesters.

  20. Modeling power electronics and interfacing energy conversion systems

    CERN Document Server

    Simões, Marcelo Godoy

    2017-01-01

    Discusses the application of mathematical and engineering tools for modeling, simulation and control oriented for energy systems, power electronics and renewable energy. This book builds on the background knowledge of electrical circuits, control of dc/dc converters and inverters, energy conversion and power electronics. The book shows readers how to apply computational methods for multi-domain simulation of energy systems and power electronics engineering problems. Each chapter has a brief introduction on the theoretical background, a description of the problems to be solved, and objectives to be achieved. Block diagrams, electrical circuits, mathematical analysis or computer code are covered. Each chapter concludes with discussions on what should be learned, suggestions for further studies and even some experimental work.

  1. Advanced fluoride-based materials for energy conversion

    CERN Document Server

    Nakajima, Tsuyoshi

    2015-01-01

    Advanced Fluoride-Based Materials for Energy Conversion provides thorough and applied information on new fluorinated materials for chemical energy devices, exploring the electrochemical properties and behavior of fluorinated materials in lithium ion and sodium ion batteries, fluoropolymers in fuel cells, and fluorinated carbon in capacitors, while also exploring synthesis applications, and both safety and stability issues. As electronic devices, from cell phones to hybrid and electric vehicles, are increasingly common and prevalent in modern lives and require dependable, stable chemical energy devices with high-level functions are becoming increasingly important. As research and development in this area progresses rapidly, fluorine compounds play a critical role in this rapid progression. Fluorine, with its small size and the highest electronegativity, yields stable compounds under various conditions for utilization as electrodes, electrolytes, and membranes in energy devices. The book is an ideal reference f...

  2. Hydropower and the world's energy future

    International Nuclear Information System (INIS)

    2000-11-01

    The potential role of hydropower in the context of world-wide demographic growth and increasing demand for energy, and the benefits inherent in hydroelectric power in comparison with other energy options are discussed. Environmental and social impacts, and examples of mitigation measures are reviewed. Recommendations regarding best practices in the future development of hydroelectric power projects proposed

  3. Renewable marine energies, resources for the future

    International Nuclear Information System (INIS)

    Le Lidec, Frederic

    2012-01-01

    The need for alternative sources of energy has never been more urgent than it is today. At the very time International Energy Agency estimates that demand will increase 30% by 2030, fossil fuels (oil, gas and coal) are beginning to dwindle, as the need to counter global warming imposes limits on CO 2 emissions. In this context, DCNS has entered a new field of innovation and development: ocean energy. Having included marine renewable energy as an intrinsic part of its strategic growth plan, DCNS is the only industrial company in the world to invest in all four key technologies in this sector: - the tidal energy generated using underwater turbines known as 'tidal turbines',' which convert the energy of marine tidal streams into electricity; - the ocean thermal energy conversion (OTEC) technology that exploits the difference of temperature between the warm surface water of tropical oceans and the cold water found in the ocean depths to generate electrical power 24 hours a day, 35 days a year; - the offshore wind energy generated by offshore floating wind turbines; - the wave energy technology which operates on the principle of recovering energy from the ocean swell. With 400 years of expertise in shipbuilding and its in-depth understanding of the marine environment, DCNS is committed to playing a major role in the development of this new ocean industry. (author)

  4. The Generalized Conversion Factor in Einstein's Mass-Energy Equation

    Directory of Open Access Journals (Sweden)

    Ajay Sharma

    2008-07-01

    Full Text Available Einstein's September 1905 paper is origin of light energy-mass inter conversion equation ($L = Delta mc^{2}$ and Einstein speculated $E = Delta mc^{2}$ from it by simply replacing $L$ by $E$. From its critical analysis it follows that $L = Delta mc^{2}$ is only true under special or ideal conditions. Under general cases the result is $L propto Delta mc^{2}$ ($E propto Delta mc^{2}$. Consequently an alternate equation $Delta E = A ub c^{2}Delta M$ has been suggested, which implies that energy emitted on annihilation of mass can be equal, less and more than predicted by $Delta E = Delta mc^{2}$. The total kinetic energy of fission fragments of U-235 or Pu-239 is found experimentally 20-60 MeV less than Q-value predicted by $Delta mc^{2}$. The mass of particle Ds (2317 discovered at SLAC, is more than current estimates. In many reactions including chemical reactions $E = Delta mc^{2}$ is not confirmed yet, but regarded as true. It implies the conversion factor than $c^{2}$ is possible. These phenomena can be explained with help of generalized mass-energy equation $Delta E = A ub c^{2}Delta M$.

  5. Combustion and direct energy conversion inside a micro-combustor

    International Nuclear Information System (INIS)

    Lei, Yafeng; Chen, Wei; Lei, Jiang

    2016-01-01

    Highlights: • The flammability range of micro-combustor was broadened with heat recirculation. • The quenching diameter decreased with heat recirculation compared to without recirculation. • The surface areas to volume ratio was the most important parameter affecting the energy conversion efficiency. • The maximum conversion efficiency (3.15%) was achieved with 1 mm inner diameter. - Abstract: Electrical energy can be generated by employing a micro-thermophotovoltaic (TPV) cell which absorbs thermal radiation from combustion taking place in a micro-combustor. The stability of combustion in a micro-combustor is essential for operating a micro-power system using hydrogen and hydrocarbon fuels as energy source. To understand the mechanism of sustaining combustion within the quenching distance of fuel, this study proposed an annular micro combustion tube with recirculation of exhaust heat. To explore the feasibility of combustion in the micro annular tube, the parameters influencing the combustion namely, quenching diameter, and flammability were studied through numerical simulation. The results indicated that combustion could be realized in micro- combustor using heat recirculation. Following results were obtained from simulation. The quenching diameter reduced from 1.3 mm to 0.9 mm for heat recirculation at equivalence ratio of 1; the lean flammability was 2.5%–5% lower than that of without heat recirculation for quenching diameters between 2 mm and 5 mm. The overall energy conversion efficiency varied at different inner diameters. A maximum efficiency of 3.15% was achieved at an inner diameter of 1 mm. The studies indicated that heat recirculation is an effective strategy to maintain combustion and to improve combustion limits in micro-scale system.

  6. Towards a sustainable future of energy

    International Nuclear Information System (INIS)

    Castro Diaz-Balart, Fidel

    1999-01-01

    The only form of having a future energy insurance is to find a road environmentally sustainable to take place and to use the energy. Their production and non alone use should be compatible with the environmental priorities of the society but rather they should be organized in such a way that they have a social consent, under the principle that so that there is economic development an economic and sure energy supply it should exist

  7. Fusion energy - an abundant energy source for the future

    DEFF Research Database (Denmark)

    Fusion energy is the fundamental energy source of the Universe, as the energy of the Sun and the stars are produced by fusion of e.g. hydrogen to helium. Fusion energy research is a strongly international endeavor aiming at realizing fusion energy production in power plants on Earth. Reaching...... this goal, mankind will have a sustainable base load energy source with abundant resources, having no CO2 release, and with no longlived radioactive waste. This presentation will describe the basics of fusion energy production and the status and future prospects of the research. Considerations...... of integration into the future electricity system and socio-economic studies of fusion energy will be presented, referring to the programme of Socio-Economic Research on Fusion (SERF) under the European Fusion Energy Agreement (EFDA)....

  8. Conceptual design of a FGM thermoelectric energy conversion system for high temperature heat source. 1. Design of thermoelectric energy conversion unit

    International Nuclear Information System (INIS)

    Kambe, Mitsuru; Teraki, Junichi; Hirano, Toru.

    1996-01-01

    Thermoelectric (TE) power conversion system has been focused as a candidate of direct energy conversion systems for high temperature heat source to meet the various power requirements in next century. A concept of energy conversion unit by using TE cell elements combined with FGM compliant pads has been presented to achieve high thermal energy density as well as high energy conversion efficiency. An energy conversion unit consists of 8 couples of P-N cell elements sandwiched between two FGM compliant pads. Performance analysis revealed that the power generated by this unit was 11 watts which is nearly ten times as much as conventional unit of the same size. Energy conversion efficiency of 12% was expected based on the assumption of ZT = 1. All the member of compliant pads as well as TE cells could be bonded together to avoid thermal resistance. (author)

  9. Current and future industrial energy service characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

    1980-10-01

    Current and future energy demands, end uses, and cost used to characterize typical applications and resultant services in the industrial sector of the United States and 15 selected states are examined. A review and evaluation of existing industrial energy data bases was undertaken to assess their potential for supporting SERI research on: (1) market suitability analysis, (2) market development, (3) end-use matching, (3) industrial applications case studies, and (4) identification of cost and performance goals for solar systems and typical information requirements for industrial energy end use. In reviewing existing industrial energy data bases, the level of detail, disaggregation, and primary sources of information were examined. The focus was on fuels and electric energy used for heat and power purchased by the manufacturing subsector and listed by 2-, 3-, and 4-digit SIC, primary fuel, and end use. Projections of state level energy prices to 1990 are developed using the energy intensity approach. The effects of federal and state industrial energy conservation programs on future industrial sector demands were assessed. Future end-use energy requirements were developed for each 4-digit SIC industry and were grouped as follows: (1) hot water, (2) steam (212 to 300/sup 0/F, each 100/sup 0/F interval from 300 to 1000/sup 0/F, and greater than 1000/sup 0/F), and (3) hot air (100/sup 0/F intervals). Volume I details the activities performed in this effort.

  10. Renewable energy from corn residues by thermochemical conversion

    Science.gov (United States)

    Yu, Fei

    Declining fossil oil reserve, skyrocket price, unsecured supplies, and environment pollution are among the many energy problems we are facing today. It is our conviction that renewable energy is a solution to these problems. The long term goal of the proposed research is to develop commercially practical technologies to produce energy from renewable resources. The overall objective of my research is to study and develop thermochemical processes for converting bulky and low-energy-density biomass materials into bio-fuels and value-added bio-products. The rationale for the proposed research is that, once such processes are developed, processing facility can be set up on or near biomass product sites, reducing the costs associated with transport of bulky biomass which is a key technical barrier to biomass conversion. In my preliminary research, several conversion technologies including atmospheric pressure liquefaction, high pressure liquefaction, and microwave pyrolysis have been evaluated. Our data indicated that microwave pyrolysis had the potential to become a simple and economically viable biomass conversion technology. Microwave pyrolysis is an innovative process that provides efficient and uniform heating, and are robust to type, size and uniformity of feedstock and therefore suitable for almost any waste materials without needing to reduce the particle size. The proposed thesis focused on in-depth investigations of microwave pyrolysis of corn residues. My first specific aim was to examine the effects of processing parameters on product yields. The second specific research aim was to characterize the products (gases, bio-oils, and solid residues), which was critical to process optimization and product developments. Other research tasks included conducting kinetic modeling and preliminary mass and energy balance. This study demonstrated that microwave pyrolysis could be optimized to produce high value syngas, liquid fuels and pyrolytic carbons, and had a great

  11. Energy conversion, storage and transportation by means of hydrogen

    International Nuclear Information System (INIS)

    Friedlmeier, G; Mateos, P; Bolcich, J.C.

    1988-01-01

    Data concerning the present consumption of energy indicate that the industrialized countries (representing 25% of the world's population) consume almost 75% of the world's energy production, while the need for energy aimed at maintaining the growth of non-industrialized countries increases day after day. Since estimations indicate that the fossil reverses will exhaust within frightening terms, the production of hydrogen from fossil fuels and, fundamentally, from renewable sources constitute a response to future energy demand. The production of hydrogen from water is performed by four different methods: direct thermal, thermochemical, electrolysis and photolysis. Finally, different ways of storaging and using hydrogen are proposed. (Author)

  12. Nuclear energy - option for the future. Proceedings

    International Nuclear Information System (INIS)

    1996-01-01

    The goal of this conference was to analyse the future national and international problems arising with energy supplies with regard to the large mass flows and CO 2 flows involved in the use of nuclear energy. The following topics are dealt with: - nuclear energy, world-wide energy management and developments in Europe and Asia - disposal and ultimate waste disposal, plutonium management, an assessment of the Chernobyl accident 10 years on - new reactor developments in the energy mix - the costs arising with nuclear energy in the energy mix. In view of the demand made by climate researchers, to reduce CO 2 , and the additional construction work planned in the eastern and Asian areas, it will remain necessary for the Federal Republic of Germany,too, to maintain the know-how and technology for nuclear energy generation. (orig./DG)

  13. Innovative rubble mound breakwaters for wave energy conversion

    International Nuclear Information System (INIS)

    Contestabile, Pasquale; Vicinanza, Diego; Iuppa, Claudio; Cavallaro, Luca; Foti, Enrico

    2015-01-01

    This paper presents a new Wave Energy Converter named Overtopping BReakwater for Energy Conversion (OBREC) which consists of a rubble mound breakwater with a front reservoir designed with the aim of capturing the wave overtopping in order to produce electricity. The energy is extracted via low head turbines, using the difference in water levels between the reservoir and the mean sea water level. The new design should be capable of adding a revenue generation function to a breakwater while adding cost sharing benefits due to integration. The design can be applied to harbour expansions, existing breakwater maintenance or upgrades due to climate change for a relatively low cost, considering the breakwater would be built regardless of the inclusion of a WEC [it

  14. Experimental investigation of rubble mound breakwaters for wave energy conversion

    DEFF Research Database (Denmark)

    Luppa, C.; Contestabile, P.; Cavallaro, L.

    2015-01-01

    The paper describes recent laboratory investigation on the breakwater integrated device named “OBREC” (Overtopping BReakwater for Energy Conversion). This technology recently appeared on the wave energy converter scene as an executive outcome of improving composite seawalls by including overtoppi......-by-wave measurement of couples of hydraulic head-flow rate acting on a virtual turbine inlet. Finally, the influence of draft length on overtopping discharge has been identified....... type wave energy converters [1]. Two complementary experimental campaigns were carried out, in 2012 and in 2014. Several geometries and wave conditions were examined. Preliminary comparison of hydraulic behaviour has been summarized, focusing on reflection analysis and overtopping flow rate....... Preliminary design formulae are presented to predict overtopping at the rear side of the structure and in to the front reservoir based on both datasets. Moreover, some important results have been presented on hydraulic behaviour of OBREC with saturated reservoir. Particularly attention is paid to wave...

  15. Progress and Perspectives of Plasmon-Enhanced Solar Energy Conversion.

    Science.gov (United States)

    Cushing, Scott K; Wu, Nianqiang

    2016-02-18

    Plasmonics allows extraordinary control of light, making it attractive for application in solar energy harvesting. In metal-semiconductor heterojunctions, plasmons can enhance photoconversion in the semiconductor via three mechanisms, including light trapping, hot electron/hole transfer, and plasmon-induced resonance energy transfer (PIRET). To understand the plasmonic enhancement, the metal's geometry, constituent metal, and interface must be viewed in terms of the effects on the plasmon's dephasing and decay route. To simplify design of plasmonic metal-semiconductor heterojunctions for high-efficiency solar energy conversion, the parameters controlling the plasmonic enhancement can be distilled to the dephasing time. The plasmonic geometry can then be further refined to optimize hot carrier transfer, PIRET, or light trapping.

  16. Artificial photosynthesis: biomimetic approaches to solar energy conversion and storage.

    Science.gov (United States)

    Kalyanasundaram, K; Graetzel, M

    2010-06-01

    Using sun as the energy source, natural photosynthesis carries out a number of useful reactions such as oxidation of water to molecular oxygen and fixation of CO(2) in the form of sugars. These are achieved through a series of light-induced multi-electron-transfer reactions involving chlorophylls in a special arrangement and several other species including specific enzymes. Artificial photosynthesis attempts to reconstruct these key processes in simpler model systems such that solar energy and abundant natural resources can be used to generate high energy fuels and restrict the amount of CO(2) in the atmosphere. Details of few model catalytic systems that lead to clean oxidation of water to H(2) and O(2), photoelectrochemical solar cells for the direct conversion of sunlight to electricity, solar cells for total decomposition of water and catalytic systems for fixation of CO(2) to fuels such as methanol and methane are reviewed here. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Clean energy systems in the subsurface. Production, storage and conversion. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Zhengmeng Michael; Were, Patrick (eds.) [Clausthal Univ. of Technology, Goslar (Germany). Energie-Forschungszentrum Niedersachsen (EFZN); Xie, Heping [Sichuan Univ., Chengdu (China)

    2013-04-01

    Recent research on Integrated Energy and Environmental Utilization of Deep Underground Space. Results of the 3{sup rd} Sino-German Conference ''Underground Storage of CO{sub 2} and Energy'', held at Goslar, Germany, 21-23 May 2013. Researchers and professionals from academia and industry discuss the future of deep underground space technologies for an integrated energy and environmental utilization. Anthropogenic greenhouse gas emissions, energy security and sustainability are three of the greatest contemporary global challenges today. This year the Sino-German Cooperation Group ''Underground Storage of CO{sub 2} and Energy'', is meeting on the 21-23 May 2013 for the second time in Goslar, Germany, to convene its 3{sup rd} Sino-German conference on the theme ''Clean Energy Systems in the Subsurface: Production, Storage and Conversion''.

  18. Computational screening of new inorganic materials for highly efficient solar energy conversion

    DEFF Research Database (Denmark)

    Kuhar, Korina

    2017-01-01

    in solar cells convert solar energy into electricity, and PC uses harvested energy to conduct chemical reactions, such as splitting water into oxygen and, more importantly, hydrogen, also known as the fuel of the future. Further progress in both PV and PC fields is mostly limited by the flaws in materials...... materials. In this work a high-throughput computational search for suitable absorbers for PV and PC applications is presented. A set of descriptors has been developed, such that each descriptor targets an important property or issue of a good solar energy conversion material. The screening study...... that we have access to. Despite the vast amounts of energy at our disposal, we are not able to harvest this solar energy efficiently. Currently, there are a few ways of converting solar power into usable energy, such as photovoltaics (PV) or photoelectrochemical generation of fuels (PC). PV processes...

  19. Nanostructured Solar Irradiation Control Materials for Solar Energy Conversion

    Science.gov (United States)

    Kang, Jinho; Marshall, I. A.; Torrico, M. N.; Taylor, C. R.; Ely, Jeffry; Henderson, Angel Z.; Kim, J.-W.; Sauti, G.; Gibbons, L. J.; Park, C.; hide

    2012-01-01

    Tailoring the solar absorptivity (alpha(sub s)) and thermal emissivity (epsilon(sub T)) of materials constitutes an innovative approach to solar energy control and energy conversion. Numerous ceramic and metallic materials are currently available for solar absorbance/thermal emittance control. However, conventional metal oxides and dielectric/metal/dielectric multi-coatings have limited utility due to residual shear stresses resulting from the different coefficient of thermal expansion of the layered materials. This research presents an alternate approach based on nanoparticle-filled polymers to afford mechanically durable solar-absorptive and thermally-emissive polymer nanocomposites. The alpha(sub s) and epsilon(sub T) were measured with various nano inclusions, such as carbon nanophase particles (CNPs), at different concentrations. Research has shown that adding only 5 wt% CNPs increased the alpha(sub s) and epsilon(sub T) by a factor of about 47 and 2, respectively, compared to the pristine polymer. The effect of solar irradiation control of the nanocomposite on solar energy conversion was studied. The solar irradiation control coatings increased the power generation of solar thermoelectric cells by more than 380% compared to that of a control power cell without solar irradiation control coatings.

