WorldWideScience

Sample records for future alloy development

  1. Perspective on present and future alloy development efforts on austenitic stainless steels for fusion application

    International Nuclear Information System (INIS)

    Maziasz, P.J.

    1984-01-01

    The purpose of this paper is to address important questions concerning how to effect further alloy development of austenitic stainless steels for resistance, and to what extent the behavior of other properties under irradiation, such as strength/embrittlement, fatigue/irradiation creep, corrosion (under irradiation), and radiation-induced activation must be influenced. To summarize current understanding, helium has been found to have major effects on swelling and embrittlement, but several metallurgical avenues are available for significant improvement relative to type 316 stainless steel. Studies on fatigue and irradiation creep, particularly including helium effects, are preliminary but have yet to reveal engineering problems requiring additional alloy development remedies. The effects of irradiation on corrosion behavior are unknown, but higher alloy nickel contents make thermal corrosion in lithium worse. 67 refs

  2. Shape Memory Alloy Research and Development at NASA Glenn - Current and Future Progress

    Science.gov (United States)

    Benafan, Othmane

    2015-01-01

    Shape memory alloys (SMAs) are a unique class of multifunctional materials that have the ability to recover large deformations or generate high stresses in response to thermal, mechanical and or electromagnetic stimuli. These abilities have made them a viable option for actuation systems in aerospace, medical, and automotive applications, amongst others. However, despite many advantages and the fact that SMA actuators have been developed and used for many years, so far they have only found service in a limited range of applications. In order to expand their applications, further developments are needed to increase their reliability and stability and to address processing, testing and qualification needed for large-scale commercial application of SMA actuators.

  3. Future development

    International Nuclear Information System (INIS)

    Zavitz, J.; Hetherington, C.

    1997-01-01

    Issues regarding future development by oil and gas companies in Canada's Arctic and the Beaufort Sea were discussed. It was suggested in the Berger report that Northern development should be under the control of the people whose lives and economy are being changed. Aboriginal people are now much more sophisticated politically, and have a better understanding of what is involved. Most of them would like the financial benefits from development, but the development would have to be on their terms. Most people involved with Arctic oil exploration feel that there is enough oil in the Arctic to warrant production. (Reserves in the Beaufort Sea are estimated at two billion barrels of good quality oil). If development were to continue, there exist two methods of transportation to move the oil to market. Gulf, Imperial Oil and Panarctic favour the use of pipelines, whereas Dome Petroleum Ltd. favours the use of ice-breaking tankers. In each case the favored option seems to depend upon the location of the company's leases, the capital and operating costs, and the potential environmental impacts. Undoubtedly, any future development will be guided by the scientific information and technical expertise of oil industry pioneers of the 1960s and the 1970s, and the wisdom gained from the experiences of the many participants whose views and insights are recorded in this book

  4. Vacuum hot-pressed beryllium and TiC dispersion strengthened tungsten alloy developments for ITER and future fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang, E-mail: xliu@swip.ac.cn [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, Sichuan (China); Chen, Jiming; Lian, Youyun; Wu, Jihong; Xu, Zengyu; Zhang, Nianman; Wang, Quanming; Duan, Xuro [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, Sichuan (China); Wang, Zhanhong; Zhong, Jinming [Northwest Rare Metal Material Research Institute, CNMC, Ningxia Orient Group Co. Ltd.,No.119 Yejin Road, Shizuishan City, Ningxia,753000 (China)

    2013-11-15

    Beryllium and tungsten have been selected as the plasma facing materials of the ITER first wall (FW) and divertor chamber, respectively. China, as a participant in ITER, will share the manufacturing tasks of ITER first-wall mockups with the European Union and Russia. Therefore ITER-grade beryllium has been developed in China and a kind of vacuum hot-pressed (VHP) beryllium, CN-G01, was characterized for both physical, and thermo-mechanical properties and high heat flux performance, which indicated an equivalent performance to U.S. grade S-65C beryllium, a reference grade beryllium of ITER. Consequently CN-G01 beryllium has been accepted as the armor material of ITER-FW blankets. In addition, a modification of tungsten by TiC dispersion strengthening was investigated and a W–TiC alloy with TiC content of 0.1 wt.% has been developed. Both surface hardness and recrystallization measurements indicate its re-crystallization temperature approximately at 1773 K. Deuterium retention and thermal desorption behaviors of pure tungsten and the TiC alloy were also measured by deuterium ion irradiation of 1.7 keV energy to the fluence of 0.5–5 × 10{sup 18} D/cm{sup 2}; a main desorption peak at around 573 K was found and no significant difference was observed between pure tungsten and the tungsten alloy. Further characterization of the tungsten alloy is in progress.

  5. Advanced smart tungsten alloys for a future fusion power plant

    Science.gov (United States)

    Litnovsky, A.; Wegener, T.; Klein, F.; Linsmeier, Ch; Rasinski, M.; Kreter, A.; Tan, X.; Schmitz, J.; Mao, Y.; Coenen, J. W.; Bram, M.; Gonzalez-Julian, J.

