WorldWideScience

Sample records for future cmb experiments

  1. Observing patchy reionization with future CMB polarization experiments

    Science.gov (United States)

    Roy, A.; Lapi, A.; Spergel, D.; Baccigalupi, C.

    2018-05-01

    We study the signal from patchy reionization in view of the future high accuracy polarization measurements of the Cosmic Microwave Background (CMB). We implement an extraction procedure of the patchy reionization signal analogous to CMB lensing. We evaluate the signal to noise ratio (SNR) for the future Stage IV (S4) CMB experiment. The signal has a broad peak centered on the degree angular scales, with a long tail at higher multipoles. The CMB S4 experiment can effectively constrain the properties of reionization by measuring the signal on degree scales. The signal amplitude depends on the properties of the structure determining the reionization morphology. We describe bubbles having radii distributed log-normally. The expected S/N is sensitive to the mean bubble radius: bar R=5 Mpc implies S/N ≈ 4, bar R=10 Mpc implies S/N ≈ 20. The spread of the radii distribution strongly affects the integrated SNR, that changes by a factor of 102 when σlnr goes from ln 2 to ln 3. Future CMB experiments will thus place important constraints on the physics of reionization.

  2. TESTING CPT SYMMETRY WITH CURRENT AND FUTURE CMB MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Li, Si-Yu; Zhang, Xinmin [Theory Division, Institute of High Energy Physics, Chinese Academy of Science, P.O. Box 918-4, Beijing 100049 (China); Xia, Jun-Qing; Li, Hong [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Science, P.O. Box 918-3, Beijing 100049 (China); Li, Mingzhe, E-mail: xiajq@ihep.ac.cn [Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2015-02-01

    In this paper, we use the current and future cosmic microwave background (CMB) experiments to test the Charge-Parity-Time Reversal (CPT) symmetry. We consider a CPT-violating interaction in the photon sector L{sub cs}∼p{sub μ}A{sub ν} F-tilde {sup μν}, which gives rise to a rotation of the polarization vectors of the propagating CMB photons. By combining the 9 yr WMAP, BOOMERanG 2003, and BICEP1 observations, we obtain the current constraint on the isotropic rotation angle α-bar =−2.12±1.14 (1σ), indicating that the significance of the CPT violation is about 2σ. Here, we particularly take the systematic errors of CMB measurements into account. Then, we study the effects of the anisotropies of the rotation angle [Δα( n-hat )] on the CMB polarization power spectra in detail. Due to the small effects, the current CMB polarization data cannot constrain the related parameters very well. We obtain the 95% C.L. upper limit of the variance of the anisotropies of the rotation angle C {sup α}(0) < 0.035 from all of the CMB data sets. More interestingly, including the anisotropies of rotation angle could lower the best-fit value of r and relax the tension on the constraints of r between BICEP2 and Planck. Finally, we investigate the capabilities of future Planck polarization measurements on α-bar and Δα( n-hat ). Benefited from the high precision of Planck data, the constraints of the rotation angle can be significantly improved.

  3. A Guide to Designing Future Ground-based CMB Experiments

    International Nuclear Information System (INIS)

    Wu, W. L.K.; Errard, J.; Dvorkin, C.; Kuo, C. L.; Lee, A. T.; McDonald, P.; Slosar, A.; Zahn, O.

    2014-01-01

    In this follow-up work to the High Energy Physics Community Summer Study 2013 (HEP CSS 2013, a.k.a. Snowmass), we explore the scientific capabilities of a future Stage-IV Cosmic Microwave Background polarization experiment (CMB-S4) under various assumptions on detector count, resolution, and sky coverage. We use the Fisher matrix technique to calculate the expected uncertainties in cosmological parameters in vΛCDM that are especially relevant to the physics of fundamental interactions, including neutrino masses, effective number of relativistic species, dark-energy equation of state, dark-matter annihilation, and inflationary parameters. To further chart the landscape of future cosmology probes, we include forecasted results from the Baryon Acoustic Oscillation (BAO) signal as measured by DESI to constrain parameters that would benefit from low redshift information. We find the following best 1-δ constraints: δ(M_v ) = 15 meV, δ(N_e_f_f ) = 0.0156, Dark energy Figure of Merit = 303, δ(p_a_n_n) = 0.00588 x 3 x 10"-"2"6 cm"3/s/GeV, δ(Ω_K) = 0.00074, δ(n_s) = 0.00110, δ(α_s) = 0.00145, and δ(r) = 0.00009. We also detail the dependences of the parameter constraints on detector count, resolution, and sky coverage.

  4. A Guide to Designing Future Ground-based CMB Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wu, W. L.K. [Stanford Univ., CA (United States); Kavli Inst. for Particle Astrophysics and Cosmology, Menlo, Park, CA (United States); Errard, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Dvorkin, C. [Inst. for Advanced Study, Princeton, NJ (United States); Kuo, C. L. [Stanford Univ., CA (United States); Kavli Inst. for Particle Astrophysics and Cosmology, Menlo, Park, CA (United States); Lee, A. T. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McDonald, P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Slosar, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zahn, O. [Univ. of California, Berkeley and Lawrence Berkeley National Lab. (LBNL), CA (United States)

    2014-02-18

    In this follow-up work to the High Energy Physics Community Summer Study 2013 (HEP CSS 2013, a.k.a. Snowmass), we explore the scientific capabilities of a future Stage-IV Cosmic Microwave Background polarization experiment (CMB-S4) under various assumptions on detector count, resolution, and sky coverage. We use the Fisher matrix technique to calculate the expected uncertainties in cosmological parameters in vΛCDM that are especially relevant to the physics of fundamental interactions, including neutrino masses, effective number of relativistic species, dark-energy equation of state, dark-matter annihilation, and inflationary parameters. To further chart the landscape of future cosmology probes, we include forecasted results from the Baryon Acoustic Oscillation (BAO) signal as measured by DESI to constrain parameters that would benefit from low redshift information. We find the following best 1-σ constraints: σ(Mv ) = 15 meV, σ(Neff ) = 0.0156, Dark energy Figure of Merit = 303, σ(pann) = 0.00588 x 3 x 10-26 cm3/s/GeV, σ( ΩK) = 0.00074, σ(ns) = 0.00110, σ( αs) = 0.00145, and σ(r) = 0.00009. We also detail the dependences of the parameter constraints on detector count, resolution, and sky coverage.

  5. Recent development in CMB experiments

    International Nuclear Information System (INIS)

    Matsumura, T.

    2014-01-01

    The rich data from the measurements of the cosmic microwave background (CMB) have played a key role to establish the ΛCDM cosmology. The WMAP results combined with Type Ia Supernova and BAO constrain not only the standard cosmological parameters to a few percent level. The combination of the data such as WMAP, SPT and H 0 started constraining such as the cosmic inflation r ν <0.38, and the equation of the dark energy w=-1.087 ± 0.096. The current experimental efforts are focused to measure the CMB B-mode polarization to probe deeper to 'beyond standard model' parameters from the sky. The upcoming ground-base and balloon-borne experiments are designed for r∼0.01. This sensitivity with an arcmin scale angular resolution is also well within the detection of the lensing B-mode. I review the recent development and the prospect from the upcoming CMB experiments. (author)

  6. Forecasts for CMB μ and i-type spectral distortion constraints on the primordial power spectrum on scales 8∼4 Mpc−1 with the future Pixie-like experiments

    International Nuclear Information System (INIS)

    Khatri, Rishi; Sunyaev, Rashid A.

    2013-01-01

    Silk damping at redshifts 1.5 × 10 4 ∼ 6 erases CMB anisotropies on scales corresponding to the comoving wavenumbers 8∼ 4 Mpc −1 (10 5 ∼ 8 ). This dissipated energy is gained by the CMB monopole, creating distortions from a blackbody in the CMB spectrum of the μ-type and the i-type. We study, using Fisher matrices, the constraints we can get from measurements of these spectral distortions on the primordial power spectrum from future experiments such as Pixie, and how these constraints change as we change the frequency resolution and the sensitivity of the experiment. We show that the additional information in the shape of the i-type distortions, in combination with the μ-type distortions, allows us to break the degeneracy between the amplitude and the spectral index of the power spectrum on these scales and leads to much tighter constraints. We quantify the information contained in both the μ-type distortions and the i-type distortions taking into account the partial degeneracy with the y-type distortions and the temperature of the blackbody part of the CMB. We also calculate the constraints possible on the primordial power spectrum when the spectral distortion information is combined with the CMB anisotropies measured by the WMAP, SPT, ACT and Planck experiments

  7. Self-Calibration of CMB Polarimeters

    Science.gov (United States)

    Keating, Brian

    2013-01-01

    Precision measurements of the polarization of the cosmic microwave background (CMB) radiation, especially experiments seeking to detect the odd-parity "B-modes", have far-reaching implications for cosmology. To detect the B-modes generated during inflation the flux response and polarization angle of these experiments must be calibrated to exquisite precision. While suitable flux calibration sources abound, polarization angle calibrators are deficient in many respects. Man-made polarized sources are often not located in the antenna's far-field, have spectral properties that are radically different from the CMB's, are cumbersome to implement and may be inherently unstable over the (long) duration these searches require to detect the faint signature of the inflationary epoch. Astrophysical sources suffer from time, frequency and spatial variability, are not visible from all CMB observatories, and none are understood with sufficient accuracy to calibrate future CMB polarimeters seeking to probe inflationary energy scales of ~1000 TeV. CMB TB and EB modes, expected to identically vanish in the standard cosmological model, can be used to calibrate CMB polarimeters. By enforcing the observed EB and TB power spectra to be consistent with zero, CMB polarimeters can be calibrated to levels not possible with man-made or astrophysical sources. All of this can be accomplished without any loss of observing time using a calibration source which is spectrally identical to the CMB B-modes. The calibration procedure outlined here can be used for any CMB polarimeter.

  8. Measuring galaxy cluster masses with CMB lensing using a Maximum Likelihood estimator: statistical and systematic error budgets for future experiments

    Energy Technology Data Exchange (ETDEWEB)

    Raghunathan, Srinivasan; Patil, Sanjaykumar; Bianchini, Federico; Reichardt, Christian L. [School of Physics, University of Melbourne, 313 David Caro building, Swanston St and Tin Alley, Parkville VIC 3010 (Australia); Baxter, Eric J. [Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd Street, Philadelphia, PA 19104 (United States); Bleem, Lindsey E. [Argonne National Laboratory, High-Energy Physics Division, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Crawford, Thomas M. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Holder, Gilbert P. [Department of Astronomy and Department of Physics, University of Illinois, 1002 West Green St., Urbana, IL 61801 (United States); Manzotti, Alessandro, E-mail: srinivasan.raghunathan@unimelb.edu.au, E-mail: s.patil2@student.unimelb.edu.au, E-mail: ebax@sas.upenn.edu, E-mail: federico.bianchini@unimelb.edu.au, E-mail: bleeml@uchicago.edu, E-mail: tcrawfor@kicp.uchicago.edu, E-mail: gholder@illinois.edu, E-mail: manzotti@uchicago.edu, E-mail: christian.reichardt@unimelb.edu.au [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States)

    2017-08-01

    We develop a Maximum Likelihood estimator (MLE) to measure the masses of galaxy clusters through the impact of gravitational lensing on the temperature and polarization anisotropies of the cosmic microwave background (CMB). We show that, at low noise levels in temperature, this optimal estimator outperforms the standard quadratic estimator by a factor of two. For polarization, we show that the Stokes Q/U maps can be used instead of the traditional E- and B-mode maps without losing information. We test and quantify the bias in the recovered lensing mass for a comprehensive list of potential systematic errors. Using realistic simulations, we examine the cluster mass uncertainties from CMB-cluster lensing as a function of an experiment's beam size and noise level. We predict the cluster mass uncertainties will be 3 - 6% for SPT-3G, AdvACT, and Simons Array experiments with 10,000 clusters and less than 1% for the CMB-S4 experiment with a sample containing 100,000 clusters. The mass constraints from CMB polarization are very sensitive to the experimental beam size and map noise level: for a factor of three reduction in either the beam size or noise level, the lensing signal-to-noise improves by roughly a factor of two.

  9. Future CMB cosmological constraints in a dark coupled universe

    CERN Document Server

    Martinelli, Matteo; Melchiorri, Alessandro; Mena, Olga

    2010-01-01

    Cosmic Microwave Background satellite missions as the on-going Planck experiment are expected to provide the strongest constraints on a wide set of cosmological parameters. Those constraints, however, could be weakened when the assumption of a cosmological constant as the dark energy component is removed. Here we show that it will indeed be the case when there exists a coupling among the dark energy and the dark matter fluids. In particular, the expected errors on key parameters as the cold dark matter density and the angular diameter distance at decoupling are significantly larger when a dark coupling is introduced. We show that it will be the case also for future satellite missions as EPIC, unless CMB lensing extraction is performed.

  10. CMB lensing forecasts for constraining the primordial perturbations: adding to the CMB temperature and polarization information

    Energy Technology Data Exchange (ETDEWEB)

    Kasanda, Simon Muya; Moodley, Kavilan, E-mail: simon.muya.kasanda@gmail.com, E-mail: moodleyk41@ukzn.ac.za [Astrophysics and Cosmology Research Unit and School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, University Road, Durban, 4041 (South Africa)

    2014-12-01

    We forecast how current (PLANCK) and future (PRISM) cosmic microwave background (CMB) experiments constrain the adiabatic mode and its admixtures with primordial isocurvature modes. The forecasts are based on measurements of the reconstructed CMB lensing potential and lensing-induced CMB B-mode polarization anisotropies in combination with the CMB temperature and E-mode polarization anisotropies. We first study the characteristic features of the CMB temperature, polarization and lensing spectra for adiabatic and isocurvature modes. We then consider how information from the CMB lensing potential and B-mode polarization induced by lensing can improve constraints on an admixture of adiabatic and three correlated isocurvature modes. We find that the CMB lensing spectrum improves constraints on isocurvature modes by at most 10% for the PLANCK and PRISM experiments. The limited improvement is a result of the low amplitude of isocurvature lensing spectra and cancellations between these spectra that render them only slightly detectable. There is a larger gain from using the lensing-induced B-mode polarization spectrum measured by PRISM. In this case constraints on isocurvature mode amplitudes improve by as much as 40% relative to the CMB temperature and E-mode polarization constraints. The addition of both lensing and lensing-induced B-mode polarization information constrains isocurvature mode amplitudes at the few percent level or better. In the case of admixtures of the adiabatic mode with one or two correlated isocurvature modes we find that constraints at the percent level or better are possible. We investigate the dependence of our results to various assumptions in our analysis, such as the inclusion of dark energy parameters, the CMB temperature-lensing correlation, and the presence of primordial tensor modes, and find that these assumptions do not significantly change our main results.

  11. CMB polarization at large angular scales: Data analysis of the POLAR experiment

    International Nuclear Information System (INIS)

    O'Dell, Christopher W.; Keating, Brian G.; Oliveira-Costa, Angelica de; Tegmark, Max; Timbie, Peter T.

    2003-01-01

    The coming flood of cosmic microwave background (CMB) polarization experiments, spurred by the recent detection of CMB polarization by the DASI and WMAP instruments, will be confronted by many new analysis tasks specific to polarization. For the analysis of CMB polarization data sets, the devil is truly in the details. With this in mind, we present details of the data analysis for the POLAR experiment, which recently led to the tightest upper limits on the polarization of the cosmic microwave background radiation at large angular scales. We discuss the data selection process, map-making algorithms, offset removal, and likelihood analysis which were used to find upper limits on the polarization. Stated using the modern convention for reporting CMB Stokes parameters, these limits are 5.0 μK on both E- and B-type polarization at 95% confidence. Finally, we discuss simulations used to test our analysis techniques and to probe the fundamental limitations of the experiment

  12. Cosmological CPT violation and CMB polarization measurements

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Jun-Qing, E-mail: xia@sissa.it [Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, I-34136 Trieste (Italy)

    2012-01-01

    In this paper we study the possibility of testing Charge-Parity-Time Reversal (CPT) symmetry with cosmic microwave background (CMB) experiments. We consider two kinds of Chern-Simons (CS) term, electromagnetic CS term and gravitational CS term, and study their effects on the CMB polarization power spectra in detail. By combining current CMB polarization measurements, the seven-year WMAP, BOOMERanG 2003 and BICEP observations, we obtain a tight constraint on the rotation angle Δα = −2.28±1.02 deg (1 σ), indicating a 2.2 σ detection of the CPT violation. Here, we particularly take the systematic errors of CMB measurements into account. After adding the QUaD polarization data, the constraint becomes −1.34 < Δα < 0.82 deg at 95% confidence level. When comparing with the effect of electromagnetic CS term, the gravitational CS term could only generate TB and EB power spectra with much smaller amplitude. Therefore, the induced parameter ε can not be constrained from the current polarization data. Furthermore, we study the capabilities of future CMB measurements, Planck and CMBPol, on the constraints of Δα and ε. We find that the constraint of Δα can be significantly improved by a factor of 15. Therefore, if this rotation angle effect can not be taken into account properly, the constraints of cosmological parameters will be biased obviously. For the gravitational CS term, the future Planck data still can not constrain ε very well, if the primordial tensor perturbations are small, r < 0.1. We need the more accurate CMBPol experiment to give better constraint on ε.

  13. Impact of theoretical assumptions in the determination of the neutrino effective number from future CMB measurements

    Science.gov (United States)

    Capparelli, Ludovico; Di Valentino, Eleonora; Melchiorri, Alessandro; Chluba, Jens

    2018-03-01

    One of the major goals of future cosmic microwave background (CMB) measurements is the accurate determination of the effective number of neutrinos Neff. Reaching an experimental sensitivity of Δ Neff=0.013 could indeed falsify the presence of any nonstandard relativistic particles at 95% C.L. In this paper, we test how this future constraint can be affected by the removal of two common assumptions: a negligible running of the inflationary spectral index nrun and a precise determination of the neutron lifetime τn. We first show that the constraints on Neff could be significantly biased by the unaccounted presence of a running of the spectral index. Considering the Stage-IV experiment, a negative running of d n /d ln k =-0.002 could mimic a positive variation of Δ Neff=0.03 . Moreover, given the current discrepancies between experimental measurements of the neutron lifetime τn, we show that the assumption of a conservative error of Δ τn˜10 s could cause a systematic error of Δ Neff=0.02 . Complementary cosmological constraints on the running of the spectral index and a solution to the neutron lifetime discrepancy are therefore needed for an accurate and reliable future CMB bound of Neff at the percent level.

  14. Constraining dark sector perturbations I: cosmic shear and CMB lensing

    International Nuclear Information System (INIS)

    Battye, Richard A.; Moss, Adam; Pearson, Jonathan A.

    2015-01-01

    We present current and future constraints on equations of state for dark sector perturbations. The equations of state considered are those corresponding to a generalized scalar field model and time-diffeomorphism invariant L(g) theories that are equivalent to models of a relativistic elastic medium and also Lorentz violating massive gravity. We develop a theoretical understanding of the observable impact of these models. In order to constrain these models we use CMB temperature data from Planck, BAO measurements, CMB lensing data from Planck and the South Pole Telescope, and weak galaxy lensing data from CFHTLenS. We find non-trivial exclusions on the range of parameters, although the data remains compatible with w=−1. We gauge how future experiments will help to constrain the parameters. This is done via a likelihood analysis for CMB experiments such as CoRE and PRISM, and tomographic galaxy weak lensing surveys, focussing in on the potential discriminatory power of Euclid on mildly non-linear scales

  15. Constraining dark sector perturbations I: cosmic shear and CMB lensing

    Science.gov (United States)

    Battye, Richard A.; Moss, Adam; Pearson, Jonathan A.

    2015-04-01

    We present current and future constraints on equations of state for dark sector perturbations. The equations of state considered are those corresponding to a generalized scalar field model and time-diffeomorphism invariant Script L(g) theories that are equivalent to models of a relativistic elastic medium and also Lorentz violating massive gravity. We develop a theoretical understanding of the observable impact of these models. In order to constrain these models we use CMB temperature data from Planck, BAO measurements, CMB lensing data from Planck and the South Pole Telescope, and weak galaxy lensing data from CFHTLenS. We find non-trivial exclusions on the range of parameters, although the data remains compatible with w=-1. We gauge how future experiments will help to constrain the parameters. This is done via a likelihood analysis for CMB experiments such as CoRE and PRISM, and tomographic galaxy weak lensing surveys, focussing in on the potential discriminatory power of Euclid on mildly non-linear scales.

  16. From Cavendish to PLANCK: Constraining Newton's gravitational constant with CMB temperature and polarization anisotropy

    International Nuclear Information System (INIS)

    Galli, Silvia; Melchiorri, Alessandro; Smoot, George F.; Zahn, Oliver

    2009-01-01

    We present new constraints on cosmic variations of Newton's gravitational constant by making use of the latest CMB data from WMAP, BOOMERANG, CBI and ACBAR experiments and independent constraints coming from big bang nucleosynthesis. We found that current CMB data provide constraints at the ∼10% level, that can be improved to ∼3% by including big bang nucleosynthesis data. We show that future data expected from the Planck satellite could constrain G at the ∼1.5% level while an ultimate, cosmic variance limited, CMB experiment could reach a precision of about 0.4%, competitive with current laboratory measurements.

  17. Probing neutrino masses with CMB lensing extraction

    International Nuclear Information System (INIS)

    Lesgourgues, Julien; Perotto, Laurence; Pastor, Sergio; Piat, Michel

    2006-01-01

    We evaluate the ability of future cosmic microwave background (CMB) experiments to measure the power spectrum of large scale structure using quadratic estimators of the weak lensing deflection field. We calculate the sensitivity of upcoming CMB experiments such as BICEP, QUaD, BRAIN, ClOVER and Planck to the nonzero total neutrino mass M ν indicated by current neutrino oscillation data. We find that these experiments greatly benefit from lensing extraction techniques, improving their one-sigma sensitivity to M ν by a factor of order four. The combination of data from Planck and the SAMPAN mini-satellite project would lead to σ(M ν )∼0.1 eV, while a value as small as σ(M ν )∼0.035 eV is within the reach of a space mission based on bolometers with a passively cooled 3-4 m aperture telescope, representative of the most ambitious projects currently under investigation. We show that our results are robust not only considering possible difficulties in subtracting astrophysical foregrounds from the primary CMB signal but also when the minimal cosmological model (Λ Mixed Dark Matter) is generalized in order to include a possible scalar tilt running, a constant equation-of-state parameter for the dark energy and/or extra relativistic degrees of freedom

  18. Precision epoch of reionization studies with next-generation CMB experiments

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, Erminia; Louis, Thibaut [Sub-department of Astrophysics, University of Oxford, Keble Road, Oxford, OX1 3RH (United Kingdom); Hložek, Renée; Hil, J. Colin [Department of Astrophysical Science, Peyton Hall, 4 Ivy Lane, Princeton, NJ, 08544 (United States); Battaglia, Nick [McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, 15213 (United States); Bond, J. Richard; Hajian, Amir [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St George Street, Toronto, ON, M5S 3H8 Canada (Canada); De Bernardis, Francesco; Henderson, Shawn; Niemack, Michael D. [Department of Physics, Cornell University, 109 Clark Hall, Ithaca, NY, 14853 (United States); Devlin, Mark J. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA, 19104 (United States); Kosowsky, Arthur [Department of Physics and Astronomy, University of Pittsburgh, 315 Allen Hall, Pittsburgh, PA, 15260 (United States); McMahon, Jeff [Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, MI, 48109 (United States); Moodley, Kavilan [Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4041 South Africa (South Africa); Newburgh, Laura [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George St., Toronto, ON, M5S 3H4 Canada (Canada); Page, Lyman A. [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Washington Road, Princeton, NJ, 08544 (United States); Partridge, Bruce [Department of Physics and Astronomy, Haverford College, 370 Lancaster Avenue, Haverford, PA, 19041 (United States); Sehgal, Neelima, E-mail: erminia.calabrese@astro.ox.ac.uk, E-mail: rhlozek@astro.princeton.edu [Physics and Astronomy Department, Stony Brook University, Stony Brook, NY, 11794 (United States); and others

    2014-08-01

    Future arcminute resolution polarization data from ground-based Cosmic Microwave Background (CMB) observations can be used to estimate the contribution to the temperature power spectrum from the primary anisotropies and to uncover the signature of reionization near ℓ=1500 in the small angular-scale temperature measurements. Our projections are based on combining expected small-scale E-mode polarization measurements from Advanced ACTPol in the range 300<ℓ<3000 with simulated temperature data from the full Planck mission in the low and intermediate ℓ region, 2<ℓ<2000. We show that the six basic cosmological parameters determined from this combination of data will predict the underlying primordial temperature spectrum at high multipoles to better than 1% accuracy. Assuming an efficient cleaning from multi-frequency channels of most foregrounds in the temperature data, we investigate the sensitivity to the only residual secondary component, the kinematic Sunyaev-Zel'dovich (kSZ) term. The CMB polarization is used to break degeneracies between primordial and secondary terms present in temperature and, in effect, to remove from the temperature data all but the residual kSZ term. We estimate a 15σ detection of the diffuse homogeneous kSZ signal from expected AdvACT temperature data at ℓ>1500, leading to a measurement of the amplitude of matter density fluctuations, σ{sub 8}, at 1% precision. Alternatively, by exploring the reionization signal encoded in the patchy kSZ measurements, we bound the time and duration of the reionization with σ(z{sub re})=1.1 and σ(Δz{sub re})=0.2. We find that these constraints degrade rapidly with large beam sizes, which highlights the importance of arcminute-scale resolution for future CMB surveys.

  19. Constraints on hidden photons from current and future observations of CMB spectral distortions

    International Nuclear Information System (INIS)

    Kunze, Kerstin E.; Vázquez-Mozo, Miguel Á.

    2015-01-01

    A variety of beyond the standard model scenarios contain very light hidden sector U(1) gauge bosons undergoing kinetic mixing with the photon. The resulting oscillation between ordinary and hidden photons leads to spectral distortions of the cosmic microwave background. We update the bounds on the mixing parameter χ 0 and the mass of the hidden photon m γ' for future experiments measuring CMB spectral distortions, such as PIXIE and PRISM/COrE. For 10 −14  eV∼< m γ' ∼< 10 −13  eV, we find the kinetic mixing angle χ 0 has to be less than 10 −8 at 95% CL. These bounds are more than an order of magnitude stronger than those derived from the COBE/FIRAS data

  20. CMBPol Mission Concept Study: Probing Inflation with CMB Polarization

    CERN Document Server

    Baumann, Daniel; Adshead, Peter; Amblard, Alexandre; Ashoorioon, Amjad; Bartolo, Nicola; Bean, Rachel; Beltran, Maria; de Bernardis, Francesco; Bird, Simeon; Chen, Xingang; Chung, Daniel Jun Hun; Colombo, Loris; Cooray, Asantha R.; Creminelli, Paolo; Dodelson, Scott; Dunkley, Joanna; Dvorkin, Cora; Easther, Richard; Finelli, Fabio; Flauger, Raphael; Hertzberg, Mark P.; Jones-Smith, Katherine; Kachru, Shamit; Kadota, Kenji; Khoury, Justin; Kinney, William H.; Komatsu, Eiichiro; Krauss, Lawrence M.; Lesgourgues, Julien; Liddle, Andrew R.; Liguori, Michele; Lim, Eugene A.; Linde, Andrei D.; Matarrese, Sabino; Mathur, Harsh; McAllister, Liam; Melchiorri, Alessandro; Nicolis, Alberto; Pagano, Luca; Peiris, Hiranya V.; Peloso, Marco; Pogosian, Levon; Pierpaoli, Elena; Riotto, Antonio; Seljak, Uros; Senatore, Leonardo; Shandera, Sarah E.; Silverstein, Eva; Smith, Tristan; Vaudrevange, Pascal M.; Verde, Licia; Wandelt, Ben; Wands, David; Watson, Scott; Wyman, Mark; Yadav, Amit; Valkenburg, Wessel; Zaldarriaga, Matias

    2009-01-01

    We summarize the utility of precise cosmic microwave background (CMB) polarization measurements as probes of the physics of inflation. We focus on the prospects for using CMB measurements to differentiate various inflationary mechanisms. In particular, a detection of primordial B-mode polarization would demonstrate that inflation occurred at a very high energy scale, and that the inflaton traversed a super-Planckian distance in field space. We explain how such a detection or constraint would illuminate aspects of physics at the Planck scale. Moreover, CMB measurements can constrain the scale-dependence and non-Gaussianity of the primordial fluctuations and limit the possibility of a significant isocurvature contribution. Each such limit provides crucial information on the underlying inflationary dynamics. Finally, we quantify these considerations by presenting forecasts for the sensitivities of a future satellite experiment to the inflationary parameters.

  1. BAYESIAN INFERENCE OF CMB GRAVITATIONAL LENSING

    Energy Technology Data Exchange (ETDEWEB)

    Anderes, Ethan [Department of Statistics, University of California, Davis, CA 95616 (United States); Wandelt, Benjamin D.; Lavaux, Guilhem [Sorbonne Universités, UPMC Univ Paris 06 and CNRS, UMR7095, Institut d’Astrophysique de Paris, F-75014, Paris (France)

    2015-08-01

    The Planck satellite, along with several ground-based telescopes, has mapped the cosmic microwave background (CMB) at sufficient resolution and signal-to-noise so as to allow a detection of the subtle distortions due to the gravitational influence of the intervening matter distribution. A natural modeling approach is to write a Bayesian hierarchical model for the lensed CMB in terms of the unlensed CMB and the lensing potential. So far there has been no feasible algorithm for inferring the posterior distribution of the lensing potential from the lensed CMB map. We propose a solution that allows efficient Markov Chain Monte Carlo sampling from the joint posterior of the lensing potential and the unlensed CMB map using the Hamiltonian Monte Carlo technique. The main conceptual step in the solution is a re-parameterization of CMB lensing in terms of the lensed CMB and the “inverse lensing” potential. We demonstrate a fast implementation on simulated data, including noise and a sky cut, that uses a further acceleration based on a very mild approximation of the inverse lensing potential. We find that the resulting Markov Chain has short correlation lengths and excellent convergence properties, making it promising for applications to high-resolution CMB data sets in the future.

  2. Testing chirality of primordial gravitational waves with Planck and future CMB data: no hope from angular power spectra

    Energy Technology Data Exchange (ETDEWEB)

    Gerbino, Martina [The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Gruppuso, Alessandro [INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna, via P. Gobetti 101, I-40129 Bologna (Italy); Natoli, Paolo [Dipartimento di Fisica e Scienze della Terra and INFN, Università degli Studi di Ferrara, Via Saragat 1, I-44100 Ferrara (Italy); Shiraishi, Maresuke [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS, The University of Tokyo, Chiba, 277-8583 (Japan); Melchiorri, Alessandro, E-mail: martina.gerbino@fysik.su.se, E-mail: gruppuso@iasfbo.inaf.it, E-mail: paolo.natoli@gmail.com, E-mail: maresuke.shiraishi@ipmu.jp, E-mail: alessandro.melchiorri@roma1.infn.it [Physics Department and INFN, Università di Roma ' La Sapienza' , P.le Aldo Moro 2, 00185, Rome (Italy)

    2016-07-01

    We use the 2015 Planck likelihood in combination with the Bicep2/Keck likelihood (BKP and BK14) to constrain the chirality, χ, of primordial gravitational waves in a scale-invariant scenario. In this framework, the parameter χ enters theory always coupled to the tensor-to-scalar ratio, r , e.g. in combination of the form χ ⋅ r . Thus, the capability to detect χ critically depends on the value of r . We find that with present data sets χ is de facto unconstrained. We also provide forecasts for χ from future CMB experiments, including COrE+, exploring several fiducial values of r . We find that the current limit on r is tight enough to disfavor a neat detection of χ. For example, in the unlikely case in which r ∼0.1(0.05), the maximal chirality case, i.e. χ = ±1, could be detected with a significance of ∼2.5(1.5)σ at best. We conclude that the two-point statistics at the basis of CMB likelihood functions is currently unable to constrain chirality and may only provide weak limits on χ in the most optimistic scenarios. Hence, it is crucial to investigate the use of other observables, e.g. provided by higher order statistics, to constrain these kinds of parity violating theories with the CMB.

  3. Next generation sub-millimeter wave focal plane array coupling concepts: an ESA TRP project to develop multichroic focal plane pixels for future CMB polarization experiments

    Science.gov (United States)

    Trappe, N.; Bucher, M.; De Bernardis, P.; Delabrouille, J.; Deo, P.; DePetris, M.; Doherty, S.; Ghribi, A.; Gradziel, M.; Kuzmin, L.; Maffei, B.; Mahashabde, S.; Masi, S.; Murphy, J. A.; Noviello, F.; O'Sullivan, C.; Pagano, L.; Piacentini, F.; Piat, M.; Pisano, G.; Robinson, M.; Stompor, R.; Tartari, A.; van der Vorst, M.; Verhoeve, P.

    2016-07-01

    The main objective of this activity is to develop new focal plane coupling array concepts and technologies that optimise the coupling from reflector optics to the large number of detectors for next generation sub millimetre wave telescopes particularly targeting measurement of the polarization of the cosmic microwave background (CMB). In this 18 month TRP programme the consortium are tasked with developing, manufacturing and experimentally verifying a prototype multichroic pixel which would be suitable for the large focal plane arrays which will be demanded to reach the required sensitivity of future CMB polarization missions. One major development was to have multichroic operation to potentially reduce the required focal plane size of a CMB mission. After research in the optimum telescope design and definition of requirements based on a stringent science case review, a number of compact focal plane architecture concepts were investigated before a pixel demonstrator consisting of a planar mesh lens feeding a backend Resonant Cold Electron Bolometer RCEB for filtering and detection of the dual frequency signal was planned for manufacture and test. In this demonstrator the frequencies of the channels was chosen to be 75 and 105 GHz in the w band close to the peak CMB signal. In the next year the prototype breadboards will be developed to test the beams produced by the manufactured flat lenses fed by a variety of antenna configurations and the spectral response of the RCEBs will also be verified.

  4. CMB-S4 Technology Book, First Edition

    Energy Technology Data Exchange (ETDEWEB)

    Abitbol, Maximilian H. [Columbia Univ., New York, NY (United States); et al.

    2017-06-08

    CMB-S4 is a proposed experiment to map the polarization of the Cosmic Microwave Background (CMB) to nearly the cosmic variance limit for the angular scales that are accessible from the ground. The science goals and capabilities of CMB-S4 in illuminating cosmic inflation, measuring the sum of neutrino masses, searching for relativistic relics in the early universe, characterizing dark energy and dark matter, and mapping the matter distribution in the universe have been described in the CMB-S4 Science Book. This Technology Book is a companion volume to the Science Book. The ambitious science goals of the proposed "Stage-IV" CMB-S4 will require a step forward in experimental capability from the current Stage-III experiments. To guide this process, the community summarized the current state of the technology and identify R&D efforts necessary to advance it for possible use in CMB-S4. The book focused on the technical challenges in four broad areas: Telescope Design; Receiver Optics; Focal-Plane Optical Coupling; and Focal-Plane Sensor and Readout.

  5. Testing inflation and curvaton scenarios with CMB distortions

    International Nuclear Information System (INIS)

    Clesse, Sébastien; Garbrecht, Björn; Zhu, Yi

    2014-01-01

    Prior to recombination, Silk damping causes the dissipation of energy from acoustic waves into the monopole of the Cosmic Microwave Background (CMB), resulting in spectral distortions. These can be used to probe the primordial scalar power spectrum on smaller scales than it is possible with CMB anisotropies. An enhancement of power on these scales is nevertheless required for the resulting distortions to be detectable by future experiments like PIXIE. In this paper, we examine all 49 single-field inflation models listed by Martin et al. in the Encyclopaedia Inflationaris [1] and find that only one of these may lead to a detectable level of distortions in a tuned region of its parameter space, namely the original hybrid model. Three effective multi-field scenarios are also studied: with softly and suddenly turning trajectories, and with a mild waterfall trajectory. Softly turning trajectories do not induce distortions at any detectable level, whereas a sudden turn in the field space or a mild waterfall trajectory predicts a peak (plus damped oscillations in the sudden turn case) in the scalar power spectrum, which can lead to an observable amount of CMB distortions. Finally, another scenario leading to potentially detectable distortions involves a curvaton whose blue spectrum is subdominant on CMB angular scales and overtakes the inflaton spectrum on smaller scales. In this case however, we show that the bounds from ultra compact minihaloes are not satisfied. Expectations for an ultimate PRISM-class experiment characterized by an improvement in sensitivity by a factor of ten are discussed for some models

  6. Testing inflation and curvaton scenarios with CMB distortions

    Science.gov (United States)

    Clesse, Sébastien; Garbrecht, Björn; Zhu, Yi

    2014-10-01

    Prior to recombination, Silk damping causes the dissipation of energy from acoustic waves into the monopole of the Cosmic Microwave Background (CMB), resulting in spectral distortions. These can be used to probe the primordial scalar power spectrum on smaller scales than it is possible with CMB anisotropies. An enhancement of power on these scales is nevertheless required for the resulting distortions to be detectable by future experiments like PIXIE. In this paper, we examine all 49 single-field inflation models listed by Martin et al. in the Encyclopaedia Inflationaris [1] and find that only one of these may lead to a detectable level of distortions in a tuned region of its parameter space, namely the original hybrid model. Three effective multi-field scenarios are also studied: with softly and suddenly turning trajectories, and with a mild waterfall trajectory. Softly turning trajectories do not induce distortions at any detectable level, whereas a sudden turn in the field space or a mild waterfall trajectory predicts a peak (plus damped oscillations in the sudden turn case) in the scalar power spectrum, which can lead to an observable amount of CMB distortions. Finally, another scenario leading to potentially detectable distortions involves a curvaton whose blue spectrum is subdominant on CMB angular scales and overtakes the inflaton spectrum on smaller scales. In this case however, we show that the bounds from ultra compact minihaloes are not satisfied. Expectations for an ultimate PRISM-class experiment characterized by an improvement in sensitivity by a factor of ten are discussed for some models.

  7. Planck-scale sensitivity of CMB polarization data

    Energy Technology Data Exchange (ETDEWEB)

    Gubitosi, Giulia; Pagano, Luca [Physics Department, University of Rome ' La Sapienza' , and Sezione Roma1 INFN P.le Aldo Moro 2, 00185 Rome (Italy)

    2009-10-15

    We show that the Cosmic Microwave Background (CMB) polarization data gathered by the BOOMERanG 2003 flight and WMAP provide an opportunity to investigate in-vacuo birefringence, of a type expected in some quantum pictures of space-time, with a sensitivity that extends even beyond the desired Planck-scale energy. In order to render this constraint more transparent we rely on a well studied phenomenological model of quantum-gravity-induced birefringence, in which one easily establishes that effects introduced at the Planck scale would amount to values of a dimensionless parameter, denoted by xi, with respect to the Planck energy which are roughly of order 1. By combining BOOMERanG and WMAP data we estimate xiapprox =-0.097+-0.075 at the 68% c.l. Moreover, we forecast on the sensitivity to xi achievable by future CMB polarization experiments (PLANCK, Spider, EPIC), which, in the absence of systematics, will be at the 1-sigma confidence of 8.5x10{sup -4} (PLANCK), 6.1x10{sup -3} (Spider), and 1.0x10{sup -5} (EPIC) respectively. The cosmic variance-limited sensitivity from CMB is 6.1x10{sup -6}.

  8. Planck-scale sensitivity of CMB polarization data

    International Nuclear Information System (INIS)

    Gubitosi, Giulia; Pagano, Luca

    2009-01-01

    We show that the Cosmic Microwave Background (CMB) polarization data gathered by the BOOMERanG 2003 flight and WMAP provide an opportunity to investigate in-vacuo birefringence, of a type expected in some quantum pictures of space-time, with a sensitivity that extends even beyond the desired Planck-scale energy. In order to render this constraint more transparent we rely on a well studied phenomenological model of quantum-gravity-induced birefringence, in which one easily establishes that effects introduced at the Planck scale would amount to values of a dimensionless parameter, denoted by ξ, with respect to the Planck energy which are roughly of order 1. By combining BOOMERanG and WMAP data we estimate ξ≅-0.097±0.075 at the 68% c.l. Moreover, we forecast on the sensitivity to ξ achievable by future CMB polarization experiments (PLANCK, Spider, EPIC), which, in the absence of systematics, will be at the 1-σ confidence of 8.5x10 -4 (PLANCK), 6.1x10 -3 (Spider), and 1.0x10 -5 (EPIC) respectively. The cosmic variance-limited sensitivity from CMB is 6.1x10 -6 .

  9. MAPCUMBA: A fast iterative multi-grid map-making algorithm for CMB experiments

    Science.gov (United States)

    Doré, O.; Teyssier, R.; Bouchet, F. R.; Vibert, D.; Prunet, S.

    2001-07-01

    The data analysis of current Cosmic Microwave Background (CMB) experiments like BOOMERanG or MAXIMA poses severe challenges which already stretch the limits of current (super-) computer capabilities, if brute force methods are used. In this paper we present a practical solution for the optimal map making problem which can be used directly for next generation CMB experiments like ARCHEOPS and TopHat, and can probably be extended relatively easily to the full PLANCK case. This solution is based on an iterative multi-grid Jacobi algorithm which is both fast and memory sparing. Indeed, if there are Ntod data points along the one dimensional timeline to analyse, the number of operations is of O (Ntod \\ln Ntod) and the memory requirement is O (Ntod). Timing and accuracy issues have been analysed on simulated ARCHEOPS and TopHat data, and we discuss as well the issue of the joint evaluation of the signal and noise statistical properties.

  10. Probing features in inflaton potential and reionization history with future CMB space observations

    Science.gov (United States)

    Hazra, Dhiraj Kumar; Paoletti, Daniela; Ballardini, Mario; Finelli, Fabio; Shafieloo, Arman; Smoot, George F.; Starobinsky, Alexei A.

    2018-02-01

    We consider the prospects of probing features in the primordial power spectrum with future Cosmic Microwave Background (CMB) polarization measurements. In the scope of the inflationary scenario, such features in the spectrum can be produced by local non-smooth pieces in an inflaton potential (smooth and quasi-flat in general) which in turn may originate from fast phase transitions during inflation in other quantum fields interacting with the inflaton. They can fit some outliers in the CMB temperature power spectrum which are unaddressed within the standard inflationary ΛCDM model. We consider Wiggly Whipped Inflation (WWI) as a theoretical framework leading to improvements in the fit to the Planck 2015 temperature and polarization data in comparison with the standard inflationary models, although not at a statistically significant level. We show that some type of features in the potential within the WWI models, leading to oscillations in the primordial power spectrum that extend to intermediate and small scales can be constrained with high confidence (at 3σ or higher confidence level) by an instrument as the Cosmic ORigins Explorer (CORE). In order to investigate the possible confusion between inflationary features and footprints from the reionization era, we consider an extended reionization history with monotonic increase of free electrons with decrease in redshift. We discuss the present constraints on this model of extended reionization and future predictions with CORE. We also project, to what extent, this extended reionization can create confusion in identifying inflationary features in the data.

  11. MODELING ATMOSPHERIC EMISSION FOR CMB GROUND-BASED OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Errard, J.; Borrill, J. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Ade, P. A. R. [School of Physics and Astronomy, Cardiff University, Cardiff CF10 3XQ (United Kingdom); Akiba, Y.; Chinone, Y. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Arnold, K.; Atlas, M.; Barron, D.; Elleflot, T. [Department of Physics, University of California, San Diego, CA 92093-0424 (United States); Baccigalupi, C.; Fabbian, G. [International School for Advanced Studies (SISSA), Trieste I-34014 (Italy); Boettger, D. [Department of Astronomy, Pontifica Universidad Catolica de Chile (Chile); Chapman, S. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, B3H 4R2 (Canada); Cukierman, A. [Department of Physics, University of California, Berkeley, CA 94720 (United States); Delabrouille, J. [AstroParticule et Cosmologie, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cité (France); Dobbs, M.; Gilbert, A. [Physics Department, McGill University, Montreal, QC H3A 0G4 (Canada); Ducout, A.; Feeney, S. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Feng, C. [Department of Physics and Astronomy, University of California, Irvine (United States); and others

    2015-08-10

    Atmosphere is one of the most important noise sources for ground-based cosmic microwave background (CMB) experiments. By increasing optical loading on the detectors, it amplifies their effective noise, while its fluctuations introduce spatial and temporal correlations between detected signals. We present a physically motivated 3D-model of the atmosphere total intensity emission in the millimeter and sub-millimeter wavelengths. We derive a new analytical estimate for the correlation between detectors time-ordered data as a function of the instrument and survey design, as well as several atmospheric parameters such as wind, relative humidity, temperature and turbulence characteristics. Using an original numerical computation, we examine the effect of each physical parameter on the correlations in the time series of a given experiment. We then use a parametric-likelihood approach to validate the modeling and estimate atmosphere parameters from the polarbear-i project first season data set. We derive a new 1.0% upper limit on the linear polarization fraction of atmospheric emission. We also compare our results to previous studies and weather station measurements. The proposed model can be used for realistic simulations of future ground-based CMB observations.

  12. Advanced Antenna-Coupled Superconducting Detector Arrays for CMB Polarimetry

    Science.gov (United States)

    Bock, James

    2014-01-01

    We are developing high-sensitivity millimeter-wave detector arrays for measuring the polarization of the cosmic microwave background (CMB). This development is directed to advance the technology readiness of the Inflation Probe mission in NASA's Physics of the Cosmos program. The Inflation Probe is a fourth-generation CMB satellite that will measure the polarization of the CMB to astrophysical limits, characterizing the inflationary polarization signal, mapping large-scale structure based on polarization induced by gravitational lensing, and mapping Galactic magnetic fields through measurements of polarized dust emission. The inflationary polarization signal is produced by a background of gravitational waves from the epoch of inflation, an exponential expansion of space-time in the early universe, with an amplitude that depends on the physical mechanism producing inflation. The inflationary polarization signal may be distinguished by its unique 'B-mode' vector properties from polarization from the density variations that predominantly source CMB temperature anisotropy. Mission concepts for the Inflation Probe are being developed in the US, Europe and Japan. The arrays are based on planar antennas that provide integral beam collimation, polarization analysis, and spectral band definition in a compact lithographed format that eliminates discrete fore-optics such as lenses and feedhorns. The antennas are coupled to transition-edge superconducting bolometers, read out with multiplexed SQUID current amplifiers. The superconducting sensors and readouts developed in this program share common technologies with NASA X-ray and FIR detector applications. Our program targets developments required for space observations, and we discuss our technical progress over the past two years and plans for future development. We are incorporating arrays into active sub-orbital and ground-based experiments, which advance technology readiness while producing state of the art CMB

  13. Reconstruction of CMB temperature anisotropies with primordial CMB induced polarization in galaxy clusters

    Science.gov (United States)

    Liu, Guo-Chin; Ichiki, Kiyotomo; Tashiro, Hiroyuki; Sugiyama, Naoshi

    2016-07-01

    Scattering of cosmic microwave background (CMB) radiation in galaxy clusters induces polarization signals determined by the quadrupole anisotropy in the photon distribution at the location of clusters. This `remote quadrupole' derived from the measurements of the induced polarization in galaxy clusters provides an opportunity to reconstruct local CMB temperature anisotropies. In this Letter, we develop an algorithm of the reconstruction through the estimation of the underlying primordial gravitational potential, which is the origin of the CMB temperature and polarization fluctuations and CMB induced polarization in galaxy clusters. We found a nice reconstruction for the quadrupole and octopole components of the CMB temperature anisotropies with the assistance of the CMB induced polarization signals. The reconstruction can be an important consistency test on the puzzles of CMB anomalies, especially for the low-quadrupole and axis-of-evil problems reported in Wilkinson Microwave Anisotropy Probe and Planck data.

  14. Weak lensing and CMB: Parameter forecasts including a running spectral index

    International Nuclear Information System (INIS)

    Ishak, Mustapha; Hirata, Christopher M.; McDonald, Patrick; Seljak, Uros

    2004-01-01

    We use statistical inference theory to explore the constraints from future galaxy weak lensing (cosmic shear) surveys combined with the current CMB constraints on cosmological parameters, focusing particularly on the running of the spectral index of the primordial scalar power spectrum, α s . Recent papers have drawn attention to the possibility of measuring α s by combining the CMB with galaxy clustering and/or the Lyman-α forest. Weak lensing combined with the CMB provides an alternative probe of the primordial power spectrum. We run a series of simulations with variable runnings and compare them to semianalytic nonlinear mappings to test their validity for our calculations. We find that a 'reference' cosmic shear survey with f sky =0.01 and 6.6x10 8 galaxies per steradian can reduce the uncertainty on n s and α s by roughly a factor of 2 relative to the CMB alone. We investigate the effect of shear calibration biases on lensing by including the calibration factor as a parameter, and show that for our reference survey, the precision of cosmological parameter determination is only slightly degraded even if the amplitude calibration is uncertain by as much as 5%. We conclude that in the near future weak lensing surveys can supplement the CMB observations to constrain the primordial power spectrum

  15. Primordial gravitational waves measurements and anisotropies of CMB polarization rotation

    Directory of Open Access Journals (Sweden)

    Si-Yu Li

    2015-12-01

    Full Text Available Searching for the signal of primordial gravitational waves in the B-modes (BB power spectrum is one of the key scientific aims of the cosmic microwave background (CMB polarization experiments. However, this could be easily contaminated by several foreground issues, such as the interstellar dust grains and the galactic cyclotron electrons. In this paper we study another mechanism, the cosmic birefringence, which can be introduced by a CPT-violating interaction between CMB photons and an external scalar field. Such kind of interaction could give rise to the rotation of the linear polarization state of CMB photons, and consequently induce the CMB BB power spectrum, which could mimic the signal of primordial gravitational waves at large scales. With the recently released polarization data of BICEP2 and the joint analysis data of BICEP2/Keck Array and Planck, we perform a global fitting analysis on constraining the tensor-to-scalar ratio r by considering the polarization rotation angle [α(nˆ] which can be separated into a background isotropic part [α¯] and a small anisotropic part [Δα(nˆ]. Since the data of BICEP2 and Keck Array experiments have already been corrected by using the “self-calibration” method, here we mainly focus on the effects from the anisotropies of CMB polarization rotation angle. We find that including Δα(nˆ in the analysis could slightly weaken the constraints on the tensor-to-scalar ratio r, when using current CMB polarization measurements. We also simulate the mock CMB data with the BICEP3-like sensitivity. Very interestingly, we find that if the effects of the anisotropic polarization rotation angle could not be taken into account properly in the analysis, the constraints on r will be dramatically biased. This implies that we need to break the degeneracy between the anisotropies of the CMB polarization rotation angle and the CMB primordial tensor perturbations, in order to measure the signal of primordial

  16. A CMB/Dark Energy Cosmic Duality

    DEFF Research Database (Denmark)

    Enqvist, Kari; Sloth, Martin Snoager

    2004-01-01

    We investigate a possible connection between the suppression of the power at low multipoles in the CMB spectrum and the late time acceleration. We show that, assuming a cosmic IR/UV duality between the UV cutoff and a global infrared cutoff given by the size of the future event horizon...

  17. A constraint on Planck-scale modifications to electrodynamics with CMB polarization data

    International Nuclear Information System (INIS)

    Gubitosi, Giulia; Pagano, Luca; Amelino-Camelia, Giovanni; Melchiorri, Alessandro; Cooray, Asantha

    2009-01-01

    We show that the Cosmic Microwave Background (CMB) polarization data gathered by the BOOMERanG 2003 flight and WMAP provide an opportunity to investigate in-vacuo birefringence, of a type expected in some quantum pictures of space-time, with a sensitivity that extends even beyond the desired Planck-scale energy. In order to render this constraint more transparent we rely on a well studied phenomenological model of quantum-gravity-induced birefringence, in which one easily establishes that effects introduced at the Planck scale would amount to values of a dimensionless parameter, denoted by ξ, with respect to the Planck energy which are roughly of order 1. By combining BOOMERanG and WMAP data we estimate ξ ≅ −0.110±0.075 at the 68% c.l. Moreover, we forecast on the sensitivity to ξ achievable by future CMB polarization experiments (PLANCK, Spider, EPIC), which, in the absence of systematics, will be at the 1-σ confidence of 8.5 × 10 −4 (PLANCK), 6.1 × 10 −3 (Spider), and 1.0 × 10 −5 (EPIC) respectively. The cosmic variance-limited sensitivity from CMB is 6.1 × 10 −6

  18. Thermal analysis of a prototype cryogenic polarization modulator for use in a space-borne CMB polarization experiment

    Science.gov (United States)

    Iida, T.; Sakurai, Y.; Matsumura, T.; Sugai, H.; Imada, H.; Kataza, H.; Ohsaki, H.; Hazumi, M.; Katayama, N.; Yamamoto, R.; Utsunomiya, S.; Terao, Y.

    2017-12-01

    We report a thermal analysis of a polarization modulator unit (PMU) for use in a space-borne cosmic microwave background (CMB) project. A measurement of the CMB polarization allows us to probe the physics of early universe, and that is the best method to test the cosmic inflation experimentally. One of the key instruments for this science is to use a halfwave plate (HWP) based polarization modulator. The HWP is required to rotate continuously at about 1 Hz below 10 K to minimize its own thermal emission to a detector system. The rotating HWP system at the cryogenic environment can be realized by using a superconducting magnetic bearing (SMB) without significant heat dissipation by mechanical friction. While the SMB achieves the smooth rotation due to the contactless bearing, an estimation of a levitating HWP temperature becomes a challenge. We manufactured a one-eighth scale prototype model of PMU and built a thermal model. We verified our thermal model with the experimental data. We forecasted the projected thermal performance of PMU for a full-scale model based on the thermal model. From this analysis, we discuss the design requirement toward constructing the full-scale model for use in a space environment such as a future CMB satellite mission, LiteBIRD.

  19. Constraining dark photon model with dark matter from CMB spectral distortions

    Directory of Open Access Journals (Sweden)

    Ki-Young Choi

    2017-08-01

    Full Text Available Many extensions of Standard Model (SM include a dark sector which can interact with the SM sector via a light mediator. We explore the possibilities to probe such a dark sector by studying the distortion of the CMB spectrum from the blackbody shape due to the elastic scatterings between the dark matter and baryons through a hidden light mediator. We in particular focus on the model where the dark sector gauge boson kinetically mixes with the SM and present the future experimental prospect for a PIXIE-like experiment along with its comparison to the existing bounds from complementary terrestrial experiments.

  20. FSD: Frequency Space Differential measurement of CMB spectral distortions

    Science.gov (United States)

    Mukherjee, Suvodip; Silk, Joseph; Wandelt, Benjamin D.

    2018-04-01

    Although the Cosmic Microwave Background agrees with a perfect blackbody spectrum within the current experimental limits, it is expected to exhibit certain spectral distortions with known spectral properties. We propose a new method, Frequency Space Differential (FSD) to measure the spectral distortions in the CMB spectrum by using the inter-frequency differences of the brightness temperature. The difference between the observed CMB temperature at different frequencies must agree with the frequency derivative of the blackbody spectrum, in the absence of any distortion. However, in the presence of spectral distortions, the measured inter-frequency differences would also exhibit deviations from blackbody which can be modeled for known sources of spectral distortions like y & μ. Our technique uses FSD information for the CMB blackbody, y, μ or any other sources of spectral distortions to model the observed signal. Successful application of this method in future CMB missions can provide an alternative method to extract spectral distortion signals and can potentially make it feasible to measure spectral distortions without an internal blackbody calibrator.

  1. Optimization study for the experimental configuration of CMB-S4

    Science.gov (United States)

    Barron, Darcy; Chinone, Yuji; Kusaka, Akito; Borril, Julian; Errard, Josquin; Feeney, Stephen; Ferraro, Simone; Keskitalo, Reijo; Lee, Adrian T.; Roe, Natalie A.; Sherwin, Blake D.; Suzuki, Aritoki

    2018-02-01

    The CMB Stage 4 (CMB-S4) experiment is a next-generation, ground-based experiment that will measure the cosmic microwave background (CMB) polarization to unprecedented accuracy, probing the signature of inflation, the nature of cosmic neutrinos, relativistic thermal relics in the early universe, and the evolution of the universe. CMB-S4 will consist of O(500,000) photon-noise-limited detectors that cover a wide range of angular scales in order to probe the cosmological signatures from both the early and late universe. It will measure a wide range of microwave frequencies to cleanly separate the CMB signals from galactic and extra-galactic foregrounds. To advance the progress towards designing the instrument for CMB-S4, we have established a framework to optimize the instrumental configuration to maximize its scientific output. The framework combines cost and instrumental models with a cosmology forecasting tool, and evaluates the scientific sensitivity as a function of various instrumental parameters. The cost model also allows us to perform the analysis under a fixed-cost constraint, optimizing for the scientific output of the experiment given finite resources. In this paper, we report our first results from this framework, using simplified instrumental and cost models. We have primarily studied two classes of instrumental configurations: arrays of large-aperture telescopes with diameters ranging from 2–10 m, and hybrid arrays that combine small-aperture telescopes (0.5-m diameter) with large-aperture telescopes. We explore performance as a function of telescope aperture size, distribution of the detectors into different microwave frequencies, survey strategy and survey area, low-frequency noise performance, and balance between small and large aperture telescopes for hybrid configurations. Both types of configurations must cover both large (~ degree) and small (~ arcmin) angular scales, and the performance depends on assumptions for performance vs. angular scale

  2. CMB statistical anisotropy from noncommutative gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Shiraishi, Maresuke; Ricciardone, Angelo [Dipartimento di Fisica e Astronomia ' ' G. Galilei' ' , Università degli Studi di Padova, via Marzolo 8, I-35131, Padova (Italy); Mota, David F. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo (Norway); Arroja, Frederico, E-mail: maresuke.shiraishi@pd.infn.it, E-mail: d.f.mota@astro.uio.no, E-mail: angelo.ricciardone@pd.infn.it, E-mail: arroja@pd.infn.it [INFN, Sezione di Padova, via Marzolo 8, I-35131, Padova (Italy)

    2014-07-01

    Primordial statistical anisotropy is a key indicator to investigate early Universe models and has been probed by the cosmic microwave background (CMB) anisotropies. In this paper, we examine tensor-mode CMB fluctuations generated from anisotropic gravitational waves, parametrised by P{sub h}(k) = P{sub h}{sup (0)}(k) [ 1 + ∑{sub LM} f{sub L}(k) g{sub LM} Y{sub LM} ( k-circumflex )], where P{sub h}{sup (0)}(k) is the usual scale-invariant power spectrum. Such anisotropic tensor fluctuations may arise from an inflationary model with noncommutativity of fields. It is verified that in this model, an isotropic component and a quadrupole asymmetry with f{sub 0}(k) = f{sub 2}(k) ∝ k{sup -2} are created and hence highly red-tilted off-diagonal components arise in the CMB power spectra, namely ℓ{sub 2} = ℓ{sub 1} ± 2 in TT, TE, EE and BB, and ℓ{sub 2} = ℓ{sub 1} ± 1 in TB and EB. We find that B-mode polarisation is more sensitive to such signals than temperature and E-mode polarisation due to the smallness of large-scale cosmic variance and we can potentially measure g{sub 00} = 30 and g{sub 2M} = 58 at 68% CL in a cosmic-variance-limited experiment. Such a level of signal may be measured in a PRISM like experiment, while the instrumental noise contaminates it in the Planck experiment. These results imply that it is impossible to measure the noncommutative parameter if it is small enough for the perturbative treatment to be valid. Our formalism and methodology for dealing with the CMB tensor statistical anisotropy are general and straightforwardly applicable to other early Universe models.

  3. Development of Optics and Detectors for Advanced CMB Polarization Measurements

    Data.gov (United States)

    National Aeronautics and Space Administration — Measurements of the cosmic microwave background (CMB) have been essential to the development of modern cosmology. Future observations will provide cosmological...

  4. A constraint on Planck-scale modifications to electrodynamics with CMB polarization data

    Energy Technology Data Exchange (ETDEWEB)

    Gubitosi, Giulia; Pagano, Luca; Amelino-Camelia, Giovanni; Melchiorri, Alessandro [Physics Department, University of Rome ' ' La Sapienza' ' and Sezione Roma1 INFN, P.le Aldo Moro 2, 00185 Rome (Italy); Cooray, Asantha, E-mail: giulia.gubitosi@roma1.infn.it, E-mail: luca.pagano@roma1.infn.it, E-mail: giovanni.amelino-camelia@roma1.infn.it, E-mail: alessandro.melchiorri@roma1.infn.it, E-mail: acooray@uci.edu [Center for Cosmology, Dept. of Physics and Astronomy, University of California Irvine, Irvine, CA 92697 (United States)

    2009-08-01

    We show that the Cosmic Microwave Background (CMB) polarization data gathered by the BOOMERanG 2003 flight and WMAP provide an opportunity to investigate in-vacuo birefringence, of a type expected in some quantum pictures of space-time, with a sensitivity that extends even beyond the desired Planck-scale energy. In order to render this constraint more transparent we rely on a well studied phenomenological model of quantum-gravity-induced birefringence, in which one easily establishes that effects introduced at the Planck scale would amount to values of a dimensionless parameter, denoted by ξ, with respect to the Planck energy which are roughly of order 1. By combining BOOMERanG and WMAP data we estimate ξ ≅ −0.110±0.075 at the 68% c.l. Moreover, we forecast on the sensitivity to ξ achievable by future CMB polarization experiments (PLANCK, Spider, EPIC), which, in the absence of systematics, will be at the 1-σ confidence of 8.5 × 10{sup −4} (PLANCK), 6.1 × 10{sup −3} (Spider), and 1.0 × 10{sup −5} (EPIC) respectively. The cosmic variance-limited sensitivity from CMB is 6.1 × 10{sup −6}.

  5. Needlet estimation of cross-correlation between CMB lensing maps and LSS

    Energy Technology Data Exchange (ETDEWEB)

    Bianchini, Federico [Astrophysics Sector, SISSA, Via Bonomea 265, I-34136 Trieste (Italy); Renzi, Alessandro; Marinucci, Domenico, E-mail: fbianchini@sissa.it, E-mail: renzi@mat.uniroma2.it, E-mail: marinucc@mat.uniroma2.it [Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma (Italy)

    2016-11-01

    In this paper we develop a novel needlet-based estimator to investigate the cross-correlation between cosmic microwave background (CMB) lensing maps and large-scale structure (LSS) data. We compare this estimator with its harmonic counterpart and, in particular, we analyze the bias effects of different forms of masking. In order to address this bias, we also implement a MASTER-like technique in the needlet case. The resulting estimator turns out to have an extremely good signal-to-noise performance. Our analysis aims at expanding and optimizing the operating domains in CMB-LSS cross-correlation studies, similarly to CMB needlet data analysis. It is motivated especially by next generation experiments (such as Euclid) which will allow us to derive much tighter constraints on cosmological and astrophysical parameters through cross-correlation measurements between CMB and LSS.

  6. CMB-S4 Science Book, First Edition

    Energy Technology Data Exchange (ETDEWEB)

    Abazajian, Kevork N. [Univ. of California, Irvine, CA (United States); et al.

    2016-10-09

    This book lays out the scientific goals to be addressed by the next-generation ground-based cosmic microwave background experiment, CMB-S4, envisioned to consist of dedicated telescopes at the South Pole, the high Chilean Atacama plateau and possibly a northern hemisphere site, all equipped with new superconducting cameras. CMB-S4 will dramatically advance cosmological studies by crossing critical thresholds in the search for the B-mode polarization signature of primordial gravitational waves, in the determination of the number and masses of the neutrinos, in the search for evidence of new light relics, in constraining the nature of dark energy, and in testing general relativity on large scales.

  7. CMB lensing and giant rings

    Energy Technology Data Exchange (ETDEWEB)

    Rathaus, Ben; Itzhaki, Nissan, E-mail: nitzhaki@post.tau.ac.il, E-mail: ben.rathaus@gmail.com [Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel-Aviv University, Ramat-Aviv, 69978 (Israel)

    2012-05-01

    We study the CMB lensing signature of a pre-inationary particle (PIP), assuming it is responsible for the giant rings anomaly that was found recently in the WMAP data. Simulating Planck-like data we find that generically the CMB lensing signal to noise ratio associated with such a PIP is quite small and it would be difficult to cross correlate the temperature giant rings with the CMB lensing signal. However, if the pre-inationary particle is also responsible for the bulk flow measured from the local large scale structure, which happens to point roughly at the same direction as the giant rings, then the CMB lensing signal to noise ratio is fairly significant.

  8. A New Limit on CMB Circular Polarization from SPIDER

    Science.gov (United States)

    Nagy, J. M.; Ade, P. A. R.; Amiri, M.; Benton, S. J.; Bergman, A. S.; Bihary, R.; Bock, J. J.; Bond, J. R.; Bryan, S. A.; Chiang, H. C.; Contaldi, C. R.; Doré, O.; Duivenvoorden, A. J.; Eriksen, H. K.; Farhang, M.; Filippini, J. P.; Fissel, L. M.; Fraisse, A. A.; Freese, K.; Galloway, M.; Gambrel, A. E.; Gandilo, N. N.; Ganga, K.; Gudmundsson, J. E.; Halpern, M.; Hartley, J.; Hasselfield, M.; Hilton, G.; Holmes, W.; Hristov, V. V.; Huang, Z.; Irwin, K. D.; Jones, W. C.; Kuo, C. L.; Kermish, Z. D.; Li, S.; Mason, P. V.; Megerian, K.; Moncelsi, L.; Morford, T. A.; Netterfield, C. B.; Nolta, M.; Padilla, I. L.; Racine, B.; Rahlin, A. S.; Reintsema, C.; Ruhl, J. E.; Runyan, M. C.; Ruud, T. M.; Shariff, J. A.; Soler, J. D.; Song, X.; Trangsrud, A.; Tucker, C.; Tucker, R. S.; Turner, A. D.; Van Der List, J. F.; Weber, A. C.; Wehus, I. K.; Wiebe, D. V.; Young, E. Y.

    2017-08-01

    We present a new upper limit on cosmic microwave background (CMB) circular polarization from the 2015 flight of Spider, a balloon-borne telescope designed to search for B-mode linear polarization from cosmic inflation. Although the level of circular polarization in the CMB is predicted to be very small, experimental limits provide a valuable test of the underlying models. By exploiting the nonzero circular-to-linear polarization coupling of the half-wave plate polarization modulators, data from Spider's 2015 Antarctic flight provide a constraint on Stokes V at 95 and 150 GHz in the range 33< {\\ell }< 307. No other limits exist over this full range of angular scales, and Spider improves on the previous limit by several orders of magnitude, providing 95% C.L. constraints on {\\ell }({\\ell }+1){C}{\\ell }{VV}/(2π ) ranging from 141 to 255 μK2 at 150 GHz for a thermal CMB spectrum. As linear CMB polarization experiments become increasingly sensitive, the techniques described in this paper can be applied to obtain even stronger constraints on circular polarization.

  9. A New Limit on CMB Circular Polarization from SPIDER

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, J. M.; Ade, P. A. R.; Amiri, M.; Benton, S. J.; Bergman, A. S.; Bihary, R.; Bock, J. J.; Bond, J. R.; Bryan, S. A.; Chiang, H. C.; Contaldi, C. R.; Doré, O.; Duivenvoorden, A. J.; Eriksen, H. K.; Farhang, M.; Filippini, J. P.; Fissel, L. M.; Fraisse, A. A.; Freese, K.; Galloway, M.; Gambrel, A. E.; Gandilo, N. N.; Ganga, K.; Gudmundsson, J. E.; Halpern, M.; Hartley, J.; Hasselfield, M.; Hilton, G.; Holmes, W.; Hristov, V. V.; Huang, Z.; Irwin, K. D.; Jones, W. C.; Kuo, C. L.; Kermish, Z. D.; Li, S.; Mason, P. V.; Megerian, K.; Moncelsi, L.; Morford, T. A.; Netterfield, C. B.; Nolta, M.; Padilla, I. L.; Racine, B.; Rahlin, A. S.; Reintsema, C.; Ruhl, J. E.; Runyan, M. C.; Ruud, T. M.; Shariff, J. A.; Soler, J. D.; Song, X.; Trangsrud, A.; Tucker, C.; Tucker, R. S.; Turner, A. D.; List, J. F. Van Der; Weber, A. C.; Wehus, I. K.; Wiebe, D. V.; Young, E. Y.

    2017-08-01

    We present a new upper limit on CMB circular polarization from the 2015 flight of SPIDER, a balloon-borne telescope designed to search for $B$-mode linear polarization from cosmic inflation. Although the level of circular polarization in the CMB is predicted to be very small, experimental limits provide a valuable test of the underlying models. By exploiting the non-zero circular-to-linear polarization coupling of the HWP polarization modulators, data from SPIDER's 2015 Antarctic flight provides a constraint on Stokes $V$ at 95 and 150 GHz from $33<\\ell<307$. No other limits exist over this full range of angular scales, and SPIDER improves upon the previous limit by several orders of magnitude, providing 95% C.L. constraints on $\\ell (\\ell+1)C_{\\ell}^{VV}/(2\\pi)$ ranging from 141 $\\mu K ^2$ to 203 $\\mu K ^2$ at 150 GHz for a thermal CMB spectrum. As linear CMB polarization experiments become increasingly sensitive, the techniques described in this paper can be applied to obtain stronger constraints on circular polarization.

  10. Power filtration of CMB observational data

    DEFF Research Database (Denmark)

    Novikov, D.I.; Naselsky, P.; Jørgensen, H.E.

    2001-01-01

    We propose a power filter Cp for linear reconstruction of the CMB signal from one-dimensional scans of observational maps. This Gp filter preserves the power spectrum of the CMB signal in contrast to the Wiener filter which diminishes the power spectrum of the reconstructed CMB signal. We demonst...

  11. 5,120 Superconducting Bolometers for the PIPER Balloon-Borne CMB Polarization Experiment

    Science.gov (United States)

    Benford, Dominic J.; Chuss, David T.; Hilton, Gene C.; Irwin, Kent D.; Jethava, Nikhil S.; Jhabvala, Christine A.; Kogut, Alan J.; Miller, Timothy M.; Mirel, Paul; Moseley, S. Harvey; hide

    2010-01-01

    We are constructing the Primordial Inflation Polarization Explorer (PIPER) to measure the polarization o[ the cosmic microwave background (CMB) and search for the imprint of gravity waves produced during an inflationary epoch in the early universe. The signal is faint and lies behind confusing foregrounds, both astrophysical and cosmological, and so many detectors are required to complete the measurement in a limited time. We will use four of our matured 1,280 pixel, high-filling-factor backshort-under-grid bolometer arrays for efficient operation at the PIPER CMB wavelengths. All four arrays observe at a common wavelength set by passband filters in the optical path. PIPER will fly four times to observe at wavelengths of 1500, 1100, 850, and 500 microns in order to separate CMB from foreground emission. The arrays employ leg-isolated superconducting transition edge sensor bolometers operated at 128mK; tuned resonant backshorts for efficient optical coupling; and a second-generation superconducting quantum interference device (SQUID) multiplexer readout. We describe the design, development, and performance of PIPER bo|ometer array technology to achieve background-limited sensitivity for a cryogenic balloon-borne telescope.

  12. Determination of neutrino mass hierarchy by 21 cm line and CMB B-mode polarization observations

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yoshihiko, E-mail: oyamayo@post.kek.jp [The Graduate University for Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba 305-0801 (Japan); Shimizu, Akie [The Graduate University for Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba 305-0801 (Japan); Kohri, Kazunori [The Graduate University for Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba 305-0801 (Japan); Institute of Particle and Nuclear Studies, KEK, 1-1 Oho, Tsukuba 305-0801 (Japan)

    2013-01-29

    We focus on the ongoing and future observations for both the 21 cm line and the CMB B-mode polarization produced by a CMB lensing, and study their sensitivities to the effective number of neutrino species, the total neutrino mass, and the neutrino mass hierarchy. We find that combining the CMB observations with future square kilometer arrays optimized for 21 cm line such as Omniscope can determine the neutrino mass hierarchy at 2{sigma}. We also show that a more feasible combination of Planck + POLARBEAR and SKA can strongly improve errors of the bounds on the total neutrino mass and the effective number of neutrino species to be {Delta}{Sigma}m{sub {nu}}{approx}0.12 eV and {Delta}N{sub {nu}}{approx}0.38 at 2{sigma}, respectively.

  13. Novel calibration system with sparse wires for CMB polarization receivers

    International Nuclear Information System (INIS)

    Tajima, O.; Nguyen, H.; Bischoff, C.; Brizius, A.; Buder, I.; Kusaka, A.

    2011-01-01

    B-modes in the cosmic microwave background (CMB) polarization is a smoking gun signature of the inflationary universe. To achieve better sensitivity to this faint signal, CMB polarization experiments aim to maximize the number of detector elements, resulting in a large focal plane receiver. Detector calibration of the polarization response becomes essential. It is extremely useful to be able to calibrate 'simultaneously' all detectors on the large focal plane. We developed a novel calibration system that rotates a large 'sparse' grid of metal wires, in front of and fully covering the field of view of the focal plane receiver. Polarized radiation is created via the reflection of ambient temperature from the wire surface. Since the detector has a finite beam size, the observed signal is smeared according to the beam property. The resulting smeared polarized radiation has a reasonable intensity (a few Kelvin or less) compared to the sky temperature (∼10 K observing condition). The system played a successful role for receiver calibration of QUIET, a CMB polarization experiment located in the Atacama desert in Chile. The successful performance revealed that this system is applicable to other experiments based on different technologies, e.g. TES bolometers.

  14. CMB B-mode auto-bispectrum produced by primordial gravitational waves

    Science.gov (United States)

    Tahara, Hiroaki W. H.; Yokoyama, Jun'ichi

    2018-01-01

    Gravitational waves from inflation induce polarization patterns in the cosmic microwave background (CMB). It is known that there are only two types of non-Gaussianities of the gravitational waves in the most general covariant scalar field theory having second-order field equations, namely, generalized G-inflation. One originates from the inherent non-Gaussianity in general relativity, and the other from a derivative coupling between the Einstein tensor and the scalar field. We calculate polarization bispectra induced by these non-Gaussianities by transforming them into separable forms by virtue of the Laplace transformation. It is shown that future experiments can constrain the new one but cannot detect the general relativistic one.

  15. Primordial helium abundance from CMB: A constraint from recent observations and a forecast

    International Nuclear Information System (INIS)

    Ichikawa, Kazuhide; Sekiguchi, Toyokazu; Takahashi, Tomo

    2008-01-01

    We studied a constraint on the primordial helium abundance Y p from current and future observations of CMB. Using the currently available data from WMAP, ACBAR, CBI, and BOOMERANG, we obtained the constraint as Y p =0.25 -0.07 +0.10 at 68% confidence level. We also provide a forecast for the Planck experiment using the Markov chain Monte Carlo approach. In addition to forecasting the constraint on Y p , we investigate how assumptions for Y p affect constraints on the other cosmological parameters.

  16. Universe opacity and CMB

    Science.gov (United States)

    Vavryčuk, Václav

    2018-04-01

    A cosmological model, in which the cosmic microwave background (CMB) is a thermal radiation of intergalactic dust instead of a relic radiation of the Big Bang, is revived and revisited. The model suggests that a virtually transparent local Universe becomes considerably opaque at redshifts z > 2 - 3. Such opacity is hardly to be detected in the Type Ia supernova data, but confirmed using quasar data. The opacity steeply increases with redshift because of a high proper density of intergalactic dust in the previous epochs. The temperature of intergalactic dust increases as (1 + z) and exactly compensates the change of wavelengths due to redshift, so that the dust radiation looks apparently like the radiation of the blackbody with a single temperature. The predicted dust temperature is TD = 2.776 K, which differs from the CMB temperature by 1.9% only, and the predicted ratio between the total CMB and EBL intensities is 13.4 which is close to 12.5 obtained from observations. The CMB temperature fluctuations are caused by EBL fluctuations produced by galaxy clusters and voids in the Universe. The polarization anomalies of the CMB correlated with temperature anisotropies are caused by the polarized thermal emission of needle-shaped conducting dust grains aligned by large-scale magnetic fields around clusters and voids. A strong decline of the luminosity density for z > 4 is interpreted as the result of high opacity of the Universe rather than of a decline of the global stellar mass density at high redshifts.

