WorldWideScience

Sample records for future climate scenarios

  1. The future of scenarios: issues in developing new climate change scenarios

    International Nuclear Information System (INIS)

    Pitcher, Hugh M

    2009-01-01

    In September, 2007, the IPCC convened a workshop to discuss how a new set of scenarios to support climate model runs, mitigation analyses, and impact, adaptation and vulnerability research might be developed. The first phase of the suggested new approach is now approaching completion. This article discusses some of the issues raised by scenario relevant research and analysis since the last set of IPCC scenarios were created (IPCC SRES, 2000) that will need to be addressed as new scenarios are developed by the research community during the second phase. These include (1) providing a logic for how societies manage to transition from historical paths to the various future development paths foreseen in the scenarios, (2) long-term economic growth issues, (3) the appropriate GDP metric to use (purchasing power parity or market exchange rates), (4) ongoing issues with moving from the broad geographic and time scales of the emission scenarios to the finer scales needed for impacts, adaptation and vulnerability analyses and (5) some possible ways to handle the urgent request from the policy community for some guidance on scenario likelihoods. The challenges involved in addressing these issues are manifold; the reward is greater credibility and deeper understanding of an analytic tool that does much to form the context within which many issues in addition to the climate problem will need to be addressed.

  2. The future of scenarios: issues in developing new climate change scenarios

    Science.gov (United States)

    Pitcher, Hugh M.

    2009-04-01

    In September, 2007, the IPCC convened a workshop to discuss how a new set of scenarios to support climate model runs, mitigation analyses, and impact, adaptation and vulnerability research might be developed. The first phase of the suggested new approach is now approaching completion. This article discusses some of the issues raised by scenario relevant research and analysis since the last set of IPCC scenarios were created (IPCC SRES, 2000) that will need to be addressed as new scenarios are developed by the research community during the second phase. These include (1) providing a logic for how societies manage to transition from historical paths to the various future development paths foreseen in the scenarios, (2) long-term economic growth issues, (3) the appropriate GDP metric to use (purchasing power parity or market exchange rates), (4) ongoing issues with moving from the broad geographic and time scales of the emission scenarios to the finer scales needed for impacts, adaptation and vulnerability analyses and (5) some possible ways to handle the urgent request from the policy community for some guidance on scenario likelihoods. The challenges involved in addressing these issues are manifold; the reward is greater credibility and deeper understanding of an analytic tool that does much to form the context within which many issues in addition to the climate problem will need to be addressed.

  3. Estimates of future climate based on SRES emission scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Godal, Odd; Sygna, Linda; Fuglestvedt, Jan S.; Berntsen, Terje

    2000-02-14

    The preliminary emission scenarios in the Special Report on Emission Scenario (SRES) developed by the Intergovernmental Panel on Climate Change (IPCC), will eventually replace the old IS92 scenarios. By running these scenarios in a simple climate model (SCM) we estimate future temperature increase between 1.7 {sup o}C and 2.8 {sup o}C from 1990 to to 2100. The global sea level rise over the same period is between 0.33 m and 0.45 m. Compared to the previous IPCC scenarios (IS92) the SRES scenarios generally results in changes in both development over time and level of emissions, concentrations, radiative forcing, and finally temperature change and sea level rise. The most striking difference between the IS92 scenarios and the SRES scenarios is the lower level of SO{sub 2} emissions. The range in CO{sub 2} emissions is also expected to be narrower in the new scenarios. The SRES scenarios result in a narrower range both for temperature change and sea level rise from 1990 to 2100 compared to the range estimated for the IS92 scenarios. (author)

  4. Robust Performance of Marginal Pacific Coral Reef Habitats in Future Climate Scenarios.

    Science.gov (United States)

    Freeman, Lauren A

    2015-01-01

    Coral reef ecosystems are under dual threat from climate change. Increasing sea surface temperatures and thermal stress create environmental limits at low latitudes, and decreasing aragonite saturation state creates environmental limits at high latitudes. This study examines the response of unique coral reef habitats to climate change in the remote Pacific, using the National Center for Atmospheric Research Community Earth System Model version 1 alongside the species distribution algorithm Maxent. Narrow ranges of physico-chemical variables are used to define unique coral habitats and their performance is tested in future climate scenarios. General loss of coral reef habitat is expected in future climate scenarios and has been shown in previous studies. This study found exactly that for most of the predominant physico-chemical environments. However, certain coral reef habitats considered marginal today at high latitude, along the equator and in the eastern tropical Pacific were found to be quite robust in climate change scenarios. Furthermore, an environmental coral reef refuge previously identified in the central south Pacific near French Polynesia was further reinforced. Studying the response of specific habitats showed that the prevailing conditions of this refuge during the 20th century shift to a new set of conditions, more characteristic of higher latitude coral reefs in the 20th century, in future climate scenarios projected to 2100.

  5. Robust Performance of Marginal Pacific Coral Reef Habitats in Future Climate Scenarios.

    Directory of Open Access Journals (Sweden)

    Lauren A Freeman

    Full Text Available Coral reef ecosystems are under dual threat from climate change. Increasing sea surface temperatures and thermal stress create environmental limits at low latitudes, and decreasing aragonite saturation state creates environmental limits at high latitudes. This study examines the response of unique coral reef habitats to climate change in the remote Pacific, using the National Center for Atmospheric Research Community Earth System Model version 1 alongside the species distribution algorithm Maxent. Narrow ranges of physico-chemical variables are used to define unique coral habitats and their performance is tested in future climate scenarios. General loss of coral reef habitat is expected in future climate scenarios and has been shown in previous studies. This study found exactly that for most of the predominant physico-chemical environments. However, certain coral reef habitats considered marginal today at high latitude, along the equator and in the eastern tropical Pacific were found to be quite robust in climate change scenarios. Furthermore, an environmental coral reef refuge previously identified in the central south Pacific near French Polynesia was further reinforced. Studying the response of specific habitats showed that the prevailing conditions of this refuge during the 20th century shift to a new set of conditions, more characteristic of higher latitude coral reefs in the 20th century, in future climate scenarios projected to 2100.

  6. Hydropower Production in Future Climate Scenarios; the Case for the Zambezi River

    Directory of Open Access Journals (Sweden)

    Byman H. Hamududu

    2016-06-01

    Full Text Available Climate change remains a threat to water resources projects in southern Africa where impacts resulting from changes in climate are projected to be negative and worse than in most other regions of the world. This work presents an assessment of the impacts of climate change on water resources and hydropower production potential in the Zambezi River Basin. Future climate scenarios projected through the five General Circulation Model (GCM outputs are used as input in the impact assessment. The future projected climate scenarios are downscaled to find local and regional changes, and used in the Hydrologiska Byråns Vattenbalansavdelning (HBV hydrological model to assess climate change impacts on water resources in the river basin. According to the simulations, air temperature and potential evaporation are projected to increase, while rainfall is projected to decrease. The Zambezi hydropower system is likely to be affected negatively as a result of future climate changes. Increasing air temperature leading to increased evaporation, and reduced rainfall, both contribute to a decrease in resulting river flows and increased reservoir evaporation. Consequently, the decrease in water resources will lead to decreased hydropower production potential, by 9% in 2020s, 18% in 2050s and 28% in 2080s in the hydropower system, for a medium emission scenario, A1B.

  7. Simulation of future stream alkalinity under changing deposition and climate scenarios

    International Nuclear Information System (INIS)

    Welsch, Daniel L.; Jack Cosby, B.; Hornberger, George M.

    2006-01-01

    Models of soil and stream water acidification have typically been applied under scenarios of changing acidic deposition, however, climate change is usually ignored. Soil air CO 2 concentrations have potential to increase as climate warms and becomes wetter, thus affecting soil and stream water chemistry by initially increasing stream alkalinity at the expense of reducing base saturation levels on soil exchange sites. We simulate this change by applying a series of physically based coupled models capable of predicting soil air CO 2 and stream water chemistry. We predict daily stream water alkalinity for a small catchment in the Virginia Blue Ridge for 60 years into the future given stochastically generated daily climate values. This is done for nine different combinations of climate and deposition. The scenarios for both climate and deposition include a static scenario, a scenario of gradual change, and a scenario of abrupt change. We find that stream water alkalinity continues to decline for all scenarios (average decrease of 14.4 μeq L - 1 ) except where climate is gradually warming and becoming more moist (average increase of 13 μeq L - 1 ). In all other scenarios, base cation removal from catchment soils is responsible for limited alkalinity increase resulting from climate change. This has implications given the extent that acidification models are used to establish policy and legislation concerning deposition and emissions

  8. Costa Rica Rainfall in Future Climate Change Scenarios

    Science.gov (United States)

    Castillo Rodriguez, R. A., Sr.; Amador, J. A.; Duran-Quesada, A. M.

    2017-12-01

    Studies of intraseasonal and annual cycles of meteorological variables, using projections of climate change, are nowadays extremely important to improve regional socio-economic planning for countries. This is particularly true in Costa Rica, as Central America has been identified as a climate change hot spot. Today many of the economic activities in the region, especially those related to agriculture, tourism and hydroelectric power generation are linked to the seasonal cycle of precipitation. Changes in rainfall (mm/day) and in the diurnal temperature range (°C) for the periods 1950-2005 and 2006-2100 were investigated using the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) constructed using the CMIP5 (Coupled Model Intercomparison Project version 5) data. Differences between the multi-model ensembles of the two prospective scenarios (RCP 4.5 and RCP 8.5) and the retrospective baseline scenario were computed. This study highlights Costa Rica as an inflexion point of the climate change in the region and also suggests future drying conditions.

  9. Climate scenarios for California

    Science.gov (United States)

    Cayan, Daniel R.; Maurer, Ed; Dettinger, Mike; Tyree, Mary; Hayhoe, Katharine; Bonfils, Celine; Duffy, Phil; Santer, Ben

    2006-01-01

    Possible future climate changes in California are investigated from a varied set of climate change model simulations. These simulations, conducted by three state-of-the-art global climate models, provide trajectories from three greenhouse gas (GHG) emission scenarios. These scenarios and the resulting climate simulations are not “predictions,” but rather are a limited sample from among the many plausible pathways that may affect California’s climate. Future GHG concentrations are uncertain because they depend on future social, political, and technological pathways, and thus the IPCC has produced four “families” of emission scenarios. To explore some of these uncertainties, emissions scenarios A2 (a medium-high emissions) and B1 (low emissions) were selected from the current IPCC Fourth climate assessment, which provides several recent model simulations driven by A2 and B1 emissions. The global climate model simulations addressed here were from PCM1, the Parallel Climate Model from the National Center for Atmospheric Research (NCAR) and U.S. Department of Energy (DOE) group, and CM2.1 from the National Oceanic and Atmospheric Administration (NOAA) Geophysical Fluids Dynamics Laboratory (GFDL).

  10. US National Climate Assessment (NCA) Scenarios for Assessing Our Climate Future: Issues and Methodological Perspectives Background Whitepaper for Participants

    Energy Technology Data Exchange (ETDEWEB)

    Moss, Richard H.; Engle, Nathan L.; Hall, John; Jacobs, Kathy; Lempert, Rob; Mearns, L. O.; Melillo, Jerry; Mote, Phil; O' Brien, Sheila; Rosenzweig, C.; Ruane, Alex; Sheppard, Stephen; Vallario, Robert W.; Wiek, Arnim; Wilbanks, Thomas

    2011-10-01

    This whitepaper is intended to provide a starting point for discussion at a workshop for the National Climate Assessment (NCA) that focuses on the use and development of scenarios. The paper will provide background needed by participants in the workshop in order to review options for developing and using scenarios in NCA. The paper briefly defines key terms and establishes a conceptual framework for developing consistent scenarios across different end uses and spatial scales. It reviews uses of scenarios in past U.S. national assessments and identifies potential users of and needs for scenarios for both the report scheduled for release in June 2013 and to support an ongoing distributed assessment process in sectors and regions around the country. Because scenarios prepared for the NCA will need to leverage existing research, the paper takes account of recent scientific advances and activities that could provide needed inputs. Finally, it considers potential approaches for providing methods, data, and other tools for assessment participants. We note that the term 'scenarios' has many meanings. An important goal of the whitepaper (and portions of the workshop agenda) is pedagogical (i.e., to compare different meanings and uses of the term and make assessment participants aware of the need to be explicit about types and uses of scenarios). In climate change research, scenarios have been used to establish bounds for future climate conditions and resulting effects on human and natural systems, given a defined level of greenhouse gas emissions. This quasi-predictive use contrasts with the way decision analysts typically use scenarios (i.e., to consider how robust alternative decisions or strategies may be to variation in key aspects of the future that are uncertain). As will be discussed, in climate change research and assessment, scenarios describe a range of aspects of the future, including major driving forces (both human activities and natural processes

  11. Winter precipitation and cyclones in the Mediterranean region: future climate scenarios in a regional simulation

    Directory of Open Access Journals (Sweden)

    P. Lionello

    2007-11-01

    Full Text Available Future climate projections show higher/lower winter (Dec-Jan-Feb precipitation in the northern/southern Mediterranean region than in present climate conditions. This paper analyzes the results of regional model simulations of the A2 and B2 scenarios, which confirm this opposite precipitation change and link it to the change of cyclone activity. The increase of the winter cyclone activity in future climate scenarios over western Europe is responsible for the larger precipitation at the northern coast of the basin, though the bulk of the change is located outside the Mediterranean region. The reduction of cyclone activity inside the Mediterranean region in future scenarios is responsible for the lower precipitation at the southern and eastern Mediterranean coast.

  12. Projecting Future Heat-Related Mortality under Climate Change Scenarios: A Systematic Review

    Science.gov (United States)

    Barnett, Adrian Gerard; Wang, Xiaoming; Vaneckova, Pavla; FitzGerald, Gerard; Tong, Shilu

    2011-01-01

    Background: Heat-related mortality is a matter of great public health concern, especially in the light of climate change. Although many studies have found associations between high temperatures and mortality, more research is needed to project the future impacts of climate change on heat-related mortality. Objectives: We conducted a systematic review of research and methods for projecting future heat-related mortality under climate change scenarios. Data sources and extraction: A literature search was conducted in August 2010, using the electronic databases PubMed, Scopus, ScienceDirect, ProQuest, and Web of Science. The search was limited to peer-reviewed journal articles published in English from January 1980 through July 2010. Data synthesis: Fourteen studies fulfilled the inclusion criteria. Most projections showed that climate change would result in a substantial increase in heat-related mortality. Projecting heat-related mortality requires understanding historical temperature–mortality relationships and considering the future changes in climate, population, and acclimatization. Further research is needed to provide a stronger theoretical framework for projections, including a better understanding of socioeconomic development, adaptation strategies, land-use patterns, air pollution, and mortality displacement. Conclusions: Scenario-based projection research will meaningfully contribute to assessing and managing the potential impacts of climate change on heat-related mortality. PMID:21816703

  13. Establishing the common patterns of future tropospheric ozone under diverse climate change scenarios

    Science.gov (United States)

    Jimenez-Guerrero, Pedro; Gómez-Navarro, Juan J.; Jerez, Sonia; Lorente-Plazas, Raquel; Baro, Rocio; Montávez, Juan P.

    2013-04-01

    The impacts of climate change on air quality may affect long-term air quality planning. However, the policies aimed at improving air quality in the EU directives have not accounted for the variations in the climate. Climate change alone influences future air quality through modifications of gas-phase chemistry, transport, removal, and natural emissions. As such, the aim of this work is to check whether the projected changes in gas-phase air pollution over Europe depends on the scenario driving the regional simulation. For this purpose, two full-transient regional climate change-air quality projections for the first half of the XXI century (1991-2050) have been carried out with MM5+CHIMERE system, including A2 and B2 SRES scenarios. Experiments span the periods 1971-2000, as a reference, and 2071-2100, as future enhanced greenhouse gas and aerosol scenarios (SRES A2 and B2). The atmospheric simulations have a horizontal resolution of 25 km and 23 vertical layers up to 100 mb, and were driven by ECHO-G global climate model outputs. The analysis focuses on the connection between meteorological and air quality variables. Our simulations suggest that the modes of variability for tropospheric ozone and their main precursors hardly change under different SRES scenarios. The effect of changing scenarios has to be sought in the intensity of the changing signal, rather than in the spatial structure of the variation patterns, since the correlation between the spatial patterns of variability in A2 and B2 simulation is r > 0.75 for all gas-phase pollutants included in this study. In both cases, full-transient simulations indicate an enhanced enhanced chemical activity under future scenarios. The causes for tropospheric ozone variations have to be sought in a multiplicity of climate factors, such as increased temperature, different distribution of precipitation patterns across Europe, increased photolysis of primary and secondary pollutants due to lower cloudiness, etc

  14. Analyzing Future Flooding under Climate Change Scenario using CMIP5 Streamflow Data

    Science.gov (United States)

    Parajuli, Ranjan; Nyaupane, Narayan; Kalra, Ajay

    2017-12-01

    Flooding is a severe and costlier natural hazard. The effect of climate change has intensified the scenario in recent years. Flood prevention practice along with a proper understanding of flooding event can mitigate the risk of such hazard. The floodplain mapping is one of the technique to quantify the severity of the flooding. Carson City, which is one of the agricultural areas in the desert of Nevada has experienced peak flood in the recent year. The underlying probability distribution for the area, latest Coupled Model Intercomparison Project (CMIP5) streamflow data of Carson River were analyzed for 27 different statistical distributions. The best-fitted distribution underlying was used to forecast the 100yr flood (design flood). The data from 1950-2099 derived from 31 model and total 97 projections were used to predict the future streamflow. Delta change method is adopted to quantify the amount of future (2050-2099) flood. To determine the extent of flooding 3 scenarios (i) historic design flood, (ii) 500yr flood and (iii) future 100yr flood were routed on an HEC-RAS model, prepared using available terrain data. Some of the climate projection shows an extreme increase in future design flood. This study suggests an approach to quantify the future flood and floodplain using climate model projections. The study would provide helpful information to the facility manager, design engineer, and stakeholders.

  15. Effects of future climate and land use scenarios on riverine source water quality.

    Science.gov (United States)

    Delpla, Ianis; Rodriguez, Manuel J

    2014-09-15

    Surface water quality is particularly sensitive to land use practices and climatic events that affect its catchment. The relative influence of a set of watershed characteristics (climate, land use, morphology and pedology) and climatic variables on two key water quality parameters (turbidity and fecal coliforms (FC)) was examined in 24 eastern Canadian catchments at various spatial scales (1 km, 5 km, 10 km and the entire catchment). A regression analysis revealed that the entire catchment was a better predictor of water quality. Based on this information, linear mixed effect models for predicting turbidity and FC levels were developed. A set of land use and climate scenarios was considered and applied within the water quality models. Four land use scenarios (no change, same rate of variation, optimistic and pessimistic) and three climate change scenarios (B1, A1B and A2) were tested and variations for the near future (2025) were assessed and compared to the reference period (2000). Climate change impacts on water quality remained low annually for this time horizon (turbidity: +1.5%, FC: +1.6%, A2 scenario). On the other hand, the influence of land use changes appeared to predominate. Significant benefits for both parameters could be expected following the optimistic scenario (turbidity: -16.4%, FC: -6.3%; p climate change impacts could become equivalent to those modeled for land use for this horizon. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Model and scenario variations in predicted number of generations of Spodoptera litura Fab. on peanut during future climate change scenario.

    Directory of Open Access Journals (Sweden)

    Mathukumalli Srinivasa Rao

    Full Text Available The present study features the estimation of number of generations of tobacco caterpillar, Spodoptera litura. Fab. on peanut crop at six locations in India using MarkSim, which provides General Circulation Model (GCM of future data on daily maximum (T.max, minimum (T.min air temperatures from six models viz., BCCR-BCM2.0, CNRM-CM3, CSIRO-Mk3.5, ECHams5, INCM-CM3.0 and MIROC3.2 along with an ensemble of the six from three emission scenarios (A2, A1B and B1. This data was used to predict the future pest scenarios following the growing degree days approach in four different climate periods viz., Baseline-1975, Near future (NF -2020, Distant future (DF-2050 and Very Distant future (VDF-2080. It is predicted that more generations would occur during the three future climate periods with significant variation among scenarios and models. Among the seven models, 1-2 additional generations were predicted during DF and VDF due to higher future temperatures in CNRM-CM3, ECHams5 & CSIRO-Mk3.5 models. The temperature projections of these models indicated that the generation time would decrease by 18-22% over baseline. Analysis of variance (ANOVA was used to partition the variation in the predicted number of generations and generation time of S. litura on peanut during crop season. Geographical location explained 34% of the total variation in number of generations, followed by time period (26%, model (1.74% and scenario (0.74%. The remaining 14% of the variation was explained by interactions. Increased number of generations and reduction of generation time across the six peanut growing locations of India suggest that the incidence of S. litura may increase due to projected increase in temperatures in future climate change periods.

  17. Eco-efficient production of spring barley in a changed climate: A Life Cycle Assessment including primary data from future climate scenarios

    DEFF Research Database (Denmark)

    Niero, Monia; Ingvordsen, Cathrine Heinz; Peltonen-Sainio, Pirjo

    2015-01-01

    The paper has two main objectives: (i) to assess the eco-efficiency of spring barley cultivation for malting in Denmark in a future changed climate (700 ppm [CO2] and +5 °C) through Life Cycle Assessment (LCA) and (ii) to compare alternative future cultivation scenarios, both excluding and includ......The paper has two main objectives: (i) to assess the eco-efficiency of spring barley cultivation for malting in Denmark in a future changed climate (700 ppm [CO2] and +5 °C) through Life Cycle Assessment (LCA) and (ii) to compare alternative future cultivation scenarios, both excluding...

  18. Climate and health implications of future aerosol emission scenarios

    Science.gov (United States)

    Partanen, Antti-Ilari; Landry, Jean-Sébastien; Damon Matthews, H.

    2018-02-01

    Anthropogenic aerosols have a net cooling effect on climate and also cause adverse health effects by degrading air quality. In this global-scale sensitivity study, we used a combination of the aerosol-climate model ECHAM-HAMMOZ and the University of Victoria Earth System Climate Model to assess the climate and health effects of aerosols emissions from three Representative Concentration Pathways (RCP2.6, RCP4.5, and RCP8.5) and two new (LOW and HIGH) aerosol emission scenarios derived from RCP4.5, but that span a wider spectrum of possible future aerosol emissions. All simulations had CO2 emissions and greenhouse gas forcings from RCP4.5. Aerosol forcing declined similarly in the standard RCP aerosol emission scenarios: the aerosol effective radiative forcing (ERF) decreased from -1.3 W m-2 in 2005 to between -0.1 W m-2 and -0.4 W m-2 in 2100. The differences in ERF were substantially larger between LOW (-0.02 W m-2 in 2100) and HIGH (-0.8 W m-2) scenarios. The global mean temperature difference between the simulations with standard RCP aerosol emissions was less than 0.18 °C, whereas the difference between LOW and HIGH reached 0.86 °C in 2061. In LOW, the rate of warming peaked at 0.48 °C per decade in the 2030s, whereas in HIGH it was the lowest of all simulations and never exceeded 0.23 °C per decade. Using present-day population density and baseline mortality rates for all scenarios, PM2.5-induced premature mortality was 2 371 800 deaths per year in 2010 and 525 700 in 2100 with RCP4.5 aerosol emissions; in HIGH, the premature mortality reached its maximum value of 2 780 800 deaths per year in 2030, whereas in LOW the premature mortality at 2030 was below 299 900 deaths per year. Our results show potential trade-offs in aerosol mitigation with respect to climate change and public health as ambitious reduction of aerosol emissions considerably increased warming while decreasing mortality.

  19. Forecasting the future risk of Barmah Forest virus disease under climate change scenarios in Queensland, Australia.

    Science.gov (United States)

    Naish, Suchithra; Mengersen, Kerrie; Hu, Wenbiao; Tong, Shilu

    2013-01-01

    Mosquito-borne diseases are climate sensitive and there has been increasing concern over the impact of climate change on future disease risk. This paper projected the potential future risk of Barmah Forest virus (BFV) disease under climate change scenarios in Queensland, Australia. We obtained data on notified BFV cases, climate (maximum and minimum temperature and rainfall), socio-economic and tidal conditions for current period 2000-2008 for coastal regions in Queensland. Grid-data on future climate projections for 2025, 2050 and 2100 were also obtained. Logistic regression models were built to forecast the otential risk of BFV disease distribution under existing climatic, socio-economic and tidal conditions. The model was applied to estimate the potential geographic distribution of BFV outbreaks under climate change scenarios. The predictive model had good model accuracy, sensitivity and specificity. Maps on potential risk of future BFV disease indicated that disease would vary significantly across coastal regions in Queensland by 2100 due to marked differences in future rainfall and temperature projections. We conclude that the results of this study demonstrate that the future risk of BFV disease would vary across coastal regions in Queensland. These results may be helpful for public health decision making towards developing effective risk management strategies for BFV disease control and prevention programs in Queensland.

  20. Modelling the impact of future socio-economic and climate change scenarios on river microbial water quality.

    Science.gov (United States)

    Islam, M M Majedul; Iqbal, Muhammad Shahid; Leemans, Rik; Hofstra, Nynke

    2018-03-01

    Microbial surface water quality is important, as it is related to health risk when the population is exposed through drinking, recreation or consumption of irrigated vegetables. The microbial surface water quality is expected to change with socio-economic development and climate change. This study explores the combined impacts of future socio-economic and climate change scenarios on microbial water quality using a coupled hydrodynamic and water quality model (MIKE21FM-ECOLab). The model was applied to simulate the baseline (2014-2015) and future (2040s and 2090s) faecal indicator bacteria (FIB: E. coli and enterococci) concentrations in the Betna river in Bangladesh. The scenarios comprise changes in socio-economic variables (e.g. population, urbanization, land use, sanitation and sewage treatment) and climate variables (temperature, precipitation and sea-level rise). Scenarios have been developed building on the most recent Shared Socio-economic Pathways: SSP1 and SSP3 and Representative Concentration Pathways: RCP4.5 and RCP8.5 in a matrix. An uncontrolled future results in a deterioration of the microbial water quality (+75% by the 2090s) due to socio-economic changes, such as higher population growth, and changes in rainfall patterns. However, microbial water quality improves under a sustainable scenario with improved sewage treatment (-98% by the 2090s). Contaminant loads were more influenced by changes in socio-economic factors than by climatic change. To our knowledge, this is the first study that combines climate change and socio-economic development scenarios to simulate the future microbial water quality of a river. This approach can also be used to assess future consequences for health risks. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  1. Forecasting the future risk of Barmah Forest virus disease under climate change scenarios in Queensland, Australia.

    Directory of Open Access Journals (Sweden)

    Suchithra Naish

    Full Text Available BACKGROUND: Mosquito-borne diseases are climate sensitive and there has been increasing concern over the impact of climate change on future disease risk. This paper projected the potential future risk of Barmah Forest virus (BFV disease under climate change scenarios in Queensland, Australia. METHODS/PRINCIPAL FINDINGS: We obtained data on notified BFV cases, climate (maximum and minimum temperature and rainfall, socio-economic and tidal conditions for current period 2000-2008 for coastal regions in Queensland. Grid-data on future climate projections for 2025, 2050 and 2100 were also obtained. Logistic regression models were built to forecast the otential risk of BFV disease distribution under existing climatic, socio-economic and tidal conditions. The model was applied to estimate the potential geographic distribution of BFV outbreaks under climate change scenarios. The predictive model had good model accuracy, sensitivity and specificity. Maps on potential risk of future BFV disease indicated that disease would vary significantly across coastal regions in Queensland by 2100 due to marked differences in future rainfall and temperature projections. CONCLUSIONS/SIGNIFICANCE: We conclude that the results of this study demonstrate that the future risk of BFV disease would vary across coastal regions in Queensland. These results may be helpful for public health decision making towards developing effective risk management strategies for BFV disease control and prevention programs in Queensland.

  2. An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change.

    Directory of Open Access Journals (Sweden)

    Nicolas Casajus

    Full Text Available An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one.

  3. An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change.

    Science.gov (United States)

    Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique

    2016-01-01

    An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one.

  4. Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios

    Science.gov (United States)

    Stocker, Benjamin D.; Roth, Raphael; Joos, Fortunat; Spahni, Renato; Steinacher, Marco; Zaehle, Soenke; Bouwman, Lex; Xu-Ri; Prentice, Iain Colin

    2013-07-01

    Atmospheric concentrations of the three important greenhouse gases (GHGs) CO2, CH4 and N2O are mediated by processes in the terrestrial biosphere that are sensitive to climate and CO2. This leads to feedbacks between climate and land and has contributed to the sharp rise in atmospheric GHG concentrations since pre-industrial times. Here, we apply a process-based model to reproduce the historical atmospheric N2O and CH4 budgets within their uncertainties and apply future scenarios for climate, land-use change and reactive nitrogen (Nr) inputs to investigate future GHG emissions and their feedbacks with climate in a consistent and comprehensive framework. Results suggest that in a business-as-usual scenario, terrestrial N2O and CH4 emissions increase by 80 and 45%, respectively, and the land becomes a net source of C by AD 2100. N2O and CH4 feedbacks imply an additional warming of 0.4-0.5°C by AD 2300; on top of 0.8-1.0°C caused by terrestrial carbon cycle and Albedo feedbacks. The land biosphere represents an increasingly positive feedback to anthropogenic climate change and amplifies equilibrium climate sensitivity by 22-27%. Strong mitigation limits the increase of terrestrial GHG emissions and prevents the land biosphere from acting as an increasingly strong amplifier to anthropogenic climate change.

  5. Response of a multi-stressed Mediterranean river to future climate and socio-economic scenarios.

    Science.gov (United States)

    Stefanidis, Konstantinos; Panagopoulos, Yiannis; Mimikou, Maria

    2018-06-15

    Streams and rivers are among the most threatened ecosystems in Europe due to the combined effects of multiple pressures related to anthropogenic activities. Particularly in the Mediterranean region, changes in hydromorphology along with increased nutrient loadings are known to affect the ecological functions and ecosystem services of streams and rivers with the anticipated climate change being likely to further impair their functionality and structure. In this study, we investigated the combined effects of agricultural driven stressors on the ecology and delivered services of the Pinios river basin in Greece under three future world scenarios developed within the EU funded MARS project. Scenarios are based on combinations of Representative Concentration Pathways and Shared Socioeconomic Pathways and refer to early century (2030) and mid-century (2060) representing future climate worlds with particular socioeconomic characteristics. To assess the responses of ecological and ecosystem service indicators to the scenarios we first simulated hydrology and water quality in Pinios with a process-based model. Simulated abiotic stressor parameters (predictors) were linked to two biotic indicators, the macroinvertebrate indicators ASPT and EPT, with empirical modelling based on boosted regression trees and general linear models. Our results showed that the techno world scenario driven by fast economic growth and intensive exploitation of energy resources had the largest impact on both the abiotic status (nutrient loads and concentrations in water) and the biotic indicators. In contrast, the predicted changes under the other two future worlds, consensus and fragmented, were more diverse and were mostly dictated by the projected climate. This work showed that the future scenarios, especially the mid-century ones, had significant impact on both abiotic status and biotic responses underpinning the need for implementing catchment management practices able to mitigate the

  6. Refuge Lake Reclassification in 620 Minnesota Cisco Lakes under Future Climate Scenarios

    Directory of Open Access Journals (Sweden)

    Liping Jiang

    2017-09-01

    Full Text Available Cisco (Coregonus artedi is the most common coldwater stenothermal fish in Minnesota lakes. Water temperature (T and dissolved oxygen (DO in lakes are important controls of fish growth and reproduction and likely change with future climate warming. Built upon a previous study, this study uses a modified method to identify which of 620 cisco lakes in Minnesota can still support cisco populations under future climate and therefore be classified as cisco refuge lakes. The previous study used oxythermal stress parameter TDO3, the temperature at DO of 3 mg/L, simulated only from deep virtual lakes to classify 620 cisco lakes. Using four categories of virtual but representative cisco lakes in modified method, a one-dimensional water quality model MINLAKE2012 was used to simulate daily T and DO profiles in 82 virtual lakes under the past (1961–2008 and two future climate scenarios. A multiyear average of 31-day largest TDO3 over variable benchmark (VB periods, AvgATDO3VB, was calculated from simulated T and DO profiles using FishHabitat2013. Contour plots of AvgATDO3VB for four categories of virtual lakes were then developed to reclassify 620 cisco lakes into Tier 1 (AvgATDO3VB < 11 °C or Tier 2 refuge lakes, and Tier 3 non-refuge lakes (AvgATDO3VB > 17 °C. About 20% of 620 cisco lakes are projected to be refuge lakes under future climate scenarios, which is a more accurate projection (improving the prediction accuracy by ~6.5% from the previous study since AvgATDO3VB was found to vary by lake categories.

  7. Changes in future air quality, deposition, and aerosol-cloud interactions under future climate and emission scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Glotfelty, Timothy; Zhang, Yang; Karamchandani, Prakash; Streets, David G.

    2016-08-01

    The prospect of global climate change will have wide scale impacts, such as ecological stress and human health hazards. One aspect of concern is future changes in air quality that will result from changes in both meteorological forcing and air pollutant emissions. In this study, the GU-WRF/Chem model is employed to simulate the impact of changing climate and emissions following the IPCC AR4 SRES A1B scenario. An average of 4 future years (2020, 2030, 2040, and 2050) is compared against an average of 2 current years (2001 and 2010). Under this scenario, by the Mid-21st century global air quality is projected to degrade with a global average increase of 2.5 ppb in the maximum 8-hr O3 level and of 0.3 mg m3 in 24-hr average PM2.5. However, PM2.5 changes are more regional due to regional variations in primary aerosol emissions and emissions of gaseous precursor for secondary PM2.5. Increasing NOx emissions in this scenario combines with a wetter climate elevating levels of OH, HO2, H2O2, and the nitrate radical and increasing the atmosphere’s near surface oxidation state. This differs from findings under the RCP scenarios that experience declines in OH from reduced NOx emissions, stratospheric recovery of O3, and increases in CH4 and VOCs. Increasing NOx and O3 levels enhances the nitrogen and O3 deposition, indicating potentially enhanced crop damage and ecosystem stress under this scenario. The enhanced global aerosol level results in enhancements in aerosol optical depth, cloud droplet number concentration, and cloud optical thickness. This leads to dimming at the Earth’s surface with a global average reduction in shortwave radiation of 1.2 W m2 . This enhanced dimming leads to a more moderate warming trend and different trends in radiation than those found in NCAR’s CCSM simulation, which does not include the advanced chemistry and aerosol

  8. Climate change and future scenarios for palisade grass production in the state of São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    André Santana Andrade

    2014-10-01

    Full Text Available The objective of this work was to analyze future scenarios for palisade grass yield subjected to climate change for the state of São Paulo, Brazil. An empirical crop model was used to estimate yields, according to growing degree-days adjusted by one drought attenuation factor. Climate data from 1963 to 2009 of 23 meteorological stations were used for current climate conditions. Downscaled outputs of two general circulation models were used to project future climate for the 2013-2040 and 2043-2070 periods, considering two contrasting scenarios of temperature and atmospheric CO2 concentration increase (high and low. Annual dry matter yield should be from 14 to 42% higher than the current one, depending on the evaluated scenario. Yield variation between seasons (seasonality and years is expected to increase. The increase of dry matter accumulation will be higher in the rainy season than in the dry season, and this result is more evident for soils with low-water storage capacity. The results varied significantly between regions (60%. Despite their higher climate potential, warmer regions will probably have a lower increase in future forage production.

  9. Modelling the role of nitrogen in acidification of Swedish lakes: future scenarios of acid deposition, climate change and forestry practices

    Energy Technology Data Exchange (ETDEWEB)

    Moldan, Filip (Swedish Environmental Research Institute Ltd., Stockholm (Sweden)); Cosby, B. Jack (Dept. of Env. Sciences, Univ. of Virginia, Charlottesville, VA (United States)); Wright, Richard F. (Norwegian Inst. for Water Research, Kjelsas, Oslo (Norway))

    2009-12-15

    There are three major drivers that can cause future changes in lake water chemistry: air pollution, land use and climate change. In this report we used an extensive set of Swedish lakes sampled in 1995, 2000 and in 2005 to model future lake water chemistry under 5 different scenarios. The base case scenario represented deposition of air pollutants under current legislation (CLE); that is assuming that emissions of sulphur (S) and nitrogen (N) will be reduced as currently agreed by the Gothenburg protocol, NEC directive and other legislation. After the agreed emission reductions were achieved, no further reduction in deposition was assumed and deposition was maintained constant up to year 2100. The base scenario assumed no change in current forestry practices and no climate change. A second other deposition scenario was based on maximum (technically) feasible emission reduction (MFR). The MFR scenario also did not assume change of either forestry practices or climate. A maximum biomass harvest was modelled (land use, LU, scenario), which entailed harvest of tree stems, slash and stumps. A scenario of climate change (CC) followed the IPCC A2 scenario downscaled to Sweden by SMHI. Finally climate change and land use were combined (CCLU scenario). The CC, LU and CCLU scenarios were driven by the 'current legislation' (CLE) deposition scenario for S and N deposition. The biogeochemical model MAGIC was used in this project, and scenarios were evaluated up to year 2100. Special attention was paid to the impact of the future scenarios on N leaching

  10. How to manage uncertainty in future Life Cycle Assessment (LCA) scenarios addressing the effect of climate change in crop production

    DEFF Research Database (Denmark)

    Niero, Monia; Ingvordsen, Cathrine Heinz; Bagger Jørgensen, Rikke

    2015-01-01

    When Life Cycle Assessment (LCA) is used to provide insights on how to pursue future food demand, it faces the challenge to describe scenarios of the future in which the environmental impacts occur. In the case of future crop production, the effects of climate change should be considered. In this......When Life Cycle Assessment (LCA) is used to provide insights on how to pursue future food demand, it faces the challenge to describe scenarios of the future in which the environmental impacts occur. In the case of future crop production, the effects of climate change should be considered....... In this context, the objectives of this paper are two-fold: (i) to recommend an approach to deal with uncertainty in scenario analysis for LCA of crop production in a changed climate, when the goal of the study is to suggest strategies for adaptation of crop cultivation practices towards low environmental impacts...... climate, soil, water loss and production parameters. Secondly, the handling of these factors in the inventory modeling is discussed and finally implemented in the case study. Our approach follows a 3-step procedure consisting of: (1) definition of a baseline scenario at the Life Cycle Inventory (LCI...

  11. The development of climatic scenarios for assessing impacts of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Carter, T; Tuomenvirta, H [Finnish Meteorological Inst., Helsinki (Finland); Posch, M [National Inst. of Public Health and the Environment, Bilthoven (Netherlands)

    1996-12-31

    There is a growing recognition that mitigation measures for limiting future global changes in climate due to the enhanced greenhouse effect are unlikely to prevent some changes from occurring. Thus, if climate changes appear to be unavoidable, there is an increased need to evaluate their likely impacts on natural systems and human activities. Most impacts of climate change need to be examined at a regional scale, and their assessment requires up-to-date information on future regional climate changes. Unfortunately, accurate predictions of regional climate are not yet available. Instead, it is customary to construct climatic scenarios, which are plausible representations of future climate based on the best available information. This presentation outlines seven principles of climatic scenario development for impact studies, briefly describing some of the strengths and weaknesses of available methods and then illustrating one approach adopted in Finland

  12. The development of climatic scenarios for assessing impacts of climate change

    International Nuclear Information System (INIS)

    Carter, T.; Tuomenvirta, H.; Posch, M.

    1995-01-01

    There is a growing recognition that mitigation measures for limiting future global changes in climate due to the enhanced greenhouse effect are unlikely to prevent some changes from occurring. Thus, if climate changes appear to be unavoidable, there is an increased need to evaluate their likely impacts on natural systems and human activities. Most impacts of climate change need to be examined at a regional scale, and their assessment requires up-to-date information on future regional climate changes. Unfortunately, accurate predictions of regional climate are not yet available. Instead, it is customary to construct climatic scenarios, which are plausible representations of future climate based on the best available information. This presentation outlines seven principles of climatic scenario development for impact studies, briefly describing some of the strengths and weaknesses of available methods and then illustrating one approach adopted in Finland

  13. The development of climatic scenarios for assessing impacts of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Carter, T.; Tuomenvirta, H. [Finnish Meteorological Inst., Helsinki (Finland); Posch, M. [National Inst. of Public Health and the Environment, Bilthoven (Netherlands)

    1995-12-31

    There is a growing recognition that mitigation measures for limiting future global changes in climate due to the enhanced greenhouse effect are unlikely to prevent some changes from occurring. Thus, if climate changes appear to be unavoidable, there is an increased need to evaluate their likely impacts on natural systems and human activities. Most impacts of climate change need to be examined at a regional scale, and their assessment requires up-to-date information on future regional climate changes. Unfortunately, accurate predictions of regional climate are not yet available. Instead, it is customary to construct climatic scenarios, which are plausible representations of future climate based on the best available information. This presentation outlines seven principles of climatic scenario development for impact studies, briefly describing some of the strengths and weaknesses of available methods and then illustrating one approach adopted in Finland

  14. The development of climatic scenarios for Finland

    Energy Technology Data Exchange (ETDEWEB)

    Carter, T; Tuomenvirta, H [Finnish Meteorological Inst., Helsinki (Finland); Posch, M [National Inst. of Public Health and the Environment, Bilthoven (Netherlands)

    1997-12-31

    One of the main objectives of the Finnish Research Programme on Climate Change (SILMU) has been to assess the possible impacts of future changes in climate due to the enhanced greenhouse effect on natural systems and human activities in Finland. In order to address this objective, it was first necessary to specify the types of climate changes to be expected in the Finnish region. Estimates of future climate are conventionally obtained using numerical models, which simulate the evolution of the future climate in response to radiative forcing due to changes in the composition of the atmosphere (i.e. of greenhouse gases and aerosols). However, there are large uncertainties in the model estimates because current knowledge and understanding of atmospheric processes remains incomplete. Since accurate predictions of climate change are not available, an alternative approach is to develop scenarios. These are plausible projections which reflect the best estimates to the future conditions but at the same time embrace the likely uncertainties attached to these estimates. In order to obtain expert opinion on the most appropriate methods of providing scenarios for SILMU, an International Workshop was organised in 1993. The recommendations of the Workshop formed the basis of the present project, initiated in 1994, to develop standard climatic scenarios for Finland

  15. The development of climatic scenarios for Finland

    Energy Technology Data Exchange (ETDEWEB)

    Carter, T.; Tuomenvirta, H. [Finnish Meteorological Inst., Helsinki (Finland); Posch, M. [National Inst. of Public Health and the Environment, Bilthoven (Netherlands)

    1996-12-31

    One of the main objectives of the Finnish Research Programme on Climate Change (SILMU) has been to assess the possible impacts of future changes in climate due to the enhanced greenhouse effect on natural systems and human activities in Finland. In order to address this objective, it was first necessary to specify the types of climate changes to be expected in the Finnish region. Estimates of future climate are conventionally obtained using numerical models, which simulate the evolution of the future climate in response to radiative forcing due to changes in the composition of the atmosphere (i.e. of greenhouse gases and aerosols). However, there are large uncertainties in the model estimates because current knowledge and understanding of atmospheric processes remains incomplete. Since accurate predictions of climate change are not available, an alternative approach is to develop scenarios. These are plausible projections which reflect the best estimates to the future conditions but at the same time embrace the likely uncertainties attached to these estimates. In order to obtain expert opinion on the most appropriate methods of providing scenarios for SILMU, an International Workshop was organised in 1993. The recommendations of the Workshop formed the basis of the present project, initiated in 1994, to develop standard climatic scenarios for Finland

  16. Scenarios for the future - possible futures for climate and technology

    International Nuclear Information System (INIS)

    Laramee de Tannenberg, Valery; Guillaume, Bertrand

    2012-01-01

    This bibliographical note presents a book in which the authors study different scenarios to challenge climate change. After having recalled reasons for this change, already made observations, and the emergence of a consensus on climate change (IPCC creation), they propose an assessment of greenhouse gas emissions and of the evolution of anthropogenic emissions, and then study the different scenarios proposed by the IEA. They discuss the various geo-engineering solutions (diffraction of solar radiation by microscopic particles dispersed in space, seawater ferrugination, city discolouring, extraction of CO 2 from the atmosphere) and outline the associated risks and hazards. Because of these associated risks, hazards and costs, they prefer solutions like the development of renewable energies, positive dwelling, evolution of transports, and carbon capture and storage

  17. Future climate scenarios and rainfall-runoff modelling in the Upper Gallego catchment (Spain)

    International Nuclear Information System (INIS)

    Buerger, C.M.; Kolditz, O.; Fowler, H.J.; Blenkinsop, S.

    2007-01-01

    Global climate change may have large impacts on water supplies, drought or flood frequencies and magnitudes in local and regional hydrologic systems. Water authorities therefore rely on computer models for quantitative impact prediction. In this study we present kernel-based learning machine river flow models for the Upper Gallego catchment of the Ebro basin. Different learning machines were calibrated using daily gauge data. The models posed two major challenges: (1) estimation of the rainfall-runoff transfer function from the available time series is complicated by anthropogenic regulation and mountainous terrain and (2) the river flow model is weak when only climate data are used, but additional antecedent flow data seemed to lead to delayed peak flow estimation. These types of models, together with the presented downscaled climate scenarios, can be used for climate change impact assessment in the Gallego, which is important for the future management of the system. - Future climate change and data-based rainfall-runoff predictions are presented for the Upper Gallego

  18. Source-Based Modeling Of Urban Stormwater Quality Response to the Selected Scenarios Combining Future Changes in Climate and Socio-Economic Factors

    Science.gov (United States)

    Borris, Matthias; Leonhardt, Günther; Marsalek, Jiri; Österlund, Heléne; Viklander, Maria

    2016-08-01

    The assessment of future trends in urban stormwater quality should be most helpful for ensuring the effectiveness of the existing stormwater quality infrastructure in the future and mitigating the associated impacts on receiving waters. Combined effects of expected changes in climate and socio-economic factors on stormwater quality were examined in two urban test catchments by applying a source-based computer model (WinSLAMM) for TSS and three heavy metals (copper, lead, and zinc) for various future scenarios. Generally, both catchments showed similar responses to the future scenarios and pollutant loads were generally more sensitive to changes in socio-economic factors (i.e., increasing traffic intensities, growth and intensification of the individual land-uses) than in the climate. Specifically, for the selected Intermediate socio-economic scenario and two climate change scenarios (RSP = 2.6 and 8.5), the TSS loads from both catchments increased by about 10 % on average, but when applying the Intermediate climate change scenario (RCP = 4.5) for two SSPs, the Sustainability and Security scenarios (SSP1 and SSP3), the TSS loads increased on average by 70 %. Furthermore, it was observed that well-designed and maintained stormwater treatment facilities targeting local pollution hotspots exhibited the potential to significantly improve stormwater quality, however, at potentially high costs. In fact, it was possible to reduce pollutant loads from both catchments under the future Sustainability scenario (on average, e.g., TSS were reduced by 20 %), compared to the current conditions. The methodology developed in this study was found useful for planning climate change adaptation strategies in the context of local conditions.

  19. Projection of Korean Probable Maximum Precipitation under Future Climate Change Scenarios

    Directory of Open Access Journals (Sweden)

    Okjeong Lee

    2016-01-01

    Full Text Available According to the IPCC Fifth Assessment Report, air temperature and humidity of the future are expected to gradually increase over the current. In this study, future PMPs are estimated by using future dew point temperature projection data which are obtained from RCM data provided by the Korea Meteorological Administration. First, bias included in future dew point temperature projection data which is provided on a daily basis is corrected through a quantile-mapping method. Next, using a scale-invariance technique, 12-hour duration 100-year return period dew point temperatures which are essential input data for PMPs estimation are estimated from bias-corrected future dew point temperature data. After estimating future PMPs, it can be shown that PMPs in all future climate change scenarios (AR5 RCP2.6, RCP 4.5, RCP 6.0, and RCP 8.5 are very likely to increase.

  20. Source-Based Modeling Of Urban Stormwater Quality Response to the Selected Scenarios Combining Future Changes in Climate and Socio-Economic Factors.

    Science.gov (United States)

    Borris, Matthias; Leonhardt, Günther; Marsalek, Jiri; Österlund, Heléne; Viklander, Maria

    2016-08-01

    The assessment of future trends in urban stormwater quality should be most helpful for ensuring the effectiveness of the existing stormwater quality infrastructure in the future and mitigating the associated impacts on receiving waters. Combined effects of expected changes in climate and socio-economic factors on stormwater quality were examined in two urban test catchments by applying a source-based computer model (WinSLAMM) for TSS and three heavy metals (copper, lead, and zinc) for various future scenarios. Generally, both catchments showed similar responses to the future scenarios and pollutant loads were generally more sensitive to changes in socio-economic factors (i.e., increasing traffic intensities, growth and intensification of the individual land-uses) than in the climate. Specifically, for the selected Intermediate socio-economic scenario and two climate change scenarios (RSP = 2.6 and 8.5), the TSS loads from both catchments increased by about 10 % on average, but when applying the Intermediate climate change scenario (RCP = 4.5) for two SSPs, the Sustainability and Security scenarios (SSP1 and SSP3), the TSS loads increased on average by 70 %. Furthermore, it was observed that well-designed and maintained stormwater treatment facilities targeting local pollution hotspots exhibited the potential to significantly improve stormwater quality, however, at potentially high costs. In fact, it was possible to reduce pollutant loads from both catchments under the future Sustainability scenario (on average, e.g., TSS were reduced by 20 %), compared to the current conditions. The methodology developed in this study was found useful for planning climate change adaptation strategies in the context of local conditions.

  1. Future Water Availability from Hindukush-Karakoram-Himalaya upper Indus Basin under Conflicting Climate Change Scenarios

    Directory of Open Access Journals (Sweden)

    Shabeh ul Hasson

    2016-08-01

    Full Text Available Future of the crucial Himalayan water supplies has generally been assessed under the anthropogenic warming, typically consistent amid observations and climate model projections. However, conflicting mid-to-late melt-season cooling within the upper Indus basin (UIB suggests that the future of its melt-dominated hydrological regime and the subsequent water availability under changing climate has yet been understood only indistinctly. Here, the future water availability from the UIB is presented under both observed and projected—though likely but contrasting—climate change scenarios. Continuation of prevailing climatic changes suggests decreased and delayed glacier melt but increased and early snowmelt, leading to reduction in the overall water availability and profound changes in the overall seasonality of the hydrological regime. Hence, initial increases in the water availability due to enhanced glacier melt under typically projected warmer climates, and then abrupt decrease upon vanishing of the glaciers, as reported earlier, is only true given the UIB starts following uniformly the global warming signal. Such discordant future water availability findings caution the impact assessment communities to consider the relevance of likely (near-future climate change scenarios—consistent to prevalent climatic change patterns—in order to adequately support the water resource planning in Pakistan.

  2. The future bioclimatic conditions in Austria under the aspect of climate change scenarios

    Science.gov (United States)

    Rudel, E.; Matzarakis, A.; Neumke, R.; Endler, Ch,; Koch, E.

    2009-09-01

    The IPCC quantifies Heat Stress as a combination of air temperature and air humidity. In order to describe the future bioclimatic conditions in a human-biometeorological manner the analysis a modern thermal index has been chosen. The PET (Physiologically Equivalent Temperature) allows the assessment of the effect of the thermal environment based on the energy balance of humans including thermo-physiological information. The data for the calculation of the PET came from climate models. The required data are for the climatic parameters air temperature, relative humidity, wind velocity and mean cloud cover as the necessary inputs for Physiologically Equivalents Temperature. Regarding future climatic changes PET calculations for the time slices 1961 and 1990 and also 2070 and 2100 have been run in 0.5 ° resolution. By the use of statistical regression for the 0.5 ° resolution the results have been downscaled to 1 km resolution in order to identify and quantify the areas in Austria, which will be more affected bioclimatologically. The constructed maps present current and future climatic conditions and also differences for the different time slices and SRES-scenarios of the IPCC. Maps of the difference between the Physiological Equivalent temperature and air temperature have been constructed to show that the used thermal indices, which have been applied by the IPCC underestimate the expected thermal bioclimate conditions for future climate. The results offer fundamental information for tourism and recreation authorities for present and expected climatic and bioclimatic conditions.

  3. Hydrological scenarios of future seasonal runoff distribution in Central Slovakia

    International Nuclear Information System (INIS)

    Hlavcova, K; Szolgay, J; Kohnova, S; Balint, G

    2008-01-01

    The hydrological scenarios of future seasonal distributions of runoff in the upper Hron River basin, which was chosen as a representative mountainous region in Central Slovakia, were evaluated. Changes in the future climate were expressed by three different climate change scenarios developed within the framework of the Central and Eastern Europe Climate Change Impact and Vulnerability Assessment Project (CECILIA). The climate change scenarios were constructed using the pattern scaling method from the outputs of transient simulations made by 3 GCMs - ECHAM4/OPYC3, HadCM2 and NCAR DOE-PCM. A conceptual hydrological balance model calibrated with data from the period 1971-2000 was used for modelling changes in runoff with monthly time steps. The runoff change scenarios for the selected basin in the future time horizons of 2025, 2050 and 2100 show changes in the seasonal runoff distribution.

  4. Sensitivity of the global submarine hydrate inventory to scenarios of future climate change

    Science.gov (United States)

    Hunter, S. J.; Goldobin, D. S.; Haywood, A. M.; Ridgwell, A.; Rees, J. G.

    2013-04-01

    The global submarine inventory of methane hydrate is thought to be considerable. The stability of marine hydrates is sensitive to changes in temperature and pressure and once destabilised, hydrates release methane into sediments and ocean and potentially into the atmosphere, creating a positive feedback with climate change. Here we present results from a multi-model study investigating how the methane hydrate inventory dynamically responds to different scenarios of future climate and sea level change. The results indicate that a warming-induced reduction is dominant even when assuming rather extreme rates of sea level rise (up to 20 mm yr-1) under moderate warming scenarios (RCP 4.5). Over the next century modelled hydrate dissociation is focussed in the top ˜100m of Arctic and Subarctic sediments beneath business-as-usual scenario (RCP 8.5), upper estimates of resulting global sea-floor methane fluxes could exceed estimates of natural global fluxes by 2100 (>30-50TgCH4yr-1), although subsequent oxidation in the water column could reduce peak atmospheric release rates to 0.75-1.4 Tg CH4 yr-1.

  5. Preparing suitable climate scenario data to assess impacts on local food safety

    NARCIS (Netherlands)

    Liu, C.; Hofstra, N.; Leemans, R.

    2015-01-01

    Quantification of climate change impacts on food safety requires food safety assessment with different past and future climate scenario data to compare current and future conditions. This study presents a tool to prepare climate and climate change data for local food safety scenario analysis and

  6. Future habitat loss and extinctions driven by land-use change in biodiversity hotspots under four scenarios of climate-change mitigation.

    Science.gov (United States)

    Jantz, Samuel M; Barker, Brian; Brooks, Thomas M; Chini, Louise P; Huang, Qiongyu; Moore, Rachel M; Noel, Jacob; Hurtt, George C

    2015-08-01

    Numerous species have been pushed into extinction as an increasing portion of Earth's land surface has been appropriated for human enterprise. In the future, global biodiversity will be affected by both climate change and land-use change, the latter of which is currently the primary driver of species extinctions. How societies address climate change will critically affect biodiversity because climate-change mitigation policies will reduce direct climate-change impacts; however, these policies will influence land-use decisions, which could have negative impacts on habitat for a substantial number of species. We assessed the potential impact future climate policy could have on the loss of habitable area in biodiversity hotspots due to associated land-use changes. We estimated past extinctions from historical land-use changes (1500-2005) based on the global gridded land-use data used for the Intergovernmental Panel on Climate Change Fifth Assessment Report and habitat extent and species data for each hotspot. We then estimated potential extinctions due to future land-use changes under alternative climate-change scenarios (2005-2100). Future land-use changes are projected to reduce natural vegetative cover by 26-58% in the hotspots. As a consequence, the number of additional species extinctions, relative to those already incurred between 1500 and 2005, due to land-use change by 2100 across all hotspots ranged from about 220 to 21000 (0.2% to 16%), depending on the climate-change mitigation scenario and biological factors such as the slope of the species-area relationship and the contribution of wood harvest to extinctions. These estimates of potential future extinctions were driven by land-use change only and likely would have been higher if the direct effects of climate change had been considered. Future extinctions could potentially be reduced by incorporating habitat preservation into scenario development to reduce projected future land-use changes in hotspots or by

  7. Comparison of future energy scenarios for Denmark

    DEFF Research Database (Denmark)

    Kwon, Pil Seok; Østergaard, Poul Alberg

    2012-01-01

    Scenario-making is becoming an important tool in energy policy making and energy systems analyses. This article probes into the making of scenarios for Denmark by presenting a comparison of three future scenarios which narrate 100% renewable energy system for Denmark in 2050; IDA 2050, Climate...... Commission 2050, and CEESA (Coherent Energy and Environmental System Analysis). Generally, although with minor differences, the scenarios suggest the same technological solutions for the future such as expansion of biomass usage and wind power capacity, integration of transport sector into the other energy...

  8. Potential distribution of pine wilt disease under future climate change scenarios.

    Directory of Open Access Journals (Sweden)

    Akiko Hirata

    Full Text Available Pine wilt disease (PWD constitutes a serious threat to pine forests. Since development depends on temperature and drought, there is a concern that future climate change could lead to the spread of PWD infections. We evaluated the risk of PWD in 21 susceptible Pinus species on a global scale. The MB index, which represents the sum of the difference between the mean monthly temperature and 15 when the mean monthly temperatures exceeds 15°C, was used to determine current and future regions vulnerable to PWD (MB ≥ 22. For future climate conditions, we compared the difference in PWD risks among four different representative concentration pathways (RCPs 2.6, 4.5, 6.0, and 8.5 and two time periods (2050s and 2070s. We also evaluated the impact of climate change on habitat suitability for each Pinus species using species distribution models. The findings were then integrated and the potential risk of PWD spread under climate change was discussed. Within the natural Pinus distribution area, southern parts of North America, Europe, and Asia were categorized as vulnerable regions (MB ≥ 22; 16% of the total Pinus distribution area. Representative provinces in which PWD has been reported at least once overlapped with the vulnerable regions. All RCP scenarios showed expansion of vulnerable regions in northern parts of Europe, Asia, and North America under future climate conditions. By the 2070s, under RCP 8.5, an estimated increase in the area of vulnerable regions to approximately 50% of the total Pinus distribution area was revealed. In addition, the habitat conditions of a large portion of the Pinus distribution areas in Europe and Asia were deemed unsuitable by the 2070s under RCP 8.5. Approximately 40% of these regions overlapped with regions deemed vulnerable to PWD, suggesting that Pinus forests in these areas are at risk of serious damage due to habitat shifts and spread of PWD.

  9. Simulating post-wildfire forest trajectories under alternative climate and management scenarios.

    Science.gov (United States)

    Tarancón, Alicia Azpeleta; Fulé, Peter Z; Shive, Kristen L; Sieg, Carolyn H; Meador, Andrew Sánchez; Strom, Barbara

    Post-fire predictions of forest recovery under future climate change and management actions are necessary for forest managers to make decisions about treatments. We applied the Climate-Forest Vegetation Simulator (Climate-FVS), a new version of a widely used forest management model, to compare alternative climate and management scenarios in a severely burned multispecies forest of Arizona, USA. The incorporation of seven combinations of General Circulation Models (GCM) and emissions scenarios altered long-term (100 years) predictions of future forest condition compared to a No Climate Change (NCC) scenario, which forecast a gradual increase to high levels of forest density and carbon stock. In contrast, emissions scenarios that included continued high greenhouse gas releases led to near-complete deforestation by 2111. GCM-emissions scenario combinations that were less severe reduced forest structure and carbon stock relative to NCC. Fuel reduction treatments that had been applied prior to the severe wildfire did have persistent effects, especially under NCC, but were overwhelmed by increasingly severe climate change. We tested six management strategies aimed at sustaining future forests: prescribed burning at 5, 10, or 20-year intervals, thinning 40% or 60% of stand basal area, and no treatment. Severe climate change led to deforestation under all management regimes, but important differences emerged under the moderate scenarios: treatments that included regular prescribed burning fostered low density, wildfire-resistant forests composed of the naturally dominant species, ponderosa pine. Non-fire treatments under moderate climate change were forecast to become dense and susceptible to severe wildfire, with a shift to dominance by sprouting species. Current U.S. forest management requires modeling of future scenarios but does not mandate consideration of climate change effects. However, this study showed substantial differences in model outputs depending on climate

  10. Impact of Spatial Scales on the Intercomparison of Climate Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Wei; Steptoe, Michael; Chang, Zheng; Link, Robert; Clarke, Leon; Maciejewski, Ross

    2017-01-01

    Scenario analysis has been widely applied in climate science to understand the impact of climate change on the future human environment, but intercomparison and similarity analysis of different climate scenarios based on multiple simulation runs remain challenging. Although spatial heterogeneity plays a key role in modeling climate and human systems, little research has been performed to understand the impact of spatial variations and scales on similarity analysis of climate scenarios. To address this issue, the authors developed a geovisual analytics framework that lets users perform similarity analysis of climate scenarios from the Global Change Assessment Model (GCAM) using a hierarchical clustering approach.

  11. Simulating Hydrologic Changes with Climate Change Scenarios in the Haihe River Basin

    Institute of Scientific and Technical Information of China (English)

    YUAN Fei; XIE Zheng-Hui; LIU Qian; XIA Jun

    2005-01-01

    Climate change scenarios, predicted using the regional climate modeling system of PRECIS (providing regional climates for impacts studies), were used to derive three-layer variable infiltration capacity (VIC-3L) land surface model for the simulation of hydrologic processes at a spatial resolution of 0.25°× 0.25° in the Haihe River Basin. Three climate scenaxios were considered in this study: recent climate (1961-1990), future climate A2 (1991-2100) and future climate B2 (1991-2100) with A2 and B2 being two storylines of future emissions developed with the Intergovernmental Panel on Climate Change (IPCC) special report on emissions scenarios. Overall, under future climate scenarios A2 and B2, the Haihe River Basin would experience warmer climate with increased precipitation, evaporation and runoff production as compared with recent climate, but would be still likely prone to water shortages in the period of 2031-2070. In addition,under future climate A2 and B2, an increase in runoff during the wet season was noticed, indicating a future rise in the flood occurrence possibility in the Haihe River Basin.

  12. Linking regional stakeholder scenarios and shared socioeconomic pathways: Quantified West African food and climate futures in a global context.

    Science.gov (United States)

    Palazzo, Amanda; Vervoort, Joost M; Mason-D'Croz, Daniel; Rutting, Lucas; Havlík, Petr; Islam, Shahnila; Bayala, Jules; Valin, Hugo; Kadi Kadi, Hamé Abdou; Thornton, Philip; Zougmore, Robert

    2017-07-01

    The climate change research community's shared socioeconomic pathways (SSPs) are a set of alternative global development scenarios focused on mitigation of and adaptation to climate change. To use these scenarios as a global context that is relevant for policy guidance at regional and national levels, they have to be connected to an exploration of drivers and challenges informed by regional expertise. In this paper, we present scenarios for West Africa developed by regional stakeholders and quantified using two global economic models, GLOBIOM and IMPACT, in interaction with stakeholder-generated narratives and scenario trends and SSP assumptions. We present this process as an example of linking comparable scenarios across levels to increase coherence with global contexts, while presenting insights about the future of agriculture and food security under a range of future drivers including climate change. In these scenarios, strong economic development increases food security and agricultural development. The latter increases crop and livestock productivity leading to an expansion of agricultural area within the region while reducing the land expansion burden elsewhere. In the context of a global economy, West Africa remains a large consumer and producer of a selection of commodities. However, the growth in population coupled with rising incomes leads to increases in the region's imports. For West Africa, climate change is projected to have negative effects on both crop yields and grassland productivity, and a lack of investment may exacerbate these effects. Linking multi-stakeholder regional scenarios to the global SSPs ensures scenarios that are regionally appropriate and useful for policy development as evidenced in the case study, while allowing for a critical link to global contexts.

  13. Transient scenarios for robust climate change adaptation illustrated for water manegement in the Netherlands

    NARCIS (Netherlands)

    Haasnoot, Marjolijn; Schellekens, J.; Beersma, J.; Middelkoop, H.; Kwadijk, Jacob Cornelis Jan

    2015-01-01

    Climate scenarios are used to explore impacts of possible future climates and to assess the robustness of adaptation actions across a range of futures. Time-dependent climate scenarios are commonly used in mitigation studies. However, despite the dynamic nature of adaptation, most scenarios for

  14. Possible future climates. The IPCC-scenarios simulated by dialogue

    Energy Technology Data Exchange (ETDEWEB)

    Hoekstra, J [KEMA-KES, Arnheim (Netherlands)

    1996-12-31

    Global warming is an environmental problem that increasingly attracts the attention of governments, (inter)national organizations and the general public. Policymakers that want to attack this problem need to understand the causes and effects of all related aspects. For this reason integrated assessment tools are developed that allow policymakers to analyze and evaluate climate change scenarios. Dialogue is such an integrated assessment tool. This article presents the results of Dialogue when the socio-economic parameters of the six well-known IPCC-scenarios, IS92a-f (IPCC 1992) are taken as a point of departure. Using as input, variables as population growth and the energy intensity of an economy, Dialogue goes through a chain of processes and finally determines climatic changes in temperature and precipitation

  15. Possible future climates. The IPCC-scenarios simulated by dialogue

    Energy Technology Data Exchange (ETDEWEB)

    Hoekstra, J. [KEMA-KES, Arnheim (Netherlands)

    1995-12-31

    Global warming is an environmental problem that increasingly attracts the attention of governments, (inter)national organizations and the general public. Policymakers that want to attack this problem need to understand the causes and effects of all related aspects. For this reason integrated assessment tools are developed that allow policymakers to analyze and evaluate climate change scenarios. Dialogue is such an integrated assessment tool. This article presents the results of Dialogue when the socio-economic parameters of the six well-known IPCC-scenarios, IS92a-f (IPCC 1992) are taken as a point of departure. Using as input, variables as population growth and the energy intensity of an economy, Dialogue goes through a chain of processes and finally determines climatic changes in temperature and precipitation

  16. Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios

    Science.gov (United States)

    Caminade, Cyril; Medlock, Jolyon M.; Ducheyne, Els; McIntyre, K. Marie; Leach, Steve; Baylis, Matthew; Morse, Andrew P.

    2012-01-01

    The Asian tiger mosquito (Aedes albopictus) is an invasive species that has the potential to transmit infectious diseases such as dengue and chikungunya fever. Using high-resolution observations and regional climate model scenarios for the future, we investigated the suitability of Europe for A. albopictus using both recent climate and future climate conditions. The results show that southern France, northern Italy, the northern coast of Spain, the eastern coast of the Adriatic Sea and western Turkey were climatically suitable areas for the establishment of the mosquito during the 1960–1980s. Over the last two decades, climate conditions have become more suitable for the mosquito over central northwestern Europe (Benelux, western Germany) and the Balkans, while they have become less suitable over southern Spain. Similar trends are likely in the future, with an increased risk simulated over northern Europe and slightly decreased risk over southern Europe. These distribution shifts are related to wetter and warmer conditions favouring the overwintering of A. albopictus in the north, and drier and warmer summers that might limit its southward expansion. PMID:22535696

  17. Socio-economic Scenarios in Climate Assessments (IC11). Synthesis

    International Nuclear Information System (INIS)

    Van Drunen, M.; Berkhout, F.

    2011-09-01

    It is widely recognised that projections of social and economic futures are circumscribed by irreducible uncertainties and ignorance. A common analytical response is to develop scenarios that map a range of alternative possible outcomes. The application of scenarios in climate assessments in the Netherlands was investigated in this report, focusing on the use of the socio-economic scenarios 'Welvaart en Leefomgeving' (WLO - The Future of the Dutch Built Environment). This research was carried out within the Climate Changes Spatial Planning (CcSP) programme. WLO scenarios have been applied in climate assessment studies. WLO generates figures and data that are useful. Nevertheless we encountered several CcSP projects that did not apply any socio-economic scenarios, whilst this seemed necessary based on their objectives. In general, climate assessments make little sense if socio-economic developments are not taken into account. Interestingly, some of the studies that did apply socio-economic scenarios, picked only one or two of the scenarios generated by WLO. From a theoretical point of view this selective 'shopping' may lead to a tunnel vision, because it is impossible to estimate which scenario is more probable than the others. At the other hand it is often impractical to explore all four scenarios. The time horizon of WLO was in several cases too short for climate assessments. As it is probable that the structure of society has changed significantly by 2040, it is difficult to quantitatively support the storylines as was done in WLO, because many model assumptions are not correct anymore. Possibly it is better to take a backcasting approach for the second half of the century for the purpose of the CcSP programme. The two case studies described in this report provide examples of good practice that are likely to be useful in future projects that deal with scenarios. In addition, this study produced an interactive website (www.climatescenarios.nl) that provides key

  18. Assessing cost-effectiveness of bioretention on stormwater in response to climate change and urbanization for future scenarios

    Science.gov (United States)

    Wang, Mo; Zhang, Dongqing; Adhityan, Appan; Ng, Wun Jern; Dong, Jianwen; Tan, Soon Keat

    2016-12-01

    Bioretention, as a popular low impact development practice, has become more important to mitigate adverse impacts on urban stormwater. However, there is very limited information regarding ensuring the effectiveness of bioretention response to uncertain future challenges, especially when taking into consideration climate change and urbanization. The main objective of this paper is to identify the cost-effectiveness of bioretention by assessing the hydrology performance under future scenarios modeling. First, the hydrology model was used to obtain peak runoff and TSS loads of bioretention with variable scales under different scenarios, i.e., different Representative Concentration Pathways (RCPs) and Shared Socio-economic reference Pathways (SSPs) for 2-year and 10-year design storms in Singapore. Then, life cycle costing (LCC) and life cycle assessment (LCA) were estimated for bioretention, and the cost-effectiveness was identified under different scenarios. Our finding showed that there were different degree of responses to 2-year and 10-year design storms but the general patterns and insights deduced were similar. The performance of bioretenion was more sensitive to urbanization than that for climate change in the urban catchment. In addition, it was noted that the methodology used in this study was generic and the findings could be useful as reference for other LID practices in response to climate change and urbanization.

  19. Possible impacts of climate change on freezing rain in south-central Canada using downscaled future climate scenarios

    Directory of Open Access Journals (Sweden)

    C. S. Cheng

    2007-01-01

    Full Text Available Freezing rain is a major atmospheric hazard in mid-latitude nations of the globe. Among all Canadian hydrometeorological hazards, freezing rain is associated with the highest damage costs per event. Using synoptic weather typing to identify the occurrence of freezing rain events, this study estimates changes in future freezing rain events under future climate scenarios for south-central Canada. Synoptic weather typing consists of principal components analysis, an average linkage clustering procedure (i.e., a hierarchical agglomerative cluster method, and discriminant function analysis (a nonhierarchical method. Meteorological data used in the analysis included hourly surface observations from 15 selected weather stations and six atmospheric levels of six-hourly National Centers for Environmental Prediction (NCEP upper-air reanalysis weather variables for the winter months (November–April of 1958/59–2000/01. A statistical downscaling method was used to downscale four general circulation model (GCM scenarios to the selected weather stations. Using downscaled scenarios, discriminant function analysis was used to project the occurrence of future weather types. The within-type frequency of future freezing rain events is assumed to be directly proportional to the change in frequency of future freezing rain-related weather types The results showed that with warming temperatures in a future climate, percentage increases in the occurrence of freezing rain events in the north of the study area are likely to be greater than those in the south. By the 2050s, freezing rain events for the three colder months (December–February could increase by about 85% (95% confidence interval – CI: ±13%, 60% (95% CI: ±9%, and 40% (95% CI: ±6% in northern Ontario, eastern Ontario (including Montreal, Quebec, and southern Ontario, respectively. The increase by the 2080s could be even greater: about 135% (95% CI: ±20%, 95% (95% CI: ±13%, and 45% (95% CI: ±9

  20. Assessment of the Future Health Burden Attributable to Undernutrition under the Latest Scenario Framework for Climate Change Research

    Science.gov (United States)

    Ishida, Hiroyuki; Kobayashi, Shota; Yoshikawa, Sayaka; Kanae, Shinjiro; Hasegawa, Tomoko; Fujimori, Shinichiro; Shin, Yonghee; Takahashi, Kiyoshi; Masui, Toshihiko; Tanaka, Akemi; Honda, Yasushi

    2014-05-01

    There are growing concerns that future food security will be negatively affected by various factors, such as changes in socioeconomic and climate conditions. The health burden attributable to childhood undernutrition is among the most severe problems related to food crisis in the world. This study assessed the health burden attributable to childhood underweight through 2050 focusing on disability-adjusted life years (DALYs), by considering the latest scenarios for climate change studies (Representative Concentration Pathways (RCPs) and Shared Socioeconomic Pathways (SSPs)) and conducting sensitivity analysis. We used three SSPs (SSP1, SSP2 and SSP3) as future population and gross domestic products (GDP), three RCPs (RCP2.6, RCP4.5 and RCP8.5) for a greenhouse gas emissions constraint, and 12 Global Circulation Models (12 GCMs) to estimate climate conditions. A regression model for estimating DALYs attributable to childhood underweight (DAtU) was developed using the relationship between DAtU and childhood stunting. A logarithmic relationship was proposed for the regression model. We combined a global computable general equilibrium model, a crop model (M-GAEZ), and two regression models to assess the future health burden. We found that i) world total DAtU decreases from 2005 by 23 ~ 60% in 2030 depending on the socioeconomic scenarios. DAtU decreases further by 2050 for SSP1 and SSP2 scenario, whereas it slightly increases for SSP3. Per capita DAtU also decreases in all regions under either scenario in 2050, but the decreases vary significantly by regions and scenarios. ii) the impact of climate change is relatively small in the framework of this study but, on the other hand, socioeconomic conditions have a great impact on the future health burden. The impact of changes in socioeconomic conditions on the health burden is greater in the regions where current health burden is high. iii) parameter uncertainty of the regression models is the second largest factor on

  1. Comparison of Water Flows in Four European Lagoon Catchments under a Set of Future Climate Scenarios

    Directory of Open Access Journals (Sweden)

    Cornelia Hesse

    2015-02-01

    Full Text Available Climate change is supposed to remarkably affect the water resources of coastal lagoons as they are highly vulnerable to changes occurring at their catchment and/or ocean or sea boundaries. Probable impacts of projected climate changes on catchment hydrology and freshwater input were assessed using the eco-hydrological model SWIM (Soil and Water Integrated Model for the drainage areas of four European lagoons: Ria de Aveiro (Portugal, Mar Menor (Spain, Tyligulskyi Liman (Ukraine and Vistula Lagoon (Poland/Russia under a set of 15 climate scenarios covering the time period until the year 2100. Climate change signals for all regions show continuously increasing trends in temperature, but various trends in precipitation. Precipitation is projected to decrease in two catchments on the Iberian Peninsula and increase in the Baltic region catchment, and does not show a clear trend in the catchment located near the Black Sea. The average projected changes in freshwater inputs reflect these changes in climate conditions, but often show variability between the scenarios, in future periods, and within the catchments. According to the individual degrees of water management influences in the four drainage basins, the climate sensitivity of river inflows is differently pronounced in each.

  2. Biodiversity scenarios neglect future land-use changes.

    Science.gov (United States)

    Titeux, Nicolas; Henle, Klaus; Mihoub, Jean-Baptiste; Regos, Adrián; Geijzendorffer, Ilse R; Cramer, Wolfgang; Verburg, Peter H; Brotons, Lluís

    2016-07-01

    Efficient management of biodiversity requires a forward-looking approach based on scenarios that explore biodiversity changes under future environmental conditions. A number of ecological models have been proposed over the last decades to develop these biodiversity scenarios. Novel modelling approaches with strong theoretical foundation now offer the possibility to integrate key ecological and evolutionary processes that shape species distribution and community structure. Although biodiversity is affected by multiple threats, most studies addressing the effects of future environmental changes on biodiversity focus on a single threat only. We examined the studies published during the last 25 years that developed scenarios to predict future biodiversity changes based on climate, land-use and land-cover change projections. We found that biodiversity scenarios mostly focus on the future impacts of climate change and largely neglect changes in land use and land cover. The emphasis on climate change impacts has increased over time and has now reached a maximum. Yet, the direct destruction and degradation of habitats through land-use and land-cover changes are among the most significant and immediate threats to biodiversity. We argue that the current state of integration between ecological and land system sciences is leading to biased estimation of actual risks and therefore constrains the implementation of forward-looking policy responses to biodiversity decline. We suggest research directions at the crossroads between ecological and environmental sciences to face the challenge of developing interoperable and plausible projections of future environmental changes and to anticipate the full range of their potential impacts on biodiversity. An intergovernmental platform is needed to stimulate such collaborative research efforts and to emphasize the societal and political relevance of taking up this challenge. © 2016 John Wiley & Sons Ltd.

  3. Future Changes in Surface Runoff over Korea Projected by a Regional Climate Model under A1B Scenario

    Directory of Open Access Journals (Sweden)

    Ji-Woo Lee

    2014-01-01

    Full Text Available This study assesses future change of surface runoff due to climate change over Korea using a regional climate model (RCM, namely, the Global/Regional Integrated Model System (GRIMs, Regional Model Program (RMP. The RMP is forced by future climate scenario, namely, A1B of Intergovernmental Panel on Climate Change (IPCC Fourth Assessment Report (AR4. The RMP satisfactorily reproduces the observed seasonal mean and variation of surface runoff for the current climate simulation. The distribution of monsoonal precipitation-related runoff is adequately captured by the RMP. In the future (2040–2070 simulation, it is shown that the increasing trend of temperature has significant impacts on the intra-annual runoff variation. The variability of runoff is increased in summer; moreover, the strengthened possibility of extreme occurrence is detected in the future climate. This study indicates that future climate projection, including surface runoff and its variability over Korea, can be adequately addressed on the RMP testbed. Furthermore, this study reflects that global warming affects local hydrological cycle by changing major water budget components. This study adduces that the importance of runoff should not be overlooked in regional climate studies, and more elaborate presentation of fresh-water cycle is needed to close hydrological circulation in RCMs.

  4. Global energy scenarios, climate change and sustainable development

    International Nuclear Information System (INIS)

    Nakicenovic, Nebojsa

    2003-01-01

    Energy scenarios provide a framework for exploring future energy perspectives, including various combinations of technology options and their implications. Many scenarios in the literature illustrate how energy system developments may affect global change. Examples are the new emissions scenarios by the Intergovernmental Panel on Climate Change (IPCC) and the energy scenarios by the World Energy Assessment (WEA). Some of these scenarios describe energy futures that are compatible with sustainable development goals; such as improved energy efficiencies and the adoption of advanced energy supply technologies. Sustainable development scenarios are also characterized by low environmental impacts (at local, regional and global scales) and equitable allocation of resources and wealth. They can help explore different transitions toward sustainable development paths and alternative energy perspectives in general. The considerable differences in expected total energy requirements among the scenarios reflect the varying approaches used to address the need for energy services in the future and demonstrate effects of different policy frameworks, changes in human behavior and investments in the future, as well as alternative unfolding of the main scenario driving forces such as demographic transitions, economic development and technological change. Increases in research, development and deployment efforts for new energy technologies are a prerequisite for achieving further social and economic development in the world. Significant technological advances will be required, as well as incremental improvements in conventional energy technologies. In general, significant policy and behavioral changes will be needed during the next few decades to achieve more sustainable development paths and mitigate climate change toward the end of the century. (au)

  5. Comparison of future energy scenarios for Denmark: IDA 2050, CEESA (Coherent Energy and Environmental System Analysis), and Climate Commission 2050

    International Nuclear Information System (INIS)

    Kwon, Pil Seok; Østergaard, Poul Alberg

    2012-01-01

    Scenario-making is becoming an important tool in energy policy making and energy systems analyses. This article probes into the making of scenarios for Denmark by presenting a comparison of three future scenarios which narrate 100% renewable energy system for Denmark in 2050; IDA 2050, Climate Commission 2050, and CEESA (Coherent Energy and Environmental System Analysis). Generally, although with minor differences, the scenarios suggest the same technological solutions for the future such as expansion of biomass usage and wind power capacity, integration of transport sector into the other energy sectors. The methodologies used in two academic scenarios, IDA 2050 and CEESA, are compared. The main differences in the methodologies of IDA 2050 and CEESA are found in the estimation of future biomass potential, transport demand assessment, and a trial to examine future power grid in an electrical engineering perspective. The above-mentioned methodologies are compared in an evolutionary perspective to determine if the methodologies reflect the complex reality well. The results of the scenarios are also assessed within the framework of “radical technological change” in order to show which future scenario assumes more radical change within five dimensions of technology; technique, knowledge, organization, product, and profit. -- Highlights: ► Three future scenarios for Danish future in 2050 are compared. ► All of these scenarios suggest the same solutions for the future with minor differences. ► There are differences in methodologies for IDA 2050 and CEESA such as biomass, transport, and power grid. ► The contents of scenarios are assessed which scenario assume more radical technological change in the future.