    2017-06-01

    The severe particle, radiation and neutron environment in a future fusion power plant requires the development of advanced plasma-facing materials. At the same time, the highest level of safety needs to be ensured. The so-called loss-of-coolant accident combined with air ingress in the vacuum vessel represents a severe safety challenge. In the absence of a coolant the temperature of the tungsten first wall may reach 1200 °C. At such a temperature, the neutron-activated radioactive tungsten forms volatile oxide which can be mobilized into atmosphere. Smart tungsten alloys are being developed to address this safety issue. Smart alloys should combine an acceptable plasma performance with the suppressed oxidation during an accident. New thin film tungsten-chromium-yttrium smart alloys feature an impressive 105 fold suppression of oxidation compared to that of pure tungsten at temperatures of up to 1000 °C. Oxidation behavior at temperatures up to 1200 °C, and reactivity of alloys in humid atmosphere along with a manufacturing of reactor-relevant bulk samples, impose an additional challenge in smart alloy development. First exposures of smart alloys in steady-state deuterium plasma were made. Smart tungsten-chroimium-titanium alloys demonstrated a sputtering resistance which is similar to that of pure tungsten. Expected preferential sputtering of alloying elements by plasma ions was confirmed experimentally. The subsequent isothermal oxidation of exposed samples did not reveal any influence of plasma exposure on the passivation of alloys.

  6. Recent research and developments on wrought magnesium alloys

    Directory of Open Access Journals (Sweden)

    Sihang You

    2017-09-01

    Full Text Available Wrought magnesium alloys attract special interests as lightweight structural material due to their homogeneous microstructure and enhanced mechanical properties compared to as-cast alloys. In this contribution, recent research and developments on wrought magnesium alloys are reviewed from the viewpoint of the alloy design, focusing on Mg-Al, Mg-Zn and Mg-rare earth (RE systems. The effects of different alloying elements on the microstructure and mechanical properties are described considering their strengthening mechanisms, e.g. grain refinement, precipitation and texture hardening effect. Finally, the new alloy design and also the future research of wrought magnesium alloys to improve their mechanical properties are discussed.

  7. Alloy development for cladding and duct applications

    International Nuclear Information System (INIS)

    Straalsund, J.L.; Johnson, G.D.

    1981-01-01

    Three general classes of materials under development for cladding and ducts are listed. Solid solution strengthened, or austenitic, alloys are Type 316 stainless steel and D9. Precipitation hardened (also austenitic) alloys consist of D21, D66 and D68. These alloys are similar to such commercial alloys as M-813, Inconel 706, Inconel 718 and Nimonic PE-16. The third general class of alloys is composed of ferritic alloys, with current emphasis being placed on HT-9, a tempered martensitic alloy, and D67, a delta-ferritic steel. The program is comprised of three parallel paths. The current reference, or first generation alloy, is 20% cold worked Type 316 stainless steel. Second generation alloys for near-term applications include D9 and HT-9. Third generation materials consist of the precipitation strengthened steels and ferritic alloys, and are being considered for implementation at a later time than the first and second generation alloys. The development of second and third generation materials was initiated in 1974 with the selection of 35 alloys. This program has proceeded to today where there are six advanced alloys being evaluated. These alloys are the developmental alloys D9, D21, D57, D66 and D68, together with the commerical alloy, HT-9. The status of development of these alloys is summarized

  8. New Developments of Ti-Based Alloys for Biomedical Applications

    Science.gov (United States)

    Li, Yuhua; Yang, Chao; Zhao, Haidong; Qu, Shengguan; Li, Xiaoqiang; Li, Yuanyuan

    2014-01-01

    Ti-based alloys are finding ever-increasing applications in biomaterials due to their excellent mechanical, physical and biological performance. Nowdays, low modulus β-type Ti-based alloys are still being developed. Meanwhile, porous Ti-based alloys are being developed as an alternative orthopedic implant material, as they can provide good biological fixation through bone tissue ingrowth into the porous network. This paper focuses on recent developments of biomedical Ti-based alloys. It can be divided into four main sections. The first section focuses on the fundamental requirements titanium biomaterial should fulfill and its market and application prospects. This section is followed by discussing basic phases, alloying elements and mechanical properties of low modulus β-type Ti-based alloys. Thermal treatment, grain size, texture and properties in Ti-based alloys and their limitations are dicussed in the third section. Finally, the fourth section reviews the influence of microstructural configurations on mechanical properties of porous Ti-based alloys and all known methods for fabricating porous Ti-based alloys. This section also reviews prospects and challenges of porous Ti-based alloys, emphasizing their current status, future opportunities and obstacles for expanded applications. Overall, efforts have been made to reveal the latest scenario of bulk and porous Ti-based materials for biomedical applications. PMID:28788539

  9. Development of zirconium alloy tube manufacturing technology

    International Nuclear Information System (INIS)

    Kim, In Kyu; Park, Chan Hyun; Lee, Seung Hwan; Chung, Sun Kyo

    2009-01-01

    In late 2004, Korea Nuclear Fuel Company (KNF) launched a government funded joint development program with Westinghouse Electric Co. (WEC) to establish zirconium alloy tube manufacturing technology in Korea. Through this program, KNF and WEC have developed a state of the art facility to manufacture high quality nuclear tubes. KNF performed equipment qualification tests for each manufacturing machine with the support of WEC, and independently carried out product qualification tests for each tube product to be commercially produced. Apart from those tests, characterization test program consisting of specification test and characterization test was developed by KNF and WEC to demonstrate to customers of KNF the quality equivalency of products manufactured by KNF and WEC plants respectively. As part of establishment of performance evaluation technology for zirconium alloy tube in Korea, KNF carried out analyses of materials produced for the characterization test program using the most advanced techniques. Thanks to the accomplishment of the development of zirconium alloy tube manufacturing technology, KNF is expected to acquire positive spin off benefits in terms of technology and economy in the near future

  10. Progress in development of iron base alloys

    International Nuclear Information System (INIS)

    Zackay, V.V.; Parker, E.R.