  20. Improper ferroelectrics as high-efficiency energy conversion materials

    Energy Technology Data Exchange (ETDEWEB)

    Wakamatsu, Toru; Tanabe, Kenji; Terasaki, Ichiro; Taniguchi, Hiroki [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)

    2017-05-15

    An improper ferroelectric is a certain type of ferroelectrics whose primary order parameter is not polarization but another physical quantity such as magnetization. In contrast to a conventional proper ferroelectrics as represented by Pb(Zr,Ti)O{sub 3} and BaTiO{sub 3}, the improper ferroelectrics has been inconceivable for practical applications thus far. Herein, we illustrate the great potential of improper ferroelectrics for efficient conversion of temperature fluctuation to electric energy, as demonstrated with (Ca{sub 0.84}Sr{sub 0.16}){sub 8}[AlO{sub 2}]{sub 12}(MoO{sub 4}){sub 2} (CSAM-16). The present study has experimentally proven that CSAM-16 achieves an excellent electrothermal coupling factor and high electric field sensitivity for pyroelectric energy conversion that approach a practical level for application to self-powered autonomous electronic devices for rapidly spreading wireless sensor networks. The present results provide a novel approach to developing innovative pyroelectric energy harvesting devices using improper ferroelectrics. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Improper ferroelectrics as high-efficiency energy conversion materials

    International Nuclear Information System (INIS)

    Wakamatsu, Toru; Tanabe, Kenji; Terasaki, Ichiro; Taniguchi, Hiroki

    2017-01-01

    An improper ferroelectric is a certain type of ferroelectrics whose primary order parameter is not polarization but another physical quantity such as magnetization. In contrast to a conventional proper ferroelectrics as represented by Pb(Zr,Ti)O_3 and BaTiO_3, the improper ferroelectrics has been inconceivable for practical applications thus far. Herein, we illustrate the great potential of improper ferroelectrics for efficient conversion of temperature fluctuation to electric energy, as demonstrated with (Ca_0_._8_4Sr_0_._1_6)_8[AlO_2]_1_2(MoO_4)_2 (CSAM-16). The present study has experimentally proven that CSAM-16 achieves an excellent electrothermal coupling factor and high electric field sensitivity for pyroelectric energy conversion that approach a practical level for application to self-powered autonomous electronic devices for rapidly spreading wireless sensor networks. The present results provide a novel approach to developing innovative pyroelectric energy harvesting devices using improper ferroelectrics. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Visible light to electrical energy conversion using photoelectrochemical cells

    Science.gov (United States)

    Wrighton, Mark S. (Inventor); Ellis, Arthur B. (Inventor); Kaiser, Steven W. (Inventor)

    1983-01-01

    Sustained conversion of low energy visible or near i.r. light (>1.25 eV) to electrical energy has been obtained using wet photoelectrochemical cells where there are no net chemical changes in the system. Stabilization of n-type semi-conductor anodes of CdS, CdSe, CdTe, GaP, GaAs and InP to photoanodic dissolution is achieved by employing selected alkaline solutions of Na.sub.2 S, Na.sub.2 S/S, Na.sub.2 Se, Na.sub.2 Se/Se, Na.sub.2 Te and Na.sub.2 Te/Te as the electrolyte. The oxidation of (poly) sulfide, (poly)selenide or (poly)telluride species occurs at the irradiated anode, and reduction of polysulfide, polyselenide or polytelluride species occurs at the dark Pt cathode of the photoelectrochemical cell. Optical to electrical energy conversion efficiencies approaching 15% at selected frequencies have been observed in some cells. The wavelength for the onset of photocurrent corresponds to the band gap of the particular anode material used in the cell.

  3. Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Varo, Pilar [Departamento de Electrónica y Tecnología de Computadores, CITIC-UGR, Universidad de Granada, 18071 Granada (Spain); Bertoluzzi, Luca [Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló (Spain); Bisquert, Juan, E-mail: bisquert@uji.es [Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló (Spain); Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Alexe, Marin [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Coll, Mariona [Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Catalonia (Spain); Huang, Jinsong [Department of Mechanical and Materials Engineering and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588-0656 (United States); Jimenez-Tejada, Juan Antonio [Departamento de Electrónica y Tecnología de Computadores, CITIC-UGR, Universidad de Granada, 18071 Granada (Spain); Kirchartz, Thomas [IEK5-Photovoltaik, Forschungszentrum Jülich, 52425 Jülich (Germany); Faculty of Engineering and CENIDE, University of Duisburg–Essen, Carl-Benz-Str. 199, 47057 Duisburg (Germany); Nechache, Riad; Rosei, Federico [INRS—Center Énergie, Matériaux et Télécommunications, Boulevard Lionel-Boulet, Varennes, Québec, J3X 1S2 (Canada); Yuan, Yongbo [Department of Mechanical and Materials Engineering and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588-0656 (United States)

    2016-10-07

    Solar energy conversion using semiconductors to fabricate photovoltaic devices relies on efficient light absorption, charge separation of electron–hole pair carriers or excitons, and fast transport and charge extraction to counter recombination processes. Ferroelectric materials are able to host a permanent electrical polarization which provides control over electrical field distribution in bulk and interfacial regions. In this review, we provide a critical overview of the physical principles and mechanisms of solar energy conversion using ferroelectric semiconductors and contact layers, as well as the main achievements reported so far. In a ferroelectric semiconductor film with ideal contacts, the polarization charge would be totally screened by the metal layers and no charge collection field would exist. However, real materials show a depolarization field, smooth termination of polarization, and interfacial energy barriers that do provide the control of interface and bulk electric field by switchable spontaneous polarization. We explore different phenomena as the polarization-modulated Schottky-like barriers at metal/ferroelectric interfaces, depolarization fields, vacancy migration, and the switchable rectifying behavior of ferroelectric thin films. Using a basic physical model of a solar cell, our analysis provides a general picture of the influence of ferroelectric effects on the actual power conversion efficiency of the solar cell device, and we are able to assess whether these effects or their combinations are beneficial or counterproductive. We describe in detail the bulk photovoltaic effect and the contact layers that modify the built-in field and the charge injection and separation in bulk heterojunction organic cells as well as in photocatalytic and water splitting devices. We also review the dominant families of ferroelectric materials that have been most extensively investigated and have provided the best photovoltaic performance.

  4. Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion

    International Nuclear Information System (INIS)

    Lopez-Varo, Pilar; Bertoluzzi, Luca; Bisquert, Juan; Alexe, Marin; Coll, Mariona; Huang, Jinsong; Jimenez-Tejada, Juan Antonio; Kirchartz, Thomas; Nechache, Riad; Rosei, Federico; Yuan, Yongbo

    2016-01-01

    Solar energy conversion using semiconductors to fabricate photovoltaic devices relies on efficient light absorption, charge separation of electron–hole pair carriers or excitons, and fast transport and charge extraction to counter recombination processes. Ferroelectric materials are able to host a permanent electrical polarization which provides control over electrical field distribution in bulk and interfacial regions. In this review, we provide a critical overview of the physical principles and mechanisms of solar energy conversion using ferroelectric semiconductors and contact layers, as well as the main achievements reported so far. In a ferroelectric semiconductor film with ideal contacts, the polarization charge would be totally screened by the metal layers and no charge collection field would exist. However, real materials show a depolarization field, smooth termination of polarization, and interfacial energy barriers that do provide the control of interface and bulk electric field by switchable spontaneous polarization. We explore different phenomena as the polarization-modulated Schottky-like barriers at metal/ferroelectric interfaces, depolarization fields, vacancy migration, and the switchable rectifying behavior of ferroelectric thin films. Using a basic physical model of a solar cell, our analysis provides a general picture of the influence of ferroelectric effects on the actual power conversion efficiency of the solar cell device, and we are able to assess whether these effects or their combinations are beneficial or counterproductive. We describe in detail the bulk photovoltaic effect and the contact layers that modify the built-in field and the charge injection and separation in bulk heterojunction organic cells as well as in photocatalytic and water splitting devices. We also review the dominant families of ferroelectric materials that have been most extensively investigated and have provided the best photovoltaic performance.

  5. Energy conversion of source separated packaging; Energiutvinning ur kaellsorterade foerpackningsfraktioner

    Energy Technology Data Exchange (ETDEWEB)

    Blidholm, O; Wiklund, S E [AaF-Energikonsult (Sweden); Bauer, A C [Energikonsult A. Bauer (Sweden)

    1997-02-01

    The basic idea of this project is to study the possibilities to use source separated combustible material for energy conversion in conventional solid fuel boilers (i.e. not municipal waste incineration plants). The project has been carried out in three phases. During phase 1 and 2 a number of fuel analyses of different fractions were carried out. During phase 3 two combustion tests were carried out; (1) a boiler with grate equipped with cyclone, electrostatic precipitator and flue gas condenser, and (2) a bubbling fluidized bed boiler with electrostatic precipitator and flue gas condenser. During the tests source separated paper and plastic packagings were co-fired with biomass fuels. The mixing rate of packagings was approximately 15%. This study reports the results of phase 3 and the conclusions of the whole project. The technical terms of using packaging as fuel are good. The technique is available for shredding both paper and plastic packaging. The material can be co-fired with biomass. The economical terms of using source separated packaging for energy conversion can be very advantageous, but can also form obstacles. The result is to a high degree guided by such facts as how the fuel is collected, transported, reduced in size and handled at the combustion plant. The results of the combustion tests show that the environmental terms of using source separated packaging for energy conversion are good. The emissions of heavy metals into the atmosphere are very low. The emissions are well below the emission standards for waste incineration plants. 35 figs, 13 tabs, 8 appendices

  6. Basic Science for a Secure Energy Future

    Science.gov (United States)

    Horton, Linda

    2010-03-01

    Anticipating a doubling in the world's energy use by the year 2050 coupled with an increasing focus on clean energy technologies, there is a national imperative for new energy technologies and improved energy efficiency. The Department of Energy's Office of Basic Energy Sciences (BES) supports fundamental research that provides the foundations for new energy technologies and supports DOE missions in energy, environment, and national security. The research crosses the full spectrum of materials and chemical sciences, as well as aspects of biosciences and geosciences, with a focus on understanding, predicting, and ultimately controlling matter and energy at electronic, atomic, and molecular levels. In addition, BES is the home for national user facilities for x-ray, neutron, nanoscale sciences, and electron beam characterization that serve over 10,000 users annually. To provide a strategic focus for these programs, BES has held a series of ``Basic Research Needs'' workshops on a number of energy topics over the past 6 years. These workshops have defined a number of research priorities in areas related to renewable, fossil, and nuclear energy -- as well as cross-cutting scientific grand challenges. These directions have helped to define the research for the recently established Energy Frontier Research Centers (EFRCs) and are foundational for the newly announced Energy Innovation Hubs. This overview will review the current BES research portfolio, including the EFRCs and user facilities, will highlight past research that has had an impact on energy technologies, and will discuss future directions as defined through the BES workshops and research opportunities.

  7. Advanced solar energy conversion. [solar pumped gas lasers

    Science.gov (United States)

    Lee, J. H.

    1981-01-01

    An atomic iodine laser, a candidate for the direct solar pumped lasers, was successfully excited with a 4 kW beam from a xenon arc solar simulator, thus proving the feasibility of the concept. The experimental set up and the laser output as functions of operating conditions are presented. The preliminary results of the iodine laser amplifier pumped with the HCP array to which a Q switch for giant pulse production was coupled are included. Two invention disclosures - a laser driven magnetohydrodynamic generator for conversion of laser energy to electricity and solar pumped gas lasers - are also included.

  8. Novel silicon phases and nanostructures for solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Wippermann, Stefan; He, Yuping; Vörös, Márton; Galli, Giulia

    2016-12-01

    Silicon exhibits a large variety of different bulk phases, allotropes, and composite structures, such as, e.g., clathrates or nanostructures, at both higher and lower densities compared with diamond-like Si-I. New Si structures continue to be discovered. These novel forms of Si offer exciting prospects to create Si based materials, which are non-toxic and earth-abundant, with properties tailored precisely towards specific applications. We illustrate how such novel Si based materials either in the bulk or as nanostructures may be used to significantly improve the efficiency of solar energy conversion devices.

  9. Quantitative analysis of a wind energy conversion model

    International Nuclear Information System (INIS)

    Zucker, Florian; Gräbner, Anna; Strunz, Andreas; Meyn, Jan-Peter

    2015-01-01

    A rotor of 12 cm diameter is attached to a precision electric motor, used as a generator, to make a model wind turbine. Output power of the generator is measured in a wind tunnel with up to 15 m s −1 air velocity. The maximum power is 3.4 W, the power conversion factor from kinetic to electric energy is c p = 0.15. The v 3 power law is confirmed. The model illustrates several technically important features of industrial wind turbines quantitatively. (paper)

  10. Analysis of dynamic effects in solar thermal energy conversion systems

    Science.gov (United States)

    Hamilton, C. L.

    1978-01-01

    The paper examines a study the purpose of which is to assess the performance of solar thermal power systems insofar as it depends on the dynamic character of system components and the solar radiation which drives them. Using a dynamic model, the daily operation of two conceptual solar conversion systems was simulated under varying operating strategies and several different time-dependent radiation intensity functions. These curves ranged from smoothly varying input of several magnitudes to input of constant total energy whose intensity oscillated with periods from 1/4 hour to 6 hours.

  11. Advanced nanostructured materials for energy storage and conversion

    Science.gov (United States)

    Hutchings, Gregory S.

    Due to a global effort to reduce greenhouse gas emissions and to utilize renewable sources of energy, much effort has been directed towards creating new alternatives to fossil fuels. Identifying novel materials for energy storage and conversion can enable radical changes to the current fuel production infrastructure and energy utilization. The use of engineered nanostructured materials in these systems unlocks unique catalytic activity in practical configurations. In this work, research efforts have been focused on the development of nanostructured materials to address the need for both better energy conversion and storage, with applications toward Li-O2 battery electrocatalysts, electrocatalytic generation of H2, conversion of furfural to useful chemicals and fuels, and Li battery anode materials. Highly-active alpha-MnO2 materials were synthesized for use as bifunctional oxygen reduction (ORR) and evolution (OER) catalysts in Li-O2 batteries, and were evaluated under operating conditions with a novel in situ X-ray absorption spectroscopy configuration. Through detailed analysis of local coordination and oxidation states of Mn atoms at key points in the electrochemical cycle, a self-switching behavior affecting the bifunctional activity was identified and found to be critical. In an additional study of materials for lithium batteries, nanostructured TiO2 anode materials doped with first-row transition metals were synthesized and evaluated for improving battery discharge capacity and rate performance, with Ni and Co doping at low levels found to cause the greatest enhancement. In addition to battery technology research, I have also sought to find inexpensive and earth-abundant electrocatalysts to replace state-of-the-art Pt/C in the hydrogen evolution reaction (HER), a systematic computational study of Cu-based bimetallic electrocatalysts was performed. During the screening of dilute surface alloys of Cu mixed with other first-row transition metals, materials with

  12. Evolution of energy conversion plants; Evoluzione delle macchine per la conversione dell'energia

    Energy Technology Data Exchange (ETDEWEB)

    Osnaghi, C. [Milan Politecnico, Milan (Italy). Dipt. di Energetica

    2001-06-01

    The paper concerns the evolution and the future development of energy conversion plants and puts into evidence the great importance of the scientific and technological improvement in machines design, in order to optimize the use of energy resources and to improve ambient compatibility. [Italian] L'articolo descrive l'evoluzione recente e lo sviluppo futuro degli impianti di conversione dell'energia, evidenziando la grande importanza del progresso scientifico e tecnologico nella progettazione delle macchine, al fine di ottimizzare l'uso delle risorse energetiche e migliorare la compatibilita' ambientale.

  13. Graphene-based Electrochemical Energy Conversion and Storage: Fuel cells, Supercapacitors and Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Junbo; Shao, Yuyan; Ellis, Michael A.; Moore, Robert; Yi, Baolian

    2011-09-14

    Graphene has attracted extensive research interest due to its strictly 2-dimensional (2D) structure, which results in its unique electronic, thermal, mechanical, and chemical properties and potential technical applications. These remarkable characteristics of graphene, along with the inherent benefits of a carbon material, make it a promising candidate for application in electrochemical energy devices. This article reviews the methods of graphene preparation, introduces the unique electrochemical behavior of graphene, and summarizes the recent research and development on graphene-based fuel cells, supercapacitors and lithium ion batteries. In addition, promising areas are identified for the future development of graphene-based materials in electrochemical energy conversion and storage systems.

  14. The future energy situation in the Netherlands

    International Nuclear Information System (INIS)

    1980-01-01

    This book is the result of a study into the future energy situation in the Netherlands, performed by the electricity companies in the country. The first five chapters sketch the framework within which energy policy is currently forced to operate. Further technical and physical conditions are considered in the following six chapters, including environmental and safety aspects. A prognosis for energy demand in the Netherlands until the end of the century is presented and five different scenarios are discussed, as means of supplying this demand. Nuclear energy is one of the sources considered throughout the text. (C.F.)

  15. International nuclear energy law - present and future

    International Nuclear Information System (INIS)

    Barrie, G.N.

    1988-01-01

    International nuclear energy law, as discussed in this article, is the law relating to the global, peaceful uses of nuclear science and technology. The position of nuclear law in the wide realm of law itself as well as the present status of nuclear legislation is assessed. This article also covers the development of international nuclear energy law, from the first nuclear law - the New Zealand Atomic Energy Act of 1945-, the present and the future. National and international organizations concerned with nuclear energy and their contribribution to nuclear law are reviewed

  16. The future of energy and climate

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    The talk will review some of the basic facts about the history and present status of the use of energy and its climatic consequences. It is clear that the world will have to change its way of energy production, the sooner the better. Because of the difficulty of storing electric energy, by far the best energy source for the future is thermal solar from the deserts, with overnight thermal storage. I will give some description of the present status of the technologies involved and end up with a pilot project for Europe and North Africa.

  17. Growing America's Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    The emerging U.S. bioenergy industry provides a secure and growing supply of transportation fuels, biopower, and bioproducts produced from a range of abundant, renewable biomass resources. Bioenergy can help ensure a secure, sustainable, and economically sound future by reducing U.S. dependence on foreign oil, developing domestic clean energy sources, and generating domestic green jobs. Bioenergy can also help address growing concerns about climate change by reducing greenhouse gas emissions to create a healthier environment for current and future generations.

  18. Transforming and Building the Future Energy Industry

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Vernon

    1998-12-31

    The petroleum industry is experiencing unprecedented change: increasing competition within a global context, deregulation in the European gas market, technological innovation that will fundamentally alter the economics of the industry. Sustainable Development, the challenge of balancing the Financial, Social and Environmental demands: collectively these demands are fundamentally altering the future shape of the industry. In this presentation the author describes his perspectives on the impact of change on the future shape of the energy industry in the years to come

  19. Transforming and Building the Future Energy Industry

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Vernon

    1999-12-31

    The petroleum industry is experiencing unprecedented change: increasing competition within a global context, deregulation in the European gas market, technological innovation that will fundamentally alter the economics of the industry. Sustainable Development, the challenge of balancing the Financial, Social and Environmental demands: collectively these demands are fundamentally altering the future shape of the industry. In this presentation the author describes his perspectives on the impact of change on the future shape of the energy industry in the years to come

  20. Direct energy conversion for IEC fusion for space applications

    International Nuclear Information System (INIS)

    Momota, Hiromu; Nadler, Jon; Miley, George H.

    2000-08-01

    The paper describes a concept of extracting fusion power from D- 3 He fueled IEC (Inertia Electrostatic Configuration) devices. The fusion system consists of a series of fusion modules and direct energy converters at an end or at both ends. This system of multiple units is linear and is connected by a magnetic field. A pair of coils anti-parallel to the magnetic field yields a field-null domain at the center of each unit as required for IEC operation. A stabilizing coil installed between the coil pairs eliminates the strong attractive force between the anti-parallel coils. Accessible regions for charged particle trajectories are essentially isolated from the coil structure. Thus, charged particles are directed along magnetic field lines to the direct energy converter without appreciable losses. A direct energy converter unit designed to be compatible to this unique system is also described. It basically consists of a separator and a traveling wave converter. A separator separates low energy ions and electron from the 14.7 MeV fusion protons and then converts their energy into electricity. In the traveling wave direct energy converter, fusion protons are modulated to form bunches. It couples with a transmission line to couple AC power out. The overall conversion efficiency of this system, combined with E- 3 He IEC cores, is estimated as high as 60%. (author)

  1. Mechanically stable ternary heterogeneous electrodes for energy storage and conversion.

    Science.gov (United States)

    Gao, Libo; Zhang, Hongti; Surjadi, James Utama; Li, Peifeng; Han, Ying; Sun, Dong; Lu, Yang

    2018-02-01

    Recently, solid asymmetric supercapacitor (ASC) has been deemed as an emerging portable power storage or backup device for harvesting natural resources. Here we rationally engineered a hierarchical, mechanically stable heterostructured FeCo@NiCo layered double hydroxide (LDH) with superior capacitive performance by a simple two-step electrodeposition route for energy storage and conversion. In situ scanning electron microscope (SEM) nanoindentation and electrochemical tests demonstrated the mechanical robustness and good conductivity of FeCo-LDH. This serves as a reliable backbone for supporting the NiCo-LDH nanosheets. When employed as the positive electrode in the solid ASC, the assembly presents high energy density of 36.6 W h kg -1 at a corresponding power density of 783 W kg -1 and durable cycling stability (87.3% after 5000 cycles) as well as robust mechanical stability without obvious capacitance fading when subjected to bending deformation. To demonstrate its promising capability for practical energy storage applications, the ASC has been employed as a portable energy source to power a commercially available digital watch, mini motor car, or household lamp bulb as well as an energy storage reservoir, coupled with a wind energy harvester to power patterned light-emitting diodes (LEDs).

  2. Direct energy conversion for IEC fusion for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Momota, Hiromu; Nadler, Jon [National Inst. for Fusion Science, Toki, Gifu (Japan); Miley, George H. [Fusion Studies Laboratory, Urbana, IL (United States)

    2000-08-01

    The paper describes a concept of extracting fusion power from D-{sup 3}He fueled IEC (Inertia Electrostatic Configuration) devices. The fusion system consists of a series of fusion modules and direct energy converters at an end or at both ends. This system of multiple units is linear and is connected by a magnetic field. A pair of coils anti-parallel to the magnetic field yields a field-null domain at the center of each unit as required for IEC operation. A stabilizing coil installed between the coil pairs eliminates the strong attractive force between the anti-parallel coils. Accessible regions for charged particle trajectories are essentially isolated from the coil structure. Thus, charged particles are directed along magnetic field lines to the direct energy converter without appreciable losses. A direct energy converter unit designed to be compatible to this unique system is also described. It basically consists of a separator and a traveling wave converter. A separator separates low energy ions and electron from the 14.7 MeV fusion protons and then converts their energy into electricity. In the traveling wave direct energy converter, fusion protons are modulated to form bunches. It couples with a transmission line to couple AC power out. The overall conversion efficiency of this system, combined with E-{sup 3}He IEC cores, is estimated as high as 60%. (author)

  3. How a future energy world could look?

    Directory of Open Access Journals (Sweden)

    Ewert M.

