WorldWideScience

Sample records for future electricity generation

  1. Nuclear Power and Ghana's Future Electricity Generation

    International Nuclear Information System (INIS)

    Ennison, I.; Dzobo, M.

    2011-01-01

    One of the major challenges facing Ghana in her developmental efforts is the generation of adequate and affordable electricity to meet increasing demand. Problems with the dependency on hydro power has brought insecurity in electricity supply due to periodic droughts. Thermal power systems have been introduced into the electricity generation mix to complement the hydro power supply but there are problems associated with their use. The high price of crude oil on the international market has made them expensive to run and the supply of less expensive gas from Steps are being taken to run the thermal plants on less expensive gas from Nigeria has delayed due to conflicts in the Niger Delta region and other factors. The existing situation has therefore called for the diversification of the electricity generation mix so as to ensure energy security and affordable power supply. This paper presents the nuclear option as a suitable alternative energy source which can be used to address the energy supply problems facing the nation as well the steps being taken towards its introduction in the national energy mix. In addition, electricity demand projections using the MAED model as well as other studies are presented. The expected electricity demand of 350000 GWh (4000MWyr) in 2030, exceeds the total electricity supply capability of the existing hydropower system, untapped hydro resources and the maximum amount of gas that can be imported from Nigeria through the West Africa pipeline. Also presented is a technological assessment on the type of nuclear reactor to be used. The technological assessment which was done based on economics, grid size, technological maturity, passive safety and standardization of reactor design, indicate that a medium sized pressurized water reactor (i.e. a PWR with capacity 300MW to 700MW) is the most favourable type of reactor. In addition the challenges facing the implementation of the nuclear power programme in Ghana are presented. (author)

  2. Future development of the electricity systems with distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    Bayod-Rujula, Angel A. [Department of Electrical Engineering, Centro Politecnico Superior, University of Zaragoza, C/Maria de Luna, 3, 50018 Zaragoza (Spain)

    2009-03-15

    Electrical power systems have been traditionally designed taking energy from high-voltage levels, and distributing it to lower voltage level networks. There are large generation units connected to transmission networks. But in the future there will be a large number of small generators connected to the distribution networks. Efficient integration of this distributed generation requires network innovations. A development of active distribution network management, from centralised to more distributed system management, is needed. Information, communication, and control infrastructures will be needed with increasing complexity of system management. Some innovative concepts such as microgrids and virtual utilities will be presented. (author)

  3. Renewable Electricity Futures Study. Volume 2. Renewable Electricity Generation and Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, Chad [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bain, Richard [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chapman, Jamie [Texas Tech Univ., Lubbock, TX (United States); Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Drury, Easan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hall, Douglas G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lantz, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thresher, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sandor, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bishop, Norman A. [Knight Piesold, Denver, CO (United States); Brown, Stephen R. [HDR/DTA, Portland, ME (Untied States); Cada, Glenn F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Felker, Fort [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fernandez, Steven J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Goodrich, Alan C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hagerman, George [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Heath, Garvin [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Neil, Sean [Ocean Renewable Energy Coalition, Portland, OR (United States); Paquette, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States); Young, Katherine [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  4. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  5. Applied risk analysis to the future Brazilian electricity generation matrix

    Energy Technology Data Exchange (ETDEWEB)

    Maues, Jair; Fernandez, Eloi; Correa, Antonio

    2010-09-15

    This study compares energy conversion systems for the generation of electrical power, with an emphasis on the Brazilian energy matrix. The financial model applied in this comparison is based on the Portfolio Theory, developed by Harry Markowitz. The risk-return ratio related to the electrical generation mix predicted in the National Energy Plan - 2030, published in 2006 by the Brazilian Energy Research Office, is evaluated. The increase of non-traditional renewable energy in this expected electrical generating mix, specifically, residues of sugar cane plantations and wind energy, reduce not only the risk but also the average cost of the kilowatt-hour generated.

  6. Nuclear Power as a Basis for Future Electricity Generation

    Science.gov (United States)

    Pioro, Igor; Buruchenko, Sergey

    2017-12-01

    It is well known that electrical-power generation is the key factor for advances in industry, agriculture, technology and the level of living. Also, strong power industry with diverse energy sources is very important for country independence. In general, electrical energy can be generated from: 1) burning mined and refined energy sources such as coal, natural gas, oil, and nuclear; and 2) harnessing energy sources such as hydro, biomass, wind, geothermal, solar, and wave power. Today, the main sources for electrical-energy generation are: 1) thermal power - primarily using coal and secondarily - natural gas; 2) “large” hydro power from dams and rivers and 3) nuclear power from various reactor designs. The balance of the energy sources is from using oil, biomass, wind, geothermal and solar, and have visible impact just in some countries. In spite of significant emphasis in the world on using renewables sources of energy, in particular, wind and solar, they have quite significant disadvantages compared to “traditional” sources for electricity generation such as thermal, hydro, and nuclear. These disadvantages include low density of energy, which requires large areas to be covered with wind turbines or photovoltaic panels or heliostats, and dependence of these sources on Mother Nature, i.e., to be unreliable ones and to have low (20 - 40%) or very low (5 - 15%) capacity factors. Fossil-fueled power plants represent concentrated and reliable source of energy. Also, they operate usually as “fast-response” plants to follow rapidly changing electrical-energy consumption during a day. However, due to combustion process they emit a lot of carbon dioxide, which contribute to the climate change in the world. Moreover, coal-fired power plants, as the most popular ones, create huge amount of slag and ash, and, eventually, emit other dangerous and harmful gases. Therefore, Nuclear Power Plants (NPPs), which are also concentrated and reliable source of energy

  7. Future of nuclear energy for electricity generation in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Maiorino, Jose R.; Moreira, Joao M.L.; Carajlescov, Pedro, E-mail: joserubens.maiorino@ufabc.edu.br, E-mail: joao.moreira@ufabc.edu.br, E-mail: pedro.carajlescov@ufabc.edu.br [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Aplicadas

    2015-07-01

    We discuss in this paper the medium- and long- terms evolution of nuclear power in Brazil considering official governmental studies and reports prepared by research groups. The documents reviewed include the national energy balance (BEN, 2014), the short-term planning (PDEE, 2023) and long-term planning (PNE-2030) documents emitted by EPE, and studies conducted by independent institutions and researchers. The studies consider different scenarios regarding gross national product growth and institutional development for the country and conclude that nuclear power should increase its role in Brazil. The generation matrix should diversity by 2030 and 2040 with hydropower decreasing its share from today's 70 % to values between 47 and 57 %. Nuclear power is considered a viable alternative for base load electricity generation in Brazil; to reduce generation risks during dry seasons, and to facilitate the operation of the whole power generation system. The share of nuclear power may reach values between 8 % and 15 % by 2040 according to different scenarios. To meet such growth and facilitate new investments, it is necessary to change the legal framework of the sector, and allow private ownership of enterprises to build and operate nuclear power plants in the country. (author)

  8. Future of nuclear energy for electricity generation in Brazil

    International Nuclear Information System (INIS)

    Maiorino, Jose R.; Moreira, Joao M.L.; Carajlescov, Pedro

    2015-01-01

    We discuss in this paper the medium- and long- terms evolution of nuclear power in Brazil considering official governmental studies and reports prepared by research groups. The documents reviewed include the national energy balance (BEN, 2014), the short-term planning (PDEE, 2023) and long-term planning (PNE-2030) documents emitted by EPE, and studies conducted by independent institutions and researchers. The studies consider different scenarios regarding gross national product growth and institutional development for the country and conclude that nuclear power should increase its role in Brazil. The generation matrix should diversity by 2030 and 2040 with hydropower decreasing its share from today's 70 % to values between 47 and 57 %. Nuclear power is considered a viable alternative for base load electricity generation in Brazil; to reduce generation risks during dry seasons, and to facilitate the operation of the whole power generation system. The share of nuclear power may reach values between 8 % and 15 % by 2040 according to different scenarios. To meet such growth and facilitate new investments, it is necessary to change the legal framework of the sector, and allow private ownership of enterprises to build and operate nuclear power plants in the country. (author)

  9. Developing an optimal electricity generation mix for the UK 2050 future

    International Nuclear Information System (INIS)

    Sithole, H.; Cockerill, T.T.; Hughes, K.J.; Ingham, D.B.; Ma, L.; Porter, R.T.J.; Pourkashanian, M.

    2016-01-01

    The UK electricity sector is undergoing a transition driven by domestic and regional climate change and environmental policies. Aging electricity generating infrastructure is set to affect capacity margins after 2015. These developments, coupled with the increased proportion of inflexible and variable generation technologies will impact on the security of electricity supply. Investment in low-carbon technologies is central to the UK meeting its energy policy objectives. The complexity of these challenges over the future development of the UK electricity generation sector has motivated this study which aims to develop a policy-informed optimal electricity generation scenario to assess the sector's transition to 2050. The study analyses the level of deployment of electricity generating technologies in line with the 80% by 2050 emission target. This is achieved by using an excel-based “Energy Optimisation Calculator” which captures the interaction of various inputs to produce a least-cost generation mix. The key results focus on the least-cost electricity generation portfolio, emission intensity, and total investment required to assemble a sustainable electricity generation mix. A carbon neutral electricity sector is feasible if low-carbon technologies are deployed on a large scale. This requires a robust policy framework that supports the development and deployment of mature and emerging technologies. - Highlights: • Electricity generation decarbonised in 2030 and nearly carbon neutral in 2050. • Nuclear, CCS and offshore wind are central in decarbonising electricity generation. • Uncertainty over future fuel and investment cost has no impact on decarbonisation. • Unabated fossil fuel generation is limited unless with Carbon Capture and Storage. • Decarbonising the electricity generation could cost about £213.4 billion by 2030.

  10. An integrated model for long-term power generation planning toward future smart electricity systems

    International Nuclear Information System (INIS)

    Zhang, Qi; Mclellan, Benjamin C.; Tezuka, Tetsuo; Ishihara, Keiichi N.

    2013-01-01

    Highlights: • An integrated model for planning future smart electricity systems was developed. • The model consists of an optimization model and an hour-by-hour simulation model. • The model was applied to Tokyo area, Japan in light of the Fukushima Accident. • Paths to best generation mixes of smart electricity systems were obtained. • Detailed hourly operation patterns in smart electricity systems were obtained. - Abstract: In the present study, an integrated planning model was developed to find economically/environmentally optimized paths toward future smart electricity systems with high level penetration of intermittent renewable energy and new controllable electric devices at the supply and demand sides respectively for regional scale. The integrated model is used to (i) plan the best power generation and capacity mixes to meet future electricity demand subject to various constraints using an optimization model; (ii) obtain detailed operation patterns of power plants and new controllable electric devices using an hour-by-hour simulation model based on the obtained optimized power generation mix. As a case study, the model was applied to power generation planning in the Tokyo area, Japan, out to 2030 in light of the Fukushima Accident. The paths toward best generation mixes of smart electricity systems in 2030 based on fossil fuel, hydro power, nuclear and renewable energy were obtained and the feasibility of the integrated model was proven

  11. Assessing the value of wind generation in future carbon constrained electricity industries

    International Nuclear Information System (INIS)

    Vithayasrichareon, Peerapat; MacGill, Iain F.

    2013-01-01

    This paper employs a novel Monte-Carlo based generation portfolio assessment tool to explore the implications of increasing wind penetration and carbon prices within future electricity generation portfolios under considerable uncertainty. This tool combines optimal generation mix techniques with Monte Carlo simulation and portfolio analysis methods to determine expected overall generation costs, associated cost uncertainty and expected CO 2 emissions for different possible generation portfolios. A case study of an electricity industry with coal, Combined Cycle Gas Turbines (CCGT), Open Cycle Gas Turbines (OCGT) and wind generation options that faces uncertain future fossil-fuel prices, carbon pricing, electricity demand and plant construction costs is presented to illustrate some of the key issues associated with growing wind penetrations. The case study uses half-hourly demand and wind generation data from South Eastern Australia, and regional estimates of new-build plant costs and characteristics. Results suggest that although wind generation generally increases overall industry costs, it reduces associated cost uncertainties and CO 2 emissions. However, there are some cases in which wind generation can reduce the overall costs of generation portfolios. The extent to which wind penetration affects industry expected costs and uncertainties depends on the level of carbon price and the conventional technology mix in the portfolios. - Highlights: ► A probabilistic portfolio analysis tool to assess generation portfolios with wind power. ► Explore the impacts of wind penetrations and carbon prices under uncertainties. ► Wind generation increases overall portfolio costs but reduces cost risks and emissions. ► The value of wind power depends on the carbon price and the technology mix. ► Complex interactions between wind penetration level and carbon pricing.

  12. Environmental challenges and opportunities of the evolving North American electricity market : Estimating future air pollution from new electric power generation

    International Nuclear Information System (INIS)

    Miller, P.; Patterson, Z.; Vaughan, S.

    2002-06-01

    A significant source of air pollutants and greenhouse gases in North America is a direct result of the generation of electricity from the combustion of fossil fuels. An attempt at estimating the future emissions of four key pollutants from the electricity generation sector in North America was made by the authors in this paper. They based their estimates on projections of future electricity generation capacity changes. They looked at new power plant projects in North America, as well as the expected changes in emissions as a result of these projects compared to the historical data originating from power plant emissions in the recent past. Both the local context and the national level were examined. Nitrogen oxides, sulfur dioxide, mercury, and carbon dioxide, all arising from the combustion of fossil fuels, were considered in this paper. Ground level ozone, or smog results from nitrogen oxides. Acidic deposition, also called acid rain, is caused in part by both nitrogen oxides and sulfur dioxide, as is fine particles in the atmosphere linked to lung damage and premature death. Fish consumption advisories were issued due to the levels of toxic mercury deposited in lakes and streams. Global climate change is caused in part to the greenhouse gas carbon dioxide. Air quality and climate change will both be impacted by the future evolution of the electricity generation sector in an integrated North American energy market. The authors attempted to provide a baseline of air emissions from that sector in North America for a common reference year, enabling the tracking of changes in emissions patterns in the future. A reference case inventory for the four pollutants was estimated, followed by the development of two boundary cases estimating future emissions in 2007. refs., 22 tabs

  13. Electricity generation in the world and Ukraine: Current status and future developments

    Directory of Open Access Journals (Sweden)

    Alexander Zvorykin

    2017-11-01

    Full Text Available Electricity generation is the key factor for advances in industry, agriculture, technology and the level of living. Also, strong power industry with diverse energy sources is very important for country independence. In general, electricity can be generated from: 1 non-renewable energy sources such as coal, natural gas, oil, and nuclear; and 2 renewable energy sources such as hydro, biomass, wind, geothermal, solar, and wave power. However, the major energy sources for electricity generation in the world are: 1 thermal power – primarily using coal (~40% and secondarily natural gas (~23%; 2 “large” hydro power plants (~17% and 3 nuclear power from various reactor designs (~11%. The rest of the energy sources for electricity generation is from using oil (~4% and renewable sources such as biomass, wind, geothermal and solar (~5%, which have just visible impact in selected countries. In addition, energy sources, such as wind and solar, and some others, like tidal and wave-power, are intermittent from depending on Mother Nature. And cannot be used alone for industrial electricity generation. Nuclear power in Ukraine is the most important source of electricity generation in the country. Currently, Ukrainian Nuclear Power Plants (NPPs generate about 45.5% of the total electricity followed with coal generation ‒ 38%, gas generation 9.6% and the rest is based on renewable sources, mainly on hydro power plants – 5.9%. Nuclear-power industry is based on four NPPs (15 Pressurized Water Reactors (PWRs including the largest one in Europe ‒ Zaporizhzhya NPP with about 6,000 MWel gross installed capacity. Two of these 15 reactors have been built and put into operation in 70-s, ten in 80-s, one in 90-s and just two in 2004. Therefore, based on an analysis of the world power reactors in terms of their maximum years of operation (currently, the oldest reactors are ~45-year old several projections have been made for future of the nuclear-power industry

  14. An Assessment of the Economics of Future Electric Power Generation Options and the Implications for Fusion

    International Nuclear Information System (INIS)

    Delene, Jerry G.; Sheffield, John; Williams, Kent A.; Reid, R. Lowell; Hadley, Stan

    2001-01-01

    This study examines the potential range of electric power costs for some major alternatives to fusion electric power generation when it is ultimately deployed in the middle of the 21st century and, thus, offers a perspective on the cost levels that fusion must achieve to be competitive. The alternative technologies include coal burning, coal gasification, natural gas, nuclear fission, and renewable energy. The cost of electricity (COE) from the alternatives to fusion should be in a 30 to 53 mills/kW.h (1999 dollars) range if carbon sequestration is not needed, 30 to 61 mills/kW.h if sequestration is required, or as high as 83 mills/kW.h for the worst-case scenario for cost uncertainty. The reference COE range for fusion was estimated at 65 to 102 mills/kW.h for 1- to 1.3-GW(electric) scale power plants, based on the tokamak concept. Tokamak fusion costs will have to be reduced and/or cost-effective alternative nontokamak concepts devised before fusion will be competitive with the alternatives for the future production of electricity. Fortunately, there are routes to achieve this goal. Recent results from fusion experiments and developments in technology and engineering solutions indicate that lower cost fusion power plants are possible at the 1-GW(electric) level. Another general route for fusion to reduce costs is to go to large plant sizes [multigigawatts (electric)

  15. Present situation and future prospects of electricity generation in Aegean Archipelago islands

    International Nuclear Information System (INIS)

    Kaldellis, J.K.; Zafirakis, D.

    2007-01-01

    The Aegean Archipelago is a remote Hellenic area, including several hundreds of scattered islands of various sizes. In these islands more than 600,000 people are living mainly in small remote communities. The main economical activities of the islanders are apart from tourism, seafaring, fishery, agriculture and stock farming. One of the major problems of the area is the insufficient infrastructure, strongly related with the absence of an integrated and cost-effective electrification plan. In this context, the present work is concentrated on analyzing the present situation and demonstrating the future prospects of electricity generation in the Aegean Archipelago islands. For this purpose, one should first investigate the time evolution of the corresponding electricity generation parameters (i.e. annual electricity consumption, peak power demand, capacity factor, specific fuel consumption) for the last 30 years. Subsequently, the corresponding diesel and heavy-oil consumption along with the electricity production cost for every specific autonomous power station of the area are investigated. Special attention is paid in order to estimate the contribution of renewable energy sources (RES) in the energy balance of each island. Finally, an attempt is made to describe in brief the most realistic electricity production solutions available, including the operation of hybrid RES-based power plants in collaboration with appropriate energy storage facilities. Additionally, the idea of connecting the islands of the area with the mainland and interconnecting them is also taken into consideration

  16. Distributed generation in European electricity markets. Current challenges and future opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Ropenus, S. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy. Systems Analysis Div., Roskilde (Denmark))

    2010-07-01

    This Ph.D. thesis studies the role of distributed generation in European electricity markets. It focuses primarily on the interactions of economics and policy with the aim of contributing to the understanding of how distributed generation is embedded in the present regulatory and market framework, which barriers exist, and which role it may possibly play in the future. To capture the interdisciplinarity of the topic, a combination of qualitative and quantitative methods is applied. Subsequent to the identification of barriers, this thesis turns to the microeconomic perspective on the interplay of vertical structure, regulation and distributed generation. This is done through the application of quantitative methods in the form of partial equilibrium models focusing on the effects induced by the vertical structure of the network operator, either a combined operator or a distribution system operator, in a market with small distributed producers. In areas where the promotion of renewable energy sources and combined heat and power has induced a substantial increase in distributed generation, new challenges in system integration arise. In particular, high levels of generation from intermittent energy sources, such as wind, add to the complexity of network operation and control, which can hardly be tackled with the present 'fit and forget' approach. The conclusion is that distributed generation has great potential to enhance competitiveness, sustainability and security of supply in European electricity markets. A prerequisite is the removal of market and regulatory barriers, taking the interdependencies of vertical structure, support mechanisms and network access into account. In the future, higher penetration levels of distributed generation necessitate changes in the power system and the adoption of new technologies, where hydrogen production by grid connected electrolysis constitutes one example. (LN)

  17. Current and future greenhouse gas emissions associated with electricity generation in China: implications for electric vehicles.

    Science.gov (United States)

    Shen, Wei; Han, Weijian; Wallington, Timothy J

    2014-06-17

    China's oil imports and greenhouse gas (GHG) emissions have grown rapidly over the past decade. Addressing energy security and GHG emissions is a national priority. Replacing conventional vehicles with electric vehicles (EVs) offers a potential solution to both issues. While the reduction in petroleum use and hence the energy security benefits of switching to EVs are obvious, the GHG benefits are less obvious. We examine the current Chinese electric grid and its evolution and discuss the implications for EVs. China's electric grid will be dominated by coal for the next few decades. In 2015 in Beijing, Shanghai, and Guangzhou, EVs will need to use less than 14, 19, and 23 kWh/100 km, respectively, to match the 183 gCO2/km WTW emissions for energy saving vehicles. In 2020, in Beijing, Shanghai, and Guangzhou EVs will need to use less than 13, 18, and 20 kWh/100 km, respectively, to match the 137 gCO2/km WTW emissions for energy saving vehicles. EVs currently demonstrated in China use 24-32 kWh/100 km. Electrification will reduce petroleum imports; however, it will be very challenging for EVs to contribute to government targets for GHGs emissions reduction.

  18. Lignite mining and electricity generation in Poland: The current state and future prospects

    International Nuclear Information System (INIS)

    Widera, Marek; Kasztelewicz, Zbigniew; Ptak, Miranda

    2016-01-01

    This opinion paper presents the current state and future scenarios of Polish lignite mining. For many years, over 1/3 of domestic electricity, that is about 53–55 TWh, has been generated by lignite-fired power plants. Currently, with 63–66 million tons of extraction, Poland is the fourth lignite producer worldwide and the second in the European Union. There are three possible scenarios for the development of lignite mining in Poland by 2050. Unfortunately, despite the huge lignite resources, amounting to more than 23.5 billion tons, and great potential of the mining industry, the future of Polish lignite mining does not look optimistic from the economic point of view. This is associated with social and environmental problems, including the European Union's climate and energy policy. However, this may change in the event of a global economic crisis and unstable geopolitical conditions. Therefore, a new energy doctrine for Poland at least by 2050 is urgently needed. - Highlights: •Poland is one of the leaders in lignite production in the European Union. •Energy policy in Poland assumes a key role of lignite in energy mix. •Almost one-third of Polish electricity is currently generated from lignite. •For Polish lignite mining exist pessimistic, realistic and optimistic scenarios. •Extraction of lignite in Poland will gradually decrease in the coming decades.

  19. An Assessment of the Economics of Future Electric Power Generation Options and the Implications for Fusion

    International Nuclear Information System (INIS)

    Delene, J.G.; Hadley, S.; Reid, R.L.; Sheffield, J.; Williams, K.A.

    1999-01-01

    This study examines the potential range of electric power costs for some major alternatives to fusion electric power generation when it is ultimately deployed in the middle of the 21st century and, thus, offers a perspective on the cost levels that fusion must achieve to be competitive. The alternative technologies include coal burning, coal gasification, natural gas, nuclear fission, and renewable energy. The cost of electricity (COE) from the alternatives to fusion should remain in the 30-50 mils/kWh (1999 dollars) range of today in carbon sequestration is not needed, 30-60 mils/kWh if sequestration is required, or as high as 75 mils/kWh for the worst-case scenario for cost uncertainty. The reference COE range for fusion was estimated at 70-100 nmils/kWh for 1- to 1.3-GW(e) scale power plants. Fusion costs will have to be reduced and/or alternative concepts derived before fusion will be competitive with the alternatives for the future production of electricity. Fortunately, there are routes to achieve this goal

  20. Nuclear Power for Future Electricity Generation in Ghana: Issues and Challenges

    International Nuclear Information System (INIS)

    Nyarko, B.J.B.; Akaho, E.H.K.; Ennison, I.

    2011-01-01

    Ghana's electricity demand has been estimated to be growing at a high rate of about 7% per annum over the last ten years. This is due to the relatively high population growth, economic aspiration of the country and the extension of electricity to rural areas. Electricity supply, on the contrary, has been unable to meet the demand due to high dependency on rain-fed hydropower plants, which started operating in 1965 and currently account for about 68% of the total installed capacity. Within the last 28 years, climatic changes and draughts have caused the nation to experience three major power crises. These climate changes resulted in low inflows and thus reduced power generation from hydropower systems. To complement the hydropower systems, the Government in 1997 installed thermal plants based on light crude oil. However, due to the high crude oil prices on the international market in recent times have made the operation of these plants very expensive. Ghana's crude oil find can boost its energy supply when the oil exploration begins somewhere in 2010. For rural cooking, domestic biomass is employed. Ghana has no domestic coal resources. The Government of Ghana is concerned with: limited further growth potential of domestic hydro; high cost of imported oil and gas and environmental issues associated with use of imported coal. Small Solar and wind generation exist in some sectors, but potential large-scale development is not envisioned for the near future. With these in mind, the President of Ghana set up a Committee involving Stakeholder Institutions to formulate the Nuclear Power Policy and develop the basic elements of Nuclear Infrastructure and to assess the viability of introducing the nuclear power option in Ghana's energy mix. Cabinet took a decision to include the nuclear power for electricity generation after the Committee submitted his report to the President in 2008. (author)

  1. Electrical generator

    International Nuclear Information System (INIS)

    Purdy, D.L.

    1976-01-01

    A nuclear heart pacer having a heat-to-electricity converter including a solid-state thermoelectric unit embedded in rubber which is compressed to impress hydrostatic precompression on the unit is described. The converter and the radioactive heat source are enclosed in a container which includes the electrical circuit components for producing and controlling the pulses; the converter and components being embedded in rubber. The portions of the rubber in the converter and in the container through which heat flows between the radioactive primary source and the hot junction and between the cold junction and the wall of the container are of thermally conducting silicone rubber. The 238 Pu primary radioactive source material is encapsuled in a refractory casing of WC-222 (T-222) which in turn is encapsuled in a corrosion-resistant casing of platinum rhodium, a diffusion barrier separating the WC-222 and the Pt--Rh casings. The Pt--Rh casing is in a closed basket of tantalum. The tantalum protects the Pt--Rh from reacting with other materials during cremation of the host, if any. The casings and basket suppress the transmission of hard x rays generated by the alpha particles from the 238 Pu. The outside casing of the pacer is typically of titanium but its surface is covered by an electrically insulating coating, typically epoxy resin, except over a relatively limited area for effective electrical grounding to the body of the host. It is contemplated that the pacer will be inserted in the host with the exposed titanium engaging a non-muscular region of the body

  2. Future CO2 emissions and electricity generation from proposed coal-fired power plants in India

    Science.gov (United States)

    Fofrich, R.; Shearer, C.; Davis, S. J.

    2017-12-01

    India represents a critical unknown in global projections of future CO2 emissions due to its growing population, industrializing economy, and large coal reserves. In this study, we assess existing and proposed construction of coal-fired power plants in India and evaluate their implications for future energy production and emissions in the country. In 2016, India had 369 coal-fired power plants under development totaling 243 gigawatts (GW) of generating capacity. These coal-fired power plants would increase India's coal-fired generating capacity by 123% and would exceed India's projected electricity demand. Therefore, India's current proposals for new coal-fired power plants would be forced to retire early or operate at very low capacity factors and/or would prevent India from meeting its goal of producing at least 40% of its power from renewable sources by 2030. In addition, future emissions from proposed coal-fired power plants would exceed India's climate commitment to reduce its 2005 emissions intensity 33% - 35% by 2030.

  3. Future CO2 emissions and electricity generation from proposed coal-fired power plants in India

    Science.gov (United States)

    Shearer, Christine; Fofrich, Robert; Davis, Steven J.

    2017-04-01

    With its growing population, industrializing economy, and large coal reserves, India represents a critical unknown in global projections of future CO2 emissions. Here, we assess proposed construction of coal-fired power plants in India and evaluate their implications for future emissions and energy production in the country. As of mid-2016, 243 gigawatts (GW) of coal-fired generating capacity are under development in India, including 65 GW under construction and an additional 178 GW proposed. These under-development plants would increase the coal capacity of India's power sector by 123% and, when combined with the country's goal to produce at least 40% of its power from non-fossil sources by 2030, exceed the country's projected future electricity demand. The current proposals for new coal-fired plants could therefore either "strand" fossil energy assets (i.e., force them to retire early or else operate at very low capacity factors) and/or ensure that the goal is not met by "locking-out" new, low-carbon energy infrastructure. Similarly, future emissions from the proposed coal plants would also exceed the country's climate commitment to reduce its 2005 emissions intensity 33% to 35% by 2030, which—when combined with the commitments of all other countries—is itself not yet ambitious enough to meet the international goal of holding warming well below 2°C relative to the pre-industrial era.

  4. Current economic situation and estimated future trends of the electricity generation options in Belgium

    International Nuclear Information System (INIS)

    Delvoye, J.

    1996-01-01

    In Belgium, the electrical engineers have to periodically establish, for the government, a national equipment plan which justifies the provided investments for a period of 10 years after the publication of the plan. The elaborated development is appreciated by four criteria: the environmental impact, the park workableness, its economic robustness and the production saving. In order to estimate this last criteria, the method used is called of the 'leveled discounted electricity generation costs'. It is recommended and used by international agencies such as the IAEA, OECD, UNIPE. The comparisons between the nuclear production cost, carried out during two successive equipment plans (1988 and 1994), show the evolution of technologies, costs and forecasts of these last ten years. In particular, the last valuation has to take into account uncertainty ranges of which the importance prevents to draw a definitive conclusion about the production mean which will be the most inexpensive in the future: competition is open between the different types of factories and fuels. The recent national equipment plan (1995-2005) proposes to cover 53% of the additional needs by gas combined-cycle power plants, 29% by coal combined-cycle power plants and 18% by the Belgian interest in French B. Chooz nuclear powered plants. The nuclear choice is open for the future. (O.M.)

  5. Renewable Electricity Futures (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Mai, T.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at the 2012 RE AMP Annual Meeting. RE-AMP is an active network of 144 nonprofits and foundations across eight Midwestern states working on climate change and energy policy with the goal of reducing global warming pollution economy-wide 80% by 2050.

  6. Quantifying the Opportunity Space for Future Electricity Generation: An Application to Offshore Wind Energy in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Marcy, Cara [National Renewable Energy Lab. (NREL), Golden, CO (United States); Beiter, Philipp [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This report provides a high-level indicator of the future electricity demand for additional electric power generation that is not met by existing generation sources between 2015 and 2050. The indicator is applied to coastal regions, including the Great Lakes, to assess the regional opportunity space for offshore wind. An assessment of opportunity space can be a first step in determining the prospects and the system value of a technology. The metric provides the maximal amount of additional generation that is likely required to satisfy load in future years.

  7. Future trends in electrical energy generation economics in the United States

    Science.gov (United States)

    Schmitt, R. W.; Fox, G. R.; Shah, R. P.; Stewart, P. J.; Vermilyea, D. A.

    1977-01-01

    Developments related to the economics of coal-fired systems in the U.S. are mainly considered. The historical background of the U.S. electric generation industry is examined and the U.S. electrical generation characteristics in the year 1975 are considered. It is pointed out that coal-fired power plants are presently the largest source of electrical energy generation in the U.S. Questions concerning the availability and quality of coal are investigated. Currently there are plans for converting some 50 large oil and gas-fired generating plants to coal, and it is expected that coal will be the fuel used in almost all fossil-fired base load additions to generating capacity. Aspects of advanced energy conversion from coal are discussed, taking into account the performance and economic potential of the energy conversion systems.

  8. A Monte Carlo based decision-support tool for assessing generation portfolios in future carbon constrained electricity industries

    International Nuclear Information System (INIS)

    Vithayasrichareon, Peerapat; MacGill, Iain F.

    2012-01-01

    This paper presents a novel decision-support tool for assessing future generation portfolios in an increasingly uncertain electricity industry. The tool combines optimal generation mix concepts with Monte Carlo simulation and portfolio analysis techniques to determine expected overall industry costs, associated cost uncertainty, and expected CO 2 emissions for different generation portfolio mixes. The tool can incorporate complex and correlated probability distributions for estimated future fossil-fuel costs, carbon prices, plant investment costs, and demand, including price elasticity impacts. The intent of this tool is to facilitate risk-weighted generation investment and associated policy decision-making given uncertainties facing the electricity industry. Applications of this tool are demonstrated through a case study of an electricity industry with coal, CCGT, and OCGT facing future uncertainties. Results highlight some significant generation investment challenges, including the impacts of uncertain and correlated carbon and fossil-fuel prices, the role of future demand changes in response to electricity prices, and the impact of construction cost uncertainties on capital intensive generation. The tool can incorporate virtually any type of input probability distribution, and support sophisticated risk assessments of different portfolios, including downside economic risks. It can also assess portfolios against multi-criterion objectives such as greenhouse emissions as well as overall industry costs. - Highlights: ► Present a decision support tool to assist generation investment and policy making under uncertainty. ► Generation portfolios are assessed based on their expected costs, risks, and CO 2 emissions. ► There is tradeoff among expected cost, risks, and CO 2 emissions of generation portfolios. ► Investment challenges include economic impact of uncertainties and the effect of price elasticity. ► CO 2 emissions reduction depends on the mix of

  9. Selecting future electricity generation options in conformity with sustainable development objectives

    International Nuclear Information System (INIS)

    Juhn, P.E.; Rogner, H.-H.; Khan, A.M.; Vladu, I.F.

    2000-01-01

    The complexity facing today's energy planners and decision-makers, particularly in the electricity sector, has increased. They must take into account many elements in selecting technologies and strategies that will impact near term energy development and applications in their countries. While costs remain a key factor, tradeoffs between the demands of environmental protection and economic development will have to be made. This fact, together with the needs of many countries to define their energy and electricity programmes in a sustainable manner, has resulted in a growing interest in the application of improved data, tools and techniques for comparative assessment of different electricity generation options, particularly from an environmental and human health viewpoint. Although global emissions of greenhouse gases and other pollutants, e.g. SO 2 , NO x and particulate, must be reduced, the reality today is that these emissions are increasing and are expected to continue to increase. In examining the air pollutants, as well as water effluents and solid waste generated by electricity production, it is necessary to assess the full energy chain from fuel extraction to waste disposal, including the production of construction and auxiliary materials. The paper describes this concept and illustrates its implementation for assessing and comparing electricity generation costs, emissions, wastes and other environmental burdens from different energy sources. (author)

  10. Environmental impacts assessment of future electricity generating plants for the State of Minas Gerais, Brazil

    International Nuclear Information System (INIS)

    Pinheiro, Ricardo Brandt; Ribeiro, Leonardo Marcio Vilela; Loures, Marcelo de Melo Gomide

    1999-01-01

    The Energy and Power Evaluation Program was used for energy planning analysis of the entire energy system of the state of Minas Gerais, Brazil. The environmental impact and resource requirements were estimated with the IMPACTS module, using results obtained from the electricity generating system expansion plan generated by WASP, together with results of marketplace energy supply and demand balances over the study period (1995-2015) computed with the BALANCE module for five different scenarios. The results for the electricity generating system show that: the air emission levels increase in all scenarios: the growth rate of the economy and energy conservation are the most important factors affecting the emissions; the land use increase significantly, the new hydroelectric power plants contributing to almost the total of this increase. (author)

  11. Consumptive Water Use from Electricity Generation in the Southwest under Alternative Climate, Technology, and Policy Futures.

    Science.gov (United States)

    Talati, Shuchi; Zhai, Haibo; Kyle, G Page; Morgan, M Granger; Patel, Pralit; Liu, Lu

    2016-11-15

    This research assesses climate, technological, and policy impacts on consumptive water use from electricity generation in the Southwest over a planning horizon of nearly a century. We employed an integrated modeling framework taking into account feedbacks between climate change, air temperature and humidity, and consequent power plant water requirements. These direct impacts of climate change on water consumption by 2095 differ with technology improvements, cooling systems, and policy constraints, ranging from a 3-7% increase over scenarios that do not incorporate ambient air impacts. Upon additional factors being changed that alter electricity generation, water consumption increases by up to 8% over the reference scenario by 2095. With high penetration of wet recirculating cooling, consumptive water required for low-carbon electricity generation via fossil fuels will likely exacerbate regional water pressure as droughts become more common and population increases. Adaptation strategies to lower water use include the use of advanced cooling technologies and greater dependence on solar and wind. Water consumption may be reduced by 50% in 2095 from the reference, requiring an increase in dry cooling shares to 35-40%. Alternatively, the same reduction could be achieved through photovoltaic and wind power generation constituting 60% of the grid, consistent with an increase of over 250% in technology learning rates.

  12. Combined generation of electric and heating energy in future development of Yugoslav energy sector until 2000

    International Nuclear Information System (INIS)

    Djajic, Nenad; Zivanovic, Vladimir

    2000-01-01

    Development of the district heating system in the FR Yugoslavia, beside the combined generation of electric and heating energy presents a necessity for energy, economic and ecological reasons. Although the structure of energy reserves is rather unfavourable considering that the lignite is being predominantly used, available reserves of energy raw material are able to ensure the long-term development of Yugoslav energy sector, and to offer real possibilities for considerable substitution of foreign good quality fuels, especially in district heating systems. Their further development will depend, among other things: on the implementation of new technological solutions for the exploitation of local energy resources; need of reconstruction, revitalisation and transformation of old condensing thermal power plants into the cogeneration plants; installation of remote controlled transmission of heating energy as well as on development of heating plants and smaller co-generation plants based on local energy resources. (Authors)

  13. Future Electricity Markets

    DEFF Research Database (Denmark)

    Pinson, Pierre

    2015-01-01

    The changing face of energy production in Europe necessitates a rethink in the way that electricity markets are structured. The ‘5s’ (Future Electricity Markets) project is a multi-disciplinary project that is looking to challenge the current approach to the design and operation of electricity...

  14. Nuclear energy for electricity generation: historical analysis, nowadays situation and future

    International Nuclear Information System (INIS)

    Mongelli, Sara Tania

    2006-01-01

    On December 2, 1942, man first initiated a self-sustaining nuclear chain reaction, and controlled it. Since then, nuclear energy development, firstly stimulated by military goals, was fast. But nuclear energy use for electricity production grew too, until becoming a very important energy source in the world energy mix. In 1987 there were in the world 418 nuclear reactors capable of producing commercially useful supplies of electricity. Over two thirds were in just seven countries: United States, Soviet Union, France, United Kingdom, Germany, Canada and Japan. In the 90's, nuclear energy development slowed down as a consequence of the Chernobyl accident and of the more optimistic evaluations of world oil resources. In 2005 the number of nuclear reactors commercially producing electricity amounted to 441, not much more than the 418 reactors operating in 1987. From this point of view, the primary scope of this work is to analyze the world pattern and the state of the art of nuclear power production focusing on the countries above mentioned. Brazil case is analyzed too, since this work has been developed there. Once this international outlook is concluded, the next step passes through the analyses of new technologies, tendencies and initiatives for the future development of nuclear energy. Since feelings run high in the debate about nuclear energy, some fundamental and fervent points are raised: security, environment, proliferation and sustainable development. Nevertheless, it is important to point out that effort has been made in this work not to take sides, but to be impartial in selecting materials and giving data. The scope is not to convert the reader to a pro-nuclear view but to inform and, in doing so, to provide a volume that is a textbook and not a piece of polemic. (author)

  15. Comparative health and safety assessment of alternative future electrical-generation systems

    International Nuclear Information System (INIS)

    Habegger, L.J.; Gasper, J.R.; Brown, C.D.

    1980-01-01

    The report is an analysis of health and safety risks of seven alternative electrical generation systems, all of which have potential for commercial availability in the post-2000 timeframe. The systems are compared on the basis of expected public and occupational deaths and lost workdays per year associated with 1000 MWe average unit generation. Risks and their uncertainties are estimated for all phases of the energy production cycle, including fuel and raw material extraction and processing, direct and indirect component manufacture, on-site construction, and system operation and maintenance. Also discussed is the potential significance of related major health and safety issues that remain largely unquantifiable. The technologies include: the SPS; a low-Btu coal gasification system with an open-cycle gas turbine combined with a steam topping cycle (CG/CC); a light water fission reactor system without fuel reprocessing (LWR); a liquid metal fast breeder fission reactor system (LMFBR); a central station terrestrial photovoltaic system (CTPV); and a first generation fusion system with magnetic confinement. For comparison with the baseload technologies, risk from a decentralized roof-top photovoltaic system with 6 kWe peak capacity and battery storage (DTPV) was also evaluated

  16. The future value of electrical energy storage in the UK with generator intermittency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The intermittent nature of renewable energy sources increases the need for storage of electric power - the need is greatest in the case of wind power. This study looked at the potential value of power storage as a means of coping with variable power demand which, in the case of wind power, is itself intermittent. The benefits of using storage for part of the reserve needs compared with the reserve in the form of part-loaded conventional forms of generation was a feature of the study. The benefits were assessed in terms of (a) savings in fuel costs associated with balancing the systems; (b) carbon dioxide emissions, and (c) the additional amount of wind energy that can be absorbed. The work was conducted as part of the a UK DTI programme on New and Renewable Energy Sources.

  17. The future value of electrical energy storage in the UK with generator intermittency

    International Nuclear Information System (INIS)

    2004-01-01

    The intermittent nature of renewable energy sources increases the need for storage of electric power - the need is greatest in the case of wind power. This study looked at the potential value of power storage as a means of coping with variable power demand which, in the case of wind power, is itself intermittent. The benefits of using storage for part of the reserve needs compared with the reserve in the form of part-loaded conventional forms of generation was a feature of the study. The benefits were assessed in terms of (a) savings in fuel costs associated with balancing the systems; (b) carbon dioxide emissions, and (c) the additional amount of wind energy that can be absorbed. The work was conducted as part of the a UK DTI programme on New and Renewable Energy Sources

  18. Human health impacts in the life cycle of future European electricity generation

    International Nuclear Information System (INIS)

    Treyer, Karin; Bauer, Christian; Simons, Andrew

    2014-01-01

    This paper presents Life Cycle Assessment (LCA) based quantification of the potential human health impacts (HHI) of base-load power generation technologies for the year 2030. Cumulative Greenhouse Gas (GHG) emissions per kWh electricity produced are shown in order to provide the basis for comparison with existing literature. Minimising negative impacts on human health is one of the key elements of policy making towards sustainable development: besides their direct impacts on quality of life, HHI also trigger other impacts, e.g. external costs in the health care system. These HHI are measured using the Life Cycle Impact Assessment (LCIA) methods “ReCiPe” with its three different perspectives and “IMPACT2002+”. Total HHI as well as the shares of the contributing damage categories vary largely between these perspectives and methods. Impacts due to climate change, human toxicity, and particulate matter formation are the main contributors to total HHI. Independently of the perspective chosen, the overall impacts on human health from nuclear power and renewables are substantially lower than those caused by coal power, while natural gas can have lower HHI than nuclear and some renewables. Fossil fuel combustion as well as coal, uranium and metal mining are the life cycle stages generating the highest HHI. - Highlights: • Life cycle human health impacts (HHI) due to electricity production are analysed. • Results are shown for the three ReCiPe perspectives and IMPACT2002+LCIA method. • Total HHI of nuclear and renewables are much below those of fossil technologies. • Climate change and human toxicity contribute most to total HHI. • Fossil fuel combustion and coal mining are the most polluting life cycle stages

  19. Electricity Generation Baseline Report

    Energy Technology Data Exchange (ETDEWEB)

    Logan, Jeffrey [National Renewable Energy Lab. (NREL), Golden, CO (United States); Marcy, Cara [National Renewable Energy Lab. (NREL), Golden, CO (United States); McCall, James [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bloom, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Aabakken, Jorn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cole, Wesley [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenkin, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Porro, Gian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Liu, Chang [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ganda, Francesco [Argonne National Lab. (ANL), Argonne, IL (United States); Boardman, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tarka, Thomas [National Energy Technology Lab. (NETL), Albany, OR (United States); Brewer, John [National Energy Technology Lab. (NETL), Albany, OR (United States); Schultz, Travis [National Energy Technology Lab. (NETL), Albany, OR (United States)

    2017-01-01

    This report was developed by a team of national laboratory analysts over the period October 2015 to May 2016 and is part of a series of studies that provide background material to inform development of the second installment of the Quadrennial Energy Review (QER 1.2). The report focuses specifically on U.S. power sector generation. The report limits itself to the generation sector and does not address in detail parallel issues in electricity end use, transmission and distribution, markets and policy design, and other important segments. The report lists 15 key findings about energy system needs of the future.

  20. Bright future of photovoltaic-hybrid systems as main option for electricity generation in remote communities

    Energy Technology Data Exchange (ETDEWEB)

    Zahedi, Ahmad [Solar Energy Applications Research Group (Australia)

    2000-07-01

    The most common power option for remotely located communities, facilities, schools, etc., is the engine generator powered by diesel fuel. Over the past 15 years, many remote communities with limited and costly site access for maintenance and fuel delivery have had their engine-based power systems modified to photovoltaic hybrid power systems. As a result, hybrid power systems with photovoltaic as the main generator are becoming the preferred power option. The reasons for this change are simple: the engine-based power systems require regular oil and filter changes (in average after 150 hrs of operation); the maintenance cost is relatively high; the cost of travel to and from the site to perform maintenance is restricted during certain time of the year and can be more expensive than the actual maintenance itself. Photovoltaic generators are gradually replacing the diesel generators and thus are becoming the primary source in remote communities. As electricity is required for 24 hours of operation and photovoltaic are not able to generate power for 24 h, batteries are added to the system as storage units, and the diesel generators are used as a back-up power supply. The objective of this paper is to present the results obtained from a study which has been carried out on a PV-hybrid power system from the desired performance point of view. [Spanish] La opcion mas comun de energia para las comunidades, instalaciones, escuelas, etc. localizadas en lugares remotos, es el generador que utiliza diesel como combustible. En los ultimos 15 anos, muchas comunidades remotas con acceso limitado y costoso para el mantenimiento y la entrega de combustible han modificado sus sistemas de energia basados en motores por sistemas de energia hibridos fotovoltaicos. Como resultado, los sistemas hibridos de energia con generadores fotovoltaicos como principal generador se estan convirtiendo en la opcion preferida de generacion de electricidad. Las razones para este cambio son simples: los

  1. Assessing current and future techno-economic potential of concentrated solar power and photovoltaic electricity generation

    International Nuclear Information System (INIS)

    Köberle, Alexandre C.; Gernaat, David E.H.J.; Vuuren, Detlef P. van

    2015-01-01

    CSP and PV technologies represent energy sources with large potentials. We present cost-supply curves for both technologies using a consistent methodology for 26 regions, based on geoexplicit information on solar radiation, land cover type and slope, exploring individual potential and interdependencies. For present day, both CSP and PV supply curves start at $0.18/kWh, in North Africa, South America, and Australia. Applying accepted learning rates to official capacity targets, we project prices to drop to $0.11/kWh for both technologies by 2050. In an alternative “fast-learning” scenario, generation costs drop to $0.06–0.07/kWh for CSP, and $0.09/kWh for PV. Competition between them for best areas is explored along with sensitivities of their techno-economic potentials to land use restrictions and land cover type. CSP was found to be more competitive in desert sites with highest direct solar radiation. PV was a clear winner in humid tropical regions, and temperate northern hemisphere. Elsewhere, no clear winner emerged, highlighting the importance of competition in assessments of potentials. Our results show there is ample potential globally for both technologies even accounting for land use restrictions, but stronger support for RD&D and higher investments are needed to make CSP and PV cost-competitive with established power technologies by 2050. - Highlights: • A consistent assessment of global potential for CSP and PV, with cost-supply curves for 26 regions. • Combined global CSP and PV potential below US$0.35/kWh estimated at 135,128 TWh per year. • Competition for same land-based solar resource implies that potentials cannot be added. • Attractive areas are MENA, Northern Chile, Australia, China and Southwestern USA. • Costs are projected to go down over time, reaching US$0.06–0.11/KWh for attractive sites in 2050

  2. The future electricity business

    International Nuclear Information System (INIS)

    Budhraja, V.S.

    1999-01-01

    The transition of the electricity business into the competitive market will result in change as significant as that brought about by the PC or the deregulation of telecommunications,and with it opportunities for new products, service, and technologies, particularly to support an increase in distributed generation. The electricity business has been viewed as having three building blocks--generation, transmission, and distribution. Almost all investments in these three sectors historically have been made by utilities, but now these investments have begun to be made by customers or new entrants under a competitive market model. With the high-voltage transmission system largely built, the business focus will shift to efficient utilization of that infrastructure through investments in grid automation control, communications, and network management. And while the primary function of the distribution system--connecting customers to the utility grid--will remain unchanged, there will be new requirements on the distribution system to integrate distributed technologies and customer micro grids. Generation power plants are as likely to be located at customer sites as at utility or central-station sites. Customers may choose to create micro grids that are locally self sufficient and may or may not be connected to the utility grid. The characteristics of the distribution grid are likely to change from a one-way system in which power flows from utility central-station power plants to customers, to a two-way system in which power may flow in either direction. Hence, the focus will increasingly shift to integration of portfolio of distributed technologies. The opening of the electricity business to competition also opens new markets and business opportunities for new entrants

  3. Renewable Electricity Futures Study Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Trieu [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sandor, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schneider, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-12-01

    The Renewable Electricity Futures Study (RE Futures) provides an analysis of the grid integration opportunities, challenges, and implications of high levels of renewable electricity generation for the U.S. electric system. The study is not a market or policy assessment. Rather, RE Futures examines renewable energy resources and many technical issues related to the operability of the U.S. electricity grid, and provides initial answers to important questions about the integration of high penetrations of renewable electricity technologies from a national perspective. RE Futures results indicate that a future U.S. electricity system that is largely powered by renewable sources is possible and that further work is warranted to investigate this clean generation pathway.

  4. Renewable Electricity Futures Study. Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Mai, T.; Sandor, D.; Wiser, R.; Schneider, T.

    2012-12-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  5. Electric power generation

    International Nuclear Information System (INIS)

    Pinske, J.D.

    1981-01-01

    Apart from discussing some principles of power industry the present text deals with the different ways of electric power generation. Both the conventional methods of energy conversion in heating and water power stations and the facilities for utilizing regenerative energy sources (sun, wind, ground heat, tidal power) are considered. The script represents the essentials of the lecture of the same name which is offered to the students of the special subject 'electric power engineering' at the Fachhochschule Hamburg. It does not require any special preliminary knowledge except for the general principles of electrical engineering. It is addressing students of electrical engineering who have passed their preliminary examination at technical colleges and universities. Moreover, it shall also be of use for engineers who want to obtain a quick survey of the structure and the operating characteristics of the extremely different technical methods of power generation. (orig.) [de

  6. Wind electric power generation

    International Nuclear Information System (INIS)

    Koch, M.K.; Wind, L.; Canter, B.; Moeller, T.

    2001-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of the private wind turbines. For each wind turbine the name of the site and of the type of turbine is given, and the power generation data are given for the month in question together with the total production in 1999 and 2000. Also the data of operation start are given. On the map of Denmark the sites of the wind turbines are marked. (CLS)

  7. Wind electric power generation

    International Nuclear Information System (INIS)

    Koch, M. K.; Wind, L.; Canter, B.; Moeller, T.

    2002-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of the private wind turbines. For each wind turbine the name of the site and of the type of turbine is given, and the power generation data are given for the month in question together with the total production in 2000 and 2001. Also the data of operation start are given. On the map of Denmark the sites of the wind turbines are marked. (SM)

  8. Thermoacoustic magnetohydrodynamic electrical generator

    International Nuclear Information System (INIS)

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1986-01-01

    A thermoacoustic magnetohydrodynamic electrical generator is described comprising a magnet having a magnetic field, an elongate hollow housing containing an electrically conductive liquid and a thermoacoustic structure positioned in the liquid, heat exchange means thermally connected to the thermoacoustic structure for inducing the liquid to oscillate at an acoustic resonant frequency within the housing. The housing is positioned in the magnetic field and oriented such that the direction of the magnetic field and the direction of oscillatory motion of the liquid are substantially orthogonal to one another, first and second electrical conductor means connected to the liquid on opposite sides of the housing along an axis which is substantially orthogonal to both the direction of the magnetic field and the direction of oscillatory motion of the liquid, an alternating current output signal is generated in the conductor means at a frequency corresponding to the frequency of the oscillatory motion of the liquid

  9. Future generations in democracy

    DEFF Research Database (Denmark)

    Jensen, Karsten Klint

    2015-01-01

    of future generations. The analysis reveals that they tend to overlook the democratic costs of such representation (violation of political equality, risk of distortion of the deliberation and undermining of autonomy), while they seem to ignore the alternative of giving consideration to the interests...

  10. Wind power. [electricity generation

    Science.gov (United States)

    Savino, J. M.

    1975-01-01

    A historical background on windmill use, the nature of wind, wind conversion system technology and requirements, the economics of wind power and comparisons with alternative systems, data needs, technology development needs, and an implementation plan for wind energy are presented. Considerable progress took place during the 1950's. Most of the modern windmills feature a wind turbine electricity generator located directly at the top of their rotor towers.

  11. Electric power generator

    International Nuclear Information System (INIS)

    Carney, H.C.

    1977-01-01

    An electric power generator of the type employing a nuclear heat source and a thermoelectric converter is described wherein a transparent thermal insulating medium is provided inside an encapsulating enclosure to thermally insulate the heat source and thermoelectric generator. The heat source, the thermoelectric converter, and the enclosure are provided with facing surfaces which are heat-reflective to a substantial degree to inhibit radiation of heat through the medium of the encapsulating enclosure. Multiple reflective foils may be spaced within the medium as necessary to inhibit natural convection of heat and/or further inhibit radiation

  12. Wind electric power generation

    International Nuclear Information System (INIS)

    Groening, B.; Koch, M.; Canter, B.; Moeller, T.

    1995-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of private wind turbines. For each wind turbine the name of the site and of the type of turbine is given, and the power generation data are given for the month in question together with the total production in 1988 and 1989. Also the data of operation start are given. On the map of Denmark the sites of the wind turbines are marked. The statistics for December 1994 comprise 2328 wind turbines

  13. Electricity generation cost

    International Nuclear Information System (INIS)

    Bald, M.

    1984-01-01

    Also questions of efficiency play a part in the energy discussion. In this context, the economic evaluation of different energy supply variants is of importance. Especially with regard to the generation of electric power there have been discussions again and again during the last years on the advantage of the one or the other kind of electric power generation. In the meantime, a large number of scientific studies has been published on this topic which mainly deal with comparisons of the costs of electric power generated by hard coal or nuclear energy, i.e. of those energy forms which still have the possibilities of expansion. The following part shows a way for the evaluation of efficiency comparisons which starts from simplified assumptions and which works with arithmetical aids, which don't leave the area of the fundamental operations. The general comprehensibility is paid for with cuts on ultimate analytical and arithmetical precision. It will, however, turn out that the results achieved by this method don't differ very much from those which have been won by scientific targets. (orig./UA) [de

  14. Renewable Electricity Futures Study. Volume 1. Exploration of High-Penetration Renewable Electricity Futures

    Energy Technology Data Exchange (ETDEWEB)

    Hand, M. M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Baldwin, S. [U.S. Dept. of Energy, Washington, DC (United States); DeMeo, E. [Renewable Energy Consulting, Chicago, IL (United States); Reilly, J. M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Mai, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, D. [Joint Inst. for Strategic Energy Analysis, Boulder, CO (United States); Porro, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Meshek, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sandor, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  15. Future nuclear power generation

    International Nuclear Information System (INIS)

    Mosbah, D.S.; Nasreddine, M.

    2006-01-01

    The book includes an introduction then it speaks about the options to secure sources of energy, nuclear power option, nuclear plants to generate energy including light-water reactors (LWR), heavy-water reactors (HWR), advanced gas-cooled reactors (AGR), fast breeder reactors (FBR), development in the manufacture of reactors, fuel, uranium in the world, current status of nuclear power generation, economics of nuclear power, nuclear power and the environment and nuclear power in the Arab world. A conclusion at the end of the book suggests the increasing demand for energy in the industrialized countries and in a number of countries that enjoy special and economic growth such as China and India pushes the world to search for different energy sources to insure the urgent need for current and anticipated demand in the near and long-term future in light of pessimistic and optimistic outlook for energy in the future. This means that states do a scientific and objective analysis of the currently available data for the springboard to future plans to secure the energy required to support economy and welfare insurance.

  16. Large-scale integration of renewable and distributed generation of electricity in Spain: Current situation and future needs

    International Nuclear Information System (INIS)

    Cossent, Rafael; Gómez, Tomás; Olmos, Luis

    2011-01-01

    Similar to other European countries, mechanisms for the promotion of electricity generation from renewable energy sources (RESs) and combined heat and power (CHP) production have caused a significant growth in distributed generation (DG) in Spain. Low DG/RES penetration levels do not have a major impact on electricity systems. However, several problems arise as DG shares increase. Smarter distribution grids are deemed necessary to facilitate DG/RES integration. This involves modifying the way distribution networks are currently planned and operated. Furthermore, DG and demand should also adopt a more active role. This paper reviews the current situation of DG/RES in Spain including penetration rates, support payments for DG/RES, level of market integration, economic regulation of Distribution System Operators (DSOs), smart metering implementation, grid operation and planning, and incentives for DSO innovation. This paper identifies several improvements that could be made to the treatment of DG/RES. Key aspects of an efficient DG/RES integration are identified and several regulatory changes specific to the Spanish situation are recommended. - Highlights: ► Substantial DG/RES penetration levels are foreseen for the coming years in Spain. ► Integrating such amount of DG/RES in electricity markets and networks is challenging. ► We review key regulatory aspects that may affect DG/RES integration in Spain. ► Several recommendations aimed at easing DG/RES integration in Spain are provided. ► Market integration and the transition towards smarter grids are deemed key issues.

  17. Renewable Electricity Futures Study. Volume 1: Exploration of High-Penetration Renewable Electricity Futures

    Energy Technology Data Exchange (ETDEWEB)

    Mai, T.; Wiser, R.; Sandor, D.; Brinkman, G.; Heath, G.; Denholm, P.; Hostick, D.J.; Darghouth, N.; Schlosser, A.; Strzepek, K.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  18. Generation of electrical power

    International Nuclear Information System (INIS)

    Hursen, T.F.; Kolenik, S.A.; Purdy, D.L.