  17. Novel calibration system with sparse wires for CMB polarization receivers

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, O.; /KEK, Tsukuba /Chicago U., KICP; Nguyen, H.; /Fermilab; Bischoff, C.; /Chicago U., KICP /Harvard-Smithsonian Ctr. Astrophys.; Brizius, A.; Buder, I.; Kusaka, A. /Chicago U., KICP

    2011-07-01

    B-modes in the cosmic microwave background (CMB) polarization is a smoking gun signature of the inflationary universe. To achieve better sensitivity to this faint signal, CMB polarization experiments aim to maximize the number of detector elements, resulting in a large focal plane receiver. Detector calibration of the polarization response becomes essential. It is extremely useful to be able to calibrate 'simultaneously' all detectors on the large focal plane. We developed a novel calibration system that rotates a large 'sparse' grid of metal wires, in front of and fully covering the field of view of the focal plane receiver. Polarized radiation is created via the reflection of ambient temperature from the wire surface. Since the detector has a finite beam size, the observed signal is smeared according to the beam property. The resulting smeared polarized radiation has a reasonable intensity (a few Kelvin or less) compared to the sky temperature ({approx}10 K observing condition). The system played a successful role for receiver calibration of QUIET, a CMB polarization experiment located in the Atacama desert in Chile. The successful performance revealed that this system is applicable to other experiments based on different technologies, e.g. TES bolometers.

  18. Cosmology from CMB Polarization with POLARBEAR and the Simons Array

    Science.gov (United States)

    Barron, Darcy; POLARBEAR Collaboration

    2018-01-01

    POLARBEAR is a cosmic microwave background (CMB) polarization experiment located in the Atacama desert in Chile. The science goals of the POLARBEAR project are to do a deep search for CMB B-mode polarization created by inflationary gravitational waves, as well as characterize the CMB B-mode signal from gravitational lensing. POLARBEAR-1 started observations in 2012, and the POLARBEAR team has published a series of results from its first season of observations, including the first measurement of a non-zero B-mode polarization angular power spectrum, measured at sub-degree scales where the dominant signal is gravitational lensing of the CMB. Recently, we released an improved measurement of the B-mode polarization power spectrum, improving our band-power uncertainties by a factor of two, by adding new data from our second observing season and re-analyzing the combined data set.To further improve on these measurements, POLARBEAR is expanding to include an additional two telescopes with multi-chroic receivers observing at 95, 150, 220, and 270 GHz, known as the Simons Array. With high sensitivity and large sky coverage, the Simons Array will create a detailed survey of B-mode polarization, and its spectral information will be used to extract the CMB signal from astrophysical foregrounds. We will present the latest POLARBEAR results, as well as the status of development of the Simons Array and its expected capabilities.

  19. Constraints on Inflation from Polarization and CMB Spectral Distortions

    Science.gov (United States)

    Kamionkowski, Marc

    2014-01-01

    This talk will summarize some things we can do with future CMB experiments to study the early Universe. An obvious first is to map the polarization from density perturbations to the cosmic-variance limit to improve upon the types of things (cosmological-parameter determination, lensing, etc.) that have been done so far with the temperature. Another direction, which already has considerable momentum, is the pursuit of the characteristic polarization signature of inflationary gravitational waves. But there is also a strong case, which I will review, now being assembled for a space mission to seek the tiny but nonzero departures from a blackbody spectrum that are expected in the standard cosmological model and that may arise from several interesting exotic mechanisms.

  20. Testing physical models for dipolar asymmetry with CMB polarization

    Science.gov (United States)

    Contreras, D.; Zibin, J. P.; Scott, D.; Banday, A. J.; Górski, K. M.

    2017-12-01

    The cosmic microwave background (CMB) temperature anisotropies exhibit a large-scale dipolar power asymmetry. To determine whether this is due to a real, physical modulation or is simply a large statistical fluctuation requires the measurement of new modes. Here we forecast how well CMB polarization data from Planck and future experiments will be able to confirm or constrain physical models for modulation. Fitting several such models to the Planck temperature data allows us to provide predictions for polarization asymmetry. While for some models and parameters Planck polarization will decrease error bars on the modulation amplitude by only a small percentage, we show, importantly, that cosmic-variance-limited (and in some cases even Planck) polarization data can decrease the errors by considerably better than the expectation of √{2 } based on simple ℓ-space arguments. We project that if the primordial fluctuations are truly modulated (with parameters as indicated by Planck temperature data) then Planck will be able to make a 2 σ detection of the modulation model with 20%-75% probability, increasing to 45%-99% when cosmic-variance-limited polarization is considered. We stress that these results are quite model dependent. Cosmic variance in temperature is important: combining statistically isotropic polarization with temperature data will spuriously increase the significance of the temperature signal with 30% probability for Planck.

  1. Nonlinear electrodynamics and CMB polarization

    Energy Technology Data Exchange (ETDEWEB)

    Cuesta, Herman J. Mosquera [Departmento de Física Universidade Estadual Vale do Acaraú, Avenida da Universidade 850, Campus da Betânia, CEP 62.040-370, Sobral, Ceará (Brazil); Lambiase, G., E-mail: herman@icra.it, E-mail: lambiase@sa.infn.it [Dipartimento di Fisica ' ' E.R. Caianiello' ' , Università di Salerno, 84081 Baronissi (Italy)

    2011-03-01

    Recently WMAP and BOOMERanG experiments have set stringent constraints on the polarization angle of photons propagating in an expanding universe: Δα = (−2.4±1.9)°. The polarization of the Cosmic Microwave Background radiation (CMB) is reviewed in the context of nonlinear electrodynamics (NLED). We compute the polarization angle of photons propagating in a cosmological background with planar symmetry. For this purpose, we use the Pagels-Tomboulis (PT) Lagrangian density describing NLED, which has the form L ∼ (X/Λ{sup 4}){sup δ−1} X, where X = ¼F{sub αβ}F{sup αβ}, and δ the parameter featuring the non-Maxwellian character of the PT nonlinear description of the electromagnetic interaction. After looking at the polarization components in the plane orthogonal to the (x)-direction of propagation of the CMB photons, the polarization angle is defined in terms of the eccentricity of the universe, a geometrical property whose evolution on cosmic time (from the last scattering surface to the present) is constrained by the strength of magnetic fields over extragalactic distances.

  2. Detection of CMB lensing in Planck-HFI data

    International Nuclear Information System (INIS)

    Lavabre, Alexis

    2011-01-01

    The Planck satellite is the third generation experiment dedicated to the observation of the cosmic microwave background (CMB). The resolution and sensibility of its instruments allow for the first time the detection of the weak lensing effect on CMB. This thesis present a original detection method of this effect in the data of the HFI instrument of Planck.The first part give a general description of the standard model of cosmology et the physics of the CMB. The part then presents the details of the weak lensing effect, concentrating on its impact on the CMB observables. This part ends with a description of the Planck satellite and its instruments.The second part, describes the set of simulations and analysis tools that I have developed allowing me to make the first measurement of the weak lensing effect on CMB. It presents the original method that I used which is based on a patch analysis of the full sky data, that is able to only take into account the less contaminated regions. This part also present the characterisation of the lensing potential estimator for masked maps in the presence of inhomogeneous noise and introduce a method, based on Monte-Carlo simulations, that is used to correct for the bias produced by the analysis method.The last part, concentrates on the work on HFI data. The first chapter presents the application of the above method to the maps of the combined observations at 143 GHz and 217 GHz and the maps from component separation using GMCA algorithm. The results show a deflection power spectrum compatible with the one expect in a lambda CMB universe, calculated with the cosmological parameters estimated by WMAP including seven years of observations. Using the points, from the combined estimation from the 143 GHz and 217 GHz maps, for multipole smaller than 500, gives a 1.26 Chi2 by degree of freedom. Finally, the last chapter presents the compression algorithm used onboard to compression HFI data. It gives the details of the tuning and the

  3. CMB-S4 and the hemispherical variance anomaly

    Science.gov (United States)

    O'Dwyer, Márcio; Copi, Craig J.; Knox, Lloyd; Starkman, Glenn D.

    2017-09-01

    Cosmic microwave background (CMB) full-sky temperature data show a hemispherical asymmetry in power nearly aligned with the Ecliptic. In real space, this anomaly can be quantified by the temperature variance in the Northern and Southern Ecliptic hemispheres, with the Northern hemisphere displaying an anomalously low variance while the Southern hemisphere appears unremarkable [consistent with expectations from the best-fitting theory, Lambda Cold Dark Matter (ΛCDM)]. While this is a well-established result in temperature, the low signal-to-noise ratio in current polarization data prevents a similar comparison. This will change with a proposed ground-based CMB experiment, CMB-S4. With that in mind, we generate realizations of polarization maps constrained by the temperature data and predict the distribution of the hemispherical variance in polarization considering two different sky coverage scenarios possible in CMB-S4: full Ecliptic north coverage and just the portion of the North that can be observed from a ground-based telescope at the high Chilean Atacama plateau. We find that even in the set of realizations constrained by the temperature data, the low Northern hemisphere variance observed in temperature is not expected in polarization. Therefore, observing an anomalously low variance in polarization would make the hypothesis that the temperature anomaly is simply a statistical fluke more unlikely and thus increase the motivation for physical explanations. We show, within ΛCDM, how variance measurements in both sky coverage scenarios are related. We find that the variance makes for a good statistic in cases where the sky coverage is limited, however, full northern coverage is still preferable.

  4. CMB anisotropies at all orders: the non-linear Sachs-Wolfe formula

    International Nuclear Information System (INIS)

    Roldan, Omar

    2017-01-01

    We obtain the non-linear generalization of the Sachs-Wolfe + integrated Sachs-Wolfe (ISW) formula describing the CMB temperature anisotropies. Our formula is valid at all orders in perturbation theory, is also valid in all gauges and includes scalar, vector and tensor modes. A direct consequence of our results is that the maps of the logarithmic temperature anisotropies are much cleaner than the usual CMB maps, because they automatically remove many secondary anisotropies. This can for instance, facilitate the search for primordial non-Gaussianity in future works. It also disentangles the non-linear ISW from other effects. Finally, we provide a method which can iteratively be used to obtain the lensing solution at the desired order.

  5. CMB anisotropies at all orders: the non-linear Sachs-Wolfe formula

    Energy Technology Data Exchange (ETDEWEB)

    Roldan, Omar, E-mail: oaroldan@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972, Rio de Janeiro, RJ (Brazil)

    2017-08-01

    We obtain the non-linear generalization of the Sachs-Wolfe + integrated Sachs-Wolfe (ISW) formula describing the CMB temperature anisotropies. Our formula is valid at all orders in perturbation theory, is also valid in all gauges and includes scalar, vector and tensor modes. A direct consequence of our results is that the maps of the logarithmic temperature anisotropies are much cleaner than the usual CMB maps, because they automatically remove many secondary anisotropies. This can for instance, facilitate the search for primordial non-Gaussianity in future works. It also disentangles the non-linear ISW from other effects. Finally, we provide a method which can iteratively be used to obtain the lensing solution at the desired order.

  6. Probing the BSM physics with CMB precision cosmology: an application to supersymmetry

    Science.gov (United States)

    Dalianis, Ioannis; Watanabe, Yuki

    2018-02-01

    The cosmic history before the BBN is highly determined by the physics that operates beyond the Standard Model (BSM) of particle physics and it is poorly constrained observationally. Ongoing and future precision measurements of the CMB observables can provide us with significant information about the pre-BBN era and hence possibly test the cosmological predictions of different BSM scenarios. Supersymmetry is a particularly motivated BSM theory and it is often the case that different superymmetry breaking schemes require different cosmic histories with specific reheating temperatures or low entropy production in order to be cosmologically viable. In this paper we quantify the effects of the possible alternative cosmic histories on the n s and r CMB observables assuming a generic non-thermal stage after cosmic inflation. We analyze TeV and especially multi-TeV super-symmetry breaking schemes assuming the neutralino and gravitino dark matter scenarios. We complement our analysis considering the Starobinsky R 2 inflation model to exemplify the improved CMB predictions that a unified description of the early universe cosmic evolution yields. Our analysis underlines the importance of the CMB precision measurements that can be viewed, to some extend, as complementary to the laboratory experimental searches for supersymmetry or other BSM theories.

  7. Finding the chiral gravitational wave background of an axion-S U (2 ) inflationary model using CMB observations and laser interferometers

    Science.gov (United States)

    Thorne, Ben; Fujita, Tomohiro; Hazumi, Masashi; Katayama, Nobuhiko; Komatsu, Eiichiro; Shiraishi, Maresuke

    2018-02-01

    A detection of B-mode polarization of the cosmic microwave background (CMB) anisotropies would confirm the presence of a primordial gravitational wave background (GWB). In the inflation paradigm, this would be an unprecedented probe of the energy scale of inflation as it is directly proportional to the power spectrum of the GWB. However, similar tensor perturbations can be produced by the matter fields present during inflation, breaking the simple relationship between energy scale and the tensor-to-scalar ratio r . It is therefore important to find ways of distinguishing between the generation mechanisms of the GWB. Without doing a full model selection, we analyze the detectability of a new axion-S U (2 ) gauge field model by calculating the signal-to-noise ratio of future CMB and interferometer observations sensitive to the chirality of the tensor spectrum. We forecast the detectability of the resulting CMB temperature and B-mode (TB) or E-mode and B-mode (EB) cross-correlation by the LiteBIRD satellite, considering the effects of residual foregrounds, gravitational lensing, and assess the ability of such an experiment to jointly detect primordial TB and EB spectra and self-calibrate its polarimeter. We find that LiteBIRD will be able to detect the chiral signal for r*>0.03 , with r* denoting the tensor-to-scalar ratio at the peak scale, and that the maximum signal-to-noise ratio for r*advanced stage of a LISA-like mission, which is designed to be sensitive to the intensity and polarization of the GWB. We find that such experiments would complement CMB observations as they would be able to detect the chirality of the GWB with high significance on scales inaccessible to the CMB. We conclude that CMB two-point statistics are limited in their ability to distinguish this model from a conventional vacuum fluctuation model of GWB generation, due to the fundamental limits on their sensitivity to parity violation. In order to test the predictions of such a model as

  8. Probing the cosmological initial conditions using the CMB

    Science.gov (United States)

    Yadav, Amit P. S.

    In the last few decades, advances in observational cosmology have given us a standard model of cosmology. The basic cosmological parameters have been laid out to high precision. Cosmologists have started asking questions about the nature of the cosmological initial conditions. Many ambitious experiments such as Planck satellite, EBEX, ACT, CAPMAP, QUaD, BICEP, SPIDER, QUIET, and GEM are underway. Experiments like these will provide us with a wealth of information about CMB polarization, CMB lensing, and polarization foregrounds. These experiments will be complemented with great observational campaigns to map the 3D structure in the Universe and new particle physics constraints from the Large Hadron Collider. In my graduate work I have made explicit how observations of the CMB temperature and E-polarization anisotropies can be combined to provide optimal constraints on models of the early universe at the highest energies. I have developed new ways of constraining models of the early universe using CMB temperature and polarization data. Inflation is one of the most promising theories of the early universe. Different inflationary models predict different amounts of non-Gaussian perturbations. Although any non-Gaussianity predicted by the canonical inflation model is very small, there exist models which can generate significant amounts of non-Gaussianities. Hence any characterization of non-Gaussianity of the primordial perturbations constrains the models of inflation. The information in the bispectrum (or higher order moments) is completely independent of the power spectrum constraints on the amplitude of primordial power spectrum (A), the scalar spectral index of the primordial power spectrum ns, and the running of the primordial power spectrum. My work has made it possible to extract the bispectrum information from large, high resolution CMB temperature and polarization data. We have demonstrated that the primordial adiabatic perturbations can be reconstructed using

  9. Cosmic string induced CMB maps

    International Nuclear Information System (INIS)

    Landriau, M.; Shellard, E. P. S.

    2011-01-01

    We compute maps of CMB temperature fluctuations seeded by cosmic strings using high resolution simulations of cosmic strings in a Friedmann-Robertson-Walker universe. We create full-sky, 18 deg. and 3 deg. CMB maps, including the relevant string contribution at each resolution from before recombination to today. We extract the angular power spectrum from these maps, demonstrating the importance of recombination effects. We briefly discuss the probability density function of the pixel temperatures, their skewness, and kurtosis.

  10. What do we learn from the CMB observations?

    Energy Technology Data Exchange (ETDEWEB)

    Rubakov, V. A., E-mail: rubakov@ms2.inr.ac.ru [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation); Vlasov, A. D., E-mail: vlasov.ad@gmail.com [Institute for Theoretical and Experimental Physics (Russian Federation)

    2012-09-15

    We give an account, at nonexpert and quantitative level, of physics behind the CMB temperature anisotropy and polarization and their peculiar features. We discuss, in particular, how cosmological parameters are determined from the CMB measurements and their combinations with other observations. We emphasize that CMB is the major source of information on the primordial density perturbations and, possibly, gravitational waves, and discuss the implication for our understanding of the extremely early Universe.

  11. Can CMB Surveys Help the AGN Community?

    Directory of Open Access Journals (Sweden)

    Bruce Partridge

    2017-08-01

    Full Text Available Contemporary projects to measure anisotropies in the cosmic microwave background (CMB are now detecting hundreds to thousands of extragalactic radio sources, most of them blazars. As a member of a group of CMB scientists involved in the construction of catalogues of such sources and their analysis, I wish to point out the potential value of CMB surveys to studies of AGN jets and their polarization. Current CMB projects, for instance, reach mJy sensitivity, offer wide sky coverage, are “blind” and generally of uniform sensitivity across the sky (hence useful statistically, make essentially simultaneous multi-frequency observations at frequencies from 30 to 857 GHz, routinely offer repeated observations of sources with interesting cadences and now generally provide polarization measurements. The aim here is not to analyze in any depth the AGN science already derived from such projects, but rather to heighten awareness of their promise for the AGN community.

  12. [Cosmic Microwave Background (CMB) Anisotropies

    Science.gov (United States)

    Silk, Joseph

    1998-01-01

    One of the main areas of research is the theory of cosmic microwave background (CMB) anisotropies and analysis of CMB data. Using the four year COBE data we were able to improve existing constraints on global shear and vorticity. We found that, in the flat case (which allows for greatest anisotropy), (omega/H)0 less than 10(exp -7), where omega is the vorticity and H is the Hubble constant. This is two orders of magnitude lower than the tightest, previous constraint. We have defined a new set of statistics which quantify the amount of non-Gaussianity in small field cosmic microwave background maps. By looking at the distribution of power around rings in Fourier space, and at the correlations between adjacent rings, one can identify non-Gaussian features which are masked by large scale Gaussian fluctuations. This may be particularly useful for identifying unresolved localized sources and line-like discontinuities. Levin and collaborators devised a method to determine the global geometry of the universe through observations of patterns in the hot and cold spots of the CMB. We have derived properties of the peaks (maxima) of the CMB anisotropies expected in flat and open CDM models. We represent results for angular resolutions ranging from 5 arcmin to 20 arcmin (antenna FWHM), scales that are relevant for the MAP and COBRA/SAMBA space missions and the ground-based interferometer. Results related to galaxy formation and evolution are also discussed.

  13. Foreground removal from CMB temperature maps using an MLP neural network

    DEFF Research Database (Denmark)

    Nørgaard-Nielsen, Hans Ulrik; Jørgensen, H.E.

    2008-01-01

    the CMB temperature signal from the combined signal CMB and the foregrounds has been investigated. As a specific example, we have analysed simulated data, as expected from the ESA Planck CMB mission. A simple multilayer perceptron neural network with 2 hidden layers can provide temperature estimates over...... CMB signal it is essential to minimize the systematic errors in the CMB temperature determinations. Following the available knowledge of the spectral behavior of the Galactic foregrounds simple power law-like spectra have been assumed. The feasibility of using a simple neural network for extracting...

  14. Self-calibration of Cosmic Microwave Background Polarization Experiments

    Science.gov (United States)

    Keating, Brian G.; Shimon, Meir; Yadav, Amit P. S.

    2013-01-01

    Precision measurements of the polarization of the cosmic microwave background (CMB) radiation, especially experiments seeking to detect the odd-parity "B-modes," have far-reaching implications for cosmology. To detect the B-modes generated during inflation, the flux response and polarization angle of these experiments must be calibrated to exquisite precision. While suitable flux calibration sources abound, polarization angle calibrators are deficient in many respects. Man-made polarized sources are often not located in the antenna's far-field, have spectral properties that are radically different from the CMB's, are cumbersome to implement, and may be inherently unstable over the (long) duration these searches require to detect the faint signature of the inflationary epoch. Astrophysical sources suffer from time, frequency, and spatial variability, are not visible from all CMB observatories, and none are understood with sufficient accuracy to calibrate future CMB polarimeters seeking to probe inflationary energy scales of 1015 GeV. Both man-made and astrophysical sources require dedicated observations which detract from the amount of integration time usable for detection of the inflationary B-modes. CMB TB and EB modes, expected to identically vanish in the standard cosmological model, can be used to calibrate CMB polarimeters. By enforcing the observed EB and TB power spectra to be consistent with zero, CMB polarimeters can be calibrated to levels not possible with man-made or astrophysical sources. All of this can be accomplished for any polarimeter without any loss of observing time using a calibration source which is spectrally identical to the CMB B-modes.

  15. CMB anisotropies interpolation

    NARCIS (Netherlands)

    Zinger, S.; Delabrouille, Jacques; Roux, Michel; Maitre, Henri

    2010-01-01

    We consider the problem of the interpolation of irregularly spaced spatial data, applied to observation of Cosmic Microwave Background (CMB) anisotropies. The well-known interpolation methods and kriging are compared to the binning method which serves as a reference approach. We analyse kriging

  16. What will we learn from the CMB?

    International Nuclear Information System (INIS)

    Dodelson, S.

    1997-10-01

    Within the next decade, experiments measuring the anisotropies in the cosmic microwave background (CMB) will add greatly to our knowledge of the universe. There are dozens of experiments scheduled to take data over the next several years, capped by the satellite missions of NASA (MAP) and ESA (PLANCK). What will we learn from these experiments? I argue that the potential pay-off is immense: We are quite likely to determine cosmological parameters to unprecedented accuracy. This will provide key information about the theory of structure formation and even about the physics behind inflation. If the experiments succeed, can anything spoil this pay-off? I focus on three possible spoilers - foregrounds, reionization, and defect models - and argue that we have every reason to be optimistic

  17. Imitating intrinsic alignments: a bias to the CMB lensing-galaxy shape cross-correlation power spectrum induced by the large-scale structure bispectrum

    Science.gov (United States)

    Merkel, Philipp M.; Schäfer, Björn Malte

    2017-10-01

    Cross-correlating the lensing signals of galaxies and comic microwave background (CMB) fluctuations is expected to provide valuable cosmological information. In particular, it may help tighten constraints on parameters describing the properties of intrinsically aligned galaxies at high redshift. To access the information conveyed by the cross-correlation signal, its accurate theoretical description is required. We compute the bias to CMB lensing-galaxy shape cross-correlation measurements induced by non-linear structure growth. Using tree-level perturbation theory for the large-scale structure bispectrum, we find that the bias is negative on most angular scales, therefore mimicking the signal of intrinsic alignments. Combining Euclid-like galaxy lensing data with a CMB experiment comparable to the Planck satellite mission, the bias becomes significant only on smallest scales (ℓ ≳ 2500). For improved CMB observations, however, the corrections amount to 10-15 per cent of the CMB lensing-intrinsic alignment signal over a wide multipole range (10 ≲ ℓ ≲ 2000). Accordingly, the power spectrum bias, if uncorrected, translates into 2σ and 3σ errors in the determination of the intrinsic alignment amplitude in the case of CMB stage III and stage IV experiments, respectively.

  18. Using the CMB angular power spectrum to study Dark Matter-photon interactions

    International Nuclear Information System (INIS)

    Wilkinson, Ryan J.; Boehm, Céline; Lesgourgues, Julien

    2014-01-01

    In this paper, we explore the impact of Dark Matter-photon interactions on the CMB angular power spectrum. Using the one-year data release of the Planck satellite, we derive an upper bound on the Dark Matter-photon elastic scattering cross section of σ DM−γ ≤ 8 × 10 −31 (m DM /GeV) cm 2 (68% CL) if the cross section is constant and a present-day value of σ DM−γ ≤ 6 × 10 −40 (m DM /GeV) cm 2 (68% CL) if it scales as the temperature squared. For such a limiting cross section, both the B-modes and the TT angular power spectrum are suppressed with respect to ΛCDM predictions for ℓ∼>500 and ℓ∼>3000 respectively, indicating that forthcoming data from CMB polarisation experiments and Planck could help to constrain and characterise the physics of the dark sector. This essentially initiates a new type of dark matter search that is independent of whether dark matter is annihilating, decaying or asymmetric. Thus, any CMB experiment with the ability to measure the temperature and/or polarisation power spectra at high ℓ should be able to investigate the potential interactions of dark matter and contribute to our fundamental understanding of its nature

  19. Gravitational lensing of the CMB: A Feynman diagram approach

    Directory of Open Access Journals (Sweden)

    Elizabeth E. Jenkins

    2014-09-01

    Full Text Available We develop a Feynman diagram approach to calculating correlations of the Cosmic Microwave Background (CMB in the presence of distortions. As one application, we focus on CMB distortions due to gravitational lensing by Large Scale Structure (LSS. We study the Hu–Okamoto quadratic estimator for extracting lensing from the CMB and derive the noise of the estimator up to O(ϕ4 in the lensing potential ϕ. By identifying the diagrams responsible for the previously noted large O(ϕ4 term, we conclude that the lensing expansion does not break down. The convergence can be significantly improved by a reorganization of the ϕ expansion. Our approach makes it simple to obtain expressions for quadratic estimators based on any CMB channel, including many previously unexplored cases. We briefly discuss other applications to cosmology of this diagrammatic approach, such as distortions of the CMB due to patchy reionization, or due to Faraday rotation from primordial axion fields.

  20. On the determination of neutrino masses and dark energy evolution from the cross-correlation of CMB and LSS

    International Nuclear Information System (INIS)

    Ichikawa, Kazuhide; Takahashi, Tomo

    2008-01-01

    We discuss the possibilities of the simultaneous determination of the neutrino masses and the evolution of dark energy from future cosmological observations such as cosmic microwave background (CMB), large scale structure (LSS) and the cross-correlation between them. Recently it has been discussed that there is a degeneracy between the neutrino masses and the equation of state for dark energy. It is also known that there are some degeneracies among the parameters describing the dark energy evolution. We discuss the implications of these for the cross-correlation of CMB with LSS in some detail. Then we consider to what extent we can determine the neutrino masses and the dark energy evolution using the expected data from CMB, LSS and their cross-correlation

  1. CMB aberration and Doppler effects as a source of hemispherical asymmetries

    International Nuclear Information System (INIS)

    Notari, Alessio; Quartin, Miguel; Catena, Riccardo

    2014-01-01

    Our peculiar motion with respect to the CMB rest frame represents a preferred direction in the observed CMB sky since it induces an apparent deflection of the observed CMB photons (aberration) and a shift in their frequency (Doppler). Both effects distort the multipoles a ℓm 's at all ℓ's. Such effects are real as it has been recently measured for the first time by Planck according to what was forecast in some recent papers. However, the common lore when estimating a power spectrum from CMB is to consider that Doppler affects only the ℓ = 1 multipole, neglecting any other corrections. In this work we use simulations of the CMB sky in a boosted frame with a peculiar velocity β≡v/c = 1.23 × 10 −3 in order to assess the impact of such effect on power spectrum estimations in different regions of the sky. We show that the boost induces a north-south asymmetry in the power spectrum which is highly significant and non-negligible, of about (0.58±0.10)% for half-sky cuts when going up to ℓ ≈ 2500. We suggest that these effects are relevant and may account for some of the north-south asymmetries seen in the Planck data, being especially important at small scales. Finally we analyze the particular case of the ACT experiment, which observed only a small fraction of the sky and show that it suffers a bias of about 1% on the power spectrum and of similar size on some cosmological parameters: for example the position of the peaks shifts by 0.5% and the overall amplitude of the spectrum is about 0.4% lower than a full-sky case

  2. CMB constraints on running non-Gaussianity

    OpenAIRE

    Oppizzi, Filippo; Liguori, Michele; Renzi, Alessandro; Arroja, Frederico; Bartolo, Nicola

    2017-01-01

    We develop a complete set of tools for CMB forecasting, simulation and estimation of primordial running bispectra, arising from a variety of curvaton and single-field (DBI) models of Inflation. We validate our pipeline using mock CMB running non-Gaussianity realizations and test it on real data by obtaining experimental constraints on the $f_{\\rm NL}$ running spectral index, $n_{\\rm NG}$, using WMAP 9-year data. Our final bounds (68\\% C.L.) read $-0.3< n_{\\rm NG}

  3. Working Group Report: Dark Energy and CMB

    Energy Technology Data Exchange (ETDEWEB)

    Dodelson, S.; Honscheid, K.; Abazajian, K.; Carlstrom, J.; Huterer, D.; Jain, B.; Kim, A.; Kirkby, D.; Lee, A.; Padmanabhan, N.; Rhodes, J.; Weinberg, D.

    2013-09-20

    The American Physical Society's Division of Particles and Fields initiated a long-term planning exercise over 2012-13, with the goal of developing the community's long term aspirations. The sub-group "Dark Energy and CMB" prepared a series of papers explaining and highlighting the physics that will be studied with large galaxy surveys and cosmic microwave background experiments. This paper summarizes the findings of the other papers, all of which have been submitted jointly to the arXiv.

  4. Oscillations in the CMB from Axion Monodromy Inflation

    Energy Technology Data Exchange (ETDEWEB)

    Flauger, Raphael; /Texas U.; McAllister, Liam; Pajer, Enrico; /Cornell U., Phys. Dept.; Westphal, Alexander; /SLAC /Stanford U., Phys. Dept.; Xu, Gang; /Cornell U., Phys. Dept.

    2011-12-01

    We study the CMB observables in axion monodromy inflation. These well-motivated scenarios for inflation in string theory have monomial potentials over super-Planckian field ranges, with superimposed sinusoidal modulations from instanton effects. Such periodic modulations of the potential can drive resonant enhancements of the correlation functions of cosmological perturbations, with characteristic modulations of the amplitude as a function of wavenumber. We give an analytical result for the scalar power spectrum in this class of models, and we determine the limits that present data places on the amplitude and frequency of modulations. Then, incorporating an improved understanding of the realization of axion monodromy inflation in string theory, we perform a careful study of microphysical constraints in this scenario. We find that detectable modulations of the scalar power spectrum are commonplace in well-controlled examples, while resonant contributions to the bispectrum are undetectable in some classes of examples and detectable in others. We conclude that resonant contributions to the spectrum and bispectrum are a characteristic signature of axion monodromy inflation that, in favorable cases, could be detected in near-future experiments.

  5. Constraints on the CMB temperature-redshift dependence from SZ and distance measurements

    Energy Technology Data Exchange (ETDEWEB)

    Avgoustidis, A. [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Luzzi, G. [Laboratoire de l' Accélérateur Linéaire, Université de Paris-Sud, CNRS/IN2P3, Bâtiment 200, BP 34, 91898 Orsay Cedex (France); Martins, C.J.A.P.; Monteiro, A.M.R.V.L., E-mail: A.Avgoustidis@damtp.cam.ac.uk, E-mail: gluzzi@lal.in2p3.fr, E-mail: Carlos.Martins@astro.up.pt, E-mail: up090322024@alunos.fc.up.pt [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2012-02-01

    The relation between redshift and the CMB temperature, T{sub CMB}(z) = T{sub 0}(1+z) is a key prediction of standard cosmology, but is violated in many non-standard models. Constraining possible deviations to this law is an effective way to test the ΛCDM paradigm and search for hints of new physics. We present state-of-the-art constraints, using both direct and indirect measurements. In particular, we point out that in models where photons can be created or destroyed, not only does the temperature-redshift relation change, but so does the distance duality relation, and these departures from the standard behaviour are related, providing us with an opportunity to improve constraints. We show that current datasets limit possible deviations of the form T{sub CMB}(z) = T{sub 0}(1+z){sup 1−β} to be β = 0.004±0.016 up to a redshift z ∼ 3. We also discuss how, with the next generation of space and ground-based experiments, these constraints can be improved by more than one order of magnitude.

  6. Constraints on the CMB temperature-redshift dependence from SZ and distance measurements

    International Nuclear Information System (INIS)

    Avgoustidis, A.; Luzzi, G.; Martins, C.J.A.P.; Monteiro, A.M.R.V.L.

    2012-01-01

    The relation between redshift and the CMB temperature, T CMB (z) = T 0 (1+z) is a key prediction of standard cosmology, but is violated in many non-standard models. Constraining possible deviations to this law is an effective way to test the ΛCDM paradigm and search for hints of new physics. We present state-of-the-art constraints, using both direct and indirect measurements. In particular, we point out that in models where photons can be created or destroyed, not only does the temperature-redshift relation change, but so does the distance duality relation, and these departures from the standard behaviour are related, providing us with an opportunity to improve constraints. We show that current datasets limit possible deviations of the form T CMB (z) = T 0 (1+z) 1−β to be β = 0.004±0.016 up to a redshift z ∼ 3. We also discuss how, with the next generation of space and ground-based experiments, these constraints can be improved by more than one order of magnitude

  7. Searching for a holographic connection between dark energy and the low-l CMB multipoles

    DEFF Research Database (Denmark)

    Enqvist, Kari; Hannestad, Steen; Sloth, Martin Snoager

    2004-01-01

    We consider the angular power spectrum in a finite universe with different boundary conditions and perform a fit to the CMB, LSS and supernova data. A finite universe could be the consequence of a holographic constraint, giving rise to an effective IR cutoff at the future event horizon...

  8. Working Around Cosmic Variance: Remote Quadrupole Measurements of the CMB

    Science.gov (United States)

    Adil, Arsalan; Bunn, Emory

    2018-01-01

    Anisotropies in the CMB maps continue to revolutionize our understanding of the Cosmos. However, the statistical interpretation of these anisotropies is tainted with a posteriori statistics. The problem is particularly emphasized for lower order multipoles, i.e. in the cosmic variance regime of the power spectrum. Naturally, the solution lies in acquiring a new data set – a rather difficult task given the sample size of the Universe.The CMB temperature, in theory, depends on: the direction of photon propagation, the time at which the photons are observed, and the observer’s location in space. In existing CMB data, only the first parameter varies. However, as first pointed out by Kamionkowski and Loeb, a solution lies in making the so-called “Remote Quadrupole Measurements” by analyzing the secondary polarization produced by incoming CMB photons via the Sunyaev-Zel’dovich (SZ) effect. These observations allow us to measure the projected CMB quadrupole at the location and look-back time of a galaxy cluster.At low redshifts, the remote quadrupole is strongly correlated to the CMB anisotropy from our last scattering surface. We provide here a formalism for computing the covariance and relation matrices for both the two-point correlation function on the last scattering surface of a galaxy cluster and the cross correlation of the remote quadrupole with the local CMB. We then calculate these matrices based on a fiducial model and a non-standard model that suppresses power at large angles for ~104 clusters up to z=2. We anticipate to make a priori predictions of the differences between our expectations for the standard and non-standard models. Such an analysis is timely in the wake of the CMB S4 era which will provide us with an extensive SZ cluster catalogue.

  9. Preferred axis of CMB parity asymmetry in the masked maps

    International Nuclear Information System (INIS)

    Cheng, Cheng; Zhao, Wen; Huang, Qing-Guo; Santos, Larissa

    2016-01-01

    Both WMAP and Planck data show a significant odd-multipole preference in the large scales of the cosmic microwave background (CMB) temperature anisotropies. If this pattern originates from cosmological effects, then it can be considered a crucial clue for a violation in the cosmological principle. By defining various direction dependent statistics in the full-sky Planck 2015 maps (see, for instance, Naselsky et al. (2012); W. Zhao (2014)), we found that the CMB parity asymmetry has a preferred direction, which is independent of the choices of the statistics. In particular, this preferred axis is strongly aligned with those in the CMB quadrupole and octopole, as well as that in the CMB kinematic dipole, which hints to their non-cosmological origin. In realistic observations, the foreground residuals are inevitable, and should be properly masked out in order to avoid possible misinterpretation of the results. In this paper, we extend our previous analyses to the masked Planck 2015 data. By defining a similar direction dependent statistic in the masked map, we find a preferred direction of the CMB parity asymmetry, in which the axis also coincides with that found in the full-sky analysis. Therefore, our conclusions on the CMB parity violation and its directional properties are confirmed.

  10. Preferred axis of CMB parity asymmetry in the masked maps

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Cheng [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Science, Beijing 100190 (China); Zhao, Wen, E-mail: wzhao7@ustc.edu.cn [CAS Key Laboratory for Researches in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China); Huang, Qing-Guo [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Science, Beijing 100190 (China); Santos, Larissa [CAS Key Laboratory for Researches in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China)

    2016-06-10

    Both WMAP and Planck data show a significant odd-multipole preference in the large scales of the cosmic microwave background (CMB) temperature anisotropies. If this pattern originates from cosmological effects, then it can be considered a crucial clue for a violation in the cosmological principle. By defining various direction dependent statistics in the full-sky Planck 2015 maps (see, for instance, Naselsky et al. (2012); W. Zhao (2014)), we found that the CMB parity asymmetry has a preferred direction, which is independent of the choices of the statistics. In particular, this preferred axis is strongly aligned with those in the CMB quadrupole and octopole, as well as that in the CMB kinematic dipole, which hints to their non-cosmological origin. In realistic observations, the foreground residuals are inevitable, and should be properly masked out in order to avoid possible misinterpretation of the results. In this paper, we extend our previous analyses to the masked Planck 2015 data. By defining a similar direction dependent statistic in the masked map, we find a preferred direction of the CMB parity asymmetry, in which the axis also coincides with that found in the full-sky analysis. Therefore, our conclusions on the CMB parity violation and its directional properties are confirmed.

  11. Foreground removal from CMB temperature maps using an MLP neural network

    Science.gov (United States)

    Nørgaard-Nielsen, H. U.; Jørgensen, H. E.

    2008-12-01

    One of the main obstacles for extracting the Cosmic Microwave Background (CMB) signal from observations in the mm-submm range is the foreground contamination by emission from Galactic components: mainly synchrotron, free-free and thermal dust emission. Due to the statistical nature of the intrinsic CMB signal it is essential to minimize the systematic errors in the CMB temperature determinations. Following the available knowledge of the spectral behavior of the Galactic foregrounds simple power law-like spectra have been assumed. The feasibility of using a simple neural network for extracting the CMB temperature signal from the combined signal CMB and the foregrounds has been investigated. As a specific example, we have analysed simulated data, as expected from the ESA Planck CMB mission. A simple multilayer perceptron neural network with 2 hidden layers can provide temperature estimates over more than 80 per cent of the sky that are to a high degree uncorrelated with the foreground signals. A single network will be able to cover the dynamic range of the Planck noise level over the entire sky.

  12. Asymmetric beams and CMB statistical anisotropy

    International Nuclear Information System (INIS)

    Hanson, Duncan; Lewis, Antony; Challinor, Anthony

    2010-01-01

    Beam asymmetries result in statistically anisotropic cosmic microwave background (CMB) maps. Typically, they are studied for their effects on the CMB power spectrum, however they more closely mimic anisotropic effects such as gravitational lensing and primordial power asymmetry. We discuss tools for studying the effects of beam asymmetry on general quadratic estimators of anisotropy, analytically for full-sky observations as well as in the analysis of realistic data. We demonstrate this methodology in application to a recently detected 9σ quadrupolar modulation effect in the WMAP data, showing that beams provide a complete and sufficient explanation for the anomaly.

  13. Analysing the Effect on CMB in a Parity and Charge Parity Violating Varying Alpha Theory

    Energy Technology Data Exchange (ETDEWEB)

    Maity, Debaprasad; /NCTS, Taipei /Taiwan, Natl. Taiwan U.; Chen, Pisin; /NCTS, Taipei /Taiwan, Natl. Taiwan U. /KIPAC, Menlo Park /SLAC

    2012-09-14

    In this paper we study in detail the effect of our recently proposed model of parity and charge-parity (PCP) violating varying alpha on the Cosmic Microwave Background (CMB) photon passing through the intra galaxy-cluster medium (ICM). The ICM is well known to be composed of magnetized plasma. According to our model, the polarization and intensity of the CMB would be affected when traversing through the ICM due to non-trivial scalar photon interactions. We have calculated the evolution of such polarization and intensity collectively, known as the stokes parameters of the CMB photon during its journey through the ICM and tested our results against the Sunyaev-Zel'dovich (SZ) measurement on Coma galaxy cluster. Our model contains a PCP violating parameter, {beta}, and a scale of alpha variation {omega}. Using the derived constrained on the photon-to-scalar conversion probability, {bar P}{sub {gamma}{yields}{phi}}, for Coma cluster in ref.[34] we found a contour plot in the ({omega},{beta}) parameter plane. The {beta} = 0 line in this parameter space corresponds to well-studied Maxwell-dilaton type models which has lower bound on {omega} {approx}> 6.4 x 10{sup 9} GeV. In general, as the absolute value of {beta} increases, lower bound on {omega} also increases. Our model in general predicts the modification of the CMB polarization with a non-trivial dependence on the parity violating coupling parameter {beta}. However, it is unconstrained in this particular study. We show that this effect can in principle be detected in the future measurements on CMB polarization such that {beta} can also be constrained.

  14. Late time CMB anisotropies constrain mini-charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Burrage, C.; Redondo, J.; Ringwald, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Jaeckel, J. [Univ. of Durham, Inst. for Particle Physics Phenomenology (United Kingdom)

    2009-09-15

    Observations of the temperature anisotropies induced as light from the CMB passes through large scale structures in the late universe are a sensitive probe of the interactions of photons in such environments. In extensions of the Standard Model which give rise to mini-charged particles, photons propagating through transverse magnetic fields can be lost to pair production of such particles. Such a decrement in the photon flux would occur as photons from the CMB traverse the magnetic fields of galaxy clusters. Therefore late time CMB anisotropies can be used to constrain the properties of mini- charged particles. We outline how this test is constructed, and present new constraints on mini-charged particles from observations of the Sunyaev-Zel'dovich effect in the Coma cluster. (orig.)

  15. Fundamental physics from future weak-lensing calibrated Sunyaev-Zel'dovich galaxy cluster counts

    Science.gov (United States)

    Madhavacheril, Mathew S.; Battaglia, Nicholas; Miyatake, Hironao

    2017-11-01

    Future high-resolution measurements of the cosmic microwave background (CMB) will produce catalogs of tens of thousands of galaxy clusters through the thermal Sunyaev-Zel'dovich (tSZ) effect. We forecast how well different configurations of a CMB Stage-4 experiment can constrain cosmological parameters, in particular, the amplitude of structure as a function of redshift σ8(z ) , the sum of neutrino masses Σ mν, and the dark energy equation of state w (z ). A key element of this effort is calibrating the tSZ scaling relation by measuring the lensing signal around clusters. We examine how the mass calibration from future optical surveys like the Large Synoptic Survey Telescope (LSST) compares with a purely internal calibration using lensing of the CMB itself. We find that, due to its high-redshift leverage, internal calibration gives constraints on cosmological parameters comparable to the optical calibration, and can be used as a cross-check of systematics in the optical measurement. We also show that in contrast to the constraints using the CMB lensing power spectrum, lensing-calibrated tSZ cluster counts can detect a minimal Σ mν at the 3 - 5 σ level even when the dark energy equation of state is freed up.

  16. Cosmological parameters from CMB and other data: A Monte Carlo approach

    International Nuclear Information System (INIS)

    Lewis, Antony; Bridle, Sarah

    2002-01-01

    We present a fast Markov chain Monte Carlo exploration of cosmological parameter space. We perform a joint analysis of results from recent cosmic microwave background (CMB) experiments and provide parameter constraints, including σ 8 , from the CMB independent of other data. We next combine data from the CMB, HST Key Project, 2dF galaxy redshift survey, supernovae type Ia and big-bang nucleosynthesis. The Monte Carlo method allows the rapid investigation of a large number of parameters, and we present results from 6 and 9 parameter analyses of flat models, and an 11 parameter analysis of non-flat models. Our results include constraints on the neutrino mass (m ν < or approx. 3 eV), equation of state of the dark energy, and the tensor amplitude, as well as demonstrating the effect of additional parameters on the base parameter constraints. In a series of appendixes we describe the many uses of importance sampling, including computing results from new data and accuracy correction of results generated from an approximate method. We also discuss the different ways of converting parameter samples to parameter constraints, the effect of the prior, assess the goodness of fit and consistency, and describe the use of analytic marginalization over normalization parameters

  17. Challenges and prospects for better measurements of the CMB intensity spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Sironi, Giorgio, E-mail: giorgio.sironi@unimb.it [Physics Department, University of Milano Bicocca, Piazza della Scienza 3, Milano (Italy)

    2017-02-01

    Spectral distortions of the Cosmic Microwave Background (CMB) offer the possibility of probing processes which occurred during the evolution of our Universe going back up to Z≅ 10{sup 7}. Unfortunately all the attempts so far carried out for detecting distortions failed. All of them were based on comparisons among absolute measurements of the CMB temperature at different frequencies. We suggest a different approach: measurements of the frequency derivative of the CMB temperature over large frequency intervals instead of observations of the absolute temperature at few, well separated, frequencies as frequently done in the past, and, direct measurements of the foregrounds which hinder observations, at the same site and with the same radiometer prepared for the search of CMB distortions. We discuss therefore the perspectives of new observations in the next years from the ground, at very special sites, or in space as independent missions or part of other CMB projects.

  18. Symmetry and Antisymmetry of the CMB Anisotropy Pattern

    Directory of Open Access Journals (Sweden)

    Jaiseung Kim

    2012-01-01

    Full Text Available Given an arbitrary function, we may construct symmetric and antisymmetric functions under a certain operation. Since statistical isotropy and homogeneity of our Universe has been a fundamental assumption of modern cosmology, we do not expect any particular symmetry or antisymmetry in our Universe. Besides fundamental properties of our Universe, we may also figure our contamination and improve the quality of the CMB data products, by matching the unusual symmetries and antisymmetries of the CMB data with known contaminantions. If we let the operation to be a coordinate inversion, the symmetric and antisymmetric functions have even and odd-parity respectively. The investigation on the parity of the recent CMB data shows a large-scale odd-parity preference, which is very unlikely in the statistical isotropic and homogeneous Universe. We investigated the association of the WMAP systematics with the anomaly, but did not find a definite non-cosmological cause. Besides the parity anomaly, there is anomalous lack of large-scale correlation in CMB data. We show that the odd-parity preference at low multipoles is, in fact, phenomenologically identical with the lack of large-angle correlation.

  19. PMF5.0 vs. CMB8.2: An inter-comparison study based on the new European SPECIEUROPE database

    Science.gov (United States)

    Bove, Maria Chiara; Massabò, Dario; Prati, Paolo

    2018-03-01

    Receptor Models are tools widely adopted in source apportionment studies. We describe here an experiment in which we integrated two different approaches, i.e. Positive Matrix Factorization (PMF) and Chemical Mass Balance (CMB) to apportion a set of PM10 (i.e. Particulate Matter with aerodynamic diameter lower than 10 μm) concentration values. The study was performed in the city of Genoa (Italy): a sampling campaign was carried out collecting daily PM10 samples for about two months in an urban background site. PM10 was collected on Quartz fiber filters by a low-volume sampler. A quite complete speciation of PM samples was obtained via Energy Dispersive-X Ray Fluorescence (ED-XRF, for elements), Ionic Chromatography (IC, for major ions and levoglucosan), thermo-optical Analysis (TOT, for organic and elemental carbon). The chemical analyses provided the input database for source apportionment by both PMF and CMB. Source profiles were directly calculated from the input data by PMF while in the CMB runs they were first calculated by averaging the profiles of similar sources collected in the European database SPECIEUROPE. Differences between the two receptor models emerged in particular with PM10 sources linked to very local processes. For this reason, PMF source profiles were adopted in refined CMB runs thus testing a new hybrid approach. Finally, PMF and the "tuned" CMB showed a better agreement even if some discrepancies could not completely been resolved. In this work, we compared the results coming from the last available PMF and CMB versions applied on a set of PM10 samples. Input profiles used in CMB analysis were obtained by averaging the profiles of the new European SPECIEUROPE database. The main differences between PMF and CMB results were linked to very local processes: we obtained the best solution by integrating the two different approaches with the implementation of some output PMF profiles to CMB runs.

  20. Robust forecasts on fundamental physics from the foreground-obscured, gravitationally-lensed CMB polarization

    Energy Technology Data Exchange (ETDEWEB)

    Errard, Josquin [Sorbonne Universités, Institut Lagrange de Paris (ILP), 98 bis Boulevard Arago, 75014 Paris (France); Feeney, Stephen M.; Jaffe, Andrew H. [Department of Physics, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Peiris, Hiranya V., E-mail: josquin.errard@lpnhe.in2p3.fr, E-mail: s.feeney@imperial.ac.uk, E-mail: h.peiris@ucl.ac.uk, E-mail: a.jaffe@imperial.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2016-03-01

    Recent results from the BICEP, Keck Array and Planck Collaborations demonstrate that Galactic foregrounds are an unavoidable obstacle in the search for evidence of inflationary gravitational waves in the cosmic microwave background (CMB) polarization. Beyond the foregrounds, the effect of lensing by intervening large-scale structure further obscures all but the strongest inflationary signals permitted by current data. With a plethora of ongoing and upcoming experiments aiming to measure these signatures, careful and self-consistent consideration of experiments' foreground- and lensing-removal capabilities is critical in obtaining credible forecasts of their performance. We investigate the capabilities of instruments such as Advanced ACTPol, BICEP3 and Keck Array, CLASS, EBEX10K, PIPER, Simons Array, SPT-3G and SPIDER, and projects as COrE+, LiteBIRD-ext, PIXIE and Stage IV, to clean contamination due to polarized synchrotron and dust from raw multi-frequency data, and remove lensing from the resulting co-added CMB maps (either using iterative CMB-only techniques or through cross-correlation with external data). Incorporating these effects, we present forecasts for the constraining power of these experiments in terms of inflationary physics, the neutrino sector, and dark energy parameters. Made publicly available through an online interface, this tool enables the next generation of CMB experiments to foreground-proof their designs, optimize their frequency coverage to maximize scientific output, and determine where cross-experimental collaboration would be most beneficial. We find that analyzing data from ground, balloon and space instruments in complementary combinations can significantly improve component separation performance, delensing, and cosmological constraints over individual datasets. In particular, we find that a combination of post-2020 ground- and space-based experiments could achieve constraints such as σ(r)∼1.3×10{sup −4}, σ(n{sub t})∼0

  1. To the problem of the secondary CMB anisotropy separation

    Directory of Open Access Journals (Sweden)

    Verkhodanov Oleg

    2016-01-01

    Full Text Available We study contribution to the secondary anisotropy maps of cosmic microwave background (CMB radiation which difficult to account for faint sources. Two effects are investigated. They are the Sunyaev–Zeldovich effect connected with the inverse Compton scattering of CMB photons on hot electrons of cluster of galaxies, and contamination of the background by weak extragalctic sources. First, we study fields of the Planck CMB maps around radio sources of the RATAN-600 catalog. We see weak microwave sources which make an additional contribution to the secondary anisotropy on angular small scales (< 7′. An algorithm for selecting candidate objects with the Sunyaev–Zeldovich effect was proposed, based on the use of data on the radio spectral indices and the signal in cosmic-microwave background maps. Second, applying the stacking method, we examine the areas of the CMB maps, constructed according to the Planck Space Observatory data in the neighborhood of different populations of radio sources and giant elliptical galaxies. The samples of objects include giant radio galaxies (GRG, radio sources, selected by the radio spectral index and redshift, as well as the gammaray bursts, used as a secondary comparative sample. The signal from this objects exists on CMB maps and its difference in the neighborhood of GRGs from the other types of objects was discovered.

  2. Constraining the shape of the CMB: A peak-by-peak analysis

    International Nuclear Information System (INIS)

    Oedman, Carolina J.; Hobson, Michael P.; Lasenby, Anthony N.; Melchiorri, Alessandro

    2003-01-01

    The recent measurements of the power spectrum of cosmic microwave background anisotropies are consistent with the simplest inflationary scenario and big bang nucleosynthesis constraints. However, these results rely on the assumption of a class of models based on primordial adiabatic perturbations, cold dark matter and a cosmological constant. In this paper we investigate the need for deviations from the Λ-CDM scenario by first characterizing the spectrum using a phenomenological function in a 15 dimensional parameter space. Using a Monte Carlo Markov chain approach to Bayesian inference and a low curvature model template we then check for the presence of new physics and/or systematics in the CMB data. We find an almost perfect consistency between the phenomenological fits and the standard Λ-CDM models. The curvature of the secondary peaks is weakly constrained by the present data, but they are well located. The improved spectral resolution expected from future satellite experiments is warranted for a definitive test of the scenario

  3. CMB probes on the correlated axion isocurvature perturbation

    International Nuclear Information System (INIS)

    Kadota, Kenji; Gong, Jinn-Ouk; Ichiki, Kiyotomo; Matsubara, Takahiko

    2015-01-01

    We explore the possible cosmological consequence of the gravitational coupling between the inflaton and axion-like fields. In view of the forthcoming cosmic microwave background (CMB) polarization and lensing data, we study the sensitivity of the CMB data on the cross-correlation between the curvature and axion isocurvature perturbations. Through a concrete example, we illustrate the explicit dependence of the scale dependent cross-correlation power spectrum on the axion parameters

  4. Searching for cosmic strings in CMB anisotropy maps using wavelets and curvelets

    Energy Technology Data Exchange (ETDEWEB)

    Hergt, Lukas; Amara, Adam; Kacprzak, Tomasz; Réfrégier, Alexandre [ETH Zurich, Department of Physics, Wolfgang-Pauli-Strasse 27, 8093 Zurich (Switzerland); Brandenberger, Robert, E-mail: hergtl@phys.ethz.ch, E-mail: adam.amara@phys.ethz.ch, E-mail: rhb@physics.mcgill.ca, E-mail: tomasz.kacprzak@phys.ethz.ch, E-mail: alexandre.refregier@phys.ethz.ch [Physics Department, McGill University, Montreal, QC, H3A 2T8 (Canada)

    2017-06-01

    We use wavelet and curvelet transforms to extract signals of cosmic strings from simulated cosmic microwave background (CMB) temperature anisotropy maps, and to study the limits on the cosmic string tension which various ongoing CMB temperature anisotropy experiments will be able to achieve. We construct sky maps with size and angular resolution corresponding to various experiments. These maps contain the signals of a scaling solution of long string segments with a given string tension G μ, the contribution of the dominant Gaussian primordial cosmological fluctuations, and pixel by pixel white noise with an amplitude corresponding to the instrumental noise of the various experiments. In the case that we include white noise, we find that using curvelets we obtain lower bounds on the string tension than with wavelets. For maps with Planck specification, we obtain bounds comparable to what was obtained by the Planck collaboration [1]. Experiments with better angular resolution such as the South Pole Telescope third generation (SPT-3G) survey will be able to yield stronger limits. For maps with a specification of SPT-3G we find that string signals will be visible down to a string tension of G μ = 1.4 × 10{sup −7}.

  5. Searching for cosmic strings in CMB anisotropy maps using wavelets and curvelets

    International Nuclear Information System (INIS)

    Hergt, Lukas; Amara, Adam; Kacprzak, Tomasz; Réfrégier, Alexandre; Brandenberger, Robert

    2017-01-01

    We use wavelet and curvelet transforms to extract signals of cosmic strings from simulated cosmic microwave background (CMB) temperature anisotropy maps, and to study the limits on the cosmic string tension which various ongoing CMB temperature anisotropy experiments will be able to achieve. We construct sky maps with size and angular resolution corresponding to various experiments. These maps contain the signals of a scaling solution of long string segments with a given string tension G μ, the contribution of the dominant Gaussian primordial cosmological fluctuations, and pixel by pixel white noise with an amplitude corresponding to the instrumental noise of the various experiments. In the case that we include white noise, we find that using curvelets we obtain lower bounds on the string tension than with wavelets. For maps with Planck specification, we obtain bounds comparable to what was obtained by the Planck collaboration [1]. Experiments with better angular resolution such as the South Pole Telescope third generation (SPT-3G) survey will be able to yield stronger limits. For maps with a specification of SPT-3G we find that string signals will be visible down to a string tension of G μ = 1.4 × 10 −7 .

  6. Using Big Bang Nucleosynthesis to extend CMB probes of neutrino physics

    Energy Technology Data Exchange (ETDEWEB)

    Shimon, M.; Miller, N.J.; Fuller, G.M.; Keating, B.G. [Center for Astrophysics and Space Sciences, University of California, San Diego, La Jolla, CA, 92093 (United States); Kishimoto, C.T. [Department of Physics and Astronomy, University of California, Los Angeles, CA, 90095 (United States); Smith, C.J., E-mail: meirs@mamacass.ucsd.edu, E-mail: nmiller@physics.ucsd.edu, E-mail: ckishimo@physics.ucsd.edu, E-mail: christel.smith@asu.edu, E-mail: gfuller@ucsd.edu, E-mail: bkeating@ucsd.edu [Department of Physics, Arizona State University, Tempe, AZ, 85287 (United States)

    2010-05-01

    We present calculations showing that upcoming Cosmic Microwave Background (CMB) experiments will have the power to improve on current constraints on neutrino masses and provide new limits on neutrino degeneracy parameters. The latter could surpass those derived from Big Bang Nucleosynthesis (BBN) and the observationally-inferred primordial helium abundance. These conclusions derive from our Monte Carlo Markov Chain (MCMC) simulations which incorporate a full BBN nuclear reaction network. This provides a self-consistent treatment of the helium abundance, the baryon number, the three individual neutrino degeneracy parameters and other cosmological parameters. Our analysis focuses on the effects of gravitational lensing on CMB constraints on neutrino rest mass and degeneracy parameter. We find for the PLANCK experiment that total (summed) neutrino mass M{sub ν} > 0.29 eV could be ruled out at 2σ or better. Likewise neutrino degeneracy parameters ξ{sub ν{sub e}} > 0.11 and |ξ{sub ν{sub μ{sub /{sub τ}}}}| > 0.49 could be detected or ruled out at 2σ confidence, or better. For POLARBEAR we find that the corresponding detectable values are M{sub ν} > 0.75 eV, ξ{sub ν{sub e}} > 0.62, and |ξ{sub ν{sub μ{sub /{sub τ}}}}| > 1.1, while for EPIC we obtain M{sub ν} > 0.20 eV, ξ{sub ν{sub e}} > 0.045, and |ξ{sub ν{sub μ{sub /{sub τ}}}}| > 0.29. Our forcast for EPIC demonstrates that CMB observations have the potential to set constraints on neutrino degeneracy parameters which are better than BBN-derived limits and an order of magnitude better than current WMAP-derived limits.

  7. Comparison of distance information given by SN Ia, BAO and CMB

    International Nuclear Information System (INIS)

    Li Hong

    2011-01-01

    The observations of Type Ia supernovae (SN Ia), Baryon Acoustic Oscillations (BAO) and Cosmic Microwave Background radiation (CMB) provide powerful tools for the measurement of cosmological parameters. One of the most useful information encodes in the distance measured by those probes. In this Letter, we test the coherence of the observational information provided by SN Ia, BAO and CMB experiments. We make two kinds of comparison: the first is the constraints on cosmological parameters of the equation of state parameter (EoS) of dark energy (DE) and matter budget parameter Ω m from the latest data by global fitting, and we find the large discrepancy from those different probes. The second comparison is performed among the derived distance information from these observations at certain appointed redshift, the results show that the distance provided by WMAP5 are larger than those from SN Ia and BAO on the whole.

  8. Cosmology with clusters in the CMB

    International Nuclear Information System (INIS)

    Majumdar, Subhabrata

    2008-01-01

    Ever since the seminal work by Sunyaev and Zel'dovich describing the distortion of the CMB spectrum, due to photons passing through the hot inter cluster gas on its way to us from the surface of last scattering (the so called Sunyaev-Zel'dovich effect (SZE)), small scale distortions of the CMB by clusters has been used to detect clusters as well as to do cosmology with clusters. Cosmology with clusters in the CMB can be divided into three distinct regimes: a) when the clusters are completely unresolved and contribute to the secondary CMB distortions power spectrum at small angular scales; b) when we can just about resolve the clusters so as to detect the clusters through its total SZE flux such that the clusters can be tagged and counted for doing cosmology and c) when we can completely resolve the clusters so as to measure their sizes and other cluster structural properties and their evolution with redshift. In this article, we take a look at these three aspects of SZE cluster studies and their implication for using clusters as cosmological probes. We show that clusters can be used as effective probes of cosmology, when in all of these three cases, one explores the synergy between cluster physics and cosmology as well take clues about cluster physics from the latest high precision cluster observations (for example, from Chandra and XMM - Newton). As a specific case, we show how an observationally motivated cluster SZ template can explain the CBI-excess without the need for a high σ 8 . We also briefly discuss 'self-calibration' in cluster surveys and the prospect of using clusters as an ensemble of cosmic rulers to break degeneracies arising in cluster cosmology.

  9. Reionization history and CMB parameter estimation

    International Nuclear Information System (INIS)

    Dizgah, Azadeh Moradinezhad; Kinney, William H.; Gnedin, Nickolay Y.

    2013-01-01

    We study how uncertainty in the reionization history of the universe affects estimates of other cosmological parameters from the Cosmic Microwave Background. We analyze WMAP7 data and synthetic Planck-quality data generated using a realistic scenario for the reionization history of the universe obtained from high-resolution numerical simulation. We perform parameter estimation using a simple sudden reionization approximation, and using the Principal Component Analysis (PCA) technique proposed by Mortonson and Hu. We reach two main conclusions: (1) Adopting a simple sudden reionization model does not introduce measurable bias into values for other parameters, indicating that detailed modeling of reionization is not necessary for the purpose of parameter estimation from future CMB data sets such as Planck. (2) PCA analysis does not allow accurate reconstruction of the actual reionization history of the universe in a realistic case

  10. Reionization history and CMB parameter estimation

    Energy Technology Data Exchange (ETDEWEB)

    Dizgah, Azadeh Moradinezhad; Gnedin, Nickolay Y.; Kinney, William H.

    2013-05-01

    We study how uncertainty in the reionization history of the universe affects estimates of other cosmological parameters from the Cosmic Microwave Background. We analyze WMAP7 data and synthetic Planck-quality data generated using a realistic scenario for the reionization history of the universe obtained from high-resolution numerical simulation. We perform parameter estimation using a simple sudden reionization approximation, and using the Principal Component Analysis (PCA) technique proposed by Mortonson and Hu. We reach two main conclusions: (1) Adopting a simple sudden reionization model does not introduce measurable bias into values for other parameters, indicating that detailed modeling of reionization is not necessary for the purpose of parameter estimation from future CMB data sets such as Planck. (2) PCA analysis does not allow accurate reconstruction of the actual reionization history of the universe in a realistic case.

  11. Signatures of graviton masses on the CMB

    Science.gov (United States)

    Brax, Philippe; Cespedes, Sebastian; Davis, Anne-Christine

    2018-03-01

    The impact of the existence of gravitons with non-vanishing masses on the B-modes of the Cosmic Microwave Background (CMB) is investigated. We also focus on putative modifications to the speed of the gravitational waves. We find that a change of the graviton speed shifts the acoustic peaks of the CMB and then could be easily constrained. For the case of massive gravity, we show analytically how the B-modes are sourced in a manner differing from the massless case leading to a plateau at low l in the CMB spectrum. We also study the case when there are more than one graviton, and when pressure instabilities are present. The latter would occur in doubly coupled bigravity in the radiation era. We focus on the case where a massless graviton becomes tachyonic in the radiation era whilst a massive one remains stable. As the unstable mode decouples from matter in the radiation era, we find that the effects of the instability is largely reduced on the spectrum of B-modes as long as the unstable graviton does not grow into the non-linear regime. In all cases when both massless and massive gravitons are present, we find that the B-mode CMB spectrum is characterised by a low l plateau together with a shifted position for the first few peaks compared to a purely massive graviton spectrum, a shift which depends on the mixing between the gravitons in their coupling to matter and could serve as a hint in favour of the existence of multiple gravitons.

  12. Probing CPT violation with CMB polarization measurements

    Energy Technology Data Exchange (ETDEWEB)

    Xia Junqing, E-mail: xia@sissa.i [Scuola Internazionale Superiore di Studi Avanzati, Via Beirut 2-4, I-34014 Trieste (Italy); Li Hong; Zhang Xinmin [Institute of High Energy Physics, Chinese Academy of Science, P.O. Box 918-4, Beijing 100049 (China); Theoretical Physics Center for Science Facilities (TPCSF), Chinese Academy of Science (China)

    2010-04-12

    The electrodynamics modified by the Chern-Simons term L{sub cs}approxp{sub m}uA{sub n}uF-tilde{sup m}u{sup n}u with a non-vanishing p{sub m}u violates the Charge-Parity-Time Reversal symmetry (CPT) and rotates the linear polarizations of the propagating Cosmic Microwave Background (CMB) photons. In this Letter we measure the rotation angle DELTAalpha by performing a global analysis on the current CMB polarization measurements from the five-year Wilkinson Microwave Anisotropy Probe (WMAP5), BOOMERanG 2003 (B03), BICEP and QUaD using a Markov Chain Monte Carlo method. Neglecting the systematic errors of these experiments, we find that the results from WMAP5, B03 and BICEP all are consistent and their combination gives DELTAalpha=-2.62+-0.87deg (68% C.L.), indicating a 3sigma detection of the CPT violation. The QUaD data alone gives DELTAalpha=0.59+-0.42deg (68% C.L.) which has an opposite sign for the central value and smaller error bar compared to that obtained from WMAP5, B03 and BICEP. When combining all the polarization data together, we find DELTAalpha=0.09+-0.36deg (68% C.L.) which significantly improves the previous constraint on DELTAalpha and test the validity of the fundamental CPT symmetry at a higher level.

  13. Multitracer CMB delensing maps from Planck and WISE data

    Science.gov (United States)

    Yu, Byeonghee; Hill, J. Colin; Sherwin, Blake D.

    2017-12-01

    Delensing, the removal of the limiting lensing B -mode background, is crucial for the success of future cosmic microwave background (CMB) surveys in constraining inflationary gravitational waves (IGWs). In recent work, delensing with large-scale structure tracers has emerged as a promising method both for improving constraints on IGWs and for testing delensing methods for future use. However, the delensing fractions (i.e., the fraction of the lensing-B mode power removed) achieved by recent efforts have been only 20%-30%. In this work, we provide a detailed characterization of a full-sky, dust-cleaned cosmic infrared background (CIB) map for delensing and construct a further-improved delensing template by adding additional tracers to increase delensing performance. In particular, we build a multitracer delensing template by combining the dust-cleaned Planck CIB map with a reconstructed CMB lensing map from Planck and a galaxy number density map from the Wide-field Infrared Survey Explorer (WISE) satellite. For this combination, we calculate the relevant weightings by fitting smooth templates to measurements of all the cross-spectra and autospectra of these maps. On a large fraction of the sky (fsky=0.43 ), we demonstrate that our maps are capable of providing a delensing factor of 43 ±1 % ; using a more restrictive mask (fsky=0.11 ), the delensing factor reaches 48 ±1 % . For low-noise surveys, our delensing maps, which cover much of the sky, can thus improve constraints on the tensor-to-scalar ratio (r ) by nearly a factor of 2. The delensing tracer maps are made publicly available, and we encourage their use in ongoing and upcoming B -mode surveys.

  14. Gravitational lensing effect and polarization of the cosmic microwave background in the PLANCK Experiment and post-planckian projects; Effet de lentilles gravitationnelles et polarisation du fond diffus cosmologique dans le cadre de l'experience PLANCK et de projets post-planckiens

    Energy Technology Data Exchange (ETDEWEB)

    Perotto, Laurence [Universite Paris 7 - Denis Diderot, UFR de Physique, 75205 Paris Cedex 13 (France)

    2006-01-15

    This thesis is motivated by the upcoming high-resolution, high-sensitivity microwave background experiments, which should be sensitive to the CMB polarization and lensing. The first chapter provides a review of the CMB polarization with emphasis on future related experiments. The PLANCK experiment is described in a second chapter, where I develop a fast simulation code of PLANCK time-ordered data optimized to ease elaboration and test of data analysis methods. The two last chapters deal with gravitational lensing of the cosmic background radiation. First, I evaluate the capability of the upcoming experiments mentioned above to measure the power spectrum of Large Scale Structure by means of the extraction of weak lensing. Then I derive their sensitivity to the total neutrino mass, using the suppression of power due to free-streaming of massive neutrinos. Finally, I develop a method to estimate the foreground effects in the gravitational lensing extraction process. This method uses the best linear estimator available in the literature and is validated by numerical simulations that include non-Gaussian CMB lensed maps and extra-galactic radio sources maps. I find that sources emission reduces the sensitivity of future experiments to the weak lensing and leads to an overestimate of the convergence power spectrum. (author)

  15. Gravitational lensing effect and polarization of the cosmic microwave background in the PLANCK Experiment and post-planckian projects; Effet de lentilles gravitationnelles et polarisation du fond diffus cosmologique dans le cadre de l'experience PLANCK et de projets post-planckiens

    Energy Technology Data Exchange (ETDEWEB)

    Perotto, Laurence [Universite Paris 7 - Denis Diderot, UFR de Physique, 75205 Paris Cedex 13 (France)

    2006-01-15

    This thesis is motivated by the upcoming high-resolution, high-sensitivity microwave background experiments, which should be sensitive to the CMB polarization and lensing. The first chapter provides a review of the CMB polarization with emphasis on future related experiments. The PLANCK experiment is described in a second chapter, where I develop a fast simulation code of PLANCK time-ordered data optimized to ease elaboration and test of data analysis methods. The two last chapters deal with gravitational lensing of the cosmic background radiation. First, I evaluate the capability of the upcoming experiments mentioned above to measure the power spectrum of Large Scale Structure by means of the extraction of weak lensing. Then I derive their sensitivity to the total neutrino mass, using the suppression of power due to free-streaming of massive neutrinos. Finally, I develop a method to estimate the foreground effects in the gravitational lensing extraction process. This method uses the best linear estimator available in the literature and is validated by numerical simulations that include non-Gaussian CMB lensed maps and extra-galactic radio sources maps. I find that sources emission reduces the sensitivity of future experiments to the weak lensing and leads to an overestimate of the convergence power spectrum. (author)

  16. The Kolmogorov-Smirnov test for the CMB

    International Nuclear Information System (INIS)

    Frommert, Mona; Durrer, Ruth; Michaud, Jérôme

    2012-01-01

    We investigate the statistics of the cosmic microwave background using the Kolmogorov-Smirnov test. We show that, when we correctly de-correlate the data, the partition function of the Kolmogorov stochasticity parameter is compatible with the Kolmogorov distribution and, contrary to previous claims, the CMB data are compatible with Gaussian fluctuations with the correlation function given by standard ΛCDM. We then use the Kolmogorov-Smirnov test to derive upper bounds on residual point source power in the CMB, and indicate the promise of this statistics for further datasets, especially Planck, to search for deviations from Gaussianity and for detecting point sources and Galactic foregrounds

  17. Testing alternative theories of dark matter with the CMB

    International Nuclear Information System (INIS)

    Li Baojiu; Barrow, John D.; Mota, David F.; Zhao, HongSheng

    2008-01-01

    We propose a method to study and constrain modified gravity theories for dark matter using CMB temperature anisotropies and polarization. We assume that the theories considered here have already passed the matter power-spectrum test of large-scale structure. With this requirement met, we show that a modified gravity theory can be specified by parametrizing the time evolution of its dark-matter density contrast, which is completely controlled by the dark-matter stress history. We calculate how the stress history with a given parametrization affects the CMB observables, and a qualitative discussion of the physical effects involved is supplemented with numerical examples. It is found that, in general, alternative gravity theories can be efficiently constrained by the CMB temperature and polarization spectra. There exist, however, special cases where modified gravity cannot be distinguished from the CDM model even by using both CMB and matter power spectrum observations, nor can they be efficiently restricted by other observables in perturbed cosmologies. Our results show how the stress properties of dark matter, which determine the evolutions of both density perturbations and the gravitational potential, can be effectively investigated using just the general conservation equations and without assuming any specific theoretical gravitational theory within a wide class.

  18. A Measurement of CMB Cluster Lensing with SPT and DES Year 1 Data

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, E.J.; et al.

    2017-08-03

    Clusters of galaxies gravitationally lens the cosmic microwave background (CMB) radiation, resulting in a distinct imprint in the CMB on arcminute scales. Measurement of this effect offers a promising way to constrain the masses of galaxy clusters, particularly those at high redshift. We use CMB maps from the South Pole Telescope Sunyaev-Zel'dovich (SZ) survey to measure the CMB lensing signal around galaxy clusters identified in optical imaging from first year observations of the Dark Energy Survey. We detect lensing of the CMB by the galaxy clusters at 6.5$\\sigma$ significance. Using the measured lensing signal, we constrain the amplitude of the relation between cluster mass and optical richness to roughly $20\\%$ precision, finding good agreement with recent constraints obtained with galaxy lensing. The error budget is dominated by statistical noise but includes significant contributions from systematic biases due to the thermal SZ effect and cluster miscentering.

  19. Bias of damped Lyman-α systems from their cross-correlation with CMB lensing

    Science.gov (United States)

    Alonso, D.; Colosimo, J.; Font-Ribera, A.; Slosar, A.

    2018-04-01

    We cross-correlate the positions of damped Lyman-α systems (DLAs) and their parent quasar catalog with a convergence map derived from the Planck cosmic microwave background (CMB) temperature data. We make consistent measurements of the lensing signal of both samples in both Fourier and configuration space. By interpreting the excess signal present in the DLA catalog with respect to the parent quasar catalog as caused by the large scale structure traced by DLAs, we are able to infer the bias of these objects: bDLA=2.6±0.9. These results are consistent with previous measurements made in cross-correlation with the Lyman-α forest, although the current noise in the lensing data and the low number density of DLAs limits the constraining power of this measurement. We discuss the robustness of the analysis with respect to a number different systematic effects and forecast prospects of carrying out this measurement with data from future experiments.

  20. Searching for primordial non-Gaussianity in Planck CMB maps using a combined estimator

    Energy Technology Data Exchange (ETDEWEB)

    Novaes, C.P.; Wuensche, C.A. [Divisão de Astrofísica, Instituto Nacional de Pesquisas Espaciais, Av. dos Astronautas 1758, São José dos Campos 12227-010, SP (Brazil); Bernui, A. [Observatório Nacional, Rua General José Cristino 77, São Cristóvão, 20921-400, Rio de Janeiro, RJ (Brazil); Ferreira, I.S., E-mail: camilapnovaes@gmail.com, E-mail: bernui@on.br, E-mail: ivan@fis.unb.br, E-mail: ca.wuensche@inpe.br [Instituto de Física, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70919-970, Brasília, DF (Brazil)

    2014-01-01

    The extensive search for deviations from Gaussianity in cosmic microwave background radiation (CMB) data is very important due to the information about the very early moments of the universe encoded there. Recent analyses from Planck CMB data do not exclude the presence of non-Gaussianity of small amplitude, although they are consistent with the Gaussian hypothesis. The use of different techniques is essential to provide information about types and amplitudes of non-Gaussianities in the CMB data. In particular, we find interesting to construct an estimator based upon the combination of two powerful statistical tools that appears to be sensitive enough to detect tiny deviations from Gaussianity in CMB maps. This estimator combines the Minkowski functionals with a Neural Network, maximizing a tool widely used to study non-Gaussian signals with a reinforcement of another tool designed to identify patterns in a data set. We test our estimator by analyzing simulated CMB maps contaminated with different amounts of local primordial non-Gaussianity quantified by the dimensionless parameter f{sub  NL}. We apply it to these sets of CMB maps and find ∼> 98% of chance of positive detection, even for small intensity local non-Gaussianity like f{sub  NL} = 38±18, the current limit from Planck data for large angular scales. Additionally, we test the suitability to distinguish between primary and secondary non-Gaussianities: first we train the Neural Network with two sets, one of nearly Gaussian CMB maps (|f{sub  NL}| ≤ 10) but contaminated with realistic inhomogeneous Planck noise (i.e., secondary non-Gaussianity) and the other of non-Gaussian CMB maps, that is, maps endowed with weak primordial non-Gaussianity (28 ≤ f{sub  NL} ≤ 48); after that we test an ensemble composed of CMB maps either with one of these non-Gaussian contaminations, and find out that our method successfully classifies ∼ 95% of the tested maps as being CMB maps containing primordial or

  1. Physical effects involved in the measurements of neutrino masses with future cosmological data

    Energy Technology Data Exchange (ETDEWEB)

    Archidiacono, Maria; Brinckmann, Thejs; Lesgourgues, Julien; Poulin, Vivian, E-mail: archidiacono@physik.rwth-aachen.de, E-mail: brinckmann@physik.rwth-aachen.de, E-mail: lesgourg@physik.rwth-aachen.de, E-mail: poulin@lapth.cnrs.fr [Institute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University, D-52056 Aachen (Germany)

    2017-02-01

    Future Cosmic Microwave Background experiments together with upcoming galaxy and 21-cm surveys will provide extremely accurate measurements of different cosmological observables located at different epochs of the cosmic history. The new data will be able to constrain the neutrino mass sum with the best precision ever. In order to exploit the complementarity of the different redshift probes, a deep understanding of the physical effects driving the impact of massive neutrinos on CMB and large scale structures is required. The goal of this work is to describe these effects, assuming a summed neutrino mass close to its minimum allowed value. We find that parameter degeneracies can be removed by appropriate combinations, leading to robust and model independent constraints. A joint forecast of the sensitivity of Euclid and DESI surveys together with a CORE-like CMB experiment leads to a 1σ uncertainty of 14 meV on the summed neutrino mass. Finally the degeneracy between M {sub ν} and the optical depth at reionization τ{sub reio}, originating in the combination of CMB and low redshift galaxy probes, might be broken by future 21-cm surveys, thus further decreasing the uncertainty on M {sub ν}. For instance, an independent determination of the optical depth with an accuracy of σ(τ{sub reio})=0.001 (which might be achievable, although this is subject to astrophysical uncertainties) would decrease the uncertainty down to σ( M {sub ν})=12 meV.