    2012-10-01

    Full Text Available The future energy system will change significantly within the next years as a result of the following Mega Trends: de-carbonization, urbanization, fast technology development, individualization, glocalization (globalization and localization and changing demographics. Increasing fluctuating renewable production will change the role of non-renewable generation. Distributed energy from renewables and micro generation will change the direction of the energy flow in the electricity grids. Production will not follow demand but demand has to follow production. This future system is enabled by the fast technical development of information and communication technologies which will be present in the entire system. In this paper the results of a comprehensive analysis with different scenarios is summarized. Tools were used like the analysis of policy trends in the European countries, modelling of the European power grid, modelling of the European power markets and the analysis of technology developments with cost reduction potentials. With these tools the interaction of the main actors in the energy markets like conventional generation and renewable generation, grid transport, electricity storage including new storage options from E-Mobility, Power to Gas, Compressed Air Energy storage and demand side management were considered. The potential application of technologies and investments in new energy technologies were analyzed within existing frameworks and markets as well as new business models in new markets with different frameworks. In the paper the over all trend of this analysis is presented by describing a potential future energy world. This world represents only one of numerous options with comparable characteristics.

  4. How a future energy world could look?

    Science.gov (United States)

    Ewert, M.

    2012-10-01

    The future energy system will change significantly within the next years as a result of the following Mega Trends: de-carbonization, urbanization, fast technology development, individualization, glocalization (globalization and localization) and changing demographics. Increasing fluctuating renewable production will change the role of non-renewable generation. Distributed energy from renewables and micro generation will change the direction of the energy flow in the electricity grids. Production will not follow demand but demand has to follow production. This future system is enabled by the fast technical development of information and communication technologies which will be present in the entire system. In this paper the results of a comprehensive analysis with different scenarios is summarized. Tools were used like the analysis of policy trends in the European countries, modelling of the European power grid, modelling of the European power markets and the analysis of technology developments with cost reduction potentials. With these tools the interaction of the main actors in the energy markets like conventional generation and renewable generation, grid transport, electricity storage including new storage options from E-Mobility, Power to Gas, Compressed Air Energy storage and demand side management were considered. The potential application of technologies and investments in new energy technologies were analyzed within existing frameworks and markets as well as new business models in new markets with different frameworks. In the paper the over all trend of this analysis is presented by describing a potential future energy world. This world represents only one of numerous options with comparable characteristics.

  5. Future of nuclear energy is promising

    International Nuclear Information System (INIS)

    Stritar, A.

    1999-01-01

    Paper is trying to clearly present the facts about World nuclear energy production in the past and in the future. The production has increased in last ten years for about 26% and will continue to grow. After next ten years we can expect between 12,5% and 25% higher production than this year. Therefore we, nuclear professionals, should not be pessimistic. We should strive not to use negative words in our communications between ourselves and especially to general public. Instead, we should proudly underline our achievements in the past and prospects for the future stressing all the benefits of this type of energy production.(author)

  6. Water-energy nexus: Impact on electrical energy conversion and mitigation by smart water resources management

    International Nuclear Information System (INIS)

    Gjorgiev, Blaže; Sansavini, Giovanni

    2017-01-01

    Highlights: • The issues to energy conversion stemming from the water-energy nexus are investigated. • The objective is to minimize power curtailments caused by critical river water conditions. • A water-energy nexus model for smart management of water resources is developed. • Systemic risks to energy conversion stem from critical temperature and flow regimes. • Full coordination of the hydrologically-linked units provides the most effective strategy. - Abstract: The water-energy nexus refers to the water used to generate electricity and to the electric energy used to collect, clean, move, store, and dispose of water. Water is used in all stages of electric energy conversion making power systems vulnerable to water scarcity and warming. In particular, a water flow decrease and temperature increase in rivers can significantly limit the generation of electricity. This paper investigates the issues to energy conversion stemming from the water-energy nexus and mitigates them by developing a model for the smart utilization of water resources. The objective is to minimize power curtailments caused by a river water flow decrease and a temperature increase. The developed water-energy nexus model integrates the operational characteristics of hydro power plants, the environmental conditions, the river water temperature prediction and thermal load release in river bodies. The application to a hydraulic cascade of hydro and a thermal power plants under drought conditions shows that smart water management entails a significant reduction of power curtailments. In general, the full coordination of the power outputs of the units affected by the hydrological link provides the most effective mitigations of the potential issues stemming from the water-energy nexus. Finally, critical temperature and flow regimes are identified which severely impact the energy conversion and may cause systemic risks in case the generators in one region must be simultaneously curtailed.

  7. Organic electronics on fibers for energy conversion applications

    Science.gov (United States)

    O'Connor, Brendan T.

    Currently, there is great demand for pollution-free and renewable sources of electricity. Solar cells are particularly attractive from the standpoint of sunlight abundance. However, truly widespread adoption of solar cells is impeded by the high cost and poor scalability of existing technologies. For example, while 53,000 mi2 of 10% efficient solar cell modules would be required to supply the current U.S. energy demand, only about 50 mi2 have been installed worldwide. Organic semiconductors potentially offer a route to realizing low-cost solar cell modules, but currently suffer from low conversion efficiency. For organic-based solar cells to become commercially viable, further research is required to improve device performance, develop scalable manufacturing methods, and reduce installation costs via, for example, novel device form factors. This thesis makes several contributions to the field of organic solar cells, including the replacement of costly and brittle indium tin oxide (ITO) electrodes by inexpensive and malleable, thin metal films, and the application of external dielectric coatings to improve power conversion efficiency. Furthermore, we show that devices with non-planar geometries (e.g. organic solar cells deposited onto long fibers) can have higher efficiencies than conventional planar devices. Building on these results, we demonstrate novel fiber-based organic light emitting devices (OLEDs) that offer substantially improved color quality and manufacturability as a next-generation solid-state lighting technology. An intriguing possibility afforded by the fiber-based device architectures is the ability to integrate energy conversion and lighting functionalities with textiles, a mature, commodity-scale technology.

  8. The energy future: cards on the table

    International Nuclear Information System (INIS)

    Chevalier, Jean-Marie; Derdevet, Michel; Geoffron, Patrice

    2012-01-01

    Since the Fukushima accident, energy policies have been revisited in many nuclearized countries. The energy debate is complex and must encompass several levels of reflection: an international level marked by the energy/climate equation, and by energy resources economy and geopolitics; a European level because we have made the commitment to build a common electricity and gas energy market; a national level where some strategic priorities can be put forward by governments and populations; a local level where energy-related experiments are more and more frequent. Thus, energy choices cannot be made within the single national and governmental frame any longer. At the international scale, it has become urgent to develop low-carbon energy systems. In the framework of the inevitable implementation of a responsible energy policy, the authors examine the main qualities that energy industries should develop: a safe, real-price and environmentally-friendly energy. These qualities must fit with a European framework capable to use complementarities in a perspective of competitiveness, environmental liability and short-, medium- and long-term security of supplies. All new opportunities for companies, in France and abroad, will develop in this framework as well. The energy future question has become essential and must be dealt beyond the national frame and in close relation with the climate question

  9. Controlled cellular energy conversion in brown adipose tissue thermogenesis

    Science.gov (United States)

    Horowitz, J. M.; Plant, R. E.

    1978-01-01

    Brown adipose tissue serves as a model system for nonshivering thermogenesis (NST) since a) it has as a primary physiological function the conversion of chemical energy to heat; and b) preliminary data from other tissues involved in NST (e.g., muscle) indicate that parallel mechanisms may be involved. Now that biochemical pathways have been proposed for brown fat thermogenesis, cellular models consistent with a thermodynamic representation can be formulated. Stated concisely, the thermogenic mechanism in a brown fat cell can be considered as an energy converter involving a sequence of cellular events controlled by signals over the autonomic nervous system. A thermodynamic description for NST is developed in terms of a nonisothermal system under steady-state conditions using network thermodynamics. Pathways simulated include mitochondrial ATP synthesis, a Na+/K+ membrane pump, and ionic diffusion through the adipocyte membrane.

  10. Model predictive control of wind energy conversion systems

    CERN Document Server

    Yaramasu, Venkata Narasimha R

    2017-01-01

    The authors provide a comprehensive analysis on the model predictive control of power converters employed in a wide variety of variable-speed wind energy conversion systems (WECS). The contents of this book includes an overview of wind energy system configurations, power converters for variable-speed WECS, digital control techniques, MPC, modeling of power converters and wind generators for MPC design. Other topics include the mapping of continuous-time models to discrete-time models by various exact, approximate, and quasi-exact discretization methods, modeling and control of wind turbine grid-side two-level and multilevel voltage source converters. The authors also focus on the MPC of several power converter configurations for full variable-speed permanent magnet synchronous generator based WECS, squirrel-cage induction generator based WECS, and semi-variable-speed doubly fed induction generator based WECS.

  11. Overview of SOFC/SOEC development at DTU Energy Conversion

    DEFF Research Database (Denmark)

    Hagen, Anke

    2014-01-01

    According to a broad political agreement in Denmark, the Danish energy system should become independent on fossil fuels like oil, coal and natural gas by the year 2050. This aim requires expansion of electricity production from renewable sources, in particular wind mills. In order to balance...... the fluctuating power production and to cope with the discrepancies between demand and supply of power, solid oxide fuel cells and electrolysis are considered key technologies. DTU Energy Conversion has a strong record in SOFC/SOEC research, with a close collaboration with industry, in particular with Danish...... Topsoe Fuel Cell A/S. Recent achievements will be presented ranging from development of new cell generations, manufacturability, up to testing under realistic operating conditions including degradation studies and high pressure testing. A strong focus will be on development of methodologies, e...

  12. Solid State Energy Conversion Alliance 2nd Annual Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2001-03-30

    The National Energy Technology Laboratory (NETL) and the Pacific Northwest National Laboratory (PNNL) are pleased to provide the proceedings of the second annual Solid State Energy Conversion Alliance (SECA) Workshop held on March 29-30, 2001 in Arlington. The package includes the presentations made during the workshop, a list of participants, and the results of the breakout sessions. Those sessions covered stack materials and processes, power electronics, balance of plant and thermal integration, fuel processing technologies, and stack and system performance modeling. The breakout sessions have been reported as accurately as possible; however, due to the recording and transcription process errors may have occurred. If you note any significant omissions or wish to provide additional information, we welcome your comments and hope that all stakeholder groups will use the enclosed information in their planning endeavors.

  13. Wave loadings acting on Overtopping Breakwater for Energy Conversion

    DEFF Research Database (Denmark)

    Vicinanza, Diego; Nørgaard, Jørgen Harck; Contestabile, Pasquale

    2013-01-01

    distributions. Load measurements were compared with the most used prediction method for traditional breakwaters, available in the Coastal Engineering Manual (U.S. Army Corps of Engineers, 2002). These results suggest to use the experimental data as design loadings since the design criteria for the innovative......Any kind of Wave Energy Converter (WEC) requires information on reliability of technology and on time required for the return of the investment (reasonable payback). The structural response is one of the most important parameters to take in to account for a consistent assessment on innovative...... devices. This paper presents results on wave loading acting on an hybrid WEC named Overtopping BReakwater for Energy Conversion (OBREC). The new design is based on the concept of an integration between a traditional rubble mound breakwater and a front reservoir designed to store the wave overtopping from...

  14. Improvements in the electromechanical conversion of energy using shock waves

    International Nuclear Information System (INIS)

    Landure, Yves

    1971-01-01

    This report concerns the electrical mechanical conversion. In this study it was obtained by the depolarization of a ferroelectric ceramic. We are particularly interested by the high electrical horse-power. Shock wave which produces depolarization is created by a gun powder. The speed of the projectile is measured and the pressures generated in the ceramic is determined graphically. The energy freed is released on a linear resistive load. We were able to prove by different parameters how to obtain the maximum electrical energy. On a resistive load of 26 ohms, it was freed 0,91 J/cm 3 in less than 0,5 μs corresponding to an electrical horse-power superior to 2 MW/cm 3 . (author) [fr

  15. Solid State Energy Conversion Alliance 2nd Annual Workshop Proceedings

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2001-01-01

    The National Energy Technology Laboratory (NETL) and the Pacific Northwest National Laboratory (PNNL) are pleased to provide the proceedings of the second annual Solid State Energy Conversion Alliance (SECA) Workshop held on March 29-30, 2001 in Arlington. The package includes the presentations made during the workshop, a list of participants, and the results of the breakout sessions. Those sessions covered stack materials and processes, power electronics, balance of plant and thermal integration, fuel processing technologies, and stack and system performance modeling. The breakout sessions have been reported as accurately as possible; however, due to the recording and transcription process errors may have occurred. If you note any significant omissions or wish to provide additional information, we welcome your comments and hope that all stakeholder groups will use the enclosed information in their planning endeavors

  16. Proceedings of the Chernobyl phytoremediation and biomass energy conversion workshop

    International Nuclear Information System (INIS)

    Hartley, J.; Tokarevsky, V.

    1998-06-01

    Many concepts, systems, technical approaches, technologies, ideas, agreements, and disagreements were vigorously discussed during the course of the 2-day workshop. The workshop was successful in generating intensive discussions on the merits of the proposed concept that includes removal of radionuclides by plants and trees (phytoremediation) to clean up soil in the Chernobyl Exclusion Zone (CEZ), use of the resultant biomass (plants and trees) to generate electrical power, and incorporation of ash in concrete casks to be used as storage containers in a licensed repository for low-level waste. Twelve years after the Chernobyl Nuclear Power Plant (ChNPP) Unit 4 accident, which occurred on April 26, 1986, the primary 4radioactive contamination of concern is from radioactive cesium ( 137 Cs) and strontium ( 90 Sr). The 137 Cs and 90 Sr were widely distributed throughout the CEZ. The attendees from Ukraine, Russia, Belarus, Denmark and the US provided information, discussed and debated the following issues considerably: distribution and characteristics of radionuclides in CEZ; efficacy of using trees and plants to extract radioactive cesium (Cs) and strontium (Sr) from contaminated soil; selection of energy conversion systems and technologies; necessary infrastructure for biomass harvesting, handling, transportation, and energy conversion; radioactive ash and emission management; occupational health and safety concerns for the personnel involved in this work; and economics. The attendees concluded that the overall concept has technical and possibly economic merits. However, many issues (technical, economic, risk) remain to be resolved before a viable commercial-scale implementation could take place

  17. Supercritical Carbon Dioxide Brayton Cycle Energy Conversion System

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jae Eun; Kim, S. O.; Seong, S. H.; Eoh, J. H.; Lee, T. H.; Choi, S. K.; Han, J. W.; Bae, S. W

    2007-12-15

    This report contains the description of the S-CO{sub 2} Brayton cycle coupled to KALIMER-600 as an alternative energy conversion system. For system development, a computer code was developed to calculate heat balance of 100% power operation condition. Based on the computer code, the S-CO{sub 2} Brayton cycle energy conversion system was constructed for the KALIMER-600. Using the developed turbomachinery models, the off-design characteristics and the sensitivities of the S-CO{sub 2} turbomachinery were investigated. For the development of PCHE models, a one-dimensional analysis computer code was developed to evaluate the performance of the PCHE. Possible control schemes for power control in the KALIMER-600 S-CO{sub 2} Brayton cycle were investigated by using the MARS code. Simple power reduction and recovery event was selected and analyzed for the transient calculation. For the evaluation of Na/CO{sub 2} boundary failure event, a computer was developed to simulate the complex thermodynamic behaviors coupled with the chemical reaction between liquid sodium and CO{sub 2} gas. The long term behavior of a Na/CO{sub 2} boundary failure event and its consequences which lead to a system pressure transient were evaluated.

  18. Supercritical Carbon Dioxide Brayton Cycle Energy Conversion System

    International Nuclear Information System (INIS)

    Cha, Jae Eun; Kim, S. O.; Seong, S. H.; Eoh, J. H.; Lee, T. H.; Choi, S. K.; Han, J. W.; Bae, S. W.

    2007-12-01

    This report contains the description of the S-CO 2 Brayton cycle coupled to KALIMER-600 as an alternative energy conversion system. For system development, a computer code was developed to calculate heat balance of 100% power operation condition. Based on the computer code, the S-CO 2 Brayton cycle energy conversion system was constructed for the KALIMER-600. Using the developed turbomachinery models, the off-design characteristics and the sensitivities of the S-CO 2 turbomachinery were investigated. For the development of PCHE models, a one-dimensional analysis computer code was developed to evaluate the performance of the PCHE. Possible control schemes for power control in the KALIMER-600 S-CO 2 Brayton cycle were investigated by using the MARS code. Simple power reduction and recovery event was selected and analyzed for the transient calculation. For the evaluation of Na/CO 2 boundary failure event, a computer was developed to simulate the complex thermodynamic behaviors coupled with the chemical reaction between liquid sodium and CO 2 gas. The long term behavior of a Na/CO 2 boundary failure event and its consequences which lead to a system pressure transient were evaluated

  19. Hybrid acoustic energy harvesting using combined electromagnetic and piezoelectric conversion

    Science.gov (United States)

    Khan, Farid Ullah; Izhar

    2016-02-01

    This paper reports a novel hybrid acoustic energy harvester. The harvester utilizes both the electromagnetic and piezoelectric conversion mechanisms simultaneously to convert the ambient acoustical noise into electrical power for self-powered wireless sensor nodes. The proposed harvester is comprised of a Helmholtz resonator, two magnets mounted on a piezoelectric plate, and a wound coil located under the magnets. The harvester is characterized both under harmonic and real random acoustical excitations. In-lab, under harmonic acoustical excitation at a sound pressure level of 130 dB and frequency of 2.1 kHz, an optimum power of 2.86 μW (at 114 Ω optimum load) is obtained from electromagnetic conversion and 50 μW (at 1000 Ω optimum load) is generated by the piezoelectric harvester's part. Moreover, in real acoustical environment of a domestic electric generator the peak voltages of 40 and 123 mV are produced by the electromagnetic and piezoelectric portions of the acoustic energy harvester.

  20. Proceedings of the Chornobyl phytoremediation and biomass energy conversion workshop

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, J. [Pacific Northwest National Lab., Richland, WA (United States); Tokarevsky, V. [State Co. for Treatment and Disposal of Mixed Hazardous Waste (Ukraine)

    1998-06-01

    Many concepts, systems, technical approaches, technologies, ideas, agreements, and disagreements were vigorously discussed during the course of the 2-day workshop. The workshop was successful in generating intensive discussions on the merits of the proposed concept that includes removal of radionuclides by plants and trees (phytoremediation) to clean up soil in the Chornobyl Exclusion Zone (CEZ), use of the resultant biomass (plants and trees) to generate electrical power, and incorporation of ash in concrete casks to be used as storage containers in a licensed repository for low-level waste. Twelve years after the Chornobyl Nuclear Power Plant (ChNPP) Unit 4 accident, which occurred on April 26, 1986, the primary 4radioactive contamination of concern is from radioactive cesium ({sup 137}Cs) and strontium ({sup 90}Sr). The {sup 137}Cs and {sup 90}Sr were widely distributed throughout the CEZ. The attendees from Ukraine, Russia, Belarus, Denmark and the US provided information, discussed and debated the following issues considerably: distribution and characteristics of radionuclides in CEZ; efficacy of using trees and plants to extract radioactive cesium (Cs) and strontium (Sr) from contaminated soil; selection of energy conversion systems and technologies; necessary infrastructure for biomass harvesting, handling, transportation, and energy conversion; radioactive ash and emission management; occupational health and safety concerns for the personnel involved in this work; and economics. The attendees concluded that the overall concept has technical and possibly economic merits. However, many issues (technical, economic, risk) remain to be resolved before a viable commercial-scale implementation could take place.

  1. Potential future waste-to-energy systems

    OpenAIRE

    Thorin, Eva; Guziana, Bozena; Song, Han; Jääskeläinen, Ari; Szpadt, Ryszard; Vasilic, Dejan; Ahrens, Thorsten; Anne, Olga; Lõõnik, Jaan

    2012-01-01

    This report discusses potential future systems for waste-to-energy production in the Baltic Sea Region, and especially for the project REMOWE partner regions, the County of Västmanland in Sweden, Northern Savo in Finland, Lower Silesia in Poland, western part of Lithuania and Estonia. The waste-to-energy systems planned for in the partner regions are combustion of municipal solid waste (MSW) and solid recovered fuels from household and industry as well as anaerobic digestion of sewage sludge ...

  2. Precision measurements of high-energy conversion electron lines and determination of neutron binding energies

    International Nuclear Information System (INIS)

    Braumandl, F.