    1976-01-01

    A heat-to-electricity converter is disclosed which includes a radioactive heat source and a thermoelectric element of relatively short overall length capable of delivering a low voltage of the order of a few tenths of a volt. Such a thermoelectric element operates at a higher efficiency than longer higher-voltage elements; for example, elements producing 6 volts. In the generation of required power, the thermoelectric element drives a solid-state converter which is controlled by input current rather than input voltage and operates efficiently for a high signal-plus-noise to signal ratio of current. The solid-state converter has the voltage gain necessary to deliver the required voltage at the low input of the thermoelectric element

  19. The Future of Electricity Resource Planning

    Energy Technology Data Exchange (ETDEWEB)

    Kahrl, Fredrich [Energy and Environmental Economics, Inc., San Francisco, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lavin, Luke [Energy and Environmental Economics, Inc., San Francisco, CA (United States); Ryan, Nancy [Energy and Environmental Economics, Inc., San Francisco, CA (United States); Olsen, Arne [Energy and Environmental Economics, Inc., San Francisco, CA (United States); Schwartz, Lisa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-09-14

    Electricity resource planning is the process of identifying longer-term investments to meet electricity reliability requirements and public policy goals at a reasonable cost. Resource planning processes provide a forum for regulators, electric utilities, and electricity industry stakeholders to evaluate the economic, environmental, and social benefits and costs of different investment options. By facilitating a discussion on future goals, challenges and strategies, resource planning processes often play an important role in shaping utility business decisions. Resource planning emerged more than three decades ago in an era of transition, where declining electricity demand and rising costs spurred fundamental changes in electricity industry regulation and structure. Despite significant changes in the industry, resource planning continues to play an important role in supporting investment decision making. Over the next two decades, the electricity industry will again undergo a period of transition, driven by technological change, shifting customer preferences and public policy goals. This transition will bring about a gradual paradigm shift in resource planning, requiring changes in scope, approaches and methods. Even as it changes, resource planning will continue to be a central feature of the electricity industry. Its functions — ensuring the reliability of high voltage (“bulk”) power systems, enabling oversight of regulated utilities and facilitating low-cost compliance with public policy goals — are likely to grow in importance as the electricity industry enters a new period of technological, economic and regulatory change. This report examines the future of electricity resource planning in the context of a changing electricity industry. The report examines emerging issues and evolving practices in five key areas that will shape the future of resource planning: (1) central-scale generation, (2) distributed generation, (3) demand-side resources, (4

  20. Solar thermal electricity generation

    Science.gov (United States)

    Gasemagha, Khairy Ramadan

    1993-01-01

    This report presents the results of modeling the thermal performance and economic feasibility of large (utility scale) and small solar thermal power plants for electricity generation. A number of solar concepts for power systems applications have been investigated. Each concept has been analyzed over a range of plant power ratings from 1 MW(sub e) to 300 MW(sub e) and over a range of capacity factors from a no-storage case (capacity factor of about 0.25 to 0.30) up to intermediate load capacity factors in the range of 0.46 to 0.60. The solar plant's economic viability is investigated by examining the effect of various parameters on the plant costs (both capital and O & M) and the levelized energy costs (LEC). The cost components are reported in six categories: collectors, energy transport, energy storage, energy conversion, balance of plant, and indirect/contingency costs. Concentrator and receiver costs are included in the collector category. Thermal and electric energy transport costs are included in the energy transport category. Costs for the thermal or electric storage are included in the energy storage category; energy conversion costs are included in the energy conversion category. The balance of plant cost category comprises the structures, land, service facilities, power conditioning, instrumentation and controls, and spare part costs. The indirect/contingency category consists of the indirect construction and the contingency costs. The concepts included in the study are (1) molten salt cavity central receiver with salt storage (PFCR/R-C-Salt); (2) molten salt external central receiver with salt storage (PFCR/R-E-Salt); (3) sodium external central receiver with sodium storage (PFCR/RE-Na); (4) sodium external central receiver with salt storage (PFCR/R-E-Na/Salt); (5) water/steam external central receiver with oil/rock storage (PFCR/R-E-W/S); (6) parabolic dish with stirling engine conversion and lead acid battery storage (PFDR/SLAB); (7) parabolic dish

  1. Gas turbine electric generator

    International Nuclear Information System (INIS)

    Nemoto, Masaaki; Yuhara, Tetsuo.

    1993-01-01

    When troubles are caused to a boundary of a gas turbine electric generator, there is a danger that water as an operation medium for secondary circuits leaks to primary circuits, to stop a plant and the plant itself can not resume. Then in the present invention, helium gases are used as the operation medium not only for the primary circuits but also for the secondary circuits, to provide so-called a direct cycle gas turbine system. Further, the operation media of the primary and secondary circuits are recycled by a compressor driven by a primary circuit gas turbine, and the turbine/compressor is supported by helium gas bearings. Then, problems of leakage of oil and water from the bearings or the secondary circuits can be solved, further, the cooling device in the secondary circuit is constituted as a triple-walled tube structure by way of helium gas, to prevent direct leakage of coolants into the reactor core even if cracks are formed to pipes. (N.H.)

  2. Heat and electricity generating methods

    International Nuclear Information System (INIS)

    Buter, J.

    1977-01-01

    A short synopsis on the actual methods of heating of lodgings and of industrial heat generation is given. Electricity can be generated in steam cycles heated by burning of fossil fuels or by nuclear energy. A valuable contribution to the electricity economy is produced in the hydroelectric power plants. Besides these classical methods, also the different procedures of direct electricity generation are treated: thermoelectric, thermionic, magnetohydrodynamic power sources, solar and fuel cells. (orig.) [de

  3. Alternative solutions for electricity generation

    International Nuclear Information System (INIS)

    Kuenstle, K.

    1976-01-01

    Ten illustrations - mainly comparitive ones - dealing with the possibilities of an economical energy conversion, in particular electricity generation, in the FRG are explained and commented upon. (UA) [de

  4. Power and the future generation

    International Nuclear Information System (INIS)

    Rummery, T.E.

    1994-01-01

    In this keynote address, the author, who was acting president of AECL at the time of the conference, emphasizes the importance of nuclear energy to Canada, and its future importance to the developing countries. In 1992, nuclear energy supplied 15% of Canada's electricity, employed 30,000 people in Canada, created at least 10,000 jobs in other sectors, generated federal tax revenues of C$700 million, and by supplanting coal and gas imports saved about C$1 billion. Export sales prospects in China, Korea, Turkey, the Philippines, Indonesia and Thailand are indicated. AECL is presently undergoing reorganization for greater efficiency. A public opinion poll indicated about 70% Canadian public support for nuclear energy

  5. Risks from electricity generation systems in the far future. Proceedings of a technical committee meeting on approaches for estimating and comparing risks from energy systems in the far future. Working material

    International Nuclear Information System (INIS)

    1998-01-01

    Comparative risk assessment of the health and environmental impacts of electricity generation systems can be used for providing information for decisions concerning choice of electricity generation systems and regulation of the systems. Since the beginning of 1990s, there have been several major studies of comparative risk assessment that have advanced the methodology and knowledge for the assessment of health and environmental impacts of electricity production systems. In those studies, many methodological issues were identified, and it was found that one of the major issues that influenced the results was the time period included in the risk assessment. In the results of recent studies, the impacts for long time periods are influential because of the accumulation of the impacts for more than 100 years and the large uncertainties in the estimations. Examples of such long term impacts are those from global climate change and potential impacts from radionuclides ad non-radioactive pollutants originating from nuclear and other electricity generation systems. It is generally expected that the estimates for longer term impacts have greater uncertainty. In order to enhance the comparative risk studies and the application of the results, the methodology and key issues for estimating the impacts for future :generations should be investigated, and approaches for the assessments should be established. In this connection, the IAEA Technical Committee Meeting TCM on Approaches for Estimating and Comparing Risks from Energy Systems in the Far Future was held at the IAEA Headquarters in Vienna, Austria, from 6 to 10 October 1997. This material contains the proceedings of the TCM held in October 1997, and the latest draft of the technical report, Long-Term Risks from Electricity Generation Systems

  6. Primer on electricity futures and other derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Stoft, S.; Belden, T.; Goldman, C.; Pickle, S.

    1998-01-01

    Increased competition in bulk power and retail electricity markets is likely to lower electricity prices, but will also result in greater price volatility as the industry moves away from administratively determined, cost-based rates and encourages market-driven prices. Price volatility introduces new risks for generators, consumers, and marketers. Electricity futures and other derivatives can help each of these market participants manage, or hedge, price risks in a competitive electricity market. Futures contracts are legally binding and negotiable contracts that call for the future delivery of a commodity. In most cases, physical delivery does not take place, and the futures contract is closed by buying or selling a futures contract on or near the delivery date. Other electric rate derivatives include options, price swaps, basis swaps, and forward contracts. This report is intended as a primer for public utility commissioners and their staff on futures and other financial instruments used to manage price risks. The report also explores some of the difficult choices facing regulators as they attempt to develop policies in this area.

  7. Primer on electricity futures and other derivatives

    International Nuclear Information System (INIS)

    Stoft, S.; Belden, T.; Goldman, C.; Pickle, S.

    1998-01-01

    Increased competition in bulk power and retail electricity markets is likely to lower electricity prices, but will also result in greater price volatility as the industry moves away from administratively determined, cost-based rates and encourages market-driven prices. Price volatility introduces new risks for generators, consumers, and marketers. Electricity futures and other derivatives can help each of these market participants manage, or hedge, price risks in a competitive electricity market. Futures contracts are legally binding and negotiable contracts that call for the future delivery of a commodity. In most cases, physical delivery does not take place, and the futures contract is closed by buying or selling a futures contract on or near the delivery date. Other electric rate derivatives include options, price swaps, basis swaps, and forward contracts. This report is intended as a primer for public utility commissioners and their staff on futures and other financial instruments used to manage price risks. The report also explores some of the difficult choices facing regulators as they attempt to develop policies in this area

  8. The NYMEX electricity futures contract

    International Nuclear Information System (INIS)

    Palmer-Huggins, D.

    1998-01-01

    Members of the New York Mercantile Exchange (NYMEX) include bankers, industry (such as refiners, producers, and electricity marketers) brokerage houses, and individuals. NYMEX is the largest physical commodity futures exchange in the world. The primary economic role of the commodity exchange industry was discussed, with special emphasis on open interest, volume, and liquidity. Hedge dynamics were also reviewed. A hedge was described as a financial instrument used to lock in prices, costs, and profit margins. Futures contracts in general, and electricity futures contracts in particular were defined ('a firm commitment to deliver or to receive a specified quantity or grade of commodity at a specific location within a designated month'). Results expected from hedging, - cost control, predictable margins, securing a certain market share, price stabilization - , the nature of options trading, and its benefits were also reviewed. 1 tab., 4 figs

  9. The future of fission-electric power

    International Nuclear Information System (INIS)

    Morowski, J.V.

    1983-06-01

    Future worldwide electricity supply needs dictate the necessity of maintaining a sound capability for electricity and electric power generating facilities, including nuclear, as viable export commodities. A survey of fission-power plant types and the status of worldwide nuclear electric power illustrates the primary emphasis on LWR's and HWR's as two leading types in the export market. This survey examines the factors affecting the market prospects for the next five to fifteen years and provides a discussion on some possible improvements to current market circumstances. A comparative description is provided for some of the types of LWR and CANDU characteristics such as quantities, schedules, constructability factors, and equipment and system. Important factors in the selection process for future nuclear power plants are discussed. Some factors included are seismic design requirements; plant design description and possible site layout; plant protection, control and instrumentation; thermal cycle design and arrangement; and special construction and rigging requirements

  10. Geothermal electricity generation

    International Nuclear Information System (INIS)

    Eliasson, E.T.

    1991-01-01

    Geothermal conversion, as discussed here, is the conversion of the heat bound within the topmost three kilometres of the upper crust of the earth into useful energy, principally electricity. The characteristics of a geothermal reservoir and its individual technical features are highly site-specific. Applications therefore must be designed to match the specific geothermal reservoir. An estimate of the electric energy potential world-wide made by the Electric Power Research Institute (United States) in 1978 and based on sustaining a continuous 30-year operation is given in the box at the right for comparison purposes only. 8 refs, 5 figs

  11. The Future of Low-Carbon Electricity

    Energy Technology Data Exchange (ETDEWEB)

    Greenblatt, Jeffery B. [Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720,; Brown, Nicholas R. [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, Pennsylvania 16802; Slaybaugh, Rachel [Department of Nuclear Engineering, University of California, Berkeley, California 94720; Wilks, Theresa [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Stewart, Emma [Lawrence Livermore National Laboratory, Livermore, California 94550; McCoy, Sean T. [Global Security, E Program, Lawrence Livermore National Laboratory, Livermore, California 94550

    2017-10-17

    We review future global demand for electricity and major technologies positioned to supply it with minimal greenhouse gas (GHG) emissions: renewables (wind, solar, water, geothermal, and biomass), nuclear fission, and fossil power with CO2 capture and sequestration. We discuss two breakthrough technologies (space solar power and nuclear fusion) as exciting but uncertain additional options for low-net GHG emissions (i.e., low-carbon) electricity generation. In addition, we discuss grid integration technologies (monitoring and forecasting of transmission and distribution systems, demand-side load management, energy storage, and load balancing with low-carbon fuel substitutes). For each topic, recent historical trends and future prospects are reviewed, along with technical challenges, costs, and other issues as appropriate. Although no technology represents an ideal solution, their strengths can be enhanced by deployment in combination, along with grid integration that forms a critical set of enabling technologies to assure a reliable and robust future low-carbon electricity system.

  12. Gas in electricity generation [In New Zealand

    International Nuclear Information System (INIS)

    Devine, K.

    1995-01-01

    Gas is New Zealand's major thermal fuel for electricity generation. This paper describes what influences the volumes of gas burnt by ECNZ, and forecasts future gas demands for electricity generation. It also reviews the uncertainties associated with these forecasts and likely competition in building new electricity generating stations and outlines the strategy now being formulated to accommodate them. Because ECNZ's generation system is hydro-based, relatively small rapid changes in hydrological conditions can significantly affect the amount of gas used. This situation will change over time with major increases in thermal generation likely to be needed over the next 20 years. However, there are considerable uncertainties on gas supply and electricity demand levels in the long run, which will complicate investment and fuel decisions. (Author)

  13. Method for protecting an electric generator

    Science.gov (United States)

    Kuehnle, Barry W.; Roberts, Jeffrey B.; Folkers, Ralph W.

    2008-11-18

    A method for protecting an electrical generator which includes providing an electrical generator which is normally synchronously operated with an electrical power grid; providing a synchronizing signal from the electrical generator; establishing a reference signal; and electrically isolating the electrical generator from the electrical power grid if the synchronizing signal is not in phase with the reference signal.

  14. Future generations and business ethics

    NARCIS (Netherlands)

    Keijzers, G.; Jeurissen, R.J.M.

    2004-01-01

    Companies have a share in our common responsibility to future generations. Hitherto, this responsibility has been all but neglected in the business ethics literature. This paper intends to make up for that omission. A strong case for our moral responsibility to future generations can be established

  15. To future generations....

    Energy Technology Data Exchange (ETDEWEB)

    Drees, H.M. [Dutch Energy Corp., Rhenen (Netherlands)

    1997-12-31

    One of the world`s first 500 kW turbines was installed in the Netherlands in 1989. This forerunner of the current NedWind 500 kW range also represents the earliest predesign of the NedWind megawatt turbine. After the first turbines several design modifications followed, e.g. rotor diameter was increased and a tip brake was added. After that polyester blades were introduced and rotor diameter was further increased. The drive train was also redesigned. Improvements on the 500 kW turbine concept resulted in decreased cost and increased annual energy output. The 500 kW turbines serve in the first Dutch off-shore wind farm installed in 1994. This pilot project established proof that off-shore implementation is a promising option for the Dutch energy supply. Installation of megawatt turbines off-shore is currently being studied. Wind energy can substantially contribute to electricity supply. Maximum output in kilowatt-hours is the target.

  16. THERMO-ELECTRIC GENERATOR

    Science.gov (United States)

    Jordan, K.C.

    1958-07-22

    The conversion of heat energy into electrical energy by a small compact device is descrtbed. Where the heat energy is supplied by a radioactive material and thermopIIes convert the heat to electrical energy. The particular battery construction includes two insulating discs with conductive rods disposed between them to form a circular cage. In the center of the cage is disposed a cup in which the sealed radioactive source is located. Each thermopile is formed by connecting wires from two adjacent rods to a potnt on an annular ring fastened to the outside of the cup, the ring having insulation on its surface to prevent electrica1 contact with the thermopiles. One advantage of this battery construction is that the radioactive source may be inserted after the device is fabricated, reducing the radiation hazard to personnel assembling the battery.

  17. A minimum achievable PV electrical generating cost

    International Nuclear Information System (INIS)

    Sabisky, E.S.

    1996-01-01

    The role and share of photovoltaic (PV) generated electricity in our nation's future energy arsenal is primarily dependent on its future production cost. This paper provides a framework for obtaining a minimum achievable electrical generating cost (a lower bound) for fixed, flat-plate photovoltaic systems. A cost of 2.8 $cent/kWh (1990$) was derived for a plant located in Southwestern USA sunshine using a cost of money of 8%. In addition, a value of 22 $cent/Wp (1990$) was estimated as a minimum module manufacturing cost/price

  18. Future distributed generation: An operational multi-objective optimization model for integrated small scale urban electrical, thermal and gas grids

    International Nuclear Information System (INIS)

    Lo Cascio, Ermanno; Borelli, Davide; Devia, Francesco; Schenone, Corrado

    2017-01-01

    Highlights: • Multi-objective optimization model for retrofitted and integrated natural gas pressure regulation stations. • Comparison of different incentive mechanisms for recovered energy based on the characteristics of preheating process. • Control strategies comparison: performances achieved with optimal control vs. ones obtained by thermal load tracking. - Abstract: A multi-objective optimization model for urban integrated electrical, thermal and gas grids is presented. The main system consists of a retrofitted natural gas pressure regulation station where a turbo-expander allows to recover energy from the process. Here, the natural gas must be preheated in order to avoid methane hydrates. The preheating phase could be based on fossil fuels, renewable or on a thermal mix. Depending on the system configuration, the proposed optimization model enables a proper differentiation based on how the natural gas preheating process is expected to be accomplished. This differentiation is addressed by weighting the electricity produced by the turbo-expander and linking it to proper remuneration tariffs. The effectiveness of the model has been tested on an existing plant located in the city of Genoa. Here, the thermal energy is provided by means of two redundant gas-fired boilers and a cogeneration unit. Furthermore, the whole system is thermally integrated with a district heating network. Numerical simulation results, obtained with the commercial proprietary software Honeywell UniSim Design Suite, have been compared with the optimal solutions achieved. The effectiveness of the model, in terms of economic and environmental performances, is finally quantified. For specific conditions, the model allows achieving an operational costs reduction of about 17% with the respect to thermal-load-tracking control logic.

  19. Environmental impacts of electricity generation at global, regional and national scales in 1980–2011: What can we learn for future energy planning?

    DEFF Research Database (Denmark)

    Laurent, Alexis; Espinosa Martinez, Nieves

    2015-01-01

    such changes entailed reduced or increased environmental impacts? Are there any identifiable patterns that could serve for steering future energy planning? To address these questions, we applied life cycle assessment to quantify a whole spectrum of environmental impacts caused by electricity generation in 199...... countries for the period 1980– 2011, with national differentiation of energy sources and, wherever possible, technology efficiencies. The results show that (i) environmental impact burden-shifting has occurred in the past for several countries as a result of national policies, (ii) all environmental impacts...... environmental impacts associated with foreseen energy systems when identifying the most sustainable energy pathways. We provide recommendations on the use of life cycle assessment for such purposes with a strong focus on application at the country level so that it can directly support national energy policy-making....

  20. Heat operated cryogenic electrical generator

    International Nuclear Information System (INIS)

    Fletcher, J.C.; Wang, T.C.; Saffren, M.M.; Elleman, D.D.

    1975-01-01

    An electrical generator useful for providing electrical power in deep space, is disclosed. The subject electrical generator utilizes the unusual hydrodynamic property exhibited by liquid helium as it is converted to and from a superfluid state to cause opposite directions of rotary motion for a rotor cell thereof. The physical motion of said rotor cell is employed to move a magnetic field provided by a charged superconductive coil mounted on the exterior of said cell. An electrical conductor is placed in surrounding proximity to said cell to interact with the moving magnetic field provided by the superconductive coil and thereby generate electrical energy. A heat control arrangement is provided for the purpose of causing the liquid helium to be partially converted to and from a superfluid state by being cooled and heated, respectively. (U.S.)

  1. The electric power generation in Mexico and its environmental impacts: Past, present and future; La generacion electrica en Mexico y sus impactos ambientales: Pasado, presente y futuro

    Energy Technology Data Exchange (ETDEWEB)

    Quintanilla Martinez, Juan [Programa Universitario de Energia (PUE), Universidad Nacional Autonoma de Mexico (UNAM), Mexico, D. F. (Mexico)

    1997-12-31

    The purpose of this paper is to analyze the historical evolution, past and present of the installed capacity and of the electric power generation, as well as the fuel consumption and the associated green-house gases emission. Also, under the technique of economic scenarios and future towns (in short and mediate terms) the potential needs of installed capacity, generation, mix and fuel consumption and associated green gases emissions is analyzed. Later on a comment is made on the energy implications of the substitution of fuels policies and the environmental Standards. Finally, a series of comments is established on the possible technological directions for the sector, from the stand point of generation efficiency and its effects in the reduction of emissions [Espanol] El proposito del presente trabajo es analizar la evolucion historica, pasada y presente, de la capacidad instalada y de la generacion electrica, asi como el consumo de combustibles y las emisiones de gases de invernadero asociadas. Tambien se analiza bajo la tecnica de escenarios economicos y poblaciones a futuro (en el corto y mediano plazo) las posibles necesidades de capacidad instalada, generacion, mezcla y consumo de combustibles y emisiones de gases de invernadero asociadas. Posteriormente se comenta sobre las implicaciones energeticas de las politicas de sustitucion de combustibles y estandares ambientales. Por ultimo se establecen una serie de comentarios sobre las posibles direcciones tecnologicas para el sector, desde el punto de vista de la eficiencia de generacion y sus efectos en la reduccion de las emisiones

  2. The future of electric power supply

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    In this interview with a prominent expert of the electric power industry, problems of assuring electricity supply, the economics of nuclear electricity generation, the supply structure, and cogeneration are discussed. (UA) [de

  3. Energy demand of electricity generation

    International Nuclear Information System (INIS)

    Drahny, M.

    1992-01-01

    The complex energy balance method was applied to selected electricity generation subsystems. The hydroelectric, brown coal based, and nuclear based subsystems are defined. The complex energy balance basically consists in identifying the mainstream and side-stream energy inputs and outputs for both the individual components and the entire electricity generation subsystem considered. Relationships for the complete energy balance calculation for the i-th component of the subsystem are given, and its side-stream energy inputs and outputs are defined. (J.B.). 4 figs., 4 refs

  4. Electricity generation using electromagnetic radiation

    Science.gov (United States)

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2017-08-22

    In general, in one aspect, the invention relates to a system to create vapor for generating electric power. The system includes a vessel comprising a fluid and a complex and a turbine. The vessel of the system is configured to concentrate EM radiation received from an EM radiation source. The vessel of the system is further configured to apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat. The vessel of the system is also configured to transform, using the heat generated by the complex, the fluid to vapor. The vessel of the system is further configured to sending the vapor to a turbine. The turbine of the system is configured to receive, from the vessel, the vapor used to generate the electric power.

  5. An economic and environmental assessment of future electricity generation mixes in Japan – an assessment using the E3MG macro-econometric model

    International Nuclear Information System (INIS)

    Pollitt, Hector; Park, Seung-Joon; Lee, Soocheol; Ueta, Kazuhiro

    2014-01-01

    In this paper we consider future options for Japanese energy and climate policy. We assess the economic and environmental impacts of changing the share of electricity generated by nuclear power and varying the mid-term GHG targets. The quantitative approach we use is based on the global macro-econometric E3MG model. Our analysis reveals that the cost of denuclearisation to Japanese GDP is close to zero, and for employment the impact is slightly positive. Our results also show a double-dividend effect if (revenue-neutral) carbon taxes are levied in order to meet the GHG reduction targets, and this double-dividend effect is largest in the scenarios without nuclear power. However, our analysis suggests that a very high carbon tax rate would have to be imposed in order to achieve a 25% reduction in GHG emissions in 2020 (compared to 1990 levels) while simultaneously phasing out nuclear power. - Highlights: • We modelled 12 scenarios for Japan with different shares for nuclear power and different emission targets. • The results showed that phasing out nuclear power would have at most a very small reduction in GDP. • If a carbon tax with revenue recycling is applied, there could be an increase in GDP. • But the carbon price required to meet Japan's 25% emission reduction target is very high if the share of nuclear power is reduced

  6. Projected costs of generating electricity

    International Nuclear Information System (INIS)

    2005-01-01

    Previous editions of Projected Costs of Generating Electricity have served as the reference in this field for energy policy makers, electricity system analysts and energy economists. The study is particularly timely in the light of current discussions of energy policy in many countries. The joint IEA/NEA study provides generation cost estimates for over a hundred power plants that use a variety of fuels and technologies. These include coal-fired, gas-fired, nuclear, hydro, solar and wind plants. Cost estimates are also given for combined heat and power plants that use coal, gas and combustible renewables. Data and information for this study were provided by experts from 19 OECD member countries and 3 non-member countries. The power plants examined in the study use technologies available today and considered by participating countries as candidates for commissioning by 2010-2015 or earlier. Investors and other decision makers will also need to take the full range of other factors into account (such as security of supply, risks and carbon emissions) when selecting an electricity generation technology. The study shows that the competitiveness of alternative generation sources and technologies ultimately depends on many parameters: there is no clear-cut ''winner''. Major issues related to generation costs addressed in the report include: descriptions of state-of-the-art generation technologies; the methodologies for incorporating risk in cost assessments; the impact of carbon emission trading; and how to integrate wind power into the electricity grid. An appendix to the report provides country statements on generation technologies and costs. Previous studies in the series were published in 1983, 1986, 1990, 1993 and 1998. (author)

  7. Renewable Electricity Futures Study. Volume 3. End-Use Electricity Demand

    Energy Technology Data Exchange (ETDEWEB)

    Hostick, Donna [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Belzer, David B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hadley, Stanton W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Markel, Tony [National Renewable Energy Lab. (NREL), Golden, CO (United States); Marnay, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kintner-Meyer, Michael [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  8. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems. Operations and Transmission Planning

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ela, Erik [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hein, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schneider, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brinkman, Gregory [National Renewable Energy Lab. (NREL), Golden, CO (United States); Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  9. Centralized electricity generation in Africa

    International Nuclear Information System (INIS)

    Jaujay, J.

    2000-01-01

    In Africa, over 90 per cent of the suburban and rural populations do not have access to electricity, even if it represents the engine and consequence of change on the continent. A global approach represents the best way to meet the extensive needs of the continent. The author briefly reviewed the recent projects implemented in Africa to meet the increasing demand. Diesel generators were used to satisfy demand in small electrical sectors (less than 1000 MW), hydroelectricity or combustion turbines were used for medium electrical sectors (1000 to 5000 MW). A discussion of the technologies followed, touching on diesel electric stations and combustion turbines. Both methods meet environmental standards as they apply to emission control and noise control. The choice between the two technologies must be based on required unit power, site isolation, access to gas, and the cost of available combustibles. Hydroelectric power has great potential in the sub-Sahara region, and the challenges faced by each project are similar: difficulty in finding the required financing, meeting the environmental constraints, and the distribution of the energy. A modular nuclear reactor project for the generation of electricity is being developed by ESKOM Enterprises, in association with the British Nuclear Fuel Limited and PECCO and progress will be closely monitored. Decision makers must ensure that appropriate decisions are made in a reasonable time frame to allow sufficient time to develop a project to implementation. Demand requirements must be examined closely, technology adequately selected in order to come up with a financing plan. 4 tabs

  10. Electric distribution systems and embedded generation capacity

    International Nuclear Information System (INIS)

    Calderaro, V.; Galdi, V.; Piccolo, A.; Siano, P.

    2006-01-01

    The main policy issues of European States are sustainable energy supply promotion and liberalization of energy markets, which introduced market competition in electricity production and created support mechanisms to encourage renewable electricity production and consumption. As a result of liberalization, any generator, including small-scale and renewable energy based units, can sell electricity on the free market. In order to meet future sustainability targets, connection of a higher number of Distributed Generation (DG) units to the electrical power system is expected, requiring changes in the design and operation of distribution electricity systems, as well as changes in electricity network regulation. In order to assist distribution system operators in planning and managing DG connections and in maximizing DG penetration and renewable sources exploitation, this paper proposed a reconfiguration methodology based on a Genetic Algorithm (GA), that was tested on a 70-bus system with DG units. The simulation results confirmed that the methodology represents a suitable tool for distribution system operators when dealing with DG capacity expansion and power loss issues, providing information regarding the potential penetration network-wide and allowing maximum exploitation of renewable generation. 35 refs., 4 tabs., 6 figs

  11. Electromechanically generating electricity with a gapped-graphene electric generator

    Science.gov (United States)

    Dressen, Donald; Golovchenko, Jene

    2015-03-01

    We demonstrate the fabrication and operation of a gapped-graphene electric generator (G-GEG) device. The G-GEG generates electricity from the mechanical oscillation of droplets of electrolytes and ionic liquids. The spontaneous adsorption of ionic species on graphene charges opposing electric double-layer capacitors (EDLCs) on each half of the device. Modulating the area of contact between the droplet and graphene leads to adsorption/desorption of ions, effectively charging/discharging each EDLC and generating a current. The flow of current supports a potential difference across the G-GEG due to the device's internal impedance. Both the magnitude and polarity of the induced current and voltage show a strong dependence on the type of ionic species used, suggesting that certain ions interact more strongly with graphene than others. We find that a simple model circuit consisting of an AC current source in series with a resistor and a time-varying capacitor accurately predicts the device's dynamic behavior. Additionally, we discuss the effect of graphene's intrinsic quantum capacitance on the G-GEG's performance and speculate on the utility of the device in the context of energy harvesting.

  12. Distributed generation: a promising future

    International Nuclear Information System (INIS)

    Webb, G.

    2001-01-01

    Distributed generation (DG) refers to the location of small-scale power generation units at, or near, the site of end-users. DG units cover a wide range of exciting technologies, such as gas engines, fuel cells and microturbines. These technologies can generate as little as 5 KW of electricity, which is sufficient for the average home, and 50 KW or more for factories. Natural gas is the logical fuel for DG . At present, most existing DG technologies (such as gas engines for cogeneration) rely on natural gas, and microturbines and fuel cells currently being developed for the industrial, commercial and residential markets are likely to be operated on natural gas. At this stage, the best prospects appears to be with existing DG technologies, especially those used for cogeneration. It is estimated that DG can reduce Australia's greenhouse gas emissions by more than 50 percent

  13. Apparatuses and methods for generating electric fields

    Science.gov (United States)

    Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L

    2013-08-06

    Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

  14. Workshop on Future Generation Grids

    CERN Document Server

    Laforenza, Domenico; Reinefeld, Alexander

    2006-01-01

    The Internet and the Web continue to have a major impact on society. By allowing us to discover and access information on a global scale, they have created entirely new businesses and brought new meaning to the term surf. In addition, however, we want processing, and increasingly, we want collaborative processing within distributed teams. This need has led to the creation of the Grid - an infrastructure that enables us to share capabilities, and integrate services and resources within and across enterprises. "Future Generation Grids" is the second in the "CoreGRID" series. This edited volume brings together contributed articles by scientists and researchers in the Grid community in an attempt to draw a clearer picture of the future generation Grids. This book also identifies some of the most challenging problems on the way to achieving the invisible Grid ideas

  15. Sustainability evaluation of decentralized electricity generation

    International Nuclear Information System (INIS)

    Karger, Cornelia R.; Hennings, Wilfried

    2009-01-01

    Decentralized power generation is gaining significance in liberalized electricity markets. An increasing decentralization of power supply is expected to make a particular contribution to climate protection. This article investigates the advantages and disadvantages of decentralized electricity generation according to the overall concept of sustainable development. On the basis of a hierarchically structured set of sustainability criteria, four future scenarios for Germany are assessed, all of which describe different concepts of electricity supply in the context of the corresponding social and economic developments. The scenarios are developed in an explorative way according to the scenario method and the sustainability criteria are established by a discursive method with societal actors. The evaluation is carried out by scientific experts. By applying an expanded analytic hierarchy process (AHP), a multicriteria evaluation is conducted that identifies dissent among the experts. The results demonstrate that decentralized electricity generation can contribute to climate protection. The extent to which it simultaneously guarantees security of supply is still a matter of controversy. However, experts agree that technical and economic boundary conditions are of major importance in this field. In the final section, the article discusses the method employed here as well as implications for future decentralized energy supply. (author)

  16. Renewable Electricity Futures Study. Volume 3: End-Use Electricity Demand

    Energy Technology Data Exchange (ETDEWEB)

    Hostick, D.; Belzer, D.B.; Hadley, S.W.; Markel, T.; Marnay, C.; Kintner-Meyer, M.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  17. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, M.; Ela, E.; Hein, J.; Schneider, T.; Brinkman, G.; Denholm, P.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  18. Electricity market design of the future

    International Nuclear Information System (INIS)

    Peek, Markus; Diels, Robert

    2016-01-01

    The transformation of the power generation system, to one in which renewable energies will form a cornerstone, will change the requirements for all market actors. To achieve the goals of the German Energiewende ('energy transition'), greater flexibility in production and consumption is of particular importance. Flexibility enables the cost-effective integration of the fluctuating actual feed-in of renewable energies. On the one hand, the technical options for reducing existing technical inflexibilities are given to a considerable extent. On the other hand, analyses of the transnational compensation effects of load and renewable energy supply (RES) feed-in show that flexibility requirements can be reduced significantly in a common electricity market. Electricity markets in which there is open technological competition are an appropriate instrument for the flexibilization of the power supply system. In the short term, the mechanisms of competitive electricity markets ensure an efficient synchronization of supply and demand. Over the medium and long term, the market creates efficient incentives to adapt the generation system and the behavior of consumers to future needs, resulting from the changes in the residual load structure. But at the same time, in recent years the occurrence of negative electricity prices in situations with significantly positive residual loads show that flexibility restraints exist. The causes of these restraints are at least partly due to the market design or the regulatory framework. On the one hand, there are barriers to market entry and, on the other hand, price signals from the electricity markets do not reach all market actors or reach them distortedly. To enable the cost effective development of the different flexibility options in an open technology competition, restraints resulting from market design and the regulatory framework (e. g. in the framework of grid charges, the market and product design of control power markets

  19. Projected Costs of Generating Electricity

    International Nuclear Information System (INIS)

    Plante, J.

    1998-01-01

    Every 3 to 4 years, the NEA undertakes a study on projected costs of generating electricity in OECD countries. This started in 1983 and the last study (1997) has just be completed. All together 5 studies were performed, the first three dealing with nuclear and coal options, while the 1992 and 1997 included also the gas option. The goal of the study is to compare, country by country, generating costs of nuclear, coal-fired and gas-fired power plants that could be commissioned in the respondent countries by 2005-2010

  20. Future electrical distribution grids: Smart Grids

    International Nuclear Information System (INIS)

    Hadjsaid, N.; Sabonnadiere, J.C.; Angelier, J.P.

    2010-01-01

    The new energy paradigm faced by distribution network represents a real scientific challenge. Thus, national and EU objectives in terms of environment and energy efficiency with resulted regulatory incentives for renewable energies, the deployment of smart meters and the need to respond to changing needs including new uses related to electric and plug-in hybrid vehicles introduce more complexity and favour the evolution towards a smarter grid. The economic interest group in Grenoble IDEA in connection with the power laboratory G2ELab at Grenoble Institute of technology, EDF and Schneider Electric are conducting research on the electrical distribution of the future in presence of distributed generation for ten years.Thus, several innovations emerged in terms of flexibility and intelligence of the distribution network. One can notice the intelligence solutions for voltage control, the tools of network optimization, the self-healing techniques, the innovative strategies for connecting distributed and intermittent generation or load control possibilities for the distributor. All these innovations are firmly in the context of intelligent networks of tomorrow 'Smart Grids'. (authors)

  1. Projected costs of electricity generation

    International Nuclear Information System (INIS)

    Cameron, R.

    2010-01-01

    This paper describes the outcomes of a study on the projected costs of generating electricity. It presents the latest data available on electricity generating costs for a wide variety of fuels and technologies, including coal, gas, nuclear, hydro, onshore and offshore wind, biomass, solar, wave and tidal. The study reaches 2 key conclusions. First, at a 5% real interest rate, nuclear energy is the most competitive solution for base-load electricity generation followed by coal-fired plants without carbon capture and natural gas-fired combined plants. It should be noted that coal with carbon capture has not reached a commercial phase. Second, at a 10% interest rate, nuclear remains the most competitive in Asia and North America but in Europe, coal without carbon capture equipment, followed by coal with carbon capture equipment, and gas-fired combined cycle turbines are overall more competitive than nuclear energy. The results highlight the paramount importance of interest rates (this dependence is a direct consequence of the nuclear energy's high capital costs) and of the carbon price. For instance if we assume a 10% interest rate and a cost of 50 dollar per tonne of CO 2 , nuclear energy would become competitive against both coal and gas. (A.C.)

  2. Power generation investment in electricity markets

    International Nuclear Information System (INIS)

    2003-01-01

    Most IEA countries are liberalizing their electricity markets, shifting the responsibility for financing new investment in power generation to private investors. No longer able to automatically pass on costs to consumers, and with future prices of electricity uncertain, investors face a much riskier environment for investment in electricity infrastructure. This report looks at how investors have responded to the need to internalize investment risk in power generation. While capital and total costs remain the parameters shaping investment choices, the value of technologies which can be installed quickly and operated flexibly is increasingly appreciated. Investors are also managing risk by greater use of contracting, by acquiring retail businesses, and through mergers with natural gas suppliers. While liberalization was supposed to limit government intervention in the electricity market, volatile electricity prices have put pressure on governments to intervene and limit such prices. This study looks at several cases of volatile prices in IEA countries' electricity markets, and finds that while market prices can be a sufficient incentive for new investment in peak capacity, government intervention into the market to limit prices may undermine such investment

  3. Electrical-Generation Scenarios for China

    Energy Technology Data Exchange (ETDEWEB)

    Kypreos, S.; Krakowski, R.A.

    2002-03-01

    The China Energy Technology Program (CETP) used both optimizing and simulation energy- economic-environmental (E3) models to assess tradeoffs in the electricity-generation sector for a range of fuel, transport, generation, and distribution options. The CETP is composed of a range of technical tasks or activities, including Energy Economics Modeling (EEM, optimizations), Electric Sector Simulation (ESS, simulations), Life Cycle Analyses (LCA, externalization) of energy systems, and Multi-Criteria Decision Analyses (MCDA, integration). The scope of CETP is limited to one province (Shandong), to one economic sector (electricity), and to one energy sector (electricity). This document describes the methods, approaches, limitations, sample results, and future/needed work for the EEM ( optimization-based modeling) task that supports the overall goal of CETP. An important tool used by the EEM task is based on a Linear Programming (LP) optimization model that considers 17 electricity-generation technologies utilizing 14 fuel forms (type, composition, source) in a 7-region transportation model of China's electricity demand and supply system over the period 2000-2030; Shandong is one of the seven regions modeled. The China Regional Electricity Trade Model (CRETM) is used to examine a set of energy-environment-economy E3-driven scenarios to quantify related policy implications. The development of electricity production mixes that are optimized under realistically E3 constraints is determined through regional demands for electricity that respond to exogenous assumptions on income (GDP) and electricity prices through respective time-dependent elasticities. Constraints are applied to fuel prices, transportation limits, resource availability, introduction (penetration) rates of specific technology, and (where applicable) to local, regional, and countrywide emission rates of CO{sub 2}, SO{sub 2} and NO{sub x}. Importantly, future inter- regional energy flows are optimized with

  4. Mini-biomass electric generation

    Energy Technology Data Exchange (ETDEWEB)

    Elliot, G. [International Applied Engineering, Inc., Atlanta, GA (United States)

    1997-12-01

    Awareness of the living standards achieved by others has resulted in a Russian population which is yearning for a higher standard of living. Such a situation demands access to affordable electricity in remote areas. Remote energy requirements creates the need to transport power or fossil fuels over long distances. Application of local renewable energy resources could eliminate the need for and costs of long distance power supply. Vast forest resources spread over most of Russia make biomass an ideal renewable energy candidate for many off-grid villages. The primary objective for this preliminary evaluation is to examine the economic feasibility of replacing distillate and gasoline fuels with local waste biomass as the primary fuel for village energy in outlying regions of Russia. Approximately 20 million people live in regions where Russia`s Unified Electric System grid does not penetrate. Most of these people are connected to smaller independent power grids, but approximately 8 million Russians live in off-grid villages and small towns served by stand-alone generation systems using either diesel fuel or gasoline. The off-grid villages depend on expensive distillate fuels and gasoline for combustion in small boilers and engines. These fuels are used for both electricity generation and district heating. Typically, diesel generator systems with a capacity of up to 1 MW serve a collective farm, settlement and their rural enterprises (there are an estimated 10,000 such systems in Russia). Smaller gasoline-fueled generator systems with capacities in the range of 0.5 - 5 kW serve smaller farms or rural enterprises (there are about 60,000 such systems in Russia).

  5. Electricity generation in a sustainable development perspective

    International Nuclear Information System (INIS)

    Venkat Raj, V.; Saradhi, I.V.

    2003-01-01

    The increasing impact of energy technologies on the environment and possible effects on future generations has been a cause of concern in recent years. This has resulted in an awareness regarding the need for viewing the role of electricity production by different methods, using different fuels/sources, in a sustainable development perspective, which calls for the needs of the present generation to be met without compromising the ability of future generations to meet their own needs. This papers deals with some of the relevant issues in this regard. The world and the Indian energy scenarios are presented, followed by the data on the consequent carbon-dioxide emissions. The green house effect and the possible means of carbon sequestration are explained briefly. The important role nuclear energy can play in a sustainable development perspective is discussed, considering the various aspects such as resources, safety, radiological protection, cost externalities and environment impact. (author)

  6. PV solar electricity: status and future

    Science.gov (United States)

    Hoffmann, Winfried

    2006-04-01

    Within the four main market segments of PV solar electricity there are already three areas competitive today. These are off-grid industrial and rural as well as consumer applications. The overall growth within the past 8 years was almost 40 % p.a. with a "normal" growth of about 18 % p.a. for the first three market segments whereas the grid connected market increased with an astonishing 63 % p.a. The different growth rates catapulted the contribution of grid connected systems in relation to the total market from about one quarter 6 years ago towards more than three quarters today. The reason for this development is basically due to industry-politically induced market support programs in the aforementioned countries. It is quite important to outline under which boundary conditions grid connected systems will be competitive without support programs like the feed in tariff system in Germany, Spain and some more to come in Europe as well as investment subsidies in Japan, US and some other countries. It will be shown that in a more and more liberalized utility market worldwide electricity produced by PV solar electricity systems will be able to compete with their generating cost against peak power prices from utilities. The point of time for this competitiveness is mainly determined by the following facts: 1. Price decrease for PV solar electricity systems leading to an equivalent decrease in the generated cost for PV produced kWh. 2. Development of a truly liberalized electricity market. 3. Degree of irradiation between times of peak power demand and delivery of PV electricity. The first topic is discussed using price experience curves. Some explanations will be given to correlate the qualitative number of 20 % price decrease for doubling cumulative worldwide sales derived from the historic price experience curve with a more quantitative analysis based on our EPIA-Roadmap (productivity increase and ongoing improvements for existing technologies as well as development

  7. Visions of the Future: Hybrid Electric Aircraft Propulsion

    Science.gov (United States)

    Bowman, Cheryl L.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is investing continually in improving civil aviation. Hybridization of aircraft propulsion is one aspect of a technology suite which will transform future aircraft. In this context, hybrid propulsion is considered a combination of traditional gas turbine propulsion and electric drive enabled propulsion. This technology suite includes elements of propulsion and airframe integration, parallel hybrid shaft power, turbo-electric generation, electric drive systems, component development, materials development and system integration at multiple levels.

  8. Biomass electric technologies: Status and future development

    International Nuclear Information System (INIS)

    Bain, R.L.; Overend, R.P.

    1992-01-01

    At the present time, there axe approximately 6 gigawatts (GWe) of biomass-based, grid-connected electrical generation capacity in the United States. This capacity is primarily combustion-driven, steam-turbine technology, with the great majority of the plants of a 5-50 megawatt (MW) size and characterized by heat rates of 14,770-17,935 gigajoules per kilowatt-hour (GJ/kWh) (14,000-17,000 Btu/kWh or 18%-24% efficiency), and with installed capital costs of $1,300-$1,500/kW. Cost of electricity for existing plants is in the $0.065-$O.08/kWh range. Feedstocks are mainly waste materials; wood-fired systems account for 88% of the total biomass capacity, followed by agricultural waste (3%), landfill gas (8%), and anaerobic digesters (1%). A significant amount of remote, non-grid-connected, wood-fired capacity also exists in the paper and wood products industry. This chapter discusses biomass power technology status and presents the strategy for the U.S. Department of Energy (DOE) Biomass Power Program for advancing biomass electric technologies to 18 GWe by the year 2010, and to greater than 100 GWe by the year 2030. Future generation systems will be characterized by process efficiencies in the 35%-40% range, by installed capital costs of $770-$900/kW, by a cost of electricity in the $0.04-$O.05/kWh range, and by the use of dedicated fuel-supply systems. Technology options such as integrated gasification/gas-turbine systems, integrated pyrolysis/gas-turbine systems, and innovative direct-combustion systems are discussed, including present status and potential growth. This chapter also presents discussions of the U.S. utility sector and the role of biomass-based systems within the industry, the potential advantages of biomass in comparison to coal, and the potential environmental impact of biomass-based electricity generation

  9. Model for future waste generation

    Energy Technology Data Exchange (ETDEWEB)

    Sundqvist, Jan-Olov; Stenmarck, Aasa; Ekvall, Tomas

    2010-06-15

    The research presented in this report is part of the effort to estimate future Swedish waste quantities in the research programme Towards Sustainable Waste Management. More specifically, we estimate future waste coefficients that are designed to be fed into EMEC, which describes the Swedish economy in terms of 26 industrial sectors, a public sector, and households. Production in the model of industry and public sector requires input of labour, capital, energy, and other commodities. With waste-intensity coefficients added to each production parameter in each sector, EMEC can calculate the future waste quantities generated in different economic scenarios. To produce the waste-intensity coefficients, we make a survey of the current Swedish waste statistics. For each waste category from each sector we estimate whether the quantity depends primarily on the production in the sector, on the inputs of commodities, on the depreciation of capital goods, or on the size of the workforce in the sector. We calculate current waste-intensity coefficients by dividing the waste quantities by the parameter(s) to which they are assigned. We also present five different scenarios to describe how the waste intensity can develop until the year 2030. As far as possible and when deemed to be relevant, we have set the industrial waste generation to depend on the use of a commodity or an energy carrier. The quantity of spent vehicles and most equipment is set to depend on the depreciation of capital goods. Some wastes have been allocated to the staff, for example household waste from business. The quantities of wastes from households have a similar approach where every waste category is assigned to a combination of 26 different commodities

  10. Constructing the Colombian electric future

    International Nuclear Information System (INIS)

    Perez Ceballos, Carlos Arturo

    1997-01-01

    The paper tries about the investments that foreigners and nationals are carrying out in Colombia in the electric industry where a number every time more growing is more interested. It intends to bend the capacity installed for the year 2010 and to allow that the private sector develops 46 projects to arrive to a new capacity of 20.000 MW

  11. Electric vehicle charge patterns and the electricity generation mix and competitiveness of next generation vehicles

    International Nuclear Information System (INIS)

    Masuta, Taisuke; Murata, Akinobu; Endo, Eiichi

    2014-01-01

    Highlights: • The energy system of whole of Japan is analyzed in this study. • An advanced model based on MARKAL is used for the energy system analysis. • The impact of charge patterns of EVs on electricity generation mix is evaluated. • Technology competitiveness of the next generation vehicles is also evaluated. - Abstract: The nuclear accident of 2011 brought about a reconsideration of the future electricity generation mix of power systems in Japan. A debate on whether to phase out nuclear power plants and replace them with renewable energy sources is taking place. Demand-side management becomes increasingly important in future Japanese power systems with a large-scale integration of renewable energy sources. This paper considers the charge control of electric vehicles (EVs) through demand-side management. There have been many studies of the control or operation methods of EVs known as vehicle-to-grid (V2G), and it is important to evaluate both their short-term and long-term operation. In this study, we employ energy system to evaluate the impact of the charge patterns of EVs on both the electricity generation mix and the technology competitiveness of the next generation vehicles. An advanced energy system model based on Market Allocation (MARKAL) is used to consider power system control in detail

  12. Solar energy thermally powered electrical generating system

    Science.gov (United States)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  13. Swiss electricity production into the future

    International Nuclear Information System (INIS)

    Steinmann, Walter

    2008-01-01

    In January 2007 the Swiss Federal Office of Energy's work on energy perspectives up until 2035 were concluded and presented. The results form the basis for political debate on the future direction of Switzerland's energy and climate policies. The energy perspectives point to an increase in demand for electricity in Switzerland by 2035 of around 20% and a deficit of roughly 17 billion kWh if no extra measures are taken. This corresponds to twice the annual production of a Swiss nuclear power station. This development and the unharnessed potential in the areas of efficiency and renewable energies prompted Switzerland's Federal Council to decide on a reorientation of its energy policy in 2007. This is based on four pillars: 1. Improved energy efficiency; 2. Promotion of renewable energy; 3. Targeted extension and construction of large-scale power stations; 4. Intensification of foreign energy policy, particularly in terms of cooperation with the EU. 2008 has got off to a strong start in terms of energy policy - the CO 2 tax on fuels has been introduced and the first package of the new Energy Supply Act (StromVG) has entered into force. The new Electricity Supply Act creates the necessary conditions for a progressive opening of Switzerland's electricity market. From 2009 some 50,000 large customers with an annual electricity consumption of over 100 megawatt hours will be able to benefit from this partial opening and be free to choose their power suppliers. But all other power consumers will benefit right from the start too because their electricity suppliers will also be able to buy in their electricity from the free market and pass on any price savings to their customers. Furthermore, the Electricity Supply Act delivers a clear legal framework for cross-border trade in electricity. In actual fact the opening of the electricity market is already well advanced around Switzerland. Liberalisation also results in cost transparency: As the opening of the electricity market

  14. CO2 emissions of nuclear electricity generation

    International Nuclear Information System (INIS)

    Wissel, Steffen; Mayer-Spohn, Oliver; Fahl, Ulrich; Blesl, Markus; Voss, Alfred

    2008-01-01

    A survey of LCA studies on nuclear electricity generation revealed life cycle CO 2 emissions ranging between 3 g/kWhe to 60 g/kWhe and above. Firstly, this paper points out the discrepancies in studies by estimating the CO 2 emissions of nuclear power generation. Secondly, the paper sets out to provide critical review of future developments of the fuel cycle for light water reactors and illustrates the impact of uncertainties on the specific CO 2 emissions of nuclear electricity generation. Each step in the fuel cycle will be considered and with regard to the CO 2 emissions analysed. Thereby different assumptions and uncertainty levels are determined for the nuclear fuel cycle. With the impacts of low uranium ore grades for mining and milling as well as higher burn-up rates future fuel characteristics are considered. Sensitivity analyses are performed for all fuel processing steps, for different technical specifications of light water reactors as well as for further external frame conditions. (authors)

  15. Nuclear Power's Role in Generating Electricity

    National Research Council Canada - National Science Library

    Falk, Justin

    2008-01-01

    This study assesses the commercial viability of advanced nuclear technology as a means of meeting future demand for electricity by comparing the costs of producing electricity from different sources...

  16. Scenario analysis on future electricity supply and demand in Japan

    International Nuclear Information System (INIS)

    Zhang, Qi; Ishihara, Keiichi N.; Mclellan, Benjamin C.; Tezuka, Tetsuo

    2012-01-01

    Under continuing policies of CO 2 emissions reduction, it is crucial to consider scenarios for Japan to realize a safe and clean future electricity system. The development plans for nuclear power and renewable energy - particularly solar and wind power - are being reconsidered in light of the Fukushima nuclear accident. To contribute to this, in the present study, three electricity supply scenarios for 2030 are proposed according to different future nuclear power development policies, and the maximum penetration of renewable energy generation is pursued. On the other side of the equation, three electricity demand scenarios are also proposed considering potential energy saving measures. The purpose of the study is to demonstrate quantitatively the technological, economic and environmental impacts of different supply policy selections and demand assumptions on future electricity systems. The scenario analysis is conducted using an input–output hour-by-hour simulation model subject to constraints from technological, economic and environmental perspectives. The obtained installed capacity mix, power generation mix, CO 2 emissions, and generation cost of the scenarios were inter-compared and analyzed. The penetration of renewable energy generation in a future electricity system in Japan, as well as its relationship with nuclear power share was uncovered. -- Highlights: ► Scenario analysis is conducted on future electricity systems under different supply policies and demand assumptions. ► Scenario analysis is conducted using a input–output hour-by-hour simulation model for real-time demand-supply balance. ► The technological, economic and environmental impacts of supply policies and demand assumptions on future electricity systems are studied. ► The maximum penetration of renewable energy generation is pursued in the scenario analysis using the hour-by-hour simulation. ► The relationship between the penetration levels of renewable energy and nuclear power

  17. Electricity of the future: a worldwide challenge

    International Nuclear Information System (INIS)

    De Ladoucette, Ph.; Chevalier, J.M.; Barbaso, F.; Becache, P.; Belmans, P.; Brottes, F.; Chevet, P.F.; Chone, F.; David, A.; Delorme, Ph.; Hadjsaid, N.; Jalabert, M.; Julliard, Y.; Kott, B.; Lenoir, J.C.; Lewiner, C.; Maillard, D.; Moisan, F.; Pelletier, Ph.; Poniatowski, L.; Rozes, St.; Rytoft, C.; Sanchez Jimenez, M.; Seyrling, G.; Vu, A.

    2010-01-01

    The increase of power consumption, the development of renewable energy sources and the emergence of new usages like the electric-powered car are as many challenges that put the reliability and the reactivity of our power grids to the test. These grids have to change to become 'intelligent' thanks to the integration of new information and communication technologies over the overall supply chain, from the energy generation to its end use by consumers. For the first time in France, the actors of this change explain their opinion about this revolution and put it in perspective with its full extent and complexity. Changing power grids to make them intelligent is first of all a technical challenge but also a society challenge: the consumer will become an actor involved in the mastery of his energy demand and a renewable energy producer capable to interact with the grid in an increasing manner. This worldwide change that we are going to be the witnesses comes up against numerous obstacles. The aim of this book is to examine the determining factors of the success of this large scale change through its technical, economical and social dimensions. It shows that the emergence of such an advanced power system cannot be possible neither without the reconciliation between some contradictory goals, nor without a strong coordination between the actors. Content: Part 1 - intelligent power networks to answer the 21. century challenges: 1 - the European and French dimension of the electric power sector; 2 - towards a carbon-free economy; 3 - a power grid facing new challenges; 4 - the pre-figuration of intelligent power grids; 5 - the deployment of intelligent (smart) grids; Part 2 - perspectives of smart grids development: 1 - the future of power networks; 2 - a new industrial era; Part 3 - the consumer's position in the deployment of future grids: 1 - changing behaviours; 2 - making the consumer a 'consum'actor'. Synthesis and conclusion. (J.S.)

  18. Cooling of superconducting electric generators by liquid helium

    International Nuclear Information System (INIS)

    Nakayama, W.; Ogata, H.

    1987-01-01

    Superconducting generators have a great potential in future electric supply systems in increasing the efficiency of generators and in enhancing the stability of power network systems. Recognition of possible advantages over gas-cooled and water-cooled generators has led research institutes and manufacturers in several countries to wage substantial research and development efforts. The authors show the electric power capacities of the test generators already built, under construction, or in the planning stage. Since earlier attempts, steady improvements in the design of generators have been made, and experience of generator operation has been accumulated

  19. Bike-powered electricity generator

    Directory of Open Access Journals (Sweden)

    ŞTEFAN MOCANU

    2015-02-01

    Full Text Available Finding new energy sources is an important challenge of our times. A lot of research focuses on identifying such sources that can also be exploited with relatively simple and efficient systems. These sources can be either new materials that can be used to generate energy, or solutions to scavenge already existing forms of energy. Part of the latter class of solutions, the system presented in this paper converts the energy consumed by many people in gyms (or even at home, during exercise into electric energy. This energy exists anyway, because people want to be healthier or to look better. Currently, this significant (in our opinion amount of energy is actually wasted and transformed into heat. Instead, in this study, a prototype scavenging system (dedicated to fitness/stationary bikes to collect and (reuse this energy is presented. Specifically, we depict the design of a low-budget system that uses existing, discrete components and is able to scavenge some of the energy spent by the biker. The experimental results show that the system is functional, but its efficiency is limited by (mechanical losses before the collection.

  20. Electric Motor-Generator for a Hybrid Electric Vehicle

    OpenAIRE

    Odvářka, Erik; Mebarki, Abdeslam; Gerada, David; Brown, Neil; Ondrůšek, Čestmír

    2009-01-01

    Several topologies of electrical machines can be used to meet requirements for application in a hybrid electric vehicle. This paper describes process of an electric motor-generator selection, considering electromagnetic, thermal and basic control design. The requested electrical machine must develop 45 kW in continuous operation at 1300 rpm with field weakening capability up to 2500 rpm. Both radial and axial flux topologies are considered as potential candidates. A family of axial flux machi...

  1. Economics of generating electricity from nuclear power

    International Nuclear Information System (INIS)

    Boadu, H.O.

    2001-01-01

    The paper reviews and compares experiences and projected future construction and electricity generation costs for nuclear and fossil fired power plants. On the basis of actual operating experience, nuclear power has been demonstrated to be economically competitive with other base load generation options, and international studies project that this economic competitiveness will be largely maintained in the future, over a range of conditions and in a number of countries. However, retaining and improving this competitive position requires concerted efforts to ensure that nuclear plants are constructed within schedule and budgets, and are operated reliably and efficiently. Relevant cost impacting factors is identified, and conclusions for successful nuclear power plant construction and operation are drawn. The desire to attain sustainable development with balanced resource use and control of the environmental and climate impacts of energy systems could lead to renewed interest in nuclear power as an energy source that does not emit greenhouse gases, thus contributing to a revival of the nuclear option. In this regard, mitigation of emissions from fossil-fuelled power plants could lead to restrictions of fossil fuel use and/or result in higher costs of fossil based generation, thus improving the economic competitiveness of nuclear power (au)

  2. Political electricity: What future for nuclear energy

    International Nuclear Information System (INIS)

    Price, T.

    1993-01-01

    Political Electricity first reviews the history of nuclear power development in nine countries (USA, France, Japan, UK, West Germany, Sweden, Italy, Switzerland, Australia). Second the book analyses major issues shaping the future of the industry: nuclear power economincs, nuclear hazards, alternative energy economics, and greenhouse gas constraints

  3. The future of distributed generation

    International Nuclear Information System (INIS)

    Moore, M.

    2004-01-01

    This presentation outlined the value of distributed energy resources (DER) in terms of greater energy security and flexibility. The benefits that DER provide to consumers include: clean electricity, low cost electricity, reduced price volatility, greater reliability and power quality, energy and load management and combined heat and power. The benefits that DER provide to suppliers include: reduced electric line loss, reduced transmission and distribution congestion; deferment of grid investment and better grid asset utilization, improved grid reliability and ancillary services such as voltage stability, contingency reserves and black start capability. These benefits can be achieved through customer choice, open market access, time of use pricing and easy interconnection. It was noted that the integration of distributed power systems requires a change in policy and planning strategies. DER systems can be powered by advanced turbines, reciprocating engines, fuel cells, photovoltaics, wind power, thermally activated technologies and microturbines. The new DER test facility at the National renewable Energy Laboratory tests the capabilities of various energy sources. tabs., figs

  4. Shaping the future of electric utilities

    International Nuclear Information System (INIS)

    Byus, L.C.