  6. Scenarios reveal pathways to sustain future ecosystem services in an agricultural landscape.

    Science.gov (United States)

    Qiu, Jiangxiao; Carpenter, Stephen R; Booth, Eric G; Motew, Melissa; Zipper, Samuel C; Kucharik, Christopher J; Chen, Xi; Loheide, Steven P; Seifert, Jenny; Turner, Monica G

    2018-01-01

    Sustaining food production, water quality, soil retention, flood, and climate regulation in agricultural landscapes is a pressing global challenge given accelerating environmental changes. Scenarios are stories about plausible futures, and scenarios can be integrated with biophysical simulation models to explore quantitatively how the future might unfold. However, few studies have incorporated a wide range of drivers (e.g., climate, land-use, management, population, human diet) in spatially explicit, process-based models to investigate spatial-temporal dynamics and relationships of a portfolio of ecosystem services. Here, we simulated nine ecosystem services (three provisioning and six regulating services) at 220 × 220 m from 2010 to 2070 under four contrasting scenarios in the 1,345-km 2 Yahara Watershed (Wisconsin, USA) using Agro-IBIS, a dynamic model of terrestrial ecosystem processes, biogeochemistry, water, and energy balance. We asked (1) How does ecosystem service supply vary among alternative future scenarios? (2) Where on the landscape is the provision of ecosystem services most susceptible to future social-ecological changes? (3) Among alternative future scenarios, are relationships (i.e., trade-offs, synergies) among food production, water, and biogeochemical services consistent over time? Our results showed that food production varied substantially with future land-use choices and management, and its trade-offs with water quality and soil retention persisted under most scenarios. However, pathways to mitigate or even reverse such trade-offs through technological advances and sustainable agricultural practices were apparent. Consistent relationships among regulating services were identified across scenarios (e.g., trade-offs of freshwater supply vs. flood and climate regulation, and synergies among water quality, soil retention, and climate regulation), suggesting opportunities and challenges to sustaining these services. In particular, proactive

  7. Effects of adjusting cropping systems on utilization efficiency of climatic resources in Northeast China under future climate scenarios

    Science.gov (United States)

    Guo, Jianping; Zhao, Junfang; Xu, Yanhong; Chu, Zheng; Mu, Jia; Zhao, Qian

    Quantitatively evaluating the effects of adjusting cropping systems on the utilization efficiency of climatic resources under climate change is an important task for assessing food security in China. To understand these effects, we used daily climate variables obtained from the regional climate model RegCM3 from 1981 to 2100 under the A1B scenario and crop observations from 53 agro-meteorological experimental stations from 1981 to 2010 in Northeast China. Three one-grade zones of cropping systems were divided by heat, water, topography and crop-type, including the semi-arid areas of the northeast and northwest (III), the one crop area of warm-cool plants in semi-humid plain or hilly regions of the northeast (IV), and the two crop area in irrigated farmland in the Huanghuaihai Plain (VI). An agro-ecological zone model was used to calculate climatic potential productivities. The effects of adjusting cropping systems on climate resource utilization in Northeast China under the A1B scenario were assessed. The results indicated that from 1981 to 2100 in the III, IV and VI areas, the planting boundaries of different cropping systems in Northeast China obviously shifted toward the north and the east based on comprehensively considering the heat and precipitation resources. However, due to high temperature stress, the climatic potential productivity of spring maize was reduced in the future. Therefore, adjusting the cropping system is an effective way to improve the climatic potential productivity and climate resource utilization. Replacing the one crop in one year model (spring maize) by the two crops in one year model (winter wheat and summer maize) significantly increased the total climatic potential productivity and average utilization efficiencies. During the periods of 2011-2040, 2041-2070 and 2071-2100, the average total climatic potential productivities of winter wheat and summer maize increased by 9.36%, 11.88% and 12.13% compared to that of spring maize

  8. Ozone concentrations and damage for realistic future European climate and air quality scenarios

    Science.gov (United States)

    Hendriks, Carlijn; Forsell, Nicklas; Kiesewetter, Gregor; Schaap, Martijn; Schöpp, Wolfgang

    2016-11-01

    Ground level ozone poses a significant threat to human health from air pollution in the European Union. While anthropogenic emissions of precursor substances (NOx, NMVOC, CH4) are regulated by EU air quality legislation and will decrease further in the future, the emissions of biogenic NMVOC (mainly isoprene) may increase significantly in the coming decades if short-rotation coppice plantations are expanded strongly to meet the increased biofuel demand resulting from the EU decarbonisation targets. This study investigates the competing effects of anticipated trends in land use change, anthropogenic ozone precursor emissions and climate change on European ground level ozone concentrations and related health and environmental impacts until 2050. The work is based on a consistent set of energy consumption scenarios that underlie current EU climate and air quality policy proposals: a current legislation case, and an ambitious decarbonisation case. The Greenhouse Gas-Air Pollution Interactions and Synergies (GAINS) integrated assessment model was used to calculate air pollutant emissions for these scenarios, while land use change because of bioenergy demand was calculated by the Global Biosphere Model (GLOBIOM). These datasets were fed into the chemistry transport model LOTOS-EUROS to calculate the impact on ground level ozone concentrations. Health damage because of high ground level ozone concentrations is projected to decline significantly towards 2030 and 2050 under current climate conditions for both energy scenarios. Damage to plants is also expected to decrease but to a smaller extent. The projected change in anthropogenic ozone precursor emissions is found to have a larger impact on ozone damage than land use change. The increasing effect of a warming climate (+2-5 °C across Europe in summer) on ozone concentrations and associated health damage, however, might be higher than the reduction achieved by cutting back European ozone precursor emissions. Global

  9. Scenarios for future biodiversity loss due to multiple drivers reveal conflict between mitigating climate change and preserving biodiversity

    International Nuclear Information System (INIS)

    Powell, Thomas W R; Lenton, Timothy M

    2013-01-01

    We assess the potential for future biodiversity loss due to three interacting factors: energy withdrawal from ecosystems due to biomass harvest, habitat loss due to land-use change, and climate change. We develop four scenarios to 2050 with different combinations of high or low agricultural efficiency and high or low meat diets, and use species–energy and species–area relationships to estimate their effects on biodiversity. In our scenarios, natural ecosystems are protected except when additional land is necessary to fulfil the increasing dietary demands of the global population. Biomass energy with carbon capture and storage (BECCS) is used as a means of carbon dioxide removal (CDR) from the atmosphere (and offsetting fossil fuel emissions). BECCS is based on waste biomass, with the addition of bio-energy crops only when already managed land is no longer needed for food production. Forecast biodiversity loss from natural biomes increases by more than a factor of five in going from high to low agricultural efficiency scenarios, due to destruction of productive habitats by the expansion of pasture. Biodiversity loss from energy withdrawal on managed land varies by a factor of two across the scenarios. Biodiversity loss due to climate change varies only modestly across the scenarios. Climate change is lowest in the ‘low meat high efficiency’ scenario, in which by 2050 around 660 million hectares of pasture are converted to biomass plantation that is used for BECCS. However, the resulting withdrawal of energy from managed ecosystems has a large negative impact on biodiversity. Although the effects of energy withdrawal and climate change on biodiversity cannot be directly compared, this suggests that using bio-energy to tackle climate change in order to limit biodiversity loss could instead have the opposite effect. (letter)

  10. Tailored scenarios for streamflow climate change impacts based on the perturbation of precipitation and evapotranspiration

    Science.gov (United States)

    Ntegeka, Victor; Willems, Patrick; Baguis, Pierre; Roulin, Emmanuel

    2015-04-01

    It is advisable to account for a wide range of uncertainty by including the maximum possible number of climate models and scenarios for future impacts. As this is not always feasible, impact assessments are inevitably performed with a limited set of scenarios. The development of tailored scenarios is a challenge that needs more attention as the number of available climate change simulations grows. Whether these scenarios are representative enough for climate change impacts is a question that needs addressing. This study presents a methodology of constructing tailored scenarios for assessing runoff flows including extreme conditions (peak flows) from an ensemble of future climate change signals of precipitation and potential evapotranspiration (ETo) derived from the climate model simulations. The aim of the tailoring process is to formulate scenarios that can optimally represent the uncertainty spectrum of climate scenarios. These tailored scenarios have the advantage of being few in number as well as having a clear description of the seasonal variation of the climate signals, hence allowing easy interpretation of the implications of future changes. The tailoring process requires an analysis of the hydrological impacts from the likely future change signals from all available climate model simulations in a simplified (computationally less expensive) impact model. Historical precipitation and ETo time series are perturbed with the climate change signals based on a quantile perturbation technique that accounts for the changes in extremes. For precipitation, the change in wetday frequency is taken into account using a markov-chain approach. Resulting hydrological impacts from the perturbed time series are then subdivided into high, mean and low hydrological impacts using a quantile change analysis. From this classification, the corresponding precipitation and ETo change factors are back-tracked on a seasonal basis to determine precipitation-ETo covariation. The

  11. Construction of climate change scenarios from transient climate change experiments for the IPCC impacts assessment

    International Nuclear Information System (INIS)

    Viner, D.; Hulme, M.; Raper, S.C.B.; Jones, P.D.

    1994-01-01

    This paper outlines the different methods which may be used for the construction of regional climate change scenarios. The main focus of the paper is the construction of global climate change scenarios from climate change experiments carried out using General Circulation Models (GCMS) An introduction to some GCM climate change experiments highlights the difference between model types and experiments (e.g., equilibrium or transient). The latest generation of climate change experiments has been performed using fully coupled ocean-atmosphere GCMS. These allow transient simulations of climate change to be performed with respect to a given greenhouse gas forcing scenario. There are, however, a number of problems with these simulations which pose difficulties for the construction of climate change scenarios for use in climate change impacts assessment. The characteristics of the transient climate change experiments which pose difficulties for the construction of climate change scenarios are discussed. Three examples of these problems are: different climate change experiments use different greenhouse gas concentration scenarios; the 'cold-start' problem makes it difficult to link future projections of climate change to a given calendar year; a drift of the climate is noticeable in the control simulations. In order to construct climate change scenarios for impacts assessment a method has therefore to be employed which addresses these problems. At present the climate modeling and climate change impacts communities are somewhat polarized in their approach to spatial scales. Current GCMs model the climate at resolutions larger than 2.5 x 3.75 degree, while the majority of impacts assessment studies are undertaken at scales below 50km (or 0.5 degree). This paper concludes by addressing the problems in bringing together these two different modeling perspectives by presenting a number of regional climate change scenarios. 35 refs., 8 figs., 2 tabs

  12. Energy use and overheating risk of Swedish multi-storey residential buildings under different climate scenarios

    International Nuclear Information System (INIS)

    Dodoo, Ambrose; Gustavsson, Leif

    2016-01-01

    In this study, the extent to which different climate scenarios influence overheating risk, energy use and peak loads for space conditioning of district heated multi-storey buildings in Sweden are explored. Furthermore, the effectiveness of different overheating control measures and the implications of different electricity supply options for space cooling and ventilation are investigated. The analysis is based on buildings with different architectural and energy efficiency configurations including a prefab concrete-frame, a massive timber-frame and a light timber-frame building. Thermal performance of the buildings under low and high Representative Concentration Pathway climate scenarios for 2050–2059 and 2090–2099 are analysed and compared to that under historical climate of 1961–1990 and recent climate of 1996–2005. The study is based on a bottom-up methodology and includes detailed hour-by-hour energy balance and systems analyses. The results show significant changes in the buildings’ thermal performance under the future climate scenarios, relative to the historical and recent climates. Heating demand decreased significantly while cooling demand and overheating risk increased considerably with the future climate scenarios, for all buildings. In contrast to the cooling demand, the relative changes in heating demand of the buildings under the future climate scenarios are somewhat similar. The changes in the space conditioning demands and overheating risk vary for the buildings. Overheating risk was found to be slightly higher for the massive-frame building and slightly lower for the light-frame building. - Highlights: • We analysed thermal performance of buildings under different climate scenarios. • Our analysis is based on historical, recent and projected future climate datasets. • The buildings' thermal performance changed notably under future climate scenarios. • The extent of the changes is influenced by the buildings' energy efficiency

  13. Climate change scenarios and key climate indices in the Swiss Alpine region

    Science.gov (United States)

    Zubler, Elias; Croci-Maspoli, Mischa; Frei, Christoph; Liniger, Mark; Scherrer, Simon; Appenzeller, Christof

    2013-04-01

    For climate adaption and to support climate mitigation policy it is of outermost importance to demonstrate the consequences of climate change on a local level and in user oriented quantities. Here, a framework is presented to apply the Swiss national climate change scenarios CH2011 to climate indices with direct relevance to applications, such as tourism, transportation, agriculture and health. This framework provides results on a high spatial and temporal resolution and can also be applied in mountainous regions such as the Alps. Results are shown for some key indices, such as the number of summer days and tropical nights, growing season length, number of frost days, heating and cooling degree days, and the number of days with fresh snow. Particular focus is given to changes in the vertical distribution for the future periods 2020-2049, 2045-2074 and 2070-2099 relative to the reference period 1980-2009 for the A1B, A2 and RCP3PD scenario. The number of days with fresh snow is approximated using a combination of temperature and precipitation as proxies. Some findings for the latest scenario period are: (1) a doubling of the number of summer days by the end of the century under the business-as-usual scenario A2, (2) tropical nights appear above 1500 m asl, (3) the number of frost days may be reduced by more than 3 months at altitudes higher than 2500 m, (4) an overall reduction of heating degree days of about 30% by the end of the century, but on the other hand an increase in cooling degree days in warm seasons, and (5) the number of days with fresh snow tends to go towards zero at low altitudes. In winter, there is little change in snowfall above 2000 m asl (roughly -3 days) in all scenarios. The largest impact on snowfall is found along the Northern Alpine flank and the Jura (-10 days or roughly -50% in A1B for the winter season). It is also highlighted that the future projections for all indices strongly depend on the chosen scenario and on model uncertainty

  14. Future Scenarios as a Research Tool: Investigating Climate Change Impacts, Adaptation Options and Outcomes for the Great Barrier Reef, Australia.

    Science.gov (United States)

    Evans, Louisa S; Hicks, Christina C; Fidelman, Pedro; Tobin, Renae C; Perry, Allison L

    2013-01-01

    Climate change is a significant future driver of change in coastal social-ecological systems. Our knowledge of impacts, adaptation options, and possible outcomes for marine environments and coastal industries is expanding, but remains limited and uncertain. Alternative scenarios are a way to explore potential futures under a range of conditions. We developed four alternative future scenarios for the Great Barrier Reef and its fishing and tourism industries positing moderate and more extreme (2-3 °C above pre-industrial temperatures) warming for 2050 and contrasting 'limited' and 'ideal' ecological and social adaptation. We presented these scenarios to representatives of key stakeholder groups to assess the perceived viability of different social adaptation options to deliver desirable outcomes under varied contexts.

  15. Regional climate change scenarios

    International Nuclear Information System (INIS)

    Somot, S.

    2005-01-01

    Because studies of the regional impact of climate change need higher spatial resolution than that obtained in standard global climate change scenarios, developing regional scenarios from models is a crucial goal for the climate modelling community. The zoom capacity of ARPEGE-Climat, the Meteo-France climate model, allows use of scenarios with a horizontal resolution of about 50 km over France and the Mediterranean basin. An IPCC-A2 scenario for the end of the 21. century in France shows higher temperatures in each season and more winter and less summer precipitation than now. Tuning the modelled statistical distributions to observed temperature and precipitation allows us to study changes in the frequency of extreme events between today's climate and that at the end of century. The frequency of very hot days in summer will increase. In particular, the frequency of days with a maximum temperature above 35 deg C will be multiplied by a factor of 10, on average. In our scenario, the Toulouse area and Provence might see one quarter of their summer days with a maximum temperature above 35 deg C. (author)

  16. Arctic shipping emissions inventories and future scenarios

    Directory of Open Access Journals (Sweden)

    J. J. Corbett

    2010-10-01

    Full Text Available This paper presents 5 km×5 km Arctic emissions inventories of important greenhouse gases, black carbon and other pollutants under existing and future (2050 scenarios that account for growth of shipping in the region, potential diversion traffic through emerging routes, and possible emissions control measures. These high-resolution, geospatial emissions inventories for shipping can be used to evaluate Arctic climate sensitivity to black carbon (a short-lived climate forcing pollutant especially effective in accelerating the melting of ice and snow, aerosols, and gaseous emissions including carbon dioxide. We quantify ship emissions scenarios which are expected to increase as declining sea ice coverage due to climate change allows for increased shipping activity in the Arctic. A first-order calculation of global warming potential due to 2030 emissions in the high-growth scenario suggests that short-lived forcing of ~4.5 gigagrams of black carbon from Arctic shipping may increase global warming potential due to Arctic ships' CO2 emissions (~42 000 gigagrams by some 17% to 78%. The paper also presents maximum feasible reduction scenarios for black carbon in particular. These emissions reduction scenarios will enable scientists and policymakers to evaluate the efficacy and benefits of technological controls for black carbon, and other pollutants from ships.

  17. Current and future niche of North and Central American sand flies (Diptera: psychodidae in climate change scenarios.

    Directory of Open Access Journals (Sweden)

    David Moo-Llanes

    Full Text Available Ecological niche models are useful tools to infer potential spatial and temporal distributions in vector species and to measure epidemiological risk for infectious diseases such as the Leishmaniases. The ecological niche of 28 North and Central American sand fly species, including those with epidemiological relevance, can be used to analyze the vector's ecology and its association with transmission risk, and plan integrated regional vector surveillance and control programs. In this study, we model the environmental requirements of the principal North and Central American phlebotomine species and analyze three niche characteristics over future climate change scenarios: i potential change in niche breadth, ii direction and magnitude of niche centroid shifts, iii shifts in elevation range. Niche identity between confirmed or incriminated Leishmania vector sand flies in Mexico, and human cases were analyzed. Niche models were constructed using sand fly occurrence datapoints from Canada, USA, Mexico, Guatemala and Belize. Nine non-correlated bioclimatic and four topographic data layers were used as niche components using GARP in OpenModeller. Both B2 and A2 climate change scenarios were used with two general circulation models for each scenario (CSIRO and HadCM3, for 2020, 2050 and 2080. There was an increase in niche breadth to 2080 in both scenarios for all species with the exception of Lutzomyia vexator. The principal direction of niche centroid displacement was to the northwest (64%, while the elevation range decreased greatest for tropical, and least for broad-range species. Lutzomyia cruciata is the only epidemiologically important species with high niche identity with that of Leishmania spp. in Mexico. Continued landscape modification in future climate change will provide an increased opportunity for the geographic expansion of NCA sand flys' ENM and human exposure to vectors of Leishmaniases.

  18. Current and Future Niche of North and Central American Sand Flies (Diptera: Psychodidae) in Climate Change Scenarios

    Science.gov (United States)

    Moo-Llanes, David; Ibarra-Cerdeña, Carlos N.; Rebollar-Téllez, Eduardo A.; Ibáñez-Bernal, Sergio; González, Camila; Ramsey, Janine M.

    2013-01-01

    Ecological niche models are useful tools to infer potential spatial and temporal distributions in vector species and to measure epidemiological risk for infectious diseases such as the Leishmaniases. The ecological niche of 28 North and Central American sand fly species, including those with epidemiological relevance, can be used to analyze the vector's ecology and its association with transmission risk, and plan integrated regional vector surveillance and control programs. In this study, we model the environmental requirements of the principal North and Central American phlebotomine species and analyze three niche characteristics over future climate change scenarios: i) potential change in niche breadth, ii) direction and magnitude of niche centroid shifts, iii) shifts in elevation range. Niche identity between confirmed or incriminated Leishmania vector sand flies in Mexico, and human cases were analyzed. Niche models were constructed using sand fly occurrence datapoints from Canada, USA, Mexico, Guatemala and Belize. Nine non-correlated bioclimatic and four topographic data layers were used as niche components using GARP in OpenModeller. Both B2 and A2 climate change scenarios were used with two general circulation models for each scenario (CSIRO and HadCM3), for 2020, 2050 and 2080. There was an increase in niche breadth to 2080 in both scenarios for all species with the exception of Lutzomyia vexator. The principal direction of niche centroid displacement was to the northwest (64%), while the elevation range decreased greatest for tropical, and least for broad-range species. Lutzomyia cruciata is the only epidemiologically important species with high niche identity with that of Leishmania spp. in Mexico. Continued landscape modification in future climate change will provide an increased opportunity for the geographic expansion of NCA sand flys' ENM and human exposure to vectors of Leishmaniases. PMID:24069478

  19. Using high-resolution future climate scenarios to forecast Bromus tectorum invasion in Rocky Mountain National Park.

    Science.gov (United States)

    West, Amanda M; Kumar, Sunil; Wakie, Tewodros; Brown, Cynthia S; Stohlgren, Thomas J; Laituri, Melinda; Bromberg, Jim

    2015-01-01

    National Parks are hallmarks of ecosystem preservation in the United States. The introduction of alien invasive plant species threatens protection of these areas. Bromus tectorum L. (commonly called downy brome or cheatgrass), which is found in Rocky Mountain National Park (hereafter, the Park), Colorado, USA, has been implicated in early spring competition with native grasses, decreased soil nitrogen, altered nutrient and hydrologic regimes, and increased fire intensity. We estimated the potential distribution of B. tectorum in the Park based on occurrence records (n = 211), current and future climate, and distance to roads and trails. An ensemble of six future climate scenarios indicated the habitable area of B. tectorum may increase from approximately 5.5% currently to 20.4% of the Park by the year 2050. Using ordination methods we evaluated the climatic space occupied by B. tectorum in the Park and how this space may shift given future climate change. Modeling climate change at a small extent (1,076 km2) and at a fine spatial resolution (90 m) is a novel approach in species distribution modeling, and may provide inference for microclimates not captured in coarse-scale models. Maps from our models serve as high-resolution hypotheses that can be improved over time by land managers to set priorities for surveys and removal of invasive species such as B. tectorum.

  20. Using High-Resolution Future Climate Scenarios to Forecast Bromus tectorum Invasion in Rocky Mountain National Park

    Science.gov (United States)

    West, Amanda M.; Kumar, Sunil; Wakie, Tewodros; Brown, Cynthia S.; Stohlgren, Thomas J.; Laituri, Melinda; Bromberg, Jim

    2015-01-01

    National Parks are hallmarks of ecosystem preservation in the United States. The introduction of alien invasive plant species threatens protection of these areas. Bromus tectorum L. (commonly called downy brome or cheatgrass), which is found in Rocky Mountain National Park (hereafter, the Park), Colorado, USA, has been implicated in early spring competition with native grasses, decreased soil nitrogen, altered nutrient and hydrologic regimes, and increased fire intensity. We estimated the potential distribution of B. tectorum in the Park based on occurrence records (n = 211), current and future climate, and distance to roads and trails. An ensemble of six future climate scenarios indicated the habitable area of B. tectorum may increase from approximately 5.5% currently to 20.4% of the Park by the year 2050. Using ordination methods we evaluated the climatic space occupied by B. tectorum in the Park and how this space may shift given future climate change. Modeling climate change at a small extent (1,076 km2) and at a fine spatial resolution (90 m) is a novel approach in species distribution modeling, and may provide inference for microclimates not captured in coarse-scale models. Maps from our models serve as high-resolution hypotheses that can be improved over time by land managers to set priorities for surveys and removal of invasive species such as B. tectorum. PMID:25695255

  1. Using high-resolution future climate scenarios to forecast Bromus tectorum invasion in Rocky Mountain National Park.

    Directory of Open Access Journals (Sweden)

    Amanda M West

    Full Text Available National Parks are hallmarks of ecosystem preservation in the United States. The introduction of alien invasive plant species threatens protection of these areas. Bromus tectorum L. (commonly called downy brome or cheatgrass, which is found in Rocky Mountain National Park (hereafter, the Park, Colorado, USA, has been implicated in early spring competition with native grasses, decreased soil nitrogen, altered nutrient and hydrologic regimes, and increased fire intensity. We estimated the potential distribution of B. tectorum in the Park based on occurrence records (n = 211, current and future climate, and distance to roads and trails. An ensemble of six future climate scenarios indicated the habitable area of B. tectorum may increase from approximately 5.5% currently to 20.4% of the Park by the year 2050. Using ordination methods we evaluated the climatic space occupied by B. tectorum in the Park and how this space may shift given future climate change. Modeling climate change at a small extent (1,076 km2 and at a fine spatial resolution (90 m is a novel approach in species distribution modeling, and may provide inference for microclimates not captured in coarse-scale models. Maps from our models serve as high-resolution hypotheses that can be improved over time by land managers to set priorities for surveys and removal of invasive species such as B. tectorum.

  2. Modelling the Northward Expansion of Culicoides sonorensis (Diptera: Ceratopogonidae under Future Climate Scenarios.

    Directory of Open Access Journals (Sweden)

    Anna Zuliani

    Full Text Available Climate change is affecting the distribution of pathogens and their arthropod vectors worldwide, particularly at northern latitudes. The distribution of Culicoides sonorensis (Diptera: Ceratopogonidae plays a key role in affecting the emergence and spread of significant vector borne diseases such as Bluetongue (BT and Epizootic Hemorrhagic Disease (EHD at the border between USA and Canada. We used 50 presence points for C. sonorensis collected in Montana (USA and south-central Alberta (Canada between 2002 and 2012, together with monthly climatic and environmental predictors to develop a series of alternative maximum entropy distribution models. The best distribution model under current climatic conditions was selected through the Akaike Information Criterion, and included four predictors: Vapour Pressure Deficit of July, standard deviation of Elevation, Land Cover and mean Precipitation of May. This model was then projected into three climate change scenarios adopted by the IPCC in its 5th assessment report and defined as Representative Concentration Pathways (RCP 2.6, 4.5 and 8.5. Climate change data for each predictor and each RCP were calculated for two time points pooling decadal data around each one of them: 2030 (2021-2040 and 2050 (2041-2060. Our projections showed that the areas predicted to be at moderate-high probability of C. sonorensis occurrence would increase from the baseline scenario to 2030 and from 2030 to 2050 for each RCP. The projection also indicated that the current northern limit of C. sonorensis distribution is expected to move northwards to above 53°N. This may indicate an increased risk of Culicoides-borne diseases occurrence over the next decades, particularly at the USA-Canada border, as a result of changes which favor C. sonorensis presence when associated to other factors (i.e. host and pathogen factors. Recent observations of EHD outbreaks in northern Montana and southern Alberta supported our projections and

  3. Predicting Nitrate Transport under Future Climate Scenarios beneath the Nebraska Management Systems Evaluation Area (MSEA) site

    Science.gov (United States)

    Li, Y.; Akbariyeh, S.; Gomez Peña, C. A.; Bartlet-Hunt, S.

    2017-12-01

    Understanding the impacts of future climate change on soil hydrological processes and solute transport is crucial to develop appropriate strategies to minimize adverse impacts of agricultural activities on groundwater quality. The goal of this work is to evaluate the direct effects of climate change on the fate and transport of nitrate beneath a center-pivot irrigated corn field in Nebraska Management Systems Evaluation Area (MSEA) site. Future groundwater recharge rate and actual evapotranspiration rate were predicted based on an inverse modeling approach using climate data generated by Weather Research and Forecasting (WRF) model under the RCP 8.5 scenario, which was downscaled from global CCSM4 model to a resolution of 24 by 24 km2. A groundwater flow model was first calibrated based on historical groundwater table measurement and was then applied to predict future groundwater table in the period 2057-2060. Finally, predicted future groundwater recharge rate, actual evapotranspiration rate, and groundwater level, together with future precipitation data from WRF, were used in a three-dimensional (3D) model, which was validated based on rich historic data set collected from 1993-1996, to predict nitrate concentration in soil and groundwater from the year 2057 to 2060. Future groundwater recharge was found to be decreasing in the study area compared to average groundwater recharge data from the literature. Correspondingly, groundwater elevation was predicted to decrease (1 to 2 ft) over the five years of simulation. Predicted higher transpiration data from climate model resulted in lower infiltration of nitrate concentration in subsurface within the root zone.

  4. Impacts of Climate Change on Water Requirements of Dry Season Boro Rice: Recent Trends and Future Scenarios

    Science.gov (United States)

    Acharjee, T. K.; Ludwig, F.; Halsema, G. V.; Hellegers, P.; Supit, I.

    2017-12-01

    The North-West part of Bangladesh is vulnerable to the impacts of climate change, because of dry season water shortage and high water demand for rice cultivation. A study was carried out to understand the impacts of recent climate change (1980-2013) and future consequences (for 2050s and 2080s) on water requirements of Boro rice. The reference crop evapotranspiration (ETo), potential crop water requirement (∑ETC), effective rainfall (ER), potential irrigation requirement for crop evapotranspiration (∑ETC-ER) and net irrigation requirement of Boro rice were estimated in CropWat using observed daily climate data for recent trends and statistically downscaled and bias corrected GCM outputs (five models and two RCPs) for future scenarios. ETo showed a significant decreasing recent trends due to increasing relative humidity and decreasing wind speed and sun shine hours instead of an increase in temperature. However, the strong future increase in temperature will lead to an insignificant increase in ETo. ∑ETC showed a decreasing recent trend and will further decrease in the future because of shortened duration of Boro growth stages as crop's phenological response to increased temperature. The variations in trends of ∑ETC-ER found among different districts, are mainly linked to the variations in trends of changes in effective rainfall. During last three decades, the net irrigation requirement has decreased by 11% at an average rate of -4.4 mm/year, instead of a decreasing effective rainfall, mainly because of high rate of decrease of crop evapotranspiration (-5.9 mm/year). In future, although daily water requirement will increase, the total net irrigation requirement of Boro rice will decrease by 1.6% in 2050s and 7.4% in 2080s for RCP 8.5 scenario on an average for five models and four districts compared to the base period (1980-2013). High variations in projected changes in rainfall bring high uncertainty for future water requirements estimation. Therefore, a

  5. Development of flood regressions and climate change scenarios to explore estimates of future peak flows

    Science.gov (United States)

    Burns, Douglas A.; Smith, Martyn J.; Freehafer, Douglas A.

    2015-12-31

    A new Web-based application, titled “Application of Flood Regressions and Climate Change Scenarios To Explore Estimates of Future Peak Flows”, has been developed by the U.S. Geological Survey, in cooperation with the New York State Department of Transportation, that allows a user to apply a set of regression equations to estimate the magnitude of future floods for any stream or river in New York State (exclusive of Long Island) and the Lake Champlain Basin in Vermont. The regression equations that are the basis of the current application were developed in previous investigations by the U.S. Geological Survey (USGS) and are described at the USGS StreamStats Web sites for New York (http://water.usgs.gov/osw/streamstats/new_york.html) and Vermont (http://water.usgs.gov/osw/streamstats/Vermont.html). These regression equations include several fixed landscape metrics that quantify aspects of watershed geomorphology, basin size, and land cover as well as a climate variable—either annual precipitation or annual runoff.

  6. River flood risk in Jakarta under scenarios of future change

    Science.gov (United States)

    Budiyono, Yus; Aerts, Jeroen C. J. H.; Tollenaar, Daniel; Ward, Philip J.

    2016-03-01

    Given the increasing impacts of flooding in Jakarta, methods for assessing current and future flood risk are required. In this paper, we use the Damagescanner-Jakarta risk model to project changes in future river flood risk under scenarios of climate change, land subsidence, and land use change. Damagescanner-Jakarta is a simple flood risk model that estimates flood risk in terms of annual expected damage, based on input maps of flood hazard, exposure, and vulnerability. We estimate baseline flood risk at USD 186 million p.a. Combining all future scenarios, we simulate a median increase in risk of +180 % by 2030. The single driver with the largest contribution to that increase is land subsidence (+126 %). We simulated the impacts of climate change by combining two scenarios of sea level rise with simulations of changes in 1-day extreme precipitation totals from five global climate models (GCMs) forced by the four Representative Concentration Pathways (RCPs). The results are highly uncertain; the median change in risk due to climate change alone by 2030 is a decrease by -46 %, but we simulate an increase in risk under 12 of the 40 GCM-RCP-sea level rise combinations. Hence, we developed probabilistic risk scenarios to account for this uncertainty. If land use change by 2030 takes places according to the official Jakarta Spatial Plan 2030, risk could be reduced by 12 %. However, if land use change in the future continues at the same rate as the last 30 years, large increases in flood risk will take place. Finally, we discuss the relevance of the results for flood risk management in Jakarta.

  7. A wedge strategy for mitigation of urban warming in future climate scenarios

    Science.gov (United States)

    Zhao, Lei; Lee, Xuhui; Schultz, Natalie M.

    2017-07-01

    Heat stress is one of the most severe climate threats to human society in a future warmer world. The situation is further exacerbated in urban areas by urban heat islands (UHIs). Because the majority of world's population is projected to live in cities, there is a pressing need to find effective solutions for the heat stress problem. We use a climate model to investigate the effectiveness of various urban heat mitigation strategies: cool roofs, street vegetation, green roofs, and reflective pavement. Our results show that by adopting highly reflective roofs, almost all the cities in the United States and southern Canada are transformed into white oases - cold islands caused by cool roofs at midday, with an average oasis effect of -3.4 K in the summer for the period 2071-2100, which offsets approximately 80 % of the greenhouse gas (GHG) warming projected for the same period under the RCP4.5 scenario. A UHI mitigation wedge consisting of cool roofs, street vegetation, and reflective pavement has the potential to eliminate the daytime UHI plus the GHG warming.

  8. Atmospheric Rivers in Europe: impacts, predictability, and future climate scenarios

    Science.gov (United States)

    Ramos, A. M.; Tome, R.; Sousa, P. M.; Liberato, M. L. R.; Lavers, D.; Trigo, R. M.

    2017-12-01

    In recent years a strong relationship has been found between Atmospheric Rivers (ARs) and extreme precipitation and floods across western Europe, with some regions having 8 of their top 10 annual maxima precipitation events related to ARs. In the particular case of the Iberian Peninsula, the association between ARs and extreme precipitation days in the western river basins is noteworthy, while for the eastern and southern basins the impact of ARs is reduced. An automated ARs detection algorithm is used for the North Atlantic Ocean Basin, allowing the identification of major ARs affecting western European coasts in the present climate and under different climate change scenarios. We have used both reanalyzes and six General Circulation models under three climate scenarios (the control simulation, the RCP4.5 and RCP8.5 scenarios). The western coast of Europe was divided into five domains, namely the Iberian Peninsula, France, UK, Southern Scandinavia and the Netherlands, and Northern Scandinavia. It was found that there is an increase in the vertically integrated horizontal water transport which led to an increase in the AR frequency, a result more visible in the high emission scenarios (RCP8.5) for the 2074-2099 period. Since ARs are associated with high impact weather, it is important to study their predictability. This assessment was performed with the ECMWF ensemble forecasts up to 10 days for winters 2013/14, 2014/15 and 2015/16 for events that made landfall in the Iberian Peninsula. We show the model's potential added value to detect upcoming ARs events, which is particularly useful to predict potential hydrometeorological extremes. AcknowledgementsThis work was supported by the project FORLAND - Hydrogeomorphologic risk in Portugal: driving forces and application for land use planning [PTDC / ATPGEO / 1660/2014] funded by the Portuguese Foundation for Science and Technology (FCT), Portugal. A. M. Ramos was also supported by a FCT postdoctoral grant (FCT

  9. Research on Land Surface Thermal-Hydrologic Exchange in Southern China under Future Climate and Land Cover Scenarios

    Directory of Open Access Journals (Sweden)

    Jianwu Yan

    2013-01-01

    Full Text Available Climate change inevitably leads to changes in hydrothermal circulation. However, thermal-hydrologic exchanging caused by land cover change has also undergone ineligible changes. Therefore, studying the comprehensive effects of climate and land cover changes on land surface water and heat exchanges enables us to well understand the formation mechanism of regional climate and predict climate change with fewer uncertainties. This study investigated the land surface thermal-hydrologic exchange across southern China for the next 40 years using a land surface model (ecosystem-atmosphere simulation scheme (EASS. Our findings are summarized as follows. (i Spatiotemporal variation patterns of sensible heat flux (H and evapotranspiration (ET under the land cover scenarios (A2a or B2a and climate change scenario (A1B are unanimous. (ii Both H and ET take on a single peak pattern, and the peak occurs in June or July. (iii Based on the regional interannual variability analysis, H displays a downward trend (10% and ET presents an increasing trend (15%. (iv The annual average H and ET would, respectively, increase and decrease by about 10% when woodland converts to the cultivated land. Through this study, we recognize that land surface water and heat exchanges are affected greatly by the future climate change as well as land cover change.

  10. Greenhouse Gas Implications of Peri-Urban Land Use Change in a Developed City under Four Future Climate Scenarios

    Directory of Open Access Journals (Sweden)

    Alison Rothwell

    2016-12-01

    Full Text Available Present decisions about urbanization of peri-urban (PU areas may contribute to the capacity of cities to mitigate future climate change. Comprehensive mitigative responses to PU development should require integration of urban form and food production to realise potential trade-offs. Despite this, few studies examine greenhouse gas (GHG implications of future urban development combined with impacts on PU food production. In this paper, four future scenarios, at 2050 and 2100 time horizons, were developed to evaluate the potential GHG emissions implications of feeding and housing a growing urban population in Sydney, Australia. The scenarios were thematically downscaled from the four relative concentration pathways. Central to the scenarios were differences in population, technology, energy, housing form, transportation, temperature, food production and land use change (LUC. A life cycle assessment approach was used within the scenarios to evaluate differences in GHG impacts. Differences in GHG emissions between scenarios at the 2100 time horizon, per area of PU land transformed, approximated 0.7 Mt CO2-e per year. Per additional resident this equated to 0.7 to 6.1 t CO2-e per year. Indirect LUC has the potential to be significant. Interventions such as carbon capture and storage technology, renewables and urban form markedly reduced emissions. However, incorporating cross-sectoral energy saving measures within urban planning at the regional scale requires a paradigmatic shift.

  11. Atlantic hurricanes and associated insurance loss potentials in future climate scenarios: limitations of high-resolution AGCM simulations

    Directory of Open Access Journals (Sweden)

    Thomas F. Stocker

    2012-01-01

    Full Text Available Potential future changes in tropical cyclone (TC characteristics are among the more serious regional threats of global climate change. Therefore, a better understanding of how anthropogenic climate change may affect TCs and how these changes translate in socio-economic impacts is required. Here, we apply a TC detection and tracking method that was developed for ERA-40 data to time-slice experiments of two atmospheric general circulation models, namely the fifth version of the European Centre model of Hamburg model (MPI, Hamburg, Germany, T213 and the Japan Meteorological Agency/ Meteorological research Institute model (MRI, Tsukuba city, Japan, TL959. For each model, two climate simulations are available: a control simulation for present-day conditions to evaluate the model against observations, and a scenario simulation to assess future changes. The evaluation of the control simulations shows that the number of intense storms is underestimated due to the model resolution. To overcome this deficiency, simulated cyclone intensities are scaled to the best track data leading to a better representation of the TC intensities. Both models project an increased number of major hurricanes and modified trajectories in their scenario simulations. These changes have an effect on the projected loss potentials. However, these state-of-the-art models still yield contradicting results, and therefore they are not yet suitable to provide robust estimates of losses due to uncertainties in simulated hurricane intensity, location and frequency.

  12. Assessment of future agricultural conditions in southwestern Africa using fuzzy logic and high-resolution climate model scenarios

    Directory of Open Access Journals (Sweden)

    Weinzierl, Thomas

    2015-12-01

    Full Text Available Climate change is expected to have a major impact on the arid savanna regions of southwestern Africa, such as the Okavango Basin. Precipitation is a major constraint for agriculture in countries like Namibia and Botswana and assessments of future crop growth conditions are in high demand. This GIS-based approach uses reanalysis data and climate model output for two scenarios and compares them to the precipitation requirements of the five most important crops grown in the region: maize, pearl millet, sorghum, cassava and cow pea. It also takes into account the dominant soil types, as plant growth is also limited by nutrient-poor soils with unfavorable physical and chemical properties. The two factors are then combined using a fuzzy logic algorithm. The assessment visualizes the expected shifts in suitable zones and identifies areas where farming without irrigation may experience a decline in yields or may even no longer be possible at the end of the 21st century. The results show that pearl millet is the most suitable crop in all scenarios while especially the cultivation of maize, sorghum and cow pea may be affected by a possible reduction of precipitation under the high-emission scenario.

  13. World Energy Scenarios: Composing energy futures to 2050

    International Nuclear Information System (INIS)

    Frei, Christoph; Whitney, Rob; Schiffer, Hans-Wilhelm; Rose, Karl; Rieser, Dan A.; Al-Qahtani, Ayed; Thomas, Philip; Turton, Hal; Densing, Martin; Panos, Evangelos; Volkart, Kathrin

    2013-01-01

    The World Energy Scenarios: Composing energy futures to 2050 is the result of a three-year study conducted by over 60 experts from nearly 30 countries, with modelling provided by the Paul Scherrer Institute. The report assesses two contrasting policy scenarios, the more consumer driven Jazz scenario and the more voter-driven Symphony scenario with a key differentiator being the ability of countries to pass through the Doha Climate Gateway. The WEC scenarios use an explorative approach to assess what is actually happening in the world now, to help gauge what will happen in the future and the real impact of today's choices on tomorrow's energy landscape. Rather than telling policy-makers and senior energy leaders what to do in order to achieve a specific policy goal, the WEC's World Energy Scenarios allow them to test the key assumptions that decision-makers decide to better shape the energy of tomorrow This document includes the French and English versions of the executive summary and the English version of the full report

  14. Environmental Assessment of Possible Future Waste Management Scenarios

    Directory of Open Access Journals (Sweden)

    Yevgeniya Arushanyan

    2017-02-01

    Full Text Available Waste management has developed in many countries and will continue to do so. Changes towards increased recovery of resources in order to meet climate targets and for society to transition to a circular economy are important driving forces. Scenarios are important tools for planning and assessing possible future developments and policies. This paper presents a comprehensive life cycle assessment (LCA model for environmental assessments of scenarios and waste management policy instruments. It is unique by including almost all waste flows in a country and also allow for including waste prevention. The results show that the environmental impacts from future waste management scenarios in Sweden can differ a lot. Waste management will continue to contribute with environmental benefits, but less so in the more sustainable future scenarios, since the surrounding energy and transportation systems will be less polluting and also because less waste will be produced. Valuation results indicate that climate change, human toxicity and resource depletion are the most important environmental impact categories for the Swedish waste management system. Emissions of fossil CO2 from waste incineration will continue to be a major source of environmental impacts in these scenarios. The model is used for analyzing environmental impacts of several policy instruments including weight based collection fee, incineration tax, a resource tax and inclusion of waste in a green electricity certification system. The effect of the studied policy instruments in isolation are in most cases limited, suggesting that stronger policy instruments as well as combinations are necessary to reach policy goals as set out in for example the EU action plan on circular economy.

  15. A wedge strategy for mitigation of urban warming in future climate scenarios

    Directory of Open Access Journals (Sweden)

    L. Zhao

    2017-07-01

    Full Text Available Heat stress is one of the most severe climate threats to human society in a future warmer world. The situation is further exacerbated in urban areas by urban heat islands (UHIs. Because the majority of world's population is projected to live in cities, there is a pressing need to find effective solutions for the heat stress problem. We use a climate model to investigate the effectiveness of various urban heat mitigation strategies: cool roofs, street vegetation, green roofs, and reflective pavement. Our results show that by adopting highly reflective roofs, almost all the cities in the United States and southern Canada are transformed into white oases – cold islands caused by cool roofs at midday, with an average oasis effect of −3.4 K in the summer for the period 2071–2100, which offsets approximately 80 % of the greenhouse gas (GHG warming projected for the same period under the RCP4.5 scenario. A UHI mitigation wedge consisting of cool roofs, street vegetation, and reflective pavement has the potential to eliminate the daytime UHI plus the GHG warming.

  16. AgMIP Climate Data and Scenarios for Integrated Assessment. Chapter 3

    Science.gov (United States)

    Ruane, Alexander C.; Winter, Jonathan M.; McDermid, Sonali P.; Hudson, Nicholas I.

    2015-01-01

    Climate change presents a great challenge to the agricultural sector as changes in precipitation, temperature, humidity, and circulation patterns alter the climatic conditions upon which many agricultural systems rely. Projections of future climate conditions are inherently uncertain owing to a lack of clarity on how society will develop, policies that may be implemented to reduce greenhouse-gas (GHG) emissions, and complexities in modeling the atmosphere, ocean, land, cryosphere, and biosphere components of the climate system. Global climate models (GCMs) are based on well-established physics of each climate component that enable the models to project climate responses to changing GHG concentration scenarios (Stocker et al., 2013).The most recent iteration of the Coupled Model Intercomparison Project (CMIP5; Taylor et al., 2012) utilized representative concentration pathways (RCPs) to cover the range of plausible GHG concentrations out past the year 2100, with RCP8.5 representing an extreme scenario and RCP4.5 representing a lower concentrations scenario (Moss et al., 2010).

  17. Climate change, crop yields, and undernutrition: development of a model to quantify the impact of climate scenarios on child undernutrition.

    Science.gov (United States)

    Lloyd, Simon J; Kovats, R Sari; Chalabi, Zaid

    2011-12-01

    Global climate change is anticipated to reduce future cereal yields and threaten food security, thus potentially increasing the risk of undernutrition. The causation of undernutrition is complex, and there is a need to develop models that better quantify the potential impacts of climate change on population health. We developed a model for estimating future undernutrition that accounts for food and nonfood (socioeconomic) causes and can be linked to available regional scenario data. We estimated child stunting attributable to climate change in five regions in South Asia and sub-Saharan Africa (SSA) in 2050. We used current national food availability and undernutrition data to parameterize and validate a global model, using a process-driven approach based on estimations of the physiological relationship between a lack of food and stunting. We estimated stunting in 2050 using published modeled national calorie availability under two climate scenarios and a reference scenario (no climate change). We estimated that climate change will lead to a relative increase in moderate stunting of 1-29% in 2050 compared with a future without climate change. Climate change will have a greater impact on rates of severe stunting, which we estimated will increase by 23% (central SSA) to 62% (South Asia). Climate change is likely to impair future efforts to reduce child malnutrition in South Asia and SSA, even when economic growth is taken into account. Our model suggests that to reduce and prevent future undernutrition, it is necessary to both increase food access and improve socioeconomic conditions, as well as reduce greenhouse gas emissions.

  18. Future climate. Engineering solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ferdinand, J.F.; Hagedorn-Rasmussen, P.; Fonnesbech, B.

    2009-09-15

    Future Climate Engineering Solutions - Joint Report is the common output and a documentation of more than 1 year's effort by 13 engineering associations - in 12 countries - to demonstrate how technologies can combat climate change. The report consists of three parts: Summaries of 10 national climate plans and technology prospects, 5 Key Common Findings, and a Climate Call from Engineers to create a new global climate treaty. The basic assumption of the project is recognition that GHG emissions, and their concentration in the atmosphere, must be reduced to a sustainable level. The project definition of a sustainable level is equivalent to the best-case stabilisation scenario which was presented in the 4th Assessment Report (AR4) by the UN Intergovernmental Panel on Climate Change (IPCC), whereby the global mean temperature is most likely to stabilise at 2.0-2.4 deg. C. The Future Climate website www.futureclimate.info holds more information about the project, including possibility to download project material, including the full national climate plans.

  19. Application of scenario-neutral methods to quantify impacts of climate change on water resources in East Africa

    Science.gov (United States)

    Ascott, M.; Macdonald, D.; Lapworth, D.; Tindimugaya, C.

    2017-12-01

    Quantification of the impact of climate change on water resources is essential for future resource planning. Unfortunately, climate change impact studies in African regions are often hindered by the extent in variability in future rainfall predictions, which also diverge from current drying trends. To overcome this limitation, "scenario-neutral" methods have been developed which stress a hydrological system using a wide range of climate futures to build a "climate response surface". We developed a hydrological model and scenario-neutral framework to quantify climate change impacts on river flows in the Katonga catchment, Uganda. Using the lumped catchment model GR4J, an acceptable calibration to historic daily flows (1966 - 2010, NSE = 0.69) was achieved. Using a delta change approach, we then systematically changed rainfall and PET inputs to develop response surfaces for key metrics, developed with Ugandan water resources planners (e.g. Q5, Q95). Scenarios from the CMIP5 models for 2030s and 2050s were then overlain on the response surface. The CMIP5 scenarios show consistent increases in temperature but large variability in rainfall increases, which results in substantial variability in increases in river flows. The developed response surface covers a wide range of climate futures beyond the CMIP5 projections, and can help water resources planners understand the sensitivity of water resource systems to future changes. When future climate scenarios are available, these can be directly overlain on the response surface without the need to re-run the hydrological model. Further work will consider using scenario-neutral approaches in more complex, semi-distributed models (e.g. SWAT), and will consider land use and socioeconomic change.

  20. Significance of Bias Correction in Drought Frequency and Scenario Analysis Based on Climate Models

    Science.gov (United States)

    Aryal, Y.; Zhu, J.

    2015-12-01

    Assessment of future drought characteristics is difficult as climate models usually have bias in simulating precipitation frequency and intensity. To overcome this limitation, output from climate models need to be bias corrected based on the specific purpose of applications. In this study, we examine the significance of bias correction in the context of drought frequency and scenario analysis using output from climate models. In particular, we investigate the performance of three widely used bias correction techniques: (1) monthly bias correction (MBC), (2) nested bias correction (NBC), and (3) equidistance quantile mapping (EQM) The effect of bias correction in future scenario of drought frequency is also analyzed. The characteristics of drought are investigated in terms of frequency and severity in nine representative locations in different climatic regions across the United States using regional climate model (RCM) output from the North American Regional Climate Change Assessment Program (NARCCAP). The Standardized Precipitation Index (SPI) is used as the means to compare and forecast drought characteristics at different timescales. Systematic biases in the RCM precipitation output are corrected against the National Centers for Environmental Prediction (NCEP) North American Regional Reanalysis (NARR) data. The results demonstrate that bias correction significantly decreases the RCM errors in reproducing drought frequency derived from the NARR data. Preserving mean and standard deviation is essential for climate models in drought frequency analysis. RCM biases both have regional and timescale dependence. Different timescale of input precipitation in the bias corrections show similar results. Drought frequency obtained from the RCM future (2040-2070) scenarios is compared with that from the historical simulations. The changes in drought characteristics occur in all climatic regions. The relative changes in drought frequency in future scenario in relation to

  1. Key drivers and economic consequences of high-end climate scenarios: uncertainties and risks

    DEFF Research Database (Denmark)

    Halsnæs, Kirsten; Kaspersen, Per Skougaard; Drews, Martin

    2015-01-01

    The consequences of high-end climate scenarios and the risks of extreme events involve a number of critical assumptions and methodological challenges related to key uncertainties in climate scenarios and modelling, impact analysis, and economics. A methodological framework for integrated analysis...... of extreme events increase beyond scaling, and in combination with economic assumptions we find a very wide range of risk estimates for urban precipitation events. A sensitivity analysis addresses 32 combinations of climate scenarios, damage cost curve approaches, and economic assumptions, including risk...... aversion and equity represented by discount rates. Major impacts of alternative assumptions are investigated. As a result, this study demonstrates that in terms of decision making the actual expectations concerning future climate scenarios and the economic assumptions applied are very important...

  2. Water within the Shared Socioeconomic Pathways: Constraints and the Impact on Future Global Change Scenarios

    Science.gov (United States)

    Graham, N. T.; Hejazi, M. I.; Davies, E. G.; Calvin, K. V.; Kim, S. H.; Miralles-Wilhelm, F.

    2017-12-01

    The Shared Socioeconomic Pathways (SSPs) represent the next generation of future global change scenarios and their inclusion in the Coupled Model Intercomparison Project Phase 6 (CMIP6) scenarios reinforces the importance of a complete understanding of the SSPs. This study uses the Global Change Assessment Model (GCAM) to investigate the effects of limited water supplies on future withdrawals at regional and water basin scales across all SSPs in combination with various climate mitigation scenarios. Water supply is calculated using a global hydrologic model and water data from five ISI-MIP models across the four RCP scenarios. When water constraints are incorporated, our results show that water withdrawals are reduced by as much as 40% across all SSP scenarios without climate policies. As climate policies are imposed and become more stringent, water withdrawals increase in regions already affected by water stress in order to allow for greater biomass production. The results of this research show the importance of including water resource constraints within the SSP scenarios for establishing water withdrawal scenarios under a wide range of scenarios including different climate policies. The results will also provide data products - such as gridded land use and water demand estimates - of potential interest to the impact, adaptation, and vulnerability community following the SSP scenarios.

  3. 2050 Scenarios for Long-Haul Tourism in the Evolving Global Climate Change Regime

    Directory of Open Access Journals (Sweden)

    Jako Volschenk

    2012-12-01

    Full Text Available Tourism and its “midwife”, aviation, are transnational sectors exposed to global uncertainties. This scenario-building exercise considers a specific subset of these uncertainties, namely the impact of the evolving global climate change regime on long-haul tourism (LHT, with a 2050 horizon. The basic problematique is that unconstrained growth in aviation emissions will not be compatible with 2050 climate stabilisation goals, and that the stringency and timing of public policy interventions could have far-reaching impacts — either on the market for future growth of LHT, or the natural ecosystem on which tourism depends. Following an intuitive-logic approach to scenario-building, three meta-level scenarios that can be regarded as “possible” futures for the evolution of LHT are described. Two of these, i.e., the “grim reaper” and the “fallen angel” scenarios, are undesirable. The “green lantern” scenario represents the desired future. Long-haul tourist destinations should heed the early warning signals identified in the scenario narratives, and contribute towards realising the desired future. They should further guard against being passive victims if the feared scenarios materialise, by adapting, repositioning early upon reading the signposts, hedging against risks, and seizing new opportunities.

  4. Large Ensemble Analytic Framework for Consequence-Driven Discovery of Climate Change Scenarios

    Science.gov (United States)

    Lamontagne, Jonathan R.; Reed, Patrick M.; Link, Robert; Calvin, Katherine V.; Clarke, Leon E.; Edmonds, James A.

    2018-03-01

    An analytic scenario generation framework is developed based on the idea that the same climate outcome can result from very different socioeconomic and policy drivers. The framework builds on the Scenario Matrix Framework's abstraction of "challenges to mitigation" and "challenges to adaptation" to facilitate the flexible discovery of diverse and consequential scenarios. We combine visual and statistical techniques for interrogating a large factorial data set of 33,750 scenarios generated using the Global Change Assessment Model. We demonstrate how the analytic framework can aid in identifying which scenario assumptions are most tied to user-specified measures for policy relevant outcomes of interest, specifically for our example high or low mitigation costs. We show that the current approach for selecting reference scenarios can miss policy relevant scenario narratives that often emerge as hybrids of optimistic and pessimistic scenario assumptions. We also show that the same scenario assumption can be associated with both high and low mitigation costs depending on the climate outcome of interest and the mitigation policy context. In the illustrative example, we show how agricultural productivity, population growth, and economic growth are most predictive of the level of mitigation costs. Formulating policy relevant scenarios of deeply and broadly uncertain futures benefits from large ensemble-based exploration of quantitative measures of consequences. To this end, we have contributed a large database of climate change futures that can support "bottom-up" scenario generation techniques that capture a broader array of consequences than those that emerge from limited sampling of a few reference scenarios.

  5. Multiple greenhouse gas feedbacks from the land biosphere under future climate change scenarios

    Science.gov (United States)

    Stocker, Benjamin; Roth, Raphael; Joos, Fortunat; Spahni, Renato; Steinacher, Marco; Zaehle, Soenke; Bouwman, Lex; Xu-Ri, Xu-Ri; Prentice, Colin

    2013-04-01

    Atmospheric concentrations of the three important greenhouse gases (GHG) CO2, CH4, and N2O are mediated by processes in the terrestrial biosphere. The sensitivity of terrestrial GHG emissions to climate and CO2 contributed to the sharp rise in atmospheric GHG concentrations since preindustrial times and leads to multiple feedbacks between the terrestrial biosphere and the climate system. The strength of these feedbacks is determined by (i) the sensitivity of terrestrial GHG emissions to climate and CO2 and (ii) the greenhouse warming potential of the respective gas. Here, we quantify feedbacks from CO2, CH4, N2O, and land surface albedo in a consistent and comprehensive framework based on a large set of simulations conducted with an Earth System Model of Intermediate Complexity. The modeled sensitivities of CH4 and N2O emissions are tested, demonstrating that independent data for non-land (anthropogenic, oceanic, etc.) GHG emissions, combined with simulated emissions from natural and agricultural land reproduces historical atmospheric budgets within their uncertainties. 21st-century scenarios for climate, land use change and reactive nitrogen inputs (Nr) are applied to investigate future GHG emissions. Results suggest that in a business-as-usual scenario, terrestrial N2O emissions increase from 9.0 by today to 9.8-11.1 (RCP 2.6) and 14.2-17.0 TgN2O-N/yr by 2100 (RCP 8.5). Without anthropogenic Nr inputs, the amplification is reduced by 24-32%. Soil CH4 emissions increase from 221 at present to 228-245 in RCP 2.6 and to 303-343 TgCH4/yr in RCP 8.5, and the land becomes a net source of C by 2100 AD. Feedbacks from land imply an additional warming of 1.3-1.5°C by 2300 in RCP 8.5, 0.4-0.5°C of which are due to N2O and CH4. The combined effect of multiple GHGs and albedo represents an increasingly positive total feedback to anthropogenic climate change with positive individual feedbacks from CH4, N2O, and albedo outweighing the diminishing negative feedback from CO2

  6. Climate sensitivity of DSSAT under different agriculture practice scenarios in China

    Science.gov (United States)

    Xia, L.; Robock, A.

    2014-12-01

    Crop yields are sensitive to both agricultural practice and climate changes. Under different agricultural practice scenarios, crop yield may have different climate sensitivities. Since it is important to understand how future climate changes affect agriculture productivity and what the potential adaptation strategies would be to compensate for possible negative impacts on crop production, we performed experiments to study climate sensitivity under different agricultural practice scenarios for rice, maize and wheat in the top four production provinces in China using the Decision Support System for Agrotechnology Transfer (DSSAT) crop model. The agricultural practice scenarios include four categories: different amounts of nitrogen fertilizer or no nitrogen stress; irrigation turned on or off, or no water stress; all possible seeds in the DSSAT cultivar data base; and different planting dates. For the climate sensitivity test, the control climate is from 1998 to 2007, and we individually modify four climate variables: daily maximum and minimum temperature by +2 °C and -2 °C, daily precipitation by +20% and -20%, and daily solar radiation by + 20% and -20%. With more nitrogen fertilizer applied, crops are more sensitive to temperature changes as well as precipitation changes because of their release from nitrogen limitation. With irrigation turned on, crop yield sensitivity to temperature decreases in most of the regions depending on the amount of the local precipitation, since more water is available and soil temperature varies less with higher soil moisture. Those results indicate that there could be possible agriculture adaptation strategies under certain future climate scenarios. For example, increasing nitrogen fertilizer usage by a certain amount might compensate for the negative impact on crop yield from climate changes. However, since crops are more sensitive to climate changes when there is more nitrogen fertilizer applied, if the climate changes are

  7. Modelling climate impact on floods under future emission scenarios using an ensemble of climate model projections

    Science.gov (United States)

    Wetterhall, F.; Cloke, H. L.; He, Y.; Freer, J.; Pappenberger, F.

    2012-04-01

    Evidence provided by modelled assessments of climate change impact on flooding is fundamental to water resource and flood risk decision making. Impact models usually rely on climate projections from Global and Regional Climate Models, and there is no doubt that these provide a useful assessment of future climate change. However, cascading ensembles of climate projections into impact models is not straightforward because of problems of coarse resolution in Global and Regional Climate Models (GCM/RCM) and the deficiencies in modelling high-intensity precipitation events. Thus decisions must be made on how to appropriately pre-process the meteorological variables from GCM/RCMs, such as selection of downscaling methods and application of Model Output Statistics (MOS). In this paper a grand ensemble of projections from several GCM/RCM are used to drive a hydrological model and analyse the resulting future flood projections for the Upper Severn, UK. The impact and implications of applying MOS techniques to precipitation as well as hydrological model parameter uncertainty is taken into account. The resultant grand ensemble of future river discharge projections from the RCM/GCM-hydrological model chain is evaluated against a response surface technique combined with a perturbed physics experiment creating a probabilisic ensemble climate model outputs. The ensemble distribution of results show that future risk of flooding in the Upper Severn increases compared to present conditions, however, the study highlights that the uncertainties are large and that strong assumptions were made in using Model Output Statistics to produce the estimates of future discharge. The importance of analysing on a seasonal basis rather than just annual is highlighted. The inability of the RCMs (and GCMs) to produce realistic precipitation patterns, even in present conditions, is a major caveat of local climate impact studies on flooding, and this should be a focus for future development.

  8. Assessement of user needs for climate change scenarios in Switzerland

    Science.gov (United States)

    Fischer, Andreas; Liniger, Mark; Flückiger-Knutti, Jacqueline

    2016-04-01

    There is a growing demand to assess and inform about future climate change and its impacts on society and ecosystems and to deduce appropriate adaptation strategies. The basis for such assessments are reliable and up-to-date climate change scenarios on the local to regional scale. In Switzerland, an important step has been accomplished by the release of the climate scenarios in 2011 ("CH2011"). New climate model simulations, an improved scientific understanding and new statistical downscaling tools make an update of these scenarios necessary. An important component toward the new national scenarios "CH2018" are the consideration of user needs in order to ensure that the new scenarios are user-tailored and hence find a wide applicability. The new CH2018 scenarios are developed in the framework of the recently founded National Center for Climate Services (NCCS). To get a better overview of who the users of climate scenarios are and what they need, a comprehensive market research was undertaken. The survey targeted the most climate-relevant sectors, and considered representatives from administration, research and private companies across Switzerland. The survey comprised several qualitative group interviews with key stakeholders, as well as a written questionaire, answered by more than one hundred users. Additionally, two workshops were organized to gather the needs in dissemination of climate scenarios. The results of the survey show the necessity to classify the user needs according to the level of usage: "intensive users" are mainly researchers who handle large climate scenario data for further use in subsequent impact studies; "extensive users" are usually from administrations or consulting companies and perform simple calculations for specific questions or use provided graphics and tables; "facilitators" are usually from media, NGOs or schools and process and disseminate scenario information for a specific target group. The less intensive the usage of climate

  9. Climate change impact assessment on flow regime by incorporating spatial correlation and scenario uncertainty

    Science.gov (United States)

    Vallam, P.; Qin, X. S.

    2017-07-01

    Flooding risk is increasing in many parts of the world and may worsen under climate change conditions. The accuracy of predicting flooding risk relies on reasonable projection of meteorological data (especially rainfall) at the local scale. The current statistical downscaling approaches face the difficulty of projecting multi-site climate information for future conditions while conserving spatial information. This study presents a combined Long Ashton Research Station Weather Generator (LARS-WG) stochastic weather generator and multi-site rainfall simulator RainSim (CLWRS) approach to investigate flow regimes under future conditions in the Kootenay Watershed, Canada. To understand the uncertainty effect stemming from different scenarios, the climate output is fed into a hydrologic model. The results showed different variation trends of annual peak flows (in 2080-2099) based on different climate change scenarios and demonstrated that the hydrological impact would be driven by the interaction between snowmelt and peak flows. The proposed CLWRS approach is useful where there is a need for projection of potential climate change scenarios.

  10. Impact modelling of water resources development and climate scenarios on Zambezi River discharge

    Directory of Open Access Journals (Sweden)

    Harald Kling

    2014-07-01

    New hydrological insights for the region: Comparisons between historical and future scenarios show that the biggest changes have already occurred. Construction of Kariba and CahoraBassa dams in the mid 1900s altered the seasonality and flow duration curves. Future irrigation development will cause decreases of a similar magnitude to those caused by current reservoir evaporation losses. The discharge is highly sensitive to small precipitation changes and the two climate models used give different signs for future precipitation change, suggestive of large uncertainty. The river basin model and database are available as anopen-online Decision Support System to facilitate impact assessments of additional climate or development scenarios.

  11. Future scenarios for viticultural bioclimatic indices in Europe

    Science.gov (United States)

    Santos, João.; Malheiro, Aureliano C.; Fraga, Helder; Pinto, Joaquim G.

    2010-05-01

    Winemaking has a predominant economic, social and environmental relevance in several European countries. Studies addressing the influence of climate variability and change in viticulture are particularly pertinent, as climate is one of the main conditioning factors of this activity. In this context, bioclimatic indices are a useful zoning tool, allowing the description of the suitability of a particular region for wine production. In this study, we compute climatic indices (concerning to thermal and hydrological conditions) for Europe, characterize regions with different viticultural aptitude, and assess possible variations in these regions under a future climate conditions using a state-of-the-art regional climate model. The indices are calculated from climatic variables (mostly daily maximum and minimum temperatures and precipitation) obtained from the NCEP reanalysis dataset. Then, the same indices are calculated for present and future climate conditions using data from the regional climate model COSMO-CLM (Consortium for Small Scale Modelling - Climate Limited-area Modelling). Maps of theses indices for recent-past periods (1961-2008) and for the SRES A1B scenario are considered in order to identify significant changes in their patterns. Results show that climate change is projected to have a significant negative impact in wine quality by increased dryness and cumulative thermal effects during growing seasons in Southern European regions (e.g. Portugal, Spain and Italy). These changes represent an important constraint to grapevine growth and development, making crucial adaptation/mitigation strategies to be adopted. On the other hand, regions of western and central Europe (e.g. southern Britain, northern France and Germany) will benefit from this scenario both in wine quality, and in new potential areas for viticulture. This approach provides a macro-characterization of European areas where grapevines may preferentially grow, as well as their projected changes

  12. Future Urban Climate Projection in A Tropical Megacity Based on Global and Regional Scenarios

    Science.gov (United States)

    Darmanto, N. S.; Varquez, A. C. G.; Kanda, M.

    2017-12-01

    Cities in Asian developing countries experience rapid transformation in urban morphology and energy consumption, which correspondingly affects urban climate. Weather Research and Forecasting (WRF) Model coupled with improved single-layer urban canopy model incorporating realistic distribution of urban parameters and anthropogenic heat emission (AHE) in the tropic Jakarta Greater Area was conducted. Simulation was conducted during the dry months from 2006 to 2015 and agreed well with point and satellite observation. The same technology coupled with pseudo global warming (PGW) method based on representative concentration pathways (RCP) scenario 2.6 and 8.5 was conducted to produce futuristic climate condition in 2050. Projected urban morphology and AHE in 2050s were constructed using regional urban growing model with shared socioeconomic pathways (SSP) among its inputs. Compact future urban configuration, based on SSP1, was coupled to RCP2.6. Unrestrained future urban configuration, based on SSP3, was coupled to RCP8.5. Results show that background warming from RCP 2.6 and 8.5 will increase background temperature by 0.55°C and 1.2°C throughout the region, respectively. Future projection of urban sprawl results to an additional 0.3°C and 0.5°C increase on average, with maximum increase of 1.1°C and 1.3°C due to urban effect for RCP2.6/compact and RCP8.5/unrestrained, respectively. Higher moisture content in urban area is indicated in the future due to higher evaporation. Change in urban roughness is likely affect slower wind velocity in urban area and sea breeze front inland penetration the future compare with current condition. Acknowledgement: This research was supported by the Environment Research and Technology Development Fund (S-14) of the Ministry of the Environment, Japan.

  13. Economic impacts of climate change. Flooding and salinity in scenarios, models and cases

    International Nuclear Information System (INIS)

    Jonkhoff, W.; Koops, O.; Van der Krogt, R.; Oude Essink, G.; Rietveld, E.

    2008-07-01

    In this report, climatic and economic scenarios are combined and future risks are calculated for the consequences of climate change, such as a rising sea level, flooding, extreme draughts and salinity. The calculation of these economic effects of climate change are based on climate scenarios of the KNMI (Royal Dutch Meteorological Institute), TNO's RAEM model (Spatial General Economic Model), the high tide information system of the Dutch Ministry of Waterways and Public Works and the Space scanner of the Environmental Assessment Agency. Next to information on scenarios and models, this report also addresses damage calculations of flooding near Lopik and Ter Heide. The report ends with policy recommendations for adaptation policy. [mk] [nl

  14. Impacts of Climate Change on Native Landcover: Seeking Future Climatic Refuges

    OpenAIRE

    Zanin, Marina; Mangabeira Albernaz, Ana Luisa

    2016-01-01

    Climate change is a driver for diverse impacts on global biodiversity. We investigated its impacts on native landcover distribution in South America, seeking to predict its effect as a new force driving habitat loss and population isolation. Moreover, we mapped potential future climatic refuges, which are likely to be key areas for biodiversity conservation under climate change scenarios. Climatically similar native landcovers were aggregated using a decision tree, generating a reclassified l...

  15. Modelling the impacts of European emission and climate change scenarios on acid-sensitive catchments in Finland

    Directory of Open Access Journals (Sweden)

    M. Posch

    2008-03-01

    Full Text Available The dynamic hydro-chemical Model of Acidification of Groundwater in Catchments (MAGIC was used to predict the response of 163 Finnish lake catchments to future acidic deposition and climatic change scenarios. Future deposition was assumed to follow current European emission reduction policies and a scenario based on maximum (technologically feasible reductions (MFR. Future climate (temperature and precipitation was derived from the HadAM3 and ECHAM4/OPYC3 general circulation models under two global scenarios of the Intergovernmental Panel on Climate Change (IPCC: A2 and B2. The combinations resulting in the widest range of future changes were used for simulations, i.e., the A2 scenario results from ECHAM4/OPYC3 (highest predicted change and B2 results from HadAM3 (lowest predicted change. Future scenarios for catchment runoff were obtained from the Finnish watershed simulation and forecasting system. The potential influence of future changes in surface water organic carbon concentrations was also explored using simple empirical relationships based on temperature and sulphate deposition. Surprisingly, current emission reduction policies hardly show any future recovery; however, significant chemical recovery of soil and surface water from acidification was predicted under the MFR emission scenario. The direct influence of climate change (temperate and precipitation on recovery was negligible, as runoff hardly changed; greater precipitation is offset by increased evapotranspiration due to higher temperatures. However, two exploratory empirical DOC models indicated that changes in sulphur deposition or temperature could have a confounding influence on the recovery of surface waters from acidification, and that the corresponding increases in DOC concentrations may offset the recovery in pH due to reductions in acidifying depositions.

  16. Mapping past, present, and future climatic suitability for invasive Aedes aegypti and Aedes albopictus in the United States: a process-based modeling approach using CMIP5 downscaled climate scenarios

    Science.gov (United States)

    Donnelly, M. A. P.; Marcantonio, M.; Melton, F. S.; Barker, C. M.

    2016-12-01

    The ongoing spread of the mosquitoes, Aedes aegypti and Aedes albopictus, in the continental United States leaves new areas at risk for local transmission of dengue, chikungunya, and Zika viruses. All three viruses have caused major disease outbreaks in the Americas with infected travelers returning regularly to the U.S. The expanding range of these mosquitoes raises questions about whether recent spread has been enabled by climate change or other anthropogenic influences. In this analysis, we used downscaled climate scenarios from the NASA Earth Exchange Global Daily Downscaled Projections (NEX GDDP) dataset to model Ae. aegypti and Ae. albopictus population growth rates across the United States. We used a stage-structured matrix population model to understand past and present climatic suitability for these vectors, and to project future suitability under CMIP5 climate change scenarios. Our results indicate that much of the southern U.S. is suitable for both Ae. aegypti and Ae. albopictus year-round. In addition, a large proportion of the U.S. is seasonally suitable for mosquito population growth, creating the potential for periodic incursions into new areas. Changes in climatic suitability in recent decades for Ae. aegypti and Ae. albopictus have occurred already in many regions of the U.S., and model projections of future climate suggest that climate change will continue to reshape the range of Ae. aegypti and Ae. albopictus in the U.S., and potentially the risk of the viruses they transmit.

  17. Mapping Past, Present, and Future Climatic Suitability for Invasive Aedes Aegypti and Aedes Albopictus in the United States: A Process-Based Modeling Approach Using CMIP5 Downscaled Climate Scenarios

    Science.gov (United States)

    Donnelly, Marisa Anne Pella; Marcantonio, Matteo; Melton, Forrest S.; Barker, Christopher M.

    2016-01-01

    The ongoing spread of the mosquitoes, Aedes aegypti and Aedes albopictus, in the continental United States leaves new areas at risk for local transmission of dengue, chikungunya, and Zika viruses. All three viruses have caused major disease outbreaks in the Americas with infected travelers returning regularly to the U.S. The expanding range of these mosquitoes raises questions about whether recent spread has been enabled by climate change or other anthropogenic influences. In this analysis, we used downscaled climate scenarios from the NASA Earth Exchange Global Daily Downscaled Projections (NEX GDDP) dataset to model Ae. aegypti and Ae. albopictus population growth rates across the United States. We used a stage-structured matrix population model to understand past and present climatic suitability for these vectors, and to project future suitability under CMIP5 climate change scenarios. Our results indicate that much of the southern U.S. is suitable for both Ae. aegypti and Ae. albopictus year-round. In addition, a large proportion of the U.S. is seasonally suitable for mosquito population growth, creating the potential for periodic incursions into new areas. Changes in climatic suitability in recent decades for Ae. aegypti and Ae. albopictus have occurred already in many regions of the U.S., and model projections of future climate suggest that climate change will continue to reshape the range of Ae. aegypti and Ae. albopictus in the U.S., and potentially the risk of the viruses they transmit.

  18. Future Scenarios for Plant Virus Pathogens as Climate Change Progresses.

    Science.gov (United States)

    Jones, R A C

    2016-01-01

    Knowledge of how climate change is likely to influence future virus disease epidemics in cultivated plants and natural vegetation is of great importance to both global food security and natural ecosystems. However, obtaining such knowledge is hampered by the complex effects of climate alterations on the behavior of diverse types of vectors and the ease by which previously unknown viruses can emerge. A review written in 2011 provided a comprehensive analysis of available data on the effects of climate change on virus disease epidemics worldwide. This review summarizes its findings and those of two earlier climate change reviews and focuses on describing research published on the subject since 2011. It describes the likely effects of the full range of direct and indirect climate change parameters on hosts, viruses and vectors, virus control prospects, and the many information gaps and deficiencies. Recently, there has been encouraging progress in understanding the likely effects of some climate change parameters, especially over the effects of elevated CO2, temperature, and rainfall-related parameters, upon a small number of important plant viruses and several key insect vectors, especially aphids. However, much more research needs to be done to prepare for an era of (i) increasingly severe virus epidemics and (ii) increasing difficulties in controlling them, so as to mitigate their detrimental effects on future global food security and plant biodiversity. © 2016 Elsevier Inc. All rights reserved.

  19. Scenario analysis in environmental impact assessment: Improving explorations of the future

    International Nuclear Information System (INIS)

    Duinker, Peter N.; Greig, Lorne A.

    2007-01-01

    Scenarios and scenario analysis have become popular approaches in organizational planning and participatory exercises in pursuit of sustainable development. However, they are little used, at least in any formal way, in environmental impact assessment (EIA). This is puzzling because EIA is a process specifically dedicated to exploring options for more-sustainable (i.e., less environmentally damaging) futures. In this paper, we review the state of the art associated with scenarios and scenario analysis, and describe two areas where scenario analysis could be particularly helpful in EIA: (a) in defining future developments for cumulative effects assessment; and (b) in considering the influence of contextual change - e.g. climate change - on impact forecasts for specific projects. We conclude by encouraging EIA practitioners to learn about the promise of scenario-based analysis and implement scenario-based methods so that EIA can become more effective in fostering sustainable development

  20. Predicting, deciding, learning: can one evaluate the 'success' of national climate scenarios?

    International Nuclear Information System (INIS)

    Hulme, Mike; Dessai, Suraje

    2008-01-01

    Scenarios may be understood as products and/or processes. Viewing scenario exercises as productive tends to emphasize their tangibility: scenario products may acquire value unrelated to the processes of their creation. Viewing scenario exercises as procedural tends to emphasize their modes of formation: the process of constructing scenarios may have benefits irrespective of the value of ensuing products. These two framings yield different expectations about how one might evaluate the 'success' or otherwise of scenario exercises. We illustrate three approaches to evaluating the success or otherwise of scenarios using the example of the series of national UK climate scenarios published between 1991 and 2002. These are: predictive success (has the future turned out as envisaged?), decision success (have 'good' decisions subsequently been made?) and learning success (have scenarios proved engaging and enabled learning?). We reflect on the different ways the 'success' of national climate scenarios might be evaluated and on the relationship between the productive and procedural dimensions of scenario exercises.

  1. Predicting Future Seed Sourcing of Platycladus orientalis (L. for Future Climates Using Climate Niche Models

    Directory of Open Access Journals (Sweden)

    Xian-Ge Hu

    2017-12-01

    Full Text Available Climate niche modeling has been widely used to assess the impact of climate change on forest trees at the species level. However, geographically divergent tree populations are expected to respond differently to climate change. Considering intraspecific local adaptation in modeling species responses to climate change will thus improve the credibility and usefulness of climate niche models, particularly for genetic resources management. In this study, we used five Platycladus orientalis (L. seed zones (Northwestern; Northern; Central; Southern; and Subtropical covering the entire species range in China. A climate niche model was developed and used to project the suitable climatic conditions for each of the five seed zones for current and various future climate scenarios (Representative Concentration Pathways: RCP2.6, RCP4.5, RCP6.0, and RCP8.5. Our results indicated that the Subtropical seed zone would show consistent reduction for all climate change scenarios. The remaining seed zones, however, would experience various degrees of expansion in suitable habitat relative to their current geographic distributions. Most of the seed zones would gain suitable habitats at their northern distribution margins and higher latitudes. Thus, we recommend adjusting the current forest management strategies to mitigate the negative impacts of climate change.

  2. Future change of climate in South America in the late twenty-first century: intercomparison of scenarios from three regional climate models

    Science.gov (United States)

    Marengo, Jose A.; Ambrizzi, Tercio; Da Rocha, Rosmeri P.; Alves, Lincoln M.; Cuadra, Santiago V.; Valverde, Maria C.; Torres, Roger R.; Santos, Daniel C.; Ferraz, Simone E. T.

    2010-11-01

    Regional climate change projections for the last half of the twenty-first century have been produced for South America, as part of the CREAS (Cenarios REgionalizados de Clima Futuro da America do Sul) regional project. Three regional climate models RCMs (Eta CCS, RegCM3 and HadRM3P) were nested within the HadAM3P global model. The simulations cover a 30-year period representing present climate (1961-1990) and projections for the IPCC A2 high emission scenario for 2071-2100. The focus was on the changes in the mean circulation and surface variables, in particular, surface air temperature and precipitation. There is a consistent pattern of changes in circulation, rainfall and temperatures as depicted by the three models. The HadRM3P shows intensification and a more southward position of the subtropical Pacific high, while a pattern of intensification/weakening during summer/winter is projected by the Eta CCS/RegCM3. There is a tendency for a weakening of the subtropical westerly jet from the Eta CCS and HadRM3P, consistent with other studies. There are indications that regions such of Northeast Brazil and central-eastern and southern Amazonia may experience rainfall deficiency in the future, while the Northwest coast of Peru-Ecuador and northern Argentina may experience rainfall excesses in a warmer future, and these changes may vary with the seasons. The three models show warming in the A2 scenario stronger in the tropical region, especially in the 5°N-15°S band, both in summer and especially in winter, reaching up to 6-8°C warmer than in the present. In southern South America, the warming in summer varies between 2 and 4°C and in winter between 3 and 5°C in the same region from the 3 models. These changes are consistent with changes in low level circulation from the models, and they are comparable with changes in rainfall and temperature extremes reported elsewhere. In summary, some aspects of projected future climate change are quite robust across this set of

  3. Development of regional climate scenarios in the Netherlands - involvement of users

    Science.gov (United States)

    Bessembinder, Janette; Overbeek, Bernadet

    2013-04-01

    Climate scenarios are consistent and plausible pictures of possible future climates. They are intended for use in studies exploring the impacts of climate change, and to formulate possible adaptation strategies. To ensure that the developed climate scenarios are relevant to the intended users, interaction with the users is needed. As part of the research programmes "Climate changes Spatial Planning" and "Knowledge for Climate" several projects on climate services, tailoring of climate information and communication were conducted. Some of the important lessons learned about user interaction are: *) To be able to deliver relevant climate information in the right format, proper knowledge is required on who will be using the climate information and data, how it will be used and why they use it; *) Users' requirements can be very diverse and requirements may change over time. Therefore, sustained (personal) contact with users is required; *) Organising meetings with climate researchers and users of climate information together, and working together in projects results in mutual understanding on the requirements of users and the limitations to deliver certain types of climate information, which facilitates the communication and results in more widely accepted products; *) Information and communication should be adapted to the type of users (e.g. impact researchers or policy makers) and to the type of problem (unstructured problems require much more contact with the users). In 2001 KNMI developed climate scenarios for the National Commission on Water management in the 21st century (WB21 scenarios). In 2006 these were replaced by a the KNMI'06 scenarios, intended for a broader group of users. The above lessons are now taken into account during the development of the next generation of climate scenarios for the Netherlands, expected at the end of 2013, after the publication of the IPCC WG1 report: *) users' requirements are taken into account explicitly in the whole process

  4. Hydrological Responses to Land-Use Change Scenarios under Constant and Changed Climatic Conditions.

    Science.gov (United States)

    Zhang, Ling; Nan, Zhuotong; Yu, Wenjun; Ge, Yingchun

    2016-02-01

    This study quantified the hydrological responses to land-use change scenarios in the upper and middle Heihe River basin (HRB), northwest China, under constant and changed climatic conditions by combining a land-use/cover change model (dynamic conversion of land use and its effects, Dyna-CLUE) and a hydrological model (soil and water assessment tool, SWAT). Five land-use change scenarios, i.e., historical trend (HT), ecological protection (EP), strict ecological protection (SEP), economic development (ED), and rapid economic development (RED) scenarios, were established. Under constant climatic condition, hydrological variations are only induced by land-use changes in different scenarios. The changes in mean streamflow at the outlets of the upper and the middle HRB are not pronounced, although the different scenarios produce different outcomes. However, more pronounced changes are observed on a subbasin level. The frequency of extreme flood is projected to decrease under the SEP scenario, while under the other scenarios, no changes can be found. Two emission scenarios (A1B and B1) of three general circulation models (HadCM3, CGCM3, and CCSM3) were employed to generate future possible climatic conditions. Under changed climatic condition, hydrological variations are induced by the combination of land-use and climatic changes. The results indicate that the impacts of land-use changes become secondary when the changed climatic conditions have been considered. The frequencies of extreme flood and drought are projected to decrease and increase, respectively, under all climate scenarios. Although some agreements can be reached, pronounced difference of hydrological responses can be observed for different climate scenarios of different GCMs.

  5. Energy systems and climate policy - Long-term scenarios for an uncertain future

    NARCIS (Netherlands)

    Vuuren, D.P. van

    2007-01-01

    In this thesis various forms of scenario analysis are discussed both to explore 1) how energy system and associated greenhouse gas emissions may develop in the absence of climate policy and 2) how strategies aimed at drastically reducing greenhouse gas emissions may turn out. As uncertainties

  6. A new scenario framework for Climate Change Research: scenario matrix architecture

    NARCIS (Netherlands)

    van Vuuren, D.P.|info:eu-repo/dai/nl/11522016X; Kriegler, E.; O'Neill, B.C.; Ebi, K.L.; Riahi, K.; Carter, T.R.; Edmonds, J.; Hallegatte, S.; Kram, T.; Mathur, R.; Winkler, H.

    2014-01-01

    This paper describes the scenario matrix architecture that underlies a framework for developing new scenarios for climate change research. The matrix architecture facilitates addressing key questions related to current climate research and policy-making: identifying the effectiveness of different

  7. Climate change scenario data for the national parks

    International Nuclear Information System (INIS)

    Scott, D.

    2003-01-01

    This report presents daily scenario data obtained from monthly time scale climate change scenarios. The scenarios were applied to a stochastic weather generator, a statistical tool that simulates daily weather data for a range of climates at a particular location. The weather generators simulate weather that is statistically similar to observed climate data from climate stations. They can also generate daily scenario data for monthly time scales. This low cost computational method offers site-specific, multi-year climate change scenarios at a daily temporal level. The data is useful for situations that rely on climate thresholds such as forest fire season, drought conditions, or recreational season length. Data sets for temperature, precipitation and frost days was provided for 3 national parks for comparative evaluations. Daily scenarios for other parks can be derived using global climate model (GCM) output data through the Long Ashton Research Station (LARS) weather generator program. tabs

  8. The response of the climate system to very high greenhouse gas emission scenarios

    International Nuclear Information System (INIS)

    Sanderson, Benjamin M; O'Neill, Brian C; Kiehl, Jeffrey T; Meehl, Gerald A; Knutti, Reto; Washington, Warren M

    2011-01-01

    Well informed decisions on climate policy necessitate simulation of the climate system for a sufficiently wide range of emissions scenarios. While recent literature has been devoted to low emissions futures, the potential for very high emissions has not been thoroughly explored. We specify two illustrative emissions scenarios that are significantly higher than the A1FI scenario, the highest scenario considered in past IPCC reports, and simulate them in a global climate model to investigate their climate change implications. Relative to the A1FI scenario, our highest scenario results in an additional 2 K of global mean warming above A1FI levels by 2100, a complete loss of arctic summer sea-ice by 2070 and an additional 43% sea level rise due to thermal expansion above A1FI levels by 2100. Regional maximum temperature increases from late 20th century values are 50-100% greater than A1FI increases, with some regions such as the Central US, the Tibetan plateau and Alaska showing a 300-400% increase above A1FI levels.

  9. The response of the climate system to very high greenhouse gas emission scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, Benjamin M; O' Neill, Brian C; Kiehl, Jeffrey T; Meehl, Gerald A [National Center for Atmospheric Research, Boulder, CO (United States); Knutti, Reto; Washington, Warren M, E-mail: bsander@ucar.edu [Institute for Atmospheric and Climate Science, ETH Zurich (Switzerland)

    2011-07-15

    Well informed decisions on climate policy necessitate simulation of the climate system for a sufficiently wide range of emissions scenarios. While recent literature has been devoted to low emissions futures, the potential for very high emissions has not been thoroughly explored. We specify two illustrative emissions scenarios that are significantly higher than the A1FI scenario, the highest scenario considered in past IPCC reports, and simulate them in a global climate model to investigate their climate change implications. Relative to the A1FI scenario, our highest scenario results in an additional 2 K of global mean warming above A1FI levels by 2100, a complete loss of arctic summer sea-ice by 2070 and an additional 43% sea level rise due to thermal expansion above A1FI levels by 2100. Regional maximum temperature increases from late 20th century values are 50-100% greater than A1FI increases, with some regions such as the Central US, the Tibetan plateau and Alaska showing a 300-400% increase above A1FI levels.