    1980-01-01

    The ways of development of new iron base high-strength alloys are considered. Perspectiveness of ferritic steel strengthening with intermetallides (TaFe 2 , for instance) is shown. Favourable combination of plasticity, strength and fracture toughness in nickel-free iron-manganese alloys (16-20%) is also pointed out. A strength level of alloyed maraging steels can be achieved by changes in chemical composition and by proper heat treatments of low- and medium-alloyed steels

  11. Biodegradable Magnesium Alloys Developed as Bone Repair Materials: A Review

    Directory of Open Access Journals (Sweden)

    Chen Liu

    2018-01-01

    Full Text Available Bone repair materials are rapidly becoming a hot topic in the field of biomedical materials due to being an important means of repairing human bony deficiencies and replacing hard tissue. Magnesium (Mg alloys are potentially biocompatible, osteoconductive, and biodegradable metallic materials that can be used in bone repair due to their in situ degradation in the body, mechanical properties similar to those of bones, and ability to positively stimulate the formation of new bones. However, rapid degradation of these materials in physiological environments may lead to gas cavities, hemolysis, and osteolysis and thus, hinder their clinical orthopedic applications. This paper reviews recent work on the use of Mg alloy implants in bone repair. Research to date on alloy design, surface modification, and biological performance of Mg alloys is comprehensively summarized. Future challenges for and developments in biomedical Mg alloys for use in bone repair are also discussed.

  12. Development of Metallic Sensory Alloys

    Science.gov (United States)

    Wallace Terryl A.; Newman, John A.; Horne, Michael R.; Messick, Peter L.

    2010-01-01

    Existing nondestructive evaluation (NDE) technologies are inherently limited by the physical response of the structural material being inspected and are therefore not generally effective at the identification of small discontinuities, making the detection of incipient damage extremely difficult. One innovative solution to this problem is to enhance or complement the NDE signature of structural materials to dramatically improve the ability of existing NDE tools to detect damage. To address this need, a multifunctional metallic material has been developed that can be used in structural applications. The material is processed to contain second phase sensory particles that significantly improve the NDE response, enhancing the ability of conventional NDE techniques to detect incipient damage both during and after flight. Ferromagnetic shape-memory alloys (FSMAs) are an ideal material for these sensory particles as they undergo a uniform and repeatable change in both magnetic properties and crystallographic structure (martensitic transformation) when subjected to strain and/or temperature changes which can be detected using conventional NDE techniques. In this study, the use of a ferromagnetic shape memory alloy (FSMA) as the sensory particles was investigated.

  13. Liquid metal corrosion considerations in alloy development

    International Nuclear Information System (INIS)

    Tortorelli, P.F.; DeVan, J.H.

    1984-01-01

    Liquid metal corrosion can be an important consideration in developing alloys for fusion and fast breeder reactors and other applications. Because of the many different forms of liquid metal corrosion (dissolution, alloying, carbon transfer, etc.), alloy optimization based on corrosion resistance depends on a number of factors such as the application temperatures, the particular liquid metal, and the level and nature of impurities in the liquid and solid metals. The present paper reviews the various forms of corrosion by lithium, lead, and sodium and indicates how such corrosion reactions can influence the alloy development process

  14. Future developments and applications of nitrogen-bearing steels ...

    Indian Academy of Sciences (India)

    Abstract. After considerations related with the global frame of the demand of society in the field of materials and some recalling of basic properties and principles of nitrogen alloying, possible future developments are listed and discussed.

  15. Recent developments in advanced aircraft aluminium alloys

    International Nuclear Information System (INIS)

    Dursun, Tolga; Soutis, Costas

    2014-01-01

    Highlights: • To compete with composites, performance of aluminium alloys should be increased. • Al–Li alloys have higher strength, fracture and fatigue/corrosion resistance. • Improvements of aerospace Al alloys are due to optimised solute content and ratios. • In selecting new materials, there should be no reduction in the level of safety. • The use of hybrid materials could provide additional opportunities for Al alloys. - Abstract: Aluminium alloys have been the primary material for the structural parts of aircraft for more than 80 years because of their well known performance, well established design methods, manufacturing and reliable inspection techniques. Nearly for a decade composites have started to be used more widely in large commercial jet airliners for the fuselage, wing as well as other structural components in place of aluminium alloys due their high specific properties, reduced weight, fatigue performance and corrosion resistance. Although the increased use of composite materials reduced the role of aluminium up to some extent, high strength aluminium alloys remain important in airframe construction. Aluminium is a relatively low cost, light weight metal that can be heat treated and loaded to relatively high level of stresses, and it is one of the most easily produced of the high performance materials, which results in lower manufacturing and maintenance costs. There have been important recent advances in aluminium aircraft alloys that can effectively compete with modern composite materials. This study covers latest developments in enhanced mechanical properties of aluminium alloys, and high performance joining techniques. The mechanical properties on newly developed 2000, 7000 series aluminium alloys and new generation Al–Li alloys are compared with the traditional aluminium alloys. The advantages and disadvantages of the joining methods, laser beam welding and friction stir welding, are also discussed

  16. Development of high performance ODS alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Lin [Texas A & M Univ., College Station, TX (United States); Gao, Fei [Univ. of Michigan, Ann Arbor, MI (United States); Garner, Frank [Texas A & M Univ., College Station, TX (United States)

    2018-01-29

    This project aims to capitalize on insights developed from recent high-dose self-ion irradiation experiments in order to develop and test the next generation of optimized ODS alloys needed to meet the nuclear community's need for high strength, radiation-tolerant cladding and core components, especially with enhanced resistance to void swelling. Two of these insights are that ferrite grains swell earlier than tempered martensite grains, and oxide dispersions currently produced only in ferrite grains require a high level of uniformity and stability to be successful. An additional insight is that ODS particle stability is dependent on as-yet unidentified compositional combinations of dispersoid and alloy matrix, such as dispersoids are stable in MA957 to doses greater than 200 dpa but dissolve in MA956 at doses less than 200 dpa. These findings focus attention on candidate next-generation alloys which address these concerns. Collaboration with two Japanese groups provides this project with two sets of first-round candidate alloys that have already undergone extensive development and testing for unirradiated properties, but have not yet been evaluated for their irradiation performance. The first set of candidate alloys are dual phase (ferrite + martensite) ODS alloys with oxide particles uniformly distributed in both ferrite and martensite phases. The second set of candidate alloys are ODS alloys containing non-standard dispersoid compositions with controllable oxide particle sizes, phases and interfaces.