    1993-01-01

    On December 14, 1992, Cincinnati Gas ampersand Electric Company (CG ampersand E) and PSI Resources, Inc. announced an agreement to merge the two companies into a newly formed company, CINergy Corp. In announcing the proposed merger, James E. Rogers Jr., chairman, president, and chief executive officer of PSI said, Our companies have chosen to shape our future and our industry. This is an ideal partnership, since our strengths complement each other and our vision of the future is the same. Will this merger be the first of many that will shape the future of the electric utility in the United States? What is the vision of the future for the industry? About five years ago, a well-known Wall Street utility analyst traveled around the country talking about the anticipated consolidation of electric utility companies in the US His motto was Fifty in Five, meaning widespread consolidation that would reduce the number of independent investor-owned utilities from more than 100 to 50 within a five-year period. He even developed a map showing the mergers/consolidations he looked for and actually named names. More than five years have passed, and only a handful of utility mergers have taken place. But, looking forward from 1992, restructuring of the utility industry is very much a vision of the future. What is the driving force? The National Energy Policy Act of 1992 provides the legislative framework for the electric utility industry in the US in future years. While the specific rules that will govern the industry are yet to be promulgated, the intent to allow (even promote) competition is evident in the Act itself. But it appears the vision of the future is market driven

  5. Electrically Driven Thermal Management: Flight Validation, Experiment Development, Future Technologies

    Science.gov (United States)

    Didion, Jeffrey R.

    2018-01-01

    Electrically Driven Thermal Management is an active research and technology development initiative incorporating ISS technology flight demonstrations (STP-H5), development of Microgravity Science Glovebox (MSG) flight experiment, and laboratory-based investigations of electrically based thermal management techniques. The program targets integrated thermal management for future generations of RF electronics and power electronic devices. This presentation reviews four program elements: i.) results from the Electrohydrodynamic (EHD) Long Term Flight Demonstration launched in February 2017 ii.) development of the Electrically Driven Liquid Film Boiling Experiment iii.) two University based research efforts iv.) development of Oscillating Heat Pipe evaluation at Goddard Space Flight Center.

  6. Generation Companies’ Operative Strategies in the Spot Electricity Market

    Directory of Open Access Journals (Sweden)

    Tovar-Hernández J.H.

    2012-07-01

    Full Text Available In traditional regulation the obligation to meet the consumer demand was assumed, this guaranteed to generation companies the full recovery of their costs. However, in order to achieve greater efficiency, reduce the price of electricity, meet the continuously growing electricity consumption, and equalize prices in different regions, a new structure of the electricity industry has been created, where electric energy is traded through a market. Generation company’s future cash flows depend on day to day market participation, in order to satisfy all of their financial and economic requirements. In this paper, future cash flows required to fulfill with economic and financial commitments by a generation company immerse in this new market structure are studied. For this purpose, future cash flows are considered to be dependent on a single asset: electricity. Several scenarios with different fuel prices are generated in order to estimate the generation company’s future cash flows. The response of the competing generation companies is taken into account at each scenario. The fuel price changes are modelled using a concurrent binary tree.

  7. Outlook for gas sales for electricity generation in the Northeast

    International Nuclear Information System (INIS)

    Linderman, C.W.

    1998-01-01

    Issues regarding future supply and demand of natural gas as opposed to coal in the electric power generation sector, generation performance standards of coal plants, new combined cycle applications, distributed generation, and the advantages of natural gas over coal are discussed. The electricity demand and supply situation in the Northeast, present and future, and the growing movement toward green power, green power certification programs, the need and demand for disclosure of emissions and fuel source of supply, price and other customer information were summarized. Nuclear power generation and the chances of it being replaced by natural gas-fuelled generation are assessed. Some pipeline siting issues and the need for careful coordination with the electric system to minimize new corridors, are also reviewed. The advantages of natural gas in terms of technology and reduced pollution, hence cleaner air, were cited as the reasons why natural gas has almost unlimited potential as the fuel of choice well into the 21. century

  8. The True Cost of Electric Power. An Inventory of Methodologies to Support Future Decision-making in Comparing the Cost and Competitiveness of Electricity Generation Technologies. Summary for policy-makers

    International Nuclear Information System (INIS)

    Burtraw, Dallas; Krupnick, Alan

    2012-06-01

    In energy markets across the world, market prices for fossil fuels are often lower than the prices of energy generated from renewable sources, such as solar, wind, and bio-fuels. These market prices, however, don't take into account the 'true costs' of the energy being sold, because they ignore the external costs to society caused by pollution and its resulting burdens, including damages to public health and the environment. Accounting for these externalities can as much as double the cost of some fossil fuels and, in some cases, make them more expensive than renewables. Because renewable forms of energy have far lower external costs than energy generated from fossil fuels, if one can implement policies that incorporate those costs into the price of electricity generated from all technologies, the playing field levels out and renewables can compete on a more fair and economically justified basis. The challenge, of course, is determining those 'true costs'. Estimating the true costs of electricity generation is both complex and controversial. It is complex because it must take into account several factors, including the population density near a power plant, the fuel it uses, and its pollution abatement technology. It is controversial because it requires assumptions and decisions to be made that the public does not like or does not understand. These include monetizing some types of risks (for example, to health) and ignoring others, such as occupational risks from coal mining when they are already 'internalized' by the coal company in the wages it pays. Finally, these approaches are certain to be controversial because they can affect billions of dollars in investments in electricity generation. This report, The True Cost of Electric Power, examines the various methods that have been used to measure such 'true' costs and looks at how such estimates can be used in company decision-making and public policy to ensure that

  9. Liberation of electric power and nuclear power generation

    International Nuclear Information System (INIS)

    Yajima, Masayuki

    2000-01-01

    In Japan, as the Rule on Electric Business was revised after an interval of 35 years in 1995, and a competitive bid on new electric source was adopted after 1996 fiscal year, investigation on further competition introduction to electric power market was begun by establishment of the Basic Group of the Electric Business Council in 1997. By a report proposed on January, 1999 by the Group, the Rule was revised again on March, 1999 to start a partial liberation or retail of the electric power from March, 2000. From a viewpoint of energy security and for solution of global environmental problem in Japan it has been decided to positively promote nuclear power in future. Therefore, it is necessary to investigate how the competition introduction affects to development of nuclear power generation and what is a market liberation model capable of harmonizing with the development on liberation of electric power market. Here was elucidated on effect of the introduction on previous and future nuclear power generation, after introducing new aspects of nuclear power problems and investigating characteristic points and investment risks specific to the nuclear power generation. And, by investigating some possibilities to development of nuclear power generation under liberation models of each market, an implication was shown on how to be future liberation on electric power market in Japan. (G.K.)

  10. Perspectives on the future of the electric utility industry

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, B. [Oak Ridge National Lab., TN (United States); Schaffhauser, A. [Tennessee Univ., Knoxville, TN (United States)

    1994-04-01

    This report offers perspectives on the future of the electric utility industry. These perspectives will be used in further research to assess the prospects for Integrated Resource Planning (IRP). The perspectives are developed first by examining economic, political and regulatory, societal, technological, and environmental trends that are (1) national and global in scope and (2) directly related to the electric utility industry. Major national and global trends include increasing global economic competition, increasing political and ethnic strife, rapidly changing technologies, and increasing worldwide concern about the environment. Major trends in the utility industry include increasing competition in generation; changing patterns of electricity demand; increasing use of information technology to control power systems; and increasing implementation of environmental controls. Ways in which the national and global trends may directly affect the utility industry are also explored. The trends are used to construct three global and national scenarios- ``business as usual,`` ``technotopia future,`` and ``fortress state`` -and three electric utility scenarios- ``frozen in headlights,`` ``megaelectric,`` and ``discomania.`` The scenarios are designed to be thought provoking descriptions of potential futures, not predictions of the future, although three key variables are identified that will have significant impacts on which future evolves-global climate change, utility technologies, and competition. While emphasis needs to be placed on understanding the electric utility scenarios, the interactions between the two sets of scenarios is also of interest.

  11. Perspectives on the future of the electric utility industry

    International Nuclear Information System (INIS)

    Tonn, B.; Schaffhauser, A.

    1994-04-01

    This report offers perspectives on the future of the electric utility industry. These perspectives will be used in further research to assess the prospects for Integrated Resource Planning (IRP). The perspectives are developed first by examining economic, political and regulatory, societal, technological, and environmental trends that are (1) national and global in scope and (2) directly related to the electric utility industry. Major national and global trends include increasing global economic competition, increasing political and ethnic strife, rapidly changing technologies, and increasing worldwide concern about the environment. Major trends in the utility industry include increasing competition in generation; changing patterns of electricity demand; increasing use of information technology to control power systems; and increasing implementation of environmental controls. Ways in which the national and global trends may directly affect the utility industry are also explored. The trends are used to construct three global and national scenarios- ''business as usual,'' ''technotopia future,'' and ''fortress state'' -and three electric utility scenarios- ''frozen in headlights,'' ''megaelectric,'' and ''discomania.'' The scenarios are designed to be thought provoking descriptions of potential futures, not predictions of the future, although three key variables are identified that will have significant impacts on which future evolves-global climate change, utility technologies, and competition. While emphasis needs to be placed on understanding the electric utility scenarios, the interactions between the two sets of scenarios is also of interest

  12. Gas-fired electric power generating technologies

    International Nuclear Information System (INIS)

    1994-09-01

    The workshop that was held in Madrid 25-27 May 1994 included participation by experts from 16 countries. They represented such diverse fields and disciplines as technology, governmental regulation, economics, and environment. Thus, the participants provided an excellent cross section of key areas and a diversity of viewpoints. At the workshop, a broad range of topics regarding gas-fired electric power generation was discussed. These included political, regulatory and financial issues as well as more specific technical questions regarding the environment, energy efficiency, advanced generation technologies and the status of competitive developments. Important technological advances in gas-based power and CHP technologies have already been achieved including higher energy efficiency and lower emissions, with further improvements expected in the near future. Advanced technology trends include: (a) The use of gas technology to reduce emissions from existing coal-fired power plants. (b) The wide-spread application of combined-cycle gas turbines in new power plants and the growing use of aero-derivative gas turbines in CHP applications. (c) Phosphoric acid fuel cells that are being introduced commercially. Their market penetration will grow over the next 10 years. The next generation of fuel cells (solid oxide and molten carbonate) is expected to enter the market around the year 2000. (EG)

  13. Future independent power generation and implications for instruments and controls

    International Nuclear Information System (INIS)

    Williams, J.H.

    1991-01-01

    This paper reports that the independent power producers market is comprised of cogeneration, small power generation, and independent power production (IPP) segments. Shortfalls in future electric supply are expected to lead to significant growth in this market. The opportunities for instruments and controls will shift from traditional electric utility applications to the independent power market with a more diverse set of needs. Importance will be placed on system reliability, quality of power and increased demand for clean kWh

  14. Green power perspectives on sustainable electricity generation

    CERN Document Server

    Neiva de Figueiredo, Joao

    2014-01-01

    Green Power: Perspectives on Sustainable Electricity Generation; João Neiva de Figueiredo and Mauro GuillénAn Overview of Electricity Generation Sources; Akhil Jariwala and Saumil JariwalaGermany's Energy Revolution; José Carlos Thomaz, Jr. and Sean MichalsonChina's Energy Profile and the Importance of Coal; Julia Zheng and Xiaoting ZhengChina's Search for Cleaner Electricity Generation Alternatives; Julia Zheng and Xiaoting ZhengRenewable Energy in Spain: A Quest for Energy Security; José Normando Bezerra, Jr.Renewable Energy in French Polynesia: From Unpredictable to Energy Independence? Dia

  15. Sun, wind and electric generation

    International Nuclear Information System (INIS)

    Huacuz V, J.M.

    1995-01-01

    The X-Calak hybrid system was totally implemented in March, 1993 trhough an agreement with Sandia Laboratories (US), the private enterprise Condumex and the Electrical Research Institute (IIE). About 5 0 variables are continuously measured by an electronic data acquisition system and are pre-processed each 15 minutes averages in to be stored. The information is retrieved by cellular phone to be analyzed in detail. (Author)

  16. Renewable Electricity Futures: Exploration of a U.S. Grid with 80% Renewable Electricity

    Science.gov (United States)

    Mai, Trieu

    2013-04-01

    Renewable Electricity Futures is an initial investigation of the extent to which renewable energy supply can meet the electricity demands of the contiguous United States over the next several decades. This study explores the implications and challenges of very high renewable electricity generation levels: from 30% up to 90% (focusing on 80%) of all U.S. electricity generation from renewable technologies in 2050. At such high levels of renewable electricity penetration, the unique characteristics of some renewable resources, specifically geographical distribution and variability and un-certainty in output, pose challenges to the operability of the nation's electric system. The study focuses on key technical implications of this environment from a national perspective, exploring whether the U.S. power system can supply electricity to meet customer demand on an hourly basis with high levels of renewable electricity, including variable wind and solar generation. The study also identifies some of the potential economic, environmental, and social implications of deploying and integrating high levels of renewable electricity in the U.S. The full report and associated supporting information is available at: http://www.nrel.gov/analysis/refutures/.

  17. Electricity generation modeling and photovoltaic forecasts in China

    Science.gov (United States)

    Li, Shengnan

    With the economic development of China, the demand for electricity generation is rapidly increasing. To explain electricity generation, we use gross GDP, the ratio of urban population to rural population, the average per capita income of urban residents, the electricity price for industry in Beijing, and the policy shift that took place in China. Ordinary least squares (OLS) is used to develop a model for the 1979--2009 period. During the process of designing the model, econometric methods are used to test and develop the model. The final model is used to forecast total electricity generation and assess the possible role of photovoltaic generation. Due to the high demand for resources and serious environmental problems, China is pushing to develop the photovoltaic industry. The system price of PV is falling; therefore, photovoltaics may be competitive in the future.

  18. Realistic generation cost of solar photovoltaic electricity

    International Nuclear Information System (INIS)

    Singh, Parm Pal; Singh, Sukhmeet

    2010-01-01

    Solar photovoltaic (SPV) power plants have long working life with zero fuel cost and negligible maintenance cost but requires huge initial investment. The generation cost of the solar electricity is mainly the cost of financing the initial investment. Therefore, the generation cost of solar electricity in different years depends on the method of returning the loan. Currently levelized cost based on equated payment loan is being used. The static levelized generation cost of solar electricity is compared with the current value of variable generation cost of grid electricity. This improper cost comparison is inhibiting the growth of SPV electricity by creating wrong perception that solar electricity is very expensive. In this paper a new method of loan repayment has been developed resulting in generation cost of SPV electricity that increases with time like that of grid electricity. A generalized capital recovery factor has been developed for graduated payment loan in which capital and interest payment in each installment are calculated by treating each loan installment as an independent loan for the relevant years. Generalized results have been calculated which can be used to determine the cost of SPV electricity for a given system at different places. Results show that for SPV system with specific initial investment of 5.00 cents /kWh/year, loan period of 30 years and loan interest rate of 4% the levelized generation cost of SPV electricity with equated payment loan turns out to be 28.92 cents /kWh, while the corresponding generation cost with graduated payment loan with escalation in annual installment of 8% varies from 9.51 cents /kWh in base year to 88.63 cents /kWh in 30th year. So, in this case, the realistic current generation cost of SPV electricity is 9.51 cents /kWh and not 28.92 cents /kWh. Further, with graduated payment loan, extension in loan period results in sharp decline in cost of SPV electricity in base year. Hence, a policy change is required

  19. Envisioning a renewable electricity future for the United States

    International Nuclear Information System (INIS)

    Mai, Trieu; Mulcahy, David; Hand, M. Maureen; Baldwin, Samuel F.

    2014-01-01

    This paper presents high renewable electricity penetration scenarios in the United States using detailed capacity expansion modeling that is designed to properly account for the variability and uncertainty of wind and solar resources. The scenarios focus solely on the electricity system, an important sector within the larger energy sector, and demonstrate long-term visions of a U.S. power system where renewable technologies, including biomass, geothermal, hydropower, solar, and wind, contribute 80% of 2050 annual electricity, including 49–55% from wind and solar photovoltaic generation. We present the integration challenges of achieving this high penetration and characterize the options to increase grid flexibility to manage variability. Four high renewable pathways are modeled and demonstrate the robustness and diversity of renewable options. We estimate 69–82% annual greenhouse gas emission reductions and 3%–30% incremental electricity price increases associated with reaching 80%-by-2050 renewable electricity relative to reference scenarios. This paper affirms and strengthens similar analysis from the Renewable Electricity Futures study by using an improved model and updated data to better reflect investment and dispatch decisions under current outlooks for the U.S. electricity sector. - Highlights: • We model high renewable electricity scenarios for the U.S. electricity sector. • The mix of technologies will depend on future costs and system conditions. • Integration challenges and flexibility options are presented. • We estimate an incremental electricity price increase of 3–30% to achieve 80% RE (renewable electricity). • We estimate 69–82% reduction in annual carbon emissions with 80% RE

  20. High flexible Hydropower Generation concepts for future grids

    Science.gov (United States)

    Hell, Johann

    2017-04-01

    The ongoing changes in electric power generation are resulting in new requirements for the classical generating units. In consequence a paradigm change in operation of power systems is necessary and a new approach in finding solutions is needed. The presented paper is dealing with the new requirements on current and future energy systems with the focus on hydro power generation. A power generation landscape for some European regions is shown and generation and operational flexibility is explained. Based on the requirements from the Transmission System Operator in UK, the transient performance of a Pumped Storage installation is discussed.

  1. Comparative risk assessment for electricity generation

    International Nuclear Information System (INIS)

    Thoene, E.; Kallenbach, U.

    1988-01-01

    The following conclusions are drawn: There is no 'zero-risk option' in electricity generation. Risk comparison meets with considerable problems relating to available data and methods. Taking into account the existing uncertainties, technology ranking in terms of risks involved cannot be done, but the major risk elements of the various electricity generating systems can be clearly identified. The risks defined cannot be interpreted so as to lead to an abolishment of certain techniques due to risks involved, particularly if one sees the risks from electricity generation in relation to other health hazards. The use of coal for electricity generation clearly ranks top with regard to occupational risks and hazards to public health. (orig./HP) [de

  2. Optimization Methodologies of Mixed Electrical Generators in ...

    African Journals Online (AJOL)

    This article deals of the optimization of renewable energy electric generators, for the alimentation of radio telecommunication systems. ... Have at one's the energetic and economic models, and simulation tools, we effected an optimization ...

  3. Generation of electricity from wind

    International Nuclear Information System (INIS)

    Debroy, S.K.; Behera, S.; Murty, J.S.

    1997-01-01

    Bulk power can be generated by using a chain of wind mills with the current level of technology. Wind turbine technology has improved considerably resulting in better efficiency, availability and capacity factor including a significant reduction in the cost of manufacture and installation

  4. Electricity market opening and electricity generation system's expansion in Slovenia

    International Nuclear Information System (INIS)

    Kosnjek, Z.; Vidmar, M.; Bregar, Z.

    2000-01-01

    Slovenia is rapidly adopting the European Union (EU) legislation to make itself ready to be admitted the fifteen EU member countries. In the area of energy or electricity supply industry, Slovenia has consequently enforced the Energy law, which in its essence follows the idea of the Directive 96/92/EC. Globally, the Directive defines common rules of the internal electricity market within EU. Any EU member country is responsible for assuring a competitive electricity market and implementing corresponding instruments as foreseen by the Directive. The share of the national market opening is calculated on the basis of eligible customers' consumption versus the overall consumption in a particular member country. Also, the Directive defines the rate of the electricity market opening. It is interesting to note that the EU member countries have been opening their national electricity markets at a greater speed than specified by the Directive. The overall Slovenian Electricity Supply Industry shall have to adapt itself to new imperatives, whereby the greatest changes will by all means take place in the area of electricity generation. As the reaction of eligible domestic market customers is quite unpredictable, the direct electricity import from foreign countries can only be estimated on a variant basis. EU countries that have deregulated their electricity market have been, step by step, gaining valuable experiences. The majority of them show a considerable pressure on having prices of the EPS generation sector reduced. A similar development can by all means be expected in Slovenia, too. it is expected that the major burden of the electricity market liberalisation and electric power interconnecting within EU will be carried by the EPS generation sector. The analyses of developed variants show that the burden, imposed by the transition onto the market economy, will be predominantly carried by the coal fired electricity supply industry. Further development of electricity

  5. Electricity prices and generator behaviour in gross pool electricity markets

    International Nuclear Information System (INIS)

    O'Mahoney, Amy; Denny, Eleanor

    2013-01-01

    Electricity market liberalisation has become common practice internationally. The justification for this process has been to enhance competition in a market traditionally characterised by statutory monopolies in an attempt to reduce costs to end-users. This paper endeavours to see whether a pool market achieves this goal of increasing competition and reducing electricity prices. Here the electricity market is set up as a sealed bid second price auction. Theory predicts that such markets should result with firms bidding their marginal cost, thereby resulting in an efficient outcome and lower costs to consumers. The Irish electricity system with a gross pool market experiences among the highest electricity prices in Europe. Thus, we analyse the Irish pool system econometrically in order to test if the high electricity prices seen there are due to participants bidding outside of market rules or out of line with theory. Overall we do not find any evidence that the interaction between generator and the pool in the Irish electricity market is not efficient. Thus, the pool element of the market structure does not explain the high electricity prices experienced in Ireland. - Highlights: • We consider whether a gross pool achieves competitive behaviour. • We analyse the Irish pool system econometrically. • Results indicate the Irish pool system appears to work efficiently. • Generators appear to be bidding appropriately

  6. Scenarios of Expansion to Electric Generation Capacity

    Directory of Open Access Journals (Sweden)

    José Somoza-Cabrera

    2017-06-01

    Full Text Available We show the building scenarios of expansion to electric generation capacity enough to supply the demand to 2050. We were using the LEAP facility (Long-range Energy Alternatives Planning System, to simulate dispatch of electricity at minimum cost. Finally, we show the cost-benefice analysis of the technologies availability, included externality and CO2 emission limited. However that we included the externals cost in this analysis, it results insufficient to closed gap between fossil and renewable technologies of electric generation. Nevertheless, in some opportunities the renewable options had very important participations in the minimal cost scenario of expansion.

  7. Electricity generation with natural gas or with uranium?

    International Nuclear Information System (INIS)

    Villanueva M, C.

    2009-10-01

    The program of works and investments of electric sector that actualize each year the Federal Commission of Electricity, include to the projects of electric power generating stations that will begin its commercial operation inside the horizon of the next ten years, in order to satisfy opportunely with appropriate reservation margins the demand of power and energy in the national interconnected system that grows year to year. In spite of its inherent advantages, in the electric sector prospective 2008-2017 are not considered explicitly to the nuclear power plants, except for the small amplification of capacity of nuclear power plant of Laguna Verde, that already is executing. In this context, the objective of this work is to present and to discuss arguments to favor and against the combined cycle and nuclear technologies, to indicate the risks and disadvantages in that it incurs the electric sector when leaning on so disproportionately on the fossil fuels for the electricity generation, in particular the natural gas, deferring to an indefinite future the installation of nuclear plants whose proven technology is economic, sure, clean and reliable and it contributes decisively to the national energy security. To mitigate the harmful effects of excessive dependence on natural gas to generate electric power, was propose alternatives to the expansion program of electric sector to year 2017, which would have as benefits the decrease of the annual total cost of electric power supply for public service, the significant reduction of natural gas imports and emissions reduction of CO 2 to the atmosphere. (Author)

  8. Electrical discharge light sources: a challenge for the future

    International Nuclear Information System (INIS)

    Zissis, G.

    2001-01-01

    The first electric powder lamp operated that 150 years ago, since then the evolution of light sources is astonishing. Today, more than 10 % of the global electric power produced worldwide serve fore light production from several billions lamps. Since last three decades incandescent lamps are gradually replaced by more energy efficient discharge lamps. In parallel, new generation of light emitting diodes, producing bright colours (including white) with luminous efficacy challenging even discharge lamps, appeared in past years. The objective of this paper is to focus on the state of art in the domain of light sources and discuss the challenges for the near future. (author)

  9. Developments in fossil fuel electricity generation

    International Nuclear Information System (INIS)

    Williams, A.; Argiri, M.

    1993-01-01

    A major part of the world's electricity is generated by the combustion of fossil fuels, and there is a significant environmental impact due to the production of fossil fuels and their combustion. Coal is responsible for 63% of the electricity generated from fossil fuels; natural gas accounts for about 20% and fuel oils for 17%. Because of developments in supply and improvements in generating efficiencies there is apparently a considerable shift towards a greater use of natural gas, and by the year 2000 it could provide 25% of the world electricity output. At the same time the amount of fuel oil burned will have decreased. The means to minimize the environmental impact of the use of fossil fuels, particularly coal, in electricity production are considered, together with the methods of emission control. Cleaner coal technologies, which include fluidized bed combustion and an integrated gasification combined cycle (IGCC), can reduce the emissions of NO x , SO 2 and CO 2 . (author)

  10. Thermo-electrical systems for the generation of electricity

    International Nuclear Information System (INIS)

    Bitschi, A.; Froehlich, K.

    2010-01-01

    This article takes a look at theoretical models concerning thermo-electrical systems for the generation of electricity and demonstrations of technology actually realised. The potentials available and developments are discussed. The efficient use of energy along the whole generation and supply chain, as well as the use of renewable energy sources are considered as being two decisive factors in the attainment of a sustainable energy supply system. The large amount of unused waste heat available today in energy generation, industrial processes, transport systems and public buildings is commented on. Thermo-electric conversion systems are discussed and work being done on the subject at the Swiss Federal Institute of Technology in Zurich is discussed. The findings are discussed and results are presented in graphical form

  11. Parallel Planar-Processed and Ion-Induced Electrically Isolated Future Generation AlGaN/GaN HEMT for Gas Sensing and Opto-Telecommunication Applications

    International Nuclear Information System (INIS)

    Ahmed, S; Bokhari, S H; Amin, F; Khan, L A; Hussain, Z

    2013-01-01

    Ion-implanted AlGaN/GaN High Electron Mobility Transistors (HEMT) devices were studied thoroughly to look into the possibilities of enhancing efficiency for high-power and high-frequency electronic and gas sensing applications. A dedicated experimental design was created in order to study the influence of the physical parameters in response to high energy (by virtue of in-situ beam heating due to highly energetic implantation) ion implantation to the active device regions in nitride HEMT structures. Disorder or damage created in the HEMT structure was then studied carefully with electrical characterization techniques such as Hall, I-V and G-V measurements. The evolution of the electrical characteristics affecting the high-power, high-frequency and ultra-high efficiency gas sensing operations were also analyzed by subjecting the HEMT active device regions to progressive time-temperature annealing cycles. Our suggested model can also provide a functional process engineering window to control the extent of 2D Electron mobility in AlGaN/GaN HEMT devices undergoing a full cycle of thermal impact (i.e. from a desirable conductive region to a highly compensated one)

  12. External costs of nuclear-generated electricity

    International Nuclear Information System (INIS)

    Rotaru, I.; Glodeanu, F.; Popescu, D.; Andrei, V.

    2004-01-01

    External costs of nuclear power include: future financial liabilities arising from decommissioning and dismantling of nuclear facilities, health and environmental impacts of radioactivity releases in routine operation, radioactive waste disposal and effects of severe accidents. The nuclear energy industry operates under regulations that impose stringent limits to atmospheric emissions and liquid effluents from nuclear facilities as well as requiring the containment and confinement of solid radioactive waste to ensure its isolation from the biosphere as long as it may be harmful for human health and the environment. The capital and operating costs of nuclear power plants and fuel cycle facilities already internalize a major portion of the above-mentioned potential external costs, and these are reflected in the prices paid by consumers of nuclear-generated electricity. The externality related to potential health and environmental impacts of radioactive releases during routine operations have been assessed in a large number of comprehensive studies, in particular the ExternE project that was created in the framework of the European Commission. With regard to effects of severe nuclear accidents, a special legal regime, the third-party liability system, has been implemented to provide limited third party liability coverage in the event of a nuclear accident. The nuclear plant owners are held liable for some specified first substantial part of damages to third parties, and must secure insurance coverage adequate to cover this part. The Government provides coverage for some specified substantial second part of the damages, with any remaining damages to be considered by the national legislation. Thus, the costs of an incident or accident are fully internalized in the costs borne by the nuclear plant owners. Externalities of energy are not limited to environmental and health related impacts, but may result also from macro-economic, policy or strategic factors not reflected

  13. The energetics of electric organ discharge generation in gymnotiform weakly electric fish.

    Science.gov (United States)

    Salazar, Vielka L; Krahe, Rüdiger; Lewis, John E

    2013-07-01

    Gymnotiform weakly electric fish produce an electric signal to sense their environment and communicate with conspecifics. Although the generation of such relatively large electric signals over an entire lifetime is expected to be energetically costly, supporting evidence to date is equivocal. In this article, we first provide a theoretical analysis of the energy budget underlying signal production. Our analysis suggests that wave-type and pulse-type species invest a similar fraction of metabolic resources into electric signal generation, supporting previous evidence of a trade-off between signal amplitude and frequency. We then consider a comparative and evolutionary framework in which to interpret and guide future studies. We suggest that species differences in signal generation and plasticity, when considered in an energetics context, will not only help to evaluate the role of energetic constraints in the evolution of signal diversity but also lead to important general insights into the energetics of bioelectric signal generation.

  14. Young generation network: facing the future

    International Nuclear Information System (INIS)

    Berk, R.

    1997-01-01

    The future of the nuclear industry lies with the young generation. That's why in 1995, ENS supported the creation of the Young Generation Network (YGN). The YGN aims to fulfill the needs and interests of young people working in the nuclear business by organizing special programs with interesting opportunities and activities. (author)

  15. Future demand for electricity in Nigeria

    International Nuclear Information System (INIS)

    Ibitoye, F.I.; Adenikinju, A.

    2007-01-01

    Availability and reliability of electricity supplies have always been vexed issue in Nigeria. With an estimated population of 130 million people in AD 2005, Nigeria is the most populous country in Africa and belongs to the group of countries with the lowest electricity consumption per capita in the continent. Nigeria is also ranked among the poorest countries in the world. This paper examines the likely trend in the demand for electricity over the next 25 years under the assumptions that (i) there is a rapid economic development such that Nigeria transforms from low- to middle-income economy during this period, (ii) Nigeria meets the millennium development goals (MDG) in AD 2015, and (iii) the country achieves the status of an industrializing nation. For these to happen, this paper projects that electric-power generation will have to rise from the current capacity of 6500 MW to over 160 GW in AD 2030. This level of supply will be significant enough to increase the per capita electricity consumption to about 5000 kWh per capita by the year 2030. Even then, this just compares with the AD 2003 per capital consumption of some industrializing countries. Analysis of the level of investment required to meet the projected power demand indicates that annual investment cost will rise from US3.8 billion in AD 2006 to a peak of US21 billion in AD 2028. The total investment stream over the 25 year period comes to US262 billion or roughly US10 billion per annum. (author)

  16. Electric power generation the changing dimensions

    CERN Document Server

    Tagare, D M

    2011-01-01

    "This book offers an analytical overview of established electric generation processes, along with the present status & improvements for meeting the strains of reconstruction. These old methods are hydro-electric, thermal & nuclear power production. The book covers climatic constraints; their affects and how they are shaping thermal production. The book also covers the main renewable energy sources, wind and PV cells and the hybrids arising out of these. It covers distributed generation which already has a large presence is now being joined by wind & PV energies. It covers their accommodation in the present system. It introduces energy stores for electricity; when they burst upon the scene in full strength are expected to revolutionize electricity production. In all the subjects covered, there are references to power marketing & how it is shaping production. There will also be a reference chapter on how the power market works"--Provided by publisher.

  17. Rotary-Atomizer Electric Power Generator

    Science.gov (United States)

    Nguyen, Trieu; Tran, Tuan; de Boer, Hans; van den Berg, Albert; Eijkel, Jan C. T.

    2015-03-01

    We report experimental and theoretical results on a ballistic energy-conversion method based on a rotary atomizer working with a droplet acceleration-deceleration cycle. In a rotary atomizer, liquid is fed onto the center of a rotating flat surface, where it spreads out under the action of the centrifugal force and creates "atomized" droplets at its edge. The advantage of using a rotary atomizer is that the centrifugal force exerted on the fluid on a smooth, large surface is not only a robust form of acceleration, as it avoids clogging, but also easily allows high throughput, and produces high electrical power. We successfully demonstrate an output power of 4.9 mW and a high voltage up to 3120 V. At present, the efficiency of the system is still low (0.14%). However, the conversion mechanism of the system is fully interpreted in this paper, permitting a conceptual understanding of system operation and providing a roadmap for system optimization. This observation will open up a road for building power-generation systems in the near future.

  18. Electricity trade: Generating benefits for British Columbians

    International Nuclear Information System (INIS)

    1994-01-01

    Electricity has been traded in British Columbia since the turn of the century. In 1988, the provincial government established the British Columbia Power Exchange Corporation (Powerex) to conduct electricity trade activities in order to make the most efficient use of the electrial system and generate benefits for British Columbians. The trade is made possible by an interconnected system linking producers and consumers in western Canada and the USA. Provincial participants in the trade include British Columbia Hydro, independent power producers, and cogenerators. Benefits of the electricity trade include generation of revenue from sale of surplus power, being able to buy electricity when the mainly hydroelectric provincial system is in a drought condition or when major shutdowns occur, and enabling postponement of development of new power projects. Powerex conducts its trade under provincial and federal permits and licenses. Different types of trade contracts are negotiated depending on the amount and availability of electricity and the kind of trade being conducted. Exchanges and coordination agreements allow transfer and return between utilities with no net export occurring, allowing balancing of loads between different reigons. Surplus electricity is bought or sold on a short- or long-term basis and on firm or non-firm terms. Electricity exports are not subsidized and are only allowed if the electricity is surplus to provincial needs and can be sold at a profit. A new provincial policy allows private industry to export long-term firm electricity; this involves construction of new private-sector generating facilities solely for the purpose of export. 1 fig

  19. Quasi-Static Electric Field Generator

    Science.gov (United States)

    Generazio, Edward R. (Inventor)

    2017-01-01

    A generator for producing an electric field for with an inspection technology system is provided. The generator provides the required variable magnitude quasi-static electric fields for the "illumination" of objects, areas and volumes to be inspected by the system, and produces human-safe electric fields that are only visible to the system. The generator includes a casing, a driven, non-conducting and triboelectrically neutral rotation shaft mounted therein, an ungrounded electrostatic dipole element which works in the quasi-static range, and a non-conducting support for mounting the dipole element to the shaft. The dipole element has a wireless motor system and a charging system which are wholly contained within the dipole element and the support that uses an electrostatic approach to charge the dipole element.

  20. Natural gas and electricity generation in Queensland

    International Nuclear Information System (INIS)

    Webb, G.

    2001-01-01

    The focus of this article is on electricity generation in Queensland. Black coal accounted for 97 percent, while natural gas made up only 1 percent of the fuel used in thermal power generation in 1997-98. The share of natural gas in thermal electricity generation is expected to rise to 21 percent by 2014-2015, because of the emphasis on natural gas in Queensland's new energy policy. Since 1973-1974, Queensland has led the way in electricity consumption, with an average annual growth rate of 6.8 percent but the average thermal efficiency has fallen from 38.0 percent in 1991-1992, to 36.6 percent in 1997-1998

  1. Generating Electricity from Water through Carbon Nanomaterials.

    Science.gov (United States)

    Xu, Yifan; Chen, Peining; Peng, Huisheng

    2018-01-09

    Over the past ten years, electricity generation from water in carbon-based materials has aroused increasing interest. Water-induced mechanical-to-electrical conversion has been discovered in carbon nanomaterials, including carbon nanotubes and graphene, through the interaction with flowing water as well as moisture. In this Concept article, we focus on the basic principles of electric energy harvesting from flowing water through carbon nanomaterials, and summarize the material modification and structural design of these nanogenerators. The current challenges and potential applications of power conversion with carbon nanomaterials are finally highlighted. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Environmental assessment of current and future Swiss electricity supply options

    International Nuclear Information System (INIS)

    Bauer, Christian; Heck, Thomas; Hirschberg, Stefan; Dones, Roberto

    2008-01-01

    Options for near future electricity supply are currently one of the main topics in the Swiss energy policy debate. Contrary to the total energy demand per capita the trend of rising electricity demand per capita is still visible. This paper presents a comparative environmental assessment of a broad portfolio of current and future electricity generation technologies including nuclear, fossil, and renewable power plants with their associated energy chains. The evaluation, based on Life Cycle Assessment (LCA), is carried out quantifying ten different environmental indicators, grouped in the categories greenhouse gas emissions, consumption of resources, waste, and impact on ecosystems. Hydropower shows minimal environmental impacts for all indicators; for other systems, the picture is diverse. The comparison of non-aggregated indicators allows preliminary conclusions about the environmental performance of the assessed systems. Establishing ranking of technologies calls for aggregating the indicators, which can be done by weighting of the indicators based on individual or stakeholder group preferences, either within a Multi-Criteria Decision Analysis (MCDA) framework or with Life Cycle Impact Assessment (LCIA) methods. Calculating total costs of electricity by adding external costs due to impacts on human health and ecosystems to the electricity production costs poses another option for ranking of technologies. (authors)

  3. Design of very high speed electric generators

    International Nuclear Information System (INIS)

    Labollita, Santiago

    2008-01-01

    This work approaches the design process of an electric generator suitable for running efficiently at high speed, driven by a turbo shaft.The axial flux concept was used.For the mechanical design of the prototype, cooling capacity and mounting method were considered, looking for simplicity of the parts evolved. Neodymium-iron-boron permanent magnets were used as magnetic source.For the electrical design, a calculation tool was developed in order to predict the prototype electrical parameters and optimize its geometry.The goal was to obtain 1 kW of electric power at a speed of 100,000 rpm.The efficiency and electrical behaviour of the prototype were characterized at speeds between 2,000 rpm and 30,000 rpm and then the behaviour at the design condition was predicted by obtaining an equivalent electric circuit.The estimated load voltage was 237 V as well as an electrical efficiency of 95%.Eddy current effects were not recognized. Increase of the internal resistance and decree of inductance were observed while raising the electric frequency.Finally, an electronic system was developed in order to use the prototype as a c.c. motor. Global performance was measured according to different supply characteristic. An optimum supply voltage was found.A maximum efficiency of 63% was reached. [es

  4. Electrohydrodynamic simulation of electrically controlled droplet generation

    International Nuclear Information System (INIS)

    Ouedraogo, Yun; Gjonaj, Erion; Weiland, Thomas; Gersem, Herbert De; Steinhausen, Christoph; Lamanna, Grazia; Weigand, Bernhard

    2017-01-01

    Highlights: • We develop a full electrohydrodynamic simulation approach which allows for the accurate modeling of droplet dynamics under the influence of transient electric fields. The model takes into account conductive, capacitive as well as convective electrical currents in the fluid. • Simulation results are shown for an electrically driven droplet generator using highly conductive acetone droplets and low conductivity pentane droplets, respectively. Excellent agreement with measurement is found. • We investigate the operation characteristic of the droplet generator by computing droplet sizes and detachment times with respect to the applied voltage. • The droplet charging effect is demonstrated for pentane droplets as well as for acetone droplets under long voltage pulses. We show that due to the very different relaxation times, the charging behavior of the two liquids is very different. • We demonstrate that due to this behavior, also the detachment mechanisms for acetone and pentane droplets are different. For low conductivity (pentane) droplets, droplet detachment is only possible after the electric fields are switched off. This is because the effective electric polarization force points upwards, thus, inhibiting the detachment of the droplet from the capillary tip. - Abstract: An electrohydrodynamic model for the simulation of droplet formation, detachment and motion in an electrically driven droplet generator is introduced. The numerical approach is based on the coupled solution of the multiphase flow problem with the charge continuity equation. For the latter, a modified convection-conduction model is applied, taking into account conductive, capacitive as well as convective electrical currents in the fluid. This allows for a proper description of charge relaxation phenomena in the moving fluid. In particular, the charge received by the droplet after detachment is an important parameter influencing the droplet dynamics in the test chamber

  5. New electricity generating installations - Czech experience

    International Nuclear Information System (INIS)

    Biza, K.; Pazdera, F.; Zdarek, J.

    2004-01-01

    Economically and technically are analysed alternatives for new electricity generation installations (GEN 111+ NPPs, finalization of NPPs under construction, lifetime extension of existing NPPs, coal plants and gas plants). Described are experienced with NPP Temelin (lessons learned from its design, construction, start-up and resent operation and service experience) and new Czech Energy Policy, where the nuclear energy is an important source for electricity generation. Discussed is also impact of potential trading with CO 2 limits and strategy on minimization of dependence on energy from politically unstable regions. Underlined is important role of preparation of young generation for safe and reliable long term operation of NPPs. General recommendation is to orient on finalization of NPPs under construction, lifetime extension of existing NPPs and long term orientation on new generation of NPPs (GEN III+ and GEN IV). (author)

  6. Contribution of wind energy to future electricity requirements of Pakistan

    International Nuclear Information System (INIS)

    Harijan, K.; Uqaili, M. A.; Memon, M.

    2007-01-01

    Pakistan is an energy deficit country. About half of the country's population has no access to electricity and per capita supply is only 520 kWh. About 67% of the conventional electricity is generated from fossil fuels with 51% and 16% share of gas and oil respectively. It has been projected that electricity demand in Pakistan would increase at an average annual growth rate of 5% to 12% under different scenarios. The indigenous reserves of oil and gas are limited and the country heavily depends on imported oil. The oil import bill is a serious strain on the country's economy and has been deteriorating the balance of payment situation. Pakistan is becoming increasingly more dependent on a few sources of supply and its energy security often hangs on the fragile threat of imported oil that is subject to supply disruptions and price volatility. The production and consumption of fossil fuels also adversely affects the quality of the environment due to indiscriminate release of toxic substances. Pakistan spends huge amount on the degradation of the environment. This shows that Pakistan must develop alternate, indigenous and environment friendly energy resources such as wind energy to meet its future electricity requirements. This paper presents an overview of wind power generation potential and assessment of its contribution to future electricity requirements of Pakistan under different policy scenarios. The country has about 1050 km long coastline. The technical potential of centralized grid connected wind power and wind home systems in the coastal area of the country has been estimated as about 484 TWh and 0.135 TWh per year respectively. The study concludes that wind power could meet about 20% to 50% of the electricity demand in Pakistan by the year 2030. The development and utilization of wind power would reduce the pressure on oil imports, protect the environment from pollution and improve the socio-economic conditions of the people

  7. Dispersed generation: impact on the electricity system

    International Nuclear Information System (INIS)

    Delfanti, M.; Merlo, M.; Silvestri, A.

    2009-01-01

    The paper deals with the impact of Dispersed Generation (D G) on the national electricity system, by proposing a practical approach for determining the current capacity of the networks to accepts this form of generation (hosting capacity). With the prospect of an increasing intake of D G, we finally draft a possible evolution of distribution networks based on the integration of energy and information networks. [it

  8. The projected costs of electricity generation

    International Nuclear Information System (INIS)

    Cameron, R.; Keppler, J. H.

    2010-10-01

    This paper describes the outcomes from the joint report between the Nuclear Energy Agency and the International Energy Agency of the OECD on the projected costs of generating electricity. The study contains data on electricity generating costs for almost 200 power plants provided by 17 OECD member countries, 4 non-OECD countries and 4 industrial companies or industry organisations. The paper presents the projected costs of generating electricity calculated according to common methodological rules on the basis of the data provided by participating countries and organisations. Data were received for a wide variety of fuels and technologies, including coal, gas, nuclear, hydro, onshore and offshore wind, biomass, solar, wave and tidal. Cost estimates were also provided for combined heat and power plants, as well as for coal plants that include carbon capture. As in previous studies of the same series, all costs and benefits were discounted or capitalised to the date of commissioning in order to calculate the state of the electricity costs per MWh, based on plant operating lifetime data. In addition, the paper contains a discussion of a number of factors affecting the cost of capital, the outlook for carbon capture and storage and the working of electricity markets. (Author)

  9. Westinghouse AP1000 Electrical Generation Costs - Meeting Marketplace Requirements

    International Nuclear Information System (INIS)

    Paulson, C. Keith

    2002-01-01

    The re-emergence of nuclear power as a leading contender for new base-load electrical generation is not an occurrence of happenstance. The nuclear industry, in general, and Westinghouse, specifically, have worked diligently with the U.S. power companies and other nuclear industry participants around the world to develop future plant designs and project implementation models that address prior problem areas that led to reduced support for nuclear power. In no particular order, the issues that Westinghouse, as an engineering and equipment supply company, focused on were: safety, plant capital costs, construction schedule reductions, plant availability, and electric generation costs. An examination of the above criteria quickly led to the conclusion that as long as safety is not compromised, simplifying plant designs can lead to positive progress of the desired endpoints for the next and later generations of nuclear units. The distinction between next and later generations relates to the readiness of the plant design for construction implementation. In setting requirement priorities, one axiom is inviolate: There is no exception, nor will there be, to the Golden Rule of business. In the electric power generation industry, once safety goals are met, low generation cost is the requirement that rules, without exception. The emphasis in this paper on distinguishing between next and later generation reactors is based on the recognition that many designs have been purposed for future application, but few have been able to attain the design pedigree required to successfully meet the requirements for next generation nuclear units. One fact is evident: Another generation of noncompetitive nuclear plants will cripple the potential for nuclear to take its place as a major contributor to new electrical generation. Only two plant designs effectively meet the economic tests and demonstrate both unparalleled safety and design credibility due to extensive progress toward engineering

  10. Future electric scenarios for urban logistics

    Energy Technology Data Exchange (ETDEWEB)

    2012-07-01

    This report is produced by the SAFE Urban Logistics project - a Norden Energy and Transport project that aims to study and analyse the prospect of integrating electric vehicles in the goods distribution of urban areas. The goal of the project is to create next practice solutions, offer promising opportunities for urban logistics operations, in order to become both more efficient and more environmentally sustainable. The SAFE Urban Logistics aims to match business models for making the application of electric vehicles within inner city logistics happen. The project will also create proposals for sustainable suitable technical solutions associated with these business models. This is one out of four reports produced by the project. Read more about the project and get access to all the reports on www.safeproject.eu. This report is the final output of the project and describes four scenarios for the future of urban logistics based on the urbanization and potential political interventions. The described scenarios will be evaluated on environmental effects and describe a potential idea that can bring this future one step closer. An array of potential business and logistics models as well as technical solutions that could be applied in order to integrate EV's on a larger basis are added at the end of the document. It is supposed to act as inspiration for the strategic development of logistics companies as well as local and governmental policies. Knowledge and experiences in this report are mainly taken from Denmark, Norway and Sweden. When it comes to logistic recommendations and experiences, influence from other parts of Europe have also been included. (Author)

  11. Future electric scenarios for urban logistics

    Energy Technology Data Exchange (ETDEWEB)

    2012-07-01

    This report is produced by the SAFE Urban Logistics project - a Norden Energy and Transport project that aims to study and analyse the prospect of integrating electric vehicles in the goods distribution of urban areas. The goal of the project is to create next practice solutions, offer promising opportunities for urban logistics operations, in order to become both more efficient and more environmentally sustainable. The SAFE Urban Logistics aims to match business models for making the application of electric vehicles within inner city logistics happen. The project will also create proposals for sustainable suitable technical solutions associated with these business models. This is one out of four reports produced by the project. Read more about the project and get access to all the reports on www.safeproject.eu. This report is the final output of the project and describes four scenarios for the future of urban logistics based on the urbanization and potential political interventions. The described scenarios will be evaluated on environmental effects and describe a potential idea that can bring this future one step closer. An array of potential business and logistics models as well as technical solutions that could be applied in order to integrate EV's on a larger basis are added at the end of the document. It is supposed to act as inspiration for the strategic development of logistics companies as well as local and governmental policies. Knowledge and experiences in this report are mainly taken from Denmark, Norway and Sweden. When it comes to logistic recommendations and experiences, influence from other parts of Europe have also been included. (Author)

  12. Electricity generation: a case study in Turkey

    International Nuclear Information System (INIS)

    Kaygusuz, K.

    1999-01-01

    Large-scale electricity generation provides versatile energy of the highest quality. Today, fossil fuels such as coal, oil, and natural gas are the primary sources of this energy. However, these fossil energy sources are limited and using fossil energy sources has the undesirable effect of releasing emissions that burden the environment and alter the climate. Therefore, governments and companies all over the world should find new and renewable energy sources. On the other hand, over the past two decades, power station construction programs in the developing countries accounted for nearly 30% of total public investment. In a large number of these countries, shortages of electricity have become a critical constraint to economic growth. In Turkey, from 1980 to 1995, the amount for electricity generated increased about fourfold from 23,275 Gwh to 86,247 Gwh, and annual growth rates were in the double digits. This is a good development, but not enough for Turkey. (author)

  13. Expansion planning for electrical generating systems

    International Nuclear Information System (INIS)

    1984-01-01

    The guidebook outlines the general principles of electric power system planning in the context of energy and economic planning in general. It describes the complexities of electric system expansion planning that are due to the time dependence of the problem and the interrelation between the main components of the electric system (generation, transmission and distribution). Load forecasting methods are discussed and the principal models currently used for electric system expansion planning presented. Technical and economic information on power plants is given. Constraints imposed on power system planning by plant characteristics (particularly nuclear power plants) are discussed, as well as factors such as transmission system development, environmental considerations, availability of manpower and financial resources that may affect the proposed plan. A bibliography supplements the references that appear in each chapter, and a comprehensive glossary defines terms used in the guidebook

  14. Partnership for electrical generation technology education

    International Nuclear Information System (INIS)

    Rasmussen, R. S.; Beaty, L.; Holman, R.

    2006-01-01

    This Engineering Technician education effort adapts an existing two-year Instrumentation and Control (I and C) education program into a model that is focused on electrical-generation technologies. It will also locally implement a program developed elsewhere with National Science Foundation funding, aimed at public schools, and adapt it to stimulate pre-college interest in pursuing energy careers in general. (authors)

  15. Understanding social acceptance of electricity generation sources

    International Nuclear Information System (INIS)

    Bronfman, Nicolás C.; Jiménez, Raquel B.; Arévalo, Pilar C.; Cifuentes, Luis A.

    2012-01-01

    Social acceptability is a determinant factor in the failure or success of the government's decisions about which electricity generation sources will satisfy the growing demand for energy. The main goal of this study was to validate a causal trust-acceptability model for electricity generation sources. In the model, social acceptance of an energy source is directly caused by perceived risk and benefit and also by social trust in regulatory agencies (both directly and indirectly, through perceived risk and benefit). Results from a web-based survey of Chilean university students demonstrated that data for energy sources that are controversial in Chilean society (fossil fuels, hydro, and nuclear power) fit the hypothesized model, whereas data for non conventional renewable energy sources (solar, wind, geothermal and tidal) did not. Perceived benefit had the greatest total effect on acceptability, thus emerging as a key predictive factor of social acceptability of controversial electricity generation sources. Further implications for regulatory agencies are discussed. - Highlights: ► We tested a causal trust-acceptability model for electricity generation sources in Chile. ► Data for controversial energy sources in the Chilean society (fossil fuels, hydro and nuclear power) fit the hypothesized model. ► Data for non conventional renewable energy sources did not fit the data. ► Perceived benefit showed the greatest total effect on acceptability.

  16. Implementation of optimum solar electricity generating system

    International Nuclear Information System (INIS)

    Singh, Balbir Singh Mahinder; Karim, Samsul Ariffin A.; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep

    2014-01-01

    Under the 10 th Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels

  17. Implementation of optimum solar electricity generating system

    Science.gov (United States)

    Singh, Balbir Singh Mahinder; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep; Karim, Samsul Ariffin A.

    2014-10-01

    Under the 10th Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  18. Implementation of optimum solar electricity generating system

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Balbir Singh Mahinder, E-mail: balbir@petronas.com.my; Karim, Samsul Ariffin A., E-mail: samsul-ariffin@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia); Sivapalan, Subarna, E-mail: subarna-sivapalan@petronas.com.my [Department of Management and Humanities, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia); Najib, Nurul Syafiqah Mohd; Menon, Pradeep [Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia)

    2014-10-24

    Under the 10{sup th} Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  19. The future of energy generation sector in Brazil

    International Nuclear Information System (INIS)

    Assis, Gino de

    2000-01-01

    The importance of energy on the life of modern man is evaluated considering environmental and strategic issues. Energetic crisis that happened on the recent past of Brazil and United States of America are reviewed and analysed in the light of the particular strategic matters of each country. A tentative projection of the profile of the electrical energy generator industry of Brazil is done based on the past experiences, on the present scenario and on the future potentials. (author)

  20. A large electrically excited synchronous generator

    DEFF Research Database (Denmark)

    2014-01-01

    This invention relates to a large electrically excited synchronous generator (100), comprising a stator (101), and a rotor or rotor coreback (102) comprising an excitation coil (103) generating a magnetic field during use, wherein the rotor or rotor coreback (102) further comprises a plurality...... adjacent neighbouring poles. In this way, a large electrically excited synchronous generator (EESG) is provided that readily enables a relatively large number of poles, compared to a traditional EESG, since the excitation coil in this design provides MMF for all the poles, whereas in a traditional EESG...... each pole needs its own excitation coil, which limits the number of poles as each coil will take up too much space between the poles....

  1. Sustainability protects resources for future generations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This publication by the National Renewable Energy Laboratory addresses the steps necessary to provide livable urban centers for future generations through sustainable development, or sustainability. To illustrate this concept, nonsustainable cities and sustainable cities are compared. Sustainable city projects for several major US cites are reviewed.

  2. Nigeria electricity crisis: Power generation capacity expansion and environmental ramifications

    International Nuclear Information System (INIS)

    Aliyu, Abubakar Sadiq; Ramli, Ahmad Termizi; Saleh, Muneer Aziz

    2013-01-01

    Access to clean and stable electricity is essential in actualizing Nigeria's quest for joining the league of twenty most industrious nations by the year 2020 (vision 20:2020). No country can develop and sustain it development without having a minimum access to electricity for it larger percentage of its population. At present, Nigeria depends petroleum reserves and its aged hydro plant instalments for electricity generation to feed the 40% of its total population that are connected to the national grid. This paper summarizes literature on the current energy issues in Nigeria and introduces the difficulty of the issues involved. The paper also analyses the current (2010) electricity generation as well as the future expansion plans of the Government in 20 years period. The plan includes the introduction of new electrify generation technologies that have not been in used in the base year (2010). The electricity generation system of (including the future expansion plan) was simulated using the LEAP System (Long-range Energy Alternative and Planning). We also investigated the potential environmental impact of siting a nuclear power plant in one of the potential sites based on the site's specific micro-meteorology (land use) and meteorology using the US EPA (Environmental Protection Agency) models; AERMOD 12345. - Highlights: • This paper scrutinizes literature on Nigeria's energy crisis and presents the policies of the clean technology as solutions. • Only 40% of Nigeria's population is connected to the grid; and this population faces power problems 60% of the time. • Simulation of Nigeria electricity generation system was done. • Air dispersion modellingmodelling for radiological health risk from NPP was done

  3. Sustainability considerations for electricity generation from biomass

    International Nuclear Information System (INIS)

    Evans, Annette; Strezov, Vladimir; Evans, Tim J.

    2010-01-01

    The sustainability of electricity generation from biomass has been assessed in this work according to the key indicators of price, efficiency, greenhouse gas emissions, availability, limitations, land use, water use and social impacts. Biomass produced electricity generally provides favourable price, efficiency, emissions, availability and limitations but often has unfavorably high land and water usage as well as social impacts. The type and growing location of the biomass source are paramount to its sustainability. Hardy crops grown on unused or marginal land and waste products are more sustainable than dedicated energy crops grown on food producing land using high rates of fertilisers. (author)

  4. Renewable energy technologies for electricity generation

    International Nuclear Information System (INIS)

    Thorpe, T.W.

    1993-01-01

    The output of electricity supplied by some renewable sources cannot be easily predicted in advance because of their dependence on naturally varying phenomena (e.g. wind or sunshine). To accommodate this variability within the grid, additional amounts of conventional plant might be maintained in reserve, which would add to the overall system cost. This paper examines some aspects of renewable energy technologies for electricity generation as well as factors to be considered in the incorporation of renewables within a grid. 7 refs, 3 figs, 2 tabs

  5. Electrical power systems for distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, T.A.; Huval, S.J. [Stewart & Stevenson Services, Inc., Houston, TX (United States)

    1996-12-31

    {open_quotes}Distributed Generation{close_quotes} has become the {open_quotes}buzz{close_quotes} word of an electric utility industry facing deregulation. Many industrial facilities utilize equipment in distributed installations to serve the needs of a thermal host through the capture of exhaust energy in a heat recovery steam generator. The electrical power generated is then sold as a {open_quotes}side benefit{close_quotes} to the cost-effective supply of high quality thermal energy. Distributed generation is desirable for many different reasons, each with unique characteristics of the product. Many years of experience in the distributed generation market has helped Stewart & Stevenson to define a range of product features that are crucial to most any application. The following paper will highlight a few of these applications. The paper will also examine the range of products currently available and in development. Finally, we will survey the additional services offered by Stewart & Stevenson to meet the needs of a rapidly changing power generation industry.

  6. Environmental effects of the electric power generation

    International Nuclear Information System (INIS)

    Velez Ocon, C.

    1991-01-01

    Every manner to generate electricity has effects on environment and on the way of life of human society. Nevertheless electricity is a way of secondary energy handy and clean and is also frequently the more efficient, and for its reason its use is growing in countries with a rate superior to the increase in national gross product. This is particularly remarkable in Mexico where still exist population sectors without electricity services and where the demand per capita is left behind with respect to other economic indicators. In the last years, preoccupation for environmental effects in human activities, especially that related with the production and use of energy, has been increasing. 'Acid rain', air and water pollution, destruction of stratospheric ozone layer, global heating, radioactive wastes storage, land use, destruction of tropical forest, inundation of archaeological ruins, extintion of animal and vegetable species, are examples of problems daily expound to society (Author)

  7. Impact of GB transmission charging on renewable electricity generation

    International Nuclear Information System (INIS)

    2006-01-01

    The Government is committed to meeting its objective of producing 10% of UK electricity supplies from renewable sources by 2010, subject to the cost to the consumer being acceptable. It is generally believed that northern Scotland - and the Highlands and Islands in particular - will be a significant source of renewable energy in future, mostly in the form of wind power; wave and tidal energy may also be important. The National Grid Company (NGC) is responsible for formulating a cost-reflective and. non-discriminatory electricity transmission charging methodology for Great Britain (GB). This determines Transmission Network Use of System (TNUoS) tariffs, which are paid by transmission-connected generators and suppliers for the use of the high voltage transmission network. Following the publication of National Grid Company's 'GB Transmission Charging: Initial Thoughts' document on 16 December 2003, there was particular concern that the level of future Transmission Network Use of System (TNUoS) tariffs in northern Scotland might impede the achievement of the Government's 2010 target for renewable electricity supplies. That document and subsequent revisions indicate that generation TNUoS charges in northern Scotland were likely to be significantly higher than anywhere else in GB. The study attempts to quantify the effect of the proposed GB-wide TNUoS charging methodology on the future growth of renewable electricity so as to ascertain the impact on the likelihood of meeting the Government's 2010 target. (UK)

  8. Asian electricity: the growing commercialisation of power generation. Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    The seventeen papers presented by speakers at a conference on Asian Electricity in Singapore in May 1993 are collected together in this volume. The main unifying theme is the recourse to private finance to support the expansion in power generation which is necessary to sustain growth in a number of Asian countries. One paper, however, deals specifically with the future role of nuclear power in Asia. A separate abstract has been prepared for this paper. (UK)

  9. Options of electric generation and sustainability

    International Nuclear Information System (INIS)

    Martin del Campo M, C.