  10. Future coal production outlooks in the IPCC Emission Scenarios: Are they plausible?

    International Nuclear Information System (INIS)

    Hoeoek, Mikael

    2010-10-01

    Anthropogenic climate change caused by CO 2 emissions is strongly and fundamentally linked to the future energy production. The Special Report on Emission Scenarios (SRES) from 2000 contains 40 scenarios for future fossil fuel production and is used by the IPCC to assess future climate change. Coal, with its 26% share of world energy, is a major source of greenhouse gas emissions and commonly seen as a key contributor to anthropogenic climate change. SRES contains a wide array of different coal production outlooks, ranging from a complete coal phase-out by 2100 to a roughly tenfold increase from present world production levels. Scenarios with high levels of global warming also have high expectations on future fossil fuel production. The assumptions on resource availability are in SRES based on Rogner's assessment of world hydrocarbon resources from 1997, where it is stated that 'the sheer size of the fossil resource base makes fossil sources an energy supply option for many centuries to come'. Regarding the future coal production it is simply assumed to be dependent on economics, accessibility, and environmental acceptance. It is also generally assumed that coal is abundant, and will thus take a dominating part in the future energy system. Depletion, geographical location and geological parameters are not given much influence in the scenario storylines. This study quantifies what the coal production projection in SRES would imply in reality. SRES is riddled with future production projections that would put unreasonable expectation on just a few countries or regions. Is it reasonable to expect that China, among the world's largest coal reserve and resource holder and producer, would increase their production by a factor of 8 over the next 90 years, as implied by certain scenarios? Can massive increases in global coal output really be justified from historical trends or will reality rule out some production outlooks as implausible? The fundamental assumptions

  11. Future coal production outlooks in the IPCC Emission Scenarios: Are they plausible?

    Energy Technology Data Exchange (ETDEWEB)

    Hoeoek, Mikael

    2010-10-15

    Anthropogenic climate change caused by CO{sub 2} emissions is strongly and fundamentally linked to the future energy production. The Special Report on Emission Scenarios (SRES) from 2000 contains 40 scenarios for future fossil fuel production and is used by the IPCC to assess future climate change. Coal, with its 26% share of world energy, is a major source of greenhouse gas emissions and commonly seen as a key contributor to anthropogenic climate change. SRES contains a wide array of different coal production outlooks, ranging from a complete coal phase-out by 2100 to a roughly tenfold increase from present world production levels. Scenarios with high levels of global warming also have high expectations on future fossil fuel production. The assumptions on resource availability are in SRES based on Rogner's assessment of world hydrocarbon resources from 1997, where it is stated that 'the sheer size of the fossil resource base makes fossil sources an energy supply option for many centuries to come'. Regarding the future coal production it is simply assumed to be dependent on economics, accessibility, and environmental acceptance. It is also generally assumed that coal is abundant, and will thus take a dominating part in the future energy system. Depletion, geographical location and geological parameters are not given much influence in the scenario storylines. This study quantifies what the coal production projection in SRES would imply in reality. SRES is riddled with future production projections that would put unreasonable expectation on just a few countries or regions. Is it reasonable to expect that China, among the world's largest coal reserve and resource holder and producer, would increase their production by a factor of 8 over the next 90 years, as implied by certain scenarios? Can massive increases in global coal output really be justified from historical trends or will reality rule out some production outlooks as implausible? The

  12. The Potential Impacts of a Scenario of C02-Induced Climatic Change on Ontafio, Canada.

    Science.gov (United States)

    Cohen, S. J.; Allsopp, T. R.

    1988-07-01

    In 1984, Environment Canada, Ontario Region, with financial and expert support from the Canadian Climate Program, initiated an interdisciplinary pilot study to investigate the potential impact, on Ontario, of a climate scenario which might be anticipated under doubling of atmospheric C02 conditions.There were many uncertainties involved in the climate scenario development and the impacts modeling. Time and resource constraints restricted this study to one climate scenario and to the selection of several available models that could be adapted to these impact studies. The pilot study emphasized the approach and process required to investigate potential regional impacts in an interdisciplinary manner, rather than to produce a forecast of the future.The climate scenario chosen was adapted from experimental model results produced by the Goddard Institute for Space Studies (GISS), coupled with current climate normals. Gridded monthly mean temperatures and precipitation were then used to develop projected biophysical effects. For example, existing physical and/or statistical models were adapted to determine impacts on the Great Lakes net basin supplies, levels and outflows, streamflow subbasin, snowfall and length of snow season.The second phase of the study addressed the impacts of the climate system scenario on natural resources and resource dependent activities. For example, the impacts of projected decreased lake levels and outflows on commercial navigation and hydroelectric generation were assessed. The impacts of the climate scenario on municipal water use, residential beating and cooling energy requirements opportunities and constraints for food production and tourism and recreation were determined quantitatively where models and methodologies were available, otherwise, qualitatively.First order interdependencies of the biophysical effects of the climate scenario and resource dependent activities were evaluated qualitatively in a workshop format culminating in a

  13. Projected climate change futures for Southern Africa

    CSIR Research Space (South Africa)

    Tadross, M

    2017-10-01

    Full Text Available of the Council for Scientific and Industrial Research (CSIR) in South Africa. In these experiments, a variable-resolution atmospheric global circulation model, CCAM, was applied as a regional climate model (RCM) to simulate both present-day and future climate... climate projection Observed climate RCM Climate forcing Climate simulation Statistical downscaling Dynamical downscaling 22 | Second Edition There are four pathways – RCP2.6, RCP4.5, RCP6.0 and RCP8.5. RCP 2.6 describes a scenario of very low...

  14. Assessment of hi-resolution multi-ensemble statistical downscaling regional climate scenarios over Japan

    Science.gov (United States)

    Dairaku, K.

    2017-12-01

    The Asia-Pacific regions are increasingly threatened by large scale natural disasters. Growing concerns that loss and damages of natural disasters are projected to further exacerbate by climate change and socio-economic change. Climate information and services for risk assessments are of great concern. Fundamental regional climate information is indispensable for understanding changing climate and making decisions on when and how to act. To meet with the needs of stakeholders such as National/local governments, spatio-temporal comprehensive and consistent information is necessary and useful for decision making. Multi-model ensemble regional climate scenarios with 1km horizontal grid-spacing over Japan are developed by using CMIP5 37 GCMs (RCP8.5) and a statistical downscaling (Bias Corrected Spatial Disaggregation (BCSD)) to investigate uncertainty of projected change associated with structural differences of the GCMs for the periods of historical climate (1950-2005) and near future climate (2026-2050). Statistical downscaling regional climate scenarios show good performance for annual and seasonal averages for precipitation and temperature. The regional climate scenarios show systematic underestimate of extreme events such as hot days of over 35 Celsius and annual maximum daily precipitation because of the interpolation processes in the BCSD method. Each model projected different responses in near future climate because of structural differences. The most of CMIP5 37 models show qualitatively consistent increase of average and extreme temperature and precipitation. The added values of statistical/dynamical downscaling methods are also investigated for locally forced nonlinear phenomena, extreme events.

  15. Potential Distribution Predicted for Rhynchophorus ferrugineus in China under Different Climate Warming Scenarios.

    Directory of Open Access Journals (Sweden)

    Xuezhen Ge

    Full Text Available As the primary pest of palm trees, Rhynchophorus ferrugineus (Olivier (Coleoptera: Curculionidae has caused serious harm to palms since it first invaded China. The present study used CLIMEX 1.1 to predict the potential distribution of R. ferrugineus in China according to both current climate data (1981-2010 and future climate warming estimates based on simulated climate data for the 2020s (2011-2040 provided by the Tyndall Center for Climate Change Research (TYN SC 2.0. Additionally, the Ecoclimatic Index (EI values calculated for different climatic conditions (current and future, as simulated by the B2 scenario were compared. Areas with a suitable climate for R. ferrugineus distribution were located primarily in central China according to the current climate data, with the northern boundary of the distribution reaching to 40.1°N and including Tibet, north Sichuan, central Shaanxi, south Shanxi, and east Hebei. There was little difference in the potential distribution predicted by the four emission scenarios according to future climate warming estimates. The primary prediction under future climate warming models was that, compared with the current climate model, the number of highly favorable habitats would increase significantly and expand into northern China, whereas the number of both favorable and marginally favorable habitats would decrease. Contrast analysis of EI values suggested that climate change and the density of site distribution were the main effectors of the changes in EI values. These results will help to improve control measures, prevent the spread of this pest, and revise the targeted quarantine areas.

  16. Climate change scenarios for Canada's national parks : a users manual

    International Nuclear Information System (INIS)

    Jones, B.; Wun, N.; Scott, D.; Barrow, E.

    2003-01-01

    A screening level impact assessment has shown that the implications of climate change for Canada's national parks are considerable. Climate change scenarios will be an important component in examining the potential climate change impacts and the implications of adaptation strategies. Most climate change scenarios are based on vulnerability, impact and adaptation research. This user's manual describes the development of 3 types of climate change scenarios including scenarios from global climate models (GCMs), bioclimate scenarios and daily scenarios for use by Parks Canada. The manual offers advice to first-time climate change scenario users in choosing and interpreting climate change, bioclimate and daily scenarios. It also addresses the theoretical and practical foundations of each climate scenario and shows how to access data regarding the various scenarios. Hands-on exercises are included as an interpretive aid. 20 refs., 4 tabs., 19 figs

  17. On the role of climate scenarios for adaptation planning

    International Nuclear Information System (INIS)

    Dessai, S.; Xianfu Lu; Risbey, J.S.

    2005-01-01

    Climate scenarios have been widely used in impact, vulnerability and adaptation assessments of climate change. However, few studies have actually looked at the role played by climate scenarios in adaptation planning. This paper examines how climate scenarios fit in three broad adaptation frameworks: the IPCC approach, risk approaches, and human development approaches. The use (or not) of climate scenarios in three real projects, corresponding to each adaptation approach, is investigated. It is shown that the role played by climate scenarios is dependant on the adaptation assessment approach, availability of technical and financial capacity to handle scenario information, and the type of adaptation being considered. (author)

  18. Using Impact-Relevant Sensitivities to Efficiently Evaluate and Select Climate Change Scenarios

    Science.gov (United States)

    Vano, J. A.; Kim, J. B.; Rupp, D. E.; Mote, P.

    2014-12-01

    We outline an efficient approach to help researchers and natural resource managers more effectively use global climate model information in their long-term planning. The approach provides an estimate of the magnitude of change of a particular impact (e.g., summertime streamflow) from a large ensemble of climate change projections prior to detailed analysis. These estimates provide both qualitative information as an end unto itself (e.g., the distribution of future changes between emissions scenarios for the specific impact) and a judicious, defensible evaluation structure that can be used to qualitatively select a sub-set of climate models for further analysis. More specifically, the evaluation identifies global climate model scenarios that both (1) span the range of possible futures for the variable/s most important to the impact under investigation, and (2) come from global climate models that adequately simulate historical climate, providing plausible results for the future climate in the region of interest. To identify how an ecosystem process responds to projected future changes, we methodically sample, using a simple sensitivity analysis, how an impact variable (e.g., streamflow magnitude, vegetation carbon) responds locally to projected regional temperature and precipitation changes. We demonstrate our technique over the Pacific Northwest, focusing on two types of impacts each in three distinct geographic settings: (a) changes in streamflow magnitudes in critical seasons for water management in the Willamette, Yakima, and Upper Columbia River basins; and (b) changes in annual vegetation carbon in the Oregon and Washington Coast Ranges, Western Cascades, and Columbia Basin ecoregions.

  19. Using interviews and focus groups with resource managers to explore risk perceptions and responses to climate scenarios

    Science.gov (United States)

    Clifford, K. R.; Travis, W.; Rangwala, I.; Rondeau, R.; Young, L.

    2016-12-01

    Resource managers in the western U.S. are increasingly tasked to incorporate climate change into management decisions and long-term planning, but this task is complicated by multiple challenges, among them the need to bridge between the differing perspectives and prerogatives of scientists and resource managers. As part of a larger, iterative, interdisciplinary, multi-landscape research project that built on a prior climate vulnerability research, we conducted more than 50 semi-structured interviews and four focus groups with resource managers in the Gunnison Basin in western Colorado. The interviews addressed the managers' risk perceptions and knowledge about the resources and landscapes, while the focus groups asked resource managers to reflect on their own resource decision-making in light of three narrative future climate scenarios created by scientists on the research team. While time-intensive, the interviews and focus groups produced important insights into the managers' understanding of both the resources in question and the future climate scenarios. We found that the managers' mental models of their systems, and their conceptions of landscape changes and future threats, were diverse and sometimes in conflict with those held by the research team. The managers' responses to the climate scenarios reflected divergent and nuanced perceptions of risk, adaptation and uncertainty, heavily shaped by personal experience—which could be a constraint under rapidly changing future conditions. Our deployment of social science methodologies facilitated the co-production of climate adaptation strategies and a bridge between and among scientists and managers. The participants found the focus groups helpful since they (1) provided space to focus on decision-making under climate change, rather than fixate on details of the science, and (2) facilitated interaction with colleagues from other agencies. Climate scientists used participant feedback to inform future scenario

  20. Projected future distributions of vectors of Trypanosoma cruzi in North America under climate change scenarios.

    Directory of Open Access Journals (Sweden)

    Miroslava Garza

    2014-05-01

    Full Text Available Chagas disease kills approximately 45 thousand people annually and affects 10 million people in Latin America and the southern United States. The parasite that causes the disease, Trypanosoma cruzi, can be transmitted by insects of the family Reduviidae, subfamily Triatominae. Any study that attempts to evaluate risk for Chagas disease must focus on the ecology and biogeography of these vectors. Expected distributional shifts of vector species due to climate change are likely to alter spatial patterns of risk of Chagas disease, presumably through northward expansion of high risk areas in North America.We forecast the future (2050 distributions in North America of Triatoma gerstaeckeri and T. sanguisuga, two of the most common triatomine species and important vectors of Trypanosoma cruzi in the southern United States. Our aim was to analyze how climate change might affect the future shift of Chagas disease in North America using a maximum entropy algorithm to predict changes in suitable habitat based on vector occurrence points and predictive environmental variables. Projections based on three different general circulation models (CCCMA, CSIRO, and HADCM3 and two IPCC scenarios (A2 and B2 were analyzed. Twenty models were developed for each case and evaluated via cross-validation. The final model averages result from all twenty of these models. All models had AUC >0.90, which indicates that the models are robust. Our results predict a potential northern shift in the distribution of T. gerstaeckeri and a northern and southern distributional shift of T. sanguisuga from its current range due to climate change.The results of this study provide baseline information for monitoring the northward shift of potential risk from Chagas disease in the face of climate change.

  1. Modeling Malaria Vector Distribution under Climate Change Scenarios in Kenya

    Science.gov (United States)

    Ngaina, J. N.

    2017-12-01

    Projecting the distribution of malaria vectors under climate change is essential for planning integrated vector control strategies for sustaining elimination and preventing reintroduction of malaria. However, in Kenya, little knowledge exists on the possible effects of climate change on malaria vectors. Here we assess the potential impact of future climate change on locally dominant Anopheles vectors including Anopheles gambiae, Anopheles arabiensis, Anopheles merus, Anopheles funestus, Anopheles pharoensis and Anopheles nili. Environmental data (Climate, Land cover and elevation) and primary empirical geo-located species-presence data were identified. The principle of maximum entropy (Maxent) was used to model the species' potential distribution area under paleoclimate, current and future climates. The Maxent model was highly accurate with a statistically significant AUC value. Simulation-based estimates suggest that the environmentally suitable area (ESA) for Anopheles gambiae, An. arabiensis, An. funestus and An. pharoensis would increase under all two scenarios for mid-century (2016-2045), but decrease for end century (2071-2100). An increase in ESA of An. Funestus was estimated under medium stabilizing (RCP4.5) and very heavy (RCP8.5) emission scenarios for mid-century. Our findings can be applied in various ways such as the identification of additional localities where Anopheles malaria vectors may already exist, but has not yet been detected and the recognition of localities where it is likely to spread to. Moreover, it will help guide future sampling location decisions, help with the planning of vector control suites nationally and encourage broader research inquiry into vector species niche modeling

  2. Choosing and using climate change scenarios for ecological-impact assessments and conservation decisions

    Science.gov (United States)

    Amy K. Snover,; Nathan J. Mantua,; Littell, Jeremy; Michael A. Alexander,; Michelle M. McClure,; Janet Nye,

    2013-01-01

    Increased concern over climate change is demonstrated by the many efforts to assess climate effects and develop adaptation strategies. Scientists, resource managers, and decision makers are increasingly expected to use climate information, but they struggle with its uncertainty. With the current proliferation of climate simulations and downscaling methods, scientifically credible strategies for selecting a subset for analysis and decision making are needed. Drawing on a rich literature in climate science and impact assessment and on experience working with natural resource scientists and decision makers, we devised guidelines for choosing climate-change scenarios for ecological impact assessment that recognize irreducible uncertainty in climate projections and address common misconceptions about this uncertainty. This approach involves identifying primary local climate drivers by climate sensitivity of the biological system of interest; determining appropriate sources of information for future changes in those drivers; considering how well processes controlling local climate are spatially resolved; and selecting scenarios based on considering observed emission trends, relative importance of natural climate variability, and risk tolerance and time horizon of the associated decision. The most appropriate scenarios for a particular analysis will not necessarily be the most appropriate for another due to differences in local climate drivers, biophysical linkages to climate, decision characteristics, and how well a model simulates the climate parameters and processes of interest. Given these complexities, we recommend interaction among climate scientists, natural and physical scientists, and decision makers throughout the process of choosing and using climate-change scenarios for ecological impact assessment.

  3. Investigating Future Climate Scenarios

    Science.gov (United States)

    Dempsey, Chris; Bodzin, Alec; Anastasio, David; Sahagian, Dork; Cirucci, Lori

    2012-01-01

    One of the most alarming impacts of projected climate change is a significant rise in sea level. Sea level has varied by hundreds of meters over geologic time, yet these changes have generally been slow paced, allowing ecosystems to adjust to changing land surface and marine habitats. Since the Industrial Revolution, anthropogenic emissions have…

  4. The regionalization of climate scenarios: towards impact studies

    International Nuclear Information System (INIS)

    Cariolle, D.

    1999-01-01

    This article describes the different types of climate numerical models and their use to obtain scenarios for climate change due to the greenhouse gas increase. Results from global or meso-scale models are given. They illustrate the existing ways of representing climatic conditions at global and regional scales. Combined with statistical approaches based for example on the techniques of analogues, their use gives a coherent strategy going from global scale numerical simulations to the study of impacts at a local scale. In the future the increase of computer power should allow a better description of the small processes and a wider range of impact studies on natural ecosystems and various economic sectors. The results of these studies will be very useful to define a coherent policy in response to observed or predicted climate changes. (author)

  5. Assessment of climate change scenarios for Saudi Arabia using data from global climate models

    International Nuclear Information System (INIS)

    Husain, T.; Chowdhury, S.

    2009-01-01

    This study assesses available scientific information and data to predict changes in the climatic parameters in Saudi Arabia for understanding the impacts for mitigation and/or adaptation. Meteorological data from 26 synoptic stations were analyzed in this study. Various climatic change scenarios were reviewed and A 2 and B 2 climatic scenario families were selected. In order to assess long-term global impact, global climatic models were used to simulate changes in temperature, precipitation, relative humidity, solar radiation, and wind circulation. Using global climate model (GCM), monthly time series data was retrieved for Longitude 15 o N to 35 o N and 32.5 o E to 60 o E covering the Kingdom of Saudi Arabia from 1970 to 2100 for all grids. Taking averages of 1970 to 2003 as baseline, change in temperature, relative humidity and precipitation were estimated for the base period. A comparative evaluation was performed for predictive capabilities of these models for temperature, precipitation and relative humidity. Available meteorological data from 1970 to 2003 was used to determine trends. This paper discusses the inconsistency in these parameters for decision-making and recommends future studies by linking global climate models with a suitable regional climate modeling tool. (author)

  6. Analysis of regional natural flow for evaluation of flood risk according to RCP climate change scenarios

    Science.gov (United States)

    Lee, J. Y.; Chae, B. S.; Wi, S.; KIm, T. W.

    2017-12-01

    Various climate change scenarios expect the rainfall in South Korea to increase by 3-10% in the future. The future increased rainfall has significant effect on the frequency of flood in future as well. This study analyzed the probability of future flood to investigate the stability of existing and new installed hydraulic structures and the possibility of increasing flood damage in mid-sized watersheds in South Korea. To achieve this goal, we first clarified the relationship between flood quantiles acquired from the flood-frequency analysis (FFA) and design rainfall-runoff analysis (DRRA) in gauged watersheds. Then, after synthetically generating the regional natural flow data according to RCP climate change scenarios, we developed mathematical formulas to estimate future flood quantiles based on the regression between DRRA and FFA incorporated with regional natural flows in unguaged watersheds. Finally, we developed a flood risk map to investigate the change of flood risk in terms of the return period for the past, present, and future. The results identified that the future flood quantiles and risks would increase in accordance with the RCP climate change scenarios. Because the regional flood risk was identified to increase in future comparing with the present status, comprehensive flood control will be needed to cope with extreme floods in future.

  7. Scenarios for future agriculture in Finland: a Delphi study among agri-food sector stakeholders

    Directory of Open Access Journals (Sweden)

    P. RIKKONEN

    2008-12-01

    Full Text Available This article presents alternative scenarios for future agriculture in Finland up to 2025. These scenarios are the results of a large Delphi study carried out among Finnish agri-food sector stakeholders. The Delphi panel members gave their future view on desirable and probable futures. From these two dimensions, three scenarios were elaborated through the future images – the subjective future path and the importance analysis. The scenarios represent a technology optimistic “day-dream agriculture”, a probable future as “industrialised agriculture” and an undesirable future path as “drifting agriculture”. Two mini-scenarios are also presented. They are based on a discontinuity event as an unexpected impact of climate change and an analogy event as an ecological breakdown due to the expansive animal disease epidemics. In both mini-scenarios, the directions of storylines are dramatically changed. The scenarios support strategic planning introducing not only one forecast but alternative outcomes as a basis for future strategy and decisions. In this study the scenarios were constructed to address the opportunities as a desired vision and also the threats as to an undesirable future in the agricultural sector. These results bring to the table a Finnish agri-food expert community view of the future directions of relevant key issues in the agricultural policy agenda.;

  8. Future Extreme Heat Scenarios to Enable the Assessment of Climate Impacts on Public Health over the Coterminous U.S.

    Science.gov (United States)

    Quattrochi, Dale A.; Crosson, William L.; Al-Hamdan, Mohammad Z.; Estes, Maurice G., Jr.

    2013-01-01

    In the United States, extreme heat is the most deadly weather-related hazard. In the face of a warming climate and urbanization, which contributes to local-scale urban heat islands, it is very likely that extreme heat events (EHEs) will become more common and more severe in the U.S. This research seeks to provide historical and future measures of climate-driven extreme heat events to enable assessments of the impacts of heat on public health over the coterminous U.S. We use atmospheric temperature and humidity information from meteorological reanalysis and from Global Climate Models (GCMs) to provide data on past and future heat events. The focus of research is on providing assessments of the magnitude, frequency and geographic distribution of extreme heat in the U.S. to facilitate public health studies. In our approach, long-term climate change is captured with GCM outputs, and the temporal and spatial characteristics of short-term extremes are represented by the reanalysis data. Two future time horizons for 2040 and 2090 are compared to the recent past period of 1981- 2000. We characterize regional-scale temperature and humidity conditions using GCM outputs for two climate change scenarios (A2 and A1B) defined in the Special Report on Emissions Scenarios (SRES). For each future period, 20 years of multi-model GCM outputs are analyzed to develop a 'heat stress climatology' based on statistics of extreme heat indicators. Differences between the two future and the past period are used to define temperature and humidity changes on a monthly time scale and regional spatial scale. These changes are combined with the historical meteorological data, which is hourly and at a spatial scale (12 km), to create future climate realizations. From these realizations, we compute the daily heat stress measures and related spatially-specific climatological fields, such as the mean annual number of days above certain thresholds of maximum and minimum air temperatures, heat indices

  9. Future PMPs Estimation in Korea under AR5 RCP 8.5 Climate Change Scenario: Focus on Dew Point Temperature Change

    Science.gov (United States)

    Okjeong, Lee; Sangdan, Kim

    2016-04-01

    According to future climate change scenarios, future temperature is expected to increase gradually. Therefore, it is necessary to reflect the effects of these climate changes to predict Probable Maximum Precipitations (PMPs). In this presentation, PMPs will be estimated with future dew point temperature change. After selecting 174 major storm events from 1981 to 2005, new PMPs will be proposed with respect to storm areas (25, 100, 225, 400, 900, 2,025, 4,900, 10,000 and 19,600 km2) and storm durations (1, 2, 4, 6, 8, 12, 18, 24, 48 and 72 hours) using the Korea hydro-meteorological method. Also, orographic transposition factor will be applied in place of the conventional terrain impact factor which has been used in previous Korean PMPs estimation reports. After estimating dew point temperature using future temperature and representative humidity information under the Korea Meteorological Administration AR5 RCP 8.5, changes in the PMPs under dew point temperature change will be investigated by comparison with present and future PMPs. This research was supported by a grant(14AWMP-B082564-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

  10. Climate change streamflow scenarios designed for critical period water resources planning studies

    Science.gov (United States)

    Hamlet, A. F.; Snover, A. K.; Lettenmaier, D. P.

    2003-04-01

    Long-range water planning in the United States is usually conducted by individual water management agencies using a critical period planning exercise based on a particular period of the observed streamflow record and a suite of internally-developed simulation tools representing the water system. In the context of planning for climate change, such an approach is flawed in that it assumes that the future climate will be like the historic record. Although more sophisticated planning methods will probably be required as time goes on, a short term strategy for incorporating climate uncertainty into long-range water planning as soon as possible is to create alternate inputs to existing planning methods that account for climate uncertainty as it affects both supply and demand. We describe a straight-forward technique for constructing streamflow scenarios based on the historic record that include the broad-based effects of changed regional climate simulated by several global climate models (GCMs). The streamflow scenarios are based on hydrologic simulations driven by historic climate data perturbed according to regional climate signals from four GCMs using the simple "delta" method. Further data processing then removes systematic hydrologic model bias using a quantile-based bias correction scheme, and lastly, the effects of random errors in the raw hydrologic simulations are removed. These techniques produce streamflow scenarios that are consistent in time and space with the historic streamflow record while incorporating fundamental changes in temperature and precipitation from the GCM scenarios. Planning model simulations based on these climate change streamflow scenarios can therefore be compared directly to planning model simulations based on the historic record of streamflows to help planners understand the potential impacts of climate uncertainty. The methods are currently being tested and refined in two large-scale planning exercises currently being conducted in the

  11. Impact of Future Climate Change on Wheat Production: A Simulated Case for China’s Wheat System

    Directory of Open Access Journals (Sweden)

    Dengpan Xiao

    2018-04-01

    Full Text Available With regard to global climate change due to increasing concentration in greenhouse gases, particularly carbon dioxide (CO2, it is important to examine its potential impact on crop development and production. We used statistically-downscaled climate data from 28 Global Climate Models (GCMs and the Agricultural Production Systems sIMulator (APSIM–Wheat model to simulate the impact of future climate change on wheat production. Two future scenarios (RCP4.5 and RCP8.5 were used for atmospheric greenhouse gas concentrations during two different future periods (2031–2060 referred to as 40S and 2071–2100 referred to as 80S. Relative to the baseline period (1981–2010, the trends in mean daily temperature and radiation significantly increased across all stations under the future scenarios. Furthermore, the trends in precipitation increased under future climate scenarios. Due to climate change, the trend in wheat phenology significantly advanced. The early flowering and maturity dates shortened both the vegetative growth stage (VGP and the whole growth period (WGP. As the advance in the days of maturity was more than that in flowering, the length of the reproductive growth stage (RGP of spring wheat was shortened. However, as the advance in the date of maturity was less than that of flowering, the RGP of winter wheat was extended. When the increase in CO2 concentration under future climate scenarios was not considered, the trend in change in wheat production for the baseline declined. In contrast, under increased CO2 concentration, the trend in wheat yield increased for most of the stations (except for Nangong station under future climatic conditions. Winter wheat and spring wheat evapotranspiration (ET decreased across all stations under the two future climate scenarios. As wheat yield increased with decreasing water consumption (as ET under the future climatic conditions, water use efficiency (WUE significantly improved in the future period.

  12. Accounting for radiative forcing from albedo change in future global land-use scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Andrew D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Calvin, Katherine V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Collins, William D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Edmonds, James A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-08-01

    We demonstrate the effectiveness of a new method for quantifying radiative forcing from land use and land cover change (LULCC) within an integrated assessment model, the Global Change Assessment Model (GCAM). The method relies on geographically differentiated estimates of radiative forcing from albedo change associated with major land cover transitions derived from the Community Earth System Model. We find that conversion of 1 km² of woody vegetation (forest and shrublands) to non-woody vegetation (crops and grassland) yields between 0 and –0.71 nW/m² of globally averaged radiative forcing determined by the vegetation characteristics, snow dynamics, and atmospheric radiation environment characteristic within each of 151 regions we consider globally. Across a set of scenarios designed to span a range of potential future LULCC, we find LULCC forcing ranging from –0.06 to –0.29 W/m² by 2070 depending on assumptions regarding future crop yield growth and whether climate policy favors afforestation or bioenergy crops. Inclusion of this previously uncounted forcing in the policy targets driving future climate mitigation efforts leads to changes in fossil fuel emissions on the order of 1.5 PgC/yr by 2070 for a climate forcing limit of 4.5 Wm–2, corresponding to a 12–67 % change in fossil fuel emissions depending on the scenario. Scenarios with significant afforestation must compensate for albedo-induced warming through additional emissions reductions, and scenarios with significant deforestation need not mitigate as aggressively due to albedo-induced cooling. In all scenarios considered, inclusion of albedo forcing in policy targets increases forest and shrub cover globally.

  13. Intercomparison of hydrological model structures and calibration approaches in climate scenario impact projections

    Science.gov (United States)

    Vansteenkiste, Thomas; Tavakoli, Mohsen; Ntegeka, Victor; De Smedt, Florimond; Batelaan, Okke; Pereira, Fernando; Willems, Patrick

    2014-11-01

    The objective of this paper is to investigate the effects of hydrological model structure and calibration on climate change impact results in hydrology. The uncertainty in the hydrological impact results is assessed by the relative change in runoff volumes and peak and low flow extremes from historical and future climate conditions. The effect of the hydrological model structure is examined through the use of five hydrological models with different spatial resolutions and process descriptions. These were applied to a medium sized catchment in Belgium. The models vary from the lumped conceptual NAM, PDM and VHM models over the intermediate detailed and distributed WetSpa model to the fully distributed MIKE SHE model. The latter model accounts for the 3D groundwater processes and interacts bi-directionally with a full hydrodynamic MIKE 11 river model. After careful and manual calibration of these models, accounting for the accuracy of the peak and low flow extremes and runoff subflows, and the changes in these extremes for changing rainfall conditions, the five models respond in a similar way to the climate scenarios over Belgium. Future projections on peak flows are highly uncertain with expected increases as well as decreases depending on the climate scenario. The projections on future low flows are more uniform; low flows decrease (up to 60%) for all models and for all climate scenarios. However, the uncertainties in the impact projections are high, mainly in the dry season. With respect to the model structural uncertainty, the PDM model simulates significantly higher runoff peak flows under future wet scenarios, which is explained by its specific model structure. For the low flow extremes, the MIKE SHE model projects significantly lower low flows in dry scenario conditions in comparison to the other models, probably due to its large difference in process descriptions for the groundwater component, the groundwater-river interactions. The effect of the model

  14. Resource management and operations in central North Dakota: Climate change scenario planning workshop summary November 12-13, 2015, Bismarck, ND

    Science.gov (United States)

    Fisichelli, Nicholas A.; Schuurman, Gregor; Symstad, Amy J.; Ray, Andrea; Friedman, Jonathan M.; Miller, Brian; Rowland, Erika

    2016-01-01

    The Scaling Climate Change Adaptation in the Northern Great Plains through Regional Climate Summaries and Local Qualitative-Quantitative Scenario Planning Workshops project synthesizes climate data into 3-5 distinct but plausible climate summaries for the northern Great Plains region; crafts quantitative summaries of these climate futures for two focal areas; and applies these local summaries by developing climate-resource-management scenarios through participatory workshops and, where possible, simulation models. The two focal areas are central North Dakota and southwest South Dakota (Figure 1). The primary objective of this project is to help resource managers and scientists in a focal area use scenario planning to make management and planning decisions based on assessments of critical future uncertainties.This report summarizes project work for public and tribal lands in the central North Dakota focal area, with an emphasis on Knife River Indian Villages National Historic Site. The report explainsscenario planning as an adaptation tool in general, then describes how it was applied to the central North Dakota focal area in three phases. Priority resource management and climate uncertainties were identified in the orientation phase. Local climate summaries for relevant, divergent, and challenging climate scenarios were developed in the second phase. In the final phase, a two-day scenario planning workshop held November 12-13, 2015 in Bismarck, ND, featured scenario development and implications, testing management decisions, and methods for operationalizing scenario planning outcomes.

  15. Analysis of Current and Future Water Demands in the Upper Indus Basin under IPCC Climate and Socio-Economic Scenarios Using a Hydro-Economic WEAP Model

    Directory of Open Access Journals (Sweden)

    Ali Amin

    2018-04-01

    Full Text Available Pakistan is currently facing physical and economic water scarcity issues that are further complicated by the rapid increase in its population and by climate change. Many studies have focused on the physical water scarcity using hydrological modeling and the measurement of the impact of climate change on water resources in the Upper Indus Basin (UIB. However, few studies have concentrated on the importance of the economic water scarcity, that is, the water management issue under the looming impacts of climate change and the population explosion of Pakistan. The purpose of this study is to develop a management strategy which helps to achieve water security and sustainability in the Upper Indus Basin (UIB with the help of different socio-economic and climate change scenarios using WEAP (Water Evaluation and Planning modeling. The streamflow data of five sub-basins (Gilgit, Hunza, Shigar, Shyok, and Astore and the entire Upper Indus Basin (UIB were calibrated (2006–2010 and validated (2011–2014 in the WEAP model. The coefficient of determination and Nash Sutcliffe values for the calibration period ranged from 0.81–0.96. The coefficient of determination and the Nash Sutcliffe values for the validation period ranged from 0.85–0.94. After the development of the WEAP model, the analysis of the unmet water demand and percent coverage of the water demand for the period of 2006–2050 was computed. Different scenarios were generated for external driving factors (population growth, urbanization, and living standards and the impact of climate change to evaluate their effect on the current water supply system. The results indicated that the future unmet water demand is likely to reach 134 million cubic meters (mcm by the year 2050 and that the external driving factors are putting more pressure on the supply service. This study further explores the importance of proposed dams (likely to be built until 2025 by WAPDA (Water and Power Development

  16. Linking regional stakeholder scenarios and shared socioeconomic pathways: Quantified West African food and climate futures in a global context

    NARCIS (Netherlands)

    Palazzo, Amanda; Vervoort, Joost M.; Mason-D’Croz, Daniel; Rutting, Lucas; Havlík, Petr; Islam, Shahnila; Bayala, Jules; Valin, Hugo; Kadi Kadi, Hamé Abdou; Thornton, Philip; Zougmore, Robert

    2017-01-01

    The climate change research community’s shared socioeconomic pathways (SSPs) are a set of alternative global development scenarios focused on mitigation of and adaptation to climate change. To use these scenarios as a global context that is relevant for policy guidance at regional and national

  17. Choosing and using climate-change scenarios for ecological-impact assessments and conservation decisions.

    Science.gov (United States)

    Snover, Amy K; Mantua, Nathan J; Littell, Jeremy S; Alexander, Michael A; McClure, Michelle M; Nye, Janet

    2013-12-01

    Increased concern over climate change is demonstrated by the many efforts to assess climate effects and develop adaptation strategies. Scientists, resource managers, and decision makers are increasingly expected to use climate information, but they struggle with its uncertainty. With the current proliferation of climate simulations and downscaling methods, scientifically credible strategies for selecting a subset for analysis and decision making are needed. Drawing on a rich literature in climate science and impact assessment and on experience working with natural resource scientists and decision makers, we devised guidelines for choosing climate-change scenarios for ecological impact assessment that recognize irreducible uncertainty in climate projections and address common misconceptions about this uncertainty. This approach involves identifying primary local climate drivers by climate sensitivity of the biological system of interest; determining appropriate sources of information for future changes in those drivers; considering how well processes controlling local climate are spatially resolved; and selecting scenarios based on considering observed emission trends, relative importance of natural climate variability, and risk tolerance and time horizon of the associated decision. The most appropriate scenarios for a particular analysis will not necessarily be the most appropriate for another due to differences in local climate drivers, biophysical linkages to climate, decision characteristics, and how well a model simulates the climate parameters and processes of interest. Given these complexities, we recommend interaction among climate scientists, natural and physical scientists, and decision makers throughout the process of choosing and using climate-change scenarios for ecological impact assessment. Selección y Uso de Escenarios de Cambio Climático para Estudios de Impacto Ecológico y Decisiones de Conservación. © 2013 Society for Conservation Biology.

  18. Remote-sensing based approach to forecast habitat quality under climate change scenarios.

    Directory of Open Access Journals (Sweden)

    Juan M Requena-Mullor

    Full Text Available As climate change is expected to have a significant impact on species distributions, there is an urgent challenge to provide reliable information to guide conservation biodiversity policies. In addressing this challenge, we propose a remote sensing-based approach to forecast the future habitat quality for European badger, a species not abundant and at risk of local extinction in the arid environments of southeastern Spain, by incorporating environmental variables related with the ecosystem functioning and correlated with climate and land use. Using ensemble prediction methods, we designed global spatial distribution models for the distribution range of badger using presence-only data and climate variables. Then, we constructed regional models for an arid region in the southeast Spain using EVI (Enhanced Vegetation Index derived variables and weighting the pseudo-absences with the global model projections applied to this region. Finally, we forecast the badger potential spatial distribution in the time period 2071-2099 based on IPCC scenarios incorporating the uncertainty derived from the predicted values of EVI-derived variables. By including remotely sensed descriptors of the temporal dynamics and spatial patterns of ecosystem functioning into spatial distribution models, results suggest that future forecast is less favorable for European badgers than not including them. In addition, change in spatial pattern of habitat suitability may become higher than when forecasts are based just on climate variables. Since the validity of future forecast only based on climate variables is currently questioned, conservation policies supported by such information could have a biased vision and overestimate or underestimate the potential changes in species distribution derived from climate change. The incorporation of ecosystem functional attributes derived from remote sensing in the modeling of future forecast may contribute to the improvement of the

  19. Climate change scenarios over the Mediterranean Basin; Scenari di cambiamento climatico sul bacino del Mediterraneo

    Energy Technology Data Exchange (ETDEWEB)

    Casaioli, Marco; Sciortino, Maurizio [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Ambiente

    1997-11-01

    The results of climatic simulation over the Mediterranean Basin made available by major climate research centres, have been analyzed with the purposes of defining possible future climate scenarios. The validation of modelling results of present climate with observed climatology makes possible to assess capabilities and limitations of the General Circulation Models over the area under consideration. The evaluation of climate change scenarios in conditions of doubling atmospheric concentration of CO 2 gives indications on the expected magnitude of variation of temperature and precipitation. The results available agree to indicate a possible warming of air temperature but as far as concerned precipitation there is still no consensus between the climate projections produced by the different models considered in this study.

  20. A scenario framework to explore the future migration and adaptation in deltas: A multi-scale and participatory approach

    Science.gov (United States)

    Kebede, Abiy S.; Nicholls, Robert J.; Allan, Andrew; Arto, Inaki; Cazcarro, Ignacio; Fernandes, Jose A.; Hill, Chris T.; Hutton, Craig W.; Kay, Susan; Lawn, Jon; Lazar, Attila N.; Whitehead, Paul W.

    2017-04-01

    Coastal deltas are home for over 500 million people globally, and they have been identified as one of the most vulnerable coastal environments during the 21st century. They are susceptible to multiple climatic (e.g., sea-level rise, storm surges, change in temperature and precipitation) and socio-economic (e.g., human-induced subsidence, population and urbanisation changes, GDP growth) drivers of change. These drivers also operate at multiple scales, ranging from local to global and short- to long-term. This highlights the complex challenges deltas face in terms of both their long-term sustainability as well as the well-being of their residents and the health of ecosystems that support the livelihood of large (often very poor) population under uncertain changing conditions. A holistic understanding of these challenges and the potential impacts of future climate and socio-economic changes is central for devising robust adaptation policies. Scenario analysis has long been identified as a strategic management tool to explore future climate change and its impacts for supporting robust decision-making under uncertainty. This work presents the overall scenario framework, methodology, and processes adopted for the development of scenarios in the DECCMA* project. DECCMA is analysing the future of three deltas in South Asia and West Africa: (i) the Ganges-Brahmaputra-Meghna (GBM) delta (Bangladesh/India), (ii) the Mahanadi delta (India), and (iii) the Volta delta (Ghana). This includes comparisons between these three deltas. Hence, the scenario framework comprises a multi-scale hybrid approach, with six levels of scenario considerations: (i) global (climate change, e.g., sea-level rise, temperature change; and socio-economic assumptions, e.g., population and urbanisation changes, GDP growth); (ii) regional catchments (e.g., river flow modelling), (iii) regional seas (e.g., fisheries modelling), (iv) regional politics (e.g., transboundary disputes), (v) national (e.g., socio

  1. Uncertainties in Predicting Tourist Flows Under Scenarios of Climate Change. Editorial Essay

    International Nuclear Information System (INIS)

    Goessling, S.; Hall, C.M.

    2006-01-01

    Tourism is largely dependent on climatic and natural resources. For example, 'warmer' climates generally constitute preferred environments for recreation and leisure, and natural resources such as fresh water, biodiversity, beaches or landscapes are essential preconditions for tourism. Global environmental change threatens these foundations of tourism through climate change, modifications of global biogeochemical cycles, land alteration, the loss of non-renewable resources, unsustainable use of renewable resources and loss of biodiversity. This has raised concerns that tourist flows will change to the advantage or disadvantage of destinations, which is of major concern to local and national economies, as tourism is one of the largest economic sectors of the world, and of great importance for many destinations. In consequence, an increasing number of publications have sought to analyse travel flows in relation to climatic and socio-economic parameters. The ultimate goal has been to develop scenarios for future travel flows, possibly including 'most at risk destinations', both in economic and in environmental terms. Such scenarios are meant to help the tourist industry in planning future operations, and they are of importance in developing plans for adaptation

  2. Uncertainties in Predicting Tourist Flows Under Scenarios of Climate Change. Editorial Essay

    Energy Technology Data Exchange (ETDEWEB)

    Goessling, S. [Department of Service Management, Lund University, Box 882, 251 08 Helsingborg (Sweden); Hall, C.M. [Department of Tourism, University of Otago, Otago (New Zealand)

    2006-12-15

    Tourism is largely dependent on climatic and natural resources. For example, 'warmer' climates generally constitute preferred environments for recreation and leisure, and natural resources such as fresh water, biodiversity, beaches or landscapes are essential preconditions for tourism. Global environmental change threatens these foundations of tourism through climate change, modifications of global biogeochemical cycles, land alteration, the loss of non-renewable resources, unsustainable use of renewable resources and loss of biodiversity. This has raised concerns that tourist flows will change to the advantage or disadvantage of destinations, which is of major concern to local and national economies, as tourism is one of the largest economic sectors of the world, and of great importance for many destinations. In consequence, an increasing number of publications have sought to analyse travel flows in relation to climatic and socio-economic parameters. The ultimate goal has been to develop scenarios for future travel flows, possibly including 'most at risk destinations', both in economic and in environmental terms. Such scenarios are meant to help the tourist industry in planning future operations, and they are of importance in developing plans for adaptation.

  3. Scenario Planning Provides a Framework for Climate Change Adaptation in the National Park Service

    Science.gov (United States)

    Welling, L. A.

    2012-12-01

    Resource management decisions must be based on future expectations. Abundant evidence suggests climate change will have highly consequential effects on the Nation's natural and cultural resources, but specific impacts are difficult to accurately predict. This situation of too much information but not enough specificity can often lead to either paralysis or denial for decision makers. Scenario planning is an emerging tool for climate change adaptation that provides a structured framework for identifying and exploring critical drivers of change and their uncertain outcomes. Since 2007, the National Park Service (NPS) has been working with its partners to develop and apply a scenario-based approach for adaptation planning that integrates quantitative, model-driven, climate change projections with qualitative, participatory exercises to explore management and policy options under a range of future conditions. Major outcomes of this work are (1) increased understanding of key scientific results and uncertainties, (2) incorporation of alternative perspectives into park and landscape level planning, (3) identification of "no brainer" and "no gainer" actions, (4) strengthening of regional science-management partnerships, and (5) overall improved capacity for flexible decision making. The basic approach employed by NPS for scenario planning follows a typical adaptive management process: define the focal question, assess the relevant science, explore plausible futures, identify effective strategies, prioritize and implement actions, and monitor results. Many science and management partners contributed to the process, including NOAA Regional Integrated Science and Assessment teams (RISAs) and Regional Climate Centers (RCCs), USGS Research Centers, and other university and government scientists. The Global Business Network, an internationally recognized leader in scenario development, provided expert facilitation and training techniques. Climate science input is provided

  4. A stakeholder project to model water temperature under future climate scenarios in the Satus and Toppenish watersheds of the Yakima River Basinin Washington, USA

    Science.gov (United States)

    Graves, D.; Maule, A.

    2014-01-01

    The goal of this study was to support an assessment of the potential effects of climate change on select natural, social, and economic resources in the Yakima River Basin. A workshop with local stakeholders highlighted the usefulness of projecting climate change impacts on anadromous steelhead (Oncorhynchus mykiss), a fish species of importance to local tribes, fisherman, and conservationists. Stream temperature is an important environmental variable for the freshwater stages of steelhead. For this study, we developed water temperature models for the Satus and Toppenish watersheds, two of the key stronghold areas for steelhead in the Yakima River Basin. We constructed the models with the Stream Network Temperature Model (SNTEMP), a mechanistic approach to simulate water temperature in a stream network. The models were calibrated over the April 15, 2008 to September 30, 2008 period and validated over the April 15, 2009 to September 30, 2009 period using historic measurements of stream temperature and discharge provided by the Yakama Nation Fisheries Resource Management Program. Once validated, the models were run to simulate conditions during the spring and summer seasons over a baseline period (1981–2005) and two future climate scenarios with increased air temperature of 1°C and 2°C. The models simulated daily mean and maximum water temperatures at sites throughout the two watersheds under the baseline and future climate scenarios.

  5. Modeling vulnerability of groundwater to pollution under future scenarios of climate change and biofuels-related land use change: a case study in North Dakota, USA.

    Science.gov (United States)

    Li, Ruopu; Merchant, James W

    2013-03-01

    Modeling groundwater vulnerability to pollution is critical for implementing programs to protect groundwater quality. Most groundwater vulnerability modeling has been based on current hydrogeology and land use conditions. However, groundwater vulnerability is strongly dependent on factors such as depth-to-water, recharge and land use conditions that may change in response to future changes in climate and/or socio-economic conditions. In this research, a modeling framework, which employs three sets of models linked within a geographic information system (GIS) environment, was used to evaluate groundwater pollution risks under future climate and land use changes in North Dakota. The results showed that areas with high vulnerability will expand northward and/or northwestward in Eastern North Dakota under different scenarios. GIS-based models that account for future changes in climate and land use can help decision-makers identify potential future threats to groundwater quality and take early steps to protect this critical resource. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Scoping Future Policy Dynamics in Raw Materials Through Scenarios Testing

    Science.gov (United States)

    Correia, Vitor; Keane, Christopher; Sturm, Flavius; Schimpf, Sven; Bodo, Balazs

    2017-04-01

    The International Raw Materials Observatory (INTRAW) project is working towards a sustainable future for the European Union in access to raw materials, from an availability, economical, and environmental framework. One of the major exercises for the INTRAW project is the evaluation of potential future scenarios for 2050 to frame economic, research, and environmental policy towards a sustainable raw materials supply. The INTRAW consortium developed three possible future scenarios that encompass defined regimes of political, economic, and technological norms. The first scenario, "Unlimited Trade," reflects a world in which free trade continues to dominate the global political and economic environment, with expectations of a growing demand for raw materials from widely distributed global growth. The "National Walls" scenario reflects a world where nationalism and economic protectionism begins to dominate, leading to stagnating economic growth and uneven dynamics in raw materials supply and demand. The final scenario, "Sustainability Alliance," examines the dynamics of a global political and economic climate that is focused on environmental and economic sustainability, leading towards increasingly towards a circular raw materials economy. These scenarios were reviewed, tested, and provided simulations of impacts with members of the Consortium and a panel of global experts on international raw materials issues which led to expected end conditions for 2050. Given the current uncertainty in global politics, these scenarios are informative to identifying likely opportunities and crises. The details of these simulations and expected responses to the research demand, technology investments, and economic components of raw materials system will be discussed.

  7. Comparison of the results of climate change impact assessment between RCP8.5 and SSP2 scenarios

    Science.gov (United States)

    Lee, D. K.; Park, J. H.; Park, C.; Kim, S.

    2017-12-01

    Climate change scenarios are mainly published by the Intergovernmental Panel on Climate Change (IPCC), and include SRES (Special Report on Emission Scenario) scenarios (IPCC Third Report), RCP (Representative Concentration Pathways) scenarios (IPCC 5th Report), and SSP (Shared Socioeconomic Pathways) scenarios. Currently widely used RCP scenarios are based on how future greenhouse gas concentrations will change. In contrast, SSP scenarios are that predict how climate change will change in response to socio-economic indicators such as population, economy, land use, and energy change. In this study, based on RCP 8.5 climate data, we developed a new Korean scenario using the future social and economic scenarios of SSP2. In the development of the scenario, not only Korea's emissions but also China and Japan's emissions were considered in terms of space. In addition, GHG emissions and air pollutant emissions were taken into consideration. Using the newly developed scenarios, the impacts assessments of the forest were evaluated and the impacts were evaluated using the RCP scenarios. The average precipitation is similar to the SSP2 scenario and the RCP8.5 scenario, but the SSP2 scenario shows the maximum value is lower than RCP8.5 scenario. This is because the SSP2 scenario simulates the summer precipitation weakly. The temperature distribution is similar for both scenarios, and it can be seen that the average temperature in the 2090s is higher than that in the 2050s. At present, forest net primary productivity of Korea is 693 tC/km2, and it is 679 tC/km2 when SSP2 scenario is applied. Also, the damage of forest by ozone is about 4.1-5.1%. On the other hand, when SSP2 scenario is applied, the forest net primary productivity of Korea is 607 tC/km2 and the forest net primary productivity of RCP8.5 scenario is 657 tC/km2. The analysis shows that the damage caused by climate change is reduced by 14.2% for the SSP2 scenario and 6.9% for the RCP8.5 scenario. The damage caused

  8. Resource management and operations in southwest South Dakota: Climate change scenario planning workshop summary January 20-21, 2016, Rapid City, SD

    Science.gov (United States)

    Fisichelli, Nicholas A.; Schuurman, Gregor W.; Symstad, Amy J.; Ray, Andrea; Miller, Brian; Cross, Molly; Rowland, Erika

    2016-01-01

    The Scaling Climate Change Adaptation in the Northern Great Plains through Regional Climate Summaries and Local Qualitative-Quantitative Scenario Planning Workshops project synthesizes climate data into 3-5 distinct but plausible climate summaries for the northern Great Plains region; crafts quantitative summaries of these climate futures for two focal areas; and applies these local summaries by developing climate-resource-management scenarios through participatory workshops and, where possible, simulation models. The two focal areas are central North Dakota and southwest South Dakota (Figure 1). The primary objective of this project is to help resource managers and scientists in a focal area use scenario planning to make management and planning decisions based on assessments of critical future uncertainties.This report summarizes project work for public and tribal lands in the southwest South Dakota grasslands focal area, with an emphasis on Badlands National Park and Buffalo Gap National Grassland. The report explains scenario planning as an adaptation tool in general, then describes how it was applied to the focal area in three phases. Priority resource management and climate uncertainties were identified in the orientation phase. Local climate summaries for relevant, divergent, and challenging climate scenarios were developed in the second phase. In the final phase, a two-day scenario planning workshop held January 20-21, 2016 in Rapid City, South Dakota, featured scenario development and implications, testing management decisions, and methods for operationalizing scenario planning outcomes.

  9. A Flexible Socioeconomic Scenarios Framework for the Study of Plausible Arctic Futures

    Science.gov (United States)

    Reissell, A. K.; Peters, G. P.; Riahi, K.; Kroglund, M.; Lovecraft, A. L.; Nilsson, A. E.; Preston, B. L.; van Ruijven, B. J.

    2016-12-01

    Future developments of the Arctic region are associated with different drivers of change - climate, environmental, and socio-economic - and their interactions, and are highly uncertain. The uncertainty poses challenges for decision-making, calling for development of new analytical frameworks. Scenarios - coherent narratives describing potential futures, pathways to futures, and drivers of change along the way - can be used to explore the consequences of the key uncertainties, particularly in the long-term. In a participatory scenarios workshop, we used both top-down and bottom-up approaches for the development of a flexible socioeconomic scenarios framework. The top-down approach was linked to the global Integrated Assessment Modeling framework and its Shared Socio-Economic Pathways (SSPs), developing an Arctic extension of the set of five storylines on the main socioeconomic uncertainties in global climate change research. The bottom-up approach included participatory development of narratives originating from within the Arctic region. For extension of global SSPs to the regional level, we compared the key elements in the global SSPs (Population, Human Development, Economy & Lifestyle, Policies & Institutions, Technology, and Environment & Natural Resources) and key elements in the Arctic. Additional key elements for the Arctic scenarios include, for example, seasonal migration, the large role of traditional knowledge and culture, mixed economy, nested governance structure, human and environmental security, quality of infrastructure. The bottom-up derived results suggested that the scenarios developed independent of the SSPs could be mapped back to the SSPs to demonstrate consistency with respect to representing similar boundary conditions. The two approaches are complimentary, as the top-down approach can be used to set the global socio-economic and climate boundary conditions, and the bottom-up approach providing the regional context. One key uncertainty and

  10. Offshore Wind Energy Climate Projection Using UPSCALE Climate Data under the RCP8.5 Emission Scenario.

    Science.gov (United States)

    Gross, Markus; Magar, Vanesa

    2016-01-01

    In previous work, the authors demonstrated how data from climate simulations can be utilized to estimate regional wind power densities. In particular, it was shown that the quality of wind power densities, estimated from the UPSCALE global dataset in offshore regions of Mexico, compared well with regional high resolution studies. Additionally, a link between surface temperature and moist air density in the estimates was presented. UPSCALE is an acronym for UK on PRACE (the Partnership for Advanced Computing in Europe)-weather-resolving Simulations of Climate for globAL Environmental risk. The UPSCALE experiment was performed in 2012 by NCAS (National Centre for Atmospheric Science)-Climate, at the University of Reading and the UK Met Office Hadley Centre. The study included a 25.6-year, five-member ensemble simulation of the HadGEM3 global atmosphere, at 25km resolution for present climate conditions. The initial conditions for the ensemble runs were taken from consecutive days of a test configuration. In the present paper, the emphasis is placed on the single climate run for a potential future climate scenario in the UPSCALE experiment dataset, using the Representation Concentrations Pathways (RCP) 8.5 climate change scenario. Firstly, some tests were performed to ensure that the results using only one instantiation of the current climate dataset are as robust as possible within the constraints of the available data. In order to achieve this, an artificial time series over a longer sampling period was created. Then, it was shown that these longer time series provided almost the same results than the short ones, thus leading to the argument that the short time series is sufficient to capture the climate. Finally, with the confidence that one instantiation is sufficient, the future climate dataset was analysed to provide, for the first time, a projection of future changes in wind power resources using the UPSCALE dataset. It is hoped that this, in turn, will provide

  11. Offshore Wind Energy Climate Projection Using UPSCALE Climate Data under the RCP8.5 Emission Scenario.

    Directory of Open Access Journals (Sweden)

    Markus Gross

    Full Text Available In previous work, the authors demonstrated how data from climate simulations can be utilized to estimate regional wind power densities. In particular, it was shown that the quality of wind power densities, estimated from the UPSCALE global dataset in offshore regions of Mexico, compared well with regional high resolution studies. Additionally, a link between surface temperature and moist air density in the estimates was presented. UPSCALE is an acronym for UK on PRACE (the Partnership for Advanced Computing in Europe-weather-resolving Simulations of Climate for globAL Environmental risk. The UPSCALE experiment was performed in 2012 by NCAS (National Centre for Atmospheric Science-Climate, at the University of Reading and the UK Met Office Hadley Centre. The study included a 25.6-year, five-member ensemble simulation of the HadGEM3 global atmosphere, at 25km resolution for present climate conditions. The initial conditions for the ensemble runs were taken from consecutive days of a test configuration. In the present paper, the emphasis is placed on the single climate run for a potential future climate scenario in the UPSCALE experiment dataset, using the Representation Concentrations Pathways (RCP 8.5 climate change scenario. Firstly, some tests were performed to ensure that the results using only one instantiation of the current climate dataset are as robust as possible within the constraints of the available data. In order to achieve this, an artificial time series over a longer sampling period was created. Then, it was shown that these longer time series provided almost the same results than the short ones, thus leading to the argument that the short time series is sufficient to capture the climate. Finally, with the confidence that one instantiation is sufficient, the future climate dataset was analysed to provide, for the first time, a projection of future changes in wind power resources using the UPSCALE dataset. It is hoped that this, in

  12. Offshore Wind Energy Climate Projection Using UPSCALE Climate Data under the RCP8.5 Emission Scenario

    Science.gov (United States)

    Gross, Markus; Magar, Vanesa

    2016-01-01

    In previous work, the authors demonstrated how data from climate simulations can be utilized to estimate regional wind power densities. In particular, it was shown that the quality of wind power densities, estimated from the UPSCALE global dataset in offshore regions of Mexico, compared well with regional high resolution studies. Additionally, a link between surface temperature and moist air density in the estimates was presented. UPSCALE is an acronym for UK on PRACE (the Partnership for Advanced Computing in Europe)—weather-resolving Simulations of Climate for globAL Environmental risk. The UPSCALE experiment was performed in 2012 by NCAS (National Centre for Atmospheric Science)-Climate, at the University of Reading and the UK Met Office Hadley Centre. The study included a 25.6-year, five-member ensemble simulation of the HadGEM3 global atmosphere, at 25km resolution for present climate conditions. The initial conditions for the ensemble runs were taken from consecutive days of a test configuration. In the present paper, the emphasis is placed on the single climate run for a potential future climate scenario in the UPSCALE experiment dataset, using the Representation Concentrations Pathways (RCP) 8.5 climate change scenario. Firstly, some tests were performed to ensure that the results using only one instantiation of the current climate dataset are as robust as possible within the constraints of the available data. In order to achieve this, an artificial time series over a longer sampling period was created. Then, it was shown that these longer time series provided almost the same results than the short ones, thus leading to the argument that the short time series is sufficient to capture the climate. Finally, with the confidence that one instantiation is sufficient, the future climate dataset was analysed to provide, for the first time, a projection of future changes in wind power resources using the UPSCALE dataset. It is hoped that this, in turn, will

  13. User needs for climate change scenarios in Switzerland

    Science.gov (United States)

    Fischer, Andreas; Liniger, Mark; Flückiger Knutti, Jacqueline

    2017-04-01

    In the framework of the recently founded National Center for Climate Services (NCCS) new climate change scenarios for Switzerland are currently under development that will be released in 2018 ("CH2018 scenarios"). An important component herein is the consideration of user needs in order to ensure that the new scenarios are user tailored and hence find a wide applicability in different sectors in Switzerland. A comprehensive market research was conducted to get a better overview of who the users of climate scenarios are and what they need. The survey targeted the most climate relevant sectors, and involved representatives from administration, research and private companies across Switzerland. The survey comprised several qualitative group interviews with key stakeholders, a written questionaire, answered by more than one hundred users and two specific workshops gathering the needs in dissemination. Additionally, the survey results were consolidated at a national symposium with around 150 participants from research, administration and practice. The results of the survey show the necessity to classify the users of climate scenarios according to their level of usage and according to the different sectors. It turns out that the less intensive the usage of the climate scenarios is, the more important becomes the need of comprehensibility, clarity and support when disseminating new climate scenarios. According to the survey it is especially the non-experts that should be better addressed in the new cycle of national climate scenarios. In terms of content, the survey reveals strongest needs for quantitative information on changes in extremes, an aspect that was handled in a qualitative way only in the predecessor climate scenario suite CH2011. Another cross-sectoral need are physically consistent data in time, space and between several variables. For instance, in agriculture the combination of heat and dryness is an important aspect, while the same is true in the energy

  14. The potential distribution of bioenergy crops in Europe under present and future climate

    International Nuclear Information System (INIS)

    Tuck, Gill; Glendining, Margaret J.; Smith, Pete; Wattenbach, Martin; House, Jo I.

    2006-01-01

    We have derived maps of the potential distribution of 26 promising bioenergy crops in Europe, based on simple rules for suitable climatic conditions and elevation. Crops suitable for temperate and Mediterranean climates were selected from four groups: oilseeds (e.g. oilseed rape, sunflower), starch crops (e.g. potatoes), cereals (e.g. barley) and solid biofuel crops (e.g. sorghum, Miscanthus). The impact of climate change under different scenarios and GCMs on the potential future distribution of these crops was determined, based on predicted future climatic conditions. Climate scenarios based on four IPCC SRES emission scenarios, A1FI, A2, B1 and B2, implemented by four global climate models, HadCM3, CSIRO2, PCM and CGCM2, were used. The potential distribution of temperate oilseeds, cereals, starch crops and solid biofuels is predicted to increase in northern Europe by the 2080s, due to increasing temperatures, and decrease in southern Europe (e.g. Spain, Portugal, southern France, Italy, and Greece) due to increased drought. Mediterranean oil and solid biofuel crops, currently restricted to southern Europe, are predicted to extend further north due to higher summer temperatures. Effects become more pronounced with time and are greatest under the A1FI scenario and for models predicting the greatest climate forcing. Different climate models produce different regional patterns. All models predict that bioenergy crop production in Spain is especially vulnerable to climate change, with many temperate crops predicted to decline dramatically by the 2080s. The choice of bioenergy crops in southern Europe will be severely reduced in future unless measures are taken to adapt to climate change. (author)

  15. Climate Change Scenarios in the Yucatan Peninsula to the year 2020

    Science.gov (United States)

    Orellana, R.; Espadas, C.; Conde, C.; Gay, C.

    2010-03-01

    A topic that has not been sufficiently analyzed is that the global warming is already affecting, and that it will have worst consequences in those regions with transitional climates, which have more sensibility to changes. This is the case of the Yucatan Peninsula which is semi-arid in their northern portion, and toward the south is subhumid, with a tendency to be more rainy toward the south. To have an estimation of what could happen in the future, the Intergovernmental Panel of Climatic Change (IPCC) has promoted the use of General Circulation Models (GCM), as well as the construction of possible emission scenarios that integrate different global and regional socioeconomic and demographic conditions, which project then a possible increase of emissions of greenhouse gases. These conditions are recognized as the decisive forces that will determine the variations of temperature and of precipitation. These projections are useful for the analysis of climatic change, and in particular for the assessments of the possible impacts and of the initiatives of adaptation and of mitigation that should be implemented in every country or region. In Mexico, most of those evaluations of climate change have been carried out generally at country level. For that reason, it is necessary to direct the research at regional level. In this work, we evaluated the potential climatic changes on the Yucatan Peninsula, considering the different changes of temperature and precipitation as a consequence for different emission scenarios and for the horizon 2020. To project the environmental responses of the region, we used as a base scenario the available temperature and precipitation information of the period 1961-1990, registered in 85 meteorological stations of the peninsula. With these data, we generated climate change scenarios using the outputs of four General Circulation Models: HADLEY, ECHAM, GFDL and CGCM, and the emission scenarios A1FI, A2, B1 and B2. The outputs of these models were

  16. Predicting ecological responses in a changing ocean: the effects of future climate uncertainty.

    Science.gov (United States)

    Freer, Jennifer J; Partridge, Julian C; Tarling, Geraint A; Collins, Martin A; Genner, Martin J

    2018-01-01

    Predicting how species will respond to climate change is a growing field in marine ecology, yet knowledge of how to incorporate the uncertainty from future climate data into these predictions remains a significant challenge. To help overcome it, this review separates climate uncertainty into its three components (scenario uncertainty, model uncertainty, and internal model variability) and identifies four criteria that constitute a thorough interpretation of an ecological response to climate change in relation to these parts (awareness, access, incorporation, communication). Through a literature review, the extent to which the marine ecology community has addressed these criteria in their predictions was assessed. Despite a high awareness of climate uncertainty, articles favoured the most severe emission scenario, and only a subset of climate models were used as input into ecological analyses. In the case of sea surface temperature, these models can have projections unrepresentative against a larger ensemble mean. Moreover, 91% of studies failed to incorporate the internal variability of a climate model into results. We explored the influence that the choice of emission scenario, climate model, and model realisation can have when predicting the future distribution of the pelagic fish, Electrona antarctica . Future distributions were highly influenced by the choice of climate model, and in some cases, internal variability was important in determining the direction and severity of the distribution change. Increased clarity and availability of processed climate data would facilitate more comprehensive explorations of climate uncertainty, and increase in the quality and standard of marine prediction studies.

  17. Bioclimatic predictions of habitat suitability for the biofuel switchgrass in North America under current and future climate scenarios

    International Nuclear Information System (INIS)

    Barney, Jacob N.; DiTomaso, Joseph M.

    2010-01-01

    Dedicated biofuel crops, while providing economic and other benefits, may adversely impact biodiversity directly via land use conversion, or indirectly via creation of novel invasive species. To mitigate negative impacts bioclimatic envelope models (BEM) can be used to estimate the potential distribution and suitable habitat based on the climate and distribution in the native range. We used CLIMEX to evaluate the regions of North America suitable for agronomic production, as well as regions potentially susceptible to an invasion of switchgrass (Panicum virgatum) under both current and future climate scenarios. Model results show that >8.7 million km 2 of North America has suitable to very favorable habitat, most of which occurs east of the Rocky Mountains. The non-native range of western North America is largely unsuitable to switchgrass as a crop or potential weed unless irrigation or permanent water is available. Under both the CGCM2 and HadCM3 climate models and A2 and B2 emissions scenarios, an overall increase in suitable habitat is predicted over the coming century, although the western US remains unsuitable. Our results suggest that much of North America is suitable for switchgrass cultivation, although this is likely to shift north in the coming century. Our results also agree with field collections of switchgrass outside its native range, which indicate that switchgrass is unlikely to establish unless it has access to water throughout the year (e.g., along a stream). Thus, it is the potential invasion of switchgrass into riparian habitats in the West that requires further investigation. (author)

  18. Evolution of strategic risks under future scenarios for improved utility master plans.

    Science.gov (United States)

    Luís, Ana; Lickorish, Fiona; Pollard, Simon

    2016-01-01

    Integrated, long-term risk management in the water sector is poorly developed. Whilst scenario planning has been applied to singular issues (e.g. climate change), it often misses a link to risk management because the likelihood of impacts in the long-term are frequently unaccounted for in these analyses. Here we apply the morphological approach to scenario development for a case study utility, Empresa Portuguesa das Águas Livres (EPAL). A baseline portfolio of strategic risks threatening the achievement of EPAL's corporate objectives was evolved through the lens of three future scenarios, 'water scarcity', 'financial resource scarcity' and 'strong economic growth', built on drivers such as climate, demographic, economic, regulatory and technological changes and validated through a set of expert workshops. The results represent how the baseline set of risks might develop over a 30 year period, allowing threats and opportunities to be identified and enabling strategies for master plans to be devised. We believe this to be the first combined use of risk and futures methods applied to a portfolio of strategic risks in the water utility sector. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Co-evolution of hydrological components under climate change scenarios in the Mediterranean area

    Energy Technology Data Exchange (ETDEWEB)

    Viola, F., E-mail: francesco.viola77@unipa.it; Francipane, A.; Caracciolo, D.; Pumo, D.; La Loggia, G.; Noto, L.V.

    2016-02-15

    ABSTRACT: The Mediterranean area is historically characterized by high human pressure on water resources. Today, while climate is projected to be modified in the future, through precipitation decrease and temperature increase, that jointly and non-linearly may affect runoff, concerns about water availability are increasing. For these reasons, quantitative assessment of future modifications in the mean annual water availability are important; likewise, the description of the future interannual variability of some hydrological components such as runoff and evapotranspiration are highly wished for water management and ecosystems dynamics analyses. This study investigates at basin spatial scale future runoff and evapotranspiration, exploring their probability density functions and their interdependence as functions of climatic changes. In order to do that, a parsimonious conceptual lumped model is here used. The model is forced by different future climate scenarios, generated through a weather generator based on a stochastic downscaling of an ensemble of General Circulation Models (GCMs) realizations. The use of the adopted hydrological model, under reliable stochastic future climate scenarios, allows to project future values of evapotranspiration and runoff in a probabilistic framework and, at the same time, the evaluation of their bivariate frequency distributions for changes through the Multivariate Kernel Density Estimation method. As a case study, a benchmark Mediterranean watershed has been proposed (Imera Meridionale, Italy). Results suggest a radical shift and shape modification of the annual runoff and evapotranspiration probability density functions. Possible implications and impacts on water resources management are here addressed and discussed. - Highlights: • This study investigates at basin spatial scale future runoff and evapotranspiration. • A simple conceptual hydrological model and GCMs realizations have been coupled. • Radical shift and shape

  20. Co-evolution of hydrological components under climate change scenarios in the Mediterranean area

    International Nuclear Information System (INIS)

    Viola, F.; Francipane, A.; Caracciolo, D.; Pumo, D.; La Loggia, G.; Noto, L.V.

    2016-01-01

    ABSTRACT: The Mediterranean area is historically characterized by high human pressure on water resources. Today, while climate is projected to be modified in the future, through precipitation decrease and temperature increase, that jointly and non-linearly may affect runoff, concerns about water availability are increasing. For these reasons, quantitative assessment of future modifications in the mean annual water availability are important; likewise, the description of the future interannual variability of some hydrological components such as runoff and evapotranspiration are highly wished for water management and ecosystems dynamics analyses. This study investigates at basin spatial scale future runoff and evapotranspiration, exploring their probability density functions and their interdependence as functions of climatic changes. In order to do that, a parsimonious conceptual lumped model is here used. The model is forced by different future climate scenarios, generated through a weather generator based on a stochastic downscaling of an ensemble of General Circulation Models (GCMs) realizations. The use of the adopted hydrological model, under reliable stochastic future climate scenarios, allows to project future values of evapotranspiration and runoff in a probabilistic framework and, at the same time, the evaluation of their bivariate frequency distributions for changes through the Multivariate Kernel Density Estimation method. As a case study, a benchmark Mediterranean watershed has been proposed (Imera Meridionale, Italy). Results suggest a radical shift and shape modification of the annual runoff and evapotranspiration probability density functions. Possible implications and impacts on water resources management are here addressed and discussed. - Highlights: • This study investigates at basin spatial scale future runoff and evapotranspiration. • A simple conceptual hydrological model and GCMs realizations have been coupled. • Radical shift and shape

  1. Potential distribution of dengue fever under scenarios of climate change and economic development.

    Science.gov (United States)

    Aström, Christofer; Rocklöv, Joacim; Hales, Simon; Béguin, Andreas; Louis, Valerie; Sauerborn, Rainer

    2012-12-01

    Dengue fever is the most important viral vector-borne disease with ~50 million cases per year globally. Previous estimates of the potential effect of global climate change on the distribution of vector-borne disease have not incorporated the effect of socioeconomic factors, which may have biased the results. We describe an empirical model of the current geographic distribution of dengue, based on the independent effects of climate and gross domestic product per capita (GDPpc, a proxy for socioeconomic development). We use the model, along with scenario-based projections of future climate, economic development, and population, to estimate populations at risk of dengue in the year 2050. We find that both climate and GDPpc influence the distribution of dengue. If the global climate changes as projected but GDPpc remained constant, the population at risk of dengue is estimated to increase by about 0.28 billion in 2050. However, if both climate and GDPpc change as projected, we estimate a decrease of 0.12 billion in the population at risk of dengue in 2050. Empirically, the geographic distribution of dengue is strongly dependent on both climatic and socioeconomic variables. Under a scenario of constant GDPpc, global climate change results in a modest but important increase in the global population at risk of dengue. Under scenarios of high GDPpc, this adverse effect of climate change is counteracted by the beneficial effect of socioeconomic development.

  2. Impacts of Climate Change on Native Landcover: Seeking Future Climatic Refuges

    Science.gov (United States)

    Mangabeira Albernaz, Ana Luisa

    2016-01-01

    Climate change is a driver for diverse impacts on global biodiversity. We investigated its impacts on native landcover distribution in South America, seeking to predict its effect as a new force driving habitat loss and population isolation. Moreover, we mapped potential future climatic refuges, which are likely to be key areas for biodiversity conservation under climate change scenarios. Climatically similar native landcovers were aggregated using a decision tree, generating a reclassified landcover map, from which 25% of the map’s coverage was randomly selected to fuel distribution models. We selected the best geographical distribution models among twelve techniques, validating the predicted distribution for current climate with the landcover map and used the best technique to predict the future distribution. All landcover categories showed changes in area and displacement of the latitudinal/longitudinal centroid. Closed vegetation was the only landcover type predicted to expand its distributional range. The range contractions predicted for other categories were intense, even suggesting extirpation of the sparse vegetation category. The landcover refuges under future climate change represent a small proportion of the South American area and they are disproportionately represented and unevenly distributed, predominantly occupying five of 26 South American countries. The predicted changes, regardless of their direction and intensity, can put biodiversity at risk because they are expected to occur in the near future in terms of the temporal scales of ecological and evolutionary processes. Recognition of the threat of climate change allows more efficient conservation actions. PMID:27618445

  3. Impacts of Climate Change on Native Landcover: Seeking Future Climatic Refuges.

    Directory of Open Access Journals (Sweden)

    Marina Zanin

    Full Text Available Climate change is a driver for diverse impacts on global biodiversity. We investigated its impacts on native landcover distribution in South America, seeking to predict its effect as a new force driving habitat loss and population isolation. Moreover, we mapped potential future climatic refuges, which are likely to be key areas for biodiversity conservation under climate change scenarios. Climatically similar native landcovers were aggregated using a decision tree, generating a reclassified landcover map, from which 25% of the map's coverage was randomly selected to fuel distribution models. We selected the best geographical distribution models among twelve techniques, validating the predicted distribution for current climate with the landcover map and used the best technique to predict the future distribution. All landcover categories showed changes in area and displacement of the latitudinal/longitudinal centroid. Closed vegetation was the only landcover type predicted to expand its distributional range. The range contractions predicted for other categories were intense, even suggesting extirpation of the sparse vegetation category. The landcover refuges under future climate change represent a small proportion of the South American area and they are disproportionately represented and unevenly distributed, predominantly occupying five of 26 South American countries. The predicted changes, regardless of their direction and intensity, can put biodiversity at risk because they are expected to occur in the near future in terms of the temporal scales of ecological and evolutionary processes. Recognition of the threat of climate change allows more efficient conservation actions.

  4. Simulated Extreme Prepitation Indices over Northeast Brasil in Current Climate and Future Scenarios RCP4.5 and RCP8.5

    Science.gov (United States)

    Wender Santiago Marinho, Marcos; Araújo Costa, Alexandre; Cassain Sales, Domingo; Oliveira Guimarães, Sullyandro; Mariano da Silva, Emerson; das Chagas Vasconcelos Júnior, Francisco

    2013-04-01

    In this study, we analyzed extreme precipitation indices, for present and future modeled climates over Northeast of Brazil (NEB), from CORDEX simulations over the domain of Tropical Americas. The period for the model validation was from 1989-2007, using data from the European Center (ECWMF) Reanalysis, ERA-INTERIM, as input to drive the regional model (RAMS 6.0). Reanalysis data were assimilated via both lateral boundaries and the entire domain (a much weaker "central nudging"). Six indices of extreme precipitation were calculated over NEB: the average number of days above 10, 20 and 30 mm in one year (R10, R20, R30), the number of consecutive dry days (CDD), the number of consecutive wet days (CWD) and the maximum rainfall in five consecutive days (RX5). Those indices were compared against two independent databases: MERRA (Modern Era Retrospective analysis for Research and Applications) and TRMM (Tropical Rainfall Measuring Mission). After validation, climate simulations were performed for the present climate (1985-2005) and short-term (2015-2035), mid-term (2045-2065) and long-term (2079 to 2099) future climates for two scenarios: RCP 4.5 and RCP 8.5, nesting RAMS into HadGEM2-ES global model (a participant of CMIP5). Along with the indices, we also calculated Probability Distribution Functions (PDFs) to study the behavior of daily precipitation in the present and by the end of the 21st century (2079 to 2099) to assess possible changes under RCPs 4.5 and 8.5. The regional model is capable of representing relatively well the extreme precipitation indices for current climate, but there is some difficulties in performing a proper validation since the observed databases disagree significantly. Future projections show significant changes in most extreme indices. Rnn generally tend to increase, especially under RCP8.5. More significant changes are projected for the long-term period, under RCP8.5, which shows a pronounced R30 enhancement over northern states. CDD tends

  5. Climate change scenarios and Technology Transfer Protocols

    International Nuclear Information System (INIS)

    Kypreos, Socrates; Turton, Hal

    2011-01-01

    We apply a specific version of MERGE-ETL, an integrated assessment model, to study global climate policies supported by Technology Transfer Protocols (TTPs). We model a specific formulation of such a TTP where donor countries finance via carbon tax revenues, the diffusion of carbon-free technologies in developing countries (DCs) and quantify its benefits. Industrialized countries profit from increased technology exports, global diffusion of advanced technology (leading to additional technology learning and cost reductions) and reduced climate damages through the likelihood of greater global participation in a new international agreement. DCs experience increased welfare from access to subsidized technology, and profit from the reduction of damages related to climate change and expected secondary benefits of carbon abatement (such as reduced local and regional air pollution). The analysis identifies potential candidate technologies that could be supported under a TTP, and the impact of a TTP on economic development (including the flow of transfer subsidies) and global emissions. Although a TTP may encourage additional participation, such a proposal is only likely to be successful if an increased willingness to pay to avoid climate damages is accepted, first by the present and future generations of the industrialized world and later on, when sufficient economic growth is accumulated, by today's developing countries. - Research Highlights: → Climate policy scenarios are assessed with differentiated commitments in carbon emission control supported by Technology Transfer Protocols. → Donor countries finance, via carbon-tax revenues, the exports of carbon-free technologies in developing countries helping to get a new international agreement. → Developing countries experience increased welfare from access to subsidized technology, and profit from the reduction of damages related to climate change and secondary benefits. → Under Technology Protocols alone and

  6. Uncertainty of simulated groundwater levels arising from stochastic transient climate change scenarios

    Science.gov (United States)

    Goderniaux, Pascal; Brouyère, Serge; Blenkinsop, Stephen; Burton, Aidan; Fowler, Hayley; Dassargues, Alain

    2010-05-01

    applied not only to the mean of climatic variables, but also across the statistical distributions of these variables. This is important as these distributions are expected to change in the future, with more extreme rainfall events, separated by longer dry periods. (2) The novel approach used in this study can simulate transient climate change from 2010 to 2085, rather than time series representative of a stationary climate for the period 2071-2100. (3) The weather generator is used to generate a large number of equiprobable climate change scenarios for each RCM, representative of the natural variability of the weather. All of these scenarios are applied as input to the Geer basin model to assess the projected impact of climate change on groundwater levels, the uncertainty arising for different RCM projections and the uncertainty linked to natural climatic variability. Using the output results from all scenarios, 95% confidence intervals are calculated for each year and month between 2010 and 2085. The climate change scenarios for the Geer basin model predict hotter and drier summers and warmer and wetter winters. Considering the results of this study, it is very likely that groundwater levels and surface flow rates in the Geer basin will decrease by the end of the century. This is of concern because it also means that groundwater quantities available for abstraction will also decrease. However, this study also shows that the uncertainty of these projections is relatively large compared to the projected changes so that it remains difficult to confidently determine the magnitude of the decrease. The use and combination of an integrated surface - subsurface model and stochastic climate change scenarios has never been used in previous climate change impact studies on groundwater resources. It constitutes an innovation and is an important tool for helping water managers to take decisions.

  7. Future Climate Prediction of Urban Atmosphere in A Tropical Megacity: Utilization of RCP/SSP Scenarios with an Urban Growth Model

    Science.gov (United States)

    Darmanto, N. S.; Varquez, A. C. G.; Kanda, M.; Takakuwa, S.

    2016-12-01

    Economic development in Southeast Asia megacities leads to rapid transformation into more complicated urban configurations. These configurations, including building geometry, enhance aerodynamic drag thus reducing near-surface wind speeds. Roughness parameters representing building geometry, along with anthropogenic heat emissions, contribute to the formation of urban heat islands (UHI). All these have been reproduced successfully in the Weather Research and Forecasting (WRF) Model coupled with an improved single-layer urban canopy model incorporating a realistic distribution of urban parameters and anthropogenic heat emission in the Jakarta Greater Area. We apply this technology to climate change studies by introducing future urbanization defined by urban sprawl, vertical rise in buildings, and increase anthropogenic heat emission (AHE) due to population changes, into futuristic climate modelling. To simulate 2050s future climate, pseudo-global warming method was used which relied on current and ensembles of 5 CMIP5 GCMs for 2 representative concentration pathways (RCP), 2.6 and 8.5. To determine future urbanization level, 2050 population growth and energy consumption were estimated from shared socioeconomic pathways (SSP). This allows the estimation of future urban sprawl, building geometry, and AHE using the SLEUTH urban growth model and spatial growth assumptions. Two cases representing combinations of RCP and SSP were simulated in WRF: RCP2.6-SSP1 and RCP8.5-SSP3. Each case corresponds to best and worst-case scenarios of implementing adaptation and mitigation strategies, respectively. It was found that 2-m temperature of Jakarta will increase by 0.62°C (RCP2.6) and 1.44°C (RCP8.5) solely from background climate change; almost on the same magnitude as the background temperature increase of RCP2.6 (0.5°C) and RCP8.5 (1.2°C). Compared with previous studies, the result indicates that the effect of climate change on UHI in tropical cities may be lesser than

  8. The new socio-economic scenarios for climate change research

    International Nuclear Information System (INIS)

    Guivarch, C.; Rozenberg, J.

    2013-01-01

    The scientific community is developing a new generation of scenarios to inform the choices we have to make when it comes to responding to climate change. This new generation of scenarios integrates more fully the mechanisms that regulate climate and provides insights to spatial and temporal resolutions unexplored in previous exercises. In addition, it gives a framework for integrating explicit climate policies for mitigation and adaptation, which allows assessing the benefits and costs of climate policies in different socio-economic scenarios. Finally, it introduces a new way of working that strengthens the collaboration between different research communities on climate change. (authors)

  9. Streamflow predictions under climate scenarios in the Boulder Creek Watershed at Orodell

    Science.gov (United States)

    Zhang, Q.; Williams, M. W.; Livneh, B.

    2016-12-01

    Mountainous areas have complex geological features and climatic variability, which limit our ability to simulate and predict hydrologic processes, especially in face to a changing climate. Hydrologic models can improve our understanding of land surface water and energy budgets in these regions. In this study, a distributed physically-based hydrologic model is applied to the Boulder Creek Watershed, USA to study streamflow conditions under future climatic scenarios. Model parameters were adjusted using observed streamflow data at 1/16th degree resolution, with a NSE value of 0.69. The results from CMIP5 models can give a general range of streamflow conditions under different climatic scenarios. Two scenarios are being applied, including the RCP 4.5 and 8.5 scenarios. RCP 8.5 has higher emission concentrations than RCP 4.5, but not very significant in the period of study. Using pair t-test and Mann-Whitney test at specific grid cells to compare modeled and observed climate data, four CMIP5 models were chosen to predict streamflow from 2010 to 2025. Of the four models, two models predicted increased precipitation, while the other two models predicted decreased precipitation, and the four models predicted increased minimum and maximum temperature in RCP 4.5. Average streamflow decreased by 2% 14%, while maximum SWE varies from -7% to +210% from 2010 to 2025, relative to 2006 to 2010. In RCP 8.5, three models predicted increased precipitation, while the other one model predicted decreased precipitation, and the four models predicted increased maximum and minimum temperature. Besides one model, the other three models predicted increased average streamflow by 3.5% 32%, which results from the higher increasing magnitude in precipitation. Maximum SWE varies by 6% 55% higher than that from 2006 to 2010. This study shows that average daily maximum and minimum temperature will increase toward 2025 from different climate models, while average streamflow will decrease in RCP 4

  10. A multi-model ensemble of downscaled spatial climate change scenarios for the Dommel catchment, Western Europe

    NARCIS (Netherlands)

    Vliet, M.T.H. van; Blenkinsop, S.; Burton, A.; Harpham, C.; Broers, H.P.; Fowler, H.J.