  2. Planck 2013 results. XV. CMB power spectra and likelihood

    CERN Document Server

    Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, L.Y.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.M.; Desert, F.X.; Dickinson, C.; Diego, J.M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Gaier, T.C.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Heraud, Y.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, T.R.; Jaffe, A.H.; Jewell, J.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Laureijs, R.J.; Lawrence, C.R.; Le Jeune, M.; Leach, S.; Leahy, J.P.; Leonardi, R.; Leon-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P.B.; Lindholm, V.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maffei, B.; Maino, D.; Mandolesi, N.; Marinucci, D.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Millea, M.; Mitra, S.; Miville-Deschenes, M.A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I.J.; Orieux, F.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Paykari, P.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Rahlin, A.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ringeval, C.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubino-Martin, J.A.; Rusholme, B.; Sandri, M.; Sanselme, L.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Starck, J.L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Turler, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; White, M.; White, S.D.M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-01-01

    We present the Planck likelihood, a complete statistical description of the two-point correlation function of the CMB temperature fluctuations. We use this likelihood to derive the Planck CMB power spectrum over three decades in l, covering 2 = 50, we employ a correlated Gaussian likelihood approximation based on angular cross-spectra derived from the 100, 143 and 217 GHz channels. We validate our likelihood through an extensive suite of consistency tests, and assess the impact of residual foreground and instrumental uncertainties on cosmological parameters. We find good internal agreement among the high-l cross-spectra with residuals of a few uK^2 at l <= 1000. We compare our results with foreground-cleaned CMB maps, and with cross-spectra derived from the 70 GHz Planck map, and find broad agreement in terms of spectrum residuals and cosmological parameters. The best-fit LCDM cosmology is in excellent agreement with preliminary Planck polarisation spectra. The standard LCDM cosmology is well constrained b...

  3. Experiments on the CMB Spectrum, Big Jets Model and Their Implications for the Missing Half of the Universe

    Directory of Open Access Journals (Sweden)

    Hsu Leonardo

    2018-01-01

    Full Text Available Based on the limiting continuation of Lorentz-Poincaré invariance, we propose an alternative formulation of the generalized Planck distribution for inertial and noninertial frames. The Lorentz invariant Planck distribution law leads to a new physical interpretation of the dipole anisotropy of the Cosmic Microwave Background. The Big Jets model predicts a distant ‘antimatter blackbody,’ whose radiations could make 50% of the sky very slightly warmer than the isotropic CMB temperature TCMB with a cosine function. The other 50% of the sky has the same isotropic temperature TCMB. Thus, we could have a pseudo-dipole anisotropy because the microwaves emitted from the antimatter blackbody are totally absorbed by our matter blackbody. We suggest that accurate data of satellite experiments might be used to search for the pseudo-dipole anisotropy and the missing half of the antimatter universe.

  4. A measurement of CMB cluster lensing with SPT and DES year 1 data

    Science.gov (United States)

    Baxter, E. J.; Raghunathan, S.; Crawford, T. M.; Fosalba, P.; Hou, Z.; Holder, G. P.; Omori, Y.; Patil, S.; Rozo, E.; Abbott, T. M. C.; Annis, J.; Aylor, K.; Benoit-Lévy, A.; Benson, B. A.; Bertin, E.; Bleem, L.; Buckley-Geer, E.; Burke, D. L.; Carlstrom, J.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Chang, C. L.; Cho, H.-M.; Crites, A. T.; Crocce, M.; Cunha, C. E.; da Costa, L. N.; D'Andrea, C. B.; Davis, C.; de Haan, T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Dodelson, S.; Doel, P.; Drlica-Wagner, A.; Estrada, J.; Everett, W. B.; Fausti Neto, A.; Flaugher, B.; Frieman, J.; García-Bellido, J.; George, E. M.; Gaztanaga, E.; Giannantonio, T.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Halverson, N. W.; Harrington, N. L.; Hartley, W. G.; Holzapfel, W. L.; Honscheid, K.; Hrubes, J. D.; Jain, B.; James, D. J.; Jarvis, M.; Jeltema, T.; Knox, L.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Lee, A. T.; Leitch, E. M.; Li, T. S.; Lima, M.; Luong-Van, D.; Manzotti, A.; March, M.; Marrone, D. P.; Marshall, J. L.; Martini, P.; McMahon, J. J.; Melchior, P.; Menanteau, F.; Meyer, S. S.; Miller, C. J.; Miquel, R.; Mocanu, L. M.; Mohr, J. J.; Natoli, T.; Nord, B.; Ogando, R. L. C.; Padin, S.; Plazas, A. A.; Pryke, C.; Rapetti, D.; Reichardt, C. L.; Romer, A. K.; Roodman, A.; Ruhl, J. E.; Rykoff, E.; Sako, M.; Sanchez, E.; Sayre, J. T.; Scarpine, V.; Schaffer, K. K.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Shirokoff, E.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Staniszewski, Z.; Stark, A.; Story, K.; Suchyta, E.; Tarle, G.; Thomas, D.; Troxel, M. A.; Vanderlinde, K.; Vieira, J. D.; Walker, A. R.; Williamson, R.; Zhang, Y.; Zuntz, J.

    2018-05-01

    Clusters of galaxies gravitationally lens the cosmic microwave background (CMB) radiation, resulting in a distinct imprint in the CMB on arcminute scales. Measurement of this effect offers a promising way to constrain the masses of galaxy clusters, particularly those at high redshift. We use CMB maps from the South Pole Telescope Sunyaev-Zel'dovich (SZ) survey to measure the CMB lensing signal around galaxy clusters identified in optical imaging from first year observations of the Dark Energy Survey. The cluster catalogue used in this analysis contains 3697 members with mean redshift of \\bar{z} = 0.45. We detect lensing of the CMB by the galaxy clusters at 8.1σ significance. Using the measured lensing signal, we constrain the amplitude of the relation between cluster mass and optical richness to roughly 17 {per cent} precision, finding good agreement with recent constraints obtained with galaxy lensing. The error budget is dominated by statistical noise but includes significant contributions from systematic biases due to the thermal SZ effect and cluster miscentring.

  5. How sensitive is the CMB to a single lens?

    Energy Technology Data Exchange (ETDEWEB)

    Rathaus, Ben; Fialkov, Anastasia; Itzhaki, Nissan, E-mail: ben.rathaus@gmail.com, E-mail: nitzhaki@post.tau.ac.il, E-mail: anastasia.fialkov@gmail.com [Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel-Aviv University, Ramat-Aviv, 69978 (Israel)

    2011-06-01

    We study the imprints of a single lens, that breaks statistical isotropy, on the CMB and calculate the signal to noise ratio (S/N) for its detection. We emphasize the role of non-Gaussianities induced by ΛCDM weak lensing in this calculation and show that typically the S/N is much smaller than expected. In particular we find that the hypothesis that a void (texture) is responsible for the WMAP cold spot can barely (cannot) be tested via weak lensing of the CMB.

  6. How sensitive is the CMB to a single lens?

    International Nuclear Information System (INIS)

    Rathaus, Ben; Fialkov, Anastasia; Itzhaki, Nissan

    2011-01-01

    We study the imprints of a single lens, that breaks statistical isotropy, on the CMB and calculate the signal to noise ratio (S/N) for its detection. We emphasize the role of non-Gaussianities induced by ΛCDM weak lensing in this calculation and show that typically the S/N is much smaller than expected. In particular we find that the hypothesis that a void (texture) is responsible for the WMAP cold spot can barely (cannot) be tested via weak lensing of the CMB

  7. Cross-correlation studies between CMB temperature anisotropies and 21 cm fluctuations

    International Nuclear Information System (INIS)

    Cooray, Asantha

    2004-01-01

    During the transition from a neutral to a fully reionized universe, scattering of cosmic microwave background (CMB) photons via free electrons leads to a new anisotropy contribution to the temperature distribution. If the reionization process is inhomogeneous and patchy, the era of reionization is also visible via brightness temperature fluctuations in the redshifted 21 cm line emission from neutral hydrogen. Since regions containing electrons and neutral hydrogen are expected to trace the same underlying density field, the two are (anti)correlated and this is expected to be reflected in the anisotropy maps via a correlation between arcminute-scale CMB temperature and the 21 cm background. In terms of the angular cross-power spectrum, unfortunately, this correlation is insignificant due to a geometric cancellation associated with second-order CMB anisotropies. The same cross correlation between ionized and neutral regions, however, can be studied using a bispectrum involving large-scale velocity field of ionized regions from the Doppler effect, arcminute-scale CMB anisotropies during reionization, and the 21 cm background. While the geometric cancellation is partly avoided, the signal-to-noise ratio related to this bispectrum is reduced due to the large cosmic variance related to velocity fluctuations traced by the Doppler effect. Unless the velocity field during reionization can be independently established, it is unlikely that the correlation information related to the relative distribution of ionized electrons and regions containing neutral hydrogen can be obtained with a combined study involving CMB and 21 cm fluctuations

  8. Pre-Inflationary Relics in the CMB?

    CERN Document Server

    Gruppuso, A.; Mandolesi, N.; Natoli, P.; Sagnotti, A.

    String Theory and Supergravity allow, in principle, to follow the transition of the inflaton from pre-inflationary fast roll to slow roll. This introduces an infrared depression in the primordial power spectrum that might have left an imprint in the CMB anisotropy, if it occurred at accessible wavelengths. We model the effect extending $\\Lambda$CDM with a scale $\\Delta$ related to the infrared depression and explore the constraints allowed by {\\sc Planck} data, employing also more conservative, wider Galactic masks in the low resolution CMB likelihood. In an extended mask with $f_{sky}=39\\%$, we thus find $\\Delta = (0.351 \\pm 0.114) \\times 10^{-3} \\, \\mbox{Mpc}^{-1}$, at $99.4\\%$ confidence level, to be compared with a nearby value at $88.5\\%$ with the standard $f_{sky}=94\\%$ mask. With about 64 $e$--folds of inflation, these values for $\\Delta$ would translate into primordial energy scales ${\\cal O}(10^{14})$ GeV.

  9. Beyond CMB cosmic variance limits on reionization with the polarized Sunyaev-Zel'dovich effect

    Science.gov (United States)

    Meyers, Joel; Meerburg, P. Daniel; van Engelen, Alexander; Battaglia, Nicholas

    2018-05-01

    Upcoming cosmic microwave background (CMB) surveys will soon make the first detection of the polarized Sunyaev-Zel'dovich effect, the linear polarization generated by the scattering of CMB photons on the free electrons present in collapsed objects. Measurement of this polarization along with knowledge of the electron density of the objects allows a determination of the quadrupolar temperature anisotropy of the CMB as viewed from the space-time location of the objects. Maps of these remote temperature quadrupoles have several cosmological applications. Here we propose a new application: the reconstruction of the cosmological reionization history. We show that with quadrupole measurements out to redshift 3, constraints on the mean optical depth can be improved by an order of magnitude beyond the CMB cosmic variance limit.

  10. An estimator for statistical anisotropy from the CMB bispectrum

    International Nuclear Information System (INIS)

    Bartolo, N.; Dimastrogiovanni, E.; Matarrese, S.; Liguori, M.; Riotto, A.

    2012-01-01

    Various data analyses of the Cosmic Microwave Background (CMB) provide observational hints of statistical isotropy breaking. Some of these features can be studied within the framework of primordial vector fields in inflationary theories which generally display some level of statistical anisotropy both in the power spectrum and in higher-order correlation functions. Motivated by these observations and the recent theoretical developments in the study of primordial vector fields, we develop the formalism necessary to extract statistical anisotropy information from the three-point function of the CMB temperature anisotropy. We employ a simplified vector field model and parametrize the bispectrum of curvature fluctuations in such a way that all the information about statistical anisotropy is encoded in some parameters λ LM (which measure the anisotropic to the isotropic bispectrum amplitudes). For such a template bispectrum, we compute an optimal estimator for λ LM and the expected signal-to-noise ratio. We estimate that, for f NL ≅ 30, an experiment like Planck can be sensitive to a ratio of the anisotropic to the isotropic amplitudes of the bispectrum as small as 10%. Our results are complementary to the information coming from a power spectrum analysis and particularly relevant for those models where statistical anisotropy turns out to be suppressed in the power spectrum but not negligible in the bispectrum

  11. CMB Polarization B-mode Delensing with SPTpol and Herschel

    Energy Technology Data Exchange (ETDEWEB)

    Manzotti, A.; et al.

    2017-01-16

    We present a demonstration of delensing the observed cosmic microwave background (CMB) B-mode polarization anisotropy. This process of reducing the gravitational-lensing generated B-mode component will become increasingly important for improving searches for the B modes produced by primordial gravitational waves. In this work, we delens B-mode maps constructed from multi-frequency SPTpol observations of a 90 deg$^2$ patch of sky by subtracting a B-mode template constructed from two inputs: SPTpol E-mode maps and a lensing potential map estimated from the $\\textit{Herschel}$ $500\\,\\mu m$ map of the CIB. We find that our delensing procedure reduces the measured B-mode power spectrum by 28% in the multipole range $300 < \\ell < 2300$; this is shown to be consistent with expectations from theory and simulations and to be robust against systematics. The null hypothesis of no delensing is rejected at $6.9 \\sigma$. Furthermore, we build and use a suite of realistic simulations to study the general properties of the delensing process and find that the delensing efficiency achieved in this work is limited primarily by the noise in the lensing potential map. We demonstrate the importance of including realistic experimental non-idealities in the delensing forecasts used to inform instrument and survey-strategy planning of upcoming lower-noise experiments, such as CMB-S4.

  12. Echoes of inflationary first-order phase transitions in the CMB

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hongliang, E-mail: hjiangag@connect.ust.hk [Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Liu, Tao, E-mail: taoliu@ust.hk [Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Sun, Sichun, E-mail: sichun@uw.edu [Jockey Club Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Wang, Yi, E-mail: phyw@ust.hk [Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region (Hong Kong)

    2017-02-10

    Cosmological phase transitions (CPTs), such as the Grand Unified Theory (GUT) and the electroweak (EW) ones, play a significant role in both particle physics and cosmology. In this letter, we propose to probe the first-order CPTs, by detecting gravitational waves (GWs) which are generated during the phase transitions through the cosmic microwave background (CMB). If happened around the inflation era, the first-order CPTs may yield low-frequency GWs due to bubble dynamics, leaving imprints on the CMB. In contrast to the nearly scale-invariant primordial GWs caused by vacuum fluctuation, these bubble-generated GWs are scale dependent and have non-trivial B-mode spectra. If decoupled from inflaton, the EWPT during inflation may serve as a probe for the one after reheating where the baryon asymmetry could be generated via EW baryogenesis (EWBG). The CMB thus provides a potential way to test the feasibility of the EWBG, complementary to the collider measurements of Higgs potential and the direct detection of GWs generated during EWPT.

  13. A Bayesian framework for cosmic string searches in CMB maps

    Energy Technology Data Exchange (ETDEWEB)

    Ciuca, Razvan; Hernández, Oscar F., E-mail: razvan.ciuca@mail.mcgill.ca, E-mail: oscarh@physics.mcgill.ca [Department of Physics, McGill University, 3600 rue University, Montréal, QC, H3A 2T8 (Canada)

    2017-08-01

    There exists various proposals to detect cosmic strings from Cosmic Microwave Background (CMB) or 21 cm temperature maps. Current proposals do not aim to find the location of strings on sky maps, all of these approaches can be thought of as a statistic on a sky map. We propose a Bayesian interpretation of cosmic string detection and within that framework, we derive a connection between estimates of cosmic string locations and cosmic string tension G μ. We use this Bayesian framework to develop a machine learning framework for detecting strings from sky maps and outline how to implement this framework with neural networks. The neural network we trained was able to detect and locate cosmic strings on noiseless CMB temperature map down to a string tension of G μ=5 ×10{sup −9} and when analyzing a CMB temperature map that does not contain strings, the neural network gives a 0.95 probability that G μ≤2.3×10{sup −9}.

  14. Detectability of the 21-cm CMB cross-correlation from the epoch of reionization

    NARCIS (Netherlands)

    Tashiro, Hiroyuki; Aghanim, Nabila; Langer, Mathieu; Douspis, Marian; Zaroubi, Saleem; Jelic, Vibor

    The 21-cm line fluctuations and the cosmic microwave background (CMB) are powerful probes of the epoch of reionization of the Universe. We study the potential of the cross-correlation between 21-cm line fluctuations and CMB anisotropy to obtain further constraints on the reionization history. We

  15. What can the CMB tell about the microphysics of cosmic reheating?

    International Nuclear Information System (INIS)

    Drewes, Marco

    2016-01-01

    In inflationary cosmology, cosmic reheating after inflation sets the initial conditions for the hot big bang. We investigate how CMB data can be used to study the effective potential and couplings of the inflaton during reheating to constrain the underlying microphysics. If there is a phase of preheating that is driven by a parametric resonance or other instability, then the thermal history and expansion history during the reheating era depend on a large number of microphysical parameters in a complicated way. In this case the connection between CMB observables and microphysical parameters can only established with intense numerical studies. Such studies can help to improve CMB constraints on the effective inflaton potential in specific models, but parameter degeneracies usually make it impossible to extract meaningful best-fit values for individual microphysical parameters. If, on the other hand, reheating is driven by perturbative processes, then it can be possible to constrain the inflaton couplings and the reheating temperature from CMB data. This provides an indirect probe of fundamental microphysical parameters that most likely can never be measured directly in the laboratory, but have an immense impact on the evolution of the cosmos by setting the stage for the hot big bang

  16. Revisiting the EC/CMB model for extragalactic large scale jets

    Science.gov (United States)

    Lucchini, M.; Tavecchio, F.; Ghisellini, G.

    2017-04-01

    One of the most outstanding results of the Chandra X-ray Observatory was the discovery that AGN jets are bright X-ray emitters on very large scales, up to hundreds of kpc. Of these, the powerful and beamed jets of flat-spectrum radio quasars are particularly interesting, as the X-ray emission cannot be explained by an extrapolation of the lower frequency synchrotron spectrum. Instead, the most common model invokes inverse Compton scattering of photons of the cosmic microwave background (EC/CMB) as the mechanism responsible for the high-energy emission. The EC/CMB model has recently come under criticism, particularly because it should predict a significant steady flux in the MeV-GeV band which has not been detected by the Fermi/LAT telescope for two of the best studied jets (PKS 0637-752 and 3C273). In this work, we revisit some aspects of the EC/CMB model and show that electron cooling plays an important part in shaping the spectrum. This can solve the overproduction of γ-rays by suppressing the high-energy end of the emitting particle population. Furthermore, we show that cooling in the EC/CMB model predicts a new class of extended jets that are bright in X-rays but silent in the radio and optical bands. These jets are more likely to lie at intermediate redshifts and would have been missed in all previous X-ray surveys due to selection effects.

  17. Effects on the CMB from magnetic field dissipation before recombination

    Science.gov (United States)

    Kunze, Kerstin E.

    2017-09-01

    Magnetic fields present before decoupling are damped due to radiative viscosity. This energy injection affects the thermal and ionization history of the cosmic plasma. The implications for the CMB anisotropies and polarization are investigated for different parameter choices of a nonhelical stochastic magnetic field. Assuming a Gaussian smoothing scale determined by the magnetic damping wave number at recombination, it is found that magnetic fields with present-day strength less than 0.1 nG and negative magnetic spectral indices have a sizable effect on the CMB temperature anisotropies and polarization.

  18. CMB constraints on β-exponential inflationary models

    Science.gov (United States)

    Santos, M. A.; Benetti, M.; Alcaniz, J. S.; Brito, F. A.; Silva, R.

    2018-03-01

    We analyze a class of generalized inflationary models proposed in ref. [1], known as β-exponential inflation. We show that this kind of potential can arise in the context of brane cosmology, where the field describing the size of the extra-dimension is interpreted as the inflaton. We discuss the observational viability of this class of model in light of the latest Cosmic Microwave Background (CMB) data from the Planck Collaboration through a Bayesian analysis, and impose tight constraints on the model parameters. We find that the CMB data alone prefer weakly the minimal standard model (ΛCDM) over the β-exponential inflation. However, when current local measurements of the Hubble parameter, H0, are considered, the β-inflation model is moderately preferred over the ΛCDM cosmology, making the study of this class of inflationary models interesting in the context of the current H0 tension.

  19. Large-Angle CMB Suppression and Polarisation Predictions

    CERN Document Server

    Copi, C.J.; Schwarz, D.J.; Starkman, G.D.

    2013-01-01

    The anomalous lack of large angle temperature correlations has been a surprising feature of the CMB since first observed by COBE-DMR and subsequently confirmed and strengthened by WMAP. This anomaly may point to the need for modifications of the standard model of cosmology or may show that our Universe is a rare statistical fluctuation within that model. Further observations of the temperature auto-correlation function will not elucidate the issue; sufficiently high precision statistical observations already exist. Instead, alternative probes are required. In this work we explore the expectations for forthcoming polarisation observations. We define a prescription to test the hypothesis that the large-angle CMB temperature perturbations in our Universe represent a rare statistical fluctuation within the standard cosmological model. These tests are based on the temperature-Q Stokes parameter correlation. Unfortunately these tests cannot be expected to be definitive. However, we do show that if this TQ-correlati...

  20. Multichroic Antenna-Coupled Bolometers for CMB Polarization and Sub-mm Observations

    Science.gov (United States)

    Lee, Adrian

    We propose to develop planar antenna-coupled superconducting bolometer arrays for observations at sub-millimeter to millimeter wavelengths. Our pixel architecture features a dual-polarization log-periodic antenna with a 4:1-bandwidth ratio, followed by a filter bank that divides the total bandwidth into several broad photometric bands. The advantages of this approach, compared with those using conventional single-color pixels, include a combination of greatly reduced focal-plane mass, higher array sensitivity, and a larger number of spectral bands. These advantages have the potential to greatly reduce the cost and/or increase the performance of NASA missions in the sub-millimeter to millimeter bands. For CMB polarization measurements, a wide frequency range of roughly 30 to 300 GHz is required to subtract galactic foregrounds. The multichroic architecture we propose enables a relatively low-cost 30-cm aperture space mission to have sufficient sensitivity to probe below the tensor-to-scalar ratio r = 0.01. For a larger aperture mission, such as the EPIC-IM concept, the proposed technology could reduce the focal-plane mass by a factor of 2-3, with great savings in required cryocooler performance and therefore cost. We have demonstrated the lens-coupled antenna concept in the POLARBEAR ground-based CMB polarization experiment now operating in Chile. That experiment uses a single-band planar antenna and produces excellent beam properties and optical efficiency. In the laboratory, we have measured two octaves of total bandwidth in the log-periodic sinuous antenna. We have built filter banks of 2, 3, and 7 bands with 4, 6, and 14 bolometers per pixel for two linear polarizations. Building on these accomplishments, the deliverables for the proposed work include: *Two pixel types that together cover the range from 30 to 300 GHz. The low-frequency pixel will have bands centered at 35, 50, and 80 GHz and the high frequency pixel will have bands centered at 120, 180, and 270

  1. Real Space Approach to CMB deboosting

    CERN Document Server

    Yoho, Amanda; Starkman, Glenn D.; Pereira, Thiago S.

    2013-01-01

    The effect of our Galaxy's motion through the Cosmic Microwave Background rest frame, which aberrates and Doppler shifts incoming photons measured by current CMB experiments, has been shown to produce mode-mixing in the multipole space temperature coefficients. However, multipole space determinations are subject to many difficulties, and a real-space analysis can provide a straightforward alternative. In this work we describe a numerical method for removing Lorentz- boost effects from real-space temperature maps. We show that to deboost a map so that one can accurately extract the temperature power spectrum requires calculating the boost kernel at a finer pixelization than one might naively expect. In idealized cases that allow for easy comparison to analytic results, we have confirmed that there is indeed mode mixing among the spherical harmonic coefficients of the temperature. We find that using a boost kernel calculated at Nside=8192 leads to a 1% bias in the binned boosted power spectrum at l~2000, while ...

  2. Constraining the evolution of the CMB temperature with SZ measurements from Planck data

    Energy Technology Data Exchange (ETDEWEB)

    Luzzi, G.; Petris, M. De; Lamagna, L. [Dept. of Physics, Sapienza, University of Rome, Piazzale Aldo Moro 2, Rome, I-00185 Italy (Italy); Génova-Santos, R.T. [Instituto de Astrofísica de Canarias, C/Vía Láctea s/n, La Laguna, Tenerife (Spain); Martins, C.J.A.P., E-mail: gemma.luzzi@roma1.infn.it, E-mail: rgs@iac.es, E-mail: carlos.martins@astro.up.pt, E-mail: marco.depetris@roma1.infn.it, E-mail: luca.lamagna@roma1.infn.it [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, Porto, 4150-762 Portugal (Portugal)

    2015-09-01

    The CMB temperature-redshift relation, T{sub CMB}(z)=T{sub 0}(1+z), is a key prediction of the standard cosmology but is violated in many non-standard models. Constraining possible deviations from this law is an effective way to test the ΛCDM paradigm and to search for hints of new physics. We have determined T{sub CMB}(z), with a precision up to 3%, for a subsample (103 clusters) of the Planck SZ cluster catalog, at redshifts in the range 0.01–0.94, using measurements of the spectrum of the Sunyaev-Zel'dovich (SZ) effect obtained from Planck temperature maps at frequencies from 70 to 353 GHz. The method adopted to provide individual determinations of T{sub CMB}(z) at cluster redshift relies on the use of SZ intensity change, Δ I{sub SZ}(ν) at different frequencies and on a Monte Carlo Markov chain approach. By applying this method to the sample of 103 clusters, we limit possible deviations of the form T{sub CMB}(z)=T{sub 0}(1+z){sup 1−β} to be β= 0.012 ± 0.016, at 1σ uncertainty, consistent with the prediction of the standard model. Combining these measurements with previously published results, we get β=0.013±0.011.

  3. The effects of the small-scale behaviour of dark matter power spectrum on CMB spectral distortion

    Science.gov (United States)

    Sarkar, Abir; Sethi, Shiv. K.; Das, Subinoy

    2017-07-01

    After numerous astronomical and experimental searches, the precise particle nature of dark matter is still unknown. The standard Weakly Interacting Massive Particle(WIMP) dark matter, despite successfully explaining the large-scale features of the universe, has long-standing small-scale issues. The spectral distortion in the Cosmic Microwave Background(CMB) caused by Silk damping in the pre-recombination era allows one to access information on a range of small scales 0.3 Mpc Light Axion (ULA) dark matter and Charged Decaying Dark Matter (CHDM); the matter power in all these models deviate significantly from the ΛCDM model at small scales. We compute the spectral distortion of CMB for these alternative models and compare our results with the ΛCDM model. We show that the main impact of alternative models is to alter the sub-horizon evolution of the Newtonian potential which affects the late-time behaviour of spectral distortion of CMB. The y-parameter diminishes by a few percent as compared to the ΛCDM model for a range of parameters of these models: LFDM for formation redshift zf = 105 (7%); WDM for mass mwdm = 1 keV (2%); CHDM for decay redshift zdecay = 105 (5%); ULA for mass ma = 10-24 eV (3%). This effect from the pre-recombination era can be masked by orders of magnitude higher y-distortions generated by late-time sources, e.g. the Epoch of Reionization and tSZ from the cluster of galaxies. We also briefly discuss the detectability of this deviation in light of the upcoming CMB experiment PIXIE, which might have the sensitivity to detect this signal from the pre-recombination phase.

  4. CMB anisotropies at all orders: the non-linear Sachs-Wolfe formula

    OpenAIRE

    Roldan, Omar

    2017-01-01

    We obtain the non-linear generalization of the Sachs-Wolfe + integrated Sachs-Wolfe (ISW) formula describing the CMB temperature anisotropies. Our formula is valid at all orders in perturbation theory, is also valid in all gauges and includes scalar, vector and tensor modes. A direct consequence of our results is that the maps of the logarithmic temperature anisotropies are much cleaner than the usual CMB maps, because they automatically remove many secondary anisotropies. This can for instan...

  5. Echoes of inflationary first-order phase transitions in the CMB

    Directory of Open Access Journals (Sweden)

    Hongliang Jiang

    2017-02-01

    Full Text Available Cosmological phase transitions (CPTs, such as the Grand Unified Theory (GUT and the electroweak (EW ones, play a significant role in both particle physics and cosmology. In this letter, we propose to probe the first-order CPTs, by detecting gravitational waves (GWs which are generated during the phase transitions through the cosmic microwave background (CMB. If happened around the inflation era, the first-order CPTs may yield low-frequency GWs due to bubble dynamics, leaving imprints on the CMB. In contrast to the nearly scale-invariant primordial GWs caused by vacuum fluctuation, these bubble-generated GWs are scale dependent and have non-trivial B-mode spectra. If decoupled from inflaton, the EWPT during inflation may serve as a probe for the one after reheating where the baryon asymmetry could be generated via EW baryogenesis (EWBG. The CMB thus provides a potential way to test the feasibility of the EWBG, complementary to the collider measurements of Higgs potential and the direct detection of GWs generated during EWPT.

  6. Effects on the CMB from compactification before inflation

    Energy Technology Data Exchange (ETDEWEB)

    Kontou, Eleni-Alexandra [Physics Program, Bard College, 30 Campus Rd, Annandale-on-Hudson, NY 12504 (United States); Blanco-Pillado, Jose J. [IKERBASQUE, Basque Foundation for Science, 48011, Bilbao (Spain); Hertzberg, Mark P.; Masoumi, Ali, E-mail: elenikontou@cosmos.phy.tufts.edu, E-mail: josejuan.blanco@ehu.es, E-mail: mark.hertzberg@tufts.edu, E-mail: ali@cosmos.phy.tufts.edu [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)

    2017-04-01

    Many theories beyond the Standard Model include extra dimensions, though these have yet to be directly observed. In this work we consider the possibility of a compactification mechanism which both allows extra dimensions and is compatible with current observations. This compactification is predicted to leave a signature on the CMB by altering the amplitude of the low l multipoles, dependent on the amount of inflation. Recently discovered CMB anomalies at low multipoles may be evidence for this. In our model we assume the spacetime is the product of a four-dimensional spacetime and flat extra dimensions. Before the compactification, both the four-dimensional spacetime and the extra dimensions can either be expanding or contracting independently. Taking into account physical constraints, we explore the observational consequences and the plausibility of these different models.

  7. Observational constraint on spherical inhomogeneity with CMB and local Hubble parameter

    Science.gov (United States)

    Tokutake, Masato; Ichiki, Kiyotomo; Yoo, Chul-Moon

    2018-03-01

    We derive an observational constraint on a spherical inhomogeneity of the void centered at our position from the angular power spectrum of the cosmic microwave background (CMB) and local measurements of the Hubble parameter. The late time behaviour of the void is assumed to be well described by the so-called Λ-Lemaȋtre-Tolman-Bondi (ΛLTB) solution. Then, we restrict the models to the asymptotically homogeneous models each of which is approximated by a flat Friedmann-Lemaȋtre-Robertson-Walker model. The late time ΛLTB models are parametrized by four parameters including the value of the cosmological constant and the local Hubble parameter. The other two parameters are used to parametrize the observed distance-redshift relation. Then, the ΛLTB models are constructed so that they are compatible with the given distance-redshift relation. Including conventional parameters for the CMB analysis, we characterize our models by seven parameters in total. The local Hubble measurements are reflected in the prior distribution of the local Hubble parameter. As a result of a Markov-Chains-Monte-Carlo analysis for the CMB temperature and polarization anisotropies, we found that the inhomogeneous universe models with vanishing cosmological constant are ruled out as is expected. However, a significant under-density around us is still compatible with the angular power spectrum of CMB and the local Hubble parameter.

  8. Measuring the cosmological lepton asymmetry through the CMB anisotropy

    CERN Document Server

    Kinney, W H; Kinney, William H.; Riotto, Antonio

    1999-01-01

    A large lepton asymmetry in the Universe is still a viable possibility and leads to many interesting phenomena such as gauge symmetry nonrestoration at high temperature. We show that a large lepton asymmetry changes the predicted cosmic microwave background (CMB) anisotropy and that any degeneracy in the relic neutrino sea will be measured to a precision of 1% or better when the CMB anisotropy is measured at the accuracy expected to result from the planned satellite missions MAP and Planck. In fact, the current measurements already put an upper limit on the lepton asymmetry of the Universe which is stronger than the one coming from considerations of primordial nucleosynthesis and structure formation.

  9. Motion induced second order temperature and y-type anisotropies after the subtraction of linear dipole in the CMB maps

    International Nuclear Information System (INIS)

    Sunyaev, Rashid A.; Khatri, Rishi

    2013-01-01

    y-type spectral distortions of the cosmic microwave background allow us to detect clusters and groups of galaxies, filaments of hot gas and the non-uniformities in the warm hot intergalactic medium. Several CMB experiments (on small areas of sky) and theoretical groups (for full sky) have recently published y-type distortion maps. We propose to search for two artificial hot spots in such y-type maps resulting from the incomplete subtraction of the effect of the motion induced dipole on the cosmic microwave background sky. This dipole introduces, at second order, additional temperature and y-distortion anisotropy on the sky of amplitude few μK which could potentially be measured by Planck HFI and Pixie experiments and can be used as a source of cross channel calibration by CMB experiments. This y-type distortion is present in every pixel and is not the result of averaging the whole sky. This distortion, calculated exactly from the known linear dipole, can be subtracted from the final y-type maps, if desired

  10. Architectures and assessment of next-generation CMB polarization instruments

    Data.gov (United States)

    National Aeronautics and Space Administration — Cosmological inflation predicts a background of gravitational waves that imprint a characteristic polarized pattern on the CMB. This signal is degraded by...

  11. The evens and odds of CMB anomalies

    Science.gov (United States)

    Gruppuso, A.; Kitazawa, N.; Lattanzi, M.; Mandolesi, N.; Natoli, P.; Sagnotti, A.

    2018-06-01

    The lack of power of large-angle CMB anisotropies is known to increase its statistical significance at higher Galactic latitudes, where a string-inspired pre-inflationary scale Δ can also be detected. Considering the Planck 2015 data, and relying largely on a Bayesian approach, we show that the effect is mostly driven by the even - ℓ harmonic multipoles with ℓ ≲ 20, which appear sizably suppressed in a way that is robust with respect to Galactic masking, along with the corresponding detections of Δ. On the other hand, the first odd - ℓ multipoles are only suppressed at high Galactic latitudes. We investigate this behavior in different sky masks, constraining Δ through even and odd multipoles, and we elaborate on possible implications. We include low- ℓ polarization data which, despite being noise-limited, help in attaining confidence levels of about 3 σ in the detection of Δ. We also show by direct forecasts that a future all-sky E-mode cosmic-variance-limited polarization survey may push the constraining power for Δ beyond 5 σ.

  12. Modeling CMB lensing cross correlations with CLEFT

    Energy Technology Data Exchange (ETDEWEB)

    Modi, Chirag; White, Martin [Department of Physics, University of California, Berkeley, CA 94720 (United States); Vlah, Zvonimir, E-mail: modichirag@berkeley.edu, E-mail: mwhite@berkeley.edu, E-mail: zvlah@stanford.edu [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94306 (United States)

    2017-08-01

    A new generation of surveys will soon map large fractions of sky to ever greater depths and their science goals can be enhanced by exploiting cross correlations between them. In this paper we study cross correlations between the lensing of the CMB and biased tracers of large-scale structure at high z . We motivate the need for more sophisticated bias models for modeling increasingly biased tracers at these redshifts and propose the use of perturbation theories, specifically Convolution Lagrangian Effective Field Theory (CLEFT). Since such signals reside at large scales and redshifts, they can be well described by perturbative approaches. We compare our model with the current approach of using scale independent bias coupled with fitting functions for non-linear matter power spectra, showing that the latter will not be sufficient for upcoming surveys. We illustrate our ideas by estimating σ{sub 8} from the auto- and cross-spectra of mock surveys, finding that CLEFT returns accurate and unbiased results at high z . We discuss uncertainties due to the redshift distribution of the tracers, and several avenues for future development.

  13. How CMB and large-scale structure constrain chameleon interacting dark energy

    International Nuclear Information System (INIS)

    Boriero, Daniel; Das, Subinoy; Wong, Yvonne Y.Y.

    2015-01-01

    We explore a chameleon type of interacting dark matter-dark energy scenario in which a scalar field adiabatically traces the minimum of an effective potential sourced by the dark matter density. We discuss extensively the effect of this coupling on cosmological observables, especially the parameter degeneracies expected to arise between the model parameters and other cosmological parameters, and then test the model against observations of the cosmic microwave background (CMB) anisotropies and other cosmological probes. We find that the chameleon parameters α and β, which determine respectively the slope of the scalar field potential and the dark matter-dark energy coupling strength, can be constrained to α < 0.17 and β < 0.19 using CMB data and measurements of baryon acoustic oscillations. The latter parameter in particular is constrained only by the late Integrated Sachs-Wolfe effect. Adding measurements of the local Hubble expansion rate H 0 tightens the bound on α by a factor of two, although this apparent improvement is arguably an artefact of the tension between the local measurement and the H 0 value inferred from Planck data in the minimal ΛCDM model. The same argument also precludes chameleon models from mimicking a dark radiation component, despite a passing similarity between the two scenarios in that they both delay the epoch of matter-radiation equality. Based on the derived parameter constraints, we discuss possible signatures of the model for ongoing and future large-scale structure surveys

  14. How CMB and large-scale structure constrain chameleon interacting dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Boriero, Daniel [Fakultät für Physik, Universität Bielefeld, Universitätstr. 25, Bielefeld (Germany); Das, Subinoy [Indian Institute of Astrophisics, Bangalore, 560034 (India); Wong, Yvonne Y.Y., E-mail: boriero@physik.uni-bielefeld.de, E-mail: subinoy@iiap.res.in, E-mail: yvonne.y.wong@unsw.edu.au [School of Physics, The University of New South Wales, Sydney NSW 2052 (Australia)

    2015-07-01

    We explore a chameleon type of interacting dark matter-dark energy scenario in which a scalar field adiabatically traces the minimum of an effective potential sourced by the dark matter density. We discuss extensively the effect of this coupling on cosmological observables, especially the parameter degeneracies expected to arise between the model parameters and other cosmological parameters, and then test the model against observations of the cosmic microwave background (CMB) anisotropies and other cosmological probes. We find that the chameleon parameters α and β, which determine respectively the slope of the scalar field potential and the dark matter-dark energy coupling strength, can be constrained to α < 0.17 and β < 0.19 using CMB data and measurements of baryon acoustic oscillations. The latter parameter in particular is constrained only by the late Integrated Sachs-Wolfe effect. Adding measurements of the local Hubble expansion rate H{sub 0} tightens the bound on α by a factor of two, although this apparent improvement is arguably an artefact of the tension between the local measurement and the H{sub 0} value inferred from Planck data in the minimal ΛCDM model. The same argument also precludes chameleon models from mimicking a dark radiation component, despite a passing similarity between the two scenarios in that they both delay the epoch of matter-radiation equality. Based on the derived parameter constraints, we discuss possible signatures of the model for ongoing and future large-scale structure surveys.

  15. Thermodynamics of SU(2 quantum Yang-Mills theory and CMB anomalies

    Directory of Open Access Journals (Sweden)

    Hofmann Ralf

    2014-04-01

    Full Text Available A brief review of effective SU(2 Yang-Mills thermodynamics in the deconfining phase is given, including the construction of the thermal ground-state estimate in terms of an inert, adjoint scalar field φ, based on non-propagating (antiselfdual field configurations of topological charge unity. We also discuss kinematic constraints on interacting propagating gauge fields implied by the according spatial coarse-graining, and we explain why the screening physics of an SU(2 photon is subject to an electric-magnetically dual interpretation. This argument relies on the fact that only (anticalorons of scale parameter ρ ∼ |φ|−1 contribute to the coarse-graining required for thermal-ground-state emergence at temperature T. Thus, use of the effective gauge coupling e in the (anticaloron action is justified, yielding the value ħ for the latter at almost all temperatures. As a consequence, the indeterministic transition of initial to final plane waves caused by an effective, pointlike vertex is fundamentally mediated in Euclidean time by a single (anticaloron being part of the thermal ground state. Next, we elucidate how a low-frequency excess of line temperature in the Cosmic Microwave Background (CMB determines the value of the critical temperature of the deconfining-preconfining phase transition of an SU(2 Yang-Mills theory postulated to describe photon propagation, and we describe how, starting at a redshift of about unity, SU(2 photons collectively work 3D temperature depressions into the CMB. Upon projection along a line of sight, a given depression influences the present CMB sky in a cosmologically local way, possibly explaining the large-angle anomalies confirmed recently by the Planck collaboration. Finally, six relativistic polarisations residing in the SU(2 vector modes roughly match the number of degrees of freedom in cosmic neutrinos (Planck which would disqualify the latter as radiation. Indeed, if interpreted as single center

  16. Thermodynamics of SU(2) quantum Yang-Mills theory and CMB anomalies

    Science.gov (United States)

    Hofmann, Ralf

    2014-04-01

    A brief review of effective SU(2) Yang-Mills thermodynamics in the deconfining phase is given, including the construction of the thermal ground-state estimate in terms of an inert, adjoint scalar field φ, based on non-propagating (anti)selfdual field configurations of topological charge unity. We also discuss kinematic constraints on interacting propagating gauge fields implied by the according spatial coarse-graining, and we explain why the screening physics of an SU(2) photon is subject to an electric-magnetically dual interpretation. This argument relies on the fact that only (anti)calorons of scale parameter ρ ˜ |φ|-1 contribute to the coarse-graining required for thermal-ground-state emergence at temperature T. Thus, use of the effective gauge coupling e in the (anti)caloron action is justified, yielding the value ħ for the latter at almost all temperatures. As a consequence, the indeterministic transition of initial to final plane waves caused by an effective, pointlike vertex is fundamentally mediated in Euclidean time by a single (anti)caloron being part of the thermal ground state. Next, we elucidate how a low-frequency excess of line temperature in the Cosmic Microwave Background (CMB) determines the value of the critical temperature of the deconfining-preconfining phase transition of an SU(2) Yang-Mills theory postulated to describe photon propagation, and we describe how, starting at a redshift of about unity, SU(2) photons collectively work 3D temperature depressions into the CMB. Upon projection along a line of sight, a given depression influences the present CMB sky in a cosmologically local way, possibly explaining the large-angle anomalies confirmed recently by the Planck collaboration. Finally, six relativistic polarisations residing in the SU(2) vector modes roughly match the number of degrees of freedom in cosmic neutrinos (Planck) which would disqualify the latter as radiation. Indeed, if interpreted as single center-vortex loops in

  17. Exploring cosmic origins with CORE: Gravitational lensing of the CMB

    Science.gov (United States)

    Challinor, A.; Allison, R.; Carron, J.; Errard, J.; Feeney, S.; Kitching, T.; Lesgourgues, J.; Lewis, A.; Zubeldía, Í.; Achucarro, A.; Ade, P.; Ashdown, M.; Ballardini, M.; Banday, A. J.; Banerji, R.; Bartlett, J.; Bartolo, N.; Basak, S.; Baumann, D.; Bersanelli, M.; Bonaldi, A.; Bonato, M.; Borrill, J.; Bouchet, F.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Burigana, C.; Buzzelli, A.; Cai, Z.-Y.; Calvo, M.; Carvalho, C.-S.; Castellano, G.; Chluba, J.; Clesse, S.; Colantoni, I.; Coppolecchia, A.; Crook, M.; d'Alessandro, G.; de Bernardis, P.; de Gasperis, G.; De Zotti, G.; Delabrouille, J.; Di Valentino, E.; Diego, J.-M.; Fernandez-Cobos, R.; Ferraro, S.; Finelli, F.; Forastieri, F.; Galli, S.; Genova-Santos, R.; Gerbino, M.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Hagstotz, S.; Hanany, S.; Handley, W.; Hernandez-Monteagudo, C.; Hervías-Caimapo, C.; Hills, M.; Hivon, E.; Kiiveri, K.; Kisner, T.; Kunz, M.; Kurki-Suonio, H.; Lamagna, L.; Lasenby, A.; Lattanzi, M.; Liguori, M.; Lindholm, V.; López-Caniego, M.; Luzzi, G.; Maffei, B.; Martinez-González, E.; Martins, C. J. A. P.; Masi, S.; Matarrese, S.; McCarthy, D.; Melchiorri, A.; Melin, J.-B.; Molinari, D.; Monfardini, A.; Natoli, P.; Negrello, M.; Notari, A.; Paiella, A.; Paoletti, D.; Patanchon, G.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Poulin, V.; Quartin, M.; Remazeilles, M.; Roman, M.; Rubino-Martin, J.-A.; Salvati, L.; Tartari, A.; Tomasi, M.; Tramonte, D.; Trappe, N.; Trombetti, T.; Tucker, C.; Valiviita, J.; Van de Weijgaert, R.; van Tent, B.; Vennin, V.; Vielva, P.; Vittorio, N.; Young, K.; Zannoni, M.

    2018-04-01

    Lensing of the cosmic microwave background (CMB) is now a well-developed probe of the clustering of the large-scale mass distribution over a broad range of redshifts. By exploiting the non-Gaussian imprints of lensing in the polarization of the CMB, the CORE mission will allow production of a clean map of the lensing deflections over nearly the full-sky. The number of high-S/N modes in this map will exceed current CMB lensing maps by a factor of 40, and the measurement will be sample-variance limited on all scales where linear theory is valid. Here, we summarise this mission product and discuss the science that will follow from its power spectrum and the cross-correlation with other clustering data. For example, the summed mass of neutrinos will be determined to an accuracy of 17 meV combining CORE lensing and CMB two-point information with contemporaneous measurements of the baryon acoustic oscillation feature in the clustering of galaxies, three times smaller than the minimum total mass allowed by neutrino oscillation measurements. Lensing has applications across many other science goals of CORE, including the search for B-mode polarization from primordial gravitational waves. Here, lens-induced B-modes will dominate over instrument noise, limiting constraints on the power spectrum amplitude of primordial gravitational waves. With lensing reconstructed by CORE, one can "delens" the observed polarization internally, reducing the lensing B-mode power by 60 %. This can be improved to 70 % by combining lensing and measurements of the cosmic infrared background from CORE, leading to an improvement of a factor of 2.5 in the error on the amplitude of primordial gravitational waves compared to no delensing (in the null hypothesis of no primordial B-modes). Lensing measurements from CORE will allow calibration of the halo masses of the tens of thousands of galaxy clusters that it will find, with constraints dominated by the clean polarization-based estimators. The 19

  18. The effects of the small-scale behaviour of dark matter power spectrum on CMB spectral distortion

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Abir; Sethi, Shiv K. [Raman Research Institute, CV Raman Ave Sadashivnagar, Bengaluru, Karnataka 560080 (India); Das, Subinoy, E-mail: abir@rri.res.in, E-mail: sethi@rri.res.in, E-mail: subinoy@iiap.res.in [Indian Institute of Astrophysics, 100 Feet Rd, Madiwala, 2nd Block, Koramangala, Bengaluru, Karnataka 560034 (India)

    2017-07-01

    After numerous astronomical and experimental searches, the precise particle nature of dark matter is still unknown. The standard Weakly Interacting Massive Particle(WIMP) dark matter, despite successfully explaining the large-scale features of the universe, has long-standing small-scale issues. The spectral distortion in the Cosmic Microwave Background(CMB) caused by Silk damping in the pre-recombination era allows one to access information on a range of small scales 0.3 Mpc < k < 10{sup 4} Mpc{sup −1}, whose dynamics can be precisely described using linear theory. In this paper, we investigate the possibility of using the Silk damping induced CMB spectral distortion as a probe of the small-scale power. We consider four suggested alternative dark matter candidates—Warm Dark Matter (WDM), Late Forming Dark Matter (LFDM), Ultra Light Axion (ULA) dark matter and Charged Decaying Dark Matter (CHDM); the matter power in all these models deviate significantly from the ΛCDM model at small scales. We compute the spectral distortion of CMB for these alternative models and compare our results with the ΛCDM model. We show that the main impact of alternative models is to alter the sub-horizon evolution of the Newtonian potential which affects the late-time behaviour of spectral distortion of CMB. The y -parameter diminishes by a few percent as compared to the ΛCDM model for a range of parameters of these models: LFDM for formation redshift z {sub f} = 10{sup 5} (7%); WDM for mass m {sub wdm} = 1 keV (2%); CHDM for decay redshift z {sub decay} = 10{sup 5} (5%); ULA for mass m {sub a} = 10{sup −24} eV (3%). This effect from the pre-recombination era can be masked by orders of magnitude higher y -distortions generated by late-time sources, e.g. the Epoch of Reionization and tSZ from the cluster of galaxies. We also briefly discuss the detectability of this deviation in light of the upcoming CMB experiment PIXIE, which might have the sensitivity to detect this signal from

  19. SPIDER: CMB Polarimetry from the Edge of Space

    Energy Technology Data Exchange (ETDEWEB)

    Gualtieri, R.; et al.

    2017-11-28

    SPIDER is a balloon-borne instrument designed to map the polarization of the millimeter-wave sky at large angular scales. SPIDER targets the B-mode signature of primordial gravitational waves in the cosmic microwave background (CMB), with a focus on mapping a large sky area with high fidelity at multiple frequencies. SPIDER's first longduration balloon (LDB) flight in January 2015 deployed a total of 2400 antenna-coupled Transition Edge Sensors (TESs) at 90 GHz and 150 GHz. In this work we review the design and in-flight performance of the SPIDER instrument, with a particular focus on the measured performance of the detectors and instrument in a space-like loading and radiation environment. SPIDER's second flight in December 2018 will incorporate payload upgrades and new receivers to map the sky at 285 GHz, providing valuable information for cleaning polarized dust emission from CMB maps.

  20. Fermi Non-detections of Four X-Ray Jet Sources and Implications for the IC/CMB Mechanism

    Science.gov (United States)

    Breiding, Peter; Meyer, Eileen T.; Georganopoulos, Markos; Keenan, M. E.; DeNigris, N. S.; Hewitt, Jennifer

    2017-11-01

    Since its launch in 1999, the Chandra X-ray observatory has discovered several dozen X-ray jets associated with powerful quasars. In many cases, the X-ray spectrum is hard and appears to come from a second spectral component. The most popular explanation for the kpc-scale X-ray emission in these cases has been inverse-Compton (IC) scattering of Cosmic Microwave Background (CMB) photons by relativistic electrons in the jet (the IC/CMB model). Requiring the IC/CMB emission to reproduce the observed X-ray flux density inevitably predicts a high level of gamma-ray emission, which should be detectable with the Fermi Large Area Telescope (LAT). In previous work, we found that gamma-ray upper limits from the large-scale jets of 3C 273 and PKS 0637-752 violate the predictions of the IC/CMB model. Here, we present Fermi/LAT flux density upper limits for the X-ray jets of four additional sources: PKS 1136-135, PKS 1229-021, PKS 1354+195, and PKS 2209+080. We show that these limits violate the IC/CMB predictions at a very high significance level. We also present new Hubble Space Telescope observations of the quasar PKS 2209+080 showing a newly detected optical jet, and Atacama Large Millimeter/submillimeter Array band 3 and 6 observations of all four sources, which provide key constraints on the spectral shape that enable us to rule out the IC/CMB model.

  1. Large-Scale Corrections to the CMB Anisotropy from Asymptotic de Sitter Mode

    Science.gov (United States)

    Sojasi, A.

    2018-01-01

    In this study, large-scale effects from asymptotic de Sitter mode on the CMB anisotropy are investigated. Besides the slow variation of the Hubble parameter onset of the last stage of inflation, the recent observational constraints from Planck and WMAP on spectral index confirm that the geometry of the universe can not be pure de Sitter in this era. Motivated by these evidences, we use this mode to calculate the power spectrum of the CMB anisotropy on the large scale. It is found that the CMB spectrum is dependent on the index of Hankel function ν which in the de Sitter limit ν → 3/2, the power spectrum reduces to the scale invariant result. Also, the result shows that the spectrum of anisotropy is dependent on angular scale and slow-roll parameter and these additional corrections are swept away by a cutoff scale parameter H ≪ M ∗ < M P .

  2. Probing primordial non Gaussianity in the BOOMERanG CMB maps: an analysis based on analytical Minkowski functionals

    International Nuclear Information System (INIS)

    Migliaccio, M.; Natoli, P.; De Troia, G.; Hikage, C.; Komatsu, E.; Ade, P.A.R.; Bock, J.J.; Bond, J.R.; Borrill, J.; Boscaleri, A.; Contaldi, C.R.; Crill, B.P.; Bernardis, P. de; Gasperis, G. de; Oliveira-Costa, A. de; Di Stefano, G.; Hivon, E.; Kisner, T.S.; Jones, W.C.; Lange, A.E.

    2009-01-01

    Minkowski functionals are a powerful tool to constrain the Gaussianity of the Cosmic Microwave Background (CMB). In the limit of a weakly non Gaussian field, a perturbative approach can be derived [Hikage C., Komatsu E., and Matsubara T., 2006, ApJ, 653, 11] that is completely based on analytical formulae without requiring computationally intensive, dedicated Monte Carlo non Gaussian simulations of the CMB anisotropy. We apply this machinery to an intensity map derived from the 1998 and 2003 flights of BOOMERanG, analyzed here together for the first time. We set limits on the non-linear coupling parameter f NL as -1020 NL <390 at 95% CL, markedly improving the previous constraints set by [De Troia G. et al., 2007, ApJ, 670, L73] whose analysis was limited to the BOOMERanG 2003 dataset. These limits are the most stringent ever set among suborbital experiments.

  3. Probing primordial non Gaussianity in the BOOMERanG CMB maps: an analysis based on analytical Minkowski functionals

    Energy Technology Data Exchange (ETDEWEB)

    Migliaccio, M.; Natoli, P.; De Troia, G. [Dipartimento di Fisica, Universita di Roma ' Tor Vergata' , Via della Ricerca Scientifica, 1 I-00133 Roma (Italy); Hikage, C. [School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA (United Kingdom); Komatsu, E. [Texas Cosmology Center, University of Texas at Austin, 1 University Station, C1400, Austin, TX 78712 (United States); Ade, P.A.R. [School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA (United Kingdom); Bock, J.J. [Jet Propulsion Laboratory, Pasadena, CA (United States); Bond, J.R. [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, Ontario (Canada); Borrill, J. [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Boscaleri, A. [IFAC-CNR, Firenze (Italy); Contaldi, C.R. [Theoretical Physics Group, Imperial College, London (United Kingdom); Crill, B.P. [Jet Propulsion Laboratory, Pasadena, CA (United States); Bernardis, P. de [Dipartimento di Fisica, Universita La Sapienza, Roma (Italy); Gasperis, G. de [Dipartimento di Fisica, Universita di Roma ' Tor Vergata' , Via della Ricerca Scientifica, 1 I-00133 Roma (Italy); Oliveira-Costa, A. de [Department of Physics, MIT, Cambridge, MA 02139 (United States); Di Stefano, G. [Istituto Nazionale di Geofisica e Vulcanologia, 00143 Rome (Italy); Hivon, E. [Institut d' Astrophysique, Paris (France); Kisner, T.S. [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Jones, W.C. [Department of Physics, Princeton University, Princeton, NJ 0854 (United States); Lange, A.E. [Observational Cosmology, California Institute of Technology, Pasadena, CA (United States)

    2009-10-15

    Minkowski functionals are a powerful tool to constrain the Gaussianity of the Cosmic Microwave Background (CMB). In the limit of a weakly non Gaussian field, a perturbative approach can be derived [Hikage C., Komatsu E., and Matsubara T., 2006, ApJ, 653, 11] that is completely based on analytical formulae without requiring computationally intensive, dedicated Monte Carlo non Gaussian simulations of the CMB anisotropy. We apply this machinery to an intensity map derived from the 1998 and 2003 flights of BOOMERanG, analyzed here together for the first time. We set limits on the non-linear coupling parameter f{sub NL} as -1020experiments.

  4. Constraining the CMB optical depth through the dispersion measure of cosmological radio transients

    International Nuclear Information System (INIS)

    Fialkov, A.; Loeb, A.

    2016-01-01

    The dispersion measure of extragalactic radio transients can be used to measure the column density of free electrons in the intergalactic medium. The same electrons also scatter the Cosmic Microwave Background (CMB) photons, affecting precision measurements of cosmological parameters. We explore the connection between the dispersion measure of radio transients existing during the Epoch of Reionization (EoR) and the total optical depth for the CMB showing that the existence of such transients would provide a new sensitive probe of the CMB optical depth. As an example, we consider the population of FRBs. Assuming they exist during the EoR, we show that: (i) such sources can probe the reionization history by measuring the optical depth to sub-percent accuracy, and (ii) they can be detected with high significance by an instrument such as the Square Kilometer Array.

  5. Constraining the CMB optical depth through the dispersion measure of cosmological radio transients

    Energy Technology Data Exchange (ETDEWEB)

    Fialkov, A.; Loeb, A., E-mail: anastasia.fialkov@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu [Institute for Teory and Computation, Harvard University, 60 Garden Street, MS-51, Cambridge, MA, 02138 (United States)

    2016-05-01

    The dispersion measure of extragalactic radio transients can be used to measure the column density of free electrons in the intergalactic medium. The same electrons also scatter the Cosmic Microwave Background (CMB) photons, affecting precision measurements of cosmological parameters. We explore the connection between the dispersion measure of radio transients existing during the Epoch of Reionization (EoR) and the total optical depth for the CMB showing that the existence of such transients would provide a new sensitive probe of the CMB optical depth. As an example, we consider the population of FRBs. Assuming they exist during the EoR, we show that: (i) such sources can probe the reionization history by measuring the optical depth to sub-percent accuracy, and (ii) they can be detected with high significance by an instrument such as the Square Kilometer Array.

  6. Peculiar velocity effects in high-resolution microwave background experiments

    International Nuclear Information System (INIS)

    Challinor, Anthony; Leeuwen, Floor van

    2002-01-01

    We investigate the impact of peculiar velocity effects due to the motion of the solar system relative to the cosmic microwave background (CMB) on high resolution CMB experiments. It is well known that on the largest angular scales the combined effects of Doppler shifts and aberration are important; the lowest Legendre multipoles of total intensity receive power from the large CMB monopole in transforming from the CMB frame. On small angular scales aberration dominates and is shown here to lead to significant distortions of the total intensity and polarization multipoles in transforming from the rest frame of the CMB to the frame of the solar system. We provide convenient analytic results for the distortions as series expansions in the relative velocity of the two frames, but at the highest resolutions a numerical quadrature is required. Although many of the high resolution multipoles themselves are severely distorted by the frame transformations, we show that their statistical properties distort by only an insignificant amount. Therefore, the cosmological parameter estimation is insensitive to the transformation from the CMB frame (where theoretical predictions are calculated) to the rest frame of the experiment

  7. Conformal Invariance, Dark Energy, and CMB Non-Gaussianity

    CERN Document Server

    Antoniadis, Ignatios; Mottola, Emil

    2012-01-01

    We show that in addition to simple scale invariance, a universe dominated by dark energy naturally gives rise to correlation functions possessing full conformal invariance. This is due to the mathematical isomorphism between the conformal group of certain three dimensional slices of de Sitter space and the de Sitter isometry group SO(4,1). In the standard homogeneous, isotropic cosmological model in which primordial density perturbations are generated during a long vacuum energy dominated de Sitter phase, the embedding of flat spatial R^3 sections in de Sitter space induces a conformal invariant perturbation spectrum and definite prediction for the shape of the non-Gaussian CMB bispectrum. In the case in which the density fluctuations are generated instead on the de Sitter horizon, conformal invariance of the S^2 horizon embedding implies a different but also quite definite prediction for the angular correlations of CMB non-Gaussianity on the sky. Each of these forms for the bispectrum is intrinsic to the sym...

  8. CMB-8 material balance system

    International Nuclear Information System (INIS)

    Langner, D.; Canada, T.; Ensslin, N.; Atwell, T.; Baxman, H.; Cowder, L.; Speir, L.; Lyssel, T.V.; Sampson, T.

    1980-08-01

    We describe the automated nondestructive assay (NDA) system installed at the Los Alamos Scientific Laboratory (LASL) Group CMB-8 uranium recovery facility. A random driver (RD) is used to measure the 235 U content of various solids while a uranium solution assay system (USAS) measures the 235 U or total uranium content of solutions over a concentration range of a few ppM to 400 g/l. Both instruments are interfaced to and controlled by a single minicomputer. The measurement principles, mechanical specifications, system software description, and operational instructions are described

  9. Cysteine-mediated gene expression and characterization of the CmbR regulon in Streptococcus pneumoniae

    Directory of Open Access Journals (Sweden)

    Muhammad Afzal

    2016-12-01

    Full Text Available In this study, we investigated the transcriptomic response of Streptococcus pneumoniae D39 to cysteine. Transcriptome comparison of the D39 wild-type strain grown at a restricted concentration of cysteine (0.03 mM to one grown at a high concentration of cysteine (50 mM in chemically-define medium (CDM revealed elevated expression of various genes/operons, i.e. spd-0150, metQ, spd-0431, metEF, gshT, spd-0618, fhs, tcyB, metB-csd, metA, spd-1898, yvdE, and cysK, likely to be involved in the transport and utilization of cysteine and/or methionine. Microarray-based data were further confirmed by quantitative RT-PCR. Promoter lacZ-fusion studies and quantitative RT-PCR data showed that the transcriptional regulator CmbR acts as a transcriptional repressor of spd-0150, metEF, gshT, spd-0618, tcyB, metA, and yvdE, putatively involved in cysteine uptake and utilization. The operator site of CmbR in the promoter regions of CmbR-regulated genes is predicted and confirmed by mutating or deleting CmbR operator sites from the promoter regions of these genes.

  10. Obstructions to Bell CMB experiments

    Science.gov (United States)

    Martin, Jérôme; Vennin, Vincent

    2017-09-01

    We present a general and systematic study of how a Bell experiment on the cosmic microwave background could be carried out. We introduce different classes of pseudo-spin operators and show that, if the system is placed in a two-mode squeezed state as inflation predicts, they all lead to a violation of the Bell inequality. However, we also discuss the obstacles that one faces in order to realize this program in practice and show that they are probably insurmountable. We suggest alternative methods that could reveal the quantum origin of cosmological structures without relying on Bell experiments.

  11. Compensation for large tensor modes with iso-curvature perturbations in CMB anisotropies

    Energy Technology Data Exchange (ETDEWEB)

    Kawasaki, Masahiro; Yokoyama, Shuichiro, E-mail: kawasaki@icrr.u-tokyo.ac.jp, E-mail: shu@icrr.u-tokyo.ac.jp [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582 (Japan)

    2014-05-01

    Recently, BICEP2 has reported the large tensor-to-scalar ratio r = 0.2{sup +0.07}{sub −0.05} from the observation of the cosmic microwave background (CMB) B-mode at degree-scales. Since tensor modes induce not only CMB B-mode but also the temperature fluctuations on large scales, to realize the consistent temperature fluctuations with the Planck result we should consider suppression of scalar perturbations on corresponding large scales. To realize such a suppression, we consider anti-correlated iso-curvature perturbations which could be realized in the simple curvaton model.

  12. On the impact of large angle CMB polarization data on cosmological parameters

    Energy Technology Data Exchange (ETDEWEB)

    Lattanzi, Massimiliano; Mandolesi, Nazzareno; Natoli, Paolo [Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via Giuseppe Saragat 1, I-44122 Ferrara (Italy); Burigana, Carlo; Gruppuso, Alessandro; Trombetti, Tiziana [Istituto Nazionale di Astrofisica, Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna, Via Piero Gobetti 101, I-40129 Bologna (Italy); Gerbino, Martina [The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Polenta, Gianluca [Agenzia Spaziale Italiana Science Data Center, Via del Politecnico snc, 00133, Roma (Italy); Salvati, Laura, E-mail: lattanzi@fe.infn.it, E-mail: burigana@iasfbo.inaf.it, E-mail: martina.gerbino@fysik.su.se, E-mail: gruppuso@iasfbo.inaf.it, E-mail: nazzareno.mandolesi@unife.it, E-mail: paolo.natoli@unife.it, E-mail: gianluca.polenta@asdc.asi.it, E-mail: laura.salvati@ias.u-psud.fr, E-mail: trombetti@iasfbo.inaf.it [Dipartimento di Fisica, Università La Sapienza, Piazzale Aldo Moro 2, I-00185 Roma (Italy)

    2017-02-01

    We study the impact of the large-angle CMB polarization datasets publicly released by the WMAP and Planck satellites on the estimation of cosmological parameters of the ΛCDM model. To complement large-angle polarization, we consider the high resolution (or 'high-ℓ') CMB datasets from either WMAP or Planck as well as CMB lensing as traced by Planck 's measured four point correlation function. In the case of WMAP, we compute the large-angle polarization likelihood starting over from low resolution frequency maps and their covariance matrices, and perform our own foreground mitigation technique, which includes as a possible alternative Planck 353 GHz data to trace polarized dust. We find that the latter choice induces a downward shift in the optical depth τ, roughly of order 2σ, robust to the choice of the complementary high resolution dataset. When the Planck 353 GHz is consistently used to minimize polarized dust emission, WMAP and Planck 70 GHz large-angle polarization data are in remarkable agreement: by combining them we find τ = 0.066 {sup +0.012}{sub −0.013}, again very stable against the particular choice for high-ℓ data. We find that the amplitude of primordial fluctuations A {sub s} , notoriously degenerate with τ, is the parameter second most affected by the assumptions on polarized dust removal, but the other parameters are also affected, typically between 0.5 and 1σ. In particular, cleaning dust with Planck 's 353 GHz data imposes a 1σ downward shift in the value of the Hubble constant H {sub 0}, significantly contributing to the tension reported between CMB based and direct measurements of the present expansion rate. On the other hand, we find that the appearance of the so-called low ℓ anomaly, a well-known tension between the high- and low-resolution CMB anisotropy amplitude, is not significantly affected by the details of large-angle polarization, or by the particular high-ℓ dataset employed.

  13. The cross-correlation of the CMB polarization and the 21-cm line fluctuations from cosmic reionization

    NARCIS (Netherlands)

    Tashiro, Hiroyuki; Aghanim, Nabila; Langer, Mathieu; Douspis, Marian; Zaroubi, Saleem

    2008-01-01

    The cosmic microwave background (CMB) polarization and the 21-cm line fluctuations are powerful probes of cosmological reionization. We study how the cross-correlation between the CMB polarization (E modes) and the 21-cm line fluctuations can be used to gain further understanding of the reionization

  14. Planck 2013 results. XV. CMB power spectra and likelihood

    DEFF Research Database (Denmark)

    Tauber, Jan; Bartlett, J.G.; Bucher, M.

    2014-01-01

    This paper presents the Planck 2013 likelihood, a complete statistical description of the two-point correlation function of the CMB temperature fluctuations that accounts for all known relevant uncertainties, both instrumental and astrophysical in nature. We use this likelihood to derive our best...

  15. Does the small CMB quadrupole moment suggest new physics?

    CERN Document Server

    Cline, J M; Lesgourgues, Julien; Cline, James M.; Crotty, Patrick; Lesgourgues, Julien

    2003-01-01

    Motivated by WMAP's confirmation of an anomalously low value of the quadrupole moment of the CMB temperature fluctuations, we investigate the effects on the CMB of cutting off the primordial power spectrum P(k) at low wave numbers. This could arise, for example, from a break in the inflaton potential, a prior period of matter or radiation domination, or an oscillating scalar field which couples to the inflaton. We reanalyze the full WMAP parameter space supplemented by a low-k cutoff for P(k). The temperature correlations by themselves are better fit by a cutoff spectrum, but including the TE temperature-polarization spectrum reduces this preference to a 1.4 sigma effect. Inclusion of large scale structure data does not change the conclusion. If taken seriously, the low-k cutoff is correlated with optical depth so that reionization occurs even earlier than indicated by the WMAP analysis.

  16. Detecting relic gravitational waves in the CMB: The contamination caused by the cosmological birefringence

    Directory of Open Access Journals (Sweden)

    Wen Zhao

    2014-10-01

    Full Text Available The B-mode polarization of the cosmic microwave background (CMB radiation is an excellent information channel for the detection of relic gravitational waves. However, the detection is contaminated by the B-mode polarization generated by some other effects. In this paper, we discuss the contaminations caused by the cosmological birefringence, which converts the CMB E-mode to the B-mode, and forms the effective noise for the detection of gravitational waves. We find that this contamination is significant, if the rotation angle is large. However, this kind of B-mode can be properly de-rotated, and the effective noises can be greatly reduced. We find that, comparing with the contaminations caused by cosmic weak lensing, the residual polarization generated by the cosmological birefringence is negligible for the detection of relic gravitational waves in the CMB.

  17. Adiabatic CMB perturbations in pre-big bang string cosmology

    DEFF Research Database (Denmark)

    Enqvist, Kari; Sloth, Martin Snoager

    2001-01-01

    We consider the pre-big bang scenario with a massive axion field which starts to dominate energy density when oscillating in an instanton-induced potential and subsequently reheats the universe as it decays into photons, thus creating adiabatic CMB perturbations. We find that the fluctuations...

  18. Future neutrino experiments

    CERN Document Server

    Di Lella, L

    2001-01-01

    Future experiments to search for neutrino oscillations using neutrinos from the Sun, from reactors and accelerators are reviewed. Possible long-term developments based on neutrino factories are also described. (29 refs).

  19. Inflation in the closed FLRW model and the CMB

    Energy Technology Data Exchange (ETDEWEB)

    Bonga, Béatrice; Gupt, Brajesh; Yokomizo, Nelson, E-mail: bpb165@psu.edu, E-mail: bgupt@gravity.psu.edu, E-mail: yokomizo@gravity.psu.edu [Institute for Gravitation and the Cosmos and Physics Department, The Pennsylvania State University, University Park, PA 16802 (United States)

    2016-10-01

    Recent cosmic microwave background (CMB) observations put strong constraints on the spatial curvature via estimation of the parameter Ω{sub k} assuming an almost scale invariant primordial power spectrum. We study the evolution of the background geometry and gauge-invariant scalar perturbations in an inflationary closed FLRW model and calculate the primordial power spectrum. We find that the inflationary dynamics is modified due to the presence of spatial curvature, leading to corrections to the nearly scale invariant power spectrum at the end of inflation. When evolved to the surface of last scattering, the resulting temperature anisotropy spectrum ( C {sup TT}{sub ℓ}) shows deficit of power at low multipoles (ℓ < 20). By comparing our results with the recent Planck data we discuss the role of spatial curvature in accounting for CMB anomalies and in the estimation of the parameter Ω{sub k}. Since the curvature effects are limited to low multipoles, the Planck estimation of cosmological parameters remains robust under inclusion of positive spatial curvature.

  20. Planck 2015 results. IX. Diffuse component separation: CMB maps

    CERN Document Server

    Adam, R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.F.; Casaponsa, B.; Castex, G.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.R.; Chiang, H.C.; Christensen, P.R.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Desert, F.X.; Dickinson, C.; Diego, J.M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Falgarone, E.; Fantaye, Y.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Heraud, Y.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.L.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jaffe, T.R.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Le Jeune, M.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McGehee, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschenes, M.A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J.A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T.J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Racine, B.; Reach, W.T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubino-Martin, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-01-01

    We present foreground-reduced CMB maps derived from the full Planck data set in both temperature and polarization. Compared to the corresponding Planck 2013 temperature sky maps, the total data volume is larger by a factor of 3.2 for frequencies between 30 and 70 GHz, and by 1.9 for frequencies between 100 and 857 GHz. In addition, systematic errors in the forms of temperature-to-polarization leakage, analogue-to-digital conversion uncertainties, and very long time constant errors have been dramatically reduced, to the extent that the cosmological polarization signal may now be robustly recovered on angular scales $\\ell\\gtrsim40$. On the very largest scales, instrumental systematic residuals are still non-negligible compared to the expected cosmological signal, and modes with $\\ell < 20$ are accordingly suppressed in the current polarization maps by high-pass filtering. As in 2013, four different CMB component separation algorithms are applied to these observations, providing a measure of stability with re...

  1. Punctuated inflation and the low CMB multipoles

    International Nuclear Information System (INIS)

    Jain, Rajeev Kumar; Sriramkumar, L.; Chingangbam, Pravabati; Gong, Jinn-Ouk; Souradeep, Tarun

    2009-01-01

    We investigate inflationary scenarios driven by a class of potentials which are similar in form to those that arise in certain minimal supersymmetric extensions of the standard model. We find that these potentials allow a brief period of departure from inflation sandwiched between two stages of slow roll inflation. We show that such a background behavior leads to a step like feature in the scalar power spectrum. We set the scales such that the drop in the power spectrum occurs at a length scale that corresponds to the Hubble radius today — a feature that seems necessary to explain the lower power observed in the quadrupole moment of the Cosmic Microwave Background (CMB) anisotropies. We perform a Markov Chain Monte Carlo analysis to determine the values of the model parameters that provide the best fit to the recent WMAP 5-year data for the CMB angular power spectrum. We find that an inflationary spectrum with a suppression of power at large scales that we obtain leads to a much better fit (with just one extra parameter, χ eff 2 improves by 6.62) of the observed data when compared to the best fit reference ΛCDM model with a featureless, power law, primordial spectrum

  2. CMB anisotropies from patchy reionisation and diffuse Sunyaev-Zel'dovich effects

    Energy Technology Data Exchange (ETDEWEB)

    Fidler, Christian; Ringeval, Christophe, E-mail: christophe.ringeval@uclouvain.be, E-mail: christian.fidler@uclouvain.be [Centre for Cosmology, Particle Physics and Phenomenology, Institute of Mathematics and Physics, Louvain University, 2 Chemin du Cyclotron, 1348 Louvain-la-Neuve (Belgium)

    2017-10-01

    Anisotropies in the Cosmic Microwave Background (CMB) can be induced during the later stages of cosmic evolution, and in particular during and after the Epoch of Reionisation. Inhomogeneities in the ionised fraction, but also in the baryon density, in the velocity fields and in the gravitational potentials are expected to generate correlated CMB perturbations. We present a complete relativistic treatment of all these effects, up to second order in perturbation theory, that we solve using the numerical Boltzmann code (\\SONG). The physical origin and relevance of all second order terms are carefully discussed. In addition to collisional and gravitational contributions, we identify the diffuse analogue of the blurring and kinetic Sunyaev-Zel'dovich (SZ) effects. Our approach naturally includes the correlations between the imprint from patchy reionisation and the diffuse SZ effects thereby allowing us to derive reliable estimates of the induced temperature and polarisation CMB angular power spectra. In particular, we show that the B -modes generated at intermediate length-scales (ℓ ≅ 100) have the same amplitude as the B -modes coming from primordial gravitational waves with a tensor-to-scalar ratio r =10{sup −4}.

  3. Extraction Of Cobalt From Spent CMB Catalyst Using Supercritical CO2

    Directory of Open Access Journals (Sweden)

    Joo S.-H.