    2004-01-01

    In this paper a study on the sustainability of the main electricity generation options is presented. The study is based on a matrix of sustainability indicators developed in Switzerland. A revision of some sustainability studies performed in countries with certain energy diversity and with experience in nuclear power plants operation, is done. Studies, in general, are performed for the power plant life cycle, taking into account economic aspects, fuel prices impact on electricity generation costs, fuel reserves indicators and material consumption. Air emission, waste production and human health impact data are also presented. All the results lead to confirm that nuclear energy has a high degree of sustainability vis a vis other options based on fossil fuels and renewable. Finally some comments are presented in order to highlight the importance that nuclear energy might have in the sustainable development of Mexico. (Author)

  10. The Birth of Nuclear-Generated Electricity

    Science.gov (United States)

    1999-09-01

    The Experimental Breeder Reactor-I (EBR-I), built in Idaho in 1949, generated the first usable electricity from nuclear power on December 20, 1951. More importantly, the reactor was used to prove that it was possible to create more nuclear fuel in the reactor than it consumed during operation -- fuel breeding. The EBR-I facility is now a National Historic Landmark open to the public.

  11. The Birth of Nuclear-Generated Electricity

    International Nuclear Information System (INIS)

    Claflin, D.J. POC

    1999-01-01

    The Experimental Breeder Reactor-I (EBR-I), built in Idaho in 1949, generated the first usable electricity from nuclear power on December 20, 1951. More importantly, the reactor was used to prove that it was possible to create more nuclear fuel in the reactor than it consumed during operation -- fuel breeding. The EBR-I facility is now a National Historic Landmark open to the public

  12. The SEPnet coil demonstrates electricity generation

    Science.gov (United States)

    Harvey, Clare; Hare, Jonathan

    2009-11-01

    The South East Physics Network (SEPnet) (www.sepnet.ac.uk/gcse.php) is exploring various ways to enhance physics learning and A-level uptake, including a series of interactive GCSE revision events. The first event, which includes talks and various physics exhibits by leading teachers and educators, is on energy and the exhibition—called 'Who will keep the lights on?'—is travelling around southern UK venues. Here we describe the demonstration that shows how electricity is generated.

  13. Wind turbines - generating noise or electricity?

    International Nuclear Information System (INIS)

    Russell, Eric

    1999-01-01

    Wind turbine technology has made great strides in the past few years. Annual energy output is up by two orders of magnitude and nacelle weight and noise has been halved. Computational fluid dynamics has paid a part in advancing knowledge of air flow and turbulence around wind generators. Current research is focused on how to increase turbine size and improve efficiency. A problem is that while larger wind turbines will produce cheaper electricity, the noise problem will mean that the number of acceptable sites will decrease. The biggest wind generators will need about 800 m clearance from the nearest house. (UK)

  14. Generation of electricity using liquid metal magnetohydrodynamics

    International Nuclear Information System (INIS)

    Goodwin, F.E.

    1992-01-01

    With liquid metal magnetohydrodynamics, a column of molten lead is passed through a magnetic field, thereby generating a voltage potential according to Faraday's law. The molten lead is propelled through a closed loop by steam from water injected just above where the lead is heated at the bottom of the loop. This water in turn boils explosively, propelling the lead upward through the loop and past the point where the steam escapes through a separator. Electricity can be generated more efficiently from steam with LMMHD than with conventional turbines. With the DC current generated by LMMHD, industriell cogeneration is seen as the most likely application, where the byproduct steam still has enough pressure to also power other steam-driven machinery. Furthermore, the byproduct steam is essentially lead-free since the operating temperature of the LMMHD generator is well below the temperature where lead could dissolve into the steam. (orig.) [de

  15. Projected costs of generating electricity - 2010 edition

    International Nuclear Information System (INIS)

    2010-01-01

    This joint report by the International Energy Agency (IEA) and the OECD Nuclear Energy Agency (NEA) is the seventh in a series of studies on electricity generating costs. It presents the latest data available for a wide variety of fuels and technologies, including coal and gas (with and without carbon capture), nuclear, hydro, onshore and offshore wind, biomass, solar, wave and tidal as well as combined heat and power (CHP). It provides levelised costs of electricity (LCOE) per MWh for almost 200 plants, based on data covering 21 countries (including four major non-OECD countries), and several industrial companies and organisations. For the first time, the report contains an extensive sensitivity analysis of the impact of variations in key parameters such as discount rates, fuel prices and carbon costs on LCOE. Additional issues affecting power generation choices are also examined. The study shows that the cost competitiveness of electricity generating technologies depends on a number of factors which may vary nationally and regionally. Readers will find full details and analyses, supported by over 130 figures and tables, in this report which is expected to constitute a valuable tool for decision makers and researchers concerned with energy policies and climate change

  16. Coal-fired electricity generation in Ontario

    International Nuclear Information System (INIS)

    2001-03-01

    This report examines coal-fired electricity generation in Ontario and recommends actions to be taken by the provincial government to protect the environment. The recommendations are also designed to assist in making decisions about the environmental safeguards needed for a competitive electricity industry. The report examines air emissions from coal-fired generating plants in the larger context of air pollution in the province; summarizes background information on key air pollutants; provides an individual profile of all coal-fired power stations in the province; and benchmarks Ontario's emissions performance by comparing it with 19 nearby U.S. jurisdictions. Current and proposed environmental controls for fossil fuel power generation in the province are elaborated. Options for maximizing environmental performance and the framework for strengthening environmental protection are reviewed. The report also contains a series of findings and recommendations which are deemed necessary before the moratorium imposed on the sale of coal-fired electricity plants imposed in May 2000, can be lifted. tabs., figs

  17. Towards future electricity networks - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Papaemmanouil, A.

    2008-07-01

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) reviews work done on the development of new power transmission planning tools for restructured power networks. These are needed in order to face the challenges that arise due to economic, environmental and social issues. The integration of transmission, generation and energy policy planning in order to support a common strategy with respect to sustainable electricity networks is discussed. In the first phase of the project the main focus was placed on the definition of criteria and inputs that are most likely to affect sustainable transmission expansion plans. Models, concepts, and methods developed in order to study the impact of the internalisation of external costs in power production are examined. To consider external costs in the planning process, a concurrent software tool has been implemented that is capable of studying possible development scenarios. The report examines a concept that has been developed to identify congested transmission lines or corridors and evaluates the dependencies between the various market participants. The paper includes a set of three appendices that include a paper on the 28{sup th} USAEE North American conference, an abstract from Powertech 2009 and an SFOE report from July 2008.

  18. Towards future electricity networks - Final report

    International Nuclear Information System (INIS)

    Papaemmanouil, A.

    2008-01-01

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) reviews work done on the development of new power transmission planning tools for restructured power networks. These are needed in order to face the challenges that arise due to economic, environmental and social issues. The integration of transmission, generation and energy policy planning in order to support a common strategy with respect to sustainable electricity networks is discussed. In the first phase of the project the main focus was placed on the definition of criteria and inputs that are most likely to affect sustainable transmission expansion plans. Models, concepts, and methods developed in order to study the impact of the internalisation of external costs in power production are examined. To consider external costs in the planning process, a concurrent software tool has been implemented that is capable of studying possible development scenarios. The report examines a concept that has been developed to identify congested transmission lines or corridors and evaluates the dependencies between the various market participants. The paper includes a set of three appendices that include a paper on the 28 th USAEE North American conference, an abstract from Powertech 2009 and an SFOE report from July 2008.

  19. Generation and management of waste electric vehicle batteries in China.

    Science.gov (United States)

    Xu, ChengJian; Zhang, Wenxuan; He, Wenzhi; Li, Guangming; Huang, Juwen; Zhu, Haochen

    2017-09-01

    With the increasing adoption of EVs (electric vehicles), a large number of waste EV LIBs (electric vehicle lithium-ion batteries) were generated in China. Statistics showed generation of waste EV LIBs in 2016 reached approximately 10,000 tons, and the amount of them would be growing rapidly in the future. In view of the deleterious effects of waste EV LIBs on the environment and the valuable energy storage capacity or materials that can be reused in them, China has started emphasizing the management, reuse, and recycling of them. This paper presented the generation trend of waste EV LIBs and focused on interrelated management development and experience in China. Based on the situation of waste EV LIBs management in China, existing problems were analyzed and summarized. Some recommendations were made for decision-making organs to use as valuable references to improve the management of waste EV LIBs and promote the sustainable development of EVs.

  20. The future of the electric utility industry in Canada

    International Nuclear Information System (INIS)

    Threlkeld, R.

    1995-01-01

    A discussion of future changes in the electric power utility industry in Canada was presented. The impacts of deregulation were considered, including increased competition, and reduced profits resulting from it. Restructuring measures taken by BC Hydro to prepare for industry changes were described. Competition was not only expected to result from new electric utilities, but also gas utilities that are establishing themselves in the home heating business. Emphasis was placed on making the utilities' priorities, the same as their customers'. Flexibility of rate scheduling and increased dependence on customer-owned generation were needed to remain competitive. Exportation of surplus electricity and development of power utilities in developing nations was considered as a potentially lucrative development strategy. It was suggested that making use of strategic alliances within Canada and worldwide, will help to keep utilities ahead of the competition. A warning was issued to the effect that environmental concerns must always be considered well in advance of regulations since they are continually becoming more stringent. Making common cause with customers, and continuous improvement were considered to be the most important keys to future success for the industry

  1. The future profile of power generation in North America

    International Nuclear Information System (INIS)

    Eynon, R.T.

    2004-01-01

    This presentation addressed North American power generation issues with particular reference to energy markets, electricity projections, coal supply and natural gas supply. Energy demand is expected to grow due to an increase in population and economic activity. Growth will be tempered by improvements in energy efficiency of equipment and buildings. Production of domestic energy is projected to grow, but not enough to meet energy demands in the United States, thereby increasing levels of imports, primarily natural gas from Canada. One of the key factors in energy markets is the price of natural gas which rose to record levels in 2001 due to strong demand in the winter and tight supplies stemming from low drilling rates in the late 1990s. In the long term, technology improvements will offset price increases. Improvements in gas finding and development technology will continue. Electricity use is projected to grow at slightly slower than historical rates due to improvements in equipment efficiency and investments in demand-side management programs. The growth in electricity sales is led by the commercial sector followed by the industrial sector. The paper emphasized the need for new generating capacity to replace aging generating plants. Coal-fired steam plants have the largest share of power generation in the United States, representing about one-half of total generation, followed by nuclear, natural gas and renewable energy sources. The use of petroleum for generation is small and is expected to decline in the future with the advent of new efficient generating technologies. The use of natural gas for power generation is expected grow significantly due to new technologies for efficient combustion turbines and combined-cycle generators fueled by natural gas. These technologies have low capital costs compared to other technologies and have short lead times for construction. tabs., figs

  2. Economical evaluation of electricity generation considering externalities

    International Nuclear Information System (INIS)

    El-Kordy, M.N.; Badr, M.A.; Abed, K.A.; Ibrahim, Said M.A.

    2002-01-01

    The economics of renewable energy are the largest barrier to renewable penetration. Nevertheless, the strong desire to reduce environmental emissions is considered a great support for renewable energy sources. In this paper, a full analysis for the cost of the kWh of electricity generated from different systems actually used in Egypt is presented. Also renewable energy systems are proposed and their costs are analyzed. The analysis considers the external cost of emissions from different generating systems. A proposed large scale PV plant of 3.3 MW, and a wind farm 11.25 MW grid connected at different sites are investigated. A life cycle cost analysis for each system was performed using the present value criterion. The comparison results showed that wind energy generation has the lowest cost, followed by a combined cycle-natural gas fired system. A photovoltaic system still uses comparatively expensive technology for electricity generation; even when external costs are considered the capital cost of photovoltaic needs to be reduced by about 60% in order to be economically competitive. (Author)

  3. Electricity market design of the future; Strommarktdesign der Zukunft

    Energy Technology Data Exchange (ETDEWEB)

    Peek, Markus; Diels, Robert [r2b energy consulting GmbH, Koeln (Germany)

    2016-02-15

    The transformation of the power generation system, to one in which renewable energies will form a cornerstone, will change the requirements for all market actors. To achieve the goals of the German Energiewende ('energy transition'), greater flexibility in production and consumption is of particular importance. Flexibility enables the cost-effective integration of the fluctuating actual feed-in of renewable energies. On the one hand, the technical options for reducing existing technical inflexibilities are given to a considerable extent. On the other hand, analyses of the transnational compensation effects of load and renewable energy supply (RES) feed-in show that flexibility requirements can be reduced significantly in a common electricity market. Electricity markets in which there is open technological competition are an appropriate instrument for the flexibilization of the power supply system. In the short term, the mechanisms of competitive electricity markets ensure an efficient synchronization of supply and demand. Over the medium and long term, the market creates efficient incentives to adapt the generation system and the behavior of consumers to future needs, resulting from the changes in the residual load structure. But at the same time, in recent years the occurrence of negative electricity prices in situations with significantly positive residual loads show that flexibility restraints exist. The causes of these restraints are at least partly due to the market design or the regulatory framework. On the one hand, there are barriers to market entry and, on the other hand, price signals from the electricity markets do not reach all market actors or reach them distortedly. To enable the cost effective development of the different flexibility options in an open technology competition, restraints resulting from market design and the regulatory framework (e. g. in the framework of grid charges, the market and product design of control power markets

  4. Electric power: Past, present, and future

    International Nuclear Information System (INIS)

    Schnetzer, H.

    1994-01-01

    When, at the turn of the century, public electric power supply facilities were created and in 1908, the electric power stations of the Swiss canton of Zurich (EKZ) were built, only a third of the communities in the Zurich area could boast about being the consumers of this new energy. But what did the first electrically powered devices and machines look like? This, and more, is presented in the ''electric power house'' in Burenwisen Glattfelden in the canton of Zurich. Besides a Kaplan turbine and a sample of the most interesting devices from the past and the present, the focus of the exhibition is on the presentation of the new and old sources of light. The EKZ are pleased to be able to present their ''electric power house'' to the public, providing a broad range of information on energy-related questions and the development of electric power supply. (orig.) [de

  5. Future directions and cycles for electricity production from geothermal resources

    International Nuclear Information System (INIS)

    Michaelides, Efstathios E.

    2016-01-01

    Graphical abstract: 25% more power may be produced using binary-flashing geothermal cycles. - Highlights: • Power from geothermal power plants is continuously available and “dispatchable.” • The next generation of geothermal will include more binary plants. • Lower temperature geothermal resources will be utilized in the future. • Dry rock resources may produce a high fraction of electricity in several countries. - Abstract: Geothermal power production is economically competitive and capable to produce a high percentage of the electric power demand in several countries. The currently operating geothermal power plants utilize water from an aquifer at relatively higher temperatures and produce power using dry steam, flashing or binary cycles. A glance at the map of the global geothermal resources proves that there is a multitude of sites, where the aquifer temperature is lower. There are also many geothermal resources where a high geothermal gradient exists in the absence of an aquifer. It becomes apparent that the next generation of geothermal power plants will utilize more of the lower-temperature aquifer resources or the dry resources. For such power plants to be economically competitive, modified or new cycles with higher efficiencies must be used. This paper presents two methods to increase the efficiency of the currently used geothermal cycles. The first uses a binary-flashing system to reduce the overall entropy production, thus, producing more electric power from the resource. The second describes a heat extraction system to be used with dry hot-rock resources.

  6. The future of coal-fired generation

    Energy Technology Data Exchange (ETDEWEB)

    White, G. [Sherritt International Corp., Calgary, AB (Canada)

    2004-07-01

    The 3 features that will ensure coal's place as a primary energy source are its affordability, availability and its abundance. Coal reserves represent more than 200 years of supply. Graphs depicting coal consumption in North America, Central and South America, Western Europe, Easter Europe, Middle East, Africa, and Asia show that coal use is expected to grow 1.5 per cent annually. Asia is the greatest consumer of coal, while the consumption of coal in Eastern Europe is steadily declining. About half of the electricity supply in the United States will continue to be generated by coal and non-electrical utilization is also expected to grow. Emerging technologies that are promoting efficiency of coal utilization include combustion technology, clean coal technology, conversion technology and emissions technology. These technologies also address environmental concerns regarding coal combustion, such as removal of carbon dioxide through sequestration and reduction in nitrogen oxides, sulphur dioxide and particulates. Mercury mitigation technologies are also being developed. It was noted that the use of coal is mitigated by other available supply such as nuclear, natural gas and hydro which provide the base load generation. Renewable energy supply can meet up to 20 per cent of the base load, while coal can fill be gap between base load and peak loads. It was noted that the use of coal in direct industrial processes allows for synergies such as syngas for bitumen upgrading, coal as a chemical feedstock with electricity as a by-product, combined heat and power and cogeneration. tabs., figs.

  7. Insufficient incentives for investment in electricity generations

    Energy Technology Data Exchange (ETDEWEB)

    Neuhoff, K. [Cambridge University (United Kingdom). Dept. of Applied Economics; De Vries, L. [Delft University of Technology (Netherlands). Faculty of Technology, Policy and Management

    2004-12-01

    In theory, competitive electricity markets provide incentives for efficient investment in generation capacity. We show that if consumers and investors are risk averse, investment is efficient only if investors in generation capacity can sign long-term contracts with consumers. Otherwise the uncovered price risk increases financing costs, reduces equilibrium investment levels, distorts technology choice towards less capital-intensive generation and reduces consumer utility. We observe insufficient levels of long-term contracts in existing markets, possibly because retail companies are not credible counter-parties if their final customers can switch easily between them. With a consumer franchise, retailers can sign long-term contracts, but this solution comes at the expense of retail competition. Alternative capacity mechanisms to stimulate investment are discussed. (author)

  8. ELECTRICITY GENERATION FROM LANDFILL GAS IN TURKEY.

    Science.gov (United States)

    Salihoglu, Nezih Kamil

    2018-05-08

    Landfill gas (LFG)-to-energy plants in Turkey were investigated, and the LFG-to-energy plant of a metropolitan municipal landfill was monitored for 3 years. Installed capacities and actual gas engine working hours were determined. An equation was developed to estimate the power capacity for LFG-to-energy plants for a given amount of landfilled waste. Monitoring the actual gas generation rates enabled determination of LFG generation factors for Turkish municipal waste. A significant relationship (R = 0.524, p kitchen waste generation behaviors influenced by the ambient temperature. However, no significant correlation was found between the ambient temperature and the generated LFG. A temperature buffering capacity was inferred to exist within the landfill, which enables the anaerobic reactions to continue functioning even during cold seasons. The average LFG and energy generation rates were 45 m 3 LFG/ton waste landfilled and 0.08 MWh/ton waste landfilled, respectively. The mean specific LFG consumption for electricity generation was 529 ± 28 m 3 /MWh.

  9. Electricity generation from digitally printed cyanobacteria.

    Science.gov (United States)

    Sawa, Marin; Fantuzzi, Andrea; Bombelli, Paolo; Howe, Christopher J; Hellgardt, Klaus; Nixon, Peter J

    2017-11-06

    Microbial biophotovoltaic cells exploit the ability of cyanobacteria and microalgae to convert light energy into electrical current using water as the source of electrons. Such bioelectrochemical systems have a clear advantage over more conventional microbial fuel cells which require the input of organic carbon for microbial growth. However, innovative approaches are needed to address scale-up issues associated with the fabrication of the inorganic (electrodes) and biological (microbe) parts of the biophotovoltaic device. Here we demonstrate the feasibility of using a simple commercial inkjet printer to fabricate a thin-film paper-based biophotovoltaic cell consisting of a layer of cyanobacterial cells on top of a carbon nanotube conducting surface. We show that these printed cyanobacteria are capable of generating a sustained electrical current both in the dark (as a 'solar bio-battery') and in response to light (as a 'bio-solar-panel') with potential applications in low-power devices.

  10. Hydraulic turbines uses for rural electric generation

    International Nuclear Information System (INIS)

    Genta, J.; Nunes, V.

    1994-01-01

    The micro turbines use for electric generation either in autonomous systems or in connection to the national net is presented like an alternative whose viability has been studied in the Agreement taken place between the UTE Administracion Nacional de Usinas y transmisiones Electricas y la Facultad de Ingenieria. The Agreement S tudy for the Installation of Micro turbines that initially considered areas far from the national electric net it extended then to near areas to the same one to analyze the cogeneration alternative. They were considered smaller and bigger powers than 1 MW and up to 5MW. For the whole study range a methodology is described of calculate primary, starting from a minimum of field information that allows a first estimate of viability of a certain place and the selection of the turbine type, for a later detailed study

  11. Third Generation Flywheels for electric storage

    Energy Technology Data Exchange (ETDEWEB)

    Ricci, Michael, R.; Fiske, O. James

    2008-02-29

    Electricity is critical to our economy, but growth in demand has saturated the power grid causing instability and blackouts. The economic penalty due to lost productivity in the US exceeds $100 billion per year. Opposition to new transmission lines and power plants, environmental restrictions, and an expected $100 billion grid upgrade cost have slowed system improvements. Flywheel electricity storage could provide a more economical, environmentally benign alternative and slash economic losses if units could be scaled up in a cost effective manner to much larger power and capacity than the present maximum of a few hundred kW and a few kWh per flywheel. The goal of this project is to design, construct, and demonstrate a small-scale third generation electricity storage flywheel using a revolutionary architecture scalable to megawatt-hours per unit. First generation flywheels are built from bulk materials such as steel and provide inertia to smooth the motion of mechanical devices such as engines. They can be scaled up to tens of tons or more, but have relatively low energy storage density. Second generation flywheels use similar designs but are fabricated with composite materials such as carbon fiber and epoxy. They are capable of much higher energy storage density but cannot economically be built larger than a few kWh of storage capacity due to structural and stability limitations. LaunchPoint is developing a third generation flywheel — the "Power Ring" — with energy densities as high or higher than second generation flywheels and a totally new architecture scalable to enormous sizes. Electricity storage capacities exceeding 5 megawatt-hours per unit appear both technically feasible and economically attractive. Our design uses a new class of magnetic bearing – a radial gap “shear-force levitator” – that we discovered and patented, and a thin-walled composite hoop rotated at high speed to store kinetic energy. One immediate application is power grid

  12. Life cycle assessment, electricity generation and sustainability

    International Nuclear Information System (INIS)

    Aumonier, S.

    1998-01-01

    When making a choice between alternatives, in whatever field, it is essential to have regard for the complete set of costs and benefits, in the widest possible sense, that will result in each case. The preferred option should be that which confers the maximum benefit, although relevant objectives will often conflict and its identification may be far from straightforward. Life cycle assessment (LCA) is an environmental accounting tool for measuring the inputs and outputs of an option, whether a product, a process or an activity. This paper explains the principles and methodologies involved in LCA, its application to the nuclear sector, and to electricity generating options and sustainable development. (author)

  13. LPGC, Levelized Steam Electric Power Generator Cost

    International Nuclear Information System (INIS)

    Coen, J.J.; Delene, J.G.

    1994-01-01

    1 - Description of program or function: LPGC is a set of nine microcomputer programs for estimating power generation costs for large steam-electric power plants. These programs permit rapid evaluation using various sets of economic and technical ground rules. The levelized power generation costs calculated may be used to compare the relative economics of nuclear and coal-fired plants based on life-cycle costs. Cost calculations include capital investment cost, operation and maintenance cost, fuel cycle cost, decommissioning cost, and total levelized power generation cost. These programs can be used for quick analyses of power generation costs using alternative economic parameters, such as interest rate, escalation rate, inflation rate, plant lead times, capacity factor, fuel prices, etc. The two major types of electric generating plants considered are pressurized-water reactor (PWR) and pulverized coal-fired plants. Data are also provided for the Large Scale Prototype Breeder (LSPB) type liquid metal reactor. Costs for plant having either one or two units may be obtained. 2 - Method of solution: LPGC consists of nine individual menu-driven programs controlled by a driver program, MAINPWR. The individual programs are PLANTCAP, for calculating capital investment costs; NUCLOM, for determining operation and maintenance (O and M) costs for nuclear plants; COALOM, for computing O and M costs for coal-fired plants; NFUEL, for calculating levelized fuel costs for nuclear plants; COALCOST, for determining levelized fuel costs for coal-fired plants; FCRATE, for computing the fixed charge rate on the capital investment; LEVEL, for calculating levelized power generation costs; CAPITAL, for determining capitalized cost from overnight cost; and MASSGEN, for generating, deleting, or changing fuel cycle mass balance data for use with NFUEL. LPGC has three modes of operation. In the first, each individual code can be executed independently to determine one aspect of the total

  14. Magnetic field generation device for magnetohydrodynamic electric power generation

    International Nuclear Information System (INIS)

    Kuriyama, Yoshihiko.

    1993-01-01

    An existent magnetic field generation device for magnetohydrodynamic electric power generation comprises at least a pair of permanent magnets disposed to an inner circumferential surface of a yoke having such a cross sectional area that two pairs of parallel sides are present, in which different magnetic poles are opposed while interposing a flow channel for a conductive fluid therebetween. Then, first permanent magnets which generate main magnetic fields are disposed each at a gap sandwiching a plane surface including a center axis of a flow channel for the conductive fluid. Second permanent magnets which generate auxiliary magnetic fields are disposed to an inner circumferential surface of a yoke intersecting the yoke to which the first permanent magnets are disposed. The magnetic poles on the side of the flow channel for the second permanent magnets have identical polarity with that of the magnetic poles of the adjacent first permanent magnets. As a result, a magnetic flux density in the flow channel for the conductive fluid can be kept homogeneous and at a high level from a position of the axial line of the flow channel to the outer circumference, thereby enabling to remarkably improve a power generation efficiency. (N.H.)

  15. Is solar PV generated electricity cheap in South Africa?

    CSIR Research Space (South Africa)

    Roro, Kittessa T

    2015-07-01

    Full Text Available This presentation reflects on photovoltaic (PV) generated electricity in South Africa, and whether it is a cheaper alternative to current generated electricity in the country. It is projected that by 2019 the installed capacity of PV could...

  16. Comparative assessment of electricity generation options in the Philippines

    International Nuclear Information System (INIS)

    Leonin, T.V.; Mundo, M.Q.; Venida, L.L.; Arriola, H.; Madrio, E.

    2001-01-01

    The development of a country specific data base on energy sources, facilities and technologies is presented in this paper. It also identified feasible national electricity generating options and electric power system expansion alternatives for the period 2000-2020, and conducted comparative assessments of these options based on economic and environmental considerations. The possible role of nuclear power in the country's future electric energy was also studied. The comparison of three electricity generating options were considered: coal-fired thermal power plant without flue gas desulfurization (FGD), coal-fired thermal power plant with FGD and combined cycle power plant with 300 MW generating capacity each. Based on the analysis of three alternatives, the use of coal-fired power plants equipped with flue gas desulfurization (FGD) should be seriously considered. The government is expected to pursue the full development of local energy sources such as hydropower, geothermal, coal, natural gas and other new and renewable energy sources. However, there will still be a major need for imported oil and coal fuel which will likely supply unidentified energy sources beyond 2010. In the case of nuclear power, the government has not firmed up definite plans for any construction of nuclear power plants after 2010. However, the long term energy development plan still includes the operation of at least two nuclear power plants by the 2020 and this long term range program has not been revised in the recent published updates. (Author)

  17. Future development of large superconducting generators

    International Nuclear Information System (INIS)

    Singh, S.K.; Mole, C.J.

    1989-01-01

    Large superconducting generators are being developed worldwide. The use of superconductors to reduce the electrical power dissipation in power equipment has been a technological possibility ever since the discovery of superconductivity, even though their use in power equipment remained an impractical dream for a long time. However, scientific and technological progress in superconductivity and cryogenics has brought this dream much closer to reality. Results obtained so far establish the technical feasibility of these machines. Analytical developments have been providing a sound basis for the design of superconducting machines and results of these design studies have shown improvements in power density of up to a factor of 10 higher than the power density for conventional machines. This paper describes the recently completed USA programs, the current foreign and USA programs, and then proposes a USA development program to maintain leadership in the field

  18. Natural gas poised to penetrate deeper into electric generation

    International Nuclear Information System (INIS)

    Swanekamp, R.

    1995-01-01

    This article describes how advancements in gas supply, distribution and storage, coupled with new options in combustion equipment, continue to expand the use of natural gas for electric generation. The challenge is to meet the increasing demand while keeping prices competitive with other fuels--and keep a small band of skeptics at bay. To prepare for the projected growth in gas consumption, the natural-gas industry has invented in new infrastructure and technologies. Pipelines have been built; storage facilities have been expanded; and highly precise flow measurement stations have been installed. To mitigate supply and price risk, suppliers are offering short-, mid-, or long-term contracts which include service options and guarantees. In spite of these preparations, not all power producers are comfortable with the potential tidal wave of gas-fired capacity. Reason: It limits the electric-generation resource base to one fuel for future capacity

  19. Future perspective of cost for nuclear power generation

    International Nuclear Information System (INIS)

    Maeda, Ichiro

    1988-01-01

    The report presents and discussed results of evaluation of the cost for power generation in this and forthcoming years on the basis of an analysis of the current fuel prices and the economics of various power sources. Calculations show that nuclear power generation at present is inferior to coal-firing power generation in terms of required costs, but can become superior in the future due to an increased burn-up and reduced construction cost. Investigations are made of possible contributions of future technical improvements to reduction in the overall cost. Results suggest that nuclear power generation will be the most efficient among the various electric sources because of its technology-intensive feature. Development of improved light water reactors is of special importance to achieve a high burn-up and reduced construction costs. In general, the fixed cost accounts for a large part of the overall nuclear power generation cost, indicating that a reduction in construction cost can greatly increase the economic efficiency. Changes in the yen's exchange rate seem to have little effect on the economics of nuclear power generation, which represents another favorable aspect of this type of energy. (Nogami, K.)

  20. Electricity market design for the future

    OpenAIRE

    robinson, david; Keay, Malcolm

    2017-01-01

    This paper explains why current electricity markets are not fit for purpose and propose a new market design. Electricity markets operating today were designed for the technical and economic conditions of the 1990's. These conditions have changed substantially, especially with increased penetration of intermittent renewables and the growing potential for distributed energy resources and consumer involvement. Today's markets are incompatible with these trends. They do not provide h...

  1. Electric power industry in Korea: Past, present, and future

    International Nuclear Information System (INIS)

    Lee, Hoesung.

    1994-01-01

    Electrical power is an indispensable tool in the industrialization of a developing country. An efficient, reliable source of electricity is a key factor in the establishment of a wide range of industries, and the supply of energy must keep pace with the increasing demand which economic growth creates in order for that growth to be sustained. As one of the most successful of all developing countries, Korea has registered impressive economic growth over the last decade, and it could be said that the rapid growth of the Korean economy would not have been possible without corresponding growth in the supply of electric power. Power producers in Korea, and elsewhere in Asia, are to be commended for successfully meeting the challenge of providing the necessary power to spur what some call an economic miracle. The future continues to hold great potential for participants in the electrical power industry, but a number of important challenges must be met in order for that potential to be fully realized. Demand for electricity continues to grow at a staggering rate, while concerns over the environmental impact of power generating facilities must not be ignored. As it becomes increasingly difficult to finance the rapid, and increasingly larger-scale expansion of the power industry through internal sources, the government must find resources to meet the growing demand at least cost. This will lead to important opportunities for the private sector. It is important, therefore, for those interested in participating in the power production industry and taking advantage of the newly emerging opportunities that lie in the Korean market, and elsewhere in Asia, to discuss the relevant issues and become informed of the specific conditions of each market

  2. Thermophotovoltaic Arrays for Electrical Power Generation

    International Nuclear Information System (INIS)

    Sarnoff Corporation

    2003-01-01

    Sarnoff has designed an integrated array of thermophotovoltaic (TPV) cells based on the In(Al)GaAsSb/GaSb materials system. These arrays will be used in a system to generate electrical power from a radioisotope heat source that radiates at temperatures from 700 to 1000 C. Two arrays sandwich the slab heat source and will be connected in series to build voltage. Between the arrays and the heat source is a spectral control filter that transmits above-bandgap radiation and reflects below-bandgap radiation. The goal is to generate 5 mW of electrical power at 3 V from a 700 C radiant source. Sarnoff is a leader in antimonide-based TPV cell development. InGaAsSb cells with a bandgap of 0.53 eV have operated at system conversion efficiencies greater than 17%. The system included a front-surface filter, and a 905 C radiation source. The cells were grown via organo-metallic vapor-phase epitaxy. Sarnoff will bring this experience to bear on the proposed project. The authors first describe array and cell architecture. They then present calculated results showing that about 80 mW of power can be obtained from a 700 C radiator. Using a conservative array design, a 5-V output is possible

  3. Projected costs of generating electricity - 2005 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The joint IEA/NEA study provides generation cost estimates for over a hundred power plants that use a variety of fuels and technologies. These include coal-fired, gas-fired, nuclear, hydro, solar and wind plants. Cost estimates are also given for combined heat and power plants that use coal, gas and combustible renewables. Data and information for this study were provided by experts from 19 OECD member countries and 3 non-member countries. The power plants examined in the study use technologies available today. The study shows that the competitiveness of alternative generation sources and technologies ultimately depends on many parameters: there is no clear-cut 'winner'. Major issues related to generation costs addressed in the report include: descriptions of state-of-the-art generation technologies; the methodologies for incorporating risk in cost assessments; the impact of carbon emission trading; and how to integrate wind power into the electricity grid. 24 figs., 38 tabs., 11 apps.

  4. Electrical Power Conversion of River and Tidal Power Generator

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Gevorgian, Vahan; Wright, Alan; Donegan, James; Marnagh, Cian; McEntee, Jarlath

    2016-11-21

    As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded to include new types with promising future applications, such as river and tidal generation. Although the utilization of power electronics and electric machines in industry is phenomenal, the emphasis on system design is different for various sectors of industry. In precision control, robotics, and weaponry, the design emphasis is on accuracy and reliability with less concern for the cost of the final product. In energy generation, the cost of energy is the prime concern; thus, capital expenditures (CAPEX) and operations and maintenance expenditures (OPEX) are the major design objectives. This paper describes the electrical power conversion aspects of river and tidal generation. Although modern power converter control is available to control the generation side, the design was chosen on the bases of minimizing the CAPEX and OPEX; thus, the architecture is simple and modular for ease of replacement and maintenance. The power conversion is simplified by considering a simple diode bridge and a DC-DC power converter to take advantage of abundant and low-cost photovoltaic inverters that have well-proven grid integration characteristics (i.e., the capability to produce energy with good power quality and control real power and voltage on the grid side).

  5. Developing long-term scenario forecasts to support electricity generation investment decisions

    CSIR Research Space (South Africa)

    Koen, Renée

    2014-09-01

    Full Text Available Many decisions regarding capital investment in electricity generation technologies need to be made well in advance, usually when there is still a large amount of uncertainty regarding the favourability of future conditions. There may be uncertainty...

  6. Electricity from Sunlight: The Future of Photovoltaics. Worldwatch Paper 52.

    Science.gov (United States)

    Flavin, Christopher

    Solar photovoltaic cells have been called the ultimate energy technology, environmentally benign and without moving parts, solar cells directly convert sunlight into electricity. Photovoltaic energy conversion is fundamentally different from all other forms of electricity generation. Without turbines, generators or other mechanical equipment, it…

  7. Electric vehicles to support large wind power penetration in future danish power systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte; Thøgersen, Paul

    2012-01-01

    Electric Vehicles (EVs) could play major role in the future intelligent grids to support a large penetration of renewable energy in Denmark, especially electricity production from wind turbines. The future power systems aims to phase-out big conventional fossil-fueled generators with large number...... on low voltage residential networks. Significant amount of EVs could be integrated in local distribution grids with the support of intelligent grid and smart charging strategies....

  8. A Nodal Pricing Analysis of the Future German Electricity Market

    International Nuclear Information System (INIS)

    Ozdemir, O.; Hers, J.S.; Bartholomew Fisher, E.; Brunekreeft, G.; Hobbs, B.F.

    2009-05-01

    The electricity market in Germany is likely to undergo several significant structural changes over the years to come. Here one may think of Germany's ambitious renewable agenda, the disputed decommissioning of nuclear facilities, but also unbundling of TSO's as enforced by European regulation. This study is a scenario-based analysis of the impact of different realizations of known investment plans for transmission and generation capacity on the future German power market while accounting for internal congestion. For this analysis the static equilibrium model of the European electricity market COMPETES is deployed, including a 10-node representation of the German highvoltage grid. Results for the multi-node analysis indicate that price divergence and congestion are likely to arise in the German market as renewable additions affecting mainly the North of Germany, the debated decommissioning of nuclear facilities in the South, and the expected decommissioning of coal-fired facilities in Western Germany appear to render current investment plans for transmission capacity insufficient. The current system of singlezone pricing for the German market may therewith be compromised. However, transmission additions would not benefit all market parties, with producers in exporting regions and consumers in importing regions being the main beneficiaries. Vertical unbundling of German power companies could increase the incentive for constructing transmission lines if generation capacity would cause Germany to be a net-importing country. In case Germany remains a net-exporting country, the effects of vertical unbundling on cross-border capacity are less clear cut.

  9. Coal-fired magnetohydrodynamic (MHD) electric power generation

    International Nuclear Information System (INIS)

    Sens, P.F.

    1992-01-01

    Since 1986 Directorate-General XII 'Science, Research and Development' of the Commission of the European Communities has kept a watching brief on the development of coal-fired magnetohydrodynamic (MHD) electric power generation from the 'solid fuels' section of its non-nuclear energy R and D programme. It established, in 1987, the Faraday Working Group (FWG) to assess the development status of coal-fired MHD and to evaluate its potential contribution to the future electricity production in the Community. The FWG expressed as its opinion, at the end of 1987, that in sufficient data were available to justify a final answer to the question about MHD's potential contribution to future electricity production and recommended that studies be undertaken in three areas; (i) the lifetime of the generator, (ii) cost and performance of direct air preheating, (iii) cost and efficiency of seed recovery/reprocessing. These studies were contracted and results were presented in the extended FWG meeting on 15 November 1990, for an audience of about 70 people. The present volume contains the proceedings of this meeting. The introduction describes the reasons for establishing the FWG, its activities and the content of its extended meeting followed by the summary of the discussions and the concluding remarks of this meeting. The main part of the volume consists of the text either of the oral presentations during the meeting or of the final reports resulting from the studies under contract

  10. Regulation of distributed generation. A European Policy Paper on the Integration of Distributed Generation in the Internal Electricity Market

    International Nuclear Information System (INIS)

    Van Sambeek, E.J.W.; Scheepers, M.J.J.

    2004-06-01

    In the SUSTELNET project criteria and guidelines have been developed that can create a level playing field in electricity markets between distributed generation (DG) and large scale power generation and will improve the network and market access of DG and electricity supply from renewable energy resources (RES). This report focuses on the European dimensions of DG regulation. The key findings of the SUSTELNET project are compared with the EU legislation, i.e. the current Electricity, Renewables and CHP Directives. Additional EU policy, regulation and initiatives are identified that can help Member States in developing future economically efficient and sustainable electricity supply systems

  11. Healthy and sustainable diets for future generations.

    Science.gov (United States)

    Green, Hilary; Broun, Pierre; Cook, Douglas; Cooper, Karen; Drewnowski, Adam; Pollard, Duncan; Sweeney, Gary; Roulin, Anne

    2018-07-01

    Global food systems will face unprecedented challenges in the coming years. They will need to meet the nutritional needs of a growing population and feed an expanding demand for proteins. This is against a backdrop of increasing environmental challenges (water resources, climate change, soil health) and the need to improve farming livelihoods. Collaborative efforts by a variety of stakeholders are needed to ensure that future generations have access to healthy and sustainable diets. Food will play an increasingly important role in the global discourse on health. These topics were explored during Nestlé's second international conference on 'Planting Seeds for the Future of Food: The Agriculture, Nutrition and Sustainability Nexus', which took place in July 2017. This article discusses some of the key issues from the perspective of three major stakeholder groups, namely farming/agriculture, the food industry and consumers. © 2018 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2018 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  12. World electricity generation, nuclear power, and oil markets

    International Nuclear Information System (INIS)

    1990-01-01

    Striking changes have characterized the world's production and use of energy over the past 15 years. Most prominent have been the wide price fluctuations, politicization of world oil prices and supply, along with profound changes in patterns of production and consumption. This report, based on a study by energy analysts at Science Concepts, Inc., in the United States, traces changes in world energy supply since 1973-74 - the time of the first oil ''price shocks''. In so doing, it identifies important lessons for the future. The study focused in particular on the role of the electric power sector because the growth in fuel use in it has been accomplished without oil. Instead, the growth has directly displaced oil. In the pre-1973 era, the world relied increasingly on oil for many energy applications, including the production of electricity. By 1973, more than on-fourth of the world's electricity was produced by burning oil. By 1987, however, despite a large increase in electric demand, the use of oil was reigned back to generating less than 10% of the world's electricity. Nuclear power played a major role in this turnaround. From 1973-87, analysts at Science Concepts found, nuclear power displaced the burning of 11.7 billion barrels of oil world-wide and avoided US $323 billion in oil purchases

  13. Performance study of thermo-electric generator

    Science.gov (United States)

    Rohit, G.; Manaswini, D.; Kotebavi, Vinod; R, Nagaraja S.

    2017-07-01

    Devices like automobiles, stoves, ovens, boilers, kilns and heaters dissipate large amount of waste heat. Since most of this waste heat goes unused, the efficiency of these devices is drastically reduced. A lot of research is being conducted on the recovery of the waste heat, among which Thermoelectric Generators (TEG) is one of the popular method. TEG is a semiconductor device that produces electric potential difference when a thermal gradient develops on it. This paper deals with the study of performance of a TEG module for different hot surface temperatures. Performance characteristics used here are voltage, current and power developed by the TEG. One side of the TEG was kept on a hot plate where uniform heat flux was supplied to that. And the other side was cooled by supplying cold water. The results show that the output power increases significantly with increase in the temperature of the hot surface.

  14. Vogtle Electric Generating Plant ETE Analysis Review

    Energy Technology Data Exchange (ETDEWEB)

    Diediker, Nona H.; Jones, Joe A.

    2006-12-09

    Under contract with the Nuclear Regulatory Commission (NRC), staff from Pacific Northwest National Laboratory (PNNL) and Sandia National Laboratory (SNL)-Albuquerque reviewed the evacuation time estimate (ETE) analysis dated April 2006 prepared by IEM for the Vogtle Electric Generating Plant (VEGP). The ETE analysis was reviewed for consistency with federal regulations using the NRC guidelines in Review Standard (RS)-002, Supplement 2 and Appendix 4 to NUREG-0654, and NUREG/CR-4831. Additional sources of information referenced in the analysis and used in the review included NUREG/CR-6863 and NUREG/CR-6864. The PNNL report includes general comments, data needs or clarifications, and requests for additional information (RAI) resulting from review of the ETE analysis.

  15. Wind power plant for electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Landsiedel, E

    1978-11-09

    The invention concerns a wind power plant which rotates on a vertical axis and is suitable for the generation of electricity. This wind power machine with a vertical axis can be mounted at any height, so that it can catch the wind on the vertical axis of rotation. Further, it does not have to be turned into the direction of the wind and fixed. The purpose of the invention is to obtain equal load on the structure due to the vertical axis. The purpose of the invention is fulfilled by having the wind vanes fixed above one another from the bottom to the top in 6 different directions. The particular advantage of the invention lies in the fact that the auxiliary blades can bring the other blades to the operating position in good time, due to their particular method of fixing.

  16. Economics of coal-based electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Hemming, D F; Johnston, R; Teper, M

    1979-01-01

    The report deals with base-load electricity generation from coal and compares the economics of four alternative technologies: conventional pulverised-fuel (PF) boiler with steam cycle; atmospheric fluidised-bed (AFB) boiler with steam cycle; pressurised fluidised-bed (PFB) boiler with combined cycle; and integrated air-blown coal gasification with combined cycle systems are compared for both a high sulphur (3.5%) coal with environmental regulations requiring 85% sulphur removal, and for a low sulphur coal without sulphur removal. The results indicate that there is no single clear 'winner' among the advanced technologies. The optimum system depends on coal price, required rate-of-return, sulphur content of the coal, taxation regime etc. (34 refs.) (Available from IEA Coal Research, Economic Assessment Service)

  17. Classical-Equivalent Bayesian Portfolio Optimization for Electricity Generation Planning

    Directory of Open Access Journals (Sweden)

    Hellinton H. Takada

    2018-01-01

    Full Text Available There are several electricity generation technologies based on different sources such as wind, biomass, gas, coal, and so on. The consideration of the uncertainties associated with the future costs of such technologies is crucial for planning purposes. In the literature, the allocation of resources in the available technologies has been solved as a mean-variance optimization problem assuming knowledge of the expected values and the covariance matrix of the costs. However, in practice, they are not exactly known parameters. Consequently, the obtained optimal allocations from the mean-variance optimization are not robust to possible estimation errors of such parameters. Additionally, it is usual to have electricity generation technology specialists participating in the planning processes and, obviously, the consideration of useful prior information based on their previous experience is of utmost importance. The Bayesian models consider not only the uncertainty in the parameters, but also the prior information from the specialists. In this paper, we introduce the classical-equivalent Bayesian mean-variance optimization to solve the electricity generation planning problem using both improper and proper prior distributions for the parameters. In order to illustrate our approach, we present an application comparing the classical-equivalent Bayesian with the naive mean-variance optimal portfolios.

  18. Static and dynamic high power, space nuclear electric generating systems

    International Nuclear Information System (INIS)

    Wetch, J.R.; Begg, L.L.; Koester, J.K.

    1985-01-01

    Space nuclear electric generating systems concepts have been assessed for their potential in satisfying future spacecraft high power (several megawatt) requirements. Conceptual designs have been prepared for reactor power systems using the most promising static (thermionic) and the most promising dynamic conversion processes. Component and system layouts, along with system mass and envelope requirements have been made. Key development problems have been identified and the impact of the conversion process selection upon thermal management and upon system and vehicle configuration is addressed. 10 references

  19. The nuclear electricity generating industry in England and Wales post-privatisation

    International Nuclear Information System (INIS)

    Johnson, C.B.

    1992-01-01

    This paper presents an overview of the new legal framework within which the nuclear generating industry has operated in England and Wales since 31 March 1990. It describes the formation of Nuclear Electric plc and the licensing arrangements, including the various obligations which have been placed upon Nuclear Electric by virtue of its Generation Licence. The impact of competition law is outlined, together with the commercial arrangements including electricity pooling and some of the other more important agreements which Nuclear Electric has entered into. Finally, the Paper discusses some of the constraints under which Nuclear Electric operates, and summarises Government policy towards nuclear power and its future prospects in the United Kingdom. (author)

  20. Efforts onto electricity and instrumentation technology for nuclear power generation

    International Nuclear Information System (INIS)

    Hayakawa, Toshifumi

    2000-01-01

    Nuclear power generation shares more than 1/3 of all amounts of in-land generation at present, as a supplying source of stable electric energy after 2000 either. As a recent example of efforts onto electricity and instrumentation technology for nuclear power generation, there are, on instrumentation control system a new central control board aiming at reduction of operator's load, protection of human error, and upgrading of system reliability and economics by applying high level micro-processor applied technique and high speed data transfer technique to central monitoring operation and plant control protection, on a field of reactor instrumentation a new digital control rod position indicator improved of conventional system on a base of operation experience and recent technology, on a field of radiation instrumentation a new radiation instrumentation system accumulating actual results in a wide application field on a concept of application to nuclear power plant by adopting in-situ separation processing system using local network technique, and on a field of operation maintenance and management a conservation management system for nuclear generation plant intending of further effectiveness of operation maintenance management of power plant by applying of operation experience and recent data processing and communication technology. And, in the large electric apparatus, there are some generators carried out production and verification of a model one with actual size in lengthwise dimension, to correspond to future large capacity nuclear power plant. By this verification, it was proved that even large capacity generator of 1800 MVA class could be manufactured. (G.K.)

  1. Managing Wind-based Electricity Generation and Storage

    Science.gov (United States)

    Zhou, Yangfang

    Among the many issues that profoundly affect the world economy every day, energy is one of the most prominent. Countries such as the U.S. strive to reduce reliance on the import of fossil fuels, and to meet increasing electricity demand without harming the environment. Two of the most promising solutions for the energy issue are to rely on renewable energy, and to develop efficient electricity storage. Renewable energy---such as wind energy and solar energy---is free, abundant, and most importantly, does not exacerbate the global warming problem. However, most renewable energy is inherently intermittent and variable, and thus can benefit greatly from coupling with electricity storage, such as grid-level industrial batteries. Grid storage can also help match the supply and demand of an entire electricity market. In addition, electricity storage such as car batteries can help reduce dependence on oil, as it can enable the development of Plug-in Hybrid Electric Vehicles, and Battery Electric Vehicles. This thesis focuses on understanding how to manage renewable energy and electricity storage properly together, and electricity storage alone. In Chapter 2, I study how to manage renewable energy, specifically wind energy. Managing wind energy is conceptually straightforward: generate and sell as much electricity as possible when prices are positive, and do nothing otherwise. However, this leads to curtailment when wind energy exceeds the transmission capacity, and possible revenue dilution when current prices are low but are expected to increase in the future. Electricity storage is being considered as a means to alleviate these problems, and also enables buying electricity from the market for later resale. But the presence of storage complicates the management of electricity generation from wind, and the value of storage for a wind-based generator is not entirely understood. I demonstrate that for such a combined generation and storage system the optimal policy does not

  2. Portfolio assessments for future generation investment in newly industrializing countries – A case study of Thailand

    International Nuclear Information System (INIS)

    Vithayasrichareon, Peerapat; MacGill, Iain F.

    2012-01-01

    This paper assesses future electricity generation portfolios in Thailand in 2030 given uncertain future fossil-fuel prices, carbon pricing policies, electricity demand, and capital costs. Thailand faces challenges for generation investment given its rapid socio-economic progress and fast growing demand. A novel generation investment and planning decision-support tool which incorporates a Monte Carlo extension to conventional optimal generation mix methods combined with portfolio-based analysis techniques, is used. The tool can formally assess tradeoffs between expected future generation costs, cost uncertainties, and CO 2 emissions for the range of different generation portfolios. Results highlight that different levels of future carbon pricing will have significant impacts on the most appropriate generation portfolios. The impact of carbon pricing, however, is not on the appropriate proportion of combined cycle gas turbines (CCGT) in the mix but, instead, on the future role of coal versus nuclear in Thailand. Compared with the current proposed 2030 generation mix, it is possible that there are other generation portfolios that offer lower expected costs, cost uncertainty, and CO 2 emissions depending on future carbon pricing. Results suggest that this investment decision-support approach may have value for electric utilities and policy-makers contemplating significant generation investments under high future uncertainty and conflicting policy objectives. -- Highlights: ► Assess Thailand's future generation portfolios in 2030 under uncertainties. ► Future carbon prices have significant impacts on the appropriate generation mixes. ► Carbon pricing affects the future role of coal versus nuclear in Thailand. ► There may be more appropriate alternatives than the proposed 2030 generation mix. ► This decision-support approach has value for utility and policy decision-making.

  3. Distributed Generation of Electricity and its Environmental Impacts

    Science.gov (United States)

    Distributed generation refers to technologies that generate electricity at or near where it will be used. Learn about how distributed energy generation can support the delivery of clean, reliable power to additional customers.

  4. International comparison of electricity generating costs

    International Nuclear Information System (INIS)

    Jones, P.M.S.; Stevens, G.H.; Wigley, K.

    1989-01-01

    The paper reviews the principal findings of successive studies of projected comparative generation costs for base-load electricity production conducted by Nuclear Energy Agency working groups, including a current study jointly sponsored by the International Energy Agency. It concludes that over the six years 1983-1989 nuclear generation costs have remained steady or slightly declined in the majority of OECD countries. This represents an excellent result in view of the difficulties that have arisen in many countries during the period. Nuclear power is projected to maintain a significant advantage in most OECD countries on an assessment basis reflecting utility experience and discount rates employed by the majority of participants. However, nuclear's projected advantage has declined due to a significant fall in projected coal prices which have decreased by 50% since 1983. This decline is only slightly offset by increased capital and operating costs for coal-fired plant. If rates of return sought by utilities were higher or if coal prices prove lower than utilities project then the economic balance between nuclear and coal-fired power would be further reduced and could in some instances be reversed. To improve on its competitiveness nuclear power will have to continue to control capital costs through replication and reduced construction schedules and to improve plant availability to maximise output

  5. Electricity distribution within the future residence

    Energy Technology Data Exchange (ETDEWEB)

    Breeze, J.E.

    1981-11-01

    This study examined present residential wiring systems and identified their shortcomings. A list of the desirable attributes for future wiring systems is proposed. The outlook for the application to wiring systems of solid-state electronic devices is assessed. As further background for a proposed new wiring concept, the residential use of energy today and probable future trends are reviewed. Lastly, the concept of a distributed bus is proposed and developed on a conceptual basis for the residential wiring system of the future. The distributed bus concept can lead to the development of a residential wiring system to meet the following requirements: adaptable to meet probable future energy requirements for residences including alternative energy sources and energy storage; flexibility for servicing loads both in respect to location in the residence and to the size of the load; improved economy in the use of materials; capability for development as a designed or engineered system with factory assembled components and wiring harness; capability for expansion through the attachment of legs or auxillary rings; adaptable to any probable architectural residential development; capability for development to meet the requirements for ease of use and maintenance and with recognition of the growing importance of do-it-yourself repairs and alterations; and adaptable to the full range of solid-state electronics and micro-computer devices and controls including the concept of load control and management through the use of a central control module. 66 refs., 15 figs., 1 tab.

  6. Is the future of mobility electric?

    DEFF Research Database (Denmark)

    Driscoll, Patrick Arthur; Theodórsdóttir, Ásdis Hlökk; Richardson, Tim

    2012-01-01

    Planning for sustainable mobility is a complex and demanding task and the knowledge of how to trade off multiple, often conflicting, goals is not entirely clear. One of the most contentious and confounding issues has been, and continues to be, the place of the automobile within the sustainable...... on automobiles, promotion of walking and biking, and support for public transport. The results of a recent pilot study conducted in the Reykjavik city region suggest that electric vehicles may represent a continuation of the dominant transport engineering approach and may in fact draw scarce financial...

  7. Electricity generation sectors under purchase obligation: support arrangement analysis

    International Nuclear Information System (INIS)

    2013-04-01

    This report aims at assessing the operation of the support arrangement by which currently benefit some electricity production sectors in France (renewable energies, co-generation) with respect to the evolution of the energy mix within the frame of energy transition. Other support arrangements presently adopted in Europe are also addressed as lessons to be learned. Criteria are established for any support arrangement. The report presents the French and European context regarding such support arrangement with purchasing obligation, and addresses the future evolutions of the European Commission. It highlights challenges for the electric system and for the energy market (impact on investments, optimization of market operation), describes and assesses the French purchasing obligation arrangement, and describes and assesses other existing support arrangements

  8. Future steam generator designs. Single wall designs

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, O [Nuclear Power Company Ltd, Warrington, Cheshire (United Kingdom)

    1978-10-01

    The easily removable 'U' tube design style adopted in the UK for the existing PFR Steam Generators, the Replacement Units now in production and for the future CDFR, gives the operator an extremely valuable option in the event of a water/steam leak occurring inside the Steam Generator. He can choose to shut-down, attempt to find the leak, assess damage, repair, revalidate and return to service in situ, or he can elect to remove the defect unit and replace with a 'proven' spare before returning the circuit to power. With the latter approach the resultant outage time is a known entity of about two weeks. If a repair is attempted in situ, predictions of outage time can become a matter of guesswork since one has no 'guaranteed' method of leak location and the assessment of secondary damage may be very time consuming, depending on the size and type of the original leak together with the particular design style of the Steam Generator. A further significant advantage of the removable 'U' tube design concept is that periodic interchanging of bundles with a spare enables routine chemical cleaning and thorough scheduled tube inspections, with specimen tube sample removal if required for monitoring purposes. If necessary, bundle decontamination can be undertaken to assess engineering deterioration to various degrees of thoroughness ranging from 100% equivalent factory final assembly inspection, to partial decontamination operating via a glovebox type of maintenance bag arrangement, examining local points of both shell and tube areas of the bundle. Many lessons from the last five years' experience of PFR will be incorporated into the design of the CDFR and PFR Steam Generators have two very good examples of how the designer can ease or severely handicap the operator in coping with sodium/water leakages. Good, quick access to tube ends is achieved in the existing PFR Evaporator by simply unbolting the steam/water closure head, but on the superheater and reheater hand-caps have

  9. Future steam generator designs. Single wall designs

    International Nuclear Information System (INIS)

    Hayden, O.

    1978-01-01

    The easily removable 'U' tube design style adopted in the UK for the existing PFR Steam Generators, the Replacement Units now in production and for the future CDFR, gives the operator an extremely valuable option in the event of a water/steam leak occurring inside the Steam Generator. He can choose to shut-down, attempt to find the leak, assess damage, repair, revalidate and return to service in situ, or he can elect to remove the defect unit and replace with a 'proven' spare before returning the circuit to power. With the latter approach the resultant outage time is a known entity of about two weeks. If a repair is attempted in situ, predictions of outage time can become a matter of guesswork since one has no 'guaranteed' method of leak location and the assessment of secondary damage may be very time consuming, depending on the size and type of the original leak together with the particular design style of the Steam Generator. A further significant advantage of the removable 'U' tube design concept is that periodic interchanging of bundles with a spare enables routine chemical cleaning and thorough scheduled tube inspections, with specimen tube sample removal if required for monitoring purposes. If necessary, bundle decontamination can be undertaken to assess engineering deterioration to various degrees of thoroughness ranging from 100% equivalent factory final assembly inspection, to partial decontamination operating via a glovebox type of maintenance bag arrangement, examining local points of both shell and tube areas of the bundle. Many lessons from the last five years' experience of PFR will be incorporated into the design of the CDFR and PFR Steam Generators have two very good examples of how the designer can ease or severely handicap the operator in coping with sodium/water leakages. Good, quick access to tube ends is achieved in the existing PFR Evaporator by simply unbolting the steam/water closure head, but on the superheater and reheater hand-caps have

  10. The PBMR electric power generation plant

    International Nuclear Information System (INIS)

    Perez S, G.; Santacruz I, I.; Martin del Campo M, C.