  17. Future USA development

    International Nuclear Information System (INIS)

    Stephen, J.D.; Biancheria, A.; Leibnitz, D.; O'Reilly, B.D.; Liu, Y.Y.; Labar, M.P.; Gneiting, B.C.

    1979-01-01

    The planning for further development in the USA at this time is a mixture of expectation and guessing. Modeling development is certain to continue, but the target reactor is uncertain. The next plant may or may not use the FFTR driver fuel design. The planning, therefore, emphasizes fundamentals and flexibility. There are many options to be modeled. The FFTF driver fuel performance in FFTF must be evaluated; both the reference and improved designs. A decision to use the FFTR driver design in the large plant will demand predictions on the effects of axial blankets, constant power (rather than decreasing) throughout life, and power changes, behavior beyond breach and design basis transients in large plants. A decision favoring a lower doubling time oxide design adds the effects of higher strength/lower swelling alloys, increased pin diameter, reduced cladding thickness/diameter, increased smeared density, gap versus pellet density, and reduced pin pitch/diameter. A helium bonded carbide design adds concern about increased potential for fuel-cladding-assembly mechanical interactions. And blanket pin performance predictions, either in a homogeneous or a heterogeneous core, add an increasing power history and enhanced assembly interactions. It is possible that the decision will be to choose a first core and retain all options for later cores. The modeling objective, for whatever options are chosen, is to predict the effect of normal and off-normal design conditions on performance limits (i.e., fuel temperature, pin deformation, pin lifetime). Several significant uncertainties in the mechanisms associated with the performance limits remain and will be addressed. These include gap closure, gap conductance and fuel properties at higher burnup, fuel-fission product reactions, retained gas, breach mechanisms, assembly interactions and behavior beyond breach, plus establishing appropriate criteria. The LIFE system, with its elements of 1D and 2D fundamental modeling

  18. New barrierless copper-alloy film for future applications

    Science.gov (United States)

    Lin, Chon-Hsin Lin

    2015-09-01

    Since Cu metallization results in a conductivity and an electromigration resistance greater than those of Al, it has become popular for making Si-based interconnects for numerous devices in the field of microelectronics. Following the current trend of miniaturization required for most electronic components, there is a greater need for further size reduction in Si-based devices. The most critical side effect of size reduction is the increase in electronic scattering and resistivity when the barrier-layer thickness is further reduced. To explore advanced Cu-metallization methods and to develop a more economical manufacturing process for Cu-alloy films, the development of Cu materials having better quality and higher thermal stability becomes imperative for the metallization and annealing processes. For this purpose, we first fabricated Cu(GeNx) films and examined their thermal stability and electrical reliability after either cyclic or isothermal annealing. The excellent thermal and electrical properties make these new Cu-alloy films highly promising for applications that require more reliable and inexpensive copper interconnects. In this study, we fabricated Cu alloy films by doping a minute amount of Ge or GeNx, respectively, into the Cu films via barrierless Cu metallization, an inexpensive manufacturing method. Using these newly fabricated alloy films, we were able to eliminate or at least substantially reduce the detrimental interaction between the alloy and the barrierless Si substrate. The Cu(GeNx) films also exhibited high thermal stability, low resistivity and leakage current, and long time-dependent dielectric breakdown (TDDB) lifetimes, making such novel films a candidate for high-quality, economical, and more reliable Cu interconnects.

  19. Development of New Heats of Advanced Ferritic/Martensitic Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pestovich, Kimberly Shay [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Anderoglu, Osman [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aydogan, Eda [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-23

    The Fuel Cycle Research and Development program is investigating methods of transmuting minor actinides in various fuel cycle options. To achieve this goal, new fuels and cladding materials must be developed and tested to high burnup levels (e.g. >20%) requiring cladding to withstand very high doses (greater than 200 dpa) while in contact with the coolant and the fuel. To develop and qualify materials to a total fluence greater than 200 dpa requires development of advanced alloys and irradiations in fast reactors to test these alloys. Recent results from testing numerous ferritic/martensitic steels at low temperatures suggest that improvements in low temperature radiation tolerance can be achieved through carefully controlling the nitrogen content in these alloys. Thus, four new heats of HT-9 were produced with controlled nitrogen content: two by Metalwerks and two by Sophisticated Alloys. Initial results on these new alloys are presented including microstructural analysis and hardness testing. Future testing will include irradiation testing with ions and in reactor.

  20. Manufacturing development of low activation vanadium alloys

    International Nuclear Information System (INIS)

    Smith, J.P.; Johnson, W.R.; Baxi, C.B.