    1979-01-01

    The paper first discusses the energy accuracy of the BILL conversion electron spectrometer at the Grenoble high flux reactor. With an improved temperature stabilisation of the magnets, an energy accuracy of ΔE/E -5 can be reached. After this, highly exact measurements of high-energy conversion electron lines of the 200 Hg, 114 Cd, 165 Dy, 168 Er, 239 U nuclei and the 13 C, 28 Al 3 H and 92 Zr photoelectron lines were carried out. Energy calibration of the spectrometer was carried out in the 1.5 MeV to 6.5 MeV range with intensive high-energy transitions of the 200 Hg nucleus. Systematic calibration errors could be investigated by means of combinations between the calibration lines. A calibration for absolute energies was obtained by comparing low-energy gamma transitions of 200 Hg with the 411.8 keV gold standard. (orig.) [de

  3. Electronic and optical properties of doped oxides for energy conversion

    International Nuclear Information System (INIS)

    Silva, Antonio Ferreira da

    2016-01-01

    Full text: Photocatalytic materials have gained remarkable attention in the field of solar fuel production, which is a promising approach for efficient solar energy conversion and storage . Among other oxides, doped BiNb(Ta)O 4 , ZnO , SnO 2 , WO 3 and TiO 2 have been identified as potential photocatalytic materials due to their appropriate band gap energies. We have used high quality materials as for instance by the citrate method according to reference [1], a modified ion beam assisted deposition technique [2] and as titanium dioxide nanotubes (TiO 2 -NTs) arrays synthesized by electrochemical anodization [3]. We present the optical properties spectra of these materials using the X-ray Photoelectron Spectroscopy (XPS), Ellipsometry and first principles approach by DFT respectively [1,2]. In this work, position of reduction and oxidation level with respect to the vacuum level are identified for these materials. We can conclude that some of them are good candidates for the production of hydrogen by splitting of water in the presence of sunlight and for efficient solar energy conversion as well. [1] C. G. Almeida, R. B. Araujo, R. G. Yoshimura, A. J. S. Mascarenhas, A. Ferreira da Silva, C. M.Araujo, L. A. Silva,Int. J. Hyd. Energy 39, 1220 (2014). [2] M. Kumar, G.Baldissera, C.Persson, D.G.F.David ,M.V.S.da Silva , J.A.Freitas Jr., J.G. Tischler , J.F.D.Chubaci, M.Matsuoka , A.Ferreira da Silva, , J. of Crystal Growth 403, 124 (2014). [3] J. R. Gonzalez et all., Nanotechnology (2016 in press). (author)

  4. Electronic and optical properties of doped oxides for energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Antonio Ferreira da, E-mail: ferreira.fis@gmail.com [Universidade Federal da Bahia (UFBA), Salvador (Brazil)

    2016-07-01

    Full text: Photocatalytic materials have gained remarkable attention in the field of solar fuel production, which is a promising approach for efficient solar energy conversion and storage . Among other oxides, doped BiNb(Ta)O{sub 4}, ZnO , SnO{sub 2}, WO{sub 3} and TiO{sub 2} have been identified as potential photocatalytic materials due to their appropriate band gap energies. We have used high quality materials as for instance by the citrate method according to reference [1], a modified ion beam assisted deposition technique [2] and as titanium dioxide nanotubes (TiO{sub 2}-NTs) arrays synthesized by electrochemical anodization [3]. We present the optical properties spectra of these materials using the X-ray Photoelectron Spectroscopy (XPS), Ellipsometry and first principles approach by DFT respectively [1,2]. In this work, position of reduction and oxidation level with respect to the vacuum level are identified for these materials. We can conclude that some of them are good candidates for the production of hydrogen by splitting of water in the presence of sunlight and for efficient solar energy conversion as well. [1] C. G. Almeida, R. B. Araujo, R. G. Yoshimura, A. J. S. Mascarenhas, A. Ferreira da Silva, C. M.Araujo, L. A. Silva,Int. J. Hyd. Energy 39, 1220 (2014). [2] M. Kumar, G.Baldissera, C.Persson, D.G.F.David ,M.V.S.da Silva , J.A.Freitas Jr., J.G. Tischler , J.F.D.Chubaci, M.Matsuoka , A.Ferreira da Silva, , J. of Crystal Growth 403, 124 (2014). [3] J. R. Gonzalez et all., Nanotechnology (2016 in press). (author)

  5. Finnish energy technologies for the future

    International Nuclear Information System (INIS)

    2007-01-01

    The global energy sector is going through major changes: the need for energy is growing explosively, while at the same time climate change is forcing US to find new, and cleaner, ways to generate energy. Finland is one of the forerunners in energy technology development, partly because of its northern location and partly thanks to efficient innovations. A network of centres of expertise was established in Finland in 1994 to boost the competitiveness and internationalisation of Finnish industry and, consequently, that of the EU region. During the expertise centre programme period 2007-2013, substantial resources will be allocated to efficient utilisation of top level expertise in thirteen selected clusters of expertise. The energy cluster, focusing on developing energy technologies for the future, is one of these

  6. Experimental model of a wind energy conversion system

    Science.gov (United States)

    Vasar, C.; Rat, C. L.; Prostean, O.

    2018-01-01

    The renewable energy domain represents an important issue for the sustainable development of the mankind in the actual context of increasing demand for energy along with the increasing pollution that affect the environment. A significant quota of the clean energy is represented by the wind energy. As a consequence, the developing of wind energy conversion systems (WECS) in order to achieve high energetic performances (efficiency, stability, availability, competitive cost etc) represents a topic of permanent actuality. Testing and developing of an optimized control strategy for a WECS direct implemented on a real energetic site is quite difficult and not cost efficient. Thus a more convenient solution consists in a flexible laboratory setup which requires an experimental model of a WECS. Such approach would allow the simulation of various real conditions very similar with existing energetic sites. This paper presents a grid-connected wind turbine emulator. The wind turbine is implemented through a real-time Hardware-in-the-Loop (HIL) emulator, which will be analyzed extensively in the paper. The HIL system uses software implemented in the LabVIEW programming environment to control an ABB ACS800 electric drive. ACS800 has the task of driving an induction machine coupled to a permanent magnet synchronous generator. The power obtained from the synchronous generator is rectified, filtered and sent to the main grid through a controlled inverter. The control strategy is implemented on a NI CompactRIO (cRIO) platform.

  7. Efficient energy conversion in the pulp and paper industry

    Energy Technology Data Exchange (ETDEWEB)

    Marechal, F.; Perin-Levasseur, Z.

    2005-07-01

    This yearly report for the Swiss Federal Office of Energy (SFOE) takes a look at the work done in 2005 and the work planned for 2006 within the framework of the Efficient Energy Conversion in the Pulp and Paper Industry project. The results of investigations made at a large pulp and paper facility in Switzerland are presented and analysed. Data models of the steam and condensate networks and of the processes involved are examined. An additional model of the sulphur loop has been also elaborated. From this analysis, a list of required measurements has been developed. Several performance indicators have also been calculated: A systematic analysis method developed to identify sections where condensate could be recovered is discussed. A systematic definition of the hot and cold streams in the process is being developed in order to compute the minimum energy requirements of the process. Evaluating this minimum energy requirement from the data available is to be used to prepare definitions of the energy savings possible.

  8. Wind Energy Conversion by Plant-Inspired Designs.

    Science.gov (United States)

    McCloskey, Michael A; Mosher, Curtis L; Henderson, Eric R

    2017-01-01

    In 2008 the U.S. Department of Energy set a target of 20% wind energy by 2030. To date, induction-based turbines form the mainstay of this effort, but turbines are noisy, perceived as unattractive, a potential hazard to bats and birds, and their height hampers deployment in residential settings. Several groups have proposed that artificial plants containing piezoelectric elements may harvest wind energy sufficient to contribute to a carbon-neutral energy economy. Here we measured energy conversion by cottonwood-inspired piezoelectric leaves, and by a "vertical flapping stalk"-the most efficient piezo-leaf previously reported. We emulated cottonwood for its unusually ordered, periodic flutter, properties conducive to piezo excitation. Integrated over 0°-90° (azimuthal) of incident airflow, cottonwood mimics outperformed the vertical flapping stalk, but they produced < daW per conceptualized tree. In contrast, a modest-sized cottonwood tree may dissipate ~ 80 W via leaf motion alone. A major limitation of piezo-transduction is charge generation, which scales with capacitance (area). We thus tested a rudimentary, cattail-inspired leaf with stacked elements wired in parallel. Power increased systematically with capacitance as expected, but extrapolation to acre-sized assemblages predicts < daW. Although our results suggest that present piezoelectric materials will not harvest mid-range power from botanic mimics of convenient size, recent developments in electrostriction and triboelectric systems may offer more fertile ground to further explore this concept.

  9. World energy: Building a sustainable future

    Energy Technology Data Exchange (ETDEWEB)

    Schipper, L.; Meyers, S.

    1992-04-01

    As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world`s major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

  10. World energy: Building a sustainable future

    Energy Technology Data Exchange (ETDEWEB)

    Schipper, L.; Meyers, S.

    1992-04-01

    As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world's major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

  11. U.S. energy outlook and future energy impacts

    Science.gov (United States)

    Hamburger, Randolph John

    2011-12-01

    Energy markets were not immune to the 2007 financial crisis. Growth in the Indian and Chinese economies is placing strains on global energy supplies that could force a repeat of the 2008 price spike of $145/bbl for crude oil. Emerging market growth coupled with inefficiencies, frictions, and speculation in the energy markets has the potential to create drastic economic shocks throughout the world. The 2007 economic crisis has pushed back investment in energy projects where a low-growth scenario in world GDP could create drastic price increases in world energy prices. Without a long-term energy supply plan, the U.S. is destined to see growth reduced and its trade imbalances continue to deteriorate with increasing energy costs. Analysis of the U.S. natural gas futures markets and the impact of financial speculation on natural gas market pricing determined that financial speculation adds to price movements in the energy markets, which could cause violent swings in energy prices.

  12. Political electricity: What future for nuclear energy

    International Nuclear Information System (INIS)

    Price, T.

    1993-01-01

    Political Electricity first reviews the history of nuclear power development in nine countries (USA, France, Japan, UK, West Germany, Sweden, Italy, Switzerland, Australia). Second the book analyses major issues shaping the future of the industry: nuclear power economincs, nuclear hazards, alternative energy economics, and greenhouse gas constraints

  13. The Hurst exponent in energy futures prices

    Science.gov (United States)

    Serletis, Apostolos; Rosenberg, Aryeh Adam

    2007-07-01

    This paper extends the work in Elder and Serletis [Long memory in energy futures prices, Rev. Financial Econ., forthcoming, 2007] and Serletis et al. [Detrended fluctuation analysis of the US stock market, Int. J. Bifurcation Chaos, forthcoming, 2007] by re-examining the empirical evidence for random walk type behavior in energy futures prices. In doing so, it uses daily data on energy futures traded on the New York Mercantile Exchange, over the period from July 2, 1990 to November 1, 2006, and a statistical physics approach-the ‘detrending moving average’ technique-providing a reliable framework for testing the information efficiency in financial markets as shown by Alessio et al. [Second-order moving average and scaling of stochastic time series, Eur. Phys. J. B 27 (2002) 197-200] and Carbone et al. [Time-dependent hurst exponent in financial time series. Physica A 344 (2004) 267-271; Analysis of clusters formed by the moving average of a long-range correlated time series. Phys. Rev. E 69 (2004) 026105]. The results show that energy futures returns display long memory and that the particular form of long memory is anti-persistence.

  14. Future nuclear energy scenarios for Europe

    International Nuclear Information System (INIS)

    Roelofs, F.; Van Heek, A.

    2010-01-01

    Nuclear energy is back on the agenda worldwide. In order to prepare for the next decades and to set priorities in nuclear R and D and investment, market share scenarios are evaluated. This allows to identify the triggers which influence the market penetration of future nuclear reactor technologies. To this purpose, scenarios for a future nuclear reactor park in Europe have been analysed applying an integrated dynamic process modelling technique. Various market share scenarios for nuclear energy are derived including sub-variants with regard to the intra-nuclear options taken, e.g. introduction date of Gen-III (i.e. EPR) and Gen-IV (i.e. SCWR, HTR, FR) reactors, level of reprocessing, and so forth. The assessment was undertaken using the DANESS code which allows to provide a complete picture of mass-flow and economics of the various nuclear energy system scenarios. The analyses show that the future European nuclear park will exist of combinations of Gen-III and Gen-IV reactors. This mix will always consist of a set of reactor types each having its specific strengths. Furthermore, the analyses highlight the triggers influencing the choice between different nuclear energy deployment scenarios. In addition, a dynamic assessment is made with regard to manpower requirements for the construction of a future nuclear fleet in the different scenarios. (authors)

  15. Proceedings. Future Energy - Resources, Distribution and Use

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Leading abstract. The goals of the Norwegian Academy of Technological Sciences (NTVA) are to promote research, education and development within technological and related sciences, for the benefit of the Norwegian society and for the development of Norwegian industry. Future energy policy and Global climate change are major issues in the Norwegian discussion today. The answers given have great influence on our industry and involve huge technological challenges. In the current situation NTVA wishes to contribute to the development of new technology. In 1998 the Norwegian Academy of Technological Sciences organized the seminar ''Do We Understand Global Climate Change''. NTVA have now followed this up with a seminar on the Energy System, one of the major sources of manmade greenhouse gases. The world's demand for energy increases with improvements in our standards of living. The cleaning of emissions from production processes requires more energy. A modem information and communication society requires more energy. A new life style with increased use of all kinds of motorized tools is also leading to growth in energy consumption. Due to the risk in this human contribution to global warming, a major shift in the Energy System towards environmental sustain ability is being discussed. Changing the Energy System will require large investments in know-how and technology development, and it will take a long time to alter the rigid infrastructure of our existing Energy System. The road to the ''Clean Energy Society'' probably cannot be built by prescribing the use of one technology only. It makes a lot more sense to encourage competition between different technologies and then let experience and the market decide the winners. It will also be important to invest in the development of robust knowledge that can be applied within a broad spectrum of possible development scenarios during the next decades. Society's attitudes towards

  16. Proceedings. Future Energy - Resources, Distribution and Use

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Leading abstract. The goals of the Norwegian Academy of Technological Sciences (NTVA) are to promote research, education and development within technological and related sciences, for the benefit of the Norwegian society and for the development of Norwegian industry. Future energy policy and Global climate change are major issues in the Norwegian discussion today. The answers given have great influence on our industry and involve huge technological challenges. In the current situation NTVA wishes to contribute to the development of new technology. In 1998 the Norwegian Academy of Technological Sciences organized the seminar ''Do We Understand Global Climate Change''. NTVA have now followed this up with a seminar on the Energy System, one of the major sources of manmade greenhouse gases. The world's demand for energy increases with improvements in our standards of living. The cleaning of emissions from production processes requires more energy. A modem information and communication society requires more energy. A new life style with increased use of all kinds of motorized tools is also leading to growth in energy consumption. Due to the risk in this human contribution to global warming, a major shift in the Energy System towards environmental sustain ability is being discussed. Changing the Energy System will require large investments in know-how and technology development, and it will take a long time to alter the rigid infrastructure of our existing Energy System. The road to the ''Clean Energy Society'' probably cannot be built by prescribing the use of one technology only. It makes a lot more sense to encourage competition between different technologies and then let experience and the market decide the winners. It will also be important to invest in the development of robust knowledge that can be applied within a broad spectrum of possible development scenarios during the next decades. Society's attitudes towards the environment, energy and the use of resources

  17. Energy and the future : Canada's role

    International Nuclear Information System (INIS)

    Raymont, M.

    2005-01-01

    The rise in global energy consumption is driven by economic growth, particularly in developing countries. It is expected that by 2030, the world population will consume 50 per cent more energy than today. This increase in global energy demand can no longer be met through the business as usual approach. Graphs depicting emerging energy demand in Asia were presented for nuclear energy, coal, natural gas, oil and renewables. The issue of how China can meet it's growing energy demand was discussed with reference to energy consumed by its industrial, agricultural, commercial, residential and transportation sectors. The author emphasized the uneven distribution of resources, where consuming areas do not coincide with producing areas. It is expected that traditional energy sources will still supply most of the world's energy need for the foreseeable future, but they will leave less of an environmental impact. The author suggested that renewable energy sources will also increase but will comprise less than 20 per cent of the world supply in 2050. The author also discussed the issue of greenhouse gas (GHG) emissions, Kyoto obligations and projections of what will happen with Kyoto post 2012. Canada's GHG record and recent environmental findings were also discussed with reference to Arctic ice coverage and the decline in average winter temperature. It was suggested that technology is the key to the energy shortage the environment and security. With declining conventional oil reserves, old nuclear technology and aging electric power technology, new technology must be used to address supply issues, distribution, interconversion, environmental impacts and risks. It was emphasized that since the energy sector is Canada's greatest economic driver, Canada should focus on energy technologies to build a more competitive energy sector. Huge export opportunities also exist for energy technologies. The role of industry and governments in achieving this goal was also discussed. figs

  18. Current challenges in organic photovoltaic solar energy conversion.

    Science.gov (United States)

    Schlenker, Cody W; Thompson, Mark E

    2012-01-01

    Over the last 10 years, significant interest in utilizing conjugated organic molecules for solid-state solar to electric conversion has produced rapid improvement in device efficiencies. Organic photovoltaic (OPV) devices are attractive for their compatibility with low-cost processing techniques and thin-film applicability to flexible and conformal applications. However, many of the processes that lead to power losses in these systems still remain poorly understood, posing a significant challenge for the future efficiency improvements required to make these devices an attractive solar technology. While semiconductor band models have been employed to describe OPV operation, a more appropriate molecular picture of the pertinent processes is beginning to emerge. This chapter presents mechanisms of OPV device operation, based on the bound molecular nature of the involved transient species. With the intention to underscore the importance of considering both thermodynamic and kinetic factors, recent progress in elucidating molecular characteristics that dictate photovoltage losses in heterojunction organic photovoltaics is also discussed.

  19. On the Future High Energy Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir [Fermilab

    2015-09-28

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of the next generation collider facilities have been proposed and are currently under consideration for the medium and far-future of accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance potential and cost range.

  20. Hydrogen, an energy carrier with a future

    International Nuclear Information System (INIS)

    Zimmer, K.H.

    1975-01-01

    The inefficient use, associated with pollutants, of the fossil energy carriers coal, crude oil and natural gas, will deplete resources, if the energy demand increases exponentially, in the not-too-distant future. That is the reason why the hydrogen-energy concept gains in importance. This requires drastic changes in structure in a lot of technological fields. This task is only to be mastered if there is cooperation between all special fields, in order to facilitate the economical production, distribution and utilization of hydrogen. (orig.) [de

  1. The Future of Electronic Power Processing and Conversion: Highlights from FEPPCON IX

    DEFF Research Database (Denmark)

    Enslin, Johan H.; Blaabjerg, Frede; Tan, Don F.D.

    2017-01-01

    Since 1991, every second year the IEEE Power Electronics Society (PELS) has organized the technical long-range planning meeting "Future of Electronic Power Processing and Conversion" (FEPPCON). FEPPCON IX was held 12-16 June 2017 in beautiful Kruger Park in South Africa (Figure 1). The overall go...

  2. Nuclear energy, energy for the present and the future

    International Nuclear Information System (INIS)

    Arredondo S, C.

    2008-01-01

    In this work we will try to show that nuclear energy can contribute to the generation energy in the present and the future, considering that its effect on the climatic change is relatively low and that the fuels that uses are available a large scale. At the moment it is had already commercial thermal fission reactors , there are also them of fast fission that allow the fuel rearing, although these last ones in much smaller number, with both types of fission nuclear reactors can be obtained a very important contribution to the generation of energy at world-wide level during the time that is necessary so that it is developed, constructs and operates the first commercial fusion reactor. The energy that is generated in the present and future must come from different sources, which require to be reliable, to have little effect on the environment, to have wide reserves of fuels and to be viable from an economic and social point of view, they must be viable and safe. Between possible alternative energies it is counted on the lot, the wind one, the geothermal one, originating of the tides and some others. An energy that must be considered so that it has arrived at his maturity and he is already able to contribute widely to cover the present needs and future it is nuclear energy, as much the originating one of the fission of a heavy centre like obtained when fusing two light centers. On base in the nuclear fuel reserves at world-wide level a simple calculation takes control of the lapse in which energy by means of the nuclear fission in rearing can be generated reactors expresses demonstrating that the time sufficient to finish to the investigation and development of fusion reactors which they generate energy in economic, safe and reliable form. Combining these two options the nuclear energy can be considered the future like for the present and the future with practically null effects in the climatic change. (Author)

  3. Can renewable energy power the future?

    International Nuclear Information System (INIS)

    Moriarty, Patrick; Honnery, Damon

    2016-01-01

    Fossil fuels face resource depletion, supply security, and climate change problems; renewable energy (RE) may offer the best prospects for their long-term replacement. However, RE sources differ in many important ways from fossil fuels, particularly in that they are energy flows rather than stocks. The most important RE sources, wind and solar energy, are also intermittent, necessitating major energy storage as these sources increase their share of total energy supply. We show that estimates for the technical potential of RE vary by two orders of magnitude, and argue that values at the lower end of the range must be seriously considered, both because their energy return on energy invested falls, and environmental costs rise, with cumulative output. Finally, most future RE output will be electric, necessitating radical reconfiguration of existing grids to function with intermittent RE. - Highlights: •Published estimates for renewable energy (RE) technical potential vary 100-fold. •Intermittent wind and solar energy dominate total RE potential. •We argue it is unlikely that RE can meet existing global energy use. •The need to maintain ecosystem services will reduce global RE potential. •The need for storage of intermittent RE will further reduce net RE potential.