    2015-06-01

    Full Text Available The metal extraction from spent CMB catalyst using supercritical CO2(scCO2 was investigated with single organic system, binary organic system and ternary organic system to extract metal ions. Leaching solution of spent CMB catalyst containing 389 mg L−1 Co2+, 187 mg L−1 Mn2+, 133 mg L−1 Na+, 14.97 mg L−1 Ca2+ and 13.2 mg L−1 Mg2+. The method consists of scCO2/ligands complexation process and metal extraction process at 60°C and 200bar. The result showed the Co and Mn was selectively extracted from Mg, Ca and Na in the ternary system of mixture of Cyanex272, DEA and Alamine304-I.

  4. A note on the birefringence angle estimation in CMB data analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gruppuso, A. [INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna, via P. Gobetti 101, I-40129 Bologna (Italy); Maggio, G. [INAF, Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11, Trieste (Italy); Molinari, D.; Natoli, P., E-mail: gruppuso@iasbo.inaf.it, E-mail: maggio@oats.inaf.it, E-mail: molinari@iasfbo.inaf.it, E-mail: ntlpla@unife.it [Dipartimento di Fisica e Scienze della Terra and INFN, Università degli Studi di Ferrara, Via Saragat 1, I-44100 Ferrara (Italy)

    2016-05-01

    Parity violating physics beyond the standard model of particle physics induces a rotation of the linear polarization of photons. This effect, also known as cosmological birefringence (CB), can be tested with the observations of the cosmic microwave background (CMB) anisotropies which are linearly polarized at the level of 5–10%. In particular CB produces non-null CMB cross correlations between temperature and B mode-polarization, and between E- and B-mode polarization. Here we study the properties of the so called D-estimators, often used to constrain such an effect. After deriving the framework of both frequentist and Bayesian analysis, we discuss the interplay between birefringence and weak-lensing, which, albeit parity conserving, modifies pre-existing TB and EB cross correlation.

  5. Developing Advanced Broadband Microwave Detectors for Next-Generation CMB Polarization Studies

    Data.gov (United States)

    National Aeronautics and Space Administration — The photons of the cosmic microwave background (CMB) stream toward us from the boundary of the observable universe and arrive with information about both their point...

  6. Impact of calibration errors on CMB component separation using FastICA and ILC

    Science.gov (United States)

    Dick, Jason; Remazeilles, Mathieu; Delabrouille, Jacques

    2010-01-01

    The separation of emissions from different astrophysical processes is an important step towards the understanding of observational data. This topic of component separation is of particular importance in the observation of the relic cosmic microwave background (CMB) radiation, as performed by the Wilkinson Microwave Anisotropy Probe satellite and the more recent Planck mission, launched on 2009 May 14 from Kourou and currently taking data. When performing any sort of component separation, some assumptions about the components must be used. One assumption that many techniques typically use is knowledge of the frequency scaling of one or more components. This assumption may be broken in the presence of calibration errors. Here we compare, in the context of imperfect calibration, the recovery of a clean map of emission of the CMB from observational data with two methods: FastICA (which makes no assumption of the frequency scaling of the components) and an `Internal Linear Combination' (ILC), which explicitly extracts a component with a given frequency scaling. We find that even in the presence of small calibration errors (less than 1 per cent) with a Planck-style mission, the ILC method can lead to inaccurate CMB reconstruction in the high signal-to-noise ratio regime, because of partial cancellation of the CMB emission in the recovered map. While there is no indication that the failure of the ILC will translate to other foreground cleaning or component separation techniques, we propose that all methods which assume knowledge of the frequency scaling of one or more components be careful to estimate the effects of calibration errors.

  7. Gravitational waves in axion inflation: implications for CMB and small-scales interferometer measurements

    Science.gov (United States)

    Unal, Caner; Peloso, Marco; Sorbo, Lorenzo; Garcia-Bellido, Juan

    2017-01-01

    A strong experimental effort is ongoing to detect the primordial gravitational waves (GW) generated during inflation from their impact on the Cosmic Microwave Background (CMB). This effort is motivated by the direct relation between the amplitude of GW signal and the energy scale of inflation, in the standard case of GW production from vacuum. I will discuss the robustness of this relation and the conditions under which particle production mechanisms during inflation can generate a stronger GW signal than the vacuum one. I will present a concrete model employing a coupling between a rolling axion and a gauge field, that can produce a detectable GW signal for an arbitrarily small inflation scale, respecting bounds from back-reaction, perturbativity, and the gaussianity of the measured density perturbations. I will show how the GW produced by this mechanism can be distinguished from the vacuum ones by their spectral dependence and statistical properties. I will finally discuss the possibility of detecting an inflationary GW signal at terrestrial (AdvLIGO) and space (LISA) interferometers. Such experiments are sensitive to the modes much smaller than the ones corresponding to CMB and Large Scale Structure, presenting a unique observational window on the final stages of inflation. The work of C.U. is s supported by a Doctoral Dissertation Fellowship from the Graduate School of the University of Minnesota.

  8. Spider: Probing the Early Universe with a Large-Scale CMB Polarization Survey

    Science.gov (United States)

    Jones, William

    of the polarization of the CMB to search for the signature of primordial gravitational waves that are predicted within the currently favored theories of inflation. A definitive detection of this signal would provide the first direct insight into the underlying physics of inflation as well as a measurement of its energy scale. A stringent limit on the amplitude of this signal would exclude the currently favored class of inflationary models, bolstering the case for alternative theories. Spider is a suborbital Long-Duration Balloon payload housing six cryogenic smallaperture (half-degree resolution) millimeter-wave polarimeters. The frequency bands of the individual polarimeters are chosen to optimize overall sensitivity to the inflationary CMB polarization signal in the presence of Galactic foregrounds. By making extremely deep, high fidelity measurements of the entire portion of the southern sky that is relatively free of Galactic emission, the Spider data complement those of Planck (in sensitivity and control of systematics) PIPER (in frequency coverage) and EBEX (in sky coverage and angular scale). The data from Spider's inaugural flight in 2015 has resulted in high signal-to-noise maps of the southern Galactic hemisphere covering 10% of the full sky at each of 94 and 150 GHz. The payload is now being fabricated and fitted with a suite of 285 GHz cameras to extend our frequency coverage, improving our ability to disentangle the Galactic and cosmological signals. If its signature is present in the CMB, Spider's frequency coverage and fidelity to a broad range of angular scales enable the experiment to take a step beyond detection, toward the characterization of the gravitational wave induced signature in the CMB. Additionally Spider serves as a training ground for young scientists, including 16 graduate students (9 female, 7 male).

  9. Large scale CMB anomalies from thawing cosmic strings

    Energy Technology Data Exchange (ETDEWEB)

    Ringeval, Christophe [Centre for Cosmology, Particle Physics and Phenomenology, Institute of Mathematics and Physics, Louvain University, 2 Chemin du Cyclotron, 1348 Louvain-la-Neuve (Belgium); Yamauchi, Daisuke; Yokoyama, Jun' ichi [Research Center for the Early Universe (RESCEU), Graduate School of Science, The University of Tokyo, Tokyo 113-0033 (Japan); Bouchet, François R., E-mail: christophe.ringeval@uclouvain.be, E-mail: yamauchi@resceu.s.u-tokyo.ac.jp, E-mail: yokoyama@resceu.s.u-tokyo.ac.jp, E-mail: bouchet@iap.fr [Institut d' Astrophysique de Paris, UMR 7095-CNRS, Université Pierre et Marie Curie, 98bis boulevard Arago, 75014 Paris (France)

    2016-02-01

    Cosmic strings formed during inflation are expected to be either diluted over super-Hubble distances, i.e., invisible today, or to have crossed our past light cone very recently. We discuss the latter situation in which a few strings imprint their signature in the Cosmic Microwave Background (CMB) Anisotropies after recombination. Being almost frozen in the Hubble flow, these strings are quasi static and evade almost all of the previously derived constraints on their tension while being able to source large scale anisotropies in the CMB sky. Using a local variance estimator on thousand of numerically simulated Nambu-Goto all sky maps, we compute the expected signal and show that it can mimic a dipole modulation at large angular scales while being negligible at small angles. Interestingly, such a scenario generically produces one cold spot from the thawing of a cosmic string loop. Mixed with anisotropies of inflationary origin, we find that a few strings of tension GU = O(1) × 10{sup −6} match the amplitude of the dipole modulation reported in the Planck satellite measurements and could be at the origin of other large scale anomalies.

  10. Planck 2013 results. XXIII. Isotropy and Statistics of the CMB

    DEFF Research Database (Denmark)

    Planck Collaboration,; Ade, P. A. R.; Aghanim, N.

    2013-01-01

    The two fundamental assumptions of the standard cosmological model - that the initial fluctuations are statistically isotropic and Gaussian - are rigorously tested using maps of the CMB anisotropy from the \\Planck\\ satellite. The detailed results are based on studies of four independent estimates...

  11. The Atacama Cosmology Telescope: Likelihood for Small-Scale CMB Data

    Science.gov (United States)

    Dunkley, J.; Calabrese, E.; Sievers, J.; Addison, G. E.; Battaglia, N.; Battistelli, E. S.; Bond, J. R.; Das, S.; Devlin, M. J.; Dunner, R.; hide

    2013-01-01

    The Atacama Cosmology Telescope has measured the angular power spectra of microwave fluctuations to arcminute scales at frequencies of 148 and 218 GHz, from three seasons of data. At small scales the fluctuations in the primordial Cosmic Microwave Background (CMB) become increasingly obscured by extragalactic foregounds and secondary CMB signals. We present results from a nine-parameter model describing these secondary effects, including the thermal and kinematic Sunyaev-Zel'dovich (tSZ and kSZ) power; the clustered and Poisson-like power from Cosmic Infrared Background (CIB) sources, and their frequency scaling; the tSZ-CIB correlation coefficient; the extragalactic radio source power; and thermal dust emission from Galactic cirrus in two different regions of the sky. In order to extract cosmological parameters, we describe a likelihood function for the ACT data, fitting this model to the multi-frequency spectra in the multipole range 500 cosmological parameter estimation

  12. Multiscale analysis of the CMB temperature derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Marcos-Caballero, A.; Martínez-González, E.; Vielva, P., E-mail: marcos@ifca.unican.es, E-mail: martinez@ifca.unican.es, E-mail: vielva@ifca.unican.es [Instituto de Física de Cantabria, CSIC-Universidad de Cantabria, Avda. de los Castros s/n, 39005 Santander, Spain. (Spain)

    2017-02-01

    We study the Planck CMB temperature at different scales through its derivatives up to second order, which allows one to characterize the local shape and isotropy of the field. The problem of having an incomplete sky in the calculation and statistical characterization of the derivatives is addressed in the paper. The analysis confirms the existence of a low variance in the CMB at large scales, which is also noticeable in the derivatives. Moreover, deviations from the standard model in the gradient, curvature and the eccentricity tensor are studied in terms of extreme values on the data. As it is expected, the Cold Spot is detected as one of the most prominent peaks in terms of curvature, but additionally, when the information of the temperature and its Laplacian are combined, another feature with similar probability at the scale of 10{sup o} is also observed. However, the p -value of these two deviations increase above the 6% when they are referred to the variance calculated from the theoretical fiducial model, indicating that these deviations can be associated to the low variance anomaly. Finally, an estimator of the directional anisotropy for spinorial quantities is introduced, which is applied to the spinors derived from the field derivatives. An anisotropic direction whose probability is <1% is detected in the eccentricity tensor.

  13. Halo Pressure Profile through the Skew Cross-power Spectrum of the Sunyaev–Zel’dovich Effect and CMB Lensing in Planck

    Energy Technology Data Exchange (ETDEWEB)

    Timmons, Nicholas; Cooray, Asantha; Feng, Chang [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Keating, Brian [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States)

    2017-11-01

    We measure the cosmic microwave background (CMB) skewness power spectrum in Planck , using frequency maps of the HFI instrument and the Sunyaev–Zel’dovich (SZ) component map. The two-to-one skewness power spectrum measures the cross-correlation between CMB lensing and the thermal SZ effect. We also directly measure the same cross-correlation using the Planck CMB lensing map and the SZ map and compare it to the cross-correlation derived from the skewness power spectrum. We model fit the SZ power spectrum and CMB lensing–SZ cross-power spectrum via the skewness power spectrum to constrain the gas pressure profile of dark matter halos. The gas pressure profile is compared to existing measurements in the literature including a direct estimate based on the stacking of SZ clusters in Planck .

  14. When can preheating affect the CMB?

    Science.gov (United States)

    Tsujikawa, Shinji; Bassett, Bruce A.

    2002-05-01

    We discuss the principles governing the selection of inflationary models for which preheating can affect the CMB. This is a (fairly small) subset of those models which have nonnegligible entropy/isocurvature perturbations on large scales during inflation. We study new models which belong to this class-two-field inflation with negative nonminimal coupling and hybrid/double/supernatural inflation models where the tachyonic growth of entropy perturbations can lead to the variation of the curvature perturbation, /R, on super-Hubble scales. Finally, we present evidence against recent claims for the variation of /R in the absence of substantial super-Hubble entropy perturbations.

  15. Planck 2015 results. XVI. Isotropy and statistics of the CMB

    CERN Document Server

    Ade, P.A.R.; Akrami, Y.; Aluri, P.K.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.F.; Casaponsa, B.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Contreras, D.; Couchot, F.; Coulais, A.; Crill, B.P.; Cruz, M.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Desert, F.X.; Diego, J.M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Fantaye, Y.; Fergusson, J.; Fernandez-Cobos, R.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Frejsel, A.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Gauthier, C.; Ghosh, T.; Giard, M.; Giraud-Heraud, Y.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.L.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huang, Z.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jaffe, T.R.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kim, J.; Kisner, T.S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Liu, H.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marinucci, D.; Maris, M.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mikkelsen, K.; Mitra, S.; Miville-Deschenes, M.A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J.A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Pant, N.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T.J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Rotti, A.; Roudier, G.; Rubino-Martin, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Souradeep, T.; Spencer, L.D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; Yvon, D.; Zacchei, A.; Zibin, J.P.; Zonca, A.

    2016-01-01

    We test the statistical isotropy and Gaussianity of the cosmic microwave background (CMB) anisotropies using observations made by the Planck satellite. Our results are based mainly on the full Planck mission for temperature, but also include some polarization measurements. In particular, we consider the CMB anisotropy maps derived from the multi-frequency Planck data by several component-separation methods. For the temperature anisotropies, we find excellent agreement between results based on these sky maps over both a very large fraction of the sky and a broad range of angular scales, establishing that potential foreground residuals do not affect our studies. Tests of skewness, kurtosis, multi-normality, N-point functions, and Minkowski functionals indicate consistency with Gaussianity, while a power deficit at large angular scales is manifested in several ways, for example low map variance. The results of a peak statistics analysis are consistent with the expectations of a Gaussian random field. The "Cold S...

  16. Planck 2013 results. XXIII. Isotropy and Statistics of the CMB

    CERN Document Server

    Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R.C.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.R.; Chiang, L.Y.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Couchot, F.; Coulais, A.; Crill, B.P.; Cruz, M.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.M.; Desert, F.X.; Diego, J.M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Fantaye, Y.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Frommert, M.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Heraud, Y.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, M.; Hansen, F.K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Jaffe, T.R.; Jaffe, A.H.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kim, J.; Kisner, T.S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Laureijs, R.J.; Lawrence, C.R.; Leahy, J.P.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marinucci, D.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McEwen, J.D.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mikkelsen, K.; Mitra, S.; Miville-Deschenes, M.A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Peiris, H.V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Pogosyan, D.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Rath, C.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rotti, A.; Roudier, G.; Rubino-Martin, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Souradeep, T.; Spencer, L.D.; Starck, J.L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutter, P.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Turler, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; White, M.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-01-01

    The two fundamental assumptions of the standard cosmological model - that the initial fluctuations are statistically isotropic and Gaussian - are rigorously tested using maps of the cosmic microwave background (CMB) anisotropy from the Planck satellite. Deviations from isotropy have been found and demonstrated to be robust against component separation algorithm, mask choice and frequency dependence. Many of these anomalies were previously observed in the WMAP data, and are now confirmed at similar levels of significance (about 3 sigma). However, we find little evidence for non-Gaussianity, with the exception of a few statistical signatures that seem to be associated with specific anomalies. In particular, we find that the quadrupole-octopole alignment is also connected to a low observed variance of the CMB signal. A power asymmetry is now found to persist to scales corresponding to about l=600, and can be described in the low-l regime by a phenomenological dipole modulation model. However, any primordial powe...

  17. Testing non-minimally coupled inflation with CMB data: a Bayesian analysis

    International Nuclear Information System (INIS)

    Campista, Marcela; Benetti, Micol; Alcaniz, Jailson

    2017-01-01

    We use the most recent cosmic microwave background (CMB) data to perform a Bayesian statistical analysis and discuss the observational viability of inflationary models with a non-minimal coupling, ξ, between the inflaton field and the Ricci scalar. We particularize our analysis to two examples of small and large field inflationary models, namely, the Coleman-Weinberg and the chaotic quartic potentials. We find that ( i ) the ξ parameter is closely correlated with the primordial amplitude ; ( ii ) although improving the agreement with the CMB data in the r − n s plane, where r is the tensor-to-scalar ratio and n s the primordial spectral index, a non-null coupling is strongly disfavoured with respect to the minimally coupled standard ΛCDM model, since the upper bounds of the Bayes factor (odds) for ξ parameter are greater than 150:1.

  18. Testing non-minimally coupled inflation with CMB data: a Bayesian analysis

    Energy Technology Data Exchange (ETDEWEB)

    Campista, Marcela; Benetti, Micol; Alcaniz, Jailson, E-mail: campista@on.br, E-mail: micolbenetti@on.br, E-mail: alcaniz@on.br [Observatório Nacional, Rua General José Cristino 77, Rio de Janeiro, RJ, 20921-400 Brazil (Brazil)

    2017-09-01

    We use the most recent cosmic microwave background (CMB) data to perform a Bayesian statistical analysis and discuss the observational viability of inflationary models with a non-minimal coupling, ξ, between the inflaton field and the Ricci scalar. We particularize our analysis to two examples of small and large field inflationary models, namely, the Coleman-Weinberg and the chaotic quartic potentials. We find that ( i ) the ξ parameter is closely correlated with the primordial amplitude ; ( ii ) although improving the agreement with the CMB data in the r − n {sub s} plane, where r is the tensor-to-scalar ratio and n {sub s} the primordial spectral index, a non-null coupling is strongly disfavoured with respect to the minimally coupled standard ΛCDM model, since the upper bounds of the Bayes factor (odds) for ξ parameter are greater than 150:1.

  19. Total CMB analysis of streaker aerosol samples by PIXE, PIGE, beta- and optical-absorption analyses

    International Nuclear Information System (INIS)

    Annegarn, H.J.; Przybylowicz, W.J.

    1993-01-01

    Multielemental analyses of aerosol samples are widely used in air pollution receptor modelling. Specifically, the chemical mass balance (CMB) model has become a powerful tool in urban air quality studies. Input data required for the CMB includes not only the traditional X-ray fluorescence (and hence PIXE) detected elements, but also total mass, organic and inorganic carbon, and other light elements including Mg, Na and F. The circular streaker sampler, in combination with PIXE analysis, has developed into a powerful tool for obtaining time-resolved, multielemental aerosol data. However, application in CMB modelling has been limited by the absence of total mass and complementary light element data. This study reports on progress in using techniques complementary to PIXE to obtain additional data from circular streaker samples, maintaining the nondestructive, instrumental approach inherent in PIXE: Beta-gauging using a 147 Pm source for total mass; optical absorption for inorganic carbon; and PIGE to measure the lighter elements. (orig.)

  20. Internal delensing of Planck CMB temperature and polarization

    Energy Technology Data Exchange (ETDEWEB)

    Carron, Julien [Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom); Lewis, Antony; Challinor, Anthony, E-mail: j.carron@sussex.ac.uk, E-mail: Antony.Lewis@sussex.ac.uk, E-mail: a.d.challinor@ast.cam.ac.uk [Institute of Astronomy and Kavli Institute for Cosmology, Madingley Road, Cambridge, CB3 0HA (United Kingdom)

    2017-05-01

    We present a first internal delensing of CMB maps, both in temperature and polarization, using the public foreground-cleaned (SMICA) Planck 2015 maps. After forming quadratic estimates of the lensing potential, we use the corresponding displacement field to undo the lensing on the same data. We build differences of the delensed spectra to the original data spectra specifically to look for delensing signatures. After taking into account reconstruction noise biases in the delensed spectra, we find an expected sharpening of the power spectrum acoustic peaks with a delensing efficiency of 29 % ( TT ) 25 % ( TE ) and 22 % ( EE ). The detection significance of the delensing effects is very high in all spectra: 12 σ in EE polarization; 18 σ in TE ; and 20 σ in TT . The null hypothesis of no lensing in the maps is rejected at 26 σ. While direct detection of the power in lensing B -modes themselves is not possible at high significance at Planck noise levels, we do detect (at 4.5 σ (under the null hypothesis)) delensing effects in the B -mode map, with 7 % reduction in lensing power. Our results provide a first demonstration of polarization delensing, and generally of internal CMB delensing, and stand in agreement with the baseline ΛCDM Planck 2015 cosmology expectations.

  1. Commercialization of Micro-fabrication of Antenna-Coupled Transition Edge Sensor Bolometer Detectors for Studies of the Cosmic Microwave Background

    Science.gov (United States)

    Suzuki, Aritoki; Bebek, Chris; Garcia-Sciveres, Maurice; Holland, Stephen; Kusaka, Akito; Lee, Adrian T.; Palaio, Nicholas; Roe, Natalie; Steinmetz, Leo

    2018-04-01

    We report on the development of commercially fabricated multichroic antenna-coupled transition edge sensor (TES) bolometer arrays for cosmic microwave background (CMB) polarimetry experiments. CMB polarimetry experiments have deployed instruments in stages. Stage II experiments deployed with O(1000) detectors and reported successful detection of B-mode (divergence-free) polarization pattern in the CMB. Stage III experiments have recently started observing with O(10,000) detectors with wider frequency coverage. A concept for a stage IV experiment, CMB-S4, is emerging to make a definitive measurement of CMB polarization from the ground with O(400,000) detectors. The orders of magnitude increase in detector count for CMB-S4 require a new approach in detector fabrication to increase fabrication throughput and reduce the cost. We report on collaborative efforts with two commercial micro-fabrication foundries to fabricate antenna-coupled TES bolometer detectors. The detector design is based on the sinuous antenna-coupled dichroic detector from the POLARBEAR-2 experiment. The TES bolometers showed the expected I-V response, and the RF performance agrees with the simulation. We will discuss the motivation, design consideration, fabrication processes, test results, and how industrial detector fabrication could be a path to fabricate hundreds of detector wafers for future CMB polarimetry experiments.

  2. Planck CMB anomalies: astrophysical and cosmological secondary effects and the curse of masking

    International Nuclear Information System (INIS)

    Rassat, A.; Starck, J.-L.; Paykari, P.; Sureau, F.; Bobin, J.

    2014-01-01

    Large-scale anomalies have been reported in CMB data with both WMAP and Planck data. These could be due to foreground residuals and or systematic effects, though their confirmation with Planck data suggests they are not due to a problem in the WMAP or Planck pipelines. If these anomalies are in fact primordial, then understanding their origin is fundamental to either validate the standard model of cosmology or to explore new physics. We investigate three other possible issues: 1) the trade-off between minimising systematics due to foreground contamination (with a conservative mask) and minimising systematics due to masking, 2) astrophysical secondary effects (the kinetic Doppler quadrupole and kinetic Sunyaev-Zel'dovich effect), and 3) secondary cosmological signals (the integrated Sachs-Wolfe effect). We address the masking issue by considering new procedures that use both WMAP and Planck to produce higher quality full-sky maps using the sparsity methodology (LGMCA maps). We show the impact of masking is dominant over that of residual foregrounds, and the LGMCA full-sky maps can be used without further processing to study anomalies. We consider four official Planck PR1 and two LGMCA CMB maps. Analysis of the observed CMB maps shows that only the low quadrupole and quadrupole-octopole alignment seem significant, but that the planar octopole, Axis of Evil, mirror parity and cold spot are not significant in nearly all maps considered. After subtraction of astrophysical and cosmological secondary effects, only the low quadrupole may still be considered anomalous, meaning the significance of only one anomaly is affected by secondary effect subtraction out of six anomalies considered. In the spirit of reproducible research all reconstructed maps and codes will be made available for download here http://www.cosmostat.org/anomaliesCMB.html

  3. Planck CMB anomalies: astrophysical and cosmological secondary effects and the curse of masking

    Energy Technology Data Exchange (ETDEWEB)

    Rassat, A. [Laboratoire d' Astrophysique (LASTRO), École Polytechnique Fédérale de Lausanne (EPFL), 51 Chemin des Maillettes, Observatoire de Sauverny, Versoix, CH-1290 (Switzerland); Starck, J.-L.; Paykari, P.; Sureau, F.; Bobin, J., E-mail: anais.rassat@epfl.ch, E-mail: jstarck@cea.fr, E-mail: paniez.paykari@cea.fr, E-mail: florent.sureau@cea.fr, E-mail: jbobin@cea.fr [Laboratoire AIM, UMR CEA-CNRS-Paris, Irfu, SAp, CEA Saclay, Gif-Sur-Yvette Cedex, F-91191 France (France)

    2014-08-01

    Large-scale anomalies have been reported in CMB data with both WMAP and Planck data. These could be due to foreground residuals and or systematic effects, though their confirmation with Planck data suggests they are not due to a problem in the WMAP or Planck pipelines. If these anomalies are in fact primordial, then understanding their origin is fundamental to either validate the standard model of cosmology or to explore new physics. We investigate three other possible issues: 1) the trade-off between minimising systematics due to foreground contamination (with a conservative mask) and minimising systematics due to masking, 2) astrophysical secondary effects (the kinetic Doppler quadrupole and kinetic Sunyaev-Zel'dovich effect), and 3) secondary cosmological signals (the integrated Sachs-Wolfe effect). We address the masking issue by considering new procedures that use both WMAP and Planck to produce higher quality full-sky maps using the sparsity methodology (LGMCA maps). We show the impact of masking is dominant over that of residual foregrounds, and the LGMCA full-sky maps can be used without further processing to study anomalies. We consider four official Planck PR1 and two LGMCA CMB maps. Analysis of the observed CMB maps shows that only the low quadrupole and quadrupole-octopole alignment seem significant, but that the planar octopole, Axis of Evil, mirror parity and cold spot are not significant in nearly all maps considered. After subtraction of astrophysical and cosmological secondary effects, only the low quadrupole may still be considered anomalous, meaning the significance of only one anomaly is affected by secondary effect subtraction out of six anomalies considered. In the spirit of reproducible research all reconstructed maps and codes will be made available for download here http://www.cosmostat.org/anomaliesCMB.html.

  4. Creation of the CMB spectrum: precise analytic solutions for the blackbody photosphere

    Energy Technology Data Exchange (ETDEWEB)

    Khatri, Rishi; Sunyaev, Rashid A., E-mail: khatri@mpa-garching.mpg.de, E-mail: sunyaev@mpa-Garching.mpg.de [Max Planck Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany)

    2012-06-01

    The blackbody spectrum of CMB was created in the blackbody photosphere at redshifts z∼>2 × 10{sup 6}. At these early times, the Universe was dense and hot enough that complete thermal equilibrium between baryonic matter (electrons and ions) and photons could be established on time scales much shorter than the age of the Universe. Any perturbation away from the blackbody spectrum was suppressed exponentially. New physics, for example annihilation and decay of dark matter, can add energy and photons to CMB at redshifts z∼>10{sup 5} and result in a Bose-Einstein spectrum with a non-zero chemical potential (μ). Precise evolution of the CMB spectrum around the critical redshift of z ≅ 2 × 10{sup 6} is required in order to calculate the μ-type spectral distortion and constrain the underlying new physics. Although numerical calculation of important processes involved (double Compton process, comptonization and bremsstrahlung) is not difficult with present day computers, analytic solutions are much faster and easier to calculate and provide valuable physical insights. We provide precise (better than 1%) analytic solutions for the decay of μ, created at an earlier epoch, including all three processes, double Compton, Compton scattering on thermal electrons and bremsstrahlung in the limit of small distortions. This is a significant improvement over the existing solutions with accuracy ∼ 10% or worse. We also give a census of important sources of energy injection into CMB in standard cosmology. In particular, calculations of distortions from electron-positron annihilation and primordial nucleosynthesis illustrate in a dramatic way the strength of the equilibrium restoring processes in the early Universe. Finally, we point out the triple degeneracy in standard cosmology, i.e., the μ and y distortions from adiabatic cooling of baryons and electrons, Silk damping and annihilation of thermally produced WIMP dark matter are of similar order of magnitude ( ∼ 10{sup

  5. Retrieval of past and future positive and negative autobiographical experiences.

    Science.gov (United States)

    García-Bajos, Elvira; Migueles, Malen

    2017-09-01

    We studied retrieval-induced forgetting for past or future autobiographical experiences. In the study phase, participants were given cues to remember past autobiographical experiences or to think about experiences that may occur in the future. In both conditions, half of the experiences were positive and half negative. In the retrieval-practice phase, for past and future experiences, participants retrieved either half of the positive or negative experiences using cued recall, or capitals of the world (control groups). Retrieval practice produced recall facilitation and enhanced memory for the practised positive and negative past and future experiences. While retrieval practice on positive experiences did not impair the recall of other positive experiences, we found inhibition for negative past and future experiences when participants practised negative experiences. Furthermore, retrieval practice on positive future experiences inhibited negative future experiences. These positivity biases for autobiographical memory may have practical implications for treatment of emotional disorders.

  6. The BAHAMAS project: the CMB-large-scale structure tension and the roles of massive neutrinos and galaxy formation

    Science.gov (United States)

    McCarthy, Ian G.; Bird, Simeon; Schaye, Joop; Harnois-Deraps, Joachim; Font, Andreea S.; van Waerbeke, Ludovic

    2018-05-01

    Recent studies have presented evidence for tension between the constraints on Ωm and σ8 from the cosmic microwave background (CMB) and measurements of large-scale structure (LSS). This tension can potentially be resolved by appealing to extensions of the standard model of cosmology and/or untreated systematic errors in the modelling of LSS, of which baryonic physics has been frequently suggested. We revisit this tension using, for the first time, carefully calibrated cosmological hydrodynamical simulations, which thus capture the backreaction of the baryons on the total matter distribution. We have extended the BAryons and HAloes of MAssive Sysmtes simulations to include a treatment of massive neutrinos, which currently represents the best-motivated extension to the standard model. We make synthetic thermal Sunyaev-Zel'dovich effect, weak galaxy lensing, and CMB lensing maps and compare to observed auto- and cross-power spectra from a wide range of recent observational surveys. We conclude that: (i) in general, there is tension between the primary CMB and LSS when adopting the standard model with minimal neutrino mass; (ii) after calibrating feedback processes to match the gas fractions of clusters, the remaining uncertainties in the baryonic physics modelling are insufficient to reconcile this tension; and (iii) if one accounts for internal tensions in the Planck CMB data set (by allowing the lensing amplitude, ALens, to vary), invoking a non-minimal neutrino mass, typically of 0.2-0.4 eV, can resolve the tension. This solution is fully consistent with separate constraints from the primary CMB and baryon acoustic oscillations.

  7. Evidence for an inflationary phase transition from the LSS and CMB anisotropy data

    International Nuclear Information System (INIS)

    Barriga, J.; Gaztanaga, E.; Santos, M.G.; Sarkar, S.

    2001-01-01

    In the light of the recent Boomerang and Maxima observations of the CMB which show an anomalously low second acoustic peak, we reexamine the prediction by Adams et al (1997) that this would be the consequence of a 'step' in the primordial spectrum induced by a spontaneous symmetry breaking phase transition during primordial inflation. We demonstrate that a deviation from scale-invariance around k ∼ 0.1h Mpc -1 can simultaneously explain both the feature identified earlier in the APM galaxy power spectrum as well the recent CMB anisotropy data, with a baryon density consistent with the BBN value. Such a break also allows a good fit to the data on cluster abundances even for a critical density matter-dominated universe with zero cosmological constant

  8. BICEP2, Planck, spinorial space-time, pre-Big Bang.. On the possible origin of primordial CMB B-modes and gravitational waves. Potentialities of alternative cosmologies and open questions

    Science.gov (United States)

    Gonzalez-Mestres, Luis

    2015-05-01

    The field of Cosmology is currently undergoing a positive and constructive crisis. Controversies concerning inflation are not really new. But after the 2013-2014 Planck and BICEP2 announcements, and the more recent joint analysis by Planck, BICEP2 and the Keck Array (PBKA), the basic issues can involve more direct links between the Mathematical Physics aspects of cosmological patterns and the interpretation of experimental results. Open questions and new ideas on the foundations of Cosmology can emerge, while future experimental and observational programs look very promising. The BICEP2 result reporting an excess of B-mode polarization signal of the cosmic microwave background (CMB) radiation was initially presented as a signature of primordial gravitational waves from cosmic inflation. But polarized dust emission can be at the origin of such a signal, and the evidence claimed by BICEP2 is no longer secure after the PBKA analysis. Furthermore, even assuming that significant CMB B-mode polarization has indeed been generated by the early Universe, its theoretical and cosmological interpretation would be far from obvious. Inflationary gravitational waves are not the only possible source of primordial CMB B-modes. Alternative cosmologies such as pre-Big Bang patterns and the spinorial space-time (SST) we introduced in 1996-97 can naturally produce this polarization. Furthermore, the SST automatically generates for each comoving observer a local privileged space direction (PSD) whose existence may have been confirmed by Planck data. If such a PSD exists, vector perturbations have most likely been strong in the early Universe and may have produced CMB B-modes. Pre-Big Bang cosmologies can also generate gravitational waves in the early Universe without inflation. After briefly describing detectors devoted to the study of the CMB polarization, we discuss the situation emerging from BICEP2 results, Planck results and the PBKA analysis. In particular, we further analyze

  9. Planck 2015 results: XVI. Isotropy and statistics of the CMB

    DEFF Research Database (Denmark)

    Ade, P. A R; Aghanim, N.; Akrami, Y.

    2016-01-01

    We test the statistical isotropy and Gaussianity of the cosmic microwave background (CMB) anisotropies using observations made by the Planck satellite. Our results are based mainly on the full Planck mission for temperature, but also include some polarization measurements. In particular, we consi...

  10. Evidence for an inflationary phase transition from the LSS and CMB anisotropy data

    Energy Technology Data Exchange (ETDEWEB)

    Barriga, J.; Gaztanaga, E.; Santos, M.G.; Sarkar, S

    2001-04-01

    In the light of the recent Boomerang and Maxima observations of the CMB which show an anomalously low second acoustic peak, we reexamine the prediction by Adams et al (1997) that this would be the consequence of a 'step' in the primordial spectrum induced by a spontaneous symmetry breaking phase transition during primordial inflation. We demonstrate that a deviation from scale-invariance around k {approx} 0.1h Mpc{sup -1} can simultaneously explain both the feature identified earlier in the APM galaxy power spectrum as well the recent CMB anisotropy data, with a baryon density consistent with the BBN value. Such a break also allows a good fit to the data on cluster abundances even for a critical density matter-dominated universe with zero cosmological constant.

  11. Multiverse effects on the CMB angular correlation function in the framework of NCG

    Science.gov (United States)

    Arabzadeh, Sahar; Kaviani, Kamran

    Following many theories that predict the existence of the multiverse and by conjecture that our space-time may have a generalized geometrical structure at the fundamental level, we are interested in using a non-commutative geometry (NCG) formalism to study a suggested two-layer space that contains our 4-dimensional (4D) universe and a re-derived photon propagator. It can be shown that the photon propagator and a cosmic microwave background (CMB) angular correlation function are comparable, and if there exists such a multiverse system, the distance between the two layers can be estimated to be within the observable universe’s radius. Furthermore, this study revealed that our results are not limited to CMB but can be applied to many other types of radiation, such as X-rays.

  12. Detecting Patchy Reionization in the Cosmic Microwave Background.

    Science.gov (United States)

    Smith, Kendrick M; Ferraro, Simone

    2017-07-14

    Upcoming cosmic microwave background (CMB) experiments will measure temperature fluctuations on small angular scales with unprecedented precision. Small-scale CMB fluctuations are a mixture of late-time effects: gravitational lensing, Doppler shifting of CMB photons by moving electrons [the kinematic Sunyaev-Zel'dovich (KSZ) effect], and residual foregrounds. We propose a new statistic which separates the KSZ signal from the others, and also allows the KSZ signal to be decomposed in redshift bins. The decomposition extends to high redshift and does not require external data sets such as galaxy surveys. In particular, the high-redshift signal from patchy reionization can be cleanly isolated, enabling future CMB experiments to make high-significance and qualitatively new measurements of the reionization era.

  13. Transformation of the angular power spectrum of the Cosmic Microwave Background (CMB) radiation into reciprocal spaces and consequences of this approach

    Czech Academy of Sciences Publication Activity Database

    Červinka, Ladislav

    2011-01-01

    Roč. 2, č. 11 (2011), s. 1331-1347 ISSN 2153-120X Institutional research plan: CEZ:AV0Z10100521 Keywords : CMB radiation * analysis of CMB spectrum * radial distribution function of objects * early universe cluster structure * density of ordinary matter Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  14. INTRODUCING MEXICAN NEEDLETS FOR CMB ANALYSIS: ISSUES FOR PRACTICAL APPLICATIONS AND COMPARISON WITH STANDARD NEEDLETS

    International Nuclear Information System (INIS)

    Scodeller, S.; Rudjord, Oe.; Hansen, F. K.; Marinucci, D.; Geller, D.; Mayeli, A.

    2011-01-01

    Over the last few years, needlets have emerged as a useful tool for the analysis of cosmic microwave background (CMB) data. Our aim in this paper is first to introduce into the CMB literature a different form of needlets, known as Mexican needlets, first discussed in the mathematical literature by Geller and Mayeli. We then proceed with an extensive study of the properties of both standard and Mexican needlets; these properties depend on some parameters which can be tuned in order to optimize the performance for a given application. Our second aim in this paper is then to give practical advice on how to adjust these parameters for WMAP and Planck data in order to achieve the best properties for a given problem in CMB data analysis. In particular, we investigate localization properties in real and harmonic space and propose a recipe for quantifying the influence of galactic and point-source masks on the needlet coefficients. We also show that for certain parameter values, the Mexican needlets provide a close approximation to the Spherical Mexican Hat Wavelets (whence their name), with some advantages concerning their numerical implementation and derivation of their statistical properties.

  15. A Measurement of the Angular Power Spectrum of the CMB from l = 100 to 400

    Science.gov (United States)

    Miller, A. D.; Caldwell, R.; Devlin, M. J.; Dorwart, W. B.; Herbig, T.; Nolta, M. R.; Page, L. A.; Puchalla, J.; Torbet, E.; Tran, H. T.

    2000-05-01

    We report on a measurement of the angular spectrum of the CMB between l 100 and l 400 made at 144 GHz from Cerro Toco in the Chilean altiplano. When the new data are combined with previous data at 30 and 40 GHz, taken with the same instrument observing the same section of sky, we find: 1) a rise in the angular spectrum to a maximum with δ Tl 85 μ K at l 200 and a fall at l>300, thereby localizing the peak near l 200; and 2) that the anisotropy at l 200 has the spectrum of the CMB. Cosmological implications are discussed.

  16. Measuring the anisotropy in the CMB

    Science.gov (United States)

    Page, L. A.

    The CMB is perhaps the cleanest cosmological observable. Its angular spectrum may be both computed and measured to percent accuracy. The current data clearly show a rise in the angular spectrum to a peak of roughly Tl = (l(l + 1)Cl/2)1/2 80 K at l 200, and a fall at higher l. In particular, δTl at l = 400 is significantly less than at l = 200. This is shown through a combined analysis of data sets and by the TOCO data alone. For spatially flat models, a peak in the angular spectrum near l = 200 is indicated, whereas for Ω0 = 0.35 models one expects a peak near l = 400. The data clearly prefer the spatially flat models.

  17. Planck 2013 results. XV. CMB power spectra and likelihood

    Science.gov (United States)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Gaier, T. C.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Laureijs, R. J.; Lawrence, C. R.; Le Jeune, M.; Leach, S.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Marinucci, D.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Millea, M.; Mitra, S.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Orieux, F.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Paykari, P.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rahlin, A.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ringeval, C.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Sanselme, L.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    This paper presents the Planck 2013 likelihood, a complete statistical description of the two-point correlation function of the CMB temperature fluctuations that accounts for all known relevant uncertainties, both instrumental and astrophysical in nature. We use this likelihood to derive our best estimate of the CMB angular power spectrum from Planck over three decades in multipole moment, ℓ, covering 2 ≤ ℓ ≤ 2500. The main source of uncertainty at ℓ ≲ 1500 is cosmic variance. Uncertainties in small-scale foreground modelling and instrumental noise dominate the error budget at higher ℓs. For ℓ impact of residual foreground and instrumental uncertainties on the final cosmological parameters. We find good internal agreement among the high-ℓ cross-spectra with residuals below a few μK2 at ℓ ≲ 1000, in agreement with estimated calibration uncertainties. We compare our results with foreground-cleaned CMB maps derived from all Planck frequencies, as well as with cross-spectra derived from the 70 GHz Planck map, and find broad agreement in terms of spectrum residuals and cosmological parameters. We further show that the best-fit ΛCDM cosmology is in excellent agreement with preliminary PlanckEE and TE polarisation spectra. We find that the standard ΛCDM cosmology is well constrained by Planck from the measurements at ℓ ≲ 1500. One specific example is the spectral index of scalar perturbations, for which we report a 5.4σ deviation from scale invariance, ns = 1. Increasing the multipole range beyond ℓ ≃ 1500 does not increase our accuracy for the ΛCDM parameters, but instead allows us to study extensions beyond the standard model. We find no indication of significant departures from the ΛCDM framework. Finally, we report a tension between the Planck best-fit ΛCDM model and the low-ℓ spectrum in the form of a power deficit of 5-10% at ℓ ≲ 40, with a statistical significance of 2.5-3σ. Without a theoretically motivated model for

  18. Adapted Method for Separating Kinetic SZ Signal from Primary CMB Fluctuations

    Directory of Open Access Journals (Sweden)

    Forni Olivier

    2005-01-01

    Full Text Available In this first attempt to extract a map of the kinetic Sunyaev-Zel'dovich (KSZ temperature fluctuations from the cosmic microwave background (CMB anisotropies, we use a method which is based on simple and minimal assumptions. We first focus on the intrinsic limitations of the method due to the cosmological signal itself. We demonstrate using simulated maps that the KSZ reconstructed maps are in quite good agreement with the original input signal with a correlation coefficient between original and reconstructed maps of on average, and an error on the standard deviation of the reconstructed KSZ map of only % on average. To achieve these results, our method is based on the fact that some first-step component separation provides us with (i a map of Compton parameters for the thermal Sunyaev-Zel'dovich (TSZ effect of galaxy clusters, and (ii a map of temperature fluctuations which is the sum of primary CMB and KSZ signals. Our method takes benefit from the spatial correlation between KSZ and TSZ effects which are both due to the same galaxy clusters. This correlation allows us to use the TSZ map as a spatial template in order to mask, in the map, the pixels where the clusters must have imprinted an SZ fluctuation. In practice, a series of TSZ thresholds is defined and for each threshold, we estimate the corresponding KSZ signal by interpolating the CMB fluctuations on the masked pixels. The series of estimated KSZ maps is finally used to reconstruct the KSZ map through the minimisation of a criterion taking into account two statistical properties of the KSZ signal (KSZ dominates over primary anisotropies at small scales, KSZ fluctuations are non-Gaussian distributed. We show that the results are quite sensitive to the effect of beam convolution, especially for large beams, and to the corruption by instrumental noise.

  19. Slow-roll inflation and BB-mode angular power spectrum of CMB

    Energy Technology Data Exchange (ETDEWEB)

    Malsawmtluangi, N.; Suresh, P.K. [University of Hyderabad, School of Physics, Hyderabad (India)

    2016-05-15

    The BB-mode correlation angular power spectrum of CMB is obtained by considering the primordial gravitational waves in the squeezed vacuum state for various inflationary models and results are compared with the joint analysis of the BICEP2/Keck Array and Planck 353 GHz data. The present results may constrain several models of inflation. (orig.)

  20. Discovery potential of xenon-based neutrinoless double beta decay experiments in light of small angular scale CMB observations

    International Nuclear Information System (INIS)

    Gómez-Cadenas, J.J.; Martín-Albo, J.; Vidal, J. Muñoz; Peña-Garay, C.

    2013-01-01

    The South Pole Telescope (SPT) has probed an expanded angular range of the CMB temperature power spectrum. Their recent analysis of the latest cosmological data prefers nonzero neutrino masses, with Σm ν = (0.32±0.11) eV. This result, if confirmed by the upcoming Planck data, has deep implications on the discovery of the nature of neutrinos. In particular, the values of the effective neutrino mass m ββ involved in neutrinoless double beta decay (ββ0ν) are severely constrained for both the direct and inverse hierarchy, making a discovery much more likely. In this paper, we focus in xenon-based ββ0ν experiments, on the double grounds of their good performance and the suitability of the technology to large-mass scaling. We show that the current generation, with effective masses in the range of 100 kg and conceivable exposures in the range of 500 kg·year, could already have a sizeable opportunity to observe ββ0ν events, and their combined discovery potential is quite large. The next generation, with an exposure in the range of 10 ton·year, would have a much more enhanced sensitivity, in particular due to the very low specific background that all the xenon technologies (liquid xenon, high-pressure xenon and xenon dissolved in liquid scintillator) can achieve. In addition, a high-pressure xenon gas TPC also features superb energy resolution. We show that such detector can fully explore the range of allowed effective Majorana masses, thus making a discovery very likely

  1. Testing string vacua in the lab. From a hidden CMB to dark forces in flux compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, Michele; Goodsell, Mark; Ringwald, Andreas [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany). Theory Group; Jaeckel, Joerg [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenolgy

    2011-03-15

    We perform a detailed analysis of the phenomenological properties of hidden Abelian gauge bosons with a kinetic mixing with the ordinary photon within type IIB flux compactifications. We study the interplay between moduli stabilisation and the Green-Schwarz mechanism that gives mass to the hidden photon paying particular attention to the role of D-terms. We present two generic classes of explicit Calabi-Yau examples with an isotropic and an anisotropic shape of the extra dimensions showing how the last case turns out to be very promising to make contact with current experiments. In fact, anisotropic compactifications lead naturally to a GeV-scale hidden photon (''dark forces'' that can be searched for in beam dump experiments) for an intermediate string scale; or even to an meV-scale hidden photon (which could lead to a ''hidden CMB'' and can be tested by light-shining-through-a-wall experiments) in the case of TeV-scale strings. (orig.)

  2. Optimized Large-scale CMB Likelihood and Quadratic Maximum Likelihood Power Spectrum Estimation

    Science.gov (United States)

    Gjerløw, E.; Colombo, L. P. L.; Eriksen, H. K.; Górski, K. M.; Gruppuso, A.; Jewell, J. B.; Plaszczynski, S.; Wehus, I. K.

    2015-11-01

    We revisit the problem of exact cosmic microwave background (CMB) likelihood and power spectrum estimation with the goal of minimizing computational costs through linear compression. This idea was originally proposed for CMB purposes by Tegmark et al., and here we develop it into a fully functioning computational framework for large-scale polarization analysis, adopting WMAP as a working example. We compare five different linear bases (pixel space, harmonic space, noise covariance eigenvectors, signal-to-noise covariance eigenvectors, and signal-plus-noise covariance eigenvectors) in terms of compression efficiency, and find that the computationally most efficient basis is the signal-to-noise eigenvector basis, which is closely related to the Karhunen-Loeve and Principal Component transforms, in agreement with previous suggestions. For this basis, the information in 6836 unmasked WMAP sky map pixels can be compressed into a smaller set of 3102 modes, with a maximum error increase of any single multipole of 3.8% at ℓ ≤ 32 and a maximum shift in the mean values of a joint distribution of an amplitude-tilt model of 0.006σ. This compression reduces the computational cost of a single likelihood evaluation by a factor of 5, from 38 to 7.5 CPU seconds, and it also results in a more robust likelihood by implicitly regularizing nearly degenerate modes. Finally, we use the same compression framework to formulate a numerically stable and computationally efficient variation of the Quadratic Maximum Likelihood implementation, which requires less than 3 GB of memory and 2 CPU minutes per iteration for ℓ ≤ 32, rendering low-ℓ QML CMB power spectrum analysis fully tractable on a standard laptop.

  3. Cosmological birefringence constraints from CMB and astrophysical polarization data

    Energy Technology Data Exchange (ETDEWEB)

    Galaverni, M. [Studio Teologico Interdiocesano, V.le Timavo 93, Reggio Emilia, 42121 Italy (Italy); Gubitosi, G. [Dipartimento di Fisica and sez. Roma1 INFN, Università di Roma ' La Sapienza' , P.le A. Moro 2, Rome, 00185 Italy (Italy); Paci, F. [SISSA, Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, Trieste, 34136 Italy (Italy); Finelli, F., E-mail: matteo.galaverni@gmail.com, E-mail: giulia.gubitosi@imperial.ac.uk, E-mail: fpaci@sissa.it, E-mail: finelli@iasfbo.inaf.it [INAF-IASF Bologna, via Gobetti 101, Bologna, I-40129 Italy (Italy)

    2015-08-01

    Cosmological birefringence is a rotation of the polarization plane of photons coming from sources of astrophysical and cosmological origin. The rotation can also depend on the energy of the photons and not only on the distance of the source and on the cosmological evolution of the underlying theoretical model. In this work, we constrain few selected models for cosmological birefringence, combining CMB and astrophysical data at radio, optical, X and γ wavelengths, taking into account the specific energy and distance dependences.

  4. CMB scale dependent non-Gaussianity from massive gravity during inflation

    Energy Technology Data Exchange (ETDEWEB)

    Domènech, Guillem; Hiramatsu, Takashi; Lin, Chunshan; Sasaki, Misao [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, 606-8502 (Japan); Shiraishi, Maresuke [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS, The University of Tokyo, Chiba, 277-8583 (Japan); Wang, Yi, E-mail: guillem.domenech@yukawa.kyoto-u.ac.jp, E-mail: hiramatz@yukawa.kyoto-u.ac.jp, E-mail: chunshan.lin@yukawa.kyoto-u.ac.jp, E-mail: misao@yukawa.kyoto-u.ac.jp, E-mail: shiraishi-m@t.kagawa-nct.ac.jp, E-mail: phyw@ust.hk [Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China)

    2017-05-01

    We consider a cosmological model in which the tensor mode becomes massive during inflation, and study the Cosmic Microwave Background (CMB) temperature and polarization bispectra arising from the mixing between the scalar mode and the massive tensor mode during inflation. The model assumes the existence of a preferred spatial frame during inflation. The local Lorentz invariance is already broken in cosmology due to the existence of a preferred rest frame. The existence of a preferred spatial frame further breaks the remaining local SO(3) invariance and in particular gives rise to a mass in the tensor mode. At linear perturbation level, we minimize our model so that the vector mode remains non-dynamical, while the scalar mode is the same as the one in single-field slow-roll inflation. At non-linear perturbation level, this inflationary massive graviton phase leads to a sizeable scalar-scalar-tensor coupling, much greater than the scalar-scalar-scalar one, as opposed to the conventional case. This scalar-scalar-tensor interaction imprints a scale dependent feature in the CMB temperature and polarization bispectra. Very intriguingly, we find a surprizing similarity between the predicted scale dependence and the scale-dependent non-Gaussianities at low multipoles hinted in the WMAP and Planck results.

  5. SU(2)CMB at high redshifts and the value of H0

    Science.gov (United States)

    Hahn, Steffen; Hofmann, Ralf

    2017-07-01

    We investigate a high-z cosmological model to compute the comoving sound horizon rs at baryon-velocity freeze-out towards the end of hydrogen recombination. This model assumes a replacement of the conventional cosmic microwave background (CMB) photon gas by deconfining SU(2) Yang-Mills thermodynamics, three flavours of massless neutrinos (Nν = 3) and a purely baryonic matter sector [no cold dark-matter (CDM)]. The according SU(2) temperature-redshift relation of the CMB is contrasted with recent measurements appealing to the thermal Sunyaev-Zel'dovich effect and CMB-photon absorption by molecular rotation bands or atomic hyperfine levels. Relying on a realistic simulation of the ionization history throughout recombination, we obtain z* = 1693.55 ± 6.98 and zdrag = 1812.66 ± 7.01. Due to considerable widths of the visibility functions in the solutions to the associated Boltzmann hierarchy and Euler equation, we conclude that z* and zdrag overestimate the redshifts for the respective photon and baryon-velocity freeze-out. Realistic decoupling values turn out to be zlf,* = 1554.89 ± 5.18 and zlf, drag = 1659.30 ± 5.48. With rs(zlf, drag) = (137.19 ± 0.45) Mpc and the essentially model independent extraction of rsH0 = constant from low-z data in Bernal, Verde & Riess, we obtain a good match with the value H0 = (73.24 ± 1.74) km s-1 Mpc-1 extracted in Riess et al. by appealing to Cepheid-calibrated Type Ia supernovae, new parallax measurements, stronger constraints on the Hubble flow and a refined computation of distance to NGC 4258 from maser data. We briefly comment on a possible interpolation of our high-z model, invoking percolated and unpercolated U(1) topological solitons of a Planck-scale axion field, to the phenomenologically successful low-z ΛCDM cosmology.

  6. Planck 2013 results. XXVII. Doppler boosting of the CMB: Eppur si muove

    DEFF Research Database (Denmark)

    Planck Collaboration,; Aghanim, N.; Armitage-Caplan, C.

    2013-01-01

    Our velocity relative to the rest frame of the cosmic microwave background (CMB) generates a dipole temperature anisotropy on the sky whichhas been well measured for more than 30 years, and has an accepted amplitude of v/c = 1.23 x 10-3, or v = 369 km-1. In addition to thissignal generated by Dop...

  7. CMB in a box: Causal structure and the Fourier-Bessel expansion

    International Nuclear Information System (INIS)

    Abramo, L. Raul; Reimberg, Paulo H.; Xavier, Henrique S.

    2010-01-01

    This paper makes two points. First, we show that the line-of-sight solution to cosmic microwave anisotropies in Fourier space, even though formally defined for arbitrarily large wavelengths, leads to position-space solutions which only depend on the sources of anisotropies inside the past light cone of the observer. This foretold manifestation of causality in position (real) space happens order by order in a series expansion in powers of the visibility γ=e -μ , where μ is the optical depth to Thomson scattering. We show that the contributions of order γ N to the cosmic microwave background (CMB) anisotropies are regulated by spacetime window functions which have support only inside the past light cone of the point of observation. Second, we show that the Fourier-Bessel expansion of the physical fields (including the temperature and polarization momenta) is an alternative to the usual Fourier basis as a framework to compute the anisotropies. The viability of the Fourier-Bessel series for treating the CMB is a consequence of the fact that the visibility function becomes exponentially small at redshifts z>>10 3 , effectively cutting off the past light cone and introducing a finite radius inside which initial conditions can affect physical observables measured at our position x-vector=0 and time t 0 . Hence, for each multipole l there is a discrete tower of momenta k il (not a continuum) which can affect physical observables, with the smallest momenta being k 1l ∼l. The Fourier-Bessel modes take into account precisely the information from the sources of anisotropies that propagates from the initial value surface to the point of observation - no more, no less. We also show that the physical observables (the temperature and polarization maps), and hence the angular power spectra, are unaffected by that choice of basis. This implies that the Fourier-Bessel expansion is the optimal scheme with which one can compute CMB anisotropies.

  8. Galileon gravity in light of ISW, CMB, BAO and H {sub 0} data

    Energy Technology Data Exchange (ETDEWEB)

    Renk, Janina [The Oskar Klein Centre for Cosmoparticle Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm (Sweden); Zumalacárregui, Miguel [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Montanari, Francesco [Physics Department, University of Helsinki and Helsinki Institute of Physics, P.O. Box 64, 00014, University of Helsinki (Finland); Barreira, Alexandre, E-mail: janina.renk@fysik.su.se, E-mail: miguelzuma@berkeley.edu, E-mail: francesco.montanari@helsinki.fi, E-mail: barreira@mpa-garching.mpg.de [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany)

    2017-10-01

    Cosmological models with Galileon gravity are an alternative to the standard ΛCDM paradigm with testable predictions at the level of its self-accelerating solutions for the expansion history, as well as large-scale structure formation. Here, we place constraints on the full parameter space of these models using data from the cosmic microwave background (CMB) (including lensing), baryonic acoustic oscillations (BAO) and the Integrated Sachs-Wolfe (ISW) effect. We pay special attention to the ISW effect for which we use the cross-spectra, C {sub ℓ}{sup Tg}, of CMB temperature maps and foreground galaxies from the WISE survey. The sign of C {sub ℓ}{sup Tg} is set by the time evolution of the lensing potential in the redshift range of the galaxy sample: it is positive if the potential decays (like in ΛCDM), negative if it deepens. We constrain three subsets of Galileon gravity separately known as the Cubic, Quartic and Quintic Galileons. The cubic Galileon model predicts a negative C {sub ℓ}{sup Tg} and exhibits a 7.8σ tension with the data, which effectively rules it out. For the quartic and quintic models the ISW data also rule out a significant portion of the parameter space but permit regions where the goodness-of-fit is comparable to ΛCDM. The data prefers a non zero sum of the neutrino masses (∑ m {sub ν} ≈ 0.5eV) with ∼ 5σ significance in these models. The best-fitting models have values of H {sub 0} consistent with local determinations, thereby avoiding the tension that exists in ΛCDM. We also identify and discuss a ∼ 2σ tension that Galileon gravity exhibits with recent BAO measurements. Our analysis shows overall that Galileon cosmologies cannot be ruled out by current data but future lensing, BAO and ISW data hold strong potential to do so.

  9. The EBEX Experiment

    International Nuclear Information System (INIS)

    Oxley, P.; Ade, P.; Baccigalupi, C.; deBernardis, P.; Cho, H-M.; Devlin, M.J.; Hanany, S.; Johnson, B.R.; Jones, T.; Lee, A.T.; Matsumura, T.; Miller, A.D.; Milligan, M.; Renbarger, T.; Spieler, H.G.; Stompor, R.; Tucker, G.S.; Zaldarriaga, M.

    2005-01-01

    EBEX is a balloon-borne polarimeter designed to measure the intensity and polarization of the cosmic microwave background radiation. The measurements would probe the inflationary epoch that took place shortly after the big bang and would significantly improve constraints on the values of several cosmological parameters. EBEX is unique in its broad frequency coverage and in its ability to provide critical information about the level of polarized Galactic foregrounds which will be necessary for all future CMB polarization experiments. EBEX consists of a 1.5 m Dragone-type telescope that provides a resolution of less than 8 arcminutes over four focal planes each of 4. diffraction limited field of view at frequencies up to 450 GHz. The experiment is designed to accommodate 330 transition edge bolometric detectors per focal plane, for a total of up to 1320 detectors. EBEX will operate with frequency bands centered at 150, 250, 350, and 450 GHz. Polarimetry is achieved with a rotating achromatic half-wave plate. EBEX is currently in the design and construction phase, and first light is scheduled for 2008

  10. Confronting hybrid inflation in supergravity with CMB data

    International Nuclear Information System (INIS)

    Jeannerot, Rachel; Postma, Marieke

    2005-01-01

    F-term GUT inflation coupled to N = 1 supergravity is confronted with CMB data. Corrections to the string mass-per-unit-length away from the Bogomolny limit are taken into account. We find that a superpotential coupling 10 -7 /N∼ -2 /N, with N the dimension of the Higgs-representation, is still compatible with the data. The parameter space is enlarged in warm inflation, as well as in the curvaton and inhomogeneous reheat scenario. F-strings formed at the end of P-term inflation are also considered. Because these strings satisfy the Bogomolny bound the bounds are stronger: the gauge coupling is constrained to the range 10 -7 -4

  11. Planck CMB Anomalies: Astrophysical and Cosmological Secondary Effects and the Curse of Masking

    Science.gov (United States)

    Rassat, Anais

    2016-07-01

    Large-scale anomalies have been reported in CMB data with both WMAP and Planck data. These could be due to foreground residuals and or systematic effects, though their confirmation with Planck data suggests they are not due to a problem in the WMAP or Planck pipelines. If these anomalies are in fact primordial, then understanding their origin is fundamental to either validate the standard model of cosmology or to explore new physics. We investigate three other possible issues: 1) the trade-off between minimising systematics due to foreground contamination (with a conservative mask) and minimising systematics due to masking, 2) astrophysical secondary effects (the kinetic Doppler quadrupole and kinetic Sunyaev-Zel'dovich effect), and 3) secondary cosmological signals (the integrated Sachs-Wolfe effect). We address the masking issue by considering new procedures that use both WMAP and Planck to produce higher quality full-sky maps using the sparsity methodology (LGMCA maps). We show the impact of masking is dominant over that of residual foregrounds, and the LGMCA full-sky maps can be used without further processing to study anomalies. We consider four official Planck PR1 and two LGMCA CMB maps. Analysis of the observed CMB maps shows that only the low quadrupole and quadrupole-octopole alignment seem significant, but that the planar octopole, Axis of Evil, mirror parity and cold spot are not significant in nearly all maps considered. After subtraction of astrophysical and cosmological secondary effects, only the low quadrupole may still be considered anomalous, meaning the significance of only one anomaly is affected by secondary effect subtraction out of six anomalies considered. In the spirit of reproducible research all reconstructed maps and codes are available online.

  12. Expected Signal Observability at Future Experiments

    CERN Document Server

    Bartsch, Valeria

    2005-01-01

    Several methods to quantify the ''significance'' of an expected signal at future experiments have been used or suggested in literature. In this note, comparisons are presented with a method based on the likelihood ratio of the ''background hypothesis'' and the ''signal-plus-background hypothesis''. A large number of Monte Carlo experiments are performed to investigate the properties of the various methods and to check whether the probability of a background fluctuation having produced the claimed significance of the discovery is properly described. In addition, the best possible separation between the two hypotheses should be provided, in other words, the discovery potential of a future experiment be maximal. Finally, a practical method to apply a likelihood-based definition of the significance is suggested in this note. Signal and background contributions are determined from a likelihoo d fit based on shapes only, and the probability density distributions of the significance thus determined are found to be o...

  13. The Role of the CMB in Redshift Related Departures from the Gao–Solomon Relation

    Energy Technology Data Exchange (ETDEWEB)

    Tunnard, R.; Greve, T. R., E-mail: richard.tunnard.13@ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2017-11-01

    A strong correlation between the far-IR and HCN(1−0) line luminosities, known as the Gao–Solomon relation, has been observed to hold over more than 10 orders of magnitude in the local universe. Departures from this relation at redshifts ≳1.5 have been interpreted as evidence for increased dense gas star formation efficiency in luminous galaxies during the period of peak of star formation in the history of the universe. We examine whether the offsets from the relation can be explained by the hotter Cosmic Microwave Background (CMB) at high redshift, which, due to a loss of contrast against the hotter background, reduces the observable molecular-line flux far more significantly than the far-IR continuum bands. Simple line-of-sight modeling argues for highly significant departures from the Gao–Solomon relation at high redshift for kinetic temperatures ∼15 K, while more complex toy-galaxy models based on NGC 1068 suggest a much weaker effect with the galaxy integrated HCN line flux falling by only 10% at z = 3, within the intrinsic scatter of the relation. We conclude that, while the CMB is unlikely to explain the deviations reported in the literature, it may introduce a second-order effect on the relation by raising the low-luminosity end of the Gao–Solomon relation in cooler galaxies. A similar examination of the CO-IR relation finds tantalizing signs of the CMB having a measurable effect on the integrated CO emission in high-redshift galaxies, but these signs cannot be confirmed with the current data.

  14. The Role of the CMB in Redshift Related Departures from the Gao–Solomon Relation

    International Nuclear Information System (INIS)

    Tunnard, R.; Greve, T. R.

    2017-01-01

    A strong correlation between the far-IR and HCN(1−0) line luminosities, known as the Gao–Solomon relation, has been observed to hold over more than 10 orders of magnitude in the local universe. Departures from this relation at redshifts ≳1.5 have been interpreted as evidence for increased dense gas star formation efficiency in luminous galaxies during the period of peak of star formation in the history of the universe. We examine whether the offsets from the relation can be explained by the hotter Cosmic Microwave Background (CMB) at high redshift, which, due to a loss of contrast against the hotter background, reduces the observable molecular-line flux far more significantly than the far-IR continuum bands. Simple line-of-sight modeling argues for highly significant departures from the Gao–Solomon relation at high redshift for kinetic temperatures ∼15 K, while more complex toy-galaxy models based on NGC 1068 suggest a much weaker effect with the galaxy integrated HCN line flux falling by only 10% at z = 3, within the intrinsic scatter of the relation. We conclude that, while the CMB is unlikely to explain the deviations reported in the literature, it may introduce a second-order effect on the relation by raising the low-luminosity end of the Gao–Solomon relation in cooler galaxies. A similar examination of the CO-IR relation finds tantalizing signs of the CMB having a measurable effect on the integrated CO emission in high-redshift galaxies, but these signs cannot be confirmed with the current data.

  15. New ALMA and Fermi /LAT Observations of the Large-scale Jet of PKS 0637−752 Strengthen the Case Against the IC/CMB Model

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Eileen T.; Breiding, Peter; Georganopoulos, Markos [University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Oteo, Iván; Ivison, R. J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Zwaan, Martin A.; Laing, Robert [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching-bei-München (Germany); Godfrey, Leith, E-mail: meyer@umbc.edu [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA Dwingeloo (Netherlands)

    2017-02-01

    The Chandra X-ray observatory has discovered several dozen anomalously X-ray-bright jets associated with powerful quasars. A popular explanation for the X-ray flux from the knots in these jets is that relativistic synchrotron-emitting electrons inverse-Compton scatter cosmic microwave background (CMB) photons to X-ray energies (the IC/CMB model). This model predicts a high gamma-ray flux that should be detectable by the Fermi /Large Area Telescope (LAT) for many sources. GeV-band upper limits from Fermi /LAT for the well-known anomalous X-ray jet in PKS 0637−752 were previously shown in Meyer et al. to violate the predictions of the IC/CMB model. Previously, measurements of the jet synchrotron spectrum, important for accurately predicting the gamma-ray flux level, were lacking between radio and infrared wavelengths. Here, we present new Atacama Large Millimeter/submillimeter Array (ALMA) observations of the large-scale jet at 100, 233, and 319 GHz, which further constrain the synchrotron spectrum, supporting the previously published empirical model. We also present updated limits from the Fermi /LAT using the new “Pass 8” calibration and approximately 30% more time on source. With these deeper limits, we rule out the IC/CMB model at the 8.7 σ level. Finally, we demonstrate that complete knowledge of the synchrotron SED is critical in evaluating the IC/CMB model.

  16. Primordial Magnetic Field Effects on the CMB and Large-Scale Structure

    Directory of Open Access Journals (Sweden)

    Dai G. Yamazaki

    2010-01-01

    Full Text Available Magnetic fields are everywhere in nature, and they play an important role in every astronomical environment which involves the formation of plasma and currents. It is natural therefore to suppose that magnetic fields could be present in the turbulent high-temperature environment of the big bang. Such a primordial magnetic field (PMF would be expected to manifest itself in the cosmic microwave background (CMB temperature and polarization anisotropies, and also in the formation of large-scale structure. In this paper, we summarize the theoretical framework which we have developed to calculate the PMF power spectrum to high precision. Using this formulation, we summarize calculations of the effects of a PMF which take accurate quantitative account of the time evolution of the cutoff scale. We review the constructed numerical program, which is without approximation, and an improvement over the approach used in a number of previous works for studying the effect of the PMF on the cosmological perturbations. We demonstrate how the PMF is an important cosmological physical process on small scales. We also summarize the current constraints on the PMF amplitude Bλ and the power spectral index nB which have been deduced from the available CMB observational data by using our computational framework.

  17. Signature of short distance physics on inflation power spectrum and CMB anisotropy

    International Nuclear Information System (INIS)

    Das, Suratna; Mohanty, Subhendra

    2009-01-01

    The inflaton field responsible for inflation may not be a canonical fundamental scalar. It is possible that the inflaton is a composite of fermions or it may have a decay width. In these cases the standard procedure for calculating the power spectrum is not applicable and a new formalism needs to be developed to determine the effect of short range interactions of the inflaton on the power spectrum and the CMB anisotropy. We develop a general formalism for computing the power spectrum of curvature perturbations for such non-canonical cases by using the flat space Källén-Lehmann spectral function in curved quasi-de Sitter space assuming implicitly that the Bunch-Davis boundary conditions enforces the inflaton mode functions to be plane wave in the short wavelength limit and a complete set of mode functions exists in quasi-de Sitter space. It is observed that the inflaton with a decay width suppresses the power at large scale while a composite inflaton's power spectrum oscillates at large scales. These observations may be vindicated in the WMAP data and confirmed by future observations with PLANCK

  18. Measuring the Largest Angular Scale CMB B-mode Polarization with Galactic Foregrounds on a Cut Sky

    Science.gov (United States)

    Watts, Duncan J.; Larson, David; Marriage, Tobias A.; Abitbol, Maximilian H.; Appel, John W.; Bennett, Charles L.; Chuss, David T.; Eimer, Joseph R.; Essinger-Hileman, Thomas; Miller, Nathan J.; Rostem, Karwan; Wollack, Edward J.

    2015-12-01

    We consider the effectiveness of foreground cleaning in the recovery of Cosmic Microwave Background (CMB) polarization sourced by gravitational waves for tensor-to-scalar ratios in the range 0\\lt r\\lt 0.1. Using the planned survey area, frequency bands, and sensitivity of the Cosmology Large Angular Scale Surveyor (CLASS), we simulate maps of Stokes Q and U parameters at 40, 90, 150, and 220 GHz, including realistic models of the CMB, diffuse Galactic thermal dust and synchrotron foregrounds, and Gaussian white noise. We use linear combinations (LCs) of the simulated multifrequency data to obtain maximum likelihood estimates of r, the relative scalar amplitude s, and LC coefficients. We find that for 10,000 simulations of a CLASS-like experiment using only measurements of the reionization peak ({\\ell }≤slant 23), there is a 95% C.L. upper limit of r\\lt 0.017 in the case of no primordial gravitational waves. For simulations with r=0.01, we recover at 68% C.L. r={0.012}-0.006+0.011. The reionization peak corresponds to a fraction of the multipole moments probed by CLASS, and simulations including 30≤slant {\\ell }≤slant 100 further improve our upper limits to r\\lt 0.008 at 95% C.L. (r={0.010}-0.004+0.004 for primordial gravitational waves with r = 0.01). In addition to decreasing the current upper bound on r by an order of magnitude, these foreground-cleaned low multipole data will achieve a cosmic variance limited measurement of the E-mode polarization’s reionization peak.

  19. Big bang nucleosynthesis, the CMB, and the origin of matter and space-time

    Science.gov (United States)

    Mathews, Grant J.; Gangopadhyay, Mayukh; Sasankan, Nishanth; Ichiki, Kiyotomo; Kajino, Toshitaka

    2018-04-01

    We summarize some applications of big bang nucleosythesis (BBN) and the cosmic microwave background (CMB) to constrain the first moments of the creation of matter in the universe. We review the basic elements of BBN and how it constraints physics of the radiation-dominated epoch. In particular, how the existence of higher dimensions impacts the cosmic expansion through the projection of curvature from the higher dimension in the "dark radiation" term. We summarize current constraints from BBN and the CMB on this brane-world dark radiation term. At the same time, the existence of extra dimensions during the earlier inflation impacts the tensor to scalar ratio and the running spectral index as measured in the CMB. We summarize how the constraints on inflation shift when embedded in higher dimensions. Finally, one expects that the universe was born out of a complicated multiverse landscape near the Planck time. In these moments the energy scale of superstrings was obtainable during the early moments of chaotic inflation. We summarize the quest for cosmological evidence of the birth of space-time out of the string theory landscape. We will explore the possibility that a superstring excitations may have made itself known via a coupling to the field of inflation. This may have left an imprint of "dips" in the power spectrum of temperature fluctuations in the cosmic microwave background. The identification of this particle as a superstring is possible because there may be evidence for different oscillator states of the same superstring that appear on different scales on the sky. It will be shown that from this imprint one can deduce the mass, number of oscillations, and coupling constant for the superstring. Although the evidence is marginal, this may constitute the first observation of a superstring in Nature.

  20. Inflationary gravity waves in light of recent cosmic microwave background anisotropies data

    International Nuclear Information System (INIS)

    Melchiorri, Alessandro; Oedman, Carolina J.

    2003-01-01

    One of the major predictions of inflation is the existence of a stochastic background of cosmological gravitational waves (GW). These gravitational waves can induce significant temperature anisotropies in the cosmic microwave background (CMB) on the angular scales recently probed by the Archeops experiment. Here, we perform a combined analysis of Archeops together with information from other CMB experiments and/or cosmological data sets, in order to constrain the amplitude of the GW background. We find that, for a scale-invariant GW background, the ratio of tensor-scalar perturbations at the CMB quadrupole is now constrained to be r≤0.43 at 95% C.L., while the bound on the spectral index of primordial density fluctuations is n S =0.97 -0.12 +0.10 . We discuss the implications for future GW detections through CMB polarization measurements

  1. Cosmological constraint on the light gravitino mass from CMB lensing and cosmic shear

    Energy Technology Data Exchange (ETDEWEB)

    Osato, Ken; Yoshida, Naoki [Department of Physics, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033 (Japan); Sekiguchi, Toyokazu [University of Helsinki and Helsinki Institute of Physics, P.O. Box 64, FI-00014, Helsinki (Finland); Shirasaki, Masato [National Astronomical Observatory of Japan, Mitaka, Tokyo, 181-8588 (Japan); Kamada, Ayuki, E-mail: ken.osato@utap.phys.s.u-tokyo.ac.jp, E-mail: toyokazu.sekiguchi@gmail.com, E-mail: masato.shirasaki@nao.ac.jp, E-mail: ayuki.kamada@ucr.edu, E-mail: naoki.yoshida@phys.s.u-tokyo.ac.jp [Department of Physics and Astronomy, University of California, Riverside, California 92521 (United States)

    2016-06-01

    Light gravitinos of mass ∼< O (10) eV are of particular interest in cosmology, offering various baryogenesis scenarios without suffering from the cosmological gravitino problem. The gravitino may contribute considerably to the total matter content of the Universe and affect structure formation from early to present epochs. After the gravitinos decouple from other particles in the early Universe, they free-stream and consequently suppress density fluctuations of (sub-)galactic length scales. Observations of structure at the relevant length-scales can be used to infer or constrain the mass and the abundance of light gravitinos. We derive constraints on the light gravitino mass using the data of cosmic microwave background (CMB) lensing from Planck and of cosmic shear from the Canada France Hawaii Lensing Survey survey, combined with analyses of the primary CMB anisotropies and the signature of baryon acoustic oscillations in galaxy distributions. The obtained constraint on the gravitino mass is m {sub 3/2} < 4.7 eV (95 % C.L.), which is substantially tighter than the previous constraint from clustering analysis of Ly-α forests.

  2. Constraints on reconstructed dark energy model from SN Ia and BAO/CMB observations

    Energy Technology Data Exchange (ETDEWEB)

    Mamon, Abdulla Al [Manipal University, Manipal Centre for Natural Sciences, Manipal (India); Visva-Bharati, Department of Physics, Santiniketan (India); Bamba, Kazuharu [Fukushima University, Division of Human Support System, Faculty of Symbiotic Systems Science, Fukushima (Japan); Das, Sudipta [Visva-Bharati, Department of Physics, Santiniketan (India)

    2017-01-15

    The motivation of the present work is to reconstruct a dark energy model through the dimensionless dark energy function X(z), which is the dark energy density in units of its present value. In this paper, we have shown that a scalar field φ having a phenomenologically chosen X(z) can give rise to a transition from a decelerated to an accelerated phase of expansion for the universe. We have examined the possibility of constraining various cosmological parameters (such as the deceleration parameter and the effective equation of state parameter) by comparing our theoretical model with the latest Type Ia Supernova (SN Ia), Baryon Acoustic Oscillations (BAO) and Cosmic Microwave Background (CMB) radiation observations. Using the joint analysis of the SN Ia+BAO/CMB dataset, we have also reconstructed the scalar potential from the parametrized X(z). The relevant potential is found, a polynomial in φ. From our analysis, it has been found that the present model favors the standard ΛCDM model within 1σ confidence level. (orig.)

  3. Bayesian `hyper-parameters' approach to joint estimation: the Hubble constant from CMB measurements

    Science.gov (United States)

    Lahav, O.; Bridle, S. L.; Hobson, M. P.; Lasenby, A. N.; Sodré, L.