    1996-10-01

    General Atomics is developing manufacturing methods for vanadium alloys as part of a program to encourage the development of low activation alloys for fusion use. The culmination of the program is the fabrication and installation of a vanadium alloy structure in the DIII-D tokamak as part of the Radiative Divertor modification. Water-cooled vanadium alloy components will comprise a portion of the new upper divertor structure. The first step, procuring the material for this program has been completed. The largest heat of vanadium alloy made to date, 1200 kg of V-4Cr-4Ti, has been produced and is being converted into various product forms. Results of many tests on the material during the manufacturing process are reported. Research into potential fabrication methods has been and continues to be performed along with the assessment of manufacturing processes particularly in the area of joining. Joining of vanadium alloys has been identified as the most critical fabrication issue for their use in the Radiative Divertor Program. Joining processes under evaluation include resistance seam, electrodischarge (stud), friction and electron beam welding. Results of welding tests are reported. Metallography and mechanical tests are used to evaluate the weld samples. The need for a protective atmosphere during different welding processes is also being determined. General Atomics has also designed, manufactured, and will be testing a helium-cooled, high heat flux component to assess the use of helium cooled vanadium alloy components for advanced tokamak systems. The component is made from vanadium alloy tubing, machined to enhance the heat transfer characteristics, and joined to end flanges to allow connection to the helium supply. Results are reported

  1. Developing precipitation hardenable high entropy alloys

    Science.gov (United States)

    Gwalani, Bharat

    High entropy alloys (HEAs) is a concept wherein alloys are constructed with five or more elements mixed in equal proportions; these are also known as multi-principle elements (MPEs) or complex concentrated alloys (CCAs). This PhD thesis dissertation presents research conducted to develop precipitation-hardenable high entropy alloys using a much-studied fcc-based equi-atomic quaternary alloy (CoCrFeNi). Minor additions of aluminium make the alloy amenable for precipitating ordered intermetallic phases in an fcc matrix. Aluminum also affects grain growth kinetics and Hall-Petch hardenability. The use of a combinatorial approach for assessing composition-microstructure-property relationships in high entropy alloys, or more broadly in complex concentrated alloys; using laser deposited compositionally graded AlxCrCuFeNi 2 (0 mechanically processed via conventional techniques. The phase stability and mechanical properties of these alloys have been investigated and will be presented. Additionally, the activation energy for grain growth as a function of Al content in these complex alloys has also been investigated. Change in fcc grain growth kinetic was studied as a function of aluminum; the apparent activation energy for grain growth increases by about three times going from Al0.1CoCrFeNi (3% Al (at%)) to Al0.3CoCrFeNi. (7% Al (at%)). Furthermore, Al addition leads to the precipitation of highly refined ordered L12 (gamma') and B2 precipitates in Al0.3CoCrFeNi. A detailed investigation of precipitation of the ordered phases in Al0.3CoCrFeNi and their thermal stability is done using atom probe tomography (APT), transmission electron microscopy (TEM) and Synchrotron X-ray in situ and ex situ analyses. The alloy strengthened via grain boundary strengthening following the Hall-Petch relationship offers a large increment of strength with small variation in grain size. Tensile strength of the Al0.3CoFeNi is increased by 50% on precipitation fine-scale gamma' precipitates

  2. Aeronautical Cast Ti Alloy and Forming Technology Development

    OpenAIRE

    ZHANG Meijuan; NAN Hai; JU Zhongqiang; GAO Fuhui; QIE Xiwang; ZHU Langping

    2016-01-01

    The application and feature of Ti alloy and TiAl alloy for aviation at home and abroad were briefly introduced. According to the patent application status in Ti alloy field, the development of Ti alloy casting technology was analyzed in the recent thirty years, especially the transformation in aviation. Along with the development of aeronautional manufacturing technology and demand of high performance aircraft, Ti alloy casting is changing towards to be large, integral and complicated, and th...

  3. Future Developments of QMS

    Directory of Open Access Journals (Sweden)

    Ph. D. Vidosav D. Majstorovic

    2009-12-01

    Full Text Available ISO technical committee ISO/TC 176 is responsible for the ISO 9000 family of standards for quality management and quality assurance. National delegations of 81 countries participate in its work, while another 21 (February 2009 countries have observer status. The ISO 9000 family of international quality management standards and guidelines (totally 18, has earned a global reputation as a basis for establishing effective and efficient quality management system.This paper show basic information about ISO 9001:2008, ISO 9004:2009 and future ISO TC 176 on advanced QMS model (probably ISO 9001:2015.

  4. Development of new ferritic alloys reinforced by nano titanium nitrides

    International Nuclear Information System (INIS)

    Mathon, M.H.; Perrut, M.; Poirier, L.; Ratti, M.; Hervé, N.; Carlan, Y. de

    2015-01-01

    Nano-reinforced steels are considered for future nuclear reactors or for application at high temperature like the heat exchangers tubes or plates. Oxide Dispersion Strengthened (ODS) alloys are the most known of the nano-reinforced alloys. They exhibit high creep strength as well as high resistance to radiation damage. This article deals with the development of new nano reinforced alloys called Nitride Dispersed Strengthened (NDS). Those are also considered for nuclear applications and could exhibit higher ductility with a simplest fabrication way. Two main fabrication routes were studied: the co-milling of Fe–18Cr1W0.008N and TiH 2 powders and the plasma nitration at low temperature of a Fe–18Cr1W0.8Ti powder. The materials were studied mainly by Small Angle Neutron Scattering. The feasibility of the reinforcement by nano-nitride particles is demonstrated. The final size of the nitrides can be similar (few nanometers) to the nano-oxides observed in ODS alloys. The mechanical properties of the new NDS show an amazing ductility at high temperature for a nano-reinforced alloy