    2003-01-01

    This work has as purpose to diffuse in a general way the technology of the one modulate reactor of pebble bed. Because our country is in developing ways, the electric power demand goes in increase with that which it is presented the great challenge of satisfying this necessity, not only being in charge of the one fact per se, but also involving the environmental aspect and of security. Both factors are covered by the PBMR technology, which we approach in their basic aspects with the purpose that the public opinion knows it and was familiarized with this type of reactors that well could represent a solution for our growing electricity demand. We will treat this reactor visualizing it like part of a generation plant defining in first place to the itself reactor. We will see because that the system PBMR consists of 2 main sections: the reactor and the unit of energy conversion, highlighting that the principle of the PBMR reactor operation is based on the thermodynamic Brayton cycle cooled by helium and that, in turn, it transmits the energy in form of heat toward a gas turbine. In what concerns to the fuel, it peculiar design due to its spherical geometry is described, aspect that make to this reactor different from the traditional ones that use fuel rods. In fact in the fuel spheres of the PBMR it is where it resides great part of it inherent security since each particle of fuel, consistent in uranium dioxide, is lined one with coal and silicon carbide those which form an impenetrable barrier containing to the fuel and those radioactive products that result of the nuclear reactions. Such particles are encapsulated in graphite to form the sphere or 'pebble', of here born the name of this innovative technology. (Author)

  11. Risk limitation, safety and environmental compatibility in electricity generation

    International Nuclear Information System (INIS)

    Angelini, A.M.

    1981-01-01

    The purpose of this paper is to present the problem of meeting future electricity needs while at the same time reducing to a minimum the risks, the pollution of air and water and the environmental effects of power stations. The first resource to exploit is the ''virtual source'' represented by energy saving pursued to the limit of the possible. The second, in order of priority, is that of renewable resources as yet unused and under development. Unfortunately, in most countries these latter resources are far from sufficient: it is then necessary to choose between the use of conventional fossil fuels and nuclear fuels. In this paper it is shown that, of all the possible fossil fuels, only coal can be considered for electricity production. As a result, in meeting new electricity needs, the choice will have to be made between coal and nuclear power. Attention is directed to factors having a significant influence on this choice, particularly the risks and safety problems in the widest sense, with a view to making a global evaluation comprising not just generating stations but the entire production cycle, from the search for the primary source to the supplying of electricity to the user. The most important problems that arise in this connection are briefly analysed in the paper, which concludes with an appeal for more objectivity in providing information on energy, such information being at present very ''polluted'' and exerting a major influence on the views of experts. (author)

  12. Parameter estimation of electricity spot models from futures prices

    NARCIS (Netherlands)

    Aihara, ShinIchi; Bagchi, Arunabha; Imreizeeq, E.S.N.; Walter, E.

    We consider a slight perturbation of the Schwartz-Smith model for the electricity futures prices and the resulting modified spot model. Using the martingale property of the modified price under the risk neutral measure, we derive the arbitrage free model for the spot and futures prices. We estimate

  13. Nuclear Power for Electricity Generation in Ghana: Issues and Challenges

    International Nuclear Information System (INIS)

    Nyarko, B.J.B.; Akaho, E.H.K.; Ennison, I.

    2011-01-01

    Ghana's electricity demand has been estimated to be growing at a high rate of about 7% per annum over the last ten years. This is due to the relatively high population growth, economic aspiration of the country and the extension of electricity to rural areas. Electricity supply, on the contrary, has been unable to meet the demand due to high dependency on rain-fed hydropower plants, which started operating in 1965 and currently account for about 68% of the total installed capacity. Within the last 28 years, climatic changes and draughts have caused the nation to experience three major power crises. These climate changes resulted in low inflows and thus reduced power generation from hydropower systems. To complement the hydropower systems, the Government in 1997 installed thermal plants based on light crude oil. However, due to the high crude oil prices on the international market in recent times have made the operation of these plants very expensive. Ghana's crude oil find can boost its energy supply when the oil exploration begins somewhere in 2010. For rural cooking, domestic biomass is employed. Ghana has no domestic coal resources. The Government of Ghana is concerned with: limited further growth potential of domestic hydro; high cost of imported oil and gas and environmental issues associated with use of imported coal. Small Solar and wind generation exist in some sectors, but potential large-scale development is not envisioned for the near future. With these in mind, the President of Ghana set up a Committee involving Stakeholder Institutions to formulate the Nuclear Power Policy and develop the basic elements of Nuclear Infrastructure and to assess the viability of introducing the nuclear power option in Ghana's energy mix. Cabinet took a decision to include the nuclear power for electricity generation after the Committee submitted his report to the President in 2008. (author)

  14. Electric energy storage systems for future hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kemper, Hans; Huelshorst, Thomas [FEV Motorentechnik GmbH, Aachen (Germany); Sauer, Dirk Uwe [Elektrochemische Energiewandlung und Speichersystemtechnik, ISEA, RWTH Aachen Univ. (Germany)

    2008-07-01

    Electric energy storage systems play a key role in today's and even more in future hybrid and electric vehicles. They enable new additional functionalities like Start/Stop, regenerative braking or electric boost and pure electric drive. This article discusses properties and requirements of battery systems like power provision, energy capacity, life time as a function of the hybrid concepts and the real operating conditions of the today's and future hybrid drivetrains. Battery cell technology, component sizing, system design, operating strategy safety measures and diagnosis, modularity and vehicle integration are important battery development topics. A final assessment will draw the conclusion that future drivetrain concepts with higher degree of electrician will be significantly dependent on the progress of battery technology. (orig.)

  15. Space Weather Effects on Current and Future Electric Power Systems

    Science.gov (United States)

    Munoz, D.; Dutta, O.; Tandoi, C.; Brandauer, W.; Mohamed, A.; Damas, M. C.

    2016-12-01

    This work addresses the effects of Geomagnetic Disturbances (GMDs) on the present bulk power system as well as the future smart grid, and discusses the mitigation of these geomagnetic impacts, so as to reduce the vulnerabilities of the electric power network to large space weather events. Solar storm characterized by electromagnetic radiation generates geo-electric fields that result in the flow of Geomagnetically Induced Currents (GICs) through the transmission lines, followed by transformers and the ground. As the ground conductivity and the power network topology significantly vary with the region, it becomes imperative to estimate of the magnitude of GICs for different places. In this paper, the magnitude of GIC has been calculated for New York State (NYS) with the help of extensive modelling of the whole NYS electricity transmission network using real data. Although GIC affects only high voltage levels, e.g. above 300 kV, the presence of coastline in NYS makes the low voltage transmission lines also susceptible to GIC. Besides this, the encroachment of technologies pertaining to smart grid implementation, such as Phasor Measurement Units (PMUs), Microgrids, Flexible AC Transmission System (FACTS), and Information and Communication Technology (ICT) have been analyzed for GMD impacts. Inaccurate PMU results due to scintillation of GPS signals that are affected by electromagnetic interference of solar storm, presence of renewable energy resources in coastal areas that are more vulnerable to GMD, the ability of FACTS devices to either block or pave new path for GICs and so on, shed some light on impacts of GMD on smart grid technologies.

  16. Electricity generation using microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, Y.; Manoj Muthu Kumar, S.; Das, D. [Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302 (India)

    2008-01-15

    Conversion of biomass into electricity is possible using microbial fuel cells (MFCs). The present paper deals with the studies of a two-chambered salt bridge MFC using Enterobacter cloacae IIT-BT 08 in MYG medium. The effect of different electron mediators, concentration of the mediator, ionic strength (salt concentration) of the medium and the surface area of the salt-bridge in contact with the anode and cathode chambers on the power generation in MFCs are reported. In the case of methyl viologen (MV) (0.1 mM) as the electron mediator, the voltage generation was 0.4 V but no current was detected. Different concentrations of methylene blue (MB) were also studied as the mediator. A maximum voltage of 0.37 V was seen at 0.05 mM MB, whereas a maximum current and power of 56.7{mu} A and 19.2{mu} W, respectively, were observed in the case of 0.03 mM MB with a voltage of 0.34 V. The corresponding power density and current density of 9.3mW/m{sup 2} and 27.6mA/m{sup 2}, respectively, were obtained. When the surface area of the salt bridge in contact with the anode and cathode chambers was increased, a proportionate improvement in the power output from 19.2 to 708{mu} W was detected. The maximum power density and current density of 236mW/m{sup 2} and 666.7mA/m{sup 2}, respectively, which are found to be very promising for a salt bridge MFC were observed. (author)

  17. Energy-storage technologies and electricity generation

    International Nuclear Information System (INIS)

    Hall, Peter J.; Bain, Euan J.

    2008-01-01

    As the contribution of electricity generated from renewable sources (wind, wave and solar) grows, the inherent intermittency of supply from such generating technologies must be addressed by a step-change in energy storage. Furthermore, the continuously developing demands of contemporary applications require the design of versatile energy-storage/power supply systems offering wide ranges of power density and energy density. As no single energy-storage technology has this capability, systems will comprise combinations of technologies such as electrochemical supercapacitors, flow batteries, lithium-ion batteries, superconducting magnetic energy storage (SMES) and kinetic energy storage. The evolution of the electrochemical supercapacitor is largely dependent on the development of optimised electrode materials (tailored to the chosen electrolyte) and electrolytes. Similarly, the development of lithium-ion battery technology requires fundamental research in materials science aimed at delivering new electrodes and electrolytes. Lithium-ion technology has significant potential, and a step-change is required in order to promote the technology from the portable electronics market into high-duty applications. Flow-battery development is largely concerned with safety and operability. However, opportunities exist to improve electrode technology yielding larger power densities. The main barriers to overcome with regard to the development of SMES technology are those related to high-temperature superconductors in terms of their granular, anisotropic nature. Materials development is essential for the successful evolution of flywheel technology. Given the appropriate research effort, the key scientific advances required in order to successfully develop energy-storage technologies generally represent realistic goals that may be achieved by 2050

  18. International cost relations in electric power generation

    International Nuclear Information System (INIS)

    Schmitt, D.; Duengen, H.; Wilhelm, M.

    1986-01-01

    In spite of the fact that analyses of the cost of electric power generation as the result of international comparative evaluations are indisputably relevant, problems pending in connection with the costs of representative power plant technologies are of the methodological bind. German authors have hitherto also been failing to clear up and consider all aspects connected with the problems of data acquisition and the adequate interpretation of results. The analysis presented by the paper abstracted therefore aims at the following: 1) Systematization of the different categories of cost relevant in connection with international comparative evaluation. Classification into different categories of decision making and development of standards meeting the requirements of international comparative evaluation. 2) Calculation of relevant average financial costs of Western German, America and French fossil-fuel and nuclear power plants by means of adequate calculation models, that is the assessment of costs with regard to countries and power plant technologies which are relevant to the Federal Republic of Germany. 3) Analysis of the resulting differences and determinantal interpretation. (orig./UA) [de

  19. Using sewerage system to generate electricity

    International Nuclear Information System (INIS)

    Asghar, J.

    2005-01-01

    The development of the sanitary engineering has paralleled and contributed to the growth of the city. Without an adequate supply of safe water, the great city could not exist and life in it would be both unpleasant and dangerous unless human and other waste were promptly removed. The concentration of population in relatively small areas has made the task of sanitary engineer more complex. The cities, towns and villages are being polluted ground water and surface water. Industries also demand more and better water from all available sources. The rivers receive ever-increasing amount of sewage and industrial wastes and thus resulting more attention to the water treatment, stream pollution and complicated phenomena of self-purification. In many developing countries there is no such treatment plants for the sewerage water. Rivers receive large amount of polluted water and resulting many diseases. Thus self-purification and treatment plants playa vital role in sanitation. The other benefit is now introducing as Generating electricity from Sewerage System. (author)

  20. Applications of lightweight composite materials in pulsed rotating electrical generators

    International Nuclear Information System (INIS)

    Walls, W.A.; Maifold, S.M.

    1987-01-01

    Present rotating electrical pulse power generators are limited in energy storage capability, specific energy, and peak power density by the use of iron-magnetic circuits. This paper discusses lightweight and compact iron-core homopolar generators (HPGs) which have attained specific energies of 6 kJ/kg and have the potential to achieve 8 kJ/kg in the near future. Prototype iron based pulsed alternators are the favored choice for high power to mass ratio applications and have estimated peak ratings of 180 kW/kg. In terms of total energy storage capability, these machines are limited to several hundred MJ due to the availability of large steel forgings for rotors and basic design considerations including rotor dynamics, allowable rotor tip speeds, and present high speed current collection technology

  1. Economic aspects of Solar Thermal Technologies for electricity generation

    International Nuclear Information System (INIS)

    Meinecke, W.

    1993-01-01

    Economic results of German studies are presented, which compare the four solar thermal technologies for electricity generation (parabolic trough collector system, central receiver system, parabolic dish/Stirling system, solar chimney plant). These studies were carried out by Interatom (today Siemens/KWU) in Bergisch Gladbach, Flachglas Solartechnik in Koln and Schlaich Bergermann and Partner in Stuggart under contract of DLR in Koln. Funds were made available by the German Ministry of Research and Development (BMFT). The results indicate that all of the investigated technologies have the potential to reduce the generating costs and that in the future costs of below 0.30 DM/kWh could be expected under excellent insolation conditions (e.G. 2850 kWh/m''2 a direct insolation as in California/USA). (Author) 25 refs

  2. The electric power engineering handbook electric power generation, transmission, and distribution

    CERN Document Server

    Grigsby, Leonard L

    2012-01-01

    Featuring contributions from worldwide leaders in the field, the carefully crafted Electric Power Generation, Transmission, and Distribution, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) provides convenient access to detailed information on a diverse array of power engineering topics. Updates to nearly every chapter keep this book at the forefront of developments in modern power systems, reflecting international standards, practices, and technologies. Topics covered include: * Electric Power Generation: Nonconventional Methods * Electric Power Generation

  3. Protecting global soil resources for future generations

    Science.gov (United States)

    Montanarella, Luca

    2017-04-01

    The latest Status of World's Soil Resources report has highlighted that soils are increasingly under pressure by numerous human induced degradation processes in most parts of the world. The limits of our planetary boundaries concerning vital soil resources have been reached and without reversing this negative trend there will be a serious lack of necessary soil resources for future generations. It has been therefore of the highest importance to include soils within some of the Sustainable Development Goals (SDG) recently approved by the United Nations. Sustainable development can not be achieved without protecting the limited, non-renewable, soil resources of our planet. There is the need to limit on-going soil degradation processes and to implement extensive soil restoration activities in order to strive towards a land degradation neutral (LDN) world, as called upon by SDG 15. Sustainable soil management needs to be placed at the core of any LDN strategy and therefore it is of highest importance that the recently approved Voluntary Guidelines for Sustainable Soil Management (VGSSM) of FAO get fully implemented at National and local scale.Sustainable soil management is not only relevant for the protection of fertile soils for food production, but also to mitigate and adopt to climate change at to preserve the large soil biodiversity pool. Therefore the VGSSM are not only relevant to FAO, but also the the climate change convention (UNFCCC) and the biodiversity convention (CBD). An integrated assessment of the current land degradation processes and the available land restoration practices is needed in order to fully evaluate the potential for effectively achieving LDN by 2030. The on-going Land Degradation and Restoration Assessment (LDRA) of the Intergovernmental Platform for Biodiversity and Ecosystem Services (IPBES) will provide the necessary scientific basis for the full implementation of the necessary measures for achieving the planned SGS's relevant to land

  4. Provincial panel: addressing emerging energy constraints and new strategies to meet future generation demand

    International Nuclear Information System (INIS)

    Clarkson, J.

    2006-01-01

    This paper addresses emerging energy constraints and new strategies to meet future generation demand in the Province of Manitoba. The focus is to reduce reliance on energy sources that emit greenhouse gases such as petroleum, natural gas and coal, and increase clean and green electricity. The current plan is to double hydro generation, achieve 1000 MW wind power and utilize bio energy

  5. Modelling electricity futures prices using seasonal path-dependent volatility

    International Nuclear Information System (INIS)

    Fanelli, Viviana; Maddalena, Lucia; Musti, Silvana

    2016-01-01

    Highlights: • A no-arbitrage term structure model is applied to the electricity market. • Volatility parameters of the HJM model are estimated by using German data. • The model captures the seasonal price behaviour. • Electricity futures prices are forecasted. • Call options are evaluated according to different strike prices. - Abstract: The liberalization of electricity markets gave rise to new patterns of futures prices and the need of models that could efficiently describe price dynamics grew exponentially, in order to improve decision making for all of the agents involved in energy issues. Although there are papers focused on modelling electricity as a flow commodity by using Heath et al. (1992) approach in order to price futures contracts, the literature is scarce on attempts to consider a seasonal volatility as input to models. In this paper, we propose a futures price model that allows looking into observed stylized facts in the electricity market, in particular stochastic price variability, and periodic behavior. We consider a seasonal path-dependent volatility for futures returns that are modelled in Heath et al. (1992) framework and we obtain the dynamics of futures prices. We use these series to price the underlying asset of a call option in a risk management perspective. We test the model on the German electricity market, and we find that it is accurate in futures and option value estimates. In addition, the obtained results and the proposed methodology can be useful as a starting point for risk management or portfolio optimization under uncertainty in the current context of energy markets.

  6. Generation capacity adequacy in interdependent electricity markets

    International Nuclear Information System (INIS)

    Cepeda, Mauricio; Finon, Dominique

    2011-01-01

    This paper deals with the practical problems related to long-term security of supply in regional electricity markets with transmission constraints. Differences between regulatory policies and market designs in terms of generation adequacy policies may distort the normal functioning of the neighboring markets, as well as the reliability of supply. We test the effect of heterogeneous regulatory design between two interdependent markets: energy-only market, price-capped market without capacity mechanisms and price-capped markets with forward capacity contracts obligation. We rely on a long-term market simulation model in system dynamics that characterizes expansion decision in a competitive regime. The results show that differences in market designs affect both price and reliability of supply in the two markets. We examine both the short and long terms effect, and how free-riding may occur where capacity adequacy policies are adopted in one market but not the other. The main finding is that the lack of harmonization between local markets in policies to ensure capacity adequacy may lead to undesirable side effects. - Research highlights: → We model the long-term dynamic of two interdependent markets. → We examine both the short and long terms effect of heterogeneous regulatory design: energy-only market, price-capped market without capacity mechanisms and price-capped markets with forward capacity contracts obligation. → Differences in market designs affect both price and reliability of supply in the two markets. → Lack of harmonization between local markets in policies to ensure capacity adequacy may lead to undesirable side effects. → Free-riding may occur where capacity adequacy policies are adopted in one market but not the other.

  7. Investments in electricity generation in Croatian liberalized market: energy option

    International Nuclear Information System (INIS)

    Androcec, I.; Viskovic, A.; Slipac, G.

    2004-01-01

    The Republic of Croatia should have enough capacities built on its own territory to cover system's peak load at any time for ensuring a long-term reliability of its operation. According to annual increasing of electricity consumption and progressive shutdown of the oldest generating plants, the security of future electricity supply depends on new investments. The market, i.e. a competitive generation, is the driving force in the construction of new power plants. The main stimulus for the construction is the possibility of definite return of invested capital and enabling potential investors to realize the expected revenues (profit). The construction of generating capacities is subject of authorisation procedure or tendering procedure, by approval of the Energy Regulatory Council. The electricity market opening in Croatia is parallel process with establishment of regional energy market in South East Europe where the decision of investment in new power plant will be defined by regional investment priorities, all in the aspect of European Union enlargement. In those liberalisation conditions it is necessary to realize all possible energy options according to the Strategy of Energy Development of Republic of Croatia and to the regional energy market requirements or European Union Directives. New power plant will be realized, because of objective circumstances, through construction of gas power plant or coal power plant and possible nuclear power plant, and in much smaller size through construction of hydro power plants or power plants on renewable energy sources. The possibility of any energy option will be considered in view of: investment cost, operation and maintenance cost, fuel price, external costs, public influence, and through investor's risk. This paper is aiming to analyse the possibility of nuclear power plant construction in Croatia as well as in other small and medium electricity grids. Nuclear option will be comprehensively considered in technical

  8. Solar electric power generation photovoltaic energy systems

    CERN Document Server

    Krauter, Stefan CW

    2007-01-01

    Solar electricity is a viable, environmentally sustainable alternative to the world's energy supplies. In support, this work examines the various technical parameters of photovoltaic systems. It analyzes the study of performance and yield (including optical, thermal, and electrical parameters and interfaces).

  9. Assessment of wind energy potential for electricity generation

    African Journals Online (AJOL)

    Wind energy is proposed as an alternative source of electricity to fossil fuel generators .... can be connected to the national grid line to supplement the shortfall that arises during the dry ... systems are environmentally friendly. By generating ...

  10. statistical analysis of wind speed for electrical power generation

    African Journals Online (AJOL)

    HOD

    sites are suitable for the generation of electrical energy. Also, the results ... Nigerian Journal of Technology (NIJOTECH). Vol. 36, No. ... parameter in the wind-power generation system. ..... [3] A. Zaharim, A. M Razali, R. Z Abidin, and K Sopian,.

  11. An examination of electricity generation by utility organizations in the Southeast United States

    International Nuclear Information System (INIS)

    Craig, Christopher A.; Feng, Song

    2016-01-01

    This study examined the impact of climatic variability on electricity generation in the Southeast United States. The relationship cooling degree days (CDD) and heating degree days (HDD) shared with electricity generation by fuel source was explored. Using seasonal autoregressive integrated weighted average (ARIMA) and seasonal simple exponentially smoothed models, retrospective time series analysis was run. The hypothesized relationship between climatic variability and total electricity generation was supported, where an ARIMA model including CDDs as a predictor explained 57.6% of the variability. The hypothesis that climatic variability would be more predictive of fossil fuel electricity generation than electricity produced by clean energy sources was partially supported. The ARIMA model for natural gas indicated that CDDS were the only predictor for the fossil fuel source, and that 79.4% of the variability was explained. Climatic variability was not predictive of electricity generation from coal or petroleum, where simple seasonal exponentially smoothed models emerged. However, HDDs were a positive predictor of hydroelectric electricity production, where 48.9% of the variability in the clean energy source was explained by an ARIMA model. Implications related to base load electricity from fossil fuels, and future electricity generation projections relative to extremes and climate change are discussed. - Highlights: • Models run to examine impact of climatic variability on electricity generation. • Cooling degree days explained 57.6% of variability in total electricity generation. • Climatic variability was not predictive of coal or petroleum generation. • Cooling degree days explained 79.4% of natural gas generation. • Heating degree days were predictive of nuclear and hydroelectric generation.

  12. Surplus from and storage of electricity generated by intermittent sources

    Science.gov (United States)

    Wagner, Friedrich

    2016-12-01

    Data from the German electricity system for the years 2010, 2012, 2013, and 2015 are used and scaled up to a 100% supply by intermittent renewable energy sources (iRES). In the average, 330GW wind and PV power are required to meet this 100% target. A back-up system is necessary with the power of 89% of peak load. Surplus electricity accrues at high power levels. Curtailing surplus power to a large extent is found to be uneconomic. Demand-side management will suffer from the strong day-to-day variation of available surplus energy. A day storage is ineffective because of the day-night correlation of surplus power during winter. A seasonal storage loses its character when transformation losses are considered because it can contribute only after periods with excessive surplus production. The option of an oversized iRES system to feed the storage is also not effective because, in this case, energy can be taken directly from the large iRES supply, making storage superfluous. The capacities to be installed stress the difficulty to base heat supply and mobility also on iRES generated electricity in the future. As the German energy transition replaces one CO2-free electricity supply system by another one, no major reduction in CO2 emission can be expected till 2022, when the last nuclear reactor will be switched off. By 2022, an extremely oversized power supply system has to be created, which can be expected to continue running down spot-market electricity prices. The continuation of the economic response -to replace expensive gas fuel by cheap lignite- causes an overall increase in CO2 emission. The German GHG emission targets for 2020 and beyond are therefore in jeopardy.

  13. Experimental study of camel powered electricity generation unit

    Science.gov (United States)

    Jakhar, O. P.; Choudhary, Rahul Raj; Budaniya, Mukesh; Kumar, Ashish

    2018-05-01

    Developing nations are facing a huge gap in generation and demand of electricity across the world. In present scenario the demand of electricity is increasing day by day and the shortfall of electricity has become one of the major obstructions in the development of rural areas. There is a big gap between electricity supply and demand. In India it is very difficult that to give twenty four hours electric supply in rural areas. The traditional use of camel as draught animal, for the purpose of transport of goods and agricultural work, has been drastically reduced during last few decades, due to advancements and cheaper availability of mechanical machineries. In this research paper we experimentally studied the camel powered electricity generation system at National Research Centre on Camels (NRCC) Bikaner. Camel Energy in form of high torque low speed can be converted into low torque high speed through motion converting system i.e. gear and pulley mechanism for high RPM output. This high RPM (more than 3000) output is used for electricity generation. The electricity generated can be used directly or stored in the battery and later may be used whenever it is required either for DC light or AC light using inverter. According to experimental study a camel can comfortably generate electricity up to 1KW by rotating shaft. The complete set up for electricity generation using camel power has been designed, developed and physically commissioned at National Research Centre on Camels (NRCC) Bikaner.

  14. Effectively utilizing NYMEX contracts for natural gas electricity futures

    International Nuclear Information System (INIS)

    Burke, L.M.

    1996-01-01

    NYMEX (New York Mercantile Exchange) is one of the United States' largest commodity exchanges. The primary role of commodity exchanges were summarized as well as the characteristics of an effective exchange. The concept of commoditization, price risk and price volatility were explained. The evolution of world and domestic regulated energy markets, the characteristics of the futures market, NYMEX electricity futures contract specifications, natural gas and crude futures contract development, and the nature of hedging were reviewed. Differences of risk management practices in cash markets and futures markets were illustrated. tabs., figs

  15. Simultaneous Optimal Placement of Distributed Generation and Electric Vehicle Parking Lots Based on Probabilistic EV Model

    OpenAIRE

    M.H. Amini; M. Parsa Moghaddam

    2013-01-01

    High penetration of distributed generations and the increasing demand for using electric vehicles provide a lot of issues for the utilities. If these two effective elements of the future power system are used in an unscheduled manner, it may lead to the loss increment in distribution networks, dramatically. In this paper, the simultaneous allocation of distributed generations (DGs) and electric vehicles (EVs) parking lots has been studied in a radial distribution network. A distribution netwo...

  16. Policies to improve biomass-electricity generation in Brazil

    International Nuclear Information System (INIS)

    Coelho, Suani T.; Bolognini, Marly F.; Zylbersztajn, David

    1999-01-01

    Electricity consumption in Brazil has grown twice from 1979 to 1994 and, for the future, official forecasts estimate high risks of deficit. Brazilian generation system presents highly seasonal characteristics due to its hydroelectric origin and sugar cane origin electricity could be used as complementation for the dry period, instead of conventional thermoelectric power plants, with the corresponding environmental advantages. Nowadays, most sugar/alcohol industries in the state of Sao Paulo are energy self-sufficient and some of them already export a small electricity surplus to the grid. The potential for such surplus is significant, moreover with the introduction of more efficient technologies, but prices are not yet attractive when compared to conventional market prices, besides the existing barriers related to the current legislation. On the other hand, existing studies show that more efficient technologies become competitive when externalities are included. This paper analyses worthing methodologies, externalities-based decisions and policy mechanisms to guide governments, planners, decision-makers and managers in the correct evaluation of bioenergy use and production faced to other alternatives. (Author)

  17. Renewable energy sources for electricity generation in selected developed countries

    International Nuclear Information System (INIS)

    1992-05-01

    The objectives of this report are to analyze the present status and to assess the future of selected renewable energy sources (RE) other than hydropower, i.e. wind, solar, biomass, tidal and geothermal, already in use or expected to be used for electricity generation. The report focuses on grid connected technologies leaving stand-alone power plants unconsidered. This report provides recent information on environmental impacts, costs and technical potentials related to the implementation of electricity technologies using these energy sources. The study is limited to six OECD countries, i.e. Australia, the Federal Republic of Germany, Japan, Sweden, the United Kingdom and the United States of America. The situation in other OECD countries is addressed where appropriate, but no comprehensive information is provided. Nevertheless, efforts are made to determine the technical potential of the renewable energy sources for ''Rest of OECD''. The time horizons in this report are 2010 and 2030. While detailed information is provided for the period until 2010, the technical potential for 2030 is discussed only qualitatively. Scenario analysis and the design of national energy and electric systems assuming different sets of objectives and boundary conditions are outside the scope of this study. Nevertheless, the information given in this report should provide input data for such a systems analysis. All the information given in this report is based on literature surveys. Any figure given is contingent on the fact that it has appeared in a paper or a publicly available technical report. 251 refs, figs and tabs

  18. Electricity Self-Generation Costs for Industrial Companies in Cameroon

    Directory of Open Access Journals (Sweden)

    Diboma Benjamin Salomon

    2010-07-01

    Full Text Available Industrial production in developing countries (DC is frequently perturbed by electric energy supply difficulties. To overcome this problem, generators are used in self-generation of energy, but this leads to an increase of electricity-related expenses. This article assesses the impact of electricity self-generation on Cameroonian industrial companies. The model described in this article is based on data collected through a survey of a representative sample of industrial companies and from numerous previous thematic and statistical studies. The results of our analyses show that expenses related to electricity in industrial companies in Cameroon have increased five times due to electricity rationing and untimely power cuts. The article also suggests some solutions to improve the electricity self-generation capacity of industrial companies.

  19. 18 CFR 801.12 - Electric power generation.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Electric power generation. 801.12 Section 801.12 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made...

  20. Review on Automotive Power Generation System on Plug-in Hybrid Electric Vehicles & Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Leong Yap Wee

    2016-01-01

    Full Text Available Regenerative braking is a function to recharge power bank on the Plug-in electric vehicles (PHEV and electric vehicles (EV. The weakness of this system is, it can only perform its function when the vehicle is slowing down or by stepping the brake foot pedal. In other words, the electricity recharging system is inconsistent, non-continuous and geography dependent. To overcome the weakness of the regenerative braking system, it is suggested that to apply another generator which is going to be parallel with the regenerative braking system so that continuous charging can be achieved. Since the ironless electricity generator has a less counter electromotive force (CEMF comparing to an ironcored electricity generator and no cogging torque. Applying the ironless electricity generator parallel to the regenerative braking system is seen one of the options which creates sustainable charging system compared to cored electricity generator.

  1. A look into the future. Scenarios for distributed generation in Europe

    International Nuclear Information System (INIS)

    Scheepers, M.J.J.; Timpe, C.

    2003-12-01

    Based on the analysis of the long-term historical and future technical, socio-economic and institutional dynamics of European electricity supply systems and markets, the SUSTELNET project developed scenarios for future electricity supply systems in EU Member States and Newly Associated States (NAS). These scenarios provide a background for the development of regulatory road maps, which can be used as a tool to map out a regulatory strategy, facilitating the transition of current regulation into a regulatory framework that is required for future sustainable electricity supply systems. This report describes four different scenarios for the future of electricity systems and distributed generation (DG) in Europe in a qualitative manner. Moreover, the methodology used to develop these scenarios is described as well as the impact that disruptive events may have on these scenarios

  2. Nuclear and conventional baseload electricity generation cost experience

    International Nuclear Information System (INIS)

    1993-04-01

    The experienced costs of electricity generation by nuclear and conventional plants and the expected costs of future plants are important for evaluating the economic attractiveness of various power projects and for planning the expansion of electrical generating systems. The main objective of this report is to shed some light on recent cost experience, based on well authenticated information made available by the IAEA Member States participating in this study. Cost information was provided by Canada (Ontario Hydro), Czechoslovakia, Hungary, India, the Republic of Korea and Spain. Reference is also made to information received from Brazil, China, France, Russia and the United States of America. The part of the report that deals with cost experience is Section 2, where the costs of both nuclear and fossil fired plants are reviewed. Other sections give emphasis to the analysis of the major issues and relevant cost elements influencing the costs of nuclear power plants and to a discussion of cost projections. Many of the conclusions can also be applied to conventional plants, although they are usually less important than in the case of nuclear plants. 1 ref., figs and tabs

  3. Design of laser source for electricity generation

    International Nuclear Information System (INIS)

    Nasrullah, K.; Mariun, N.; Yeak, J.

    2000-01-01

    New sources of energy are being investigated to meet socioeconomic needs and other trivialities. Systems employing nuclear, thermal, hydro, solar, volcano, tidal and wind power generation techniques already exist. This work describes our attempt to utilize the off-planet charge to store in super electrolytic batteries or super capacitors. The electrostatic charge on clouds can be shifted to earth through a conductive air plasma channel created by appropriate high power Q-switched and mode-locked laser. The pulsed laser may create a conducting path consisting of ionised air particles from earth to some upper atmosphere. An antenna connected to anode of the super cell or positive terminal of the super capacitor will accumulate and store this charge for future use. The cathode of the battery or negative terminal of the super capacitor may be connected to earth to complete the circuit. A large number of such series and parallel units constitute a super battery or super capacitor bank system that can be connected to the national grid through DC to AC converters (DAC) and step-up transformers. According to published data, the lightning strokes may consist of 10 - 40 strokes of 2 - 80 pts duration separated in time by 6 - 530 ms intervals. The total time elapsed in lightning strike may last as long as 1 second. Due to tropical dependence, further detailed work is required to be done on lightning regarding its temporal and spatial profiles to develop a reasonable model to explore transient charging characteristics of storage devices. Experimental work in respect of laser-inducted charge-shifting, transient charging capabilities of super storage batteries or super capacitors is underway. (Author)

  4. Assessing the difference. Greenhouse gas emissions of electricity generation chains

    International Nuclear Information System (INIS)

    Spadaro, J.V.; Langlois, L.; Hamilton, B.

    2000-01-01

    Greenhouse gases have to the potential to influence global climate change by interfering with the natural process of heat exchange between the earth's atmosphere and outer space. Reducing atmospheric GHG concentrations have become an international priority as evidenced by the signing of the Kyoto Protocol, which would reduce emissions from industrialized countries (Annex 1) by about 5% below 1990 levels during the commitment period 2008-12. There are a number of technical options that could be implemented in order to achieve the proposed reduction target. As for emissions related to electricity generation, perhaps the most important factor over the near term is the improvement in efficiency of using energy at all the stages of the fuel cycle, including fuel preparation and transportation, fuel-to-electricity conversion at the power plant and at the point of end-use (which has not been considered here). Strategies for reducing methane releases during fuel mining and during gas transmission are very relevant. Switching to less carbon intensive or low carbon fuels, such as gas, nuclear power and renewables, will play a major role in reducing emissions. These changes are technically feasible using present day knowledge and experience, require minimal changes in consumer lifestyle, and represent reasonable capital turnover (gas and nuclear for baseload generation and renewables in niche markets or for peak load applications). This article has presented information on GHG emission factors for different fuels using a Full Energy Chain approach, which attempts to quantify the environmental emissions from all stages of electricity generation, i.e. 'cradle-to-grave'. Fossil-fueled technologies have the highest emission factors, with coal typically twice as high as natural gas. Considering the large variations in fuel- to-electricity conversion technology, it can be said that GHG emission factors can be an order of magnitude higher than current solar PV systems and up to two

  5. Concepts of investment risks and strategies in electricity generation

    International Nuclear Information System (INIS)

    De Joode, J.; Boots, M.G.

    2005-06-01

    This report deals with the specific investment risks in electricity generation and discusses the problems associated with energy investments in general and focus on the additional or changing risks resulting from electricity market liberalisation. The focus is on (1) risks under the control of the electricity company, and on (2) market risks, such as the risk of price changes. Ultimately, some of the approaches and strategies that enable electricity producers to counter or mitigate these risks are discussed

  6. EIDA Next Generation: ongoing and future developments

    Science.gov (United States)

    Strollo, Angelo; Quinteros, Javier; Sleeman, Reinoud; Trani, Luca; Clinton, John; Stammler, Klaus; Danecek, Peter; Pedersen, Helle; Ionescu, Constantin

    2015-04-01

    The European Integrated Data Archive (EIDA; http://www.orfeus-eu.org/eida/eida.html) is the distributed Data Centre system within ORFEUS, providing transparent access and services to high quality, seismic data across (currently) 9 large data archives in Europe. EIDA is growing, in terms of the number of participating data centres, the size of the archives, the variability of the data in the archives, the number of users, and the volume of downloads. The on-going success of EIDA is thus providing challenges that are the driving force behind the design of the next generation (NG) of EIDA, which is expected to be implemented within EPOS IP. EIDA ORFEUS must cope with further expansion of the system and more complex user requirements by developing new techniques and extended services. The EIDA NG is being designed to work on standard FDSN web services and two additional new web services: Routing Service and QC (quality controlled) service. This presentation highlights the challenges EIDA needs to address during the EPOS IP and focuses on these 2 new services. The Routing Service can be considered as the core of EIDA NG. It was designed to assist users and clients to locate data within a federated, decentralized data centre (e.g. EIDA). A detailed, FDSN-compliant specification of the service has been developed. Our implementation of this service will run at every EIDA node, but is also capable of running on a user's computer, allowing anyone to define virtual or integrate existing data centres. This (meta)service needs to be queried in order to locate the data. Some smart clients (in a beta status) have been also provided to offer the user an integrated view of the whole EIDA, hiding the complexity of its internal structure. The service is open and able to be queried by anyone without the need of credentials or authentication. The QC Service is developed to cope with user requirements to query for relevant data only. The web service provides detailed information on the

  7. Future generations of CANDU: advantages and development with passive safety

    International Nuclear Information System (INIS)

    Duffey, R. B.

    2006-01-01

    Atomic Energy of Canada Limited (AECL) advances water reactor and CANDLT technology using an evolutionary development strategy. This strategy ensures that innovations are based firmly on current experience and keeps our development programs focused on one reactor concept, reducing risks, development costs, and product development cycle times. It also assures our customers that our products will never become obsolete or unsupported, and the continuous line of water reactor development is secure and supported into the future. Using the channel reactor advantage of modularity, the subdivided core has the advantage of passive safety by heat removal to the low- pressure moderator. With continuous improvements, the Advanced CANDU Reactor TM (ACR-1000TM) concept will likely remain highly competitive for a number of years and leads naturally to the next phase of CANDU development, namely the Generation IV CANDU -SCWR concept. This is conventional water technology, since supercritical boilers and turbines have been operating for some time in coal-fired power plants. Significant cost, safety, and performance advantages would result from the CANDU-SCWR concept, plus the flexibility of a range of plant sizes suitable for both small and large electric grids, and the ability for co-generation of electric power, process heat, and hydrogen. In CANDU-SCWR, novel developments are included in the primary circuit layout and channel design. The R and D in Canada is integrated with the Generation IV international Forum (GIF) plans, and has started on examining replaceable insulating liners that would ensure channel life, and on providing completely passive reactor decay heat removal directly to the moderator heat sink without forced cooling. In the interests of sustainability, hydrogen production by a CANDU- SCWR is also be included as part of the system requirements, where the methods for hydrogen production will depend on the outlet temperature of the reactor

  8. Electric potential differences across auroral generator interfaces

    Directory of Open Access Journals (Sweden)

    J. De Keyser

    2013-02-01

    Full Text Available Strong localized high-altitude auroral electric fields, such as those observed by Cluster, are often associated with magnetospheric interfaces. The type of high-altitude electric field profile (monopolar, bipolar, or more complicated depends on the properties of the plasmas on either side of the interface, as well as on the total electric potential difference across the structure. The present paper explores the role of this cross-field electric potential difference in the situation where the interface is a tangential discontinuity. A self-consistent Vlasov description is used to determine the equilibrium configuration for different values of the transverse potential difference. A major observation is that there exist limits to the potential difference, beyond which no equilibrium configuration of the interface can be sustained. It is further demonstrated how the plasma densities and temperatures affect the type of electric field profile in the transition, with monopolar electric fields appearing primarily when the temperature contrast is large. These findings strongly support the observed association of monopolar fields with the plasma sheet boundary. The role of shear flow tangent to the interface is also examined.

  9. Electric Vehicle Based Battery Storages for Future Power System Regulation Services

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2009-01-01

    supplying the reserve power requirements. This limited regulation services from conventional generators in the future power system calls for other new reserve power solutions like Electric Vehicle (EV) based battery storages. A generic aggregated EV based battery storage for long-term dynamic load frequency...

  10. Future Market Share of Space Solar Electric Power Under Open Competition

    Science.gov (United States)

    Smith, S. J.; Mahasenan, N.; Clarke, J. F.; Edmonds, J. A.

    2002-01-01

    This paper assesses the value of Space Solar Power deployed under market competition with a full suite of alternative energy technologies over the 21st century. Our approach is to analyze the future energy system under a number of different scenarios that span a wide range of possible future demographic, socio-economic, and technological developments. Scenarios both with, and without, carbon dioxide concentration stabilization policies are considered. We use the comprehensive set of scenarios created for the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (Nakicenovic and Swart 2000). The focus of our analysis will be the cost of electric generation. Cost is particularly important when considering electric generation since the type of generation is, from a practical point of view, largely irrelevant to the end-user. This means that different electricity generation technologies must compete on the basis of price. It is important to note, however, that even a technology that is more expensive than average can contribute to the overall generation mix due to geographical and economic heterogeneity (Clarke and Edmonds 1993). This type of competition is a central assumption of the modeling approach used here. Our analysis suggests that, under conditions of full competition of all available technologies, Space Solar Power at 7 cents per kW-hr could comprise 5-10% of global electric generation by the end of the century, with a global total generation of 10,000 TW-hr. The generation share of Space Solar Power is limited due to competition with lower-cost nuclear, biomass, and terrestrial solar PV and wind. The imposition of a carbon constraint does not significantly increase the total amount of power generated by Space Solar Power in cases where a full range of advanced electric generation technologies are also available. Potential constraints on the availability of these other electric generation options can increase the amount of

  11. Electricity generation from woody biomass fuels compared with other renewable energy options

    International Nuclear Information System (INIS)

    Sims, R.E.H.

    1994-01-01

    Currently the annual electricity demand in New Zealand is around 30,000 GWh 70% of which is generated by hydro power. Natural gas, a resource with estimated reserves of approximately 14 years currently supplies 25% of generating capacity. This paper describes how part replacement of gas by biomass could be a feasible proposition for the future. Life cycle cost analyses showed electricity could be generated from arisings for (US)4.8-6 c/kWh; from residues for (US)2.4-4.8 c/kWh; and from plantations for (US)4.8-7.2 c/kWh. For comparison, the current retail electricity price is around (US)4-5.5 c/kWh and estimates for wind power generation range from (US)5-10 c/kWh. Future hydro power schemes will generate power between (US)4-9 c/kWh depending on site suitability. (author)

  12. Electricity of the future: a worldwide challenge; L'electricite du futur: Un defi mondial

    Energy Technology Data Exchange (ETDEWEB)

    De Ladoucette, Ph.; Chevalier, J.M.; Barbaso, F.; Becache, P.; Belmans, P.; Brottes, F.; Chevet, P.F.; Chone, F.; David, A.; Delorme, Ph.; Hadjsaid, N.; Jalabert, M.; Julliard, Y.; Kott, B.; Lenoir, J.C.; Lewiner, C.; Maillard, D.; Moisan, F.; Pelletier, Ph.; Poniatowski, L.; Rozes, St.; Rytoft, C.; Sanchez Jimenez, M.; Seyrling, G.; Vu, A.

    2010-07-01

    The increase of power consumption, the development of renewable energy sources and the emergence of new usages like the electric-powered car are as many challenges that put the reliability and the reactivity of our power grids to the test. These grids have to change to become 'intelligent' thanks to the integration of new information and communication technologies over the overall supply chain, from the energy generation to its end use by consumers. For the first time in France, the actors of this change explain their opinion about this revolution and put it in perspective with its full extent and complexity. Changing power grids to make them intelligent is first of all a technical challenge but also a society challenge: the consumer will become an actor involved in the mastery of his energy demand and a renewable energy producer capable to interact with the grid in an increasing manner. This worldwide change that we are going to be the witnesses comes up against numerous obstacles. The aim of this book is to examine the determining factors of the success of this large scale change through its technical, economical and social dimensions. It shows that the emergence of such an advanced power system cannot be possible neither without the reconciliation between some contradictory goals, nor without a strong coordination between the actors. Content: Part 1 - intelligent power networks to answer the 21. century challenges: 1 - the European and French dimension of the electric power sector; 2 - towards a carbon-free economy; 3 - a power grid facing new challenges; 4 - the pre-figuration of intelligent power grids; 5 - the deployment of intelligent (smart) grids; Part 2 - perspectives of smart grids development: 1 - the future of power networks; 2 - a new industrial era; Part 3 - the consumer's position in the deployment of future grids: 1 - changing behaviours; 2 - making the consumer a 'consum'actor'. Synthesis and conclusion. (J.S.)

  13. Uncertain Environmental Footprint of Current and Future Battery Electric Vehicles.

    Science.gov (United States)

    Cox, Brian; Mutel, Christopher L; Bauer, Christian; Mendoza Beltran, Angelica; van Vuuren, Detlef P

    2018-04-17

    The future environmental impacts of battery electric vehicles (EVs) are very important given their expected dominance in future transport systems. Previous studies have shown these impacts to be highly uncertain, though a detailed treatment of this uncertainty is still lacking. We help to fill this gap by using Monte Carlo and global sensitivity analysis to quantify parametric uncertainty and also consider two additional factors that have not yet been addressed in the field. First, we include changes to driving patterns due to the introduction of autonomous and connected vehicles. Second, we deeply integrate scenario results from the IMAGE integrated assessment model into our life cycle database to include the impacts of changes to the electricity sector on the environmental burdens of producing and recharging future EVs. Future EVs are expected to have 45-78% lower climate change impacts than current EVs. Electricity used for charging is the largest source of variability in results, though vehicle size, lifetime, driving patterns, and battery size also strongly contribute to variability. We also show that it is imperative to consider changes to the electricity sector when calculating upstream impacts of EVs, as without this, results could be overestimated by up to 75%.

  14. Electricity Futures Prices : Time Varying Sensitivity to Fundamentals

    NARCIS (Netherlands)

    S-E. Fleten (Stein-Erik); R. Huisman (Ronald); M. Kilic (Mehtap); H.P.G. Pennings (Enrico); S. Westgaard (Sjur)

    2014-01-01

    textabstractThis paper provides insight in the time-varying relation between electricity futures prices and fundamentals in the form of prices of contracts for fossil fuels. As supply curves are not constant and different producers have different marginal costs of production, we argue that the

  15. The impact of climate change on hydro-electricity generation

    International Nuclear Information System (INIS)

    Musy, A.; Music, B.; Roy, R.

    2008-01-01

    Hydropower is the leading source of electrical production in many countries. It is a clean and renewable source and certainly will continue to play an important role in the future energy supply. However, the effects of climate change on this valuable resource remain questionable. In order to identify the potential initiatives that the hydropower industry may undertake, it is important to determine the current state of knowledge of the impacts of climate change on hydrological variables at regional and local scales. Usually, the following steps are taken. First, general circulation models (GCMs) are used to simulate future climate under assumed greenhouse gas emission scenarios. Then, different techniques (statistical downscaling/regional climate models) are applied to downscale the GCM outputs to the appropriate scales of hydrological models. Finally, hydrologic models are employed to simulate the effects of climate change at regional and local scales. Outputs from these models serve as inputs to water management models that give more details about hydropower production. In the present study, realized by OURANOS upon the request of CEATI, a critical review of the methods used to determine impact of climate change on water resources and hydropower generation is carried out. The major results from recent studies worldwide are reported and future scientific actions to better understand climate change impacts on the hydrological regime are identified. The study is expected to provide direction for the hydropower industry to mitigate the impacts of climate change. (author)

  16. Robust Control of Aeronautical Electrical Generators for Energy Management Applications

    OpenAIRE

    Giacomo Canciello; Alberto Cavallo; Beniamino Guida

    2017-01-01

    A new strategy for the control of aeronautical electrical generators via sliding manifold selection is proposed, with an associated innovative intelligent energy management strategy used for efficient power transfer between two sources providing energy to aeronautical loads, having different functionalities and priorities. Electric generators used for aeronautical application involve several machines, including a main generator and an exciter. Standard regulators (PI or PID-like) are normally...

  17. Electricity and generator availability in LMIC hospitals: improving access to safe surgery.

    Science.gov (United States)

    Chawla, Sagar; Kurani, Shaheen; Wren, Sherry M; Stewart, Barclay; Burnham, Gilbert; Kushner, Adam; McIntyre, Thomas

    2018-03-01

    Access to reliable energy has been identified as a global priority and codified within United Nations Sustainable Goal 7 and the Electrify Africa Act of 2015. Reliable hospital access to electricity is necessary to provide safe surgical care. The current state of electrical availability in hospitals in low- and middle-income countries (LMICs) throughout the world is not well known. This study aimed to review the surgical capacity literature and document the availability of electricity and generators. Using Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a systematic search for surgical capacity assessments in LMICs in MEDLINE, PubMed, and World Health Organization Global Health Library was performed. Data regarding electricity and generator availability were extracted. Estimated percentages for individual countries were calculated. Of 76 articles identified, 21 reported electricity availability, totaling 528 hospitals. Continuous electricity availability at hospitals providing surgical care was 312/528 (59.1%). Generator availability was 309/427 (72.4%). Estimated continuous electricity availability ranged from 0% (Sierra Leone and Malawi) to 100% (Iran); estimated generator availability was 14% (Somalia) to 97.6% (Iran). Less than two-thirds of hospitals providing surgical care in 21 LMICs have a continuous electricity source or have an available generator. Efforts are needed to improve electricity infrastructure at hospitals to assure safe surgical care. Future research should look at the effect of energy availability on surgical care and patient outcomes and novel methods of powering surgical equipment. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Electricity '93: Focussed for the future [Canadian Electrical Association annual report, 1992

    International Nuclear Information System (INIS)

    1993-01-01

    The Canadian Electrical Association annual report for 1993 is presented. The Association's objectives include providing a forum for studying, discussing, and exchanging information related to the electric utility industry; developing and promotion of policies on production, distribution, and utilization of electricity; acting as an industry advocate before the public and governments; and facilitating Canadian involvement in international activities affecting the electric utility industry. Association members include individuals, 35 corporate utilities, 35 corporate manufacturers, 180 associate companies, and representation from contractors, consultants, academia, and government. Association activities in helping utilities to control costs, sponsoring research and development, enhancing value of electricity to members' customers, and meeting public responsibilities are reviewed. Selected research and development projects are summarized and statistics on Canadian electricity production, generating capacity, energy demand, electricity prices, and exports are included. Lists of research and development projects awarded and completed in 1992 are appended. 10 figs., 2 tabs

  19. Electrically nonconductive shield for electric equipment generating ionizing radiation

    International Nuclear Information System (INIS)

    Aitken, D.

    1979-01-01

    As a radiation protection shield there is proposed a nonconductive shield fabricated from epoxides or other plastics material and containing finely dispersed radiation absorbing metal. It is to be designed in such a way that it lies in the range of a high electric gradient in the equipment, close to the radiation-producing component. As suitable metals there are mentioned tin, tungsten, and lead resp. their oxides. As an example there is used an X-ray shielding. (RW) 891 RW/RW 892 MKO [de

  20. Food processing with electrically generated photon irradiation

    International Nuclear Information System (INIS)

    Matthews, S.M.

    1983-01-01

    A conceptual design for a portable electric food irradiation processing machine is presented and analyzed for cost assuming the required accelerators are available for $1.5 million each. It is shown that food can be processed to 1 kGy for a price of $5.98/ton

  1. Composite electric generator equipped with steam generator for heating reactor coolant

    International Nuclear Information System (INIS)

    Watabe, Masaharu; Soman, Yoshindo; Kawanishi, Kohei; Ota, Masato.

    1997-01-01

    The present invention concerns a composite electric generator having coolants, as a heating source, of a PWR type reactor or a thermonuclear reactor. An electric generator driving gas turbine is disposed, and a superheater using a high temperature exhaust gas of the gas turbine as a heating source is disposed, and main steams are superheated by the superheater to elevate the temperature at the inlet of the turbine. This can increase the electric generation capacity as well as increase the electric generation efficiency. In addition, since the humidity in the vicinity of the exit of the steam turbine is reduced, occurrence of loss and erosion can be suppressed. When cooling water of the thermonuclear reactor is used, the electric power generated by the electric generator driven by the gas turbine can be used upon start of the thermonuclear reactor, and it is not necessary to dispose a large scaled special power source in the vicinity, which is efficient. (N.H.)

  2. Future market relevance of CHP installations with electrical ratings from 1 to 1000 kW

    International Nuclear Information System (INIS)

    Eicher, H.; Rigassi, R.

    2003-12-01

    This report for the Swiss Federal Office of Energy (SFOE) discusses the future market relevance of combined heat and power (CHP) installations with electrical ratings from 1 to 1000 kW. Developments over the past ten years are reviewed. Important reductions in the price of motor-driven CHP units and the price of the electrical power produced are noted and commented on. The technical market potential of CHP units and the degree to which this potential has been implemented are commented on. Work done, including CHP implementation in the industrial, commercial and residential areas, is commented on. Future developments both in the technical area as well as in commercial areas are commented on. Micro-gas-turbine based CHP systems are also discussed, as are fuel-cell based systems in both the higher and lower capacity power generation area. The prospects for CHP systems in general in the electricity generation area are discussed

  3. Investigating the water consumption for electricity generation at Turkish power plants

    Science.gov (United States)

    El-Khozondar, Balkess; Aydinalp Koksal, Merih

    2017-11-01

    The water-energy intertwined relationship has recently gained more importance due to the high water consumption in the energy sector and to the limited availability of the water resources. The energy and electricity demand of Turkey is increasing rapidly in the last two decades. More thermal power plants are expected to be built in the near future to supply the rapidly increasing demand in Turkey which will put pressure on water availability. In this study, the water consumption for electricity generation at Turkish power plants is investigated. The main objectives of this study are to identify the amount of water consumed to generate 1 kWh of electricity for each generation technology currently used in Turkey and to investigate ways to reduce the water consumption at power plants expected to be built in the near future to supply the increasing demand. The various electricity generation technology mixture scenarios are analyzed to determine the future total and per generation water consumption, and water savings based on changes of cooling systems used for each technology. The Long-range Energy Alternatives Planning (LEAP) program is used to determine the minimum water consuming electricity generation technology mixtures using optimization approaches between 2017 and 2035.

  4. Analysis of the energy portfolio for electricity generation

    International Nuclear Information System (INIS)

    Ramirez S, J. R.; Alonso V, G.; Esquivel E, J.

    2016-09-01

    The planning of electricity generation systems considers several factors that must be taken into account in order to design systems that are economical, reliable and sustainable. For this purpose, the Financial Portfolio Theory is applicable to the energy portfolio or the diversification of electricity generation technologies, such as is the combined cycle, wind, thermoelectric and nuclear. This paper presents an application of the Portfolio Theory to the national energy system, based on the total generation costs for each technology, which allows determining the average variance portfolio and the respective share of each of the electricity generation technologies considered, obtaining a portfolio of electricity generation with the maximum possible return for the risk taken in the investments. This paper describes the basic aspects of the Portfolio Theory and its methodology, in which matrices are implemented for the solution of the resulting Lagrange system. (Author)

  5. Production function application attempt in electricity generation forecasting

    International Nuclear Information System (INIS)

    Kamrat, W.; Augusiak, A.

    1996-01-01

    A modified Cobb-Douglas production function is applied to evaluate level of electricity generation for medium and long term prognosis (up to 2010) in an easy and simple way. The test calculations have been done for hard coal fired power plants, based on generation data supplied in Main Statistical Office of Poland publications.The model of electricity generation is defined using data on capital of a typical productivity power plant and its employment for time series 1980-90. The test calculation results based on the parameters of Rosenbroock's optimization procedure of electricity generation model are presented. The method described is distinguished for its high accuracy as compared to classical methods despite the relatively short time series. It is suitable for studies in electricity generation policy . 1 tab

  6. Steam Generator for PFBR and Future FBR

    International Nuclear Information System (INIS)

    Athmalingam, S.

    2011-01-01

    Challenges of 30m tube SG (3SG/Loop): Transportation needs to be verified for 33m long SG. (A dummy will be attached in PFBR SG to check transportation); Redesign of thermal expansion bend (Option of Double bend or reduction in DT with “Flow limiter” may be considered); Seismic qualification (Provision of additional guide supports if required); Travel of eddy current probe during ISI to be demonstrated; Design basis leak to be verified. Improved overall economy and enhanced safety of the plant overweighs the challenges, hence SG with 30m long tubes is chosen for future FBRs

  7. Electricity

    International Nuclear Information System (INIS)

    Tombs, F.

    1983-01-01

    The subject is discussed, with particular reference to the electricity industry in the United Kingdom, under the headings; importance and scope of the industry's work; future fuel supplies (estimated indigenous fossil fuels reserves); outlook for UK energy supplies; problems of future generating capacity and fuel mix (energy policy; construction programme; economics and pricing; contribution of nuclear power - thermal and fast reactors; problems of conversion of oil-burning to coal-burning plant). (U.K.)

  8. The promotion of green electricity in Europe: present and future

    Energy Technology Data Exchange (ETDEWEB)

    Rio, Pablo del [Universidad de Castilla-La Mancha, Facultad de Ciencias Juridicas y Sociales, Toledo (Spain); Gual, Miguel [Universidad Pablo de Olavide, Sevilla (Spain)

    2004-07-01

    Public support schemes for electricity from renewable energy sources (RES-E) are undergoing a period of change. Two interrelated processes can be discerned at both the EU and member state (MS) levels. On the one hand, the RES-E Directive sets targets for consumption of renewable electricity for the year 2010 and opens the possibility that the European Commission sets a community support framework for RES-E promotion in the future. On the other hand, different types of support scheme have been and are used by countries in order to promote the deployment of renewable electricity. A move from tendering/bidding systems and feed-in tariffs to tradable green certificates can be observed in some MSs. This move may take place in the future in some other MSs while others will certainly continue to rely on their current scheme. This paper provides an overview and assessment of the instruments currently used to promote renewable electricity in Europe and considers some possible trends in the choice of support schemes in the future. (Author)

  9. An electricity generation planning model incorporating demand response

    International Nuclear Information System (INIS)

    Choi, Dong Gu; Thomas, Valerie M.