    2012-01-01

    Regional or local scale hydrological impact studies require high resolution climate change scenarios which should incorporate some assessment of uncertainties in future climate projections. This paper describes a method used to produce a multi-model ensemble of multivariate weather simulations

  11. A simple technique for obtaining future climate data inputs for natural resource models

    Science.gov (United States)

    Those conducting impact studies using natural resource models need to be able to quickly and easily obtain downscaled future climate data from multiple models, scenarios, and timescales for multiple locations. This paper describes a method of quickly obtaining future climate data over a wide range o...

  12. WATER AVAILABILITY IN SOUTHERN PORTUGAL FOR DIFFERENT CLIMATE CHANGE SCENARIOS SUBJECTED TO BIAS CORRECTION

    Directory of Open Access Journals (Sweden)

    Sandra Mourato

    2014-01-01

    Full Text Available Regional climate models provided precipitation and temperature time series for control (1961–1990 and scenario (2071–2100 periods. At southern Portu gal, the climate models in the control period systematically present higher temp eratures and lower precipitation than the observations. Therefore, the direct inpu t of climate model data into hydrological models might result in more severe scenarios for future water availability. Three bias correction methods (Delta Change, Dire ct Forcing and Hybrid are analysed and their performances in water availability impac t studies are assessed. The Delta Change method assumes that the observed series variab ility is maintained in the scenario period and is corrected by the evolution predicted by the climate models. The Direct Forcing method maintains the scenario series variabi lity, which is corrected by the bias found in the control period, and the Hybrid method maintains the control model series variability, which is corrected by the bias found in the control period and by the evolution predicted by the climate models. To assess the climate impacts in the water resources expected for the scenario period, a physically based spatially distributed hydrological model, SHETRAN, is used for runoff pro jections in a southern Portugal basin. The annual and seasonal runoff shows a runoff d ecrease in the scenario period, increasing the water shor tage that is already experienc ed. The overall annual reduction varies between –80% and –35%. In general, the results show that the runoff reductions obtained with climate models corrected with the Delt a Change method are highest but with a narrow range that varies between –80% and –5 2%.

  13. Predicting the distribution of commercially important invertebrate stocks under future climate.

    Directory of Open Access Journals (Sweden)

    Bayden D Russell

    Full Text Available The future management of commercially exploited species is challenging because techniques used to predict the future distribution of stocks under climate change are currently inadequate. We projected the future distribution and abundance of two commercially harvested abalone species (blacklip abalone, Haliotis rubra and greenlip abalone, H. laevigata inhabiting coastal South Australia, using multiple species distribution models (SDM and for decadal time slices through to 2100. Projections are based on two contrasting global greenhouse gas emissions scenarios. The SDMs identified August (winter Sea Surface Temperature (SST as the best descriptor of abundance and forecast that warming of winter temperatures under both scenarios may be beneficial to both species by allowing increased abundance and expansion into previously uninhabited coasts. This range expansion is unlikely to be realised, however, as projected warming of March SST is projected to exceed temperatures which cause up to 10-fold increases in juvenile mortality. By linking fine-resolution forecasts of sea surface temperature under different climate change scenarios to SDMs and physiological experiments, we provide a practical first approximation of the potential impact of climate-induced change on two species of marine invertebrates in the same fishery.

  14. Modelling regional cropping patterns under scenarios of climate and socio-economic change in Hungary.

    Science.gov (United States)

    Li, Sen; Juhász-Horváth, Linda; Pintér, László; Rounsevell, Mark D A; Harrison, Paula A

    2018-05-01

    Impacts of socio-economic, political and climatic change on agricultural land systems are inherently uncertain. The role of regional and local-level actors is critical in developing effective policy responses that accommodate such uncertainty in a flexible and informed way across governance levels. This study identified potential regional challenges in arable land use systems, which may arise from climate and socio-economic change for two counties in western Hungary: Veszprém and Tolna. An empirically-grounded, agent-based model was developed from an extensive farmer household survey about local land use practices. The model was used to project future patterns of arable land use under four localised, stakeholder-driven scenarios of plausible future socio-economic and climate change. The results show strong differences in farmers' behaviour and current agricultural land use patterns between the two regions, highlighting the need to implement focused policy at the regional level. For instance, policy that encourages local food security may need to support improvements in the capacity of farmers to adapt to physical constraints in Veszprém and farmer access to social capital and environmental awareness in Tolna. It is further suggested that the two regions will experience different challenges to adaptation under possible future conditions (up to 2100). For example, Veszprém was projected to have increased fallow land under a scenario with high inequality, ineffective institutions and higher-end climate change, implying risks of land abandonment. By contrast, Tolna was projected to have a considerable decline in major cereals under a scenario assuming a de-globalising future with moderate climate change, inferring challenges to local food self-sufficiency. The study provides insight into how socio-economic and physical factors influence the selection of crop rotation plans by farmers in western Hungary and how farmer behaviour may affect future risks to agricultural

  15. Hydrological responses of a watershed to historical land use evolution and future land use scenarios under climate change conditions

    Directory of Open Access Journals (Sweden)

    R. Quilbé

    2008-01-01

    Full Text Available Watershed runoff is closely related to land use but this influence is difficult to quantify. This study focused on the Chaudière River watershed (Québec, Canada and had two objectives: (i to quantify the influence of historical agricultural land use evolution on watershed runoff; and (ii to assess the effect of future land use evolution scenarios under climate change conditions (CC. To achieve this, we used the integrated modeling system GIBSI. Past land use evolution was constructed using satellite images that were integrated into GIBSI. The general trend was an increase of agricultural land in the 80's, a slight decrease in the beginning of the 90's and a steady state over the last ten years. Simulations showed strong correlations between land use evolution and water discharge at the watershed outlet. For the prospective approach, we first assessed the effect of CC and then defined two opposite land use evolution scenarios for the horizon 2025 based on two different trends: agriculture intensification and sustainable development. Simulations led to a wide range of results depending on the climatologic models and gas emission scenarios considered, varying from a decrease to an increase of annual and monthly water discharge. In this context, the two land use scenarios induced opposite effects on water discharge and low flow sequences, especially during the growing season. However, due to the large uncertainty linked to CC simulations, it is difficult to conclude that one land use scenario provides a better adaptation to CC than another. Nevertheless, this study shows that land use is a key factor that has to be taken into account when predicting potential future hydrological responses of a watershed.

  16. Exploring synergies between climate and air quality policies using long-term global and regional emission scenarios

    NARCIS (Netherlands)

    Braspenning Radu, Olivia; van den Berg, Maarten; Klimont, Zbigniew; Deetman, Sebastiaan; Janssens-Maenhout, Greet; Muntean, Marilena; Heyes, Chris; Dentener, Frank; van Vuuren, Detlef P.

    Abstract In this paper, we present ten scenarios developed using the IMAGE2.4 framework (Integrated Model to Assess the Global Environment) to explore how different assumptions on future climate and air pollution policies influence emissions of greenhouse gases and air pollutants. These scenarios

  17. Forecasting the effects of land use scenarios on farmland birds reveal a potential mitigation of climate change impacts.

    Directory of Open Access Journals (Sweden)

    Karine Princé

    Full Text Available Climate and land use changes are key drivers of current biodiversity trends, but interactions between these drivers are poorly modeled, even though they could amplify or mitigate negative impacts of climate change. Here, we attempt to predict the impacts of different agricultural change scenarios on common breeding birds within farmland included in the potential future climatic suitable areas for these species. We used the Special Report on Emissions Scenarios (SRES to integrate likely changes in species climatic suitability, based on species distribution models, and changes in area of farmland, based on the IMAGE model, inside future climatic suitable areas. We also developed six farmland cover scenarios, based on expert opinion, which cover a wide spectrum of potential changes in livestock farming and cropping patterns by 2050. We ran generalized linear mixed models to calibrate the effects of farmland cover and climate change on bird specific abundance within 386 small agricultural regions. We used model outputs to predict potential changes in bird populations on the basis of predicted changes in regional farmland cover, in area of farmland and in species climatic suitability. We then examined the species sensitivity according to their habitat requirements. A scenario based on extensification of agricultural systems (i.e., low-intensity agriculture showed the greatest potential to reduce reverse current declines in breeding birds. To meet ecological requirements of a larger number of species, agricultural policies accounting for regional disparities and landscape structure appear more efficient than global policies uniformly implemented at national scale. Interestingly, we also found evidence that farmland cover changes can mitigate the negative effect of climate change. Here, we confirm that there is a potential for countering negative effects of climate change by adaptive management of landscape. We argue that such studies will help inform

  18. Integrated analysis of present and future responses of precipitation over selected Greek areas with different climate conditions

    Science.gov (United States)

    Paparrizos, Spyridon; Maris, Fotios; Matzarakis, Andreas

    2016-03-01

    The assessment of future precipitation variations prevailing in an area is essential for the research regarding climate and climate change. The current paper focuses on 3 selected areas in Greece that present different climatic characteristics due to their location and aims to assess and compare the future variation of annual and seasonal precipitation. Future precipitation data from the ENSEMBLES anthropogenic climate-change (ACC) global simulations and the Climate version of the Local Model (CLM) were obtained and analyzed. The climate simulations were performed for the future periods 2021-2050 and 2071-2100 under the A1B and B1 scenarios. Mann-Kendall test was applied to investigate possible trends. Spatial distribution of precipitation was performed using a combination of dynamic and statistical downscaling techniques and Kriging method within ArcGIS 10.2.1. The results indicated that for both scenarios, reference periods and study areas, precipitation is expected to be critically decreased. Additionally, Mann-Kendall test application showed a strong downward trend for every study area. Furthermore, the decrease in precipitation for the Ardas River basin characterized by the continental climate will be tempered, while in the Sperchios River basin it will be smoother due to the influence of some minor climatic variations in the basins' springs in the highlands where milder conditions occur. Precipitation decrease in the Geropotamos River basin which is characterized by Mediterranean climate will be more vigorous. B1 scenario appeared more optimistic for the Ardas and Sperchios River basins, while in the Geropotamos River basin, both applied scenarios brought similar results, in terms of future precipitation response.

  19. The fate of threatened coastal dune habitats in Italy under climate change scenarios.

    Science.gov (United States)

    Prisco, Irene; Carboni, Marta; Acosta, Alicia T R

    2013-01-01

    Coastal dunes worldwide harbor threatened habitats characterized by high diversity in terms of plant communities. In Italy, recent assessments have highlighted the insufficient state of conservation of these habitats as defined by the EU Habitats Directive. The effects of predicted climate change could have dramatic consequences for coastal environments in the near future. An assessment of the efficacy of protection measures under climate change is thus a priority. Here, we have developed environmental envelope models for the most widespread dune habitats in Italy, following two complementary approaches: an "indirect" plant-species-based one and a simple "direct" one. We analyzed how habitats distribution will be altered under the effects of two climate change scenarios and evaluated if the current Italian network of protected areas will be effective in the future after distribution shifts. While modeling dune habitats with the "direct" approach was unsatisfactory, "indirect" models had a good predictive performance, highlighting the importance of using species' responses to climate change for modeling these habitats. The results showed that habitats closer to the sea may even increase their geographical distribution in the near future. The transition dune habitat is projected to remain stable, although mobile and fixed dune habitats are projected to lose most of their actual geographical distribution, the latter being more sensitive to climate change effects. Gap analysis highlighted that the habitats' distribution is currently adequately covered by protected areas, achieving the conservation target. However, according to predictions, protection level for mobile and fixed dune habitats is predicted to drop drastically under the climate change scenarios which we examined. Our results provide useful insights for setting management priorities and better addressing conservation efforts to preserve these threatened habitats in future.

  20. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, Brian C.; Tebaldi, Claudia; van Vuuren, Detlef P.; Eyring, Veronika; Friedlingstein, Pierre; Hurtt, George; Knutti, Reto; Kriegler, Elmar; Lamarque, Jean-Francois; Lowe, Jason; Meehl, Gerald A.; Moss, Richard; Riahi, Keywan; Sanderson, Benjamin M.

    2016-01-01

    Projections of future climate change play a fundamental role in improving understanding of the climate system as well as characterizing societal risks and response options. The Scenario Model Intercomparison Project (ScenarioMIP) is the primary activity within Phase 6 of the Coupled Model Intercomparison Project (CMIP6) that will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. In this paper, we describe ScenarioMIP's objectives, experimental design, and its relation to other activities within CMIP6. The ScenarioMIP design is one component of a larger scenario process that aims to facilitate a wide range of integrated studies across the climate science, integrated assessment modeling, and impacts, adaptation, and vulnerability communities, and will form an important part of the evidence base in the forthcoming Intergovernmental Panel on Climate Change (IPCC) assessments. At the same time, it will provide the basis for investigating a number of targeted science and policy questions that are especially relevant to scenario-based analysis, including the role of specific forcings such as land use and aerosols, the effect of a peak and decline in forcing, the consequences of scenarios that limit warming to below 2 °C, the relative contributions to uncertainty from scenarios, climate models, and internal variability, and long-term climate system outcomes beyond the 21st century. To serve this wide range of scientific communities and address these questions, a design has been identified consisting of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions, divided into two tiers defined by relative priority. Some of these scenarios will also provide a basis for variants planned to be run in other CMIP6-Endorsed MIPs to investigate questions related to specific forcings. Harmonized, spatially

  1. The effect of future outdoor air pollution on human health and the contribution of climate change

    Science.gov (United States)

    Silva, R.; West, J. J.; Lamarque, J.; Shindell, D.; Collins, W.; Dalsoren, S. B.; Faluvegi, G. S.; Folberth, G.; Horowitz, L. W.; Nagashima, T.; Naik, V.; Rumbold, S.; Skeie, R.; Sudo, K.; Takemura, T.; Bergmann, D. J.; Cameron-Smith, P. J.; Cionni, I.; Doherty, R. M.; Eyring, V.; Josse, B.; MacKenzie, I. A.; Plummer, D.; Righi, M.; Stevenson, D. S.; Strode, S. A.; Szopa, S.; Zeng, G.

    2013-12-01

    At present, exposure to outdoor air pollution from ozone and fine particulate matter (PM2.5) causes over 2 million deaths per year, due to respiratory and cardiovascular diseases and lung cancer. Future ambient concentrations of ozone and PM2.5 will be affected by both air pollutant emissions and climate change. Here we estimate the potential impact of future outdoor air pollution on premature human mortality, and isolate the contribution of future climate change due to its effect on air quality. We use modeled present-day (2000) and future global ozone and PM2.5 concentrations from simulations with an ensemble of chemistry-climate models from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Future air pollution was modeled for global greenhouse gas and air pollutant emissions in the four IPCC AR5 Representative Concentration Pathway (RCP) scenarios, for 2030, 2050 and 2100. All model outputs are regridded to a common 0.5°x0.5° horizontal resolution. Future premature mortality is estimated for each RCP scenario and year based on changes in concentrations of ozone and PM2.5 relative to 2000. Using a health impact function, changes in concentrations for each RCP scenario are combined with future population and cause-specific baseline mortality rates as projected by a single independent scenario in which the global incidence of cardiopulmonary diseases is expected to increase. The effect of climate change is isolated by considering the difference between air pollutant concentrations from simulations with 2000 emissions and a future year climate and simulations with 2000 emissions and climate. Uncertainties in the results reflect the uncertainty in the concentration-response function and that associated with variability among models. Few previous studies have quantified the effects of future climate change on global human health via changes in air quality, and this is the first such study to use an ensemble of global models.

  2. Impact of climate change on potential evapotranspiration under a historical and future climate scenario in the Huang-Huai-Hai Plain, China

    Science.gov (United States)

    Liu, Qin; Yan, Changrong; Ju, Hui; Garré, Sarah

    2018-04-01

    Climate change is widely accepted to be one of the most critical problems faced by the Huang-Huai-Hai Plain (3H Plain), which is a region in which there is an over-exploitation of groundwater and where future warmer and drought conditions might intensify crop water demand. In this study, the spatiotemporal patterns of ET0 and primary driving meteorological variables were investigated based on a historical and RCP 8.5 scenario daily data set from 40 weather stations over the 3H Plain using linear regression, spline interpolation method, a partial derivative analysis, and multivariate regression. The results indicated a negative trend in all the analysed periods (except spring) of the past 54 years of which only summer and the entire year were statistically significant ( p use of water resources and a sustainable agricultural production in the 3H Plain.

  3. A New Framework to Evaluate Urban Design Using Urban Microclimatic Modeling in Future Climatic Conditions

    Directory of Open Access Journals (Sweden)

    Dasaraden Mauree

    2018-04-01

    Full Text Available Building more energy-efficient and sustainable urban areas that will both mitigate the effects of climate change and anticipate living conditions in future climate scenarios requires the development of new tools and methods that can help urban planners, architects and communities achieve this goal. In the current study, we designed a workflow that links different methodologies developed separately, to derive the energy consumption of a university school campus for the future. Three different scenarios for typical future years (2039, 2069, 2099 were run, as well as a renovation scenario (Minergie-P. We analyzed the impact of climate change on the heating and cooling demand of buildings and determined the relevance of taking into account the local climate in this particular context. The results from the simulations confirmed that in the future, there will be a constant decrease in the heating demand, while the cooling demand will substantially increase. Significantly, it was further demonstrated that when the local urban climate was taken into account, there was an even higher rise in the cooling demand, but also that a set of proposed Minergie-P renovations were not sufficient to achieve resilient buildings. We discuss the implication of this work for the simulation of building energy consumption at the neighborhood scale and the impact of future local climate on energy system design. We finally give a few perspectives regarding improved urban design and possible pathways for future urban areas.

  4. Hydroclimate variability: comparing dendroclimatic records and future GCM scenarios

    International Nuclear Information System (INIS)

    Lapp, S.

    2008-01-01

    Drought events of the 20th Century in western North America have been linked to teleconnections that influence climate variability on inter-annual and decadal to multi-decadal time scales. These teleconnections represent the changes sea surface temperatures (SSTs) in the tropical and extra-tropical regions of the Pacific Ocean, ENSO (El-Nino Southern Oscillation) and PDO (Pacific Decadal Oscillation), respectively, and the Atlantic Ocean, AMO (Atlantic Multidecadal Oscillation), and also to atmospheric circulation patterns (PNA: Pacific-North American). A network of precipitation sensitive tree-ring chronologies from Montana, Alberta, Saskatchewan and NWT highly correlate to the climate moisture index (CMI) of precipitation potential evapotranspiration (P-PET), thus, capturing the long-term hydroclimatic variability of the region. Reconstructions of annual and seasonal CMI identify drought events in previous centuries that are more extreme in magnitude, frequency and duration than recorded during the instrumental period. Variability in the future climate will include these natural climate cycles as well as modulations of these cycles affected by human induced global warming. The proxy hydroclimate records derived from tree-rings present information on decadal and multi-decadal hydroclimatic variability for the past millennium; therefore, providing a unique opportunity to validate the climate variability simulated by GCMs (Global Climate Models) on longer time scales otherwise constrained by the shorter observation records. Developing scenarios of future variability depends: 1) on our understanding of the interaction of these teleconnection; and, 2) to identify climate models that are able to accurately simulate the hydroclimatic variability as detected in the instrumental and proxy records. (author)

  5. Revisiting historical climatic signals to better explore the future: prospects of water cycle changes in Central Sahel

    Science.gov (United States)

    Leauthaud, C.; Demarty, J.; Cappelaere, B.; Grippa, M.; Kergoat, L.; Velluet, C.; Guichard, F.; Mougin, E.; Chelbi, S.; Sultan, B.

    2015-06-01

    Rainfall and climatic conditions are the main drivers of natural and cultivated vegetation productivity in the semiarid region of Central Sahel. In a context of decreasing cultivable area per capita, understanding and predicting changes in the water cycle are crucial. Yet, it remains challenging to project future climatic conditions in West Africa since there is no consensus on the sign of future precipitation changes in simulations coming from climate models. The Sahel region has experienced severe climatic changes in the past 60 years that can provide a first basis to understand the response of the water cycle to non-stationary conditions in this part of the world. The objective of this study was to better understand the response of the water cycle to highly variable climatic regimes in Central Sahel using historical climate records and the coupling of a land surface energy and water model with a vegetation model that, when combined, simulated the Sahelian water, energy and vegetation cycles. To do so, we relied on a reconstructed long-term climate series in Niamey, Republic of Niger, in which three precipitation regimes can be distinguished with a relative deficit exceeding 25% for the driest period compared to the wettest period. Two temperature scenarios (+2 and +4 °C) consistent with future warming scenarios were superimposed to this climatic signal to generate six virtual future 20-year climate time series. Simulations by the two coupled models forced by these virtual scenarios showed a strong response of the water budget and its components to temperature and precipitation changes, including decreases in transpiration, runoff and drainage for all scenarios but those with highest precipitation. Such climatic changes also strongly impacted soil temperature and moisture. This study illustrates the potential of using the strong climatic variations recorded in the past decades to better understand potential future climate variations.

  6. Riparian responses to extreme climate and land-use change scenarios.

    Science.gov (United States)

    Fernandes, Maria Rosário; Segurado, Pedro; Jauch, Eduardo; Ferreira, Maria Teresa

    2016-11-01

    Climate change will induce alterations in the hydrological and landscape patterns with effects on riparian ecotones. In this study we assess the combined effect of an extreme climate and land-use change scenario on riparian woody structure and how this will translate into a future risk of riparian functionality loss. The study was conducted in the Tâmega catchment of the Douro basin. Boosted Regression Trees (BRTs) were used to model two riparian landscape indicators related with the degree of connectivity (Mean Width) and complexity (Area Weighted Mean Patch Fractal Dimension). Riparian data were extracted by planimetric analysis of high spatial-resolution Word Imagery Layer (ESRI). Hydrological, climatic and land-use variables were obtained from available datasets and generated with process-based modeling using current climate data (2008-2014), while also considering the high-end RCP8.5 climate-change and "Icarus" socio-economic scenarios for the 2046-2065 time slice. Our results show that hydrological and land-use changes strongly influence future projections of riparian connectivity and complexity, albeit to diverse degrees and with differing effects. A harsh reduction in average flows may impair riparian zones while an increase in extreme rain events may benefit connectivity by promoting hydrologic dynamics with the surrounding floodplains. The expected increase in broad-leaved woodlands and mixed forests may enhance the riparian galleries by reducing the agricultural pressure on the area in the vicinity of the river. According to our results, 63% of river segments in the Tâmega basin exhibited a moderate risk of functionality loss, 16% a high risk, and 21% no risk. Weaknesses and strengths of the method are highlighted and results are discussed based on a resilience perspective with regard to riparian ecosystems. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Climate science informs participatory scenario development and applications to decision making in Alaska

    Science.gov (United States)

    Welling, L. A.; Winfree, R.; Mow, J.

    2012-12-01

    Climate change presents unprecedented challenges for managing natural and cultural resources into the future. Impacts are expected to be highly consequential but specific effects are difficult to predict, requiring a flexible process for adaptation planning that is tightly coupled to climate science delivery systems. Scenario planning offers a tool for making science-based decisions under uncertainty. The National Park Service (NPS) is working with the Department of the Interior Climate Science Centers (CSCs), the NOAA Regional Integrated Science and Assessment teams (RISAs), and other academic, government, non-profit, and private partners to develop and apply scenarios to long-range planning and decision frameworks. In April 2012, Alaska became the first region of the NPS to complete climate change scenario planning for every national park, preserve, and monument. These areas, which collectively make up two-thirds of the total area of the NPS, are experiencing visible and measurable effects attributable to climate change. For example, thawing sea ice, glaciers and permafrost have resulted in coastal erosion, loss of irreplaceable cultural sites, slope failures, flooding of visitor access routes, and infrastructure damage. With higher temperatures and changed weather patterns, woody vegetation has expanded into northern tundra, spruce and cedar diebacks have occurred in southern Alaska, and wildland fire severity has increased. Working with partners at the Alaska Climate Science Center and the Scenario Network for Alaska Planning the NPS integrates quantitative, model-driven data with qualitative, participatory techniques to scenario creation. The approach enables managers to access and understand current climate change science in a form that is relevant for their decision making. Collaborative workshops conducted over the past two years grouped parks from Alaska's southwest, northwest, southeast, interior and central areas. The emphasis was to identify and connect

  8. Projecting county-level populations under three future scenarios: a technical document supporting the Forest Service 2010 RPA Assessment

    Science.gov (United States)

    Stanley J. Zarnoch; H. Ken Cordell; Carter J. Betz

    2010-01-01

    County-level population projections from 2010 to 2060 are developed under three national population growth scenarios for reporting in the 2010 Renewable Resources Planning Act (RPA) Assessment. These population growth scenarios are tied to global futures scenarios defined by the Intergovernmental Panel on Climate Change (IPCC), a program within the United Nations...

  9. Assessment of CORDEX-South Asia experiments for monsoonal precipitation over Himalayan region for future climate

    Science.gov (United States)

    Choudhary, A.; Dimri, A. P.

    2018-04-01

    Precipitation is one of the important climatic indicators in the global climate system. Probable changes in monsoonal (June, July, August and September; hereafter JJAS) mean precipitation in the Himalayan region for three different greenhouse gas emission scenarios (i.e. representative concentration pathways or RCPs) and two future time slices (near and far) are estimated from a set of regional climate simulations performed under Coordinated Regional Climate Downscaling Experiment-South Asia (CORDEX-SA) project. For each of the CORDEX-SA simulations and their ensemble, projections of near future (2020-2049) and far future (2070-2099) precipitation climatology with respect to corresponding present climate (1970-2005) over Himalayan region are presented. The variability existing over each of the future time slices is compared with the present climate variability to determine the future changes in inter annual fluctuations of monsoonal mean precipitation. The long-term (1970-2099) trend (mm/day/year) of monsoonal mean precipitation spatially distributed as well as averaged over Himalayan region is analyzed to detect any change across twenty-first century as well as to assess model uncertainty in simulating the precipitation changes over this period. The altitudinal distribution of difference in trend of future precipitation from present climate existing over each of the time slices is also studied to understand any elevation dependency of change in precipitation pattern. Except for a part of the Hindu-Kush area in western Himalayan region which shows drier condition, the CORDEX-SA experiments project in general wetter/drier conditions in near future for western/eastern Himalayan region, a scenario which gets further intensified in far future. Although, a gradually increasing precipitation trend is seen throughout the twenty-first century in carbon intensive scenarios, the distribution of trend with elevation presents a very complex picture with lower elevations

  10. Realisable scenarios for a future electricity supply based 100% on renewable energies

    International Nuclear Information System (INIS)

    Czisch, G.; Giebel, G.

    2007-01-01

    In view of the resource and climate problems, it seems obvious that we must transform our energy system into one using only renewable energies. But questions arise how such a system should be structured, which techniques should be used and, of course, how costly it might be. These questions were the focus of a study which investigated the cost optimum of a future renewable electricity supply for Europe and its closer Asian and African neighbourhood. The resulting scenarios are based on a broad data basis of the electricity consumption and for renewable energies. A linear optimisation determines the best system configuration and temporal dispatch of all components. The outcome of the scenarios can be considered as being a scientific breakthrough since it proves that a totally renewable electricity supply is possible even with current technology and at the same time is affordable for our national economies. In the conservative base case scenario, wind power would dominate the production spread over the better wind areas within the whole supply area, connected with the demand centres via HVDC transmission. The transmission system, furthermore, powerfully integrates the existing storage hydropower to provide for backup co-equally assisted by biomass power and supported by solar thermal electricity. The main results of the different scenarios can be summarized as follows: 1) A totally renewable electricity supply for Europe and its neighbourhood is possible and affordable. 2) Electricity import from non-European neighbour countries can be a very valuable and substantial component of a future supply. 3) Smoothing effects by the use of sources at locations in different climate zones improve the security of the supply and reduce the costs. 4) A large-scale co-operation of many different countries opens up for the possibility to combine the goals of development policy and climate politics in a multilateral win-win strategy. To aid implementation, an international extension

  11. Rainwater catchment system design using simulated future climate data

    Science.gov (United States)

    Wallace, Corey D.; Bailey, Ryan T.; Arabi, Mazdak

    2015-10-01

    Rainwater harvesting techniques are used worldwide to augment potable water supply, provide water for small-scale irrigation practices, increase rainwater-use efficiency for sustained crop growth in arid and semi-arid regions, decrease urban stormwater flow volumes, and in general to relieve dependency on urban water resources cycles. A number of methods have been established in recent years to estimate reliability of rainwater catchment systems (RWCS) and thereby properly size the components (roof catchment area, storage tank size) of the system for a given climatic region. These methods typically use historical or stochastically-generated rainfall patterns to quantify system performance and optimally size the system, with the latter accounting for possible rainfall scenarios based on statistical relationships of historical rainfall patterns. To design RWCS systems that can sustainably meet water demand under future climate conditions, this paper introduces a method that employs climatic data from general circulation models (GCMs) to develop a suite of catchment area vs. storage size design curves that capture uncertainty in future climate scenarios. Monthly rainfall data for the 2010-2050 time period is statistically downscaled to daily values using a Markov chain algorithm, with results used only from GCMs that yield rainfall patterns that are statistically consistent with historical rainfall patterns. The process is demonstrated through application to two climatic regions of the Federated States of Micronesia (FSM) in the western Pacific, wherein the majority of the population relies on rainwater harvesting for potable water supply. Through the use of design curves, communities can provide household RWCS that achieve a certain degree of storage reliability. The method described herein can be applied generally to any geographic region. It can be used to first, assess the future performance of existing household systems; and second, to design or modify systems

  12. Comparative scenario study of tropospheric ozone climate interactions using a global model. A 1% global increase rate, the IS92a IPCC scenario and a simplified aircraft traffic increase scenario

    Energy Technology Data Exchange (ETDEWEB)

    Chalita, S [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France). Service d` Aeronomie; Le Treut, H [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France). Lab. de Meteorologie Dynamique

    1998-12-31

    Sensitivity studies have been made to establish the relationship between different scenarios of tropospheric ozone increase and radiative forcing. Some aspects of the ozone-climate interactions for past and future scenarios are investigated. These calculations employ IMAGES tropospheric ozone concentrations for a pre-industrial, present and future atmospheres. The averaged last 10 years of the 25-year seasonal integrations were analyzed. The results of this study are preliminary. Ozone forcing is basically different from the CO{sub 2} forcing, for its regional and temporal structured nature and for its rather weak intensity. (R.P.) 14 refs.

  13. Comparative scenario study of tropospheric ozone climate interactions using a global model. A 1% global increase rate, the IS92a IPCC scenario and a simplified aircraft traffic increase scenario

    Energy Technology Data Exchange (ETDEWEB)

    Chalita, S. [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France). Service d`Aeronomie; Le Treut, H. [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France). Lab. de Meteorologie Dynamique

    1997-12-31

    Sensitivity studies have been made to establish the relationship between different scenarios of tropospheric ozone increase and radiative forcing. Some aspects of the ozone-climate interactions for past and future scenarios are investigated. These calculations employ IMAGES tropospheric ozone concentrations for a pre-industrial, present and future atmospheres. The averaged last 10 years of the 25-year seasonal integrations were analyzed. The results of this study are preliminary. Ozone forcing is basically different from the CO{sub 2} forcing, for its regional and temporal structured nature and for its rather weak intensity. (R.P.) 14 refs.

  14. Nuclear Security Futures Scenarios

    International Nuclear Information System (INIS)

    Keller, Elizabeth James Kistin; Warren, Drake Edward; Hayden, Nancy Kay; Passell, Howard D.; Malczynski, Leonard A.; Backus, George A.

    2017-01-01

    This report provides an overview of the scenarios used in strategic futures workshops conducted at Sandia on September 21 and 29, 2016. The workshops, designed and facilitated by analysts in Center 100, used scenarios to enable thought leaders to think collectively about the changing aspects of global nuclear security and the potential implications for the US Government and Sandia National Laboratories.

  15. Nuclear Security Futures Scenarios.

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Elizabeth James Kistin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Warren, Drake Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hayden, Nancy Kay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Passell, Howard D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Malczynski, Leonard A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Backus, George A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-01

    This report provides an overview of the scenarios used in strategic futures workshops conducted at Sandia on September 21 and 29, 2016. The workshops, designed and facilitated by analysts in Center 100, used scenarios to enable thought leaders to think collectively about the changing aspects of global nuclear security and the potential implications for the US Government and Sandia National Laboratories.

  16. Future Climate Forcings and Olive Yield in a Mediterranean Orchard

    Directory of Open Access Journals (Sweden)

    Francesco Viola

    2014-05-01

    Full Text Available The olive tree is one of the most characteristic rainfed trees in the Mediterranean region. Observed and forecasted climate modifications in this region, such as the CO2 concentration and temperature increase and the net radiation, rainfall and wind speed decrease, will likely alter vegetation water stress and modify productivity. In order to simulate how climatic change could alter soil moisture dynamic, biomass growth and fruit productivity, a water-driven crop model has been used in this study. The numerical model, previously calibrated on an olive orchard located in Sicily (Italy with a satisfactory reproduction of historical olive yield data, has been forced with future climate scenarios generated using a stochastic weather generator and a downscaling procedure of an ensemble of climate model outputs. The stochastic downscaling is carried out using simulations of some General Circulation Models adopted in the fourth Intergovernmental Panel on Climate Change (IPCC assessment report (4AR for future scenarios. The outcomes state that climatic forcings driving potential evapotranspiration compensate for each other, resulting in a slight increase of this water demand flux; moreover, the increase of CO2 concentration leads to a potential assimilation increase and, consequently, to an overall productivity increase in spite of the growth of water stress due to the rainfall reduction.

  17. Global climate changes in the past and future

    International Nuclear Information System (INIS)

    Schoenwiese, C.D.

    1993-01-01

    Is man changing the climate of the Earth, and if so, is this at a global scale? This question with all its reunifications, usually referred to under the heading ''greenhouse effect'', deservedly stands in the focus of public attention. Besides fears and warnings reaching even to disaster scenarios there have recently also been sceptical voices pointing out the imponderabilities of filtering anthropogenic effects out of the climate data. This uncertainty is not surprising to the expert, as natural changes of climate always have, and will, superimpose anthropogenic influences. Therefore, it is not enough to peer into the future with the help of intricate climate models. Diagnostic analysis of the past climate is at least just as important. (orig.) [de

  18. Climate change projections: past and future mysteries of climate science

    International Nuclear Information System (INIS)

    Meehl, Gerald A.

    2007-01-01

    Full text: Full text: The history of climate change has been wrapped in mysteries. Some have been solved, and we await the outcome of others. The major mystery of 20th century climate was why did temperatures rise in the early part of the century, level off, and then rise rapidly again after the 1970s? It has only been in the past seven years that advances in climate modelling have allowed us to deconstruct 20th century climate to pull apart the separate influences of natural and human-caused factors. This has allowed us to understand the subtle interplay between these various influences that produced the temperature time evolution. Another mystery has involved extreme weather and climate events. Again, climate models have allowed us to quantify how the small changes in average climate translate into much larger changes of regional extremes. The biggest remaining mysteries in climate science involve the future, and how the climate will evolve over the coming century. Up until now, various scenarios postulating different possible outcomes for 21st century climate, assuming different types of human activities, have been run in the climate models to provide a wide range of possible futures. However, more recently the outlook for global warming is being framed as a combination of mitigation and adaptation. If policy actions are taken to mitigate part of the problem of global warming, then climate models must be relied on to quantify the time-evolving picture of how much regional climate change we must adapt to. Solving this mystery will be the biggest and most important challenge ever taken on by the climate modelling community

  19. High estimates of supply constrained emissions scenarios for long-term climate risk assessment

    International Nuclear Information System (INIS)

    Ward, James D.; Mohr, Steve H.; Myers, Baden R.; Nel, Willem P.

    2012-01-01

    The simulated effects of anthropogenic global warming have become important in many fields and most models agree that significant impacts are becoming unavoidable in the face of slow action. Improvements to model accuracy rely primarily on the refinement of parameter sensitivities and on plausible future carbon emissions trajectories. Carbon emissions are the leading cause of global warming, yet current considerations of future emissions do not consider structural limits to fossil fuel supply, invoking a wide range of uncertainty. Moreover, outdated assumptions regarding the future abundance of fossil energy could contribute to misleading projections of both economic growth and climate change vulnerability. Here we present an easily replicable mathematical model that considers fundamental supply-side constraints and demonstrate its use in a stochastic analysis to produce a theoretical upper limit to future emissions. The results show a significant reduction in prior uncertainty around projected long term emissions, and even assuming high estimates of all fossil fuel resources and high growth of unconventional production, cumulative emissions tend to align to the current medium emissions scenarios in the second half of this century. This significant finding provides much-needed guidance on developing relevant emissions scenarios for long term climate change impact studies. - Highlights: ► GHG emissions from conventional and unconventional fossil fuels modelled nationally. ► Assuming worst-case: large resource, high growth, rapid uptake of unconventional. ► Long-term cumulative emissions align well with the SRES medium emissions scenario. ► High emissions are unlikely to be sustained through the second half of this century. ► Model designed to be easily extended to test other scenarios e.g. energy shortages.

  20. Future Climate Change Impact Assessment of River Flows at Two Watersheds of Peninsular Malaysia

    Science.gov (United States)

    Ercan, A.; Ishida, K.; Kavvas, M. L.; Chen, Z. R.; Jang, S.; Amin, M. Z. M.; Shaaban, A. J.

    2016-12-01

    Impacts of climate change on the river flows under future climate change conditions were assessed over Muda and Dungun watersheds of Peninsular Malaysia by means of a coupled regional climate model and a physically-based hydrology model utilizing an ensemble of 15 different future climate realizations. Coarse resolution GCMs' future projections covering a wide range of emission scenarios were dynamically downscaled to 6 km resolution over the study area. Hydrologic simulations of the two selected watersheds were carried out at hillslope-scale and at hourly increments.

  1. FUTURE CLIMATE ANALYSIS

    International Nuclear Information System (INIS)

    R.M. Forester

    2000-01-01

    This Analysis/Model Report (AMR) documents an analysis that was performed to estimate climatic variables for the next 10,000 years by forecasting the timing and nature of climate change at Yucca Mountain (YM), Nevada (Figure l), the site of a potential repository for high-level radioactive waste. The future-climate estimates are based on an analysis of past-climate data from analog meteorological stations, and this AMR provides the rationale for the selection of these analog stations. The stations selected provide an upper and a lower climate bound for each future climate, and the data from those sites will provide input to the infiltration model (USGS 2000) and for the total system performance assessment for the Site Recommendation (TSPA-SR) at YM. Forecasting long-term future climates, especially for the next 10,000 years, is highly speculative and rarely attempted. A very limited literature exists concerning the subject, largely from the British radioactive waste disposal effort. The discussion presented here is one method, among many, of establishing upper and lower bounds for future climate estimates. The method used here involves selecting a particular past climate from many past climates, as an analog for future climate. Other studies might develop a different rationale or select other past climates resulting in a different future climate analog

  2. FUTURE CLIMATE ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    R.M. Forester

    2000-03-14

    This Analysis/Model Report (AMR) documents an analysis that was performed to estimate climatic variables for the next 10,000 years by forecasting the timing and nature of climate change at Yucca Mountain (YM), Nevada (Figure l), the site of a potential repository for high-level radioactive waste. The future-climate estimates are based on an analysis of past-climate data from analog meteorological stations, and this AMR provides the rationale for the selection of these analog stations. The stations selected provide an upper and a lower climate bound for each future climate, and the data from those sites will provide input to the infiltration model (USGS 2000) and for the total system performance assessment for the Site Recommendation (TSPA-SR) at YM. Forecasting long-term future climates, especially for the next 10,000 years, is highly speculative and rarely attempted. A very limited literature exists concerning the subject, largely from the British radioactive waste disposal effort. The discussion presented here is one method, among many, of establishing upper and lower bounds for future climate estimates. The method used here involves selecting a particular past climate from many past climates, as an analog for future climate. Other studies might develop a different rationale or select other past climates resulting in a different future climate analog.

  3. Downscaling climate change scenarios for apple pest and disease modeling in Switzerland

    Science.gov (United States)

    Hirschi, M.; Stoeckli, S.; Dubrovsky, M.; Spirig, C.; Calanca, P.; Rotach, M. W.; Fischer, A. M.; Duffy, B.; Samietz, J.

    2012-02-01

    As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously non-affected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests and diseases have been developed, which model their phenology, depending on actual weather conditions, and suggest management decisions on that basis. Assessing the future risk of pest-related damages requires future weather data at high temporal and spatial resolution. Here, we use a combined stochastic weather generator and re-sampling procedure for producing site-specific hourly weather series representing present and future (1980-2009 and 2045-2074 time periods) climate conditions in Switzerland. The climate change scenarios originate from the ENSEMBLES multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly weather series are produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather series are then used for modeling the impact of climate change on important life phases of the codling moth and on the number of predicted infection days of fire blight. Codling moth (Cydia pomonella) and fire blight (Erwinia amylovora) are two major pest and disease threats to apple, one of the most important commercial and rural crops across Europe. Results for the codling moth indicate a shift in the occurrence and duration of life phases relevant for pest control. In southern Switzerland, a 3rd generation per season occurs only very rarely under today's climate conditions but is projected to become normal in the 2045-2074 time period. While the potential risk for a 3rd generation is also significantly increasing in northern Switzerland (for most stations from roughly 1

  4. Future nuclear energy scenarios for Europe

    International Nuclear Information System (INIS)

    Roelofs, F.; Van Heek, A.

    2010-01-01

    Nuclear energy is back on the agenda worldwide. In order to prepare for the next decades and to set priorities in nuclear R and D and investment, market share scenarios are evaluated. This allows to identify the triggers which influence the market penetration of future nuclear reactor technologies. To this purpose, scenarios for a future nuclear reactor park in Europe have been analysed applying an integrated dynamic process modelling technique. Various market share scenarios for nuclear energy are derived including sub-variants with regard to the intra-nuclear options taken, e.g. introduction date of Gen-III (i.e. EPR) and Gen-IV (i.e. SCWR, HTR, FR) reactors, level of reprocessing, and so forth. The assessment was undertaken using the DANESS code which allows to provide a complete picture of mass-flow and economics of the various nuclear energy system scenarios. The analyses show that the future European nuclear park will exist of combinations of Gen-III and Gen-IV reactors. This mix will always consist of a set of reactor types each having its specific strengths. Furthermore, the analyses highlight the triggers influencing the choice between different nuclear energy deployment scenarios. In addition, a dynamic assessment is made with regard to manpower requirements for the construction of a future nuclear fleet in the different scenarios. (authors)

  5. Merging Methods to Manage Uncertainty: Combining Simulation Modeling and Scenario Planning to Inform Resource Management Under Climate Change

    Science.gov (United States)

    Miller, B. W.; Schuurman, G. W.; Symstad, A.; Fisichelli, N. A.; Frid, L.

    2017-12-01

    Managing natural resources in this era of anthropogenic climate change is fraught with uncertainties around how ecosystems will respond to management actions and a changing climate. Scenario planning (oftentimes implemented as a qualitative, participatory exercise for exploring multiple possible futures) is a valuable tool for addressing this challenge. However, this approach may face limits in resolving responses of complex systems to altered climate and management conditions, and may not provide the scientific credibility that managers often require to support actions that depart from current practice. Quantitative information on projected climate changes and ecological responses is rapidly growing and evolving, but this information is often not at a scale or in a form that is `actionable' for resource managers. We describe a project that sought to create usable information for resource managers in the northern Great Plains by combining qualitative and quantitative methods. In particular, researchers, resource managers, and climate adaptation specialists co-produced a simulation model in conjunction with scenario planning workshops to inform natural resource management in southwest South Dakota. Scenario planning for a wide range of resources facilitated open-minded thinking about a set of divergent and challenging, yet relevant and plausible, climate scenarios and management alternatives that could be implemented in the simulation. With stakeholder input throughout the process, we built a simulation of key vegetation types, grazing, exotic plants, fire, and the effects of climate and management on rangeland productivity and composition. By simulating multiple land management jurisdictions, climate scenarios, and management alternatives, the model highlighted important tradeoffs between herd sizes and vegetation composition, and between the short- versus long-term costs of invasive species management. It also identified impactful uncertainties related to the

  6. Estimation of Crop Coefficient of Corn (Kccorn under Climate Change Scenarios Using Data Mining Technique

    Directory of Open Access Journals (Sweden)

    Kampanad Bhaktikul

    2012-01-01

    Full Text Available The main objectives of this study are to determine the crop coefficient of corn (Kccorn using data mining technique under climate change scenarios, and to develop the guidelines for future water management based on climate change scenarios. Variables including date, maximum temperature, minimum temperature, precipitation, humidity, wind speed, and solar radiation from seven meteorological stations during 1991 to 2000 were used. Cross-Industry Standard Process for Data Mining (CRISP-DM was applied for data collection and analyses. The procedures compose of investigation of input data, model set up using Artificial Neural Networks (ANNs, model evaluation, and finally estimation of the Kccorn. Three climate change scenarios of carbon dioxide (CO2 concentration level: 360 ppm, 540 ppm, and 720 ppm were set. The results indicated that the best number of node of input layer - hidden layer - output layer was 7-13-1. The correlation coefficient of model was 0.99. The predicted Kccorn revealed that evapotranspiration (ETcorn pattern will be changed significantly upon CO2 concentration level. From the model predictions, ETcorn will be decreased 3.34% when CO2 increased from 360 ppm to 540 ppm. For the double CO2 concentration from 360 ppm to 720 ppm, ETcorn will be increased 16.13%. The future water management guidelines to cope with the climate change are suggested.

  7. An Integrated Modelling System to Predict Hydrological Processes under Climate and Land-Use/Cover Change Scenarios

    Directory of Open Access Journals (Sweden)

    Babak Farjad

    2017-10-01

    Full Text Available This study proposes an integrated modeling system consisting of the physically-based MIKE SHE/MIKE 11 model, a cellular automata model, and general circulation models (GCMs scenarios to investigate the independent and combined effects of future climate and land-use/land-cover (LULC changes on the hydrology of a river system. The integrated modelling system is applied to the Elbow River watershed in southern Alberta, Canada in conjunction with extreme GCM scenarios and two LULC change scenarios in the 2020s and 2050s. Results reveal that LULC change substantially modifies the river flow regime in the east sub-catchment, where rapid urbanization is occurring. It is also shown that the change in LULC causes an increase in peak flows in both the 2020s and 2050s. The impacts of climate and LULC change on streamflow are positively correlated in winter and spring, which intensifies their influence and leads to a significant rise in streamflow, and, subsequently, increases the vulnerability of the watershed to spring floods. This study highlights the importance of using an integrated modeling approach to investigate both the independent and combined impacts of climate and LULC changes on the future of hydrology to improve our understanding of how watersheds will respond to climate and LULC changes.

  8. Invasion risk of the yellow crazy ant (Anoplolepis gracilipes under the Representative Concentration Pathways 8.5 climate change scenario in South Korea

    Directory of Open Access Journals (Sweden)

    Jae-Min Jung

    2017-12-01

    Full Text Available The yellow crazy ant (Anoplolepis gracilipes has destroyed local ecosystems in numerous countries, and their population sizes and distribution are likely to increase under global warming. To evaluate the risk of invasion by yellow crazy ant in South Korea, this study identified their potential habitats and predicted their future global distribution by modeling various climate change scenarios using CLIMEX software. Our modeling predicted that future climate conditions in South Korea will be favorable for the yellow crazy ant, and they could invade by the mid-21st century. We highlight the use of predictive algorithms to establish geographical areas with a high risk of yellow crazy ant invasion under Representative Concentration Pathways (RCP 8.5 climate scenarios. Keywords: Anoplolepis gracilipes, climate change scenario, CLIMEX, invasive species, yellow crazy ant

  9. Land-Use Scenarios: National-Scale Housing-Density Scenarios Consistent with Climate Change Storylines (Final Report)

    Science.gov (United States)

    EPA announced the availability of the final report, Land-Use Scenarios: National-Scale Housing-Density Scenarios Consistent with Climate Change Storylines. This report describes the scenarios and models used to generate national-scale housing density scenarios for the con...

  10. Climate change impacts on the power generation potential of a European mid-century wind farms scenario

    International Nuclear Information System (INIS)

    Tobin, Isabelle; Vautard, Robert; Noël, Thomas; Jerez, Sonia; Thais, Françoise; Van Meijgaard, Erik; Prein, Andreas; Déqué, Michel; Kotlarski, Sven; Maule, Cathrine Fox; Nikulin, Grigory; Teichmann, Claas

    2016-01-01

    Wind energy resource is subject to changes in climate. To investigate the impacts of climate change on future European wind power generation potential, we analyze a multi-model ensemble of the most recent EURO-CORDEX regional climate simulations at the 12 km grid resolution. We developed a mid-century wind power plant scenario to focus the impact assessment on relevant locations for future wind power industry. We found that, under two greenhouse gas concentration scenarios, changes in the annual energy yield of the future European wind farms fleet as a whole will remain within ±5% across the 21st century. At country to local scales, wind farm yields will undergo changes up to 15% in magnitude, according to the large majority of models, but smaller than 5% in magnitude for most regions and models. The southern fleets such as the Iberian and Italian fleets are likely to be the most affected. With regard to variability, changes are essentially small or poorly significant from subdaily to interannual time scales. (letter)

  11. Water-Constrained Electric Sector Capacity Expansion Modeling Under Climate Change Scenarios

    Science.gov (United States)

    Cohen, S. M.; Macknick, J.; Miara, A.; Vorosmarty, C. J.; Averyt, K.; Meldrum, J.; Corsi, F.; Prousevitch, A.; Rangwala, I.

    2015-12-01

    Over 80% of U.S. electricity generation uses a thermoelectric process, which requires significant quantities of water for power plant cooling. This water requirement exposes the electric sector to vulnerabilities related to shifts in water availability driven by climate change as well as reductions in power plant efficiencies. Electricity demand is also sensitive to climate change, which in most of the United States leads to warming temperatures that increase total cooling-degree days. The resulting demand increase is typically greater for peak demand periods. This work examines the sensitivity of the development and operations of the U.S. electric sector to the impacts of climate change using an electric sector capacity expansion model that endogenously represents seasonal and local water resource availability as well as climate impacts on water availability, electricity demand, and electricity system performance. Capacity expansion portfolios and water resource implications from 2010 to 2050 are shown at high spatial resolution under a series of climate scenarios. Results demonstrate the importance of water availability for future electric sector capacity planning and operations, especially under more extreme hotter and drier climate scenarios. In addition, region-specific changes in electricity demand and water resources require region-specific responses that depend on local renewable resource availability and electricity market conditions. Climate change and the associated impacts on water availability and temperature can affect the types of power plants that are built, their location, and their impact on regional water resources.

  12. A coherent set of future land use change scenarios for Europe

    DEFF Research Database (Denmark)

    Rounsevell, M. D. A.; Reginster, I.; Araújo, Miguel B.

    2006-01-01

    This paper presents a range of future, spatially explicit, land use change scenarios for the EU15, Norway and Switzerland based on an interpretation of the global storylines of the Intergovernmental Panel on Climate Change (IPCC) that are presented in the special report on emissions scenarios (SRES......). The methodology is based on a qualitative interpretation of the SRES storylines for the European region, an estimation of the aggregate totals of land use change using various land use change models and the allocation of these aggregate quantities in space using spatially explicit rules. The spatial patterns...... are further downscaled from a resolution of 10 min to 250 m using statistical downscaling procedures. The scenarios include the major land use/land cover classes urban, cropland, grassland and forest land as well as introducing new land use classes such as bioenergy crops. The scenario changes are most...

  13. Projections of temperature-related excess mortality under climate change scenarios.

    Science.gov (United States)

    Gasparrini, Antonio; Guo, Yuming; Sera, Francesco; Vicedo-Cabrera, Ana Maria; Huber, Veronika; Tong, Shilu; de Sousa Zanotti Stagliorio Coelho, Micheline; Nascimento Saldiva, Paulo Hilario; Lavigne, Eric; Matus Correa, Patricia; Valdes Ortega, Nicolas; Kan, Haidong; Osorio, Samuel; Kyselý, Jan; Urban, Aleš; Jaakkola, Jouni J K; Ryti, Niilo R I; Pascal, Mathilde; Goodman, Patrick G; Zeka, Ariana; Michelozzi, Paola; Scortichini, Matteo; Hashizume, Masahiro; Honda, Yasushi; Hurtado-Diaz, Magali; Cesar Cruz, Julio; Seposo, Xerxes; Kim, Ho; Tobias, Aurelio; Iñiguez, Carmen; Forsberg, Bertil; Åström, Daniel Oudin; Ragettli, Martina S; Guo, Yue Leon; Wu, Chang-Fu; Zanobetti, Antonella; Schwartz, Joel; Bell, Michelle L; Dang, Tran Ngoc; Van, Dung Do; Heaviside, Clare; Vardoulakis, Sotiris; Hajat, Shakoor; Haines, Andy; Armstrong, Ben

    2017-12-01

    Climate change can directly affect human health by varying exposure to non-optimal outdoor temperature. However, evidence on this direct impact at a global scale is limited, mainly due to issues in modelling and projecting complex and highly heterogeneous epidemiological relationships across different populations and climates. We collected observed daily time series of mean temperature and mortality counts for all causes or non-external causes only, in periods ranging from Jan 1, 1984, to Dec 31, 2015, from various locations across the globe through the Multi-Country Multi-City Collaborative Research Network. We estimated temperature-mortality relationships through a two-stage time series design. We generated current and future daily mean temperature series under four scenarios of climate change, determined by varying trajectories of greenhouse gas emissions, using five general circulation models. We projected excess mortality for cold and heat and their net change in 1990-2099 under each scenario of climate change, assuming no adaptation or population changes. Our dataset comprised 451 locations in 23 countries across nine regions of the world, including 85 879 895 deaths. Results indicate, on average, a net increase in temperature-related excess mortality under high-emission scenarios, although with important geographical differences. In temperate areas such as northern Europe, east Asia, and Australia, the less intense warming and large decrease in cold-related excess would induce a null or marginally negative net effect, with the net change in 2090-99 compared with 2010-19 ranging from -1·2% (empirical 95% CI -3·6 to 1·4) in Australia to -0·1% (-2·1 to 1·6) in east Asia under the highest emission scenario, although the decreasing trends would reverse during the course of the century. Conversely, warmer regions, such as the central and southern parts of America or Europe, and especially southeast Asia, would experience a sharp surge in heat

  14. Data Envelopment Analysis of different climate policy scenarios

    International Nuclear Information System (INIS)

    Bosetti, Valentina; Buchner, Barbara

    2009-01-01

    Recent developments in the political, scientific and economic debate on climate change suggest that it is of critical importance to develop new approaches able to compare policy scenarios for their environmental effectiveness, their distributive effects, their enforceability, their costs and many other dimensions. This paper discusses a quantitative methodology to assess the relative performance of different climate policy scenarios when accounting for their long-term economic, social and environmental impacts. The proposed procedure is based on Data Envelopment Analysis, here employed in evaluating the relative efficiency of eleven global climate policy scenarios. The methodology provides a promising comparison framework; it can be seen as a way of setting some basic guidelines to frame further debates and negotiations and can be flexibly adopted and modified by decision makers to obtain relevant information for policy design. Three major findings emerge from this analysis: (1) stringent climate policies can outperform less ambitious proposals if all sustainability dimensions are taken into account; (2) a carefully chosen burden-sharing rule is able to bring together climate stabilisation and equity considerations; and (3) the most inefficient strategy results from the failure to negotiate a post-2012 global climate agreement. (author)

  15. Scenario planning and nanotechnological futures

    International Nuclear Information System (INIS)

    Farber, Darryl; Lakhtakia, Akhlesh

    2009-01-01

    Scenario planning may assist us in harnessing the benefits of nanotechnology and managing the associated risks for the good of the society. Scenario planning is a way to describe the present state of the world and develop several hypotheses about the future of the world, thereby enabling discussions about how the world ought to be. Scenario planning thus is not only a tool for learning and foresight, but also for leadership. Informed decision making by experts and political leaders becomes possible, while simultaneously allaying the public's perception of the risks of new and emerging technologies such as nanotechnology. Two scenarios of the societal impact of nanotechnology are the mixed-signals scenario and the confluence scenario. Technoscientists have major roles to play in both scenarios.

  16. Scenario and modelling uncertainty in global mean temperature change derived from emission-driven global climate models

    Science.gov (United States)

    Booth, B. B. B.; Bernie, D.; McNeall, D.; Hawkins, E.; Caesar, J.; Boulton, C.; Friedlingstein, P.; Sexton, D. M. H.

    2013-04-01

    We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission-driven rather than concentration-driven perturbed parameter ensemble of a global climate model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration-driven simulations (with 10-90th percentile ranges of 1.7 K for the aggressive mitigation scenario, up to 3.9 K for the high-end, business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 K (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission-driven experiments, they do not change existing expectations (based on previous concentration-driven experiments) on the timescales over which different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in the case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration scenarios used to drive GCM ensembles, lies towards the lower end of our simulated distribution. This design decision (a legacy of previous assessments) is likely to lead concentration-driven experiments to under-sample strong feedback responses in future projections. Our ensemble of emission-driven simulations span the global temperature response of the CMIP5 emission-driven simulations, except at the low end. Combinations of low climate sensitivity and low carbon cycle feedbacks lead to a number of CMIP5 responses to lie below our ensemble range. The ensemble simulates a number of high-end responses which lie

  17. Scenario and modelling uncertainty in global mean temperature change derived from emission-driven global climate models

    Directory of Open Access Journals (Sweden)

    B. B. B. Booth

    2013-04-01

    Full Text Available We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission-driven rather than concentration-driven perturbed parameter ensemble of a global climate model (GCM. These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration-driven simulations (with 10–90th percentile ranges of 1.7 K for the aggressive mitigation scenario, up to 3.9 K for the high-end, business as usual scenario. A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 K (RCP8.5 and even under aggressive mitigation (RCP2.6 temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission-driven experiments, they do not change existing expectations (based on previous concentration-driven experiments on the timescales over which different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in the case of SRES A1B and the Representative Concentration Pathways (RCPs, the concentration scenarios used to drive GCM ensembles, lies towards the lower end of our simulated distribution. This design decision (a legacy of previous assessments is likely to lead concentration-driven experiments to under-sample strong feedback responses in future projections. Our ensemble of emission-driven simulations span the global temperature response of the CMIP5 emission-driven simulations, except at the low end. Combinations of low climate sensitivity and low carbon cycle feedbacks lead to a number of CMIP5 responses to lie below our ensemble range. The ensemble simulates a number of high

  18. Modeling the Projected Changes of River Flow in Central Vietnam under Different Climate Change Scenarios

    Directory of Open Access Journals (Sweden)

    Tuan B. Le

    2015-07-01

    Full Text Available Recent studies by the United Nations Environment Programme (UNEP and the Intergovernmental Panel on Climate Change (IPCC indicate that Vietnam is one of the countries most affected by climate change. The variability of climate in this region, characterized by large fluctuations in precipitation and temperature, has caused significant changes in surface water resources. This study aims to project the impact of climate change on the seasonal availability of surface water of the Huong River in Central Vietnam in the twenty-first century through hydrologic simulations driven by climate model projections. To calibrate and validate the hydrologic model, the model was forced by the rain gage-based gridded Asian Precipitation–Highly Resolved Observational Data Integration Towards Evaluation of water resources (APHRODITE V1003R1 Monsoon Asia precipitation data along with observed temperature, humidity, wind speed, and solar radiation data from local weather stations. The simulated discharge was compared to observations for the period from 1951 until present. Three Global Climate Models (GCMs ECHAM5-OM, HadCM3 and GFDL-CM2.1 integrated into Long Ashton Research Station-Weather Generator (LARS-WG stochastic weather generator were run for three IPCC–Special Report on Emissions Scenarios (IPCC-SRES emissions scenarios A1B, A2, and B1 to simulate future climate conditions. The hydrologic model simulated the Huong River discharge for each IPCC-SRES scenario. Simulation results under the three GCMs generally indicate an increase in summer and fall river discharge during the twenty-first century in A2 and B1 scenarios. For A1B scenario, HadCM3 and GFDL-CM2.1 models project a decrease in river discharge from present to the 2051–2080 period and then increase until the 2071–2100 period while ECHAM5-OM model produces opposite projection that discharge will increase until the 2051–2080 period and then decrease for the rest of the century. Water management

  19. Shallow aquifer response to climate change scenarios in a small catchment in the Guarani Aquifer outcrop zone.

    Science.gov (United States)

    Melo, Davi C D; Wendland, Edson

    2017-05-01

    Water availability restrictions are already a reality in several countries. This issue is likely to worsen due to climate change, predicted for the upcoming decades. This study aims to estimate the impacts of climate change on groundwater system in the Guarani Aquifer outcrop zone. Global Climate Models (GCM) outputs were used as inputs to a water balance model, which produced recharge estimates for the groundwater model. Recharge was estimated across different land use types considering a control period from 2004 to 2014, and a future period from 2081 to 2099. Major changes in monthly rainfall means are expected to take place in dry seasons. Most of the analysed scenarios predict increase of more than 2 ºC in monthly mean temperatures. Comparing the control and future runs, our results showed a mean recharge change among scenarios that ranged from ~-80 to ~+60%, depending on the land use type. As a result of such decrease in recharge rates, the response given by the groundwater model indicates a lowering of the water table under most scenarios.

  20. Nuclear Futures Analysis and Scenario Building

    International Nuclear Information System (INIS)

    Arthur, E.D.; Beller, D.; Canavan, G.H.; Krakowski, R.A.; Peterson, P.; Wagner, R.L.

    1999-01-01

    This LDRD project created and used advanced analysis capabilities to postulate scenarios and identify issues, externalities, and technologies associated with future ''things nuclear''. ''Things nuclear'' include areas pertaining to nuclear weapons, nuclear materials, and nuclear energy, examined in the context of future domestic and international environments. Analysis tools development included adaptation and expansion of energy, environmental, and economics (E3) models to incorporate a robust description of the nuclear fuel cycle (both current and future technology pathways), creation of a beginning proliferation risk model (coupled to the (E3) model), and extension of traditional first strike stability models to conditions expected to exist in the future (smaller force sizes, multipolar engagement environments, inclusion of actual and latent nuclear weapons (capability)). Accomplishments include scenario development for regional and global nuclear energy, the creation of a beginning nuclear architecture designed to improve the proliferation resistance and environmental performance of the nuclear fuel cycle, and numerous results for future nuclear weapons scenarios

  1. Hydroelectric power generation in an Alpine basin: future water-energy scenarios in a run-of-the-river plant

    Science.gov (United States)

    Bongio, Marco; Avanzi, Francesco; De Michele, Carlo

    2016-08-01

    We investigate scenarios of hydroelectric power generation for an Alpine run-of-the-river plant in 2050. To this end, we include a conversion from streamflow to energy in a hydrological model of the basin, and we introduce a set of benchmark climate scenarios to evaluate expected future production. These are a "future-like-present" scenario assuming future precipitation and temperature inputs to be statistically equivalent to those observed during the recent past at the same location, a "warmer-future" scenario, which considers an additional increase in temperature, and a "liquid-only" scenario where only liquid precipitation is admitted. In addition, two IPCC-like climatic scenarios (RCP 4.5 and RCP 8.5) are considered. Uncertainty in glaciers' volume is accounted by initializing the hydrological model with two different inventories of glaciers. Ensemble results reveal that 1) an average decrease between -40% and -19% of hydroelectric power generation in 2050 is predicted at the plant considered (with respect to present condition); 2) an average decrease between -20% and -38% of cumulative incoming streamflow volume at the plant is also predicted, again with respect to present condition; 3) these effects are associated with a strong average decrease of the volume of glaciers (between -76% and -96%, depending on the initial value considered). However, Monte Carlo simulations show that results are also prone to high uncertainties. Implications of these results for run-of-the-river plants are discussed.

  2. Are the Projections of Future Climate Change Reliable in the IPCC Reports?

    Institute of Scientific and Technical Information of China (English)

    Zongci Zhao

    2011-01-01

    @@ As we know,the projections of future climate change including impacts and strategies in the IPCC Assessment Reports were based on global climate models with scenarios on various human activities.Global climate model simulations provide key inputs for climate change assessments. In this study,the main objective is to analyze if the projections of fu-ture climate change by global climate models are reli-able.Several workshops have been held on this issue,such as the IPCC expert meeting on assessing and combining multi-model climate projections in January of 2010 (presided by the co-chairs of the IPCC WGI and WGII AR5),and the workshop of the combined global climate model group held by NCAR in June of 2010.

  3. Dynamic generation of socio-economic scenarios for climate change adaptation: methods, building blocks and examples; Dynamisk generering av socioekonomiska scenarier foer klimatanpassning: metod, byggstenar och exempel

    Energy Technology Data Exchange (ETDEWEB)

    Carlsen, Henrik; Dreborg, Karl Henrik

    2008-05-15

    There is a need for socio-economic scenarios in climate change adaptation work in order to help planners cope with uncertainty of the long term development of society. The United Nations' Panel of climate change (IPCC) has developed climate scenarios with substantially different climatic characteristics in a hundred years' perspective. However, in a 25-30 years' perspective, which is very long term in societal planning, the difference between the scenarios is small, while society may develop in different directions. Since measures of adaptation to a changing climate may have different impacts depending on future socio-economic conditions, there is a need for scenarios that describe different possible developments. With a time frame of 25 years scenarios are more useful than projections of single factors such as GDP or demography, because scenarios can capture structural changes of society. This report presents results from a first step of the development of a scenario tool for climate adaptation work in municipalities, regions, and sectors of society in Sweden. The tool is to be further developed in regional case studies with the aim to make it adaptable to the specific focus of interest of various planning agencies. Therefore, we primarily concentrate on developing external factors and different possible future states for these, and a methodology for combining them into scenarios. The report presents the main steps of the scenario methodology and building blocks for the scenario construction consisting of socio-economic factors of special importance for climate adaptation work. The 13 socio-economic factors are: Demography; International mitigation policy; International climate change adaptation policy, Swedish economy; Ideology and social cohesion; Climate change perception; Swedish governance; Environmental policy; Global energy paradigm; Swedish energy paradigm; Land use; Built environment; Transportation. For each factor different possible

  4. Statistical downscaling and future scenario generation of temperatures for Pakistan Region

    Science.gov (United States)

    Kazmi, Dildar Hussain; Li, Jianping; Rasul, Ghulam; Tong, Jiang; Ali, Gohar; Cheema, Sohail Babar; Liu, Luliu; Gemmer, Marco; Fischer, Thomas

    2015-04-01

    Finer climate change information on spatial scale is required for impact studies than that presently provided by global or regional climate models. It is especially true for regions like South Asia with complex topography, coastal or island locations, and the areas of highly heterogeneous land-cover. To deal with the situation, an inexpensive method (statistical downscaling) has been adopted. Statistical DownScaling Model (SDSM) employed for downscaling of daily minimum and maximum temperature data of 44 national stations for base time (1961-1990) and then the future scenarios generated up to 2099. Observed as well as Predictors (product of National Oceanic and Atmospheric Administration) data were calibrated and tested on individual/multiple basis through linear regression. Future scenario was generated based on HadCM3 daily data for A2 and B2 story lines. The downscaled data has been tested, and it has shown a relatively strong relationship with the observed in comparison to ECHAM5 data. Generally, the southern half of the country is considered vulnerable in terms of increasing temperatures, but the results of this study projects that in future, the northern belt in particular would have a possible threat of increasing tendency in air temperature. Especially, the northern areas (hosting the third largest ice reserves after the Polar Regions), an important feeding source for Indus River, are projected to be vulnerable in terms of increasing temperatures. Consequently, not only the hydro-agricultural sector but also the environmental conditions in the area may be at risk, in future.

  5. Large scale scenario analysis of future low carbon energy options

    International Nuclear Information System (INIS)

    Olaleye, Olaitan; Baker, Erin

    2015-01-01

    In this study, we use a multi-model framework to examine a set of possible future energy scenarios resulting from R&D investments in Solar, Nuclear, Carbon Capture and Storage (CCS), Bio-fuels, Bio-electricity, and Batteries for Electric Transportation. Based on a global scenario analysis, we examine the impact on the economy of advancement in energy technologies, considering both individual technologies and the interactions between pairs of technologies, with a focus on the role of uncertainty. Nuclear and CCS have the most impact on abatement costs, with CCS mostly important at high levels of abatement. We show that CCS and Bio-electricity are complements, while most of the other energy technology pairs are substitutes. We also examine for stochastic dominance between R&D portfolios: given the uncertainty in R&D outcomes, we examine which portfolios would be preferred by all decision-makers, regardless of their attitude toward risk. We observe that portfolios with CCS tend to stochastically dominate those without CCS; and portfolios lacking CCS and Nuclear tend to be stochastically dominated by others. We find that the dominance of CCS becomes even stronger as uncertainty in climate damages increases. Finally, we show that there is significant value in carefully choosing a portfolio, as relatively small portfolios can dominate large portfolios. - Highlights: • We examine future energy scenarios in the face of R&D and climate uncertainty. • We examine the impact of advancement in energy technologies and pairs of technologies. • CCS complements Bio-electricity while most technology pairs are substitutes. • R&D portfolios without CCS are stochastically dominated by portfolios with CCS. • Higher damage uncertainty favors R&D development of CCS and Bio-electricity

  6. Possible Future Climate Change Impacts on the Hydrological Drought Events in the Weihe River Basin, China

    Directory of Open Access Journals (Sweden)

    Fei Yuan

    2016-01-01

    Full Text Available Quantitative evaluation of future climate change impacts on hydrological drought characteristics is one of important measures for implementing sustainable water resources management and effective disaster mitigation in drought-prone regions under the changing environment. In this study, a modeling system for projecting the potential future climate change impacts on hydrological droughts in the Weihe River basin (WRB in North China is presented. This system consists of a large-scale hydrological model driven by climate outputs from three climate models (CMs for future streamflow projections, a probabilistic model for univariate drought assessment, and a copula-based bivariate model for joint drought frequency analysis under historical and future climates. With the observed historical climate data as the inputs, the Variable Infiltration Capacity hydrological model projects an overall runoff reduction in the WRB under the Intergovernmental Panel on Climate Change A1B scenario. The univariate drought assessment found that although fewer hydrological drought events would occur under A1B scenario, drought duration and severity tend to increase remarkably. Moreover, the bivariate drought assessment reveals that future droughts in the same return period as the baseline droughts would become more serious. With these trends in the future, the hydrological drought situation in the WRB would be further deteriorated.

  7. Hydrological Sensitivity of Land Use Scenarios for Climate Mitigation

    Science.gov (United States)

    Boegh, E.; Friborg, T.; Hansen, K.; Jensen, R.; Seaby, L. P.

    2014-12-01

    Bringing atmospheric concentration to 550 ppm CO2 or below by 2100 will require large-scale changes to global and national energy systems, and potentially the use of land (IPCC, 2013) The Danish government aims at reducing greenhouse gas emissions (GHG) by 40 % in 1990-2020 and energy consumption to be based on 100 % renewable energy by 2035. By 2050, GHG emissions should be reduced by 80-95 %. Strategies developed to reach these goals require land use change to increase the production of biomass for bioenergy, further use of catch crops, reduced nitrogen inputs in agriculture, reduced soil tillage, afforestation and establishment of permanent grass fields. Currently, solar radiation in the growing season is not fully exploited, and it is expected that biomass production for bioenergy can be supported without reductions in food and fodder production. Impacts of climate change on the hydrological sensitivity of biomass growth and soil carbon storage are however not known. The present study evaluates the hydrological sensitivity of Danish land use options for climate mitigation in terms of crop yields (including straw for bioenergy) and net CO2 exchange for wheat, barley, maize and clover under current and future climate conditions. Hydrological sensitivity was evaluated using the agrohydrological model Daisy. Simulations during current climate conditions were in good agreement with measured dry matter, crop nitrogen content and eddy covariance fluxes of water vapour and CO2. Climate scenarios from the European ENSEMBLES database were downscaled for simulating water, nitrogen and carbon balance for 2071-2100. The biomass potential generally increase, but water stress also increases in strength and extends over a longer period, thereby increasing sensitivity to water availability. The potential of different land use scenarios to maximize vegetation cover and biomass for climate mitigation is further discussed in relation to impacts on the energy- and water balance.

  8. Mediterranean California’s water use future under multiple scenarios of developed and agricultural land use change

    Science.gov (United States)

    Wilson, Tamara; Sleeter, Benjamin M.; Cameron, D. Richard

    2017-01-01

    With growing demand and highly variable inter-annual water supplies, California’s water use future is fraught with uncertainty. Climate change projections, anticipated population growth, and continued agricultural intensification, will likely stress existing water supplies in coming decades. Using a state-and-transition simulation modeling approach, we examine a broad suite of spatially explicit future land use scenarios and their associated county-level water use demand out to 2062. We examined a range of potential water demand futures sampled from a 20-year record of historical (1992–2012) data to develop a suite of potential future land change scenarios, including low/high change scenarios for urbanization and agriculture as well as “lowest of the low” and “highest of the high” anthropogenic use. Future water demand decreased 8.3 billion cubic meters (Bm3) in the lowest of the low scenario and decreased 0.8 Bm3 in the low agriculture scenario. The greatest increased water demand was projected for the highest of the high land use scenario (+9.4 Bm3), high agricultural expansion (+4.6 Bm3), and high urbanization (+2.1 Bm3) scenarios. Overall, these scenarios show agricultural land use decisions will likely drive future demand more than increasing municipal and industrial uses, yet improved efficiencies across all sectors could lead to potential water use savings. Results provide water managers with information on diverging land use and water use futures, based on historical, observed land change trends and water use histories.

  9. The impacts of future climate and carbon dioxide changes on the average and variability of US maize yields under two emission scenarios

    International Nuclear Information System (INIS)

    Urban, Daniel W; Lobell, David B; Sheffield, Justin

    2015-01-01

    The United States is the largest producer of maize in the world, a crop for which demand continues to rise rapidly. Past studies have projected that climate change will negatively impact mean maize yields in this region, while at the same time increasing yield variability. However, some have questioned the accuracy of these projections because they are often based on indirect measures of soil moisture, have failed to explicitly capture the potential interactions between temperature and soil moisture availability, and often omit the beneficial effects of elevated carbon dioxide (CO 2 ) on transpiration efficiency. Here we use a new detailed dataset on field-level yields in Iowa, Indiana, and Illinois, along with fine-resolution daily weather data and moisture reconstructions, to evaluate the combined effects of moisture and heat on maize yields in the region. Projected climate change scenarios over this region from a suite of CMIP5 models are then used to assess future impacts and the differences between two contrasting emissions scenarios (RCP 4.5 and RCP 8.5). We show that (i) statistical models which explicitly account for interactions between heat and moisture, which have not been represented in previous empirical models, lead to significant model improvement and significantly higher projected yield variability under warming and drying trends than when accounting for each factor independently; (ii) inclusion of the benefits of elevated CO 2 significantly reduces impacts, particularly for yield variability; and (iii) net damages from climate change and CO 2 become larger for the higher emission scenario in the latter half of the 21st century, and significantly so by the end of century. (paper)

  10. Decadal analysis of impact of future climate on wheat production in dry Mediterranean environment: A case of Jordan.

    Science.gov (United States)

    Dixit, Prakash N; Telleria, Roberto; Al Khatib, Amal N; Allouzi, Siham F

    2018-01-01

    Different aspects of climate change, such as increased temperature, changed rainfall and higher atmospheric CO 2 concentration, all have different effects on crop yields. Process-based crop models are the most widely used tools for estimating future crop yield responses to climate change. We applied APSIM crop simulation model in a dry Mediterranean climate with Jordan as sentinel site to assess impact of climate change on wheat production at decadal level considering two climate change scenarios of representative concentration pathways (RCP) viz., RCP4.5 and RCP8.5. Impact of climatic variables alone was negative on grain yield but this adverse effect was negated when elevated atmospheric CO 2 concentrations were also considered in the simulations. Crop cycle of wheat was reduced by a fortnight for RCP4.5 scenario and by a month for RCP8.5 scenario at the approach of end of the century. On an average, a grain yield increase of 5 to 11% in near future i.e., 2010s-2030s decades, 12 to 16% in mid future i.e., 2040s-2060s decades and 9 to 16% in end of century period can be expected for moderate climate change scenario (RCP4.5) and 6 to 15% in near future, 13 to 19% in mid future and 7 to 20% increase in end of century period for a drastic climate change scenario (RCP8.5) based on different soils. Positive impact of elevated CO 2 is more pronounced in soils with lower water holding capacity with moderate increase in temperatures. Elevated CO 2 had greater positive effect on transpiration use efficiency (TUE) than negative effect of elevated mean temperatures. The change in TUE was in near perfect direct relationship with elevated CO 2 levels (R 2 >0.99) and every 100-ppm atmospheric CO 2 increase resulted in TUE increase by 2kgha -1 mm -1 . Thereby, in this environment yield gains are expected in future and farmers can benefit from growing wheat. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Using Maps of City Analogues to Display and Interpret Climate Change scenarios and their uncertainty

    International Nuclear Information System (INIS)

    Kopf, S.; Minh, Ha-Duong; Hallegatte, St.

    2008-02-01

    We describe a method to represent the results of climate simulation models with analogues. An analogue to a city A is a city B whose climate today represents A's simulated future climate. Climates were characterized and compared non-parametrically, using the 30-years distribution of three indicators: Aridity Index, Heating Degree Days and Cooling Degree Days. Analogy was evaluated statistically with the two-samples Kolmogorov-Smirnov test, generalized to 3 dimensions. We looked at the climate of 12 European cities at the end of the century under an A2 climate change scenario. We used two datasets produced with high-resolution regional climate simulation models from the Hadley Center and Meteo France. Climate analogues were generally found southward of present locations, a clear warming trend even if much model and scenario uncertainty remains. Climate analogues provide an intuitive way to show the possible effects of climate change on urban areas, offering a holistic approach to think about how cities adapt to different climates. Evidence of its communication value comes from the reuse of our maps in teaching and in several European mass-media. (authors)

  12. Future climate and surface mass balance of Svalbard glaciers in an RCP8.5 climate scenario: a study with the regional climate model MAR forced by MIROC5

    Science.gov (United States)

    Lang, C.; Fettweis, X.; Erpicum, M.

    2015-05-01

    We have performed a future projection of the climate and surface mass balance (SMB) of Svalbard with the MAR (Modèle Atmosphérique Régional) regional climate model forced by MIROC5 (Model for Interdisciplinary Research on Climate), following the RCP8.5 scenario at a spatial resolution of 10 km. MAR predicts a similar evolution of increasing surface melt everywhere in Svalbard followed by a sudden acceleration of melt around 2050, with a larger melt increase in the south compared to the north of the archipelago. This melt acceleration around 2050 is mainly driven by the albedo-melt feedback associated with the expansion of the ablation/bare ice zone. This effect is dampened in part as the solar radiation itself is projected to decrease due to a cloudiness increase. The near-surface temperature is projected to increase more in winter than in summer as the temperature is already close to 0 °C in summer. The model also projects a stronger winter west-to-east temperature gradient, related to the large decrease of sea ice cover around Svalbard. By 2085, SMB is projected to become negative over all of Svalbard's glaciated regions, leading to the rapid degradation of the firn layer.

  13. Hydrological simulations driven by RCM climate scenarios at basin scale in the Po River, Italy

    Directory of Open Access Journals (Sweden)

    R. Vezzoli

    2014-09-01

    Full Text Available River discharges are the main expression of the hydrological cycle and are the results of climate natural variability. The signal of climate changes occurrence raises the question of how it will impact on river flows and on their extreme manifestations: floods and droughts. This question can be addressed through numerical simulations spanning from the past (1971 to future (2100 under different climate change scenarios. This work addresses the capability of a modelling chain to reproduce the observed discharge of the Po River over the period 1971–2000. The modelling chain includes climate and hydrological/hydraulic models and its performance is evaluated through indices based on the flow duration curve. The climate datasets used for the 1971–2000 period are (a a high resolution observed climate dataset, and COSMO-CLM regional climate model outputs with (b perfect boundary condition, ERA40 Reanalysis, and (c suboptimal boundary conditions provided by the global climate model CMCC–CM. The aim of the different simulations is to evaluate how the uncertainties introduced by the choice of the regional and/or global climate models propagate in the simulated discharges. This point is relevant to interpret the results of the simulated discharges when scenarios for the future are considered. The hydrological/hydraulic components are simulated through a physically-based distributed model (TOPKAPI and a water balance model at the basin scale (RIBASIM. The aim of these first simulations is to quantify the uncertainties introduced by each component of the modelling chain and their propagation. Estimation of the overall uncertainty is relevant to correctly understand the future river flow regimes. The results show how bias correction algorithms can help in reducing the overall uncertainty associated to the different stages of the modelling chain.

  14. Modelling Snowmelt Runoff under Climate Change Scenarios in an Ungauged Mountainous Watershed, Northwest China

    Directory of Open Access Journals (Sweden)

    Yonggang Ma

    2013-01-01

    Full Text Available An integrated modeling system has been developed for analyzing the impact of climate change on snowmelt runoff in Kaidu Watershed, Northwest China. The system couples Hadley Centre Coupled Model version 3 (HadCM3 outputs with Snowmelt Runoff Model (SRM. The SRM was verified against observed discharge for outlet hydrological station of the watershed during the period from April to September in 2001 and generally performed well for Nash-Sutcliffe coefficient (EF and water balance coefficient (RE. The EF is approximately over 0.8, and the water balance error is lower than ± 10%, indicating reasonable prediction accuracy. The Statistical Downscaling Model (SDSM was used to downscale coarse outputs of HadCM3, and then the downscaled future climate data were used as inputs of the SRM. Four scenarios were considered for analyzing the climate change impact on snowmelt flow in the Kaidu Watershed. And the results indicated that watershed hydrology would alter under different climate change scenarios. The stream flow in spring is likely to increase with the increased mean temperature; the discharge and peck flow in summer decrease with the decreased precipitation under Scenarios 1 and 2. Moreover, the consideration of the change in cryosphere area would intensify the variability of stream flow under Scenarios 3 and 4. The modeling results provide useful decision support for water resources management.

  15. Combined effects of climate models, hydrological model structures and land use scenarios on hydrological impacts of climate change

    DEFF Research Database (Denmark)

    Karlsson, Ida B.; Sonnenborg, Torben O.; Refsgaard, Jens Christian

    2016-01-01

    Impact studies of the hydrological response of future climate change are important for the water authorities when risk assessment, management and adaptation to a changing climate are carried out. The objective of this study was to model the combined effect of land use and climate changes...... use scenarios. The results revealed that even though the hydrological models all showed similar performance during calibration, the mean discharge response to climate change varied up to 30%, and the variations were even higher for extreme events (1th and 99th percentile). Land use changes appeared...... to cause little change in mean hydrological responses and little variation between hydrological models. Differences in hydrological model responses to land use were, however, significant for extremes due to dissimilarities in hydrological model structure and process equations. The climate model choice...

  16. Projection of temperature-related mortality due to cardiovascular disease in beijing under different climate change, population, and adaptation scenarios.

    Science.gov (United States)

    Zhang, Boya; Li, Guoxing; Ma, Yue; Pan, Xiaochuan

    2018-04-01

    Human health faces unprecedented challenges caused by climate change. Thus, studies of the effect of temperature change on total mortality have been conducted in numerous countries. However, few of those studies focused on temperature-related mortality due to cardiovascular disease (CVD) or considered future population changes and adaptation to climate change. We present herein a projection of temperature-related mortality due to CVD under different climate change, population, and adaptation scenarios in Beijing, a megacity in China. To this end, 19 global circulation models (GCMs), 3 representative concentration pathways (RCPs), 3 socioeconomic pathways, together with generalized linear models and distributed lag non-linear models, were used to project future temperature-related CVD mortality during periods centered around the years 2050 and 2070. The number of temperature-related CVD deaths in Beijing is projected to increase by 3.5-10.2% under different RCP scenarios compared with that during the baseline period. Using the same GCM, the future daily maximum temperatures projected using the RCP2.6, RCP4.5, and RCP8.5 scenarios showed a gradually increasing trend. When population change is considered, the annual rate of increase in temperature-related CVD deaths was up to fivefold greater than that under no-population-change scenarios. The decrease in the number of cold-related deaths did not compensate for the increase in that of heat-related deaths, leading to a general increase in the number of temperature-related deaths due to CVD in Beijing. In addition, adaptation to climate change may enhance rather than ameliorate the effect of climate change, as the increase in cold-related CVD mortality greater than the decrease in heat-related CVD mortality in the adaptation scenarios will result in an increase in the total number of temperature-related CVD mortalities. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Simulating future wheat yield under climate change, carbon dioxide enrichment and technology improvement in Iran. Case study: Azarbaijan region

    Energy Technology Data Exchange (ETDEWEB)

    Mansouri, H.; Raei, Y.; Zaeim, A.N.