  5. Development of new ferritic alloys reinforced by nano titanium nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Mathon, M.H., E-mail: marie-helene.mathon@cea.fr [Laboratoire Léon Brillouin, CEA-CNRS, CEA/Saclay, 91191 Gif-sur-Yvette (France); Perrut, M., E-mail: mikael.perrut@onera.fr [Laboratoire Léon Brillouin, CEA-CNRS, CEA/Saclay, 91191 Gif-sur-Yvette (France); Poirier, L., E-mail: poirier@nitruvid.com [Bodycote France and Belgium, 9 r Jean Poulmarch, 95100 Argenteuil (France); Ratti, M., E-mail: mathieu.ratti@snecma.fr [CEA, DEN, Service de Recherches Métallurgiques Appliquées, F91191 Gif-sur-Yvette (France); Hervé, N., E-mail: nicolas.herve@cea.fr [CEA, DRT, LITEN, F38054 Grenoble (France); Carlan, Y. de, E-mail: yann.decarlan@cea.fr [CEA, DEN, Service de Recherches Métallurgiques Appliquées, F91191 Gif-sur-Yvette (France)

    2015-01-15

    Nano-reinforced steels are considered for future nuclear reactors or for application at high temperature like the heat exchangers tubes or plates. Oxide Dispersion Strengthened (ODS) alloys are the most known of the nano-reinforced alloys. They exhibit high creep strength as well as high resistance to radiation damage. This article deals with the development of new nano reinforced alloys called Nitride Dispersed Strengthened (NDS). Those are also considered for nuclear applications and could exhibit higher ductility with a simplest fabrication way. Two main fabrication routes were studied: the co-milling of Fe–18Cr1W0.008N and TiH{sub 2} powders and the plasma nitration at low temperature of a Fe–18Cr1W0.8Ti powder. The materials were studied mainly by Small Angle Neutron Scattering. The feasibility of the reinforcement by nano-nitride particles is demonstrated. The final size of the nitrides can be similar (few nanometers) to the nano-oxides observed in ODS alloys. The mechanical properties of the new NDS show an amazing ductility at high temperature for a nano-reinforced alloy.

  6. Sustainable development. Uncertain futures

    International Nuclear Information System (INIS)

    Leveque, Ch.; Sciama, Y.

    2005-01-01

    The last 30 years show that the human being did not dominate the Nature. After an introduction on the historical relations between the human and the environment, the authors present the different research ways (irrigation with recovery, renewable energies, new agriculture,...). They show that science is not always the enemy of the sustainable development. The third part presents the constraints that the society puts on the way of the sustainable development, which explain the limitations of the progress. (A.L.B.)

  7. FINANCING SME FUTURE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Viorica CERBUSCA

    2015-04-01

    Full Text Available The paper highlights the problems faced by the SMEs in accessing adequate financing as one of the most significant barriers of the sector. Financial access is critical for SMEs’ growth and development. At the same time, the author emphasize that there is no unique way of financing SMEs. The need depends on the stage of maturity and size of the enterprise. In order to facilitate the SME access to finance it is necessary to adapt the best international practices and to adapt them at the local condition. Article aims to present microfinancing as a tool that could improve the SME access to finance, thus contributing to the economic development of the country by creating new jobs, new products and services

  8. Development of Combinatorial Methods for Alloy Design and Optimization

    International Nuclear Information System (INIS)

    Pharr, George M.; George, Easo P.; Santella, Michael L

    2005-01-01

    rapid structural and chemical characterization of alloy libraries was developed based on high intensity x-radiation available at synchrotron sources such as the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). With the technique, structural and chemical characterization of up to 2500 discrete positions on a library can made in a period of less than 4 hours. Among the parameters that can be measured are the chemical composition, crystal structure, lattice parameters, texture, and grain size. From these, one can also deduce isothermal sections of ternary phase diagrams. The equipment and techniques needed to do this are now in place for use in future combinatorial studies at the ORNL beam line at the APS. In conjunction with the chemical and structural investigations, nanoindentation techniques were developed to investigate the mechanical properties of the combinatorial libraries. The two primary mechanical properties of interest were the elastic modulus, E, and hardness, H, both of which were measured on alloy library surfaces with spatial resolutions of better than 1 m. A nanoindentation testing system at ORNL was programmed to make a series of indentations at specified locations on the library surface and automatically collect and store all the data needed to obtain hardness and modulus as a function of position. Approximately 200 indentations can be made during an overnight run, which allows for mechanical property measurement over a wide range of chemical composition in a relatively short time. Since the materials based on the Fe-Ni-Cr system often find application in highly carburizing and harsh chemical environments, simple techniques were developed to assess the resistance of Fe-Ni-Cr alloy libraries to carburization and corrosion. Alloy libraries were carburized by standard techniques, and the effectiveness of the carburization at various points along the sample surface was assessed by nanoindentation hardness measurement. Corrosion tests were

  9. Summary of Future Developments.

    Science.gov (United States)

    Zolton, Jessica R; Decherney, Alan

    2017-09-01

    Endometriosis is a chronic disease with the potential to cause devastating clinical manifestations such as infertility and chronic pelvic disease. Current treatment is limited to surgical intervention and pharmacologic therapy targeting estrogen and progesterone to suppress ectopic endometrial tissue proliferation. Undesired side effects and contraindications to the use of hormonal medications may reduce treatment options. As the pathogenesis of endometriosis continues to be investigated, new therapies will emerge. The identification of genes involved in the development of endometriosis may allow targeted therapy to prevent or cure disease. In addition, increasing knowledge of the inflammatory pathways that promote ectopic endometrial growth will permit the development of pharmacologic agents to manipulate these signaling pathways. Utilization of selective progesterone receptor modulators, aromatase inhibitors, and modern gonadotropin-releasing hormone antagonists provide more options to manage disease when traditional treatment fails. Individualized therapeutic strategies will soon be a reality as a greater understanding of endometriosis is obtained through the investigation of genomic studies, molecular pathways, and environmental influences.