    2012-01-01

    Energy policies that aim to reduce carbon emissions and change the mix of electricity generation sources, such as carbon cap-and-trade systems and renewable electricity standards, can affect not only the source of electricity generation, but also the price of electricity and, consequently, demand. We develop an optimization model to determine the lowest cost investment and operation plan for the generating capacity of an electric power system. The model incorporates demand response to price change. In a case study for a U.S. state, we show the price, demand, and generation mix implications of a renewable electricity standard, and of a carbon cap-and-trade policy with and without initial free allocation of carbon allowances. This study shows that both the demand moderating effects and the generation mix changing effects of the policies can be the sources of carbon emissions reductions, and also shows that the share of the sources could differ with different policy designs. The case study provides different results when demand elasticity is excluded, underscoring the importance of incorporating demand response in the evaluation of electricity generation policies. - Highlights: ► We develop an electric power system optimization model including demand elasticity. ► Both renewable electricity and carbon cap-and-trade policies can moderate demand. ► Both policies affect the generation mix, price, and demand for electricity. ► Moderated demand can be a significant source of carbon emission reduction. ► For cap-and-trade policies, initial free allowances change outcomes significantly.

  10. Generation of electricity by wind power

    Energy Technology Data Exchange (ETDEWEB)

    Golding, E W

    1976-01-01

    Information on wind power is presented concerning the history of windmills; estimation of the energy obtainable from the wind; wind characteristics and distribution; wind power sites; wind surveys; wind flow over hills; measurement of wind velocity; wind structure and its determination; wind data and energy estimation; testing of wind driven ac generators; wind-driven machines; propeller type windmills; plants for isolated premises and small communities; economy of wind power generation; construction costs for large wind-driven generators; relationship of wind power to other power sources; research and development; and international cooperation.

  11. Test programmes of HTTR for future generation HTGRs

    International Nuclear Information System (INIS)

    Kunitomi, K.; Tachibana, Y.; Takeda, T.; Saikusa, A.; Shiozawa, S.

    1997-01-01

    Test programs of the High Temperature Engineering Test Reactor (HTTR) for future generation High Temperature Gas-Cooled Reactors (HTGRs) have been established considering design and development status of HTGRs in Japan and the world. Test programs are divided into six categories, thermal hydraulics, fuel, safety, high temperature components, core physics and control-instrumentations. All programs are related to the technology of future generation HTGRs and will be submitted to a new Coordinated Research Program (CRP) so that all participants from the world in test programs of the HTTR can use measured data for their future generation.HTGRs. This paper describes test programs of the HTTR for the development of future generation HTGRs after explanation of a future generation HTGR in Japan. (author)

  12. The expansion of electricity generation from renewable energies in Germany

    International Nuclear Information System (INIS)

    Buesgen, Uwe; Duerrschmidt, Wolfhart

    2009-01-01

    The expansion of electricity generation from renewable sources in Germany is promoted by the Erneuerbare-Energien-Gesetz (EEG), which was last amended in June 2008. In a review of the EEG the political parameters, the progress achieved, and the impacts of the Act itself are set out. This Progress Report addresses cross-sectoral aspects, notably CO 2 emissions reduction, job creation, investment and turnover in the renewables industry, and that industry's prospects for the future. Trends in the individual renewables sectors are described and policy recommendations formulated, as appropriate, on this basis. The policy recommendations have been incorporated into the new EEG from 6 June 2008. The overarching goal of the new EEG is to achieve a renewables share of at least 30% in Germany's electricity consumption in 2020. This underlines the need for radical modernisation of the energy system as a whole. This article presents an overview of the content of the Progress Report and supplements it with current statistical data and research findings contained in other publications from the Federal Ministry for the Environment (BMU). It also highlights the points on which the new EEG diverges from the policy recommendations contained in the Progress Report.

  13. Exploring utility organization electricity generation, residential electricity consumption, and energy efficiency: A climatic approach

    International Nuclear Information System (INIS)

    Craig, Christopher A.; Feng, Song

    2017-01-01

    Highlights: • Study examined impact of electricity fuel sources and consumption on emissions. • 97.2% of variability in emissions explained by coal and residential electricity use. • Increasing cooling degree days significantly related to increased electricity use. • Effectiveness of state-level energy efficiency programs showed mixed results. - Abstract: This study examined the impact of electricity generation by fuel source type and electricity consumption on carbon emissions to assess the role of climatic variability and energy efficiency (EE) in the United States. Despite high levels of greenhouse gas emissions, residential electricity consumption continues to increase in the United States and fossil fuels are the primary fuel source of electricity generation. 97.2% of the variability in carbon emissions in the electricity industry was explained by electricity generation from coal and residential electricity consumption. The relationships between residential electricity consumption, short-term climatic variability, long-term climatic trends, short-term reduction in electricity from EE programs, and long-term trends in EE programs was examined. This is the first study of its nature to examine these relationships across the 48 contiguous United States. Inter-year and long-term trends in cooling degree days, or days above a baseline temperature, were the primary climatic drivers of residential electricity consumption. Cooling degree days increased across the majority of the United States during the study period, and shared a positive relationship with residential electricity consumption when findings were significant. The majority of electricity reduction from EE programs was negatively related to residential electricity consumption where findings were significant. However, the trend across the majority of states was a decrease in electricity reduction from EE while residential electricity consumption increased. States that successfully reduced consumption

  14. Electricity generation devices using formic acid

    KAUST Repository

    Huang, Kuo-Wei; Zheng, Junrong

    2017-01-01

    The present disclosure relates generally to new forms of portable energy generation devices and methods. The devices are designed to covert formic acid into released hydrogen, alleviating the need for a hydrogen tank as a hydrogen source for fuel

  15. Private wind powered electricity generators for industry in the UK

    Science.gov (United States)

    Thabit, S. S.; Stark, J.

    This paper investigates the impact of the provisions of the new Energy Act, 1983 on industrial wind-powered private generators of electricity and the effects of published tariffs on various industrial working patterns. Up to 30 percent savings can be achieved in annual electricity bill costs for an industrial generator/user of electricity working a single daily shift, if located in a favorable, 7 m/s mean annual wind speed regime. Variation of the availability charge between Electricity Boards about a base value of 0.70 pounds sterling/kVA was found to have insignificant (+ or - 1.3 percent) impact on total electricity bill costs. It was also shown that for industrial users of electricity, the simpler two-rate purchase terms were commercially adequate when compared with the four-rate alternative where expensive metering becomes necessary.

  16. Investment in Electricity Generation and Transmission: Decision Making Under Uncertainty

    DEFF Research Database (Denmark)

    Conejo, Antonio J.; Baringo, Luis; Kazempour, Jalal

    This book provides an in-depth analysis of investment problems pertaining to electric energy infrastructure, including both generation and transmission facilities. The analysis encompasses decision-making tools for expansion planning, reinforcement, and the selection and timing of investment...... undergraduate and graduate students in the fields of electric energy systems, operations research, management science, and economics. Practitioners in the electric energy sector will also benefit from the concepts and techniques presented here....

  17. Ontario's new electricity market and the future of OPG

    International Nuclear Information System (INIS)

    Howes, H.

    2002-01-01

    The recent measures taken by Ontario Power Generation since 1998 to deregulate the electricity market in the province of Ontario are reviewed. The opening of Ontario's power market in May 2002 will oblige Ontario Power Generation to reduce its market share. The author reviewed the current status of the energy market in Ontario and noted a modest growth in demand. A significant portion of the energy supply is being provided by nuclear, fossil fuels and hydro energy. The challenge facing Ontario Power Generation is to stay competitive in the new deregulated market and to participate in the energy market in the United States. 6 figs

  18. Food processing with electrically generated photon irradiation

    International Nuclear Information System (INIS)

    Matthews, S.M.

    1985-01-01

    Economic constraints require that a food irradiation processing facility have a throughput of approximately 1 MGy ton/day (0.91 MGy m.t./day) requiring 3 MegaCuries (MCi) of cobalt-60 at each site. This requirement means that the total world amount of cobalt-60 would have to be increased by about 60 percent just to handle the California almond and raisin crop during peak season. It is doubtful that public opinion would allow the increased distribution of radioactive isotopes, with the resultant burden upon the transportation networks, as a price to be paid to eat irradiated food. Electric sources have characteristics that allow the production of more penetrating, uniform, and efficient radiation that is available from nuclear isotopes. The heart of the electric radiation source is the electron accelerator. At present, there are no accelerators commercially available that can meet the requirements for food irradiation processing. However, the U.S. Department of Defense-funded beam weapons programs have provided a very promising accelerator technology at the Lawrence Livermore National Laboratory. If this technology were to be commercialized, it appears that the required accelerators would be available for US$1.5 million apiece, and quite possibly for less than this amount. A conceptual design for a portable electric food irradiation processing machine is presented and analyzed for cost, assuming the required accelerators are available for $1.5 million each. It is shown that food can be processed for 1 kGy for a price of $5.98/ton ($6.59/m.t.)

  19. Electrostatic air filters generated by electric fields

    International Nuclear Information System (INIS)

    Bergman, W.; Biermann, A.H.; Hebard, H.D.; Lum, B.Y.; Kuhl, W.D.

    1981-01-01

    This paper presents theoretical and experimental findings on fibrous filters converted to electrostatic operation by a nonionizing electric field. Compared to a conventional fibrous filter, the electrostatic filter has a higher efficiency and a longer, useful life. The increased efficiency is attributed to a time independent attraction between polarized fibers and charged, polarized particles and a time dependent attraction between charged fibers and charged, polarized particles. The charge on the fibers results from a dynamic process of charge accumulation due to the particle deposits and a charge dissipation due to the fiber conductivity

  20. Comparative Study on Electric Generation Cost of HTR with Another Electric Plant Using LEGECOST Program

    International Nuclear Information System (INIS)

    Mochamad-Nasrullah; Soetrisnanto, Arnold Y.; Tosi-Prastiadi; Adiwardojo

    2000-01-01

    Monetary and economic crisis in Indonesia resulted in impact of electricity and demand and supply planning that it has to be reevaluated. One of the reasons is budget limitation of the government as well as private companies. Considering this reason, the economic calculation for all of aspect could be performed, especially the calculation of electric generation cost. This paper will discuss the economic aspect of several power plants using fossil and nuclear fuel including High Temperature Reactor (HTR). Using Levelized Generation Cost (LEGECOST) program developed by IAEA (International Atomic Energy Agency), the electric generation cost of each power plant could be calculated. And then, the sensitivity analysis has to be done using several economic parameters and scenarios, in order to be known the factors that influence the electric generation cost. It could be concluded, that the electric generation cost of HTR is cheapest comparing the other power plants including nuclear conventional. (author)

  1. Storing the Electric Energy Produced by an AC Generator

    Science.gov (United States)

    Carvalho, P. Simeao; Lima, Ana Paula; Carvalho, Pedro Simeao

    2010-01-01

    Producing energy from renewable energy sources is nowadays a priority in our society. In many cases this energy comes as electric energy, and when we think about electric energy generators, one major issue is how we can store that energy. In this paper we discuss how this can be done and give some ideas for applications that can serve as a…

  2. optimization methodologies of mixed electrical generators in algeria ...

    African Journals Online (AJOL)

    ABSTRACT. This article deals of the optimization of renewable energy electric generators, for the alimentation of radio telecommunication systems. The principals' interests of this system are the independence production, and the supplying of electric energy in isolated localities. Have at one's the energetic and economic ...

  3. AIR POLLUTION: Emissions from Older Electricity Generating Units

    National Research Council Canada - National Science Library

    2002-01-01

    .... While fossil fuels-coal, natural gas, and oil-account for more than two thirds of our electricity, generating units that burn these fuels are major sources of airborne emissions that pose human...

  4. Electricity generation in Nigeria from municipal solid waste using the ...

    African Journals Online (AJOL)

    Electricity generation in Nigeria from municipal solid waste using the Swedish Wasteto-Energy Model. ... Journal of Applied Sciences and Environmental Management ... Waste-to-energy (WTE) technology in Nigeria is still at the infancy stage ...

  5. Hydropower's future, the environment, and global electricity systems

    Energy Technology Data Exchange (ETDEWEB)

    Sternberg, R. [Department of Earth and Environmental Studies, Montclair State University, 1 Normal Ave, Montclair, NJ 07043-1624 (United States)

    2010-02-15

    Hydropower is a well established electricity system on the global scene. Global electricity needs by far exceed the amount of electricity that hydrosystems can provide to meet global electricity needs. Much of the world's hydropower remains to be brought into production. Improved technology, better calibrated environmental parameters for large projects have become the norm in the past 15 years. How and why does hydropower retain a prominent role in electricity production? How and why does hydropower find social acceptance in diverse social systems? How does hydropower project planning address issues beyond electricity generation? How does the systems approach to hydropower installations further analysis of comparative energy sources powering electricity systems? Attention to the environmental impact of hydropower facilities forms an integral part of systems analysis. Similarly, the technical, political and economic variables call for balanced analysis to identify the viability status of hydro projects. Economic competition among energy systems requires in context assessments as these shape decision making in planning of hydropower systems. Moreover, technological change has to be given a time frame during which the sector advances in productivity and share in expanding electricity generation. The low production costs per kWh assure hydropower at this juncture, 2009, a very viable future. (author)

  6. The Monumental Task of Warning Future Generations

    International Nuclear Information System (INIS)

    NA

    2005-01-01

    Describing preliminary concepts for permanent warning monuments or markers on the mountain's surface will be part of the US Department of Energy's license application to the Nuclear Regulatory Commission (NRC) for a proposed repository at Yucca Mountain, Nevada. The NRC requires that the monuments or markers accurately identify the location of the repository, be designed to be as permanent as practicable and convey a warning against intrusion into the underground repository, because of risk to public health and safety from radioactive wastes. Current concepts include both monuments and markers, but the designs will not be final for some time because they will not be approved by the NRC until shortly before the repository is to be permanently sealed and closed. Closure of the repository would be at least 50 years, and possibly up to 300 years, after the first waste is emplaced deep underground. Design ideas for the monuments and markers have been drawn from a broad range of sources: Yucca Mountain's natural conditions, worldwide archeological studies, materials science, and verbal and symbolic linguistics. The monumental challenge is to address how warnings can be coherently conveyed for thousands of years into the future when human society and languages could change radically

  7. THE GAMER GENERATIONFUTURE DRONE PILOTS

    Directory of Open Access Journals (Sweden)

    Andrei-Alexandru STOICA

    2017-05-01

    Full Text Available Drones or unmanned piloted vehicles represent the pinnacle of ranged weapon technology that ensure a fast strike, low cost and with almost no boots on the ground. This type of new technology also brings a new requirement for governments that use these devices, a requirement that dated air force training cannot offer, but a mobile phone or controller can offer it wholesome. The idea of downplaying war to sound very hip and cool and fun for the younger crowd has been around since the 1970’s, when the Vietnam war recruiters were using the idea that war was a good investment for children and teens, because it offered them a future-proof job and access to entertaining tools, but kept out the negative aspects of participating in an armed conflict. Now we see a resurgence in the way military recruiters use such trends to draw in the crowd. In this regard, the situation of using children and teens, or more precisely ones who have video-games as a time investing hobby, has been considered by the regulated armed forces for some time now, but due to international treaties that govern child protection this has been deemed impossible to accomplish. Should child protection treaties be revised or not, and if they should, could drones be the entry point for taking part in armed conflicts or other armed situations?

  8. Power for the future : towards a sustainable electricity system for Ontario

    International Nuclear Information System (INIS)

    Winfield, M.S.; Horne, M.; McClenaghan, T.; Peters, R.

    2004-05-01

    Ontario's electricity system has undergone major changes since 1998, when the Hydro-Electric Power Commission was divided into four separate entities, Ontario Power Generation, Hydro One, the Ontario Electricity Financial Corporation, and the Electrical Safety Authority. In addition, retail and wholesale electricity markets were introduced in 2002 under the supervision of the Ontario Energy Board. The removal from service of several nuclear generating facilities in the province led to greater reliance on coal-fired generation to meet energy demands. In 2003, the newly elected provincial government made a commitment to phase out coal-fired plants by 2007 for environmental reasons. It is estimated that all the the existing nuclear facilities will reach their projected operational lifetimes by 2018. Given the province's growing electricity demand, several options have been proposed as to how future energy needs could be met. The options range from investment into low-impact renewable energy sources such as small-scale hydro, solar, biomass and wind, to the construction of new nuclear generating facilities. The Pembina Institute and the Canadian Environmental Law Association examined the following four key issues regarding Ontario's future direction in electricity generation, transmission and distribution: (1) by how much can electricity demand be reduced through the adoption of energy efficient technologies, fuel switching, cogeneration and demand response measures, (2) how much electricity supply can be obtained from low-impact renewable energy sources, (3) how should the grid demand be met once the electricity system has maximized the technically and economically feasible contributions from energy efficiency, fuel switching, cogeneration, response management measures (RMM) and renewable energy sources, and (4) what public policies should the province adopt to maximize energy efficiency, fuel switching, cogeneration, RMM and renewable energy sources. The Canadian

  9. Technology data for electricity and heat generating plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-03-01

    The Danish Energy Authority and the two Danish electricity transmission and system operators, Elkraft System and Eltra, initiated updating of current technology catalogues in 2003. The first updated catalogue was published in March 2004. This report presents the results of the second phase of updating. The primary objective has been to establish a uniform, commonly accepted and up-to-date basis for energy planning activities, such as future outlooks, evaluations of security of supply and environmental impacts, climate change evaluations, and technical and economic analyses. The catalogue may furthermore be used as reference for evaluations of the development perspectives for the numerous technologies available for energy generation in relation to the programming of funding schemes for research, development and demonstration of emerging technologies. It has finally been the intention to offer the catalogue for the international audience, as a contribution to similar initiates aiming at forming a public and concerted knowledge base for international analyses and negotiations. A guiding principle for developing the catalogue has been to primarily rely on well-documented and public information, secondarily on invited expert advice. Since many experts are reluctant in estimating future quantitative performance data, the data tables are not complete, in the sense that most data tables show several blank spaces. This approach has been chosen in order to achieve data, which to some extent are equivalently reliable, rather than to risk a largely incoherent data set including unfounded guesses. (au)

  10. The Future of Centrally-Organized Wholesale Electricity Markets

    Energy Technology Data Exchange (ETDEWEB)

    Glazer, Craig [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Morrison, Jay [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Breakman, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Clements, Allison [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schwartz, Lisa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-06-21

    The electricity grid in the United States is organized around a network of large, centralized power plants and high voltage transmission lines that transport electricity, sometimes over large distances, before it is delivered to the customer through a local distribution grid. This network of centralized generation and high voltage transmission lines is called the “bulk power system.” Costs relating to bulk power generation typically account for more than half of a customer’s electric bill.1 For this reason, the structure and functioning of wholesale electricity markets have major impacts on costs and economic value for consumers, as well as energy security and national security. Diverse arrangements for bulk power wholesale markets have evolved over the last several decades. The Southeast and Western United States outside of California have a “bilateral-based” bulk power system where market participants enter into long-term bilateral agreements — using competitive procurements through power marketers, direct arrangements among utilities or with other generation owners, and auctions and exchanges.

  11. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    OpenAIRE

    Firestone, Ryan; Marnay, Chris

    2007-01-01

    The on-site generation of electricity can offer building owners and occupiers financial benefits as well as social benefits such as reduced grid congestion, improved energy efficiency, and reduced greenhouse gas emissions. Combined heat and power (CHP), or cogeneration, systems make use of the waste heat from the generator for site heating needs. Real-time optimal dispatch of CHP systems is difficult to determine because of complicated electricity tariffs and uncertainty in CHP equipment...

  12. Electricity generating system. [Wind/diesel/flywheel system

    Energy Technology Data Exchange (ETDEWEB)

    Moody, R.L.

    1992-02-05

    An electricity generating system is described which includes a water tank with electric heating elements connected to the water cooling system of a diesel engine which is heated by excess output of the system. Power in excess of that required by a load which is generated by a wind turbine driven generator runs up a flywheel and further excess is absorbed in the tank. A fan associated with a radiator connected to the tank may be operated to dissipate further excess power. When the load requirements exceed the output of the generators linked to the wind turbine and the flywheel the engine operates a synchronous alternator. (author).

  13. The future frigates of the French navy: all electric ships?

    Energy Technology Data Exchange (ETDEWEB)

    Letot, L. [Delegation Generale pour l' Armement/Direction des Systemes de forces et de la Prospective (DGA/DSP/SASF), 75 - Paris (France); Herjean, Y. [EMM/PL/EPG, France (France)

    2000-07-01

    The application of the all electric ship concept is interesting in the context of several types of warship. Although there it does not pose any major difficulties for simple ships (replenishment ships, amphibious ships) and can be implemented with off-the-shelf technology, its application to combat ships is more ambitious and risky. The renewal of a major part of our frigate fleet in 2008 offers the opportunity to apply this concept. The military and economic advantages have to be demonstrated. Having summarized the programme, the paper discusses the advantages of the all electric concept and examines several areas of technological difficulty that will need to be resolved. Finally, the paper presents work in progress, which will determine whether or not the electric solution is retained for the future multi-mission frigate. (authors)

  14. The Future of Electricity Distribution Regulation. Lessons from International Experience

    Energy Technology Data Exchange (ETDEWEB)

    Nillesen, P.H.L.

    2008-12-03

    This thesis contains five essays on the regulation of electricity distribution networks, each presenting a different point of view. Two essays use US data to demonstrate that incentive-based regulation has valuable application within a management setting and can lead to gaming behaviour within a regulatory setting. One essay discusses the lessons that can be drawn from the failed first electricity distribution price control review in the Netherlands. One essay presents the views of 75 international regulation managers and gives recommendations on ways to improve the regulatory quality and process. The final essay analyses the economic consequences of the forced ownership unbundling of the electricity distribution networks in 1998 in New Zealand, and draws lessons for future structural remedies that may be sought in other countries.

  15. The Future of Electricity Distribution Regulation. Lessons from International Experience

    International Nuclear Information System (INIS)

    Nillesen, P.H.L.

    2008-01-01

    This thesis contains five essays on the regulation of electricity distribution networks, each presenting a different point of view. Two essays use US data to demonstrate that incentive-based regulation has valuable application within a management setting and can lead to gaming behaviour within a regulatory setting. One essay discusses the lessons that can be drawn from the failed first electricity distribution price control review in the Netherlands. One essay presents the views of 75 international regulation managers and gives recommendations on ways to improve the regulatory quality and process. The final essay analyses the economic consequences of the forced ownership unbundling of the electricity distribution networks in 1998 in New Zealand, and draws lessons for future structural remedies that may be sought in other countries

  16. Powering the future: Blueprint for a sustainable electricity industry

    International Nuclear Information System (INIS)

    Flavin, C.; Lenssen, N.

    1997-01-01

    Long known for its vast scale and fierce resistance to change, the US power industry is poised for a sweeping transformation. Although driven by many of the same forces propelling the telecommunications revolution, the electricity industry has received only a fraction as much attention. Yet the electric industry is far larger, with a current investment per customer of $6,000--double that of the phone and cable industries combined. Moreover, unlike telecommunications, the future of the power industry will have an enormous impact on the global environment. The glimmerings of a more efficient, decentralized, and less-polluting power system are beginning to capture the interest--and even the investment dollars--of some. In this paper, the authors describe the route to a more environmentally sustainable electric industry to power the twenty-first century

  17. Optimizing the financial structure and maximizing the future value of your generation project

    International Nuclear Information System (INIS)

    Arulampalam, G.; Letellier, M.

    2004-01-01

    This paper discusses ways of optimizing the financial structure and maximizing the future value of an electric power generation project. It outlines the project structure, the sponsor objectives, project finance lending criteria, project timeline, risk mitigation, bank and institutional financing, sponsor's role, impact of financing choices on project value, and impact of penalties and derivative products

  18. Electricity generation devices using formic acid

    KAUST Repository

    Huang, Kuo-Wei

    2017-06-22

    The present disclosure relates generally to new forms of portable energy generation devices and methods. The devices are designed to covert formic acid into released hydrogen, alleviating the need for a hydrogen tank as a hydrogen source for fuel cell power.

  19. Displacing the dinosaurs. [Diesel engine electric generators

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1992-05-01

    This article describes how giant power stations are being replaced by smaller, cleaner units. These include plants using combined-cycle gas turbines and diesel engines of low, medium and high speeds. The use of these diesel engines in power generation is discussed. (UK).

  20. Study of thermoelectric systems applied to electric power generation

    International Nuclear Information System (INIS)

    Rodriguez, A.; Vian, J.G.; Astrain, D.; Martinez, A.

    2009-01-01

    A computational model has been developed in order to simulate the thermal and electric behavior of thermoelectric generators. This model solves the nonlinear system of equations of the thermoelectric and heat transfer equations. The inputs of the program are the thermoelectric parameters as a function of temperature and the boundary conditions, (room temperature and residual heat flux). The outputs are the temperature values of all the elements forming the thermoelectric generator, (performance, electric power, voltage and electric current generated). The model solves the equation system using the finite difference method and semi-empirical expressions for the convection coefficients. A thermoelectric electric power generation test bench has been built in order to validate and determine the accuracy of the computational model, which maximum error is lower than 5%. The objective of this study is to create a design tool that allows us to solve the system of equations involved in the electric generation process without needing to impose boundary conditions that are not known in the design phase, such as the temperature of the Peltier modules. With the computational model, we study the influence of the heat flux supplied as well as the room temperature on the electric power generated.

  1. Future generations, environmental ethics, and global environmental change

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, B.E.

    1994-12-31

    The elements of a methodology to be employed by the global community to investigate the consequences of global environmental change upon future generations and global ecosystems are outlined in this paper. The methodology is comprised of two major components: A possible future worlds model; and a formal, citizen-oriented process to judge whether the possible future worlds potentially inheritable by future generations meet obligational standards. A broad array of descriptors of future worlds can be encompassed within this framework, including survival of ecosystems and other species and satisfaction of human concerns. The methodology expresses fundamental psychological motivations and human myths journey, renewal, mother earth, and being-in-nature-and incorporates several viewpoints on obligations to future generations-maintaining options, fairness, humility, and the cause of humanity. The methodology overcomes several severe drawbacks of the economic-based methods most commonly used for global environmental policy analysis.

  2. Modeling Future Life-Cycle Greenhouse Gas Emissions and Environmental Impacts of Electricity Supplies in Brazil

    Directory of Open Access Journals (Sweden)

    Melissa M. Bilec

    2013-07-01

    Full Text Available Brazil’s status as a rapidly developing country is visible in its need for more energy, including electricity. While the current electricity generation mix is primarily hydropower based, high-quality dam sites are diminishing and diversification to other sources is likely. We combined life-cycle data for electricity production with scenarios developed using the IAEA’s MESSAGE model to examine environmental impacts of future electricity generation under a baseline case and four side cases, using a Monte-Carlo approach to incorporate uncertainty in power plant performance and LCA impacts. Our results show that, under the cost-optimal base case scenario, Brazil’s GHGs from electricity (excluding hydroelectric reservoir emissions rise 370% by 2040 relative to 2010, with the carbon intensity per MWh rising 100%. This rise would make Brazil’s carbon emissions targets difficult to meet without demand-side programs. Our results show a future electricity mix dominated by environmental tradeoffs in the use of large-scale renewables, questioning the use tropical hydropower and highlighting the need for additional work to assess and include ecosystem and social impacts, where information is currently sparse.

  3. Economic comparison of nuclear, coal, and oil-fired electric generation in the Chicago area

    International Nuclear Information System (INIS)

    Corey, G.R.

    1981-01-01

    The current and historical performances of 17 large nuclear and coal- and oil-fired steam-electric generating units now operated by Commonwealth Edison Company are examined, and the actual busbar costs of electricity generated by these units in recent years are summarized. Cost estimates for future steam-electric units are provided, and attempts are made to deal realistically with the effect of inflation. Social and regulatory constraints are seen to affect the economics of future units and the willingness of the industry to finance them. It is concluded that, given the uncertainties, utility managers have an incentive to diversify their sources of power generation when society seems to discourage such a course of action. 6 refs

  4. Electricity generation: options for reduction in carbon emissions.

    Science.gov (United States)

    Whittington, H W

    2002-08-15

    largest developed source of renewable electricity, but future large-scale projects will probably be limited to the less-developed world: the best schemes in the developed countries have already been exploited. Wave and tidal can be looked on as medium- to long-term generators of electricity, as their respective industries are not as mature as competing renewable resources. Municipal solid-waste combustion and landfill gas technologies can also be seen as short term, as can their rural equivalents, agriculture and forestry waste. Any widespread exploitation of renewable energy will depend on being able to transmit the energy from source to point of use, so the implications for the electrical network from the penetration of substantial levels of renewable energy are presented. Effective management of renewable energy installations will require technical assessment of the range of exploitation strategies, to compare local production of, say, hydrogen and the more traditional transmission of electricity. Such resources will have to compete with others in any national, or grid, system and detailed economic analysis will be necessary to determine the deployment that best fits the trading regime under which the energy will be sold. Consideration will also be necessary to determine how best to control the introduction of this radically new resource such that it does not attract punitive cost overheads until it is mature enough to cope. Finally, it is inescapable that nuclear power is a proven technology that could take its place in any future generation portfolio. Unfortunately, suspicion and mistrust surround waste management and radioactivity release. Unless this is overcome, the lack of confidence engendered by this public mistrust may result in few, if any, new nuclear power stations being built. In the event of that decision, it is difficult to see how CO(2) levels can be significantly reduced: the irony is that nuclear energy may emerge as environmentally essential.

  5. Natural gas and electricity generation in New South Wales

    International Nuclear Information System (INIS)

    Webb, G.

    2001-01-01

    In its Profile of the Australian Electricity Industry, ABARE noted that NSW was the first State in Australia to unbundle the operations of its State owned electricity industry. The process commenced in 1991, when the Electricity Commission of NSW was renamed Pacific Power and reorganised into six generation and transmission sectors. The power generation fuel mix for NSW in 1999-2000 was as follows: black coal, 97 percent and natural gas, 3 percent. NSW has also imported some brown coal generated electricity from Victoria in recent years. The import of cheap brown coal power from this State due to a marked increase in the availability of brown coal base-load generators in the Latrobe Valley forced some surplus black coal generating capacity in NSW to be withdrawn from the marketplace. Four generating units were closed down in 1998 two 500 MW units at Liddell and two 300 MW units at Munmorah. Further prospects for natural gas are reported to be good; its share in the thermal electricity generation market is forecasted to rise from 3 percent in 1999-2000 to 12 percent in 2014-1015

  6. Nuclear power generation in competition with other sources for base load electricity generation

    International Nuclear Information System (INIS)

    Notari, C.; Rey, F.C.

    1996-01-01

    The latest studies performed by OECD and IAEA on the subject were analyzed in order to clarify the international context. Nuclear, gas and coal are compared. The general conclusion is that nuclear power is competitive for electricity generation considering new plants to be commissioned around year 2000. If the discount rate is 5% per annum it is considered the best option in most of the countries included in the studies. If 10% is chosen the levelized costs favour the gas option. In the Argentine case, the analysis of possible plants for the near future shows a clear advantage for the gas projects. This is mainly due to the low capital costs and low local gas prices. The possible evolution of this situation is considered: gas prices will most probably increase because they should approach the price of fuel oil or diesel oil which are used as substitutes in winter for electricity generation and the export projects to Chile and Brasil will also push prices up. The environmental aspects of the question and its influence on regulations and costs is a matter of speculation. Some countries have already penalized greenhouse gases emissions but it is not clear how and when this trend will affect local prices. (author). 4 refs., 6 tabs

  7. Role of Energy Storage with Renewable Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

    2010-01-01

    Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

  8. Nuclear energy resources for electrical power generation

    International Nuclear Information System (INIS)

    Alder, K.F.

    1974-01-01

    'Nuclear Energy Resources' is interpreted as the nuclear power systems currently available commercially and those at an advanced stage of development, together with full and associated resources required to implement large-scale nuclear programs. Technical advantages and disadvantages of the established power reactor systems are reviewed, and the uranium fuel situation is outlined in terms of supply and demand, the relationship of resources to the requiremnts of current reactor types, and the likely future implications of the Fast Breeder Reactor (FBR). Because of its importance for the future, the problems, status, and likely time scale of the FBR are discussed in some detail. It is concluded that the most important areas for nearterm attention in Australia are the criteria and conditions that would apply to nuclear installations, and the possible development of uranium fuel cycle industries. The pattern of development of reactor and fuel cycle strategies overseas is important for uranium industry planning, and in the long term plutonium availability may be a key factor in power and energy planning. Finally, acceptance of nuclear power includes acceptance that its radioactive wastes will have to be stored on earth, and recent developments to demonstrate that this can be done safely and economically are very important in terms of longterm public attitudes. (author)

  9. Electric Generators and their Control for Large Wind Turbines

    DEFF Research Database (Denmark)

    Boldea, Ion; Tutelea, Lucian; Rallabandi, Vandana

    2017-01-01

    induction generator, the cage rotor induction generator, and the synchronous generator with DC or permanent magnet excitation. The operating principle, performance, optimal design, and the modeling and control of the machine-side converter for each kind of generator are adressed and evaluated. In view......The electric generator and its power electronics interface for wind turbines (WTs) have evolved rapidly toward higher reliability and reduced cost of energy in the last 40 years. This chapter describes the up-to-date electric generators existing in the wind power industry, namely, the doubly fed...... of the fact that individual power rating of WTs has increased to around 10 MW, generator design and control technologies required to reach this power rating are discussed....

  10. The production of wind-generated electricity

    International Nuclear Information System (INIS)

    2013-11-01

    After some key data on installed wind power and its evolution in the World (notably in China and in the USA), in European countries and in France, an overview of the sector economic evolution in France in terms of jobs in different fields (fabrication, electricity production, studies and installations), this publication comments the various benefits of wind energy and its necessary framework for a sane development. Strengths are discussed: a local and clean energy source, a predictable and manageable energy source, an increasing competitiveness. Issues to be considered are also discussed: control of acoustic and landscape impacts, protection of biodiversity, management of interactions with military, meteorological and civil aviation radars, a necessary more steady and coherent regulation. After a discussion of the possibilities offered by small wind energy installations (between 1 and 36 kW), actions undertaken by the ADEME are overviewed. A conclusion outlines the role of wind energy on the supply-demand balance in the French power system, its contribution to the reduction of greenhouse gas emissions, the positive environmental impact, the importance of societal appropriation, and the importance of developing this sector while keeping on reducing consumptions

  11. Electric power generation and uranium management

    International Nuclear Information System (INIS)

    Szergenyi, Istvan

    1989-01-01

    Assuming the present trend of nuclear power generation growth, the ratio of nuclear energy in the world power balance will double by the turn of the century. The time of reasonably exploited uranium resources can be predicted as a few decades. Therefore, new nuclear reactor types and more rational uranium management is needed to prolong life of known uranium resources. It was shown how can a better uranium utilization be expected by closed fuel cycles, and what advantages in uranium management can be expected by a better co-operation between small countries and big powers. (R.P.) 16 refs.; 4 figs

  12. Natural gas for electric power generation: Strategic issues, risks and opportunities

    International Nuclear Information System (INIS)

    Linderman, C.

    1992-01-01

    Natural gas is again being regarded as a significant fuel for electric power generation. It was once a predominant fuel for utilities in gas-producing areas, but natural gas consumption declined greatly after the 1973 oil shock because of reduced electricity demand and increased coal and nuclear generation. Moreover, wellhead price and other forms of regulation produced gas shortages in the 1970s. The resurgence of natural gas in future resource plans stems from its inherent ideal fuel characteristics: short lead time; low capital costs; small increments of modular capacity; delivered close to load centers; environmentally benign, preferable to oil and coal; and potential for high thermal efficiency in gas turbines. Natural gas, if available and attractively priced, is an ideal fuel for electric power generation. No other fuel shares these attractive characteristics, and utilities, facing higher than expected load growth, are relying on an increasing proportion of gas-fired combustion turbines, combined cycle plants, and cogeneration to meet a growing, yet uncertain, future demand for electricity. Despite these desirable operating characteristics, the varied past and uncertain future of natural gas markets raise legitimate concerns about the riskiness of current utility natural gas strategies. This report, which summarizes the major findings from research efforts, is intended to help utility decision-makers understand the full range of risks they face with natural gas electric power generation and to identify actions they can take to mitigate those risks

  13. Computational Needs for the Next Generation Electric Grid Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Birman, Kenneth; Ganesh, Lakshmi; Renessee, Robbert van; Ferris, Michael; Hofmann, Andreas; Williams, Brian; Sztipanovits, Janos; Hemingway, Graham; University, Vanderbilt; Bose, Anjan; Stivastava, Anurag; Grijalva, Santiago; Grijalva, Santiago; Ryan, Sarah M.; McCalley, James D.; Woodruff, David L.; Xiong, Jinjun; Acar, Emrah; Agrawal, Bhavna; Conn, Andrew R.; Ditlow, Gary; Feldmann, Peter; Finkler, Ulrich; Gaucher, Brian; Gupta, Anshul; Heng, Fook-Luen; Kalagnanam, Jayant R; Koc, Ali; Kung, David; Phan, Dung; Singhee, Amith; Smith, Basil

    2011-10-05

    The April 2011 DOE workshop, 'Computational Needs for the Next Generation Electric Grid', was the culmination of a year-long process to bring together some of the Nation's leading researchers and experts to identify computational challenges associated with the operation and planning of the electric power system. The attached papers provide a journey into these experts' insights, highlighting a class of mathematical and computational problems relevant for potential power systems research. While each paper defines a specific problem area, there were several recurrent themes. First, the breadth and depth of power system data has expanded tremendously over the past decade. This provides the potential for new control approaches and operator tools that can enhance system efficiencies and improve reliability. However, the large volume of data poses its own challenges, and could benefit from application of advances in computer networking and architecture, as well as data base structures. Second, the computational complexity of the underlying system problems is growing. Transmitting electricity from clean, domestic energy resources in remote regions to urban consumers, for example, requires broader, regional planning over multi-decade time horizons. Yet, it may also mean operational focus on local solutions and shorter timescales, as reactive power and system dynamics (including fast switching and controls) play an increasingly critical role in achieving stability and ultimately reliability. The expected growth in reliance on variable renewable sources of electricity generation places an exclamation point on both of these observations, and highlights the need for new focus in areas such as stochastic optimization to accommodate the increased uncertainty that is occurring in both planning and operations. Application of research advances in algorithms (especially related to optimization techniques and uncertainty quantification) could accelerate power

  14. Proposal of electric power generation from generators to water edge in the region of Sarapiqui

    International Nuclear Information System (INIS)

    Rodriguez Fallas, Cindy Veronica

    2013-01-01

    A proposed electric power generation is developed from generators to water edge in the region of Sarapiqui. The environmental characteristics, such as the hydrological network, hydrogeology, soil type, life zones, climatology, precipitation, temperature, evapotranspiration and water supply and demand, of rivers crossed by basin in the region of Sarapiqui, are determined by bibliographic consultations to implement the proposal. The most recent production statistics of the electric subsector of Costa Rica are described to reveal the growing annual demand and need for satisfaction. The zone of Sarapiqui is diagnosed as the right place to allow the generation of electric power from generators to water edge [es

  15. Using renewables to hedge against future electricity industry uncertainties—An Australian case study

    International Nuclear Information System (INIS)

    Vithayasrichareon, Peerapat; Riesz, Jenny; MacGill, Iain F.

    2015-01-01

    A generation portfolio modelling was employed to assess the expected costs, cost risk and emissions of different generation portfolios in the Australian National Electricity Market (NEM) under highly uncertain gas prices, carbon pricing policy and electricity demand. Outcomes were modelled for 396 possible generation portfolios, each with 10,000 simulations of possible fuel and carbon prices and electricity demands. In 2030, the lowest expected cost generation portfolio includes 60% renewable energy. Increasing the renewable proportion to 75% slightly increased expected cost (by $0.2/MWh), but significantly decreased the standard deviation of cost (representing the cost risk). Increasing the renewable proportion from the present 15% to 75% by 2030 is found to decrease expected wholesale electricity costs by $17/MWh. Fossil-fuel intensive portfolios have substantial cost risk associated with high uncertainty in future gas and carbon prices. Renewables can effectively mitigate cost risk associated with gas and carbon price uncertainty. This is found to be robust to a wide range of carbon pricing assumptions. This modelling suggests that policy mechanisms to promote an increase in renewable generation towards a level of 75% by 2030 would minimise costs to consumers, and mitigate the risk of extreme electricity prices due to uncertain gas and carbon prices. - Highlights: • A generation portfolio with 75% renewables in 2030 is the most optimal in terms of cost, cost risk and emissions. • Investment in CCGT is undesirable compared to renewables given the cost risk due to gas and carbon price uncertainties. • Renewables can hedge against extreme electricity prices caused by high and uncertain carbon and gas prices. • Existing coal-fired plants still play a key role by moving into a peaking role to complement variable renewables. • Policy mechanisms to promote renewable generation are important

  16. Variable structure unit vector control of electric power generation ...

    African Journals Online (AJOL)

    A variable structure Automatic Generation Control (VSAGC) scheme is proposed in this paper for the control of a single area power system model dominated by steam powered electric generating plants. Unlike existing, VSAGC scheme where the selection of the control function is based on a trial and error procedure, the ...

  17. Environmental evaluation of different forms of electric energy generation

    International Nuclear Information System (INIS)

    Guena, Ana Maria de Oliveira; Aquino, Afonso Rodrigues de

    2007-01-01

    The development and implementation of other forms of energy generation caused local changes, where they were installed, giving rise to environmental impacts. This work presents an evaluation about different forms of electrical energy generation and the environmental impacts relative to each one of them. Five forms of electric energy generation were considered: thermoelectric, nuclear, hydroelectric, wind and solar energy. The implementation and the development of the petroleum industry in the world and in Brazil are presented. The geology of the oil, its extraction and quality improvement, besides details of the functioning of three types of thermoelectric power plants - coal, gas and oil - are also discussed. The specific as well as the environmental impacts they have in common are highlighted. The impacts originated from the deactivation of each one of them are also pointed out. Once outlined the environmental impacts from each form of electric energy generation, they were correlated and compared considering the area of the power plant implantation, the generation capacity, the efficiency, the power and the cost per kW. There is no totally clean form of electric energy generation. There is, however, generation without emission of gases responsible for the green house effect. Therefore, all forms of energy generation are important for a country; in other words, the best situation is the diversity of the energy matrix. (author)

  18. Urges use of renewable energy sources to generate electric power

    International Nuclear Information System (INIS)

    Santizo, Rodolfo

    2001-01-01

    The article discusses the following issues of generation of electric power through renewable energy sources like geothermal and wind energy. The author that is the actual Deputy Minister of Energy and Mines explains the needs of Guatemala in the sector of energy in promoting the renewable energy sources such as wind and geothermal energy because Guatemala has a potential generation by this sources

  19. Environmental inventories for future electricity supply systems for Switzerland

    International Nuclear Information System (INIS)

    Dones, R.; Gantner, U.; Hirschberg, S.; Doka, G.; Knoepfel, I.

    1996-02-01

    This report provides the analysis of environmental inventories for selected electricity supply systems considered as possible options to meet the expected electricity demand in Switzerland in year 2030. The work was carried out by the Paul Scherrer Institute (PSI) and the Swiss Federal Institute of Technology Zurich (ETHZ), and was supported by the Swiss Association of Producers and Distributers of Electricity (VSE). Two possible electricity demand level cases were postulated by VSE, both under the basic assumption of economic growth: a high-growth demand case corresponding to a yearly increase of 2% from year 1995 to year 2010 and 1% from year 2010 to year 2030, and a low-growth demand case corresponding to a yearly increase of 1% from year 1995 to year 2010 and 0.5% from year 2010 to year 2030. The base (i.e. secured) supply in year 2030 will be, according to VSE, totally dominated by hydro with rather minor contributions from combined heat-and-power plants, small gas turbines, incinerators and solar photovoltaic plants. Due to decommissioning of the currently operating nuclear power plants and expiration of long-term electricity import contracts there will eventually occur a gap between the postulated electricity demand and the base supply. VSE provided seven options to cover this gap, defined in terms of mixes with different contributions from gas, coal, nuclear and solar chains; in this context a distinction is also made with respect to shares of domestic and imported electricity. The systems considered represent advanced technologies, regarded as either typical or most suitable for the Swiss conditions. System-specific input to the present analysis has been partially generated based on direct contacts with the industry. Life Cycle Analysis (LCA) was used to establish environmental inventories for the systems analysed. The analysis has been performed on three levels: 1) individually for each system considered, 2) comparison of systems, 3) comparison of supply

  20. Generation expansion planning of the electrical power system in West Java

    International Nuclear Information System (INIS)

    Nengah Sudja.

    1975-01-01

    A thorough study on the generation expansion planning of the electrical power system, covering mathematical and computerized calculations, and financial analysis on the daily load, the load duration, and the assumption of future load, supporting the idea for building nuclear power plants in Indonesia, is presented. (RUW)

  1. High Pressure Oxygen Generation for Future Exploration Missions, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is the development of a cathode feed electrolysis cell stack capable of generating 3600 psi oxygen at a relevant scale for future exploration...

  2. Assessing the role of large hydro in Canada's electricity future

    International Nuclear Information System (INIS)

    Lee Pochih

    1992-01-01

    Electric power in Canada was first generated by steam in the 1880s. The use of hydroelectricity spread rapidly due to abundant water resources and the nationalization of power companies by the provinces; by 1920, 97% of Canadian electricity production came from hydroelectric plants. Thermal generation became competitive by the 1960s, when most of the best hydro sites had been developed, and nuclear generation also started gaining a share of the market. By 1991, hydroelectricity's share of Canadian power production had declined to around 60%. Hydroelectric power has long been used as an instrument of Canadian industrial policy. Given the amount and importance of utility capital expenditures, it was recognized that hydropower development could serve such policy objectives as job creation, industrial development, and macroeconomic stabilization. Creation of provincially owned utilities led to construction of large hydroelectric projects, notably in Quebec, British Columbia, Manitoba, and Newfoundland. The 20 largest hydroelectric power plants in Canada have a total installed capacity of 35,704 MW, representing ca 59% of Canada's total 1991 hydro capacity. The construction of such large projects is not expected to proceed as quickly as in the past because of environmental concerns. However, a number of factors favor continuation of development of hydro resources: a remaining potential estimated at ca 44,000 MW; simplification of electricity export regulations; more stringent air pollution standards that favor non-polluting energy sources; and a moratorium on nuclear power plants in Ontario. 4 tabs

  3. Renewable Generators' Consortium: ensuring a market for green electricity

    International Nuclear Information System (INIS)

    1999-03-01

    This project summary focuses on the objectives and key achievements of the Renewable Generators Consortium (RGC) which was established to help renewable energy projects under the Non-Fossil Fuel Obligation (NFFO) to continue to generate in the open liberated post-1998 electricity market. The background to the NFFO is traced, and the development of the Consortium, and the attitudes of generators and suppliers to the Consortium are discussed along with the advantages of collective negotiations through the RGC, the Heads of Terms negotiations, and the success of RGC which has demonstrated the demand for green electricity

  4. Liberalization of power generation sector in the Croatian electricity market

    International Nuclear Information System (INIS)

    Viskovic, Alfredo

    2005-01-01

    The electricity market liberalization and the restructuring of power utilities eventually leads to the establishment of a single electricity market in Europe, which is especially important for efficiency gains in electricity generation coupled with increased security of supply, economic competitiveness and fulfillment of environmental requirements. The European electricity market Directives as well as the Energy Community Treaty for South East Europe (legislative Menu) have remarkable impact on the restructuring of the Croatian power sector and the development of electricity generation. The Croatian model of restructuring includes legal un bundling (in the ownership of one holding company - Hrvatska Elektroprivreda (HEP)). The operation of HEP Group and its subsidiaries in the conditions of partially opened electricity market in an important element that shapes the interactions of competitive activities and regulated activities in the environment influenced by exogenous factors a thirteen percent electricity are controlled by the Energy Market Operator (MO), the Transmission System Operator (TSO) and the Energy Regulatory Agency (CERA). The introduction of eligible procedures and newly created operative procedures for power system operation, are creating completely new conditions for competition in the power generation sector, where almost all power plants are owned by HEP. New generating capacities in Croatia can be built through tendering and licensing procedures carried out by the Regulator. Electricity prices are still regulated by the Government (below the cost reflective level), there is a small share of industrial consumers and the annual electricity production is 12 TWh, with relatively large share of hydro plants. All these have implications on the development of the power generation sector in Croatia as well as on electricity market operation. The subject matter of this paper is an impact of power system restructuring and electricity market opening on the

  5. Solar/electric heating systems for the future energy system

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Dannemand, M.; Perers, B. [and others

    2013-05-15

    The aim of the project is to elucidate how individual heating units for single family houses are best designed in order to fit into the future energy system. The units are based on solar energy, electrical heating elements/heat pump, advanced heat storage tanks and advanced control systems. Heat is produced by solar collectors in sunny periods and by electrical heating elements/heat pump. The electrical heating elements/heat pump will be in operation in periods where the heat demand cannot be covered by solar energy. The aim is to use the auxiliary heating units when the electricity price is low, e.g. due to large electricity production by wind turbines. The unit is equipped with an advanced control system where the control of the auxiliary heating is based on forecasts of the electricity price, the heat demand and the solar energy production. Consequently, the control is based on weather forecasts. Three differently designed heating units are tested in a laboratory test facility. The systems are compared on the basis of: 1) energy consumption for the auxiliary heating; 2) energy cost for the auxiliary heating; 3) net utilized solar energy. Starting from a normal house a solar combi system (for hot water and house heating) can save 20-30% energy cost, alone, depending on sizing of collector area and storage volume. By replacing the heat storage with a smart tank based on electric heating elements and a smart control based on weather/load forecast and electricity price information 24 hours ahead, another 30-40% can be saved. That is: A solar heating system with a solar collector area of about 10 m{sup 2}, a smart tank based on electric heating element and a smart control system, can reduce the energy costs of the house by at least 50%. No increase of heat storage volume is needed to utilize the smart control. The savings in % are similar for different levels of building insulation. As expected a heat pump in the system can further reduce the auxiliary electricity

  6. The Estimation of Externalities Resulting from the Electricity Generation

    International Nuclear Information System (INIS)

    Jeong, Jong Tae; Ha, Jae Joo

    2003-03-01

    The methodology, program, and the representative results for the estimation of externalities was reviewed. The review of them are based on the ExternE Project which is a representative research project for the estimation of externalities resulting from the various energy generating systems. The results for the study will be used as basic data for the comparative study on the integrated risk estimation for various energy generating systems including nuclear power plants. Also, these results will be used as comparative data in the establishment of a integrated comparative risk assessment tool and in the comparative study of the impacts resulting from the various electricity generating systems. These studies make it possible to compare the environmental impacts of nuclear power generation and other electricity generation systems. Therefore, this will of use in the enhancement of public acceptance of nuclear power generation

  7. The Estimation of Externalities Resulting from the Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jong Tae; Ha, Jae Joo

    2003-03-15

    The methodology, program, and the representative results for the estimation of externalities was reviewed. The review of them are based on the ExternE Project which is a representative research project for the estimation of externalities resulting from the various energy generating systems. The results for the study will be used as basic data for the comparative study on the integrated risk estimation for various energy generating systems including nuclear power plants. Also, these results will be used as comparative data in the establishment of a integrated comparative risk assessment tool and in the comparative study of the impacts resulting from the various electricity generating systems. These studies make it possible to compare the environmental impacts of nuclear power generation and other electricity generation systems. Therefore, this will of use in the enhancement of public acceptance of nuclear power generation.

  8. Against Generationism. A Conceptual Outline of Justice for Future Generations

    Directory of Open Access Journals (Sweden)

    Dejan Savić

    2013-03-01

    Full Text Available Humanity faces a global ecological crisis in the context of climate change which challenges established forms of political thought and action. The discussion of justice is applied to the future, where we understand time and the natural environment as a common bond between people from different periods. We put today’s generation in a relationship with the generations in the near and more distant future. The term »generacism«, describing the current way of thinking as another form of discrimination, allows us to show the inadequacy of our attitudes towards future generations. By destroying the global environment, we create injustice towards future generations on the basis of the time of peoples’ birth. In this context, time is understood as an arbitrary circumstance, which does not suffice as a basis for discriminating between people. We defend the concept of intergenerational justice that gives the state the responsibility for implementing environmental protection measures in order to protect future generations and eliminate generacism from our society and economy. We propose the so-called green state, which bases environmental protection measures on fairness to future generations.

  9. Achieving 33% renewable electricity generation by 2020 in California

    International Nuclear Information System (INIS)

    Walmsley, Michael R.W.; Walmsley, Timothy G.; Atkins, Martin J.

    2015-01-01

    This paper investigates the impacts of California, USA reaching its renewable electricity target of 33%, excluding large hydro, by 2020, which is set out in the state's RPS (Renewable Portfolio Standard). The emerging renewable electricity mix in California and surrounding states which form the WECC (Western Electricity Coordination Council) is analysed using the CEPA (Carbon Emission Pinch Analysis) and EROI (Energy Return on Energy Invested) methodologies. The reduction in emissions with increased renewables is illustrated and the challenge of maintaining high EROI levels for renewable generation is examined for low and high electricity demand growth. Results demonstrate that wind and solar PV collectively form an integral part of California reaching the 33% renewables target by 2020. Government interventions of tax rebates and subsidies, net electricity metering and a four tiered electricity price have accelerated the uptake of electricity generation from wind and solar PV. Residential uptake of solar PV is also reducing overall California electricity grid demand. Emphasis on new renewable generation is stimulating development of affordable wind and solar technology in California which has the added benefit of enhancing social sustainability through improved employment opportunities at a variety of technical levels. - Highlights: • CA (California, USA) aims to achieve 33% renewable electricity sales by 2020. • Carbon Emission Pinch Analysis is applied to the case study of CA. • Energy Return on Energy Invested analysis shows impacts of renewable energy uptake. • Solar PV and wind are the most cost and energy efficiency renewable resources in CA. • State government intervention is needed to reach the 33% renewable electricity goal.

  10. Identifying future electricity-water tradeoffs in the United States

    International Nuclear Information System (INIS)

    Sovacool, Benjamin K.; Sovacool, Kelly E.

    2009-01-01

    Researchers for the electricity industry, national laboratories, and state and federal agencies have begun to argue that the country could face water shortages resulting from the addition of thermoelectric power plants, but have not attempted to depict more precisely where or how severe those shortages will be. Using county-level data on rates of population growth collected from the US Census Bureau, utility estimates of future planned capacity additions in the contiguous United States reported to the US Energy Information Administration, and scientific estimates of anticipated water shortages provided from the US Geologic Survey and National Oceanic and Atmospheric Administration, this paper highlights the most likely locations of severe shortages in 22 counties brought about by thermoelectric capacity additions. Within these areas are some 20 major metropolitan regions where millions of people live. After exploring the electricity-water nexus and explaining the study's methodology, the article then focuses on four of these metropolitan areas - Houston, Texas; Atlanta, Georgia; Las Vegas, Nevada; New York, New York - to deepen an understanding of the water and electricity challenges they may soon be facing. It concludes by identifying an assortment of technologies and policies that could respond to these electricity-water tradeoffs.

  11. A sustainable electricity future : a question of balance

    International Nuclear Information System (INIS)

    Bradley, F.; Hebert, B.

    2003-01-01

    The authors offered some insight into the strategic issues facing the electricity industry in Canada while also highlighting the many accomplishments of the various member companies. The future orientations were discussed. Climate change is the issue that seems to garner the most attention from media, governments and the public. The electricity industry is the only industry that possesses a concrete plan of action to address the issue of climate change, in the form of the Emissions Performance Equivalent Standard (EPES). During 2002, a Memorandum of Understanding (MOU) was signed between the Canadian Electricity Association and the Department of Fisheries and Oceans, the first of its kind. A compliance framework is now being developed. Some of the issues being worked on this year are a post-Kyoto ratification strategy, an energy efficiency initiative; a response to the Supreme Court ruling concerning pole attachments, a revised Environmental Commitment and Responsibility Program, the fifth Annual Washington Energy Forum, and an updated survey on Aboriginal relations. Several member companies provided their views, such as ATCO Electric and ATCO Power, British Columbia Hydro, Hydro One, Hydro-Quebec, Newfoundland and Labrador Hydro to name but a few. tabs., figs

  12. Identifying future electricity-water tradeoffs in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore (Singapore); Sovacool, Kelly E. [Department of Geography, Virginia Polytechnic Institute and State University, Blacksburg, VA (United States)

    2009-07-15

    Researchers for the electricity industry, national laboratories, and state and federal agencies have begun to argue that the country could face water shortages resulting from the addition of thermoelectric power plants, but have not attempted to depict more precisely where or how severe those shortages will be. Using county-level data on rates of population growth collected from the US Census Bureau, utility estimates of future planned capacity additions in the contiguous United States reported to the US Energy Information Administration, and scientific estimates of anticipated water shortages provided from the US Geologic Survey and National Oceanic and Atmospheric Administration, this paper highlights the most likely locations of severe shortages in 22 counties brought about by thermoelectric capacity additions. Within these areas are some 20 major metropolitan regions where millions of people live. After exploring the electricity-water nexus and explaining the study's methodology, the article then focuses on four of these metropolitan areas - Houston, Texas; Atlanta, Georgia; Las Vegas, Nevada; New York, New York - to deepen an understanding of the water and electricity challenges they may soon be facing. It concludes by identifying an assortment of technologies and policies that could respond to these electricity-water tradeoffs. (author)

  13. Electricity pricing model in thermal generating stations under deregulation

    International Nuclear Information System (INIS)

    Reji, P.; Ashok, S.; Moideenkutty, K.M.

    2007-01-01

    In regulated public utilities with competitive power markets, deregulation has replaced the monopoly. Under the deregulated power market, the electricity price primarily depends on market mechanism and power demand. In this market, generators generally follow marginal pricing. Each generator fixes the electricity price based on their pricing strategy and it leads to more price volatility. This paper proposed a model to determine the electricity price considering all operational constraints of the plant and economic variables that influenced the price, for a thermal generating station under deregulation. The purpose of the model was to assist existing stations, investors in the power sector, regulatory authorities, transmission utilities, and new power generators in decision-making. The model could accommodate price volatility in the market and was based on performance incentive/penalty considering plant load factor, availability of the plant and peak/ off peak demand. The model was applied as a case study to a typical thermal utility in India to determine the electricity price. It was concluded that the case study of a thermal generating station in a deregulated environment showed that the electricity price mainly depended on the gross calorific value (GCV) of fuel, mode of operation, price of the fuel, and operating charges. 11 refs., 2 tabs., 1 fig

  14. Environmental inventories for future electricity supply systems for Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Dones, R; Gantner, U; Hirschberg, S [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Doka, G; Knoepfel, I [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1996-02-01

    This report provides the analysis of environmental inventories for selected electricity supply systems considered as possible options to meet the expected electricity demand in Switzerland in year 2030. Two possible electricity demand level cases were postulated by VSE, both under the basic assumption of economic growth: a high-growth demand case corresponding to a yearly increase of 2% from year 1995 to year 2010 and 1% from year 2010 to year 2030, and a low-growth demand case corresponding to a yearly increase of 1% from year 1995 to year 2010 and 0.5% from year 2010 to year 2030. The base (i.e. secured) supply in year 2030 will be, according to VSE, totally dominated by hydro with rather minor contributions from combined heat-and-power plants, small gas turbines, incinerators and solar photovoltaic plants. Due to decommissioning of the currently operating nuclear power plants and expiration of long-term electricity import contracts there will eventually occur a gap between the postulated electricity demand and the base supply. VSE provided seven options to cover this gap, defined in terms of mixes with different contributions from gas, coal, nuclear and solar chains; in this context a distinction is also made with respect to shares of domestic and imported electricity. The systems considered represent advanced technologies, regarded as either typical or most suitable for the Swiss conditions. System-specific input to the present analysis has been partially generated based on direct contacts with the industry. Life Cycle Analysis (LCA) was used to establish environmental inventories for the systems analysed. The analysis has been performed on three levels:(1) individually for each system considered, (2) comparison of systems, (3) comparison of supply options. Results are also provided for these three levels.