    2000-07-01

    Recently several studies have jointly analysed data from different cosmological probes with the motivation of estimating cosmological parameters. Here we generalize this procedure to allow freedom in the relative weights of various probes. This is done by including in the joint χ2 function a set of `hyper-parameters', which are dealt with using Bayesian considerations. The resulting algorithm, which assumes uniform priors on the log of the hyper-parameters, is very simple: instead of minimizing \\sum \\chi_j2 (where \\chi_j2 is per data set j) we propose to minimize \\sum Nj (\\chi_j2) (where Nj is the number of data points per data set j). We illustrate the method by estimating the Hubble constant H0 from different sets of recent cosmic microwave background (CMB) experiments (including Saskatoon, Python V, MSAM1, TOCO and Boomerang). The approach can be generalized for combinations of cosmic probes, and for other priors on the hyper-parameters.

  4. Beyond y and μ: the shape of the CMB spectral distortions in the intermediate epoch, 1.5 × 104∼5

    International Nuclear Information System (INIS)

    Khatri, Rishi; Sunyaev, Rashid A.

    2012-01-01

    We calculate numerical solutions and analytic approximations for the intermediate-type spectral distortions. Detection of a μ-type distortion (saturated comptonization) in the CMB will constrain the time of energy injection to be at a redshift 2 × 10 6 ∼>z∼>2 × 10 5 , while a detection of a y-type distortion (minimal comptonization) will mean that there was heating of CMB at redshift z∼ 4 . We point out that the partially comptonized spectral distortions, generated in the redshift range 1.5 × 10 4 ∼ 5 , are much richer in information than the pure y and μ-type distortions. The spectrum created during this period is intermediate between y and μ-type distortions and depends sensitively on the redshift of energy injection. These intermediate-type distortions cannot be mimicked by a mixture of y and μ-type distortions at all frequencies and vice versa. The measurement of these intermediate-type CMB spectral distortions has the possibility to constrain precisely not only the amount of energy release in the early Universe but also the mechanism, for example, particle annihilation and Silk damping can be distinguished from particle decay. The intermediate-type distortion templates and software code using these templates to calculate the CMB spectral distortions for user-defined energy injection rate is made publicly available

  5. DESI and other Dark Energy experiments in the era of neutrino mass measurements

    Energy Technology Data Exchange (ETDEWEB)

    Font-Ribera, Andreu [Institute of Theoretical Physics, University of Zurich, Winterthurerstrasse 190, Zurich, 8057 (Switzerland); McDonald, Patrick; Mostek, Nick; Reid, Beth A.; Seo, Hee-Jong [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720 (United States); Slosar, Anže, E-mail: afont@lbl.gov, E-mail: PVMcDonald@lbl.gov, E-mail: njmostek@lbl.gov, E-mail: BAReid@lbl.gov, E-mail: hee-jongseo@lbl.gov, E-mail: anze@bnl.gov [Brookhaven National Laboratory, Upton, NY, 11973 (United States)

    2014-05-01

    We present Fisher matrix projections for future cosmological parameter measurements, including neutrino masses, Dark Energy, curvature, modified gravity, the inflationary perturbation spectrum, non-Gaussianity, and dark radiation. We focus on DESI and generally redshift surveys (BOSS, HETDEX, eBOSS, Euclid, and WFIRST), but also include CMB (Planck) and weak gravitational lensing (DES and LSST) constraints. The goal is to present a consistent set of projections, for concrete experiments, which are otherwise scattered throughout many papers and proposals. We include neutrino mass as a free parameter in most projections, as it will inevitably be relevant — DESI and other experiments can measure the sum of neutrino masses to ∼ 0.02 eV or better, while the minimum possible sum is ∼ 0.06 eV. We note that constraints on Dark Energy are significantly degraded by the presence of neutrino mass uncertainty, especially when using galaxy clustering only as a probe of the BAO distance scale (because this introduces additional uncertainty in the background evolution after the CMB epoch). Using broadband galaxy power becomes relatively more powerful, and bigger gains are achieved by combining lensing survey constraints with redshift survey constraints. We do not try to be especially innovative, e.g., with complex treatments of potential systematic errors — these projections are intended as a straightforward baseline for comparison to more detailed analyses.

  6. Anisotropic cosmological constant and the CMB quadrupole anomaly

    International Nuclear Information System (INIS)

    Rodrigues, Davi C.

    2008-01-01

    There are evidences that the cosmic microwave background (CMB) large-angle anomalies imply a departure from statistical isotropy and hence from the standard cosmological model. We propose a ΛCDM model extension whose dark energy component preserves its nondynamical character but wields anisotropic vacuum pressure. Exact solutions for the cosmological scale factors are presented, upper bounds for the deformation parameter are evaluated and its value is estimated considering the elliptical universe proposal to solve the quadrupole anomaly. This model can be constructed from a Bianchi I cosmology with a cosmological constant from two different ways: (i) a straightforward anisotropic modification of the vacuum pressure consistently with energy-momentum conservation; (ii) a Poisson structure deformation between canonical momenta such that the dynamics remain invariant under scale factors rescalings

  7. The X-ray emission mechanism of large scale powerful quasar jets: Fermi rules out IC/CMB for 3C 273.

    Directory of Open Access Journals (Sweden)

    Georganopoulos Markos

    2013-12-01

    Full Text Available The process responsible for the Chandra-detected X-ray emission from the large-scale jets of powerful quasars is not clear yet. The two main models are inverse Compton scattering off the cosmic microwave background photons (IC/CMB and synchrotron emission from a population of electrons separate from those producing the radio-IR emission. These two models imply radically different conditions in the large scale jet in terms of jet speed, kinetic power, and maximum energy of the particle acceleration mechanism, with important implications for the impact of the jet on the larger-scale environment. Georganopoulos et al. (2006 proposed a diagnostic based on a fundamental difference between these two models: the production of synchrotron X-rays requires multi-TeV electrons, while the EC/CMB model requires a cutoff in the electron energy distribution below TeV energies. This has significant implications for the γ-ray emission predicted by these two models. Here we present new Fermi observations that put an upper limit on the gamma-ray flux from the large-scale jet of 3C 273 that clearly violates the flux expected from the IC/CMB X-ray interpretation found by extrapolation of the UV to X-ray spectrum of knot A, thus ruling out the IC/CMB interpretation entirely for this source. Further, the upper limit from Fermi puts a limit on the Doppler beaming factor of at least δ <9, assuming equipartition fields, and possibly as low as δ <5 assuming no major deceleration of the jet from knots A through D1.

  8. Constraints on early dark energy from CMB lensing and weak lensing tomography

    International Nuclear Information System (INIS)

    Hollenstein, Lukas; Crittenden, Robert; Sapone, Domenico; Schäfer, Björn Malte

    2009-01-01

    Dark energy can be studied by its influence on the expansion of the Universe as well as on the growth history of the large-scale structure. In this paper, we follow the growth of the cosmic density field in early dark energy cosmologies by combining observations of the primary CMB temperature and polarisation power spectra at high redshift, of the CMB lensing deflection field at intermediate redshift and of weak cosmic shear at low redshifts for constraining the allowed amount of early dark energy. We present these forecasts using the Fisher matrix formalism and consider the combination of Planck data with the weak lensing survey of Euclid. We find that combining these data sets gives powerful constraints on early dark energy and is able to break degeneracies in the parameter set inherent to the various observational channels. The derived statistical 1σ-bound on the early dark energy density parameter is σ(Ω e d ) = 0.0022 which suggests that early dark energy models can be well examined in our approach. In addition, we derive the dark energy figure of merit for the considered dark energy parameterisation and comment on the applicability of the growth index to early dark energy cosmologies

  9. Present and future oscillation experiments at reactors

    International Nuclear Information System (INIS)

    Mikaehlyan, L.A.

    2001-01-01

    A report is presented on recent progress and developments (since the NANP'99 Conference) in the current and future long baseline (∼100 - 800 km) oscillation experiments at reactors. These experiments, under certain assumptions, can fully reconstruct the internal mass structure of the electron neutrino and provide a laboratory test of solar and atmospheric neutrino problems

  10. Hidden in the background: a local approach to CMB anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez, Juan C. Bueno, E-mail: juan.c.bueno@correounivalle.edu.co [Centro de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Antonio Nariño, Cra 3 Este # 47A-15, Bogotá D.C. 110231 (Colombia)

    2016-09-01

    We investigate a framework aiming to provide a common origin for the large-angle anomalies detected in the Cosmic Microwave Background (CMB), which are hypothesized as the result of the statistical inhomogeneity developed by different isocurvature fields of mass m ∼ H present during inflation. The inhomogeneity arises as the combined effect of ( i ) the initial conditions for isocurvature fields (obtained after a fast-roll stage finishing many e -foldings before cosmological scales exit the horizon), ( ii ) their inflationary fluctuations and ( iii ) their coupling to other degrees of freedom. Our case of interest is when these fields (interpreted as the precursors of large-angle anomalies) leave an observable imprint only in isolated patches of the Universe. When the latter intersect the last scattering surface, such imprints arise in the CMB. Nevertheless, due to their statistically inhomogeneous nature, these imprints are difficult to detect, for they become hidden in the background similarly to the Cold Spot. We then compute the probability that a single isocurvature field becomes inhomogeneous at the end of inflation and find that, if the appropriate conditions are given (which depend exclusively on the preexisting fast-roll stage), this probability is at the percent level. Finally, we discuss several mechanisms (including the curvaton and the inhomogeneous reheating) to investigate whether an initial statistically inhomogeneous isocurvature field fluctuation might give rise to some of the observed anomalies. In particular, we focus on the Cold Spot, the power deficit at low multipoles and the breaking of statistical isotropy.

  11. Characteristics of Early Work Experiences and Their Association with Future Employment

    Science.gov (United States)

    McDonnall, Michele Capella; O'Mally, Jamie

    2012-01-01

    Introduction: Early work experiences are a key predictor of future employment for transition-age youths with visual impairments. We investigated how specific characteristics of early work experiences influence future employment and whether the receipt of Supplemental Security Income (SSI) benefits is associated with early work experiences among…

  12. Loop quantum gravity effects on inflation and the CMB

    International Nuclear Information System (INIS)

    Tsujikawa, Shinji; Singh, Parampreet; Maartens, Roy

    2004-01-01

    In loop quantum cosmology, the universe avoids a big bang singularity and undergoes an early and short super-inflation phase. During super-inflation, non-perturbative quantum corrections to the dynamics drive an inflaton field up its potential hill, thus setting the initial conditions for standard inflation. We show that this effect can raise the inflaton high enough to achieve sufficient e-foldings in the standard inflation era. We analyse the cosmological perturbations generated when slow-roll is violated after super-inflation and show that loop quantum effects can in principle leave an indirect signature on the largest scales in the CMB, with some loss of power and running of the spectral index

  13. A hunt for cosmic microwave background B-modes in the systematic contaminants jungle

    International Nuclear Information System (INIS)

    Errard, J.

    2012-01-01

    This thesis presents a study of selected instrumental and astrophysical systematics, which may affect the performance of new generation of future observations of the Cosmic Microwave Background (CMB) polarization. It elaborates on their impact on the science goals of those observations and discusses techniques and approaches for their removal. Its focus is on general issues typical of entire classes of experiments, but also on specific problems as encountered in the context of a CMB B-mode experiment, POLARBEAR. The main target of the CMB polarization effort undergoing currently in the field is a detection of the primordial B-modes anisotropies --- a so far undetected signature of the inflationary theories. This would have far-reaching impact on our understanding of the universe but also fundamental laws of physics. Understanding, modelling, and ultimately removal of the systematics are essential steps in any modern CMB analysis pipeline and their successful accomplishment, together with a high instrumental sensitivity, will decide of a final success of the entire effort. In this thesis I first describe optics of typical CMB experiments and introduce a parametrization of instrumental and cross-polarization effects particularly convenient for the analysis of their impact. Second, I present a model describing the atmospheric contamination and use it to provide some insights about the atmosphere's role and its impact on performance of ground-based experiments. I also outline how it could be used further to improve control of atmospheric effects in the CMB data analysis. Then, I discuss another source of sky systematics --- the polarized astrophysical foregrounds. In this context I present on the one hand a new approach to forecasting performance of the future experiments, which accounts for the presence of the foregrounds, while on the other I propose a framework for optimizing hardware of such experiments to let them achieve better performance. This part of thesis

  14. Local properties of the large-scale peaks of the CMB temperature

    Energy Technology Data Exchange (ETDEWEB)

    Marcos-Caballero, A.; Martínez-González, E.; Vielva, P., E-mail: marcos@ifca.unican.es, E-mail: martinez@ifca.unican.es, E-mail: vielva@ifca.unican.es [Instituto de Física de Cantabria, CSIC-Universidad de Cantabria, Avda. de los Castros s/n, 39005 Santander (Spain)

    2017-05-01

    In the present work, we study the largest structures of the CMB temperature measured by Planck in terms of the most prominent peaks on the sky, which, in particular, are located in the southern galactic hemisphere. Besides these large-scale features, the well-known Cold Spot anomaly is included in the analysis. All these peaks would contribute significantly to some of the CMB large-scale anomalies, as the parity and hemispherical asymmetries, the dipole modulation, the alignment between the quadrupole and the octopole, or in the case of the Cold Spot, to the non-Gaussianity of the field. The analysis of the peaks is performed by using their multipolar profiles, which characterize the local shape of the peaks in terms of the discrete Fourier transform of the azimuthal angle. In order to quantify the local anisotropy of the peaks, the distribution of the phases of the multipolar profiles is studied by using the Rayleigh random walk methodology. Finally, a direct analysis of the 2-dimensional field around the peaks is performed in order to take into account the effect of the galactic mask. The results of the analysis conclude that, once the peak amplitude and its first and second order derivatives at the centre are conditioned, the rest of the field is compatible with the standard model. In particular, it is observed that the Cold Spot anomaly is caused by the large value of curvature at the centre.

  15. Quantum Gravity, Information Theory and the CMB

    Science.gov (United States)

    Kempf, Achim

    2018-04-01

    We review connections between the metric of spacetime and the quantum fluctuations of fields. We start with the finding that the spacetime metric can be expressed entirely in terms of the 2-point correlator of the fluctuations of quantum fields. We then discuss the open question whether the knowledge of only the spectra of the quantum fluctuations of fields also suffices to determine the spacetime metric. This question is of interest because spectra are geometric invariants and their quantization would, therefore, have the benefit of not requiring the modding out of diffeomorphisms. Further, we discuss the fact that spacetime at the Planck scale need not necessarily be either discrete or continuous. Instead, results from information theory show that spacetime may be simultaneously discrete and continuous in the same way that information can. Finally, we review the recent finding that a covariant natural ultraviolet cutoff at the Planck scale implies a signature in the cosmic microwave background (CMB) that may become observable.

  16. Inflation Physics from the Cosmic Microwave Background and Large Scale Structure

    Science.gov (United States)

    Abazajian, K.N.; Arnold,K.; Austermann, J.; Benson, B.A.; Bischoff, C.; Bock, J.; Bond, J.R.; Borrill, J.; Buder, I.; Burke, D.L.; hide

    2013-01-01

    Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments---the theory of cosmic inflation---and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1 of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5-sigma measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B-mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.

  17. Sensitivity of molecular marker-based CMB models to biomass burning source profiles

    Science.gov (United States)

    Sheesley, Rebecca J.; Schauer, James J.; Zheng, Mei; Wang, Bo

    To assess the contribution of sources to fine particulate organic carbon (OC) at four sites in North Carolina, USA, a molecular marker chemical mass balance model (MM-CMB) was used to quantify seasonal contributions for 2 years. The biomass burning contribution at these sites was found to be 30-50% of the annual OC concentration. In order to provide a better understanding of the uncertainty in MM-CMB model results, a biomass burning profile sensitivity test was performed on the 18 seasonal composites. The results using reconstructed emission profiles based on published profiles compared well, while model results using a single source test profile resulted in biomass burning contributions that were more variable. The biomass burning contribution calculated using an average regional profile of fireplace emissions from five southeastern tree species also compared well with an average profile of open burning of pine-dominated forest from Georgia. The standard deviation of the results using different source profiles was a little over 30% of the annual average biomass contributions. Because the biomass burning contribution accounted for 30-50% of the OC at these sites, the choice of profile also impacted the motor vehicle source attribution due to the common emission of elemental carbon and polycyclic aromatic hydrocarbons. The total mobile organic carbon contribution was less effected by the biomass burning profile than the relative contributions from gasoline and diesel engines.

  18. Emission-angle and polarization-rotation effects in the lensed CMB

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Antony [Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom); Hall, Alex [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); Challinor, Anthony, E-mail: antony@cosmologist.info, E-mail: ahall@roe.ac.uk, E-mail: a.d.challinor@ast.cam.ac.uk [Institute of Astronomy and Kavli Institute for Cosmology, Madingley Road, Cambridge, CB3 0HA (United Kingdom)

    2017-08-01

    Lensing of the CMB is an important effect, and is usually modelled by remapping the unlensed CMB fields by a lensing deflection. However the lensing deflections also change the photon path so that the emission angle is no longer orthogonal to the background last-scattering surface. We give the first calculation of the emission-angle corrections to the standard lensing approximation from dipole (Doppler) sources for temperature and quadrupole sources for temperature and polarization. We show that while the corrections are negligible for the temperature and E-mode polarization, additional large-scale B-modes are produced with a white spectrum that dominates those from post-Born field rotation (curl lensing). On large scales about one percent of the total lensing-induced B-mode amplitude is expected to be due to this effect. However, the photon emission angle does remain orthogonal to the perturbed last-scattering surface due to time delay, and half of the large-scale emission-angle B modes cancel with B modes from time delay to give a total contribution of about half a percent. While not important for planned observations, the signal could ultimately limit the ability of delensing to reveal low amplitudes of primordial gravitational waves. We also derive the rotation of polarization due to multiple deflections between emission and observation. The rotation angle is of quadratic order in the deflection angle, and hence negligibly small: polarization typically rotates by less than an arcsecond, orders of magnitude less than a small-scale image rotates due to post-Born field rotation (which is quadratic in the shear). The field-rotation B modes dominate the other effects on small scales.

  19. Low-l CMB power loss in string inflation

    Energy Technology Data Exchange (ETDEWEB)

    Pedro, Francisco G.; Westphal, Alexander

    2013-09-15

    The lack of power on large scales (l CMB 2-point function power at low l, finding that the potential derived from string loops is not steep enough for this purpose. We introduce a steeper contribution to the potential, that dominates away from the inflationary region, and show that if properly tuned it can indeed lead to a spectrum with lack of power at large scales.

  20. The CMB neutrino mass/vacuum energy degeneracy: a simple derivation of the degeneracy slopes

    Science.gov (United States)

    Sutherland, Will

    2018-06-01

    It is well known that estimating cosmological parameters from cosmic microwave background (CMB) data alone results in a significant degeneracy between the total neutrino mass and several other cosmological parameters, especially the Hubble constant H0 and the matter density parameter Ωm. Adding low-redshift measurements such as baryon acoustic oscillations (BAOs) breaks this degeneracy and greatly improves the constraints on neutrino mass. The sensitivity is surprisingly high, for example, adding the ˜1 percent measurement of the BAO ratio rs/DV from the BOSS survey leads to a limit Σ mν matter ratio (xν ≡ ων/ωcb) and the shifts in other cosmological parameters. The resulting multipliers are substantially larger than 1: conserving the CMB sound horizon angle requires parameter shifts δln H0 ≈ -2 δxν, δln Ωm ≈ +5 δxν, δln ωΛ ≈ -6.2 δxν, and most notably δωΛ ≈ -14 δων. These multipliers give an intuitive derivation of the degeneracy direction, which agrees well with the numerical likelihood results from the Planck team.

  1. Highlights from LHC experiments and future perspectives

    International Nuclear Information System (INIS)

    Campana, P.

    2016-01-01

    The experiments at LHC are collecting a large amount of data in a kinematic of the (x, Q 2 ) variables never accessed before. Boosted by LHC analyses, Quantum Chromodynamics (QCD) is experiencing an impressive progress in the last few years, and even brighter perspectives can be foreseen for the future data taking. A subset of the most recent results from the LHC experiments in the area of QCD (both perturbative and soft) are reviewed

  2. The ψ(4040) at the future PANDA experiment

    International Nuclear Information System (INIS)

    Zotti, L; Marcello, S; Spataro, S; Filippi, A

    2014-01-01

    The PANDA experiment will be carried out at the future FAIR facility, it will be a fixed target experiment, where antiproton beams, of unprecedented quality and intensity, will be used to study interactions on protons and on nuclei. PANDA will be an excellent tool to investigate those final states which include short-lived particles. Since different charmonium states can be accessed in direct formation with all the available quantum numbers in p-bar p annihilations, the charmonium spectroscopy is one of the main goal of the experiment. The PANDA experiment represents a unique possibility to improve both statistics and precision of existing data and to further explore the physics in the charm quark sector. Indeed, an energy scan with high precision over the full charm spectrum is still missing and it will not be delivered by future experiments currently planned as upgrade of the existing facilities. A detailed description of the possibility to reconstruct the ψ(4040) → D *+ D *− at PANDA, together with the study of the huge hadronic background suppression will be presented. The importance of the Micro-Vertex Detector for the reconstruction of D mesons decay will be showed.

  3. The QMAP and MAT/TOCO Experiments for Measuring Anisotropy in the Cosmic Microwave Background

    Science.gov (United States)

    Miller, A.; Beach, J.; Bradley, S.; Caldwell, R.; Chapman, H.; Devlin, M. J.; Dorwart, W. B.; Herbig, T.; Jones, D.; Monnelly, G.; Netterfield, C. B.; Nolta, M.; Page, L. A.; Puchalla, J.; Robertson, T.; Torbet, E.; Tran, H. T.; Vinje, W. E.

    2002-06-01

    We describe two related experiments that measured the anisotropy in the cosmic microwave background (CMB). QMAP was a balloon-borne telescope that flew twice in 1996, collecting data on degree angular scales with an array of six high electron mobility transistor-based amplifiers (HEMTs). QMAP used an interlocking scan strategy to directly produce high signal-to-noise ratio CMB maps over a limited region of sky. The QMAP gondola was then refitted for ground-based work as the MAT/TOCO experiment. Observations were made from 5200 m on Cerro Toco in Northern Chile in 1997 and 1998 using time domain beam synthesis. MAT/TOCO measured the rise and fall of the CMB angular spectrum, thereby localizing the position of the first peak to lpeak=216+/-14. In addition to describing the instruments, we discuss the data selection methods, check for systematic errors, and compare the MAT/TOCO results to those from recent experiments. The previously reported data are updated to account for a small calibration shift and corrected to account for a small contribution from known sources of foreground emission. The resulting amplitude of the first peak for 160

  4. Detection of local non-Gaussianity with future observations

    International Nuclear Information System (INIS)

    Li Hong; Liu Jie

    2012-01-01

    In this Letter we estimate the primordial non-Gaussianity (PNG) by simulating future observations. We use the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) as an example and focus on the cross correlation signal between the galaxies and the Integrate Sachs-Wolfe (ISW) effect of CMB. Our result is optimistical. It shows the potential of LAMOST, particularly its quasar survey, in probing for the PNG by ISW - galaxy cross correlation. This study is particularly relevant because LAMOST is almost parallel to the timetable of the upcoming high precision Planck satellite.

  5. Future Cosmological Constraints From Fast Radio Bursts

    Science.gov (United States)

    Walters, Anthony; Weltman, Amanda; Gaensler, B. M.; Ma, Yin-Zhe; Witzemann, Amadeus

    2018-03-01

    We consider the possible observation of fast radio bursts (FRBs) with planned future radio telescopes, and investigate how well the dispersions and redshifts of these signals might constrain cosmological parameters. We construct mock catalogs of FRB dispersion measure (DM) data and employ Markov Chain Monte Carlo analysis, with which we forecast and compare with existing constraints in the flat ΛCDM model, as well as some popular extensions that include dark energy equation of state and curvature parameters. We find that the scatter in DM observations caused by inhomogeneities in the intergalactic medium (IGM) poses a big challenge to the utility of FRBs as a cosmic probe. Only in the most optimistic case, with a high number of events and low IGM variance, do FRBs aid in improving current constraints. In particular, when FRBs are combined with CMB+BAO+SNe+H 0 data, we find the biggest improvement comes in the {{{Ω }}}{{b}}{h}2 constraint. Also, we find that the dark energy equation of state is poorly constrained, while the constraint on the curvature parameter, Ω k , shows some improvement when combined with current constraints. When FRBs are combined with future baryon acoustic oscillation (BAO) data from 21 cm Intensity Mapping, we find little improvement over the constraints from BAOs alone. However, the inclusion of FRBs introduces an additional parameter constraint, {{{Ω }}}{{b}}{h}2, which turns out to be comparable to existing constraints. This suggests that FRBs provide valuable information about the cosmological baryon density in the intermediate redshift universe, independent of high-redshift CMB data.

  6. Cross-correlating CMB temperature fluctuations with high-energy γ-ray from Dark-Matter annihilation

    International Nuclear Information System (INIS)

    Pieri, L.

    2013-01-01

    In this paper we compute the Integrated Sachs-Wolfe effect due to the presence of dark-matter structures on cosmological scale. We cross-correlate the CMB temperature fluctuations with the extragalactic high-energy γ-ray flux map obtained with FERMI-LAT. We find a null signal consistent with the theory and conclude that the presence of halos and subhalos at galactic and extragalactic scale, if not excluded, will be hardly discoverable.

  7. Contribution of domain wall networks to the CMB power spectrum

    International Nuclear Information System (INIS)

    Lazanu, A.; Martins, C.J.A.P.; Shellard, E.P.S.

    2015-01-01

    We use three domain wall simulations from the radiation era to the late-time dark energy domination era based on the PRS algorithm to calculate the energy–momentum tensor components of domain wall networks in an expanding universe. Unequal time correlators in the radiation, matter and cosmological constant epochs are calculated using the scaling regime of each of the simulations. The CMB power spectrum of a network of domain walls is determined. The first ever quantitative constraint for the domain wall surface tension is obtained using a Markov chain Monte Carlo method; an energy scale of domain walls of 0.93 MeV, which is close but below the Zel'dovich bound, is determined

  8. Contribution of domain wall networks to the CMB power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Lazanu, A., E-mail: A.Lazanu@damtp.cam.ac.uk [Centre for Theoretical Cosmology, Department of Applied Mathematics and Theoretical Physics, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Martins, C.J.A.P., E-mail: Carlos.Martins@astro.up.pt [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Instituto de Astrofísica e Ciências do Espaço, CAUP, Rua das Estrelas, 4150-762 Porto (Portugal); Shellard, E.P.S., E-mail: E.P.S.Shellard@damtp.cam.ac.uk [Centre for Theoretical Cosmology, Department of Applied Mathematics and Theoretical Physics, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2015-07-30

    We use three domain wall simulations from the radiation era to the late-time dark energy domination era based on the PRS algorithm to calculate the energy–momentum tensor components of domain wall networks in an expanding universe. Unequal time correlators in the radiation, matter and cosmological constant epochs are calculated using the scaling regime of each of the simulations. The CMB power spectrum of a network of domain walls is determined. The first ever quantitative constraint for the domain wall surface tension is obtained using a Markov chain Monte Carlo method; an energy scale of domain walls of 0.93 MeV, which is close but below the Zel'dovich bound, is determined.

  9. Constraints on cosmological birefringence energy dependence from CMB polarization data

    International Nuclear Information System (INIS)

    Gubitosi, G.; Paci, F.

    2013-01-01

    We study the possibility of constraining the energy dependence of cosmological birefringence by using CMB polarization data. We consider four possible behaviors, characteristic of different theoretical scenarios: energy-independent birefringence motivated by Chern-Simons interactions of the electromagnetic field, linear energy dependence motivated by a 'Weyl' interaction of the electromagnetic field, quadratic energy dependence, motivated by quantum gravity modifications of low-energy electrodynamics, and inverse quadratic dependence, motivated by Faraday rotation generated by primordial magnetic fields. We constrain the parameters associated to each kind of dependence and use our results to give constraints on the models mentioned. We forecast the sensitivity that Planck data will be able to achieve in this respect

  10. Contribution of domain wall networks to the CMB power spectrum

    Directory of Open Access Journals (Sweden)

    A. Lazanu

    2015-07-01

    Full Text Available We use three domain wall simulations from the radiation era to the late-time dark energy domination era based on the PRS algorithm to calculate the energy–momentum tensor components of domain wall networks in an expanding universe. Unequal time correlators in the radiation, matter and cosmological constant epochs are calculated using the scaling regime of each of the simulations. The CMB power spectrum of a network of domain walls is determined. The first ever quantitative constraint for the domain wall surface tension is obtained using a Markov chain Monte Carlo method; an energy scale of domain walls of 0.93 MeV, which is close but below the Zel'dovich bound, is determined.

  11. The Lake Baikal neutrino experiment: present and future

    International Nuclear Information System (INIS)

    Lubsandorzhiev, B.K.

    2001-01-01

    We review the present status and future of the Lake Baikal Neutrino Experiment. Selected physics results concerning a search for upward-going atmospheric neutrinos, WIMPs and relativistic magnetic monopoles are presented

  12. Measuring CMB polarization from ISS: the SPOrt experiment

    International Nuclear Information System (INIS)

    Colombo, L.P.L.

    2004-01-01

    The SPOrt (Sky Polarization Observatory) experiment aims to measure CMBP (cosmic microwave background polarization) on about 80% of the sky from space. Selected by ESA to fly on board the ISS in 2006, it is funded by the Italian Space Agency (ASI). As shown also by the recent WMAP release, CMBP data, besides of removing various degeneracies among cosmological parameters, provided new and important information on the cosmic opacity τ and, therefore, on very early cosmic objects which reionized the world at z ∼ 15. Most such information is obtained from low-l spectral components, that SPOrt, with its HPBW resolution of 7 degrees will explore with a high level of sensitivity. The 4 polarimeters of SPOrt work at 22, 32 and (2x) 90 GHz. At lower frequencies they will provide a (nearly) all-sky survey of Galactic synchrotron polarized emission, while data at the higher frequency will measure the CMBP signal. Correlating SPOrt with anisotropy data, by other experiments, shall therefore provide significant cosmological information. We performed a number of simulations of SPOrt performance, aimed to determine how far τ and/or other parameter(s) concerning reionization are constrained by the expected data. We also considered a possible interplay between reionization histories and Dark Energy nature. Besides of information on technological developments for systematics reduction, long term stability and observing time efficiency, we report here recent outputs on the expected SPOrt performance in constraining cosmological models

  13. On the Origins of the CMB: Insight from the COBE, WMAP, and Relikt-1 Satellites

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2007-01-01

    Full Text Available The powerful “Cosmic Microwave Background (CMB” signal currently associated with the origins of the Universe is examined from a historical perspective and relative to the experimental context in which it was measured. Results from the COBE satellite are reviewed, with particular emphasis on the systematic error observed in determining the CMB temperature. The nature of the microwave signal emanating from the oceans is also discussed. From this analysis, it is demonstrated that it is improper for the COBE team to model the Earth as a 285 K blackbody source. The assignment of temperatures to objects that fail to meet the requirements set forth in Kirchhoff’s law constitutes a serious overextension of the laws of thermal emission. Using this evidence, and the general rule that powerful signals are associated with proximal sources, the CMB monopole signal is reassigned to the oceans. In turn, through the analysis of COBE, WMAP, and Relikt-1 data, the dipole signal is attributed to motion through a much weaker microwave field present both at the position of the Earth and at the second Lagrange point.

  14. Minkowski Functionals and Cluster Analysis for CMB Maps

    Science.gov (United States)

    Novikov, D.; Feldman, Hume A.; Shandarin, Sergei F.

    We suggest novel statistics for the CMB maps that are sensitive to non-Gaussian features. These statistics are natural generalizations of the geometrical and topological methods that have been already used in cosmology such as the cumulative distribution function and genus. We compute the distribution functions of the Partial Minkowski Functionals for the excursion set above or bellow a constant temperature threshold. Minkowski Functionals are additive and are translationally and rotationally invariant. Thus, they can be used for patchy and/or incomplete coverage. The technique is highly efficient computationally (it requires only O(N) operations, where N is the number of pixels per one threshold level). Further, the procedure makes it possible to split large data sets into smaller subsets. The full advantage of these statistics can be obtained only on very large data sets. We apply it to the 4-year DMR COBE data corrected for the Galaxy contamination as an illustration of the technique.

  15. String Theory clues for the low-$\\ell$ CMB ?

    CERN Document Server

    Kitazawa, N.

    2015-05-29

    "Brane Supersymmetry Breaking" is a peculiar string-scale mechanism that can unpair Bose and Fermi excitations in orientifold models. It results from the simultaneous presence, in the vacuum, of collections of D-branes and orientifolds that are not mutually BPS, and is closely tied to the scale of string excitations. It also leaves behind, for a mixing of dilaton and internal breathing mode, an exponential potential that is just too steep for a scalar to emerge from the initial singularity while descending it. As a result, in this class of models the scalar can generically bounce off the exponential wall, and this dynamics brings along, in the power spectrum, an infrared depression typically followed by a pre-inflationary peak. We elaborate on a possible link between this type of bounce and the low-$\\ell$ end of the CMB angular power spectrum. For the first 32 multipoles, one can reach a 50 % reduction in $\\chi^{\\,2}$ with respect to the standard $\\Lambda$CDM setting.

  16. Strongly scale-dependent CMB dipolar asymmetry from super-curvature fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Byrnes, Christian [Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom); Domènech, Guillem; Sasaki, Misao [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Takahashi, Tomo, E-mail: C.Byrnes@sussex.ac.uk, E-mail: guillem.domenech@yukawa.kyoto-u.ac.jp, E-mail: misao@yukawa.kyoto-u.ac.jp, E-mail: tomot@cc.saga-u.ac.jp [Department of Physics, Saga University, Saga 840-8502 (Japan)

    2016-12-01

    We reconsider the observed CMB dipolar asymmetry in the context of open inflation, where a supercurvature mode might survive the bubble nucleation. If such a supercurvature mode modulates the amplitude of the curvature power spectrum, it would easily produce an asymmetry in the power spectrum. We show that current observational data can be accommodated in a three-field model, with simple quadratic potentials and a non-trivial field-space metric. Despite the presence of three fields, we believe this model is so far the simplest that can match current observations. We are able to match the observed strong scale dependence of the dipolar asymmetry, without a fine tuning of initial conditions, breaking slow roll or adding a feature to the evolution of any field.

  17. Experiment-specific cosmic microwave background calculations made easier - Approximation formula for smoothed delta T/T windows

    Science.gov (United States)

    Gorski, Krzysztof M.

    1993-01-01

    Simple and easy to implement elementary function approximations are introduced to the spectral window functions needed in calculations of model predictions of the cosmic microwave backgrond (CMB) anisotropy. These approximations allow the investigator to obtain model delta T/T predictions in terms of single integrals over the power spectrum of cosmological perturbations and to avoid the necessity of performing the additional integrations. The high accuracy of these approximations is demonstrated here for the CDM theory-based calculations of the expected delta T/T signal in several experiments searching for the CMB anisotropy.

  18. Present status and future prospects of the atmospheric neutrino experiments

    International Nuclear Information System (INIS)

    Kajita, Takaaki

    2003-01-01

    During the last several years, the understanding of the neutrino masses and mixings has been improved significantly. In this paper, we discuss neutrino oscillation studies in atmospheric neutrino experiments. Prospects of future atmospheric neutrino experiments are also discussed

  19. Constraining star formation through redshifted CO and CII emission in archival CMB data

    Science.gov (United States)

    Switzer, Eric

    cross-power with galaxy surveys directly constrains the redshifted line emission. Residual foregrounds and interlopers increase errors but do not add bias. There are 300 resolution elements of the 7 degree FIRAS top-hat inside the BOSS quasar survey, spanning 66 spectral pixels to z 2. While FIRAS noise per voxel is 200 times brighter than the expected peak cosmological CII emission, strt-N averaging of spatial and spectral modes above results in a gain of 140. Intensity mapping is in its infancy, with predictions for surface brightness of line emission ranging over an order of magnitude, and limited knowledge of the intensity-weighted bias. Even if only upper bounds are possible, they complement existing measurements of individual galaxies, which can constitute a lower bound because they measure only a portion of the luminosity function. FIRAS and Planck provide unique opportunities to pursue CII and CO intensity mapping with well-characterized instruments that overlap with galaxy surveys in angular coverage and redshift. We will re-analyze the FIRAS data to optimize sensitivity and robustness, developing a spectral line response model, splitting the data into sub-missions to isolate noise properties, and re- evaluating data cuts. The tools and results here will support future survey concepts with significantly lower noise, such as PIXIE, PRISM, SPHEREX and proposed suborbital experiments designed specifically for intensity mapping. There is a growing appreciation that many phenomena could lie just below the published FIRAS bounds. The proposed work is an early step toward this new science.

  20. Planck 2015 results IX. Diffuse component separation: CMB maps

    DEFF Research Database (Denmark)

    Adam, R.; Ade, P. A R; Aghanim, N.

    2016-01-01

    We present foreground-reduced cosmic microwave background (CMB) maps derived from the full Planck data set in both temperature and polarization. Compared to the corresponding Planck 2013 temperature sky maps, the total data volume is larger by a factor of 3.2 for frequencies between 30 and 70 GHz......, and between 4.5 and 6.1μK averaged over pixels. The cosmological parameters derived from the analysis of temperature power spectra are in agreement at the 1σ level with the Planck 2015 likelihood. Unresolved mismatches between the noise properties of the data and simulations prevent a satisfactory description...... of the higher-order statistical properties of the polarization maps. Thus, the primary applications of these polarization maps are those that do not require massive simulations for accurate estimation of uncertainties, for instance estimation of cross-spectra and cross-correlations, or stacking analyses...

  1. The effective gravitational decoupling between dark matter and the CMB

    CERN Document Server

    Voruz, Luc; Tram, Thomas

    2014-01-01

    We present a detailed and self-contained analytical derivation of the evolution of sub-horizon cosmological perturbations before decoupling, based on previous work by S. Weinberg. These solutions are valid in the minimal LCDM scenario, to first order in perturbation theory, in the tight-coupling limit and neglecting neutrino shear stress. We compare them to exact numerical solutions computed by a Boltzmann code, and we find the two to be in very good agreement. The analytic solutions show explicitly that CDM and the baryon-photon fluid effectively behave as separate self-gravitating fluids until the epoch of baryon drag. This in turn leads to the surprising conclusion that the CMB is much less sensitive to the clustering properties of minimally coupled Dark Matter models than what would be naively expected.

  2. Reconstruction of a direction-dependent primordial power spectrum from Planck CMB data

    Science.gov (United States)

    Durakovic, Amel; Hunt, Paul; Mukherjee, Suvodip; Sarkar, Subir; Souradeep, Tarun

    2018-02-01

    We consider the possibility that the primordial curvature perturbation is direction-dependent. To first order this is parameterised by a quadrupolar modulation of the power spectrum and results in statistical anisotropy of the CMB, which can be quantified using `bipolar spherical harmonics'. We compute these for the Planck DR2-2015 SMICA map and estimate the noise covariance from Planck Full Focal Plane 9 simulations. A constant quadrupolar modulation is detected with 2.2 σ significance, dropping to 2σ when the primordial power is assumed to scale with wave number k as a power law. Going beyond previous work we now allow the spectrum to have arbitrary scale-dependence. Our non-parametric reconstruction then suggests several spectral features, the most prominent at k ~ 0.006 Mpc‑1. When a constant quadrupolar modulation is fitted to data in the range 0.005 <= k/Mpc‑1 <= 0.008, its preferred directions are found to be related to the cosmic hemispherical asymmetry and the CMB dipole. To determine the significance we apply two test statistics to our reconstructions of the quadrupolar modulation from data, against reconstructions of realisations of noise only. With a test statistic sensitive only to the amplitude of the modulation, the reconstructions from the multipole range 30 <= l <= 1200 are unusual with 2.1σ significance. With the second test statistic, sensitive also to the direction, the significance rises to 6.9σ. Our approach is easily generalised to include other data sets such as polarisation, large-scale structure and forthcoming 21-cm line observations which will enable these anomalies to be investigated further.

  3. Neutrino Oscillation Parameter Sensitivity in Future Long-Baseline Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bass, Matthew [Colorado State Univ., Fort Collins, CO (United States)

    2014-01-01

    The study of neutrino interactions and propagation has produced evidence for physics beyond the standard model and promises to continue to shed light on rare phenomena. Since the discovery of neutrino oscillations in the late 1990s there have been rapid advances in establishing the three flavor paradigm of neutrino oscillations. The 2012 discovery of a large value for the last unmeasured missing angle has opened the way for future experiments to search for charge-parity symmetry violation in the lepton sector. This thesis presents an analysis of the future sensitivity to neutrino oscillations in the three flavor paradigm for the T2K, NO A, LBNE, and T2HK experiments. The theory of the three flavor paradigm is explained and the methods to use these theoretical predictions to design long baseline neutrino experiments are described. The sensitivity to the oscillation parameters for each experiment is presented with a particular focus on the search for CP violation and the measurement of the neutrino mass hierarchy. The variations of these sensitivities with statistical considerations and experimental design optimizations taken into account are explored. The effects of systematic uncertainties in the neutrino flux, interaction, and detection predictions are also considered by incorporating more advanced simulations inputs from the LBNE experiment.

  4. The status of the CYGNUS experiment: Past, present and future

    Energy Technology Data Exchange (ETDEWEB)

    Haines, T.J.; Berley, D.; Chang, C.Y.; Dingus, B.L.; Goodman, J.A.; Stark, M. (Maryland Univ., College Park (USA)); Burman, R.L.; Cady, D.R.; Hoffman, C.M.; Lloyd-Evans, J.; Nagle, D.E.; Potter, M.; Sandberg, V.D.; Wilkinson, C.A. (Los Alamos National Lab., NM (USA)); Alexandreas, D.E.; Allen, R.C.; Biller, S.; Dion, G.M.; Lu, X.Q.; Vishwanath, P.R.; Yodh, G.B. (California Univ., Irvine (USA)); Ellsworth, R.W. (George Mason Univ., Fairfax, VA (USA)); CYGNUS Collaboration

    1990-03-01

    The CYGNUS experiment, located in Los Alamos, NM, has been continuously operating since April 2, 1986. The experiment consists of an air shower array and an associated 44 m{sup 2} detector; its large size, good angular resolution, muon detection, and low energy threshold make it a unique experiment among those currently operating. The experiment has undergone continuous expansion in several stages since it began operation. The experiment, its expansion, and further plans for the future will be described. (orig.).

  5. THE DISTORTION OF THE COSMIC MICROWAVE BACKGROUND SPECTRUM DUE TO INTERGALACTIC DUST

    Energy Technology Data Exchange (ETDEWEB)

    Imara, Nia; Loeb, Abraham, E-mail: nimara@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-07-10

    Infrared emission from intergalactic dust might compromise the ability of future experiments to detect subtle spectral distortions in the Cosmic Microwave Background (CMB) from the early universe. We provide the first estimate of foreground contamination of the CMB signal due to diffuse dust emission in the intergalactic medium. We use models of the extragalactic background light to calculate the intensity of intergalactic dust emission and find that emission by intergalactic dust at z ≲ 0.5 exceeds the sensitivity of the planned Primordial Inflation Explorer to CMB spectral distortions by 1–3 orders of magnitude. In the frequency range ν = 150–2400 GHz, we place an upper limit of 0.06% on the contribution to the far-infrared background from intergalactic dust emission.

  6. Constraining quantum collapse inflationary models with CMB data

    Energy Technology Data Exchange (ETDEWEB)

    Benetti, Micol; Alcaniz, Jailson S. [Departamento de Astronomia, Observatório Nacional, 20921-400, Rio de Janeiro, RJ (Brazil); Landau, Susana J., E-mail: micolbenetti@on.br, E-mail: slandau@df.uba.ar, E-mail: alcaniz@on.br [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, PabI, Buenos Aires 1428 (Argentina)

    2016-12-01

    The hypothesis of the self-induced collapse of the inflaton wave function was proposed as responsible for the emergence of inhomogeneity and anisotropy at all scales. This proposal was studied within an almost de Sitter space-time approximation for the background, which led to a perfect scale-invariant power spectrum, and also for a quasi-de Sitter background, which allows to distinguish departures from the standard approach due to the inclusion of the collapse hypothesis. In this work we perform a Bayesian model comparison for two different choices of the self-induced collapse in a full quasi-de Sitter expansion scenario. In particular, we analyze the possibility of detecting the imprint of these collapse schemes at low multipoles of the anisotropy temperature power spectrum of the Cosmic Microwave Background (CMB) using the most recent data provided by the Planck Collaboration. Our results show that one of the two collapse schemes analyzed provides the same Bayesian evidence of the minimal standard cosmological model ΛCDM, while the other scenario is weakly disfavoured with respect to the standard cosmology.

  7. Advanced test reactor testing experience-past, present and future

    International Nuclear Information System (INIS)

    Marshall, Frances M.

    2006-01-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is one of the world's premier test reactors for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The physical configuration of the ATR, a 4-leaf clover shape, allows the reactor to be operated at different power levels in the corner 'lobes' to allow for different testing conditions for multiple simultaneous experiments. The combination of high flux (maximum thermal neutron fluxes of 1E15 neutrons per square centimeter per second and maximum fast [E>1.0 MeV] neutron fluxes of 5E14 neutrons per square centimeter per second) and large test volumes (up to 122 cm long and 12.7 cm diameter) provide unique testing opportunities. The current experiments in the ATR are for a variety of test sponsors - US government, foreign governments, private researchers, and commercial companies needing neutron irradiation services. There are three basic types of test configurations in the ATR. The simplest configuration is the sealed static capsule, which places the capsule in direct contact with the primary coolant. The next level of experiment complexity is an instrumented lead experiment, which allows for active control of experiment conditions during the irradiation. The most complex experiment is the pressurized water loop, in which the test sample can be subjected to the exact environment of a pressurized water reactor. For future research, some ATR modifications and enhancements are currently planned. This paper provides more details on some of the ATR capabilities, key design features, experiments, and future plans

  8. Fast and accurate CMB computations in non-flat FLRW universes

    CERN Document Server

    Lesgourgues, Julien

    2014-01-01

    We present a new method for calculating CMB anisotropies in a non-flat Friedmann universe, relying on a very stable algorithm for the calculation of hyperspherical Bessel functions, that can be pushed to arbitrary precision levels. We also introduce a new approximation scheme which gradually takes over in the flat space limit, and significant speeds-up calculations. Our method is implemented in the Boltzmann code CLASS. It can be used to benchmark the accuracy of the CAMB code in curved space, which is found to match expectations. For default precision settings, corresponding to 0.1% for scalar temperature spectra and 0.2% for scalar polarisation spectra, our code is two to three times faster, depending on curvature. We also simplify the temperature and polarisation source terms significantly, so the different contributions to the $C_\\ell$'s are easy to identify inside the code.

  9. CMB seen through random Swiss Cheese

    Energy Technology Data Exchange (ETDEWEB)

    Lavinto, Mikko; Räsänen, Syksy, E-mail: mikko.lavinto@helsinki.fi, E-mail: syksy.rasanen@iki.fi [Physics Department, University of Helsinki and Helsinki Institute of Physics, P.O. Box 64, FIN-00014, University of Helsinki (Finland)

    2015-10-01

    We consider a Swiss Cheese model with a random arrangement of Lemaȋtre-Tolman-Bondi holes in ΛCDM cheese. We study two kinds of holes with radius r{sub b}=50 h{sup −1} Mpc, with either an underdense or an overdense centre, called the open and closed case, respectively. We calculate the effect of the holes on the temperature, angular diameter distance and, for the first time in Swiss Cheese models, shear of the CMB . We quantify the systematic shift of the mean and the statistical scatter, and calculate the power spectra. In the open case, the temperature power spectrum is three orders of magnitude below the linear ISW spectrum. It is sensitive to the details of the hole, in the closed case the amplitude is two orders of magnitude smaller. In contrast, the power spectra of the distance and shear are more robust, and agree with perturbation theory and previous Swiss Cheese results. We do not find a statistically significant mean shift in the sky average of the angular diameter distance, and obtain the 95% limit |Δ D{sub A}/ D-bar {sub A}|∼< 10{sup −4}. We consider the argument that areas of spherical surfaces are nearly unaffected by perturbations, which is often invoked in light propagation calculations. The closed case is consistent with this at 1σ, whereas in the open case the probability is only 1.4%.

  10. Optimal strategy for polarization modulation in the LSPE-SWIPE experiment

    Science.gov (United States)

    Buzzelli, A.; de Bernardis, P.; Masi, S.; Vittorio, N.; de Gasperis, G.

    2018-01-01

    Context. Cosmic microwave background (CMB) B-mode experiments are required to control systematic effects with an unprecedented level of accuracy. Polarization modulation by a half wave plate (HWP) is a powerful technique able to mitigate a large number of the instrumental systematics. Aims: Our goal is to optimize the polarization modulation strategy of the upcoming LSPE-SWIPE balloon-borne experiment, devoted to the accurate measurement of CMB polarization at large angular scales. Methods: We departed from the nominal LSPE-SWIPE modulation strategy (HWP stepped every 60 s with a telescope scanning at around 12 deg/s) and performed a thorough investigation of a wide range of possible HWP schemes (either in stepped or continuously spinning mode and at different azimuth telescope scan-speeds) in the frequency, map and angular power spectrum domain. In addition, we probed the effect of high-pass and band-pass filters of the data stream and explored the HWP response in the minimal case of one detector for one operation day (critical for the single-detector calibration process). We finally tested the modulation performance against typical HWP-induced systematics. Results: Our analysis shows that some stepped HWP schemes, either slowly rotating or combined with slow telescope modulations, represent poor choices. Moreover, our results point out that the nominal configuration may not be the most convenient choice. While a large class of spinning designs provides comparable results in terms of pixel angle coverage, map-making residuals and BB power spectrum standard deviations with respect to the nominal strategy, we find that some specific configurations (e.g., a rapidly spinning HWP with a slow gondola modulation) allow a more efficient polarization recovery in more general real-case situations. Conclusions: Although our simulations are specific to the LSPE-SWIPE mission, the general outcomes of our analysis can be easily generalized to other CMB polarization experiments.

  11. Calorimetry for the Future Circular Collider experiments

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00510572; Kisiel, Adam

    2017-11-21

    The Future Circular Collider (FCC) Collaboration is preparing the next generation of experiments in high energy physics. The goal is to collide protons at 100 TeV centre–of–mass energy, seven times higher than at the most powerful existing accelerator, the Large Hadron Collider (LHC). Such machine would extend the research carried out at the LHC including the study of the Higgs boson, the search for the origin of the baryon asymmetry, the mass of neutrinos, and the dark matter. The detectors designed for the FCC experiments need to tackle the harsh conditions of the unprecedented collision energy and luminosity. At the same time, they need to provide precise measurements in a wider range of pseudorapidity than the existing experiments. The focus of this thesis is a design and performance studies of one of the sub-detectors, the electromagnetic calorimeter. Its aim is to measure the energy and the position of electrons, positrons, and photons produced in the collisions. The detector proposed in this thesis...

  12. Do joint CMB and HST data support a scale invariant spectrum?

    Energy Technology Data Exchange (ETDEWEB)

    Benetti, Micol; Graef, Leila L.; Alcaniz, Jailson S., E-mail: micolbenetti@on.br, E-mail: leilagraef@on.br, E-mail: alcaniz@on.br [Departamento de Astronomia, Observatório Nacional, 20921-400, Rio de Janeiro, RJ (Brazil)

    2017-04-01

    We combine current measurements of the local expansion rate, H {sub 0}, and Big Bang Nucleosynthesis (BBN) estimates of helium abundance with the latest cosmic microwave background (CMB) data from the Planck Collaboration to discuss the observational viability of the scale invariant Harrison-Zeldovch-Peebles (HZP) spectrum. We also analyze some of its extensions, namely, HZP + Y {sub P} and HZP + N {sub eff}, where Y {sub P} is the primordial helium mass fraction and N {sub eff} is the effective number of relativistic degrees of freedom. We perform a Bayesian analysis and show that the latter model is favored with respect to the standard cosmology for values of N {sub eff} lying in the interval 3.70 ± 0.13 (1σ), which is currently allowed by some independent analyses.

  13. The cosmic microwave background how it changed our understanding of the universe

    CERN Document Server

    Evans, Rhodri

    2015-01-01

    Rhodri Evans tells the story of what we know about the universe, from Jacobus Kapteyn’s Island universe at the turn of the 20th Century, and the discovery by Hubble that the nebulae were external to our own galaxy, through Gamow’s early work on the cosmic microwave background (CMB) and its subsequent discovery by Penzias and Wilson, to modern day satellite-lead CMB research. Research results from the ground-based experiments DASI, BOOMERANG, and satellite missions COBE, WMAP and Planck are explained and interpreted to show how our current picture of the universe was arrived at, and the author looks at the future of CMB research and what we still need to learn. This account is enlivened by Dr Rhodri Evans' personal connections to the characters and places in the story.

  14. Science with Future Cosmic Microwave Background Observations

    Energy Technology Data Exchange (ETDEWEB)

    Bernardis, P. de; Calvo, M.; Giordano, C.; Masi, S.; Nati, F.; Piacentini, F.; Schillaci, A. [Dipartimento di Fisica, Universita di Roma La Sapienza, P.le A. Moro 2, 00185 Roma (Italy)

    2009-10-15

    After the successful measurements of many ground based, balloon-borne and satellite experiments, which started the era of 'Precision Cosmology', Cosmic Microwave Background (CMB) observations are now focusing on two targets: the precision measurement of B-modes in the polarization field, and the measurement of the Sunyaev-Zeldovich effect in distant clusters of galaxies. Polarization measurements represent the best way to probe the very early universe, and the energy scale of inflation. Fine-scale anisotropy measurements, possibly with spectral capabilities, can provide important information on dark matter and dark energy. Here we describe original approaches to these measurements.

  15. Science with Future Cosmic Microwave Background Observations

    International Nuclear Information System (INIS)

    Bernardis, P. de; Calvo, M.; Giordano, C.; Masi, S.; Nati, F.; Piacentini, F.; Schillaci, A.

    2009-01-01

    After the successful measurements of many ground based, balloon-borne and satellite experiments, which started the era of 'Precision Cosmology', Cosmic Microwave Background (CMB) observations are now focusing on two targets: the precision measurement of B-modes in the polarization field, and the measurement of the Sunyaev-Zeldovich effect in distant clusters of galaxies. Polarization measurements represent the best way to probe the very early universe, and the energy scale of inflation. Fine-scale anisotropy measurements, possibly with spectral capabilities, can provide important information on dark matter and dark energy. Here we describe original approaches to these measurements.

  16. Fast and accurate CMB computations in non-flat FLRW universes

    Science.gov (United States)

    Lesgourgues, Julien; Tram, Thomas

    2014-09-01

    We present a new method for calculating CMB anisotropies in a non-flat Friedmann universe, relying on a very stable algorithm for the calculation of hyperspherical Bessel functions, that can be pushed to arbitrary precision levels. We also introduce a new approximation scheme which gradually takes over in the flat space limit and leads to significant reductions of the computation time. Our method is implemented in the Boltzmann code class. It can be used to benchmark the accuracy of the camb code in curved space, which is found to match expectations. For default precision settings, corresponding to 0.1% for scalar temperature spectra and 0.2% for scalar polarisation spectra, our code is two to three times faster, depending on curvature. We also simplify the temperature and polarisation source terms significantly, so the different contributions to the Cl 's are easy to identify inside the code.

  17. Fast and accurate CMB computations in non-flat FLRW universes

    International Nuclear Information System (INIS)

    Lesgourgues, Julien; Tram, Thomas

    2014-01-01

    We present a new method for calculating CMB anisotropies in a non-flat Friedmann universe, relying on a very stable algorithm for the calculation of hyperspherical Bessel functions, that can be pushed to arbitrary precision levels. We also introduce a new approximation scheme which gradually takes over in the flat space limit and leads to significant reductions of the computation time. Our method is implemented in the Boltzmann code class. It can be used to benchmark the accuracy of the camb code in curved space, which is found to match expectations. For default precision settings, corresponding to 0.1% for scalar temperature spectra and 0.2% for scalar polarisation spectra, our code is two to three times faster, depending on curvature. We also simplify the temperature and polarisation source terms significantly, so the different contributions to the C ℓ  's are easy to identify inside the code

  18. CMB constraints on the inflaton couplings and reheating temperature in α-attractor inflation

    Science.gov (United States)

    Drewes, Marco; Kang, Jin U.; Mun, Ui Ri

    2017-11-01

    We study reheating in α-attractor models of inflation in which the inflaton couples to other scalars or fermions. We show that the parameter space contains viable regions in which the inflaton couplings to radiation can be determined from the properties of CMB temperature fluctuations, in particular the spectral index. This may be the only way to measure these fundamental microphysical parameters, which shaped the universe by setting the initial temperature of the hot big bang and contain important information about the embedding of a given model of inflation into a more fundamental theory of physics. The method can be applied to other models of single field inflation.

  19. Interacting scalar tensor cosmology in light of SNeIa, CMB, BAO and OHD observational data sets

    International Nuclear Information System (INIS)

    Rabiei, Sayed Wrya; Saaidi, Khaled; Sheikhahmadi, Haidar; Aghamohammadi, Ali

    2016-01-01

    In this work, an interacting chameleon-like scalar field scenario, by considering SNeIa, CMB, BAO, and OHD data sets, is investigated. In fact, the investigation is realized by introducing an ansatz for the effective dark energy equation of state, which mimics the behavior of chameleon-like models. Based on this assumption, some cosmological parameters, including the Hubble, deceleration, and coincidence parameters, in such a mechanism are analyzed. It is realized that, to estimate the free parameters of a theoretical model, by regarding the systematic errors it is better that the whole of the above observational data sets would be considered. In fact, if one considers SNeIa, CMB, and BAO, but disregards OHD, it maybe leads to different results. Also, to get a better overlap between the contours with the constraint χ m 2 ≤ 1, the χ T 2 function could be re-weighted. The relative probability functions are plotted for marginalized likelihood L(Ω m0 , ω 1 , β) according to the two dimensional confidence levels 68.3, 90, and 95.4%. Meanwhile, the value of the free parameters which maximize the marginalized likelihoods using the above confidence levels are obtained. In addition, based on these calculations the minimum value of χ 2 based on the free parameters of the ansatz for the effective dark energy equation of state is achieved. (orig.)

  20. A String-Inspired Model for the Low-$\\ell$ CMB

    CERN Document Server

    Kitazawa, N.

    2015-07-09

    We present a semi--analytic exploration of some low--$\\ell$ angular power spectra inspired by "Brane Supersymmetry Breaking". This mechanism splits Bose and Fermi excitations in String Theory, leaving behind an exponential potential that is just too steep for the inflaton to emerge from the initial singularity while descending it. As a result, the scalar generically bounces against the exponential wall, which typically introduces an infrared depression and a pre--inflationary peak in the power spectrum of scalar perturbations. We elaborate on a possible link between this phenomenon and the low--$\\ell$ CMB. For the first 32 multipoles, combining the hard exponential with a milder one leading to $n_s\\simeq 0.96$ and with a small gaussian bump we have attained a reduction of $\\chi^{\\,2}$ to about 46% of the standard $\\Lambda$CDM setting, with both WMAP9 and PLANCK 2013 data. This result corresponds to a $\\chi^{\\,2}/DOF$ of about 0.45, to be compared with a $\\Lambda$CDM value of about 0.85. The preferred choices ...

  1. Studying Heavy Ion Collisions Using Methods From Cosmic Microwave Background (CMB Analysis

    Directory of Open Access Journals (Sweden)

    Gaardhøje J. J.

    2014-04-01

    Full Text Available We present and discuss a framework for studying the morphology of high-multiplicity events from relativistic heavy ion collisions using methods commonly employed in the analysis of the photons from the Cosmic Microwave Background (CMB. The analysis is based on the decomposition of the distribution of the number density of (charged particles expressed in polar and azimuthal coordinates into a sum of spherical harmonic functions. We present an application of the method exploting relevant symmetries to the study of azimuthal correlations arizing from collective flow among charged particles produced in relativistic heavy ion collisions. We discuss perspectives for event-by- event analyses, which with increasing collision energy will eventually open entirely new dimensions in the study of ultrarelaticistic heavy ion reactions.

  2. CMB anomalies and the effects of local features of the inflaton potential

    Energy Technology Data Exchange (ETDEWEB)

    Cadavid, Alexander Gallego [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); ICRANet, Pescara (Italy); Universidad de Antioquia, Instituto de Fisica, Medellin (Colombia); Romano, Antonio Enea [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); University of Torino, Department of Physics, Turin (Italy); Universidad de Antioquia, Instituto de Fisica, Medellin (Colombia); Gariazzo, Stefano [University of Torino, Department of Physics, Turin (Italy); INFN, Sezione di Torino, Turin (Italy); Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Paterna, Valencia (Spain)

    2017-04-15

    Recent analysis of the WMAP and Planck data have shown the presence of a dip and a bump in the spectrum of primordial perturbations at the scales k = 0.002 Mpc{sup -1}, respectively. We analyze for the first time the effects of a local feature in the inflaton potential to explain the observed deviations from scale invariance in the primordial spectrum. We perform a best-fit analysis of the cosmic microwave background (CMB) radiation temperature and polarization data. The effects of the features can improve the agreement with observational data respect to the featureless model. The best-fit local feature affects the primordial curvature spectrum mainly in the region of the bump, leaving the spectrum unaffected on other scales. (orig.)

  3. Tensor Minkowski Functionals: first application to the CMB

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Vidhya [Indian Institute of Astrophysics, Koramangala II Block, Bangalore 560 034 (India); Chingangbam, Pravabati, E-mail: vidhya@iiap.res.in, E-mail: prava@iiap.res.in [Indian Institute of Science, C.V. Raman Ave, Bangalore 560 012 (India)

    2017-06-01

    Tensor Minkowski Functionals (TMFs) are tensor generalizations of the usual Minkowski Functionals which are scalar quantities. We introduce them here for use in cosmological analysis, in particular to analyze the Cosmic Microwave Background (CMB) radiation. They encapsulate information about the shapes of structures and the orientation of distributions of structures. We focus on one of the TMFs, namely W {sub 2}{sup 1,1}, which is the (1,1) rank tensor generalization of the genus. The ratio of the eigenvalues of the average of W {sub 2}{sup 1,1} over all structures, α, encodes the net orientation of the structures; and the average of the ratios of the eigenvalues of W {sub 2}{sup 1,1} for each structure, β, encodes the net intrinsic anisotropy of the structures. We have developed a code that computes W {sub 2}{sup 1,1}, and from it α and β, for a set of structures on the 2-dimensional Euclidean plane. We use it to compute α and β as functions of chosen threshold levels for simulated Gaussian and isotropic CMB temperature and E mode fields. We obtain the value of α to be one for both temperature and E mode, which means that we recover the statistical isotropy of density fluctuations that we input in the simulations. We find that the standard ΛCDM model predicts a charateristic shape of β for temperature and E mode as a function of the threshold, and the average over thresholds is β∼ 0.62 for temperature and β∼ 0.63 for E mode. Accurate measurements of α and β can be used to test the standard model of cosmology and to search for deviations from it. For this purpose we compute α and β for temperature and E mode data of various data sets from PLANCK mission. We compare the values measured from observed data with those obtained from simulations to which instrument beam and noise characteristics of the 44GHz frequency channel have been added (which are provided as part of the PLANCK data release). We find very good agreement of β and α between all

  4. Impact of reionization on CMB polarization tests of slow-roll inflation

    International Nuclear Information System (INIS)

    Mortonson, Michael J.; Hu, Wayne

    2008-01-01

    Estimates of inflationary parameters from the CMB B-mode polarization spectrum on the largest scales depend on knowledge of the reionization history, especially at low tensor-to-scalar ratio. Assuming an incorrect reionization history in the analysis of such polarization data can strongly bias the inflationary parameters. One consequence is that the single-field slow-roll consistency relation between the tensor-to-scalar ratio and tensor tilt might be excluded with high significance even if this relation holds in reality. We explain the origin of the bias and present case studies with various tensor amplitudes and noise characteristics. A more model-independent approach can account for uncertainties about reionization, and we show that parametrizing the reionization history by a set of its principal components with respect to E-mode polarization removes the bias in inflationary parameter measurement with little degradation in precision

  5. Large arrays of dual-polarized multichroic TES detectors for CMB measurements with the SPT-3G receiver

    Science.gov (United States)

    Posada, Chrystian M.; Ade, Peter A. R.; Anderson, Adam J.; Avva, Jessica; Ahmed, Zeeshan; Arnold, Kam S.; Austermann, Jason; Bender, Amy N.; Benson, Bradford A.; Bleem, Lindsey; Byrum, Karen; Carlstrom, John E.; Carter, Faustin W.; Chang, Clarence; Cho, Hsiao-Mei; Cukierman, Ari; Czaplewski, David A.; Ding, Junjia; Divan, Ralu N. S.; de Haan, Tijmen; Dobbs, Matt; Dutcher, Daniel; Everett, Wenderline; Gannon, Renae N.; Guyser, Robert J.; Halverson, Nils W.; Harrington, Nicholas L.; Hattori, Kaori; Henning, Jason W.; Hilton, Gene C.; Holzapfel, William L.; Huang, Nicholas; Irwin, Kent D.; Jeong, Oliver; Khaire, Trupti; Korman, Milo; Kubik, Donna L.; Kuo, Chao-Lin; Lee, Adrian T.; Leitch, Erik M.; Lendinez Escudero, Sergi; Meyer, Stephan S.; Miller, Christina S.; Montgomery, Joshua; Nadolski, Andrew; Natoli, Tyler J.; Nguyen, Hogan; Novosad, Valentyn; Padin, Stephen; Pan, Zhaodi; Pearson, John E.; Rahlin, Alexandra; Reichardt, Christian L.; Ruhl, John E.; Saliwanchik, Benjamin; Shirley, Ian; Sayre, James T.; Shariff, Jamil A.; Shirokoff, Erik D.; Stan, Liliana; Stark, Antony A.; Sobrin, Joshua; Story, Kyle; Suzuki, Aritoki; Tang, Qing Yang; Thakur, Ritoban B.; Thompson, Keith L.; Tucker, Carole E.; Vanderlinde, Keith; Vieira, Joaquin D.; Wang, Gensheng; Whitehorn, Nathan; Yefremenko, Volodymyr; Yoon, Ki Won

    2016-07-01

    Detectors for cosmic microwave background (CMB) experiments are now essentially background limited, so a straightforward alternative to improve sensitivity is to increase the number of detectors. Large arrays of multichroic pixels constitute an economical approach to increasing the number of detectors within a given focal plane area. Here, we present the fabrication of large arrays of dual-polarized multichroic transition-edge-sensor (TES) bolometers for the South Pole Telescope third-generation CMB receiver (SPT-3G). The complete SPT-3G receiver will have 2690 pixels, each with six detectors, allowing for individual measurement of three spectral bands (centered at 95 GHz, 150 GHz and 220 GHz) in two orthogonal polarizations. In total, the SPT-3G focal plane will have 16140 detectors. Each pixel is comprised of a broad-band sinuous antenna coupled to a niobium microstrip transmission line. In-line filters are used to define the different band-passes before the millimeter-wavelength signal is fed to the respective Ti/Au TES sensors. Detectors are read out using a 64x frequency domain multiplexing (fMux) scheme. The microfabrication of the SPT-3G detector arrays involves a total of 18 processes, including 13 lithography steps. Together with the fabrication process, the effect of processing on the Ti/Au TES's Tc is discussed. In addition, detectors fabricated with Ti/Au TES films with Tc between 400 mK 560 mK are presented and their thermal characteristics are evaluated. Optical characterization of the arrays is presented as well, indicating that the response of the detectors is in good agreement with the design values for all three spectral bands (95 GHz, 150 GHz, and 220 GHz). The measured optical efficiency of the detectors is between 0.3 and 0.8. Results discussed here are extracted from a batch of research of development wafers used to develop the baseline process for the fabrication of the arrays of detectors to be deployed with the SPT-3G receiver. Results from

  6. Status and Integrated Focal Plane Characterization of Simons Array - Cosmic Microwave Background Polarimetry Experiment

    Science.gov (United States)

    Roberts, Hayley; POLARBEAR

    2018-06-01

    Simons Array is a cosmic microwave background (CMB) polarization experiment located at 5,200 meter altitude site in the Atacama desert in Chile. The science goals of the Simons Array are to characterize the CMB B-mode signal from gravitational lensing, and search for B-mode polarization generated from inflationary gravitational waves.In 2012, POLARBEAR-1 (PB-1) began observations and the POLARBEAR team has published the first measurements of non-zero polarization B-mode polarization angular power spectrum where gravitational lensing of CMB is the dominant signal.POLARBEAR-2A (PB-2A), the first of three receivers of Simons Array, will have 7,588 polarization sensitive Transition Edge Sensor (TES) bolometers with frequencies 90 GHz and 150 GHz. This represents a factor of 6 increase in detector count compared to PB-1. Once Simons Array is fully deployed, the focal plane array will consist 22,764 TES bolometers across 90 GHz, 150 GHz, 220 GHz, and 270 GHz with a projected instantaneous sensitivity of 2.5 µK√s. Here we present the status of PB-2A and characterization of the integrated focal plane to be deployed summer of 2018.

  7. Measurement of the cosmic microwave background polarization lensing power spectrum with the POLARBEAR experiment.

    Science.gov (United States)

    Ade, P A R; Akiba, Y; Anthony, A E; Arnold, K; Atlas, M; Barron, D; Boettger, D; Borrill, J; Chapman, S; Chinone, Y; Dobbs, M; Elleflot, T; Errard, J; Fabbian, G; Feng, C; Flanigan, D; Gilbert, A; Grainger, W; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Holzapfel, W L; Hori, Y; Howard, J; Hyland, P; Inoue, Y; Jaehnig, G C; Jaffe, A; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Le Jeune, M; Lee, A T; Linder, E; Leitch, E M; Lungu, M; Matsuda, F; Matsumura, T; Meng, X; Miller, N J; Morii, H; Moyerman, S; Myers, M J; Navaroli, M; Nishino, H; Paar, H; Peloton, J; Quealy, E; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Schanning, I; Schenck, D E; Sherwin, B; Shimizu, A; Shimmin, C; Shimon, M; Siritanasak, P; Smecher, G; Spieler, H; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Takakura, S; Tomaru, T; Wilson, B; Yadav, A; Zahn, O

    2014-07-11

    Gravitational lensing due to the large-scale distribution of matter in the cosmos distorts the primordial cosmic microwave background (CMB) and thereby induces new, small-scale B-mode polarization. This signal carries detailed information about the distribution of all the gravitating matter between the observer and CMB last scattering surface. We report the first direct evidence for polarization lensing based on purely CMB information, from using the four-point correlations of even- and odd-parity E- and B-mode polarization mapped over ∼30 square degrees of the sky measured by the POLARBEAR experiment. These data were analyzed using a blind analysis framework and checked for spurious systematic contamination using null tests and simulations. Evidence for the signal of polarization lensing and lensing B modes is found at 4.2σ (stat+sys) significance. The amplitude of matter fluctuations is measured with a precision of 27%, and is found to be consistent with the Lambda cold dark matter cosmological model. This measurement demonstrates a new technique, capable of mapping all gravitating matter in the Universe, sensitive to the sum of neutrino masses, and essential for cleaning the lensing B-mode signal in searches for primordial gravitational waves.

  8. Endovascular Neurosurgery: Personal Experience and Future Perspectives.

    Science.gov (United States)

    Raymond, Jean

    2016-09-01

    From Luessenhop's early clinical experience until the present day, experimental methods have been introduced to make progress in endovascular neurosurgery. A personal historical narrative, spanning the 1980s to 2010s, with a review of past opportunities, current problems, and future perspectives. Although the technology has significantly improved, our clinical culture remains a barrier to methodologically sound and safe innovative care and progress. We must learn how to safely practice endovascular neurosurgery in the presence of uncertainty and verify patient outcomes in real time. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. From the past to the future: Integrating work experience into the design process.

    Science.gov (United States)

    Bittencourt, João Marcos; Duarte, Francisco; Béguin, Pascal

    2017-01-01

    Integrating work activity issues into design process is a broadly discussed theme in ergonomics. Participation is presented as the main means for such integration. However, a late participation can limit the development of both project solutions and future work activity. This article presents the concept of construction of experience aiming at the articulated development of future activities and project solutions. It is a non-teleological approach where the initial concepts will be transformed by the experience built up throughout the design process. The method applied was a case study of an ergonomic participation during the design of a new laboratory complex for biotechnology research. Data was obtained through analysis of records in a simulation process using a Lego scale model and interviews with project participants. The simulation process allowed for developing new ways of working and generating changes in the initial design solutions, which enable workers to adopt their own developed strategies for conducting work more safely and efficiently in the future work system. Each project decision either opens or closes a window of opportunities for developing a future activity. Construction of experience in a non-teleological design process allows for understanding the consequences of project solutions for future work.

  10. Planck 2015 results: XI. CMB power spectra, likelihoods, and robustness of parameters

    DEFF Research Database (Denmark)

    Aghanim, N.; Arnaud, M.; Ashdown, M.

    2016-01-01

    on the same hybrid approach used for the previous release, i.e., a pixel-based likelihood at low multipoles (ℓ data and of Planck polarization......This paper presents the Planck 2015 likelihoods, statistical descriptions of the 2-point correlationfunctions of the cosmic microwave background (CMB) temperature and polarization fluctuations that account for relevant uncertainties, both instrumental and astrophysical in nature. They are based...... information, along with more detailed models of foregrounds and instrumental uncertainties. The increased redundancy brought by more than doubling the amount of data analysed enables further consistency checks and enhanced immunity to systematic effects. It also improves the constraining power of Planck...

  11. ACTPol: Status and preliminary CMB polarization results from the Atacama Cosmology Telescope

    Science.gov (United States)

    Koopman, Brian

    2014-03-01

    The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive upgrade for the Atacama Cosmology Telescope, located at an elevation of 5190 m on Cerro Toco in Chile. In summer 2013, ACTPol achieved first light with one third of the final detector configuration. The remaining two thirds of the detector array will be installed during spring 2014, enabling full sensitivity, high resolution, observations at both 90 GHz and 150 GHz. Using approximately 3,000 transition-edge sensor bolometers, ACTPol will enable measurements of small angular scale polarization anisotropies in the Cosmic Microwave Background (CMB). I will present a status update for the ACTPol receiver and some preliminary results. ACTPol measurements will allow us to probe the spectral index of inflation as well as to constrain early dark energy and the sum of neutrino masses.

  12. Measurements of the Temperature and E-mode Polarization of the CMB from 500 Square Degrees of SPTpol Data

    Science.gov (United States)

    Henning, J. W.; Sayre, J. T.; Reichardt, C. L.; Ade, P. A. R.; Anderson, A. J.; Austermann, J. E.; Beall, J. A.; Bender, A. N.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Chiang, H. C.; Cho, H.-M.; Citron, R.; Corbett Moran, C.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Dobbs, M. A.; Everett, W.; Gallicchio, J.; George, E. M.; Gilbert, A.; Halverson, N. W.; Harrington, N.; Hilton, G. C.; Holder, G. P.; Holzapfel, W. L.; Hoover, S.; Hou, Z.; Hrubes, J. D.; Huang, N.; Hubmayr, J.; Irwin, K. D.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Li, D.; Lowitz, A.; Manzotti, A.; McMahon, J. J.; Meyer, S. S.; Mocanu, L.; Montgomery, J.; Nadolski, A.; Natoli, T.; Nibarger, J. P.; Novosad, V.; Padin, S.; Pryke, C.; Ruhl, J. E.; Saliwanchik, B. R.; Schaffer, K. K.; Sievers, C.; Smecher, G.; Stark, A. A.; Story, K. T.; Tucker, C.; Vanderlinde, K.; Veach, T.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Wu, W. L. K.; Yefremenko, V.