    2015-07-01

    Climate change and technology development can affect crop productivity in future conditions. Precise estimation of crops yield change as affected by climate and technology in the future is an effective approach for management strategies. The aim of this study was to estimate the impacts of climate change, technology improvement, CO2 enrichment, and overall impacts on wheat yield under future conditions. Wheat yield was projected for three future time periods (2020, 2050 and 2080) compared to baseline year (2011) under two scenarios of IPCC Special Report on Emission Scenarios (SRES) including SRES-A2 as regional economic scenario and SRES-B1 as global environmental scenario in Azarbaijan region (NW of Iran). A linear regression model, describing the relationship between wheat yield and historical year, was developed to investigate technology development effect. The decision support system for agro-technology transfer (DSSAT4.5) was used to evaluate the influence of climate change on wheat yield. The most positive effects were found for wheat yield as affected by technology in all studied regions. Under future climate change, the SRES projected a decrease in yield, especially in West Azarbaijan region. When the effects of elevated CO2 were considered, all regions resulted to increase in wheat yield. Considering all components effect in comparison with baseline (2011), yield increase would range from 5% to 38% across all times, scenarios and regions. According to our findings, it seems that we may expect a higher yield of wheat in NW Iran in the future if technology development continues as well as past years. (Author)

  18. Downscaling climate change scenarios for apple pest and disease modeling in Switzerland

    Directory of Open Access Journals (Sweden)

    M. Hirschi

    2012-02-01

    Full Text Available As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously non-affected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests and diseases have been developed, which model their phenology, depending on actual weather conditions, and suggest management decisions on that basis. Assessing the future risk of pest-related damages requires future weather data at high temporal and spatial resolution. Here, we use a combined stochastic weather generator and re-sampling procedure for producing site-specific hourly weather series representing present and future (1980–2009 and 2045–2074 time periods climate conditions in Switzerland. The climate change scenarios originate from the ENSEMBLES multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly weather series are produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather series are then used for modeling the impact of climate change on important life phases of the codling moth and on the number of predicted infection days of fire blight. Codling moth (Cydia pomonella and fire blight (Erwinia amylovora are two major pest and disease threats to apple, one of the most important commercial and rural crops across Europe. Results for the codling moth indicate a shift in the occurrence and duration of life phases relevant for pest control. In southern Switzerland, a 3rd generation per season occurs only very rarely under today's climate conditions but is projected to become normal in the 2045–2074 time period. While the potential risk for a 3rd generation is also significantly increasing in northern

  19. Future projections of insured losses in the German private building sector following the A1B climatic change scenario

    Science.gov (United States)

    Held, H.; Gerstengarbe, F.-W.; Hattermann, F.; Pinto, J. G.; Ulbrich, U.; Böhm, U.; Born, K.; Büchner, M.; Donat, M. G.; Kücken, M.; Leckebusch, G. C.; Nissen, K.; Nocke, T.; Österle, H.; Pardowitz, T.; Werner, P. C.; Burghoff, O.; Broecker, U.; Kubik, A.

    2012-04-01

    We present an overview of a complementary-approaches impact project dealing with the consequences of climate change for the natural hazard branch of the insurance industry in Germany. The project was conducted by four academic institutions together with the German Insurance Association (GDV) and finalized in autumn 2011. A causal chain is modeled that goes from global warming projections over regional meteorological impacts to regional economic losses for private buildings, hereby fully covering the area of Germany. This presentation will focus on wind storm related losses, although the method developed had also been applied in part to hail and flood impact losses. For the first time, the GDV supplied their collected set of insurance cases, dating back for decades, for such an impact study. These data were used to calibrate and validate event-based damage functions which in turn were driven by three different types of regional climate models to generate storm loss projections. The regional models were driven by a triplet of ECHAM5 experiments following the A1B scenario which were found representative in the recent ENSEMBLES intercomparison study. In our multi-modeling approach we used two types of regional climate models that conceptually differ at maximum: a dynamical model (CCLM) and a statistical model based on the idea of biased bootstrapping (STARS). As a third option we pursued a hybrid approach (statistical-dynamical downscaling). For the assessment of climate change impacts, the buildings' infrastructure and their economic value is kept at current values. For all three approaches, a significant increase of average storm losses and extreme event return levels in the German private building sector is found for future decades assuming an A1B-scenario. However, the three projections differ somewhat in terms of magnitude and regional differentiation. We have developed a formalism that allows us to express the combined effect of multi-source uncertainty on return

  20. Contrasted demographic responses facing future climate change in Southern Ocean seabirds.

    Science.gov (United States)

    Barbraud, Christophe; Rivalan, Philippe; Inchausti, Pablo; Nevoux, Marie; Rolland, Virginie; Weimerskirch, Henri

    2011-01-01

    1. Recent climate change has affected a wide range of species, but predicting population responses to projected climate change using population dynamics theory and models remains challenging, and very few attempts have been made. The Southern Ocean sea surface temperature and sea ice extent are projected to warm and shrink as concentrations of atmospheric greenhouse gases increase, and several top predator species are affected by fluctuations in these oceanographic variables. 2. We compared and projected the population responses of three seabird species living in sub-tropical, sub-Antarctic and Antarctic biomes to predicted climate change over the next 50 years. Using stochastic population models we combined long-term demographic datasets and projections of sea surface temperature and sea ice extent for three different IPCC emission scenarios (from most to least severe: A1B, A2, B1) from general circulation models of Earth's climate. 3. We found that climate mostly affected the probability to breed successfully, and in one case adult survival. Interestingly, frequent nonlinear relationships in demographic responses to climate were detected. Models forced by future predicted climatic change provided contrasted population responses depending on the species considered. The northernmost distributed species was predicted to be little affected by a future warming of the Southern Ocean, whereas steep declines were projected for the more southerly distributed species due to sea surface temperature warming and decrease in sea ice extent. For the most southerly distributed species, the A1B and B1 emission scenarios were respectively the most and less damaging. For the two other species, population responses were similar for all emission scenarios. 4. This is among the first attempts to study the demographic responses for several populations with contrasted environmental conditions, which illustrates that investigating the effects of climate change on core population dynamics

  1. As warm as in Germany or Northern Africa? Climate scenarios for the research programme Climatools; Lika varmt som i Tyskland eller Nordafrika? Klimatscenarier inom forskningsprogrammet Climatools

    Energy Technology Data Exchange (ETDEWEB)

    Parmhed, Oskar; Carlsson-Kanyama, Annika

    2007-05-15

    Future climate change may become larger or smaller depending on the development of greenhouse gas emissions. During 2007 the IPCC released its fourth assessment report on the dominant causes of climate change. At the end of this century it is expected that the global mean temperature may have risen with as much as six degrees. The heating may be even greater in Sweden, with effects on precipitation, vegetation, and snow cover. The Climatools research programme aims at maintaining or increasing the capacity of sectors and regions in Sweden to deliver services to the society by providing decision makers with tools for decision on issues of climate change. The tools are developed in scenario based case studies. Common to all scenarios in Climatools are assumptions on the future climate in Sweden. Within Climatools the effects on three regions are considered: Umeaa, Maelardalen, and Skaane. We have chosen three climate scenarios as a basis for coming work within the programme. These three scenarios are presented in this report, together with their motivation. The effects on the three regions of interest are also described. With these scenarios we want to span a challenging space of outcomes for the future work. The three scenarios are named after what the average temperature in Umeaa equals in terms of todays climate. They are called: Umeaa like Umeaa, Umeaa like Germany, and Umeaa like North Africa

  2. Energy Efficiency Road Mapping in Three Future Scenarios for Lao PDR

    Directory of Open Access Journals (Sweden)

    Hajime Sasaki

    2013-09-01

    Full Text Available Climate change, pollution, and energy insecurity are among the greatest problems of our time. These problems are no longer issues in particular countries but international issues. Several framework conventions on these issues are now in place throughout the world, and developing countries are no exception. Energy efficiency is one of the important issues for developing countries. Lao PDR is one such country. This paper proposes a technology roadmap and policy recommendations for Lao PDR with consideration given to a wide range of economic and social impacts of prospective technologies. For the implementation of technology assessment in the formulation of an energy efficiency roadmap, we first elaborate the social and economic conditions of Lao PDR through preliminary research and field research, and then design three scenarios for a future Lao PDR. These three scenarios are as follows: 1. The "Poverty Reduction" scenario is for electrification rate improvement; 2. The "Industrial Creation" scenario is for stable domestic energy supply; and 3. The "GMS Integration" scenario is for the acquisition of foreign exchange by energy export.

  3. Modeling Future Land Use Scenarios in South Korea: Applying the IPCC Special Report on Emissions Scenarios and the SLEUTH Model on a Local Scale

    Science.gov (United States)

    Han, Haejin; Hwang, YunSeop; Ha, Sung Ryong; Kim, Byung Sik

    2015-05-01

    This study developed three scenarios of future land use/land cover on a local level for the Kyung-An River Basin and its vicinity in South Korea at a 30-m resolution based on the two scenario families of the Intergovernmental Panel on Climate Change (IPCC) Special Report Emissions Scenarios (SRES): A2 and B1, as well as a business-as-usual scenario. The IPCC SRES A2 and B1 were used to define future local development patterns and associated land use change. We quantified the population-driven demand for urban land use for each qualitative storyline and allocated the urban demand in geographic space using the SLEUTH model. The model results demonstrate the possible land use/land cover change scenarios for the years from 2000 to 2070 by examining the broad narrative of each SRES within the context of a local setting, such as the Kyoungan River Basin, constructing narratives of local development shifts and modeling a set of `best guess' approximations of the future land use conditions in the study area. This study found substantial differences in demands and patterns of land use changes among the scenarios, indicating compact development patterns under the SRES B1 compared to the rapid and dispersed development under the SRES A2.

  4. Modeling future land use scenarios in South Korea: applying the IPCC special report on emissions scenarios and the SLEUTH model on a local scale.

    Science.gov (United States)

    Han, Haejin; Hwang, YunSeop; Ha, Sung Ryong; Kim, Byung Sik

    2015-05-01

    This study developed three scenarios of future land use/land cover on a local level for the Kyung-An River Basin and its vicinity in South Korea at a 30-m resolution based on the two scenario families of the Intergovernmental Panel on Climate Change (IPCC) Special Report Emissions Scenarios (SRES): A2 and B1, as well as a business-as-usual scenario. The IPCC SRES A2 and B1 were used to define future local development patterns and associated land use change. We quantified the population-driven demand for urban land use for each qualitative storyline and allocated the urban demand in geographic space using the SLEUTH model. The model results demonstrate the possible land use/land cover change scenarios for the years from 2000 to 2070 by examining the broad narrative of each SRES within the context of a local setting, such as the Kyoungan River Basin, constructing narratives of local development shifts and modeling a set of 'best guess' approximations of the future land use conditions in the study area. This study found substantial differences in demands and patterns of land use changes among the scenarios, indicating compact development patterns under the SRES B1 compared to the rapid and dispersed development under the SRES A2.

  5. Defining climate change scenario characteristics with a phase space of cumulative primary energy and carbon intensity

    Science.gov (United States)

    Ritchie, Justin; Dowlatabadi, Hadi

    2018-02-01

    Climate change modeling relies on projections of future greenhouse gas emissions and other phenomena leading to changes in planetary radiative forcing. Scenarios of socio-technical development consistent with end-of-century forcing levels are commonly produced by integrated assessment models. However, outlooks for forcing from fossil energy combustion can also be presented and defined in terms of two essential components: total energy use this century and the carbon intensity of that energy. This formulation allows a phase space diagram to succinctly describe a broad range of possible outcomes for carbon emissions from the future energy system. In the following paper, we demonstrate this phase space method with the Representative Concentration Pathways (RCPs) as used in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). The resulting RCP phase space is applied to map IPCC Working Group III (WGIII) reference case ‘no policy’ scenarios. Once these scenarios are described as coordinates in the phase space, data mining techniques can readily distill their core features. Accordingly, we conduct a k-means cluster analysis to distinguish the shared outlooks of these scenarios for oil, gas and coal resource use. As a whole, the AR5 database depicts a transition toward re-carbonization, where a world without climate policy inevitably leads to an energy supply with increasing carbon intensity. This orientation runs counter to the experienced ‘dynamics as usual’ of gradual decarbonization, suggesting climate change targets outlined in the Paris Accord are more readily achievable than projected to date.

  6. VEMAP 2: U.S. Daily Climate Change Scenarios

    Data.gov (United States)

    National Aeronautics and Space Administration — VEMAP Phase 2 has developed a number of transient climate change scenarios based on coupled atmosphere-ocean general circulation model (AOGCM) transient climate...

  7. Climate Change and Future Pollen Allergy in Europe.

    Science.gov (United States)

    Lake, Iain R; Jones, Natalia R; Agnew, Maureen; Goodess, Clare M; Giorgi, Filippo; Hamaoui-Laguel, Lynda; Semenov, Mikhail A; Solomon, Fabien; Storkey, Jonathan; Vautard, Robert; Epstein, Michelle M

    2017-03-01

    Globally, pollen allergy is a major public health problem, but a fundamental unknown is the likely impact of climate change. To our knowledge, this is the first study to quantify the consequences of climate change upon pollen allergy in humans. We produced quantitative estimates of the potential impact of climate change upon pollen allergy in humans, focusing upon common ragweed ( Ambrosia artemisiifolia ) in Europe. A process-based model estimated the change in ragweed's range under climate change. A second model simulated current and future ragweed pollen levels. These findings were translated into health burdens using a dose-response curve generated from a systematic review and from current and future population data. Models considered two different suites of regional climate/pollen models, two greenhouse gas emissions scenarios [Representative Concentration Pathways (RCPs) 4.5 and 8.5], and three different plant invasion scenarios. Our primary estimates indicated that sensitization to ragweed will more than double in Europe, from 33 to 77 million people, by 2041-2060. According to our projections, sensitization will increase in countries with an existing ragweed problem (e.g., Hungary, the Balkans), but the greatest proportional increases will occur where sensitization is uncommon (e.g., Germany, Poland, France). Higher pollen concentrations and a longer pollen season may also increase the severity of symptoms. Our model projections were driven predominantly by changes in climate (66%) but were also influenced by current trends in the spread of this invasive plant species. Assumptions about the rate at which ragweed spreads throughout Europe had a large influence upon the results. Our quantitative estimates indicate that ragweed pollen allergy will become a common health problem across Europe, expanding into areas where it is currently uncommon. Control of ragweed spread may be an important adaptation strategy in response to climate change. Citation: Lake IR

  8. Assessing hydrological drought risk for the irrigation sector in future climate scenarios: lessons learned from the Apulia case study (Italy)

    Science.gov (United States)

    Critto, Andrea; Torresan, Silvia; Ronco, Paolo; Zennaro, Federica; Santini, Monia; Trabucco, Antonio; Marcomini, Antonio

    2016-04-01

    Climate change is already affecting the frequency of drought events which may threaten the current stocks of water resources and thus the availability of freshwater for the irrigation. The achievement of a sustainable equilibrium between the availability of water resources and the irrigation demand is essentially related to the planning and implementation of evidence-based adaptation strategies and actions. In this sense, the improvement (of existing) and the development of (new) appropriate risk assessment methods and tools to evaluate the impact of drought events on irrigated crops is fundamental in order to assure that the agricultural yields are appropriate to meet the current and future food and market demand. This study evaluates the risk of hydrological drought on the irrigated agronomic compartment of Apulia, a semi-arid region in Southern Italy. We applied a stepwise Regional Risk Assessment (RRA) procedure, based on the consecutive analysis of hazards, exposure, vulnerability and risks, integrating the qualitative and quantitative available information. Future climate projections for the timeframes 2021-2050 and 2041-2070 were provided by COSMO-CLM under the radiative forcing RCP4.5 and RCP8.5. The run-off feeding the water stocks of the most important irrigation reservoirs in Apulia was then modeled with Arc-SWAT. Hence, the hazard analysis was carried out in order to estimate the degree of fulfillment of actual irrigation demand satisfied by water supply of different reservoirs in future scenarios. Vulnerability of exposed irrigated crops was evaluated depending on three factors accounting for crop yield variation vs water stress, water losses along the irrigation network, diversification of water supply. Resulting risk and vulnerability maps allowed: the identification of Reclamation Consortia at higher risk of not fulfilling their future irrigation demand (e.g. Capitanata Reclamation Consortia in RCP8.5 2041-2070 scenario); the ranking of most

  9. Future Climate Analysis

    International Nuclear Information System (INIS)

    James Houseworth

    2001-01-01

    This Analysis/Model Report (AMR) documents an analysis that was performed to estimate climatic variables for the next 10,000 years by forecasting the timing and nature of climate change at Yucca Mountain (YM), Nevada (Figure 1), the site of a potential repository for high-level radioactive waste. The future-climate estimates are based on an analysis of past-climate data from analog meteorological stations, and this AMR provides the rationale for the selection of these analog stations. The stations selected provide an upper and a lower climate bound for each future climate, and the data from those sites will provide input to the infiltration model (USGS 2000) and for the total system performance assessment for the Site Recommendation (TSPA-SR) at YM. Forecasting long-term future climates, especially for the next 10,000 years, is highly speculative and rarely attempted. A very limited literature exists concerning the subject, largely from the British radioactive waste disposal effort. The discussion presented here is one method, among many, of establishing upper and lower bounds for future climate estimates. The method used here involves selecting a particular past climate from many past climates, as an analog for future climate. Other studies might develop a different rationale or select other past climates resulting in a different future climate analog. Revision 00 of this AMR was prepared in accordance with the ''Work Direction and Planning Document for Future Climate Analysis'' (Peterman 1999) under Interagency Agreement DE-AI08-97NV12033 with the U.S. Department of Energy (DOE). The planning document for the technical scope, content, and management of ICN 01 of this AMR is the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (BSC 2001a). The scope for the TBV resolution actions in this ICN is described in the ''Technical Work Plan for: Integrated Management of Technical Product Input Department''. (BSC 2001b, Addendum B

  10. Future Climate Analysis

    Energy Technology Data Exchange (ETDEWEB)

    James Houseworth

    2001-10-12

    This Analysis/Model Report (AMR) documents an analysis that was performed to estimate climatic variables for the next 10,000 years by forecasting the timing and nature of climate change at Yucca Mountain (YM), Nevada (Figure 1), the site of a potential repository for high-level radioactive waste. The future-climate estimates are based on an analysis of past-climate data from analog meteorological stations, and this AMR provides the rationale for the selection of these analog stations. The stations selected provide an upper and a lower climate bound for each future climate, and the data from those sites will provide input to the infiltration model (USGS 2000) and for the total system performance assessment for the Site Recommendation (TSPA-SR) at YM. Forecasting long-term future climates, especially for the next 10,000 years, is highly speculative and rarely attempted. A very limited literature exists concerning the subject, largely from the British radioactive waste disposal effort. The discussion presented here is one method, among many, of establishing upper and lower bounds for future climate estimates. The method used here involves selecting a particular past climate from many past climates, as an analog for future climate. Other studies might develop a different rationale or select other past climates resulting in a different future climate analog. Revision 00 of this AMR was prepared in accordance with the ''Work Direction and Planning Document for Future Climate Analysis'' (Peterman 1999) under Interagency Agreement DE-AI08-97NV12033 with the U.S. Department of Energy (DOE). The planning document for the technical scope, content, and management of ICN 01 of this AMR is the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (BSC 2001a). The scope for the TBV resolution actions in this ICN is described in the ''Technical Work Plan for: Integrated Management of Technical

  11. Climate change scenarios of heat waves in Central Europe and their uncertainties

    Science.gov (United States)

    Lhotka, Ondřej; Kyselý, Jan; Farda, Aleš

    2018-02-01

    The study examines climate change scenarios of Central European heat waves with a focus on related uncertainties in a large ensemble of regional climate model (RCM) simulations from the EURO-CORDEX and ENSEMBLES projects. Historical runs (1970-1999) driven by global climate models (GCMs) are evaluated against the E-OBS gridded data set in the first step. Although the RCMs are found to reproduce the frequency of heat waves quite well, those RCMs with the coarser grid (25 and 50 km) considerably overestimate the frequency of severe heat waves. This deficiency is improved in higher-resolution (12.5 km) EURO-CORDEX RCMs. In the near future (2020-2049), heat waves are projected to be nearly twice as frequent in comparison to the modelled historical period, and the increase is even larger for severe heat waves. Uncertainty originates mainly from the selection of RCMs and GCMs because the increase is similar for all concentration scenarios. For the late twenty-first century (2070-2099), a substantial increase in heat wave frequencies is projected, the magnitude of which depends mainly upon concentration scenario. Three to four heat waves per summer are projected in this period (compared to less than one in the recent climate), and severe heat waves are likely to become a regular phenomenon. This increment is primarily driven by a positive shift of temperature distribution, but changes in its scale and enhanced temporal autocorrelation of temperature also contribute to the projected increase in heat wave frequencies.

  12. Impacts of climate change on the future of biodiversity.

    Science.gov (United States)

    Bellard, Céline; Bertelsmeier, Cleo; Leadley, Paul; Thuiller, Wilfried; Courchamp, Franck

    2012-04-01

    Many studies in recent years have investigated the effects of climate change on the future of biodiversity. In this review, we first examine the different possible effects of climate change that can operate at individual, population, species, community, ecosystem and biome scales, notably showing that species can respond to climate change challenges by shifting their climatic niche along three non-exclusive axes: time (e.g. phenology), space (e.g. range) and self (e.g. physiology). Then, we present the principal specificities and caveats of the most common approaches used to estimate future biodiversity at global and sub-continental scales and we synthesise their results. Finally, we highlight several challenges for future research both in theoretical and applied realms. Overall, our review shows that current estimates are very variable, depending on the method, taxonomic group, biodiversity loss metrics, spatial scales and time periods considered. Yet, the majority of models indicate alarming consequences for biodiversity, with the worst-case scenarios leading to extinction rates that would qualify as the sixth mass extinction in the history of the earth. © 2012 Blackwell Publishing Ltd/CNRS.

  13. Hydropower and water supply: competing water uses under a future drier climate modeling scenarios for the Tagus River basin, Portugal

    Science.gov (United States)

    Alexandre Diogo, Paulo; Nunes, João Pedro; Carmona Rodrigues, António; João Cruz, Maria; Grosso, Nuno

    2014-05-01

    Climate change in the Mediterranean region is expected to affect existing water resources, both in quantity and quality, as decreased mean annual precipitation and more frequent extreme precipitation events are likely to occur. Also, energy needs tend to increase, together with growing awareness that fossil fuels emissions are determinately responsible for global temperature rise, enhancing renewable energy use and reinforcing the importance of hydropower. When considered together, these facts represent a relevant threat to multipurpose reservoir operations. Great Lisbon main water supply (for c.a. 3 million people), managed by EPAL, is located in Castelo de Bode Reservoir, in the Tagus River affluent designated as Zêzere River. Castelo de Bode is a multipurpose infrastructure as it is also part of the hydropower network system of EDP, the main power company in Portugal. Facing the risk of potential climate change impacts on water resources availability, and as part of a wider project promoted by EPAL (designated as ADAPTACLIMA), climate change impacts on the Zêzere watershed where evaluated based on climate change scenarios for the XXI century. A sequential modeling approach was used and included downscaling climate data methodologies, hydrological modeling, volume reservoir simulations and water quality modeling. The hydrological model SWAT was used to predict the impacts of the A2 and B2 scenarios in 2010-2100, combined with changes in socio-economic drivers such as land use and water demands. Reservoir storage simulations where performed according to hydrological modeling results, water supply needs and dam operational requirements, such as minimum and maximum operational pool levels and turbine capacity. The Ce-Qual-W2 water quality model was used to assess water quality impacts. According to climate scenarios A2 and B2, rainfall decreases between 10 and 18% are expected by 2100, leading to drier climatic conditions and increased frequency and magnitude of

  14. Impacts of future climate change on urban flood volumes in Hohhot in northern China: benefits of climate change mitigation and adaptations

    Science.gov (United States)

    Zhou, Qianqian; Leng, Guoyong; Huang, Maoyi

    2018-01-01

    As China becomes increasingly urbanised, flooding has become a regular occurrence in its major cities. Assessing the effects of future climate change on urban flood volumes is crucial to informing better management of such disasters given the severity of the devastating impacts of flooding (e.g. the 2016 flooding events across China). Although recent studies have investigated the impacts of future climate change on urban flooding, the effects of both climate change mitigation and adaptation have rarely been accounted for together in a consistent framework. In this study, we assess the benefits of mitigating climate change by reducing greenhouse gas (GHG) emissions and locally adapting to climate change by modifying drainage systems to reduce urban flooding under various climate change scenarios through a case study conducted in northern China. The urban drainage model - Storm Water Management Model - was used to simulate urban flood volumes using current and two adapted drainage systems (i.e. pipe enlargement and low-impact development, LID), driven by bias-corrected meteorological forcing from five general circulation models in the Coupled Model Intercomparison Project Phase 5 archive. Results indicate that urban flood volume is projected to increase by 52 % over 2020-2040 compared to the volume in 1971-2000 under the business-as-usual scenario (i.e. Representative Concentration Pathway (RCP) 8.5). The magnitudes of urban flood volumes are found to increase nonlinearly with changes in precipitation intensity. On average, the projected flood volume under RCP 2.6 is 13 % less than that under RCP 8.5, demonstrating the benefits of global-scale climate change mitigation efforts in reducing local urban flood volumes. Comparison of reduced flood volumes between climate change mitigation and local adaptation (by improving drainage systems) scenarios suggests that local adaptation is more effective than climate change mitigation in reducing future flood volumes. This has

  15. Future Climate Analysis

    International Nuclear Information System (INIS)

    Cambell, C. G.

    2004-01-01

    This report documents an analysis that was performed to estimate climatic variables for the next 10,000 years by forecasting the timing and nature of climate change at Yucca Mountain, Nevada, the site of a repository for spent nuclear fuel and high-level radioactive waste. The future-climate estimates are based on an analysis of past-climate data from analog meteorological stations, and this report provides the rationale for the selection of these analog stations. The stations selected provide an upper and a lower climate bound for each future climate, and the data from those sites will provide input to the following reports: ''Simulation of Net Infiltration for Present-Day and Potential Future Climates'' (BSC 2004 [DIRS 170007]), ''Total System Performance Assessment (TSPA) Model/Analysis for the License Application'' (BSC 2004 [DIRS 168504]), ''Features, Events, and Processes in UZ Flow and Transport'' (BSC 2004 [DIRS 170012]), and ''Features, Events, and Processes in SZ Flow and Transport'' (BSC 2004 [DIRS 170013]). Forecasting long-term future climates, especially for the next 10,000 years, is highly speculative and rarely attempted. A very limited literature exists concerning the subject, largely from the British radioactive waste disposal effort. The discussion presented here is one available forecasting method for establishing upper and lower bounds for future climate estimates. The selection of different methods is directly dependent on the available evidence used to build a forecasting argument. The method used here involves selecting a particular past climate from many past climates, as an analog for future climate. While alternative analyses are possible for the case presented for Yucca Mountain, the evidence (data) used would be the same and the conclusions would not be expected to drastically change. Other studies might develop a different rationale or select other past climates resulting in a different future climate analog. Other alternative

  16. Water Resources Management and Hydrologic Design Under Uncertain Climate Change Scenarios

    Science.gov (United States)

    Teegavarapu, R. S.

    2008-05-01

    The impact of climate change on hydrologic design and management of water resource systems could be one of the important challenges faced by future practicing hydrologists and water resources managers. Many water resources managers currently rely on the historical hydrological data and adaptive real-time operations without consideration of the impact of climate change on major inputs influencing the behavior of hydrologic systems and the operating rules. Issues such as risk, reliability and robustness of water resources systems under different climate change scenarios were addressed in the past. However, water resources management with the decision maker's preferences attached to climate change has never been dealt with. This presentation discusses issues related to impacts of climate change on water resources management and application of a soft-computing approach, fuzzy set theory, for climate-sensitive management of water resources systems. A real-life case study example is presented to illustrate the applicability of soft-computing approach for handling the decision maker's preferences in accepting or rejecting the magnitude and direction of climate change.

  17. Coral Reef Habitat Suitability in Future Climate Scenarios from NCAR CESM1 considering a Suite of Biogeochemical Variables

    Science.gov (United States)

    Freeman, L. A.; Kleypas, J. A.; Miller, A. J.

    2013-12-01

    A maximum entropy species distribution model (Maxent) is used to describe coral reef habitat in current climate conditions and to predict changes to that habitat during the 21st century. Two climate change scenarios (RCP4.5 and RCP8.5) from the National Center for Atmospheric Research's Community Earth System Model version 1 (CESM1) were used with Maxent to determine environmental suitability for the family of corals Scleractina in 1° by 1° cells. Input environmental variables most suitable for representing coral habitat limitation are isolated using a principal component analysis and include cumulative thermal stress, salinity, light availability, current speed, phosphate levels and aragonite saturation state. Considering a suite of environmental variables allows for a more synergistic view of future habitat suitability, although individual variables are found to be limiting in certain areas- for example, aragonite saturation state is limiting at higher latitudes. Climate-driven coral reef habitat changes depend strongly on the oceanic region of interest and the region of corals used to train the niche model. Increased global coral habitat loss occurred in both RCP4.5 and RCP8.5 climate projections as time progressed through the 21th century. Maximum suitable habitat loss was 82% by 2100 for RCP8.5. When only Caribbean/Atlantic coral reef environmental data is applied globally, 88% of global habitat was lost by 2100 for RCP8.5. The global runs utilizing only Pacific Ocean reefs' ability to survive showed the most significant worldwide loss, 90% by 2100 for RCP8.5. When Maxent was trained with Indian Ocean reefs, an increase in suitable habitat worldwide was estimated. Habitat suitability was found to increase by 38% in RCP4.5 by 2100 and 28% in RCP8.5 by 2050. This suggests that shallow tropical sites in the Indian Ocean basin experience conditions today that are most similar to future worldwide climate projections. Indian Ocean reefs may be ideal candidate

  18. Response of switchgrass yield to future climate change

    International Nuclear Information System (INIS)

    Tulbure, Mirela G; Wimberly, Michael C; Owens, Vance N

    2012-01-01

    A climate envelope approach was used to model the response of switchgrass, a model bioenergy species in the United States, to future climate change. The model was built using general additive models (GAMs), and switchgrass yields collected at 45 field trial locations as the response variable. The model incorporated variables previously shown to be the main determinants of switchgrass yield, and utilized current and predicted 1 km climate data from WorldClim. The models were run with current WorldClim data and compared with results of predicted yield obtained using two climate change scenarios across three global change models for three time steps. Results did not predict an increase in maximum switchgrass yield but showed an overall shift in areas of high switchgrass productivity for both cytotypes. For upland cytotypes, the shift in high yields was concentrated in northern and north-eastern areas where there were increases in average growing season temperature, whereas for lowland cultivars the areas where yields were projected to increase were associated with increases in average early growing season precipitation. These results highlight the fact that the influences of climate change on switchgrass yield are spatially heterogeneous and vary depending on cytotype. Knowledge of spatial distribution of suitable areas for switchgrass production under climate change should be incorporated into planning of current and future biofuel production. Understanding how switchgrass yields will be affected by future changes in climate is important for achieving a sustainable biofuels economy. (letter)

  19. Predicting future changes in Muskegon River Watershed game fish distributions under future land cover alteration and climate change scenarios

    Science.gov (United States)

    Steen, Paul J.; Wiley, Michael J.; Schaeffer, Jeffrey S.

    2010-01-01

    Future alterations in land cover and climate are likely to cause substantial changes in the ranges of fish species. Predictive distribution models are an important tool for assessing the probability that these changes will cause increases or decreases in or the extirpation of species. Classification tree models that predict the probability of game fish presence were applied to the streams of the Muskegon River watershed, Michigan. The models were used to study three potential future scenarios: (1) land cover change only, (2) land cover change and a 3°C increase in air temperature by 2100, and (3) land cover change and a 5°C increase in air temperature by 2100. The analysis indicated that the expected change in air temperature and subsequent change in water temperatures would result in the decline of coldwater fish in the Muskegon watershed by the end of the 21st century while cool- and warmwater species would significantly increase their ranges. The greatest decline detected was a 90% reduction in the probability that brook trout Salvelinus fontinalis would occur in Bigelow Creek. The greatest increase was a 276% increase in the probability that northern pike Esox lucius would occur in the Middle Branch River. Changes in land cover are expected to cause large changes in a few fish species, such as walleye Sander vitreus and Chinook salmon Oncorhynchus tshawytscha, but not to drive major changes in species composition. Managers can alter stream environmental conditions to maximize the probability that species will reside in particular stream reaches through application of the classification tree models. Such models represent a good way to predict future changes, as they give quantitative estimates of the n-dimensional niches for particular species.

  20. Inter- and transdisciplinary scenario construction to explore future land-use options in southern Amazonia

    Directory of Open Access Journals (Sweden)

    Regine Schönenberg

    2017-09-01

    Full Text Available Our aim with this paper is to present a novel approach for developing story lines and scenarios by combining qualitative knowledge and quantitative data from different disciplines and discussing the results with relevant decision makers. This research strategy offers a solid foundation for perspectives into the future. The "laboratory" is the Brazilian Amazon, one of the hotspots of land-use change where local and global interests both collide and converge: local livelihoods are affected by regional and global climate change and by the loss of biodiversity caused by local and global economic interests in agro-industrial land use; such use contributes, in turn, to climate change. After decades of diverse policy interventions the question arises: What can we learn from past trajectories for a more sustainable development in the future? To answer this question, we combined qualitative story lines for the region, reviewed by local experts, with quantitative land-use scenarios, to study their regional and local manifestations in space. These results were then discussed again with local and national experts. Our findings suggest that in-depth knowledge of the diverging perspectives at a very local level is a fundamental prerequisite for downscaling global scenarios and upscaling local approaches to sustainable land-use management and thus, to producing communicable and applicable results.

  1. Runoff scenarios of the Ötz catchment (Tyrol, Austria) considering climate change driven changes of the cryosphere

    Science.gov (United States)

    Helfricht, Kay; Schneeberger, Klaus; Welebil, Irene; Schöber, Johannes; Huss, Matthias; Formayer, Herbert; Huttenlau, Matthias; Schneider, Katrin

    2014-05-01

    The seasonal distribution of runoff in alpine catchments is markedly influenced by the cryospheric contribution (snow and ice). Long-term climate change will alter these reservoirs and consequently have an impact on the water balance. Glacierized catchments like the Ötztal (Tyrol, Austria) are particularly sensitive to changes in the cryosphere and the hydrological changes related to them. The Ötztal possesses an outstanding role in Austrian and international cryospheric research and reacts sensitive to changes in hydrology due to its socio-economic structure (e.g. importance of tourism, hydro-power). In this study future glacier scenarios for the runoff calculations in the Ötztal catchment are developed. In addition to climatological scenario data, glacier scenarios were established for the hydrological simulation of future runoff. Glacier outlines and glacier surface elevation changes of the Austrian Glacier Inventory were used to derive present ice thickness distribution and scenarios of glacier area distribution. Direct effects of climate change (i.e. temperature and precipitation change) and indirect effects in terms of variations in the cryosphere were considered for the analysis of the mean runoff and particularly flood frequencies. Runoff was modelled with the hydrological model HQSim, which was calibrated for the runoff gauges at Brunau, Obergurgl and Vent. For a sensitivity study, the model was driven by separate glacier scenarios. Keeping glacier area constant, variable climate input was used to separate the effect of climate sensitivity. Results of the combination of changed glacier areas and changed climate input were subsequently analysed. Glacier scenarios show first a decrease in volume, before glacier area shrinks. The applied method indicates a 50% ice volume loss by 2050 relative to today. Further, model results show a reduction in glacier volume and area to less than 20% of the current ice cover towards the end of the 21st century. The effect

  2. U.S. climate mitigation pathways post-2012: Transition scenarios in ADAGE

    International Nuclear Information System (INIS)

    Ross, Martin T.; Fawcett, Allen A.; Clapp, Christa S.

    2009-01-01

    The transition from the greenhouse gas (GHG) emission levels currently allowed under the Kyoto Protocol climate agreement to more ambitious, and internationally comprehensive, GHG reduction goals will have important implications for the global economic system. Given the major role that the United States plays in the global economy, and also as a major GHG emitter, this paper examines a range of climate policy pathways for the country in the context of international actions. The ADAGE model is used to examine policy impacts for climate scenarios, focusing on key factors such as emissions, technology deployment, macroeconomic indicators and international trade. In general, the simulations indicate that reductions in GHG emissions can be accomplished with limited economic adjustments, although impacts depend on the future availability of new low-carbon technologies.

  3. Temperature response to future urbanization and climate change

    Science.gov (United States)

    Argüeso, Daniel; Evans, Jason P.; Fita, Lluís; Bormann, Kathryn J.

    2014-04-01

    This study examines the impact of future urban expansion on local near-surface temperature for Sydney (Australia) using a future climate scenario (A2). The Weather Research and Forecasting model was used to simulate the present (1990-2009) and future (2040-2059) climates of the region at 2-km spatial resolution. The standard land use of the model was replaced with a more accurate dataset that covers the Sydney area. The future simulation incorporates the projected changes in the urban area of Sydney to account for the expected urban expansion. A comparison between areas with projected land use changes and their surroundings was conducted to evaluate how urbanization and global warming will act together and to ascertain their combined effect on the local climate. The analysis of the temperature changes revealed that future urbanization will strongly affect minimum temperature, whereas little impact was detected for maximum temperature. The minimum temperature changes will be noticeable throughout the year. However, during winter and spring these differences will be particularly large and the increases could be double the increase due to global warming alone at 2050. Results indicated that the changes were mostly due to increased heat capacity of urban structures and reduced evaporation in the city environment.

  4. Assessing the Robustness of Green Infrastructure under Stochastic Design Storms and Climate Change Scenarios

    Science.gov (United States)

    Chui, T. F. M.; Yang, Y.

    2017-12-01

    Green infrastructures (GI) have been widely used to mitigate flood risk, improve surface water quality, and to restore predevelopment hydrologic regimes. Commonly-used GI include, bioretention system, porous pavement and green roof, etc. They are normally sized to fulfil different design criteria (e.g. providing certain storage depths, limiting peak surface flow rates) that are formulated for current climate conditions. While GI commonly have long lifespan, the sensitivity of their performance to climate change is however unclear. This study first proposes a method to formulate suitable design criteria to meet different management interests (e.g. different levels of first flush reduction and peak flow reduction). Then typical designs of GI are proposed. In addition, a high resolution stochastic design storm generator using copulas and random cascade model is developed, which is calibrated using recorded rainfall time series. Then, few climate change scenarios are generated by varying the duration and depth of design storms, and changing the parameters of the calibrated storm generator. Finally, the performance of GI with typical designs under the random synthesized design storms are then assessed using numerical modeling. The robustness of the designs is obtained by the comparing their performance in the future scenarios to the current one. This study overall examines the robustness of the current GI design criteria under uncertain future climate conditions, demonstrating whether current GI design criteria should be modified to account for climate change.

  5. Future Climate Analysis

    Energy Technology Data Exchange (ETDEWEB)

    C. G. Cambell

    2004-09-03

    This report documents an analysis that was performed to estimate climatic variables for the next 10,000 years by forecasting the timing and nature of climate change at Yucca Mountain, Nevada, the site of a repository for spent nuclear fuel and high-level radioactive waste. The future-climate estimates are based on an analysis of past-climate data from analog meteorological stations, and this report provides the rationale for the selection of these analog stations. The stations selected provide an upper and a lower climate bound for each future climate, and the data from those sites will provide input to the following reports: ''Simulation of Net Infiltration for Present-Day and Potential Future Climates'' (BSC 2004 [DIRS 170007]), ''Total System Performance Assessment (TSPA) Model/Analysis for the License Application'' (BSC 2004 [DIRS 168504]), ''Features, Events, and Processes in UZ Flow and Transport'' (BSC 2004 [DIRS 170012]), and ''Features, Events, and Processes in SZ Flow and Transport'' (BSC 2004 [DIRS 170013]). Forecasting long-term future climates, especially for the next 10,000 years, is highly speculative and rarely attempted. A very limited literature exists concerning the subject, largely from the British radioactive waste disposal effort. The discussion presented here is one available forecasting method for establishing upper and lower bounds for future climate estimates. The selection of different methods is directly dependent on the available evidence used to build a forecasting argument. The method used here involves selecting a particular past climate from many past climates, as an analog for future climate. While alternative analyses are possible for the case presented for Yucca Mountain, the evidence (data) used would be the same and the conclusions would not be expected to drastically change. Other studies might develop a different rationale or select other past

  6. Validation of a model with climatic and flow scenario analysis: case of Lake Burrumbeet in southeastern Australia.

    Science.gov (United States)

    Yihdego, Yohannes; Webb, John

    2016-05-01

    Forecast evaluation is an important topic that addresses the development of reliable hydrological probabilistic forecasts, mainly through the use of climate uncertainties. Often, validation has no place in hydrology for most of the times, despite the parameters of a model are uncertain. Similarly, the structure of the model can be incorrectly chosen. A calibrated and verified dynamic hydrologic water balance spreadsheet model has been used to assess the effect of climate variability on Lake Burrumbeet, southeastern Australia. The lake level has been verified to lake level, lake volume, lake surface area, surface outflow and lake salinity. The current study aims to increase lake level confidence model prediction through historical validation for the year 2008-2013, under different climatic scenario. Based on the observed climatic condition (2008-2013), it fairly matches with a hybridization of scenarios, being the period interval (2008-2013), corresponds to both dry and wet climatic condition. Besides to the hydrologic stresses uncertainty, uncertainty in the calibrated model is among the major drawbacks involved in making scenario simulations. In line with this, the uncertainty in the calibrated model was tested using sensitivity analysis and showed that errors in the model can largely be attributed to erroneous estimates of evaporation and rainfall, and surface inflow to a lesser. The study demonstrates that several climatic scenarios should be analysed, with a combination of extreme climate, stream flow and climate change instead of one assumed climatic sequence, to improve climate variability prediction in the future. Performing such scenario analysis is a valid exercise to comprehend the uncertainty with the model structure and hydrology, in a meaningful way, without missing those, even considered as less probable, ultimately turned to be crucial for decision making and will definitely increase the confidence of model prediction for management of the water

  7. Future Scenarios of Land Change Based on Empirical Data and Demographic Trends

    Science.gov (United States)

    Sleeter, Benjamin M.; Wilson, Tamara S.; Sharygin, Ethan; Sherba, Jason T.

    2017-11-01

    Changes in land use and land cover (LULC) have important and fundamental interactions with the global climate system. Top-down global scale projections of land use change have been an important component of climate change research; however, their utility at local to regional scales is often limited. The goal of this study was to develop an approach for projecting changes in LULC based on land use histories and demographic trends. We developed a set of stochastic, empirical-based projections of LULC change for the state of California, for the period 2001-2100. Land use histories and demographic trends were used to project a "business-as-usual" (BAU) scenario and three population growth scenarios. For the BAU scenario, we projected developed lands would more than double by 2100. When combined with cultivated areas, we projected a 28% increase in anthropogenic land use by 2100. As a result, natural lands were projected to decline at a rate of 139 km2 yr-1; grasslands experienced the largest net decline, followed by shrublands and forests. The amount of cultivated land was projected to decline by approximately 10%; however, the relatively modest change masked large shifts between annual and perennial crop types. Under the three population scenarios, developed lands were projected to increase 40-90% by 2100. Our results suggest that when compared to the BAU projection, scenarios based on demographic trends may underestimate future changes in LULC. Furthermore, regardless of scenario, the spatial pattern of LULC change was likely to have the greatest negative impacts on rangeland ecosystems.

  8. Future scenarios of land change based on empirical data and demographic trends

    Science.gov (United States)

    Sleeter, Benjamin M.; Wilson, Tamara; Sharygin, Ethan; Sherba, Jason

    2017-01-01

    Changes in land use and land cover (LULC) have important and fundamental interactions with the global climate system. Top-down global scale projections of land use change have been an important component of climate change research; however, their utility at local to regional scales is often limited. The goal of this study was to develop an approach for projecting changes in LULC based on land use histories and demographic trends. We developed a set of stochastic, empirical-based projections of LULC change for the state of California, for the period 2001–2100. Land use histories and demographic trends were used to project a “business-as-usual” (BAU) scenario and three population growth scenarios. For the BAU scenario, we projected developed lands would more than double by 2100. When combined with cultivated areas, we projected a 28% increase in anthropogenic land use by 2100. As a result, natural lands were projected to decline at a rate of 139 km2 yr−1; grasslands experienced the largest net decline, followed by shrublands and forests. The amount of cultivated land was projected to decline by approximately 10%; however, the relatively modest change masked large shifts between annual and perennial crop types. Under the three population scenarios, developed lands were projected to increase 40–90% by 2100. Our results suggest that when compared to the BAU projection, scenarios based on demographic trends may underestimate future changes in LULC. Furthermore, regardless of scenario, the spatial pattern of LULC change was likely to have the greatest negative impacts on rangeland ecosystems.

  9. Web-based access, aggregation, and visualization of future climate projections with emphasis on agricultural assessments

    Science.gov (United States)

    Villoria, Nelson B.; Elliott, Joshua; Müller, Christoph; Shin, Jaewoo; Zhao, Lan; Song, Carol

    2018-01-01

    Access to climate and spatial datasets by non-specialists is restricted by technical barriers involving hardware, software and data formats. We discuss an open-source online tool that facilitates downloading the climate data from the global circulation models used by the Inter-Sectoral Impacts Model Intercomparison Project. The tool also offers temporal and spatial aggregation capabilities for incorporating future climate scenarios in applications where spatial aggregation is important. We hope that streamlined access to these data facilitates analysis of climate related issues while considering the uncertainties derived from future climate projections and temporal aggregation choices.

  10. Use of Future Scenarios as a Pedagogical Approach for Science Teacher Education

    Science.gov (United States)

    Paige, Kathryn; Lloyd, David

    2016-04-01

    Futures studies is usually a transdisciplinary study and as such embraces the physical world of the sciences and system sciences and the subjective world of individuals and cultures, as well as the time dimension—past, present and futures. Science education, where student interests, opportunities and challenges often manifest themselves, can provide a suitable entry point for futures work. In this paper, we describe how we have used futures themes, concepts and techniques both implicitly and explicitly in our undergraduate middle school teacher education courses and, in particular, science curriculum and general studies courses. Taking a critical orientation to the past and the present in these courses enables the future to be more than a mere reproduction of the status quo and opens up a range of possible futures in the areas of current interest. For example, having studied middle school teaching and learning in mathematics and science, students explore the past, present and possible future of a natural part of a university campus. In a general studies course on the science of the Earth's atmosphere, students construct a normative futures scenario on living in a changing climate. One way to gain insight into an uncertain future is to construct scenarios. This technique has been used since the 1970s to bring issues of environment and development—areas with strong science content—to the attention of both scientists and policymakers.

  11. Future Climate Data from RCP 4.5 and Occurrence of Malaria in Korea

    Directory of Open Access Journals (Sweden)

    Jaewon Kwak

    2014-10-01

    Full Text Available Since its reappearance at the Military Demarcation Line in 1993, malaria has been occurring annually in Korea. Malaria is regarded as a third grade nationally notifiable disease susceptible to climate change. The objective of this study is to quantify the effect of climatic factors on the occurrence of malaria in Korea and construct a malaria occurrence model for predicting the future trend of malaria under the influence of climate change. Using data from 2001–2011, the effect of time lag between malaria occurrence and mean temperature, relative humidity and total precipitation was investigated using spectral analysis. Also, a principal component regression model was constructed, considering multicollinearity. Future climate data, generated from RCP 4.5 climate change scenario and CNCM3 climate model, was applied to the constructed regression model to simulate future malaria occurrence and analyze the trend of occurrence. Results show an increase in the occurrence of malaria and the shortening of annual time of occurrence in the future.

  12. Future climate data from RCP 4.5 and occurrence of malaria in Korea.

    Science.gov (United States)

    Kwak, Jaewon; Noh, Huiseong; Kim, Soojun; Singh, Vijay P; Hong, Seung Jin; Kim, Duckgil; Lee, Keonhaeng; Kang, Narae; Kim, Hung Soo

    2014-10-15

    Since its reappearance at the Military Demarcation Line in 1993, malaria has been occurring annually in Korea. Malaria is regarded as a third grade nationally notifiable disease susceptible to climate change. The objective of this study is to quantify the effect of climatic factors on the occurrence of malaria in Korea and construct a malaria occurrence model for predicting the future trend of malaria under the influence of climate change. Using data from 2001-2011, the effect of time lag between malaria occurrence and mean temperature, relative humidity and total precipitation was investigated using spectral analysis. Also, a principal component regression model was constructed, considering multicollinearity. Future climate data, generated from RCP 4.5 climate change scenario and CNCM3 climate model, was applied to the constructed regression model to simulate future malaria occurrence and analyze the trend of occurrence. Results show an increase in the occurrence of malaria and the shortening of annual time of occurrence in the future.

  13. Climate change impacts on water availability: developing regional scenarios for agriculture of the Former Soviet Union countries of Central Asia

    Science.gov (United States)

    Kirilenko, A.; Dronin, N.

    2010-12-01

    Water is the major factor, limiting agriculture of the five Former Soviet Union (FSU) of Central Asia. Elevated topography prevents moist and warm air from the Atlantic and Indian Oceans from entering the region.With exception of Kazakhstan, agriculture is generally restricted to oases and irrigated lands along the major rivers and canals. Availability of water for irrigation is the major factor constraining agriculture in the region, and conflicts over water are not infrequent. The current water crisis in the region is largely due to human activity; however the region is also strongly impacted by the climate. In multiple locations, planned and autonomous adaptations to climate change have already resulted in changes in agriculture, such as a dramatic increase in irrigation, or shift in crops towards the ones better suited for warmer and dryer climate; however, it is hard to differentiate between the effects of overall management improvement and the avoidance of climate-related losses. Climate change will contribute to water problems, escalating irrigation demand during the drought period, and increasing water loss with evaporation. The future of the countries of the Aral Sea basin then depends on both the regional scenario of water management policy and a global scenario of climate change, and is integrated with global socioeconomic scenarios. We formulate a set of regional policy scenarios (“Business as Usual”, “Falling Behind” and “Closing the Gap”) and demonstrate how each of them corresponds to IPCC SRES scenarios, the latter used as an input to the General Circulation Models (GCMs). Then we discuss the relative effectiveness of the introduced scenarios for mitigating water problems in the region, taking into account the adaptation through changing water demand for agriculture. Finally, we introduce the results of multimodel analysis of GCM climate projections, especially in relation to the change in precipitation and frequency of droughts, and

  14. Scenario-based roadmapping assessing nuclear technology development paths for future nuclear energy system scenarios

    International Nuclear Information System (INIS)

    Van Den Durpel, Luc; Roelofs, Ferry; Yacout, Abdellatif

    2009-01-01

    Nuclear energy may play a significant role in a future sustainable energy mix. The transition from today's nuclear energy system towards a future more sustainable nuclear energy system will be dictated by technology availability, energy market competitiveness and capability to achieve sustainability through the nuclear fuel cycle. Various scenarios have been investigated worldwide each with a diverse set of assumptions on the timing and characteristics of new nuclear energy systems. Scenario-based roadmapping combines the dynamic scenario-analysis of nuclear energy systems' futures with the technology roadmap information published and analysed in various technology assessment reports though integrated within the nuclear technology roadmap Nuclear-Roadmap.net. The advantages of this combination is to allow mutual improvement of scenario analysis and nuclear technology roadmapping providing a higher degree of confidence in the assessment of nuclear energy system futures. This paper provides a description of scenario-based roadmapping based on DANESS and Nuclear-Roadmap.net. (author)

  15. Multi-model and multi-scenario assessments of Asian water futures: The Water Futures and Solutions (WFaS) initiative

    Science.gov (United States)

    Satoh, Yusuke; Kahil, Taher; Byers, Edward; Burek, Peter; Fischer, Günther; Tramberend, Sylvia; Greve, Peter; Flörke, Martina; Eisner, Stephanie; Hanasaki, Naota; Magnuszewski, Piotr; Nava, Luzma Fabiola; Cosgrove, William; Langan, Simon; Wada, Yoshihide

    2017-07-01

    This paper presents one of the first quantitative scenario assessments for future water supply and demand in Asia to 2050. The assessment, developed by the Water Futures and Solutions (WFaS) initiative, uses the latest set of global climate change and socioeconomic scenarios and state-of-the-art global hydrological models. In Asia, water demand for irrigation, industry, and households is projected to increase substantially in the coming decades (30-40% by 2050 compared to 2010). These changes are expected to exacerbate water stress, especially in the current hotspots such as north India and Pakistan, and north China. By 2050, 20% of the land area in the Asia-Pacific region, with a population of 1.6-2 billion, is projected to experience severe water stress. We find that socioeconomic changes are the main drivers of worsening water scarcity in Asia, with climate change impacts further increasing the challenge into the 21st century. Moreover, a detailed basin-level analysis of the hydro-economic conditions of 40 Asian basins shows that although the coping capacity of all basins is expected to improve due to gross domestic product (GDP) growth, some basins continuously face severe water challenges. These basins will potentially be home to up to 1.6 billion people by mid-21st century.

  16. WATER RESOURCES STATUS AND AVAILABILITY ASSESSMENT IN CURRENT AND FUTURE CLIMATE CHANGE SCENARIOS FOR BEAS RIVER BASIN OF NORTH WESTERN HIMALAYA

    Directory of Open Access Journals (Sweden)

    S. P. Aggarwal

    2016-10-01

    Full Text Available The water resources status and availability of any river basin is of primary importance for overall and sustainable development of any river basin. This study has been done in Beas river basin which is located in North Western Himalaya for assessing the status of water resources in present and future climate change scenarios. In this study hydrological modelling approach has been used for quantifying the water balance components of Beas river basin upto Pandoh. The variable infiltration capacity (VIC model has been used in energy balance mode for Beas river basin at 1km grid scale. The VIC model has been run with snow elevation zones files to simulate the snow module of VIC. The model was run with National Centre for Environmental Prediction (NCEP forcing data (Tmax, Tmin, Rainfall and wind speed at 0.5degree resolution from 1 Jan. 1999 to 31 Dec 2006 for calibration purpose. The additional component of glacier melt was added into overall river runoff using semi-empirical approach utilizing air temperature and glacier type and extent data. The ground water component is computed from overall recharge of ground water by water balance approach. The overall water balance approach is validated with river discharge data provided by Bhakra Beas Management Board (BBMB from 1994-2014. VIC routing module was used to assess pixel wise flow availability at daily, monthly and annual time scales. The mean monthly flow at Pandoh during study period varied from 19 - 1581 m3/s from VIC and 50 to 1556 m3/sec from observation data, with minimum water flow occurring in month of January and maximum flow in month of August with annual R2 of 0.68. The future climate change data is taken from CORDEX database. The climate model of NOAA-GFDL-ESM2M for IPCC RCP scenario 4.5 and 8.5 were used for South Asia at 0.44 deg. grid from year 2006 to 2100. The climate forcing data for VIC model was prepared using daily maximum and minimum near surface air temperature, daily

  17. Water Resources Status and Availability Assessment in Current and Future Climate Change Scenarios for Beas River Basin of North Western Himalaya

    Science.gov (United States)

    Aggarwal, S. P.; Thakur, P. K.; Garg, V.; Nikam, B. R.; Chouksey, A.; Dhote, P.; Bhattacharya, T.

    2016-10-01

    The water resources status and availability of any river basin is of primary importance for overall and sustainable development of any river basin. This study has been done in Beas river basin which is located in North Western Himalaya for assessing the status of water resources in present and future climate change scenarios. In this study hydrological modelling approach has been used for quantifying the water balance components of Beas river basin upto Pandoh. The variable infiltration capacity (VIC) model has been used in energy balance mode for Beas river basin at 1km grid scale. The VIC model has been run with snow elevation zones files to simulate the snow module of VIC. The model was run with National Centre for Environmental Prediction (NCEP) forcing data (Tmax, Tmin, Rainfall and wind speed at 0.5degree resolution) from 1 Jan. 1999 to 31 Dec 2006 for calibration purpose. The additional component of glacier melt was added into overall river runoff using semi-empirical approach utilizing air temperature and glacier type and extent data. The ground water component is computed from overall recharge of ground water by water balance approach. The overall water balance approach is validated with river discharge data provided by Bhakra Beas Management Board (BBMB) from 1994-2014. VIC routing module was used to assess pixel wise flow availability at daily, monthly and annual time scales. The mean monthly flow at Pandoh during study period varied from 19 - 1581 m3/s from VIC and 50 to 1556 m3/sec from observation data, with minimum water flow occurring in month of January and maximum flow in month of August with annual R2 of 0.68. The future climate change data is taken from CORDEX database. The climate model of NOAA-GFDL-ESM2M for IPCC RCP scenario 4.5 and 8.5 were used for South Asia at 0.44 deg. grid from year 2006 to 2100. The climate forcing data for VIC model was prepared using daily maximum and minimum near surface air temperature, daily precipitation and

  18. Assessment of soil organic carbon stocks under future climate and land cover changes in Europe.

    Science.gov (United States)

    Yigini, Yusuf; Panagos, Panos

    2016-07-01

    Soil organic carbon plays an important role in the carbon cycling of terrestrial ecosystems, variations in soil organic carbon stocks are very important for the ecosystem. In this study, a geostatistical model was used for predicting current and future soil organic carbon (SOC) stocks in Europe. The first phase of the study predicts current soil organic carbon content by using stepwise multiple linear regression and ordinary kriging and the second phase of the study projects the soil organic carbon to the near future (2050) by using a set of environmental predictors. We demonstrate here an approach to predict present and future soil organic carbon stocks by using climate, land cover, terrain and soil data and their projections. The covariates were selected for their role in the carbon cycle and their availability for the future model. The regression-kriging as a base model is predicting current SOC stocks in Europe by using a set of covariates and dense SOC measurements coming from LUCAS Soil Database. The base model delivers coefficients for each of the covariates to the future model. The overall model produced soil organic carbon maps which reflect the present and the future predictions (2050) based on climate and land cover projections. The data of the present climate conditions (long-term average (1950-2000)) and the future projections for 2050 were obtained from WorldClim data portal. The future climate projections are the recent climate projections mentioned in the Fifth Assessment IPCC report. These projections were extracted from the global climate models (GCMs) for four representative concentration pathways (RCPs). The results suggest an overall increase in SOC stocks by 2050 in Europe (EU26) under all climate and land cover scenarios, but the extent of the increase varies between the climate model and emissions scenarios. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Scenario dependence of future changes in climate extremes under 1.5 °C and 2 °C global warming.

    Science.gov (United States)

    Wang, Zhili; Lin, Lei; Zhang, Xiaoye; Zhang, Hua; Liu, Liangke; Xu, Yangyang

    2017-04-20

    The 2015 Paris Agreement aims to limit global warming below 2 °C and pursue efforts to even limit it to 1.5 °C relative to pre-industrial levels. Decision makers need reliable information on the impacts caused by these warming levels for climate mitigation and adaptation measures. We explore the changes in climate extremes, which are closely tied to economic losses and casualties, under 1.5 °C and 2 °C global warming and their scenario dependence using three sets of ensemble global climate model simulations. A warming of 0.5 °C (from 1.5 °C to 2 °C) leads to significant increases in temperature and precipitation extremes in most regions. However, the projected changes in climate extremes under both warming levels highly depend on the pathways of emissions scenarios, with different greenhouse gas (GHG)/aerosol forcing ratio and GHG levels. Moreover, there are multifold differences in several heavily polluted regions, among the scenarios, in the changes in precipitation extremes due to an additional 0.5 °C warming from 1.5 °C to 2 °C. Our results demonstrate that the chemical compositions of emissions scenarios, not just the total radiative forcing and resultant warming level, must be considered when assessing the impacts of global 1.5/2 °C warming.

  20. Simulation of future land use change and climate change impacts on hydrological processes in a tropical catchment

    Science.gov (United States)

    Marhaento, H.; Booij, M. J.; Hoekstra, A. Y.

    2017-12-01

    Future hydrological processes in the Samin catchment (278 km2) in Java, Indonesia have been simulated using the Soil and Water Assessment Tool (SWAT) model using inputs from predicted land use distributions in the period 2030 - 2050, bias corrected Regional Climate Model (RCM) output and output of six Global Climate Models (GCMs) to include climate model uncertainty. Two land use change scenarios namely a business-as-usual (BAU) scenario, where no measures are taken to control land use change, and a controlled (CON) scenario, where the future land use follows the land use planning, were used in the simulations together with two climate change scenarios namely Representative Concentration Pathway (RCP) 4.5 and 8.5. It was predicted that in 2050 settlement and agriculture area of the study catchment will increase by 33.9% and 3.5%, respectively under the BAU scenario, whereas agriculture area and evergreen forest will increase by 15.2% and 10.2%, respectively under the CON scenario. In comparison to the baseline conditions (1983 - 2005), the predicted mean annual maximum and minimum temperature in 2030 - 2050 will increase by an average of +10C, while changes in the mean annual rainfall range from -20% to +19% under RCP 4.5 and from -25% to +15% under RCP 8.5. The results show that land use change and climate change individually will cause changes in the water balance components, but that more pronounced changes are expected if the drivers are combined, in particular for changes in annual stream flow and surface runoff. It was observed that combination of the RCP 4.5 climate scenario and BAU land use scenario resulted in an increase of the mean annual stream flow from -7% to +64% and surface runoff from +21% to +102%, which is 40% and 60% more than when land use change is acting alone. Furthermore, under the CON scenario the annual stream flow and surface runoff could be potentially reduced by up to 10% and 30%, respectively indicating the effectiveness of applied

  1. Warm climates of the past--a lesson for the future?

    Science.gov (United States)

    Lunt, D J; Elderfield, H; Pancost, R; Ridgwell, A; Foster, G L; Haywood, A; Kiehl, J; Sagoo, N; Shields, C; Stone, E J; Valdes, P

    2013-10-28

    This Discussion Meeting Issue of the Philosophical Transactions A had its genesis in a Discussion Meeting of the Royal Society which took place on 10-11 October 2011. The Discussion Meeting, entitled 'Warm climates of the past: a lesson for the future?', brought together 16 eminent international speakers from the field of palaeoclimate, and was attended by over 280 scientists and members of the public. Many of the speakers have contributed to the papers compiled in this Discussion Meeting Issue. The papers summarize the talks at the meeting, and present further or related work. This Discussion Meeting Issue asks to what extent information gleaned from the study of past climates can aid our understanding of future climate change. Climate change is currently an issue at the forefront of environmental science, and also has important sociological and political implications. Most future predictions are carried out by complex numerical models; however, these models cannot be rigorously tested for scenarios outside of the modern, without making use of past climate data. Furthermore, past climate data can inform our understanding of how the Earth system operates, and can provide important contextual information related to environmental change. All past time periods can be useful in this context; here, we focus on past climates that were warmer than the modern climate, as these are likely to be the most similar to the future. This introductory paper is not meant as a comprehensive overview of all work in this field. Instead, it gives an introduction to the important issues therein, using the papers in this Discussion Meeting Issue, and other works from all the Discussion Meeting speakers, as exemplars of the various ways in which past climates can inform projections of future climate. Furthermore, we present new work that uses a palaeo constraint to quantitatively inform projections of future equilibrium ice sheet change.

  2. Impact of Future Climate Change on Wheat Production: A Simulated Case for China’s Wheat System

    OpenAIRE

    Dengpan Xiao; Huizi Bai; De Li Liu

    2018-01-01

    With regard to global climate change due to increasing concentration in greenhouse gases, particularly carbon dioxide (CO2), it is important to examine its potential impact on crop development and production. We used statistically-downscaled climate data from 28 Global Climate Models (GCMs) and the Agricultural Production Systems sIMulator (APSIM)–Wheat model to simulate the impact of future climate change on wheat production. Two future scenarios (RCP4.5 and RCP8.5) were used for atmos...

  3. Developing scenarios to assess future landslide risks: a model-based approach applied to mountainous regions

    Science.gov (United States)

    Vacquie, Laure; Houet, Thomas

    2016-04-01

    In the last century, European mountain landscapes have experienced significant transformations. Natural and anthropogenic changes, climate changes, touristic and industrial development, socio-economic interactions, and their implications in terms of LUCC (land use and land cover changes) have directly influenced the spatial organization and vulnerability of mountain landscapes. This study is conducted as part of the SAMCO project founded by the French National Science Agency (ANR). It aims at developing a methodological approach, combining various tools, modelling platforms and methods, to identify vulnerable regions to landslide hazards accounting for futures LUCC. It presents an integrated approach combining participative scenarios and a LULC changes simulation models to assess the combined effects of LUCC and climate change on landslide risks in the Cauterets valley (French Pyrenees Mountains) up to 2100. Through vulnerability and risk mapping, the objective is to gather information to support landscape planning and implement land use strategies with local stakeholders for risk management. Four contrasting scenarios are developed and exhibit contrasting trajectories of socio-economic development. Prospective scenarios are based on national and international socio-economic contexts relying on existing assessment reports. The methodological approach integrates knowledge from local stakeholders to refine each scenario during their construction and to reinforce their plausibility and relevance by accounting for local specificities, e.g. logging and pastoral activities, touristic development, urban planning, etc. A process-based model, the Forecasting Scenarios for Mountains (ForeSceM) model, developed on the Dinamica Ego modelling platform is used to spatially allocate futures LUCC for each prospective scenario. Concurrently, a spatial decision support tool, i.e. the SYLVACCESS model, is used to identify accessible areas for forestry in scenario projecting logging

  4. Regional and urban downscaling of global climate scenarios for health impact assessments

    Energy Technology Data Exchange (ETDEWEB)

    San Jose, R.; Perez, J.L.; Perez, L.; Gonzalez, R.M.; Pecci, J.; Garzon, A.; Palacios, M.

    2015-07-01

    In this contribution we have used global climate RCP IPCC scenarios to produce climate and air pollution maps at regional (25 km resolution) and urban scale with 200 m spatial resolution over Europe and five European cities in order to investigate the impact on meteorological variables and pollutant concentrations . We have used the very well known mesoscale meeorological model WRF-Chem (NOAA, US). We have used 2011 as control past year and two RCP scenarios from CCSM global climate model with 4.5 W/m2 and 8.5 W/m2 for 2030, 2050 and 2100 years. After running WRF-Chem model, using the boundary conditions provided by RCP scenarios with the emissions of 2011, we have performed a detailed downscaling process using CALMET diagnostic model to obtain a full 200 m spatial resolution map of five European cities (London, Antwerp, Madrid, Milan, and Helsinki). We will show the results and the health impacts for future RCP IPCC climate scenarios in comparison with the 2011 control year information for climate and health indicators. Finnally, we have also investigated the impact of the aerosol effects in the short wave radiation mean value. Two simulations with the WRF-Chem model have been performed over Europe in 2010. A baseline simulation without any feedback effects and a second simulation including the direct effects affecting the solar radiation reaching the surface as well as the indirect aerosol effect with potential impacts on increasing or decreasing the precipitation rates. Aerosol effects produce an increase of incoming radiation over Atlantic Ocean (up to 70%) because the prescribed aerosol concentrations in the WRF-Chem without feedbacks is substantially higher than the aerosol concentrations produced when we activate the feedback effects. The decrease in solar radiation in the Sahara area (10%) is found to be produced because the prescribed aerosol concentration in the {sup n}o feedback{sup s}imulation is lower than when we activate the feedback effects. (Author)

  5. Assessment of future extreme climate events over the Porto wine Region

    Science.gov (United States)

    Viceto, Carolina; Cardoso, Susana; Marta-Almeida, Martinho; Gorodetskaya, Irina; Rocha, Alfredo

    2017-04-01

    The Douro Demarcated Region (DDR) is a wine region, in the northern Portugal, recognized for the Porto wine, which is responsible for more than 60% of the total value of national wine exportations. Since the viticulture is highly dependent on weather/climate patterns, the global warming is expected to affect the areas suitable to the growth of a certain variety of grape, its production and quality. This highlights the need of regional studies that assess the future climate changes effects in the vineyard, which might allow an early adjustment. We explore future climate change in the DDR region using a high-resolution regional climate model for Weather Research and Forecasting (WRF) forced by the Max Planck Institute Earth System Model - low resolution (MPI-ESM-LR). Two future periods have been simulated using the emission scenario RCP8.5 - for the mid- (2046-2065) and late 21st century (2081-2100) - and compared to a reference period (1986-2005). The RCP8.5 is a "baseline" scenario without any climate mitigation and corresponds to the pathway with the highest greenhouse gas emissions compared to other scenarios developed by the Intergovernmental Panel for Climate Change. Our regional WRF implementation uses three online-nested domains with increasing resolution at a downscaling ratio of three. The coarser domain of 81-km resolution covers part of the North Atlantic Ocean and most of the Europe. The innermost 9-km horizontal resolution domain includes the Iberian Peninsula, a portion of Northern Africa and the adjacent part of the Atlantic Ocean and Mediterranean Sea. Our study uses this 9-km resolution domain and focuses on a confined area, which comprises the DDR. Such dynamical downscaling approach gives an advantage to assess climate effects on the DDR region, where the high horizontal resolution allows including effects of the oceanic coastline, local riverbeds and complex topography. The climatology of the DDR region determines the more suitable wine variety

  6. Climate change and socio-economic scenarios, land use modelling implications on water resources in an inner alpine area, Switzerland

    Science.gov (United States)

    Rey, Emmanuel; Schneider, Flurina; Liniger, Hanspeter; Weingartner, Rolf; Herweg, Karl

    2014-05-01

    The MontanAqua project aims to study the water resources management in the region Sierre-Montana (Valais, Switzerland). Land use is known to have an influence on the water resources (soil moisture dynamic, soil sealing, surface runoff and deep percolation). Thus land use modelling is of importance for the water resources management. An actual land use map was produced using infrared imagery (Niklaus 2012, Fig.1). Land use changes are known to be mainly drived by socio-economic factors as well as climatic factors (Dolman et al. 2003). Potential future Land uses was separatly predicted according to 1-. socio-economic and 2-. climatic/abiotic drivers : 1. 4 socio-economic scenarios were developped with stakeholders (Schneider et al. 2013) between 2010 and 2012. We modeled those socio-economic scenarios into a GIS application using Python programming (ModelBuilder in ArcGIS 10) to get a cartographic transcription of the wishes of the stakeholders for their region in 2050. 2. Uncorrelated climatic and abiotic drivers were used in a BIOMOD2 (Georges et al. 2013) framework. 4 models were used: Maximum Entropy (MAXENT), Multiple Adaptive Regression Splines (MARS), Classification Tree Analysis (CTA) and the Flexible Discriminant Analysis (FDA) to predict grassland, alpine pasture, vineyards and forest in our study region. Climatic scenarios were then introduced into the models to predict potential land use in 2050 driven only by climatic and abiotic factors The comparison of all the outputs demonstrates that the socio-economic drivers will have a more important impact in the region than the climatic drivers (e.g. -70% grassland surface for the worst socio-economic scenario vs. -40% of grassland surface for the worst climatic models). Further analysis also brings out the sensitivity of the grassland/alpine pasture system to the climate change and to socio-economic changes. Future work will be to cross the different land use maps obtained by the two model types and to use

  7. Adaptation options to future climate of maize crop in Southern Italy examined using thermal sums

    Science.gov (United States)

    Di Tommasi, P.; Alfieri, S. M.; Bonfante, A.; Basile, A.; De Lorenzi, F.; Menenti, M.

    2012-04-01

    Future climate scenarios predict substantial changes in air temperature within a few decades and agriculture needs to increase the capacity of adaptation both by changing spatial distribution of crops and shifting timing of management. In this context the prediction of future behaviour of crops with respect to present climate could be useful for farm and landscape management. In this work, thermal sums were used to simulate a maize crop in a future scenario, in terms of length of the growing season and of intervals between the main phenological stages. The area under study is the Sele plain (Campania Region), a pedo-climatic homogeneous area, one of the most agriculturally advanced and relevant flatland in Southern Italy. Maize was selected for the present study since it is extensively grown in the Sele Plain for water buffalofeeding,. Daily time-series of climatic data of the area under study were generated within the Italian project AGROSCENARI, and include maximum and minimum temperature and precipitation. The 1961-1990 and the 1998-2008 periods were compared to a future climate scenario (2021-2050). Future time series were generated using a statistical downscaling technique (Tomozeiu et al., 2007) from general circulation models (AOGCM). Differences in crop development length were calculated for different maize varieties under 3 management options for sowing time: custom date (typical for the area), before and after custom date. The interactions between future thermal regime and the length of growing season under the different management options were analyzed. Moreover, frequency of spells of high temperatures during the anthesis was examined. The feasibility of the early sowing option was discussed in relation with field trafficability at the beginning of the crop cycle. The work was carried out within the Italian national project AGROSCENARI funded by the Ministry for Agricultural, Food and Forest Policies (MIPAAF, D.M. 8608/7303/2008)

  8. Future changes in peak river flows across northern Eurasia as inferred from an ensemble of regional climate projections under the IPCC RCP8.5 scenario

    Science.gov (United States)

    Shkolnik, Igor; Pavlova, Tatiana; Efimov, Sergey; Zhuravlev, Sergey

    2018-01-01

    Climate change simulation based on 30-member ensemble of Voeikov Main Geophysical Observatory RCM (resolution 25 km) for northern Eurasia is used to drive hydrological model CaMa-Flood. Using this modeling framework, we evaluate the uncertainties in the future projection of the peak river discharge and flood hazard by 2050-2059 relative to 1990-1999 under IPCC RCP8.5 scenario. Large ensemble size, along with reasonably high modeling resolution, allows one to efficiently sample natural climate variability and increase our ability to predict future changes in the hydrological extremes. It has been shown that the annual maximum river discharge can almost double by the mid-XXI century in the outlets of major Siberian rivers. In the western regions, there is a weak signal in the river discharge and flood hazard, hardly discernible above climate variability. Annual maximum flood area is projected to increase across Siberia mostly by 2-5% relative to the baseline period. A contribution of natural climate variability at different temporal scales to the uncertainty of ensemble prediction is discussed. The analysis shows that there expected considerable changes in the extreme river discharge probability at locations of the key hydropower facilities. This suggests that the extensive impact studies are required to develop recommendations for maintaining regional energy security.

  9. How will climate novelty influence ecological forecasts? Using the Quaternary to assess future reliability.

    Science.gov (United States)

    Fitzpatrick, Matthew C; Blois, Jessica L; Williams, John W; Nieto-Lugilde, Diego; Maguire, Kaitlin C; Lorenz, David J

    2018-03-23

    Future climates are projected to be highly novel relative to recent climates. Climate novelty challenges models that correlate ecological patterns to climate variables and then use these relationships to forecast ecological responses to future climate change. Here, we quantify the magnitude and ecological significance of future climate novelty by comparing it to novel climates over the past 21,000 years in North America. We then use relationships between model performance and climate novelty derived from the fossil pollen record from eastern North America to estimate the expected decrease in predictive skill of ecological forecasting models as future climate novelty increases. We show that, in the high emissions scenario (RCP 8.5) and by late 21st century, future climate novelty is similar to or higher than peak levels of climate novelty over the last 21,000 years. The accuracy of ecological forecasting models is projected to decline steadily over the coming decades in response to increasing climate novelty, although models that incorporate co-occurrences among species may retain somewhat higher predictive skill. In addition to quantifying future climate novelty in the context of late Quaternary climate change, this work underscores the challenges of making reliable forecasts to an increasingly novel future, while highlighting the need to assess potential avenues for improvement, such as increased reliance on geological analogs for future novel climates and improving existing models by pooling data through time and incorporating assemblage-level information. © 2018 John Wiley & Sons Ltd.

  10. Predicting the responses of forest distribution and aboveground biomass to climate change under RCP scenarios in southern China.

    Science.gov (United States)

    Dai, Erfu; Wu, Zhuo; Ge, Quansheng; Xi, Weimin; Wang, Xiaofan

    2016-11-01

    In the past three decades, our global climate has been experiencing unprecedented warming. This warming has and will continue to significantly influence the structure and function of forest ecosystems. While studies have been conducted to explore the possible responses of forest landscapes to future climate change, the representative concentration pathways (RCPs) scenarios under the framework of the Coupled Model Intercomparison Project Phase 5 (CMIP5) have not been widely used in quantitative modeling research of forest landscapes. We used LANDIS-II, a forest dynamic landscape model, coupled with a forest ecosystem process model (PnET-II), to simulate spatial interactions and ecological succession processes under RCP scenarios, RCP2.6, RCP4.5 and RCP8.5, respectively. We also modeled a control scenario of extrapolating current climate conditions to examine changes in distribution and aboveground biomass (AGB) among five different forest types for the period of 2010-2100 in Taihe County in southern China, where subtropical coniferous plantations dominate. The results of the simulation show that climate change will significantly influence forest distribution and AGB. (i) Evergreen broad-leaved forests will expand into Chinese fir and Chinese weeping cypress forests. The area percentages of evergreen broad-leaved forests under RCP2.6, RCP4.5, RCP8.5 and the control scenarios account for 18.25%, 18.71%, 18.85% and 17.46% of total forest area, respectively. (ii) The total AGB under RCP4.5 will reach its highest level by the year 2100. Compared with the control scenarios, the total AGB under RCP2.6, RCP4.5 and RCP8.5 increases by 24.1%, 64.2% and 29.8%, respectively. (iii) The forest total AGB increases rapidly at first and then decreases slowly on the temporal dimension. (iv) Even though the fluctuation patterns of total AGB will remain consistent under various future climatic scenarios, there will be certain responsive differences among various forest types. © 2016

  11. Analysis of Potential Future Climate and Climate Extremes in the Brazos Headwaters Basin, Texas

    Directory of Open Access Journals (Sweden)

    Ripendra Awal

    2016-12-01

    Full Text Available Texas’ fast-growing economy and population, coupled with cycles of droughts due to climate change, are creating an insatiable demand for water and an increasing need to understand the potential impacts of future climates and climate extremes on the state’s water resources. The objective of this study was to determine potential future climates and climate extremes; and to assess spatial and temporal changes in precipitation (Prec, and minimum and maximum temperature (Tmin and Tmax, respectively, in the Brazos Headwaters Basin under three greenhouse gas emissions scenarios (A2, A1B, and B1 for three future periods: 2020s (2011–2030, 2055s (2046–2065, and 2090s (2080–2099. Daily gridded climate data obtained from Climate Forecast System Reanalysis (CFSR were used to downscale outputs from 15 General Circulation Models (GCMs using the Long Ashton Research Station–Weather Generator (LARS-WG model. Results indicate that basin average Tmin and Tmax will increase; however, annual precipitation will decrease for all periods. Annual precipitation will decrease by up to 5.2% and 6.8% in the 2055s and 2090s, respectively. However, in some locations in the basin, up to a 14% decrease in precipitation is projected in the 2090s under the A2 (high emissions scenario. Overall, the northwestern and southern part of the Brazos Headwaters Basin will experience greater decreases in precipitation. Moreover, precipitation indices of the number of wet days (prec ≥ 5 mm and heavy precipitation days (prec ≥ 10 mm are projected to slightly decrease for all future periods. On the other hand, Tmin and Tmax will increase by 2 and 3 °C on average in the 2055s and 2090s, respectively. Mostly, projected increases in Tmin and Tmax will be in the upper range in the southern and southeastern part of the basin. Temperature indices of frost (Tmin < 0 °C and ice days (Tmax < 0 °C are projected to decrease, while tropical nights (Tmin > 20 °C and summer days (Tmax

  12. Scenario and modelling uncertainty in global mean temperature change derived from emission driven Global Climate Models

    Science.gov (United States)

    Booth, B. B. B.; Bernie, D.; McNeall, D.; Hawkins, E.; Caesar, J.; Boulton, C.; Friedlingstein, P.; Sexton, D.

    2012-09-01

    We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission driven rather than concentration driven perturbed parameter ensemble of a Global Climate Model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration driven simulations (with 10-90 percentile ranges of 1.7 K for the aggressive mitigation scenario up to 3.9 K for the high end business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 degrees (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission driven experiments, they do not change existing expectations (based on previous concentration driven experiments) on the timescale that different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration pathways used to drive GCM ensembles lies towards the lower end of our simulated distribution. This design decision (a legecy of previous assessments) is likely to lead concentration driven experiments to under-sample strong feedback responses in concentration driven projections. Our ensemble of emission driven simulations span the global temperature response of other multi-model frameworks except at the low end, where combinations of low climate sensitivity and low carbon cycle feedbacks lead to responses outside our ensemble range. The ensemble simulates a number of high end responses which lie above the CMIP5 carbon

  13. The carbon budget of Pinus radiata plantations in south-western Australia under 4 climate change scenarios

    International Nuclear Information System (INIS)

    Simioni, G.; Ritson, P.; McGrath, J.; Dumbrell, I.; Copeland, B.

    2009-01-01

    The future stem wood production and net ecosystem production of Pinus radiata plantations in southwestern Australia were estimated in this modelling study, which was conducted in order to determine the potential effects of anticipated severe rainfall reductions in the region. Four climate change and emission scenarios were considered as well as simulations of the present climate. Results of the study showed that stem wood production and NEP were not significantly influenced by moderate changes in temperature. However, stem wood production and NEP decreased significantly under the most pessimistic climate change scenarios. Results of the study suggested that a trade-off between the positive effects of rising atmospheric carbon dioxide (CO 2 ) on plant and water use efficiency and the negative impacts of decreased rainfall and increased temperatures. Changes in heterotrophic respiration lagged behind changes in plant growth. It was concluded that realistic predictions of forest production and carbon sequestration potential will require modelling tools capable of characterizing interactions between environmental variables, plant physiology and soil organic matter decomposition, as well as the potential range of climate change scenarios. 53 refs., 4 tabs., 9 figs

  14. Impacts of future climate change on urban flood volumes in Hohhot in northern China: benefits of climate change mitigation and adaptations

    Directory of Open Access Journals (Sweden)

    Q. Zhou

    2018-01-01

    Full Text Available As China becomes increasingly urbanised, flooding has become a regular occurrence in its major cities. Assessing the effects of future climate change on urban flood volumes is crucial to informing better management of such disasters given the severity of the devastating impacts of flooding (e.g. the 2016 flooding events across China. Although recent studies have investigated the impacts of future climate change on urban flooding, the effects of both climate change mitigation and adaptation have rarely been accounted for together in a consistent framework. In this study, we assess the benefits of mitigating climate change by reducing greenhouse gas (GHG emissions and locally adapting to climate change by modifying drainage systems to reduce urban flooding under various climate change scenarios through a case study conducted in northern China. The urban drainage model – Storm Water Management Model – was used to simulate urban flood volumes using current and two adapted drainage systems (i.e. pipe enlargement and low-impact development, LID, driven by bias-corrected meteorological forcing from five general circulation models in the Coupled Model Intercomparison Project Phase 5 archive. Results indicate that urban flood volume is projected to increase by 52 % over 2020–2040 compared to the volume in 1971–2000 under the business-as-usual scenario (i.e. Representative Concentration Pathway (RCP 8.5. The magnitudes of urban flood volumes are found to increase nonlinearly with changes in precipitation intensity. On average, the projected flood volume under RCP 2.6 is 13 % less than that under RCP 8.5, demonstrating the benefits of global-scale climate change mitigation efforts in reducing local urban flood volumes. Comparison of reduced flood volumes between climate change mitigation and local adaptation (by improving drainage systems scenarios suggests that local adaptation is more effective than climate change mitigation in reducing

  15. National Scale Prediction of Soil Carbon Sequestration under Scenarios of Climate Change

    Science.gov (United States)

    Izaurralde, R. C.; Thomson, A. M.; Potter, S. R.; Atwood, J. D.; Williams, J. R.