  15. Natural gas : a critical component of Ontario's electricity future

    International Nuclear Information System (INIS)

    Pleckaitis, A.

    2004-01-01

    This PowerPoint presentation identified natural gas as part of the electricity solution. It reviewed price implications and policy recommendations. New natural gas supply is not keeping pace with demand. Production is leveling out in traditional basins and industry investment is not adequate. In addition, energy deregulation is creating disconnects. This presentation included a map depicting the abundant natural gas reserves across North America. It was noted that at 2002 levels of domestic production, North America has approximately 80 years of natural gas. The AECO consensus wholesale natural gas price forecast is that natural gas prices in 2010 will be lower than today. The use of natural gas for power generation was outlined with reference to fuel switching, distributed generation, and central generation. It was emphasized that government, regulators and the energy industry must work together to address policy gaps and eliminate barriers to new investment. tabs., figs

  16. Simulation-based Investigation of Electric Power Generation by Using Gamma Radiation from Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haneol; Yim, Mansung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    This study investigates the feasibility of using gamma radiation energy from spent nuclear fuels to produce electricity as emergency power source. The proposed electric power system includes electricity generation and storage. Electricity generation was based on conversion of gamma energy to light energy using a scintillator and then to electric energy using a solar cell. Generated electricity was to be stored in a battery as a power source. The efficiency of energy conversion and the extent of the resulting electric power source capability were examined by computer model-based simulation. Main factors which affect to total electric power generated include thermal power of nuclear power plant, average burn-up period for fuel rod, battery charging time, and scintillator thickness. The estimated total power generation and its possible application is discussed. Although the output power increases as scintillator becomes thicker, thick scintillator can be problem because of its high price. There are two ways to solve this problem. The first one is to use thin scintillator to whole fuel assembly area. The second one is to use thick scintillator to limited region. But the current per fuel assembly for the first case for 4000MWth, 72 month burnup is about several to tens of microampere scale, which is too small to charge. Because of this the system is supposed to have thick scintillator system with limited region. Based on the results, the generated electricity is expected to be insufficient to operate the safety injection pumps even at the maximum power output. This may be important for security purposes. Based on the current design, the solar cell efficiency is estimated to be around 1.5-4%. As the efficiency is a strong function of scintillation wavelength, improving the efficiency may be possible by broadening the wavelength through the use of multiple scintillators. Future work will also include validation of the results through experiments, and material reliability

  17. Spot markets vs. long-term contracts - modelling tools for regional electricity generating utilities

    International Nuclear Information System (INIS)

    Grohnheit, P.E.

    1999-01-01

    A properly organised market for electricity requires that some information will be available for all market participants. Also a range of generally available modelling tools are necessary. This paper describes a set of simple models based on published data for analyses of the long-term revenues of regional utilities with combined heat and power generation (CHP), who will operate a competitive international electricity market and a local heat market. The future revenues from trade on the spot market is analysed using a load curve model, in which marginal costs are calculated on the basis of short-term costs of the available units and chronological hourly variations in the demands for electricity and heat. Assumptions on prices, marginal costs and electricity generation by the different types of generating units are studied for selected types of local electricity generators. The long-term revenue requirements to be met by long-term contracts are analysed using a traditional techno-economic optimisation model focusing on technology choice and competition among technologies over 20.30 years. A possible conclusion from this discussion is that it is important for the economic and environmental efficiency of the electricity market that local or regional generators of CHP, who are able to react on price signals, do not conclude long-term contracts that include fixed time-of-day tariff for sale of electricity. Optimisation results for a CHP region (represented by the structure of the Danish electricity and CHP market in 1995) also indicates that a market for CO 2 tradable permits is unlikely to attract major non-fossil fuel technologies for electricity generation, e.g. wind power. (au)

  18. Simulation-based Investigation of Electric Power Generation by Using Gamma Radiation from Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Lee, Haneol; Yim, Mansung

    2014-01-01

    This study investigates the feasibility of using gamma radiation energy from spent nuclear fuels to produce electricity as emergency power source. The proposed electric power system includes electricity generation and storage. Electricity generation was based on conversion of gamma energy to light energy using a scintillator and then to electric energy using a solar cell. Generated electricity was to be stored in a battery as a power source. The efficiency of energy conversion and the extent of the resulting electric power source capability were examined by computer model-based simulation. Main factors which affect to total electric power generated include thermal power of nuclear power plant, average burn-up period for fuel rod, battery charging time, and scintillator thickness. The estimated total power generation and its possible application is discussed. Although the output power increases as scintillator becomes thicker, thick scintillator can be problem because of its high price. There are two ways to solve this problem. The first one is to use thin scintillator to whole fuel assembly area. The second one is to use thick scintillator to limited region. But the current per fuel assembly for the first case for 4000MWth, 72 month burnup is about several to tens of microampere scale, which is too small to charge. Because of this the system is supposed to have thick scintillator system with limited region. Based on the results, the generated electricity is expected to be insufficient to operate the safety injection pumps even at the maximum power output. This may be important for security purposes. Based on the current design, the solar cell efficiency is estimated to be around 1.5-4%. As the efficiency is a strong function of scintillation wavelength, improving the efficiency may be possible by broadening the wavelength through the use of multiple scintillators. Future work will also include validation of the results through experiments, and material reliability

  19. Profiting from competition: Financial tools for electric generation companies

    Science.gov (United States)

    Richter, Charles William, Jr.

    Regulations governing the operation of electric power systems in North America and many other areas of the world are undergoing major changes designed to promote competition. This process of change is often referred to as deregulation. Participants in deregulated electricity systems may find that their profits will greatly benefit from the implementation of successful bidding strategies. While the goal of the regulators may be to create rules which balance reliable power system operation with maximization of the total benefit to society, the goal of generation companies is to maximize their profit, i.e., return to their shareholders. The majority of the research described here is conducted from the point of view of generation companies (GENCOs) wishing to maximize their expected utility function, which is generally comprised of expected profit and risk. Strategies that help a GENCO to maximize its objective function must consider the impact of (and aid in making) operating decisions that may occur within a few seconds to multiple years. The work described here assumes an environment in which energy service companies (ESCOs) buy and GENCOs sell power via double auctions in regional commodity exchanges. Power is transported on wires owned by transmission companies (TRANSCOs) and distribution companies (DISTCOs). The proposed market framework allows participants to trade electrical energy contracts via the spot, futures, options, planning, and swap markets. An important method of studying these proposed markets and the behavior of participating agents is the field of experimental/computational economics. For much of the research reported here, the market simulator developed by Kumar and Sheble and similar simulators has been adapted to allow computerized agents to trade energy. Creating computerized agents that can react as rationally or irrationally as a human trader is a difficult problem for which we have turned to the field of artificial intelligence. Some of our

  20. Assessing the impact of wind generation on wholesale prices and generator dispatch in the Australian National Electricity Market

    International Nuclear Information System (INIS)

    Forrest, Sam; MacGill, Iain

    2013-01-01

    Growing climate change and energy security concerns are driving major wind energy deployment in electricity industries around the world. Despite its many advantages, growing penetrations of this highly variable and somewhat unpredictable energy source pose new challenges for electricity industry operation. One issue receiving growing attention is the so-called ‘merit order effect’ of wind generation in wholesale electricity markets. Wind has very low operating costs and therefore tends to displace higher cost conventional generation from market dispatch, reducing both wholesale prices and conventional plant outputs. This paper extends the current literature on this effect through an empirical study employing a range of econometric techniques to quantify the impacts of growing wind penetrations in the Australian National Electricity Market (NEM). The results suggest that wind is having a marked impact on spot market prices and, while wind is primarily offsetting higher operating cost gas generation, it is now also significantly reducing dispatch of emissions intensive brown coal generation. Great care needs to be taken in extrapolating these results to longer-term implications, however, the study does propose a methodology for assessing this effect, highlights the impacts that wind is already having on NEM outcomes and suggests promising directions for future research. - Highlights: ► Proposes methodologies to estimate short run impact of wind on electricity markets. ► Quantifies the merit order effect of wind generation on wholesale spot price. ► Wind is found to be significantly effecting gas fired generation. ► Evidence is found for wind having a notable impact on baseload coal generation. ► Discusses the implications for development of wind generation in Australia

  1. Hybrid Test Bed of Wind Electric Generator with Photovoltaic Panels

    OpenAIRE

    G.D.Anbarasi Jebaselvi; S.Paramasivam

    2014-01-01

    Driven by the increasing costs of power production and decreasing fossil fuel reserves with the addition of global environmental concerns, renewable energy is now becoming significant fraction of total electricity production in the world. Advancements in the field of wind electric generator technology and power electronics help to achieve rapid progress in hybrid power system which mainly involves wind, solar and diesel energy with a good battery back-up. Here the discussion brings about the ...

  2. Medical aspects of power generation, present and future.

    Science.gov (United States)

    Linnemann, R E

    1979-01-01

    It can be seen that the radiation emissions of nuclear power plants are small indeed, compared to natural background radiation and other man-made sources of radiation. For example, the poulation is exposed to 100 times more radiation from television sets than from nuclear power reactors. The assumed risks to the people in this country from nuclear power reactors are also small compared to the normal risks which are tolerated in this society. The complete elimination of all hazards is a most difficult if not impossible task. If we need and desire a certain level of electrical energy, if we must choose between alternative sourves of the energy, then it is apparent that the total impact on our health from nuclear power generation of electricity, under normal operations and in consideration of catastrophic accident probabilities, is significantly less than that of continuing or increasing use of fossil fuels to generate electricity.

  3. Qualitative Description of Electric Power System Future States

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, Trevor D.; Corbin, Charles D.

    2018-03-06

    The simulation and evaluation of transactive systems depends to a large extent on the context in which those efforts are performed. Assumptions regarding the composition of the electric power system, the regulatory and policy environment, the distribution of renewable and other distributed energy resources (DERs), technological advances, and consumer engagement all contribute to, and affect, the evaluation of any given transactive system, regardless of its design. It is our position that the assumptions made about the state of the future power grid will determine, to some extent, the systems ultimately deployed, and that the transactive system itself may play an important role in the evolution of the power system.

  4. Life cycle assessment of electricity generation in Mexico

    International Nuclear Information System (INIS)

    Santoyo-Castelazo, E.; Gujba, H.; Azapagic, A.

    2011-01-01

    This paper presents for the first time a Life Cycle Assessment (LCA) study of electricity generation in Mexico. The electricity mix in Mexico is dominated by fossil fuels, which contribute around 79% to the total primary energy; renewable energies contribute 16.5% (hydropower 13.5%, geothermal 3% and wind 0.02%) and the remaining 4.8% is from nuclear power. The LCA results show that 225 TWh of electricity generate about 129 million tonnes of CO 2 eq. per year, of which the majority (87%) is due to the combustion of fossil fuels. The renewables and nuclear contribute only 1.1% to the total CO 2 eq. Most of the other LCA impacts are also attributed to the fossil fuel options. The results have been compared with values reported for other countries with similar electricity mix, including Italy, Portugal and the UK, showing good agreement. -- Highlights: → This paper presents for the first time a Life Cycle Assessment (LCA) study of electricity generation in Mexico. → 129 million tonnes of CO 2 eq. per year are emitted from 225 TWh of electricity generated per year of which 87% is due to the combustion of fossil fuels. → Coal technologies generate 1094 g CO 2 eq./kWh, heavy fuel oil 964 g CO 2 eq./kWh, and gas 468 g CO 2 eq./kWh; by contrast, nuclear and hydro emit 12 g CO 2 eq./kWh. → Heavy fuel oil contributes most to the life cycle environmental impacts (59-97%). → The results show good agreement with values reported for other countries with similar electricity mix, including Italy, Portugal and the UK.

  5. Examination of spent fuel radiation energy conversion for electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haneol; Yim, Man-Sung, E-mail: msyim@kaist.ac.kr

    2016-04-15

    Highlights: • Utilizing conversion of radiation energy of spent fuel to electric energy. • MCNPX modeling and experiment were used to estimate energy conversion. • The converted energy may be useful for nuclear security applications. • The converted energy may be utilized for safety applications through energy storage. - Abstract: Supply of electricity inside nuclear power plant is one of the most important considerations for nuclear safety and security. In this study, generation of electric energy by converting radiation energy of spent nuclear fuel was investigated. Computational modeling work by using MCNPX 2.7.0 code along with experiment was performed to estimate the amount of electric energy generation. The calculation using the developed modeling work was validated through comparison with an integrated experiment. The amount of electric energy generation based on a conceptual design of an energy conversion module was estimated to be low. But the amount may be useful for nuclear security applications. An alternative way of utilizing the produced electric energy could be considered for nuclear safety application through energy storage. Further studies are needed to improve the efficiency of the proposed energy conversion concept and to examine the issue of radiation damage and economic feasibility.

  6. Environmental compliance audits of electric generating facilities - a practical approach

    International Nuclear Information System (INIS)

    Staker, R.D.

    1992-01-01

    As environmental regulations expand in complexity and number, and as regulatory agencies place more emphasis on enforcing regulations, it is increasingly important that electric utilities perform periodic environmental compliance audits to determine if their facilities are in compliance with federal, state, and local environmental regulations. Explicit commitment by the utility's top management and careful planning and execution of an audit are key elements in the effectiveness of an audit. This paper is directed to electric utility environmental managers and company management. The paper presents a practical approach for planning and performing a multi-media environmental compliance of an electric generating facility

  7. Production inefficiency of electricity markets with hydro generation

    International Nuclear Information System (INIS)

    Philpott, Andy; Guan, Ziming; Khazaei, Javad; Zakeri, Golbon

    2010-01-01

    Electricity market designs that decentralize decision making for participants can lead to inefficiencies in the presence of nonconvexity or missing markets. This has been shown in the case of unit-commitment problems that can make a decentralized market equilibrium less efficient than a centrally planned solution. Less attention has been focused on systems with large amounts of hydro-electric generation. We describe the results of an empirical study of the New Zealand wholesale electricity market that attempts to quantify production efficiency losses by comparing market outcomes with a counterfactual central plan. (author)

  8. Electricity Generation by Single- and Double Chamber Membrane ...

    African Journals Online (AJOL)

    Waste biomass is a cheap and relatively abundant source of microbes capable of producing electri-cal current. Rapidly developing microbial electrochemical technologies, such as microbial fuel cells, are part of a diverse platform of future sustainable energy. Application of Microbial Fuel Cells (MFCs) may represent a ...

  9. Advanced Power Converter for Universal and Flexible Power Management in Future Electricity Network

    DEFF Research Database (Denmark)

    Iov, Florin; Blaabjerg, Frede; Bassett, R.

    2007-01-01

    converters for grid connection of renewable sources will be needed. These power converters must be able to provide intelligent power management as well as ancillary services. This paper presents the overall structure and the control aspects of an advanced power converter for universal and flexible power......More "green" power provided by Distributed Generation will enter into the European electricity network in the near future. In order to control the power flow and to ensure proper and secure operation of this future grid, with an increased level of the renewable power, new power electronic...

  10. Vibrations measurement at the Embalse nuclear power plant's electrical generator

    International Nuclear Information System (INIS)

    Salomoni, R.C.; Belinco, C.G.; Pastorini, A.J.; Sacchi, M.A.

    1987-01-01

    After the modifications made at the Embalse nuclear power plant's electrical generator to reduce its vibration level produced by electromagnetic phenomena, it was necessary to perform measurements at the new levels, under different areas and power conditions. To this purpose, a work was performed jointly with the 'Vibrations Team' of the ANSALDO Company (the generator constructor) and the Hydrodynamic Assays Division under the coordination and supervision of the plant's electrical maintenance responsible. This paper includes the main results obtained and the instrumentation criteria and analysis performed. (Author)

  11. Electric power systems advanced forecasting techniques and optimal generation scheduling

    CERN Document Server

    Catalão, João P S

    2012-01-01

    Overview of Electric Power Generation SystemsCláudio MonteiroUncertainty and Risk in Generation SchedulingRabih A. JabrShort-Term Load ForecastingAlexandre P. Alves da Silva and Vitor H. FerreiraShort-Term Electricity Price ForecastingNima AmjadyShort-Term Wind Power ForecastingGregor Giebel and Michael DenhardPrice-Based Scheduling for GencosGovinda B. Shrestha and Songbo QiaoOptimal Self-Schedule of a Hydro Producer under UncertaintyF. Javier Díaz and Javie

  12. Hydrolysis Batteries: Generating Electrical Energy during Hydrogen Absorption.

    Science.gov (United States)

    Xiao, Rui; Chen, Jun; Fu, Kai; Zheng, Xinyao; Wang, Teng; Zheng, Jie; Li, Xingguo

    2018-02-19

    The hydrolysis reaction of aluminum can be decoupled into a battery by pairing an Al foil with a Pd-capped yttrium dihydride (YH 2 -Pd) electrode. This hydrolysis battery generates a voltage around 0.45 V and leads to hydrogen absorption into the YH 2 layer. This represents a new hydrogen absorption mechanism featuring electrical energy generation during hydrogen absorption. The hydrolysis battery converts 8-15 % of the thermal energy of the hydrolysis reaction into usable electrical energy, leading to much higher energy efficiency compared to that of direct hydrolysis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The plunge in German electricity futures prices – Analysis using a parsimonious fundamental model

    International Nuclear Information System (INIS)

    Kallabis, Thomas; Pape, Christian; Weber, Christoph

    2016-01-01

    The German market has seen a plunge in wholesale electricity prices from 2007 until 2014, with base futures prices dropping by more than 40%. This is frequently attributed to the unexpected high increase in renewable power generation. Using a parsimonious fundamental model, we determine the respective impact of supply and demand shocks on electricity futures prices. The used methodology is based on a piecewise linear approximation of the supply stack and time-varying price-inelastic demand. This parsimonious model is able to replicate electricity futures prices and discover non-linear dependencies in futures price formation. We show that emission prices have a higher impact on power prices than renewable penetration. Changes in renewables, demand and installed capacities turn out to be similarly important for explaining the decrease in operation margins of conventional power plants. We thus argue for the establishment of an independent authority to stabilize emission prices. - Highlights: •We build a parsimonious fundamental model based on a piecewise linear bid stack. •We use the model to investigate impact factors for the plunge in German futures prices. •Largest impact by CO_2 price developments followed by demand and renewable feed-in. •Power plant operating profits strongly affected by demand and renewables. •We argue that stabilizing CO_2 emission prices could provide better market signals.

  14. Energy storage devices for future hybrid electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Karden, Eckhard; Ploumen, Serve; Fricke, Birger [Ford Research and Advanced Engineering Europe, Suesterfeldstr. 200, D-52072 Aachen (Germany); Miller, Ted; Snyder, Kent [Ford Sustainable Mobility Technologies, 15050 Commerce Drive North, Dearborn, MI 48120 (United States)

    2007-05-25

    Powertrain hybridization as well as electrical energy management are imposing new requirements on electrical storage systems in vehicles. This paper characterizes the associated vehicle attributes and, in particular, the various levels of hybrids. New requirements for the electrical storage system are derived, including: shallow-cycle life, high dynamic charge acceptance particularly for regenerative braking and robust service life in sustained partial-state-of-charge usage. Lead/acid, either with liquid or absorptive glass-fibre mat electrolyte, is expected to remain the predominant battery technology for 14 V systems, including micro-hybrids, and with a cost-effective battery monitoring system for demanding applications. Advanced AGM batteries may be considered for mild or even medium hybrids once they have proven robustness under real-world conditions, particularly with respect to cycle life at partial-states-of-charge and dynamic charge acceptance. For the foreseeable future, NiMH and Li-ion are the dominating current and potential battery technologies for higher-functionality HEVs. Li-ion, currently at development and demonstration stages, offers attractive opportunities for improvements in performance and cost. Supercapacitors may be considered for pulse power applications. Aside from cell technologies, attention to the issue of system integration of the battery into the powertrain and vehicle is growing. Opportunities and challenges for potential ''battery pack'' system suppliers are discussed. (author)

  15. Energy storage devices for future hybrid electric vehicles

    Science.gov (United States)

    Karden, Eckhard; Ploumen, Servé; Fricke, Birger; Miller, Ted; Snyder, Kent

    Powertrain hybridization as well as electrical energy management are imposing new requirements on electrical storage systems in vehicles. This paper characterizes the associated vehicle attributes and, in particular, the various levels of hybrids. New requirements for the electrical storage system are derived, including: shallow-cycle life, high dynamic charge acceptance particularly for regenerative braking and robust service life in sustained partial-state-of-charge usage. Lead/acid, either with liquid or absorptive glass-fibre mat electrolyte, is expected to remain the predominant battery technology for 14 V systems, including micro-hybrids, and with a cost-effective battery monitoring system for demanding applications. Advanced AGM batteries may be considered for mild or even medium hybrids once they have proven robustness under real-world conditions, particularly with respect to cycle life at partial-states-of-charge and dynamic charge acceptance. For the foreseeable future, NiMH and Li-ion are the dominating current and potential battery technologies for higher-functionality HEVs. Li-ion, currently at development and demonstration stages, offers attractive opportunities for improvements in performance and cost. Supercapacitors may be considered for pulse power applications. Aside from cell technologies, attention to the issue of system integration of the battery into the powertrain and vehicle is growing. Opportunities and challenges for potential "battery pack" system suppliers are discussed.

  16. Dispersed solar thermal generation employing parabolic dish-electric transport with field modulated generator systems

    Science.gov (United States)

    Ramakumar, R.; Bahrami, K.

    1981-01-01

    This paper discusses the application of field modulated generator systems (FMGS) to dispersed solar-thermal-electric generation from a parabolic dish field with electric transport. Each solar generation unit is rated at 15 kWe and the power generated by an array of such units is electrically collected for insertion into an existing utility grid. Such an approach appears to be most suitable when the heat engine rotational speeds are high (greater than 6000 r/min) and, in particular, if they are operated in the variable speed mode and if utility-grade a.c. is required for direct insertion into the grid without an intermediate electric energy storage and reconversion system. Predictions of overall efficiencies based on conservative efficiency figures for the FMGS are in the range of 25 per cent and should be encouraging to those involved in the development of cost-effective dispersed solar thermal power systems.

  17. Improvements in steam cycle electric power generating plants

    International Nuclear Information System (INIS)

    Bienvenu, Claude.

    1973-01-01

    The invention relates to a steam cycle electric energy generating plants of the type comprising a fossil or nuclear fuel boiler for generating steam and a turbo alternator group, the turbine of which is fed by the boiler steam. The improvement is characterized in that use is made of a second energy generating group in which a fluid (e.g. ammoniac) undergoes a condensation cycle the heat source of said cycle being obtained through a direct or indirect heat exchange with a portion of the boiler generated steam whereby it is possible without overloading the turbo-alternator group, to accomodate any increase of the boiler power resulting from the use of another fuel while maintaining a maximum energy output. This can be applied to electric power stations [fr

  18. Assessing the Environmental Sustainability of Electricity Generation in Turkey on a Life Cycle Basis

    Directory of Open Access Journals (Sweden)

    Burcin Atilgan

    2016-01-01

    Full Text Available Turkey’s electricity mix is dominated by fossil fuels, but the country has ambitious future targets for renewable and nuclear energy. At present, environmental impacts of electricity generation in Turkey are unknown so this paper represents a first attempt to fill this knowledge gap. Taking a life cycle approach, the study considers eleven impacts from electricity generation over the period 1990–2014. All 516 power plants currently operational in Turkey are assessed: lignite, hard coal, natural gas, hydro, onshore wind and geothermal. The results show that the annual impacts from electricity have been going up steadily over the period, increasing by 2–9 times, with the global warming potential being higher by a factor of five. This is due to a four-fold increase in electricity demand and a growing share of fossil fuels. The impact trends per unit of electricity generated differ from those for the annual impacts, with only four impacts being higher today than in 1990, including the global warming potential. Most other impacts are lower from 35% to two times. These findings demonstrate the need for diversifying the electricity mix by increasing the share of domestically-abundant renewable resources, such as geothermal, wind, and solar energy.

  19. Towards future organization of French electricity sector; Vers la future organisation electrique francaise

    Energy Technology Data Exchange (ETDEWEB)

    Strauss-Kahn, Dominique; Pierret, Christian [Ministere de l' Economie, des Finances et de l' Industrie, Paris (France)

    2000-02-07

    This document displays information and questions concerning the future organization of the French electric sector. The directive on the domestic electricity market was adopted in 1996 by the Council of the Ministers of European Union and Parliament. The member states were due to transpose the directive within their national legislation up to 19 February 1999. The directive establishes principles but provides large reaches of maneuver to the member states which can choose the organizational means according to their own expectations. These task is considered as feasible by the authors. It must reinforce the public service by giving added strength to the security of supply and ensuring everybody's access to a well marketed and high quality electric supply. By introduction of certain well controlled elements of competition this evolution should also contribute to cost lowering, boost of the national competitiveness and support of employment. The document contains seven chapters which expose the following items: 1. The objectives of reorganization; 2. The directive and its reach; 3. Strengthening the public service; 4. Revamping the electric service to promote the growth; 5. Preserving the grids for the general benefit; 6. Defining the place of EDF within the new organizational scheme; 7. Developing an efficient regulation. Finally, an appendix is given containing the Directive 96/92/CE of the European Parliament and Council of 19 October 1996, concerning the common rules for domestic electricity market.

  20. Future electricity production methods. Part 1: Nuclear energy

    International Nuclear Information System (INIS)

    Nifenecker, Herve

    2011-01-01

    The global warming challenge aims at stabilizing the concentrations of Green House Gas (GHG) in the atmosphere. Carbon dioxide is the most effective of the anthropogenic GHG and is essentially produced by consumption of fossil fuels. Electricity production is the dominant cause of CO 2 emissions. It is, therefore, crucial that the share of 'carbon less' electricity production techniques increases at a fast pace. This is the more so, that 'clean' electricity would be useful to displace 'dirty' techniques in other fields such as heat production and transportation. Here we examine the extent to which nuclear energy could be operational in providing 'clean' electricity. A nuclear intensive scenario is shown to give the possibility to divide CO 2 emissions by a factor of 2 worldwide, within 50 years. However, the corresponding sharp increase in nuclear power will put a heavy burden on uranium reserves and will necessitate the development of breeding reactors as soon as possible. A review of present and future reactors is given with special attention to the safety issues. The delicate question of nuclear fuel cycle is discussed concerning uranium reserves and management of used fuels. It is shown that dealing with nuclear wastes is more a socio-political problem than a technical one. The third difficult question associated with the development of nuclear energy is the proliferation risk. It is advocated that, while this is, indeed, a very important question, it is only weakly related to nuclear power development. Finally, the possibilities of nuclear fusion are discussed and it is asserted that, under no circumstances, could nuclear fusion give a significant contribution to the solution of the energy problem before 50 years, too late for dealing with the global warming challenge.

  1. Equivalent Electrical Circuits of Thermoelectric Generators under Different Operating Conditions

    Directory of Open Access Journals (Sweden)

    Saima Siouane

    2017-03-01

    Full Text Available Energy harvesting has become a promising and alternative solution to conventional energy generation patterns to overcome the problem of supplying autonomous electrical systems. More particularly, thermal energy harvesting technologies have drawn a major interest in both research and industry. Thermoelectric Generators (TEGs can be used in two different operating conditions, under constant temperature gradient or constant heat flow. The commonly used TEG electrical model, based on a voltage source in series with an electrical resistance, shows its limitations especially under constant heat flow conditions. Here, the analytical electrical modeling, taking into consideration the internal and contact thermal resistances of a TEG under constant temperature gradient and constant heat flow conditions, is first given. To give further insight into the electrical behavior of a TEG module in different operating conditions, we propose a new and original way of emulating the above analytical expressions with usual electronics components (voltage source, resistors, diode, whose values are determined with the TEG’s parameters. Note that such a TEG emulation is particularly suited when designing the electronic circuitry commonly associated to the TEG, to realize both Maximum Power Point Tracking and output voltage regulation. First, the proposed equivalent electrical circuits are validated through simulation with a SPICE environment in static operating conditions using only one value of either temperature gradient or heat flow. Then, they are also analyzed in dynamic operating conditions where both temperature gradient and heat flow are considered as time-varying functions.

  2. Electric Generator in the System for Damping Oscillations of Vehicles

    OpenAIRE

    Serebryakov A.; Kamolins E.; Levin N.

    2017-01-01

    The control systems for the objects of industry, power generation, transport, etc. are extremely complicated; functional efficiency of these systems determines to a great extent the safe and non-polluting operation as well as convenience of service and repair of such objects. The authors consider the possibility to improve the efficiency of systems for damping oscillations in transport using a combination of electrical (generators of rotational and linear types) and hydraulic means. Better ef...

  3. Babcock and Wilcox Canada steam generators past, present and future

    International Nuclear Information System (INIS)

    Smith, J.C.

    1998-01-01

    The steam generators in all of the domestic CANDU Plants, and most of the foreign CANDU plants, were supplied by Babcock and Wilcox Canada, either on their own or in co-operation with local manufacturers. More than 200 steam generators have been supplied. In addition, Babcock and Wilcox Canada has taken the technology which evolved out of the CANDU steam generators and has adapted the technology to supply of replacement steam generators for PWR's. There is enough history and operating experience, plus laboratory experience, to point to the future directions which will be taken in steam generator design. This paper documents the steam generators which have been supplied, the experience in operation and maintenance, what has worked and not worked, and how the design, materials, and operating and maintenance philosophy have evolved. The paper also looks at future requirements in the market, and the continuing research and product development going on at Babcock and Wilcox to address the future steam generator requirements. (author)

  4. Babcock and Wilcox Canada steam generators past, present and future

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.C. [Babcock and Wilcox Canada, Cambridge, Ontario (Canada)

    1998-07-01

    The steam generators in all of the domestic CANDU Plants, and most of the foreign CANDU plants, were supplied by Babcock and Wilcox Canada, either on their own or in co-operation with local manufacturers. More than 200 steam generators have been supplied. In addition, Babcock and Wilcox Canada has taken the technology which evolved out of the CANDU steam generators and has adapted the technology to supply of replacement steam generators for PWR's. There is enough history and operating experience, plus laboratory experience, to point to the future directions which will be taken in steam generator design. This paper documents the steam generators which have been supplied, the experience in operation and maintenance, what has worked and not worked, and how the design, materials, and operating and maintenance philosophy have evolved. The paper also looks at future requirements in the market, and the continuing research and product development going on at Babcock and Wilcox to address the future steam generator requirements. (author)

  5. Study Of The Fuel Cycle Effect To The Electricity Generating Cost

    International Nuclear Information System (INIS)

    Salimy, D. H.

    1998-01-01

    The nuclear fuel cycle cost contributes relatively small fraction to the total nuclear power generation cost, I.e. about 15 to 30%, compared to the fuel cost in the coal-generated electricity (40-60%). Or in the oil-generated electricity (70-80%). This situation will give effect that the future generation cost is much less sensitive to the changes in the fuel prince than in the case of fossil fuel power plants. The study has shown that by assuming a 100% increase in the natural uranium price, the total nuclear fuel cycle cost would increase only by about 27% and in turn it contributes about 29% increase to the total nuclear fuel cycle cost. As a result, it contributes only 4 to 8% increase in the nuclear energy generation cost. As a comparison, if the same situation should occur to fossil fuel plants, the assumed fuel price increase would have increased the electricity generating cost by about 40-65% for coal-fired plants, and about 70-85% for oil-fired plants. This study also has assesses the economic aspects of the electricity generating cots for nuclear power plant (NPP) and the coal power plant. For an NPP the most affecting factor is the investment cost, while for the coal power plant, the major factor influencing the total cost is the price/cost of the fuel

  6. Historical costs of coal-fired electricity and implications for the future

    International Nuclear Information System (INIS)

    McNerney, James; Doyne Farmer, J.; Trancik, Jessika E.

    2011-01-01

    We study the cost of coal-fired electricity in the United States between 1882 and 2006 by decomposing it in terms of the price of coal, transportation cost, energy density, thermal efficiency, plant construction cost, interest rate, capacity factor, and operations and maintenance cost. The dominant determinants of cost have been the price of coal and plant construction cost. The price of coal appears to fluctuate more or less randomly while the construction cost follows long-term trends, decreasing from 1902 to 1970, increasing from 1970 to 1990, and leveling off since then. Our analysis emphasizes the importance of using long time series and comparing electricity generation technologies using decomposed total costs, rather than costs of single components like capital. By taking this approach we find that the history of coal-fired electricity suggests there is a fluctuating floor to its future costs, which is determined by coal prices. Even if construction costs resumed a decreasing trend, the cost of coal-based electricity would drop for a while but eventually be determined by the price of coal, which fluctuates while showing no long-term trend. - Research highlights: → 125-year history highlights the dominant determinants of coal-fired electricity costs. → Results suggest a fluctuating floor to future costs, determined by coal prices. → Analysis emphasizes importance of comparing technologies using decomposed total costs.

  7. Generating electricity at a breakwater in a moderate wave climate

    NARCIS (Netherlands)

    Schoolderman, J.; Reedijk, B.; Vrijling, J.K.; Molenaar, W.F.; Ten Oever, E.; Zijlema, M.

    2011-01-01

    A new concept for wave energy conversion is examined as a proof of concept for generating electricity in a moderate wave climate while being integrated in a caisson breakwater. Physical model testing is performed to analyse the preliminary efficiency of the device and to identify areas of

  8. Utilization of hydrogen gas production for electricity generation in ...

    African Journals Online (AJOL)

    Utilization of hydrogen gas production for electricity generation in fuel cell by Enterobacter aerogenes ADH 43 with many kinds of carbon sources in batch stirred tank reactor. MA Rachman, LD Eniya, Y Liasari, MM Nasef, A Ahmad, H Saidi ...

  9. Centralized electricity generation in offshore wind farms using hydraulic networks

    NARCIS (Netherlands)

    Jarquin Laguna, A.

    2017-01-01

    The work presented in this thesis explores a new way of generation, collection and transmission of wind energy inside a wind farm, in which the electrical conversion does not occur during any intermediate conversion step before the energy has reached the offshore central platform. A centralized

  10. Improvements to the IAEA's electric generation expansion model

    International Nuclear Information System (INIS)

    Stoytchev, D.; Georgiev, S.

    1997-01-01

    This paper deals with the implementation of the IAEA's planning approach and software in Bulgaria. The problems encountered in the process are summarized, with emphasis on two of the limitations of the electric generation expansion model (WASP). The solutions found by Bulgarian experts to overcome these problems are also described, together with some comparative results of the tests performed. (author)

  11. Utilization of hydrogen gas production for electricity generation in ...

    African Journals Online (AJOL)

    Lecturer

    2012-05-03

    % total sugar concentration of sugar ... 107 cfu/ml, pH was nearly constant at 6.0, and finally the H2 was drifted to fuel cell to generate electrical power until 4 V ..... hybrid system, reverse micelles and by metabolic engi- neering.

  12. WASP as a planning tool of electrical generation systems expansion

    International Nuclear Information System (INIS)

    D'Isidoro, G.

    1984-01-01

    The ''Wien Automatic System Package'' (WASP), consists of six modules or computer programmes which assist in decision taking process in expanding an electrical generation network. A general description of this model is made and some conclusions are drawn from the data processed to this date

  13. Exploration of dispatch model integrating wind generators and electric vehicles

    NARCIS (Netherlands)

    Haque, A.N.M.M.; Ibn Saif, A.U.N.; Nguyen, H.P.; Shariat Torbaghan, S.

    2016-01-01

    In recent years, the share of renewable energy sources (RES) in the electricity generation mix has been expanding rapidly. However, limited predictability of the RES poses challenges for traditional scheduling and dispatching mechanisms based on unit commitment (UC) and economic dispatch (ED). This

  14. Non-burn electric generation: How today's options stack up

    International Nuclear Information System (INIS)

    1993-01-01

    The technical preparedness to generate electricity without burning fuel is dealt with. Nuclear, hydroelectric, solar and wind energy are recommended as the clean options. The aims of energy policy, views upon regulation, technical maturity and commercial preparedness of such variants are discussed. (Z.S.). 4 figs

  15. Improvements to the IAEA`s electric generation expansion model

    Energy Technology Data Exchange (ETDEWEB)

    Stoytchev, D; Georgiev, S [Committee of Energy, Sofia (Bulgaria)

    1997-09-01

    This paper deals with the implementation of the IAEA`s planning approach and software in Bulgaria. The problems encountered in the process are summarized, with emphasis on two of the limitations of the electric generation expansion model (WASP). The solutions found by Bulgarian experts to overcome these problems are also described, together with some comparative results of the tests performed. (author).

  16. Student generated assignments about electrical circuits in a computer simulation

    NARCIS (Netherlands)

    Vreman-de Olde, Cornelise; de Jong, Anthonius J.M.

    2004-01-01

    In this study we investigated the design of assignments by students as a knowledge-generating activity. Students were required to design assignments for 'other students' in a computer simulation environment about electrical circuits. Assignments consisted of a question, alternatives, and feedback on

  17. Nuclear Power as an Option in Electrical Generation Planning for Small Economy and Electricity Grid

    International Nuclear Information System (INIS)

    Tomsic, Z.

    2012-01-01

    Implementing a NPP in countries with relatively small total GDP (small economy) and usually with small electricity grid face two major problems and constrains: the ability to obtain the considerable financial resources required on reasonable terms and to connect large NPP to small electricity grid. Nuclear generation financing in developing countries involves complex issues that need to be fully understood and dealt with by all the parties involved. The main topics covered by paper will be the: special circumstances related to the financing of NPP, costs and economic feasibility of NPP, conventional approaches for financing power generation projects in developing countries, alternative approaches for mobilizing financial resources. The safe and economic operation of a nuclear power plant (NPP) requires the plant to be connected to an electrical grid system that has adequate capacity for exporting the power from the NPP, and for providing a reliable electrical supply to the NPP for safe start-up, operation and normal or emergency shut-down of the plant. Connection of any large new power plant to the electrical grid system in a country may require significant modification and strengthening of the grid system, but for NPPs there may be added requirements to the structure of the grid system and the way it is controlled and maintained to ensure adequate reliability. Paper shows the comparative assesment of differrent base load technologies as an option in electrical generation planning for small economy and electricity grid.(author).

  18. Meeting residential space heating demand with wind-generated electricity

    International Nuclear Information System (INIS)

    Hughes, Larry

    2010-01-01

    Worldwide, many electricity suppliers are faced with the challenge of trying to integrate intermittent renewables, notably wind, into their energy mix to meet the needs of those services that require a continuous supply of electricity. Solutions to intermittency include the use of rapid-response backup generation and chemical or mechanical storage of electricity. Meanwhile, in many jurisdictions with lengthy heating seasons, finding secure and preferably environmentally benign supplies of energy for space heating is also becoming a significant challenge because of volatile energy markets. Most, if not all, electricity suppliers treat these twin challenges as separate issues: supply (integrating intermittent renewables) and demand (electric space heating). However, if space heating demand can be met from an intermittent supply of electricity, then both of these issues can be addressed simultaneously. One such approach is to use off-the-shelf electric thermal storage systems. This paper examines the potential of this approach by applying the output from a 5.15 MW wind farm to the residential heating demands of detached households in the Canadian province of Prince Edward Island. The paper shows that for the heating season considered, up to 500 households could have over 95 percent of their space heating demand met from the wind farm in question. The benefits as well as the limitations of the approach are discussed in detail. (author)

  19. Future conditions for integration of the Baltic Electricity Supply System

    International Nuclear Information System (INIS)

    1999-01-01

    The economies of Estonia, Latvia and Lithuania developed in close association with the north-west region of the former Soviet Union. This is especially true for energy supply systems and electricity generation and transmission; the Baltic States depend on Russia for much of their primary energy needs, and export power to Russia and Belarus. In restructuring their electricity industries, the Baltic States hope to establish closer relationships and trade with Western Europe. The initial focus has been on changes to the legislative framework, industry restructuring and the establishment of new regulatory institutions. Vertically integrated utilities are in the process of being broken up into a number of separate generation, transmission and distribution companies. This restructuring is a prelude to privatisation. The states aim to establish a common power market among themselves, and hope to integrate this market with neighbouring (Nordic and European) markets. Despite the target set by the Baltic authorities of a common market by 2001, there is little clarity, as yet, on the framework and guidelines for the structure and functioning of the market. This process is supported by other players in the region, and the EU has recently prioritised closer co-operation and harmonisation of power networks in the Baltic Sea region. The Swedish National Energy Administration has identified cooperation on energy and environmental issues in the Baltic Sea region as one of its priorities. Consequently, the Administration commissioned ECON to analyse the conditions for closer linkages between the Baltic and Nordic electricity systems. This report presents the findings of this analysis

  20. Future conditions for integration of the Baltic Electricity Supply System

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The economies of Estonia, Latvia and Lithuania developed in close association with the north-west region of the former Soviet Union. This is especially true for energy supply systems and electricity generation and transmission; the Baltic States depend on Russia for much of their primary energy needs, and export power to Russia and Belarus. In restructuring their electricity industries, the Baltic States hope to establish closer relationships and trade with Western Europe. The initial focus has been on changes to the legislative framework, industry restructuring and the establishment of new regulatory institutions. Vertically integrated utilities are in the process of being broken up into a number of separate generation, transmission and distribution companies. This restructuring is a prelude to privatisation. The states aim to establish a common power market among themselves, and hope to integrate this market with neighbouring (Nordic and European) markets. Despite the target set by the Baltic authorities of a common market by 2001, there is little clarity, as yet, on the framework and guidelines for the structure and functioning of the market. This process is supported by other players in the region, and the EU has recently prioritised closer co-operation and harmonisation of power networks in the Baltic Sea region. The Swedish National Energy Administration has identified cooperation on energy and environmental issues in the Baltic Sea region as one of its priorities. Consequently, the Administration commissioned ECON to analyse the conditions for closer linkages between the Baltic and Nordic electricity systems. This report presents the findings of this analysis.

  1. Assessing the environmental sustainability of electricity generation in Chile.

    Science.gov (United States)

    Gaete-Morales, Carlos; Gallego-Schmid, Alejandro; Stamford, Laurence; Azapagic, Adisa

    2018-09-15

    Around 40% of electricity in Chile is supplied by renewables and the rest by fossil fuels. Despite the growing electricity demand in the country, its environmental impacts are as yet unknown. To address this gap, the current study presents the first comprehensive assessment of the life cycle environmental sustainability of electricity generation in Chile. Both the individual sources and the electricity mix over the past 10 years are considered. The following sources present in the electricity mix are evaluated: coal, oil, natural gas, biogas, biomass, wind, solar photovoltaics (PV) and hydropower. In total, 10 electricity technologies and 174 power plants installed across the country have been considered. Eleven environmental impacts have been estimated, including global warming, human toxicity, ecotoxicities, as well as resource and ozone layer depletion. The results reveal that hydropower is environmentally the most sustainable option across the impacts, followed by onshore wind and biogas. Electricity from natural gas has 10%-84% lower impacts than biomass for seven categories. It is also 13%-98% better than solar PV for six impacts and 17%-66% than wind for four categories. Solar PV has the highest abiotic depletion potential due to the use of scarce elements in the manufacture of panels. While electricity generation has grown by 44% in the past 10 years, all the impacts except ozone layer depletion have increased by 1.6-2.7 times. In the short term, environmental regulations should be tightened to improve the emissions control from coal and biomass plants. In the medium term, the contribution of renewables should be ramped up, primarily increasing the hydro, wind and biogas capacity. Coal and oil should be phased out, using natural gas as a transitional fuel to help the stability of the grid with the increasing contribution of intermittent renewables. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Uranium mine tailings and obligations to future generations

    International Nuclear Information System (INIS)

    Brook, A.

    1980-01-01

    Low-level wastes from uranium mine/mill operations, because of their huge volume, are a serious problem, yet relatively little attention has been paid to them. Management of tailings piles and waste liquids in the short term is fairly effective. However these management techniques involve continuous, active treatment of the wastes, which may not continue after operations shut down, and rely on containment structures with a short effective life. Tailings can probably be rendered safe for future generations if sufficient resources are devoted to the task. The central moral question is whether we are obligated to assume the costs of tailings management, or whether it is permissible to pass them on to future generations. The basic moral principle that each person has the same value as any other implies that the generation that reaps the benefits of nuclear power must assume the costs of managing mine tailings and not discriminate in favour of one group of persons, our own generation. The argument that people who may exist in the future have intrinsically less value than people currently alive is not accepted by the author. The methodology for determining obligations to future generations which has been applied to mine/mill wastes could be applied to other nuclear issues, too. (LL)

  3. Scenario planning for the electricity generation in Indonesia

    International Nuclear Information System (INIS)

    Rachmatullah, C.; Aye, L.; Fuller, R.J.

    2007-01-01

    The long-term planning of a future electricity supply system requires data about future demand. Planners who use the conventional planning method forecast future demand by observing past trends or alternatively by developing scenarios and then selecting the scenarios considered to be the most likely to occur. This method, however, fails to include future uncertainties. To consider such uncertainties, the scenario planning method may be used. This study uses this method to devise a long-term electricity supply plan for the Java-Madura-Bali electricity system. It was found that the scenario planning method could save up to US$3.5 billion over a 15-year period of the method was applied right at the beginning of the period. In the case of the Java-Madura-Bali system, which currently has excess installed capacity, the scenario planning method does not provide such large benefits. It was also found that introducing integrated coal gasification combined cycle and advanced gas combined cycle units would reduce greenhouse gas emissions from the Java-Madura-Bali system by approximately 230 million tonnes or 15% compared to a business-as-usual (BAU) scenario over a 15-year planning timeframe. The abatement cost was found to be US$4 per tonne of CO 2 . (author)

  4. Scenario planning for the electricity generation in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Rachmatullah, C.; Aye, L.; Fuller, R.J. [The University of Melbourne, Victoria (Australia). Department of Civil and Environmental Engineering, International Technologies Centre

    2007-04-15

    The long-term planning of a future electricity supply system requires data about future demand. Planners who use the conventional planning method forecast future demand by observing past trends or alternatively by developing scenarios and then selecting the scenarios considered to be the most likely to occur. This method, however, fails to include future uncertainties. To consider such uncertainties, the scenario planning method may be used. This study uses this method to devise a long-term electricity supply plan for the Java-Madura-Bali electricity system. It was found that the scenario planning method could save up to US$3.5 billion over a 15-year period of the method was applied right at the beginning of the period. In the case of the Java-Madura-Bali system, which currently has excess installed capacity, the scenario planning method does not provide such large benefits. It was also found that introducing integrated coal gasification combined cycle and advanced gas combined cycle units would reduce greenhouse gas emissions from the Java-Madura-Bali system by approximately 230 million tonnes or 15% compared to a business-as-usual (BAU) scenario over a 15-year planning timeframe. The abatement cost was found to be US$4 per tonne of CO{sub 2}. (author)

  5. Leading into the future: coaching and mentoring Generation X employees.

    Science.gov (United States)

    Weston, M J

    2001-09-01

    Managers who recognize that Generation X employees are looking for workplaces that allow them to develop their competencies as well as have a balance in their personal and professional lives, are more successful in attracting and retaining employees in this age group. Savvy managers understand that adapting to meet the needs of Generation X employees also assists the manager in transitioning into the Information Age and the workplace of the future.

  6. Steam generator replacement at Kansai Electric Power Co., Inc

    International Nuclear Information System (INIS)

    Kimura, S.; Dodo, Takashi; Negishi, Kazuo

    1995-01-01

    Eleven nuclear units are in operation at the Kansai Electric Power Co., Inc.. In seven of them, Mihama-1·2·3, Takahama-1·2, and Ohi-1·2, comparatively long duration for tube inspection and repair have been required during late annual outages. KEPCO decided to replace all steam generators in these 7 units with the latest model which was improved upon the past degradation experiences, as a result of comprehensive considerations including public confidence in nuclear power generation, maintenability, and economic efficiency. This report presents the design improvements in new steam generators, replacement techniques, and so on. (author)

  7. Stable Operation and Electricity Generating Characteristics of a Single-Cylinder Free Piston Engine Linear Generator: Simulation and Experiments

    Directory of Open Access Journals (Sweden)

    Huihua Feng

    2015-01-01

    Full Text Available We present a novel design of a single-cylinder free piston engine linear generator (FPELG incorporating a linear motor as a rebound device. A systematic simulation model of this FPELG system was built containing a kinematic and dynamic model of the piston and mover, a magneto-electric model of the linear generator, a thermodynamic model of the single-cylinder engine, and a friction model between the piston ring and cylinder liner. Simulations were performed to understand the relationships between pre-set motor parameters and the running performance of the FPELG. From the simulation results, it was found that a motor rebound force with a parabolic profile had clear advantages over a force with a triangular profile, such as a higher running frequency and peak cylinder pressure, faster piston motion, etc. The rebound position and the amplitude of rebound force were also determined by simulations. The energy conversion characteristics of the generator were obtained from our FPELG test rig. The parameters of intake pressure, motor frequency, and load resistance were varied over certain ranges, and relationships among these three parameters were obtained. The electricity-generating characteristic parameters include output power and system efficiency, which can measure the quality of matching the controllable parameters. The output power can reach 25.9 W and the system efficiency can reach 13.7%. The results in terms of matching parameters and electricity-generating characteristics should be useful to future research in adapting these engines to various operating modes.

  8. Nuclear power generation alternative for a clean energy future

    International Nuclear Information System (INIS)

    Simionov, V; Ibadula, R.; Popescu, Ion.; Bobric, Elena

    2001-01-01

    World Energy Council stated that to raise the efficiency in which energy is provided is a huge challenge for power engineering. Over 60% of primary energy is in effect, wasted. At present 63% of the world's electricity comes from thermal power (coal, oil and gas), 19% from hydro, 17% from nuclear, 0.5% from geothermal and 0.1% from solar, wind and biomass. Nuclear power almost completely avoids all the problems associated within fossil fuels: no greenhouse effect, no acid rain, no air pollution with sulfur dioxide, nitrogen oxides, no oil spills, etc. Its impact on health and environment is related to radiation and is relatively minor. Without pretending a high accuracy of numbers, if the first Romanian nuclear power reactor will be replaced by a coal plant of equivalent capacity, about 5 millions tons of CO 2 and large quantities of associated sulfur and nitrous oxides, would be discharged to the atmosphere each year. However, the acceptance of nuclear power is largely an emotional issue. Based on the environmental monitoring program this paper tries to demonstrate that the routine radioactive emissions of Cernavoda NPP, which are limited by competent national authority, constitutes an insignificant risk increase. The concept of sustainable development was elaborated in the late 1980s and defined as a development that fulfil the needs of the present, without compromising the ability of future generations to meet their own needs. Sustainable development incorporates equity within and across countries as well as across generations, and integrates economic growth, environmental protection and social welfare. To analyze nuclear energy from a sustainable development perspective it is necessary to consider its economic, environmental and social impacts characteristics, both positive and negative. It is obvious that the development of nuclear energy broadens the natural resource base usable for energy production, and increases human and man-made capital. There are also

  9. Regional projections of nuclear and fossil electric power generation costs

    International Nuclear Information System (INIS)

    Smolen, G.R.; Delene, J.G.; Fuller, L.C.; Bowers, H.I.

    1983-12-01

    The total busbar electric generating costs were estimated for locations in ten regions of the United States for base load nuclear and coal-fired power plants with a startup date of January 1995. A complete data set is supplied which specifies each parameter used to obtain the comparative results. When the comparison is based on reference cost parameters, nuclear- and coal-fired generation costs are found to be very close in most regions of the country. Nuclear power is favored in the South Atlantic region where coal must be transported over long distances, while coal-fired generation is favored in the Central and North Central regions where large reserves of cheaply mineable coal exist. The reference data set reflects recent electric utility construction experience. Significantly lower nuclear capital investment costs would result if regulatory reform and improved construction practices were instituted. The electric power generation costs for base load oil- and natural gas-fired plants were also estimated. These plants were found to be noncompetitive in all regions for those scenarios most likely to develop. Generation cost sensitivity to changes in various parameters was examined at a reference location. The sensitivity parameters included capital investment costs, lead times, capacity factors, costs of money, and coal and uranium prices. In addition to the levelized lifetime costs, year-by-year cash flows and revenue requirements are presented. The report concludes with an analysis of the economic merits of recycling spent fuel in light-water reactors

  10. SmartGrid: Future networks for New Zealand power systems incorporating distributed generation

    International Nuclear Information System (INIS)

    Nair, Nirmal-Kumar C.; Zhang Lixi

    2009-01-01

    The concept of intelligent electricity grids, which primarily involves the integration of new information and communication technologies with power transmission lines and distribution cables, is being actively explored in the European Union and the United States. Both developments share common technological developmental goals but also differ distinctly towards the role of distributed generation for their future electrical energy security. This paper looks at options that could find relevance to New Zealand (NZ), in the context of its aspiration of achieving 90% renewable energy electricity generation portfolio by 2025. It also identifies developments in technical standardization and industry investments that facilitate a pathway towards an intelligent or smart grid development for NZ. Some areas where policy can support research in NZ being a 'fast adapter' to future grid development are also listed. This paper will help policy makers quickly review developments surrounding SmartGrid and also identify its potential to support NZ Energy Strategy in the electricity infrastructure. This paper will also help researchers and power system stakeholders for identifying international standardization, projects and potential partners in the area of future grid technologies.

  11. Impacts of intermittent renewable generation on electricity system costs

    International Nuclear Information System (INIS)

    Batalla-Bejerano, Joan; Trujillo-Baute, Elisa

    2016-01-01

    A successful deployment of power generation coming from variable renewable sources, such as wind and solar photovoltaic, strongly depends on the economic cost of system integration. This paper, in seeking to look beyond the impact of renewable generation on the evolution of the total economic costs associated with the operation of the electricity system, aims to estimate the sensitivity of balancing market requirements and costs to the variable and non-fully predictable nature of intermittent renewable generation. The estimations reported in this paper for the Spanish electricity system stress the importance of both attributes as well as power system flexibility when accounting for the cost of balancing services. - Highlights: •A successful deployment of VRES-E strongly depends on the economic cost of its integration. •We estimate the sensitivity of balancing market requirements and costs to VRES-E. •Integration costs depend on variability, predictability and system flexibility.

  12. Comparison of costs of electricity generation based on nuclear energy and pit coal

    International Nuclear Information System (INIS)

    1981-01-01

    Despite of a meanwhile considerable increase in costs of installation, especially of nuclear power stations, the differences in costs have increased in favour of nuclear electricity generation. The cost advantages are estimated 4 German Pfennig per kilowatt-hour in the base-load field for plants coming into operation at the end of this decade compared with the most profitable variant of pit coal utilization on which this investigation is based; compared to the use of German hard coal, assuming a relatively optimistic development of prices for domestic hard coal in the future, the cost advantage is estimated 8 German Pfennig per kilowatt-hour. The main reason is that in the past years the price for German hard coal as well as for imported coal considerably rose and for the future further increases have to be expected whereas the largest share of the costs of nuclear electricity generation doesn't increase, after the plant is completed. Considering the importance of the fuel costs within the total costs of electricity generation in coal power stations this must have its effects on the total result. These results also prove to be valid for a variation of important cost parameters. Only if the unlikely assumption that considerable variations of influences on costs - each unfavourable effecting nuclear electricity generation - would come together would prove to be true the economic efficiency of nuclear energy would be reduced or questioned. (UA) [de

  13. Fossil-fuel dependence and vulnerability of electricity generation: Case of selected European countries

    International Nuclear Information System (INIS)

    Bhattacharyya, Subhes C.

    2009-01-01

    This paper analyses the diversity of fuel mix for electricity generation in selected European countries and investigates how the fuel bill has changed as a share of GDP between 1995 and 2005. The drivers of fuel-dependence-related vulnerability are determined using Laspeyres index decomposition. A 'what-if' analysis is carried out to analyse the changes in the vulnerability index due to changes in the drivers and a scenario analysis is finally used to investigate the future vulnerability in the medium term. The paper finds that the British and the Dutch electricity systems are less diversified compared to three other countries analysed. The gas dependence of the Dutch and Italian systems made them vulnerable but the vulnerability increased in all countries in recent years. Gas price and the level of dependence on gas for power generation mainly influenced the gas vulnerability. The United Kingdom saw a substantial decline in its coal vulnerability due to a fall in coal price and coal dependence in electricity generation. The scenario analysis indicates that UK is likely to face greater gas vulnerability in the future due to increased gas dependence in electricity generation and higher import dependence.

  14. Electricity generation projections of the world and Brazil

    International Nuclear Information System (INIS)

    Dias, Marcio Soares

    2002-01-01

    The world use of electricity is projected to increase by 9,570 billions kWh over a span of 20 years. Natural gas is expected to account for the largest increment in electricity generation. As a result of high oil and natural gas consumption fuel prices are projected to rise in nominal dollars over the forecast horizon. Higher capacity utilisation and fewer expected retirements of running nuclear plants have resulted in a revision of EIA's projected consumption of electricity from nuclear power. Projection of 3.6%/year in the electricity consumption in Brazil is lower than the historical correlation given by the GDP (5%) growth rate plus 1.2 to 1.7%. GDP and energy consumption growth rates for Brazil are projected to be higher than the world value, but are lower than the projected values for countries like Mexico and China. Trends in primary fuel prices and external dependence on fuel supply are important factors for the Brazilian investments on electricity generation due their impact on costs and standard of living. (author)

  15. Development of the Electricity Market in Macedonia and Future Challenges

    International Nuclear Information System (INIS)

    Taleski, R.; Cerepnalkovski, T.

    2008-01-01

    The power sector in the Republic of Macedonia started the restructuring process in 2000 by corporatization of the state owned vertically integrated utility 'Elektrostopanstvo na Makedonija' (ESM). However, major changes happened after 2003. First, an independent Energy Regulatory Commission (ERC) was established and later ESM was unbundled into three companies: MEPSO (TSO), 'ELEM' (Generation) and ESM-Distribution (DSO). The market model that was adopted, in essence, was a combination of the Single Buyer and wholesale competition models. The idea was to establish a transitional legal framework that would later be further developed to allow competition on retail level in accordance with EU directives and the SEE Energy Treaty. The wholesale competition was meant for the large industrial customers that had right to choose if they would buy electricity in the (regional) market or stay on the tariff system. However, since there is no competition on generation level in the country, and regional market prices were higher than the regulated prices, the wholesale component didn't really worked. In 2007 and 2008 the Energy law was changed to enforce the wholesale competition. With these changes MEPSO was replaced by ELEM to serve as Single buyer for captive (distribution) customers. Although the Government of Macedonia (GoM) claimed that these changes further enhance the market model, in reality they provide very little (if any) improvements in the sector since 2005. As a result, there were no possibilities to open the market for all non-residential customers as of January 1, 2008. There are several reasons that led to stagnation in the liberalization process. Failure to develop a number of secondary legislation documents and very low electricity prices for captive customers were probably the most relevant issues. In order to proceed with the liberalization process relevant institutions need to develop market code, establish sustainable balancing market, and upgrade the

  16. Arrangement for matching a wind rotor to an electrical generator

    Energy Technology Data Exchange (ETDEWEB)

    Beusse, H

    1978-04-06

    The invention concerns an arrangement for matching a wind power machine to an electrical generator, which feeds a consumer network. According to the invention first generator using the shaft horsepower of the wind power machine feeds an electric water, which is coupled to a second generator, whose power is taken to the consumer network. The output signal of a computer which has the annemometer feeding into it controls the excitation of the motor at sufficient wind speed, so that the speed of rotation of the second generator is practically constant, and a spted regulator takes excess energy via a controlled rectifier (thyristor) to a shunt circuit of the motor, if the wind power exceeds the load taken from the output of the second generator. As an extension of the arrangement according to the invention it is proposed to arrange a Diesel engine in the shaft of the second generator, which can be controlled at constant speed by the control device, so that it takes over the missing output if the wind power is less than the load at the generator output. Apart from this, it is proposed that the loading of the wind rotor should be controlled by the control device so that it only comes in if the wind rotor has reached a stable working point after accelerating on no load.