    2018-01-01

    We present measurements of the E-mode polarization angular auto-power spectrum (EE) and temperature–E-mode cross-power spectrum (TE) of the cosmic microwave background (CMB) using 150 GHz data from three seasons of SPTpol observations. We report the power spectra over the spherical harmonic multipole range 50 1050 and {\\ell }> 1475, respectively. The observations cover 500 {\\deg }2, a fivefold increase in area compared to previous SPTpol analyses, which increases our sensitivity to the photon diffusion damping tail of the CMB power spectra enabling tighter constraints on ΛCDM model extensions. After masking all sources with unpolarized flux > 50 mJy, we place a 95% confidence upper limit on residual polarized point-source power of {D}{\\ell }={\\ell }({\\ell }+1){C}{\\ell }/2π masking. We find that the SPTpol data set is in mild tension with the ΛCDM model (2.1σ ), and different data splits prefer parameter values that differ at the ∼ 1 σ level. When fitting SPTpol data at {\\ell }data at {\\ell }> 1000 results in a preference for a higher value of the expansion rate ({H}0=71.3+/- 2.1 {km} {{{s}}}-1{{Mpc}}-1 ) and a lower value for present-day density fluctuations ({σ }8=0.77+/- 0.02).

  13. Interacting scalar tensor cosmology in light of SNeIa, CMB, BAO and OHD observational data sets

    Energy Technology Data Exchange (ETDEWEB)

    Rabiei, Sayed Wrya; Saaidi, Khaled [Faculty of Science University of Kurdistan, Department of Physics, Sanandaj (Iran, Islamic Republic of); Sheikhahmadi, Haidar [Faculty of Science University of Kurdistan, Department of Physics, Sanandaj (Iran, Islamic Republic of); Institute for Advance Studies in Basic Sciences (IASBS) Gava Zang, Zanjan (Iran, Islamic Republic of); Aghamohammadi, Ali [Sanandaj Branch Islamic Azad University, Sanandaj (Iran, Islamic Republic of)

    2016-02-15

    In this work, an interacting chameleon-like scalar field scenario, by considering SNeIa, CMB, BAO, and OHD data sets, is investigated. In fact, the investigation is realized by introducing an ansatz for the effective dark energy equation of state, which mimics the behavior of chameleon-like models. Based on this assumption, some cosmological parameters, including the Hubble, deceleration, and coincidence parameters, in such a mechanism are analyzed. It is realized that, to estimate the free parameters of a theoretical model, by regarding the systematic errors it is better that the whole of the above observational data sets would be considered. In fact, if one considers SNeIa, CMB, and BAO, but disregards OHD, it maybe leads to different results. Also, to get a better overlap between the contours with the constraint χ{sub m}{sup 2} ≤ 1, the χ{sub T}{sup 2} function could be re-weighted. The relative probability functions are plotted for marginalized likelihood L(Ω{sub m0}, ω{sub 1}, β) according to the two dimensional confidence levels 68.3, 90, and 95.4%. Meanwhile, the value of the free parameters which maximize the marginalized likelihoods using the above confidence levels are obtained. In addition, based on these calculations the minimum value of χ{sup 2} based on the free parameters of the ansatz for the effective dark energy equation of state is achieved. (orig.)

  14. A new trend in photomultiplier techniques and its implications in future collider experiments

    International Nuclear Information System (INIS)

    Kuroda, K.

    1989-01-01

    A recent trend in photomultiplier techniques, characterized by immunity to magnetic fields and position sensitivity of modern photomultiplier tubes, would potentially have great importance in future collider experiments. This article presents a survey on the actual status of the art, and some implications of such new techniques in future high-energy experiments. As an example of applications, our recent project of constructing an ultrafast scintillating-fibre detector on the basis of upgraded position-sensitive PMTs is outlined. (orig.)

  15. The Spanish experience - future developments in the gas industry

    International Nuclear Information System (INIS)

    Moraleda, P.

    1996-01-01

    Spanish experience is presented concerned it may be useful at the time of setting up a natural gas industry. The Spanish natural gas industry is of recent creation. Developing infrastructure and securing gas supplies have been major challenges. Challenges which, are also common for majority of the countries. The presentation is split into two blocks: the first one is on our experience in the establishment and consolidation of the market for natural gas in Spain. The second block deals with future developments aiming to strengthen the security of supply; and with the opportunities and threats the gas industry will face

  16. Analyzing the cosmic variance limit of remote dipole measurements of the cosmic microwave background using the large-scale kinetic Sunyaev Zel'dovich effect

    Energy Technology Data Exchange (ETDEWEB)

    Terrana, Alexandra; Johnson, Matthew C. [Department of Physics and Astronomy, York University, Toronto, Ontario, M3J 1P3 (Canada); Harris, Mary-Jean, E-mail: aterrana@perimeterinstitute.ca, E-mail: mharris8@perimeterinstitute.ca, E-mail: mjohnson@perimeterinstitute.ca [Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5 (Canada)

    2017-02-01

    Due to cosmic variance we cannot learn any more about large-scale inhomogeneities from the primary cosmic microwave background (CMB) alone. More information on large scales is essential for resolving large angular scale anomalies in the CMB. Here we consider cross correlating the large-scale kinetic Sunyaev Zel'dovich (kSZ) effect and probes of large-scale structure, a technique known as kSZ tomography. The statistically anisotropic component of the cross correlation encodes the CMB dipole as seen by free electrons throughout the observable Universe, providing information about long wavelength inhomogeneities. We compute the large angular scale power asymmetry, constructing the appropriate transfer functions, and estimate the cosmic variance limited signal to noise for a variety of redshift bin configurations. The signal to noise is significant over a large range of power multipoles and numbers of bins. We present a simple mode counting argument indicating that kSZ tomography can be used to estimate more modes than the primary CMB on comparable scales. A basic forecast indicates that a first detection could be made with next-generation CMB experiments and galaxy surveys. This paper motivates a more systematic investigation of how close to the cosmic variance limit it will be possible to get with future observations.

  17. Dark matter CMB constraints and likelihoods for poor particle physicists

    Energy Technology Data Exchange (ETDEWEB)

    Cline, James M.; Scott, Pat, E-mail: jcline@physics.mcgill.ca, E-mail: patscott@physics.mcgill.ca [Department of Physics, McGill University, 3600 rue University, Montréal, QC, H3A 2T8 (Canada)

    2013-03-01

    The cosmic microwave background provides constraints on the annihilation and decay of light dark matter at redshifts between 100 and 1000, the strength of which depends upon the fraction of energy ending up in the form of electrons and photons. The resulting constraints are usually presented for a limited selection of annihilation and decay channels. Here we provide constraints on the annihilation cross section and decay rate, at discrete values of the dark matter mass m{sub χ}, for all the annihilation and decay channels whose secondary spectra have been computed using PYTHIA in arXiv:1012.4515 (''PPPC 4 DM ID: a poor particle physicist cookbook for dark matter indirect detection''), namely e, μ, τ, V → e, V → μ, V → τ, u, d s, c, b, t, γ, g, W, Z and h. By interpolating in mass, these can be used to find the CMB constraints and likelihood functions from WMAP7 and Planck for a wide range of dark matter models, including those with annihilation or decay into a linear combination of different channels.

  18. Dark matter CMB constraints and likelihoods for poor particle physicists

    International Nuclear Information System (INIS)

    Cline, James M.; Scott, Pat

    2013-01-01

    The cosmic microwave background provides constraints on the annihilation and decay of light dark matter at redshifts between 100 and 1000, the strength of which depends upon the fraction of energy ending up in the form of electrons and photons. The resulting constraints are usually presented for a limited selection of annihilation and decay channels. Here we provide constraints on the annihilation cross section and decay rate, at discrete values of the dark matter mass m χ , for all the annihilation and decay channels whose secondary spectra have been computed using PYTHIA in arXiv:1012.4515 (''PPPC 4 DM ID: a poor particle physicist cookbook for dark matter indirect detection''), namely e, μ, τ, V → e, V → μ, V → τ, u, d s, c, b, t, γ, g, W, Z and h. By interpolating in mass, these can be used to find the CMB constraints and likelihood functions from WMAP7 and Planck for a wide range of dark matter models, including those with annihilation or decay into a linear combination of different channels

  19. Observable gravitational waves in pre-big bang cosmology: an update

    Energy Technology Data Exchange (ETDEWEB)

    Gasperini, M., E-mail: gasperini@ba.infn.it [Dipartimento di Fisica, Università di Bari, Via G. Amendola 173, 70126 Bari (Italy)

    2016-12-01

    In the light of the recent results concerning CMB observations and GW detection we address the question of whether it is possible, in a self-consistent inflationary framework, to simultaneously generate a spectrum of scalar metric perturbations in agreement with Planck data and a stochastic background of primordial gravitational radiation compatible with the design sensitivity of aLIGO/Virgo and/or eLISA. We suggest that this is possible in a string cosmology context, for a wide region of the parameter space of the so-called pre-big bang models. We also discuss the associated values of the tensor-to-scalar ratio relevant to the CMB polarization experiments. We conclude that future, cross-correlated results from CMB observations and GW detectors will be able to confirm or disprove pre-big bang models and—in any case—will impose new significant constraints on the basic string theory/cosmology parameters.

  20. Observable gravitational waves in pre-big bang cosmology: an update

    International Nuclear Information System (INIS)

    Gasperini, M.

    2016-01-01

    In the light of the recent results concerning CMB observations and GW detection we address the question of whether it is possible, in a self-consistent inflationary framework, to simultaneously generate a spectrum of scalar metric perturbations in agreement with Planck data and a stochastic background of primordial gravitational radiation compatible with the design sensitivity of aLIGO/Virgo and/or eLISA. We suggest that this is possible in a string cosmology context, for a wide region of the parameter space of the so-called pre-big bang models. We also discuss the associated values of the tensor-to-scalar ratio relevant to the CMB polarization experiments. We conclude that future, cross-correlated results from CMB observations and GW detectors will be able to confirm or disprove pre-big bang models and—in any case—will impose new significant constraints on the basic string theory/cosmology parameters.

  1. Experiences with OHP and Issues for the Future

    DEFF Research Database (Denmark)

    Bouvin, Niels Olof

    2000-01-01

    The OHSWG has by now moved from specifications to running code. This is an important step, not only because this is the only way of maturing the specifications, but also because it strengthens the credibility of the OHSWG. Showing that the ideas expressed by the OHSWG can be implemented is howeve...... are living in interesting times. Based on the experiences of developing the Arakne Environment, the author attempts to point out some worthwhile directions for future work within the OHSWG....

  2. ANALYSIS OF FOREIGN EXPERIENCE OF SYSTEMIC DEVELOPMENT OF FUTURE SOCIAL PEDAGOGISTS’ INFORMATIONAL CULTURE

    Directory of Open Access Journals (Sweden)

    Oleksandr A. Ratsul

    2014-10-01

    Full Text Available The article deals with the analysis of foreign experience of systemic development of future social pedagogists’ informational culture. A number of cultural universals are identified, each of them is treated as the core of culture. A list of components of future social pedagogists’ information culture is given. Personality traits that enable future social pedagogists to participate effectively in all kinds of work with information are characterized. Two structural levels (contents and functions in future social pedagogists’ information culture are singled out. Main functions of future social pedagogists’ information culture are defined. The structural organization of future social pedagogists’ information culture is analyzed.

  3. Modeling the Radio Foreground for Detection of CMB Spectral Distortions from the Cosmic Dawn and the Epoch of Reionization

    Energy Technology Data Exchange (ETDEWEB)

    Sathyanarayana Rao, Mayuri; Subrahmanyan, Ravi; Shankar, N Udaya [Raman Research Institute, C V Raman Avenue, Sadashivanagar, Bangalore 560080 (India); Chluba, Jens, E-mail: mayuris@rri.res.in [Jodrell Bank Centre for Astrophysics, University of Manchester, Oxford Road, M13 9PL (United Kingdom)

    2017-05-01

    Cosmic baryon evolution during the Cosmic Dawn and Reionization results in redshifted 21-cm spectral distortions in the cosmic microwave background (CMB). These encode information about the nature and timing of first sources over redshifts 30–6 and appear at meter wavelengths as a tiny CMB distortion along with the Galactic and extragalactic radio sky, which is orders of magnitude brighter. Therefore, detection requires precise methods to model foregrounds. We present a method of foreground fitting using maximally smooth (MS) functions. We demonstrate the usefulness of MS functions over traditionally used polynomials to separate foregrounds from the Epoch of Reionization (EoR) signal. We also examine the level of spectral complexity in plausible foregrounds using GMOSS, a physically motivated model of the radio sky, and find that they are indeed smooth and can be modeled by MS functions to levels sufficient to discern the vanilla model of the EoR signal. We show that MS functions are loss resistant and robustly preserve EoR signal strength and turning points in the residuals. Finally, we demonstrate that in using a well-calibrated spectral radiometer and modeling foregrounds with MS functions, the global EoR signal can be detected with a Bayesian approach with 90% confidence in 10 minutes’ integration.

  4. Advanced silicon sensors for future collider experiments

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00437143; Moll, Michael; Mannelli, Marcello

    In this thesis, we address two key technological challenges: the radiation tolerance assessment and timing performance studies of thin planar diodes to be used as sensing technology in the recently approved CMS forward sampling calorimeter for the HL-LHC operation, the High Granularity Calorimeter (HGCAL); and, complementary, we carried out a detailed study of a novel kind of position sensitive microstrip sensors for ionising particles which implements the well established charge-division method to determine the particle impinging position along the microstrip electrode direction; this technology could become an interesting low-material budget solution for the new generation of tracking detectors to be operated in the future lepton collider experiments.

  5. Estimation of inflation parameters for Perturbed Power Law model using recent CMB measurements

    International Nuclear Information System (INIS)

    Mukherjee, Suvodip; Das, Santanu; Souradeep, Tarun; Joy, Minu

    2015-01-01

    Cosmic Microwave Background (CMB) is an important probe for understanding the inflationary era of the Universe. We consider the Perturbed Power Law (PPL) model of inflation which is a soft deviation from Power Law (PL) inflationary model. This model captures the effect of higher order derivative of Hubble parameter during inflation, which in turn leads to a non-zero effective mass m eff for the inflaton field. The higher order derivatives of Hubble parameter at leading order sources constant difference in the spectral index for scalar and tensor perturbation going beyond PL model of inflation. PPL model have two observable independent parameters, namely spectral index for tensor perturbation ν t and change in spectral index for scalar perturbation ν st to explain the observed features in the scalar and tensor power spectrum of perturbation. From the recent measurements of CMB power spectra by WMAP, Planck and BICEP-2 for temperature and polarization, we estimate the feasibility of PPL model with standard ΛCDM model. Although BICEP-2 claimed a detection of r=0.2, estimates of dust contamination provided by Planck have left open the possibility that only upper bound on r will be expected in a joint analysis. As a result we consider different upper bounds on the value of r and show that PPL model can explain a lower value of tensor to scalar ratio (r<0.1 or r<0.01) for a scalar spectral index of n s =0.96 by having a non-zero value of effective mass of the inflaton field m 2 eff /H 2 . The analysis with WP + Planck likelihood shows a non-zero detection of m 2 eff /H 2 with 5.7 σ and 8.1 σ respectively for r<0.1 and r<0.01. Whereas, with BICEP-2 likelihood m 2 eff /H 2  = −0.0237 ± 0.0135 which is consistent with zero

  6. Fusion-fission dynamics and perspectives of future experiments

    International Nuclear Information System (INIS)

    Zagrebaev, V.I.; Itkis, M.G.; Oganessian, Yu.Ts.

    2003-01-01

    The paper is focused on reaction dynamics of superheavy-nucleus formation and decay at beam energies near the Coulomb barrier. The aim is to review the things we have learned from recent experiments on fusion-fission reactions leading to the formation of compound nuclei with Z ≥ 102 and from their extensive theoretical analysis. Major attention is paid to the dynamics of formation of very heavy compound nuclei taking place in strong competition with the process of fast fission (quasifission). The choice of collective degrees of freedom playing a fundamental role and finding the multidimensional driving potential and the corresponding dynamic equation regulating the whole process are discussed. A possibility of deriving the fission barriers of superheavy nuclei directly from performed experiments is of particular interest here. In conclusion, the results of a detailed theoretical analysis of available experimental data on the 'cold' and 'hot' fusion-fission reactions are presented. Perspectives of future experiments are discussed along with additional theoretical studies in this field needed for deeper understanding of the fusion-fission processes of very heavy nuclear systems

  7. Status of the LHCf experiment and future prospects

    CERN Document Server

    Itow, Yoshitaka

    2016-01-01

    The Large Hadron Collider forward (LHCf) experiment is a special purpose experiment dedicated to measure the production of neutral particles at the very forward region of the LHC. The data are useful to verify hadronic interaction that influence the development of an air shower. Until now data have been obtained for p-p collisions at $\\sqrt{s} = 0.9$ and 7 TeV and p-Pb collisions at $\\sqrt{s} = 5.02$ TeV/n. Here we will discuss the energy spectra for gamma rays, $\\pi^{0}$s and neutrons from the obtained data. In addition we will also discuss the prospects of 13 TeV p-p collisions as well as that for the possible future measurement of p-p or p-light ions collision data in the very forward region at RHIC or at LHC.

  8. The future cost of electrical energy storage based on experience rates

    Science.gov (United States)

    Schmidt, O.; Hawkes, A.; Gambhir, A.; Staffell, I.

    2017-08-01

    Electrical energy storage could play a pivotal role in future low-carbon electricity systems, balancing inflexible or intermittent supply with demand. Cost projections are important for understanding this role, but data are scarce and uncertain. Here, we construct experience curves to project future prices for 11 electrical energy storage technologies. We find that, regardless of technology, capital costs are on a trajectory towards US$340 ± 60 kWh-1 for installed stationary systems and US$175 ± 25 kWh-1 for battery packs once 1 TWh of capacity is installed for each technology. Bottom-up assessment of material and production costs indicates this price range is not infeasible. Cumulative investments of US$175-510 billion would be needed for any technology to reach 1 TWh deployment, which could be achieved by 2027-2040 based on market growth projections. Finally, we explore how the derived rates of future cost reduction influence when storage becomes economically competitive in transport and residential applications. Thus, our experience-curve data set removes a barrier for further study by industry, policymakers and academics.

  9. Future cosmological sensitivity for hot dark matter axions

    CERN Document Server

    Archidiacono, Maria; Hamann, Jan; Hannestad, Steen; Raffelt, Georg; Wong, Yvonne Y Y

    2015-01-01

    We study the potential of a future, large-volume photometric survey to constrain the axion mass $m_a$ in the hot dark matter limit. Future surveys such as Euclid will have significantly more constraining power than current observations for hot dark matter. Nonetheless, the lowest accessible axion masses are limited by the fact that axions lighter than $\\sim 0.15$ eV decouple before the QCD epoch, assumed here to occur at a temperature $T_{\\rm QCD} \\sim 170$ MeV; this leaves an axion population of such low density that its late-time cosmological impact is negligible. For larger axion masses, $m_a \\gtrsim 0.15$ eV, where axions remain in equilibrium until after the QCD phase transition, we find that a Euclid-like survey combined with Planck CMB data can detect $m_a$ at very high significance. Our conclusions are robust against assumptions about prior knowledge of the neutrino mass. Given that the proposed IAXO solar axion search is sensitive to $m_a\\lesssim 0.2$ eV, the axion mass range probed by cosmology is n...

  10. Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters

    CERN Document Server

    Aghanim, N.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chiang, H.C.; Christensen, P.R.; Clements, D.L.; Colombo, L.P.L.; Combet, C.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Desert, F.X.; Di Valentino, E.; Dickinson, C.; Diego, J.M.; Dolag, K.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Gauthier, C.; Gerbino, M.; Giard, M.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hamann, J.; Hansen, F.K.; Harrison, D.L.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Holmes, W.A.; Hornstrup, A.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kiiveri, K.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Le Jeune, M.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P.B.; Lilley, M.; Linden-Vornle, M.; Lindholm, V.; Lopez-Caniego, M.; Macias-Perez, J.F.; Maffei, B.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Meinhold, P.R.; Melchiorri, A.; Migliaccio, M.; Millea, M.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J.A.; Narimani, A.; Naselsky, P.; Nati, F.; Natoli, P.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T.J.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G.W.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rossetti, M.; Roudier, G.; d'Orfeuil, B.Rouille; Rubino-Martin, J.A.; Rusholme, B.; Salvati, L.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Serra, P.; Spencer, L.D.; Spinelli, M.; Stolyarov, V.; Stompor, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-01-01

    This paper presents the Planck 2015 likelihoods, statistical descriptions of the 2-point correlation functions of CMB temperature and polarization. They use the hybrid approach employed previously: pixel-based at low multipoles, $\\ell$, and a Gaussian approximation to the distribution of cross-power spectra at higher $\\ell$. The main improvements are the use of more and better processed data and of Planck polarization data, and more detailed foreground and instrumental models. More than doubling the data allows further checks and enhanced immunity to systematics. Progress in foreground modelling enables a larger sky fraction, contributing to enhanced precision. Improvements in processing and instrumental models further reduce uncertainties. Extensive tests establish robustness and accuracy, from temperature, from polarization, and from their combination, and show that the {\\Lambda}CDM model continues to offer a very good fit. We further validate the likelihood against specific extensions to this baseline, suc...

  11. Innovative Approach to the Organization of Future Social Workers' Practical Training: Foreign Experience

    Science.gov (United States)

    Polishchuk, Vira; Slozanska, Hanna

    2014-01-01

    Innovative approaches to practical training of future social workers in higher educational establishments have been defined. Peculiarities of foreign experience of social workers' practical training in higher educational establishments have been analyzed. Experience of organizing practice for bachelor students studying at "Social Work"…

  12. Atacama Cosmology Telescope: Polarization calibration analysis for CMB measurements with ACTPol and Advanced ACTPol

    Science.gov (United States)

    Koopman, Brian; ACTPol Collaboration

    2015-04-01

    The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive upgrade for the Atacama Cosmology Telescope, located at an elevation of 5190 m on Cerro Toco in Chile. Achieving first light in 2013, ACTPol is entering its third observation season. Advanced ACTPol is a next generation upgrade for ACTPol, with additional frequencies, polarization modulation, and new detector arrays, that will begin in 2016. I will first present an overview of the two projects and then focus on describing the methods used for polarization angle calibration of the ACTPol detectors. These methods utilize polarization ray tracing in the optical design software CODEV together with detector positions determined from planet observations and represent a critical input for mapping the polarization of the CMB.

  13. Extracting foreground-obscured μ-distortion anisotropies to constrain primordial non-Gaussianity

    Science.gov (United States)

    Remazeilles, M.; Chluba, J.

    2018-04-01

    Correlations between cosmic microwave background (CMB) temperature, polarization and spectral distortion anisotropies can be used as a probe of primordial non-Gaussianity. Here, we perform a reconstruction of μ-distortion anisotropies in the presence of Galactic and extragalactic foregrounds, applying the so-called Constrained ILC component separation method to simulations of proposed CMB space missions (PIXIE, LiteBIRD, CORE, PICO). Our sky simulations include Galactic dust, Galactic synchrotron, Galactic free-free, thermal Sunyaev-Zeldovich effect, as well as primary CMB temperature and μ-distortion anisotropies, the latter being added as correlated field. The Constrained ILC method allows us to null the CMB temperature anisotropies in the reconstructed μ-map (and vice versa), in addition to mitigating the contaminations from astrophysical foregrounds and instrumental noise. We compute the cross-power spectrum between the reconstructed (CMB-free) μ-distortion map and the (μ-free) CMB temperature map, after foreground removal and component separation. Since the cross-power spectrum is proportional to the primordial non-Gaussianity parameter, fNL, on scales k˜eq 740 Mpc^{-1}, this allows us to derive fNL-detection limits for the aforementioned future CMB experiments. Our analysis shows that foregrounds degrade the theoretical detection limits (based mostly on instrumental noise) by more than one order of magnitude, with PICO standing the best chance at placing upper limits on scale-dependent non-Gaussianity. We also discuss the dependence of the constraints on the channel sensitivities and chosen bands. Like for B-mode polarization measurements, extended coverage at frequencies ν ≲ 40 GHz and ν ≳ 400 GHz provides more leverage than increased channel sensitivity.

  14. Approximate likelihood approaches for detecting the influence of primordial gravitational waves in cosmic microwave background polarization

    Science.gov (United States)

    Pan, Zhen; Anderes, Ethan; Knox, Lloyd

    2018-05-01

    One of the major targets for next-generation cosmic microwave background (CMB) experiments is the detection of the primordial B-mode signal. Planning is under way for Stage-IV experiments that are projected to have instrumental noise small enough to make lensing and foregrounds the dominant source of uncertainty for estimating the tensor-to-scalar ratio r from polarization maps. This makes delensing a crucial part of future CMB polarization science. In this paper we present a likelihood method for estimating the tensor-to-scalar ratio r from CMB polarization observations, which combines the benefits of a full-scale likelihood approach with the tractability of the quadratic delensing technique. This method is a pixel space, all order likelihood analysis of the quadratic delensed B modes, and it essentially builds upon the quadratic delenser by taking into account all order lensing and pixel space anomalies. Its tractability relies on a crucial factorization of the pixel space covariance matrix of the polarization observations which allows one to compute the full Gaussian approximate likelihood profile, as a function of r , at the same computational cost of a single likelihood evaluation.

  15. Superweakly interacting massive particle dark matter signals from the early Universe

    International Nuclear Information System (INIS)

    Feng, Jonathan L.; Rajaraman, Arvind; Takayama, Fumihiro

    2003-01-01

    Cold dark matter may be made of superweakly interacting massive particles, super-WIMP's, that naturally inherit the desired relic density from late decays of metastable WIMP's. Well-motivated examples are weak-scale gravitinos in supergravity and Kaluza-Klein gravitons from extra dimensions. These particles are impossible to detect in all dark matter experiments. We find, however, that super-WIMP dark matter may be discovered through cosmological signatures from the early Universe. In particular, super-WIMP dark matter has observable consequences for big bang nucleosynthesis and the cosmic microwave background (CMB), and may explain the observed underabundance of 7 Li without upsetting the concordance between deuterium and CMB baryometers. We discuss the implications for future probes of CMB blackbody distortions and collider searches for new particles. In the course of this study, we also present a model-independent analysis of entropy production from late-decaying particles in light of Wilkinson microwave anisotropy probe data

  16. Electrically Driven Thermal Management: Flight Validation, Experiment Development, Future Technologies

    Science.gov (United States)

    Didion, Jeffrey R.

    2018-01-01

    Electrically Driven Thermal Management is an active research and technology development initiative incorporating ISS technology flight demonstrations (STP-H5), development of Microgravity Science Glovebox (MSG) flight experiment, and laboratory-based investigations of electrically based thermal management techniques. The program targets integrated thermal management for future generations of RF electronics and power electronic devices. This presentation reviews four program elements: i.) results from the Electrohydrodynamic (EHD) Long Term Flight Demonstration launched in February 2017 ii.) development of the Electrically Driven Liquid Film Boiling Experiment iii.) two University based research efforts iv.) development of Oscillating Heat Pipe evaluation at Goddard Space Flight Center.

  17. Development of High Frequency Transition-Edge-Sensor Polarimeters for Next Generation Cosmic Microwave Background Experiments and Galactic Foreground Measurements

    Science.gov (United States)

    Walker, Samantha; Sierra, Carlos E.; Austermann, Jason Edward; Beall, James; Becker, Dan; Dober, Bradley; Duff, Shannon; Hilton, Gene; Hubmayr, Johannes; Van Lanen, Jeffrey L.; McMahon, Jeff; Simon, Sara M.; Ullom, Joel; Vissers, Michael R.; NIST Quantum Sensors Group

    2018-06-01

    Observations of the cosmic microwave background (CMB) provide a powerful tool for probing the earliest moments of the universe and therefore have the potential to transform our understanding of cosmology. In particular, precision measurements of its polarization can reveal the existence of gravitational waves produced during cosmic inflation. However, these observations are complicated by the presence of astrophysical foregrounds, which may be separated by using broad frequency coverage, as the spectral energy distribution between foregrounds and the CMB is distinct. For this purpose, we are developing large-bandwidth, feedhorn-coupled transition-edge-sensor (TES) arrays that couple polarized light from waveguide to superconducting microstrip by use of a symmetric, planar orthomode transducer (OMT). In this work, we describe two types of pixels, an ultra-high frequency (UHF) design, which operates from 195 GHz-315 GHz, and an extended ultra-high frequency (UHF++) design, which operates from 195 GHz-420 GHz, being developed for next generation CMB experiments that will come online in the next decade, such as CCAT-prime and the Simons Observatory. We present the designs, simulation results, fabrication, and preliminary measurements of these prototype pixels.

  18. Involving Freight Transport Actors in Production of Knowledge - Experience with Future Workshop Methodology

    DEFF Research Database (Denmark)

    Jespersen, Per Homann; Drewes, Lise

    2005-01-01

    the experience and knowledge of actors in the freight transport sector are included directly in a scientific process in order to develop future and strategic studies. Future research is often produced as desktop research and presented as the results of scientists’ forecasting and scenario building...... in the format of a future workshop included freight transport stakeholders in the research process in order to produce knowledge meeting scientific quality criteria and at the same time in a form suitable for improving the problem solving capabilities of the participants....

  19. Bayesian Noise Estimation for Non-ideal Cosmic Microwave Background Experiments

    Science.gov (United States)

    Wehus, I. K.; Næss, S. K.; Eriksen, H. K.

    2012-03-01

    We describe a Bayesian framework for estimating the time-domain noise covariance of cosmic microwave background (CMB) observations, typically parameterized in terms of a 1/f frequency profile. This framework is based on the Gibbs sampling algorithm, which allows for exact marginalization over nuisance parameters through conditional probability distributions. In this paper, we implement support for gaps in the data streams and marginalization over fixed time-domain templates, and also outline how to marginalize over confusion from CMB fluctuations, which may be important for high signal-to-noise experiments. As a by-product of the method, we obtain proper constrained realizations, which themselves can be useful for map making. To validate the algorithm, we demonstrate that the reconstructed noise parameters and corresponding uncertainties are unbiased using simulated data. The CPU time required to process a single data stream of 100,000 samples with 1000 samples removed by gaps is 3 s if only the maximum posterior parameters are required, and 21 s if one also wants to obtain the corresponding uncertainties by Gibbs sampling.

  20. BAYESIAN NOISE ESTIMATION FOR NON-IDEAL COSMIC MICROWAVE BACKGROUND EXPERIMENTS

    International Nuclear Information System (INIS)

    Wehus, I. K.; Næss, S. K.; Eriksen, H. K.

    2012-01-01

    We describe a Bayesian framework for estimating the time-domain noise covariance of cosmic microwave background (CMB) observations, typically parameterized in terms of a 1/f frequency profile. This framework is based on the Gibbs sampling algorithm, which allows for exact marginalization over nuisance parameters through conditional probability distributions. In this paper, we implement support for gaps in the data streams and marginalization over fixed time-domain templates, and also outline how to marginalize over confusion from CMB fluctuations, which may be important for high signal-to-noise experiments. As a by-product of the method, we obtain proper constrained realizations, which themselves can be useful for map making. To validate the algorithm, we demonstrate that the reconstructed noise parameters and corresponding uncertainties are unbiased using simulated data. The CPU time required to process a single data stream of 100,000 samples with 1000 samples removed by gaps is 3 s if only the maximum posterior parameters are required, and 21 s if one also wants to obtain the corresponding uncertainties by Gibbs sampling.

  1. BAYESIAN NOISE ESTIMATION FOR NON-IDEAL COSMIC MICROWAVE BACKGROUND EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Wehus, I. K. [Theoretical Physics, Imperial College London, London SW7 2AZ (United Kingdom); Naess, S. K.; Eriksen, H. K., E-mail: i.k.wehus@fys.uio.no, E-mail: sigurdkn@astro.uio.no, E-mail: h.k.k.eriksen@astro.uio.no [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, N-0315 Oslo (Norway)

    2012-03-01

    We describe a Bayesian framework for estimating the time-domain noise covariance of cosmic microwave background (CMB) observations, typically parameterized in terms of a 1/f frequency profile. This framework is based on the Gibbs sampling algorithm, which allows for exact marginalization over nuisance parameters through conditional probability distributions. In this paper, we implement support for gaps in the data streams and marginalization over fixed time-domain templates, and also outline how to marginalize over confusion from CMB fluctuations, which may be important for high signal-to-noise experiments. As a by-product of the method, we obtain proper constrained realizations, which themselves can be useful for map making. To validate the algorithm, we demonstrate that the reconstructed noise parameters and corresponding uncertainties are unbiased using simulated data. The CPU time required to process a single data stream of 100,000 samples with 1000 samples removed by gaps is 3 s if only the maximum posterior parameters are required, and 21 s if one also wants to obtain the corresponding uncertainties by Gibbs sampling.

  2. Fabrication of large NbSi bolometer arrays for CMB applications

    International Nuclear Information System (INIS)

    Ukibe, M.; Belier, B.; Camus, Ph.; Dobrea, C.; Dumoulin, L.; Fernandez, B.; Fournier, T.; Guillaudin, O.; Marnieros, S.; Yates, S.J.C.

    2006-01-01

    Future cosmic microwave background experiments for high-resolution anisotropy mapping and polarisation detection require large arrays of bolometers at low temperature. We have developed a process to build arrays of antenna-coupled bolometers for that purpose. With adjustment of the Nb x Si 1-x alloy composition, the array can be made of high impedance or superconductive (TES) sensors

  3. A novel approach to quantifying the sensitivity of current and future cosmological datasets to the neutrino mass ordering through Bayesian hierarchical modeling

    Science.gov (United States)

    Gerbino, Martina; Lattanzi, Massimiliano; Mena, Olga; Freese, Katherine

    2017-12-01

    We present a novel approach to derive constraints on neutrino masses, as well as on other cosmological parameters, from cosmological data, while taking into account our ignorance of the neutrino mass ordering. We derive constraints from a combination of current as well as future cosmological datasets on the total neutrino mass Mν and on the mass fractions fν,i =mi /Mν (where the index i = 1 , 2 , 3 indicates the three mass eigenstates) carried by each of the mass eigenstates mi, after marginalizing over the (unknown) neutrino mass ordering, either normal ordering (NH) or inverted ordering (IH). The bounds on all the cosmological parameters, including those on the total neutrino mass, take therefore into account the uncertainty related to our ignorance of the mass hierarchy that is actually realized in nature. This novel approach is carried out in the framework of Bayesian analysis of a typical hierarchical problem, where the distribution of the parameters of the model depends on further parameters, the hyperparameters. In this context, the choice of the neutrino mass ordering is modeled via the discrete hyperparameterhtype, which we introduce in the usual Markov chain analysis. The preference from cosmological data for either the NH or the IH scenarios is then simply encoded in the posterior distribution of the hyperparameter itself. Current cosmic microwave background (CMB) measurements assign equal odds to the two hierarchies, and are thus unable to distinguish between them. However, after the addition of baryon acoustic oscillation (BAO) measurements, a weak preference for the normal hierarchical scenario appears, with odds of 4 : 3 from Planck temperature and large-scale polarization in combination with BAO (3 : 2 if small-scale polarization is also included). Concerning next-generation cosmological experiments, forecasts suggest that the combination of upcoming CMB (COrE) and BAO surveys (DESI) may determine the neutrino mass hierarchy at a high statistical

  4. Optical modeling and polarization calibration for CMB measurements with ACTPol and Advanced ACTPol

    Science.gov (United States)

    Koopman, Brian; Austermann, Jason; Cho, Hsiao-Mei; Coughlin, Kevin P.; Duff, Shannon M.; Gallardo, Patricio A.; Hasselfield, Matthew; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; Hubmayr, Johannes; Irwin, Kent D.; Li, Dale; McMahon, Jeff; Nati, Federico; Niemack, Michael D.; Newburgh, Laura; Page, Lyman A.; Salatino, Maria; Schillaci, Alessandro; Schmitt, Benjamin L.; Simon, Sara M.; Vavagiakis, Eve M.; Ward, Jonathan T.; Wollack, Edward J.

    2016-07-01

    The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive upgrade to the Atacama Cosmology Telescope, located at an elevation of 5190 m on Cerro Toco in Chile. ACTPol uses transition edge sensor bolometers coupled to orthomode transducers to measure both the temperature and polarization of the Cosmic Microwave Background (CMB). Calibration of the detector angles is a critical step in producing polarization maps of the CMB. Polarization angle offsets in the detector calibration can cause leakage in polarization from E to B modes and induce a spurious signal in the EB and TB cross correlations, which eliminates our ability to measure potential cosmological sources of EB and TB signals, such as cosmic birefringence. We calibrate the ACTPol detector angles by ray tracing the designed detector angle through the entire optical chain to determine the projection of each detector angle on the sky. The distribution of calibrated detector polarization angles are consistent with a global offset angle from zero when compared to the EB-nulling offset angle, the angle required to null the EB cross-correlation power spectrum. We present the optical modeling process. The detector angles can be cross checked through observations of known polarized sources, whether this be a galactic source or a laboratory reference standard. To cross check the ACTPol detector angles, we use a thin film polarization grid placed in front of the receiver of the telescope, between the receiver and the secondary reflector. Making use of a rapidly rotating half-wave plate (HWP) mount we spin the polarizing grid at a constant speed, polarizing and rotating the incoming atmospheric signal. The resulting sinusoidal signal is used to determine the detector angles. The optical modeling calibration was shown to be consistent with a global offset angle of zero when compared to EB nulling in the first ACTPol results and will continue to be a part of our calibration implementation. The first

  5. Development of Silicon Sensor Characterization System for Future High Energy Physics Experiments

    OpenAIRE

    Preeti kumari; Kavita Lalwani; Ranjeet Dalal; Geetika Jain; Ashutosh Bhardwaj; Kirti Ranjan

    2015-01-01

    The Compact Muon Solenoid (CMS) is one of the general purpose experiments at the Large Hadron Collider (LHC), CERN and has its Tracker built of all silicon strip and pixel sensors. Si sensors are expected to play extremely important role in the upgrades of the existing Tracker for future high luminosity environment and will also be used in future lepton colliders. However, properties of the silicon sensors have to be carefully understood before they can be put in the extremely high luminos...

  6. Fabrication of large NbSi bolometer arrays for CMB applications

    Energy Technology Data Exchange (ETDEWEB)

    Ukibe, M. [AIST, Tsukuba Central 2, Tsukuba, Ibaraki 305-8568 (Japan); CNRS-CSNSM, Bat 104, Orsay Campus F-91405 (France); Belier, B. [CNRS-IEF, Bat 220, Orsay Campus F-91405 (France); Camus, Ph. [CNRS-CRTBT, 25 avenue des Martyrs, Grenoble F-38042 (France)]. E-mail: philippe.camus@grenoble.cnrs.fr; Dobrea, C. [CNRS-CSNSM, Bat 104, Orsay Campus F-91405 (France); Dumoulin, L. [CNRS-CSNSM, Bat 104, Orsay Campus F-91405 (France); Fernandez, B. [CNRS-CRTBT, 25 avenue des Martyrs, Grenoble F-38042 (France); Fournier, T. [CNRS-CRTBT, 25 avenue des Martyrs, Grenoble F-38042 (France); Guillaudin, O. [CNRS-LPSC, 53 avenue des Martyrs, Grenoble F-38042 (France); Marnieros, S. [CNRS-CSNSM, Bat 104, Orsay Campus F-91405 (France); Yates, S.J.C. [CNRS-CSNSM, Bat 104, Orsay Campus F-91405 (France)

    2006-04-15

    Future cosmic microwave background experiments for high-resolution anisotropy mapping and polarisation detection require large arrays of bolometers at low temperature. We have developed a process to build arrays of antenna-coupled bolometers for that purpose. With adjustment of the Nb{sub x}Si{sub 1-x} alloy composition, the array can be made of high impedance or superconductive (TES) sensors.

  7. Hunting electroweakinos at future hadron colliders and direct detection experiments

    Energy Technology Data Exchange (ETDEWEB)

    Cortona, Giovanni Grilli di [SISSA - International School for Advanced Studies,Via Bonomea 265, I-34136 Trieste (Italy); INFN - Sezione di Trieste,via Valerio 2, I-34127 Trieste (Italy)

    2015-05-07

    We analyse the mass reach for electroweakinos at future hadron colliders and their interplay with direct detection experiments. Motivated by the LHC data, we focus on split supersymmetry models with different electroweakino spectra. We find for example that a 100 TeV collider may explore Winos up to ∼7 TeV in low scale gauge mediation models or thermal Wino dark matter around 3 TeV in models of anomaly mediation with long-lived Winos. We show moreover how collider searches and direct detection experiments have the potential to cover large part of the parameter space even in scenarios where the lightest neutralino does not contribute to the whole dark matter relic density.

  8. Prompt ντ fluxes in present and future τ neutrino experiments

    International Nuclear Information System (INIS)

    Gonzalez-Garcia, M.C.; Gomez-Cadenas, J.J.

    1997-01-01

    We use a nonperturbative QCD approach, the quark-gluon string model, to compute the τ-neutrino fluxes produced by fixed target pA collisions (where A is a target material) for incident protons of energies ranging from 120 to 800 GeV. The purpose of this calculation is to estimate in a consistent way the prompt background for the ν μ (ν e )↔ν τ oscillation search in the on-going ν μ (ν e )↔ν τ oscillation search experiments CHORUS and NOMAD, as well as the expected prompt background in future experiments, such as COSMOS at Fermilab and a possible second-generation ν μ (ν e )↔ν τ search experiment at the CERN SPS. In addition, we compute the number of ν τ interactions expected by the experiment E872 at Fermilab. copyright 1997 The American Physical Society

  9. Fermat Potentials of Embedded Lensing, the Integrated Sachs-Wolfe Effect, and Weak-Lensing of CMB by Cosmic Voids

    Science.gov (United States)

    Chen, Bin; Kantowski, R.; Dai, X.

    2014-01-01

    We have developed an accurate gravitational lens theory for an inhomogeneity embedded in an otherwise homogeneous universe, which to the lowest order is applicable to any mass distribution. We derive the Fermat potential for a spherically symmetric lens embedded in a FLRW cosmology and use it to investigate the late-time integrated Sachs-Wolfe effect (ISW) caused by individual large scale inhomogeneities, in particular, cosmic voids. We present a simple analytical expression for the CMB temperature fluctuation across such a lens as the derivative of the lens Fermat potential. Our formalism is applicable to both linear and nonlinear density evolution scenarios, to arbitrarily large density contrasts, and to all open and closed background cosmologies. Our results are particularly useful for modeling ISW effects extracted through stacking large numbers of cosmic voids and clusters (that is, the aperture photometry method). For structures co-expanding with the background cosmology, i.e., for time-independent density contrasts, we find that the gravitational lensing time delay alone can produce fluctuations of the order of seen in recent observations by WMAP and Planck. We revisit the possibility of explaining the non-Gaussian cold spot on the south hemisphere via the Rees-Sciama effect of a large cosmic void using constraints obtained from the most recent void catalogs and our new void-lensing formalism, and compare it with other explanations such as a collapsing cosmic texture. We also study the remapping of primordial CMB anisotropies, the weak-lensing shear, and magnification caused by void lensing.

  10. Dark energy and neutrino constraints from a future EUCLID-like survey

    CERN Document Server

    Basse, Tobias; Hamann, Jan; Hannestad, Steen; Wong, Yvonne Y.Y.

    2014-01-01

    We perform a detailed forecast on how well a Euclid-like survey will be able to constrain dark energy and neutrino parameters from a combination of its cosmic shear power spectrum, galaxy power spectrum, and cluster mass function measurements. We find that the combination of these three probes vastly improves the survey's potential to measure the time evolution of dark energy. In terms of a dark energy figure-of-merit defined as (sigma(w_0) sigma(w_a))^-1, we find a value of 454 for Euclid-like data combined with Planck-like measurements of the cosmic microwave background (CMB) anisotropies in a fiducial LambdaCDM cosmology, a number that is quite conservative compared with existing estimates because of our choice of model parameter space and analysis method, but still represents a factor of 3 to 8 improvement over using either CMB+galaxy clustering+cosmic shear data, or CMB+cluster mass function alone. We consider also the survey's potential to measure dark energy perturbations in models wherein the dark ene...

  11. Exploring cosmic origins with CORE: Effects of observer peculiar motion

    Science.gov (United States)

    Burigana, C.; Carvalho, C. S.; Trombetti, T.; Notari, A.; Quartin, M.; Gasperis, G. D.; Buzzelli, A.; Vittorio, N.; De Zotti, G.; de Bernardis, P.; Chluba, J.; Bilicki, M.; Danese, L.; Delabrouille, J.; Toffolatti, L.; Lapi, A.; Negrello, M.; Mazzotta, P.; Scott, D.; Contreras, D.; Achúcarro, A.; Ade, P.; Allison, R.; Ashdown, M.; Ballardini, M.; Banday, A. J.; Banerji, R.; Bartlett, J.; Bartolo, N.; Basak, S.; Bersanelli, M.; Bonaldi, A.; Bonato, M.; Borrill, J.; Bouchet, F.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Cabella, P.; Cai, Z.-Y.; Calvo, M.; Castellano, M. G.; Challinor, A.; Clesse, S.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; Diego, J.-M.; Di Marco, A.; Di Valentino, E.; Errard, J.; Feeney, S.; Fernández-Cobos, R.; Ferraro, S.; Finelli, F.; Forastieri, F.; Galli, S.; Génova-Santos, R.; Gerbino, M.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Hagstotz, S.; Hanany, S.; Handley, W.; Hernández-Monteagudo, C.; Hervias-Caimapo, C.; Hills, M.; Hivon, E.; Kiiveri, K.; Kisner, T.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lamagna, L.; Lasenby, A.; Lattanzi, M.; Lesgourgues, J.; Liguori, M.; Lindholm, V.; Lopez-Caniego, M.; Luzzi, G.; Maffei, B.; Mandolesi, N.; Martinez-Gonzalez, E.; Martins, C. J. A. P.; Masi, S.; Matarrese, S.; McCarthy, D.; Melchiorri, A.; Melin, J.-B.; Molinari, D.; Monfardini, A.; Natoli, P.; Paiella, A.; Paoletti, D.; Patanchon, G.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Poulin, V.; Remazeilles, M.; Roman, M.; Rubiño-Martín, J.-A.; Salvati, L.; Tartari, A.; Tomasi, M.; Tramonte, D.; Trappe, N.; Tucker, C.; Väliviita, J.; Van de Weijgaert, R.; van Tent, B.; Vennin, V.; Vielva, P.; Young, K.; Zannoni, M.

    2018-04-01

    We discuss the effects on the cosmic microwave background (CMB), cosmic infrared background (CIB), and thermal Sunyaev-Zeldovich effect due to the peculiar motion of an observer with respect to the CMB rest frame, which induces boosting effects. After a brief review of the current observational and theoretical status, we investigate the scientific perspectives opened by future CMB space missions, focussing on the Cosmic Origins Explorer (CORE) proposal. The improvements in sensitivity offered by a mission like CORE, together with its high resolution over a wide frequency range, will provide a more accurate estimate of the CMB dipole. The extension of boosting effects to polarization and cross-correlations will enable a more robust determination of purely velocity-driven effects that are not degenerate with the intrinsic CMB dipole, allowing us to achieve an overall signal-to-noise ratio of 13; this improves on the Planck detection and essentially equals that of an ideal cosmic-variance-limited experiment up to a multipole lsimeq2000. Precise inter-frequency calibration will offer the opportunity to constrain or even detect CMB spectral distortions, particularly from the cosmological reionization epoch, because of the frequency dependence of the dipole spectrum, without resorting to precise absolute calibration. The expected improvement with respect to COBE-FIRAS in the recovery of distortion parameters (which could in principle be a factor of several hundred for an ideal experiment with the CORE configuration) ranges from a factor of several up to about 50, depending on the quality of foreground removal and relative calibration. Even in the case of simeq1 % accuracy in both foreground removal and relative calibration at an angular scale of 1o, we find that dipole analyses for a mission like CORE will be able to improve the recovery of the CIB spectrum amplitude by a factor simeq 17 in comparison with current results based on COBE-FIRAS. In addition to the

  12. Original article Future perspectives as a condition of positive adaptation of young adults after traumatic experience

    Directory of Open Access Journals (Sweden)

    Marzanna Farnicka

    2014-10-01

    Full Text Available Background The paper presents the results of a study on the possible role of sense of influencing one’s life and expectations towards the future as a personal condition of adaptation. In accordance with the theory of formulation of temporal perspectives, these variables were assumed to be related to construction of the psychological reality of the subjects. Participants and procedure The study involved 162 adults in two groups, with traumatic experience and without such experience, aged 18-35. The tools used in the study included: Rosenberg Self-Esteem Scale (SES, Boszkiewicz Questionnaire: Life Experience Questionnaire, events evaluation and expectations of changes in the future. Results The study revealed significant differences between people from the two groups in the scope of self-evaluation, sense of influence on events and future expectations. Conclusions The results pointed to the need for adjustment of therapeutic and preventive treatment to future expectations, evaluation of events and the current stage of development, as indicated by personal conditions of adaptation.

  13. Recycling experience in the UK - past, present and future

    International Nuclear Information System (INIS)

    Williams, T.

    1991-01-01

    The United Kingdom (UK) has been commercially recycling uranium and developing the technology for the recycle of plutonium from reprocessing of spent fuel for more than two decades. In this article, a spokesman from British Nuclear Fuels plc (BNFL) describes the current experience of recycling in the UK and identifies the remaining technical and strategic elements being implemented to develop fully the recycle of all the products of reprocessing. He also discusses the economic and commercial benefits of using mixed oxide fuels now and in the future. (author)

  14. Effect of a chameleon scalar field on the cosmic microwave background

    International Nuclear Information System (INIS)

    Davis, Anne-Christine; Schelpe, Camilla A. O.; Shaw, Douglas J.

    2009-01-01

    We show that a direct coupling between a chameleonlike scalar field and photons can give rise to a modified Sunyaev-Zel'dovich (SZ) effect in the cosmic microwave background (CMB). The coupling induces a mixing between chameleon particles and the CMB photons when they pass through the magnetic field of a galaxy cluster. Both the intensity and the polarization of the radiation are modified. The degree of modification depends strongly on the properties of the galaxy cluster such as magnetic field strength and electron number density. Existing SZ measurements of the Coma cluster enable us to place constraints on the photon-chameleon coupling. The constrained conversion probability in the cluster is P Coma (204 GHz) -5 at 95% confidence, corresponding to an upper bound on the coupling strength of g eff (cell) -8 GeV -1 or g eff (Kolmo) -10 GeV -1 , depending on the model that is assumed for the cluster magnetic field structure. We predict the radial profile of the chameleonic CMB intensity decrement. We find that the chameleon effect extends farther toward the edges of the cluster than the thermal SZ effect. Thus we might see a discrepancy between the x-ray emission data and the observed SZ intensity decrement. We further predict the expected change to the CMB polarization arising from the existence of a chameleonlike scalar field. These predictions could be verified or constrained by future CMB experiments.

  15. Future short baseline neutrino oscillation experiments

    CERN Document Server

    Camilleri, L L

    1999-01-01

    A neutrino mass that would make a significant contribution to the hidden mass of the universe and thus contribute to the solving of the dark matter puzzle is still the most valuable prize in neutrino physics. This would presumably be through a mixed dark matter scenario and would involve a neutrino mass of 1-2 eV. Assuming the Delta m/sup 2/ observed in neutrino oscillations is the difference between this mass and a negligible mass of a second neutrino, CHORUS and NOMAD would only have a sensitivity of sin/sup 2/ 2 theta ~10/sup -3/ in this domain. The aim of future nu /sub mu /- nu /sub tau / oscillation searches is therefore to improve the sensitivity of the search by about an order of magnitude. NOMAD has a number of events looking exactly like a nu /sub tau / interaction should but, in spite of the good kinematical capabilities of the experiment, the number of such events is consistent with the number of expected background events. Therefore to improve on this situation it is imperative to be able to dete...

  16. A 2500 deg2 CMB Lensing Map from Combined South Pole Telescope and Planck Data

    International Nuclear Information System (INIS)

    Omori, Y.; Chown, R.; Simard, G.; Story, K. T.; University of Chicago, IL

    2017-01-01

    Here, we present a cosmic microwave background (CMB) lensing map produced from a linear combination of South Pole Telescope (SPT) and Planck temperature data. The 150 GHz temperature data from the 2500 deg 2 SPT-SZ survey is combined with the Planck 143 GHz data in harmonic space to obtain a temperature map that has a broader ℓ coverage and less noise than either individual map. Using a quadratic estimator technique on this combined temperature map, we produce a map of the gravitational lensing potential projected along the line of sight. We measure the auto-spectrum of the lensing potential C L ϕϕ , and compare it to the theoretical prediction for a ΛCDM cosmology consistent with the Planck 2015 data set, finding a best-fit amplitude of 0.95 −0.06 +0.06 (stat.) −0.01 +0.01 (sys.). The null hypothesis of no lensing is rejected at a significance of 24σ. One important use of such a lensing potential map is in cross-correlations with other dark matter tracers. We demonstrate this cross-correlation in practice by calculating the cross-spectrum, C L ϕG , between the SPT+Planck lensing map and Wide-field Infrared Survey Explorer (WISE) galaxies. We fit C L ϕG to a power law of the form p L =a(L/L 0 ) −b with a, L 0, and b fixed, and find η ϕG =C L ϕG /p L =0.94 −0.04 +0.04 , which is marginally lower, but in good agreement with η ϕG =1.00 −0.01 +0.02 , the best-fit amplitude for the cross-correlation of Planck-2015 CMB lensing and WISE galaxies over ~67% of the sky. Finally, the lensing potential map presented here will be used for cross-correlation studies with the Dark Energy Survey, whose footprint nearly completely covers the SPT 2500 deg 2 field.

  17. AFP: First Experience with Data and Future Plans

    CERN Document Server

    Gach, Grzegorz; The ATLAS collaboration

    2017-01-01

    The aim of the ATLAS Forward Proton (AFP) detector system is the measurement of protons scattered diffractively or electromagnetically at very small angles. The first arm of the system was installed last year and AFP took data in several commissioning and physics runs. The installation of the second arm is ongoing and will be completed in time for the 2017 data taking period. This will allow measurements of processes with two forward protons: central diffraction, exclusive production, and two-photon processes. During the presentation, the early results and experience from the first year of data taking will be presented together with the status of the second-arm installation and plans for the future.

  18. AFP: First experience with data and future plans

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00184415; The ATLAS collaboration

    2017-01-01

    The ATLAS Forward Proton (AFP) detector system aims at the measurement of protons scattered diffractively or electromagnetically at very small angles. The first arm of the system was installed in 2016 and AFP took data in several commissioning and physics runs. The installation of the second arm is ongoing and will be completed in time for the 2017 data taking period. This will allow the measurements of processes with two tagged forward protons being a signature of: central diffraction, exclusive production, and two-photon processes. The early results and experience from the first year of data taking is presented together with the status of the secondarm installation and plans for the future.

  19. Future of neutrino experiments

    Indian Academy of Sciences (India)

    them are under construction. The next generation double beta decay experiments are sensitive to the inverted mass hierarchy. In order to explore the normal mass hierarchy, the sensitivity of the experiments still needs to be improved substantially. For example, see [32] for more details of the double beta decay experiments.

  20. Cost development of future technologies for power generation-A study based on experience curves and complementary bottom-up assessments

    International Nuclear Information System (INIS)

    Neij, Lena

    2008-01-01

    Technology foresight studies have become an important tool in identifying realistic ways of reducing the impact of modern energy systems on the climate and the environment. Studies on the future cost development of advanced energy technologies are of special interest. One approach widely adopted for the analysis of future cost is the experience curve approach. The question is, however, how robust this approach is, and which experience curves should be used in energy foresight analysis. This paper presents an analytical framework for the analysis of future cost development of new energy technologies for electricity generation; the analytical framework is based on an assessment of available experience curves, complemented with bottom-up analysis of sources of cost reductions and, for some technologies, judgmental expert assessments of long-term development paths. The results of these three methods agree in most cases, i.e. the cost (price) reductions described by the experience curves match the incremental cost reduction described in the bottom-up analysis and the judgmental expert assessments. For some technologies, the bottom-up analysis confirms large uncertainties in future cost development not captured by the experience curves. Experience curves with a learning rate ranging from 0% to 20% are suggested for the analysis of future cost development

  1. Relic density and CMB constraints on dark matter annihilation with Sommerfeld enhancement

    International Nuclear Information System (INIS)

    Zavala, Jesus; White, Simon D. M.; Vogelsberger, Mark

    2010-01-01

    We calculate how the relic density of dark matter particles is altered when their annihilation is enhanced by the Sommerfeld mechanism due to a Yukawa interaction between the annihilating particles. Maintaining a dark matter abundance consistent with current observational bounds requires the normalization of the s-wave annihilation cross section to be decreased compared to a model without enhancement. The level of suppression depends on the specific parameters of the particle model, with the kinetic decoupling temperature having the most effect. We find that the cross section can be reduced by as much as an order of magnitude for extreme cases. We also compute the μ-type distortion of the CMB energy spectrum caused by energy injection from such Sommerfeld-enhanced annihilation. Our results indicate that in the vicinity of resonances, associated with bound states, distortions can be large enough to be excluded by the upper limit |μ|≤9.0x10 -5 found by the FIRAS (Far Infrared Absolute Spectrophotometer) instrument on the COBE (Cosmic Background Explorer) satellite.

  2. Technical problems and future underground engineering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, G H [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1969-07-01

    The technical problems to be solved in future underground engineering experiments are of two kinds. One concerns adequate description of the variation of nuclear explosion effects with physical nd chemical properties of the explosion site. The other concerns engineering of the explosive detonation system to provide adequate safety and security, concurrently with minimum total costs per explosion. The semiempirical equations for explosion effects can be trusted only in the range of explosive energy, depth of burst, and rock type for which there is prior experience. Effects calculations based on the principles of continuum mechanics and measurable geophysical properties appear to work in the few test cases, such as Gasbuggy, to which they have been applied. These calculational methods must be tested in a variety of situations. The relevance of dynamic and static measurements on Dragon Trail, Bronco, Rulison, Stoop, Ketch, and Pinedale to proving the methods are discussed in this paper. The traditional methods of assembling and fielding nuclear explosives have evolved from practice at the Nevada Test Site. These provide great flexibility and assure maximum recovery of all data from each test, thus minimizing the time required to achieve desired results. Timing and firing, radiation monitoring, explosives assembly and emplacement, explosive performance, weather monitoring, and dynamic measurements of earth and building motion have all been handled traditionally as independent functions. To achieve lower costs in underground engineering experiments and projects, one prototype system combining all electronic, measurement, and communication functions is being built. Much further work will be required to complete this effort, including, especially, an examination of safety criteria and means for assuring operational and public safety at reduced costs. (author)

  3. Technical problems and future underground engineering experiments

    International Nuclear Information System (INIS)

    Higgins, G.H.

    1969-01-01

    The technical problems to be solved in future underground engineering experiments are of two kinds. One concerns adequate description of the variation of nuclear explosion effects with physical nd chemical properties of the explosion site. The other concerns engineering of the explosive detonation system to provide adequate safety and security, concurrently with minimum total costs per explosion. The semiempirical equations for explosion effects can be trusted only in the range of explosive energy, depth of burst, and rock type for which there is prior experience. Effects calculations based on the principles of continuum mechanics and measurable geophysical properties appear to work in the few test cases, such as Gasbuggy, to which they have been applied. These calculational methods must be tested in a variety of situations. The relevance of dynamic and static measurements on Dragon Trail, Bronco, Rulison, Stoop, Ketch, and Pinedale to proving the methods are discussed in this paper. The traditional methods of assembling and fielding nuclear explosives have evolved from practice at the Nevada Test Site. These provide great flexibility and assure maximum recovery of all data from each test, thus minimizing the time required to achieve desired results. Timing and firing, radiation monitoring, explosives assembly and emplacement, explosive performance, weather monitoring, and dynamic measurements of earth and building motion have all been handled traditionally as independent functions. To achieve lower costs in underground engineering experiments and projects, one prototype system combining all electronic, measurement, and communication functions is being built. Much further work will be required to complete this effort, including, especially, an examination of safety criteria and means for assuring operational and public safety at reduced costs. (author)

  4. Extending DART to meet the data acquisition needs of future experiments at Fermilab

    International Nuclear Information System (INIS)

    Oleynik, Gene; Pordes, Ruth; Barsotti, Ed

    1996-01-01

    The DART project at Fermilab is a major collaboration to develop a data acquisition system for multiple experiments. The initial implementation of DART has concentrated on providing working data acquisition systems for the (now eight) collaborating experiments in the next Fixed Target Run. In this paper we discuss aspects of the architecture of DART and how these will allow it to be extended to meet the expected needs of future experiments at Fermilab. We also discuss some ongoing developments within the Fermilab Computing Division towards these new implementations. (author)

  5. Extending DART to meet the data acquisition needs of future experiments at Fermilab

    International Nuclear Information System (INIS)

    Oleynik, G.; Pordes, R.; Barsotti, E.

    1995-10-01

    The DART project at Fermilab is a major collaboration to develop a data acquisition system for multiple experiments. The initial implementation of DART has concentrated on providing working data acquisition systems for the (now eight) collaborating experiments in the next Fixed Target Run. In this paper we discuss aspects of the architecture of DART and how these will allow it to be extended to meet the expected needs of future experiments at Fermilab. We also discuss some ongoing developments within the Fermilab Computing Division towards these new implementations

  6. Emotional experience is subject to social and technological change: extrapolating to the future

    OpenAIRE

    Scherer, Klaus R.

    2001-01-01

    While the emotion mechanism is generally considered to be evolutionarily continuous, suggesting a certain degree of universality of emotional responding, there is evidence that emotional experience may differ across cultures and historical periods. This article extrapolates potential changes in future emotional experiences that can be expected to be caused by rapid social and technological change. Specifically, four issues are discussed: (1) the effect of social change on emotions that are st...

  7. Study the radiation damage effects in Si microstrip detectors for future HEP experiments

    International Nuclear Information System (INIS)

    Lalwani, Kavita; Jain, Geetika; Dalal, Ranjeet; Ranjan, Kirti; Bhardwaj, Ashutosh

    2016-01-01

    Silicon (Si) detectors are playing a key role in High Energy Physics (HEP) experiments due to their superior tracking capabilities. In future HEP experiments, like upgrade of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC), CERN, the silicon tracking detectors will be operated in a very intense radiation environment. This leads to both surface and bulk damage in Si detectors, which in turn will affect the operating performance of Si detectors. It is important to complement the measurements of the irradiated Si strip detectors with device simulation, which helps in understanding of both the device behavior and optimizing the design parameters needed for the future Si tracking system. An important ingredient of the device simulation is to develop a radiation damage model incorporating both bulk and surface damage. In this work, a simplified two-trap model is incorporated in device simulation to describe the type-inversion. Further, an extensive simulation of effective doping density as well as electric field profile is carried out at different temperatures for various fluences.

  8. Study the radiation damage effects in Si microstrip detectors for future HEP experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lalwani, Kavita, E-mail: kavita.phy@mnit.ac.in [Malaviya National Institute of Technology (MNIT) Jaipur, Jaipur-302017 (India); Jain, Geetika; Dalal, Ranjeet; Ranjan, Kirti; Bhardwaj, Ashutosh [University of Delhi (DU), Delhi-110007 (India)

    2016-07-15

    Silicon (Si) detectors are playing a key role in High Energy Physics (HEP) experiments due to their superior tracking capabilities. In future HEP experiments, like upgrade of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC), CERN, the silicon tracking detectors will be operated in a very intense radiation environment. This leads to both surface and bulk damage in Si detectors, which in turn will affect the operating performance of Si detectors. It is important to complement the measurements of the irradiated Si strip detectors with device simulation, which helps in understanding of both the device behavior and optimizing the design parameters needed for the future Si tracking system. An important ingredient of the device simulation is to develop a radiation damage model incorporating both bulk and surface damage. In this work, a simplified two-trap model is incorporated in device simulation to describe the type-inversion. Further, an extensive simulation of effective doping density as well as electric field profile is carried out at different temperatures for various fluences.

  9. New cosmic microwave background constraint to primordial gravitational waves.

    Science.gov (United States)

    Smith, Tristan L; Pierpaoli, Elena; Kamionkowski, Marc

    2006-07-14

    Primordial gravitational waves (GWs) with frequencies > or approximately equal to 10(-15) Hz contribute to the radiation density of the Universe at the time of decoupling of the cosmic microwave background (CMB). This affects the CMB and matter power spectra in a manner identical to massless neutrinos, unless the initial density perturbation for the GWs is nonadiabatic, as may occur if such GWs are produced during inflation or some post-inflation phase transition. In either case, current observations provide a constraint to the GW amplitude that competes with that from big-bang nucleosynthesis (BBN), although it extends to much lower frequencies (approximately 10(-15) Hz rather than the approximately 10(-10) Hz from BBN): at 95% confidence level, omega(gw)h(2) Future CMB experiments, like Planck and CMBPol, should allow sensitivities to omega(gw)h(2)

  10. Actinide-handling experience for training and education of future expert under J-ACTINET

    International Nuclear Information System (INIS)

    Osaka, Masahiko; Sato, Isamu; Miwa, Shuhei; Konashi, Kenji; Li, Dexin; Homma, Yoshiya; Yamamura, Tomoo; Hayashi, Hirokazu; Minato, Kazuo; Sekimoto, Syun; Kubota, Takumi; Fukutani, Satoshi; Hori, Junichi; Okumura, Ryo; Uehara, Akihiro; Fujii, Toshiyuki; Yamana, Hajimu; Kurosaki, Ken; Muta, Hiroaki; Ohishi, Yuji; Yamanaka, Shinsuke; Uno, Masayoshi; Yaita, Tsuyoshi

    2011-01-01

    Summer schools for future experts have successfully been completed under Japan Actinide Network (J-ACTINET) for the purpose of development of human resources who are expected to be engaged in every areas of actinide-research/engineering. The first summer school was held in Ibaraki-area in August 2009, followed by the second one in Kansai-area in August 2010. Two summer schools have focused on actual experiences of actinides in actinide-research fields for university students and young researchers/engineers as an introductory course of actinide-researches. Many efforts were made to awaken interests into actinide-researches inside the participants during short periods of schools, 3 to 4 days. As actinides must be handled inside special apparatuses such as an air-tight globe-box with well-trained and qualified technicians, programs were optimized for effective experiences of actinides-handling. Several quasi actinide-handling experiences at the actinide-research fields have attracted attentions of participants at the first school in Ibaraki-area. The actual experiments using actinides-containing solutions have been carried out at the second school in Kansai-area. Future summer schools will be held every year for the sustainable human resource development in various actinide-research fields, together with other training and education programs conducted by the J-ACTINET. (author)

  11. Fuel performance-experience to date and future potential

    International Nuclear Information System (INIS)

    Proebstle, R.A.; Klepfer, H.H.

    1987-01-01

    The experience in the USA to date, as reported in the Federal Energy Regulatory Commission data, conforms a very favorable cost trend for nuclear fuel costs relative to fossil fuel costs. The nuclear fuel cost promose relative to other fuels looks even better in future. Uranium supply surplus and advances in enrichment technology suggest that this trend should continue. Threats to the economic potential for nuclear fuel costs include unexpected problems in actural versus projected core and fuel technical performance. The New designs for BWR's nuclear fuel are extended to 38,000 MWd/MTU and the fuel rod reliabilities of 0.999994 are achievable. This reliability is equivalent to less than 3 fuel rod failures over the 40 year life of a reactor. (Liu)

  12. Dark Energy Survey Year 1 Results: Methodology and Projections for Joint Analysis of Galaxy Clustering, Galaxy Lensing, and CMB Lensing Two-point Functions

    Energy Technology Data Exchange (ETDEWEB)

    Giannantonio, T.; et al.

    2018-02-14

    Optical imaging surveys measure both the galaxy density and the gravitational lensing-induced shear fields across the sky. Recently, the Dark Energy Survey (DES) collaboration used a joint fit to two-point correlations between these observables to place tight constraints on cosmology (DES Collaboration et al. 2017). In this work, we develop the methodology to extend the DES Collaboration et al. (2017) analysis to include cross-correlations of the optical survey observables with gravitational lensing of the cosmic microwave background (CMB) as measured by the South Pole Telescope (SPT) and Planck. Using simulated analyses, we show how the resulting set of five two-point functions increases the robustness of the cosmological constraints to systematic errors in galaxy lensing shear calibration. Additionally, we show that contamination of the SPT+Planck CMB lensing map by the thermal Sunyaev-Zel'dovich effect is a potentially large source of systematic error for two-point function analyses, but show that it can be reduced to acceptable levels in our analysis by masking clusters of galaxies and imposing angular scale cuts on the two-point functions. The methodology developed here will be applied to the analysis of data from the DES, the SPT, and Planck in a companion work.

  13. Multiscale multichroic focal planes for measurements of the cosmic microwave background

    Science.gov (United States)

    Cukierman, Ari; Lee, Adrian T.; Raum, Christopher; Suzuki, Aritoki; Westbrook, Benjamin

    2018-01-01

    integration of our devices in current and future CMB experiments.

  14. The impact of negative childbirth experience on future reproductive decisions: A quantitative systematic review.

    Science.gov (United States)

    Shorey, Shefaly; Yang, Yen Yen; Ang, Emily

    2018-06-01

    The aim of this study was to systematically retrieve, critique and synthesize available evidence regarding the association between negative childbirth experiences and future reproductive decisions. A child's birth is often a joyous event; however, there is a proportion of women who undergo negative childbirth experiences that have long-term implications on their reproductive decisions. A systematic review of quantitative studies was undertaken using Joanna Briggs Institute's methods. A search was carried out in CINAHL Plus with Full Text, Embase, PsycINFO, PubMed, Scopus and Web of Science from January 1996 - July 2016. Studies that fulfilled the inclusion criteria were assessed by two independent reviewers using the Joanna Briggs Institute's Critical Appraisal Tools. Data were extracted under subheadings adapted from the institute's data extraction forms. Twelve studies, which examined either one or more influences of negative childbirth experiences, were identified. The included studies were either cohort or cross-sectional designs. Five studies observed positive associations between prior negative childbirth experiences and decisions to not have another child, three studies found positive associations between negative childbirth experiences and decisions to delay a subsequent birth and six studies concluded positive associations between negative childbirth experiences and maternal requests for caesarean section in subsequent pregnancies. To receive a holistic understanding on negative childbirth experiences, a suitable definition and validated measuring tools should be used to understand this phenomenon. Future studies or reviews should include a qualitative component and/or the exploration of specific factors such as cultural and regional differences that influence childbirth experiences. © 2018 John Wiley & Sons Ltd.

  15. STAR: Preparing future science and math teachers through authentic research experiences at national laboratories

    Science.gov (United States)

    Keller, John; Rebar, Bryan

    2012-11-01

    The STEM Teacher and Researcher (STAR) Program provides 9-week paid summer research experiences at national research laboratories for future science and math teachers. The program, run by the Cal Poly Center for Excellence in Science and Mathematics Education (CESaME) on behalf of the entire California State University (CSU) System, has arranged 290 research internships for 230 STEM undergraduates and credential candidates from 43 campuses over the past 6 years. The program has partnered with seven Department of Energy labs, four NASA centers, three NOAA facilities, and the National Optical Astronomy Observatory (NOAO). Primary components of the summer experience include a) conducting research with a mentor or mentor team, b) participating in weekly 2-3 hour workshops focused on translating lessons learned from summer research into classroom practice, and c) presenting a research poster or oral presentation and providing a lesson plan linked to the summer research experience. The central premise behind the STAR Program is that future science and math teachers can more effectively prepare the next generation of science, math, and engineering students if they themselves have authentic experiences as researchers.

  16. A novel approach to quantifying the sensitivity of current and future cosmological datasets to the neutrino mass ordering through Bayesian hierarchical modeling

    Directory of Open Access Journals (Sweden)

    Martina Gerbino

    2017-12-01

    Full Text Available We present a novel approach to derive constraints on neutrino masses, as well as on other cosmological parameters, from cosmological data, while taking into account our ignorance of the neutrino mass ordering. We derive constraints from a combination of current as well as future cosmological datasets on the total neutrino mass Mν and on the mass fractions fν,i=mi/Mν (where the index i=1,2,3 indicates the three mass eigenstates carried by each of the mass eigenstates mi, after marginalizing over the (unknown neutrino mass ordering, either normal ordering (NH or inverted ordering (IH. The bounds on all the cosmological parameters, including those on the total neutrino mass, take therefore into account the uncertainty related to our ignorance of the mass hierarchy that is actually realized in nature. This novel approach is carried out in the framework of Bayesian analysis of a typical hierarchical problem, where the distribution of the parameters of the model depends on further parameters, the hyperparameters. In this context, the choice of the neutrino mass ordering is modeled via the discrete hyperparameter htype, which we introduce in the usual Markov chain analysis. The preference from cosmological data for either the NH or the IH scenarios is then simply encoded in the posterior distribution of the hyperparameter itself. Current cosmic microwave background (CMB measurements assign equal odds to the two hierarchies, and are thus unable to distinguish between them. However, after the addition of baryon acoustic oscillation (BAO measurements, a weak preference for the normal hierarchical scenario appears, with odds of 4:3 from Planck temperature and large-scale polarization in combination with BAO (3:2 if small-scale polarization is also included. Concerning next-generation cosmological experiments, forecasts suggest that the combination of upcoming CMB (COrE and BAO surveys (DESI may determine the neutrino mass hierarchy at a high

  17. Assessment of CORDEX-South Asia experiments for monsoonal precipitation over Himalayan region for future climate

    Science.gov (United States)

    Choudhary, A.; Dimri, A. P.

    2018-04-01

    Precipitation is one of the important climatic indicators in the global climate system. Probable changes in monsoonal (June, July, August and September; hereafter JJAS) mean precipitation in the Himalayan region for three different greenhouse gas emission scenarios (i.e. representative concentration pathways or RCPs) and two future time slices (near and far) are estimated from a set of regional climate simulations performed under Coordinated Regional Climate Downscaling Experiment-South Asia (CORDEX-SA) project. For each of the CORDEX-SA simulations and their ensemble, projections of near future (2020-2049) and far future (2070-2099) precipitation climatology with respect to corresponding present climate (1970-2005) over Himalayan region are presented. The variability existing over each of the future time slices is compared with the present climate variability to determine the future changes in inter annual fluctuations of monsoonal mean precipitation. The long-term (1970-2099) trend (mm/day/year) of monsoonal mean precipitation spatially distributed as well as averaged over Himalayan region is analyzed to detect any change across twenty-first century as well as to assess model uncertainty in simulating the precipitation changes over this period. The altitudinal distribution of difference in trend of future precipitation from present climate existing over each of the time slices is also studied to understand any elevation dependency of change in precipitation pattern. Except for a part of the Hindu-Kush area in western Himalayan region which shows drier condition, the CORDEX-SA experiments project in general wetter/drier conditions in near future for western/eastern Himalayan region, a scenario which gets further intensified in far future. Although, a gradually increasing precipitation trend is seen throughout the twenty-first century in carbon intensive scenarios, the distribution of trend with elevation presents a very complex picture with lower elevations

  18. Effect of the early reionization on the cosmic microwave background and cosmological parameter estimates

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qing-Guo; Wang, Ke, E-mail: huangqg@itp.ac.cn, E-mail: wangke@itp.ac.cn [CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Zhong Guan Cun East Street 55 #, Beijing 100190 (China)

    2017-07-01

    The early reionization (ERE) is supposed to be a physical process which happens after recombination, but before the instantaneous reionization caused by the first generation of stars. We investigate the effect of the ERE on the temperature and polarization power spectra of cosmic microwave background (CMB), and adopt principal components analysis (PCA) to model-independently reconstruct the ionization history during the ERE. In addition, we also discuss how the ERE affects the cosmological parameter estimates, and find that the ERE does not impose any significant influences on the tensor-to-scalar ratio r and the neutrino mass at the sensitivities of current experiments. The better CMB polarization data can be used to give a tighter constraint on the ERE and might be important for more precisely constraining cosmological parameters in the future.

  19. CHARM 2010: Experiment summary and future charm facilities

    Energy Technology Data Exchange (ETDEWEB)

    Appel, Jeffrey A.; /Fermilab

    2010-12-01

    The CHARM 2010 meeting had over 30 presentations of experimental results, plus additional future facilities talks just before this summary talk. Since there is not enough time to even summarize all that has been shown from experiments and to recognize all the memorable plots and results - tempting as it is to reproduce the many clean signals and data vs theory figures, the quantum correlations plots, and the D-mixing plots before and after the latest CLEO-c data is added. So, this review will give only my personal observations, exposing my prejudices and my areas of ignorance, no doubt. This overview will be at a fairly high level of abstraction - no re-showing individual plots or results. I ask the forgiveness of those who will have been slighted in this way - meaning all the presents.