  10. Progressive degradation of alloy 690 and the development of a significant improvement in alloy 800CR

    International Nuclear Information System (INIS)

    Staehle, Roger W.; Arioka, Koji; Tapping, Robert

    2015-01-01

    The present most widely used alloys for tubing in steam generators and structural materials in water cooled reactors are Alloy 690 and Alloy 800. However, both alloys, while improved over Alloy 600 may not meet the needs of longer range applications in the range of 80-100 years. Alloy 690 sustains damage resulting from the formation of cavities at grain boundaries which eventually cover about 50% of the area of the grain boundaries with the remainder covering being covered with carbides. The cavities seem to nucleate on the carbides leaving the grain boundaries a structure of cavities and carbides. Such a structure will lead the Alloy 690 to fail completely. Normal Alloy 800 does not produce such cavities and probably retains a large amount of its corrosion resistance but does sustain progressive SCC at low rate. A new alloy, 800CR, has been developed in a collaboration among Arioka, Tapping, and Staehle. This alloy is based on a Cr composition of 23.5-27% with the remainder retaining the previous Alloy 800 composition. 800CR sustains a crack velocity about 100 times less than Alloy 690 and a negligible rate of initiation. The 800CR, alloy is now seeking a patent. (authors)

  11. Alloy development for high burnup cladding (PWR)

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, R. [Kraftwerk Union AG, Mulheim (Germany); Jeong, Y.H.; Baek, K.H.; Kim, S.J.; Choi, B.K.; Kim, J.M. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-04-01

    An overview on current alloy development for high burnup PWR fuel cladding is given. It is mainly based on literature data. First, the reasons for an increase of the current mean discharge burnup from 35 MWd / kg(U) to 70 MWd / kg(U) are outlined. From the material data, it is shown that a batch average burnup of 60-70 MWd / kg(U), as aimed by many fuel vendors, can not be achieved with stand (=ASTM-) Zry-4 cladding tubes without violating accepted design criteria. Specifically criteria which limit maximum oxide scale thickness and maximum hydrogen content, and to a less degree, maximum creep and growth rate, can not be achieved. The development potential of standard Zry-4 is shown. Even when taking advantage of this potential, it is shown that an 'improved' Zry-4 is reaching its limits when it achieves the target burnup. The behavior of some Zr alloys outside the ASTM range is shown, and the advantages and disadvantages of the 3 alloy groups (ZrSn+transition metals, ZrNb, ZrSnNb+transition metals) which are currently considered to have the development potential for high burnup cladding materials are depicted. Finally, conclusions are drawn. (author). 14 refs., 11 tabs., 82 figs.

  12. Development of Zirconium alloys (for pressure tubes)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Kwon, Sang Chul; Choo, Ki Nam; Jung, Chung Hwan; Yim, Kyong Soo; Kim, Sung Soo; Baek, Jong Hyuk; Jeong, Yong Hwan; Kim, Kyong Ho; Cho, Hae Dong [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of); Hwang, S. K.; Kim, M. H. [Inha Univ., Incheon (Korea, Republic of); Kwon, S. I [Korea Univ., Seoul (Korea, Republic of); Kim, I. S. [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of)

    1997-09-01

    The objective of this research is to set up the basic technologies for the evaluation of pressure tube integrity and to develop improved zirconium alloys to prevent pressure tube failures due to DHC and hydride blister caused by excessive creep-down of pressure tubes. The experimental procedure and facilities for characterization of pressure tubes were developed. The basic research related to a better understanding of the in-reactor performances of pressure tubes leads to noticeable findings for the first time : the microstructural effect on corrosion and hydrogen pick-up behavior of Zr-2.5Nb pressure tubes, texture effect on strength and DHC resistance and enhanced recrystallization by Fe in zirconium alloys and etc. Analytical methodology for the assessment of pressure tubes with surface flaws was set up. A joint research is being under way with AECL to determine the fracture toughness of O-8 at the EOL (End of Life) that had been quadruple melted and was taken out of the Wolsung Unit-1 after 10 year operation. In addition, pressure tube with texture controlled is being made along with VNINM in Russia as a joint project between KAERI and Russia. Finally, we succeeded in developing 4 different kinds of zirconium alloys with better corrosion resistance, low hydrogen pickup fraction and higher creep strength. (author). 121 refs., 65 tabs., 260 figs

  13. Alloy development for irradiation performance. Quarterly progress report for period ending December 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    Progress is reported in eight sections: analysis and evaluation studies, test matrices and test methods development, Path A Alloy Development (austenitic stainless steels), Path C Alloy Development (Ti and V alloys), Path D Alloy Development (Fe alloys), Path E Alloy Development (ferritic steels), irradiation experiments and materials inventory, and materials compatibility and hydrogen permeation studies. (DLC)

  14. Alloy development for irradiation performance. Quarterly progress report for period ending December 31, 1980

    International Nuclear Information System (INIS)

    1981-04-01

    Progress is reported in eight sections: analysis and evaluation studies, test matrices and test methods development, Path A Alloy Development (austenitic stainless steels), Path C Alloy Development (Ti and V alloys), Path D Alloy Development (Fe alloys), Path E Alloy Development (ferritic steels), irradiation experiments and materials inventory, and materials compatibility and hydrogen permeation studies

  15. Alloy development for irradiation performance: program strategy

    International Nuclear Information System (INIS)

    Bloom, E.E.; Stiegler, J.O.; Wiffen, F.W.; Dalder, E.N.C.; Reuther, T.C.; Gold, R.E.; Holmes, J.J.; Kummer, D.L.; Nolfi, F.V.