  4. Advanced reactors and future energy market needs

    International Nuclear Information System (INIS)

    Paillere, Henri; )

    2017-01-01

    Based on the results of a very well-attended international workshop on 'Advanced Reactor Systems and Future Energy Market Needs' that took place in April 2017, the NEA has embarked on a two-year study with the objective of analysing evolving energy market needs and requirements, as well as examining how well reactor technologies under development today will fit into tomorrow's low-carbon world. The NEA Expert Group on Advanced Reactor Systems and Future Energy Market Needs (ARFEM) held its first meeting on 5-6 July 2017 with experts from Canada, France, Italy, Japan, Korea, Poland, Romania, Russia and the United Kingdom. The outcome of the study will provide much needed insight into how well nuclear can fulfil its role as a key low-carbon technology, and help identify challenges related to new operational, regulatory or market requirements

  5. Creating a sustainable energy future for Australia

    International Nuclear Information System (INIS)

    Sonneborn, C.L.

    1995-01-01

    A joint industry approach is needed to put in place a sustainable energy system that is economically and technologically feasible. The industry sectors involved must include the renewable energy industry, energy efficiency industry and the natural gas industry. Conventional forecasts of energy futures make far less use of these industries than is economically and technically feasible. Existing forecasts make the trade off between acceptable levels of economic growth, limitation of greenhouse gases and dependence on coal and oil appear more difficult than they actually are and overlook the benefits of sustainable energy industry development. This paper outlines how national gains from carefully targeted action can exceed national losses while substantially reducing greenhouse gases and creating jobs at zero or negative costs. (author). 3 figs., 27 refs

  6. Analytical investigation of low temperature lift energy conversion systems with renewable energy source

    International Nuclear Information System (INIS)

    Lee, Hoseong; Hwang, Yunho; Radermacher, Reinhard

    2014-01-01

    The efficiency of the renewable energy powered energy conversion system is typically low due to its moderate heat source temperature. Therefore, improving its energy efficiency is essential. In this study, the performance of the energy conversion system with renewable energy source was theoretically investigated in order to explore its design aspect. For this purpose, a computer model of n-stage low temperature lift energy conversion (LTLEC) system was developed. The results showed that under given operating conditions such as temperatures and mass flow rates of heat source and heat sink fluids the unit power generation of the system increased with the number of stage, and it became saturated when the number of staging reached four. Investigation of several possible working fluids for the optimum stage LTLEC system revealed that ethanol could be an alternative to ammonia. The heat exchanger effectiveness is a critical factor on the system performance. The power generation was increased by 7.83% for the evaporator and 9.94% for the condenser with 10% increase of heat exchanger effectiveness. When these low temperature source fluids are applied to the LTLEC system, the heat exchanger performance would be very critical and it has to be designed accordingly. - Highlights: •Energy conversion system with renewable energy is analytically investigated. •A model of multi-stage low temperature lift energy conversion systems was developed. •The system performance increases as the stage number is increased. •The unit power generation is increased with increase of HX effectiveness. •Ethanol is found to be a good alternative to ammonia

  7. The future of nuclear energy (group 17)

    International Nuclear Information System (INIS)

    Moncomble, J.E.

    2002-01-01

    This article is the work of a group of students from the ''Ecole Nationale d'Administration'', they had to study the perspective of nuclear energy in France. Nuclear energy is an important element to assure the stability of the energy supply of the country. Uranium purchases appear to be safe for being diversified and the price of the nuclear fuel contributes to only 20% of the price of the kWh compared to 40% for natural gas. Today the competitiveness of nuclear energy is assured but technological progress concerning gas turbines might challenge it in the years to come. Sustainable development implies not only abundant energy for all but also a preserved environment for the generations to come. The development of nuclear energy is hampered by the lack of satisfactory answers to the problem of fuel back-end cycle and more generally to the issue of radioactive wastes. On the other hand nuclear energy presents serious assets concerning the preservation of environment: nuclear energy as a whole from the uranium ore mining to the production of electricity emits very few atmospheric pollutants and greenhouse effect gases, and requires little room for its installations. The composition of the future energy mix will depend greatly on opinions and assumptions made about the reserves of fossil fuels, technological perspectives and the perception by the public of industrial risks (environmental damage, nuclear accidents...). (A.C.)

  8. Coal and nuclear power: Illinois' energy future

    International Nuclear Information System (INIS)

    1982-01-01

    This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations

  9. Thermoelectricity for future sustainable energy technologies

    Directory of Open Access Journals (Sweden)

    Weidenkaff Anke

    2017-01-01

    Full Text Available Thermoelectricity is a general term for a number of effects describing the direct interconversion of heat and electricity. Thermoelectric devices are therefore promising, environmental-friendly alternatives to conventional power generators or cooling units. Since the mid-90s, research on thermoelectric properties and their applications has steadily increased. In the course of years, the development of high-temperature resistant TE materials and devices has emerged as one of the main areas of interest focusing both on basic research and practical applications. A wide range of innovative and cost-efficient material classes has been studied and their properties improved. This has also led to advances in synthesis and metrology. The paper starts out with thermoelectric history, basic effects underlying thermoelectric conversion and selected examples of application. The main part focuses on thermoelectric materials including an outline of the design rules, a review on the most common materials and the feasibility of improved future high-temperature thermoelectric converters.

  10. Alcohol fuels in New Zealand's energy future

    Energy Technology Data Exchange (ETDEWEB)

    Titchener, A.L. (Liquid Fuels Trust Board, Wellington, New Zealand); Walker, B.V.

    1980-01-01

    This paper reviews the structure of energy planning, research, and development in New Zealand, and the resource bases on which future energy supplies may be expected to depend. It addresses the problem of imported liquid fuels and the means of substituting for them. Recent decisions taken by the government are outlined. New Zealand is economically and strategically vulnerable to the supply of oil. A problem of increasing importance will be the supply of middle distillate fuels, especially diesel. In the longer term, and in the absence of discovery of indigenous oil or additional gas, the resource bases for synthetic liquid fuels in New Zealand will be coal or biomass or both. Prima facie the most obvious synthetic liquid fuels are liquid hydrocarbons. However, the alcohols have a number of advantages over synthetic hydrocarbon liquids, the most important of which are higher conversion efficiency (especially when used in spark-ignition engines) and known and relatively simple conversion technology. The present programme aimed at investigating means of substituting for imported liquid fuels is planned to embrace all reasonable options. Consequently it includes a significant body of research into the alcohols as engine fuels. The present paper has reviewed this research programme. Decisions on whether to move towards alcohol fuels must be ragarded as some way in the future. (DMC)

  11. Hydrogen Storage Technologies for Future Energy Systems.

    Science.gov (United States)

    Preuster, Patrick; Alekseev, Alexander; Wasserscheid, Peter

    2017-06-07

    Future energy systems will be determined by the increasing relevance of solar and wind energy. Crude oil and gas prices are expected to increase in the long run, and penalties for CO 2 emissions will become a relevant economic factor. Solar- and wind-powered electricity will become significantly cheaper, such that hydrogen produced from electrolysis will be competitively priced against hydrogen manufactured from natural gas. However, to handle the unsteadiness of system input from fluctuating energy sources, energy storage technologies that cover the full scale of power (in megawatts) and energy storage amounts (in megawatt hours) are required. Hydrogen, in particular, is a promising secondary energy vector for storing, transporting, and distributing large and very large amounts of energy at the gigawatt-hour and terawatt-hour scales. However, we also discuss energy storage at the 120-200-kWh scale, for example, for onboard hydrogen storage in fuel cell vehicles using compressed hydrogen storage. This article focuses on the characteristics and development potential of hydrogen storage technologies in light of such a changing energy system and its related challenges. Technological factors that influence the dynamics, flexibility, and operating costs of unsteady operation are therefore highlighted in particular. Moreover, the potential for using renewable hydrogen in the mobility sector, industrial production, and the heat market is discussed, as this potential may determine to a significant extent the future economic value of hydrogen storage technology as it applies to other industries. This evaluation elucidates known and well-established options for hydrogen storage and may guide the development and direction of newer, less developed technologies.

  12. Onboard energy conversion and thermal analysis of the MTL system

    International Nuclear Information System (INIS)

    Kadiramangalam, M.N.; Hoffert, M.I.; Miller, G.

    1989-01-01

    A non-nuclear energy conversion concept-MTL (microwave power to low earth orbits) was previously presented in order to supply SDI platforms power in the housekeeping, alert and burst power modes. In this paper the major issues addressed are: system design, integration and analysis. Parametric design of the major subsystems of the MTL bus, which includes the rectenna, the monolithic solid oxide fuel cell etc., is presented. The results of the parametric design, and of computer simulation are used as inputs to construct a comprehensive systems design code. A reference MTL system design which meets the requirements of duty cycles spelled out in open literature is presented. A comparison of mass and power is made between the MTL system and the SP-100 and burst power systems, which demonstrates the competitiveness of the proposed MTL design

  13. Tandem photovoltaic solar cells and increased solar energy conversion efficiency

    Science.gov (United States)

    Loferski, J. J.

    1976-01-01

    Tandem photovoltaic cells, as proposed by Jackson (1955) to increase the efficiency of solar energy conversion, involve the construction of a system of stacked p/n homojunction photovoltaic cells composed of different semiconductors. It had been pointed out by critics, however, that the total power which could be extracted from the cells in the stack placed side by side was substantially greater than the power obtained from the stacked cells. A reexamination of the tandem cell concept in view of the development of the past few years is conducted. It is concluded that the use of tandem cell systems in flat plate collectors, as originally envisioned by Jackson, may yet become feasible as a result of the development of economically acceptable solar cells for large scale terrestrial power generation.

  14. Thermal power plant efficiency enhancement with Ocean Thermal Energy Conversion

    International Nuclear Information System (INIS)

    Soto, Rodrigo; Vergara, Julio

    2014-01-01

    In addition to greenhouse gas emissions, coastal thermal power plants would gain further opposition due to their heat rejection distressing the local ecosystem. Therefore, these plants need to enhance their thermal efficiency while reducing their environmental offense. In this study, a hybrid plant based on the principle of Ocean Thermal Energy Conversion was coupled to a 740 MW coal-fired power plant project located at latitude 28°S where the surface to deepwater temperature difference would not suffice for regular OTEC plants. This paper presents the thermodynamical model to assess the overall efficiency gained by adopting an ammonia Rankine cycle plus a desalinating unit, heated by the power plant condenser discharge and refrigerated by cold deep seawater. The simulation allowed us to optimize a system that would finally enhance the plant power output by 25–37 MW, depending on the season, without added emissions while reducing dramatically the water temperature at discharge and also desalinating up to 5.8 million tons per year. The supplemental equipment was sized and the specific emissions reduction was estimated. We believe that this approach would improve the acceptability of thermal and nuclear power plant projects regardless of the plant location. -- Highlights: • An Ocean Thermal Energy Conversion hybrid plant was designed. • The waste heat of a power plant was delivered as an OTEC heat source. • The effect of size and operating conditions on plant efficiency were studied. • The OTEC implementation in a Chilean thermal power plant was evaluated. • The net efficiency of the thermal power plant was increased by 1.3%

  15. Life cycle integrated thermoeconomic assessment method for energy conversion systems

    International Nuclear Information System (INIS)

    Kanbur, Baris Burak; Xiang, Liming; Dubey, Swapnil; Choo, Fook Hoong; Duan, Fei

    2017-01-01

    Highlights: • A new LCA integrated thermoeconomic approach is presented. • The new unit fuel cost is found 4.8 times higher than the classic method. • The new defined parameter increased the sustainability index by 67.1%. • The case studies are performed for countries with different CO 2 prices. - Abstract: Life cycle assessment (LCA) based thermoeconomic modelling has been applied for the evaluation of energy conversion systems since it provided more comprehensive and applicable assessment criteria. This study proposes an improved thermoeconomic method, named as life cycle integrated thermoeconomic assessment (LCiTA), which combines the LCA based enviroeconomic parameters in the production steps of the system components and fuel with the conventional thermoeconomic method for the energy conversion systems. A micro-cogeneration system is investigated and analyzed with the LCiTA method, the comparative studies show that the unit cost of fuel by using the LCiTA method is 3.8 times higher than the conventional thermoeconomic model. It is also realized that the enviroeconomic parameters during the operation of the system components do not have significant impacts on the system streams since the exergetic parameters are dominant in the thermoeconomic calculations. Moreover, the improved sustainability index is found roundly 67.2% higher than the previously defined sustainability index, suggesting that the enviroeconomic and thermoeconomic parameters decrease the impact of the exergy destruction in the sustainability index definition. To find the feasible operation conditions for the micro-cogeneration system, different assessment strategies are presented. Furthermore, a case study for Singapore is conducted to see the impact of the forecasted carbon dioxide prices on the thermoeconomic performance of the micro-cogeneration system.

  16. Combining Energy Conversion and Storage: A Solar Powered Supercapacitor

    International Nuclear Information System (INIS)

    Narayanan, Remya; Kumar, P. Naresh; Deepa, Melepurath; Srivastava, Avanish Kumar

    2015-01-01

    Graphical abstract: - Highlights: • A plasmonic TiO_2/CdS/Au fibers photoanode is fabricated for the first time. • The efficiency of the plasmonic cell is greater by 1.35 times than the non-plasmonic one. • A solar powered supercapacitor is developed with plasmonic photoanode and multiwalled carbon nanotubes. • The solar cell current charges the supercapacitor. • A specific capacitance of 150 F g"−"1 is achieved under sunlight without any external bias. - Abstract: A solar powered supercapacitor wherein a plasmonic quantum dot solar cell (QDSC) sources the photocurrent for charging/discharging a conjoined supercapacitor based on multiwalled carbon nanotubes (MWCNTs) is demonstrated. Gold or Au fibers are integrated into a titanium dioxide/cadmium sulfide (TiO_2/CdS) electrode to yield a TiO_2/CdS/Au photoanode. The plasmonic effect of Au fibers is reflected in the higher incident photon to current conversion efficiency (IPCE = 55%) and an improved overall power conversion efficiency (3.45%) produced by the TiO_2/CdS/Au photoanode relative to the non-plasmonic TiO_2/CdS photoanode. A Janus type bi-functional electrode composed of MWCNTs on either face separated by glass is prepared and it is coupled with the TiO_2/CdS/Au electrode and another MWCNT electrode to yield the tandem solar powered supercapacitor. By channelling the photocurrent produced by the QDSC part, under 0.1 sun illumination, the capacitance of the symmetric supercapacitor, without the application of any external bias is 150 F g"−"1 which compares well with reported values of electrically powered MWCNT supercapacitors. Our innovative design for a photo-supercapacitor offers a new paradigm for combining low cost photovoltaics with energy storage to yield a technologically useful device that needs nothing else other than solar energy to run.

  17. Design of Novel Metal Nanostructures for Broadband Solar Energy Conversion

    Directory of Open Access Journals (Sweden)

    Kristine A. Zhang

    2015-01-01

    Full Text Available Solar power holds great potential as an alternative energy source, but current photovoltaic cells have much room for improvement in cost and efficiency. Our objective was to develop metal nanostructures whose surface plasmon resonance (SPR spectra closely match the solar spectrum to enhance light absorption and scattering. We employed the finite-difference time-domain simulation method to evaluate the effect of varying key parameters. A novel nanostructure with SPR absorption matching a region of the solar spectrum (300 to 1500 nm that contains 90% of solar energy was successfully designed. This structure consists of a large gold-silica core-shell structure with smaller gold nanoparticles and nanorods on its surface. Such complex nanostructures are promising for broad and tunable absorption spectra. In addition, we investigated the SPR of silver nanoparticle arrays, which can achieve scattering close to the solar spectrum. We demonstrated an improvement in efficiency of over 30% with optimal nanoparticle radius and periods of 75 nm and 325 nm, respectively. In combination, our studies enable high-efficiency, tunable, and cost-effective enhancement of both light absorption and scattering, which has potential applications in solar energy conversion as well as biomedical imaging.

  18. Biological conversion of hydrogen to electricity for energy storage

    International Nuclear Information System (INIS)

    Karamanev, Dimitre; Pupkevich, Victor; Penev, Kalin; Glibin, Vassili; Gohil, Jay; Vajihinejad, Vahid

    2017-01-01

    Energy storage is currently one of the most significant problems associated with mass-scale usage of renewable (i.e. wind and solar) power sources. The use of hydrogen as an energy storage medium is very promising, but is hampered by the lack of commercially available hydrogen-to-electricity (H2e) converters. Here we are presenting the first commercially viable, biologically based technology for H2e conversion named the BioGenerator. It is a microbial fuel cell based on electron consumption resulting from the respiration of chemolithoautotrophic microorganisms. The results obtained during the scale-up study of the BioGenerator showed a maximum specific current of 1.35 A/cm 2 , maximum power density of 1800 W/m 2 and stable electricity generation over a period spanning longer than four years. The largest unit studied so far has a volume of 600 L and a power output of 0.3 kW. - Highlights: • A commercially viable biological convertor of H 2 to electricity (BioGenerator) is proposed. • It has a short-term commercial potential and its economic analysis is quite promising. • The BioGenerator is the first commercially viable bio-technology for energy storage. • It is a power generation technology of which has a negative CO 2 emission.

  19. Energy conversion options for ARIES-III - A conceptual D-3He tokamak reactor

    International Nuclear Information System (INIS)

    Santarius, J.F.; Blanchard, J.P.; Emmert, G.A.; Sviatoslavsky, I.N.; Wittenberg, L.J.; Ghoneim, N.M.; Hasan, M.Z.; Mau, T.K.; Greenspan, E.; Herring, J.S.; Kernbichler, W.; Klein, A.C.; Miley, G.H.; Miller, R.L.; Peng, Y.K.M.

    1989-01-01

    The potential for highly efficient conversion of fusion power to electricity provides one motivation for investigating D- 3 He fusion reactors. This stems from: (1) the large fraction of D- 3 He power produced in the forms of charged particles and synchrotron radiation which are amenable to direct conversion, and (2) the low neutron fluence and lack of tritium breeding constraints, which increase design flexibility. The design team for a conceptual D- 3 He tokamak reactor, ARIES-III, has investigated numerous energy conversion options at a scoping level in attempting to realize high efficiency. The energy conversion systems have been studied in the context of their use on one or more of three versions of a D- 3 He tokamak: a first stability regime device, a second stability regime device, and a spherical torus. The set of energy conversion options investigated includes bootstrap current conversion, compression-expansion cycles, direct electrodynamic conversion, electrostatic direct conversion, internal electric generator, liquid metal heat engine blanket, liquid metal MHD, plasma MHD, radiation boiler, scrape-off layer thermoelectric, synchrotron radiation conversion by rectennas, synchrotron radiation conversion by thermal cycles, thermionic/AMTEC/thermal systems, and traveling wave conversion. The original set of options is briefly discussed, and those selected for further study are described in more detail. The four selected are liquid metal MHD, plasma MHD, rectenna conversion, and direct electrodynamic conversion. Thermionic energy conversion is being considered, and some options may require a thermal cycle in parallel or series. 17 refs., 3 figs., 1 tab

  20. Power conversion and control methods for renewable energy sources

    Science.gov (United States)

    Yu, Dachuan

    2005-07-01

    In recent years, there has been an increase in the use of renewable energy due to the growing concern over the pollution caused by fossil-fuel-based energy. Renewable energy sources, such as photovoltaic (PV) and fuel cell, can be used to enhance the safety, reliability, sustainability, and transmission efficiency of a power system. This dissertation focuses on the power conversion and control for two major renewable-energy sources: PV and fuel cell. Firstly, a current-based, maximum power-point tracking (MPPT) algorithm is proposed for PV energy. An economical converter system using the above scheme for converting the output from PV panels into 60 Hz AC voltage is developed and built. Secondly, a novel circuit model for the Proton Exchange Membrane (PEM) fuel-cell stack that is useful in the design and analysis of fuel-cell-based power systems is proposed. This Pspice-based model uses elements available in the Pspice library with some modifications to represent both the static and dynamic responses of a PEM fuel-cell module. The accuracy of the model is verified by comparing the simulation and experimental results. Thirdly, a DSP-controlled three-phase induction-motor drive using constant voltage over frequency is built and can be used in a fuel-cell automobile. A hydrogen sensor is used in the drive to both sound an alarm and shut down the inverter trigger pulses through the DSP. Finally, a hybrid power system consisting of PV panels and fuel cell is proposed and built. In the proposed system, PV panels can supply most of the power when the sunlight is available, and the excess power required by the load is supplied by a fuel cell. Load sharing between a fuel cell (FC) and the PV panel is investigated by both simulation and experiments.