    2006-12-01

    Carbon sequestration in agricultural soils is gaining momentum as a tool to mitigate the rate of increase of atmospheric CO2. Researchers from the Pacific Northwest National Laboratory, Texas A&M University, and USDA-NRCS used the EPIC model to develop national-scale predictions of soil carbon sequestration with adoption of no till (NT) under scenarios of climate change. In its current form, the EPIC model simulates soil C changes resulting from heterotrophic respiration and wind / water erosion. Representative modeling units were created to capture the climate, soil, and management variability at the 8-digit hydrologic unit (USGS classification) watershed scale. The soils selected represented at least 70% of the variability within each watershed. This resulted in 7,540 representative modeling units for 1,412 watersheds. Each watershed was assigned a major crop system: corn, soybean, spring wheat, winter wheat, cotton, hay, alfalfa, corn-soybean rotation or wheat-fallow rotation based on information from the National Resource Inventory. Each representative farm was simulated with conventional tillage and no tillage, and with and without irrigation. Climate change scenarios for two future periods (2015-2045 and 2045-2075) were selected from GCM model runs using the IPCC SRES scenarios of A2 and B2 from the UK Hadley Center (HadCM3) and US DOE PCM (PCM) models. Changes in mean and standard deviation of monthly temperature and precipitation were extracted from gridded files and applied to baseline climate (1960-1990) for each of the 1,412 modeled watersheds. Modeled crop yields were validated against historical USDA NASS county yields (1960-1990). The HadCM3 model predicted the most severe changes in climate parameters. Overall, there would be little difference between the A2 and B2 scenarios. Carbon offsets were calculated as the difference in soil C change between conventional and no till. Overall, C offsets during the first 30-y period (513 Tg C) are predicted to

  16. Africa energy future: Alternative scenarios and their implications for sustainable development strategies

    International Nuclear Information System (INIS)

    Ouedraogo, Nadia S.

    2017-01-01

    The long-term forecasting of energy supply and demand is of prime importance in Africa due to the steady increase in energy requirements, the non-availability of sufficient resources, the high dependence on fossil-fuels to meet these requirements, and the global concerns over the energy-induced environmental issues. This paper is concerned with modelling possible future paths for Africa's energy future and the related emissions. Future energy demand is forecasted based on socio-economic variables such as gross domestic product, income per capita, population, and urbanisation. The Long-range Energy Alternative Planning System (LEAP) modelling framework is employed to analyse and project energy demand and the related emissions under alternative strategies for the period of 2010–2040. Results of scenarios including business-as-usual (BAU) policies, moderate energy access and accelerate energy access policies, renewable energies promotion and energy efficiency policies and their environmental implications are provided. The study provides some policy insights and identifies synergies and trade-offs relating to the potential for energy policies to promote universal energy access, enable a transition to renewable energy, and mitigate climate change for a sustainable development. - Highlights: • Possible future paths for Africa's energy future and the related emissions are modelled. • Scenarios using an adaptation of Schwartz's scenario approach, under LEAP are developed. • Under the current energy policies, the universal access to modern energy will not be met by 2030. • Policies to accelerate the changes in energy structure are required for sustainable development. • Investing in Energy efficient strategies has emerged as one of the best solution.

  17. Pastoral suitability driven by future climate change along the Apennines

    Directory of Open Access Journals (Sweden)

    Camilla Dibari

    2015-09-01

    Full Text Available This work aims at evaluating the impacts of climate change on pastoral resources located along the Apennines chain. To this end, random forest machine learning model was first calibrated for the present period and then applied to future conditions, as projected by HadCM3 general circulation model, in order to simulate possible spatial variation/shift of pastoral areas in two time slices (centred on 2050 and 2080 under A2 and B2 SRES scenarios. Pre-existent spatial database, namely Corine land cover map and WorldClim, were integrated and harmonised in a GIS environment in order to extract climate variables (mean seasonal precipitation, mean maximum temperature of the warmest month and minimum temperature of the coldest month and response variables (presence/absence of pastures to be used as model predictors. Random forest model resulted robust and coherent to simulate pastureland suitability under current climatology (classification accuracy error=19%. Accordingly, results indicated that increases in temperatures coupled with decreases in precipitation, as simulated by HadCM3 in the future, would have impacts of great concern on potential pasture distribution. In the specific, an overall decline of pasturelands suitability is predicted by the middle of the century in both A2 (–46% and B2 (–41% along the entire chain. However, despite alarming reductions in pastures suitability along the northern (–69% and –71% under A2 and B2 scenarios, respectively and central Apennines (–90% under both scenarios by the end of the century, expansions are predicted along the southern areas of the chain (+96% and +105% under A2 and B2 scenarios, respectively. This may be probably due to expansions in pastures dominated by xeric and thermophiles species, which will likely benefit from warmer and drier future conditions predicted in the southern zone of the chain by the HadCM3. Hence, the expected climate, coupled with an increasing abandonment of the

  18. The climate impact of future energy peat production

    Energy Technology Data Exchange (ETDEWEB)

    Hagberg, Linus; Holmgren, Kristina

    2008-09-15

    The aim of this study was to estimate total greenhouse gas emissions and climate impact of different peat utilisation scenarios, using a life cycle perspective. This and previous studies show that the climate impact from energy peat utilisation is more complex than just considering the emissions at the combustion stage. There are important emissions and uptake of greenhouse gases that occur on the peatland before, during and after peat harvest. The results show that the climate impact of future peat utilisation can be significantly reduced compared to current utilisation and will be lower than the climate impact resulting from only the combustion phase. This can be achieved by choosing already drained peatlands with high greenhouse gas emissions, using a more efficient production method and by securing a low-emission after-treatment of the cutaway (e.g. afforestation)

  19. Potential distribution of Podocnemis lewyana (Reptilia: Podocnemididae) and its possible fluctuation under different global climate change scenarios

    International Nuclear Information System (INIS)

    Ortiz Yusty, Carlos; Restrepo, Adriana; Paez, Vivian P

    2014-01-01

    We implemented a species distribution modelling approach to establish the potential distribution of Podocnemis lewyana, to explore the climatic factors that may influence the species' distribution and to evaluate possible changes in distribution under future climate scenarios. The distribution models predicted a continuous distribution from south to north along the Magdalena River, from Rivera and Palermo in the Department of Huila to the departments of Atlantico and Magdalena in the north. Temperature was the variable most influential in the distribution of P. lewyana; this species tends to be present in warm regions with low temperature variability. The distribution model predicted an increase in the geographic range of P. lewyana under climate change scenarios. However, taking into account the habitat preferences of this species and its strong association with water, this result should be treated with caution since the model considered only terrestrial climatic variables. Given the life history characteristics of this species (temperature dependent sex determination, high pivotal temperature and a very narrow transition range) and the negative effect of changes in hydrological regimes on embryo survival, expansion of the potential distribution of P. lewyana in the future does not mean that the species will not be affected by global climate change.

  20. Past and future climate change in the context of memorable seasonal extremes

    Directory of Open Access Journals (Sweden)

    T. Matthews

    2016-01-01

    Full Text Available It is thought that direct personal experience of extreme weather events could result in greater public engagement and policy response to climate change. Based on this premise, we present a set of future climate scenarios for Ireland communicated in the context of recent, observed extremes. Specifically, we examine the changing likelihood of extreme seasonal conditions in the long-term observational record, and explore how frequently such extremes might occur in a changed Irish climate according to the latest model projections. Over the period (1900–2014 records suggest a greater than 50-fold increase in the likelihood of the warmest recorded summer (1995, whilst the likelihood of the wettest winter (1994/95 and driest summer (1995 has respectively doubled since 1850. The most severe end-of-century climate model projections suggest that summers as cool as 1995 may only occur once every ∼7 years, whilst winters as wet as 1994/95 and summers as dry as 1995 may increase by factors of ∼8 and ∼10 respectively. Contrary to previous research, we find no evidence for increased wintertime storminess as the Irish climate warms, but caution that this conclusion may be an artefact of the metric employed. It is hoped that framing future climate scenarios in the context of extremes from living memory will help communicate the scale of the challenge climate change presents, and in so doing bridge the gap between climate scientists and wider society.

  1. Possible climate change over Eurasia under different emission scenarios

    Science.gov (United States)

    Sokolov, A. P.; Monier, E.; Gao, X.

    2012-12-01

    In an attempt to evaluate possible climate change over EURASIA, we analyze results of six AMIP type simulations with CAM version 3 (CAM3) at 2x2.5 degree resolution. CAM3 is driven by time series of sea surface temperatures (SSTs) and sea ice obtained by running the MIT IGSM2.3, which consists of a 3D ocean GCM coupled to a zonally-averaged atmospheric climate-chemistry model. In addition to changes in SSTs, CAM3 is forced by changes in greenhouse gases and ozone concentrations, sulfate aerosol forcing and black carbon loading calculated by the IGSM2.3. An essential feature of the IGSM is the possibility to vary its climate sensitivity (using a cloud adjustment technique) and the strength of the aerosol forcing. For consistency, new modules were developed in CAM3 to modify its climate sensitivity and aerosol forcing to match those used in the simulations with the IGSM2.3. The simulations presented in this paper were carried out for two emission scenarios, a "Business as usual" scenario and a 660 ppm of CO2-EQ stabilization, which are similar to the RCP8.5 and RCP4.5 scenarios, respectively. Values of climate sensitivity used in the simulations within the IGSM-CAM framework are median and the bounds of the 90% probability interval of the probability distribution obtained by comparing the 20th century climate simulated by different versions of the IGSM with observations. The associated strength of the aerosol forcing was chosen to ensure a good agreement with the observed climate change over the 20th century. Because the concentration of sulfate aerosol significantly decreases over the 21st century in both emissions scenarios, climate changes obtained in these simulations provide a good approximation for the median, and the 5th and 95th percentiles of the probability distribution of 21st century climate change.

  2. Global warming: Climate scenarios and international agriculture

    International Nuclear Information System (INIS)

    Downing, T.E.; Parry, M.L.

    1991-01-01

    The potential impacts of climatic change on international agriculture are summarized, drawing on results from the Intergovernmental Panel on Climate Change impacts working group. The four different climate change scenarios used for investigating impacts: historical studies, artificial scenarios, analogues, and general circulation models, are briefly reviewed. Climate change will affect agriculture in three ways: direct effects of increased carbon dioxide concentration, effects of altered weather patterns, and secondary effects on social and economic situations. The effect of increased carbon dioxide concentration is uncertain, but potentially will enhance plant growth and water use efficiency. The sensitivity of grain maize to incremental changes in annual temperature is described, with the suitable zone expanding from the middle of Europe to southern Scandinavia. Potential damage from insect pests may increase under warmer climates, with northerly movement of insect breeding grounds. Temperature increases are likely to lengthen the growing season where temperature is a limiting factor, especially at higher lattitudes in the Northern Hemisphere. Higher temperatures, shorter periods of grain filling, and reduced winter chilling will reduce potential yields in current core grain-growing areas, and changing moisture regimes will shift agricultural patterns. The horn of Africa and parts of western Africa are likely to suffer enhanced food supply vulnerability. 16 refs., 4 figs

  3. Scenario dependence of future changes in climate extremes under 1.5 °C and 2 °C global warming

    Science.gov (United States)

    Wang, Zhili; Lin, Lei; Zhang, Xiaoye; Zhang, Hua; Liu, Liangke; Xu, Yangyang

    2017-01-01

    The 2015 Paris Agreement aims to limit global warming below 2 °C and pursue efforts to even limit it to 1.5 °C relative to pre-industrial levels. Decision makers need reliable information on the impacts caused by these warming levels for climate mitigation and adaptation measures. We explore the changes in climate extremes, which are closely tied to economic losses and casualties, under 1.5 °C and 2 °C global warming and their scenario dependence using three sets of ensemble global climate model simulations. A warming of 0.5 °C (from 1.5 °C to 2 °C) leads to significant increases in temperature and precipitation extremes in most regions. However, the projected changes in climate extremes under both warming levels highly depend on the pathways of emissions scenarios, with different greenhouse gas (GHG)/aerosol forcing ratio and GHG levels. Moreover, there are multifold differences in several heavily polluted regions, among the scenarios, in the changes in precipitation extremes due to an additional 0.5 °C warming from 1.5 °C to 2 °C. Our results demonstrate that the chemical compositions of emissions scenarios, not just the total radiative forcing and resultant warming level, must be considered when assessing the impacts of global 1.5/2 °C warming. PMID:28425445

  4. Past and future evolutions of New-Caledonia climate

    International Nuclear Information System (INIS)

    Cavarero, Virgil; Peltier, Alexandre; Aubail, Xavier; Leroy, Anne; Dubuisson, Brigitte; Jourdain, Sylvie; Gibelin, Anne-Laure; Ganachaud, Alexandre; Lefevre, Jerome; Menkes, Christophe; Lengaigne, Matthieu

    2012-01-01

    Homogenized series of temperature and precipitation data for the late 20. century in New-Caledonia are presented. Annual mean minimum and maximum temperatures have increased by 0.3 and 0.2 deg. C per decade respectively. A quantile-quantile down-scaling method has been performed on IPCC AR4 numerical simulations in order to study the impact of climate change on New-Caledonia in the future. The minimum and maximum temperatures would increase by between 1.5 and 2.7 deg. C by the end of the 21. century, relative to the 1971-1999 period, depending on greenhouse gases emission scenarios. It also appears that the temperature of the future would support an increase in the frequency of the years that climatically favour outbreaks of dengue fever. No significant trend appears in observations of total annual precipitation, or in projections. (authors)

  5. Modelling the response of shallow groundwater levels to combined climate and water-diversion scenarios in Beijing-Tianjin-Hebei Plain, China

    Science.gov (United States)

    Li, Xue; Ye, Si-Yuan; Wei, Ai-Hua; Zhou, Peng-Peng; Wang, Li-Heng

    2017-09-01

    A three-dimensional groundwater flow model was implemented to quantify the temporal variation of shallow groundwater levels in response to combined climate and water-diversion scenarios over the next 40 years (2011-2050) in Beijing-Tianjin-Hebei (Jing-Jin-Ji) Plain, China. Groundwater plays a key role in the water supply, but the Jing-Jin-Ji Plain is facing a water crisis. Groundwater levels have declined continuously over the last five decades (1961-2010) due to extensive pumping and climate change, which has resulted in decreased recharge. The implementation of the South-to-North Water Diversion Project (SNWDP) will provide an opportunity to restore the groundwater resources. The response of groundwater levels to combined climate and water-diversion scenarios has been quantified using a groundwater flow model. The impacts of climate change were based on the World Climate Research Programme's (WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3) multi-model dataset for future high (A2), medium (A1B), and low (B1) greenhouse gas scenarios; precipitation data from CMIP3 were applied in the model. The results show that climate change will slow the rate of decrease of the shallow groundwater levels under three climate-change scenarios over the next 40 years compared to the baseline scenario; however, the shallow groundwater levels will rise significantly (maximum of 6.71 m) when considering scenarios that combine climate change and restrictions on groundwater exploitation. Restrictions on groundwater exploitation for water resource management are imperative to control the decline of levels in the Jing-Jin-Ji area.

  6. Influencia del cambio climático en los escenarios del futuro sobre plantaciones de Eucalipto Influence of climate change on future scenarios on Eucalyptus plantations

    Directory of Open Access Journals (Sweden)

    Yhasmin Paiva Rody

    2012-09-01

    climate data for current and future scenarios. The study was developed in the state of Espírito Santo, Brazil, and normal climatological data was obtained from rain gauges. The water balance was calculated by the Tornthwaite and Mather methodology. Temperature was estimated using data of latitude and altitude. Data from the SRTM were used to obtain the altitude and zone of agricultural mechanization, based on slopes. For interpolation of the data, the inverse square distance method was used. The future data were estimated by the HADCM3 model of the IPCC in scenarios: A (pessimistic and B (optimistic for the years of 2020, 2050 and 2080. It is estimated that the zones suitable for planting are reduced in both scenarios, diminishing by 71.1% and 82% for scenarios A and B, respectively in the year 2080. The water deficit acted as a limiting factor for planting. Due to the complexity of interactions of biotic and abiotic factors, new capability studies should be performed in the context of climate change.

  7. Potential Impacts of Future Climate Change on Regional Air Quality and Public Health over China

    Science.gov (United States)

    Hong, C.; Zhang, Q.; Zhang, Y.; He, K.

    2017-12-01

    Future climate change would affect public health through changing air quality. Climate extremes and poor weather conditions are likely to occur at a higher frequency in China under a changing climate, but the air pollution-related health impacts due to future climate change remain unclear. Here the potential impacts of future climate change on regional air quality and public health over China is projected using a coupling of climate, air quality and epidemiological models. We present the first assessment of China's future air quality in a changing climate under the Representative Concentration Pathway 4.5 (RCP4.5) scenario using the dynamical downscaling technique. In RCP4.5 scenario, we estimate that climate change from 2006-2010 to 2046-2050 is likely to adversely affect air quality covering more than 86% of population and 55% of land area in China, causing an average increase of 3% in O3 and PM2.5 concentrations, which are found to be associated with the warmer climate and the more stable atmosphere. Our estimate of air pollution-related mortality due to climate change in 2050 is 26,000 people per year in China. Of which, the PM2.5-related mortality is 18,700 people per year, and the O3-related mortality is 7,300 people per year. The climate-induced air pollution and health impacts vary spatially. The climate impacts are even more pronounced on the urban areas where is densely populated and polluted. 90% of the health loss is concentrated in 20% of land areas in China. We use a simple statistical analysis method to quantify the contributions of climate extremes and find more intense climate extremes play an important role in climate-induced air pollution-related health impacts. Our results indicate that global climate change will likely alter the level of pollutant management required to meet future air quality targets as well as the efforts to protect public health in China.

  8. Scientific data and climate scenarios. Study report nr 2

    International Nuclear Information System (INIS)

    Alex, Bastien; Baillat, Alice; Francois Gemenne; Jean Jouzel

    2017-05-01

    The objective of this report is to present climate evolutions and their impacts according to two warming scenarios: a 2 degree increase of the average surface temperature by 2100 (i.e. the most optimistic IPCC scenario), and a 5 degree increase by 2100 (the most pessimistic scenario). As far as possible, physical, social and economic, and health impacts are assessed by 2030 and 2050. The authors notice that the differences between both scenarios are hardly discernible by 2030, but more obviously by 2050. After a brief recall on IPCC scenarios, a first part addresses the evolutions of the world climate by considering the atmosphere (temperature increase, modification of precipitation regimes), seas and oceans (temperature, currents and thermal circulation, ocean acidification, seal level rise), extreme climate events (observations and trends, main impacts on populations and infrastructures), and the cryo-sphere (observations and impacts). The second part discusses regional predictions in terms of trends and impacts for metropolitan France and its overseas territories, for Africa, and for the Asia-Pacific region. The last part briefly discusses the possibly necessary evolution of the typology chosen to determine sources of vulnerability and the level of exposure to different risks. Many appendices propose more detailed presentations on specific issues and examples. A summarised version of the report is also provided

  9. GEOSS AIP-2 Climate Change and Biodiversity Use Scenarios: Interoperability Infrastructures (Invited)

    Science.gov (United States)

    Nativi, S.; Santoro, M.

    2009-12-01

    Currently, one of the major challenges for scientific community is the study of climate change effects on life on Earth. To achieve this, it is crucial to understand how climate change will impact on biodiversity and, in this context, several application scenarios require modeling the impact of climate change on distribution of individual species. In the context of GEOSS AIP-2 (Global Earth Observation System of Systems, Architecture Implementation Pilot- Phase 2), the Climate Change & Biodiversity thematic Working Group developed three significant user scenarios. A couple of them make use of a GEOSS-based framework to study the impact of climate change factors on regional species distribution. The presentation introduces and discusses this framework which provides an interoperability infrastructures to loosely couple standard services and components to discover and access climate and biodiversity data, and run forecast and processing models. The framework is comprised of the following main components and services: a)GEO Portal: through this component end user is able to search, find and access the needed services for the scenario execution; b)Graphical User Interface (GUI): this component provides user interaction functionalities. It controls the workflow manager to perform the required operations for the scenario implementation; c)Use Scenario controller: this component acts as a workflow controller implementing the scenario business process -i.e. a typical climate change & biodiversity projection scenario; d)Service Broker implementing Mediation Services: this component realizes a distributed catalogue which federates several discovery and access components (exposing them through a unique CSW standard interface). Federated components publish climate, environmental and biodiversity datasets; e)Ecological Niche Model Server: this component is able to run one or more Ecological Niche Models (ENM) on selected biodiversity and climate datasets; f)Data Access

  10. Future road salt use in Switzerland: an example of an effective climate service

    Science.gov (United States)

    Zubler, Elias M.; Fischer, Andreas M.; Schlegel, Thomas H.; Liniger, Mark A.

    2015-04-01

    The application of salt is the predominant measure taken to enhance road safety in Switzerland by clearing the roads from snow or preventing frozen surfaces during winter. The need for road salt exhibits a strong interannual variability, according to Schweizer Salinen AG - the Swiss monopolist for production and distribution of road salt. These fluctuations are to a large extent a direct consequence of the year-to-year variability in winter climate. In the course of the 21st century, Swiss climate is projected to depart significantly from present and past conditions. By the end of the century, winter temperatures over Switzerland are expected to rise by about 2-4°C relative to the mean over the period 1980-2009, while winter precipitation may either increase or decrease based on ENSEMBLES regional climate model projections under the SRES-scenario A1B. Faced with these changes, Schweizer Salinen AG asked for an estimate of the expected future road salt use for designing their long-term business strategy. The study is based on climate change projections from the CH2011 initiative and later extensions thereof as well as monthly sales data of road salt from Schweizer Salinen AG. For the period 1997-2013, a linear relationship was derived between the average number of days with snowfall and the road salt amount sold over "saltation years" defined from October 1st to September 30th in the 26 cantons (provinces) of Switzerland. The ad-hoc linear relationship was applied to the climate change projections to obtain future salt use information in three future periods for the greenhouse gas emission scenarios A1B, A2 and RCP3PD. We find that the expected future salt use is likely to be reduced by about 50% in 2045-2074 under the scenario A1B. Currently, the countrywide mean annual road salt use corresponds to about 220'000 tons. In a particularly snow-rich year, the company sells up to 400'000 tons. At the end of the century, following a pessimistic scenario such as A1B or A

  11. Adaptation to floods in future climate: a practical approach

    Science.gov (United States)

    Doroszkiewicz, Joanna; Romanowicz, Renata; Radon, Radoslaw; Hisdal, Hege

    2016-04-01

    In this study some aspects of the application of the 1D hydraulic model are discussed with a focus on its suitability for flood adaptation under future climate conditions. The Biała Tarnowska catchment is used as a case study. A 1D hydraulic model is developed for the evaluation of inundation extent and risk maps in future climatic conditions. We analyse the following flood indices: (i) extent of inundation area; (ii) depth of water on flooded land; (iii) the flood wave duration; (iv) the volume of a flood wave over the threshold value. In this study we derive a model cross-section geometry following the results of primary research based on a 500-year flood inundation extent. We compare two methods of localisation of cross-sections from the point of view of their suitability to the derivation of the most precise inundation outlines. The aim is to specify embankment heights along the river channel that would protect the river valley in the most vulnerable locations under future climatic conditions. We present an experimental design for scenario analysis studies and uncertainty reduction options for future climate projections obtained from the EUROCORDEX project. Acknowledgements: This work was supported by the project CHIHE (Climate Change Impact on Hydrological Extremes), carried out in the Institute of Geophysics Polish Academy of Sciences, funded by Norway Grants (contract No. Pol-Nor/196243/80/2013). The hydro-meteorological observations were provided by the Institute of Meteorology and Water Management (IMGW), Poland.

  12. Modelling the influence of changing climate in present and future marine eutrophication impacts from spring barley production

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Niero, Monia

    2017-01-01

    Nitrate concentration and runoff are site-specific and driven by climatic factors and crop management. As such, nitrate emissions may increase in the future due to climate change, affecting the marine eutrophication mechanism. In this context, and considering the case of spring barley production...... of different normalisation references when comparing future Life Cycle Assessment (LCA) scenarios with current production systems. A parameterised characterisation model was developed to gauge the influence of future climatic-driven pressures on the marine eutrophication impact pathway. Spatial differentiation...

  13. A stochastic Forest Fire Model for future land cover scenarios assessment

    Directory of Open Access Journals (Sweden)

    M. D'Andrea

    2010-10-01

    Full Text Available Land cover is affected by many factors including economic development, climate and natural disturbances such as wildfires. The ability to evaluate how fire regimes may alter future vegetation, and how future vegetation may alter fire regimes, would assist forest managers in planning management actions to be carried out in the face of anticipated socio-economic and climatic change. In this paper, we present a method for calibrating a cellular automata wildfire regime simulation model with actual data on land cover and wildfire size-frequency. The method is based on the observation that many forest fire regimes, in different forest types and regions, exhibit power law frequency-area distributions. The standard Drossel-Schwabl cellular automata Forest Fire Model (DS-FFM produces simulations which reproduce this observed pattern. However, the standard model is simplistic in that it considers land cover to be binary – each cell either contains a tree or it is empty – and the model overestimates the frequency of large fires relative to actual landscapes. Our new model, the Modified Forest Fire Model (MFFM, addresses this limitation by incorporating information on actual land use and differentiating among various types of flammable vegetation. The MFFM simulation model was tested on forest types with Mediterranean and sub-tropical fire regimes. The results showed that the MFFM was able to reproduce structural fire regime parameters for these two regions. Further, the model was used to forecast future land cover. Future research will extend this model to refine the forecasts of future land cover and fire regime scenarios under climate, land use and socio-economic change.

  14. Climate change adaptation accounting for huge uncertainties in future projections - the case of urban drainage

    Science.gov (United States)

    Willems, Patrick

    2015-04-01

    Hydrological design parameters, which are currently used in the guidelines for the design of urban drainage systems (Willems et al., 2013) have been revised, taking the Flanders region of Belgium as case study. The revision involved extrapolation of the design rainfall statistics, taking into account the current knowledge on future climate change trends till 2100. Uncertainties in these trend projections have been assessed after statistically analysing and downscaling by a quantile perturbation tool based on a broad ensemble set of climate model simulation results (44 regional + 69 global control-scenario climate model run combinations for different greenhouse gas scenarios). The impact results of the climate scenarios were investigated as changes to rainfall intensity-duration-frequency (IDF) curves. Thereafter, the climate scenarios and related changes in rainfall statistics were transferred to changes in flood frequencies of sewer systems and overflow frequencies of storage facilities. This has been done based on conceptual urban drainage models. Also the change in storage capacity required to exceed a given overflow return period, has been calculated for a range of return periods and infiltration or throughflow rates. These results were used on the basis of the revision of the hydraulic design rules of urban drainage systems. One of the major challenges while formulating these policy guidelines was the consideration of the huge uncertainties in the future climate change projections and impact assessments; see also the difficulties and pitfalls reported by the IWA/IAHR Joint Committee on Urban Drainage - Working group on urban rainfall (Willems et al., 2012). We made use of the risk concept, and found it a very useful approach to deal with the high uncertainties. It involves an impact study of the different climate projections, or - for practical reasons - a reduced set of climate scenarios tailored for the specific type of impact considered (urban floods in our

  15. Selecting reasonable future land use scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Allred, W.E.; Smith, R.W. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31

    This paper examines a process to help select the most reasonable future land use scenarios for hazardous waste and/or low-level radioactive waste disposal sites. The process involves evaluating future land use scenarios by applying selected criteria currently used by commercial mortgage companies to determine the feasibility of obtaining a loan for purchasing such land. The basis for the process is that only land use activities for which a loan can be obtained will be considered. To examine the process, a low-level radioactive waste site, the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory, is used as an example. The authors suggest that the process is a very precise, comprehensive, and systematic (common sense) approach for determining reasonable future use of land. Implementing such a process will help enhance the planning, decisionmaking, safe management, and cleanup of present and future disposal facilities.

  16. Selecting reasonable future land use scenarios

    International Nuclear Information System (INIS)

    Allred, W.E.; Smith, R.W.

    1995-01-01

    This paper examines a process to help select the most reasonable future land use scenario for hazardous waste and/or low-level radioactive waste disposal sites. The process involves evaluating future land use scenarios ab applying selected criteria currently used by commercial mortgage companies to determine the feasibility of obtaining a loan for purchasing such land. The basis for the process is that only land use activities for which a loan can be obtained well be considered. To examine the process, a low-level radioactive waste site, the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory, is used as an example. The authors suggest that the process is a very precise, comprehensive, and systematic approach for determining reasonable future use of land. Implementing such a process will help enhance the planning, decisionmaking, safe management, and cleanup of present and future disposal facilities

  17. Selecting reasonable future land use scenarios

    International Nuclear Information System (INIS)

    Allred, W.E.; Smith, R.W.

    1995-01-01

    This paper examines a process to help select the most reasonable future land use scenarios for hazardous waste and/or low-level radioactive waste disposal sites. The process involves evaluating future land use scenarios by applying selected criteria currently used by commercial mortgage companies to determine the feasibility of obtaining a loan for purchasing such land. The basis for the process is that only land use activities for which a loan can be obtained will be considered. To examine the process, a low-level radioactive waste site, the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory, is used as an example. The authors suggest that the process is a very precise, comprehensive, and systematic (common sense) approach for determining reasonable future use of land. Implementing such a process will help enhance the planning, decisionmaking, safe management, and cleanup of present and future disposal facilities

  18. Scenarios of Future Socio-Economics, Energy, Land Use, and Radiative Forcing

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Jiyong; Moss, Richard H.; Edmonds, James A.; Calvin, Katherine V.; Clarke, Leon E.; Dooley, James J.; Kim, Son H.; Kopp, Roberrt; Kyle, G. Page; Luckow, Patrick W.; Patel, Pralit L.; Thomson, Allison M.; Wise, Marshall A.; Zhou, Yuyu

    2013-04-13

    This chapter explores uncertainty in future scenarios of energy, land use, emissions and radiative forcing that span the range in the literature for radiative forcing, but also consider uncertainty in two other dimensions, challenges to mitigation and challenges to adaptation. We develop a set of six scenarios that we explore in detail including the underlying the context in which they are set, assumptions that drive the scenarios, the Global Change Assessment Model (GCAM), used to produce quantified implications for those assumptions, and results for the global energy and land-use systems as well as emissions, concentrations and radiative forcing. We also describe the history of scenario development and the present state of development of this branch of climate change research. We discuss the implications of alternative social, economic, demographic, and technology development possibilities, as well as potential stabilization regimes for the supply of and demand for energy, the choice of energy technologies, and prices of energy and agricultural commodities. Land use and land cover will also be discussed with the emphasis on the interaction between the demand for bioenergy and crops, crop yields, crop prices, and policy settings to limit greenhouse gas emissions.

  19. Assessing hydrologic impacts of future Land Change scenarios in the San Pedro River (U.S./Mexico)

    Science.gov (United States)

    Kepner, W. G.; Burns, S.; Sidman, G.; Levick, L.; Goodrich, D. C.; Guertin, P.; Yee, W.; Scianni, M.

    2012-12-01

    An approach was developed to characterize the hydrologic impacts of urban expansion through time for the San Pedro River, a watershed of immense international importance that straddles the U.S./Mexico border. Future urban growth is a key driving force altering local and regional hydrology and is represented by decadal changes in housing density maps from 2010 to 2100 derived from the Integrated Climate and Land-Use Scenarios (ICLUS) database. ICLUS developed future housing density maps by adapting the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) social, economic, and demographic storylines to the conterminous United States. To characterize the hydrologic impacts of future growth, the housing density maps were reclassified to National Land Cover Database 2006 land cover classes and used to parameterize the Soil and Water Assessment Tool (SWAT) using the Automated Geospatial Watershed Assessment (AGWA) tool. The presentation will report 1) the methodology for adapting the ICLUS data for use in AGWA as an approach to evaluate basin-wide impacts of development on water-quantity and -quality, 2) initial results of the application of the methodology, and 3) discuss implications of the analysis.

  20. Prospects for future climate

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The different climates of the past and model simulations of future climates convincingly indicate that the continuing emissions of greenhouse gases will lead to significant global warming and to changes in precipitation and other climatic variables. The projected changes in atmospheric composition and, consequently, in climatic conditions will be unique and more rapid than at any time in the past. The developing understanding of the chemical cycles controlling atmospheric composition and of the processes and behavior controlling the climate system can provide significant guidance about how the future climate will change. This chapter first summarizes the many scientific advances described in the preceding chapters that can help one better understand and describe the climate system and the resulting agricultural and hydrological impacts of these changes in climate. The chapter then draws from this understanding to outline the prospects for future climate

  1. Regional and urban down scaling of global climate scenarios for health impact assessments

    Energy Technology Data Exchange (ETDEWEB)

    San Jose, R.; Perez, J. L.; Perez, L.; Gonzalez, R. M.; Pecci, J.; Garzon, A.; Palacios, M.

    2015-07-01

    In this contribution we have used global climate RCP IPCC scenarios to produce climate and air pollution maps at regional (25 km resolution) and urban scale with 200 m spatial resolution over Europe and five European cities in order to investigate the impact on meteorological variables and pollutant concentrations . We have used the very well known mesoscale meteorological model WRF-Chem (NOAA, US). We have used 2011 as control past year and two RCP scenarios from CCSM global climate model with 4.5 W/m2 and 8.5 W/m2 for 2030, 2050 and 2100 years. After running WRF-Chem model, using the boundary conditions provided by RCP scenarios with the emissions of 2011, we have performed a detailed down scaling process using CALMET diagnostic model to obtain a full 200 m spatial resolution map of five European cities (London, Antwerp, Madrid, Milan, and Helsinki). We will show the results and the health impacts for future RCP IPCC climate scenarios in comparison with the 2011 control year information for climate and health indicators. Finally, we have also investigated the impact of the aerosol effects in the short wave radiation mean value. Two simulations with the WRF-Chem model have been performed over Europe in 2010. A baseline simulation without any feedback effects and a second simulation including the direct effects affecting the solar radiation reaching the surface as well as the indirect aerosol effect with potential impacts on increasing or decreasing the precipitation rates. Aerosol effects produce an increase of incoming radiation over Atlantic Ocean (up to 70%) because the prescribed aerosol concentrations in the WRF-Chem without feedbacks is substantially higher than the aerosol concentrations produced when we activate the feedback effects. The decrease in solar radiation in the Sahara area (10%) is found to be produced because the prescribed aerosol concentration in the no feedback simulation is lower than when we activate the feedback effects. (Author)

  2. Scenario Analysis on Climate Change Impacts of Urban Land Expansion under Different Urbanization Patterns: A Case Study of Wuhan Metropolitan

    Directory of Open Access Journals (Sweden)

    Xinli Ke

    2013-01-01

    Full Text Available Urban land expansion plays an important role in climate change. It is significant to select a reasonable urban expansion pattern to mitigate the impact of urban land expansion on the regional climate in the rapid urbanization process. In this paper, taking Wuhan metropolitan as the case study area, and three urbanization patterns scenarios are designed to simulate spatial patterns of urban land expansion in the future using the Partitioned and Asynchronous Cellular Automata Model. Then, simulation results of land use are adjusted and inputted into WRF (Weather Research and Forecast model to simulate regional climate change. The results show that: (1 warming effect is strongest under centralized urbanization while it is on the opposite under decentralized scenario; (2 the warming effect is stronger and wider in centralized urbanization scenario than in decentralized urbanization scenario; (3 the impact trends of urban land use expansion on precipitation are basically the same under different scenarios; (4 and spatial distribution of rainfall was more concentrated under centralized urbanization scenario, and there is a rainfall center of wider scope, greater intensity. Accordingly, it can be concluded that decentralized urbanization is a reasonable urbanization pattern to mitigate climate change in rapid urbanization period.

  3. SITE-94. The central scenario for SITE-94: A climate change scenario

    International Nuclear Information System (INIS)

    King-Clayton, L.M.; Chapman, N.A.; Kautsky, F.; Svensson, N.O.; Ledoux, E.

    1995-12-01

    The central scenario includes the following main components: a deterministic description of the most probable climatic state for Sweden (with special ref. to the Aespoe area) for the next c. 120,000 years, a description of the likely nature of the surface and geological environment in the area at each stage of the climate sequence selected, and quantitative information on how these changes might affect the disposal system. The climate models suggest glacial maxima at c. 5, 20, 60 and 100 thousand years from now. The Aespoe region is predicted to be significantly affected by the latter three glacial episodes, with the ice sheet reaching and covering the area during the latter two episodes (by up to c 2200m and 1200m thickness of ice, resp.). Permafrost thicknesses over the next 120,000 years have been calculated. Assumptions, estimates and alternatives to the prescribed climate evolution are discussed. Following definition of a realistic, albeit non-unique, climate sequence, the objective of scenario development is to provide an indicator of the physical, chemical and hydrogeological conditions at the front of and beneath the advancing and retreating ice sheets, with the aim of identifying critical aspects for Performance Assessment modelling. The effect of various factors, such as ice loading, development of permafrost, temperature changes and sea level changes are considered in terms of their impact on hydrogeology, groundwater chemistry, rock stress and surface environments. 183 refs

  4. SITE-94. The central scenario for SITE-94: A climate change scenario

    Energy Technology Data Exchange (ETDEWEB)

    King-Clayton, L M; Chapman, N A [QuantiSci Ltd, Melton Mowbray (United Kingdom); Kautsky, F [Swedish Nuclear Power Inspectorate, Stockholm (Sweden); Svensson, N O [Lund Univ. (Sweden). Dept. of Quaternary Geology; Marsily, G de [Univ. VI Paris (France); Ledoux, E [Ecole Nationale Superieure des Mines, 77 - Fontainebleau (France)

    1995-12-01

    The central scenario includes the following main components: a deterministic description of the most probable climatic state for Sweden (with special ref. to the Aespoe area) for the next c. 120,000 years, a description of the likely nature of the surface and geological environment in the area at each stage of the climate sequence selected, and quantitative information on how these changes might affect the disposal system. The climate models suggest glacial maxima at c. 5, 20, 60 and 100 thousand years from now. The Aespoe region is predicted to be significantly affected by the latter three glacial episodes, with the ice sheet reaching and covering the area during the latter two episodes (by up to c 2200m and 1200m thickness of ice, resp.). Permafrost thicknesses over the next 120,000 years have been calculated. Assumptions, estimates and alternatives to the prescribed climate evolution are discussed. Following definition of a realistic, albeit non-unique, climate sequence, the objective of scenario development is to provide an indicator of the physical, chemical and hydrogeological conditions at the front of and beneath the advancing and retreating ice sheets, with the aim of identifying critical aspects for Performance Assessment modelling. The effect of various factors, such as ice loading, development of permafrost, temperature changes and sea level changes are considered in terms of their impact on hydrogeology, groundwater chemistry, rock stress and surface environments. 183 refs.

  5. Low climate stabilisation under diverse growth and convergence scenarios

    International Nuclear Information System (INIS)

    Markandya, A.; González-Eguino, M.; Criqui, P.; Mima, S.

    2014-01-01

    In the last decade a number of papers have analysed the consequences of achieving the greenhouse gas concentration levels necessary to maintain global temperature increases below 2 °C above preindustrial levels. Most models and scenarios assume that future trends in global GDP will be similar to the growth experienced in the past century, which would imply multiplying current output by about 19 times in the 21st century. However, natural resource and environmental constraints suggest that future global economic growth may not be so high. Furthermore, the environmental implications of such growth depend on how it is distributed across countries. This paper studies the implications on GHG abatement policies of low global GDP growth and high convergence levels in GDP per capita across countries. A partial equilibrium model (POLES) of the world's energy system is used to provide detailed projections up to 2050 for the different regions of the world. The results suggest that while low stabilisation could be technically feasible and economically viable for the world in all the scenarios considered, it is more likely to occur with more modest global growth. However, that will imply higher global abatement costs relative to GDP. Convergence in living standards on the other hand places greater pressures in terms of the required reduction in emissions. In general we find that there are major differences between regions in terms of the size and the timing of abatement costs and economic impact. - Highlights: • We study the implications of GDP growth and convergence on climate stabilisation. • A partial equilibrium model (POLES) of the world's energy system is used. • Low climate stabilisation is technically feasible and economically viable. • Low stabilisation is more likely to occur with more modest global growth. • Convergence places pressure in terms of the required reduction in emissions

  6. Consideration of environmental change in the safety evaluation: Long-term climate scenarios in the Iberian Peninsula

    International Nuclear Information System (INIS)

    Recreo Jimenez, F.; Ruiz Rivas, C.

    1997-01-01

    The main objective of this report is twofold. On the one hand, to define the most likely sequences of climate states in the Iberian Peninsula for a period of 125 Ka into the future, to the next interglacial stage, 125 Ka AP; on the other hand, to establish potential climate scenarios during such a period of time determining also the variability ranges of primary climate and climate-related variables of interest to the post-closure performance assessment and underground repository safety evaluations. The report reviews the potential effects of environmental changes on the performance of underground radioactive waste repositories, emphasizing the consideration given to long-term climatic changes in radioactive waste disposal system safety evaluations. (Author)

  7. The role of the uncertainty in assessing future scenarios of water shortage in alluvial aquifers

    Science.gov (United States)

    Romano, Emanuele; Camici, Stefania; Brocca, Luca; Moramarco, Tommaso; Guyennon, Nicolas; Preziosi, Elisabetta

    2015-04-01

    There are many evidences that the combined effects of variations in precipitation and temperature due to climate change can result in a significant change of the recharge to groundwater at different time scales. A possible reduction of effective infiltration can result in a significant decrease, temporary or permanent, of the availability of the resource and, consequently, the sustainable pumping rate should be reassessed. In addition to this, one should also consider the so called indirect impacts of climate change, resulting from human intervention (e.g. augmentation of abstractions) which are feared to be even more important than the direct ones in the medium term: thus, a possible increase of episodes of shortage (i.e. the inability of the groundwater system to completely supply the water demand) can result both from change in the climate forcing and change in the demand. In order to assess future scenarios of water shortage a modelling chain is often used. It includes: 1) the use of General Circulation Models to estimate changes in temperature and precipitation; 2) downscaling procedures to match modeling scenarios to the observed meteorological time series; 3) soil-atmosphere modelling to estimate the time variation of the recharge to the aquifer; 4) groundwater flow models to simulate the water budget and piezometric head evolution; 5) future scenarios of groundwater quantitative status that include scenarios of demand variation. It is well known that each of these processing steps is affected by an intrinsic uncertainty that propagates through the whole chain leading to a final uncertainty on the piezometric head scenarios. The estimate of such an uncertainty is a key point for a correct management of groundwater resources, in case of water shortage due to prolonged droughts as well as for planning purposes. This study analyzes the uncertainty of the processing chain from GCM scenarios to its impact on an alluvial aquifer in terms of exploitation

  8. Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: climatology and regional analyses for the Amazon, Sao Francisco and the Parana River basins

    Energy Technology Data Exchange (ETDEWEB)

    Marengo, Jose A.; Chou, Sin Chan; Alves, Lincoln M.; Pesquero, Jose F.; Soares, Wagner R.; Santos, Daniel C.; Lyra, Andre A.; Sueiro, Gustavo; Chagas, Diego J.; Gomes, Jorge L.; Bustamante, Josiane F.; Tavares, Priscila [National Institute for Space Research (INPE) Cachoeira Paulista, Sao Paulo (Brazil); Kay, Gillian; Betts, Richard [UK Met Office Hadley Centre, Exeter, Devon (United Kingdom)

    2012-05-15

    The objective of this study is to assess the climate projections over South America using the Eta-CPTEC regional model driven by four members of an ensemble of the Met Office Hadley Centre Global Coupled climate model HadCM3. The global model ensemble was run over the twenty-first century according to the SRES A1B emissions scenario, but with each member having a different climate sensitivity. The four members selected to drive the Eta-CPTEC model span the sensitivity range in the global model ensemble. The Eta-CPTEC model nested in these lateral boundary conditions was configured with a 40-km grid size and was run over 1961-1990 to represent baseline climate, and 2011-2100 to simulate possible future changes. Results presented here focus on austral summer and winter climate of 2011-2040, 2041-2070 and 2071-2100 periods, for South America and for three major river basins in Brazil. Projections of changes in upper and low-level circulation and the mean sea level pressure (SLP) fields simulate a pattern of weakening of the tropical circulation and strengthening of the subtropical circulation, marked by intensification at the surface of the Chaco Low and the subtropical highs. Strong warming (4-6 C) of continental South America increases the temperature gradient between continental South America and the South Atlantic. This leads to stronger SLP gradients between continent and oceans, and to changes in moisture transport and rainfall. Large rainfall reductions are simulated in Amazonia and Northeast Brazil (reaching up to 40%), and rainfall increases around the northern coast of Peru and Ecuador and in southeastern South America, reaching up to 30% in northern Argentina. All changes are more intense after 2040. The Precipitation-Evaporation (P-E) difference in the A1B downscaled scenario suggest water deficits and river runoff reductions in the eastern Amazon and Sao Francisco Basin, making these regions susceptible to drier conditions and droughts in the future

  9. simulating rice yields under climate change scenarios using

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    The effects of climate change on rice production and yield cannot be overlooked in finding measures to increase production and yield. The CERES-Rice (Ver. 4.0) model was calibrated and evaluated for use in simulating rice yields under different climate change scenarios in Ghana using data from the Anum Valley ...

  10. Challenges and potentials in using alternative landscape futures during climate change: A literature review and survey study

    Directory of Open Access Journals (Sweden)

    Amin Rastandeh

    2015-12-01

    Full Text Available This study focuses on the feasibility of applying alternative futures and scenario analysis in landscape planning during climate change to provide a wider perspective and deeper understanding of this approach for better use and more effective application in the future. The study consists of a literature review and an analysis of recent applied projects carried out worldwide. In addition, an electronic survey was conducted from March to September 2014 to examine viewpoints on the use and application of this approach with reference to climate-change impacts. The survey participants were a group of highly experienced researchers from eighteen countries involved in at least one applied project since 2000 relating to this topic. After analysis of more than forty applied projects, the survey results were incorporated into the analysis to create a comprehensive picture regarding the potentials and limitations of alternative futures and scenario analysis in landscape planning with particular attention to climate change. The findings show that this method is one of the most effective decision-making approaches for adopting landscape policies where landscapes change rapidly under the pressure of urbanisation and climate change. Nevertheless, there is a gap between the advances offered by the approach in various dimensions and the complexity of patterns, uncertainties and upheavals in landscapes due to climate-change impacts in the urbanising world. The research indicates that the approach opens up a great opportunity for decision-makers to expand their perspective and adopt appropriate landscape policies before reaching a point of no return from the sustainability point of view. Meanwhile, there are challenges and barriers in the application of alternative futures and scenario analysis for envisioning the landscapes influenced by climate change and urbanisation that should be pushed back. Although informative, this research raises new questions about this

  11. Future Scenarios for Mobile Science Learning

    Science.gov (United States)

    Burden, Kevin; Kearney, Matthew

    2016-01-01

    This paper adopts scenario planning as a methodological approach and tool to help science educators reconceptualise their use of mobile technologies across various different futures. These "futures" are set out neither as predictions nor prognoses but rather as stimuli to encourage greater discussion and reflection around the use of…

  12. Irrigated agriculture and future climate change effects on groundwater recharge, northern High Plains aquifer, USA

    Science.gov (United States)

    Lauffenburger, Zachary H.; Gurdak, Jason J.; Hobza, Christopher M.; Woodward, Duane; Wolf, Cassandra

    2018-01-01

    Understanding the controls of agriculture and climate change on recharge rates is critically important to develop appropriate sustainable management plans for groundwater resources and coupled irrigated agricultural systems. In this study, several physical (total potential (ψT) time series) and chemical tracer and dating (3H, Cl−, Br−, CFCs, SF6, and 3H/3He) methods were used to quantify diffuse recharge rates beneath two rangeland sites and irrigation recharge rates beneath two irrigated corn sites along an east-west (wet-dry) transect of the northern High Plains aquifer, Platte River Basin, central Nebraska. The field-based recharge estimates and historical climate were used to calibrate site-specific Hydrus-1D models, and irrigation requirements were estimated using the Crops Simulation Model (CROPSIM). Future model simulations were driven by an ensemble of 16 global climate models and two global warming scenarios to project a 2050 climate relative to the historical baseline 1990 climate, and simulate changes in precipitation, irrigation, evapotranspiration, and diffuse and irrigation recharge rates. Although results indicate statistical differences between the historical variables at the eastern and western sites and rangeland and irrigated sites, the low warming scenario (+1.0 °C) simulations indicate no statistical differences between 2050 and 1990. However, the high warming scenarios (+2.4 °C) indicate a 25% and 15% increase in median annual evapotranspiration and irrigation demand, and decreases in future diffuse recharge by 53% and 98% and irrigation recharge by 47% and 29% at the eastern and western sites, respectively. These results indicate an important threshold between the low and high warming scenarios that if exceeded could trigger a significant bidirectional shift in 2050 hydroclimatology and recharge gradients. The bidirectional shift is that future northern High Plains temperatures will resemble present central High Plains

  13. Current and Future Distribution of the Tropical Tree Cedrela odorata L. in Mexico under Climate Change Scenarios Using MaxLike

    Science.gov (United States)

    Martínez Meyer, Enrique; Sánchez-Velásquez, Lázaro R.

    2016-01-01

    Climate change is recognized as an important threat to global biodiversity because it increases the risk of extinction of many species on the planet. Mexico is a megadiverse country and native tree species such as red cedar (Cedrela odorata) can be used to maintain forests while helping mitigate climate change, because it is considered a fast growing pioneer species with great economic potential in the forestry industry. In order to assess possible shifts in areas suitable for C. odorata plantations in Mexico with ecological niche models, we used the MaxLike algorithm, climate variables, the geo-referenced records of this species, three general circulation models and three scenarios of future emissions. Results show a current potential distribution of 573,079 km2 with an average probability of occurrence of 0.93 (± 0.13). The potential distribution area could increase up to 650,356 km2 by 2060 according to the general circulation model HADCM3 B2, with an average probability of occurrence of 0.86 (± 0.14). Finally, we delimited an area of 35,377 km2 that has a high potential for the establishment of C. odorata plantations, by selecting those sites with optimal conditions for its growth that are outside protected areas and are currently devoid of trees. C. odorata has a significant potential to help in the mitigation of the effects of climate change. Using MaxLike we identified extense areas in Mexico suitable to increase carbon sequestration through plantations of this highly valued native tree species. PMID:27732622

  14. Current and Future Distribution of the Tropical Tree Cedrela odorata L. in Mexico under Climate Change Scenarios Using MaxLike.

    Science.gov (United States)

    Estrada-Contreras, Israel; Equihua, Miguel; Laborde, Javier; Martínez Meyer, Enrique; Sánchez-Velásquez, Lázaro R

    2016-01-01

    Climate change is recognized as an important threat to global biodiversity because it increases the risk of extinction of many species on the planet. Mexico is a megadiverse country and native tree species such as red cedar (Cedrela odorata) can be used to maintain forests while helping mitigate climate change, because it is considered a fast growing pioneer species with great economic potential in the forestry industry. In order to assess possible shifts in areas suitable for C. odorata plantations in Mexico with ecological niche models, we used the MaxLike algorithm, climate variables, the geo-referenced records of this species, three general circulation models and three scenarios of future emissions. Results show a current potential distribution of 573,079 km2 with an average probability of occurrence of 0.93 (± 0.13). The potential distribution area could increase up to 650,356 km2 by 2060 according to the general circulation model HADCM3 B2, with an average probability of occurrence of 0.86 (± 0.14). Finally, we delimited an area of 35,377 km2 that has a high potential for the establishment of C. odorata plantations, by selecting those sites with optimal conditions for its growth that are outside protected areas and are currently devoid of trees. C. odorata has a significant potential to help in the mitigation of the effects of climate change. Using MaxLike we identified extense areas in Mexico suitable to increase carbon sequestration through plantations of this highly valued native tree species.

  15. Current and Future Distribution of the Tropical Tree Cedrela odorata L. in Mexico under Climate Change Scenarios Using MaxLike.

    Directory of Open Access Journals (Sweden)

    Israel Estrada-Contreras

    Full Text Available Climate change is recognized as an important threat to global biodiversity because it increases the risk of extinction of many species on the planet. Mexico is a megadiverse country and native tree species such as red cedar (Cedrela odorata can be used to maintain forests while helping mitigate climate change, because it is considered a fast growing pioneer species with great economic potential in the forestry industry. In order to assess possible shifts in areas suitable for C. odorata plantations in Mexico with ecological niche models, we used the MaxLike algorithm, climate variables, the geo-referenced records of this species, three general circulation models and three scenarios of future emissions. Results show a current potential distribution of 573,079 km2 with an average probability of occurrence of 0.93 (± 0.13. The potential distribution area could increase up to 650,356 km2 by 2060 according to the general circulation model HADCM3 B2, with an average probability of occurrence of 0.86 (± 0.14. Finally, we delimited an area of 35,377 km2 that has a high potential for the establishment of C. odorata plantations, by selecting those sites with optimal conditions for its growth that are outside protected areas and are currently devoid of trees. C. odorata has a significant potential to help in the mitigation of the effects of climate change. Using MaxLike we identified extense areas in Mexico suitable to increase carbon sequestration through plantations of this highly valued native tree species.

  16. EnerFuture Energy Scenarios to 2035 'Understanding our Energy Future'. Key graphs and analysis, Enerdata - Global Energy Forecasting - February 2014

    International Nuclear Information System (INIS)

    2014-01-01

    The EnerFuture service provides projections to 2035 of energy supply and demand across the world, powered by the POLES model, to help you with what to expect in the energy industry in the mid-term. Our energy forecasting team have developed three key energy scenarios (Balance, Emergence and Renaissance) to illustrate possible futures. Balance scenario: Balance provides an outlook of the energy system up to 2035 based on current policies and trends. Sustained growth of China and other emerging countries is a powerful driver of global energy demand, but confirmed energy policy commitments in several regions play a key role in controlling the pace of growth. However, non-coordinated policies result in soaring CO_2 emissions across the world and energy prices rise. Emergence scenario: This scenario explores the implications of more stringent climate policies, with more ambitious efforts on energy efficiency, initiatives to phase out fossil fuel subsidies and a real emergence of renewable technologies. Europe goes beyond its -20% targets by 2020, and the OECD and emerging countries meet their Copenhagen objectives. Following this, a new green deal is launched to reduce world emissions by a factor of 2 by 2050. Renaissance scenario: With strong efforts in the exploitation and production of unconventional oil and gas resources, the world encounters a fossil fuels renaissance with the appearance of new key actors and ultimately new geopolitical configurations changing the energy independence of several countries. For climate efforts, this new paradigm leads to progressively weaker policies. Further analysis and key findings are available here: - Increasing economic activity and wealth drives energy consumption, in a balance between energy prices and innovation; - As Non-OECD exceeds OECD oil demand, massive financial flows underlie the shifts in global oil trade; - Optimistic resource assumptions and moderate production costs would lead to an oil production Renaissance

  17. The use of climate information to estimate future mortality from high ambient temperature: A systematic literature review

    Science.gov (United States)

    Arbuthnott, Katherine; Kovats, Sari; Hajat, Shakoor; Falloon, Pete

    2017-01-01

    mortality were apparent. Some factors which have not been considered when estimating future mortality are summarised. Conclusions Most studies have used climate data generated using scenarios with medium and high emissions of greenhouse gases. More estimates of future mortality using climate information from the mitigation scenario RCP2.6 are needed, as this scenario is the only one under which the Paris Agreement to limit global warming to 2°C or less could be realised. Many of the methods used to combine modelled data with local climate observations are simplistic. Quantile-based methods might offer an improved approach, especially for temperatures at the ends of the distributions. The modelling of adaptation to warmer temperatures in mortality models is generally arbitrary and simplistic, and more research is needed to better quantify adaptation. Only a small number of studies included possible changes in population and demographics in their estimates of future mortality, meaning many estimates of mortality could be biased low. Uncertainty originating from establishing a mortality baseline, climate projections, adaptation and population changes is important and should be considered when estimating future mortality. PMID:28686743

  18. Multiscale scenarios for nature futures

    CSIR Research Space (South Africa)

    Rosa, IMD

    2017-09-01

    Full Text Available & Evolution, vol. 1: 1416-1419 Multiscale scenarios for nature futures Rosa IMD Pereira HM Ferrier S Alkemade R Acosta LA Akcakaya HR den Belder E Fazel AM Fujimori S Sitas NE ABSTRACT: Targets for human development are increasingly...

  19. Climate change mitigation: comparative assessment of Malaysian and ASEAN scenarios.

    Science.gov (United States)

    Rasiah, Rajah; Ahmed, Adeel; Al-Amin, Abul Quasem; Chenayah, Santha

    2017-01-01

    This paper analyses empirically the optimal climate change mitigation policy of Malaysia with the business as usual scenario of ASEAN to compare their environmental and economic consequences over the period 2010-2110. A downscaling empirical dynamic model is constructed using a dual multidisciplinary framework combining economic, earth science, and ecological variables to analyse the long-run consequences. The model takes account of climatic variables, including carbon cycle, carbon emission, climatic damage, carbon control, carbon concentration, and temperature. The results indicate that without optimal climate policy and action, the cumulative cost of climate damage for Malaysia and ASEAN as a whole over the period 2010-2110 would be MYR40.1 trillion and MYR151.0 trillion, respectively. Under the optimal policy, the cumulative cost of climatic damage for Malaysia would fall to MYR5.3 trillion over the 100 years. Also, the additional economic output of Malaysia will rise from MYR2.1 billion in 2010 to MYR3.6 billion in 2050 and MYR5.5 billion in 2110 under the optimal climate change mitigation scenario. The additional economic output for ASEAN would fall from MYR8.1 billion in 2010 to MYR3.2 billion in 2050 before rising again slightly to MYR4.7 billion in 2110 in the business as usual ASEAN scenario.

  20. Equity in climate-economy scenarios: the importance of subnational income distribution

    International Nuclear Information System (INIS)

    Baer, Paul

    2009-01-01

    It is widely accepted that climate change raises equity considerations, and this has been addressed in various explicit and implicit ways in scenario-based climate and climate-policy research. In this paper I look in particular at the IPCC's well-known 'Special Report on Emissions Scenarios', in which equity is primarily quantified as the distribution of income between countries, and highlight the need for more explicit treatment of equity both within and across national borders. I apply an existing method for modeling subnational income distributions and show that this affects the results of welfare calculations of the type used in economic analyses of climate policy. Additionally, I suggest ways in which this kind of equity analysis could be applied to questions that address broader considerations of climate policy and development, such as burden sharing in the allocation of obligations, and conclude with remarks that frame the scenario development process in the context of what I call 'the contested storyline of the present'.

  1. Modeling the Effects of Drought Events on Forest Ecosystem Functioning Historically and Under Scenarios of Climate Change

    Science.gov (United States)

    Ren, J.; Hanan, E. J.; Kolden, C.; Abatzoglou, J. T.; Tague, C.; Liu, M.; Adam, J. C.

    2017-12-01

    Drought events have been increasing across the western United States in recent years. Many studies have shown that, in the context of climate change, droughts will continue to be stronger, more frequent, and prolonged in the future. However, the response of forest ecosystems to droughts, particularly multi-year droughts, is not well understood. The objectives of this study are to examine how drought events of varying characteristics (e.g. intensity, duration, frequency, etc.) have affected the functioning of forest ecosystems historically, and how changing drought characteristics (including multi-year droughts) may affect forest functioning in a future climate. We utilize the Regional Hydro-Ecological Simulation System (RHESSys) to simulate impacts of both historical droughts and scenarios of future droughts on forest ecosystems. RHESSys is a spatially-distributed and process-based model that captures the interactions between coupled biogeochemical and hydrologic cycles at catchment scales. Here our case study is the Trail Creek catchment of the Big Wood River basin in Idaho, the Northwestern USA. For historical simulations, we use the gridded meteorological data of 1979 to 2016; for future climate scenarios, we utilize downscaled data from GCMs that have been demonstrated to capture drought events in the Northwest of the USA. From these climate projections, we identify various types of drought in intensity and duration, including multi-year drought events. We evaluate the following responses of ecosystems to these events: 1) evapotranspiration and streamflow; 2) gross primary productivity; 3) the post-drought recovery of plant biomass; and 4) the forest functioning and recovery after multi-year droughts. This research is part of an integration project to examine the roles of drought, insect outbreak, and forest management activities on wildfire activity and its impacts. This project will provide improved information for forest managers and communities in the wild

  2. Evaluating Impacts of climate and land use changes on streamflow using SWAT and land use models based CESM1-CAM5 Climate scenarios

    Science.gov (United States)

    Lin, Tzu Ping; Lin, Yu Pin; Lien, Wan Yu

    2015-04-01

    Climate change projects have various levels of impacts on hydrological cycles around the world. The impact of climate change and uncertainty of climate projections from general circulation models (GCMs) from the Coupled Model Intercomparison Project (CMIP5) which has been just be released in Taiwan, 2014. Since the streamflow run into ocean directly due to the steep terrain and the rainfall difference between wet and dry seasons is apparent; as a result, the allocation water resource reasonable is very challenge in Taiwan, particularly under climate change. The purpose of this study was to evaluate the impacts of climate and land use changes on a small watershed in Taiwan. The AR5 General Circulation Models(GCM) output data was adopted in this study and was downscaled from the monthly to the daily weather data as the input data of hydrological model such as Soil and Water Assessment Tool (SWAT) model in this study. The spatially explicit land uses change model, the Conservation of Land Use and its Effects at Small regional extent (CLUE-s), was applied to simulate land use scenarios in 2020-2039. Combined climate and land use change scenarios were adopted as input data of the hydrological model, the SWAT model, to estimate the future streamflows. With the increasing precipitation, increasing urban area and decreasing agricultural and grass land, the annual streamflow in the most of twenty-three subbasins were also increased. Besides, due to the increasing rainfall in wet season and decreasing rainfall in dry season, the difference of streamflow between wet season and dry season are also increased. This result indicates a more stringent challenge on the water resource management in future. Therefore, impacts on water resource caused by climate change and land use change should be considered in water resource planning for the Datuan river watershed. Keywords: SWAT, GCM, CLUE-s, streamflow, climate change, land use change

  3. Potential economic benefits of adapting agricultural production systems to future climate change

    Science.gov (United States)

    Fagre, Daniel B.; Pederson, Gregory; Bengtson, Lindsey E.; Prato, Tony; Qui, Zeyuan; Williams, Jimmie R.

    2010-01-01

    Potential economic impacts of future climate change on crop enterprise net returns and annual net farm income (NFI) are evaluated for small and large representative farms in Flathead Valley in Northwest Montana. Crop enterprise net returns and NFI in an historical climate period (1960–2005) and future climate period (2006–2050) are compared when agricultural production systems (APSs) are adapted to future climate change. Climate conditions in the future climate period are based on the A1B, B1, and A2 CO2 emission scenarios from the Intergovernmental Panel on Climate Change Fourth Assessment Report. Steps in the evaluation include: (1) specifying crop enterprises and APSs (i.e., combinations of crop enterprises) in consultation with locals producers; (2) simulating crop yields for two soils, crop prices, crop enterprises costs, and NFIs for APSs; (3) determining the dominant APS in the historical and future climate periods in terms of NFI; and (4) determining whether NFI for the dominant APS in the historical climate period is superior to NFI for the dominant APS in the future climate period. Crop yields are simulated using the Environmental/Policy Integrated Climate (EPIC) model and dominance comparisons for NFI are based on the stochastic efficiency with respect to a function (SERF) criterion. Probability distributions that best fit the EPIC-simulated crop yields are used to simulate 100 values for crop yields for the two soils in the historical and future climate periods. Best-fitting probability distributions for historical inflation-adjusted crop prices and specified triangular probability distributions for crop enterprise costs are used to simulate 100 values for crop prices and crop enterprise costs. Averaged over all crop enterprises, farm sizes, and soil types, simulated net return per ha averaged over all crop enterprises decreased 24% and simulated mean NFI for APSs decreased 57% between the historical and future climate periods. Although adapting

  4. Potential Economic Benefits of Adapting Agricultural Production Systems to Future Climate Change

    Science.gov (United States)

    Prato, Tony; Zeyuan, Qiu; Pederson, Gregory; Fagre, Dan; Bengtson, Lindsey E.; Williams, Jimmy R.

    2010-03-01

    Potential economic impacts of future climate change on crop enterprise net returns and annual net farm income (NFI) are evaluated for small and large representative farms in Flathead Valley in Northwest Montana. Crop enterprise net returns and NFI in an historical climate period (1960-2005) and future climate period (2006-2050) are compared when agricultural production systems (APSs) are adapted to future climate change. Climate conditions in the future climate period are based on the A1B, B1, and A2 CO2 emission scenarios from the Intergovernmental Panel on Climate Change Fourth Assessment Report. Steps in the evaluation include: (1) specifying crop enterprises and APSs (i.e., combinations of crop enterprises) in consultation with locals producers; (2) simulating crop yields for two soils, crop prices, crop enterprises costs, and NFIs for APSs; (3) determining the dominant APS in the historical and future climate periods in terms of NFI; and (4) determining whether NFI for the dominant APS in the historical climate period is superior to NFI for the dominant APS in the future climate period. Crop yields are simulated using the Environmental/Policy Integrated Climate (EPIC) model and dominance comparisons for NFI are based on the stochastic efficiency with respect to a function (SERF) criterion. Probability distributions that best fit the EPIC-simulated crop yields are used to simulate 100 values for crop yields for the two soils in the historical and future climate periods. Best-fitting probability distributions for historical inflation-adjusted crop prices and specified triangular probability distributions for crop enterprise costs are used to simulate 100 values for crop prices and crop enterprise costs. Averaged over all crop enterprises, farm sizes, and soil types, simulated net return per ha averaged over all crop enterprises decreased 24% and simulated mean NFI for APSs decreased 57% between the historical and future climate periods. Although adapting APSs to

  5. Potential economic benefits of adapting agricultural production systems to future climate change.

    Science.gov (United States)

    Prato, Tony; Zeyuan, Qiu; Pederson, Gregory; Fagre, Dan; Bengtson, Lindsey E; Williams, Jimmy R

    2010-03-01

    Potential economic impacts of future climate change on crop enterprise net returns and annual net farm income (NFI) are evaluated for small and large representative farms in Flathead Valley in Northwest Montana. Crop enterprise net returns and NFI in an historical climate period (1960-2005) and future climate period (2006-2050) are compared when agricultural production systems (APSs) are adapted to future climate change. Climate conditions in the future climate period are based on the A1B, B1, and A2 CO(2) emission scenarios from the Intergovernmental Panel on Climate Change Fourth Assessment Report. Steps in the evaluation include: (1) specifying crop enterprises and APSs (i.e., combinations of crop enterprises) in consultation with locals producers; (2) simulating crop yields for two soils, crop prices, crop enterprises costs, and NFIs for APSs; (3) determining the dominant APS in the historical and future climate periods in terms of NFI; and (4) determining whether NFI for the dominant APS in the historical climate period is superior to NFI for the dominant APS in the future climate period. Crop yields are simulated using the Environmental/Policy Integrated Climate (EPIC) model and dominance comparisons for NFI are based on the stochastic efficiency with respect to a function (SERF) criterion. Probability distributions that best fit the EPIC-simulated crop yields are used to simulate 100 values for crop yields for the two soils in the historical and future climate periods. Best-fitting probability distributions for historical inflation-adjusted crop prices and specified triangular probability distributions for crop enterprise costs are used to simulate 100 values for crop prices and crop enterprise costs. Averaged over all crop enterprises, farm sizes, and soil types, simulated net return per ha averaged over all crop enterprises decreased 24% and simulated mean NFI for APSs decreased 57% between the historical and future climate periods. Although adapting APSs

  6. Risk Analysis of Near-Coastal Species of the U.S. Pacific Coast: Case Study Comparing Risks Associated with Two Future Climate Scenarios

    Science.gov (United States)

    Fundamental questions for climate change policy and adaptation strategies are to what extent does ecological risk change under different climate scenarios and how do any changes in risk vary among taxa and geographically. To evaluate these questions, we developed a rule-based fra...

  7. Effects of climate change adaptation scenarios on perceived spatio-temporal characteristics of drought events

    Science.gov (United States)

    Vidal, J.-P.; Martin, E.; Kitova, N.; Najac, J.; Soubeyroux, J.-M.

    2012-04-01

    Drought events develop in both space and time and they are therefore best described through summary joint spatio-temporal characteristics, like mean duration, mean affected area and total magnitude. This study addresses the issue of future projections of such characteristics of drought events over France through three main research questions: (1) Are downscaled climate projections able to reproduce spatio-temporal characteristics of meteorological and agricultural droughts in France over a present-day period? (2) How such characteristics will evolve over the 21st century under different emissions scenarios? (3) How would perceived drought characteristics evolve under theoretical adaptation scenarios? These questions are addressed using the Isba land surface model, downscaled climate projections from the ARPEGE General Circulation Model under three emissions scenarios, as well as results from a previously performed 50-year multilevel and multiscale drought reanalysis over France (Vidal et al., 2010). Spatio-temporal characteristics of meteorological and agricultural drought events are computed using the Standardized Precipitation Index (SPI) and the Standardized Soil Wetness Index (SSWI), respectively, and for time scales of 3 and 12 months. Results first show that the distributions of joint spatio-temporal characteristics of observed events are well reproduced by the downscaled hydroclimate projections over a present-day period. All spatio-temporal characteristics of drought events are then found to dramatically increase over the 21st century under all considered emissions scenarios, with stronger changes for agricultural droughts. Two theoretical adaptation scenarios are eventually built based on hypotheses of adaptation to evolving climate and hydrological normals. The two scenarios differ by the way the transient adaptation is performed for a given date in the future, with reference to the normals over either the previous 30-year window ("retrospective

  8. Black Sigatoka (Mycosphaerella fijiensis Morelet and food security. Bio-climate Scenarios in bananas under the effect of climate change in Ciego de Avila, Cuba

    Directory of Open Access Journals (Sweden)

    Hernández-Mansilla Alexis Augusto

    2016-11-01

    Full Text Available The negative evidence of climate change of high importance for the future agricultural production and the need of food sovereignty and security, impose to develop research to predict the phenology of plants and their pests, mainly those of economic importance. The aim of this work is to interpret the epidemiological behavior of the black Sigatoka disease (Mycosphaerella fijiensis Morelet in banana for the years 2020 and 2025 under the effects of climate change in Ciego de Avila. There were made bioclimatic scenarios using daily data of maximum temperature, minimum temperature and accumulated rainfall of 14 days generated by the Regional Climatic Model "PRECIS Caribbean" with boundary conditions of the global model ECHAM - 4 for future climate projections under scenarios of emission A2 and B2. The key indicators of this disease: "Sum of Speed ​​" and the "Evolution state" of 4 leaves were obtained. The results show Sums speeds above 11000 thermo-physiological units, as well as a continuous and progressive increase in the "Evolution State" with values above 500 units during the analyzed years. We infers will occur an increase in the number of treatments and the plant protection cost, which implies the need to draw integrated management measures that include agro-ecological principles, search for resistant varieties to replace those susceptible to the disease that are currently used and strengthen the climate change adaptation and the resilience in the agricultural ecosystem.

  9. Scenarios for the future

    International Nuclear Information System (INIS)

    Haegermark, H.; Bergmark, M.

    1995-06-01

    This project aims primarily to give a basis for the joint R and D program for the Swedish electric utility industry, in the form of pictures of the future up to 2020. The work was performed during four seminars in a group of managers and R and D planners. The four scenarios differ mainly in the assumptions of high or low economic growth and on market or political rule. Assumptions on essential uncertainties about the future have been combined in a consistent manner, e.g. on the structure of the utility industry, the role of nuclear power, the importance of the greenhouse gas issue, the influence of new technology developments and on changes of values in society. Certain other development appear in all scenarios, e.g. the impact of information technology throughout society, the internationalization of business in general and industrial production in particular, considerations for the environment and care for natural resources. The four scenarios are: 'Technology on the throne' (market rule/high growth); 'Intense competition' (market rule/low growth); 'Monopoly takes over' (political rule/high growth); and 'Green local society' (political rule/low growth). Some of the important factors pointed out by the study are: Increased customer mobility between regions and countries; The impact of information technology; Societal value changes; Sustainable development as an important driving force; Structure of the utility industry. Diversifying into new services. New players; Access to knowledge and competence; Ways for handling the greenhouse gas problem; Preparedness for nuclear power phase-out. 12 figs, 6 tabs

  10. Exploring the future role of Asia utilizing a Scenario Matrix Architecture and Shared Socio-economic Pathways

    International Nuclear Information System (INIS)

    Eom, Jiyong; Calvin, Kate; Clarke, Leon; Edmonds, Jae; Kim, Sonny; Kopp, Robert; Kyle, Page; Luckow, Patrick; Moss, Richard; Patel, Pralit; Wise, Marshall

    2012-01-01

    We explore the implications that alternative pathways for human population and economic development have for the role of Asia in reference no-climate-policy scenarios and scenarios in which climate forcing is limited. We consider three different pathways of socioeconomic development, which we refer to as Shared Socio-economic Pathways (SSPs) and four different levels of limitation on climate forcing, which we refer to as Shared Climate Policy Assumptions (SPAs). SSPs are differentiated by population and economic growth assumptions, while SPAs are differentiated on the level of radiative forcing in the year 2100. Regardless of the scenarios we examined Asia plays a central role in shaping the world's future with nearly half of the world's people and more than half of the world's economic activity and energy consumption. The future of Asia and the world are dramatically different across the various combinations of SSPs and SPAs. High population worlds place significant stress on Asian resources and ecosystems. In high population SSPs the poorest members of the population face high energy and food prices and the more stringent the level of emissions mitigation, the more stress poor populations experience, though the more stringent the emissions mitigation, the larger the area of unmanaged ecosystems that are preserved. - Highlights: ► We explore the implications of alternative population and economic pathways for the role of Asia. ► High population world places significant stress on Asian resources and ecosystems. ► In high population world, the poorest members of the population face high energy and food prices. ► The greater level of emissions mitigation, the more stress poor people experience. ► The greater the emissions mitigation, the larger the area of unmanaged ecosystems preserved.

  11. Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available Simulations with a hydrological model for the river Rhine for the present (1960–1989 and a projected future (2070–2099 climate are discussed. The hydrological model (RhineFlow is driven by meteorological data from a 90-years (ensemble of three 30-years simulation with the HadRM3H regional climate model for both present-day and future climate (A2 emission scenario. Simulation of present-day discharges is realistic provided that (1 the HadRM3H temperature and precipitation are corrected for biases, and (2 the potential evapotranspiration is derived from temperature only. Different methods are used to simulate discharges for the future climate: one is based on the direct model output of the future climate run (direct approach, while the other is based on perturbation of the present-day HadRM3H time series (delta approach. Both methods predict a similar response in the mean annual discharge, an increase of 30% in winter and a decrease of 40% in summer. However, predictions of extreme flows differ significantly, with increases of 10% in flows with a return period of 100 years in the direct approach and approximately 30% in the delta approach. A bootstrap method is used to estimate the uncertainties related to the sample size (number of years simulated in predicting changes in extreme flows.

  12. Harvesting interacts with climate change to affect future habitat quality of a focal species in eastern Canada's boreal forest.

    Science.gov (United States)

    Tremblay, Junior A; Boulanger, Yan; Cyr, Dominic; Taylor, Anthony R; Price, David T; St-Laurent, Martin-Hugues

    2018-01-01

    Many studies project future bird ranges by relying on correlative species distribution models. Such models do not usually represent important processes explicitly related to climate change and harvesting, which limits their potential for predicting and understanding the future of boreal bird assemblages at the landscape scale. In this study, we attempted to assess the cumulative and specific impacts of both harvesting and climate-induced changes on wildfires and stand-level processes (e.g., reproduction, growth) in the boreal forest of eastern Canada. The projected changes in these landscape- and stand-scale processes (referred to as "drivers of change") were then assessed for their impacts on future habitats and potential productivity of black-backed woodpecker (BBWO; Picoides arcticus), a focal species representative of deadwood and old-growth biodiversity in eastern Canada. Forest attributes were simulated using a forest landscape model, LANDIS-II, and were used to infer future landscape suitability to BBWO under three anthropogenic climate forcing scenarios (RCP 2.6, RCP 4.5 and RCP 8.5), compared to the historical baseline. We found climate change is likely to be detrimental for BBWO, with up to 92% decline in potential productivity under the worst-case climate forcing scenario (RCP 8.5). However, large declines were also projected under baseline climate, underlining the importance of harvest in determining future BBWO productivity. Present-day harvesting practices were the single most important cause of declining areas of old-growth coniferous forest, and hence appeared as the single most important driver of future BBWO productivity, regardless of the climate scenario. Climate-induced increases in fire activity would further promote young, deciduous stands at the expense of old-growth coniferous stands. This suggests that the biodiversity associated with deadwood and old-growth boreal forests may be greatly altered by the cumulative impacts of natural and

  13. Harvesting interacts with climate change to affect future habitat quality of a focal species in eastern Canada's boreal forest.

    Directory of Open Access Journals (Sweden)

    Junior A Tremblay

    Full Text Available Many studies project future bird ranges by relying on correlative species distribution models. Such models do not usually represent important processes explicitly related to climate change and harvesting, which limits their potential for predicting and understanding the future of boreal bird assemblages at the landscape scale. In this study, we attempted to assess the cumulative and specific impacts of both harvesting and climate-induced changes on wildfires and stand-level processes (e.g., reproduction, growth in the boreal forest of eastern Canada. The projected changes in these landscape- and stand-scale processes (referred to as "drivers of change" were then assessed for their impacts on future habitats and potential productivity of black-backed woodpecker (BBWO; Picoides arcticus, a focal species representative of deadwood and old-growth biodiversity in eastern Canada. Forest attributes were simulated using a forest landscape model, LANDIS-II, and were used to infer future landscape suitability to BBWO under three anthropogenic climate forcing scenarios (RCP 2.6, RCP 4.5 and RCP 8.5, compared to the historical baseline. We found climate change is likely to be detrimental for BBWO, with up to 92% decline in potential productivity under the worst-case climate forcing scenario (RCP 8.5. However, large declines were also projected under baseline climate, underlining the importance of harvest in determining future BBWO productivity. Present-day harvesting practices were the single most important cause of declining areas of old-growth coniferous forest, and hence appeared as the single most important driver of future BBWO productivity, regardless of the climate scenario. Climate-induced increases in fire activity would further promote young, deciduous stands at the expense of old-growth coniferous stands. This suggests that the biodiversity associated with deadwood and old-growth boreal forests may be greatly altered by the cumulative impacts of

  14. Combining Climate Scenarios and Risk Management Approach—A Finnish Case Study

    Directory of Open Access Journals (Sweden)

    Riitta Molarius

    2015-11-01

    Full Text Available Climate change impacts on nature and the environment have been widely discussed and studied. Traditionally, a company’s continuity management is based on risk analysis. There are also attempts to implement scenario-based methods in the risk management procedures of companies. For industrial decision makers, it is vital to acknowledge the impacts of climate change with regards to their adaptation strategies. However, a scenario-based approach is not always the most effective way to analyze these risks. This paper investigates the integration of scenario and risk-based methods for a company’s adaptation planning. It considers the uncertainties of the climate change scenarios and the recognized risks as well as suitable adaptation strategies. The paper presents the results of climate risk analysis prepared for two Finnish hydropower plants. The introduced method was first piloted in 2008 and then again in 2015. The update of the analysis pointed out that at the company level, the climate risks and other risks originating from governmental or political decisions form an intertwined wholeness where the origin of the risk is difficult to outline. It seems that, from the business point of view, the main adaptation strategies suggested by the integrated risk and scenarios approach are those that support buying “safety margins” in new investments and reducing decision time horizons. Both of these adaptation strategies provide an advantage in the circumstances where also political decisions and societal changes have a great effect on decision making.

  15. A comparative study of large-scale atmospheric circulation in the context of a future scenario (RCP4.5 and past warmth (mid-Pliocene

    Directory of Open Access Journals (Sweden)

    Y. Sun

    2013-07-01

    Full Text Available The mid-Pliocene warm period (~ 3.3–3.0 Ma is often considered as the last sustained warm period with close enough geographic configurations compared to the present one associated with atmospheric CO2 concentration (405 ± 50 ppm higher than the modern level. For this reason, this period is often considered as a potential analogue for the future climate warming, with the important advantage that for mid-Pliocene many marine and continental data are available. To investigate this issue, we selected the RCP4.5 scenario, one of the current available future projections, to compare the pattern of tropical atmospheric response with the past warm mid-Pliocene climate. We use three Atmosphere-Ocean General Circulation Model (AOGCM simulations (RCP4.5 scenario, mid-Pliocene and present-day simulation carried out with the IPSL-CM5A model and investigate atmospheric tropical dynamics through Hadley and Walker cell responses to warmer conditions, considering that the analysis can provide some assessment of how these circulations will change in the future. Our results show that there is a damping of the Hadley cell intensity in the northern tropics and an increase in both subtropics. Moreover, northern and southern Hadley cells expand poleward. The response of the Hadley cells is stronger for the RCP4.5 scenario than for the mid-Pliocene, but in very good agreement with the fact that the atmospheric CO2 concentration is higher in the future scenario than in the mid-Pliocene (543 versus 405 ppm. Concerning the response of the Walker cell, we show that despite very large similarities, there are also some differences. Common features to both scenarios are: weakening of the ascending branch, leading to a suppression of the precipitation over the western tropical Pacific. The response of the Walker cell is stronger in the RCP4.5 scenario than in the mid-Pliocene but also depicts some major differences, as an eastward shift of its rising branch in the future

  16. Development of climate risk services under climate change scenarios in the North Adriatic coast (Italy).

    Science.gov (United States)

    Valentina, Gallina; Silvia, Torresan; Anna, Sperotto; Elisa, Furlan; Andrea, Critto; Antonio, Marcomini

    2014-05-01

    Nowadays, the challenge for coastal stakeholders and decision makers is to incorporate climate change in land and policy planning in order to ensure a sustainable integrated coastal zone management aimed at preserve coastal environments and socio-economic activities. Consequently, an increasing amount of information on climate variability and its impact on human and natural ecosystem is requested. Climate risk services allows to bridge the gap between climate experts and decision makers communicating timely science-based information about impacts and risks related to climate change that could be incorporated into land planning, policy and practice. Within the CLIM-RUN project (FP7), a participatory Regional Risk Assessment (RRA) methodology was applied for the evaluation of water-related hazards in coastal areas (i.e. pluvial flood and sea-level rise inundation risks) taking into consideration future climate change scenarios in the case study of the North Adriatic Sea for the period 2040-2050. Specifically, through the analysis of hazard, exposure, vulnerability and risk and the application of Multi-Criteria Decision Analysis (MCDA), the RRA methodology allowed to identify and prioritize targets (i.e. residential and commercial-industrial areas, beaches, infrastructures, wetlands, agricultural typology) and sub-areas that are more likely to be affected by pluvial flood and sea-level rise impacts in the same region. From the early stages of the climate risk services development and application, the RRA followed a bottom-up approach taking into account the needs, knowledge and perspectives of local stakeholders dealing with the Integrated Coastal Zone Management (ICZM), by means of questionnaires, workshops and focus groups organized within the project. Specifically, stakeholders were asked to provide their needs in terms of time scenarios, geographical scale and resolution, choice of receptors, vulnerability factors and thresholds that were considered in the

  17. GEOSS AIP-2 Climate Change and Biodiversity Use Scenarios: Interoperability Infrastructures

    Science.gov (United States)

    Nativi, Stefano; Santoro, Mattia

    2010-05-01

    In the last years, scientific community is producing great efforts in order to study the effects of climate change on life on Earth. In this general framework, a key role is played by the impact of climate change on biodiversity. To assess this, several use scenarios require the modeling of climatological change impact on the regional distribution of biodiversity species. Designing and developing interoperability infrastructures which enable scientists to search, discover, access and use multi-disciplinary resources (i.e. datasets, services, models, etc.) is currently one of the main research fields for the Earth and Space Science Informatics. This presentation introduces and discusses an interoperability infrastructure which implements the discovery, access, and chaining of loosely-coupled resources in the climatology and biodiversity domains. This allows to set up and run forecast and processing models. The presented framework was successfully developed and experimented in the context of GEOSS AIP-2 (Global Earth Observation System of Systems, Architecture Implementation Pilot- Phase 2) Climate Change & Biodiversity thematic Working Group. This interoperability infrastructure is comprised of the following main components and services: a)GEO Portal: through this component end user is able to search, find and access the needed services for the scenario execution; b)Graphical User Interface (GUI): this component provides user interaction functionalities. It controls the workflow manager to perform the required operations for the scenario implementation; c)Use Scenario controller: this component acts as a workflow controller implementing the scenario business process -i.e. a typical climate change & biodiversity projection scenario; d)Service Broker implementing Mediation Services: this component realizes a distributed catalogue which federates several discovery and access components (exposing them through a unique CSW standard interface). Federated components

  18. Shifts in the ecological niche of Lutzomyia peruensis under climate change scenarios in Peru.

    Science.gov (United States)

    Moo-Llanes, D A; Arque-Chunga, W; Carmona-Castro, O; Yañez-Arenas, C; Yañez-Trujillano, H H; Cheverría-Pacheco, L; Baak-Baak, C M; Cáceres, A G

    2017-06-01

    The Peruvian Andes presents a climate suitable for many species of sandfly that are known vectors of leishmaniasis or bartonellosis, including Lutzomyia peruensis (Diptera: Psychodidae), among others. In the present study, occurrences data for Lu. peruensis were compiled from several items in the scientific literature from Peru published between 1927 and 2015. Based on these data, ecological niche models were constructed to predict spatial distributions using three algorithms [Support vector machine (SVM), the Genetic Algorithm for Rule-set Prediction (GARP) and Maximum Entropy (MaxEnt)]. In addition, the environmental requirements of Lu. peruensis and three niche characteristics were modelled in the context of future climate change scenarios: (a) potential changes in niche breadth; (b) shifts in the direction and magnitude of niche centroids, and (c) shifts in elevation range. The model identified areas that included environments suitable for Lu. peruensis in most regions of Peru (45.77%) and an average altitude of 3289 m a.s.l. Under climate change scenarios, a decrease in the distribution areas of Lu. peruensis was observed for all representative concentration pathways. However, the centroid of the species' ecological niche showed a northwest direction in all climate change scenarios. The information generated in this study may help health authorities responsible for the supervision of strategies to control leishmaniasis to coordinate, plan and implement appropriate strategies for each area of risk, taking into account the geographic distribution and potential dispersal of Lu. peruensis. © 2017 The Royal Entomological Society.