  20. Modeling of the response of the POLARBEAR bolometers with a continuously rotating half-wave plate

    Science.gov (United States)

    Takakura, Satoru; POLARBEAR Collaboration

    2018-01-01

    The curly pattern, the so-called B-mode, in the polarization anisotropy of the cosmic microwave background (CMB) is a powerful probe to measure primordial gravitational waves from the cosmic inflation, as well as the weak lensing due to the large scale structure of the Universe. At present, ground-based CMB experiments with a few arcminutes resolution such as POLARBEAR, SPTpol, and ACTPol have successfully measured the angular power spectrum of the B-mode only in sub-degree scales, though these experiments also have potential to measure the inflationary B-modes in degree scales in absence of the low-frequency noise (1/f noise). Thus, techniques of polarization signal modulation such as a continuously rotating half-wave plate (CRHWP) are widely investigated to suppress the 1/f noise and also to reduce instrumental systematic errors. In this study, we have implemented a CRHWP placed around the prime focus of the POLARBEAR telescope and operated at ambient temperatures. We construct a comprehensive model including half-wave plate synchronous signals, detector non-linearities, beam imperfections, and all noise sources. Using this model, we show that, in practice, the 1/f noise and instrumental systematics could remain even with the CRHWP. However, we also evaluate those effects from test observations using a prototype CRHWP on the POLARBEAR telescope and find that the residual 1/f noise is sufficiently small for POLARBEAR to probe the multipoles about 40. We will also discuss prospects for future CMB experiments with better sensitivities.

  1. Measurements of the Temperature and E-mode Polarization of the CMB from 500 Square Degrees of SPTpol Data

    Energy Technology Data Exchange (ETDEWEB)

    Henning, J. W.; Sayre, J. T.; Reichardt, C. L.; Ade, P. A. R.; Anderson, A. J.; Austermann, J. E.; Beall, J. A.; Bender, A. N.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Chiang, H. C.; Cho, H-M.; Citron, R.; Moran, C. Corbett; Crawford, T. M.; Crites, A. T.; Haan, T. de; Dobbs, M. A.; Everett, W.; Gallicchio, J.; George, E. M.; Gilbert, A.; Halverson, N. W.; Harrington, N.; Hilton, G. C.; Holder, G. P.; Holzapfel, W. L.; Hoover, S.; Hou, Z.; Hrubes, J. D.; Huang, N.; Hubmayr, J.; Irwin, K. D.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Li, D.; Lowitz, A.; Manzotti, A.; McMahon, J. J.; Meyer, S. S.; Mocanu, L.; Montgomery, J.; Nadolski, A.; Natoli, T.; Nibarger, J. P.; Novosad, V.; Padin, S.; Pryke, C.; Ruhl, J. E.; Saliwanchik, B. R.; Schaffer, K. K.; Sievers, C.; Smecher, G.; Stark, A. A.; Story, K. T.; Tucker, C.; Vanderlinde, K.; Veach, T.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Wu, W. L. K.; Yefremenko, V.

    2018-01-11

    We present measurements of the E-mode polarization angular auto-power spectrum (EE) and temperature-E-mode cross-power spectrum (TE) of the cosmic microwave background (CMB) using 150 GHz data from three seasons of SPTpol observations. We report the power spectra over the spherical harmonic multipole range 50 < l <= 8000 and detect nine acoustic peaks in the EE spectrum with high signal-to-noise ratio. These measurements are the most sensitive to date of the EE and TE power spectra at l > 1050 and l > 1475, respectively. The observations cover 500 deg(2), a fivefold increase in area compared to previous SPTpol analyses, which increases our sensitivity to the photon diffusion damping tail of the CMB power spectra enabling tighter constraints on Lambda CDM model extensions. After masking all sources with unpolarized flux > 50 mJy, we place a 95% confidence upper limit on residual polarized point-source power of D-l= l(l + 1)C-l/2 pi < 0.107 mu K-2 at l = 3000, suggesting that the EE damping tail dominates foregrounds to at least l = 4050 with modest source masking. We find that the SPTpol data set is in mild tension with the Lambda CDM model (2.1 sigma), and different data splits prefer parameter values that differ at the similar to 1 sigma level. When fitting SPTpol data at l < 1000, we find cosmological parameter constraints consistent with those for Planck temperature. Including SPTpol data at l > 1000 results in a preference for a higher value of the expansion rate (H-0 = 71.3 +/- 2.1 km s(-1) Mpc(-1)) and a lower value for present-day density fluctuations (sigma(8) = 0.77 +/- 0.02).

  2. Exotic energy injection with ExoCLASS: application to the Higgs portal model and evaporating black holes

    Science.gov (United States)

    Stöcker, Patrick; Krämer, Michael; Lesgourgues, Julien; Poulin, Vivian

    2018-03-01

    We devise a new user-friendly tool interfaced with the Boltzmann code CLASS to deal with any kind of exotic electromagnetic energy injection in the universe and its impact on anisotropies of the Cosmic Microwave Background. It makes use of the results from standard electromagnetic cascade calculations develop in the context of WIMP annihilation, generalized to incorporate any injection history. We first validate it on a specific WIMP scenario, the Higgs Portal model, confirming that the standard effective on-the-spot treatment is accurate enough. We then analyze the more involved example of evaporating Primordial Black Holes (PBHs) with masses in the range [3×1013,5×1016] g, for which the standard approximations break down. We derive robust CMB bounds on the relic density of evaporating PBHs, ruling out the possibility for PBHs with a monochromatic distribution of masses in the range [3×1013,2.5×1016] g to represent all of the Dark Matter in our Universe. Remarkably, we confirm with an accurate study that the CMB bounds are several orders of magnitude stronger than those from the galactic gamma-ray background in the range [3×1013,3×1014] g. A future CMB experiment like CORE+, or an experiment attempting at measuring the 21 cm signal from the Dark Ages could greatly improve the sensitivity to these models.

  3. Calibration system with cryogenically-cooled loads for cosmic microwave background polarization detectors.

    Science.gov (United States)

    Hasegawa, M; Tajima, O; Chinone, Y; Hazumi, M; Ishidoshiro, K; Nagai, M

    2011-05-01

    We present a novel system to calibrate millimeter-wave polarimeters for cosmic microwave background (CMB) polarization measurements. This technique is an extension of the conventional metal mirror rotation approach, however, it employs cryogenically-cooled blackbody absorbers. The primary advantage of this system is that it can generate a slightly polarized signal (∼100 mK) in the laboratory; this is at a similar level to that measured by ground-based CMB polarization experiments observing a ∼10 K sky. It is important to reproduce the observing condition in the laboratory for reliable characterization of polarimeters before deployment. In this paper, we present the design and principle of the system and demonstrate its use with a coherent-type polarimeter used for an actual CMB polarization experiment. This technique can also be applied to incoherent-type polarimeters and it is very promising for the next-generation CMB polarization experiments.

  4. The Development of silicon detectors for the CMS experiment and future experiments

    CERN Document Server

    Son, Seunghee

    A hybrid pixel detector will be installed as the inner most layer of the tracking system of the CMS experiment, currently under construction at the Large Hardron Collider (LHC) at CERN (Geneva, Switzerland) to provide high resolution tracking and vertex identification. Due to the severe radiation environment of the LHC, the performance of the sensors must be carefully evaluated up to a fluence of 6 × 1014 1-MeV equivalent neutrons per square centimeter. The sensors were fabricated "n on n", which means highly segmented n+ implants with 150 × 100 μm2 pitch are in n-type bulk material and p+ implants are used to isolate pixels. The electrical properties of these sensors has been studied. Studies of charge collection efficiency were carried out with a 1064 nm wavelength laser. Comparisons of charge collection efficiency among different sensor designs is presented. In addition, present and future possibilities for the production of thin silicon detectors are discussed. The electrical characteristics and the pe...

  5. Bounds on dark matter interpretation of Fermi-LAT GeV excess

    Directory of Open Access Journals (Sweden)

    Kyoungchul Kong

    2014-11-01

    Full Text Available Annihilation of light dark matter of mDM≈(10–40 GeV into the Standard Model fermions has been suggested as a possible origin of the gamma-ray excess at GeV energies in the Fermi-LAT data. In this paper, we examine possible model-independent signatures of such dark matter models in other experiments such as AMS-02, colliders, and cosmic microwave background (CMB measurements. We point out that first generation of fermion final states is disfavored by the existing experimental data. Currently AMS-02 positron measurements provide stringent bounds on cross sections of dark matter annihilation into leptonic final states, and e+e− final state is in severe tension with this constraint, if not ruled out. The e+e− channel will be complementarily verified in an early stage of ILC and future CMB measurements. Light quark final states (qq¯ are relatively strongly constrained by the LHC and dark matter direct detection experiments even though these bounds are model-dependent. Dark matter signals from annihilations into qq¯ channels would be constrained by AMS-02 antiproton data which will be released in very near future. In optimistic case, diffuse radio emission from nearby galaxy (clusters and the galactic center might provide another hint or limit on dark matter annihilation.

  6. Confronting the sound speed of dark energy with future cluster surveys

    DEFF Research Database (Denmark)

    Basse, Tobias; Eggers Bjaelde, Ole; Hannestad, Steen

    2012-01-01

    Future cluster surveys will observe galaxy clusters numbering in the hundred thousands. We consider this work how these surveys can be used to constrain dark energy parameters: in particular, the equation of state parameter w and the non-adiabatic sound speed c_s^2. We demonstrate that, in combin......Future cluster surveys will observe galaxy clusters numbering in the hundred thousands. We consider this work how these surveys can be used to constrain dark energy parameters: in particular, the equation of state parameter w and the non-adiabatic sound speed c_s^2. We demonstrate that......, in combination with Cosmic Microwave Background (CMB) observations from Planck, cluster surveys such as that in the ESA Euclid project will be able to determine a time-independent w with subpercent precision. Likewise, if the dark energy sound horizon falls within the length scales probed by the cluster survey......, then c_s^2 can be pinned down to within an order of magnitude. In the course of this work, we also investigate the process of dark energy virialisation in the presence of an arbitrary sound speed. We find that dark energy clustering and virialisation can lead to dark energy contributing to the total...

  7. Cosmic 21 cm delensing of microwave background polarization and the minimum detectable energy scale of inflation.

    Science.gov (United States)

    Sigurdson, Kris; Cooray, Asantha

    2005-11-18

    We propose a new method for removing gravitational lensing from maps of cosmic microwave background (CMB) polarization anisotropies. Using observations of anisotropies or structures in the cosmic 21 cm radiation, emitted or absorbed by neutral hydrogen atoms at redshifts 10 to 200, the CMB can be delensed. We find this method could allow CMB experiments to have increased sensitivity to a background of inflationary gravitational waves (IGWs) compared to methods relying on the CMB alone and may constrain models of inflation which were heretofore considered to have undetectable IGW amplitudes.

  8. Materials Science Experiments Under Microgravity - A Review of History, Facilities, and Future Opportunities

    Science.gov (United States)

    Stenzel, Ch.

    2012-01-01

    Materials science experiments have been a key issue already since the early days of research under microgravity conditions. A microgravity environment facilitates processing of metallic and semiconductor melts without buoyancy driven convection and sedimentation. Hence, crystal growth of semiconductors, solidification of metallic alloys, and the measurement of thermo-physical parameters are the major applications in the field of materials science making use of these dedicated conditions in space. In the last three decades a large number of successful experiments have been performed, mainly in international collaborations. In parallel, the development of high-performance research facilities and the technological upgrade of diagnostic and stimuli elements have also contributed to providing optimum conditions to perform such experiments. A review of the history of materials science experiments in space focussing on the development of research facilities is given. Furthermore, current opportunities to perform such experiments onboard ISS are described and potential future options are outlined.

  9. Using CMB spectral distortions to distinguish between dark matter solutions to the small-scale crisis

    Energy Technology Data Exchange (ETDEWEB)

    Diacoumis, James A.D.; Wong, Yvonne Y.Y., E-mail: j.diacoumis@unsw.edu.au, E-mail: yvonne.y.wong@unsw.edu.au [School of Physics, The University of New South Wales, Sydney NSW 2052 (Australia)

    2017-09-01

    The dissipation of small-scale perturbations in the early universe produces a distortion in the blackbody spectrum of cosmic microwave background photons. In this work, we propose to use these distortions as a probe of the microphysics of dark matter on scales 1 Mpc{sup -1}∼< k ∼< 10{sup 4} Mpc{sup -1}. We consider in particular models in which the dark matter is kinetically coupled to either neutrinos or photons until shortly before recombination, and compute the photon heating rate and the resultant μ-distortion in both cases. We show that the μ-parameter is generally enhanced relative to ΛCDM for interactions with neutrinos, and may be either enhanced or suppressed in the case of interactions with photons. The deviations from the ΛCDM signal are potentially within the sensitivity reach of a PRISM-like experiment if σ{sub DM-γ} ∼> 1.1 × 10{sup -30} (m{sub DM}/GeV) cm{sup 2} and σ{sub DM-ν} ∼> 4.8 × 10{sup -32} (m{sub DM}/GeV) cm{sup 2} for time-independent cross sections, and σ{sup 0}{sub DM-γ} ∼> 1.8 × 10{sup -40} (m{sub DM}/GeV) cm{sup 2} and σ{sup 0}{sub DM-ν} ∼> 2.5 × 10{sup -47} (m{sub DM}/GeV) cm{sup 2} for cross sections scaling as temperature squared, coinciding with the parameter regions in which late kinetic decoupling may serve as a solution to the small-scale crisis. Furthermore, these μ-distortion signals differ from those of warm dark matter (no deviation from ΛCDM) and a suppressed primordial power spectrum (a strongly suppressed or negative μ-parameter), demonstrating that CMB spectral distortion can potentially be used to distinguish between solutions to the small-scale crisis.

  10. Future prospects of KL -> π0νanti-ν experiment at Fermilab

    International Nuclear Information System (INIS)

    Hsiung, Yee B.

    2000-01-01

    The authors reviewed the current status of a proposed KAMI (Kaon at Main Injector) experiment at Fermilab to measure the direct CP-violating K L (r a rrow) π 0 νanti-ν decay. Good progress and encouraging results have been made in the past two years for measuring the required photon veto inefficiencies for both CsI and lead-scintillator detectors in a test beam at INS-KEK Japan. New beam test with 150 GeV Main Injector protons has also been scheduled in January 2000 at Fermilab using the existing KTeV detector with two new beam calorimeters. Prospects of a feasible KAMI experiment in the future is discussed here

  11. CMB spectral distortion constraints on thermal inflation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Kihyun; Stewart, Ewan D. [Department of Physics, KAIST, Daejeon 34141 (Korea, Republic of); Hong, Sungwook E. [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of); Zoe, Heeseung, E-mail: cho_physics@kaist.ac.kr, E-mail: heezoe@dgist.ac.kr, E-mail: jcap@profstewart.org, E-mail: heezoe@dgist.ac.kr [School of Undergraduate Studies, College of Transdisciplinary Studies, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988 (Korea, Republic of)

    2017-08-01

    Thermal inflation is a second epoch of exponential expansion at typical energy scales V {sup 1/4} ∼ 10{sup 6} {sup ∼} {sup 8} GeV. If the usual primordial inflation is followed by thermal inflation, the primordial power spectrum is only modestly redshifted on large scales, but strongly suppressed on scales smaller than the horizon size at the beginning of thermal inflation, k > k {sub b} = a {sub b} H {sub b}. We calculate the spectral distortion of the cosmic microwave background generated by the dissipation of acoustic waves in this context. For k {sub b} || 10{sup 3} Mpc{sup −1}, thermal inflation results in a large suppression of the μ-distortion amplitude, predicting that it falls well below the standard value of μ ≅ 2× 10{sup −8}. Thus, future spectral distortion experiments, similar to PIXIE, can place new limits on the thermal inflation scenario, constraining k {sub b} ∼> 10{sup 3} Mpc{sup −1} if μ ≅ 2× 10{sup −8} were found.

  12. Bayesian component separation: The Planck experience

    Science.gov (United States)

    Wehus, Ingunn Kathrine; Eriksen, Hans Kristian

    2018-05-01

    Bayesian component separation techniques have played a central role in the data reduction process of Planck. The most important strength of this approach is its global nature, in which a parametric and physical model is fitted to the data. Such physical modeling allows the user to constrain very general data models, and jointly probe cosmological, astrophysical and instrumental parameters. This approach also supports statistically robust goodness-of-fit tests in terms of data-minus-model residual maps, which are essential for identifying residual systematic effects in the data. The main challenges are high code complexity and computational cost. Whether or not these costs are justified for a given experiment depends on its final uncertainty budget. We therefore predict that the importance of Bayesian component separation techniques is likely to increase with time for intensity mapping experiments, similar to what has happened in the CMB field, as observational techniques mature, and their overall sensitivity improves.

  13. The SNO+ experiment. Current status and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Lozza, Valentina [Institut fuer Kern- und Teilchenphysik, Zellescher Weg 19, 01069 Dresden (Germany)

    2016-07-01

    SNO+ is a large liquid scintillator based experiment that reuses the Sudbury Neutrino Observatory detector. The detector, located 2 km underground in a mine near Sudbury, Canada, consists of a 12 m diameter acrylic vessel which will be filled with 780 tonnes of liquid scintillator. The main physics goal of SNO+ is to search for the neutrinoless double-beta (0νββ) decay of {sup 130}Te. During the double-beta phase, the liquid scintillator will be initially loaded with 0.3-0.5% natural tellurium. In 5 years of data taking, SNO+ expects to reach a sensitivity on the effective Majorana neutrino mass of 55-133 meV, just above the inverted neutrino mass hierarchy region. Recently, the possibility to deploy up to 10 times more natural tellurium has been investigated, by which SNO+ could explore deep into the parameter space for the inverted hierarchy in the near future. Designed as a general purpose neutrino experiment, SNO+ can additionally measure the reactor antineutrino oscillations, geo-neutrinos in a geologically-interesting location, watch supernova neutrinos and measure low-energy solar neutrinos. A first commissioning phase with the detector filled with water will begin soon. The scintillator phase is expected to start after few months of water data taking. The 0νββ decay phase is foreseen for the 2017. In this talk the current status and the broad physics program of SNO+ will be presented.

  14. Possibilities of 50 years experience application of design activity of 'Energoprojekt-Warsaw' for nuclear energetics in future

    International Nuclear Information System (INIS)

    Roguska, M.; Grzebula, K.; Patrycy, A.

    2000-01-01

    The 50 year experience in design activity for energetics can be profitable for Polish nuclear energetics in the future. Especially previous works on nuclear power plant localization, design of nuclear technique objects and system of quality assurance certified (ISO 9001-1994) can give the solid base for design of future nuclear power plant in Poland when needed

  15. The CMS High Level Trigger System: Experience and Future Development

    CERN Document Server

    Bauer, Gerry; Bowen, Matthew; Branson, James G; Bukowiec, Sebastian; Cittolin, Sergio; Coarasa, J A; Deldicque, Christian; Dobson, Marc; Dupont, Aymeric; Erhan, Samim; Flossdorf, Alexander; Gigi, Dominique; Glege, Frank; Gomez-Reino, R; Hartl, Christian; Hegeman, Jeroen; Holzner, André; Y L Hwong; Masetti, Lorenzo; Meijers, Frans; Meschi, Emilio; Mommsen, R K; O'Dell, Vivian; Orsini, Luciano; Paus, Christoph; Petrucci, Andrea; Pieri, Marco; Polese, Giovanni; Racz, Attila; Raginel, Olivier; Sakulin, Hannes; Sani, Matteo; Schwick, Christoph; Shpakov, Dennis; Simon, M; Spataru, A C; Sumorok, Konstanty

    2012-01-01

    The CMS experiment at the LHC features a two-level trigger system. Events accepted by the first level trigger, at a maximum rate of 100 kHz, are read out by the Data Acquisition system (DAQ), and subsequently assembled in memory in a farm of computers running a software high-level trigger (HLT), which selects interesting events for offline storage and analysis at a rate of order few hundred Hz. The HLT algorithms consist of sequences of offline-style reconstruction and filtering modules, executed on a farm of 0(10000) CPU cores built from commodity hardware. Experience from the operation of the HLT system in the collider run 2010/2011 is reported. The current architecture of the CMS HLT, its integration with the CMS reconstruction framework and the CMS DAQ, are discussed in the light of future development. The possible short- and medium-term evolution of the HLT software infrastructure to support extensions of the HLT computing power, and to address remaining performance and maintenance issues, are discussed.

  16. Past Expectations, Current Experiences, and Imagined Futures: Narrative Accounts of Chinese International Students in Canada

    OpenAIRE

    Zhang, Zhihua

    2017-01-01

    The internationalization of higher education has led to the influx of Chinese international students in Canada. The literature on these students usually addresses the factors that drive them to Canada, their learning experiences, and the impact of the stereotypical constructions of “Chinese learners” on their language learning. But the literature does not connect the current learning experiences of these students to their past back in China and the futures in their imagination. This narrative...

  17. Measurements of the Temperature and E-mode Polarization of the CMB from 500 Square Degrees of SPTpol Data

    Energy Technology Data Exchange (ETDEWEB)

    Henning, J. W.; Sayre, J. T.; Reichardt, C. L.; Ade, P. A. R.; Anderson, A. J.; Austermann, J. E.; Beall, J. A.; Bender, A. N.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Chiang, H. C.; Cho, H-M.; Citron, R.; Moran, C. Corbett; Crawford, T. M.; Crites, A. T.; Haan, T. de; Dobbs, M. A.; Everett, W.; Gallicchio, J.; George, E. M.; Gilbert, A.; Halverson, N. W.; Harrington, N.; Hilton, G. C.; Holder, G. P.; Holzapfel, W. L.; Hoover, S.; Hou, Z.; Hrubes, J. D.; Huang, N.; Hubmayr, J.; Irwin, K. D.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Li, D.; Lowitz, A.; Manzotti, A.; McMahon, J. J.; Meyer, S. S.; Mocanu, L.; Montgomery, J.; Nadolski, A.; Natoli, T.; Nibarger, J. P.; Novosad, V.; Padin, S.; Pryke, C.; Ruhl, J. E.; Saliwanchik, B. R.; Schaffer, K. K.; Sievers, C.; Smecher, G.; Stark, A. A.; Story, K. T.; Tucker, C.; Vanderlinde, K.; Veach, T.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Wu, W. L. K.; Yefremenko, V.

    2018-01-11

    We present measurements of the $E$-mode polarization angular auto-power spectrum ($EE$) and temperature-$E$-mode cross-power spectrum ($TE$) of the cosmic microwave background (CMB) using 150 GHz data from three seasons of SPTpol observations. We now report the $EE$ and $TE$ power spectra over the spherical harmonic multipole range $50 < \\ell \\leq 8000$, and detect the first nine acoustic peaks in the $EE$ spectrum with high signal-to-noise. These measurements are the most sensitive to date of the $EE$ and $TE$ angular polarization power spectra at $\\ell > 1050$ and $\\ell > 1475$, respectively. The observations cover $500\\, \\rm{deg}^2$ of sky, a fivefold increase in area compared to previous SPTpol power spectrum releases, leading to more than a factor of two reduction in bandpower uncertainties. The additional sky coverage increases our sensitivity to the photon-diffusion damping tail of the CMB angular power spectra, which enables tighter constraints on $\\Lambda CDM$ model extensions such as primordial helium content $Y_\\rm{p}$ and effective number of relativistic species $N_\\rm{eff}$. Furthermore, after masking all sources with unpolarized flux $>50$ mJy we place a 95% confidence upper limit on residual polarized point-source power of $D_\\ell < 0.10 \\mu{\\rm K}^2$ at $\\ell=3000$. This limit is a factor of four lower than the previous best upper limit, and suggests that the $EE$ damping tail is brighter than foregrounds to at least $\\ell = 4100$ with modest source masking. Finally, we find cosmological parameter constraints consistent with those for $Planck$ temperature when fitting SPTpol data at $\\ell < 1000$. However, including SPTpol data at $\\ell > 1000$ results in a preference for a higher value of the expansion rate ($H_0 = 71.2 \\pm 2.1\\,\\mbox{km}\\,s^{-1}\\mbox{Mpc}^{-1}$) and a lower value for present-day density fluctuations ($\\sigma_8 = 0.77 \\pm 0.02$). (Abridged).

  18. Getting leverage on inflation with a large photometric redshift survey

    CERN Document Server

    Basse, Tobias; Hannestad, Steen; Wong, Yvonne Y Y

    2015-01-01

    We assess the potential of a future large-volume photometric redshift survey to constrain observational inflationary parameters using three large-scale structure observables: the angular shear and galaxy power spectra, and the cluster mass function measured through weak lensing. When used in combination with Planck-like CMB measurements, we find that the spectral index n_s can be constrained to a 1 sigma precision of up to 0.0025. The sensitivity to the running of the spectral index can potentially improve to 0.0017, roughly a factor of five better than the present 1 sigma~constraint from Planck and auxiliary CMB data, allowing us to test the assumptions of the slow-roll scenario with unprecedented accuracy. Interestingly, neither CMB+shear nor CMB+galaxy nor CMB+clusters alone can achieve this level of sensitivity; it is the combined power of all three probes that conspires to break the different parameter degeneracies inherent in each type of observations. We make our forecast software publicly available vi...

  19. Litmus Test for Cosmic Hemispherical Asymmetry in the Cosmic Microwave Background B-Mode Polarization.

    Science.gov (United States)

    Mukherjee, Suvodip; Souradeep, Tarun

    2016-06-03

    Recent measurements of the temperature field of the cosmic microwave background (CMB) provide tantalizing evidence for violation of statistical isotropy (SI) that constitutes a fundamental tenet of contemporary cosmology. CMB space based missions, WMAP, and Planck have observed a 7% departure in the SI temperature field at large angular scales. However, due to higher cosmic variance at low multipoles, the significance of this measurement is not expected to improve from any future CMB temperature measurements. We demonstrate that weak lensing of the CMB due to scalar perturbations produces a corresponding SI violation in B modes of CMB polarization at smaller angular scales. The measurability of this phenomenon depends upon the scales (l range) over which power asymmetry is present. Power asymmetry, which is restricted only to l<64 in the temperature field, cannot lead to any significant observable effect from this new window. However, this effect can put an independent bound on the spatial range of scales of hemispherical asymmetry present in the scalar sector.

  20. Interpreting the CMB aberration and Doppler measurements: boost or intrinsic dipole?

    International Nuclear Information System (INIS)

    Roldan, Omar; Quartin, Miguel; Notari, Alessio

    2016-01-01

    The aberration and Doppler coupling effects of the Cosmic Microwave Background (CMB) were recently measured by the Planck satellite. The most straightforward interpretation leads to a direct detection of our peculiar velocity β, consistent with the measurement of the well-known dipole. In this paper we discuss the assumptions behind such interpretation. We show that Doppler-like couplings appear from two effects: our peculiar velocity and a second order large-scale effect due to the dipolar part of the gravitational potential. We find that the two effects are exactly degenerate but only if we assume second-order initial conditions from single-field Inflation. Thus, detecting a discrepancy in the value of β from the dipole and the Doppler couplings implies the presence of a primordial non-Gaussianity. We also show that aberration-like signals likewise arise from two independent effects: our peculiar velocity and lensing due to a first order large-scale dipolar gravitational potential, independently on Gaussianity of the initial conditions. In general such effects are not degenerate and so a discrepancy between the measured β from the dipole and aberration could be accounted for by a dipolar gravitational potential. Only through a fine-tuning of the radial profile of the potential it is possible to have a complete degeneracy with a boost effect. Finally we discuss that we also expect other signatures due to integrated second order terms, which may be further used to disentangle this scenario from a simple boost.

  1. Interpreting the CMB aberration and Doppler measurements: boost or intrinsic dipole?

    Energy Technology Data Exchange (ETDEWEB)

    Roldan, Omar; Quartin, Miguel [Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972, Rio de Janeiro, RJ (Brazil); Notari, Alessio, E-mail: oaroldan@if.ufrj.br, E-mail: notari@ffn.ub.es, E-mail: mquartin@if.ufrj.br [Departament de Física Fondamental i Institut de Ciéncies del Cosmos, Universitat de Barcelona, Martí i Franqués 1, E-08028 Barcelona (Spain)

    2016-06-01

    The aberration and Doppler coupling effects of the Cosmic Microwave Background (CMB) were recently measured by the Planck satellite. The most straightforward interpretation leads to a direct detection of our peculiar velocity β, consistent with the measurement of the well-known dipole. In this paper we discuss the assumptions behind such interpretation. We show that Doppler-like couplings appear from two effects: our peculiar velocity and a second order large-scale effect due to the dipolar part of the gravitational potential. We find that the two effects are exactly degenerate but only if we assume second-order initial conditions from single-field Inflation. Thus, detecting a discrepancy in the value of β from the dipole and the Doppler couplings implies the presence of a primordial non-Gaussianity. We also show that aberration-like signals likewise arise from two independent effects: our peculiar velocity and lensing due to a first order large-scale dipolar gravitational potential, independently on Gaussianity of the initial conditions. In general such effects are not degenerate and so a discrepancy between the measured β from the dipole and aberration could be accounted for by a dipolar gravitational potential. Only through a fine-tuning of the radial profile of the potential it is possible to have a complete degeneracy with a boost effect. Finally we discuss that we also expect other signatures due to integrated second order terms, which may be further used to disentangle this scenario from a simple boost.

  2. Possible connection between the location of the cutoff in the cosmic microwave background spectrum and the equation of state of dark energy.

    Science.gov (United States)

    Enqvist, Kari; Sloth, Martin S

    2004-11-26

    We investigate a possible connection between the suppression of the power at low multipoles in the cosmic microwave background (CMB) spectrum and the late time acceleration. We show that, assuming a cosmic IR/UV duality between the UV cutoff and a global infrared cutoff given by the size of the future event horizon, the equation of state of the dark energy can be related to the apparent cutoff in the CMB spectrum. The present limits on the equation of state of dark energy are shown to imply an IR cutoff in the CMB multipole interval of 9>l>8.5.

  3. NASA Astronauts on Soyuz: Experience and Lessons for the Future

    Science.gov (United States)

    2010-01-01

    The U. S., Russia, and, China have each addressed the question of human-rating spacecraft. NASA's operational experience with human-rating primarily resides with Mercury, Gemini, Apollo, Space Shuttle, and International Space Station. NASA s latest developmental experience includes Constellation, X38, X33, and the Orbital Space Plane. If domestic commercial crew vehicles are used to transport astronauts to and from space, Soyuz is another example of methods that could be used to human-rate a spacecraft and to work with commercial spacecraft providers. For Soyuz, NASA's normal assurance practices were adapted. Building on NASA's Soyuz experience, this report contends all past, present, and future vehicles rely on a range of methods and techniques for human-rating assurance, the components of which include: requirements, conceptual development, prototype evaluations, configuration management, formal development reviews (safety, design, operations), component/system ground-testing, integrated flight tests, independent assessments, and launch readiness reviews. When constraints (cost, schedule, international) limit the depth/breadth of one or more preferred assurance means, ways are found to bolster the remaining areas. This report provides information exemplifying the above safety assurance model for consideration with commercial or foreign-government-designed spacecraft. Topics addressed include: U.S./Soviet-Russian government/agency agreements and engineering/safety assessments performed with lessons learned in historic U.S./Russian joint space ventures

  4. FutureCoast: "Listen to your futures"

    Science.gov (United States)

    Pfirman, S. L.; Eklund, K.; Thacher, S.; Orlove, B. S.; Diane Stovall-Soto, G.; Brunacini, J.; Hernandez, T.

    2014-12-01

    Two science-arts approaches are emerging as effective means to convey "futurethinking" to learners: systems gaming and experiential futures. FutureCoast exemplifies the latter: by engaging participants with voicemails supposedly leaking from the cloud of possible futures, the storymaking game frames the complexities of climate science in relatable contexts. Because participants make the voicemails themselves, FutureCoast opens up creative ways for people to think about possibly climate-changed futures and personal ways to talk about them. FutureCoast is a project of the PoLAR Partnership with a target audience of informal adult learners primarily reached via mobile devices and online platforms. Scientists increasingly use scenarios and storylines as ways to explore the implications of environmental change and societal choices. Stories help people make connections across experiences and disciplines and link large-scale events to personal consequences. By making the future seem real today, FutureCoast's framework helps people visualize and plan for future climate changes. The voicemails contributed to FutureCoast are spread through the game's intended timeframe (2020 through 2065). Based on initial content analysis of voicemail text, common themes include ecosystems and landscapes, weather, technology, societal issues, governance and policy. Other issues somewhat less frequently discussed include security, food, industry and business, health, energy, infrastructure, water, economy, and migration. Further voicemail analysis is examining: temporal dimensions (salient time frames, short vs. long term issues, intergenerational, etc.), content (adaptation vs. mitigation, challenges vs. opportunities, etc.), and emotion (hopeful, resigned, etc. and overall emotional context). FutureCoast also engaged audiences through facilitated in-person experiences, geocaching events, and social media (Tumblr, Twitter, Facebook, YouTube). Analysis of the project suggests story

  5. Cold dark matter and degree-scale cosmic microwave background anisotropy statistics after COBE

    Science.gov (United States)

    Gorski, Krzysztof M.; Stompor, Radoslaw; Juszkiewicz, Roman

    1993-01-01

    We conduct a Monte Carlo simulation of the cosmic microwave background (CMB) anisotropy in the UCSB South Pole 1991 degree-scale experiment. We examine cold dark matter cosmology with large-scale structure seeded by the Harrison-Zel'dovich hierarchy of Gaussian-distributed primordial inhomogeneities normalized to the COBE-DMR measurement of large-angle CMB anisotropy. We find it statistically implausible (in the sense of low cumulative probability F lower than 5 percent, of not measuring a cosmological delta-T/T signal) that the degree-scale cosmological CMB anisotropy predicted in such models could have escaped a detection at the level of sensitivity achieved in the South Pole 1991 experiment.

  6. An analytical approach to the CMB polarization in a spatially closed background

    Science.gov (United States)

    Niazy, Pedram; Abbassi, Amir H.

    2018-03-01

    The scalar mode polarization of the cosmic microwave background is derived in a spatially closed universe from the Boltzmann equation using the line of sight integral method. The EE and TE multipole coefficients have been extracted analytically by considering some tolerable approximations such as considering the evolution of perturbation hydrodynamically and sudden transition from opacity to transparency at the time of last scattering. As the major advantage of analytic expressions, CEE,ℓS and CTE,ℓ explicitly show the dependencies on baryon density ΩB, matter density ΩM, curvature ΩK, primordial spectral index ns, primordial power spectrum amplitude As, Optical depth τreion, recombination width σt and recombination time tL. Using a realistic set of cosmological parameters taken from a fit to data from Planck, the closed universe EE and TE power spectrums in the scalar mode are compared with numerical results from the CAMB code and also latest observational data. The analytic results agree with the numerical ones on the big and moderate scales. The peak positions are in good agreement with the numerical result on these scales while the peak heights agree with that to within 20% due to the approximations have been considered for these derivations. Also, several interesting properties of CMB polarization are revealed by the analytic spectra.

  7. Status, experience and future prospects for the development of probabilistic safety criteria

    International Nuclear Information System (INIS)

    1989-09-01

    During 27-31 January 1986 the IAEA held a Technical Committee Meeting on ''Status, Experience, and Future Prospects for the Development of Probabilistic Safety Criteria''. Participation included representation of essentially all countries with major developments in the area as well as the Nuclear Energy Agency of the OECD and CEC. Though it has to be recognized that in such a short time period it is impossible to resolve or even analyse all aspects of this complex issue, the present situation, the main problems and the directions for future work clearly emerged. This report was prepared by the members of the Technical Committee based on the opinions expressed and on the information available at the time of the meeting. The report also contains 20 papers presented at the meeting by participants. A separate abstract was prepared for each of these 20 papers. Refs, figs and tabs

  8. Breaking Be: a sterile neutrino solution to the cosmological lithium problem

    Energy Technology Data Exchange (ETDEWEB)

    Salvati, L.; Melchiorri, A. [Physics Department and INFN, Università di Roma ' ' La Sapienza' ' , P.le Aldo Moro 2, 00185, Rome (Italy); Pagano, L. [Institut d' Astrophysique Spatiale, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Bât. 121, 91405 Orsay cedex (France); Lattanzi, M. [Dipartimento di Fisica e Scienze della Terra, Università di Ferrara and INFN, Sezione di Ferrara, Polo Scientifico e Tecnologico—Edificio C Via Saragat, 1, I-44122 Ferrara (Italy); Gerbino, M., E-mail: laura.salvati@roma1.infn.it, E-mail: lpagano@ias.u-psdu.fr, E-mail: lattanzi@fe.infn.it, E-mail: martina.gerbino@fysik.su.se, E-mail: alessandro.melchiorri@roma1.infn.it [The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden)

    2016-08-01

    The possibility that the so-called ''lithium problem'', i.e., the disagreement between the theoretical abundance predicted for primordial {sup 7}Li assuming standard nucleosynthesis and the value inferred from astrophysical measurements, can be solved through a non-thermal Big Bang Nucleosynthesis (BBN) mechanism has been investigated by several authors. In particular, it has been shown that the decay of a MeV-mass particle, like, e.g., a sterile neutrino, decaying after BBN not only solves the lithium problem, but also satisfies cosmological and laboratory bounds, making such a scenario worth to be investigated in further detail. In this paper, we constrain the parameters of the model with the combination of current data, including Planck 2015 measurements of temperature and polarization anisotropies of the Cosmic Microwave Background (CMB), FIRAS limits on CMB spectral distortions, astrophysical measurements of primordial abundances and laboratory constraints. We find that a sterile neutrino with mass M {sub S} = 4.35{sub -0.17}{sup +0.13} MeV (at 95% c.l.), a decay time τ {sub S} = 1.8{sub -1.3}{sup +2.5} · 10{sup 5} s (at 95% c.l.) and an initial density n-bar {sub S} / n-bar {sub cmb} = 1.7{sub -0.6}{sup +3.5} · 10{sup -4} (at 95% c.l.) in units of the number density of CMB photons, perfectly accounts for the difference between predicted and observed {sup 7}Li primordial abundance. This model also predicts an increase of the effective number of relativistic degrees of freedom at the time of CMB decoupling Δ N {sub eff}{sup cmb} ≡ N {sub eff}{sup cmb} -3.046 = 0.34{sub -0.14}{sup +0.16} at 95% c.l.. The required abundance of sterile neutrinos is incompatible with the standard thermal history of the Universe, but could be realized in a low reheating temperature scenario. We also provide forecasts for future experiments finding that the combination of measurements from the COrE+ and PIXIE missions will allow to significantly reduce the

  9. Environmental futures research: experiences, approaches, and opportunities

    Science.gov (United States)

    David N., comp. Bengston

    2012-01-01

    These papers, presented in a special session at the International Symposium on Society and Resource Management in June 2011, explore the transdisciplinary field of futures research and its application to long-range environmental analysis, planning, and policy. Futures research began in the post-World War II era and has emerged as a mature research field. Although the...

  10. Future prospects of baryon istability search in p-decay and n n(bar) oscillation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ball, S.J.; Kamyshkov, Y.A. [ed.

    1996-11-01

    These proceedings contain thirty-one papers which review both the theoretical and the experimental status and near future of baryon instability research. Baryon instability is investigated from the vantage point of supersymmetric and unified theories. The interplay between baryogenesis and antimatter is examined. Double beta decay experiments are discussed. The huge Icarus experiment is described with its proton decay capabilities. Neutron-antineutron oscillations investigations are presented, especially efforts with ultra-cold neutrons. Individual papers are indexed separately on the Energy Data Base.

  11. Current Status and Future Prospects of the SNO+ Experiment

    Directory of Open Access Journals (Sweden)

    S. Andringa

    2016-01-01

    Full Text Available SNO+ is a large liquid scintillator-based experiment located 2 km underground at SNOLAB, Sudbury, Canada. It reuses the Sudbury Neutrino Observatory detector, consisting of a 12 m diameter acrylic vessel which will be filled with about 780 tonnes of ultra-pure liquid scintillator. Designed as a multipurpose neutrino experiment, the primary goal of SNO+ is a search for the neutrinoless double-beta decay (0νββ of 130Te. In Phase I, the detector will be loaded with 0.3% natural tellurium, corresponding to nearly 800 kg of 130Te, with an expected effective Majorana neutrino mass sensitivity in the region of 55–133 meV, just above the inverted mass hierarchy. Recently, the possibility of deploying up to ten times more natural tellurium has been investigated, which would enable SNO+ to achieve sensitivity deep into the parameter space for the inverted neutrino mass hierarchy in the future. Additionally, SNO+ aims to measure reactor antineutrino oscillations, low energy solar neutrinos, and geoneutrinos, to be sensitive to supernova neutrinos, and to search for exotic physics. A first phase with the detector filled with water will begin soon, with the scintillator phase expected to start after a few months of water data taking. The 0νββ Phase I is foreseen for 2017.

  12. Digital Story-Based Problem Solving Applications: Preservice Primary Teachers' Experiences and Future Integration Plans

    Science.gov (United States)

    Kilic, Çigdem; Sancar-Tokmak, Hatice

    2017-01-01

    This case study investigates how preservice primary school teachers describe their experiences with digital story-based problem solving applications and their plans for the future integration of this technology into their teaching. Totally 113 preservice primary school teachers participated in the study. Data collection tools included a…

  13. Learning Physics from the Cosmic Microwave Background

    CERN Document Server

    Ellis, Jonathan Richard

    1999-01-01

    The Cosmic Microwave Background (CMB) provides a precious window on fundamental physics at very high energy scales, possibly including quantum gravity, GUTs and supersymmetry. The CMB has already enabled defect-based rivals to inflation to be discarded, and will be able to falsify many inflationary models. In combination with other cosmological observations, including those of high-redshift supernovae and large-scale structure, the CMB is on the way to providing a detailed budget for the density of the Universe, to be compared with particle-physics calculations for neutrinos and cold dark matter. Thus CMB measurements complement experiments with the LHC and long-baseline neutrino beams.

  14. Making the future palpable: Notes from a major incident Future Laboratory

    DEFF Research Database (Denmark)

    Büscher, Monika; Kristensen, Margit; Mogensen, Preben Holst

    2008-01-01

    In this paper we describe experiences from a Future Laboratory. Future laboratories allow users to experiment with prototypes of future technologies in as realistic as possible conditions. We have devised this method because, to realize the potential of advanced ubiquitous computing technologies...... it is essential to anticipate and design for future practices, but for prospective users it is often difficult to imagine and articulate future practices and provide design specifications. However, they readily invent new ways of working in engagement with new technologies and, by facilitating realistic use...... of prototype technologies in Future Laboratories, designers and users can define and study both opportunities and constraints for design. We present 11 scenes from a Major Incidents Future Laboratory held in September 2005. Many raise tough questions rather than provide quick answers. In addition, many also...

  15. A 2500 deg 2 CMB Lensing Map from Combined South Pole Telescope and Planck Data

    Energy Technology Data Exchange (ETDEWEB)

    Omori, Y.; Chown, R.; Simard, G.; Story, K. T.; Aylor, K.; Baxter, E. J.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Cho, H-M.; Crawford, T. M.; Crites, A. T.; Haan, T. de; Dobbs, M. A.; Everett, W. B.; George, E. M.; Halverson, N. W.; Harrington, N. L.; Holder, G. P.; Hou, Z.; Holzapfel, W. L.; Hrubes, J. D.; Knox, L.; Lee, A. T.; Leitch, E. M.; Luong-Van, D.; Manzotti, A.; Marrone, D. P.; McMahon, J. J.; Meyer, S. S.; Mocanu, L. M.; Mohr, J. J.; Natoli, T.; Padin, S.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sayre, J. T.; Schaffer, K. K.; Shirokoff, E.; Staniszewski, Z.; Stark, A. A.; Vanderlinde, K.; Vieira, J. D.; Williamson, R.; Zahn, O.

    2017-11-07

    We present a cosmic microwave background (CMB) lensing map produced from a linear combination of South Pole Telescope (SPT) and \\emph{Planck} temperature data. The 150 GHz temperature data from the $2500\\ {\\rm deg}^{2}$ SPT-SZ survey is combined with the \\emph{Planck} 143 GHz data in harmonic space, to obtain a temperature map that has a broader $\\ell$ coverage and less noise than either individual map. Using a quadratic estimator technique on this combined temperature map, we produce a map of the gravitational lensing potential projected along the line of sight. We measure the auto-spectrum of the lensing potential $C_{L}^{\\phi\\phi}$, and compare it to the theoretical prediction for a $\\Lambda$CDM cosmology consistent with the \\emph{Planck} 2015 data set, finding a best-fit amplitude of $0.95_{-0.06}^{+0.06}({\\rm Stat.})\\! _{-0.01}^{+0.01}({\\rm Sys.})$. The null hypothesis of no lensing is rejected at a significance of $24\\,\\sigma$. One important use of such a lensing potential map is in cross-correlations with other dark matter tracers. We demonstrate this cross-correlation in practice by calculating the cross-spectrum, $C_{L}^{\\phi G}$, between the SPT+\\emph{Planck} lensing map and Wide-field Infrared Survey Explorer (\\emph{WISE}) galaxies. We fit $C_{L}^{\\phi G}$ to a power law of the form $p_{L}=a(L/L_{0})^{-b}$ with $a=2.15 \\times 10^{-8}$, $b=1.35$, $L_{0}=490$, and find $\\eta^{\\phi G}=0.94^{+0.04}_{-0.04}$, which is marginally lower, but in good agreement with $\\eta^{\\phi G}=1.00^{+0.02}_{-0.01}$, the best-fit amplitude for the cross-correlation of \\emph{Planck}-2015 CMB lensing and \\emph{WISE} galaxies over $\\sim67\\%$ of the sky. The lensing potential map presented here will be used for cross-correlation studies with the Dark Energy Survey (DES), whose footprint nearly completely covers the SPT $2500\\ {\\rm deg}^2$ field.

  16. Future facilities for light quark spectroscopy: A perspective based on the LASS experience

    International Nuclear Information System (INIS)

    Ratcliff, B.N.

    1991-10-01

    Some desirable design features of a future facility for the study of light meson spectroscopy in hadroproduction are described and compared with what has been achieved by the LASS spectrometer. A few aspects of next-generation experiments using such a facility are also discussed, including final state sample sizes and performance requirements. The need for complementary production modes and decay channels, and the importance of a broad programmatic approach to the physics are stressed

  17. Correlated mixture between adiabatic and isocurvature fluctuations and recent CMB observations

    International Nuclear Information System (INIS)

    Andrade, Ana Paula A.; Wuensche, Carlos Alexandre; Ribeiro, Andre Luis Batista

    2005-01-01

    This work presents a reduced χ ν 2 test to search for non-Gaussian signals in the cosmic microwave background radiation (CMBR) TT power spectrum of recent CMBR data, Wilkinson Anisotropy Microwave Probe, Arcminute Cosmology Bolometer Array Receiver, and Cosmic Background Imager data sets, assuming a mixed density field including adiabatic and isocurvature fluctuations. We assume a skew positive mixed model with adiabatic inflation perturbations plus additional isocurvature perturbations possibly produced by topological defects. The joint probability distribution used in this context is a weighted combination of Gaussian and non-Gaussian random fields. Results from simulations of CMBR temperature for the mixed field show a distinct signature in CMB power spectrum for very small deviations (∼0.1%) from a pure Gaussian field, and can be used as a direct test for the nature of primordial fluctuations. A reduced χ ν 2 test applied on the most recent CMBR observations reveals that an isocurvature fluctuations field is not ruled out and indeed permits a very good description for a flat geometry Λ-CDM Universe, χ 930 2 ∼1.5, rather than the simple inflationary standard model with χ 930 2 ∼2.3. This result may looks is particular discrepant with the reduced χ 2 of 1.07 obtained with the same model in Spergel et al. [Astrophys. J. 148, 175 (2003)] for temperature only, however, our work is restricted to a region of the parameter space that does not include the best fit model for TT only of Spergel et al.

  18. Towards a measurement of the spectral runnings

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, Julian B.; Kovetz, Ely D.; Raccanelli, Alvise; Kamionkowski, Marc; Silk, Joseph, E-mail: julianmunoz@jhu.edu, E-mail: ekovetz1@jhu.edu, E-mail: alvise@icc.ub.edu, E-mail: mkamion1@jhu.edu, E-mail: joseph.silk@physics.ox.ac.uk [Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 (United States)

    2017-05-01

    Single-field slow-roll inflation predicts a nearly scale-free power spectrum of perturbations, as observed at the scales accessible to current cosmological experiments. This spectrum is slightly red, showing a tilt (1− n {sub s} )∼ 0.04. A direct consequence of this tilt are nonvanishing runnings α {sub s} = d n {sub s} / dlog k , and β {sub s} = dα {sub s} / dlog k , which in the minimal inflationary scenario should reach absolute values of 10{sup −3} and 10{sup −5}, respectively. In this work we calculate how well future surveys can measure these two runnings. We consider a Stage-4 (S4) CMB experiment and show that it will be able to detect significant deviations from the inflationary prediction for α {sub s} , although not for β {sub s} . Adding to the S4 CMB experiment the information from a WFIRST-like or a DESI-like survey improves the sensitivity to the runnings by ∼ 20%, and 30%, respectively. A spectroscopic survey with a billion objects, such as the SKA, will add enough information to the S4 measurements to allow a detection of α {sub s} =10{sup −3}, required to probe the single-field slow-roll inflationary paradigm. We show that only a very-futuristic interferometer targeting the dark ages will be capable of measuring the minimal inflationary prediction for β {sub s} . The results of other probes, such as a stochastic background of gravitational waves observable by LIGO, the Ly-α forest, and spectral distortions, are shown for comparison. Finally, we study the claims that large values of β {sub s} , if extrapolated to the smallest scales, can produce primordial black holes of tens of solar masses, which we show to be easily testable by the S4 CMB experiment.

  19. Status of evidence for neutrinoless double beta decay, and the future. Genius and genius-TF

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H.V.

    2004-01-01

    The first evidence for neutrinoless double beta decay has been observed in the HEIDELBERG-MOSCOW experiment, which is the most sensitive double beta decay experiment since ten years. This is the first evidence for lepton number violation and proves that the neutrino is a Majorana particle. It further shows that neutrino masses are degenerate. In addition it puts several stringent constraints on other physics beyond the Standard Model. The result from the HEIDEL-BERG-MOSCOW experiment is consistent with recent results from CMB investigations, with high energy cosmic rays, with the result from the g-2 experiment and with recent theoretical work. It is indirectly supported by the analysis of other Ge double beta experiments. The new project GENIUS will cover a wide range of the parameter space of predictions of SUSY for neutralinos as cold dark matter. Further it has the potential to be a real-time detector for low-energy (pp and 7 Be) solar neutrinos. A GENIUS Test Facility has come into operation on May 5, 2003. This is the first time that this novel technique for extreme background reduction in search for rare decays is applied under the background conditions of an underground laboratory. (author)

  20. Episodic memory and future thinking during early childhood: Linking the past and future.

    Science.gov (United States)

    Cuevas, Kimberly; Rajan, Vinaya; Morasch, Katherine C; Bell, Martha Ann

    2015-07-01

    Despite extensive examination of episodic memory and future thinking development, little is known about the concurrent emergence of these capacities during early childhood. In Experiment 1, 3-year-olds participated in an episodic memory hiding task ("what, when, where" [WWW] components) with an episodic future thinking component. In Experiment 2, a group of 4-year-olds (including children from Experiment 1) participated in the same task (different objects and locations), providing the first longitudinal investigation of episodic memory and future thinking. Although children exhibited age-related improvements in recall, recognition, and binding of the WWW episodic memory components, there were no age-related changes in episodic future thinking. At both ages, WWW episodic memory performance was higher than future thinking performance, and episodic future thinking and WWW memory components were unrelated. These findings suggest that the WWW components of episodic memory are potentially less fragile than the future components when assessed in a cognitively demanding task. © 2015 Wiley Periodicals, Inc.

  1. Meeting the future of coherent neutrino scattering. A feasibility study for upcoming reactor experiments

    Energy Technology Data Exchange (ETDEWEB)

    Salathe, Marco; Rink, Thomas [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2016-07-01

    Due to ongoing progress in detector development and background suppression techniques first evidence of neutrino coherent scattering seems reachable in future experiments. In recent years efforts have been enhanced to detect this effect with germanium detectors. This work aims at summarizing and improving past studies on the potential of an experiment at a reactor site to a new level of accuracy by using the most recent neutrino spectra, knowledge gained in recent detector developments and in contrast to prior studies an energy-dependent quenching factor. The influence of the main parameters (background suppression, detector resolution and threshold, reactor spectra, different isotopes) of a germanium detector experiment is presented and the sensitivities regarding the main reaction channels are calculated. The results were obtained through two independent methods; an algebraic computation and a numerical simulation. Both methods reveal the most important experimental parameters and clarify the state of the art challenges that research has to meet in such an experiment.

  2. The influence of common method bias on the relationship of the socio-ecological model in predicting physical activity behavior

    Science.gov (United States)

    Wingate, Savanna; Sng, Eveleen; Loprinzi, Paul D.

    2018-01-01

    Background: The purpose of this study was to evaluate the extent, if any, that the association between socio-ecological parameters and physical activity may be influenced by common method bias (CMB). Methods: This study took place between February and May of 2017 at a Southeastern University in the United States. A randomized controlled experiment was employed among 119 young adults.Participants were randomized into either group 1 (the group we attempted to minimize CMB)or group 2 (control group). In group 1, CMB was minimized via various procedural remedies,such as separating the measurement of predictor and criterion variables by introducing a time lag (temporal; 2 visits several days apart), creating a cover story (psychological), and approximating measures to have data collected in different media (computer-based vs. paper and pencil) and different locations to control method variance when collecting self-report measures from the same source. Socio-ecological parameters (self-efficacy; friend support; family support)and physical activity were self-reported. Results: Exercise self-efficacy was significantly associated with physical activity. This association (β = 0.74, 95% CI: 0.33-1.1; P = 0.001) was only observed in group 2 (control), but not in group 1 (experimental group) (β = 0.03; 95% CI: -0.57-0.63; P = 0.91). The difference in these coefficients (i.e., β = 0.74 vs. β = 0.03) was statistically significant (P = 0.04). Conclusion: Future research in this field, when feasible, may wish to consider employing procedural and statistical remedies to minimize CMB. PMID:29423361

  3. A report card on the physician work force: Israeli health care market--past experience and future prospects.

    Science.gov (United States)

    Toker, Asaf; Shvarts, Shifra; Glick, Shimon; Reuveni, Haim

    2010-09-01

    The worldwide shortage of physicians is due not only to the lack of physicians, but also to complex social and economic factors that vary from country to country. To describe the results of physician workforce planning in a system with unintended policy, such as Israel, based on past experience and predicted future trends, between 1995 and 2020. A descriptive study of past (1995-2009) and future (through 2020) physician workforce trends in Israel. An actuarial equation was developed to project physician supply until 2020. In Israel a physician shortage is expected in the very near future. This finding is the result of global as well as local changes affecting the supply of physicians: change in immigration pattern, gender effect, population growth, and transparency of data on demand for physicians. These are universal factors affecting manpower planning in most industrial countries all over the world. We describe a health care market with an unintended physician workforce policy. Sharing decision makers' experience in similar health care systems will enable the development of better indices to analyze, by comparison, effective physician manpower planning processes, worldwide.

  4. Making maps of the cosmic microwave background: The MAXIMA example

    Science.gov (United States)

    Stompor, Radek; Balbi, Amedeo; Borrill, Julian D.; Ferreira, Pedro G.; Hanany, Shaul; Jaffe, Andrew H.; Lee, Adrian T.; Oh, Sang; Rabii, Bahman; Richards, Paul L.; Smoot, George F.; Winant, Celeste D.; Wu, Jiun-Huei Proty

    2002-01-01

    This work describes cosmic microwave background (CMB) data analysis algorithms and their implementations, developed to produce a pixelized map of the sky and a corresponding pixel-pixel noise correlation matrix from time ordered data for a CMB mapping experiment. We discuss in turn algorithms for estimating noise properties from the time ordered data, techniques for manipulating the time ordered data, and a number of variants of the maximum likelihood map-making procedure. We pay particular attention to issues pertinent to real CMB data, and present ways of incorporating them within the framework of maximum likelihood map making. Making a map of the sky is shown to be not only an intermediate step rendering an image of the sky, but also an important diagnostic stage, when tests for and/or removal of systematic effects can efficiently be performed. The case under study is the MAXIMA-I data set. However, the methods discussed are expected to be applicable to the analysis of other current and forthcoming CMB experiments.

  5. Present and Future Experiments with Stored Exotic Nuclei at GSI

    International Nuclear Information System (INIS)

    Geissel, H.

    2009-01-01

    Recent results and perspectives of experiments with stored exotic nuclei at GSI-FAIR will presented. An overview on the planned NUSTAR experiments will also presented. Relativistic exotic nuclei produced via projectile fragmentation and fission were separated in flight by the fragment separator FRS and injected into the storage-cooler ring ESR for accurate mass- and lifetime measurements. Direct mass measurements of electron-cooled exotic nuclei were performed using time-resolved Schottky spectrometry. Fragments with half-lives shorter than the time required for electron cooling have been investigated by time-of-flight measurements with the ESR being operated in the isochronous mode. This novel experimental technique gives access to all nuclei with half-lives down to the microsecond range and has been successfully applied. Lifetimes of stored bare and few-electron ions have been measured with the goal to study the beta-decay under ionization conditions prevailing in stellar plasma. For the first time the direct observation of bound-state beta decay has been achieved with 2 07T l fragments. The future project FAIR includes a new large-acceptance in-flight separator (Super-FRS) in combination with a new storage ring system (CR, NESR) which will be ideal tools to study exotic nuclei far from stability.(author)

  6. Preconditioner-free Wiener filtering with a dense noise matrix

    Science.gov (United States)

    Huffenberger, Kevin M.

    2018-05-01

    This work extends the Elsner & Wandelt (2013) iterative method for efficient, preconditioner-free Wiener filtering to cases in which the noise covariance matrix is dense, but can be decomposed into a sum whose parts are sparse in convenient bases. The new method, which uses multiple messenger fields, reproduces Wiener-filter solutions for test problems, and we apply it to a case beyond the reach of the Elsner & Wandelt (2013) method. We compute the Wiener-filter solution for a simulated Cosmic Microwave Background (CMB) map that contains spatially varying, uncorrelated noise, isotropic 1/f noise, and large-scale horizontal stripes (like those caused by atmospheric noise). We discuss simple extensions that can filter contaminated modes or inverse-noise-filter the data. These techniques help to address complications in the noise properties of maps from current and future generations of ground-based Microwave Background experiments, like Advanced ACTPol, Simons Observatory, and CMB-S4.

  7. Cosmic Microwave Background Mapmaking with a Messenger Field

    Science.gov (United States)

    Huffenberger, Kevin M.; Næss, Sigurd K.

    2018-01-01

    We apply a messenger field method to solve the linear minimum-variance mapmaking equation in the context of Cosmic Microwave Background (CMB) observations. In simulations, the method produces sky maps that converge significantly faster than those from a conjugate gradient descent algorithm with a diagonal preconditioner, even though the computational cost per iteration is similar. The messenger method recovers large scales in the map better than conjugate gradient descent, and yields a lower overall χ2. In the single, pencil beam approximation, each iteration of the messenger mapmaking procedure produces an unbiased map, and the iterations become more optimal as they proceed. A variant of the method can handle differential data or perform deconvolution mapmaking. The messenger method requires no preconditioner, but a high-quality solution needs a cooling parameter to control the convergence. We study the convergence properties of this new method and discuss how the algorithm is feasible for the large data sets of current and future CMB experiments.

  8. Probing primordial non-Gaussianity via iSW measurements with SKA continuum surveys

    Energy Technology Data Exchange (ETDEWEB)

    Raccanelli, Alvise; Doré, Olivier, E-mail: alvise@jhu.edu, E-mail: olivier.dore@caltech.edu [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States); Bacon, David J.; Maartens, Roy, E-mail: David.Bacon@port.ac.uk, E-mail: roy.maartens@gmail.com [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth P01 3FX (United Kingdom); and others

    2015-01-01

    The Planck CMB experiment has delivered the best constraints so far on primordial non-Gaussianity, ruling out early-Universe models of inflation that generate large non-Gaussianity. Although small improvements in the CMB constraints are expected, the next frontier of precision will come from future large-scale surveys of the galaxy distribution. The advantage of such surveys is that they can measure many more modes than the CMB—in particular, forthcoming radio surveys with the Square Kilometre Array will cover huge volumes. Radio continuum surveys deliver the largest volumes, but with the disadvantage of no redshift information. In order to mitigate this, we use two additional observables. First, the integrated Sachs-Wolfe effect—the cross-correlation of the radio number counts with the CMB temperature anisotropies—helps to reduce systematics on the large scales that are sensitive to non-Gaussianity. Second, optical data allows for cross-identification in order to gain some redshift information. We show that, while the single redshift bin case can provide a σ(f{sub NL}) ∼ 20, and is therefore not competitive with current and future constraints on non-Gaussianity, a tomographic analysis could improve the constraints by an order of magnitude, even with only two redshift bins. A huge improvement is provided by the addition of high-redshift sources, so having cross-ID for high-z galaxies and an even higher-z radio tail is key to enabling very precise measurements of f{sub NL}. We use Fisher matrix forecasts to predict the constraining power in the case of no redshift information and the case where cross-ID allows a tomographic analysis, and we show that the constraints do not improve much with 3 or more bins. Our results show that SKA continuum surveys could provide constraints competitive with CMB and forthcoming optical surveys, potentially allowing a measurement of σ(f{sub NL}) ∼ 1 to be made. Moreover, these measurements would act as a useful check

  9. Recent experience and future evolution of the CMS High Level Trigger System

    CERN Document Server

    Bauer, Gerry; Branson, James; Bukowiec, Sebastian Czeslaw; Chaze, Olivier; Cittolin, Sergio; Coarasa Perez, Jose Antonio; Deldicque, Christian; Dobson, Marc; Dupont, Aymeric; Erhan, Samim; Gigi, Dominique; Glege, Frank; Gomez-Reino Garrido, Robert; Hartl, Christian; Holzner, Andre Georg; Masetti, Lorenzo; Meijers, Franciscus; Meschi, Emilio; Mommsen, Remigius; Nunez Barranco Fernandez, Carlos; O'Dell, Vivian; Orsini, Luciano; Paus, Christoph Maria Ernst; Petrucci, Andrea; Pieri, Marco; Polese, Giovanni; Racz, Attila; Raginel, Olivier; Sakulin, Hannes; Sani, Matteo; Schwick, Christoph; Spataru, Andrei Cristian; Stoeckli, Fabian; Sumorok, Konstanty

    2012-01-01

    The CMS experiment at the LHC uses a two-stage trigger system, with events flowing from the first level trigger at a rate of 100 kHz. These events are read out by the Data Acquisition system (DAQ), assembled in memory in a farm of computers, and finally fed into the high-level trigger (HLT) software running on the farm. The HLT software selects interesting events for offline storage and analysis at a rate of a few hundred Hz. The HLT algorithms consist of sequences of offline-style reconstruction and filtering modules, executed on a farm of 0(10000) CPU cores built from commodity hardware. Experience from the 2010-2011 collider run is detailed, as well as the current architecture of the CMS HLT, and its integration with the CMS reconstruction framework and CMS DAQ. The short- and medium-term evolution of the HLT software infrastructure is discussed, with future improvements aimed at supporting extensions of the HLT computing power, and addressing remaining performance and maintenance issues.

  10. Cosmic microwave background theory

    Science.gov (United States)

    Bond, J. Richard

    1998-01-01

    A long-standing goal of theorists has been to constrain cosmological parameters that define the structure formation theory from cosmic microwave background (CMB) anisotropy experiments and large-scale structure (LSS) observations. The status and future promise of this enterprise is described. Current band-powers in ℓ-space are consistent with a ΔT flat in frequency and broadly follow inflation-based expectations. That the levels are ∼(10−5)2 provides strong support for the gravitational instability theory, while the Far Infrared Absolute Spectrophotometer (FIRAS) constraints on energy injection rule out cosmic explosions as a dominant source of LSS. Band-powers at ℓ ≳ 100 suggest that the universe could not have re-ionized too early. To get the LSS of Cosmic Background Explorer (COBE)-normalized fluctuations right provides encouraging support that the initial fluctuation spectrum was not far off the scale invariant form that inflation models prefer: e.g., for tilted Λ cold dark matter sequences of fixed 13-Gyr age (with the Hubble constant H0 marginalized), ns = 1.17 ± 0.3 for Differential Microwave Radiometer (DMR) only; 1.15 ± 0.08 for DMR plus the SK95 experiment; 1.00 ± 0.04 for DMR plus all smaller angle experiments; 1.00 ± 0.05 when LSS constraints are included as well. The CMB alone currently gives weak constraints on Λ and moderate constraints on Ωtot, but theoretical forecasts of future long duration balloon and satellite experiments are shown which predict percent-level accuracy among a large fraction of the 10+ parameters characterizing the cosmic structure formation theory, at least if it is an inflation variant. PMID:9419321

  11. Making the Future Palpable

    DEFF Research Database (Denmark)

    Büscher, Monika; Kristensen, Margit; Mogensen, Preben Holst

    2007-01-01

    In this paper we describe experiences from a Future Laboratory. Future laboratories allow users to experiment with prototypes of future technologies in as realistic as possible conditions. We have devised this method because, to realize the potential of advanced ubiquitous computing technologies...... it is essential to anticipate and design for future practices, but for prospective users it is often difficult to imagine and articulate future practices and provide design specifications. They readily invent new ways of working in engagement with new technologies, through and, by facilitating as realistic...... as possible use of prototype future technologies in Future Laboratories designers and users can define and study both opportunities and constraints for design. We present 11 scenes from a Major Incidents Future Laboratory held in September 2005. In relation to each scene we point out key results. Many raise...

  12. A national survey of residents in combined Internal Medicine and Dermatology residency programs: educational experience and future plans.

    Science.gov (United States)

    Mostaghimi, Arash; Wanat, Karolyn; Crotty, Bradley H; Rosenbach, Misha

    2015-10-16

    In response to a perceived erosion of medical dermatology, combined internal medicine and dermatology programs (med/derm) programs have been developed that aim to train dermatologists who take care of medically complex patients. Despite the investment in these programs, there is currently no data with regards to the potential impact of these trainees on the dermatology workforce. To determine the experiences, motivations, and future plans of residents in combined med/derm residency programs. We surveyed residents at all United States institutions with both categorical and combined training programs in spring of 2012. Respondents used visual analog scales to rate clinical interests, self-assessed competency, career plans, and challenges. The primary study outcomes were comfort in taking care of patients with complex disease, future practice plans, and experience during residency. Twenty-eight of 31 med/derm residents (87.5%) and 28 of 91 (31%) categorical residents responded (overall response rate 46%). No significant differences were seen in self-assessed dermatology competency, or comfort in performing inpatient consultations, cosmetic procedures, or prescribing systemic agents. A trend toward less comfort in general dermatology was seen among med/derm residents. Med/derm residents were more likely to indicate career preferences for performing inpatient consultation and taking care of medically complex patients. Categorical residents rated their programs and experiences more highly. Med/derm residents have stronger interests in serving medically complex patients. Categorical residents are more likely to have a positive experience during residency. Future work will be needed to ascertain career choices among graduates once data are available.

  13. CMB polarization systematics, cosmological birefringence, and the gravitational waves background

    International Nuclear Information System (INIS)

    Pagano, Luca; Bernardis, Paolo de; Gubitosi, Giulia; Masi, Silvia; Melchiorri, Alessandro; Piacentini, Francesco; De Troia, Grazia; Natoli, Paolo; Polenta, Gianluca

    2009-01-01

    Cosmic microwave background experiments must achieve very accurate calibration of their polarization reference frame to avoid biasing the cosmological parameters. In particular, a wrong or inaccurate calibration might mimic the presence of a gravitational wave background, or a signal from cosmological birefringence, a phenomenon characteristic of several nonstandard, symmetry breaking theories of electrodynamics that allow for in vacuo rotation of the polarization direction of the photon. Noteworthly, several authors have claimed that the BOOMERanG 2003 (B2K) published polarized power spectra of the cosmic microwave background may hint at cosmological birefringence. Such analyses, however, do not take into account the reported calibration uncertainties of the BOOMERanG focal plane. We develop a formalism to include this effect and apply it to the BOOMERanG dataset, finding a cosmological rotation angle α=-4.3 deg. ±4.1 deg. We also investigate the expected performances of future space borne experiment, finding that an overall miscalibration larger then 1 deg. for Planck and 0.2 deg. for the Experimental Probe of Inflationary Cosmology, if not properly taken into account, will produce a bias on the constraints on the cosmological parameters and could misleadingly suggest the presence of a gravitational waves background.

  14. Technology and techniques for parity experiments at Mainz: Past, Present and Future

    Science.gov (United States)

    Diefenbach, Juergen

    2016-03-01

    For almost 20 years the Mainz accelerator facility MAMI delivered polarized electron beam to the parity violation experiment A4 that measured the contributions of strange sea quarks to the proton electromagnetic factors. Parity violation asymmetries were of the order of A ~5 ppm. Currently the A1 collaboration carries out single spin asymmetry measurements at MAMI (A ~20 ppm) to prepare for a measurement of neutron skin depth on lead (A ~1 ppm). For such high precision experiments active stabilization and precise determination of beam parameters like current, energy, position, and angle are essential requirements in addition to precision electron beam polarimetry. For the future P2 experiment at the planned superconducting accelerator MESA in Mainz the requirements for beam quality will be even higher. P2 will measure the weak mixing angle with 0.15 percent total uncertainty and, in addition, the neutron skin depth of lead as well as parity violation in electron scattering off 12C. A tiny asymmetry of only -0.03 ppm creates the needs to combine digital feedback with feedforward stabilizations along with new polarimetry developments like a hydro-Moller and a double-Mott polarimeter to meet the goals for systematic uncertainty. This talk gives an overview of our experience with polarimetry, analog feedbacks and compensation techniques for apparative asymmetries at the A4 experiment. It finally leads to the requirements and new techniques for the pioneering P2 experiment at MESA. First results from beam tests currently carried out at the existing MAMI accelerator, employing high speed analog/digital conversion and FPGAs for control of beam parameters, will be presented. Supported by the cluster of excellence PRISMA and the Deutsche Forschungsgemeinschaft in the framework of the SFB1044.

  15. Creating Futures through Participation and open-ended experiments

    DEFF Research Database (Denmark)

    Husted, Mia; Bladt, Mette; Tofteng, Ditte Maria Børglum

    This workshop will engage participants in a process that enables ‘ordinary people’ to take responsibility for creating new futures and to bring about new anticipations for democratic developments of local and societal issues. Founded in the Critical Utopian Action Research Tradition, the workshop...... will engage participants in a brief version of a Future Creating Workshop....

  16. Detecting primordial gravitational waves with circular polarization of the redshifted 21 cm line. II. Forecasts

    Science.gov (United States)

    Mishra, Abhilash; Hirata, Christopher M.

    2018-05-01

    In the first paper of this series, we showed that the CMB quadrupole at high redshifts results in a small circular polarization of the emitted 21 cm radiation. In this paper we forecast the sensitivity of future radio experiments to measure the CMB quadrupole during the era of first cosmic light (z ˜20 ). The tomographic measurement of 21 cm circular polarization allows us to construct a 3D remote quadrupole field. Measuring the B -mode component of this remote quadrupole field can be used to put bounds on the tensor-to-scalar ratio r . We make Fisher forecasts for a future Fast Fourier Transform Telescope (FFTT), consisting of an array of dipole antennas in a compact grid configuration, as a function of array size and observation time. We find that a FFTT with a side length of 100 km can achieve σ (r )˜4 ×10-3 after ten years of observation and with a sky coverage fsky˜0.7 . The forecasts are dependent on the evolution of the Lyman-α flux in the pre-reionization era, that remains observationally unconstrained. Finally, we calculate the typical order of magnitudes for circular polarization foregrounds and comment on their mitigation strategies. We conclude that detection of primordial gravitational waves with 21 cm observations is in principle possible, so long as the primordial magnetic field amplitude is small, but would require a very futuristic experiment with corresponding advances in calibration and foreground suppression techniques.

  17. The ASI science program

    Science.gov (United States)

    Musso, Carlo

    2002-03-01

    Italy came in the space business in 1963, being the third nation in the world, after the Soviet Union and the United States, to put an artificial satellite into orbit. In 1988 the Italian Space Agency (ASI) was constituted, with the mandate of planning, coordinating and executing civil space activities in Italy. The core of national space activities is science, for which Italy spends about 25% of the ASI budget, both in national and international programs. The community served by the scientific directorate of ASI is a very wide one, ranging from the science of the Universe and the exploration of the Solar System to life sciences, from Earth observation to the development of new technologies. The success of Italian space research appears under many different points of view. The national satellite BeppoSAX, named after Giuseppe Beppo Occhialini, widely contributed to solve the γ-ray burst puzzle, obtaining the relevant acknowledgment of the ``Bruno Rossi Prize''. Italian researchers kept the PI-ship of various payloads on board ESA missions, such as Epic for XMM-Newton, Ibis for Integral, Virtis and Giada for Rosetta, PFS and Marsis for Mars Express. Also in the field of the cosmic microwave background (CMB) two important experiments are foreseen in the next future, with Italian PIs: SPOrt on board the International Space Station, dedicated to the polarization of CMB, and LFI (Low Frequency Instrument) on board the ESA Planck satellite, to study CMB anisotropy. Meanwhile, a great success has been obtained with the balloon experiment Boomerang. Moreover, ASI started a national scientific and technological small mission program. The first three missions are on their way: Agile (a γ-ray observatory), David (an experiment to test very high frequency data transmission), and a third one, devoted to Earth science. .

  18. Low fidelity of CORDEX and their driving experiments indicates future climatic uncertainty over Himalayan watersheds of Indus basin

    Science.gov (United States)

    Hasson, Shabeh ul; Böhner, Jürgen; Chishtie, Farrukh

    2018-03-01

    Assessment of future water availability from the Himalayan watersheds of Indus Basin (Jhelum, Kabul and upper Indus basin—UIB) is a growing concern for safeguarding the sustainable socioeconomic wellbeing downstream. This requires, before all, robust climate change information from the present-day state-of-the-art climate models. However, the robustness of climate change projections highly depends upon the fidelity of climate modeling experiments. Hence, this study assesses the fidelity of seven dynamically refined (0.44° ) experiments, performed under the framework of the coordinated regional climate downscaling experiment for South Asia (CX-SA), and additionally, their six coarse-resolution driving datasets participating in the coupled model intercomparison project phase 5 (CMIP5). We assess fidelity in terms of reproducibility of the observed climatology of temperature and precipitation, and the seasonality of the latter for the historical period (1971-2005). Based on the model fidelity results, we further assess the robustness or uncertainty of the far future climate (2061-2095), as projected under the extreme-end warming scenario of the representative concentration pathway (RCP) 8.5. Our results show that the CX-SA and their driving CMIP5 experiments consistently feature low fidelity in terms of the chosen skill metrics, suggesting substantial cold (6-10 ° C) and wet (up to 80%) biases and underestimation of observed precipitation seasonality. Surprisingly, the CX-SA are unable to outperform their driving datasets. Further, the biases of CX-SA and of their driving CMIP5 datasets are higher in magnitude than their projected changes under RCP8.5—and hence under less extreme RCPs—by the end of 21st century, indicating uncertain future climates for the Indus Basin watersheds. Higher inter-dataset disagreements of both CMIP5 and CX-SA for their simulated historical precipitation and for its projected changes reinforce uncertain future wet/dry conditions

  19. Microwave SQUID Multiplexer Demonstration for Cosmic Microwave Background Imagers.

    Science.gov (United States)

    Dober, B; Becker, D T; Bennett, D A; Bryan, S A; Duff, S M; Gard, J D; Hays-Wehle, J P; Hilton, G C; Hubmayr, J; Mates, J A B; Reintsema, C D; Vale, L R; Ullom, J N

    2017-12-01

    Key performance characteristics are demonstrated for the microwave SQUID multiplexer (µmux) coupled to transition edge sensor (TES) bolometers that have been optimized for cosmic microwave background (CMB) observations. In a 64-channel demonstration, we show that the µmux produces a white, input referred current noise level of [Formula: see text] at -77 dB microwave probe tone power, which is well below expected fundamental detector and photon noise sources for a ground-based CMB-optimized bolometer. Operated with negligible photon loading, we measure [Formula: see text] in the TES-coupled channels biased at 65% of the sensor normal resistance. This noise level is consistent with that predicted from bolometer thermal fluctuation (i.e. phonon) noise. Furthermore, the power spectral density is white over a range of frequencies down to ~ 100 mHz, which enables CMB mapping on large angular scales that constrain the physics of inflation. Additionally, we report cross-talk measurements that indicate a level below 0.3%, which is less than the level of cross-talk from multiplexed readout systems in deployed CMB imagers. These measurements demonstrate the µmux as a viable readout technique for future CMB imaging instruments.