  17. The future market in electricity in the Czech Republic

    International Nuclear Information System (INIS)

    Vacik, J.

    1998-01-01

    The Czech Republic has signed the Association Agreement with the European Union in early nineties and it has been the Republic's goal to accede to full membership in the European Union. In the power sector, the Directive 96/92/EC is, in this respect, the most important document. The Czech Energy Law was become effective from 1995 in a compromise form which proved to stay well short of perfection. Unfortunately, a number of articles and provisions fail to be consistent with the relevant EU documents, and even far less so with Directive 96/92/EC. The draft Energy Policy of the Czech Republic as presented officially in May 1997, has already definitely stressed some basic features of the future market in electricity. Regrettably, also in the draft Energy Policy some pressing long-term problems fail to be recognized or addressed and also areas failing to conform with the European power industry laws can be found in it. For the Czech Republic, it will be useful to utilize the experience of mainly the smaller EU countries and to proceed in pursuance of the findings of a thorough analysis and in a stepwise manner. In the first phase, it will be enough to make those moves which are common for all the conceivable solutions. Directive 96/92/EC does not prescribe a change in the structure of the existing electric power sector and far less any change in the ownership relation. In the same token, Directive 96/92/EC does not charge the member states with any duty to launch a wholesale market in electricity (pool of exchange). That is reserved under the discretion of the member states. Nowhere throughout the Directive is encountered any requirement to reduce the market strength of the dominant entities, if such exist

  18. Carbon dioxide emissions from Russia's electricity sector: future scenarios

    International Nuclear Information System (INIS)

    Steenhof, Paul A.; Hill, Malcolm R.

    2006-01-01

    This article investigates future greenhouse gas emission scenarios for Russia's electricity sector, a topic of importance since Russia's ratification of the Kyoto Protocol in November 2004. Eleven scenarios are constructed to the year 2020 considering economic and technological details in both the demand and supply sides of the sector. The scenarios are based upon a thorough review of the different factors controlling carbon dioxide emissions, including potential economic growth, changes in energy efficiency and technological development, and that Russia may export large amounts of natural gas to European and Asian markets. The most likely scenario is that Russia will double industrial output over the next 10 years, increase energy efficiency in the demand sector, will remain consistent to the goals of the Energy Strategy 2020 and will implement more efficient technology in the electricity supply sector. Consequently, carbon dioxide emissions will still be 102 million tonnes below 1990 levels in 2010, representing a significant source for emission reduction credits available to be sold on international markets or transferred to the next crediting period. (Author)

  19. Environmental evaluation of different forms of electric energy generation

    International Nuclear Information System (INIS)

    Guena, Ana Maria de Oliveira

    2007-01-01

    Electric energy has an important function in the modem world; it is fundamental for progress and development. The electricity discovery allowed improvements in several areas: health, water and food supply, quality of life and sanitary conditions, and contributed also to the establishment of the capitalist and consumption society. The use of oil as an energy generation source was the impulse for the industrial revolution and machines, motors and generators were developed contributing to the progress This also brought the pollutant gases emission (CO 2 , CO, SO x and NO x ) and other substances that had contributed to the greenhouse effect, the ozone hole and the acid rain, modifying the balance of the planet. The development and implementation of other forms of energy generation caused local changes, where they were installed, giving rise to environmental impacts. This work presents an evaluation about different forms of electrical energy generation and the environmental impacts relative to each one of them. Five forms of electric energy generation were considered: thermoelectric, nuclear, hydroelectric, wind and solar energy. The implementation and the development of the petroleum industry in the world and in Brazil are presented. The geology of the oil, its extraction and quality improvement, besides details of the functioning of three types of thermoelectric power plants - coal, gas and oil - are also discussed. The specific as well as the environmental impacts they have in common are highlighted. The impacts originated from the deactivation of each one of them are also pointed out. The discovery and the development of nuclear energy in Brazil and in the world as well as the functioning of a nuclear power plant, the impacts generated by its operation and decommissioning are presented. The history, functioning and development of hydroelectric energy generation in Brazil, characterized by the great plants, are related to environmental aspects The environmental

  20. Mobilizing Political Action on Behalf of Future Generations

    Science.gov (United States)

    Aldy, Joseph E.

    2016-01-01

    Our failure to mobilize sufficient effort to fight climate change reflects a combination of political and economic forces, on both the national and the global level. To state the problem in its simplest terms, writes Joseph Aldy, future, unborn generations would enjoy the benefits of policies to reduce carbon emissions whereas the current…

  1. Zero discounting can compensate future generations for climate damage

    NARCIS (Netherlands)

    Davidson, M.D.

    2014-01-01

    In cost-benefit analysis of climate policy there are two main approaches to discounting, each with implications conflicting with our moral intuitions. Thus, discounted utilitarianism implies that we hardly need to protect future generations against climate change, while classical utilitarianism

  2. Electricity generation in Ghana : the role of the chemist

    International Nuclear Information System (INIS)

    Amuasi, J.H.; Ephraim, J.H.; Glover, E.T.; Fletcher, J.J.

    1998-01-01

    The current electricity crisis in Ghana has mandated a holistic approach towards meeting the energy demand of the country. In this paper, a brief review of the various technologies for electricity generation is presented and the role of the chemist in each technology is identified. An emphasis is placed on the nuclear option as a plausible component of a comprehensive energy portfolio and the role of the chemist in each step of the nuclear fuel cycle is outlined. The challenges facing the chemists in the country are enumerated and recommendations for ensuring the incorporation of the nuclear option into the total energy mix of the country are presented. (author)

  3. Conceptual design of a demonstration reactor for electric power generation

    International Nuclear Information System (INIS)

    Asaoka, Y.; Hiwatari, R.; Okano, K.; Ogawa, Y.; Ise, H.; Nomoto, Y.; Kuroda, T.; Mori, S.; Shinya, K.

    2005-01-01

    Conceptual study on a demonstration plant for electric power generation, named Demo-CREST, was conducted based on the consideration that a demo-plant should have capacities both (1) to demonstrate electric power generation in a plant scale with moderate plasma performance, which will be achieved in the early stage of the ITER operation, and foreseeable technologies and materials and (2) to have a possibility to show an economical competitiveness with advanced plasma performance and high performance blanket systems. The plasma core was optimized to be a minimum size for both net electric power generation with the ITER basic plasma parameters and commercial-scale generation with advance plasma parameters, which would be attained by the end of ITER operation. The engineering concept, especially the breeding blanket structure and its maintenance scheme, is also optimized to demonstrate the tritium self-sustainability and maintainability of in-vessel components. Within the plasma performance as planned in the present ITER program, the net electric power from 0 MW to 500 MW is possible with the basic blanket system under the engineering conditions of maximum magnetic field 16 T, NBI system efficiency 50%, and NBI current drive power restricted to 200 MW. Capacities of stabilization of reversed shear plasma and the high thermal efficiency are additional factors for optimization of the advanced blanket. By replacing the blanket system with the advanced one of higher thermal efficiency, the net electric power of about 1000 MW is also possible so that the economic performance toward the commercial plant can be also examined with Demo-CREST. (author)

  4. Prospects for solar thermal electricity generation - an introduction

    International Nuclear Information System (INIS)

    DeLaquil, P.

    1991-01-01

    The future potential for solar thermal electric power plants is quite significant. The size of the renewable energy resource base for the United States of America alone is almost 500 times its current primary energy consumption. Unfortunately, the levels of current utilization are quite small. Why have these technologies not made a larger contribution to today's market? The answer is that significant barriers still exist. (orig.)

  5. Electric rate shock and the future of utility construction

    International Nuclear Information System (INIS)

    Nogee, A.J.

    1985-01-01

    How state regulators spread the costs of overbudget and, in some cases, unneeded new power plants looms as a major political and economic issue directly affecting more than a third of the nation's households and businesses. Today's local battles over rate shock have an even greater national significance because they will shape investment incentives for decades to come. In addition to mismanaged nuclear projects, most nuclear and coal plants being finished today represent excess generating capacity. Utility reserve margins averaged 34% last year instead of the 15-20% above peak demand that analysts agree is desirable. State regulators are increasingly refusing to allow utilities to include new plants in the rate base, and utilities are responding with warnings about future shortages. They may also try to reform or repeal the Holding Company Act. Utility critics point to alternatives to central plant construction with cogeneration and small power generation. 2 figures

  6. Exploration of dispatch model integrating wind generators and electric vehicles

    International Nuclear Information System (INIS)

    Haque, A.N.M.M.; Ibn Saif, A.U.N.; Nguyen, P.H.; Torbaghan, S.S.

    2016-01-01

    Highlights: • A novel business model for the BRPs is analyzed. • Imbalance cost of wind generation is considered in the UC-ED model. • Smart charging of EVs is included into the UC-ED problem to mitigate the imbalance cost. • Effects of smart charging on generation cost, CO 2 emissions and total network load are assessed. - Abstract: In recent years, the share of renewable energy sources (RES) in the electricity generation mix has been expanding rapidly. However, limited predictability of the RES poses challenges for traditional scheduling and dispatching mechanisms based on unit commitment (UC) and economic dispatch (ED). This paper presents an advanced UC-ED model to incorporate wind generators as RES-based units alongside conventional centralized generators. In the proposed UC-ED model, an imbalance cost is introduced reflecting the wind generation uncertainty along with the marginal generation cost. The proposed UC-ED model aims to utilize the flexibility of fleets of plug-in electric vehicles (PEVs) to optimally compensate for the wind generation uncertainty. A case study with 15 conventional units and 3 wind farms along with a fixed-sized PEV fleet demonstrates that shifting of PEV fleets charging at times of high wind availability realizes generation cost savings. Nevertheless, the operational cost saving incurred by controlled charging appears to diminish when dispatched wind energy becomes considerably larger than the charging energy of PEV fleets. Further analysis of the results reveals that the effectiveness of PEV control strategy in terms of CO 2 emission reduction is strongly coupled with generation mix and the proposed control strategy is favored in cases where less pollutant-based plants like nuclear and hydro power are profoundly dominant.

  7. Future trends in computer waste generation in India.

    Science.gov (United States)

    Dwivedy, Maheshwar; Mittal, R K

    2010-11-01

    The objective of this paper is to estimate the future projection of computer waste in India and to subsequently analyze their flow at the end of their useful phase. For this purpose, the study utilizes the logistic model-based approach proposed by Yang and Williams to forecast future trends in computer waste. The model estimates future projection of computer penetration rate utilizing their first lifespan distribution and historical sales data. A bounding analysis on the future carrying capacity was simulated using the three parameter logistic curve. The observed obsolete generation quantities from the extrapolated penetration rates are then used to model the disposal phase. The results of the bounding analysis indicate that in the year 2020, around 41-152 million units of computers will become obsolete. The obsolete computer generation quantities are then used to estimate the End-of-Life outflows by utilizing a time-series multiple lifespan model. Even a conservative estimate of the future recycling capacity of PCs will reach upwards of 30 million units during 2025. Apparently, more than 150 million units could be potentially recycled in the upper bound case. However, considering significant future investment in the e-waste recycling sector from all stakeholders in India, we propose a logistic growth in the recycling rate and estimate the requirement of recycling capacity between 60 and 400 million units for the lower and upper bound case during 2025. Finally, we compare the future obsolete PC generation amount of the US and India. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. The share of nuclear energy in the long-term electricity generation development in Poland

    International Nuclear Information System (INIS)

    Lipko, Krzysztof; Kwiatkowski, Mieczyslaw

    1999-01-01

    Polish power sector is currently undergoing rapid restructuring changes and according to new energy legislation electricity begins to be recognized as other tradable goods. Simultaneously an awareness of interdependencies between power generation expansion and a protection of the environment increases. Presented paper shows these interdependencies against the background of current and future electricity demand satisfying plans determined in Development Office of Polish Power Grid Company in the time range up to the year 2020. Special consideration is given to constraints assumed for power generation sector, relating to emissions of air pollutants, and their influence on possible changes in the mix of fuels used for power generation. In the first part of the paper an applied methodology of drawing up demand satisfying plans consistent with the rules of integrated resource planning (IRP) is described. Accepted macroeconomic assumptions (including these concerning electricity demand forecast) and development constraints related to emissions of air pollutants consistent with national legislation as well as signed international agreements are presented. The set of new generation technologies considered in development studies is described. Two scenarios of the power generation expansion plants developed for a high electricity demand growth are presented. One of them takes into account CO 2 emission constraint while the other neglects it. In the paper it is proved that the above constraint has great influence on the future mix of power plants. In the case when this constraint is taken into account the expansion of electricity generation beyond the year 2010 is based on technologies which do not increase CO 2 emissions, as for example, nuclear power. (author)

  9. Managing congestion and intermittent renewable generation in liberalized electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, Friedrich

    2013-02-27

    This dissertation focuses on selected aspects of network congestion arising in liberalized electricity markets and their management methods with a special weight placed on the integration of increased renewable generation in Europe and Germany. In a first step, the theoretical concepts of congestion management are introduced complemented by a review of current management regimes in selected countries. In the second step, the European approach of managing congestion on international as well as national transmission links is analyzed and the benefits of an integrated congestion management regime are quantified. It is concluded that benefits can be achieved by a closer cooperation of national transmission system operators (TSOs). Thirdly, the German congestion management regime is investigated and the impact of higher renewable generation up to 2020 on congestion management cost is determined. It is shown that a homogeneous and jointly development of generation and transmission infrastructure is a prerequisite for the application of congestion alleviation methods and once they diverge congestion management cost tend to increase substantially. Lastly, the impact of intermittent and uncertain wind generation on electricity markets is analyzed. A stochastic electricity market model is described, which replicates the daily subsequent clearing of reserve, day ahead, and intraday market typical for European countries, and numerical results are presented.

  10. The Contribution of Electricity Generation to Greenhouse Effect

    International Nuclear Information System (INIS)

    Lubis, Erwansyah

    2008-01-01

    The development activities has successfully increasing the human kind, but also has increasing trend the planet changes radically, because of the greenhouse effect (GHE), decreasing ozone layer and acid rain, that all could treat the living of the species-species and including man inside. The electricity generation and transportation are the main contribution of greenhouse gas (GHG), reaching 1/3 of global emission. Base on the Kyoto protocol in 1997, that all countries, alone or together agree to reduce the emission of GG of 5.2 % under the emission of the 1990. The decreasing of GHG could be reached by implementing the technology generation that contain low carbon, such a natural gas, hydro power, wind, solar and nuclear power. Diversification of electricity generation has to take into a count of environmental capacity, so the supply stability and sustainable development could be reached. The IAEA results studies indicated that the emission factor of fossil fuel 2 times greater compare to the natural gas. The emission factor of wind and biomass lie between solar and nuclear power. In the electricity generation chain, nuclear power emit the 25 g of CO 2 /kWh compare to fossil fuel emit 250 - 1250 g CO 2 /kWh. (author)

  11. Towards a greener tomorrow: the future for solar electricity

    International Nuclear Information System (INIS)

    Hartford, John

    1998-01-01

    A typical photovoltaic (PV) system consisting of an array of photovoltaic cells which convert sunlight directly into DC electricity silently and without pollution is simple and reliable, easy to install and requires little maintenance and no refuelling. However, there are a number of technical, economic and structural problems to be overcome before photovoltaics achieve significant penetration in the energy market. The main technical barrier is the low energy density of sunlight and its uneven distribution. Furthermore, photovoltaics cannot produce electricity at night and although battery storage can be provided or PV systems can be connected to the grid, this adds to the cost. Cost is the major barrier to penetration of the market but this is continually being cut. Advances in solar cell design are discussed which are bringing down the cost of fabrication and this added to economics of scale as market share develops will eventually make PV systems more competitive. So far, PV systems have found their largest market in powering isolated devices and in the infrastructure of remote rural communities in developing countries but grid connected systems, both centralised power generation plants and building integrated systems, are expected to take over the largest share of the PV market by 2010. (UK)

  12. Financing future exports of Canada's electrical power equipment industry

    International Nuclear Information System (INIS)

    Hay, K.A.J.; Saravanamuttoo, C.A.

    1992-01-01

    The economic impact on the Canadian power sector of continued constraints on the availability of concessionary export financing is examined. An overview of the structure of the Canadian electrical power equipment industry is provided, followed by a discussion of its competitiveness and performance. Export prospects are outlined and separate reviews are presented of hydroelectric and thermal expansion. A global market of US $17 billion for hydroelectric power in the 1990s is forecast, and a market of US $300 billion for all forms of power generation in developing Asia. The export strategies of international competitive bidding, forming a consortium within an international multinational enterprise, co-financing with Japanese aid agencies, and direct negotiation are discussed. The costs and benefits of concessional financing are assessed and shown to bring net fiscal benefits. 12 refs., 2 tabs

  13. Reliability payments to generation capacity in electricity markets

    International Nuclear Information System (INIS)

    Olsina, Fernando; Pringles, Rolando; Larisson, Carlos; Garcés, Francisco

    2014-01-01

    Electric power is a critical input to modern economies. Generation adequacy and security of supply in power systems running under competition are currently topics of high concern for consumers, regulators and governments. In a market setting, generation investments and adequacy can only be achieved by an appropriate regulatory framework that sets efficient remuneration to power capacity. Theoretically, energy-only electricity markets are efficient and no additional mechanism is needed. Nonetheless, the energy-only market design suffers from serious drawbacks. Therefore, jointly with the evolution of electricity markets, many remunerating mechanisms for generation capacity have been proposed. Explicit capacity payment was the first remunerating approach implemented and perhaps still the most applied. However, this price-based regulation has been applied no without severe difficulties and criticism. In this paper, a new reliability payment mechanism is envisioned. Capacity of each generating unit is paid according to its effective contribution to overall system reliability. The proposed scheme has many attractive features and preserves the theoretical efficiency properties of energy-only markets. Fairness, incentive compatibility, market power mitigation and settlement rules are investigated in this work. The article also examines the requirements for system data and models in order to implement the proposed capacity mechanism. A numerical example on a real hydrothermal system serves for illustrating the practicability of the proposed approach and the resulting reliability payments to the generation units. - Highlights: • A new approach for remunerating supply reliability provided by generation units is proposed. • The contribution of each generating unit to lessen power shortfalls is determined by simulations. • Efficiency, fairness and incentive compatibility of the proposed reliability payment are assessed

  14. Small-scale electric generators for arctic applications

    International Nuclear Information System (INIS)

    Lamp, T.R.

    1995-01-01

    Forest fires that have endangered remote US Air Force sites equipped with radioisotope thermoelectric generators (RTGs) has prompted the assessment of power generating systems as substitutes for RTGs in small scale (10--120 watt) applications. A team of scientists and engineers of the US Air Forces' Wright Laboratory conductd an assessment of electrical power technologies for use by the Air Force in remote, harsh environments. The surprisingly high logistics costs of operating fossil fuel generators resulted in the extension of the assessment to non-RTG sites. The candidate power sources must operate unattended for long periods at a high level of operational reliability. Selection of the optimum power generation technology is complicated and heavily driven by the severe operating environment and compounded by the remoteness of the location. It is these site-related characteristics, more than any other, that drive the selection of a safe and economical power source for Arctic applications. A number of proven power generation technologies were evaluated. The assessment concluded that RGTs are clearly the safest, most reliable, and most economical approach to supplying electrical power for remote, difficult to assess locations. The assessment also indicated that the logistics costs associated with combustion driven generator systems could be substantially reduced through the use of conversion technologies which have been previously developed for space power applications. copyright 1995 American Institute of Physics

  15. Evaluation and Ranking of Geothermal Resources for Electrical Generation or Electrical Offset in Idaho, Montana, Oregon and Washington. Volume II.

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, R. Gordon

    1985-06-01

    This volume contains appendices on: (1) resource assessment - electrical generation computer results; (2) resource assessment summary - direct use computer results; (3) electrical generation (high temperature) resource assessment computer program listing; (4) direct utilization (low temperature) resource assessment computer program listing; (5) electrical generation computer program CENTPLANT and related documentation; (6) electrical generation computer program WELLHEAD and related documentation; (7) direct utilization computer program HEATPLAN and related documentation; (8) electrical generation ranking computer program GEORANK and related documentation; (9) direct utilization ranking computer program GEORANK and related documentation; and (10) life cycle cost analysis computer program and related documentation. (ACR)

  16. Region-specific study of the electric utility industry: financial history and future power requirements for the VACAR region

    International Nuclear Information System (INIS)

    Pochan, M.J.

    1985-07-01

    Financial data for the period 1966 to 1981 are presented for the four investor-owned electric utilities in the VACAR (Virginia-Carolinas) region. This region was selected as representative for the purpose of assessing the availability, reliability, and cost of electric power for the future in the United States. The estimated demand for power and planned additions to generating capacity for the region through the year 2000 are also given

  17. Environmental degradation costs in electricity generation: The case of the Brazilian electrical matrix

    International Nuclear Information System (INIS)

    Alves, Laura Araujo; Uturbey, Wadaed

    2010-01-01

    The main purpose of this paper is to emphasize the importance of including environmental degradation costs in the long-term planning of the Brazilian electricity sector. To this aim, environmental external costs associated to both hydro-power and thermal-power electricity generation are investigated. Monetary valuation methodologies are applied and environmental degradation costs, expressed in per kWh of generated energy, are obtained for the main types of generation sources of the Brazilian electricity matrix. Both local pollution due to particulate matter emissions and global warming effects are assessed. A classification of the sources from the point of view of their impact on the environment is given. Degradation costs associated to the installed capacity expansion in the Brazilian electricity sector during the time horizon 2007-2016 are estimated. These resulting costs represent lower boundary damage estimates associated only with the energy to be generated during the period. Results indicate that local pollution caused by a small number of plants could be even more costly to society than global warming and, also, show the importance of considering not only unitary damage costs but the participation of each source on the generated energy during the time horizon, as a guide to planning and policy making.

  18. Electricity generation and environmental externalities: Case studies, September 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-28

    Electricity constitutes a critical input in sustaining the Nation`s economic growth and development and the well-being of its inhabitants. However, there are byproducts of electricity production that have an undesirable effect on the environment. Most of these are emissions introduced by the combustion of fossil fuels, which accounts for nearly 70 percent of the total electricity generated in the United States. The environmental impacts (or damages) caused by these emissions are labeled environmental ``externalities.`` Included in the generic term ``externality`` are benefits or costs resulting as an unintended byproduct of an economic activity that accrue to someone other than the parties involved in the activity. This report provides an overview of the economic foundation of externalities, the Federal and State regulatory approaches, and case studies of the impacts of the externality policies adopted by three States.

  19. Comparative assessment of electricity generation options using DECADES

    International Nuclear Information System (INIS)

    Perez Martin, D.; Lopez Lopez, I.; Turtos Carbonell, L.

    1999-01-01

    Cuba is poor in primary energy resources. In 1998, 99.4% of electricity generated by the National Electric System came from fossil fuel with the environment implications that this Situation causes. Cuba joint DECADES project (Databases and methodologies for Comparative Assessment of Different Energy Sources) to support planning and decision making process with Appropriated tools. The paper presents the main work carried out with DECADES. An important Effort was devoted to implement the Country Specific Database, to assess power plants and Chains, to select and evaluate different expansion scenarios taking into consideration its Environment implications. At the same time an effort was dedicated to correct, test and Implement DECADES capabilities. The potential role of nuclear power in the expansion policy of Cuban electric system, the Influence of an Oil Steam Boiler project and control technology installation, were performed. Conclusions of the main task done with DECADES are presented

  20. Environmental codes of practice for steam electric power generation

    International Nuclear Information System (INIS)

    1985-03-01

    The Design Phase Code is one of a series of documents being developed for the steam electric power generation industry. This industry includes fossil-fuelled stations (gas, oil and coal-fired boilers), and nuclear-powered stations (CANDU heavy water reactors). In this document, environmental concerns associated with water-related and solid waste activities of steam electric plants are discussed. Design recommendations are presented that will minimize the detrimental environmental effects of once-through cooling water systems, of wastewaters discharged to surface waters and groundwaters, and of solid waste disposal sites. Recommendations are also presented for the design of water-related monitoring systems and programs. Cost estimates associated with the implementation of these recommendations are included. These technical guides for new or modified steam electric stations are the result to consultation with a federal-provincial-industry task force

  1. The development of the 3. generation electric scooter in Taiwan

    International Nuclear Information System (INIS)

    Shu, J.P.H.; Wu, C.T.; Hsu, C.T.; Wu, C.T.; Lo, S.-M.; Hsiau, C.

    2000-01-01

    At the present time, there are approximately 25,000 electric scooters in operation in Taiwan. Most of the customers so far have complained about the cruising range, vehicle weight, charging time, and vehicle cost. Two generations of electric scooters have already been developed by the Industrial Technology Research Institute (ITRI), the first generation used valve-regulated lead-acid (VRLA) batteries, while the second generation used nickel-metal hydride (Ni-MH) batteries. Production of the first generation of electric scooters began in September, 1999 while the second generation is still in the cost-down engineering phase. The Government had established mandatory sales regulations, and in order to support this program and improve the overall vehicle performance, ITRI is now developing the third generation, utilizing a lithium-ion (Li-ion) battery, in addition to higher power-electronic efficiency systems. The stated objectives of the development program for the third generation are performance improvements of 25 per cent for weight, 50 per cent for the cruising range, 20 per cent for total energy efficiency, 300 per cent longer battery life at no cost increase after the government subsidy. If the goals are met, the third generation electric scooter could replace most of the 50 cc gasoline scooters in operation in Asia. Included in the presentation are the major technical facets of development for the third generation. Aluminum-casting frame is scheduled to replace the steel-welding frame. Lithium-ion battery is equipped with a battery management system to optimize battery cells and protect them. The phase angle and flux-weakening of the motor and controller are being optimized in order to increase the torque at low and high speed. The two-stage gear transmission is replaced with a single-stage timing belt transmission of a new design. The total efficiency of the vehicle will be monitored by a centralized vehicle energy management system that will control the

  2. Clean coal technology choices relating to the future supply and demand of electricity in Southern Africa

    International Nuclear Information System (INIS)

    Lennon, S.J.

    1997-01-01

    The finalization of the United Nations Framework Convention on Climate Change (UNFCCC) has catalysed a high degree of debate and interest in the future of coal-fired power generation. Fossil fuel combustion is responsible for a significant percentage of pollutants emitted globally, and coal will continue to play a major role in the energy portfolios of many countries. This is particularly true for developing countries. This fact has resulted in a major focus on technologies which improve the efficiency of coal combustion and conversion to electrical energy, as well as technologies which directly of indirectly reduce overall emissions. The issues around clean coal technologies (CCT) and their evolution, development and uptake in both developed and developing countries are complex. This paper addresses these issues in a Southern African context, viewed from the policy perspective of developing countries and presented in a framework of electricity supply and demand considerations in the region. The principal climate change policy elements proposed for South Africa are presented in the context of the current electricity supply and demand situation in the region. These are presented in the context of Eskom's Integrated Electricity Planning (IEP) process including the environmental considerations inherent in decision-making processes. The potential future of the CCT, barriers to their introduction and potential measures to facilitate their accelerated adoption are discussed. (author). 4 refs., 5 tabs., 2 figs

  3. More electric aircraft starter-generator system with utilization of hybrid modulated model predictive control

    OpenAIRE

    Yoeh, Seang Shen; Yang, Tao; Tarisciotti, Luca; Hill, Christopher Ian; Bozhko, Serhiy

    2016-01-01

    The current trend for future aircraft is the adoption of the More Electric Aircraft (MEA) concept. The electrical based starter-generator (S/G) system is one of the core ideas from the MEA concept. The PI based control scheme has been investigated in various papers for the permanent magnet based S/G system. Different control schemes are to be considered to improve the control performance of the S/G system. A type of non-linear control called Model Predictive Control (MPC) is considered for it...

  4. Comparative costs of coal and nuclear-generated electricity in the united states

    International Nuclear Information System (INIS)

    Brandfon, W.W.

    1987-01-01

    This paper compares the future first-year operating costs and lifetime levelized costs of producing baseload coal- and nuclear-generated electricity under schedules shorter than those recently experienced at U.S. plants. Nuclear appears to have a clear economic advantage. Coal is favorable only when it is assumed that the units will operate at very low capacity factors and/or when the capital cost differential between nuclear and coal is increased far above the recent historical level. Nuclear is therefore a cost-competitive electric energy option for utilities and should be considered as an alternative to coal when large baseload capacity is required. (author)

  5. Generation Ratio Availability Assessment of Electrical Systems for Offshore Wind Farms

    DEFF Research Database (Denmark)

    Zhao, Menghua; Chen, Zhe; Blaabjerg, Frede

    2007-01-01

    An availability index, Generation Ratio Availability (GRA), is proposed to evaluate the electrical system of offshore wind farms (OWF). The GRA is the probability that at least a certain percent of wind power could be transferred to the grid system through the concerned electrical system. The GRA....... Comprehensive studies have been conducted to investigate the influence of the network design, component parameters, and wind-speed regimes on the GRA. The analysis presented in this paper is useful for both future wind farm planning and existing OWF evaluation....

  6. Grid requirements applicable to future NPPs in the new European Electricity Framework

    International Nuclear Information System (INIS)

    Beato Castro, D.; Padill, C. M.

    2000-01-01

    With a view to keeping nuclear energy as an option for future power generation in a competitive market and taking advantage of the current operating experience, a group of European electric utilities have come together to define common requirements for the design and supply of future Light Water Reactor (LWR) plants connected to the electrical system. These requirements, defined with the aim of standardizing and adapting design to the conditions of the new electricity framework, are being included in the European Utility Requirements (EUR) document. Although there are different types of power plants operating appropriately in large electrical systems, the idea is to find the minimum requirements that will allow growth of this type of energy in the European electricity industry without reducing quality, safety and reliability of interconnected electrical systems. It is therefore necessary to take into account the features of the existing power systems and the operating characteristics and design of nuclear power plants so as to harmonize their respective technical peculiarities in the framework of the deregulated electricity sector. The definition of these grid requirements is based primarily on the operating conditions of the Union pour la Coordination de la Production et le Transport de L'Electricite (UCPTE) grid and takes into account the current Grid Code of the main European countries, for the forthcoming Issue C. This paper sets outs the most relevant aspects of the grid requirements, included in Chapter 2.3 of the EUR document Grid Requirements, Issue B, for the connection of future nuclear power plants in the European electricity system, and others that are being considered in the preparation of the new issue of the document that will take into account the deregulated electricity market situation and deal with the following aspects: General characteristics. Operation of a plant under normal grid conditions. Operation of a plant under disturbed grid

  7. Nuclear power as an option in electrical generation planning for Croatia

    International Nuclear Information System (INIS)

    Feretic, D.; Tomsic, Z.; Cavlina, N.; Kovacevic, T.

    2000-01-01

    The expected increase of electricity consumption in the next two decades, if covered mainly by domestic production, will require roughly 4500 MW of new installed capacity. The question is which resource mix would be optimal for the future power plants. Taking into account lack of domestic resources for electricity generation, current trends in the European energy markets, and environmental impact of various energy technologies, it seems reasonable for Croatia to keep the nuclear option open in the future energy planning. In line with that conclusion, this paper analyzes how the introduction of nuclear power plants would influence future power system expansion plans in Croatia, and the possibility to meet the Kyoto requirement. The effects of CO 2 emission tax and external costs on the optimal capacity mix and the emissions levels are also examined. (author)

  8. Strategies and options for electricity generation in Egypt up to 2020

    International Nuclear Information System (INIS)

    Yassin, I. M.; Megahed, M. M.; Motayasser, S. S.

    2004-01-01

    Over the period 1970-2000, the total primary energy requirements in Egypt have increased from 7.8 million tones of oil equivalent (Mtoe) to 44.2 Mtoe. In the same period, electricity generation has increased from 6.7 TWh to 73.3 TWh. The demand for both primary energy and electricity is expected to continue at higher growth rates in the future due to the ambitious governmental plans aiming at increasing the gross domestic product (GDP) at an average annual growth rate of 8% up to the year 2020. Because of the limited fossil fuel energy resources and the almost fully utilized hydro energy, Egypt has been considering for sometime the various options for satisfying the increasing demand for electricity, including nuclear energy. To this end, the Nuclear Power Plants Authority carried out a comparative study of the various strategies and options for electricity generation in Egypt with technical assistance from the International Atomic Energy Agency (IAEA) utilizing the DECADES Tool. The main objective of the study was to determine the optimal electricity generation mix up to the year 2020, including nuclear and renewable (solar and wind) energies. DECADES is restricted by some limitation that it did not take into its consideration modeling of some energy forms and systems such as simulation of Renewable Energy Options (REO), in particular thermal/solar and wind plants and simulation of Independent Power Producers (IPP). REO and IPP, as well as the nuclear energy option are expected to play an important role in the future electricity generation mix in Egypt. Therefore it is important to consider its effects economically and environmentally when studying the best expansion system in Egypt. This paper presents the modifications for DECADES modeling to enable simulation for the above energy forms and systems, as well as the results of the comparative assessment study.(author)

  9. The water implications of generating electricity: water use across the United States based on different electricity pathways through 2050

    International Nuclear Information System (INIS)

    Macknick, J; Sattler, S; Clemmer, S; Rogers, J; Averyt, K

    2012-01-01

    The power sector withdraws more freshwater annually than any other sector in the US. The current portfolio of electricity generating technologies in the US has highly regionalized and technology-specific requirements for water. Water availability differs widely throughout the nation. As a result, assessments of water impacts from the power sector must have a high geographic resolution and consider regional, basin-level differences. The US electricity portfolio is expected to evolve in coming years, shaped by various policy and economic drivers on the international, national and regional level; that evolution will impact power sector water demands. Analysis of future electricity scenarios that incorporate technology options and constraints can provide useful insights about water impacts related to changes to the technology mix. Utilizing outputs from the regional energy deployment system (ReEDS) model, a national electricity sector capacity expansion model with high geographical resolution, we explore potential changes in water use by the US electric sector over the next four decades under various low carbon energy scenarios, nationally and regionally. (letter)

  10. Low-cost distributed solar-thermal-electric power generation

    Science.gov (United States)

    Der Minassians, Artin; Aschenbach, Konrad H.; Sanders, Seth R.

    2004-01-01

    Due to their high relative cost, solar electric energy systems have yet to be exploited on a widespread basis. It is believed in the energy community that a technology similar to photovoltaic (PV), but offered at about $1/W would lead to widespread deployment at residential and commercial sites. This paper addresses the investigation and feasibility study of a low-cost solar thermal electricity generation technology, suitable for distributed deployment. Specifically, we discuss a system based on nonimaging solar concentrators, integrated with free-piston Stirling engine devices incorporating integrated electric generation. We target concentrator-collector operation at moderate temperatures, in the range of 125°C to 150°C. This temperature is consistent with use of optical concentrators with concentration ratios on the order of 1-2. These low ratio concentrators admit wide angles of radiation acceptance and are thus compatible with no diurnal tracking, and no or only a few seasonal adjustments. Thus, costs and reliability hazards associated with tracking hardware systems are avoided. Further, we note that in the intended application, there is no shortage of incident solar energy, but rather it is the capital cost of the solar-electric system that is most precious. Thus, we outline a strategy for exploiting solar resources in a cost constrained manner. The paper outlines design issues, and a specific design for an appropriately dimensioned free-piston Stirling engine. Only standard low-cost materials and manufacturing methods are required to realize such a machine.

  11. Investment and deregulation in the electricity generation industry

    International Nuclear Information System (INIS)

    Peluchon, B.

    2007-12-01

    This work addresses the issue of investment in the electricity generation industry. As the analysis of many crisis which have affected electricity markets shows, there is a systematic under-investment in peak capacity. Electricity prices are not high enough to cover fixed costs of such generators, a phenomenon that has been dubbed 'missing money' in some recent papers (Stoft). The investment decisions of a duo-poly facing random demand are then compared to those of a public monopoly. The results are that no prices may be high enough to solve the 'missing money' problem, since the duo-poly is able to exercise market power in order to maximize his profit. This results systematically in fewer peak capacity in the duo-poly case than in the public monopoly case. This remains true in the case of a n-oligopoly. The necessity of designing a mechanism remunerating capacity is thus demonstrated. Capacity markets are then analysed in the light of those results. What appears is that operating reserves are a public good and, as such, prevents capacity markets to solve the 'missing money' problem. This casts a shadow on the pursuit of deregulation in the electricity industry. (author)

  12. Electricity generation from landfill gas: a commercial view revisited

    International Nuclear Information System (INIS)

    Limbrick, A.J.

    1992-01-01

    Wapsey's Wood power station has been generating electricity from landfill gas since 1987. Despite a good technical track record, the project did not secure a fair price for the electricity it sold until it was included in the 1991 Non-Fossil Fuel Obligation (NFFO). The NFFO has served to bring forward approximately 560 MW of renewable energy generating capacity, of which 15 per cent is fuelled by landfill gas. However, case histories such as that of Wapsey's Wood highlight the weaknesses of the current arrangements. To secure the continued steady growth of commercially robust renewable energy projects, there is a need to boost the business confidence of potential developers. The paper proposes two ways to remove the present uncertainty: simplify the application procedures, and remove the December 1998 expiry date that currently applies to power purchase agreements under the NFFO. (author)

  13. Microgrids in the Evolving Electricity Generation and DeliveryInfrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Marnay, Chris; Venkataramanan, Giri

    2006-02-01

    The legacy paradigm for electricity service in most of the electrified world today is based on the centralized generation-transmission-distribution infrastructure that evolved under a regulated environment. More recently, a quest for effective economic investments, responsive markets, and sensitivity to the availability of resources, has led to various degrees of deregulation and unbundling of services. In this context, a new paradigm is emerging wherein electricity generation is intimately embedded with the load in microgrids. Development and decay of the familiar macrogrid is discussed. Three salient features of microgrids are examined to suggest that cohabitation of micro and macro grids is desirable, and that overall energy efficiency can be increased, while power is delivered to loads at appropriate levels of quality.

  14. Net energy analysis of different electricity generation systems

    International Nuclear Information System (INIS)

    1994-07-01

    This document is a report on the net energy analysis of nuclear power and other electricity generation systems. The main objectives of this document are: To provide a comprehensive review of the state of knowledge on net energy analysis of nuclear and other energy systems for electricity generation; to address traditional questions such as whether nuclear power is a net energy producer or not. In addition, the work in progress on a renewed application of the net energy analysis method to environmental issues is also discussed. It is expected that this work could contribute to the overall comparative assessment of different energy systems which is an ongoing activity at the IAEA. 167 refs, 9 figs, 5 tabs

  15. Electric Generator in the System for Damping Oscillations of Vehicles

    Directory of Open Access Journals (Sweden)

    Serebryakov A.

    2017-04-01

    Full Text Available The control systems for the objects of industry, power generation, transport, etc. are extremely complicated; functional efficiency of these systems determines to a great extent the safe and non-polluting operation as well as convenience of service and repair of such objects. The authors consider the possibility to improve the efficiency of systems for damping oscillations in transport using a combination of electrical (generators of rotational and linear types and hydraulic means. Better efficiency of functioning is achieved through automatic control over the operational conditions of such a system in order to make it adaptive to variations in the road profile and ambient temperature; besides, it is possible to produce additional electric energy.

  16. Electric Generator in the System for Damping Oscillations of Vehicles

    Science.gov (United States)

    Serebryakov, A.; Kamolins, E.; Levin, N.

    2017-04-01

    The control systems for the objects of industry, power generation, transport, etc. are extremely complicated; functional efficiency of these systems determines to a great extent the safe and non-polluting operation as well as convenience of service and repair of such objects. The authors consider the possibility to improve the efficiency of systems for damping oscillations in transport using a combination of electrical (generators of rotational and linear types) and hydraulic means. Better efficiency of functioning is achieved through automatic control over the operational conditions of such a system in order to make it adaptive to variations in the road profile and ambient temperature; besides, it is possible to produce additional electric energy.

  17. Facts against nuclear electricity generation. 2. enlarged ed.

    International Nuclear Information System (INIS)

    Buechele, C.

    1986-01-01

    The book destroys a legend. The nuclear cartel still goes on telling the tale of safety, environmental compatibility and economic efficiency of nuclear electricity generation. But nothing in this story stands the test: Bare facts destroy the legend. Up to now, only insiders have been able to state counterarguments. The book in hand now presents in a nutshell all results and experience and facts to be brought forward against nuclear electricity generation. The material is presented in a problem-oriented, reliable and comprehensible manner. Anyone who long since suspected lies and malinformation of the public will step by step find the arguments justifying his suspicion. In an annex, Harald Gaber explains the Chernobyl disaster and its consequences. A literature index with comments is a helpful guide for further reading. (orig.) [de

  18. Benefits of flexibility from smart electrified transportation and heating in the future UK electricity system

    International Nuclear Information System (INIS)

    Teng, Fei; Aunedi, Marko; Strbac, Goran

    2016-01-01

    Highlights: • The economic and environmental benefits of smart EVs/HPs are quantified. • This paper implements an advanced stochastic analytical framework. • Operating patterns and potential flexibility of EVs/HPs are sourced from UK trials. • A comprehensive set of case studies across UK future scenarios are carried out. - Abstract: This paper presents an advanced stochastic analytical framework to quantify the benefits of smart electric vehicles (EVs) and heat pumps (HPs) on the carbon emission and the integration cost of renewable energy sources (RES) in the future UK electricity system. The typical operating patterns of EVs/HPs as well as the potential flexibility to perform demand shifting and frequency response are sourced from recent UK trials. A comprehensive range of case studies across several future UK scenarios suggest that smart EVs/HPs could deliver measurable carbon reductions by enabling a more efficient operation of the electricity system, while at the same time making the integration of electrified transport and heating demand significantly less carbon intensive. The second set of case studies establish that smart EVs/HPs have significant potential to support cost-efficient RES integration by reducing: (a) RES balancing cost, (b) cost of required back-up generation capacity, and (c) cost of additional low-carbon capacity required to offset lower fuel efficiency and curtailed RES output while achieving the same emission target. Frequency response provision from EVs/HPs could significantly enhance both the carbon benefit and the RES integration benefit of smart EVs/HPs.

  19. Feasibility of free piston generation unit for electrical power provision

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, R.; Roskilly, A.; Shaw, R.; French, C. [Newcastle Univ. (United Kingdom)

    2000-07-01

    Free piston linear engines offer the capability of providing power without the need to convert reciprocating motion into rotary motion. This allows for the utilisation of higher peak pressures during the combustion process and thus improves efficiency. The objective of this paper is to outline the potential benefits of a Free Piston Generator (FPG) and discuss the feasibility of this technology as a potential platform for electrical power provision. (authors)

  20. Principles of tariff determination for NPP electric power generation

    International Nuclear Information System (INIS)

    Ratnikov, B.E.; Gitel'man, L.D.; Artemov, Yu.N.; Fiantsev, V.S.

    1988-01-01

    Foundations of price-setting and order of accounting arrangement for NPP electric power are considered. NPP tariffs are established proceeding from standard costs of power generation. The standards are differentiated as to NPP groups, depending on technical, regional and natural geographic factors, taking into account the facility type, unit capacity and the number of similar NPP units. The conclusion is made that under conditions of NPP economic independence expansion and creation of prerequisites for going over to self-financing principles and also due to the qualitatively new stage of nuclear power generation development the level of efficiency, forseen by the tariffs, should be increased

  1. Simulation of gaseous emissions from electricity generating plant

    International Nuclear Information System (INIS)

    Bellhouse, G.M.; Whittington, H.W.

    1996-01-01

    In electricity supply networks, traditional dispatch algorithms are based on features such as economics and plant availability. Annual limits on emissions from fossil-fuelled stations are regarded as a restriction and set a ceiling on generation from particular stations. With the impending introduction of financial penalties on emissions, for example cal bon taxation, algorithms will have to be developed which allow the dispatch engineer to assess the cost in real-time of different generation options involving fossil-fuelled plants. Such an algorithm is described in this paper. (UK)

  2. Comparison of approximate electrical energy generating costs in OECD countries

    International Nuclear Information System (INIS)

    Stevens, G.H.; Bertel, E.

    1996-01-01

    Costs of power generating in nuclear power plants have been predicted taking into account all factors connected with investment, maintenance, exploitation and decommissioning, basing on last OECD report. The costs have been compared with alternative solutions. In majority of OECD countries the direct costs of electricity generation are very close for nuclear fossil-fuel and gas power plants. All indirect costs such as environmental impact, public health hazard, waste management, accident risk and also public acceptance for nuclear power have been discussed. 13 refs, 5 tabs

  3. Risk assessment of electric generation systems with high wind penetration

    International Nuclear Information System (INIS)

    Salgado Duarte, Yorlandys; Castillo Serpa, Alfredo M. del

    2017-01-01

    The research evaluates the risk function of an Electric Generation System (SGE) with high wind power penetration using the Sequential Monte Carlo Simulation (SMCS) method, which allows calculating indicators that characterize the performance of the SGE with expected average values. The research uses a Markov model of two states or four states according to the characteristics of the generator to simulate the instantaneous capacity. The primary sources of each conventional generator are assumed to be always available; however, wind power depends on the wind behavior in each analyzed region. In this research, the Chronological Series and Weibull models are used to model the wind behavior, and the analyzes are performed in the IEEE-RTS system. The work shows that the behavior of the probabilistic indicators used to analyze the static capacity of the SGE is determined by the model used to simulate the stochastic of the generators and by the primary energy source. (author)

  4. Solar thermal electric power generation - an attractive option for Pakistan

    International Nuclear Information System (INIS)

    Khan, N.A

    1999-01-01

    Solar Thermal Energy is being successfully used for production of electricity in few developed countries for more than 10 years. In solar Electric Generating Systems high temperature is generated by concentrating solar energy on black absorber pipe in evacuated glass tubes. This heat is absorbed and transported with the help of high temperature oil in to highly insulated heat exchanger storage tanks. They are subsequently used to produce steam that generates power through steam turbines as in standard thermal power plants. Various components involved in Solar thermal field have been developed at the Solar Systems Laboratory of College of EME, NUST Rawalpindi. It is considered as a cost effective alternate for power generation. The research has been partially sponsored by Ministry of Science and Technology under its Public Sector Development Program (PSDP) in (1996-1998). Parabolic mirror design, fabrication, polishing, installation, solar tracking, absorber pipe, glass tubes, steam generation al have been developed. This paper will cover the details of indigenous technological break through made in this direction. (author)

  5. Electric generation and ratcheted transport of contact-charged drops

    Science.gov (United States)

    Cartier, Charles A.; Graybill, Jason R.; Bishop, Kyle J. M.

    2017-10-01

    We describe a simple microfluidic system that enables the steady generation and efficient transport of aqueous drops using only a constant voltage input. Drop generation is achieved through an electrohydrodynamic dripping mechanism by which conductive drops grow and detach from a grounded nozzle in response to an electric field. The now-charged drops are transported down a ratcheted channel by contact charge electrophoresis powered by the same voltage input used for drop generation. We investigate how the drop size, generation frequency, and transport velocity depend on system parameters such as the liquid viscosity, interfacial tension, applied voltage, and channel dimensions. The observed trends are well explained by a series of scaling analyses that provide insight into the dominant physical mechanisms underlying drop generation and ratcheted transport. We identify the conditions necessary for achieving reliable operation and discuss the various modes of failure that can arise when these conditions are violated. Our results demonstrate that simple electric inputs can power increasingly complex droplet operations with potential opportunities for inexpensive and portable microfluidic systems.

  6. Robust Control of Aeronautical Electrical Generators for Energy Management Applications

    Directory of Open Access Journals (Sweden)

    Giacomo Canciello

    2017-01-01

    Full Text Available A new strategy for the control of aeronautical electrical generators via sliding manifold selection is proposed, with an associated innovative intelligent energy management strategy used for efficient power transfer between two sources providing energy to aeronautical loads, having different functionalities and priorities. Electric generators used for aeronautical application involve several machines, including a main generator and an exciter. Standard regulators (PI or PID-like are normally used for the rectification of the generator voltage to be used to supply a high-voltage DC bus. The regulation is obtained by acting on a DC/DC converter that imposes the field voltage of the exciter. In this paper, the field voltage is fed to the generator windings by using a second-order sliding mode controller, resulting into a stable, robust (against disturbances action and a fast convergence to the desired reference. By using this strategy, an energy management strategy is proposed that dynamically changes the voltage set point, in order to intelligently transfer power between two voltage busses. Detailed simulation results are provided in order to show the effectiveness of the proposed energy management strategy in different scenarios.

  7. Automation of steam generator services at public service electric & gas

    Energy Technology Data Exchange (ETDEWEB)

    Cruickshank, H.; Wray, J.; Scull, D. [Public Service Electric & Gas, Hancock`s Bridge, NJ (United States)

    1995-03-01

    Public Service Electric & Gas takes an aggressive approach to pursuing new exposure reduction techniques. Evaluation of historic outage exposure shows that over the last eight refueling outages, primary steam generator work has averaged sixty-six (66) person-rem, or, approximately tewenty-five percent (25%) of the general outage exposure at Salem Station. This maintenance evolution represents the largest percentage of exposure for any single activity. Because of this, primary steam generator work represents an excellent opportunity for the development of significant exposure reduction techniques. A study of primary steam generator maintenance activities demonstrated that seventy-five percent (75%) of radiation exposure was due to work activities of the primary steam generator platform, and that development of automated methods for performing these activities was worth pursuing. Existing robotics systems were examined and it was found that a new approach would have to be developed. This resulted in a joint research and development project between Westinghouse and Public Service Electric & Gas to develop an automated system of accomplishing the Health Physics functions on the primary steam generator platform. R.O.M.M.R.S. (Remotely Operated Managed Maintenance Robotics System) was the result of this venture.

  8. Importance of hard coal in electricity generation in Poland

    Science.gov (United States)

    Plewa, Franciszek; Strozik, Grzegorz

    2017-11-01

    Polish energy sector is facing a number of challenges, in particular as regards the reconstruction of production potential, diversification of energy sources, environmental issues, adequate fuels supplies and other. Mandatory implementation of Europe 2020 strategy in terms of “3x20” targets (20% reduction of greenhouse gases, 20% of energy from renewable sources, and 20% increase of efficiency in energy production) requires fast decision, which have to be coordinated with energetic safety issues, increasing demands for electric energy, and other factors. In Poland almost 80% of power is installed in coal fired power plants and energy from hard coals is relatively less expensive than from other sources, especially renewable. The most of renewable energy sources power plants are unable to generate power in amounts which can be competitive with coal fires power stations and are highly expensive, what leads o high prices of electric energy. Alternatively, new generation of coal fired coal power plants is able to significantly increase efficiency, reduce carbon dioxide emission, and generate less expensive electric power in amounts adequate to the demands of a country.

  9. Ukraine biosolids incineration project generates electricity while solving disposal problems

    Energy Technology Data Exchange (ETDEWEB)

    Kosanke, J. [Quality Recycling Ltd., Henderson, NC (United States)

    2008-07-15

    This article described an innovative Waste-to-Energy (WtE) system that is currently being installed in the city of Odessa in the Ukraine. The city has a population of 1 million and is a major seaport on the Black Sea. Sewage sludge will be used as a biomass fuel to power an electrical generation plant. The system includes a clean-burning rotary cascading bed combustor (RCBC) linked to a boiler and an electricity-generating steam turbine. The RCBC spins in order to keep fuel cascading for maximum combustion, and is expected to burn over 50,000 tons of dewatered sewage sludge per year while generating 33,507,000 kWh of electricity per individual location. Eleven systems will be installed at major sewage processing modules in the Ukraine. A pilot program is also being conducted to test and monitor the system under United States emissions and operational standards. The RCBC is also being used to combust fuels derived from municipal solid waste (MSW) at a site in Kansas. Other fuels that can be cleanly burned using the RCBC system included high sulfur bituminous coal; anthracite coal waste; carpet and carpet scrap, and tires and rubber wastes. Studies have demonstrated that some toxic wastes can be removed using the RCBC system. It was concluded that burning negative value fuels can allow some power plants to earn revenues from disposal fees. 3 figs.

  10. Economic aspects of grid connected solar electricity generation

    International Nuclear Information System (INIS)

    Pharabod, F.

    1993-01-01

    Experience gained with available solar thermal technologies enlighten on options for research and development on solar electricity generation. The proposed analysis of new solar technologies concerns market, costs and profit viewpoint: - Systems under development have to fit with consumers' needs and utilities' specifications, technology is not the only item to study. - Expense headings depend on technological options and operation procedures such as size of the plant, solar only or hybrid concept. - Anticipation of revenues highly depends on direct insolation quality and on local conditions for introducing the electric power generated into the network: daily direct insolation measurements and annual local load curve are prerequisite data. Strategic advantages regarding environment and sustainable development are to be pointed out, specially in industrialized countries or for projects including financing institutions. As far as generating electric power on the grid is a major challenge in the development of a number of countries in the sun belt, cooperation between industrialized and developing countries, under the auspices of international organization, has to be promoted. (Author) 12 refs

  11. Technical descriptions of Hudson River electricity generating stations

    International Nuclear Information System (INIS)

    Hutchison, J.B.

    1988-01-01

    Six fossil-fueled and one nuclear electricity generating plants are sited along the Hudson River estuary between kilometers 8 and 228, measured from the river mouth. Their aggregate rated capacity is 5,798 MW of electricity; operating at that capacity they would withdraw cooling water from the river at the rate of 1.5 x 10 to the 9th power cu m/d and reject heat at the rate of 155 x 10 to the 9th power kcal/d. Three of these plants, the fossil-fueled Roseton and Bowline and the nuclear Indian Point facilities; account for 75% of total rated capacity, 62% of maximum water withdrawal, and 79% of potential heat rejection. These three plants and a proposed pumped-storage facility at Cornwall, all sited between km 60 and 106, were the focus of environmental litigation. The Indian Point plant normally operates at 100% generation capacity; the other plants may experience daily operating load changes that vary from approximately 50% to 100% of total generation capacity, depending on system electrical demand or economic considerations. All plants experience periodic unscheduled outages for repairs. 6 refs., 7 figs

  12. The Relationship Between Electricity Price and Wind Power Generation in Danish Electricity Markets

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte

    2010-01-01

    of competitive electricity markets in some ways, is chosen as the studied power system. The relationship between the electricity price (both the spot price and the regulation price) and the wind power generation in an electricity market is investigated in this paper. The spot price, the down regulation price...... and the up regulation price generally decreases when the wind power penetration in the power system increases. The statistical characteristics of the spot price for different wind power penetration are analyzed. The findings of this paper may be useful for wind power generation companies to make the optimal...... bidding strategy and may be also useful for the optimal operation of modern power systems with high wind power penetrations....

  13. Electric Power Research Institute's role in applying superconductivity to future utility systems

    International Nuclear Information System (INIS)

    Rabinowitz, M.

    1975-01-01

    Economics has been the single most important factor in determining the future of any new commercial technology in the United States. This criterion is in need of serious examination in view of the projected sharply increasing consumption of energy in the next few decades, particularly in the form of electricity. In order to make a smooth and meaningful transition from conventional methods of generating and transmitting electricity, a coordinated effort between all segments of the private and public domains will be required. The Electric Power Research Institute (EPRI) should play a vital role in planning for both the imminent short term, and long term national electrical energy needs; and in coordinating efforts to achieve these vital goals. If, as predicted, the U. S. power consumption increases by more than a factor of six in the next 30 years, it should be clear that it is necessary to develop high power density methods of producing and transmitting electricity. Superconductivity is the natural prime candidate for a new feasible technology that can take on this responsibility

  14. HTS technology - Generating the future of offshore wind power

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Jens

    2010-09-15

    Superconductive generator design is going to become a real competitive alternative in the future. In general, superconductor design is the most competitive out of Direct Drive Systems and best fulfils the needs of the upcoming market - especially in the offshore market, where WECs with higher nominal power up to 10MW are required. Low weight, high reliability and the very good grid behaviour are the main advantages of the superconductor generator design and will lead to lower costs. The other systems are restricted to a smaller energy output range and / or onshore wind power production business.

  15. Photovoltaic energy mini-generation: Future perspectives for Portugal

    International Nuclear Information System (INIS)

    Carvalho, Duarte; Wemans, Joao; Lima, Joao; Malico, Isabel

    2011-01-01

    This paper evaluates the benefits of developing the mini-generation PV market in Portugal. It presents the legal framework and current status of the Portuguese PV electricity sector, and compares the country to other European nations: France, Germany, Greece, Italy, Spain and the United Kingdom. A model that combines PVGIS with a self-developed financial tool is used to assess the feasibility of a 150 kW mini-generation system using five different technologies: fixed mount, single-axis tracking, double-axis tracking, low concentration and medium concentration (MCPV). The profitability of the mini-generation systems in the seven countries studied is calculated and compared. According to this analysis, MCPV and, of the conventional technologies, the single-axis tracking systems are the most profitable technologies. Despite the attractiveness of the current Portuguese feed-in tariffs and of the abundant solar resource, investors are discouraged and the country's PV market is far from mature. Specific mini-generation regulations should focus on a fast and transparent licensing procedure and should promote the access to financing. This would attract new investments, which would result in the growth of the PV electricity produced, and would help Portugal to meet its European Union Renewable Energy targets. - Highlights: → This work promotes the development of a mini-generation PV market in Portugal. → The Portuguese current status and legal framework is compared to other EU countries. → The profitability of 5 different PV technologies is compared for 7 European countries. → The Portuguese growth potential for PV energy is still big. → Portugal, due to its radiation levels, presents excellent investment opportunities.

  16. Impact of competitive electricity market on renewable generation technology choice and policies in the United States

    International Nuclear Information System (INIS)

    Sarkar, Ashok

    1999-01-01

    Market objectives based on private value judgments will conflict with social policy objectives toward environmental quality in an emerging restructured electricity industry. This might affect the choice of renewables in the future generation mix. The US electricity industry's long-term capacity planning and operations is simulated for alternative market paradigms to study this impact. The analysis indicates that the share of renewable energy generation sources would decrease and emissions would increase considerably in a more competitive industry, with greater impact occurring in a monopol