  19. Large-scale impact of climate change vs. land-use change on future biome shifts in Latin America.

    Science.gov (United States)

    Boit, Alice; Sakschewski, Boris; Boysen, Lena; Cano-Crespo, Ana; Clement, Jan; Garcia-Alaniz, Nashieli; Kok, Kasper; Kolb, Melanie; Langerwisch, Fanny; Rammig, Anja; Sachse, René; van Eupen, Michiel; von Bloh, Werner; Clara Zemp, Delphine; Thonicke, Kirsten

    2016-11-01

    Climate change and land-use change are two major drivers of biome shifts causing habitat and biodiversity loss. What is missing is a continental-scale future projection of the estimated relative impacts of both drivers on biome shifts over the course of this century. Here, we provide such a projection for the biodiverse region of Latin America under four socio-economic development scenarios. We find that across all scenarios 5-6% of the total area will undergo biome shifts that can be attributed to climate change until 2099. The relative impact of climate change on biome shifts may overtake land-use change even under an optimistic climate scenario, if land-use expansion is halted by the mid-century. We suggest that constraining land-use change and preserving the remaining natural vegetation early during this century creates opportunities to mitigate climate-change impacts during the second half of this century. Our results may guide the evaluation of socio-economic scenarios in terms of their potential for biome conservation under global change. © 2016 John Wiley & Sons Ltd.

  20. VEMAP 2: U.S. Daily Climate Change Scenarios

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: VEMAP Phase 2 has developed a number of transient climate change scenarios based on coupled atmosphere-ocean general circulation model (AOGCM) transient...

  1. The Future of Climate Science (Invited)

    Science.gov (United States)

    Bishop, R.

    2010-12-01

    High Performance Computing is currently deployed in several centers for climate research, but not at the levels needed to achieve substantial success on a global basis, given the complexity of the problem. A quantum leap in capabilities will be necessary to handle next-generation climate models that integrate newly emerging sciences, high-resolution grids, and voluminous observational data from satellites and sophisticated ground devices. Dr. Bishop will discuss efforts to build an International Centre for Earth Simulation (ICES) based in Switzerland that takes an holistic systems approach, and that has the competence and resources to achieve new insights in this new decade, and is capable to globally influence public policy with respect to weather, climate, environment, disaster risk reduction and socio-economic development. On this progressively crowded and fragile planet, such a capability will be invaluable, Bishop believes, if not imperative, for our long-term survival. ICES could serve as a test-bed for large scale public and private development planning. Decision makers could ask ‘what if’ questions for major construction projects (such as China’s Three Gorges Dam), and then interactively evaluate alternative scenarios. Likewise, ICES could help uncover the possible unintended consequences of climate remediation and adaptation strategies, geo-engineering ideas, CO2 sequestration, deep sea drilling, etc. ICES would be a resource for building more resilient societies in an era of rapid climate change and frequent natural disasters (such as flooding, extreme weather events and volcanic ash clouds), and therefore of great consequence to our future well-being. It would ultimately play a major role in the education and training of policy-makers, the public, and future Earth Scientists - in conjunction with the current national and regional centers.

  2. Ecoclimatic indicators to study crop suitability in present and future climatic conditions

    Science.gov (United States)

    Caubel, Julie; Garcia de Cortazar Atauri, Inaki; Huard, Frédéric; Launay, Marie; Ripoche, Dominique; Gouache, David; Bancal, Marie-Odile; Graux, Anne-Isabelle; De Noblet, Nathalie

    2013-04-01

    Climate change is expected to affect both regional and global food production through changes in overall agroclimatic conditions. It is therefore necessary to develop simple tools of crop suitability diagnosis in a given area so that stakeholders can envisage land use adaptations under climate change conditions. The most common way to investigate potential impacts of climate on the evolution of agrosystems is to make use of an array of agroclimatic indicators, which provide synthetic information derived from climatic variables and calculated within fixed periods (i.e. January first - 31th July). However, the information obtained during these periods does not enable to take account of the plant response to climate. In this work, we present some results of the research program ORACLE (Opportunities and Risks of Agrosystems & forests in response to CLimate, socio-economic and policy changEs in France (and Europe). We proposed a suite of relevant ecoclimatic indicators, based on temperature and rainfall, in order to evaluate crop suitability for both present and new climatic conditions. Ecoclimatic indicators are agroclimatic indicators (e.g., grain heat stress) calculated during specific phenological phases so as to take account of the plant response to climate (e.g., the grain filling period, flowering- harvest). These indicators are linked with the ecophysiological processes they characterize (for e.g., the grain filling). To represent this methodology, we studied the suitability of winter wheat in future climatic conditions through three distinct French sites, Toulouse, Dijon and Versailles. Indicators have been calculated using climatic data from 1950 to 2100 simulated by the global climate model ARPEGE forced by a greenhouse effect corresponding to the SRES A1B scenario. The Quantile-Quantile downscaling method was applied to obtain data for the three locations. Phenological stages (emergence, ear 1 cm, flowering, beginning of grain filling and harvest) have been

  3. Future heat stress arising from climate change on Iran's population health

    Science.gov (United States)

    Modarres, Reza; Ghadami, Mohammad; Naderi, Sohrab; Naderi, Mohammad

    2018-04-01

    Climate change-induced extreme heat events are becoming a major issue in different parts of the world, especially in developing countries. The assessment of regional and temporal past and future change in heat waves is a crucial task for public health strategies and managements. The historical and future heat index (HI) time series are investigated for temporal change across Iran to study the impact of global warming on public health. The heat index is calculated, and the nonparametric trend assessment is carried out for historical time series (1981-2010). The future change in heat index is also projected for 2020-2049 and 2070-2099 periods. A rise in the historical heat index and extreme caution conditions for summer and spring seasons for major parts of Iran are notable for historical (1981-2010) series in this study. Using different climate change scenarios shows that heat index will exceed the critical threshold for human adaptability in the future in the country. The impact of climate change on heat index risk in Iran is significant in the future. To cope with this crucial situation, developing early warning systems and health care strategies to deal with population growth and remarkable socio-economic features in future is essential.

  4. Future changes in atmospheric condition for the baiu under RCP scenarios

    Science.gov (United States)

    Okada, Y.; Takemi, T.; Ishikawa, H.

    2015-12-01

    This study focuses on atmospheric circulation fields during the baiu in Japan with global warming projection experimental data conducted using a 20-km mesh global atmospheric model (MRI-AGCM3.2) under Representative Concentration Pathways (RCP) scenarios. This model also used 4 different sea surface temperature (SST) initial conditions. Support of this dataset is provided by the Meteorological Research Institute (MRI). The baiu front indicated by the north-south gradient of moist static energy moves northward in present-day climate, whereas this northward shift in future climate simulations is very slow during May and June. In future late baiu season, the baiu front stays in the northern part of Japan even in August. As a result, the rich water vapor is transported around western Japan and the daily precipitation amount will increase in August. This northward shift of baiu front is associated with the westward expansion of the enhanced the North Pacific subtropical high (NPSH) into Japan region. However, the convective activity around northwest Pacific Ocean is inactive and is unlikely to occur convective jump (CJ). These models show that the weak trough exists in upper troposphere around Japan. Therefore, the cold advection stays in the northern part of Japan during June. In July, the front due to the strengthening of the NPSH moves northward, and then it stays until August. This feature is often found between the clustered SSTs, Cluster 2 and 3. The mean field of future August also show the inflow of rich water vapor content to Japan islands. In this model, the extreme rainfall suggested tends to almost increase over the Japan islands during future summer. This work was conducted under the Program for Risk Information on Climate Change supported by the Ministry of Education, Culture, Sports, Science, and Technology-Japan (MEXT).

  5. Analysis of Current and Future SPEI Droughts in the La Plata Basin Based on Results from the Regional Eta Climate Model

    Directory of Open Access Journals (Sweden)

    Alvaro Sordo-Ward

    2017-11-01

    Full Text Available We identified and analysed droughts in the La Plata Basin (divided into seven sub-basins for the current period (1961–2005 and estimated their expected evolution under future climate projections for the periods 2011–2040, 2041–2070, and 2071–2099. Future climate projections were analysed from results of the Eta Regional Climate Model (grid resolution of approximately 10 km forced by the global climate model HadGEM2-ES over the La Plata basin, and considering a RCP4.5 emission scenario. Within each sub-basin, we particularly focused our drought analyses on croplands and grasslands, due to their economic relevance. The three-month Standardized Precipitation Evapotranspiration Index (SPEI3 was used for drought identification and characterization. Droughts were evaluated in terms of time (percentage of time from the total length of each climate scenario, space (percentage of total area, and severity (SPEI3 values of cells characterized by cropland and grassland for each sub-basin and climate scenario. Drought-severity–area–frequency curves were developed to quantitatively relate the frequency distribution of drought occurrence to drought severity and area. For the period 2011–2040, droughts dominate the northern sub-basins, whereas alternating wet and short dry periods dominate the southern sub-basins. Wet climate spread from south to north within the La Plata Basin as more distant future scenarios were analysed, due to both a greater number of wet periods and fewer droughts. The area of each sub-basin affected by drought in all climate scenarios was highly varied temporally and spatially. The likelihood of the occurrence of droughts differed significantly between the studied cover types in the Lower Paraguay sub-basin, being higher for cropland than for grassland. Mainly in the Upper Paraguay and in the Upper Paraná basins the climate projections for all scenarios showed an increase of moderate and severe droughts over large regions

  6. Regional climate change scenarios for México

    NARCIS (Netherlands)

    Conde, C.; Estrada, F.; Martínez-Salvador, Begoña; Sánchez, O.; Gay, C.

    In this paper we present the regional climate change scenarios that were used for the assessment of the potential impacts in México on agriculture, livestock, forestry, hydrological resources as well as on human settlements and biodiversity. Those studies were developed for the Fourth Communication

  7. Exploring the response of net primary productivity variations to urban expansion and climate change: a scenario analysis for Guangdong Province in China.

    Science.gov (United States)

    Pei, Fengsong; Li, Xia; Liu, Xiaoping; Lao, Chunhua; Xia, Gengrui

    2015-03-01

    Urban land development alters landscapes and carbon cycle, especially net primary productivity (NPP). Despite projections that NPP is often reduced by urbanization, little is known about NPP changes under future urban expansion and climate change conditions. In this paper, terrestrial NPP was calculated by using Biome-BGC model. However, this model does not explicitly address urban lands. Hence, we proposed a method of NPP-fraction to detect future urban NPP, assuming that the ratio of real NPP to potential NPP for urban cells remains constant for decades. Furthermore, NPP dynamics were explored by integrating the Biome-BGC and the cellular automata (CA), a widely used method for modeling urban growth. Consequently, urban expansion, climate change and their associated effects on the NPP were analyzed for the period of 2010-2039 using Guangdong Province in China as a case study. In addition, four scenarios were designed to reflect future conditions, namely baseline, climate change, urban expansion and comprehensive scenarios. Our analyses indicate that vegetation NPP in urban cells may increase (17.63 gC m(-2) year(-1)-23.35 gC m(-2) year(-1)) in the climate change scenario. However, future urban expansion may cause some NPP losses of 241.61 gC m(-2) year(-1), decupling the NPP increase of the climate change factor. Taking into account both climate change and urban expansion, vegetation NPP in urban area may decrease, minimally at a rate of 228.54 gC m(-2) year(-1) to 231.74 gC m(-2) year(-1). Nevertheless, they may account for an overall NPP increase of 0.78 TgC year(-1) to 1.28 TgC year(-1) in the whole province. All these show that the provincial NPP increase from climate change may offset the NPP decrease from urban expansion. Despite these results, it is of great significance to regulate reasonable expansion of urban lands to maintain carbon balance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Multi-factor, multi-state, multi-model scenarios: Exploring food and climate futures for Southeast Asia

    NARCIS (Netherlands)

    Mason-D'Croz, Daniel; Vervoort, Joost; Palazzo, Amanda; Islam, Shahnila; Lord, Steven; Helfgott, Ariella; Havlík, Petr; Peou, Rathana; Sassen, Marieke; Veeger, Marieke; van Soesbergen, Arnout; Arnell, Andrew P.; Stuch, Benjamin; Arslan, Aslihan; Lipper, Leslie

    Abstract Decision-makers aiming to improve food security, livelihoods and resilience are faced with an uncertain future. To develop robust policies they need tools to explore the potential effects of uncertain climatic, socioeconomic, and environmental changes. Methods have been developed to use

  9. Harvesting interacts with climate change to affect future habitat quality of a focal species in eastern Canada’s boreal forest

    Science.gov (United States)

    Boulanger, Yan; Cyr, Dominic; Taylor, Anthony R.; Price, David T.; St-Laurent, Martin-Hugues

    2018-01-01

    Many studies project future bird ranges by relying on correlative species distribution models. Such models do not usually represent important processes explicitly related to climate change and harvesting, which limits their potential for predicting and understanding the future of boreal bird assemblages at the landscape scale. In this study, we attempted to assess the cumulative and specific impacts of both harvesting and climate-induced changes on wildfires and stand-level processes (e.g., reproduction, growth) in the boreal forest of eastern Canada. The projected changes in these landscape- and stand-scale processes (referred to as “drivers of change”) were then assessed for their impacts on future habitats and potential productivity of black-backed woodpecker (BBWO; Picoides arcticus), a focal species representative of deadwood and old-growth biodiversity in eastern Canada. Forest attributes were simulated using a forest landscape model, LANDIS-II, and were used to infer future landscape suitability to BBWO under three anthropogenic climate forcing scenarios (RCP 2.6, RCP 4.5 and RCP 8.5), compared to the historical baseline. We found climate change is likely to be detrimental for BBWO, with up to 92% decline in potential productivity under the worst-case climate forcing scenario (RCP 8.5). However, large declines were also projected under baseline climate, underlining the importance of harvest in determining future BBWO productivity. Present-day harvesting practices were the single most important cause of declining areas of old-growth coniferous forest, and hence appeared as the single most important driver of future BBWO productivity, regardless of the climate scenario. Climate-induced increases in fire activity would further promote young, deciduous stands at the expense of old-growth coniferous stands. This suggests that the biodiversity associated with deadwood and old-growth boreal forests may be greatly altered by the cumulative impacts of natural and

  10. Simulating daily water temperatures of the Klamath River under dam removal and climate change scenarios

    Science.gov (United States)

    Perry, Russell W.; Risley, John C.; Brewer, Scott J.; Jones, Edward C.; Rondorf, Dennis W.

    2011-01-01

    A one-dimensional daily averaged water temperature model was used to simulate Klamath River temperatures for two management alternatives under historical climate conditions and six future climate scenarios. The analysis was conducted for the Secretarial Determination on removal of four hydroelectric dams on the Klamath River. In 2012, the Secretary of the Interior will determine if dam removal and implementation of the Klamath Basin Restoration Agreement (KBRA) (Klamath Basin Restoration Agreement, 2010) will advance restoration of salmonid fisheries and is in the public interest. If the Secretary decides dam removal is appropriate, then the four dams are scheduled for removal in 2020.

  11. Exploring the biogeophysical limits of global food production under different climate change scenarios

    Science.gov (United States)

    de Vrese, Philipp; Stacke, Tobias; Hagemann, Stefan

    2018-04-01

    An adapted Earth system model is used to investigate the limitations that future climate and water availability impose on the potential expansion and productivity of croplands. The model maximizes the cropland area under prevailing climate conditions and accounts for an optimized, sustainable irrigation practice, thus allowing us to consider the two-way feedback between climate and agriculture. For three greenhouse gas concentration scenarios (RCP2.6, RCP4.5, RCP8.5), we show that the total cropland area could be extended substantially throughout the 21st century, especially in South America and sub-Saharan Africa, where the rising water demand resulting from increasing temperatures can largely be met by increasing precipitation and irrigation rates. When accounting for the CO2 fertilization effect, only a few agricultural areas have to be abandoned owing to declines in productivity, while increasing temperatures allow for the expansion of croplands even into high northern latitudes. Without the CO2 fertilization effect there is no increase in the overall cropland fraction during the second half of the century but areal losses in increasingly water-stressed regions can be compensated for by an expansion in regions that were previously too cold. However, global yields are more sensitive and, without the benefits of CO2 fertilization, they may decrease when greenhouse gas concentrations exceed the RCP4.5 scenario. For certain regions the situation is even more concerning and guaranteeing food security in dry areas in Northern Africa, the Middle East and South Asia will become increasingly difficult, even for the idealized scenarios investigated in this study.

  12. Implications for future survival of delta smelt from four climate change scenarios for the Sacramento–San Joaquin Delta, California

    Science.gov (United States)

    Brown, Larry R.; Bennett, William A.; Wagner, R. Wayne; Morgan-King, Tara; Knowles, Noah; Feyrer, Frederick; Schoellhamer, David H.; Stacey, Mark T.; Dettinger, Mike

    2013-01-01

    Changes in the position of the low salinity zone, a habitat suitability index, turbidity, and water temperature modeled from four 100-year scenarios of climate change were evaluated for possible effects on delta smelt Hypomesus transpacificus, which is endemic to the Sacramento–San Joaquin Delta. The persistence of delta smelt in much of its current habitat into the next century appears uncertain. By mid-century, the position of the low salinity zone in the fall and the habitat suitability index converged on values only observed during the worst droughts of the baseline period (1969–2000). Projected higher water temperatures would render waters historically inhabited by delta smelt near the confluence of the Sacramento and San Joaquin rivers largely uninhabitable. However, the scenarios of climate change are based on assumptions that require caution in the interpretation of the results. Projections like these provide managers with a useful tool for anticipating long-term challenges to managing fish populations and possibly adapting water management to ameliorate those challenges.

  13. Climate change and agricultural development: adapting Polish agriculture to reduce future nutrient loads in a coastal watershed.

    Science.gov (United States)

    Piniewski, Mikołaj; Kardel, Ignacy; Giełczewski, Marek; Marcinkowski, Paweł; Okruszko, Tomasz

    2014-09-01

    Currently, there is a major concern about the future of nutrient loads discharged into the Baltic Sea from Polish rivers because they are main contributors to its eutrophication. To date, no watershed-scale studies have properly addressed this issue. This paper fills this gap by using a scenario-modeling framework applied in the Reda watershed, a small (482 km²) agricultural coastal area in northern Poland. We used the SWAT model to quantify the effects of future climate, land cover, and management changes under multiple scenarios up to the 2050s. The combined effect of climate and land use change on N-NO3 and P-PO4 loads is an increase by 20-60 and 24-31 %, respectively, depending on the intensity of future agricultural usage. Using a scenario that assumes a major shift toward a more intensive agriculture following the Danish model would bring significantly higher crop yields but cause a great deterioration of water quality. Using vegetative cover in winter and spring (VC) would be a very efficient way to reduce future P-PO4 loads so that they are lower than levels observed at present. However, even the best combination of measures (VC, buffer zones, reduced fertilization, and constructed wetlands) would not help to remediate heavily increased N-NO3 loads due to climate change and agricultural intensification.

  14. Development of a methodology to assess future trends in low flows at the watershed scale using solely climate data

    Science.gov (United States)

    Foulon, Étienne; Rousseau, Alain N.; Gagnon, Patrick

    2018-02-01

    Low flow conditions are governed by short-to-medium term weather conditions or long term climate conditions. This prompts the question: given climate scenarios, is it possible to assess future extreme low flow conditions from climate data indices (CDIs)? Or should we rely on the conventional approach of using outputs of climate models as inputs to a hydrological model? Several CDIs were computed using 42 climate scenarios over the years 1961-2100 for two watersheds located in Québec, Canada. The relationship between the CDIs and hydrological data indices (HDIs; 7- and 30-day low flows for two hydrological seasons) were examined through correlation analysis to identify the indices governing low flows. Results of the Mann-Kendall test, with a modification for autocorrelated data, clearly identified trends. A partial correlation analysis allowed attributing the observed trends in HDIs to trends in specific CDIs. Furthermore, results showed that, even during the spatial validation process, the methodological framework was able to assess trends in low flow series from: (i) trends in the effective drought index (EDI) computed from rainfall plus snowmelt minus PET amounts over ten to twelve months of the hydrological snow cover season or (ii) the cumulative difference between rainfall and potential evapotranspiration over five months of the snow free season. For 80% of the climate scenarios, trends in HDIs were successfully attributed to trends in CDIs. Overall, this paper introduces an efficient methodological framework to assess future trends in low flows given climate scenarios. The outcome may prove useful to municipalities concerned with source water management under changing climate conditions.

  15. Scenario analysis of climate change and tourism in Spain and other European regions

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, A.M.

    2005-06-15

    The aim of the study is to determine the possible impact of climate change on the tourist industry in Spain, with an especial focus on coastal regions. This includes the identification of potential areas suffering a decrease in the tourist flows, as well as different regions that could see a benefit on increasing temperatures and more reliable weather predictions. To do so, a Tourism Climate Index will be used, studying the potentiality of an area for tourism considering different elements of the climate which are relevant for the tourism activities. Current and future climatological scenarios over the main tourist sites in Spain will be built. In addition, the study will include an evaluation of the context around Spain, including case studies in other 5 different countries and a global description for the rest of the continent. Chapter 2 focuses mainly on the tourist sector. The global importance of this activity, together with the international tourism flows, serves as introduction to a more detailed assessment of the significant role that Spain plays as a tourist destination. The complex interrelations between climate (change) and tourism are reviewed in chapter 3. First, a brief introduction about climate change and descriptions of major projections about future climate world wide. This description is further detailed for Spain. Additionally, the interactions between tourism and climate are described thoroughly. Chapter 4 discusses the concept of 'Tourist Comfort Index', addressing key issues such as factors included and weighting. This section gives also a brief overview of the analysis and the data that was needed in the elaboration of the thesis. The implementation of the index and the results for current climate and future climate is presented. After the data analysis, chapter 5 provides an in-depth discussion of the results and compares them with other studies. This chapter is followed by the conclusions and recommendations in chapter 6.

  16. Exploring the reversibility of marine climate change impacts in temperature overshoot scenarios

    Science.gov (United States)

    Zickfeld, K.; Li, X.; Tokarska, K.; Kohfeld, K. E.

    2017-12-01

    Artificial carbon dioxide removal (CDR) from the atmosphere has been proposed as a measure for mitigating climate change and restoring the climate system to a `safe' state after overshoot. Previous studies have demonstrated that the changes in surface air temperature due to anthropogenic CO2 emissions can be reversed through CDR, while some oceanic properties, for example thermosteric sea level rise, show a delay in their response to CDR. This research aims to investigate the reversibility of changes in ocean conditions after implementation of CDR with a focus on ocean biogeochemical properties. To achieve this, we analyze climate model simulations based on two sets of emission scenarios. We first use RCP2.6 and its extension until year 2300 as the reference scenario and design several temperature and cumulative CO2 emissions "overshoot" scenarios based on other RCPs, which represents cases with less ambitious mitigation policies in the near term that temporarily exceed the 2 °C target adopted by the Paris Agreement. In addition, we use a set of emission scenarios with a reference scenario limiting warming to 1.5°C in the long term and two overshoot scenarios. The University of Victoria Earth System Climate Model (UVic ESCM), a climate model of intermediate complexity, is forced with these emission scenarios. We compare the response of select ocean variables (seawater temperature, pH, dissolved oxygen) in the overshoot scenarios to that in the respective reference scenario at the time the same amount of cumulative emissions is achieved. Our results suggest that the overshoot and subsequent return to a reference CO2 cumulative emissions level would leave substantial impacts on the marine environment. Although the changes in global mean sea surface variables (temperature, pH and dissolved oxygen) are largely reversible, global mean ocean temperature, dissolved oxygen and pH differ significantly from those in the reference scenario. Large ocean areas exhibit

  17. Modelling pesticide leaching under climate change: parameter vs. climate input uncertainty

    Directory of Open Access Journals (Sweden)

    K. Steffens

    2014-02-01

    Full Text Available Assessing climate change impacts on pesticide leaching requires careful consideration of different sources of uncertainty. We investigated the uncertainty related to climate scenario input and its importance relative to parameter uncertainty of the pesticide leaching model. The pesticide fate model MACRO was calibrated against a comprehensive one-year field data set for a well-structured clay soil in south-western Sweden. We obtained an ensemble of 56 acceptable parameter sets that represented the parameter uncertainty. Nine different climate model projections of the regional climate model RCA3 were available as driven by different combinations of global climate models (GCM, greenhouse gas emission scenarios and initial states of the GCM. The future time series of weather data used to drive the MACRO model were generated by scaling a reference climate data set (1970–1999 for an important agricultural production area in south-western Sweden based on monthly change factors for 2070–2099. 30 yr simulations were performed for different combinations of pesticide properties and application seasons. Our analysis showed that both the magnitude and the direction of predicted change in pesticide leaching from present to future depended strongly on the particular climate scenario. The effect of parameter uncertainty was of major importance for simulating absolute pesticide losses, whereas the climate uncertainty was relatively more important for predictions of changes of pesticide losses from present to future. The climate uncertainty should be accounted for by applying an ensemble of different climate scenarios. The aggregated ensemble prediction based on both acceptable parameterizations and different climate scenarios has the potential to provide robust probabilistic estimates of future pesticide losses.

  18. Visioning the Future: Scenarios Modeling of the Florida Coastal Everglades

    Science.gov (United States)

    Flower, Hilary; Rains, Mark; Fitz, Carl

    2017-11-01

    In this paper, we provide screening-level analysis of plausible Everglades ecosystem response by 2060 to sea level rise (0.50 m) interacting with macroclimate change (1.5 °C warming, 7% increase in evapotranspiration, and rainfall that either increases or decreases by 10%). We used these climate scenarios as input to the Ecological Landscape Model to simulate changes to seven interactive hydro-ecological metrics. Mangrove forest and other marine influences migrated up to 15 km inland in both scenarios, delineated by the saltwater front. Freshwater habitat area decreased by 25-30% under our two climate change scenarios and was largely replaced by mangroves and, in the increased rainfall scenario, open water as well. Significant mangroves drowned along northern Florida Bay in both climate change scenarios due to sea level rise. Increased rainfall of 10% provided significant benefits to the spatial and temporal salinity regime within the marine-influenced zone, providing a more gradual and natural adjustment for at-risk flora and fauna. However, increased rainfall also increased the risk of open water, due to water depths that inhibited mangrove establishment and reduced peat accumulation rates. We infer that ecological effects related to sea level rise may occur in the extreme front-edge of saltwater intrusion, that topography will control the incursion of this zone as sea level rises, and that differences in freshwater availability will have ecologically significant effects on ecosystem resilience through the temporal and spatial pattern of salinity changes.

  19. Exploring future scenarios for the global supply chain of tuna

    Science.gov (United States)

    Mullon, C.; Guillotreau, P.; Galbraith, E. D.; Fortilus, J.; Chaboud, C.; Bopp, L.; Aumont, O.; Kaplan, D.

    2017-06-01

    The abundance of tuna, an important top predator that ranges throughout tropical and subtropical oceans, is now largely determined by fishing activity. Fishing activity, in turn, is determined by the interaction of fish availability, fishing capacity, fishing costs and global markets for tuna products. In the face of overfishing, the continued sustainable supply of tuna is likely to require improved global governance, that would benefit from modeling frameworks capable of integrating market forces with the availability of fish in order to consider alternative future projections. Here we describe such a modeling framework, in which we develop several simple, contrasting scenarios for the development of the tuna supply chain in order to illustrate the utility of the approach for global evaluation of management strategies for tuna and other complex, stock-structured fisheries. The model includes multiple national and multi-national fishing fleets, canneries and fresh/frozen markets, and connects these to global consumers using a network of flows. The model is calibrated using recent data on fish catch, cannery and fresh/frozen production, and consumption. Scenarios explore the control on future outcomes in the global tuna fishery by representing, in a simple way, the effects of (1) climate change, (2) changes in the global demand for tuna, and (3) changes in the access to fishing grounds (marine reserves). The results emphasize the potential importance of increasing demand in provoking a global collapse, and suggest that controlling tuna production by limiting technical efficiency is a potential countermeasure. Finally we discuss the outcomes in terms of potential extensions of the scenario approach allowed by this global network model of the tuna supply chain.

  20. Global Energy Scenarios to 2040. Understanding our energy future - 2016 Edition

    International Nuclear Information System (INIS)

    2016-01-01

    The energy world is in rapid evolution, driven in particular by policy developments (like the INDCs agreed at COP-21) but also economic, geopolitical, technological as well as social considerations. Enerdata regularly produces scenario based energy outlooks to analyze and forecast the supply and demand of energy commodities, energy prices, as well as the impact of climate change and energy policies on energy markets and their consequences for the energy industry. After the COP-21 in Paris, Enerdata has again done such an exercise. The Ener-Blue scenario provides an outlook of energy systems up to 2040 based on the achievement of the 2030 targets defined in the INDCs as announced at the COP-21. Ener-Green explores the implications of more stringent energy and climate policies to limit the global temperature increase at around 1.5-2 deg. C by the end of the century. Finally, Ener-Brown describes a world with abundant fossil fuel resource and durably low energy prices, affecting the entire energy system over a long period. These different scenarios explore the consequences on energy supply and demand, energy mix, energy prices by fuel and region, as well as the implications on climate issues. In the Ener-Blue scenario, the future energy mix remains dominated by fossil fuels, but INDCs planned policies regarding climate mitigation, energy efficiency and renewable energy sources lead to a diversification towards other sources of energy. Among others, the EU successfully achieves its triple objective of its climate and energy package, while China and India expand their renewable capacities to achieve their renewable targets. Within this international context of climate coordinated policies, CO_2 emission growth slows down. However, the efforts defined in INDCs are not ambitious enough to limit the increase of the average global temperature to 2 deg. C in 2050, but these efforts are compatible with 3-4 deg. C objective. In the Ener-Green scenario, there is a clear

  1. Hydrological and water quality impact assessment of a Mediterranean limno-reservoir under climate change and land use management scenarios

    Science.gov (United States)

    Molina-Navarro, Eugenio; Trolle, Dennis; Martínez-Pérez, Silvia; Sastre-Merlín, Antonio; Jeppesen, Erik

    2014-02-01

    Water scarcity and water pollution constitute a big challenge for water managers in the Mediterranean region today and will exacerbate in a projected future warmer world, making a holistic approach for water resources management at the catchment scale essential. We expanded the Soil and Water Assessment Tool (SWAT) model developed for a small Mediterranean catchment to quantify the potential effects of various climate and land use change scenarios on catchment hydrology as well as the trophic state of a new kind of waterbody, a limno-reservoir (Pareja Limno-reservoir), created for environmental and recreational purposes. We also checked for the possible synergistic effects of changes in climate and land use on water flow and nutrient exports from the catchment. Simulations showed a noticeable impact of climate change in the river flow regime and consequently the water level of the limno-reservoir, especially during summer, complicating the fulfillment of its purposes. Most of the scenarios also predicted a deterioration of trophic conditions in the limno-reservoir. Fertilization and soil erosion were the main factors affecting nitrate and total phosphorus concentrations. Combined climate and land use change scenarios showed noticeable synergistic effects on nutrients exports, relative to running the scenarios individually. While the impact of fertilization on nitrate export is projected to be reduced with warming in most cases, an additional 13% increase in the total phosphorus export is expected in the worst-case combined scenario compared to the sum of individual scenarios. Our model framework may help water managers to assess and manage how these multiple environmental stressors interact and ultimately affect aquatic ecosystems.

  2. Analysing the climatic extremes of future projections for the MedCORDEX domain using RCP4.5 and RCP8.5 scenario

    Science.gov (United States)

    Bartholy, Judit; Pongracz, Rita; Pieczka, Ildiko; Szabone Andre, Karolina

    2017-04-01

    In this study HadGEM2 global climate model outputs were downscaled with RegCM4.3 for the entire MED-44 CORDEX area for the period 1950-2099 using RCP4.5 and RCP8.5 scenario. The 50-km resolution RegCM-outputs served as input for further downscaling using 10 km as a horizontal resolution for a smaller domain covering Central Europe with special focus on the Carpathian Region. RCP4.5 is a stabilization scenario while RCP8.5 is a rising radiative forcing pathway, therefore, the difference in the simulation outputs helps to quantify the inertia of the climate system, the importance of anthropogenic influence on climate, and shows the evidence for the need of mitigation and adaptation measures. Evidently, higher temperature change corresponds to RCP8.5 compared to RCP4.5. The difference of global and/or regional warming between the two scenario can reach (or even exceed) 2 °C from the second part of the century. Differences in precipitation projections are less straightforward to explain as no direct link exists with warming and radiative forcing, however, the annual distribution of precipitation is projected to change, which may lead to important consequences on society. Our analysis compares the estimated temperature and precipitation changes with special focus on extreme climatic conditions for the following 10 subregions of the MED-44 CORDEX area: Iberian Peninsula, Apennine Peninsula, Balkan Region, Asia Minor, East European Plain, Middle European Plain, Carpathian Basin, Carpathian Mountains, Alps, Western Europe.

  3. Estimating future burned areas under changing climate in the EU-Mediterranean countries.

    Science.gov (United States)

    Amatulli, Giuseppe; Camia, Andrea; San-Miguel-Ayanz, Jesús

    2013-04-15

    The impacts of climate change on forest fires have received increased attention in recent years at both continental and local scales. It is widely recognized that weather plays a key role in extreme fire situations. It is therefore of great interest to analyze projected changes in fire danger under climate change scenarios and to assess the consequent impacts of forest fires. In this study we estimated burned areas in the European Mediterranean (EU-Med) countries under past and future climate conditions. Historical (1985-2004) monthly burned areas in EU-Med countries were modeled by using the Canadian Fire Weather Index (CFWI). Monthly averages of the CFWI sub-indices were used as explanatory variables to estimate the monthly burned areas in each of the five most affected countries in Europe using three different modeling approaches (Multiple Linear Regression - MLR, Random Forest - RF, Multivariate Adaptive Regression Splines - MARS). MARS outperformed the other methods. Regression equations and significant coefficients of determination were obtained, although there were noticeable differences from country to country. Climatic conditions at the end of the 21st Century were simulated using results from the runs of the regional climate model HIRHAM in the European project PRUDENCE, considering two IPCC SRES scenarios (A2-B2). The MARS models were applied to both scenarios resulting in projected burned areas in each country and in the EU-Med region. Results showed that significant increases, 66% and 140% of the total burned area, can be expected in the EU-Med region under the A2 and B2 scenarios, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Scenario analysis on future electricity supply and demand in Japan

    International Nuclear Information System (INIS)

    Zhang, Qi; Ishihara, Keiichi N.; Mclellan, Benjamin C.; Tezuka, Tetsuo

    2012-01-01

    Under continuing policies of CO 2 emissions reduction, it is crucial to consider scenarios for Japan to realize a safe and clean future electricity system. The development plans for nuclear power and renewable energy - particularly solar and wind power - are being reconsidered in light of the Fukushima nuclear accident. To contribute to this, in the present study, three electricity supply scenarios for 2030 are proposed according to different future nuclear power development policies, and the maximum penetration of renewable energy generation is pursued. On the other side of the equation, three electricity demand scenarios are also proposed considering potential energy saving measures. The purpose of the study is to demonstrate quantitatively the technological, economic and environmental impacts of different supply policy selections and demand assumptions on future electricity systems. The scenario analysis is conducted using an input–output hour-by-hour simulation model subject to constraints from technological, economic and environmental perspectives. The obtained installed capacity mix, power generation mix, CO 2 emissions, and generation cost of the scenarios were inter-compared and analyzed. The penetration of renewable energy generation in a future electricity system in Japan, as well as its relationship with nuclear power share was uncovered. -- Highlights: ► Scenario analysis is conducted on future electricity systems under different supply policies and demand assumptions. ► Scenario analysis is conducted using a input–output hour-by-hour simulation model for real-time demand-supply balance. ► The technological, economic and environmental impacts of supply policies and demand assumptions on future electricity systems are studied. ► The maximum penetration of renewable energy generation is pursued in the scenario analysis using the hour-by-hour simulation. ► The relationship between the penetration levels of renewable energy and nuclear power

  5. Environmental and climate security: improving scenario methodologies for science and risk assessment

    Science.gov (United States)

    Briggs, C. M.; Carlsen, H.

    2010-12-01

    Governments and popular discussions have increasingly referred to concepts of ‘climate security’, often with reference to IPCC data. Development of effective methodologies to translate complex, scientific data into risk assessments has lagged, resulting in overly simplistic political assumptions of potential impacts. Climate security scenarios have been developed for use by security and military agencies, but effective engagement by scientific communities requires an improved framework. Effective use of data requires improvement both of climate projections, and the mapping of cascading impacts across interlinked, complex systems. In this research we propose a process for systematic generation of subsets of scenarios (of arbitrary size) from a given set of variables with possible interlinkages. The variables could include climatic changes as well as other global changes of concerns in a security context. In coping with possible challenges associated with the nexus of climate change and security - where deep structural uncertainty and possible irreversible changes are of primary interest - it is important to explore the outer limits of the relevant uncertainties. Therefore the proposed process includes a novel method that will help scenario developers in generating scenario sets where the scenarios are in a quantifiable sense maximally different and therefore best ‘span’ the whole set of scenarios. When downscaled onto a regional level, this process can provide guidance to potentially significant and abrupt geophysical changes, where high uncertainty has often prevented communication of risks. Potential physical changes can then be used as starting points for mapping cascading effects across networks, including topological analysis to identify critically vulnerable nodes and fragile systems, the existence of positive or negative feedback loops, and possible intervention points. Advanced knowledge of both potential geo-physical shifts and related non

  6. Genetic diversity and distribution of Senegalia senegal (L.) Britton under climate change scenarios in West Africa

    Science.gov (United States)

    Duque-Lazo, Joaquín; Durka, Walter; Hauenschild, Frank; Schnitzler, Jan; Michalak, Ingo; Ogundipe, Oluwatoyin Temitayo; Muellner-Riehl, Alexandra Nora

    2018-01-01

    Climate change is predicted to impact species’ genetic diversity and distribution. We used Senegalia senegal (L.) Britton, an economically important species distributed in the Sudano-Sahelian savannah belt of West Africa, to investigate the impact of climate change on intraspecific genetic diversity and distribution. We used ten nuclear and two plastid microsatellite markers to assess genetic variation, population structure and differentiation across thirteen sites in West Africa. We projected suitable range, and potential impact of climate change on genetic diversity using a maximum entropy approach, under four different climate change scenarios. We found higher genetic and haplotype diversity at both nuclear and plastid markers than previously reported. Genetic differentiation was strong for chloroplast and moderate for the nuclear genome. Both genomes indicated three spatially structured genetic groups. The distribution of Senegalia senegal is strongly correlated with extractable nitrogen, coarse fragments, soil organic carbon stock, precipitation of warmest and coldest quarter and mean temperature of driest quarter. We predicted 40.96 to 6.34 per cent of the current distribution to favourably support the species’ ecological requirements under future climate scenarios. Our results suggest that climate change is going to affect the population genetic structure of Senegalia senegal, and that patterns of genetic diversity are going to influence the species’ adaptive response to climate change. Our study contributes to the growing evidence predicting the loss of economically relevant plants in West Africa in the next decades due to climate change. PMID:29659603

  7. Decision- rather than scenario-centred downscaling: Towards smarter use of climate model outputs

    Science.gov (United States)

    Wilby, Robert L.

    2013-04-01

    Climate model output has been used for hydrological impact assessments for at least 25 years. Scenario-led methods raise awareness about risks posed by climate variability and change to the security of supplies, performance of water infrastructure, and health of freshwater ecosystems. However, it is less clear how these analyses translate into actionable information for adaptation. One reason is that scenario-led methods typically yield very large uncertainty bounds in projected impacts at regional and river catchment scales. Consequently, there is growing interest in vulnerability-based frameworks and strategies for employing climate model output in decision-making contexts. This talk begins by summarising contrasting perspectives on climate models and principles for testing their utility for water sector applications. Using selected examples it is then shown how water resource systems may be adapted with varying levels of reliance on climate model information. These approaches include the conventional scenario-led risk assessment, scenario-neutral strategies, safety margins and sensitivity testing, and adaptive management of water systems. The strengths and weaknesses of each approach are outlined and linked to selected water management activities. These cases show that much progress can be made in managing water systems without dependence on climate models. Low-regret measures such as improved forecasting, better inter-agency co-operation, and contingency planning, yield benefits regardless of the climate outlook. Nonetheless, climate model scenarios are useful for evaluating adaptation portfolios, identifying system thresholds and fixing weak links, exploring the timing of investments, improving operating rules, or developing smarter licensing regimes. The most problematic application remains the climate change safety margin because of the very low confidence in extreme precipitation and river flows generated by climate models. In such cases, it is necessary to

  8. Climate Change and water resources: Scenarios of low-flow conditions in the Upper Danube River Basin

    International Nuclear Information System (INIS)

    Mauser, W; Marke, T; Stoeber, S

    2008-01-01

    Global Climate Change will have regional impacts on the water resources and will force water resources managers and farmers to adapt. Both low-flow and its duration are critical hydrological parameters, which strongly influence the state of aquatic ecosystems as well as power production, reservoir management and industry. Impacts of future climate change is analysed using scenarios for the change of meteorological drivers and regional hydrological simulation models. The project GLOWA-Danube (www.glowa-danube.de) develops integrative modelling techniques combining process knowledge from both natural and social sciences to examine the sustainability of regional water systems as well as water management alternatives in the Upper Danube watershed (A = 77000 km 2 ). Special emphasis is given to changes in low-flow condition. DANUBIA describes the regional water cycle both physical and spatially distributed. It consists of a collection of tightly coupled models, which strictly preserve energy and matter and are not calibrated to maximise their overall predictive abilities. The paper demonstrates that DANUBIA can reproduce the daily discharge for the time period from 1971-2003 with a Nash-Suttcliffe coefficient of 0.84 (gauge Achleiten). Based on a statistical climate simulator 12 realisations of the IPCC A1B climate scenario were used to investigate impacts of climate change during the simulation period of 2011-2060. The change in discharge and frequency of occurrences of low-flow in the watershed for the scenario ensemble were analysed for the outlet gauge. The analysis shows that strong changes were simulated in the frequency of occurrences of low-flow conditions. The changing climate gradually reduces a 50-years NM7Q discharge of today to less than half of its discharge in the year 2060. These results clearly indicate that the expected climate change will strongly alter the low-flow conditions in the Upper Danube watershed.

  9. Nutrient pollution mitigation measures across Europe are resilient under future climate

    Science.gov (United States)

    Wade, Andrew; Skeffington, Richard; Couture, Raoul; Erlandsson, Martin; Groot, Simon; Halliday, Sarah; Harezlak, Valesca; Hejzlar, Joseph; Jackson-Blake, Leah; Lepistö, Ahti; Papastergiadou, Eva; Psaltopoulos, Demetrios; Riera, Joan; Rankinen, Katri; Skuras, Dimitris; Trolle, Dennis; Whitehead, Paul; Dunn, Sarah; Bucak, Tuba

    2016-04-01

    The key results from the application of catchment-scale biophysical models to assess the likely effectiveness of nutrient pollution mitigation measures set in the context of projected land management and climate change are presented. The assessment is based on the synthesis of modelled outputs of daily river flow, river and lake nitrogen and phosphorus concentrations, and lake chlorophyll-a, for baseline (1981-2010) and scenario (2031-2060) periods for nine study sites across Europe. Together the nine sites represent a sample of key climate and land management types. The robustness and uncertainty in the daily, seasonal and long-term modelled outputs was assessed prior to the scenario runs. Credible scenarios of land-management changes were provided by social scientists and economists familiar with each study site, whilst likely mitigation measures were derived from local stakeholder consultations and cost-effectiveness assessments. Modelled mitigation options were able to reduce nutrient concentrations, and there was no evidence here that they were less effective under future climate. With less certainty, mitigation options could affect the ecological status of waters at these sites in a positive manner, leading to improvement in Water Framework Directive status at some sites. However, modelled outcomes for sites in southern Europe highlighted that increased evaporation and decreased precipitation will cause much lower flows leading to adverse impacts of river and lake ecology. Uncertainties in the climate models, as represented by three GCM-RCM combinations, did not affect this overall picture much.

  10. Quantifying Direct and Indirect Impact of Future Climate on Sub-Arctic Hydrology

    Science.gov (United States)

    Endalamaw, A. M.; Bolton, W. R.; Young-Robertson, J. M.; Morton, D.; Hinzman, L. D.

    2016-12-01

    Projected future climate will have a significant impact on the hydrology of interior Alaskan sub-arctic watersheds, directly though the changes in precipitation and temperature patterns, and indirectly through the cryospheric and ecological impacts. Although the latter is the dominant factor controlling the hydrological processes in the interior Alaska sub-arctic, it is often overlooked in many climate change impact studies. In this study, we aim to quantify and compare the direct and indirect impact of the projected future climate on the hydrology of the interior Alaskan sub-arctic watersheds. The Variable Infiltration Capacity (VIC) meso-scale hydrological model will be implemented to simulate the hydrological processes, including runoff, evapotranspiration, and soil moisture dynamics in the Chena River Basin (area = 5400km2), located in the interior Alaska sub-arctic region. Permafrost and vegetation distribution will be derived from the Geophysical Institute Permafrost Lab (GIPL) model and the Lund-Potsdam-Jena Dynamic Global Model (LPJ) model, respectively. All models will be calibrated and validated using historical data. The Scenario Network for Alaskan and Arctic Planning (SNAP) 5-model average projected climate data products will be used as forcing data for each of these models. The direct impact of climate change on hydrology is estimated using surface parameterization derived from the present day permafrost and vegetation distribution, and future climate forcing from SNAP projected climate data products. Along with the projected future climate, outputs of GIPL and LPJ will be incorporated into the VIC model to estimate the indirect and overall impact of future climate on the hydrology processes in the interior Alaskan sub-arctic watersheds. Finally, we will present the potential hydrological and ecological changes by the end of the 21st century.

  11. A look into the future. Scenarios for distributed generation in Europe

    International Nuclear Information System (INIS)

    Scheepers, M.J.J.; Timpe, C.

    2003-12-01

    Based on the analysis of the long-term historical and future technical, socio-economic and institutional dynamics of European electricity supply systems and markets, the SUSTELNET project developed scenarios for future electricity supply systems in EU Member States and Newly Associated States (NAS). These scenarios provide a background for the development of regulatory road maps, which can be used as a tool to map out a regulatory strategy, facilitating the transition of current regulation into a regulatory framework that is required for future sustainable electricity supply systems. This report describes four different scenarios for the future of electricity systems and distributed generation (DG) in Europe in a qualitative manner. Moreover, the methodology used to develop these scenarios is described as well as the impact that disruptive events may have on these scenarios

  12. Future Climate Impact on the Desertification in the Dry Land Asia Using AVHRR GIMMS NDVI3g Data

    Directory of Open Access Journals (Sweden)

    Lijuan Miao

    2015-04-01

    Full Text Available Dry Land Asia is the largest arid and semi-arid region in the northern hemisphere that suffers from land desertification. Over the period 1982–2011, there were both overall improvement and regional degeneration in the vegetation NDVI. We analyze future climate changes in these area using two ensemble-average methods from CMIP5 data. Bayesian Model Averaging shows a better capability to represent the future climate and less uncertainty represented by the 22-model ensemble than does the Simple Model Average. From 2006 to 2100, the average growing season temperature value will increase by 2.9 °C, from 14.4 °C to 17.3 °C under three climate scenarios (RCP 26, RCP 45 and RCP 85. We then conduct multiple regression analysis between climate changes compiled from the Climate Research Unit database and vegetation greenness from the GIMMS NDVI3g dataset. There is a general acceleration in the desertification trend under the RCP 85 scenario in middle and northern part of Middle Asia, northwestern China except Xinjiang and the Mongolian Plateau (except the middle part. The RCP 85 scenario shows a more severe desertification trend than does RCP 26. Desertification in dry land Asia, particularly in the regions highlighted in this study, calls for further investigation into climate change impacts and adaptations.

  13. Experimental Design for CMIP6: Aerosol, Land Use, and Future Scenarios Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Arnott, James [AGCI

    2015-10-30

    The Aspen Global Change Institute hosted a technical science workshop entitled, “Experimental design for CMIP6: Aerosol, Land Use, and Future Scenarios,” on August 3-8, 2014 in Aspen, CO. Claudia Tebaldi (NCAR) and Brian O’Neill (NCAR) served as co-chairs for the workshop. The Organizing committee also included Dave Lawrence (NCAR), Jean-Francois Lamarque (NCAR), George Hurtt (University of Maryland), & Detlef van Vuuren (PBL Netherlands Environmental Change). The meeting included the participation of 22 scientists representing many of the major climate modeling centers for a total of 110 participant days.

  14. US climate policy: evolution and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Agrawala, S.; Andresen, S.

    2001-03-01

    Climate change is a problem which US science has significantly helped to bring to the world's attention. It now requires initiatives in US domestic policy for even the first steps towards any realistic global resolution of this problem. This paper addresses three questions: (1) How has US climate policy evolved since climate change became an international political concern in the late 1980s?; (2) what is the relative significance of various factors, both domestic and international, in shaping this evolution?; and (3) what are some likely future scenarios for the climate regime and the role of the US under the new Bush (Jr.) administration? This analysis suggests that the US has generally played a cautious, even blocking role on the international arena, although the period between 1992 and 1997 witnessed a rather uneven march towards progressivism, culminating in the US agreeing to a 7 per cent cut in its greenhouse emissions by 2008-2012 under the Kyoto Protocol. US policy during the Bush (Sr.) and Clinton administrations was primarily shaped by powerful ideologues, while a second critical determinant was the constitutional separation of powers between the executive and legislature. Scientific assessments and international negotiations meanwhile have given climate change unusual stamina on the domestic agenda, while the preferred set of policy responses has been constrained by a national culture that gives primacy to the market over the state. Looking into the future, the recent one-two punch delivered by President George W. Bush in reversing his pledge to regulate carbon dioxide followed by a rejection of US commitments under the Kyoto Protocol renders any expectation of measures to reduce domestic emissions unrealistic, and is likely to cripple the treaty in its present form. The possibility of an alternative to the Kyoto Protocol also appears very remote at this time. However, while official action is unlikely, it is possible that the growth of US

  15. Model-based scenario planning to inform climate change adaptation in the Northern Great Plains—Final report

    Science.gov (United States)

    Symstad, Amy J.; Miller, Brian W.; Friedman, Jonathan M.; Fisichelli, Nicholas A.; Ray, Andrea J.; Rowland, Erika; Schuurman, Gregor W.

    2017-12-18

    Public SummaryWe worked with managers in two focal areas to plan for the uncertain future by integrating quantitative climate change scenarios and simulation modeling into scenario planning exercises.In our central North Dakota focal area, centered on Knife River Indian Villages National Historic Site, managers are concerned about how changes in flood severity and growing conditions for native and invasive plants may affect archaeological resources and cultural landscapes associated with the Knife and Missouri Rivers. Climate projections and hydrological modeling based on those projections indicate plausible changes in spring and summer soil moisture ranging from a 7 percent decrease to a 13 percent increase and maximum winter snowpack (important for spring flooding) changes ranging from a 13 percent decrease to a 47 percent increase. Facilitated discussions among managers and scientists exploring the implications of these different climate scenarios for resource management revealed potential conflicts between protecting archeological sites and fostering riparian cottonwood forests. The discussions also indicated the need to prioritize archeological sites for excavation or protection and culturally important plant species for intensive management attention.In our southwestern South Dakota focal area, centered on Badlands National Park, managers are concerned about how changing climate will affect vegetation production, wildlife populations, and erosion of fossils, archeological artifacts, and roads. Climate scenarios explored by managers and scientists in this focal area ranged from a 13 percent decrease to a 33 percent increase in spring precipitation, which is critical to plant growth in the northern Great Plains region, and a slight decrease to a near doubling of intense rain events. Facilitated discussions in this focal area concluded that greater effort should be put into preparing for emergency protection, excavation, and preservation of exposed fossils or

  16. Modeling future flows of the Volta River system: Impacts of climate change and socio-economic changes.

    Science.gov (United States)

    Jin, Li; Whitehead, Paul G; Appeaning Addo, Kwasi; Amisigo, Barnabas; Macadam, Ian; Janes, Tamara; Crossman, Jill; Nicholls, Robert J; McCartney, Matthew; Rodda, Harvey J E

    2018-05-14

    As the scientific consensus concerning global climate change has increased in recent decades, research on potential impacts of climate change on water resources has been given high importance. However in Sub-Saharan Africa, few studies have fully evaluated the potential implications of climate change to their water resource systems. The Volta River is one of the major rivers in Africa covering six riparian countries (mainly Ghana and Burkina Faso). It is a principal water source for approximately 24 million people in the region. The catchment is primarily agricultural providing food supplies to rural areas, demonstrating the classic water, food, energy nexus. In this study an Integrated Catchment Model (INCA) was applied to the whole Volta River system to simulate flow in the rivers and at the outlet of the artificial Lake Volta. High-resolution climate scenarios downscaled from three different Global Climate Models (CNRM-CM5, HadGEM2-ES and CanESM2), have been used to drive the INCA model and to assess changes in flow by 2050s and 2090s under the high climate forcing scenario RCP8.5. Results show that peak flows during the monsoon months could increase into the future. The duration of high flow could become longer compared to the recent condition. In addition, we considered three different socio-economic scenarios. As an example, under the combined impact from climate change from downscaling CNRM-CM5 and medium+ (high economic growth) socio-economic changes, the extreme high flows (Q5) of the Black Volta River are projected to increase 11% and 36% at 2050s and 2090s, respectively. Lake Volta outflow would increase +1% and +5% at 2050s and 2090s, respectively, under the same scenario. The effects of changing socio-economic conditions on flow are minor compared to the climate change impact. These results will provide valuable information assisting future water resource development and adaptive strategies in the Volta Basin. Copyright © 2018 Elsevier B.V. All rights

  17. Uncertainties in climate change scenarios for the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Dubrovský, Martin; Nemešová, Ivana; Kalvová, J.

    2005-01-01

    Roč. 29, - (2005), s. 139-156 ISSN 0936-577X R&D Projects: GA ČR(CZ) GA521/02/0827; GA MŽP(CZ) SM/640/18/03 Institutional research plan: CEZ:AV0Z30420517 Keywords : Climate change scenarios * Uncertainty analysis * Global climate models * Pattern scaling Subject RIV: GC - Agronomy Impact factor: 1.358, year: 2005

  18. Climate impacts of deforestation/land-use changes in Central South America in the PRECIS regional climate model: mean precipitation and temperature response to present and future deforestation scenarios.

    Science.gov (United States)

    Canziani, Pablo O; Carbajal Benitez, Gerardo

    2012-01-01

    Deforestation/land-use changes are major drivers of regional climate change in central South America, impacting upon Amazonia and Gran Chaco ecoregions. Most experimental and modeling studies have focused on the resulting perturbations within Amazonia. Using the Regional Climate Model PRECIS, driven by ERA-40 reanalysis and ECHAM4 Baseline model for the period 1961-2000 (40-year runs), potential effects of deforestation/land-use changes in these and other neighboring ecoregions are evaluated. Current 2002 and estimated 2030 land-use scenarios are used to assess PRECIS's response during 1960-2000. ERA-40 and ECHAM4 Baseline driven runs yield similar results. Precipitation changes for 2002 and 2030 land-use scenarios, while significant within deforested areas, do not result in significant regional changes. For temperature significant changes are found within deforested areas and beyond, with major temperature enhancements during winter and spring. Given the current climate, primary effects of deforestation/land-use changes remain mostly confined to the tropical latitudes of Gran Chaco, and Amazonia.

  19. Modelling the future biogeography of North Atlantic zooplankton communities in response to climate change

    KAUST Repository

    Villarino, E; Chust, G; Licandro, P; Butenschö n, M; Ibaibarriaga, L; Larrañ aga, A; Irigoien, Xabier

    2015-01-01

    Advances in habitat and climate modelling allow us to reduce uncertainties of climate change impacts on species distribution. We evaluated the impacts of future climate change on community structure, diversity, distribution and phenology of 14 copepod species in the North Atlantic. We developed and validated habitat models for key zooplankton species using continuous plankton recorder (CPR) survey data collected at mid latitudes of the North Atlantic. Generalized additive models (GAMs) were applied to relate the occurrence of species to environmental variables. Models were projected to future (2080–2099) environmental conditions using coupled hydroclimatix–biogeochemical models under the Intergovernmental Panel on Climate Change (IPCC) A1B climate scenario, and compared to present (2001–2020) conditions. Our projections indicated that the copepod community is expected to respond substantially to climate change: a mean poleward latitudinal shift of 8.7 km per decade for the overall community with an important species range variation (–15 to 18 km per decade); the species seasonal peak is expected to occur 12–13 d earlier for Calanus finmarchicus and C. hyperboreus; and important changes in community structure are also expected (high species turnover of 43–79% south of the Oceanic Polar Front). The impacts of the change expected by the end of the century under IPCC global warming scenarios on copepods highlight poleward shifts, earlier seasonal peak and changes in biodiversity spatial patterns that might lead to alterations of the future North Atlantic pelagic ecosystem. Our model and projections are supported by a temporal validation undertaken using the North Atlantic climate regime shift that occurred in the 1980s: the habitat model built in the cold period (1970–1986) has been validated in the warm period (1987–2004).

  20. Modelling the future biogeography of North Atlantic zooplankton communities in response to climate change

    KAUST Repository

    Villarino, E

    2015-07-02

    Advances in habitat and climate modelling allow us to reduce uncertainties of climate change impacts on species distribution. We evaluated the impacts of future climate change on community structure, diversity, distribution and phenology of 14 copepod species in the North Atlantic. We developed and validated habitat models for key zooplankton species using continuous plankton recorder (CPR) survey data collected at mid latitudes of the North Atlantic. Generalized additive models (GAMs) were applied to relate the occurrence of species to environmental variables. Models were projected to future (2080–2099) environmental conditions using coupled hydroclimatix–biogeochemical models under the Intergovernmental Panel on Climate Change (IPCC) A1B climate scenario, and compared to present (2001–2020) conditions. Our projections indicated that the copepod community is expected to respond substantially to climate change: a mean poleward latitudinal shift of 8.7 km per decade for the overall community with an important species range variation (–15 to 18 km per decade); the species seasonal peak is expected to occur 12–13 d earlier for Calanus finmarchicus and C. hyperboreus; and important changes in community structure are also expected (high species turnover of 43–79% south of the Oceanic Polar Front). The impacts of the change expected by the end of the century under IPCC global warming scenarios on copepods highlight poleward shifts, earlier seasonal peak and changes in biodiversity spatial patterns that might lead to alterations of the future North Atlantic pelagic ecosystem. Our model and projections are supported by a temporal validation undertaken using the North Atlantic climate regime shift that occurred in the 1980s: the habitat model built in the cold period (1970–1986) has been validated in the warm period (1987–2004).

  1. Future changes in extratropical storm tracks and baroclinicity under climate change

    International Nuclear Information System (INIS)

    Lehmann, Jascha; Coumou, Dim; Frieler, Katja; Eliseev, Alexey V; Levermann, Anders

    2014-01-01

    The weather in Eurasia, Australia, and North and South America is largely controlled by the strength and position of extratropical storm tracks. Future climate change will likely affect these storm tracks and the associated transport of energy, momentum, and water vapour. Many recent studies have analyzed how storm tracks will change under climate change, and how these changes are related to atmospheric dynamics. However, there are still discrepancies between different studies on how storm tracks will change under future climate scenarios. Here, we show that under global warming the CMIP5 ensemble of coupled climate models projects only little relative changes in vertically averaged mid-latitude mean storm track activity during the northern winter, but agree in projecting a substantial decrease during summer. Seasonal changes in the Southern Hemisphere show the opposite behaviour, with an intensification in winter and no change during summer. These distinct seasonal changes in northern summer and southern winter storm tracks lead to an amplified seasonal cycle in a future climate. Similar changes are seen in the mid-latitude mean Eady growth rate maximum, a measure that combines changes in vertical shear and static stability based on baroclinic instability theory. Regression analysis between changes in the storm tracks and changes in the maximum Eady growth rate reveal that most models agree in a positive association between the two quantities over mid-latitude regions. (letter)

  2. Evaluating impacts of climate change on future water scarcity in an intensively managed semi-arid region using a coupled model of biophysical processes and water rights

    Science.gov (United States)

    Han, B.; Flores, A. N.; Benner, S. G.

    2017-12-01

    In semiarid and arid regions where water supply is intensively managed, future water scarcity is a product of complex interactions between climate change and human activities. Evaluating future water scarcity under alternative scenarios of climate change, therefore, necessitates modeling approaches that explicitly represent the coupled biophysical and social processes responsible for the redistribution of water in these regions. At regional scales a particular challenge lies in adequately capturing not only the central tendencies of change in projections of climate change, but also the associated plausible range of variability in those projections. This study develops a framework that combines a stochastic weather generator, historical climate observations, and statistically downscaled General Circulation Model (GCM) projections. The method generates a large ensemble of daily climate realizations, avoiding deficiencies of using a few or mean values of individual GCM realizations. Three climate change scenario groups reflecting the historical, RCP4.5, and RCP8.5 future projections are developed. Importantly, the model explicitly captures the spatiotemporally varying irrigation activities as constrained by local water rights in a rapidly growing, semi-arid human-environment system in southwest Idaho. We use this modeling framework to project water use and scarcity patterns under the three future climate change scenarios. The model is built using the Envision alternative futures modeling framework. Climate projections for the region show future increases in both precipitation and temperature, especially under the RCP8.5 scenario. The increase of temperature has a direct influence on the increase of the irrigation water use and water scarcity, while the influence of increased precipitation on water use is less clear. The predicted changes are potentially useful in identifying areas in the watershed particularly sensitive to water scarcity, the relative importance of

  3. Alternative future analysis for assessing the potential impact of climate change on urban landscape dynamics.

    Science.gov (United States)

    He, Chunyang; Zhao, Yuanyuan; Huang, Qingxu; Zhang, Qiaofeng; Zhang, Da

    2015-11-01

    Assessing the impact of climate change on urban landscape dynamics (ULD) is the foundation for adapting to climate change and maintaining urban landscape sustainability. This paper demonstrates an alternative future analysis by coupling a system dynamics (SD) and a cellular automata (CA) model. The potential impact of different climate change scenarios on ULD from 2009 to 2030 was simulated and evaluated in the Beijing-Tianjin-Tangshan megalopolis cluster area (BTT-MCA). The results suggested that the integrated model, which combines the advantages of the SD and CA model, has the strengths of spatial quantification and flexibility. Meanwhile, the results showed that the influence of climate change would become more severe over time. In 2030, the potential urban area affected by climate change will be 343.60-1260.66 km(2) (5.55 -20.37 % of the total urban area, projected by the no-climate-change-effect scenario). Therefore, the effects of climate change should not be neglected when designing and managing urban landscape. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Future atmospheric abundances and climate forcings from scenarios of global and regional hydrofluorocarbon (HFC) emissions

    Science.gov (United States)

    Velders, Guus J. M.; Fahey, David W.; Daniel, John S.; Andersen, Stephen O.; McFarland, Mack

    2015-12-01

    Hydrofluorocarbons (HFCs) are manufactured for use as substitutes for ozone-depleting substances that are being phased out globally under Montreal Protocol regulations. While HFCs do not deplete ozone, many are potent greenhouse gases that contribute to climate change. Here, new global scenarios show that baseline emissions of HFCs could reach 4.0-5.3 GtCO2-eq yr-1 in 2050. The new baseline (or business-as-usual) scenarios are formulated for 10 HFC compounds, 11 geographic regions, and 13 use categories. The scenarios rely on detailed data reported by countries to the United Nations; projections of gross domestic product and population; and recent observations of HFC atmospheric abundances. In the baseline scenarios, by 2050 China (31%), India and the rest of Asia (23%), the Middle East and northern Africa (11%), and the USA (10%) are the principal source regions for global HFC emissions; and refrigeration (40-58%) and stationary air conditioning (21-40%) are the major use sectors. The corresponding radiative forcing could reach 0.22-0.25 W m-2 in 2050, which would be 12-24% of the increase from business-as-usual CO2 emissions from 2015 to 2050. National regulations to limit HFC use have already been adopted in the European Union, Japan and USA, and proposals have been submitted to amend the Montreal Protocol to substantially reduce growth in HFC use. Calculated baseline emissions are reduced by 90% in 2050 by implementing the North America Montreal Protocol amendment proposal. Global adoption of technologies required to meet national regulations would be sufficient to reduce 2050 baseline HFC consumption by more than 50% of that achieved with the North America proposal for most developed and developing countries.

  5. Floridian heatwaves and extreme precipitation: future climate projections

    Science.gov (United States)

    Raghavendra, Ajay; Dai, Aiguo; Milrad, Shawn M.; Cloutier-Bisbee, Shealynn R.

    2018-02-01

    Observational analysis and climate modeling efforts concur that the frequency, intensity, and duration of heatwaves will increase as the Earth's mean climate shifts towards warmer temperatures. While the impacts and mechanisms of heatwaves have been well explored, extreme temperatures over Florida are generally understudied. This paper sheds light on Floridian heatwaves by exploring 13 years of daily data from surface observations and high-resolution WRF climate simulations for the same timeframe. The characteristics of the current and future heatwaves under the RCP8.5 high emissions scenario for 2070-2099 were then investigated. Results show a tripling in the frequency, and greater than a sixfold increase in the mean duration of heatwaves over Florida when the current standard of heatwaves was used. The intensity of heatwaves also increased by 4-6 °C due to the combined effects of rising mean temperatures and a 1-2 °C increase attributed to the flattening of the temperature distribution. Since Florida's atmospheric boundary layer is rich in moisture and heatwaves could further increase the moisture content in the lower troposphere, the relationship between heatwaves and extreme precipitation was also explored in both the current and future climate. As expected, rainfall during a heatwave event was anomalously low, but it quickly recovered to normal within 3 days after the passage of a heatwave. Finally, the late 21st-century climate could witness a slight decrease in the mean precipitation over Florida, accompanied by heavier heatwave-associated extreme precipitation events over central and southern Florida.

  6. Modelling the impacts of projected future climate change on water resources in north-west England

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available Over the last two decades, the frequency of water resource drought in the UK, coupled with the more recent pan-European drought of 2003, has increased concern over changes in climate. Using the UKCIP02 Medium-High (SRES A2 scenario for 2070–2100, this study investigates the impact of climate change on the operation of the Integrated Resource Zone (IRZ, a complex conjunctive-use water supply system in north-western England. The results indicate that the contribution of individual sources to yield may change substantially but that overall yield is reduced by only 18%. Notwithstanding this significant effect on water supply, the flexibility of the system enables it to meet modelled demand for much of the time under the future climate scenario, even without a change in system management, but at significant expense for pumping additional abstraction from lake and borehole sources. This research provides a basis for the future planning and management of the complex water resource system in the north-west of England.

  7. Climate change impact and potential adaptation strategies under alternate realizations of climate scenarios for three major crops in Europe

    International Nuclear Information System (INIS)

    Donatelli, Marcello; Srivastava, Amit Kumar; Duveiller, Gregory; Niemeyer, Stefan; Fumagalli, Davide

    2015-01-01

    This study presents an estimate of the effects of climate variables and CO 2 on three major crops, namely wheat, rapeseed and sunflower, in EU27 Member States. We also investigated some technical adaptation options which could offset climate change impacts. The time-slices 2000, 2020 and 2030 were chosen to represent the baseline and future climate, respectively. Furthermore, two realizations within the A1B emission scenario proposed by the Special Report on Emissions Scenarios (SRES), from the ECHAM5 and HadCM3 GCM, were selected. A time series of 30 years for each GCM and time slice were used as input weather data for simulation. The time series were generated with a stochastic weather generator trained over GCM-RCM time series (downscaled simulations from the ENSEMBLES project which were statistically bias-corrected prior to the use of the weather generator). GCM-RCM simulations differed primarily for rainfall patterns across Europe, whereas the temperature increase was similar in the time horizons considered. Simulations based on the model CropSyst v. 3 were used to estimate crop responses; CropSyst was re-implemented in the modelling framework BioMA. The results presented in this paper refer to abstraction of crop growth with respect to its production system, and consider growth as limited by weather and soil water. How crop growth responds to CO 2 concentrations; pests, diseases, and nutrients limitations were not accounted for in simulations. The results show primarily that different realization of the emission scenario lead to noticeably different crop performance projections in the same time slice. Simple adaptation techniques such as changing sowing dates and the use of different varieties, the latter in terms of duration of the crop cycle, may be effective in alleviating the adverse effects of climate change in most areas, although response to best adaptation (within the techniques tested) differed across crops. Although a negative impact of climate

  8. Climate change impact and potential adaptation strategies under alternate realizations of climate scenarios for three major crops in Europe

    Science.gov (United States)

    Donatelli, Marcello; Srivastava, Amit Kumar; Duveiller, Gregory; Niemeyer, Stefan; Fumagalli, Davide

    2015-07-01

    This study presents an estimate of the effects of climate variables and CO2 on three major crops, namely wheat, rapeseed and sunflower, in EU27 Member States. We also investigated some technical adaptation options which could offset climate change impacts. The time-slices 2000, 2020 and 2030 were chosen to represent the baseline and future climate, respectively. Furthermore, two realizations within the A1B emission scenario proposed by the Special Report on Emissions Scenarios (SRES), from the ECHAM5 and HadCM3 GCM, were selected. A time series of 30 years for each GCM and time slice were used as input weather data for simulation. The time series were generated with a stochastic weather generator trained over GCM-RCM time series (downscaled simulations from the ENSEMBLES project which were statistically bias-corrected prior to the use of the weather generator). GCM-RCM simulations differed primarily for rainfall patterns across Europe, whereas the temperature increase was similar in the time horizons considered. Simulations based on the model CropSyst v. 3 were used to estimate crop responses; CropSyst was re-implemented in the modelling framework BioMA. The results presented in this paper refer to abstraction of crop growth with respect to its production system, and consider growth as limited by weather and soil water. How crop growth responds to CO2 concentrations; pests, diseases, and nutrients limitations were not accounted for in simulations. The results show primarily that different realization of the emission scenario lead to noticeably different crop performance projections in the same time slice. Simple adaptation techniques such as changing sowing dates and the use of different varieties, the latter in terms of duration of the crop cycle, may be effective in alleviating the adverse effects of climate change in most areas, although response to best adaptation (within the techniques tested) differed across crops. Although a negative impact of climate

  9. Estimation of the Source Apportionment of Phosphorus and Its Responses to Future Climate Changes Using Multi-Model Applications

    Directory of Open Access Journals (Sweden)

    Jian Sha

    2018-04-01

    Full Text Available The eutrophication issue in the Yangtze Basin was considered, and the phosphorus loads from its tributary, the Modaoxi River, were estimated. The phosphorus flux and source apportionment of the Modaoxi River watershed were modeled and quantified, and their changes with respect to future projected climate scenarios were simulated with multiple model applications. The Regional Nutrient Management (ReNuMa model based on Generalized Watershed Loading Functions (GWLF was employed as a tool to model the hydrochemical processes of the watershed and thereby estimate the monthly streamflow and the phosphorus flux as well as its source apportionment. The Long Ashton Research Station Weather Generator (LARS-WG was used to predict future daily weather data through the statistical downscaling of the general circulation model (GCM outputs based on projected climate scenarios. The synthetic time series of daily precipitation and temperatures generated by LARS-WG were further used as input data for ReNuMa to estimate the responses of the watershed hydrochemical processes to future changed climate conditions. The results showed that both models could be successfully applied and that the future wetter and warmer climate trends would have generally positive impacts on the watershed phosphorus yields, with greater contributions coming from runoff. These results could provide valuable support for local water environmental management.

  10. Human deforestation outweighs future climate change impacts of sedimentation on coral reefs.

    Science.gov (United States)

    Maina, Joseph; de Moel, Hans; Zinke, Jens; Madin, Joshua; McClanahan, Tim; Vermaat, Jan E

    2013-01-01

    Near-shore coral reef systems are experiencing increased sediment supply due to conversion of forests to other land uses. Counteracting increased sediment loads requires an understanding of the relationship between forest cover and sediment supply, and how this relationship might change in the future. Here we study this relationship by simulating river flow and sediment supply in four watersheds that are adjacent to Madagascar's major coral reef ecosystems for a range of future climate change projections and land-use change scenarios. We show that by 2090, all four watersheds are predicted to experience temperature increases and/or precipitation declines that, when combined, result in decreases in river flow and sediment load. However, these climate change-driven declines are outweighed by the impact of deforestation. Consequently, our analyses suggest that regional land-use management is more important than mediating climate change for influencing sedimentation of Malagasy coral reefs.

  11. World Future Mapping and Scenarios for the 21st Century

    Directory of Open Access Journals (Sweden)

    Vareikis Egidijus

    2015-12-01

    Full Text Available The aim of this text is to describe the methods of future studies, its possibilities and limitations, as well as to make some predictions about the real picture of the development of the 21st century. However, the planning is still not very reliable, and far from a “road map” framework. Thus, future studies are still balancing between science and scientific/artistic fiction. The set of methods of future investigation permits one to compose a few or even up to dozens of medium term or long term scenarios of the world’s future. There are a few well-proven laws of social and economic development as well as some partially predictable phenomena in the area of environment, biology, human ethic, etc. No future planning is secure from unpredictable phenomena – “black swans” – and their impact, nor secure from “political decisions” that destroy natural developments in society. So no one scenario can pretend to be absolutely right. The most frequent future scenarios are based on the wish to implement a copy of an existing “happy nation”, to fight undesirable trends, and create some kind of “dream society” while stimulating positives and inhibiting negative trends. The final version of a scenario depends also upon the “human factors”, e.g. knowledge, stereotypes of thinking, as well as the wishes of those who are financing the project. Generally they are “happy end” projects. This makes scenarios rather useless. Only the independent experts that present more realistic and reliable scenarios can help in the planning of medium term and long term futures. Currently many scenarios foresee the so-called American or European way of development, which is in fact the continuation of the existing world order. There is a growing number of publications about the emergence of China (and Russia as a great power as well as possibilities of a New Caliphate, New Messiah or new Orwellian style regimes.

  12. [Estimating the impacts of future climate change on water requirement and water deficit of winter wheat in Henan Province, China].

    Science.gov (United States)

    Ji, Xing-jie; Cheng, Lin; Fang, Wen-song

    2015-09-01

    Based on the analysis of water requirement and water deficit during development stage of winter wheat in recent 30 years (1981-2010) in Henan Province, the effective precipitation was calculated using the U.S. Department of Agriculture Soil Conservation method, the water requirement (ETC) was estimated by using FAO Penman-Monteith equation and crop coefficient method recommended by FAO, combined with the climate change scenario A2 (concentration on the economic envelopment) and B2 ( concentration on the sustainable development) of Special Report on Emissions Scenarios (SRES) , the spatial and temporal characteristics of impacts of future climate change on effective precipitation, water requirement and water deficit of winter wheat were estimated. The climatic impact factors of ETc and WD also were analyzed. The results showed that under A2 and B2 scenarios, there would be a significant increase in anomaly percentage of effective precipitation, water requirement and water deficit of winter wheat during the whole growing period compared with the average value from 1981 to 2010. Effective precipitation increased the most in 2030s under A2 and B2 scenarios by 33.5% and 39.2%, respectively. Water requirement increased the most in 2010s under A2 and B2 scenarios by 22.5% and 17.5%, respectively, and showed a significant downward trend with time. Water deficit increased the most under A2 scenario in 2010s by 23.6% and under B2 scenario in 2020s by 13.0%. Partial correlation analysis indicated that solar radiation was the main cause for the variation of ETc and WD in future under A2 and B2 scenarios. The spatial distributions of effective precipitation, water requirement and water deficit of winter wheat during the whole growing period were spatially heterogeneous because of the difference in geographical and climatic environments. A possible tendency of water resource deficiency may exist in Henan Province in the future.

  13. Projected Temperature-Related Years of Life Lost From Stroke Due To Global Warming in a Temperate Climate City, Asia: Disease Burden Caused by Future Climate Change.

    Science.gov (United States)

    Li, Guoxing; Guo, Qun; Liu, Yang; Li, Yixue; Pan, Xiaochuan

    2018-04-01

    Global warming has attracted worldwide attention. Numerous studies have indicated that stroke is associated with temperature; however, few studies are available on the projections of the burden of stroke attributable to future climate change. We aimed to investigate the future trends of stroke years of life lost (YLL) associated with global warming. We collected death records to examine YLL in Tianjin, China, from 2006 to 2011. We fitted a standard time-series Poisson regression model after controlling for trends, day of the week, relative humidity, and air pollution. We estimated temperature-YLL associations with a distributed lag nonlinear model. These models were then applied to the local climate projections to estimate temperature-related YLL in the 2050s and 2070s. We projected temperature-related YLL from stroke in Tianjin under 19 global-scale climate models and 3 different greenhouse gas emission scenarios. The results showed a slight decrease in YLL with percent decreases of 0.85%, 0.97%, and 1.02% in the 2050s and 0.94%, 1.02%, and 0.91% in the 2070s for the 3 scenarios, respectively. The increases in heat-related annual YLL and the decreases in cold-related YLL under the high emission scenario were the strongest. The monthly analysis showed that the most significant increase occurred in the summer months, particularly in August, with percent changes >150% in the 2050s and up to 300% in the 2070s. Future changes in climate are likely to lead to an increase in heat-related YLL, and this increase will not be offset by adaptation under both medium emission and high emission scenarios. Health protections from hot weather will become increasingly necessary, and measures to reduce cold effects will also remain important. © 2018 American Heart Association, Inc.

  14. Climate scenarios for semi-arid and sub-humid regions. A comparison of climate scenarios for the dryland regions, in West Africa from 1990 to 2050

    NARCIS (Netherlands)

    van den Born GJ; Schaeffer M; Leemans R; NOP

    2001-01-01

    The identification of climate scenarios for dryland areas in Sub-Saharan West Africa is part of a project to assess the impact of climate change on water availability, agriculture and food security in drylands (ICCD-project). The project is financed by Netherlands Research Programme on Global Air

  15. Sweden's Future Climate in the short- and medium-term perspective. Basis for development of climate adaptation tools; Sveriges framtida klimat paa kort och medellaang sikt. Underlag foer utveckling av verktyg foer klimatanpassning

    Energy Technology Data Exchange (ETDEWEB)

    Carlsen, Henrik; Parmhed, Oskar

    2008-12-15

    This report studies two questions - how the actual amount of greenhouse gas emissions has changed over time in comparison with previous assumptions and what will happen to Sweden's climate from short and medium term perspectives given the future development of the climate in general. The content of this report shall be used as the basis for continued work in the development of climate adaptation tools that can be used primarily in Sweden. The first section of this report presents the development of actual greenhouse gas emissions in recent years. Eight years have passed since IPCC published its emissions scenarios (SRES) and for this reason a comparison between the emissions levels from the report and the experimental data from observations made in recent years is well due. Measurements show that current levels of emissions of carbon dioxide from fossil fuels exceed the average of the SRES families as a whole. Among other implications, this means that emission levels are significantly higher than the levels assumed in the climate scenarios of the Swedish Commission on Climate and Vulnerability (Klimat- och saarbarhetsutredningen). There is little support from the experimental data to indicate that this rate of increase will subside. In addition, studies are indicating that the increased emissions are not solely attributable to a rise in population levels and increased wealth (GNP/capita). Another aspect is that the carbon intensity, measured as the amount of carbon dioxide per unit production price, has been declining since 2000. This is entirely contrary to the assumptions made in all of the emissions scenarios in SRES that carbon dioxide efficiency would continue to increase. The report therefore concludes that work with climate adaptation in Sweden must take into consideration to a greater extent than is currently done today the consequences of emissions levels that are in line with or exceed the highest SRES levels. The second section of this report takes

  16. Making or breaking climate targets : The AMPERE study on staged accession scenarios for climate policy

    NARCIS (Netherlands)

    Kriegler, Elmar; Riahi, Keywan; Bauer, Nico; Schwanitz, Valeria Jana; Petermann, Nils; Bosetti, Valentina; Marcucci, Adriana; Otto, Sander; Paroussos, Leonidas; Rao, Shilpa; Arroyo Currás, Tabaré; Ashina, Shuichi; Bollen, Johannes; Eom, Jiyong; Hamdi-Cherif, Meriem; Longden, Thomas; Kitous, Alban; Méjean, Aurélie; Sano, Fuminori; Schaeffer, Michiel; Wada, Kenichi; Capros, Pantelis; P. van Vuuren, Detlef|info:eu-repo/dai/nl/11522016X; Edenhofer, Ottmar

    2015-01-01

    This study explores a situation of staged accession to a global climate policy regime from the current situation of regionally fragmented and moderate climate action. The analysis is based on scenarios in which a front runner coalition - the EU or the EU and China - embarks on immediate ambitious

  17. Assessing future suitability of tree species under climate change by multiple methods: a case study in southern Germany

    Directory of Open Access Journals (Sweden)

    Helge Walentowski

    2017-07-01

    Full Text Available We compared results derived using three different approaches to assess the suitability of common tree species on the Franconian Plateau in southern Germany under projected warmer and drier climate conditions in the period 2061-2080. The study area is currently a relatively warm and dry region of Germany. We calculated species distribution models (SDMs using information on species’ climate envelopes to predict regional species spectra under 63 different climate change scenarios. We complemented this with fine-scale ecological niche analysis using data from 51 vegetation surveys in seven forest reserves in the study area, and tree-ring analysis (TRA from local populations of five tree species to quantify their sensitivity to climatic extreme years. The SDMs showed that predicted future climate change in the region remains within the climate envelope of certain species (e.g. Quercus petraea, whilst for e.g. Fagus sylvatica, future climate conditions in one third of the scenarios are too warm and dry. This was confirmed by the TRA: sensitivity to drought periods is lower for Q. petraea than for F. sylvatica. The niche analysis shows that the local ecological niches of Quercus robur and Fraxinus excelsior are mainly characterized by soils providing favorable water supply than by climate, and Pinus sylvestris (planted is strongly influenced by light availability. The best adapted species for a warmer and potentially drier climate in the study region are Acer campestre, Sorbus torminalis, S. aria, Ulmus minor, and Tilia platyphyllos, which should therefore play a more prominent role in future climate-resilient mixed forest ecosystems.