  1. The direct conversion of solar energy to electricity

    International Nuclear Information System (INIS)

    1992-01-01

    Half the world's population lives without access to electricity in the rural areas and villages of developing countries. In 1987, world population reached 5 billion and, according to World Bank projections, will increase to over 6 billion in the year 2000 and to over 8 billion in 2025. Such population growth is not uniformly distributed: developed countries have small or negative growth and account for a declining proportion of the world's population. Inasmuch as 95 per cent of the extra inhabitants added each year are in developing countries, rapid population growth in those countries raises serious questions about energy availability for basic human needs and, of course, more broadly about the environment's capacity to support that growth. The present report makes reference to one of the most comprehensively documented conservative scenarios for world energy demand in the year 2020, namely, Energy for a Sustainable World, which assumed that long-term world sustainability must entail constraints on (a) use of natural resources and (b) combustion of fossil fuels resulting in the greenhouse effect. Solar energy is abundant and could become a major source of electricity. Photovoltaics has three particular advantages. It accomplishes sunlight-to-electricity conversion entirely with solid-state electronic components, and with no moving parts required, thereby promising high equipment availability and very low operating and maintenance costs. PV also appears to have very limited environmental impact, with no emissions of the gaseous pollutants associated with fossil-fuel burning and few of the possible local problems associated with some other renewable energy technologies. Finally, the products of photovoltaic technology are modular in construction and can be built up on site in a flexible way, thus minimizing front-end financial risk and investment costs. Figs and tabs

  2. DIRECT ENERGY CONVERSION (DEC) FISSION REACTORS - A U.S. NERI PROJECT

    International Nuclear Information System (INIS)

    Beller, D.; Polansky, G.

    2000-01-01

    The direct conversion of the electrical energy of charged fission fragments was examined early in the nuclear reactor era, and the first theoretical treatment appeared in the literature in 1957. Most of the experiments conducted during the next ten years to investigate fission fragment direct energy conversion (DEC) were for understanding the nature and control of the charged particles. These experiments verified fundamental physics and identified a number of specific problem areas, but also demonstrated a number of technical challenges that limited DEC performance. Because DEC was insufficient for practical applications, by the late 1960s most R and D ceased in the US. Sporadic interest in the concept appears in the literature until this day, but there have been no recent programs to develop the technology. This has changed with the Nuclear Energy Research Initiative that was funded by the U.S. Congress in 1999. Most of the previous concepts were based on a fission electric cell known as a triode, where a central cathode is coated with a thin layer of nuclear fuel. A fission fragment that leaves the cathode with high kinetic energy and a large positive charge is decelerated as it approaches the anode by a charge differential of several million volts, it then deposits its charge in the anode after its kinetic energy is exhausted. Large numbers of low energy electrons leave the cathode with each fission fragment; they are suppressed by negatively biased on grid wires or by magnetic fields. Other concepts include magnetic collimators and quasi-direct magnetohydrodynamic generation (steady flow or pulsed). We present the basic principles of DEC fission reactors, review the previous research, discuss problem areas in detail and identify technological developments of the last 30 years relevant to overcoming these obstacles. A prognosis for future development of direct energy conversion fission reactors will be presented

  3. Energy costs and society: the high price of future energy

    Energy Technology Data Exchange (ETDEWEB)

    Appleby, A J

    1976-06-01

    Society will not be able to afford nonfossil fuel energy in the future without a major restructuring of industrial activity, involving a complete rethinking of the basis of our present social and economic establishment. This restructuring must be combined with the evident necessity of policies of population restriction and controls in the form of international allocation of the dwindling supply of raw materials, including fossil (and, in future, nonfossil) primary energy. Only by such means, and by adopting a very low-growth future, can some moderate degree of standard of living be expected to be perpetuated for at least a few generations in the industrialized countries, especially in the case of those that are major energy importers at present. This type of future will also be of more help to the third world than one involving the now impossible ideal of a spiraling energy growth rate. The society which, on an optimistic view, will emerge toward the end of the fossil fuel era, will be supplied with abundant, though efficiently applied, energy, and will survive with natural products and by economizing its recylced mineral resources. The approach to this goal will require political leadership, serious education of the public, and a real population policy, all on a world-wide scale. (Conclusions)

  4. Bio energy: Bio energy in the Energy System of the Future

    International Nuclear Information System (INIS)

    Finden, Per; Soerensen, Heidi; Wilhelmsen, Gunnar

    2001-01-01

    This is Chapter 7, the final chapter, of the book ''Bio energy - Environment, technique and market''. Its main sections are: (1) Factors leading to changes in the energy systems, (2) The energy systems of the future, globally, (3) The future energy system in Norway and (4) Norwegian energy policy at the crossroads

  5. Integrating hydrogen into Canada's energy future

    International Nuclear Information System (INIS)

    Rivard, P.

    2006-01-01

    This presentation outlines the steps in integrating of hydrogen into Canada's energy future. Canada's hydrogen and fuel cell investment is primarily driven by two government commitments - climate change commitments and innovation leadership commitments. Canada's leading hydrogen and fuel cell industry is viewed as a long-term player in meeting the above commitments. A hydrogen and fuel cell national strategy is being jointly developed to create 'Win-Wins' with industry

  6. The future of coal as an energy source

    International Nuclear Information System (INIS)

    Wells, W.L.

    1991-01-01

    This paper reports on the future of such coal as an energy source which the author believes, is inextricably related to its economic and environmental acceptability. Technologies have been - and are being - developed that will help assure that coal retains its traditional share of the United States energy market. In addition, there are some 900 million tons per year of coal equivalent oil and gas currently being consumed (22.5 quads of 12.500 BTU/lb coal) in the United States that may be considered for potential coal conversion. Lastly, one can see trends emerging that may justify reconsideration of coal as a source of hydrocarbon to substitute for petrochemical industry feedstocks in addition to its customary role as a BTU supplier. The balance of this report will provide a background on environmental and legislative initiatives and discuss some of these technologies and new directions for coal research in the 1990s and beyond

  7. Perspectives on future high energy physics

    International Nuclear Information System (INIS)

    Samios, N.P.

    1996-01-01

    The author states two general ways in which one must proceed in an attempt to forecast the future of high energy physics. The first is to utilize the state of knowledge in the field and thereby provide theoretical and experimental guidance on future directions. The second approach is technical, namely, how well can one do in going to higher energies with present techniques or new accelerator principles. He concludes that the future strategy is straightforward. The present accelerator facilities must be upgraded and run to produce exciting and forefront research. At the same time, the theoretical tools should be sharpened both extrapolating from lower energies (100 GeV) to high (multi TeV) and vice versa. The US should be involved in the LHC, both in the accelerator and experimental areas. There should be an extensive R and D program on accelerators for a multi-TeV capability, emphasizing e + e - and μ + μ - colliders. Finally, the international cooperative activities should be strengthened and maintained

  8. Perspectives on future high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Samios, N.P.

    1996-12-31

    The author states two general ways in which one must proceed in an attempt to forecast the future of high energy physics. The first is to utilize the state of knowledge in the field and thereby provide theoretical and experimental guidance on future directions. The second approach is technical, namely, how well can one do in going to higher energies with present techniques or new accelerator principles. He concludes that the future strategy is straightforward. The present accelerator facilities must be upgraded and run to produce exciting and forefront research. At the same time, the theoretical tools should be sharpened both extrapolating from lower energies (100 GeV) to high (multi TeV) and vice versa. The US should be involved in the LHC, both in the accelerator and experimental areas. There should be an extensive R and D program on accelerators for a multi-TeV capability, emphasizing e{sup +}e{sup {minus}} and {mu}{sup +}{mu}{sup {minus}} colliders. Finally, the international cooperative activities should be strengthened and maintained.

  9. Alberta's clean energy future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This paper deals with the future of clean energy in Alberta. With the present economic growth of the oil sands industry in Alberta, it is expected that there will be very considerable increases in job opportunities and GDP in both Canada and US. The challenges include high-energy demand and reduction of the carbon footprint. Alberta has adopted certain approaches to developing renewable and alternate forms of energy as well as to increasing the efficiency of present energy use and raising environmental consciousness in energy production. Three areas where the effects of clean energy will be felt are energy systems, climate change, and regional impacts, for instance on land, water, and wildlife. Alberta's regulatory process is shown by means of a flow chart. Aspects of oil sands environmental management include greenhouse gas targets, air quality assurance, and water quality monitoring, among others. Steps taken by Alberta to monitor and improve air quality and water management are listed. In conclusion, the paper notes that significant amounts of money are being pumped into research and development for greenhouse gas and water management projects.

  10. Main tendencies meeting future energy demands

    International Nuclear Information System (INIS)

    Flach, G.; Riesner, W.; Ufer, D.

    1989-09-01

    The economic development in the German Democratic Republic within the preceding 10 years has proved that future stable economic growth of about 4 to 4.5% per annum is only achievable by ways including methods of saving resources. This requires due to the close interdependences between the social development and the level of the development in the energy sector long-term growth rates of the national income of 4 to 4.5% per annum at primary energy growth rates of less than 1% per annum. It comprises three main tendencies: 1. Organization of a system with scientific-technical, technological, economic structural-political and educational measures ensuring in the long term less increase of the energy demand while keeping the economic growth at a constant level. 2. The long-term moderate extension and modernization of the GDR's energy basis is characterized by continuing use of the indigenous brown coal resources for the existing power plant capacities and for district heating. 3. The use of modern and safe nuclear power technologies defines a new and in future more and more important element of the energy basis. Currently about 10% of electricity in the GDR are covered by nuclear energy, in 2000 it will be one third, after 2000 the growth process will continue. The experience shows: If conditions of deepened scientific consideration of all technological processes and the use of modern diagnosis and computer technologies as well as permanent improvement of the safety-technological components and equipment are guaranteed an increasing use of such systems for the production of electricity and heat is socially acceptable. Ensuring a high level of education and technical training of everyone employed in the nuclear energy industry, strict safety restrictions and independent governmental control of these restrictions are important preconditions for the further development in this field. 3 refs, 5 tabs

  11. Sustainable uranium energy - an optional future

    International Nuclear Information System (INIS)

    Meneley, D.

    2015-01-01

    After 50 plus years of working on uranium fission principles and application, it is a bit hard for me to talk about anything else - but I'll give it a try. To start, I solemnly promise not to recommend to you any new reactor design - be it small, medium, modular, or large. The Uranium-fuelled power plant will be discussed ONLY as a finished product. Note that this sketch is an optional future. Ontario will, of course, take it or leave it, in whole or in part. This paper concentrates on future potential achievements of the CANDU nuclear energy systems. In the past, this venture has produced several modular systems, ranging from small (NPD and CANDU 3), medium (CANDU 6 and 6E) and large (Bruce, Darlington, and CANDU 9). All of these projects are more Ol' less finished products, and yet the CANDU concept still has broad scope for refinement and upgrading. This paper is, however, not about nuclear technology per se, but rather it is about what nuclear energy can do, both now and in the future. What does Ontario need to do next, in the line of technology applications that can help deal with the negative aspects of human-induced climate change? What energy systems can be installed to sustain the wealth and prosperity that Ontario's citizens now enjoy? What are the opportunities and the engineering challenges ahead of us? I do wish to apologize in advance for errors and omissions, and can only hope that missed details do not detract nor completely destroy an optimistic vision. Energy engineering is my game. Economics is not my specialty though it is an integral part of every engineering project. It is likely that the topic of economics will dominate the future choice of world energy supply, whatever that choice may be. Some people claim that the decisive factor dominating decisions with respect to uranium energy will be fear. In fact many opponents of the associated technology aim to induce fear as their main guiding theme. On the contrary, it is more reasonable to expect

  12. Sustainable uranium energy - an optional future

    Energy Technology Data Exchange (ETDEWEB)

    Meneley, D. [Univ. of Ontario Inst. of Tech., Oshawa, Ontario (Canada)

    2015-06-15

    After 50 plus years of working on uranium fission principles and application, it is a bit hard for me to talk about anything else - but I'll give it a try. To start, I solemnly promise not to recommend to you any new reactor design - be it small, medium, modular, or large. The Uranium-fuelled power plant will be discussed ONLY as a finished product. Note that this sketch is an optional future. Ontario will, of course, take it or leave it, in whole or in part. This paper concentrates on future potential achievements of the CANDU nuclear energy systems. In the past, this venture has produced several modular systems, ranging from small (NPD and CANDU 3), medium (CANDU 6 and 6E) and large (Bruce, Darlington, and CANDU 9). All of these projects are more Ol' less finished products, and yet the CANDU concept still has broad scope for refinement and upgrading. This paper is, however, not about nuclear technology per se, but rather it is about what nuclear energy can do, both now and in the future. What does Ontario need to do next, in the line of technology applications that can help deal with the negative aspects of human-induced climate change? What energy systems can be installed to sustain the wealth and prosperity that Ontario's citizens now enjoy? What are the opportunities and the engineering challenges ahead of us? I do wish to apologize in advance for errors and omissions, and can only hope that missed details do not detract nor completely destroy an optimistic vision. Energy engineering is my game. Economics is not my specialty though it is an integral part of every engineering project. It is likely that the topic of economics will dominate the future choice of world energy supply, whatever that choice may be. Some people claim that the decisive factor dominating decisions with respect to uranium energy will be fear. In fact many opponents of the associated technology aim to induce fear as their main guiding theme. On the contrary, it is more

  13. High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion

    Science.gov (United States)

    Juhasz, Albert J.; Sawicki, Jerzy T.

    2003-01-01

    For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a partial energy conversion system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.

  14. Electro-mechanical energy conversion system having a permanent magnet machine with stator, resonant transfer link and energy converter controls

    Science.gov (United States)

    Skeist, S. Merrill; Baker, Richard H.

    2006-01-10

    An electro-mechanical energy conversion system coupled between an energy source and an energy load comprising an energy converter device including a permanent magnet induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer to control the flow of power or energy through the permanent magnetic induction machine.

  15. Near-field enhanced thermionic energy conversion for renewable energy recycling

    Science.gov (United States)

    Ghashami, Mohammad; Cho, Sung Kwon; Park, Keunhan

    2017-09-01

    This article proposes a new energy harvesting concept that greatly enhances thermionic power generation with high efficiency by exploiting the near-field enhancement of thermal radiation. The proposed near-field enhanced thermionic energy conversion (NETEC) system is uniquely configured with a low-bandgap semiconductor cathode separated from a thermal emitter with a subwavelength gap distance, such that a significant amount of electrons can be photoexcited by near-field thermal radiation to contribute to the enhancement of thermionic current density. We theoretically demonstrate that the NETEC system can generate electric power at a significantly lower temperature than the standard thermionic generator, and the energy conversion efficiency can exceed 40%. The obtained results reveal that near-field photoexcitation can enhance the thermionic power output by more than 10 times, making this hybrid system attractive for renewable energy recycling.

  16. Intelligent control with implementation on the wind energy conversion system

    International Nuclear Information System (INIS)

    Basma, Mohamad Khalil

    1997-05-01

    In this thesis our main job is to compare intelligent control and conventional control algorithms, by applying each scheme to the same control problem. Based on simulation, we analyze and compare the results of applying fuzzy logic and neural networks controllers on a popular control problem: variable speed wind energy conversion system. The reason behind our choice is the challenging nature of the problem where the plant should be controlled to maximize the power generated, while respecting its hardware constraints under varying operating conditions and disturbances. We have shown the effectiveness of fuzzy logic exciter controller for the adopted wind energy generator when compared to a conventional PI exciter. It showed better performance in the whole operating range. However, in the high wind speeds region, both controllers were unable to deliver the rpm requirements. We proposed the use of neural network intelligent techniques to supply us the optimal pitch. Our aim was to develop a simple and reliable controller that can deliver this optimal output, while remaining adaptive to system uncertainties and disturbances. The proposed fuzzy controller with a neural pitch controller showed best dynamic and robust performance as compared to the adaptive pitch controller together with the PI exciter. This study has shown that artificial neural networks and fuzzy logic control algorithms can be implemented for real time control implementations. the neuro-fuzzy control approach is robust and its performance is superior to that of traditional control methods. (author)

  17. The Cellulose Nanofibers for Optoelectronic Conversion and Energy Storage

    Directory of Open Access Journals (Sweden)

    Yongfeng Luo

    2014-01-01

    Full Text Available Cellulose widely exists in plant tissues. Due to the large pores between the cellulose units, the regular paper is nontransparent that cannot be used in the optoelectronic devices. But some chemical and physical methods such as 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO oxidation can be used to improve the pores scale between the cellulose units to reach nanometer level. The cellulose nanofibers (CNFs have good mechanical strength, flexibility, thermostability, and low thermal expansion. The paper made of these nanofibers represent a kind of novel nanostructured material with ultrahigh transparency, ultrahigh haze, conductivity, biodegradable, reproducible, low pollution, environment friendly and so on. These advantages make the novel nanostructured paper apply in the optoelectronic device possible, such as electronics energy storage devices. This kind of paper is considered most likely to replace traditional materials like plastics and glass, which is attracting widespread attention, and the related research has also been reported. The purpose of this paper is to review CNFs which are applied in optoelectronic conversion and energy storage.

  18. Diurnal Solar Energy Conversion and Photoprotection in Rice Canopies.

    Science.gov (United States)

    Meacham, Katherine; Sirault, Xavier; Quick, W Paul; von Caemmerer, Susanne; Furbank, Robert

    2017-01-01

    Genetic improvement of photosynthetic performance of cereal crops and increasing the efficiency with which solar radiation is converted into biomass has recently become a major focus for crop physiologists and breeders. The pulse amplitude modulated chlorophyll fluorescence technique (PAM) allows quantitative leaf level monitoring of the utilization of energy for photochemical light conversion and photoprotection in natural environments, potentially over the entire crop lifecycle. Here, the diurnal relationship between electron transport rate (ETR) and irradiance was measured in five cultivars of rice (Oryza sativa) in canopy conditions with PAM fluorescence under natural solar radiation. This relationship differed substantially from that observed for conventional short term light response curves measured under controlled actinic light with the same leaves. This difference was characterized by a reduced curvature factor when curve fitting was used to model this diurnal response. The engagement of photoprotective processes in chloroplast electron transport in leaves under canopy solar radiation was shown to be a major contributor to this difference. Genotypic variation in the irradiance at which energy flux into photoprotective dissipation became greater than ETR was observed. Cultivars capable of higher ETR at midrange light intensities were shown to produce greater leaf area over time, estimated by noninvasive imaging. © 2017 American Society of Plant Biologists. All Rights Reserved.

  19. High-Resolution Measurements of Low-Energy Conversion Electrons

    CERN Multimedia

    Gizon, A; Putaux, J

    2002-01-01

    Measurements of low-energy internal conversion electrons have been performed with high energy resolution in some N = 105 odd and odd-odd nuclei using a semi-circular spectrograph associated to a specific tape transport system. These experiments aimed to answer the following questions~: \\begin{itemize} \\item Do M3 isomeric transitions exist in $^{183}$Pt and $^{181}$Os, isotones of $^{184}$Au~? \\item Are the neutron configurations proposed to describe the isomeric and ground states of $^{184}$Au right or wrong~? \\item Does it exist an isomeric state in $^{182}$Ir, isotone of $^{181}$Os, $^{183}$Pt and $^{184}$Au~? \\item What are the spin and parity values of the excited states of $^{182}$Ir~? \\end{itemize} In $^{183}$Pt, the 35.0 keV M3 isomeric transition has been clearly observed and the reduced transition probability has been determined. The deduced hindrance factor is close to that observed in the neighbouring odd-odd $^{184}$Au nucleus. This confirms the neutron configurations previously proposed for the ...

  20. A theoretical analysis of price elasticity of energy demand in multistage energy conversion systems

    International Nuclear Information System (INIS)

    Lowe, R.

    2003-01-01

    The objective of this paper is an analytical exploration of the problem of price elasticity of energy demand in multi-stage energy conversion systems. The paper describes in some detail an analytical model of energy demand in such systems. Under a clearly stated set of assumptions, the model makes it possible to explore both the impacts of the number of sub-systems, and of varying sub-system elasticities on overall system elasticity. The analysis suggests that overall price elasticity of energy demand for such systems will tend asymptotically to unity as the number of sub-systems increases. (author)

  1. A theoretical analysis of price elasticity of energy demand in multi-stage energy conversion systems

    International Nuclear Information System (INIS)

    Lowe, Robert

    2003-01-01

    The objective of this paper is an analytical exploration of the problem of price elasticity of energy demand in multi-stage energy conversion systems. The paper describes in some detail an analytical model of energy demand in such systems. Under a clearly stated set of assumptions, the model makes it possible to explore both the impacts of the number of sub-systems, and of varying sub-system elasticities on overall system elasticity. The analysis suggests that overall price elasticity of energy demand for such systems will tend asymptotically to unity as the number of sub-systems increases

  2. Energy: What About the Future? Easy Energy Reader, Book IV.

    Science.gov (United States)

    Information Planning Associates, Inc., Rockville, MD.