  20. Wandering in the Lyman-alpha forest: a study of dark matter-dark radiation interactions

    International Nuclear Information System (INIS)

    Krall, Rebecca; Cyr-Racine, Francis-Yan; Dvorkin, Cora

    2017-01-01

    The amplitude of large-scale matter fluctuations inferred from the observed Sunyaev-Zeldovich (SZ) cluster mass function and from weak gravitational lensing studies, when taken at face value, is in tension with measurements of the cosmic microwave background (CMB) and baryon acoustic oscillation (BAO). In this work, we revisit whether this possible discrepancy can be attributed to new interactions in the dark matter sector. Focusing on a cosmological model where dark matter interacts with a dark radiation species until the epoch of matter-radiation equality, we find that measurements of the Lyman-alpha flux power spectrum from the Sloan Digital Sky Survey provide no support to the hypothesis that new dark matter interactions can resolve the possible tension between CMB and large-scale structure (LSS). Indeed, while the addition of dark matter-dark radiation interactions leads to an improvement of 2ΔlnL=12 with respect to the standard Λ cold dark matter (ΛCDM) model when only CMB, BAO, and LSS data are considered, the inclusion of Lyman-alpha data reduces the improvement of the fit to 2ΔlnL=6 relative to ΛCDM . We thus conclude that the statistical evidence for new dark matter interactions (largely driven by the Planck SZ dataset) is marginal at best, and likely caused by systematics in the data. We also perform a Fisher forecast analysis for the reach of a future dataset composed of a CMB-S4 experiment combined with the Large Synoptic Survey Telescope galaxy survey. We find that the constraint on the effective number of fluid-like dark radiation species, Δ N fluid , will be improved by an order of magnitude compared to current bounds.

  1. Dynamical 3-Space Predicts Hotter Early Universe: Resolves CMB-BBN 7-Li and 4-He Abundance Anomalies

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2010-01-01

    Full Text Available The observed abundances of 7-Li and 4-He are significantly inconsistent with the predictions from Big Bang Nucleosynthesis (BBN when using the $Lambda$CDM cosmological model together with the value for $Omega_B h^2 = 0.0224pm0.0009$ from WMAP CMB fluctuations, with the value from BBN required to fit observed abundances being $0.009 < Omega_B h^2 < 0.013$. The dynamical 3-space theory is shown to predict a 20% hotter universe in the radiation-dominated epoch, which then results in a remarkable parameter-free agreement between the BBN and the WMAP value for $Omega_B h^2$. The dynamical 3-space also gives a parameter-free fit to the supernova redshift data, and predicts that the flawed $Lambda$CDM model would require $Omega_Lambda = 0.73$ and $Omega_M = 0.27$ to fit the 3-space dynamics Hubble expansion, and independently of the supernova data. These results amount to the discovery of new physics for the early universe that is matched by numerous other successful observational and experimental tests.

  2. Dynamical 3-Space Predicts Hotter Early Universe: Resolves CMB-BBN 7-Li and 4-He Abundance Anomalies

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2010-01-01

    Full Text Available The observed abundances of 7 Li and 4 He are significantly inconsistent with the pre- dictions from Big Bang Nucleosynthesis (BBN when using the CDM cosmolog- ical model together with the value for B h 2 = 0 : 0224 0 : 0009 from WMAP CMB fluctuations, with the value from BBN required to fit observed abundances being 0 : 009 < B h 2 < 0 : 013. The dynamical 3-space theory is shown to predict a 20% hot- ter universe in the radiation-dominated epoch, which then results in a remarkable parameter-free agreement between the BBN and the WMAP value for B h 2 . The dy- namical 3-space also gives a parameter-free fit to the supernova redshift data, and pre- dicts that the flawed CDM model would require = 0 : 73 and M = 0 : 27 to fit the 3-space dynamics Hubble expansion, and independently of the supernova data. These results amount to the discovery of new physics for the early universe that is matched by numerous other successful observational and experimental tests.

  3. Nonparametric test of consistency between cosmological models and multiband CMB measurements

    Energy Technology Data Exchange (ETDEWEB)

    Aghamousa, Amir [Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Shafieloo, Arman, E-mail: amir@apctp.org, E-mail: shafieloo@kasi.re.kr [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of)

    2015-06-01

    We present a novel approach to test the consistency of the cosmological models with multiband CMB data using a nonparametric approach. In our analysis we calibrate the REACT (Risk Estimation and Adaptation after Coordinate Transformation) confidence levels associated with distances in function space (confidence distances) based on the Monte Carlo simulations in order to test the consistency of an assumed cosmological model with observation. To show the applicability of our algorithm, we confront Planck 2013 temperature data with concordance model of cosmology considering two different Planck spectra combination. In order to have an accurate quantitative statistical measure to compare between the data and the theoretical expectations, we calibrate REACT confidence distances and perform a bias control using many realizations of the data. Our results in this work using Planck 2013 temperature data put the best fit ΛCDM model at 95% (∼ 2σ) confidence distance from the center of the nonparametric confidence set while repeating the analysis excluding the Planck 217 × 217 GHz spectrum data, the best fit ΛCDM model shifts to 70% (∼ 1σ) confidence distance. The most prominent features in the data deviating from the best fit ΛCDM model seems to be at low multipoles  18 < ℓ < 26 at greater than 2σ, ℓ ∼ 750 at ∼1 to 2σ and ℓ ∼ 1800 at greater than 2σ level. Excluding the 217×217 GHz spectrum the feature at ℓ ∼ 1800 becomes substantially less significance at ∼1 to 2σ confidence level. Results of our analysis based on the new approach we propose in this work are in agreement with other analysis done using alternative methods.

  4. Prolinimines: N-Amino-l-Pro-methyl Ester (Hydrazine) Schiff Bases from a Fish Gastrointestinal Tract-Derived Fungus, Trichoderma sp. CMB-F563.

    Science.gov (United States)

    Mohamed, Osama G; Khalil, Zeinab G; Capon, Robert J

    2018-01-19

    A rice cultivation of a fish gastrointestinal tract-derived fungus, Trichoderma sp. CMB-F563, yielded natural products incorporating a rare hydrazine moiety, embedded within a Schiff base. Structures inclusive of absolute configurations were assigned to prolinimines A-D (1-4) on the basis of detailed spectroscopic and C 3 Marfey's analysis, as well as biosynthetic considerations, biomimetic total synthesis, and chemical transformations. Of note, monomeric 1 proved to be acid labile and, during isolation, underwent quantitative transformation to dimeric 3 and trimeric 4. Prolinimines are only the second reported natural products incorporating an N-amino-Pro residue, the first to include l-Pro, the first to occur as Schiff bases, and the first to be isolated from a microorganism.

  5. Deciphering inflation with gravitational waves: Cosmic microwave background polarization vs direct detection with laser interferometers

    International Nuclear Information System (INIS)

    Smith, Tristan L.; Peiris, Hiranya V.; Cooray, Asantha

    2006-01-01

    A detection of the primordial gravitational wave background is considered to be the 'smoking-gun' evidence for inflation. While superhorizon waves are probed with cosmic microwave background (CMB) polarization, the relic background will be studied with laser interferometers. The long lever arm spanned by the two techniques improves constraints on the inflationary potential and validation of consistency relations expected under inflation. If gravitational waves with a tensor-to-scalar amplitude ratio greater than 0.01 are detected by the CMB, then a direct-detection experiment with a sensitivity consistent with current concept studies should be pursued vigorously. If no primordial tensors are detected by the CMB, a direct-detection experiment to understand the simplest form of inflation must have a sensitivity improved by two to 3 orders of magnitude over current plans

  6. Latest experiences and future plans on NSLS-II insertion devices

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, T.; Hidaka, Y.; Kitegi, C.; Hidas, D.; Musardo, M.; Harder, D. A.; Rank, J.; Cappadoro, P.; Fernandes, H.; Corwin, T. [Energy Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973, U.S.A (United States)

    2016-07-27

    National Synchrotron Light Source-II (NSLS-II) is the latest storage ring of 3 GeV energy at the Brookhaven National Laboratory (BNL). The horizontal emittance of the electron beam with the currently installed six damping wigglers is 0.9 nm.rad, which could be further reduced to 0.5 nm.rad with more insertion devices (IDs). With only one RF cavity the beam current is restricted to 200 mA. Five hundred mA operation is envisaged for next year with an addition of the second cavity. Six (plus two branches) beamlines have been commissioned in the initial phase of the project. In July 2015, three NIH funded beamlines called “Advanced Beamlines for Biological Investigations with X-rays” (ABBIX) will be added for operation. This paper describes the experiences of ID development, installation, and commissioning for the NSLS-II project as well as our future plans to improve the performance of the facility in terms of source development.

  7. Implications of the recent D-T μCF experiments at RIKEN-RAL and near-future directions

    International Nuclear Information System (INIS)

    Nagamine, K.; Matsuzaki, T.; Ishida, K.; Nakamura, S.N.; Kawamura, N.

    1999-01-01

    The paper describes physics implications obtained through the recent experimental results on D-T μCF at RIKEN-RAL. Smaller sticking and larger cycling rates in solid/liquid D-T mixture than the theoretical predictions were observed, suggesting needs of further theoretical understandings. Some possible future directions in D-T μCF experiments are also described

  8. Primordial nucleosynthesis in the new cosmology

    International Nuclear Information System (INIS)

    Cyburt, R.H.

    2003-01-01

    Big bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies independently predict the universal baryon density. Comparing their predictions will provide a fundamental test on cosmology. Using BBN and the CMB together, we will be able to constrain particle physics, and predict the primordial, light element abundances. These future analyses hinge on new experimental and observational data. New experimental data on nuclear cross sections will help reduce theoretical uncertainties in BBN's predictions. New observations of light element abundances will further sharpen BBN's probe of the baryon density. Observations from the MAP and PLANCK satellites will measure the fluctuations in the CMB to unprecedented accuracy, allowing the precise determination of the baryon density. When combined, this data will present us with the opportunity to perform precision cosmology

  9. Maximizing Science Return from Future Rodent Experiments on the International Space Station (ISS): Tissue Preservation

    Science.gov (United States)

    Choi, S. Y.; Lai, S.; Klotz, R.; Popova, Y.; Chakravarty, K.; Beegle, J. E.; Wigley, C. L.; Globus, R. K.

    2014-01-01

    To better understand how mammals adapt to long duration habitation in space, a system for performing rodent experiments on the ISS is under development; Rodent Research-1 is the first flight and will include validation of both on-orbit animal support and tissue preservation. To evaluate plans for on-orbit sample dissection and preservation, we simulated conditions for euthanasia, tissue dissection, and prolonged sample storage on the ISS, and we also developed methods for post-flight dissection and recovery of high quality RNA from multiple tissues following prolonged storage in situ for future science. Mouse livers and spleens were harvested under conditions that simulated nominal, on-orbit euthanasia and dissection operations including storage at -80 C for 4 months. The RNA recovered was of high quality (RNA Integrity Number, RIN(is) greater than 8) and quantity, and the liver enzyme contents and activities (catalase, glutathione reductase, GAPDH) were similar to positive controls, which were collected under standard laboratory conditions. We also assessed the impact of possible delayed on-orbit dissection scenarios (off-nominal) by dissecting and preserving the spleen (RNAlater) and liver (fast-freezing) at various time points post-euthanasia (from 5 min up to 105 min). The RNA recovered was of high quality (spleen, RIN (is) greater than 8; liver, RIN (is) greater than 6) and liver enzyme activities were similar to positive controls at all time points, although an apparent decline in select enzyme activities was evident at the latest time (105 min). Additionally, various tissues were harvested from either intact or partially dissected, frozen carcasses after storage for approximately 2 months; most of the tissues (brain, heart, kidney, eye, adrenal glands and muscle) were of acceptable RNA quality for science return, whereas some tissues (small intestine, bone marrow and bones) were not. These data demonstrate: 1) The protocols developed for future flight

  10. Design, fabrication and characterization of multi-guard-ring furnished p+n-n+ silicon strip detectors for future HEP experiments

    Science.gov (United States)

    Lalwani, Kavita; Jain, Geetika; Dalal, Ranjeet; Ranjan, Kirti; Bhardwaj, Ashutosh

    2016-07-01

    Si detectors, in various configurations (strips and pixels), have been playing a key role in High Energy Physics (HEP) experiments due to their excellent vertexing and high precision tracking information. In future HEP experiments like upgrade of the Compact Muon Solenoid experiment (CMS) at the Large Hadron Collider (LHC), CERN and the proposed International Linear Collider (ILC), the Si tracking detectors will be operated in a very harsh radiation environment, which leads to both surface and bulk damage in Si detectors which in turn changes their electrical properties, i.e. change in the full depletion voltage, increase in the leakage current and decrease in the charge collection efficiency. In order to achieve the long term durability of Si-detectors in future HEP experiments, it is required to operate these detectors at very high reverse biases, beyond the full depletion voltage, thus requiring higher detector breakdown voltage. Delhi University (DU) is involved in the design, fabrication and characterization of multi-guard-ring furnished ac-coupled, single sided, p+n-n+ Si strip detectors for future HEP experiments. The design has been optimized using a two-dimensional numerical device simulation program (TCAD-Silvaco). The Si strip detectors are fabricated with eight-layers mask process using the planar fabrication technology by Bharat Electronic Lab (BEL), India. Further an electrical characterization set-up is established at DU to ensure the quality performance of fabricated Si strip detectors and test structures. In this work measurement results on non irradiated Si Strip detectors and test structures with multi-guard-rings using Current Voltage (IV) and Capacitance Voltage (CV) characterization set-ups are discussed. The effect of various design parameters, for example guard-ring spacing, number of guard-rings and metal overhang on breakdown voltage of test structures have been studied.

  11. MAXIMA-1: A Measurement of the Cosmic Microwave Background Anisotropy on Angular Scales of 10' to 5 degrees

    Science.gov (United States)

    Ade, P.; Balbi, A.; Bock, J.; Borrill, J.; Boscaleri, A.; de Bernardis, P.; Ferreira, P. G.; Hanany, S.; Hristov, V. V.; Jaffe, A. H.; Lange, A. E.; Lee, A. T.; Mauskopf, P. D.; Netterfield, C. B.; Oh, S.; Pascale, E.; Rabii, B.; Richards, P. L.; Smoot, G. F.; Stompor, R.; Winant,C. D.; Wu, J. H. P.

    2005-06-04

    We present a map and an angular power spectrum of the anisotropy of the cosmic microwave background (CMB) from the first flight of MAXIMA. MAXIMA is a balloon-borne experiment with an array of 16 bolometric photometers operated at 100 mK. MAXIMA observed a 124 deg{sup 2} region of the sky with 10' resolution at frequencies of 150, 240 and 410 GHz. The data were calibrated using in-flight measurements of the CMB dipole anisotropy. A map of the CMB anisotropy was produced from three 150 and one 240 GHz photometer without need for foreground subtractions.

  12. Polarization of Cosmic Microwave Background

    International Nuclear Information System (INIS)

    Buzzelli, A; Cabella, P; De Gasperis, G; Vittorio, N

    2016-01-01

    In this work we present an extension of the ROMA map-making code for data analysis of Cosmic Microwave Background polarization, with particular attention given to the inflationary polarization B-modes. The new algorithm takes into account a possible cross- correlated noise component among the different detectors of a CMB experiment. We tested the code on the observational data of the BOOMERanG (2003) experiment and we show that we are provided with a better estimate of the power spectra, in particular the error bars of the BB spectrum are smaller up to 20% for low multipoles. We point out the general validity of the new method. A possible future application is the LSPE balloon experiment, devoted to the observation of polarization at large angular scales. (paper)

  13. Recent cosmic microwave background observations and the ionization history of the universe

    International Nuclear Information System (INIS)

    Hannestad, Steen; Scherrer, Robert J.

    2001-01-01

    Interest in nonstandard recombination scenarios has been spurred by recent cosmic microwave background (CMB) results from BOOMERANG and MAXIMA, which show an unexpectedly low second acoustic peak, resulting in a best-fit baryon density that is 50% larger than the prediction of big-bang nucleosynthesis (BBN). This apparent discrepancy can be avoided if the universe has a nonstandard ionization history in which the recombination of hydrogen is significantly delayed relative to the standard model. While future CMB observations may eliminate this discrepancy, it is useful to develop a general framework for analyzing nonstandard ionization histories. We develop such a framework, examining nonstandard models in which the hydrogen binding energy E b and the overall expression for the time rate of change of the ionized fraction of electrons are multiplied by arbitrary factors. This set of models includes a number of previously proposed models as special cases. We find a wide range of models with delayed recombination that are able to fit the CMB data with a baryon density in accordance with BBN, but there are even allowed models with earlier recombination than in the standard model. A generic prediction of these models is that the third acoustic CMB peak should be very low relative to what is found in the standard model. This is the case even for the models with earlier recombination than in the standard model, because here the third peak is lowered by an increased diffusion damping at recombination relative to the standard model. Interestingly, the specific height of the third peak depends sensitively on the model parameters, so that future CMB measurements will be able to distinguish between different nonstandard recombination scenarios

  14. Construction, Deployment and Data Analysis of the E and B EXperiment: A Cosmic Microwave Background Polarimeter

    Science.gov (United States)

    Didier, Joy

    The E and B EXperiment (EBEX) is a pointed balloon-borne telescope designed to measure the polarization of the cosmic microwave background (CMB) as well as that from Galactic dust. The instrument is equipped with a 1.5 meter aperture Gregorian-Dragone telescope, providing an 8' beam at three frequency bands centered on 150, 250 and 410 GHz. The telescope is designed to measure or place an upper limit on inflationary B-mode signals and to probe B-modes originating from gravitationnal lensing of the CMB. The higher EBEX frequencies are designed to enable the measurement and removal of polarized Galactic dust foregrounds which currently limit the measurement of inflationary B-modes. Polarimetry is achieved by rotating an achromatic half-wave plate (HWP) on a superconducting magnetic bearing. In January 2013, EBEX completed 11 days of observations in a flight over Antarctica covering 6,000 square degrees of the southern sky. This marks the first time that kilo-pixel TES bolometer arrays have made science observations on a balloon-borne platform. In this thesis we report on the construction, deployment and data analysis of EBEX. We review the development of the pointing sensors and software used for real-time attitude determination and control, including pre-flight testing and calibration. We then report on the 2013 long duration flight (LD2013) and review all the major stages of the analysis pipeline used to transform the ˜1 TB of raw data into polarized sky maps. We review "LEAP", the software framework developed to support the analysis pipeline. We discuss in detail the novel program developed to reconstruct the attitude post-flight and estimate the effect of attitude errors on measured B-mode signals. We describe the bolometer time-stream cleaning procedure including removing the HWP-synchronous signal, and we detail the map making procedure. Finally we present a novel method to measure and subtract instrumental polarization, after which we show Galaxy and CMB maps.

  15. Exploring cosmic origins with CORE: B-mode component separation

    Science.gov (United States)

    Remazeilles, M.; Banday, A. J.; Baccigalupi, C.; Basak, S.; Bonaldi, A.; De Zotti, G.; Delabrouille, J.; Dickinson, C.; Eriksen, H. K.; Errard, J.; Fernandez-Cobos, R.; Fuskeland, U.; Hervías-Caimapo, C.; López-Caniego, M.; Martinez-González, E.; Roman, M.; Vielva, P.; Wehus, I.; Achucarro, A.; Ade, P.; Allison, R.; Ashdown, M.; Ballardini, M.; Banerji, R.; Bartlett, J.; Bartolo, N.; Baumann, D.; Bersanelli, M.; Bonato, M.; Borrill, J.; Bouchet, F.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Burigana, C.; Buzzelli, A.; Cai, Z.-Y.; Calvo, M.; Carvalho, C.-S.; Castellano, G.; Challinor, A.; Chluba, J.; Clesse, S.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; de Bernardis, P.; de Gasperis, G.; Diego, J.-M.; Di Valentino, E.; Feeney, S.; Ferraro, S.; Finelli, F.; Forastieri, F.; Galli, S.; Genova-Santos, R.; Gerbino, M.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Hagstotz, S.; Hanany, S.; Handley, W.; Hernandez-Monteagudo, C.; Hills, M.; Hivon, E.; Kiiveri, K.; Kisner, T.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lamagna, L.; Lasenby, A.; Lattanzi, M.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lindholm, V.; Luzzi, G.; Maffei, B.; Martins, C. J. A. P.; Masi, S.; Matarrese, S.; McCarthy, D.; Melin, J.-B.; Melchiorri, A.; Molinari, D.; Monfardini, A.; Natoli, P.; Negrello, M.; Notari, A.; Paiella, A.; Paoletti, D.; Patanchon, G.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Poulin, V.; Quartin, M.; Rubino-Martin, J.-A.; Salvati, L.; Tartari, A.; Tomasi, M.; Tramonte, D.; Trappe, N.; Trombetti, T.; Tucker, C.; Valiviita, J.; Van de Weijgaert, R.; van Tent, B.; Vennin, V.; Vittorio, N.; Young, K.; Zannoni, M.

    2018-04-01

    We demonstrate that, for the baseline design of the CORE satellite mission, the polarized foregrounds can be controlled at the level required to allow the detection of the primordial cosmic microwave background (CMB) B-mode polarization with the desired accuracy at both reionization and recombination scales, for tensor-to-scalar ratio values of rgtrsim 5× 10‑3. We consider detailed sky simulations based on state-of-the-art CMB observations that consist of CMB polarization with τ=0.055 and tensor-to-scalar values ranging from r=10‑2 to 10‑3, Galactic synchrotron, and thermal dust polarization with variable spectral indices over the sky, polarized anomalous microwave emission, polarized infrared and radio sources, and gravitational lensing effects. Using both parametric and blind approaches, we perform full component separation and likelihood analysis of the simulations, allowing us to quantify both uncertainties and biases on the reconstructed primordial B-modes. Under the assumption of perfect control of lensing effects, CORE would measure an unbiased estimate of r=(5 ± 0.4)× 10‑3 after foreground cleaning. In the presence of both gravitational lensing effects and astrophysical foregrounds, the significance of the detection is lowered, with CORE achieving a 4σ-measurement of r=5× 10‑3 after foreground cleaning and 60% delensing. For lower tensor-to-scalar ratios (r=10‑3) the overall uncertainty on r is dominated by foreground residuals, not by the 40% residual of lensing cosmic variance. Moreover, the residual contribution of unprocessed polarized point-sources can be the dominant foreground contamination to primordial B-modes at this r level, even on relatively large angular scales, l ~ 50. Finally, we report two sources of potential bias for the detection of the primordial B-modes by future CMB experiments: (i) the use of incorrect foreground models, e.g. a modelling error of Δβs = 0.02 on the synchrotron spectral indices may result in an

  16. Exploring cosmic origins with CORE: Survey requirements and mission design

    Science.gov (United States)

    Delabrouille, J.; de Bernardis, P.; Bouchet, F. R.; Achúcarro, A.; Ade, P. A. R.; Allison, R.; Arroja, F.; Artal, E.; Ashdown, M.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Banerji, R.; Barbosa, D.; Bartlett, J.; Bartolo, N.; Basak, S.; Baselmans, J. J. A.; Basu, K.; Battistelli, E. S.; Battye, R.; Baumann, D.; Benoít, A.; Bersanelli, M.; Bideaud, A.; Biesiada, M.; Bilicki, M.; Bonaldi, A.; Bonato, M.; Borrill, J.; Boulanger, F.; Brinckmann, T.; Brown, M. L.; Bucher, M.; Burigana, C.; Buzzelli, A.; Cabass, G.; Cai, Z.-Y.; Calvo, M.; Caputo, A.; Carvalho, C.-S.; Casas, F. J.; Castellano, G.; Catalano, A.; Challinor, A.; Charles, I.; Chluba, J.; Clements, D. L.; Clesse, S.; Colafrancesco, S.; Colantoni, I.; Contreras, D.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; D'Amico, G.; da Silva, A.; de Avillez, M.; de Gasperis, G.; De Petris, M.; de Zotti, G.; Danese, L.; Désert, F.-X.; Desjacques, V.; Di Valentino, E.; Dickinson, C.; Diego, J. M.; Doyle, S.; Durrer, R.; Dvorkin, C.; Eriksen, H. K.; Errard, J.; Feeney, S.; Fernández-Cobos, R.; Finelli, F.; Forastieri, F.; Franceschet, C.; Fuskeland, U.; Galli, S.; Génova-Santos, R. T.; Gerbino, M.; Giusarma, E.; Gomez, A.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Goupy, J.; Hagstotz, S.; Hanany, S.; Handley, W.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Hervias-Caimapo, C.; Hills, M.; Hindmarsh, M.; Hivon, E.; Hoang, D. T.; Hooper, D. C.; Hu, B.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamagna, L.; Lapi, A.; Lasenby, A.; Lattanzi, M.; Le Brun, A. M. C.; Lesgourgues, J.; Liguori, M.; Lindholm, V.; Lizarraga, J.; Luzzi, G.; Macìas-P{érez, J. F.; Maffei, B.; Mandolesi, N.; Martin, S.; Martinez-Gonzalez, E.; Martins, C. J. A. P.; Masi, S.; Massardi, M.; Matarrese, S.; Mazzotta, P.; McCarthy, D.; Melchiorri, A.; Melin, J.-B.; Mennella, A.; Mohr, J.; Molinari, D.; Monfardini, A.; Montier, L.; Natoli, P.; Negrello, M.; Notari, A.; Noviello, F.; Oppizzi, F.; O'Sullivan, C.; Pagano, L.; Paiella, A.; Pajer, E.; Paoletti, D.; Paradiso, S.; Partridge, R. B.; Patanchon, G.; Patil, S. P.; Perdereau, O.; Piacentini, F.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Ponthieu, N.; Poulin, V.; Prêle, D.; Quartin, M.; Ravenni, A.; Remazeilles, M.; Renzi, A.; Ringeval, C.; Roest, D.; Roman, M.; Roukema, B. F.; Rubiño-Martin, J.-A.; Salvati, L.; Scott, D.; Serjeant, S.; Signorelli, G.; Starobinsky, A. A.; Sunyaev, R.; Tan, C. Y.; Tartari, A.; Tasinato, G.; Toffolatti, L.; Tomasi, M.; Torrado, J.; Tramonte, D.; Trappe, N.; Triqueneaux, S.; Tristram, M.; Trombetti, T.; Tucci, M.; Tucker, C.; Urrestilla, J.; Väliviita, J.; Van de Weygaert, R.; Van Tent, B.; Vennin, V.; Verde, L.; Vermeulen, G.; Vielva, P.; Vittorio, N.; Voisin, F.; Wallis, C.; Wandelt, B.; Wehus, I. K.; Weller, J.; Young, K.; Zannoni, M.

    2018-04-01

    Future observations of cosmic microwave background (CMB) polarisation have the potential to answer some of the most fundamental questions of modern physics and cosmology, including: what physical process gave birth to the Universe we see today? What are the dark matter and dark energy that seem to constitute 95% of the energy density of the Universe? Do we need extensions to the standard model of particle physics and fundamental interactions? Is the ΛCDM cosmological scenario correct, or are we missing an essential piece of the puzzle? In this paper, we list the requirements for a future CMB polarisation survey addressing these scientific objectives, and discuss the design drivers of the COREmfive space mission proposed to ESA in answer to the "M5" call for a medium-sized mission. The rationale and options, and the methodologies used to assess the mission's performance, are of interest to other future CMB mission design studies. COREmfive has 19 frequency channels, distributed over a broad frequency range, spanning the 60–600 GHz interval, to control astrophysical foreground emission. The angular resolution ranges from 2' to 18', and the aggregate CMB sensitivity is about 2 μKṡarcmin. The observations are made with a single integrated focal-plane instrument, consisting of an array of 2100 cryogenically-cooled, linearly-polarised detectors at the focus of a 1.2-m aperture cross-Dragone telescope. The mission is designed to minimise all sources of systematic effects, which must be controlled so that no more than 10‑4 of the intensity leaks into polarisation maps, and no more than about 1% of E-type polarisation leaks into B-type modes. COREmfive observes the sky from a large Lissajous orbit around the Sun-Earth L2 point on an orbit that offers stable observing conditions and avoids contamination from sidelobe pick-up of stray radiation originating from the Sun, Earth, and Moon. The entire sky is observed repeatedly during four years of continuous scanning

  17. Experience, Intersubjectivity, and Reflection: A Human Science Perspective on Preparation of Future Professionals in Adaptive Physical Activity

    Science.gov (United States)

    Standal, Øyvind F.; Rugseth, Gro

    2016-01-01

    The aim of this article is to show that and how philosophy and philosophical thinking can be of relevance for the preparation of future professionals in adaptive physical activity. To this end we utilize philosophical insights from the human science perspective on two central issues, namely experience and intersubjectivity, which are weaved…

  18. Finding Futures: A Spatio-Visual Experiment In Participatory Engagement

    DEFF Research Database (Denmark)

    Davies, Sarah Rachael; Selin, Cynthia; Gano, Gretchen

    2013-01-01

    The Finding Futures Project explores innovative ways of deliberating the future of cities through an emphasis on embodied spatio-visual engagement with urban landscapes. The first instantiation of the project - which took place in Lisbon in 2011 - is reported through a discussion of the project's...

  19. Basic radiation protection training for nurses and paramedical personnel: Belgian experience and future perspectives

    International Nuclear Information System (INIS)

    Clarijs, T.; Coeck, M.; Van Bladel, Lodewijk; Fremout, An

    2015-01-01

    When using ionising radiation for medical diagnosis or treatment of patients, understanding of relevant radiation protection principles and issues is indispensable. In Belgium, nurses and paramedical staff are required to acquire knowledge for protecting the patient against the detrimental effects of ionising radiation by means of a vocational training course. The experience with and challenges for this training course are presented here from a lecturer's point of view, together with a proposal for a future approach that harmonises the training content, its level and quality, according to European recommended standards. (authors)

  20. Czech interim spent fuel storage facility: operation experience, inspections and future plans

    International Nuclear Information System (INIS)

    Fajman, V.; Bartak, L.; Coufal, J.; Brzobohaty, K.; Kuba, S.

    1999-01-01

    The paper describes the situation in the spent fuel management in the Czech Republic. The interim Spent Fuel Storage Facility (ISFSF) at Dukovany, which was commissioned in January 1997 and is using dual transport and storage CASTOR - 440/84 casks, is briefly described. The authors deal with their experience in operating and inspecting the ISFSF Dukovany. The structure of the basic safety document 'Limits and Conditions of Normal Operation' is also mentioned, including the experience of the performance. The inspection activities focused on permanent checking of the leak tightness of the CASTOR 440/84 casks, the maximum cask temperature and inspections monitoring both the neutron and gamma dose rate as well as the surface contamination. The results of the inspections are mentioned in the presentation as well. The operator's experience with re-opening partly loaded and already dried CASTOR-440/84 cask, after its transport from NPP Jaslovske Bohunice to the NPP Dukovany is also described. The paper introduces briefly the concept of future spent fuel storage both from the NPP Dukovany and the NPP Temelin, as prepared by the CEZ. The preparatory work for the Central Interim Spent Nuclear Fuel Storage Facility (CISFSF) in the Czech Republic and the information concerning the planned storage technology for this facility is discussed in the paper as well. The authors describe the site selection process and the preparatory steps concerning new spent fuel facility construction including the Environmental Impact Assessment studies. (author)

  1. Microwave SQUID multiplexer demonstration for cosmic microwave background imagers

    Science.gov (United States)

    Dober, B.; Becker, D. T.; Bennett, D. A.; Bryan, S. A.; Duff, S. M.; Gard, J. D.; Hays-Wehle, J. P.; Hilton, G. C.; Hubmayr, J.; Mates, J. A. B.; Reintsema, C. D.; Vale, L. R.; Ullom, J. N.

    2017-12-01

    Key performance characteristics are demonstrated for the microwave superconducting quantum interference device (SQUID) multiplexer (μmux) coupled to transition edge sensor (TES) bolometers that have been optimized for cosmic microwave background (CMB) observations. In a 64-channel demonstration, we show that the μmux produces a white, input referred current noise level of 29 pA/ √{H z } at a microwave probe tone power of -77 dB, which is well below the expected fundamental detector and photon noise sources for a ground-based CMB-optimized bolometer. Operated with negligible photon loading, we measure 98 pA/ √{H z } in the TES-coupled channels biased at 65% of the sensor normal resistance. This noise level is consistent with that predicted from bolometer thermal fluctuation (i.e., phonon) noise. Furthermore, the power spectral density is white over a range of frequencies down to ˜100 mHz, which enables CMB mapping on large angular scales that constrain the physics of inflation. Additionally, we report cross-talk measurements that indicate a level below 0.3%, which is less than the level of cross-talk from multiplexed readout systems in deployed CMB imagers. These measurements demonstrate the μmux as a viable readout technique for future CMB imaging instruments.

  2. Future changes in tropical cyclone activity projected by multi-physics and multi-SST ensemble experiments using the 60-km-mesh MRI-AGCM

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Hiroyuki [Japan Agency for Marine-Earth Science and Technology (JAMSTEC)/Meteorological Research Institute (MRI), Tsukuba, Ibaraki (Japan); University of Hawaii at Manoa, International Pacific Research Center, School of Ocean and Earth Science and Technology, Honolulu, Hawaii (United States); Mizuta, Ryo; Shindo, Eiki [Meteorological Research Institute (MRI), Climate Research Department, Tsukuba, Ibaraki (Japan)

    2012-11-15

    Uncertainties in projected future changes in tropical cyclone (TC) activity are investigated using future (2075-2099) ensemble projections of global warming under the Intergovernmental Panel on Climate Change (IPCC) A1B scenario. Twelve ensemble experiments are performed using three different cumulus convection schemes and four different assumptions for prescribed future sea surface temperatures (SSTs). All ensemble experiments consistently project significant reductions in global and hemispheric TC genesis numbers as well as reductions in TC frequency of occurrence (TCF) and TC genesis frequency (TGF) in the western North Pacific, South Indian Ocean, and South Pacific Ocean. TCF and TGF are projected to increase over the central Pacific which is consistent with the findings of Li et al. (2010). Inter-experimental variations of projected future changes in TGF and TC genesis number are caused mainly by differences in large-scale dynamical parameters and SST anomalies. Thermodynamic parameters are of secondary importance for variations in TGF and TC genesis number. These results imply that differences in SST spatial patterns can cause substantial variations and uncertainties in projected future changes of TGF and TC numbers at ocean-basin scales. (orig.)

  3. Observational constraints on dark energy and cosmic curvature

    International Nuclear Information System (INIS)

    Wang Yun; Mukherjee, Pia

    2007-01-01

    )=w 0 +w a (1-a) (68% and 95% confidence levels). The bounds on cosmic curvature are less stringent if dark energy density is allowed to be a free function of cosmic time, and are also dependent on the assumption about the early time property of dark energy. We demonstrate this by studying two examples. Significant improvement in dark energy and cosmic curvature constraints is expected as a result of future dark energy and CMB experiments

  4. Wandering in the Lyman-alpha forest: a study of dark matter-dark radiation interactions

    Energy Technology Data Exchange (ETDEWEB)

    Krall, Rebecca; Cyr-Racine, Francis-Yan; Dvorkin, Cora, E-mail: rkrall@physics.harvard.edu, E-mail: fcyrraci@physics.harvard.edu, E-mail: dvorkin@physics.harvard.edu [Harvard University, Department of Physics, Cambridge, MA 02138 (United States)

    2017-09-01

    The amplitude of large-scale matter fluctuations inferred from the observed Sunyaev-Zeldovich (SZ) cluster mass function and from weak gravitational lensing studies, when taken at face value, is in tension with measurements of the cosmic microwave background (CMB) and baryon acoustic oscillation (BAO). In this work, we revisit whether this possible discrepancy can be attributed to new interactions in the dark matter sector. Focusing on a cosmological model where dark matter interacts with a dark radiation species until the epoch of matter-radiation equality, we find that measurements of the Lyman-alpha flux power spectrum from the Sloan Digital Sky Survey provide no support to the hypothesis that new dark matter interactions can resolve the possible tension between CMB and large-scale structure (LSS). Indeed, while the addition of dark matter-dark radiation interactions leads to an improvement of 2ΔlnL=12 with respect to the standard Λ cold dark matter (ΛCDM) model when only CMB, BAO, and LSS data are considered, the inclusion of Lyman-alpha data reduces the improvement of the fit to 2ΔlnL=6 relative to ΛCDM . We thus conclude that the statistical evidence for new dark matter interactions (largely driven by the Planck SZ dataset) is marginal at best, and likely caused by systematics in the data. We also perform a Fisher forecast analysis for the reach of a future dataset composed of a CMB-S4 experiment combined with the Large Synoptic Survey Telescope galaxy survey. We find that the constraint on the effective number of fluid-like dark radiation species, Δ N {sub fluid}, will be improved by an order of magnitude compared to current bounds.

  5. Imagining and doing agro-food futures otherwise: Exploring the pig city experiment in the foodscape of Denmark

    DEFF Research Database (Denmark)

    Kristensen, Dan Kristian; Kjeldsen, Chris

    2016-01-01

    In this paper we investigate Pig City; a project that proposes to combine pig-, tomato- and energy production. We argue that Pig City was an experiment challenging the established trajectory of the Danish pig production industry. Utilizing sensibilities from science and technology studies and actor-network...... theory we follow Pig City and the heterogeneous world making practices that took place in the context of this project. Through our narrative of the Pig City experiment we draw attention to the ways in which different visions of the future of agro-food are inscribed materially and discursively. We discuss...

  6. Linking lowermost mantle structure, core-mantle boundary heat flux and mantle plume formation

    Science.gov (United States)

    Li, Mingming; Zhong, Shijie; Olson, Peter

    2018-04-01

    The dynamics of Earth's lowermost mantle exert significant control on the formation of mantle plumes and the core-mantle boundary (CMB) heat flux. However, it is not clear if and how the variation of CMB heat flux and mantle plume activity are related. Here, we perform geodynamic model experiments that show how temporal variations in CMB heat flux and pulses of mantle plumes are related to morphologic changes of the thermochemical piles of large-scale compositional heterogeneities in Earth's lowermost mantle, represented by the large low shear velocity provinces (LLSVPs). We find good correlation between the morphologic changes of the thermochemical piles and the time variation of CMB heat flux. The morphology of the thermochemical piles is significantly altered during the initiation and ascent of strong mantle plumes, and the changes in pile morphology cause variations in the local and the total CMB heat flux. Our modeling results indicate that plume-induced episodic variations of CMB heat flux link geomagnetic superchrons to pulses of surface volcanism, although the relative timing of these two phenomena remains problematic. We also find that the density distribution in thermochemical piles is heterogeneous, and that the piles are denser on average than the surrounding mantle when both thermal and chemical effects are included.

  7. Present and Future of Gravitational Wave Experiments

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    The status of the present detectors and of the main future projects will be reported. The recent results of a search for gravitational wave bursts, using the data collected by the ROG Collaboration cryogenic bar detectors EXPLORER (at CERN) and NAUTILUS (at LNF), will be discussed.

  8. Signatures of a hidden cosmic microwave background.

    Science.gov (United States)

    Jaeckel, Joerg; Redondo, Javier; Ringwald, Andreas

    2008-09-26

    If there is a light Abelian gauge boson gamma' in the hidden sector its kinetic mixing with the photon can produce a hidden cosmic microwave background (HCMB). For meV masses, resonant oscillations gammagamma' happen after big bang nucleosynthesis (BBN) but before CMB decoupling, increasing the effective number of neutrinos Nnu(eff) and the baryon to photon ratio, and distorting the CMB blackbody spectrum. The agreement between BBN and CMB data provides new constraints. However, including Lyman-alpha data, Nnu(eff) > 3 is preferred. It is tempting to attribute this effect to the HCMB. The interesting parameter range will be tested in upcoming laboratory experiments.

  9. Statistical nature of non-Gaussianity from cubic order primordial perturbations: CMB map simulations and genus statistic

    International Nuclear Information System (INIS)

    Chingangbam, Pravabati; Park, Changbom

    2009-01-01

    We simulate CMB maps including non-Gaussianity arising from cubic order perturbations of the primordial gravitational potential, characterized by the non-linearity parameter g NL . The maps are used to study the characteristic nature of the resulting non-Gaussian temperature fluctuations. We measure the genus and investigate how it deviates from Gaussian shape as a function of g NL and smoothing scale. We find that the deviation of the non-Gaussian genus curve from the Gaussian one has an antisymmetric, sine function like shape, implying more hot and more cold spots for g NL > 0 and less of both for g NL NL and also exhibits mild increase as the smoothing scale increases. We further study other statistics derived from the genus, namely, the number of hot spots, the number of cold spots, combined number of hot and cold spots and the slope of the genus curve at mean temperature fluctuation. We find that these observables carry signatures of g NL that are clearly distinct from the quadratic order perturbations, encoded in the parameter f NL . Hence they can be very useful tools for distinguishing not only between non-Gaussian temperature fluctuations and Gaussian ones but also between g NL and f NL type non-Gaussianities

  10. Three-dimensional triplet tracking for LHC and future high rate experiments

    International Nuclear Information System (INIS)

    Schöning, A

    2014-01-01

    The hit combinatorial problem is a main challenge for track reconstruction and triggering at high rate experiments. At hadron colliders the dominant fraction of hits is due to low momentum tracks for which multiple scattering (MS) effects dominate the hit resolution. MS is also the dominating source for hit confusion and track uncertainties in low energy precision experiments. In all such environments, where MS dominates, track reconstruction and fitting can be largely simplified by using three-dimensional (3D) hit-triplets as provided by pixel detectors. This simplification is possible since track uncertainties are solely determined by MS if high precision spatial information is provided. Fitting of hit-triplets is especially simple for tracking detectors in solenoidal magnetic fields. The over-constrained 3D-triplet method provides a complete set of track parameters and is robust against fake hit combinations. Full tracks can be reconstructed step-wise by connecting hit triplet combinations from different layers, thus heavily reducing the combinatorial problem and accelerating track linking. The triplet method is ideally suited for pixel detectors where hits can be treated as 3D-space points. With the advent of relatively cheap and industrially available CMOS-sensors the construction of highly granular full scale pixel tracking detectors seems to be possible also for experiments at LHC or future high energy (hadron) colliders. In this paper tracking performance studies for full-scale pixel detectors, including their optimisation for 3D-triplet tracking, are presented. The results obtained for different types of tracker geometries and different reconstruction methods are compared. The potential of reducing the number of tracking layers and - along with that - the material budget using this new tracking concept is discussed. The possibility of using 3D-triplet tracking for triggering and fast online reconstruction is highlighted

  11. Exploring dark matter microphysics with galaxy surveys

    Energy Technology Data Exchange (ETDEWEB)

    Escudero, Miguel; Mena, Olga [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València, Apartado de Correos 22085, E-46071 Valencia (Spain); Vincent, Aaron C.; Wilkinson, Ryan J.; Boehm, Céline, E-mail: miguel.Escudero@uv.es, E-mail: omena@ific.uv.es, E-mail: aaron.vincent@durham.ac.uk, E-mail: ryan.wilkinson@durham.ac.uk, E-mail: c.m.boehm@durham.ac.uk [Institute for Particle Physics Phenomenology (IPPP), Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2015-09-01

    We use present cosmological observations and forecasts of future experiments to illustrate the power of large-scale structure (LSS) surveys in probing dark matter (DM) microphysics and unveiling potential deviations from the standard ΛCDM scenario. To quantify this statement, we focus on an extension of ΛCDM with DM-neutrino scattering, which leaves a distinctive imprint on the angular and matter power spectra. After finding that future CMB experiments (such as COrE+) will not significantly improve the constraints set by the Planck satellite, we show that the next generation of galaxy clustering surveys (such as DESI) could play a leading role in constraining alternative cosmologies and even have the potential to make a discovery. Typically we find that DESI would be an order of magnitude more sensitive to DM interactions than Planck, thus probing effects that until now have only been accessible via N-body simulations.

  12. Dark energy and dark matter perturbations in singular universes

    International Nuclear Information System (INIS)

    Denkiewicz, Tomasz

    2015-01-01

    We discuss the evolution of density perturbations of dark matter and dark energy in cosmological models which admit future singularities in a finite time. Up to now geometrical tests of the evolution of the universe do not differentiate between singular universes and ΛCDM scenario. We solve perturbation equations using the gauge invariant formalism. The analysis shows that the detailed reconstruction of the evolution of perturbations within singular cosmologies, in the dark sector, can exhibit important differences between the singular universes models and the ΛCDM cosmology. This is encouraging for further examination and gives hope for discriminating between those models with future galaxy weak lensing experiments like the Dark Energy Survey (DES) and Euclid or CMB observations like PRISM and CoRE

  13. A 16 channel frequency-domain-modulation readout system with custom superconducting LC filters for the SWIPE instrument of the balloon-borne LSPE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Signorelli, G., E-mail: giovanni.signorelli@pi.infn.it [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Baldini, A.M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Bemporad, C. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Università di Pisa, Dipartimento di Fisica, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Biasotti, M. [INFN Sezione di Genova and Università degli studi di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Cei, F. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Università di Pisa, Dipartimento di Fisica, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Ceriale, V.; Corsini, D.; Fontanelli, F. [INFN Sezione di Genova and Università degli studi di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Galli, L.; Gallucci, G. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Gatti, F. [INFN Sezione di Genova and Università degli studi di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Incagli, M.; Grassi, M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Nicolò, D. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Università di Pisa, Dipartimento di Fisica, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Spinella, F. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Vaccaro, D. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Università di Pisa, Dipartimento di Fisica, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Venturini, M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy)

    2016-07-11

    We present the design, implementation and first tests of the superconducting LC filters for the frequency domain readout of spiderweb TES bolometers of the SWIPE experiment on the balloon-borne LSPE mission which aims at measuring the linear polarization of the Cosmic Microwave Background at large angular scales to find the imprint of inflation on the B-mode CMB polarization. LC filters are designed, produced and tested at the INFN sections of Pisa and Genoa where thin film deposition and cryogenic test facilities are present, and where also the TES spiderweb bolometers are being produced.

  14. Meaningful Use of Electronic Health Records: Experiences From the Field and Future Opportunities.

    Science.gov (United States)

    Slight, Sarah Patricia; Berner, Eta S; Galanter, William; Huff, Stanley; Lambert, Bruce L; Lannon, Carole; Lehmann, Christoph U; McCourt, Brian J; McNamara, Michael; Menachemi, Nir; Payne, Thomas H; Spooner, S Andrew; Schiff, Gordon D; Wang, Tracy Y; Akincigil, Ayse; Crystal, Stephen; Fortmann, Stephen P; Bates, David W

    2015-09-18

    With the aim of improving health care processes through health information technology (HIT), the US government has promulgated requirements for "meaningful use" (MU) of electronic health records (EHRs) as a condition for providers receiving financial incentives for the adoption and use of these systems. Considerable uncertainty remains about the impact of these requirements on the effective application of EHR systems. The Agency for Healthcare Research and Quality (AHRQ)-sponsored Centers for Education and Research in Therapeutics (CERTs) critically examined the impact of the MU policy relating to the use of medications and jointly developed recommendations to help inform future HIT policy. We gathered perspectives from a wide range of stakeholders (N=35) who had experience with MU requirements, including academicians, practitioners, and policy makers from different health care organizations including and beyond the CERTs. Specific issues and recommendations were discussed and agreed on as a group. Stakeholders' knowledge and experiences from implementing MU requirements fell into 6 domains: (1) accuracy of medication lists and medication reconciliation, (2) problem list accuracy and the shift in HIT priorities, (3) accuracy of allergy lists and allergy-related standards development, (4) support of safer and effective prescribing for children, (5) considerations for rural communities, and (6) general issues with achieving MU. Standards are needed to better facilitate the exchange of data elements between health care settings. Several organizations felt that their preoccupation with fulfilling MU requirements stifled innovation. Greater emphasis should be placed on local HIT configurations that better address population health care needs. Although MU has stimulated adoption of EHRs, its effects on quality and safety remain uncertain. Stakeholders felt that MU requirements should be more flexible and recognize that integrated models may achieve information

  15. Taking the Universe's Temperature with Spectral Distortions of the Cosmic Microwave Background.

    Science.gov (United States)

    Hill, J Colin; Battaglia, Nick; Chluba, Jens; Ferraro, Simone; Schaan, Emmanuel; Spergel, David N

    2015-12-31

    The cosmic microwave background (CMB) energy spectrum is a near-perfect blackbody. The standard model of cosmology predicts small spectral distortions to this form, but no such distortion of the sky-averaged CMB spectrum has yet been measured. We calculate the largest expected distortion, which arises from the inverse Compton scattering of CMB photons off hot, free electrons, known as the thermal Sunyaev-Zel'dovich (TSZ) effect. We show that the predicted signal is roughly one order of magnitude below the current bound from the COBE-FIRAS experiment, but it can be detected at enormous significance (≳1000σ) by the proposed Primordial Inflation Explorer (PIXIE). Although cosmic variance reduces the effective signal-to-noise ratio to 230σ, this measurement will still yield a subpercent constraint on the total thermal energy of electrons in the observable Universe. Furthermore, we show that PIXIE can detect subtle relativistic effects in the sky-averaged TSZ signal at 30σ, which directly probe moments of the optical depth-weighted intracluster medium electron temperature distribution. These effects break the degeneracy between the electron density and the temperature in the mean TSZ signal, allowing a direct inference of the mean baryon density at low redshift. Future spectral distortion probes will thus determine the global thermodynamic properties of ionized gas in the Universe with unprecedented precision. These measurements will impose a fundamental "integral constraint" on models of galaxy formation and the injection of feedback energy over cosmic time.

  16. The POLARBEAR Experiment: Design and Characterization

    Science.gov (United States)

    Kermish, Zigmund David

    We present the design and characterization of the POLARBEAR experiment. POLARBEAR is a millimeter-wave polarimeter that will measure the Cosmic Microwave Background (CMB) polarization. It was designed to have both the sensitivity and angular resolution to detect the expected B-mode polarization due to gravitational lensing at small angular scales while still enabling a search for the degree scale B-mode polarization caused by inflationary gravitational waves. The instrument utilizes the Huan Tran Telescope (HTT), a 2.5-meter primary mirror telescope, coupled to a unique focal plane of 1,274 antenna-coupled transition-edge sensor (TES) detectors to achieve unprecedented sensitivity from angular scales of the experiment's 4 arcminute beam to several degrees. This dissertation focuses on the design, integration and characterization of the cryogenic receiver for the POLARBEAR instrument. The receiver cools the ˜20 cm focal plane to 0.25 Kelvin, with detector readout provided by a digital frequency-multiplexed SQUID system. The POLARBEAR receiver was been successfully deployed on the HTT for an engineering run in the Eastern Sierras of California and is currently deployed on Cerro Toco in the Atacama Dessert of Chile. We present results from lab tests done to characterize the instrument, from the engineering run and preliminary results from Chile.

  17. A degree scale anisotropy measurement of the cosmic microwave background near the star Gamma Ursae Minoris

    Science.gov (United States)

    Gundersen, J. O.; Clapp, A. C.; Devlin, M.; Holmes, W.; Fischer, M. L.; Meinhold, P. R.; Lange, A. E.; Lubin, P. M.; Richards, P. L.; Smoot, G. F.

    1993-01-01

    Results from a search for anisotropy in the cosmic microwave background (CMB) are presented from the third flight of the Millimeter-wave Anisotropy experiment. The CMB observation occurred over 1.37 hours and covered a 6.24 sq deg area of the sky where very little foreground emission is expected. Significant correlated structure is observed at 6 and 9/cm. At 12/cm we place an upper limit on the structure. The relative amplitudes at 6, 9, and 12/cm are consistent with a CMB spectrum. The spectrum of the structure is inconsistent with thermal emission from known forms of interstellar dust. Synchrotron and free-free emission would both require unusually flat spectral indices at cm wavelengths in order to account for the amplitude of the observed structure. Although known systematic errors are not expected to contribute significantly to any of the three optical channels, excess sidelobe contamination cannot be definitively ruled out. If all the structure is attributed to CMB anisotropy, a value of the weighted rms of the 6 and 9/cm channels of Delta T/T(CMB) = 4.7 +/- 0.8 x 10 exp -5 (+/- 1 sigma) was measured. If the CMB anisotropy is assumed to have a Gaussian autocorrelation function with a coherence angle of 25 arcmin, then the most probable value is Delta T/T(CMB) = 4.2 +1.7 or -1.1 x 10 exp -5, where the +/- refers to the 95 percent confidence limits.

  18. The history and future of agricultural experiments

    NARCIS (Netherlands)

    Maat, H.

    2011-01-01

    An agricultural experiment is usually associated with a scientific method for testing certain agricultural phenomena. A central point in the work of Paul Richards is that experimentation is at the heart of agricultural practice. The reason why agricultural experiments are something different for

  19. Improving Hospital Services Based on Patient Experience Data: Current Feedback Practices and Future Opportunities.

    Science.gov (United States)

    Kaipio, Johanna; Stenhammar, Hanna; Immonen, Susanna; Litovuo, Lauri; Axelsson, Minja; Lantto, Minna; Lahdenne, Pekka

    2018-01-01

    Patient feedback is considered important for healthcare organizations. However, measurement and analysis of patient reported data is useful only if gathered insights are transformed into actions. This article focuses on gathering and utilization of patient experience data at hospitals with the aim of supporting the development of patient-centered services. The study was designed to explore both current practices of collecting and utilizing patient feedback at hospitals as well as future feedback-related opportunities. Nine people working at different hierarchical levels of three university hospitals in Finland participated in in-depth interviews. Findings indicate that current feedback processes are poorly planned and inflexible. Some feedback data are gathered, but not systematically utilized. Currently, it is difficult to obtain a comprehensive picture of the situation. One future hope was to increase the amount of patient feedback to be able to better generalize and utilize the data. Based on the findings the following recommendations are given: attention to both patients' and healthcare staff's perspectives when collecting feedback, employing a coordinated approach for collecting and utilizing patient feedback, and organizational transformation towards a patient-centric culture.

  20. The comparison of source contributions from residential coal and low-smoke fuels, using CMB modeling in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Engelbrech, J.P.; Swanepoel, L.; Chow, J.C.; Watson, J.G.; Egami, R.T. [Desert Research Institute, Reno, NV (USA)

    2002-04-01

    D-grade residential coal is being widely used for heating and cooking by most of the lower-income urban communities in South Africa. The adverse health effects resulting from exposure to residential coal combustion emissions have been a major public concern for many years. The Department of Minerals and Energy of South Africa conducted a macro-scale experiment in the township of Qalabotjha during the winter of 1997 to assess the technical and social benefits of combusting low-smoke fuels. This paper reports the PM{sub 2.5} and PM{sub 10} chemical mass-balance (CMB) source apportionment results from Qalabotjha during a 30-day sampling period, including a 10-day period when a large proportion of low-smoke fuels was burnt. Residential coal combustion was found to be the greatest source of air pollution, accounting for 62.1% of PM{sub 2.5} and 42.6% of PM{sub 10} at the three Qalabotjha sites. Biomass burning is also a major source, accounting for 13.8% of PM{sub 2.5} and 19.9% of PM{sub 10}. Fugitive dust is only significant in the coarse particle fraction, accounting for 11.3% of PM{sub 10}. Contributions from secondary ammonium sulfate are three-four times greater than from ammonium nitrate, accounting for 5-6% of PM mass. Minor contributions were found for power plant fly ash, motor vehicle exhaust, and agricultural lime. Average PM{sub 2.5} and PM{sub 10} mass decreased by 20 and 25%, respectively, from the D-grade coal combustion period (days 1-10) to the majority of the low-smoke fuel period (days 11-20). Relative source contribution estimates were similar among the three sampling periods for PM{sub 2.5}, and were quite different for PM{sub 10} during the second period when 14% higher residential coal combustion and 9% lower biomass burning source contributions were found.

  1. Experience of Forming Professional and Communicative Competency of Future Social Workers in Education Systems of Western European Countries

    Science.gov (United States)

    Baranyuk, Vita

    2015-01-01

    The article analyzes the experience of forming professional and communicative competency of future social workers in the education systems of Western European countries, in particular, France, Germany and Switzerland. On the basis of generalization of the studied data it has been found out that each country has its own techniques of forming…

  2. Recommendations on future development of decision support systems

    DEFF Research Database (Denmark)

    MCarthur, Stephen; Chen, Minjiang; Marinelli, Mattia

    Deliverable 8.3 reports on the consolidation of experiences from visualisation, decision support prototypes experiments and recommendations on future developments of decision support systems......Deliverable 8.3 reports on the consolidation of experiences from visualisation, decision support prototypes experiments and recommendations on future developments of decision support systems...

  3. Experiments at future hadron colliders

    International Nuclear Information System (INIS)

    Paige, F.E.

    1991-01-01

    This report summarizes signatures and backgrounds for processes in high-energy hadronic collisions, particularly at the SSC. It includes both signatures for new particles -- t quarks, Higgs bosons, new Ζ' bosons, supersymmetric particles, and technicolor particles -- and other experiments which might be done. It is based on the 1990 Snowmass Workshop and on work contained in the Expressions of Interest submitted to the SSC. 46 refs., 19 figs., 1 tab

  4. Misremembering Past Affect Predicts Adolescents’ Future Affective Experience during Exercise

    Science.gov (United States)

    Karnaze, Melissa M.; Levine, Linda J.; Schneider, Margaret

    2018-01-01

    Purpose Increasing physical activity among adolescents is a public health priority. Because people are motivated to engage in activities that make them feel good, this study examined predictors of adolescents’ feelings during exercise. Method During the first semester of the school year, we assessed sixth grade students’ (N = 136) cognitive appraisals of the importance of exercise. Participants also reported their affect during a cardiovascular fitness test, and recalled their affect during the fitness test later that semester. During the second semester, the same participants rated their affect during a moderate-intensity exercise task. Results Affect reported during the moderate-intensity exercise task was predicted by cognitive appraisals of the importance of exercise, and by misremembering affect during the fitness test as more positive than it actually was. This memory bias mediated the association between appraising exercise as important and experiencing a positive change in affect during the moderate-intensity exercise task. Conclusion These findings highlight the roles of both cognitive appraisals and memory as factors that may influence affect during exercise. Future work should explore whether affect during exercise can be modified by targeting appraisals and memories related to exercise experiences. PMID:28494196

  5. Misremembering Past Affect Predicts Adolescents' Future Affective Experience During Exercise.

    Science.gov (United States)

    Karnaze, Melissa M; Levine, Linda J; Schneider, Margaret

    2017-09-01

    Increasing physical activity among adolescents is a public health priority. Because people are motivated to engage in activities that make them feel good, this study examined predictors of adolescents' feelings during exercise. During the 1st semester of the school year, we assessed 6th-grade students' (N = 136) cognitive appraisals of the importance of exercise. Participants also reported their affect during a cardiovascular fitness test and recalled their affect during the fitness test later that semester. During the 2nd semester, the same participants rated their affect during a moderate-intensity exercise task. Affect reported during the moderate-intensity exercise task was predicted by cognitive appraisals of the importance of exercise and by misremembering affect during the fitness test as more positive than it actually was. This memory bias mediated the association between appraising exercise as important and experiencing a positive change in affect during the moderate-intensity exercise task. These findings highlight the roles of both cognitive appraisals and memory as factors that may influence affect during exercise. Future work should explore whether affect during exercise can be modified by targeting appraisals and memories related to exercise experiences.

  6. Radio Recombination Lines at Decametre Wavelengths. Prospects for the Future

    Science.gov (United States)

    2010-09-15

    2006) and Pritchard & Loeb (2008). For a portion of the Universe’s history (1100 . z . 7), the baryonic content of the intergalactic medium (IGM...dark matter decay) can produce either an absorption or emission H  signal relative to the cosmic microwave background (CMB). At least three distinct...heating sources (e.g., energy injection by decaying dark matter , Furlanetto et al., 2006), the evolution of this signal should depend only on cosmological

  7. Effect of Experience of Internal Medicine Residents during Infectious Disease Elective on Future Infectious Disease Fellowship Application

    Science.gov (United States)

    2017-10-04

    Experience of !ntcrnal Medicine Residents during Infectious Disease Elective on Future lntCctious Di~casc Fcllo\\vship Application Sb. GRANT N_UMBER...undefined. Since 2008 at our institution. internal medicine (!!vi) residents have been required to do a four-\\\\’eek inpatient !D rotation as an intern... Medicine Residents during Infectious Disease Elective on Fut ure Infectious Disease Fellowship Application ~ Poeter# 1440 .,...._,: OVfil"S~ ti

  8. Computer simulation of charged fusion-product trajectories and detection efficiency expected for future experiments within the COMPASS tokamak

    International Nuclear Information System (INIS)

    Kwiatkowski, Roch; Malinowski, Karol; Sadowski, Marek J

    2014-01-01

    This paper presents results of computer simulations of charged particle motions and detection efficiencies for an ion-pinhole camera of a new diagnostic system to be used in future COMPASS tokamak experiments. A probe equipped with a nuclear track detector can deliver information about charged products of fusion reactions. The calculations were performed with a so-called Gourdon code, based on a single-particle model and toroidal symmetry. There were computed trajectories of fast ions (> 500 keV) in medium-dense plasma (n e  < 10 14  cm −3 ) and an expected detection efficiency (a ratio of the number of detected particles to that of particles emitted from plasma). The simulations showed that charged fusion products can reach the new diagnostic probe, and the expected detection efficiency can reach 2 × 10 −8 . Based on such calculations, one can determine the optimal position and orientation of the probe. The obtained results are of importance for the interpretation of fusion-product images to be recorded in future COMPASS experiments. (paper)

  9. Systematic review of acute physically active learning and classroom movement breaks on children's physical activity, cognition, academic performance and classroom behaviour: understanding critical design features.

    Science.gov (United States)

    Daly-Smith, Andy J; Zwolinsky, Stephen; McKenna, Jim; Tomporowski, Phillip D; Defeyter, Margaret Anne; Manley, Andrew

    2018-01-01

    To examine the impact of acute classroom movement break (CMB) and physically active learning (PAL) interventions on physical activity (PA), cognition, academic performance and classroom behaviour. Systematic review. PubMed, EBSCO, Academic Search Complete, Education Resources Information Center, PsycINFO, SPORTDiscus, SCOPUS and Web of Science. Studies investigating school-based acute bouts of CMB or PAL on (PA), cognition, academic performance and classroom behaviour. The Downs and Black checklist assessed risk of bias. Ten PAL and eight CMB studies were identified from 2929 potentially relevant articles. Risk of bias scores ranged from 33% to 64.3%. Variation in study designs drove specific, but differing, outcomes. Three studies assessed PA using objective measures. Interventions replaced sedentary time with either light PA or moderate-to-vigorous PA dependent on design characteristics (mode, duration and intensity). Only one study factored individual PA outcomes into analyses. Classroom behaviour improved after longer moderate-to-vigorous (>10 min), or shorter more intense (5 min), CMB/PAL bouts (9 out of 11 interventions). There was no support for enhanced cognition or academic performance due to limited repeated studies. Low-to-medium quality designs predominate in investigations of the acute impacts of CMB and PAL on PA, cognition, academic performance and classroom behaviour. Variable quality in experimental designs, outcome measures and intervention characteristics impact outcomes making conclusions problematic. CMB and PAL increased PA and enhanced time on task. To improve confidence in study outcomes, future investigations should combine examples of good practice observed in current studies. CRD42017070981.

  10. MADmap: A Massively Parallel Maximum-Likelihood Cosmic Microwave Background Map-Maker

    Energy Technology Data Exchange (ETDEWEB)

    Cantalupo, Christopher; Borrill, Julian; Jaffe, Andrew; Kisner, Theodore; Stompor, Radoslaw

    2009-06-09

    MADmap is a software application used to produce maximum-likelihood images of the sky from time-ordered data which include correlated noise, such as those gathered by Cosmic Microwave Background (CMB) experiments. It works efficiently on platforms ranging from small workstations to the most massively parallel supercomputers. Map-making is a critical step in the analysis of all CMB data sets, and the maximum-likelihood approach is the most accurate and widely applicable algorithm; however, it is a computationally challenging task. This challenge will only increase with the next generation of ground-based, balloon-borne and satellite CMB polarization experiments. The faintness of the B-mode signal that these experiments seek to measure requires them to gather enormous data sets. MADmap is already being run on up to O(1011) time samples, O(108) pixels and O(104) cores, with ongoing work to scale to the next generation of data sets and supercomputers. We describe MADmap's algorithm based around a preconditioned conjugate gradient solver, fast Fourier transforms and sparse matrix operations. We highlight MADmap's ability to address problems typically encountered in the analysis of realistic CMB data sets and describe its application to simulations of the Planck and EBEX experiments. The massively parallel and distributed implementation is detailed and scaling complexities are given for the resources required. MADmap is capable of analysing the largest data sets now being collected on computing resources currently available, and we argue that, given Moore's Law, MADmap will be capable of reducing the most massive projected data sets.

  11. The Atacama Cosmology Telescope: CMB polarization at 200 < ℓ < 9000

    Energy Technology Data Exchange (ETDEWEB)

    Naess, Sigurd; Allison, Rupert; Calabrese, Erminia [Sub-Department of Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Hasselfield, Matthew [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); McMahon, Jeff; Coughlin, Kevin; Datta, Rahul [Department of Physics, University of Michigan, Ann Arbor 48103 (United States); Niemack, Michael D.; De Bernardis, Francesco [Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Addison, Graeme E.; Amiri, Mandana [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Ade, Peter A. R. [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff, Wales CF24 3AA (United Kingdom); Battaglia, Nick [McWilliams Center for Cosmology, Carnegie Mellon University, Department of Physics, 5000 Forbes Ave., Pittsburgh PA 15213 (United States); Beall, James A.; Britton, Joe; Cho, Hsiao-mei [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305 (United States); Bond, J Richard [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Crichton, Devin [Dept. of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2686 (United States); Das, Sudeep [Department of High Energy Physics, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439 (United States); Devlin, Mark J., E-mail: sigurd.naess@astro.ox.ac.uk [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); and others

    2014-10-01

    We report on measurements of the cosmic microwave background (CMB) and celestial polarization at 146 GHz made with the Atacama Cosmology Telescope Polarimeter (ACTPol) in its first three months of observing. Four regions of sky covering a total of 270 square degrees were mapped with an angular resolution of 1.3'. The map noise levels in the four regions are between 11 and 17 μK-arcmin. We present TT, TE, EE, TB, EB, and BB power spectra from three of these regions. The observed E-mode polarization power spectrum, displaying six acoustic peaks in the range 200 < ℓ < 3000, is an excellent fit to the prediction of the best-fit cosmological models from WMAP9+ACT and Planck data. The polarization power spectrum, which mainly reflects primordial plasma velocity perturbations, provides an independent determination of cosmological parameters consistent with those based on the temperature power spectrum, which results mostly from primordial density perturbations. We find that without masking any point sources in the EE data at ℓ < 9000, the Poisson tail of the EE power spectrum due to polarized point sources has an amplitude less than 2.4 μ {sup 2} at ℓ = 3000 at 95% confidence. Finally, we report that the Crab Nebula, an important polarization calibration source at microwave frequencies, has 8.7% polarization with an angle of 150.7{sup o} ± 0.6{sup o} when smoothed with a 5' Gaussian beam.

  12. Assessing the Effects of a Work-Based Antipoverty Program for Parents on Youth's Future Orientation and Employment Experiences

    Science.gov (United States)

    McLoyd, Vonnie C.; Kaplan, Rachel; Purtell, Kelly M.; Huston, Aletha C.

    2011-01-01

    The impacts of New Hope, a 3-year work-based antipoverty program to increase parent employment and reduce poverty, on youth ages 9-19 (N = 866) were assessed 5 years after parents left the program. New Hope had positive effects on the future orientation and employment experiences of boys, especially African American boys. Compared to boys in…

  13. Adult sibling experience, roles, relationships and future concerns - a review of the literature in learning disabilities.

    Science.gov (United States)

    Davys, Deborah; Mitchell, Duncan; Haigh, Carol

    2011-10-01

    This paper provides a review of the literature related to adult siblings of learning-disabled people. Siblings of learning-disabled people are often looked upon as next of kin when older parents die; however, there is little research regarding sibling views and wishes. A literature review of published peer-reviewed empirical research was undertaken. Electronic databases and citation tracking were used to collate data using key terms such as adult siblings and learning disability. Relevant articles were analysed, compared and contrasted. Six key themes emerged suggesting a varied impact of learning disability upon sibling lives in areas that include life choices, relationships, identity and future plans. Some siblings report a positive impact upon life, others state their lives are comparable with other adults who do not have a learning-disabled sibling and others still report a negative impact. Sibling roles and relationships are varied. Evidence suggests that sibling roles, relationships and experience are affected by life stage. Parents often have a primary care role for the disabled person, whilst siblings perform a more distant role; however, sibling involvement often rises when parents are no longer able to provide previous levels of support. Many factors appear to affect the sibling experience and uptake of roles including gender, life stage and circumstances, level of disability, health status and relationships between family members. Siblings are concerned about the future, particularly when parents are no longer able to provide support, and many appear to have expectations of future responsibilities regarding their disabled sibling. As siblings of people who have a learning disability are often expected by society to provide support, it is important that health and social care practitioners are aware of issues that may impact on this relationship. © 2011 Blackwell Publishing Ltd.

  14. Financing arrangements for nuclear power projects - past and present experience and future expectations

    International Nuclear Information System (INIS)

    Ispas, G.

    2004-01-01

    The intent of the author of the present paper is to demonstrate, in a practical manner, the role of the past experience and the new approaches of the nuclear projects financing, especially as nuclear generation financing in developing countries involves complex issues that need to be fully understood and dealt with by all the parties involved, namely: high investment costs, generally long construction periods, a high degree of uncertainty with respect to costs and schedule and to public acceptance, particularly because of safety, waste disposal and non-proliferation issues. Moreover, as many associations whose activities consist of ensuring and facilitating at different levels the exchange of knowledge between generations, i.e.: European Nuclear Society (ENS) Young Generation, North American Young Generation in Nuclear (NA-YGN), the goal of the paper is also to outline the importance of the education in nuclear field, i.e. training a young team of specialists to be ready to take over the movement and responsibility in continuing the further development of nuclear program in Romania, mainly with view to the Financing Arrangements for Nuclear Power Projects. The first part of the paper is referring to general financing procedures, while the second part is focusing on a case study related to the: past experience the financing scheme of Cernavoda NPP Unit 1, present or actual experience ongoing financing issues for Cernavoda NPP Unit 2 and potential future shared contribution to the financing of the next Cernavoda NPP units.(author)

  15. Forecasting the Contribution of Polarized Extragalactic Radio Sources in CMB Observations

    Science.gov (United States)

    Puglisi, G.; Galluzzi, V.; Bonavera, L.; Gonzalez-Nuevo, J.; Lapi, A.; Massardi, M.; Perrotta, F.; Baccigalupi, C.; Celotti, A.; Danese, L.

    2018-05-01

    We combine the latest data sets obtained with different surveys to study the frequency dependence of polarized emission coming from extragalactic radio sources (ERS). We consider data over a very wide frequency range starting from 1.4 GHz up to 217 GHz. This range is particularly interesting since it overlaps the frequencies of the current and forthcoming cosmic microwave background (CMB) experiments. Current data suggest that at high radio frequencies (ν ≥ 20 GHz) the fractional polarization of ERS does not depend on the total flux density. Conversely, recent data sets indicate a moderate increase of polarization fraction as a function of frequency, physically motivated by the fact that Faraday depolarization is expected to be less relevant at high radio frequencies. We compute ERS number counts using updated models based on recent data, and we forecast the contribution of unresolved ERS in CMB polarization spectra. Given the expected sensitivities and the observational patch sizes of forthcoming CMB experiments, about ∼200 (up to ∼2000) polarized ERS are expected to be detected. Finally, we assess that polarized ERS can contaminate the cosmological B-mode polarization if the tensor-to-scalar ratio is <0.05 and they have to be robustly controlled to de-lens CMB B-modes at the arcminute angular scales.

  16. Detection of gravitational waves from inflation

    International Nuclear Information System (INIS)

    Kamionkowski, M.; Jaffe, A.H.

    2001-01-01

    Recent measurements of temperature fluctuations in the cosmic microwave background (CMB) indicate that the Universe is flat and that large-scale structure grew via gravitational infall from primordial adiabatic perturbations. Both of these observations seem to indicate that we are on the right track with inflation. But what is the new physics responsible for inflation? This question can be answered with observations of the polarization of the CMB. Inflation predicts robustly the existence of a stochastic background of cosmological gravitational waves with an amplitude proportional to the square of the energy scale of inflation. This gravitational-wave background induces a unique signature in the polarization of the CMB. If inflation took place at an energy scale much smaller than that of grand unification, then the signal will be too small to be detectable. However, if inflation had something to do with grand unification or Planck-scale physics, then the signal is conceivably detectable in the optimistic case by the Planck satellite, or if not, then by a dedicated post-Planck CMB polarization experiment. Realistic developments in detector technology as well as a proper scan strategy could produce such a post-Planck experiment that would improve on Planck's sensitivity to the gravitational-wave background by several orders of magnitude in a decade timescale. (author)

  17. Reprocessing: experience and future outlooks

    International Nuclear Information System (INIS)

    Rapin, M.

    1981-01-01

    It is shown that reprocessing is the best way to cope with irradiated fuels since it provides an optimized waste conditioning for long term storage, the possibility to recycle fissile material and the reduction of Pu diversion risk. The reprocessing constraints are discussed from political, technical, safety, public acceptance, and economical points of view. The French reprocessing programme (thermal reactor fuel fast breeder fuels) is presented together with a short review of the reprocessing experience and outlooks out of France [fr

  18. Constraints on CPT violation from Wilkinson Microwave Anisotropy Probe three year polarization data: A wavelet analysis

    International Nuclear Information System (INIS)

    Cabella, Paolo; Silk, Joseph; Natoli, Paolo

    2007-01-01

    We perform a wavelet analysis of the temperature and polarization maps of the cosmic microwave background (CMB) delivered by the Wilkinson Microwave Anisotropy Probe experiment in search for a parity-violating signal. Such a signal could be seeded by new physics beyond the standard model, for which the Lorentz and CPT symmetries may not hold. Under these circumstances, the linear polarization direction of a CMB photon may get rotated during its cosmological journey, a phenomenon also called cosmological birefringence. Recently, Feng et al. have analyzed a subset of the Wilkinson Microwave Anisotropy Probe and BOOMERanG 2003 angular power spectra of the CMB, deriving a constraint that mildly favors a nonzero rotation. By using wavelet transforms we set a tighter limit on the CMB photon rotation angle Δα=-2.5±3.0 (Δα=-2.5±6.0) at the one (two) σ level, consistent with a null detection

  19. Sizing Up a Superstorm: Exploring the Role of Recalled Experience and Attribution of Responsibility in Judgments of Future Hurricane Risk.

    Science.gov (United States)

    Rickard, Laura N; Yang, Z Janet; Schuldt, Jonathon P; Eosco, Gina M; Scherer, Clifford W; Daziano, Ricardo A

    2017-12-01

    Research suggests that hurricane-related risk perception is a critical predictor of behavioral response, such as evacuation. Less is known, however, about the precursors of these subjective risk judgments, especially when time has elapsed from a focal event. Drawing broadly from the risk communication, social psychology, and natural hazards literature, and specifically from concepts adapted from the risk information seeking and processing model and the protective action decision model, we examine how individuals' distant recollections, including attribution of responsibility for the effects of a storm, attitude toward relevant information, and past hurricane experience, relate to risk judgment for a future, similar event. The present study reports on a survey involving U.S. residents in Connecticut, New Jersey, and New York (n = 619) impacted by Hurricane Sandy. While some results confirm past findings, such as that hurricane experience increases risk judgment, others suggest additional complexity, such as how various types of experience (e.g., having evacuated vs. having experienced losses) may heighten or attenuate individual-level judgments of responsibility. We suggest avenues for future research, as well as implications for federal agencies involved in severe weather/natural hazard forecasting and communication with public audiences. © 2017 Society for Risk Analysis.

  20. Neutrino mixing and future accelerator neutrino experiments

    International Nuclear Information System (INIS)

    Bilenky, S.M.

    1992-01-01

    No evidence for neutrino mixing has been obtained in experiments searching for oscillations with neutrinos from accelerators and reactors. The possible reason is that neutrino masses are too small to produce any sizable effects in the experiments with terrestrial neutrinos. We put forward here the point of view that the reason for that can be traced to the presence of a hierarchy of neutrino masses as well as strength of couplings between lepton families. (orig.)