  18. Bi-national Great Lakes-St. Lawrence Basin climate change and hydrologic scenarios report

    Energy Technology Data Exchange (ETDEWEB)

    Lavender, B.; Smith, J.V.; Koshida, G.; Mortsch, L.D. [eds.

    1998-09-01

    Climate experts in government, industry and academic institutions have put together a national assessment of how climate change will affect Canadians and their social, biological and economic environment over the next century. This volume documents the impacts and implications of climate change on the Great Lakes-St. Lawrence Basin, and provides an analysis and assessment of various climate and hydrologic scenarios used for the Great Lakes - St. Lawrence Basin Project. As part of the analysis and assessment, results from the Canadian Climate Centre second-generation General Circulation Model and four transposition scenarios for both climate and hydrological resources are reviewed. The objective is to provide an indication of sensitivities and vulnerabilities of the region to climate, with a view to improve adaptation to potential climate changes. 25 tabs., 26 figs. figs.

  19. Scenarios for the future; Framtidsscenarier

    Energy Technology Data Exchange (ETDEWEB)

    Haegermark, H; Bergmark, M

    1995-06-01

    This project aims primarily to give a basis for the joint R and D program for the Swedish electric utility industry, in the form of pictures of the future up to 2020. The work was performed during four seminars in a group of managers and R and D planners. The four scenarios differ mainly in the assumptions of high or low economic growth and on market or political rule. Assumptions on essential uncertainties about the future have been combined in a consistent manner, e.g. on the structure of the utility industry, the role of nuclear power, the importance of the greenhouse gas issue, the influence of new technology developments and on changes of values in society. Certain other development appear in all scenarios, e.g. the impact of information technology throughout society, the internationalization of business in general and industrial production in particular, considerations for the environment and care for natural resources. The four scenarios are: `Technology on the throne` (market rule/high growth); `Intense competition` (market rule/low growth); `Monopoly takes over` (political rule/high growth); and `Green local society` (political rule/low growth). Some of the important factors pointed out by the study are: Increased customer mobility between regions and countries; The impact of information technology; Societal value changes; Sustainable development as an important driving force; Structure of the utility industry. Diversifying into new services. New players; Access to knowledge and competence; Ways for handling the greenhouse gas problem; Preparedness for nuclear power phase-out. 12 figs, 6 tabs

  20. The impacts of future climate change and sulphur emission reductions on acidification recovery at Plastic Lake, Ontario

    Directory of Open Access Journals (Sweden)

    J. Aherne

    2008-03-01

    Full Text Available Climate-induced drought events have a significant influence on sulphate export from forested catchments in central Ontario, subsequently delaying the recovery of surface waters from acidification. In the current study, a model chain that employed a statistical downscaling model, a hydrological model and two hydrochemical models was used to forecast the chemical recovery of Plastic Lake sub-catchment 1 (PC1 from acidification under proposed deposition reductions and the A2 emission scenario of the Intergovernmental Panel on Climate Change. Any predicted recovery in stream acid neutralising capacity and pH owing to deposition reductions were clearly offset by large acid effluxes from climate-induced drought events. By 2100, ANC is predicted to show large variations ranging between 10 and −30 μmolc L−1. Similarly, predicted pH in 2100 is lower (>0.05 of a pH unit than the value simulated for 2000 (pH 4.35. Despite emission reductions, the future scenario paints a bleak picture of reacidification at PC1 to levels commensurate with those of the late 1970s. The principal process behind this reacidification is the oxidation of previously stored (reduced sulphur compounds in wetlands during periods of low-flow (or drought, with subsequent efflux of sulphate upon re-wetting. Simulated catchment runoff under the A2 emissions scenario predictes increased intensity and frequency of low-flow events from approximately 2030 onwards. The Integrated Catchments model for Carbon indicated that stream DOC concentrations at PC1 will also increase under the future climate scenario, with temperature being the principal driver. Despite the predicted (significant increase in DOC, pH is not predicted to further decline (beyond the climate-induced oxidation scenario, instead pH shows greater variability throughout the simulation. As echoed by many recent studies, hydrochemical models and model frameworks need to incorporate the drivers

  1. Future southcentral US wildfire probability due to climate change

    Science.gov (United States)

    Stambaugh, Michael C.; Guyette, Richard P.; Stroh, Esther D.; Struckhoff, Matthew A.; Whittier, Joanna B.

    2018-01-01

    Globally, changing fire regimes due to climate is one of the greatest threats to ecosystems and society. In this paper, we present projections of future fire probability for the southcentral USA using downscaled climate projections and the Physical Chemistry Fire Frequency Model (PC2FM). Future fire probability is projected to both increase and decrease across the study region of Oklahoma, New Mexico, and Texas. Among all end-of-century projections, change in fire probabilities (CFPs) range from − 51 to + 240%. Greatest absolute increases in fire probability are shown for areas within the range of approximately 75 to 160 cm mean annual precipitation (MAP), regardless of climate model. Although fire is likely to become more frequent across the southcentral USA, spatial patterns may remain similar unless significant increases in precipitation occur, whereby more extensive areas with increased fire probability are predicted. Perhaps one of the most important results is illumination of climate changes where fire probability response (+, −) may deviate (i.e., tipping points). Fire regimes of southcentral US ecosystems occur in a geographic transition zone from reactant- to reaction-limited conditions, potentially making them uniquely responsive to different scenarios of temperature and precipitation changes. Identification and description of these conditions may help anticipate fire regime changes that will affect human health, agriculture, species conservation, and nutrient and water cycling.

  2. Future climate change enhances rainfall seasonality in a regional model of western Maritime Continent

    Science.gov (United States)

    Kang, Suchul; Im, Eun-Soon; Eltahir, Elfatih A. B.

    2018-03-01

    In this study, future changes in rainfall due to global climate change are investigated over the western Maritime Continent based on dynamically downscaled climate projections using the MIT Regional Climate Model (MRCM) with 12 km horizontal resolution. A total of nine 30-year regional climate projections driven by multi-GCMs projections (CCSM4, MPI-ESM-MR and ACCESS1.0) under multi-scenarios of greenhouse gases emissions (Historical: 1976-2005, RCP4.5 and RCP8.5: 2071-2100) from phase 5 of the Coupled Model Inter-comparison Project (CMIP5) are analyzed. Focusing on dynamically downscaled rainfall fields, the associated systematic biases originating from GCM and MRCM are removed based on observations using Parametric Quantile Mapping method in order to enhance the reliability of future projections. The MRCM simulations with bias correction capture the spatial patterns of seasonal rainfall as well as the frequency distribution of daily rainfall. Based on projected rainfall changes under both RCP4.5 and RCP8.5 scenarios, the ensemble of MRCM simulations project a significant decrease in rainfall over the western Maritime Continent during the inter-monsoon periods while the change in rainfall is not relevant during wet season. The main mechanism behind the simulated decrease in rainfall is rooted in asymmetries of the projected changes in seasonal dynamics of the meridional circulation along different latitudes. The sinking motion, which is marginally positioned in the reference simulation, is enhanced and expanded under global climate change, particularly in RCP8.5 scenario during boreal fall season. The projected enhancement of rainfall seasonality over the western Maritime Continent suggests increased risk of water stress for natural ecosystems as well as man-made water resources reservoirs.

  3. Impact of Climate Change on India's Monsoonal Climate: Present ...

    Indian Academy of Sciences (India)

    Expected Future Changes in Rainfall and Temperature over India under IPCC SRES A1B GHG Scenarios · Expected Future Change in Monsoon Rainfall and Annual Surface Temp for 2020's, 2050's and 2080's · Likely Future Paradox of Monsoon-ENSO Links · High-Resolution Regional Climate Change Scenarios.

  4. Hydrological Assessment of Model Performance and Scenario Analyses of Land Use Change and Climate Change in lowlands of Veneto Region (Italy)

    Science.gov (United States)

    Pijl, Anton; Brauer, Claudia; Sofia, Giulia; Teuling, Ryan; Tarolli, Paolo

    2017-04-01

    Growing water-related challenges in lowland areas of the world call for good assessment of our past and present actions, in order to guide our future decisions. The novel Wageningen Lowland Runoff Simulator (WALRUS; Brauer et al., 2014) was developed to simulate hydrological processes and has showed promising performance in recent studies in the Netherlands. Here the model was applied to a coastal basin of 2800 ha in the Veneto Region (northern Italy) to test model performance and evaluate scenario analyses of land use change and climate change. Located partially below sea-level, the reclaimed area is facing persistent land transformation and climate change trends, which alter not only the processes in the catchment but also the demands from it (Tarolli and Sofia, 2016). Firstly results of the calibration (NSE = 0.77; year simulation, daily resolution) and validation (NSE = 0.53; idem) showed that the model is able to reproduce the dominant hydrological processes of this lowland area (e.g. discharge and groundwater fluxes). Land use scenarios between 1951 and 2060 were constructed using demographic models, supported by orthographic interpretation techniques. Climate scenarios were constructed by historical records and future projections by COSMO-CLM regional climate model (Rockel et al., 2008) under the RCP4.5 pathway. WALRUS simulations showed that the land use changes result in a wetter catchment with more discharge, and the climatic changes cause more extremes with longer droughts and stronger rain events. These changes combined show drier summers (-33{%} rainfall, +27{%} soil moisture deficit) and wetter (+13{%} rainfall) and intenser (+30{%} rain intensity) autumn and winters in the future. The simulated discharge regime -particularly peak flow- follows these polarising trends, in good agreement with similar studies in the geographical zone (e.g. Vezzoli et al., 2015). This will increase the pressure on the fully-artificial drainage and agricultural systems

  5. Environmental impacts of barley cultivation under current and future climatic conditions

    DEFF Research Database (Denmark)

    Dijkman, Teunis Johannes; Birkved, Morten; Saxe, Henrik

    2017-01-01

    for the increased impacts. This finding was confirmed by the sensitivity analysis. Because this study focused solely on the impacts of climate change, technological improvements and political measures to reduce impacts in the 2050 scenario are not taken into account. Options to mitigate the environmental impacts......The purpose of this work is to compare the environmental impacts of spring barley cultivation in Denmark under current (year 2010) and future (year 2050) climatic conditions. Therefore, a Life Cycle Assessment was carried out for the production of 1 kg of spring barley in Denmark, at farm gate....... Both under 2010 and 2050 climatic conditions, four subscenarios were modelled, based on a combination of two soil types and two climates. Included in the assessment were seed production, soil preparation, fertilization, pesticide application, and harvest. When processes in the life cycle resulted in co...

  6. Coordinated Development and Deployment of Scenarios for Sustained Assessment

    Science.gov (United States)

    Lipschultz, F.; Weaver, C. P.; Leidner, A. K.; Delgado, A.; Grambsch, A.

    2017-12-01

    There has been a clear need for a more coordinated Federal government approach for authoritative, climate-relevant scenarios to support growing demands by decision-makers, to meet stakeholder needs for consistent approaches and guidance, and to better address the needs of the impacts, adaptation and vulnerability community. To begin to satisfy these decision-support needs, in early 2015 the U.S. Global Change Research Program (USGCRP) began coordinated production of scenario information for use across a suite of USGCRP activities. These have been implemented in the 4th National Climate Assessment (NCA4), the Climate Science Special Report and the Climate Resilience Toolkit (CRT), all of which are intended to help better organize, summarize, and communicate science to decision-makers as they think about our future. First, USGCRP introduced and implemented an explicit risk-framing approach across the entire scenario enterprise to encourage exploration of tail risks. A suite of scenario products was developed framed around three simplified storylines: `Lower', `Higher', and `Upper Bound' departures from current baselines. Second, USGCRP developed future climate information for the U.S. using Representative Concentration Pathway (RCP) 8.5 and RCP 4.5, including a weighted mean of Global Climate Models and adoption of an improved statistical downscaling approach across USGCRP products. Additional variables were derived from the downscaled parameters for use across USGCRP reports and in the CRT's Climate Explorer tool. Third, and given the need to address other tightly-coupled global changes in a more integrated way, a set of population, housing density, and impervious surface projections were developed based on global scenarios. In addition, USGCRP and the National Ocean Council developed scenarios of future sea-level rise and coastal-flood hazard for the U.S. and integrated them into existing Federal capabilities to support preparedness planning. To better convey these

  7. Assessing the impact of future climate change on groundwater recharge in Galicia-Costa, Spain

    Science.gov (United States)

    Raposo, Juan Ramón; Dafonte, Jorge; Molinero, Jorge

    2013-03-01

    Climate change can impact the hydrological processes of a watershed and may result in problems with future water supply for large sections of the population. Results from the FP5 PRUDENCE project suggest significant changes in temperature and precipitation over Europe. In this study, the Soil and Water Assessment Tool (SWAT) model was used to assess the potential impacts of climate change on groundwater recharge in the hydrological district of Galicia-Costa, Spain. Climate projections from two general circulation models and eight different regional climate models were used for the assessment and two climate-change scenarios were evaluated. Calibration and validation of the model were performed using a daily time-step in four representative catchments in the district. The effects on modeled mean annual groundwater recharge are small, partly due to the greater stomatal efficiency of plants in response to increased CO2 concentration. However, climate change strongly influences the temporal variability of modeled groundwater recharge. Recharge may concentrate in the winter season and dramatically decrease in the summer-autumn season. As a result, the dry-season duration may be increased on average by almost 30 % for the A2 emission scenario, exacerbating the current problems in water supply.

  8. Regional modeling of large wildfires under current and potential future climates in Colorado and Wyoming, USA

    Science.gov (United States)

    West, Amanda; Kumar, Sunil; Jarnevich, Catherine S.

    2016-01-01

    Regional analysis of large wildfire potential given climate change scenarios is crucial to understanding areas most at risk in the future, yet wildfire models are not often developed and tested at this spatial scale. We fit three historical climate suitability models for large wildfires (i.e. ≥ 400 ha) in Colorado andWyoming using topography and decadal climate averages corresponding to wildfire occurrence at the same temporal scale. The historical models classified points of known large wildfire occurrence with high accuracies. Using a novel approach in wildfire modeling, we applied the historical models to independent climate and wildfire datasets, and the resulting sensitivities were 0.75, 0.81, and 0.83 for Maxent, Generalized Linear, and Multivariate Adaptive Regression Splines, respectively. We projected the historic models into future climate space using data from 15 global circulation models and two representative concentration pathway scenarios. Maps from these geospatial analyses can be used to evaluate the changing spatial distribution of climate suitability of large wildfires in these states. April relative humidity was the most important covariate in all models, providing insight to the climate space of large wildfires in this region. These methods incorporate monthly and seasonal climate averages at a spatial resolution relevant to land management (i.e. 1 km2) and provide a tool that can be modified for other regions of North America, or adapted for other parts of the world.

  9. Carbon–climate feedbacks accelerate ocean acidification

    Directory of Open Access Journals (Sweden)

    R. J. Matear

    2018-03-01

    Full Text Available Carbon–climate feedbacks have the potential to significantly impact the future climate by altering atmospheric CO2 concentrations (Zaehle et al. 2010. By modifying the future atmospheric CO2 concentrations, the carbon–climate feedbacks will also influence the future ocean acidification trajectory. Here, we use the CO2 emissions scenarios from four representative concentration pathways (RCPs with an Earth system model to project the future trajectories of ocean acidification with the inclusion of carbon–climate feedbacks. We show that simulated carbon–climate feedbacks can significantly impact the onset of undersaturated aragonite conditions in the Southern and Arctic oceans, the suitable habitat for tropical coral and the deepwater saturation states. Under the high-emissions scenarios (RCP8.5 and RCP6, the carbon–climate feedbacks advance the onset of surface water under saturation and the decline in suitable coral reef habitat by a decade or more. The impacts of the carbon–climate feedbacks are most significant for the medium- (RCP4.5 and low-emissions (RCP2.6 scenarios. For the RCP4.5 scenario, by 2100 the carbon–climate feedbacks nearly double the area of surface water undersaturated with respect to aragonite and reduce by 50 % the surface water suitable for coral reefs. For the RCP2.6 scenario, by 2100 the carbon–climate feedbacks reduce the area suitable for coral reefs by 40 % and increase the area of undersaturated surface water by 20 %. The sensitivity of ocean acidification to the carbon–climate feedbacks in the low to medium emission scenarios is important because recent CO2 emission reduction commitments are trying to transition emissions to such a scenario. Our study highlights the need to better characterise the carbon–climate feedbacks and ensure we do not underestimate the projected ocean acidification.

  10. Carbon-climate feedbacks accelerate ocean acidification

    Science.gov (United States)

    Matear, Richard J.; Lenton, Andrew

    2018-03-01

    Carbon-climate feedbacks have the potential to significantly impact the future climate by altering atmospheric CO2 concentrations (Zaehle et al. 2010). By modifying the future atmospheric CO2 concentrations, the carbon-climate feedbacks will also influence the future ocean acidification trajectory. Here, we use the CO2 emissions scenarios from four representative concentration pathways (RCPs) with an Earth system model to project the future trajectories of ocean acidification with the inclusion of carbon-climate feedbacks. We show that simulated carbon-climate feedbacks can significantly impact the onset of undersaturated aragonite conditions in the Southern and Arctic oceans, the suitable habitat for tropical coral and the deepwater saturation states. Under the high-emissions scenarios (RCP8.5 and RCP6), the carbon-climate feedbacks advance the onset of surface water under saturation and the decline in suitable coral reef habitat by a decade or more. The impacts of the carbon-climate feedbacks are most significant for the medium- (RCP4.5) and low-emissions (RCP2.6) scenarios. For the RCP4.5 scenario, by 2100 the carbon-climate feedbacks nearly double the area of surface water undersaturated with respect to aragonite and reduce by 50 % the surface water suitable for coral reefs. For the RCP2.6 scenario, by 2100 the carbon-climate feedbacks reduce the area suitable for coral reefs by 40 % and increase the area of undersaturated surface water by 20 %. The sensitivity of ocean acidification to the carbon-climate feedbacks in the low to medium emission scenarios is important because recent CO2 emission reduction commitments are trying to transition emissions to such a scenario. Our study highlights the need to better characterise the carbon-climate feedbacks and ensure we do not underestimate the projected ocean acidification.

  11. The climatic scenario of global warming; Les scenarios climatiques de rechauffement

    Energy Technology Data Exchange (ETDEWEB)

    Deque, M

    2007-07-01

    This presentation shows how the ARPEGE model, which is the regional model of Meteo-France, responds to the forcing results of the A2 scenario of the GIEC for the parameters of temperature and rainfalls. It emerges from the study that the main impact in France of the climatic change is an increase of the temperature in all seasons, an increase of the rains in winter and a decrease of the rains in summer. (A.L.B.)

  12. Future PMP Estimation in Korea under AR5 RCP 8.5 climate change scenarios and its Changes Cause Analysis

    Science.gov (United States)

    Kim, S.; Lee, J.; Okjeong, L.; Bogyeong, C.; Park, M. W.

    2015-12-01

    In this presentation, Korea's probable maximum precipitations (PMPs) which reflects all of the storm data until recently are calculated, and are compared to the existing PMPs which were calculated at 2000. In Korea, abnormal weather phenomena such as typhoon Rusa and Maemi, and the extreme rainfall event occurred on the east coast of the northern region, that can have a significant impact on the PMP estimation, have frequently happened since 2000. After selecting 240 major storm events from 1973 to 2012, new PMPs are proposed with respect to storm areas (25, 100, 225, 400, 900, 2025, 4900, 10000 and 19600 km2) and storm durations (1, 2, 4, 6, 8, 12, 18, 24, 48 and 72 hours) using the Korea hydro-meteorological method. After estimating future PMPs using future rainfall and dew point temperature information under the Korea Meteorological Administration AR5 RCP 8.5, changes in the PMPs under climate change will be investigated by comparison with present and future PMPs. By separating the changes in PMPs under climate change into the changes caused by rainfall and dew point temperature, the relative impact of future rainfall and dew point temperature information under climate change on future PMPs is quantified. This research was supported by a grant 'Development of the Evaluation Technology for Complex Causes of Inundation Vulnerability and the Response Plans in Coastal Urban Areas for Adaptation to Climate Change' [MPSS-NH-2015-77] from the Natural Hazard Mitigation Research Group, Ministry of Public Safety and Security of Korea.

  13. The climatic scenario of global warming

    International Nuclear Information System (INIS)

    Deque, M.

    2007-01-01

    This presentation shows how the ARPEGE model, which is the regional model of Meteo-France, responds to the forcing results of the A2 scenario of the GIEC for the parameters of temperature and rainfalls. It emerges from the study that the main impact in France of the climatic change is an increase of the temperature in all seasons, an increase of the rains in winter and a decrease of the rains in summer. (A.L.B.)

  14. Water Resources Sustainability in Northwest Mexico: Analysis of Regional Infrastructure Plans under Historical and Climate Change Scenarios

    Science.gov (United States)

    Che, D.; Robles-Morua, A.; Mayer, A. S.; Vivoni, E. R.

    2012-12-01

    The arid state of Sonora, Mexico, has embarked on a large water infrastructure project to provide additional water supply and improved sanitation to the growing capital of Hermosillo. The main component of the Sonora SI project involves an interbasin transfer from rural to urban water users that has generated conflicts over water among different social sectors. Through interactions with regional stakeholders from agricultural and water management agencies, we ascertained the need for a long-term assessment of the water resources of one of the system components, the Sonora River Basin (SRB). A semi-distributed, daily watershed model that includes current and proposed reservoir infrastructure was applied to the SRB. This simulation framework allowed us to explore alternative scenarios of water supply from the SRB to Hermosillo under historical (1980-2010) and future (2031-2040) periods that include the impact of climate change. We compared three precipitation forcing scenarios for the historical period: (1) a network of ground observations from Mexican water agencies; (2) gridded fields from the North America Land Data Assimilation System (NLDAS) at 12 km resolution; and (3) gridded fields from the Weather Research and Forecasting (WRF) model at 10 km resolution. These were compared to daily historical observations at two stream gauging stations and two reservoirs to generate confidence in the simulation tools. We then tested the impact of climate change through the use of the A2 emissions scenario and HadCM3 boundary forcing on the WRF simulations of a future period. Our analysis is focused on the combined impact of existing and proposed reservoir infrastructure at two new sites on the water supply management in the SRB under historical and future climate conditions. We also explore the impact of climate variability and change on the bimodal precipitation pattern from winter frontal storms and the summertime North American monsoon and its consequences on water

  15. Projections of temperature-related excess mortality under climate change scenarios

    Czech Academy of Sciences Publication Activity Database

    Gasparrini, A.; Guo, Y.; Sera, F.; Vicedo-Cabrera, A.M.; Huber, V.; Tong, S.; Coelho, M. S. Z. S.; Saldiva, P. H. N.; Lavigne, E.; Correa, P.M.; Ortega, N. V.; Kan, H.; Osorio, S.; Kyselý, Jan; Urban, Aleš; Jaakkola, J.J.K.; Ryti, N.R.I.; Pascal, M.; Goodman, P.G.; Zeka, A.; Michelozzi, P.; Scortichini, M.; Hashizume, M.; Honda, Y.; Hurtado-Diaz, M.; Cruz, J.C.; Seposo, X.; Kim, H.; Tobias, A.; Iñiguez, C.; Forsberg, B.; Åström, D.O.; Ragettli, M.S.; Guo, Y.L.; Wu, Ch.; Zanobetti, A.; Schwartz, J.; Bell, M.L.; Dang, T.N.; Van, D.D.; Heaviside, C.; Vardoulakis, S.; Hajat, S.; Haines, A.; Armstrong, B.

    2017-01-01

    Roč. 1, č. 9 (2017), e360-e367 ISSN 2542-5196 R&D Projects: GA ČR(CZ) GA16-22000S Institutional support: RVO:68378289 Keywords : climate change scenarios * mortality Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Climatic research https://www.sciencedirect.com/science/article/pii/S2542519617301560#!

  16. Ecoclimatic indicators to study crop suitability in present and future climatic conditionsTIC CONDITIONS

    Science.gov (United States)

    Caubel, Julie; Garcia de Cortazar Atauri, Inaki; Huard, Frédéric; Launay, Marie; Ripoche, Dominique; Gouache, David; Bancal, Marie-Odile; Graux, Anne-Isabelle; De Noblet, Nathalie

    2013-04-01

    Climate change is expected to affect both regional and global food production through changes in overall agroclimatic conditions. It is therefore necessary to develop simple tools of crop suitability diagnosis in a given area so that stakeholders can envisage land use adaptations under climate change conditions. The most common way to investigate potential impacts of climate on the evolution of agrosystems is to make use of an array of agroclimatic indicators, which provide synthetic information derived from climatic variables and calculated within fixed periods (i.e. January first - 31th July). However, the information obtained during these periods does not enable to take account of the plant response to climate. In this work, we present some results of the research program ORACLE (Opportunities and Risks of Agrosystems & forests in response to CLimate, socio-economic and policy changEs in France (and Europe). We proposed a suite of relevant ecoclimatic indicators, based on temperature and rainfall, in order to evaluate crop suitability for both present and new climatic conditions. Ecoclimatic indicators are agroclimatic indicators (e.g., grain heat stress) calculated during specific phenological phases so as to take account of the plant response to climate (e.g., the grain filling period, flowering- harvest). These indicators are linked with the ecophysiological processes they characterize (for e.g., the grain filling). To represent this methodology, we studied the suitability of winter wheat in future climatic conditions through three distinct French sites, Toulouse, Dijon and Versailles. Indicators have been calculated using climatic data from 1950 to 2100 simulated by the global climate model ARPEGE forced by a greenhouse effect corresponding to the SRES A1B scenario. The Quantile-Quantile downscaling method was applied to obtain data for the three locations. Phenological stages (emergence, ear 1 cm, flowering, beginning of grain filling and harvest) have been

  17. Projecting temperature-related years of life lost under different climate change scenarios in one temperate megacity, China.

    Science.gov (United States)

    Li, Yixue; Li, Guoxing; Zeng, Qiang; Liang, Fengchao; Pan, Xiaochuan

    2018-02-01

    Temperature has been associated with population health, but few studies have projected the future temperature-related years of life lost attributable to climate change. To project future temperature-related disease burden in Tianjin, we selected years of life lost (YLL) as the dependent variable to explore YLL attributable to climate change. A generalized linear model (GLM) and distributed lag non-linear model were combined to assess the non-linear and delayed effects of temperature on the YLL of non-accidental mortality. Then, we calculated the YLL changes attributable to future climate scenarios in 2055 and 2090. The relationships of daily mean temperature with the YLL of non-accident mortality were basically U-shaped. Both the daily mean temperature increase on high-temperature days and its drop on low-temperature days caused an increase of YLL and non-accidental deaths. The temperature-related YLL will worsen if future climate change exceeds 2 °C. In addition, the adverse effects of extreme temperature on YLL occurred more quickly than that of the overall temperature. The impact of low temperature was greater than that of high temperature. Men were vulnerable to high temperature compared with women. This analysis highlights that the government should formulate environmental policies to reach the Paris Agreement goal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Modeling the global society-biosphere-climate system : Part 2: Computed scenarios

    NARCIS (Netherlands)

    Alcamo, J.; Van Den Born, G.J.; Bouwman, A.F.; De Haan, B.J.; Klein Goldewijk, K.; Klepper, O.; Krabec, J.; Leemans, R.; Olivier, J.G.J.; Toet, A.M.C.; De Vries, H.J.M.; Van Der Woerd, H.J.

    1994-01-01

    This paper presents scenarios computed with IMAGE 2.0, an integrated model of the global environment and climate change. Results are presented for selected aspects of the society-biosphere-climate system including primary energy consumption, emissions of various greenhouse gases, atmospheric

  19. Vegetation-climate feedbacks modulate rainfall patterns in Africa under future climate change

    Science.gov (United States)

    Wu, Minchao; Schurgers, Guy; Rummukainen, Markku; Smith, Benjamin; Samuelsson, Patrick; Jansson, Christer; Siltberg, Joe; May, Wilhelm

    2016-07-01

    Africa has been undergoing significant changes in climate and vegetation in recent decades, and continued changes may be expected over this century. Vegetation cover and composition impose important influences on the regional climate in Africa. Climate-driven changes in vegetation structure and the distribution of forests versus savannah and grassland may feed back to climate via shifts in the surface energy balance, hydrological cycle and resultant effects on surface pressure and larger-scale atmospheric circulation. We used a regional Earth system model incorporating interactive vegetation-atmosphere coupling to investigate the potential role of vegetation-mediated biophysical feedbacks on climate dynamics in Africa in an RCP8.5-based future climate scenario. The model was applied at high resolution (0.44 × 0.44°) for the CORDEX-Africa domain with boundary conditions from the CanESM2 general circulation model. We found that increased tree cover and leaf-area index (LAI) associated with a CO2 and climate-driven increase in net primary productivity, particularly over subtropical savannah areas, not only imposed important local effect on the regional climate by altering surface energy fluxes but also resulted in remote effects over central Africa by modulating the land-ocean temperature contrast, Atlantic Walker circulation and moisture inflow feeding the central African tropical rainforest region with precipitation. The vegetation-mediated feedbacks were in general negative with respect to temperature, dampening the warming trend simulated in the absence of feedbacks, and positive with respect to precipitation, enhancing rainfall reduction over the rainforest areas. Our results highlight the importance of accounting for vegetation-atmosphere interactions in climate projections for tropical and subtropical Africa.

  20. Assessing Hydrologic Impacts of Future Land Cover Change Scenarios in the South Platte River Basin (CO, WY, & NE) and the San Pedro River Basin (U.S./Mexico).

    Science.gov (United States)

    Barlow, J. E.; Burns, I. S.; Guertin, D. P.; Kepner, W. G.; Goodrich, D. C.

    2016-12-01

    Long-term land-use and land cover change and their associated impacts pose critical challenges to sustaining vital hydrological ecosystem services for future generations. In this study, a methodology to characterize hydrologic impacts from future urban growth through time that was developed and applied on the San Pedro River Basin was expanded and utilized on the South Platte River Basin as well. Future urban growth is represented by housing density maps generated in decadal intervals from 2010 to 2100, produced by the U.S. Environmental Protection Agency (EPA) Integrated Climate and Land-Use Scenarios (ICLUS) project. ICLUS developed future housing density maps by adapting the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) social, economic, and demographic storylines to the conterminous United States. To characterize hydrologic impacts from future growth, the housing density maps were reclassified to National Land Cover Database (NLCD) 2006 land cover classes and used to parameterize the Soil and Water Assessment Tool (SWAT) using the Automated Geospatial Watershed Assessment (AGWA) tool. The objectives of this project were to 1) develop and implement a methodology for adapting the ICLUS data for use in AGWA as an approach to evaluate impacts of development on water-quantity and -quality, 2) present, evaluate, and compare results from scenarios for watersheds in two different geographic and climatic regions, 3) determine watershed specific implications of this type of future land cover change analysis.

  1. Future Scenarios of the South China Sea Maritime Disputes

    OpenAIRE

    Shee, Poon Kim

    2014-01-01

    The focus of this paper is to analyze three future scenarios in the maritime disputes in the South China Sea. These namely are No War Scenario, Impasse Scenario and Peace Scenario. Ultimately, the way forward towards a viable solution to resolving the South China Sea maritime disputes between China and other claimant states depends on the political wisdom, will and determination of the disputing states. Lofty nationalistic aspirations have to be tempered with a degree of flexibility and pragm...

  2. Scenarios of future energy intensities

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    In this chapter, the authors present scenarios of potential change in energy intensities in the OECD countries and in the Soviet Union. These scenarios are meant to illustrate how intensities might evolve over the next 20 years given different conditions with respect to energy prices, energy-efficiency policies, and other key factors. Changes in intensity will also be affected by the rates of growth and stock turnover in each sector. They have not tried to forecast how activity levels and structure will evolve. However, the OECD scenarios assume a world in which GDP averages growth in the 2-3%/year range, with some differences among countries. For the Soviet Union, the degree and pace of intensity decline will be highly dependent on the success of the transition to a market economy; each scenario explicitly envisions a different degree of success. They have not constructed comparable scenarios for the developing countries. The scenarios presented in this chapter do not predict what will happen in the future. They believe, however, that they illustrate a plausible set of outcomes if energy prices, policies, programs, and other factors evolve as described in each case. With higher energy prices and vigorous policies and programs, intensities in the OECD countries in 2010 could be nearly 50% less on average than the level where trends seem to be point. In the former Soviet Union, a combination of rapid, successful economic reform and extra effort to improve energy efficiency might result in average intensity being nearly 40% less than in a slow reform case. And in the LDCs, a mixture of sound policies, programs, and energy pricing reform could also lead to intensities being far lower than they would be otherwise. 8 refs., 10 figs., 1 tab

  3. Description of the default climate scenario for impact projects in NRP-II

    NARCIS (Netherlands)

    Verweij W; Viner D; NOP

    2001-01-01

    The Dutch National Research Programme on Climate Change (NRP) is funding strategic research on climate change. One of the central research themes focuses on potential impacts of climate change. In general, results of impact projects may differ markedly, depending on input of scenario data for

  4. A comparison of oil supply risks in EU, US, Japan, China and India under different climate scenarios

    International Nuclear Information System (INIS)

    Moerkerk, Mike van; Crijns-Graus, Wina

    2016-01-01

    For many countries, the inflow of energy is essential to keep economies running. Oil is typically considered to be the most critical fuel as an input for the petro-chemical and transportation sector and due to limited and less spread reserves. In this study external oil supply risks are assessed for the period up to 2035 for the European Union, United States, China, Japan and India (being the five largest importers of oil in the world), based on their current supplier portfolio. Scenarios are constructed for several climate policy and oil-supply projections. It is found that risks increase strongly, when stringent climate policies are prevented from being implemented, especially when a peak in oil supply is taken into account, resulting in major oil supply-disruptions. China faces the lowest oil supply risks in most scenarios but the trends of India, China and US converge over time due to increasing import dependency of China and India. Japan faces high risks since the country has the highest oil import dependency combined with a low oil import diversification. For the EU, all figures are strongly influenced by Russia, accounting for 32% of total imports, and to a lesser extent Norway (11%), with high overall risks. - Highlights: • External oil supply risks are assessed up to 2035 under different scenarios. • Included countries are EU, US, China, Japan and India (largest importers of oil). • India, China and EU show increasing oil supply risks in all scenarios. • Strong climate policies are needed to reduce future risks. • A constructed peak oil scenario predicts major oil supply disruptions.

  5. Climate - Our future?

    International Nuclear Information System (INIS)

    Schotterer, U.

    1992-01-01

    The aim of this picture-based book is to make climate change understandable to a wider public. Images tell the story, figure captions enhance the essentials. Text passages tie and highlight the story, rather than provide long explanations of complex scientific reasoning. Brief summaries at the end of each chapter review knowledge of which everybody should be aware. They are based on the scientific assessments of the 1990 Intergovernmental Panel on Climate Change Report. The climate story is explored from six different angles: the physical system, past changes, how climate affects cultures, how people affect climate, the importance of research and how to view the future

  6. Ecosystem-atmosphere exchange of carbon in a heathland under future climatic conditions

    DEFF Research Database (Denmark)

    Selsted, Merete Bang

    on ecosystem-atmosphere exchange of carbon in a heathland under future climatic conditions, shows that extended summer drought in combination with elevated temperature will ensure permanent dryer soil conditions, which decreases carbon turnover, while elevated atmospheric CO2 concentrations will increase...... carbon turnover. In the full future climate scenario, carbon turnover is over all expected to increase and the heathland to become a source of atmospheric CO2. The methodology of static chamber CO2 flux measurements and applying the technology in a FACE (free air CO2 enrichment) facility is a challenge...... on the atmospheric CO2 concentration. Photosynthesis and respiration run in parallel during measurements of net ecosystem exchange, and these measurements should therefore be performed with care to both the atmospheric CO2 concentration and the CO2 soil-atmosphere gradient....

  7. Bird Species and Climate Change. The Global Status Report. A synthesis of current scientific understanding of anthropogenic climate change impacts on global bird species now, and projected future effects

    International Nuclear Information System (INIS)

    Wormworth, J.; Mallon, K.

    2006-01-01

    The results of a global analysis of current and future impacts of climate change on birds are presented. The report reviews more than 200 research reports to assemble a clear and consistent picture of climatic risk to this important animal group, illustrated with numerous examples and case studies. It is found that: climate change now affects bird species' behaviour, ranges and population dynamics; some bird species are already experiencing strong negative impacts from climate change; and in future, subject to greenhouse gas emissions levels and climatic response, climate change will put large numbers of bird species at risk of extinction, with estimates of extinction rates varying from 2 to 72%, depending on the region, climate scenario and potential for birds to shift to new habitat

  8. Bird Species and Climate Change. The Global Status Report. A synthesis of current scientific understanding of anthropogenic climate change impacts on global bird species now, and projected future effects

    Energy Technology Data Exchange (ETDEWEB)

    Wormworth, J.; Mallon, K. [Climate Risk Pty Limited, Fairlight (Australia)

    2006-07-01

    The results of a global analysis of current and future impacts of climate change on birds are presented. The report reviews more than 200 research reports to assemble a clear and consistent picture of climatic risk to this important animal group, illustrated with numerous examples and case studies. It is found that: climate change now affects bird species' behaviour, ranges and population dynamics; some bird species are already experiencing strong negative impacts from climate change; and in future, subject to greenhouse gas emissions levels and climatic response, climate change will put large numbers of bird species at risk of extinction, with estimates of extinction rates varying from 2 to 72%, depending on the region, climate scenario and potential for birds to shift to new habitat.

  9. Climate change scenarios of extreme temperatures and atmospheric humidity for Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Tejeda-Martinez, A. [Departamento de Ciencias Atmosfericas, Universidad Veracruzana, Xalapa, Veracruz (Mexico)]. E-mail: atejeda@uv.mx; Conde-Alvarez, C. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico); Valencia-Treviso, L.E. [Departamento de Ciencias Atmosfericas, Universidad Veracruzana, Xalapa, Veracruz (Mexico)

    2008-10-15

    The following study explores climatic change scenarios of extreme temperature and atmospheric humidity for the 2020 and 2050 decades. They were created for Mexico through the GFDLR30, ECHAM4 and HadCM2 general circulation models. Base scenario conditions were associated with the normal climatological conditions for the period 1961-1990, with a database of 50 surface observatories. It was necessary to empirically estimate the missing data in approximately half of the pressure measurements. For the period 1961-1990, statistical models of the monthly means of maximum and minimum temperatures and atmospheric humidity (relative and specific) were obtained from the observed data of temperature, solar radiation and precipitation. Based on the simulations of the GFDLR30, ECHAM4 and HADCM2 models, a future scenario of monthly means of maximum and minimum temperatures and humidity in climatic change conditions was created. The results shown are for the representative months of winter (January) and summer (July). [Spanish] En este articulo se presentan escenarios de cambio climatico referidos a temperaturas extremas y humedad atmosferica para las decadas de 2020 y 2050. Fueron generados para Mexico a partir de los modelos de circulacion general GFDLR30, ECHAM4 y HADCM2. El escenario base corresponde a las normales climatologicas del periodo 1961-1990 para 50 observatorios de superficie. Para la mitad de ellos fue necesario estimar empiricamente la presion atmosferica a partir de la altitud y para la totalidad se obtuvieron modelos estadisticos de los promedios mensuales de temperaturas maxima y minima asi como de humedad atmosferica (relativa y especifica). Esos modelos estadisticos, combinados con las salidas de los modelos de circulacion general mencionados, produjeron escenarios futuros de medias mensuales de temperaturas extremas y de humedad bajo condiciones de cambio climatico. Se mostraran los resultados para un mes representativo del invierno (enero) y otro del verano

  10. Predicting malaria vector distribution under climate change scenarios in China: Challenges for malaria elimination

    Science.gov (United States)

    Ren, Zhoupeng; Wang, Duoquan; Ma, Aimin; Hwang, Jimee; Bennett, Adam; Sturrock, Hugh J. W.; Fan, Junfu; Zhang, Wenjie; Yang, Dian; Feng, Xinyu; Xia, Zhigui; Zhou, Xiao-Nong; Wang, Jinfeng

    2016-02-01

    Projecting the distribution of malaria vectors under climate change is essential for planning integrated vector control activities for sustaining elimination and preventing reintroduction of malaria. In China, however, little knowledge exists on the possible effects of climate change on malaria vectors. Here we assess the potential impact of climate change on four dominant malaria vectors (An. dirus, An. minimus, An. lesteri and An. sinensis) using species distribution models for two future decades: the 2030 s and the 2050 s. Simulation-based estimates suggest that the environmentally suitable area (ESA) for An. dirus and An. minimus would increase by an average of 49% and 16%, respectively, under all three scenarios for the 2030 s, but decrease by 11% and 16%, respectively in the 2050 s. By contrast, an increase of 36% and 11%, respectively, in ESA of An. lesteri and An. sinensis, was estimated under medium stabilizing (RCP4.5) and very heavy (RCP8.5) emission scenarios. in the 2050 s. In total, we predict a substantial net increase in the population exposed to the four dominant malaria vectors in the decades of the 2030 s and 2050 s, considering land use changes and urbanization simultaneously. Strategies to achieve and sustain malaria elimination in China will need to account for these potential changes in vector distributions and receptivity.

  11. Predicting malaria vector distribution under climate change scenarios in China: Challenges for malaria elimination.

    Science.gov (United States)

    Ren, Zhoupeng; Wang, Duoquan; Ma, Aimin; Hwang, Jimee; Bennett, Adam; Sturrock, Hugh J W; Fan, Junfu; Zhang, Wenjie; Yang, Dian; Feng, Xinyu; Xia, Zhigui; Zhou, Xiao-Nong; Wang, Jinfeng

    2016-02-12

    Projecting the distribution of malaria vectors under climate change is essential for planning integrated vector control activities for sustaining elimination and preventing reintroduction of malaria. In China, however, little knowledge exists on the possible effects of climate change on malaria vectors. Here we assess the potential impact of climate change on four dominant malaria vectors (An. dirus, An. minimus, An. lesteri and An. sinensis) using species distribution models for two future decades: the 2030 s and the 2050 s. Simulation-based estimates suggest that the environmentally suitable area (ESA) for An. dirus and An. minimus would increase by an average of 49% and 16%, respectively, under all three scenarios for the 2030 s, but decrease by 11% and 16%, respectively in the 2050 s. By contrast, an increase of 36% and 11%, respectively, in ESA of An. lesteri and An. sinensis, was estimated under medium stabilizing (RCP4.5) and very heavy (RCP8.5) emission scenarios. in the 2050 s. In total, we predict a substantial net increase in the population exposed to the four dominant malaria vectors in the decades of the 2030 s and 2050 s, considering land use changes and urbanization simultaneously. Strategies to achieve and sustain malaria elimination in China will need to account for these potential changes in vector distributions and receptivity.

  12. Scalability of regional climate change in Europe for high-end scenarios

    DEFF Research Database (Denmark)

    Christensen, O. B.; Yang, S.; Boberg, F.

    2015-01-01

    With the help of a simulation using the global circulation model (GCM) EC-Earth, downscaled over Europe with the regional model DMI-HIRHAM5 at a 25 km grid point distance, we investigated regional climate change corresponding to 6°C of global warming to investigate whether regional climate change...... are close to the RCP8.5 emission scenario. We investigated the extent to which pattern scaling holds, i.e. the approximation that the amplitude of any climate change will be approximately proportional to the amount of global warming. We address this question through a comparison of climate change results...... from downscaling simulations over the same integration domain, but for different driving and regional models and scenarios, mostly from the EU ENSEMBLES project. For almost all quantities investigated, pattern scaling seemed to apply to the 6° simulation. This indicates that the single 6° simulation...

  13. Assessing risks and uncertainties in forest dynamics under different management scenarios and climate change

    Directory of Open Access Journals (Sweden)

    Matthias Albert

    2015-05-01

    Full Text Available Background Forest management faces a climate induced shift in growth potential and increasing current and emerging new risks. Vulnerability analysis provides decision support based on projections of natural resources taking risks and uncertainties into account. In this paper we (1 characterize differences in forest dynamics under three management scenarios, (2 analyse the effects of the three scenarios on two risk factors, windthrow and drought stress, and (3 quantify the effects and the amount of uncertainty arising from climate projections on height increment and drought stress. Methods In four regions in northern Germany, we apply three contrasting management scenarios and project forest development under climate change until 2070. Three climate runs (minimum, median, maximum based on the emission scenario RCP 8.5 control the site-sensitive forest growth functions. The minimum and maximum climate run define the range of prospective climate development. Results The projections of different management regimes until 2070 show the diverging medium-term effects of thinnings and harvests and long-term effects of species conversion on a regional scale. Examples of windthrow vulnerability and drought stress reveal how adaptation measures depend on the applied management path and the decision-maker’s risk attitude. Uncertainty analysis shows the increasing variability of drought risk projections with time. The effect of climate projections on height growth are quantified and uncertainty analysis reveals that height growth of young trees is dominated by the age-trend whereas the climate signal in height increment of older trees is decisive. Conclusions Drought risk is a serious issue in the eastern regions independent of the applied silvicultural scenario, but adaptation measures are limited as the proportion of the most drought tolerant species Scots pine is already high. Windthrow risk is no serious overall threat in any region, but adequate

  14. Forecasting sagebrush ecosystem components and greater sage-grouse habitat for 2050: learning from past climate patterns and Landsat imagery to predict the future

    Science.gov (United States)

    Homer, Collin G.; Xian, George Z.; Aldridge, Cameron L.; Meyer, Debra K.; Loveland, Thomas R.; O'Donnell, Michael S.

    2015-01-01

    Sagebrush (Artemisia spp.) ecosystems constitute the largest single North American shrub ecosystem and provide vital ecological, hydrological, biological, agricultural, and recreational ecosystem services. Disturbances have altered and reduced this ecosystem historically, but climate change may ultimately represent the greatest future risk. Improved ways to quantify, monitor, and predict climate-driven gradual change in this ecosystem is vital to its future management. We examined the annual change of Daymet precipitation (daily gridded climate data) and five remote sensing ecosystem sagebrush vegetation and soil components (bare ground, herbaceous, litter, sagebrush, and shrub) from 1984 to 2011 in southwestern Wyoming. Bare ground displayed an increasing trend in abundance over time, and herbaceous, litter, shrub, and sagebrush showed a decreasing trend. Total precipitation amounts show a downward trend during the same period. We established statistically significant correlations between each sagebrush component and historical precipitation records using a simple least squares linear regression. Using the historical relationship between sagebrush component abundance and precipitation in a linear model, we forecasted the abundance of the sagebrush components in 2050 using Intergovernmental Panel on Climate Change (IPCC) precipitation scenarios A1B and A2. Bare ground was the only component that increased under both future scenarios, with a net increase of 48.98 km2 (1.1%) across the study area under the A1B scenario and 41.15 km2 (0.9%) under the A2 scenario. The remaining components decreased under both future scenarios: litter had the highest net reductions with 49.82 km2 (4.1%) under A1B and 50.8 km2 (4.2%) under A2, and herbaceous had the smallest net reductions with 39.95 km2 (3.8%) under A1B and 40.59 km2 (3.3%) under A2. We applied the 2050 forecast sagebrush component values to contemporary (circa 2006) greater sage-grouse (Centrocercus

  15. Assessing Regional Scale Variability in Extreme Value Statistics Under Altered Climate Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Brunsell, Nathaniel [Univ. of Kansas, Lawrence, KS (United States); Mechem, David [Univ. of Kansas, Lawrence, KS (United States); Ma, Chunsheng [Wichita State Univ., KS (United States)

    2015-02-20

    validity of an innovative multi–resolution information theory approach, and the ability of the RCM modeling framework to represent the low-frequency modulation of extreme climate events. Once the skill of the modeling and analysis methodology has been established, we will apply the same approach for the AR5 (IPCC Fifth Assessment Report) climate change scenarios in order to assess how climate extremes and the the influence of lowfrequency variability on climate extremes might vary under changing climate. The research specifically addresses the DOE focus area 2. Simulation of climate extremes under a changing climate. Specific results will include (1) a better understanding of the spatial and temporal structure of extreme events, (2) a thorough quantification of how extreme values are impacted by low-frequency climate teleconnections, (3) increased knowledge of current regional climate models ability to ascertain these influences, and (4) a detailed examination of the how the distribution of extreme events are likely to change under different climate change scenarios. In addition, this research will assess the ability of the innovative wavelet information theory approach to characterize extreme events. Any and all of these results will greatly enhance society’s ability to understand and mitigate the regional ramifications of future global climate change.

  16. Applying the global RCP-SSP-SPA scenario framework at sub-national scale: A multi-scale and participatory scenario approach.

    Science.gov (United States)

    Kebede, Abiy S; Nicholls, Robert J; Allan, Andrew; Arto, Iñaki; Cazcarro, Ignacio; Fernandes, Jose A; Hill, Chris T; Hutton, Craig W; Kay, Susan; Lázár, Attila N; Macadam, Ian; Palmer, Matthew; Suckall, Natalie; Tompkins, Emma L; Vincent, Katharine; Whitehead, Paul W

    2018-09-01

    To better anticipate potential impacts of climate change, diverse information about the future is required, including climate, society and economy, and adaptation and mitigation. To address this need, a global RCP (Representative Concentration Pathways), SSP (Shared Socio-economic Pathways), and SPA (Shared climate Policy Assumptions) (RCP-SSP-SPA) scenario framework has been developed by the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC-AR5). Application of this full global framework at sub-national scales introduces two key challenges: added complexity in capturing the multiple dimensions of change, and issues of scale. Perhaps for this reason, there are few such applications of this new framework. Here, we present an integrated multi-scale hybrid scenario approach that combines both expert-based and participatory methods. The framework has been developed and applied within the DECCMA 1 project with the purpose of exploring migration and adaptation in three deltas across West Africa and South Asia: (i) the Volta delta (Ghana), (ii) the Mahanadi delta (India), and (iii) the Ganges-Brahmaputra-Meghna (GBM) delta (Bangladesh/India). Using a climate scenario that encompasses a wide range of impacts (RCP8.5) combined with three SSP-based socio-economic scenarios (SSP2, SSP3, SSP5), we generate highly divergent and challenging scenario contexts across multiple scales against which robustness of the human and natural systems within the deltas are tested. In addition, we consider four distinct adaptation policy trajectories: Minimum intervention, Economic capacity expansion, System efficiency enhancement, and System restructuring, which describe alternative future bundles of adaptation actions/measures under different socio-economic trajectories. The paper highlights the importance of multi-scale (combined top-down and bottom-up) and participatory (joint expert-stakeholder) scenario methods for addressing uncertainty in adaptation decision

  17. Connecting today's climates to future climate analogs to facilitate movement of species under climate change.

    Science.gov (United States)

    Littlefield, Caitlin E; McRae, Brad H; Michalak, Julia L; Lawler, Joshua J; Carroll, Carlos

    2017-12-01

    Increasing connectivity is an important strategy for facilitating species range shifts and maintaining biodiversity in the face of climate change. To date, however, few researchers have included future climate projections in efforts to prioritize areas for increasing connectivity. We identified key areas likely to facilitate climate-induced species' movement across western North America. Using historical climate data sets and future climate projections, we mapped potential species' movement routes that link current climate conditions to analogous climate conditions in the future (i.e., future climate analogs) with a novel moving-window analysis based on electrical circuit theory. In addition to tracing shifting climates, the approach accounted for landscape permeability and empirically derived species' dispersal capabilities. We compared connectivity maps generated with our climate-change-informed approach with maps of connectivity based solely on the degree of human modification of the landscape. Including future climate projections in connectivity models substantially shifted and constrained priority areas for movement to a smaller proportion of the landscape than when climate projections were not considered. Potential movement, measured as current flow, decreased in all ecoregions when climate projections were included, particularly when dispersal was limited, which made climate analogs inaccessible. Many areas emerged as important for connectivity only when climate change was modeled in 2 time steps rather than in a single time step. Our results illustrate that movement routes needed to track changing climatic conditions may differ from those that connect present-day landscapes. Incorporating future climate projections into connectivity modeling is an important step toward facilitating successful species movement and population persistence in a changing climate. © 2017 Society for Conservation Biology.

  18. Scenario Analysis With Economic-Energy Systems Models Coupled to Simple Climate Models

    Science.gov (United States)

    Hanson, D. A.; Kotamarthi, V. R.; Foster, I. T.; Franklin, M.; Zhu, E.; Patel, D. M.

    2008-12-01

    Here, we compare two scenarios based on Stanford University's Energy Modeling Forum Study 22 on global cooperative and non-cooperative climate policies. In the former, efficient transition paths are implemented including technology Research and Development effort, energy conservation programs, and price signals for greenhouse gas (GHG) emissions. In the non-cooperative case, some countries try to relax their regulations and be free riders. Total emissions and costs are higher in the non-cooperative scenario. The simulations, including climate impacts, run to the year 2100. We use the Argonne AMIGA-MARS economic-energy systems model, the Texas AM University's Forest and Agricultural Sector Optimization Model (FASOM), and the University of Illinois's Integrated Science Assessment Model (ISAM), with offline coupling between the FASOM and AMIGA-MARS and an online coupling between AMIGA-MARS and ISAM. This set of models captures the interaction of terrestrial systems, land use, crops and forests, climate change, human activity, and energy systems. Our scenario simulations represent dynamic paths over which all the climate, terrestrial, economic, and energy technology equations are solved simultaneously Special attention is paid to biofuels and how they interact with conventional gasoline/diesel fuel markets. Possible low-carbon penetration paths are based on estimated costs for new technologies, including cellulosic biomass, coal-to-liquids, plug-in electric vehicles, solar and nuclear energy. We explicitly explore key uncertainties that affect mitigation and adaptation scenarios.

  19. Future changes in hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra River basins.

    Science.gov (United States)

    Wijngaard, René R; Lutz, Arthur F; Nepal, Santosh; Khanal, Sonu; Pradhananga, Saurav; Shrestha, Arun B; Immerzeel, Walter W

    2017-01-01

    Future hydrological extremes, such as floods and droughts, may pose serious threats for the livelihoods in the upstream domains of the Indus, Ganges, Brahmaputra. For this reason, the impacts of climate change on future hydrological extremes is investigated in these river basins. We use a fully-distributed cryospheric-hydrological model to simulate current and future hydrological fluxes and force the model with an ensemble of 8 downscaled General Circulation Models (GCMs) that are selected from the RCP4.5 and RCP8.5 scenarios. The model is calibrated on observed daily discharge and geodetic mass balances. The climate forcing and the outputs of the hydrological model are used to evaluate future changes in climatic extremes, and hydrological extremes by focusing on high and low flows. The outcomes show an increase in the magnitude of climatic means and extremes towards the end of the 21st century where climatic extremes tend to increase stronger than climatic means. Future mean discharge and high flow conditions will very likely increase. These increases might mainly be the result of increasing precipitation extremes. To some extent temperature extremes might also contribute to increasing discharge extremes, although this is highly dependent on magnitude of change in temperature extremes. Low flow conditions may occur less frequently, although the uncertainties in low flow projections can be high. The results of this study may contribute to improved understanding on the implications of climate change for the occurrence of future hydrological extremes in the Hindu Kush-Himalayan region.

  20. Future changes in hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra River basins.

    Directory of Open Access Journals (Sweden)

    René R Wijngaard

    Full Text Available Future hydrological extremes, such as floods and droughts, may pose serious threats for the livelihoods in the upstream domains of the Indus, Ganges, Brahmaputra. For this reason, the impacts of climate change on future hydrological extremes is investigated in these river basins. We use a fully-distributed cryospheric-hydrological model to simulate current and future hydrological fluxes and force the model with an ensemble of 8 downscaled General Circulation Models (GCMs that are selected from the RCP4.5 and RCP8.5 scenarios. The model is calibrated on observed daily discharge and geodetic mass balances. The climate forcing and the outputs of the hydrological model are used to evaluate future changes in climatic extremes, and hydrological extremes by focusing on high and low flows. The outcomes show an increase in the magnitude of climatic means and extremes towards the end of the 21st century where climatic extremes tend to increase stronger than climatic means. Future mean discharge and high flow conditions will very likely increase. These increases might mainly be the result of increasing precipitation extremes. To some extent temperature extremes might also contribute to increasing discharge extremes, although this is highly dependent on magnitude of change in temperature extremes. Low flow conditions may occur less frequently, although the uncertainties in low flow projections can be high. The results of this study may contribute to improved understanding on the implications of climate change for the occurrence of future hydrological extremes in the Hindu Kush-Himalayan region.

  1. Climate change in high definition : scenarios for impacts and adaptation research : conference proceedings

    International Nuclear Information System (INIS)

    2007-01-01

    This conference provided a forum to review information and tools to conduct climate change impact and adaptation research and assessments. The research community, policy advisors and resource managers reviewed the latest advancements in global and regional climate modeling, climate scenarios, downscaling tools and application of scenarios for decision-making. The new Climate Change Scenarios Network (CCSN) website was also launched at this meeting, which also provided training in Environment Canada's new statistical downscaling tool developed in collaboration with the Institut National de la Recherche Scientifique, Eau, Terre et Environnement (INRS-ETE). New features of the CCSN were presented along with examples of how information from the network can be applied in specific cases, including assessments of impacts in areas such as human health and water resources. A training session on downscaling with the newly developed Automated Statistical Downscaling (ASD) tool was also provided. The conference featured 19 presentations, of which 3 have been catalogued separately for inclusion in this database. refs., tabs., figs

  2. Assessing distributions of two invasive species of contrasting habits in future climate.

    Science.gov (United States)

    Panda, Rajendra Mohan; Behera, Mukunda Dev; Roy, Partha Sarathi

    2018-05-01

    Understanding the impact of climate change on species invasion is crucial for sustainable biodiversity conservation. Through this study, we try to answer how species differing in phenological cycles, specifically Cassia tora and Lantana camara, differ in the manner in which they invade new regions in India in the future climate. Since both species occupy identical niches, exploring their invasive potential in different climate change scenarios will offer critical insights into invasion and inform ecosystem management. We use three modelling protocols (i.e., maximum entropy, generalised linear model and generalised additive model) to predict the current distribution. Projections are made for both moderate (A1B) and extreme (A2) IPCC (Intergovernmental Panel on Climate Change) scenarios for the year 2050 and 2100. The study reveals that the distributions of C. tora (annual) and L. camara (perennial) would depend on the precipitation of the warmest quarter and moisture availability. C. tora may demonstrate physiological tolerance to the mean diurnal temperature range and L. camara to the solar radiation. C. tora may invade central India, while L. camara may invade the Western Himalaya, parts of the Eastern Himalaya and the Western Ghats. The distribution ranges of both species could shift in the northern and north-eastern directions in India, owing to changes in moisture availability. The possible alterations in precipitation regimes could lead to water stress, which might have cascading effects on species invasion. L. camara might adapt to climate change better compared with C. tora. This comparative analysis of the future distributions of two invasive plants with contrasting habits demonstrates that temporal complementarity would prevail over the competition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Development of water use scenarios as a tool for adaptation to climate change

    Directory of Open Access Journals (Sweden)

    R. Jacinto

    2013-06-01

    Full Text Available The project ADAPTACLIMA, promoted by EPAL, the largest Portuguese Water Supply Utility, aims to provide the company with an adaptation strategy in the medium and long term to reduce the vulnerability of its activities to climate change. We used the four scenarios (A1, A2, B1, B2 adopted in the Special Report Emissions Scenarios (SRES of the IPCC (Intergovernmental Panel on Climate Change to produce local scenarios of water use. Available population SRES for Portugal were downscaled to the study area using a linear approach. Local land use scenarios were produced using the following steps: (1 characterization of the present land use for each municipality of the study area using Corine Land Cover and adaptation of the CLC classes to those used in the SRES; (2 identification of recent tendencies in land use change for the study area; (3 identification of SRES tendencies for land use change in Europe; and (4 production of local scenarios of land use. Water use scenarios were derived considering both population and land use scenarios as well as scenarios of change in other parameters (technological developments, increases in efficiency, climate changes, or political and behavioural changes. The A2 scenario forecasts an increase in population (+16% in the study area while the other scenarios show a reduction in the resident population (−6 to 8%. All scenarios, but especially A1, show a reduction in agricultural area and an increase in urban area. Regardless of the scenario, water use will progressively be reduced until 2100. These reductions are mainly due to increased water use efficiency and the reduction of irrigated land. The results accord with several projects modelling water use at regional and global level.

  4. Effects of emissions change, climate change and long-range transport on regional modeling of future U.S. particulate matter pollution and speciation

    Science.gov (United States)

    He, Hao; Liang, Xin-Zhong; Wuebbles, Donald J.

    2018-04-01

    This study investigates the future U.S. PM2.5 pollution under multiple emissions scenarios, climate states, and long-range transport (LRT) effects using the regional Community Multi-scale Air Quality (CMAQ) model integrated with a regional climate model. CMAQ with fixed chemical lateral boundary conditions (LBCs) successfully reproduces the present-day PM2.5 pollution and its major species in rural and suburban areas, but has some discrepancies in urban areas such as the Los Angeles Basin, where detailed emissions and meteorology conditions cannot be resolved by the 30 km grid. Its performance is slightly worsened when using dynamic chemical LBCs from global chemical transport model (CTM) simulations, which provide cleaner conditions into the CMAQ lateral boundaries. Under future Intergovernmental Panel on Climate Change (IPCC) emission scenarios, CMAQ projects large PM2.5 reductions (∼40% for A1B and ∼20% for A1Fi scenario) in the eastern United States, but slight to moderate increases (∼5% for A1B and ∼10% for A1Fi) in the western United States. The projected increases are particularly large (up to 30%) near the Mexico-U.S. border, suggesting that Mexico is a major source for future U.S. PM2.5 pollution. The effect from climate change alone is estimated to increase PM2.5 levels ubiquitously (∼5% for both A1B and A1Fi) over the United States, except for a small decrease in the Houston, Texas area, where anthropogenic non-methane volatile organic compounds (NMVOCs) emissions dominate. This climate penalty, however, is substantially smaller than effects of emissions change, especially in the eastern United States. Future PM2.5 pollution is affected substantially (up to -20%) by changes in SO2 emissions and moderately (3-5%) by changes in NOx and NH3 emissions. The long-range transport (LRT) effects, which are estimated by comparing CMAQ simulations with fixed and dynamic LBCs, are regional dependent, causing up to 10-20% decrease over the western United

  5. Effects of future climate conditions on terrestrial export from coastal southern California

    Science.gov (United States)

    Feng, D.; Zhao, Y.; Raoufi, R.; Beighley, E.; Melack, J. M.

    2015-12-01

    The Santa Barbara Coastal - Long Term Ecological Research Project (SBC-LTER) is focused on investigating the relative importance of land and ocean processes in structuring giant kelp forest ecosystems. Understanding how current and future climate conditions influence terrestrial export is a central theme for the project. Here we combine the Hillslope River Routing (HRR) model and daily precipitation and temperature downscaled using statistical downscaling based on localized constructed Analogs (LOCA) to estimate recent streamflow dynamics (2000 to 2014) and future conditions (2015 to 2100). The HRR model covers the SBC-LTER watersheds from just west of the Ventura River to Point Conception; a land area of roughly 800 km2 with 179 watersheds ranging from 0.1 to 123 km2. The downscaled climate conditions have a spatial resolution of 6 km by 6 km. Here, we use the Penman-Monteith method with the Food and Agriculture Organization of the United Nations (FAO) limited climate data approximations and land surface conditions (albedo, leaf area index, land cover) measured from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua satellites to estimate potential evapotranspiration (PET). The HRR model is calibrated for the period 2000 to 2014 using USGS and LTER streamflow. An automated calibration technique is used. For future climate scenarios, we use mean 8-day land cover conditions. Future streamflow, ET and soil moisture statistics are presented and based on downscaled P and T from ten climate model projections from the Coupled Model Intercomparison Project Phase 5 (CMIP5).

  6. Forecasts, scenarios, visions, backcasts and roadmaps to the hydrogen economy: A review of the hydrogen futures literature

    International Nuclear Information System (INIS)

    McDowall, William; Eames, Malcolm

    2006-01-01

    Scenarios, roadmaps and similar foresight methods are used to cope with uncertainty in areas with long planning horizons, such as energy policy, and research into the future of hydrogen energy is no exception. Such studies can play an important role in the development of shared visions of the future: creating powerful expectations of the potential of emerging technologies and mobilising resources necessary for their realisation. This paper reviews the hydrogen futures literature, using a six-fold typology to map the state of the art of scenario construction. The paper then explores the expectations embodied in the literature, through the 'answers' it provides to questions about the future of hydrogen. What are the drivers, barriers and challenges facing the development of a hydrogen economy? What are the key technological building blocks required? In what kinds of futures does hydrogen become important? What does a hydrogen economy look like, how and when does it evolve, and what does it achieve? The literature describes a diverse range of possible futures, from decentralised systems based upon small-scale renewables, through to centralised systems reliant on nuclear energy or carbon-sequestration. There is a broad consensus that the hydrogen economy emerges only slowly, if at all, under 'Business as Usual' scenarios. Rapid transitions to hydrogen occur only under conditions of strong governmental support combined with, or as a result of, major 'discontinuities' such as shifts in society's environmental values, 'game changing' technological breakthroughs, or rapid increases in the oil price or speed and intensity of climate change

  7. Climate Scenarios for the NASA / USAID SERVIR Project: Challenges for Multiple Planning Horizons

    Science.gov (United States)

    Robertson, Franklin R.; Roberts, J. B.; Lyon, B.; Funk, C.; Bosilovich, M. G.

    2014-01-01

    SERVIR, an acronym meaning "to serve" in Spanish, is a joint venture between NASA and the U.S. Agency for International Development (USAID) which provides satellite-based Earth observation data, modeling, and science applications to help developing nations in Central America, East Africa and the Himalayas improve environmental decision making. Anticipating climate variability / climate change impacts has now become an important component of the SERVIR efforts to build capacity in these regions. Uncertainty in hydrometeorological components of climate variations and exposure to extreme events across scales from weather to climate are of particular concern. We report here on work to construct scenarios or outlooks that are being developed as input drivers for decision support systems (DSSs) in a variety of settings. These DSSs are being developed jointly by a broad array NASA Applied Science Team (AST) Investigations and user communities in the three SERVIR Hub Regions, Central America, East Africa and the Himalayas. Issues span hydrologic / water resources modeling, agricultural productivity, and forest carbon reserves. The scenarios needed for these efforts encompass seasonal forecasts, interannual outlooks, and likely decadal / multi-decadal trends. Providing these scenarios across the different AST efforts enables some level of integration in considering regional responses to climate events. We will discuss a number of challenges in developing this continuum of scenarios including the identification and "mining" of predictability, addressing multiple continental regions, issues of downscaling global model integrations to regional / local applications (i.e. hydrologic and crop modeling). We compare / contrast the role of the U.S. National Multi- Model Experiment initiative in seasonal forecasts and the CMIP-5 climate model experiments in supporting these efforts. Examples of these scenarios, their use, and an assessment of their utility as well as limitations will

  8. Current and future climate- and air pollution-mediated impacts on human health.

    Science.gov (United States)

    Doherty, Ruth M; Heal, Mathew R; Wilkinson, Paul; Pattenden, Sam; Vieno, Massimo; Armstrong, Ben; Atkinson, Richard; Chalabi, Zaid; Kovats, Sari; Milojevic, Ai; Stevenson, David S

    2009-12-21

    We describe a project to quantify the burden of heat and ozone on mortality in the UK, both for the present-day and under future emission scenarios. Mortality burdens attributable to heat and ozone exposure are estimated by combination of climate-chemistry modelling and epidemiological risk assessment. Weather forecasting models (WRF) are used to simulate the driving meteorology for the EMEP4UK chemistry transport model at 5 km by 5 km horizontal resolution across the UK; the coupled WRF-EMEP4UK model is used to simulate daily surface temperature and ozone concentrations for the years 2003, 2005 and 2006, and for future emission scenarios. The outputs of these models are combined with evidence on the ozone-mortality and heat-mortality relationships derived from epidemiological analyses (time series regressions) of daily mortality in 15 UK conurbations, 1993-2003, to quantify present-day health burdens. During the August 2003 heatwave period, elevated ozone concentrations > 200 microg m-3 were measured at sites in London and elsewhere. This and other ozone photochemical episodes cause breaches of the UK air quality objective for ozone. Simulations performed with WRF-EMEP4UK reproduce the August 2003 heatwave temperatures and ozone concentrations. There remains day-to-day variability in the high ozone concentrations during the heatwave period, which on some days may be explained by ozone import from the European continent.Preliminary calculations using extended time series of spatially-resolved WRF-EMEP4UK model output suggest that in the summers (May to September) of 2003, 2005 & 2006 over 6000 deaths were attributable to ozone and around 5000 to heat in England and Wales. The regional variation in these deaths appears greater for heat-related than for ozone-related burdens.Changes in UK health burdens due to a range of future emission scenarios will be quantified. These future emissions scenarios span a range of possible futures from assuming current air quality

  9. Scenario research: Can the future be predicted?

    DEFF Research Database (Denmark)

    Stacey, Julia; Sonne, Anne-Mette

    2000-01-01

    Mr. Jensen sits at the computer in his office wondering what to cook for dinner. He browses through the web site of his usual supermarket. Today's menu is fish. He skims the recipe that also informs him when, where and how the fish was caught. The fish is quite expensive but it has a story to tel...... and supplemented at workshops - one for each of the four sectors. Experts from industry, trade organisations, retailing, authorities and other interested parties participated....... of the project has been to develop scenarios for four sectors of the Danish food industry - meat, dairy, fish and fruit and vegetables - for 2010. The scenarios are put together with the purpose of making the food industry and food research reflect on which demands their competencies will be met with in various...... possible futures. In the process of creating the scenarios, researchers at MAPP and the Danish Technical University formulated mini scenarios based on their research. The scenarios were used as inspiration in discussions with experts from industry, trade organisations, authorities etc. and later discussed...

  10. Responses of terrestrial ecosystems' net primary productivity to future regional climate change in China.

    Science.gov (United States)

    Zhao, Dongsheng; Wu, Shaohong; Yin, Yunhe

    2013-01-01

    The impact of regional climate change on net primary productivity (NPP) is an important aspect in the study of ecosystems' response to global climate change. China's ecosystems are very sensitive to climate change owing to the influence of the East Asian monsoon. The Lund-Potsdam-Jena Dynamic Global Vegetation Model for China (LPJ-CN), a global dynamical vegetation model developed for China's terrestrial ecosystems, was applied in this study to simulate the NPP changes affected by future climate change. As the LPJ-CN model is based on natural vegetation, the simulation in this study did not consider the influence of anthropogenic activities. Results suggest that future climate change would have adverse effects on natural ecosystems, with NPP tending to decrease in eastern China, particularly in the temperate and warm temperate regions. NPP would increase in western China, with a concentration in the Tibetan Plateau and the northwest arid regions. The increasing trend in NPP in western China and the decreasing trend in eastern China would be further enhanced by the warming climate. The spatial distribution of NPP, which declines from the southeast coast to the northwest inland, would have minimal variation under scenarios of climate change.

  11. Responses of terrestrial ecosystems' net primary productivity to future regional climate change in China.

    Directory of Open Access Journals (Sweden)

    Dongsheng Zhao

    Full Text Available The impact of regional climate change on net primary productivity (NPP is an important aspect in the study of ecosystems' response to global climate change. China's ecosystems are very sensitive to climate change owing to the influence of the East Asian monsoon. The Lund-Potsdam-Jena Dynamic Global Vegetation Model for China (LPJ-CN, a global dynamical vegetation model developed for China's terrestrial ecosystems, was applied in this study to simulate the NPP changes affected by future climate change. As the LPJ-CN model is based on natural vegetation, the simulation in this study did not consider the influence of anthropogenic activities. Results suggest that future climate change would have adverse effects on natural ecosystems, with NPP tending to decrease in eastern China, particularly in the temperate and warm temperate regions. NPP would increase in western China, with a concentration in the Tibetan Plateau and the northwest arid regions. The increasing trend in NPP in western China and the decreasing trend in eastern China would be further enhanced by the warming climate. The spatial distribution of NPP, which declines from the southeast coast to the northwest inland, would have minimal variation under scenarios of climate change.

  12. Energy savings in drastic climate change policy scenarios

    International Nuclear Information System (INIS)

    Isoard, Stephane; Wiesenthal, Tobias

    2005-01-01

    This paper reports a climate change policy scenario compatible with long-term sustainable objectives set at EU level (6th Environment Action Plan). By setting ambitious targets for GHG emissions reduction by 2030, this normative scenario relies on market-based instruments and flexible mechanisms. The integrated policy that is simulated (i.e. addressing energy, transport, agriculture and environmental impacts) constitutes a key outlook for the next 5-year report of the European Environment Agency (EEA). This scenario highlights what it would take to drastically curb EU GHG emissions and how much it might cost. The findings show that such a 'deep reduction' climate policy could work as a powerful catalyst for (1) substantial energy savings, and (2) promoting sustainable energy systems in the long term. The implications of this policy lever on the energy system are many-fold indeed, e.g. a substantial limitation of total energy demand or significant shifts towards energy and environment-friendly technologies on the supply side. Clear and transparent price signals, which are associated with market-based instruments, appear to be a key factor ensuring sufficient visibility for capital investment in energy efficient and environment-friendly options. Finally it is suggested that market-based policy options, which are prone to lead to win-win situations and are of particular interest from an integrated policy-making perspective, would also significantly benefit from an enhanced energy policy framework

  13. Spatially explicit scenario analysis for hydrologic services in an urbanizing agricultural watershed

    Science.gov (United States)

    Qiu, J.; Booth, E.; Carpenter, S. R.; Turner, M.

    2013-12-01

    The sustainability of hydrologic services (benefits to people generated by terrestrial ecosystem effects on freshwater) is challenged by changes in climate and land use. Despite the importance of hydrologic services, few studies have investigated how the provision of ecosystem services related to freshwater quantity and quality may vary in magnitude and spatial pattern for alternative future trajectories. Such analyses may provide useful information for sustaining freshwater resources in the face of a complex and uncertain future. We analyzed the supply of multiple hydrologic services from 2010 to 2070 across a large urbanizing agricultural watershed in the Upper Midwest of the United States, and asked the following: (i) What are the potential trajectories for the supply of hydrologic services under contrasting but plausible future scenarios? (ii) Where on the landscape is the delivery of hydrologic services most vulnerable to future changes? The Nested Watershed scenario represents extreme climate change (warmer temperatures and more frequent extreme events) and a concerted response from institutions, whereas in the Investment in Innovation scenario, climate change is less severe and technological innovations play a major role. Despite more extreme climate in the Nested Watershed scenario, all hydrologic services (i.e., freshwater supply, surface water quality, flood regulation) were maintained or enhanced (~30%) compared to the 2010 baseline, by strict government interventions that prioritized freshwater resources. Despite less extreme climate in the Investment in Innovation scenario and advances in green technology, only surface water quality and flood regulation were maintained or increased (~80%); freshwater supply declined by 25%, indicating a potential future tradeoff between water quality and quantity. Spatially, the locations of greatest vulnerability (i.e., decline) differed by service and among scenarios. In the Nested Watershed scenario, although

  14. Potential recovery of industrial wood and energy wood raw material in different cutting and climate scenarios for Finland

    International Nuclear Information System (INIS)

    Kaerkkaeinen, Leena; Nuutinen, Tuula; Matala, Juho; Kellomaeki, Seppo; Haerkoenen, Kari

    2008-01-01

    The aim of this study was to estimate the simultaneous recovery of industrial wood and raw material for energy wood from cuttings in Finland during the next 50 years. Two cutting scenarios (maximum and sustainable cuttings) and two climate scenarios (current and changing climate) were analysed to determine their impacts on harvesting potential. The analysis was carried out using sample plot and tree data from the ninth National Forest Inventory and a management-oriented large-scale forestry model (MELA) into which the transfer functions based on physiological modelling were incorporated to describe the impacts of climate change. Depending on the climate scenario, the volume of potential recovery of industrial wood in the maximum cutting scenario during the period 2003-2013 varied from 103 to 105 million m 3 a -1 , while the amount of potential energy wood raw material was 35 Tg a -1 . During the period 2043-2053, in the current climate scenario, the potential recovery of industrial wood was 64 million m 3 a -1 and energy wood raw material 22 Tg a -1 , and in the changing climate scenario, 85 million m 3 a -1 and 29 Tg a -1 , respectively. In the sustainable cutting scenario, depending on the climate scenario used, the potential recovery of industrial wood during the period 2003-2013 varied from 74 to 76 million m 3 a -1 , while the amount of potential energy wood was 25 Tg a -1 . During the period 2043-2053, in the current climate scenario, the potential recovery of industrial wood was 80 million m 3 a -1 and energy wood raw material 26 Tg a -1 , and in the changing climate scenario, 88 million m 3 a -1 and 29 Tg a -1 , respectively. (author)

  15. Predicting ecological responses of the Florida Everglades to possible future climate scenarios: Introduction

    Science.gov (United States)

    Aumen, Nicholas G.; Havens, Karl E; Best, G. Ronnie; Berry, Leonard

    2015-01-01

    Florida’s Everglades stretch from the headwaters of the Kissimmee River near Orlando to Florida Bay. Under natural conditions in this flat landscape, water flowed slowly downstream as broad, shallow sheet flow. The ecosystem is markedly different now, altered by nutrient pollution and construction of canals, levees, and water control structures designed for flood control and water supply. These alterations have resulted in a 50 % reduction of the ecosystem’s spatial extent and significant changes in ecological function in the remaining portion. One of the world’s largest restoration programs is underway to restore some of the historic hydrologic and ecological functions of the Everglades, via a multi-billion dollar Comprehensive Everglades Restoration Plan. This plan, finalized in 2000, did not explicitly consider climate change effects, yet today we realize that sea level rise and future changes in rainfall (RF), temperature, and evapotranspiration (ET) may have system-wide impacts. This series of papers describes results of a workshop where a regional hydrologic model was used to simulate the hydrology expected in 2060 with climate changes including increased temperature, ET, and sea level, and either an increase or decrease in RF. Ecologists with expertise in various areas of the ecosystem evaluated the hydrologic outputs, drew conclusions about potential ecosystem responses, and identified research needs where projections of response had high uncertainty. Resource managers participated in the workshop, and they present lessons learned regarding how the new information might be used to guide Everglades restoration in the context of climate change.

  16. Appendix 2. Guide for Running AgMIP Climate Scenario Generation Tools with R in Windows, Version 2.3

    Science.gov (United States)

    Hudson, Nicholas; Ruane, Alexander Clark

    2013-01-01

    This Guide explains how to create climate series and climate change scenarios by using the AgMip Climate team's methodology as outlined in the AgMIP Guide for Regional Assessment: Handbook of Methods and Procedures. It details how to: install R and the required packages to run the AgMIP Climate Scenario Generation scripts, and create climate scenarios from CMIP5 GCMs using a 30-year baseline daily weather dataset. The Guide also outlines a workflow that can be modified for application to your own climate data.

  17. Waterbird habitat in California's Central Valley basins under climate, urbanization, and water management scenarios

    Science.gov (United States)

    Matchett, Elliott L.; Fleskes, Joseph

    2018-01-01

    California's Central Valley provides critical, but threatened habitat and food resources for migrating and wintering waterfowl, shorebirds, and other waterbirds. The Central Valley is comprised of nine basins that were defined by the Central Valley Joint Venture (CVJV) to assist in conservation planning. Basins vary in composition and extent of habitats, which primarily include croplands and wetlands that rely on water supplies shared with other competing human and environmental uses. Changes in climate, urban development, and water supply management are uncertain and could reduce future availability of water supplies supporting waterbird habitats and limit effectiveness of wetland restoration planned by the CVJV to support wintering waterbirds. We modeled 17 plausible scenarios including combinations of three climate projections, three urbanization rates, and five water supply management options to promote agricultural and urban water uses, with and without wetland restoration. Our research examines the reduction in quantity and quality of habitats during the fall migration-wintering period by basin under each scenario, and the efficacy of planned wetland restoration to compensate reductions in flooded areas of wetland habitats. Scenario combinations of projected climate, urbanization, and water supply management options reduced availability of flooded cropland and wetland habitats during fall-winter and degraded the quality of seasonal wetlands (i.e., summer-irrigation for improved forage production), though the extent and frequency of impacts varied by basin. Planned wetland restoration may substantially compensate for scenario-related effects on wetland habitats in each basin. However, results indicate that Colusa, Butte, Sutter, San Joaquin, and Tulare Basins may require additional conservation to support summer-irrigation of seasonal wetlands and winter-flooding of cropland habitats. Still further conservation may be required to provide sufficient areas of

  18. Using scenario planning to evaluate the impacts of climate change on wildlife populations and communities in the Florida Everglades

    Science.gov (United States)

    Catano, Christopher P.; Romañach, Stephanie S.; Beerens, James M.; Pearlstine, Leonard G.; Brandt, Laura A.; Hart, Kristen M.; Mazzotti, Frank J.; Trexler, Joel C.

    2015-01-01

    It is uncertain how climate change will impact hydrologic drivers of wildlife population dynamics in freshwater wetlands of the Florida Everglades, or how to accommodate this uncertainty in restoration decisions. Using projections of climate scenarios for the year 2060, we evaluated how several possible futures could affect wildlife populations (wading birds, fish, alligators, native apple snails, amphibians, threatened and invasive species) across the Everglades landscape and inform planning already underway. We used data collected from prior research and monitoring to parameterize our wildlife population models. Hydrologic data were simulated using a spatially explicit, regional-scale model. Our scenario evaluations show that expected changes in temperature, precipitation, and sea level could significantly alter important ecological functions. All of our wildlife indicators were negatively affected by scenarios with less rainfall and more evapotranspiration. Under such scenarios, habitat suitability was substantially reduced for iconic animals such as wading birds and alligators. Conversely, the increased rainfall scenario benefited aquatic prey productivity and apex predators. Cascading impacts on non-native species is speculative, but increasing temperatures could increase the time between cold events that currently limit expansion and abundance of non-native fishes, amphibians, and reptiles with natural ranges in the tropics. This scenario planning framework underscored the benefits of proceeding with Everglades restoration plans that capture and clean more freshwater with the potential to mitigate rainfall loss and postpone impacts of sea level rise.

  19. Using Scenario Planning to Evaluate the Impacts of Climate Change on Wildlife Populations and Communities in the Florida Everglades

    Science.gov (United States)

    Catano, Christopher P.; Romañach, Stephanie S.; Beerens, James M.; Pearlstine, Leonard G.; Brandt, Laura A.; Hart, Kristen M.; Mazzotti, Frank J.; Trexler, Joel C.

    2015-04-01

    It is uncertain how climate change will impact hydrologic drivers of wildlife population dynamics in freshwater wetlands of the Florida Everglades, or how to accommodate this uncertainty in restoration decisions. Using projections of climate scenarios for the year 2060, we evaluated how several possible futures could affect wildlife populations (wading birds, fish, alligators, native apple snails, amphibians, threatened and invasive species) across the Everglades landscape and inform planning already underway. We used data collected from prior research and monitoring to parameterize our wildlife population models. Hydrologic data were simulated using a spatially explicit, regional-scale model. Our scenario evaluations show that expected changes in temperature, precipitation, and sea level could significantly alter important ecological functions. All of our wildlife indicators were negatively affected by scenarios with less rainfall and more evapotranspiration. Under such scenarios, habitat suitability was substantially reduced for iconic animals such as wading birds and alligators. Conversely, the increased rainfall scenario benefited aquatic prey productivity and apex predators. Cascading impacts on non-native species is speculative, but increasing temperatures could increase the time between cold events that currently limit expansion and abundance of non-native fishes, amphibians, and reptiles with natural ranges in the tropics. This scenario planning framework underscored the benefits of proceeding with Everglades restoration plans that capture and clean more freshwater with the potential to mitigate rainfall loss and postpone impacts of sea level rise.

  20. Deciding the Future: Energy Policy Scenarios to 2050

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-15

    This WEC study is bottom-up regional view of our energy future focusing on policies to ensure energy sustainability. Experts from five regions and all energy domains worked together to produce four different scenarios to predict how differing levels of cooperation and government involvement would affect the energy future of the world.