    Four articles about future energy technologies and problems comprise this collection of readings intended for the junior high school language arts curriculum. Each entry has been scored for readability according to the Gunning Fog Index. By referring to these ratings, a teacher can provide students with increasingly more challenging reading…

  3. The energy future and the chemical fuels

    International Nuclear Information System (INIS)

    Bockris, J.O'M.

    1976-01-01

    An account is first given of the origin of present chemical fuels, with particular reference to the lastingness of coal. Methods of estimation of these fuels are discussed and the greenhouse effect arising from the burning of coal is described. Consideration is then given to methods available for extending the uses of chemical fuels, including interfacing them with new inexhaustible, clean energy sources. Finally, accounts are given of the Hydrogen Economy and of the production of chemical fuels from wind energy in massive wind belts. The paper includes references to the part that nuclear power was expected to play in future energy policy. Problems of breeder reactor development and the safety and management of plutonium and radioactive wastes are discussed. (author)

  4. Future Energy Grid. Migration paths into the energy Internet; Future Energy Grid. Migrationspfade ins Internet der Energie

    Energy Technology Data Exchange (ETDEWEB)

    Appelrath, Hans-Juergen [Oldenburg Univ. (Germany); Kagermann, Henning [acatech - Deutsche Akademie der Technikwissenschaften, Berlin (Germany). Hauptstadtbuero; Mayer, Christoph (eds.) [OFFIS e.V., Oldenburg (Germany)

    2012-07-01

    The present study describes the migration path that must be taken up to the year 2030 in pursuit of the Future Energy Grid. For this purpose it has explored what possible future scenarios must be taken into account along the migration path. The following key factors were identified in preparation of drawing up scenarios: expansion of the electrical infrastructure; system-wide availability of an information and communication technology infrastructure; flexibilisation of consumption; energy mix; new services and products; final consumer costs; and standardisation and political framework conditions. These eight key factors were combined with each other in different variants to give three consistent scenarios for the year 2030.

  5. The energy future of Central Europe; Slovakia

    International Nuclear Information System (INIS)

    Lejon, E.

    1996-01-01

    In this part of the book author deals with the energy future of Central Europe. The energy strategy, structure of energy supplies in Austria, Slovakia, the Czech Republic, Hungary and Bavaria, as well as restructuralization of the energy sources are analysed. From the ecological perspective, the Gabcikovo-Nagymaros Project (GNP) represents a very clear example, since the Project could play a very important role as a part of the strategy to reject nuclear energy , the same strategy that was clearly declared by the Austrian government, as well as for a transportation strategy based more on railroads and navigation. The GNP could serve as an impulse promoting further and more close Central European cooperation in renewable energy sources. It could assist in harmonization of the interest in the sphere of transportation policies of Switzerland, Bavaria, Austria, Slovakia, and Hungary. Such a community oriented towards common interests would definitely be of enormous importance for the development of transportation in Central Europe. Geothermal potential of Slovakia and other Central European states are presented. Surveys conducted in Slovakia show that it is possible to reduce pollution in specific areas by substituting fossil energy sources with geothermal heating a total reduction of pollution by 39,000 tons annually, out of which 159 tons represent the annual reduction of sulfur dioxide pollution. The reduction per GWh of geothermal heat in the particular cities was calculated to be about 527 tons of carbon dioxide and 2.1 ton of sulfur dioxide. Other opportunities for renewable energy in Slovakia, as well as potential of energy savings are estimated

  6. Air quality and future energy system planning

    Science.gov (United States)

    Sobral Mourao, Zenaida; Konadu, Dennis; Lupton, Rick

    2016-04-01

    Ambient air pollution has been linked to an increasing number of premature deaths throughout the world. Projected increases in demand for food, energy resources and manufactured products will likely contribute to exacerbate air pollution with an increasing impact on human health, agricultural productivity and climate change. Current events such as tampering emissions tests by VW car manufacturers, failure to comply with EU Air Quality directives and WHO guidelines by many EU countries, the problem of smog in Chinese cities and new industrial emissions regulations represent unique challenges but also opportunities for regulators, local authorities and industry. However current models and practices of energy and resource use do not consider ambient air impacts as an integral part of the planing process. Furthermore the analysis of drivers, sources and impacts of air pollution is often fragmented, difficult to understand and lacks effective visualization tools that bring all of these components together. This work aims to develop a model that links impacts of air quality on human health and ecosystems to current and future developments in the energy system, industrial and agricultural activity and patterns of land use. The model will be added to the ForeseerTM tool, which is an integrated resource analysis platform that has been developed at the University of Cambridge initially with funding from BP and more recently through the EPSRC funded Whole Systems Energy Modeling (WholeSEM) project. The basis of the tool is a set of linked physical models for energy, water and land, including the technologies that are used to transform these resources into final services such as housing, food, transport and household goods. The new air quality model will explore different feedback effects between energy, land and atmospheric systems with the overarching goal of supporting better communication about the drivers of air quality and to incorporate concerns about air quality into

  7. Methods for locating ground faults and insulation degradation condition in energy conversion systems

    Science.gov (United States)

    Agamy, Mohamed; Elasser, Ahmed; Galbraith, Anthony William; Harfman Todorovic, Maja

    2015-08-11

    Methods for determining a ground fault or insulation degradation condition within energy conversion systems are described. A method for determining a ground fault within an energy conversion system may include, in part, a comparison of baseline waveform of differential current to a waveform of differential current during operation for a plurality of DC current carrying conductors in an energy conversion system. A method for determining insulation degradation within an energy conversion system may include, in part, a comparison of baseline frequency spectra of differential current to a frequency spectra of differential current transient at start-up for a plurality of DC current carrying conductors in an energy conversion system. In one embodiment, the energy conversion system may be a photovoltaic system.

  8. SOLID STATE ENERGY CONVERSION ALLIANCE (SECA) SOLID OXIDE FUEL CELL PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2003-06-01

    This report summarizes the progress made during the September 2001-March 2002 reporting period under Cooperative Agreement DE-FC26-01NT41245 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program''. The program focuses on the development of a low-cost, high-performance 3-to-10-kW solid oxide fuel cell (SOFC) system suitable for a broad spectrum of power-generation applications. The overall objective of the program is to demonstrate a modular SOFC system that can be configured to create highly efficient, cost-competitive, and environmentally benign power plants tailored to specific markets. When fully developed, the system will meet the efficiency, performance, life, and cost goals for future commercial power plants.

  9. Energy mix of the future will be a mosaic

    International Nuclear Information System (INIS)

    Chandler, G.

    2000-01-01

    Research into alternative energy sources is being undertaken by several of the large petroleum companies, including PanCanadian Petroleum, PetroCanada, Royal Dutch Shell, BP and Suncor Energy, an indication of the anticipated importance of renewables in the energy mix of the future. Clean electricity generation facilities fuelled by natural gas is one of the areas of interest to PanCanadian Petroleum and TransCanada Pipelines, while PetroCanada is diversifying into biofuels. Worldwide, Royal Dutch Shell has proclaimed renewables as one of its core businesses, budgeting US$500 million for renewable energy research over the next five years. BPSolarex, a subsidiary of British Petroleum, is well on the way to becoming the world's largest manufacturer and marketer of solar technology, while Suncor Energy of Calgary earmarked $100 million over the next five years to research in producing fuel from biomass, conversion of waste to energy, capture of carbon dioxide, and solar and wind power. The driving force behind these efforts is the significant global pressure to reduce greenhouse gas emissions and to meet the commitments undertaken at the 1997 Kyoto Climate Change Conference. Equally important is the recognition of the finite character of conventional energy sources, and the the various scenarios designed by diverse organizations to show the impact of new energy technologies on how people live and work, and how people, goods and resources move. For example, the scenarios developed by the Energy Technologies Futures Program of Natural Resources Canada are designed to provoke discussion of strategic directions and to challenge current thinking about energy consumption, efficiency and conservation. These scenarios identifiy a range of possible outcomes, depending on industry and government efforts to balance the pillars of sustainable development, i. e. the economy, society and the environment. Industry is taking an increasing interest in these projections as shown by the

  10. Energy mix of the future will be a mosaic

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, G.

    2000-06-30

    Research into alternative energy sources is being undertaken by several of the large petroleum companies, including PanCanadian Petroleum, PetroCanada, Royal Dutch Shell, BP and Suncor Energy, an indication of the anticipated importance of renewables in the energy mix of the future. Clean electricity generation facilities fuelled by natural gas is one of the areas of interest to PanCanadian Petroleum and TransCanada Pipelines, while PetroCanada is diversifying into biofuels. Worldwide, Royal Dutch Shell has proclaimed renewables as one of its core businesses, budgeting US$500 million for renewable energy research over the next five years. BPSolarex, a subsidiary of British Petroleum, is well on the way to becoming the world's largest manufacturer and marketer of solar technology, while Suncor Energy of Calgary earmarked $100 million over the next five years to research in producing fuel from biomass, conversion of waste to energy, capture of carbon dioxide, and solar and wind power. The driving force behind these efforts is the significant global pressure to reduce greenhouse gas emissions and to meet the commitments undertaken at the 1997 Kyoto Climate Change Conference. Equally important is the recognition of the finite character of conventional energy sources, and the the various scenarios designed by diverse organizations to show the impact of new energy technologies on how people live and work, and how people, goods and resources move. For example, the scenarios developed by the Energy Technologies Futures Program of Natural Resources Canada are designed to provoke discussion of strategic directions and to challenge current thinking about energy consumption, efficiency and conservation. These scenarios identifiy a range of possible outcomes, depending on industry and government efforts to balance the pillars of sustainable development, i. e. the economy, society and the environment. Industry is taking an increasing interest in these projections as shown

  11. Solar energy in progress and future research trends

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Zekai [Istanbul Technical Univ., Dept. of Meteorology, Istanbul (Turkey)

    2004-07-01

    countries. The material presented in this paper is chosen to provide a comprehensive account of solar energy sources and conversion methods. For this purpose, explanatory background material has been introduced with the intention that engineers and scientists can have introductory preliminaries on the subject both from application and research points of view. Applications of solar energy in terms of low and high temperature collectors are given with future research directions. Furthermore, photovoltaic devices are discussed for future electric energy generations based on solar power site-exploitation and transmission by different means over long distances such as fiber-optic cables. Another future perspective use of solar energy is its combination with water and as a consequent electrolysis analysis generation of hydrogen gas, which is expected to be another form of clean energy sources. Combination of solar energy and water for hydrogen gas production is called solar-hydrogen energy. Necessary research potentials and application possibilities are presented with sufficient background. Possible future new methodologies are mentioned and finally recommendations and suggestions for future research and application directions are presented with relevant literature review. (Author)

  12. Energy Conversion Advanced Heat Transport Loop and Power Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Oh, C. H.

    2006-08-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various

  13. ECUT (Energy Conversion and Utilization Technologies) program: Biocatalysis project

    Science.gov (United States)

    Baresi, Larry

    1989-03-01

    The Annual Report presents the fiscal year (FY) 1988 research activities and accomplishments, for the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Division. The ECUT Biocatalysis Project is managed by the Jet Propulsion Laboratory, California Institute of Technology. The Biocatalysis Project is a mission-oriented, applied research and exploratory development activity directed toward resolution of the major generic technical barriers that impede the development of biologically catalyzed commercial chemical production. The approach toward achieving project objectives involves an integrated participation of universities, industrial companies and government research laboratories. The Project's technical activities were organized into three work elements: (1) The Molecular Modeling and Applied Genetics work element includes research on modeling of biological systems, developing rigorous methods for the prediction of three-dimensional (tertiary) protein structure from the amino acid sequence (primary structure) for designing new biocatalysis, defining kinetic models of biocatalyst reactivity, and developing genetically engineered solutions to the generic technical barriers that preclude widespread application of biocatalysis. (2) The Bioprocess Engineering work element supports efforts in novel bioreactor concepts that are likely to lead to substantially higher levels of reactor productivity, product yields and lower separation energetics. Results of work within this work element will be used to establish the technical feasibility of critical bioprocess monitoring and control subsystems. (3) The Bioprocess Design and Assessment work element attempts to develop procedures (via user-friendly computer software) for assessing the energy-economics of biocatalyzed chemical production processes, and initiation of technology transfer for advanced bioprocesses.

  14. Direct Energy Conversion for Nuclear Propulsion at Low Specific Mass

    Science.gov (United States)

    Scott, John H.

    2014-01-01

    The project will continue the FY13 JSC IR&D (October-2012 to September-2013) effort in Travelling Wave Direct Energy Conversion (TWDEC) in order to demonstrate its potential as the core of a high potential, game-changing, in-space propulsion technology. The TWDEC concept converts particle beam energy into radio frequency (RF) alternating current electrical power, such as can be used to heat the propellant in a plasma thruster. In a more advanced concept (explored in the Phase 1 NIAC project), the TWDEC could also be utilized to condition the particle beam such that it may transfer directed kinetic energy to a target propellant plasma for the purpose of increasing thrust and optimizing the specific impulse. The overall scope of the FY13 first-year effort was to build on both the 2012 Phase 1 NIAC research and the analysis and test results produced by Japanese researchers over the past twenty years to assess the potential for spacecraft propulsion applications. The primary objective of the FY13 effort was to create particle-in-cell computer simulations of a TWDEC. Other objectives included construction of a breadboard TWDEC test article, preliminary test calibration of the simulations, and construction of first order power system models to feed into mission architecture analyses with COPERNICUS tools. Due to funding cuts resulting from the FY13 sequestration, only the computer simulations and assembly of the breadboard test article were completed. The simulations, however, are of unprecedented flexibility and precision and were presented at the 2013 AIAA Joint Propulsion Conference. Also, the assembled test article will provide an ion current density two orders of magnitude above that available in previous Japanese experiments, thus enabling the first direct measurements of power generation from a TWDEC for FY14. The proposed FY14 effort will use the test article for experimental validation of the computer simulations and thus complete to a greater fidelity the

  15. Challenges of coal conversion for decarbonized energy in Poland

    Energy Technology Data Exchange (ETDEWEB)

    Sciazko, Marek; Jalosinski, Krzysztof; Majchrzak, Henryk; Michalski, Mieczyslaw; Tymowski, Henryk; Witos, Tadeusz; Wroblewska, Elzbieta

    2010-09-15

    Carbon dioxide is considered to be the main challenge for the coal-based power generation as well as for any other industrial application of coal. Poland's energy sector is primarily based on coal combustion that covers almost 90% of demand. Future development of that sector depends on the restriction on value of carbon dioxide emission or trading allowances. There are two main technological approaches to development of new coal based generation capacity, namely: gasification and pre-combustion capture; supercritical combustion and post-combustion capture. The current situation in development of three this type projects in Poland is presented.

  16. Gas Turbine Energy Conversion Systems for Nuclear Power Plants Applicable to LiFTR Liquid Fluoride Thorium Reactor Technology

    Science.gov (United States)

    Juhasz, Albert J.

    2014-01-01

    This panel plans to cover thermal energy and electric power production issues facing our nation and the world over the next decades, with relevant technologies ranging from near term to mid-and far term.Although the main focus will be on ground based plants to provide baseload electric power, energy conversion systems (ECS) for space are also included, with solar- or nuclear energy sources for output power levels ranging tens of Watts to kilo-Watts for unmanned spacecraft, and eventual mega-Watts for lunar outposts and planetary surface colonies. Implications of these technologies on future terrestrial energy systems, combined with advanced fracking, are touched upon.Thorium based reactors, and nuclear fusion along with suitable gas turbine energy conversion systems (ECS) will also be considered by the panelists. The characteristics of the above mentioned ECS will be described, both in terms of their overall energy utilization effectiveness and also with regard to climactic effects due to exhaust emissions.

  17. Progress on Enabling an Interactive Conversation Between Commercial Building Occupants and Their Building To Improve Comfort and Energy Efficiency: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Schott, M.; Scheib, J.; Long, N.; Fleming, K.; Benne, K.; Brackney, L.

    2012-06-01

    Many studies have reported energy savings after installing a dashboard, but dashboards provide neither individual feedback to the occupant nor the ability to report individual comfort. The Building Agent (BA) provides an interface to engage the occupant in a conversation with the building control system and the building engineer. Preliminary outcomes of the BA-enabled feedback loop are presented, and the effectiveness of the three display modes will be compared to other dashboard studies to baseline energy savings in future research.

  18. Renewable energy sources - the opportunity for a safer future

    International Nuclear Information System (INIS)

    Prodrom, Andrei; Federenciuc, Dumitru; Ignat, Vasile; Dobre, Paul

    2004-01-01

    (mostly wood used for cooking and heating - especially in developing countries in Africa, Asia and Latin America) as well as large hydropower stations providing nearly 20% of the global electricity supply provided by renewable sources. New renewable sources (solar, wind, modern bioenergy, geothermal energy and small hydropower stations) amount to about 2%. Recent studies of the future development of the energy sector show that in the second half of the 21 century the contribution of the renewable energy sources might range from the present figure of nearly 20% to more than 50% if the right policies will be put in place. Below are presented the most significant renewable energy sources. 1. Biomass Energy Biomass is the term used for all organic material originating from plants (including algae), trees and crops and is essentially the collection and storage of the sun's energy through photosynthesis. Biomass energy, or bioenergy, is the conversion of biomass into useful forms of energy such as heat, electricity and liquid fuels. Biomass was the first energy source harnessed by humans, and for nearly all of human history, wood has been our dominant energy source. Only during the last century, with the development of efficient techniques to extract and burn fossil fuels, have coal, oil, and natural gas, replaced wood as the industrialized world's primary fuel. Today it represents about 10-14 percent, making it the fourth largest source of energy behind oil (33 percent), coal (21 percent), and natural gas (19 percent). The precise amount is uncertain because the majority is used non-commercially in developing countries. Biomass is usually not considered a modern energy source, given the role that it has played, and continues to play, in most developing countries. In developing countries it still accounts for an estimated one third of primary energy use while in the poorest up to 90% of all energy is supplied by biomass. The direct combustion of biomass fuels, as used in

  19. Energy and environmental analysis of a rapeseed biorefinery conversion process

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Balzan, Alberto; Astrup, Thomas Fruergaard

    2013-01-01

    )-based environmental assessment of a Danish biorefinery system was carried out to thoroughly analyze and optimize the concept and address future research. The LCA study was based on case-specific mass and energy balances and inventory data, and was conducted using consequential LCA approach to take into account market...... mechanisms determining the fate of products, lost opportunities and marginal productions. The results show that introduction of enzymatic transesterification and improved oil extraction procedure result in environmental benefits compared to a traditional process. Utilization of rapeseed straw seems to have...... positive effects on the greenhouse gases (GHG) footprint of the biorefinery system, with improvements in the range of 9 % to 29 %, depending on the considered alternative. The mass and energy balances showed the potential for improvement of straw treatment processes (hydrothermal pre-treatment and dark...

  20. Tidal energy conversion. Renewable energy; 3-3 choseki / choryu hatsuden. II. saisei kano energy ni yoru hatsuden

    Energy Technology Data Exchange (ETDEWEB)

    Makino, T. [Tobishima Corp., Tokyo (Japan)

    1998-10-15

    There are not much examples applying tidal energy conversion, but tide and tidal current phenomena can be forecasted so correctly regardless of weather that the applying tidal energy is to be expected in the future. The largest tidal power plant is at Reims in France and install 24 Kaplan turbines each of which outlet power is 10,000kW (rotational direction is reversible) on the breakwater (750m is length). Tidal range at this place being 8.5m on an average, during the period of flowing seawater into the reservoir and on the contrary during the period of discharging seawater to the sea generation is both performed. Though there is no actual result of tidal power plant in Japan, in tidal current power system experimental generators have been installed at Kurushima channel and Naruto channel. Nihon University carried out various kinds of experiment using a Darius turbine (1.6m in dia.) at Kurushima channel and got outlet power of 3kW at the maximum (1983-`88). There are few coasts which have sufficient tide range in Japan, but there are so good many applicable coasts in China and Southeast Asia that the tidal power generation is to be expectatively. 12 refs., 5 figs., 1 tab.

  1. Energy futures project : backgrounder for consultation sessions

    International Nuclear Information System (INIS)

    Bhargava, A.

    2006-05-01

    The National Energy Board periodically publishes a long-term energy and demand report as part of an ongoing monitoring program. The next report is planned for release in 2007. This background document provided background information to ensure that consultation participants have a common understanding of key issues to be addressed during the cross-country consultations that have been planned before the release of the final version of the report. An outline of the proposed analytical approach was presented, as well as details of major assumptions and scenario storylines. Scenario themes included: economic, energy and environmental sustainability; a security-focused world shaped by war and civil strife; and strong global economic growth fueled by the rapid growth of the Chinese and Indian economies. A methodology overview was provided as well as a reference case. Issues related to energy supply included oil; natural gas liquids; natural gas; and electricity. Issues related to energy demand included the residential sector; the commercial sector; the industrial sector; and the transportation sector. Historical trends and forecasts were outlined using the macroeconomic variable of interest. Supply, demand, and supporting infrastructure across all energy forms within a North American and global context were considered. The impact of environmental management strategies were reviewed, as well as the role of the government in shaping policies. It was concluded that the purpose of the final report is to serve as a standard of references for parties interested in Canadian energy issues and trends as well as to inform decision makers of key risks and uncertainties facing the energy future.9 tabs., 1 fig

  2. Conversion of gravity field energy. Konversion von Schwerkraft-Feld-Energie

    Energy Technology Data Exchange (ETDEWEB)

    Nieper, H A

    1981-01-01

    This book by Mittelstandsinstitut Niedersachsen is a proceedings volume on the conference on energy technology on November 27/28, 1980. The meeting was attended by about 360 persons. On the basis of the knowledge presented, conversion of tachyon field energy into useful electrical energy appears possible. The tachyon field is present everywhere in space. Seike estimated its field strength at 8.8 x 10/sup 8/ V/cm. Magnetic and electrostatic fields can intercept tachyon energy. Especially masses subject to strong magnetic induction take up much tachyon energy. Also abrupt changes of voltage seem to extract energy from tachyons. The Gray motor is based on this principle. Further devices taking energy from the tachyon field are presented, e.g. the Johnson motor which has recently been given the Pat. No. US 4 151 431.

  3. Backwardation in energy futures markets: Metalgesellschaft revisited

    International Nuclear Information System (INIS)

    Charupat, N.; Deaves, R.

    2003-01-01

    Energy supply contracts negotiated by the US Subsidiary of Metalgesellschaft Refining and Marketing (MGRM), which were the subject of much subsequent debate, are re-examined. The contracts were hedged by the US Subsidiary barrel-for-barrel using short-dated energy derivatives. When the hedge program experienced difficulties, the derivatives positions were promptly liquidated by the parent company. Revisiting the MGRM contracts also provides the opportunity to explore the latest evidence on backwardation in energy markets. Accordingly, the paper discusses first the theoretical reasons for backwardation, followed by an empirical examination using the MGRM data available at the time of the hedge program in 1992 and a second set of data that became available in 2000. By using a more up-to-date data set covering a longer time period and by controlling the time series properties of the data, the authors expect to provide more reliable empirical evidence on the behaviour of energy futures prices. Results based on the 1992 data suggest that the strategy employed by MGRM could be expected to be profitable while the risks are relatively low. However, analysis based on the 2000 data shows lower, although still significant profits, but higher risks. The final conclusion was that the likelihood of problems similar to those faced by MGRM in 1992 are twice as high with the updated 2000 data, suggesting that the risk-return pattern of the stack-and-roll hedging strategy using short-dated energy future contracts to hedge long-tem contracts is less appealing now than when MGRM implemented its hedging program in 1992. 24 refs., 3 tabs., 6 figs

  4. Energy in Latin America: Present and future

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Johnny N; Sheffield, John W [University of Missouri-Rolla (United States)

    1997-07-01

    The primary focus of this paper is on the analysis of the current situation of energy production and consumption in the region as a whole, to examine the determinants of energy supply and demand growth, and to forecast the future growth of energy production, consumption, and balances. Since the growth of oil demand in Latin American countries themselves began to accelerate in the early 1990s, the lack of investment and development and the consequence shrinking base of Latin America's energy exports may pose serious challenges to North America, where dependence on the Middle Eastern oil and gas is growing. This paper attempts to present different scenarios and strategies to tackle the problem of Latin America's future net energy supply. [Spanish] El enfoque principal de este articulo es sobre la base de la situacion actual de la produccion y consumo de energia en la region como un todo, para examinar las determinantes del suministro de energia y el crecimiento de la demanda y la prediccion del crecimiento futuro de la produccion de energia, consumo y balances. Desde el crecimiento de la demanda del petroleo, en los paises latinoamericanos, ellos mismos empezaron a acelerar a principios de los 90s, la falta de inversion y desarrollo y la consecuencia del encogimiento de la base de las exportaciones de energia de Latinoamerica podrian imponer serios retos a Norte America, en donde la dependencia del petroleo y del gas del Medio-Oeste esta creciendo. Este articulo intenta presentar diferentes escenarios y estrategias para atacar el problema del suministro neto de energia de Latinoamerica.

  5. Energy in Latin America: Present and future

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Johnny N; Sheffield, John W [University of Missouri-Rolla (United States)

    1997-07-01

    The primary focus of this paper is on the analysis of the current situation of energy production and consumption in the region as a whole, to examine the determinants of energy supply and demand growth, and to forecast the future growth of energy production, consumption, and balances. Since the growth of oil demand in Latin American countries themselves began to accelerate in the early 1990s, the lack of investment and development and the consequence shrinking base of Latin America's energy exports may pose serious challenges to North America, where dependence on the Middle Eastern oil and gas is growing. This paper attempts to present different scenarios and strategies to tackle the problem of Latin America's future net energy supply. [Spanish] El enfoque principal de este articulo es sobre la base de la situacion actual de la produccion y consumo de energia en la region como un todo, para examinar las determinantes del suministro de energia y el crecimiento de la demanda y la prediccion del crecimiento futuro de la produccion de energia, consumo y balances. Desde el crecimiento de la demanda del petroleo, en los paises latinoamericanos, ellos mismos empezaron a acelerar a principios de los 90s, la falta de inversion y desarrollo y la consecuencia del encogimiento de la base de las exportaciones de energia de Latinoamerica podrian imponer serios retos a Norte America, en donde la dependencia del petroleo y del gas del Medio-Oeste esta creciendo. Este articulo intenta presentar diferentes escenarios y estrategias para atacar el problema del suministro neto de energia de Latinoamerica.

  6. The photochemical conversion of solar energy into electrical energy: Eosin-Arabinose system

    Energy Technology Data Exchange (ETDEWEB)

    Gangotri, K.M. [Department of Chemistry, Solar Energy Laboratory, Jai Narain Vyas University, Jodhpur 342 033, Rajasthan (India); Bhimwal, Mukesh Kumar [Solar Energy Laboratory, Jai Narain Vyas University, Jodhpur 342 033, Rajasthan (India)

    2010-12-15

    A photosensitizer -Eosin and a reductant- Arabinose have been used in the photogalvanic cell for photochemical conversion of solar energy into electrical energy. The generated photopotential and photocurrent are 679.0 mV and 240.0 {mu}A respectively. The maximum power of the cell is 162.96 {mu}W whereas the observed power at power point is 73.08 {mu}W. The conversion efficiency is 0.7026% and the fill factor is 0.2856 at the power point of the photogalvanic cell. The photogalvanic cell so developed can work for 85.0 min in dark if it is irradiated for 140.0 min i.e. the storage capacity of photogalvanic cell is 60.71%. The effects of different parameters on the electrical output of the photogalvanic cell have been observed. A mechanism has also been proposed for the photogeneration of electrical energy. (author)

  7. Symposium on the Physical Chemistry of Solar Energy Conversion, Indianapolis American Chemical Society Meetings, Fall 2013

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Tianquan [PI, Emory Univ.

    2013-09-20

    The Symposium on the Physical Chemistry of Solar Energy Conversion at the Fall ACS Meeting in Indianapolis, IN (Sept. 8-12) featured the following sessions (approx. 6 speakers per session): (1) Quantum Dots and Nanorods for Solar Energy Conversion (2 half-day sessions); (2) Artificial Photosynthesis: Water Oxidation; (3) Artificial Photosynthesis: Solar Fuels (2 half-day sessions); (4) Organic Solar Cells; (5) Novel Concepts for Solar Energy Conversion (2 half-day sessions); (6) Emerging Techniques for Solar Energy Conversion; (7) Interfacial Electron Transfer

  8. Energy and greenhouse balance of photocatalytic CO2 conversion to methanol

    Directory of Open Access Journals (Sweden)

    Muench W.

    2012-10-01

    Full Text Available Within the Leading-Edge Cluster “Forum Organic Electronic”, the research project “Solar2Fuel” funded by the German Ministry of education and research (BMBF (2009 – 2012, EnBW, BASF, Karlsruhe Institute of Technology and Ruprecht-Karls-University of Heidelberg aim to develop a future solar powered CO2 to methanol conversion technology. CO2 from stationary sources such as power plants shall be catalytically converted together with water to a product such as methanol by use of solar irradiation. For this purpose a catalyst shall be developed. EnBW investigates the required boundary conditions to make such a principle interesting with respect to energy and greenhouse gas balance as well as economic evaluations. The assessment of boundary conditions includes the analysis of the whole chain from power generation, CO2 capture and transport, a virtual photocatalytic reactor, the product purification and use in the traffic sector. Most important technical factors of the process such as CO2 conversion efficiency is presented. CO2 capturing and liquefaction are the most energy intensive process steps, CO2 transport in pipeline is highly energy efficient and depending on energy need of the photoconversion step and the product purification, the overall greenhouse gas balance is comparable with the underground storage of the captured CO2.

  9. EnerFuture: Long Term Energy Scenarios 'Understanding our energy future'. Key graphs and analysis, Enerdata - Global Energy Forecasting

    International Nuclear Information System (INIS)

    2011-01-01

    Enerdata analyses 4 future energy scenarios accounting for 2 economic growth assumptions combined with 2 alternative carbon emission mitigation policies. In this study, a series of analyses supported by graphs assess the energy consumption and intensity forecasts in emerging and developed markets. In particular, one analysis is dedicated to energies competition, including gas, coal and renewable energies. (authors)

  10. World Energy Scenarios: Composing energy futures to 2050

    International Nuclear Information System (INIS)

    Frei, Christoph; Whitney, Rob; Schiffer, Hans-Wilhelm; Rose, Karl; Rieser, Dan A.; Al-Qahtani, Ayed; Thomas, Philip; Turton, Hal; Densing, Martin; Panos, Evangelos; Volkart, Kathrin

    2013-01-01

    The World Energy Scenarios: Composing energy futures to 2050 is the result of a three-year study conducted by over 60 experts from nearly 30 countries, with modelling provided by the Paul Scherrer Institute. The report assesses two contrasting policy scenarios, the more consumer driven Jazz scenario and the more voter-driven Symphony scenario with a key differentiator being the ability of countries to pass through the Doha Climate Gateway. The WEC scenarios use an explorative approach to assess what is actually happening in the world now, to help gauge what will happen in the future and the real impact of today's choices on tomorrow's energy landscape. Rather than telling policy-makers and senior energy leaders what to do in order to achieve a specific policy goal, the WEC's World Energy Scenarios allow them to test the key assumptions that decision-makers decide to better shape the energy of tomorrow This document includes the French and English versions of the executive summary and the English version of the full report

  11. Nuclear energy : Present situation and future prospects

    International Nuclear Information System (INIS)

    Gray, J.E.

    1986-01-01

    In 1953, President Eisenhower announced the U.S. ''Atoms for Peace'' program. After slightly more than 30 years, there are in operation, under construction or on order more than 400,000 MW of commercial nuclear power generation capacity located in 35 nations, representing a total investment around a trillion U.S. dollars. The situation is noteworthy in terms of the rate of technical development, deployment and transfer, the magnitude of the financial investment, economic benefits, the favorable impact on public health and safety, and the usual and positive character of cooperation among all concerned. The fundamentals of nuclear power generation with regard to economics, safety and environmental impact are likely to favor the increased use of nuclear power. The future prospect of the nuclear power in the U.S. also will be clarified positively. In many ways, U.S. commercial nuclear power continues to benefit from the Navy nuclear propulsion program. The prospect of supply demand situation in the conversion, enrichment and fabrication of uranium fuel is explained. The amount of spent fuel arising in OECD countries and their storage capability up to 2000 are shown, and the storage capability projected is well in excess. (Kako, I.)

  12. Overall energy conversion efficiency of a photosynthetic vesicle

    Energy Technology Data Exchange (ETDEWEB)

    Sener, Melih [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States; Strumpfer, Johan [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States; Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, United States; Singharoy, Abhishek [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States; Hunter, C. Neil [Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom; Schulten, Klaus [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States; Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, United States

    2016-08-26

    The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating typically under low light conditions. Building on an atomic-level structural model of a low-light-adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation between more than a hundred protein complexes in the vesicle. The steady-state ATP production rate as a function of incident light intensity is determined after identifying quinol turnover at the cytochrome bc1 complex (cytbc1) as rate limiting and assuming that the quinone/quinol pool of about 900 molecules acts in a quasi-stationary state. For an illumination condition equivalent to 1% of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy conversion efficiency of ATP synthesis at illuminations corresponding to 1%–5% of full sunlight is calculated to be 0.12-0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover for the benefit of protection against over-illumination.

  13. Aerojet Energy Conversion Company mobile volume reduction system

    International Nuclear Information System (INIS)

    Smith, K.R.

    1984-01-01

    Over the past few years, rapidly increasing costs for the disposal of low level radioactive waste (LLW) have generated the need for utilities to volume-reduce their LLW prior to shipment and burial. Incineration systems have been selected by several utilities to fulfill this need for maximum volume reduction. Until recently, all of the incineration systems selected by utilities were designed to be housed and operated in a facility erected by the utility. Now, however, lack of capital and rising design/erection costs are causing utilities to reevaluate their plans for purchasing incineration systems to process their LLW. The result is a growing demand for incineration services. Once again, Commonwealth Edison Company (Com-Ed) is leading the industry with an ongoing program to utilize incineration services provided by Aerojet Energy Conversion Company (AECC) for the Dresden Quad Cities, LaSalle, and Zion Nuclear Stations. At the stations, combustible dry active waste and contaminated oil will be processed in a Mobile Volume Reduction System (MVRS) designed and fabricated by AECC. The MVRS is a totally self-contained system consisting of a controlled-air incinerator and a liquid offgas cleanup system. No buildings are required to house the system, and the MVRS achieves volume reduction factors similar to systems currently available for permanent in-plant installation. The result is an option for the utility having the benefits of volume reduction without the capital commitment normally required by the utility

  14. Socio-economic overview of wind energy conversion systems

    International Nuclear Information System (INIS)

    Hardy, D.R.

    1992-01-01

    A social scientist's perspective is presented on the socio-economic impacts of wind energy conversion systems (WECS) in Ontario. The main organization for delivering electricity in Ontario is Ontario Hydro. This utility has two WECS, an experimental 3.5 kW generator and a hybrid wind/diesel facility at a remote northern community. Ontario Hydro is reviewing its supply options and anticipates wind power would likely be used in niche applications involving off-grid hybrid systems where the cost of displaced generation is high. On-grid applications would likely be in the form of dispersed non-utility generation. The potential contribution of wind power to Ontario's electricity supply mix could be as little as 1 MW by the year 2000 or as high as 40 MW by the year 2014, depending on costs and technological developments. Socio-economic criteria used by the utility for assessing individual supply options include job creation, regional economic development, local community impacts, social acceptance, and distribution of risks and benefits. Initial observations of potential effects of WECS are discussed, including site selection, manufacturing, construction, and operation. Barriers to implementation of WECS in Ontario include the limited number of good wind sites, the intermittent nature of WECS power, and the currently uneconomic nature of WECS for bulk electricity systems. However, WECS have environmentally attractive features and are socially acceptable. 10 refs., 3 figs

  15. Amphoteric oxide semiconductors for energy conversion devices: a tutorial review.

    Science.gov (United States)

    Singh, Kalpana; Nowotny, Janusz; Thangadurai, Venkataraman

    2013-03-07

    In this tutorial review, we discuss the defect chemistry of selected amphoteric oxide semiconductors in conjunction with their significant impact on the development of renewable and sustainable solid state energy conversion devices. The effect of electronic defect disorders in semiconductors appears to control the overall performance of several solid-state ionic devices that include oxide ion conducting solid oxide fuel cells (O-SOFCs), proton conducting solid oxide fuel cells (H-SOFCs), batteries, solar cells, and chemical (gas) sensors. Thus, the present study aims to assess the advances made in typical n- and p-type metal oxide semiconductors with respect to their use in ionic devices. The present paper briefly outlines the key challenges in the development of n- and p-type materials for various applications and also tries to present the state-of-the-art of defect disorders in technologically related semiconductors such as TiO(2), and perovskite-like and fluorite-type structure metal oxides.

  16. Draft environmental assessment: Ocean Thermal Energy Conversion (OTEC) Pilot Plants

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, S.M.; Sands, M.D.; Donat, J.R.; Jepsen, P.; Smookler, M.; Villa, J.F.

    1981-02-01

    This Environmental Assessment (EA) has been prepared, in accordance with the National Environmental Policy Act of 1969, for the deployment and operation of a commercial 40-Megawatt (MW) Ocean Thermal Energy Conversion (OTEC) Pilot Plant (hereafter called the Pilot Plant). A description of the proposed action is presented, and a generic environment typical of the candidate Pilot Plant siting regions is described. An assessment of the potential environmental impacts associated with the proposed action is given, and the risk of credible accidents and mitigating measures to reduce these risks are considered. The Federal and State plans and policies the proposed action will encompass are described. Alternatives to the proposed action are presented. Appendix A presents the navigation and environmental information contained in the US Coast Pilot for each of the candidate sites; Appendix B provides a brief description of the methods and calculations used in the EA. It is concluded that environmental disturbances associated with Pilot Plant activities could potentially cause significant environmental impacts; however, the magnitude of these potential impacts cannot presently be assessed, due to insufficient engineering and environmental information. A site- and design-specific OTEC Pilot Plant Environmental Impact Statement (EIS) is required to resolve the potentially significant environmental effects associated with Pilot Plant deployment and operation. (WHK)

  17. Ocean Thermal Energy Conversion Using Double-Stage Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Yasuyuki Ikegami

    2018-03-01

    Full Text Available Ocean Thermal Energy Conversion (OTEC using non-azeotropic mixtures such as ammonia/water as working fluid and the multistage cycle has been investigated in order to improve the thermal efficiency of the cycle because of small ocean temperature differences. The performance and effectiveness of the multistage cycle are barely understood. In addition, previous evaluation methods of heat exchange process cannot clearly indicate the influence of the thermophysical characteristics of the working fluid on the power output. Consequently, this study investigated the influence of reduction of the irreversible losses in the heat exchange process on the system performance in double-stage Rankine cycle using pure working fluid. Single Rankine, double-stage Rankine and Kalina cycles were analyzed to ascertain the system characteristics. The simple evaluation method of the temperature difference between the working fluid and the seawater is applied to this analysis. From the results of the parametric performance analysis it can be considered that double-stage Rankine cycle using pure working fluid can reduce the irreversible losses in the heat exchange process as with the Kalina cycle using an ammonia/water mixture. Considering the maximum power efficiency obtained in the study, double-stage Rankine and Kalina cycles can improve the power output by reducing the irreversible losses in the cycle.

  18. Magnetically insulated fission electric cells for direct energy conversion

    International Nuclear Information System (INIS)

    Slutz, S.A.; Seidel, D.B.; Lipinski, R.J.; Rochau, G.E.; Brown, L.C.

    2003-01-01

    The principles of fission electric cells are reviewed. A detailed Monte Carlo model of the efficiency of a fission electric cell is presented and a theory of magnetically insulated fission electric cells (MIFECs) is developed. It is shown that the low operating voltages observed in previous MIFEC experiments were due to nonoptimal magnetic field profiles. Improved magnetic field profiles are presented. It is further shown that the large electric field present in a MIFEC limits the structure of the cathode and can lead to a displacement instability of the cathode toward the anode. This instability places constraints on the number of cells that can be strung together without some external cathode support. The large electric field stress also leads to electrical surface breakdown of the cathode. It is shown that this leads to the formation of a virtual cathode resulting in geometry constraints for spherical cells. Finally it is shown that the requirements of magnetic insulation and high efficiency leads to very low average density of the fissile material. Thus a reactor using fission electric cells for efficient direct energy conversion will be large and require a very large number of cells. This could be mitigated somewhat by the use of exotic fuels

  19. Future high energy colliders. Formal report

    International Nuclear Information System (INIS)

    Parsa, Z.

    1996-01-01

    This Report includes copies of transparencies and notes from the presentations made at the Symposium on Future High Energy Colliders, October 21-25, 1996 at the Institute for Theoretical Physics, University of California, Santa Barbara California, that was made available by the authors. Editing, reduction and changes to the authors contributions were made only to fulfill the printing and publication requirements. We would like to take this opportunity and thank the speakers for their informative presentations and for providing copies of their transparencies and notes for inclusion in this Report

  20. Unit root behavior in energy futures prices

    OpenAIRE

    Serletis, Apostolos

    1992-01-01

    This paper re-examines the empirical evidence for random walk type behavior in energy futures prices. In doing so, tests for unit roots in the univariate time-series representation of the daily crude oil, heating oil, and unleaded gasoline series are performed using recent state-of-the-art methodology. The results show that the unit root hypothesis can be rejected if allowance is made for the possibility of a one-time break in the intercept and the slope of the trend function at an unknown po...