    1978-01-01

    The objective of the Alloy Development for Irradiation Performance Program is the development of structural materials for use in the first wall and blanket region of fusion reactors. The goal of the program is a material that will survive an exposure of 40 MWyr/m 2 at a temperature which will allow use of a liquid-H 2 O heat transport system. Although the ultimate aim of the program is development of materials for commercial reactors by the end of this century, activities are organized to provide materials data for the relatively low performance interim machines that will precede commercial reactors

  16. Development the Mechanical Properties of (AL-Li-Cu Alloy

    Directory of Open Access Journals (Sweden)

    Ihsan Kadhom AlNaimi

    2017-11-01

    Full Text Available The aim of this research is to develop mechanical properties of a new aluminium-lithium-copper alloy. This alloy prepared under control atmosphere by casting in a permanent metal mould. The microstructure was examined and mechanical properties were tested before and after heat treatment to study the influence of heat treatment on its mechanical properties including; modulus of elasticity, tensile strength, impact, and fatigue. The results showed that the modulus of elasticity of the prepared alloy is higher than standard alloy about 2%. While the alloy that heat treated for 6 h and cooled in water, then showed a higher ultimate tensile stress comparing with as-cast alloy. The homogenous heat treatment gives best fatigue behaviour comparing with as-cast and other heat treatment alloys. Also, the impact test illustrates that the homogeneous heat treatment alloy gives the highest value.

  17. On the principles of microstructure scale development for titanium alloys

    International Nuclear Information System (INIS)

    Kolachev, B.A.; Mal'kov, A.V.; Gus'kova, L.N.

    1982-01-01

    Analysis of an existing standard scale of microstructures for two-phase (α+#betta#)-titanium alloy semiproducts is given. The basic principles of development of control microstructure scales for titanium alloys are presented on the base of investigations and generalization of literature data on connection of microstructure of titanium intermediate products from (α+#betta#)-alloys with their mechanical properties and service life characteristics. A possibilities of changing mechanical and operating properties at the expense of obtaining qualitatively and quantitatively regulated microstructure in the alloy are disclosed on the example of the (α+#betta#)-titanium alloy

  18. Titanium-nickel shape memory alloys development in Taiwan

    International Nuclear Information System (INIS)

    Wu, S. K.; Lin, H. C.

    1997-01-01

    In Taiwan, many groups engage in the development of TiNi SMAs. The two-stage martensitic transformations of B2 R-phase B19' and B2 B19 B19' have been clarified for both TiNi binary and ternary alloys. The deformation behaviours have been investigated by cold-rolling, hot-rolling and wire drawing. Both shape memory effect and pseudoelasticity can be improved by some thermo-mechanical treatments. The damping characteristics of TiNi and TiNiX SMAs have also been systematically studied. Both B19'/B19 martensite (M) and R-phase (R) have high damping capacities due to stress induced movement of twin boundaries. Meanwhile, the addition of third elements, Fe and Cu, can largely increase the damping capacity. Recently, some high temperature shape memory alloys of TiNiPd and TiNiAu SMAs and thin films of TiNi and TiNiX alloys have also been intensively studied in Taiwan. All these potential investigations on the TiNi SMAs in Taiwan have attracted much attention and their important characteristics will be applied widely in the near future. (author)

  19. Development and Processing Improvement of Aerospace Aluminum Alloys

    Science.gov (United States)

    Lisagor, W. Barry; Bales, Thomas T.

    2007-01-01

    This final report, in multiple presentation format, describes a comprehensive multi-tasked contract study to improve the overall property response of selected aerospace alloys, explore further a newly-developed and registered alloy, and correlate the processing, metallurgical structure, and subsequent properties achieved with particular emphasis on the crystallographic orientation texture developed. Modifications to plate processing, specifically hot rolling practices, were evaluated for Al-Li alloys 2195 and 2297, for the recently registered Al-Cu-Ag alloy, 2139, and for the Al-Zn-Mg-Cu alloy, 7050. For all of the alloys evaluated, the processing modifications resulted in significant improvements in mechanical properties. Analyses also resulted in an enhanced understanding of the correlation of processing, crystallographic texture, and mechanical properties.

  20. Microstructure Development and Characteristics of Semisolid Aluminum Alloys; FINAL

    International Nuclear Information System (INIS)

    Merton Flemings; Srinath Viswanathan

    2001-01-01

    A drop forge viscometer was employed to investigate the flow behavior under very rapid compression rates of A357, A356 diluted with pure aluminum and Al-4.5%Cu alloys. The A357 alloys were of commercial origin (MHD and SIMA) and the rheocast, modified A356 and Al-4.5Cu alloys were produced by a process developed at the solidification laboratory of MIT

  1. Development Program for Natural Aging Aluminum Casting Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Geoffrey K. Sigworth

    2004-05-14

    A number of 7xx aluminum casting alloys are based on the ternary Al-Zn-Mg system. These alloys age naturally to high strength at room temperature. A high temperature solution and aging treatment is not required. Consequently, these alloys have the potential to deliver properties nearly equivalent to conventional A356-T6 (Al-Si-Mg) castings, with a significant cost saving. An energy savings is also possible. In spite of these advantages, the 7xx casting alloys are seldom used, primarily because of their reputation for poor castibility. This paper describes the results obtained in a DOE-funded research study of these alloys, which is part of the DOE-OIT ''Cast Metals Industries of the Future'' Program. Suggestions for possible commercial use are also given.

  2. Investigations of binary and ternary phase change alloys for future memory applications

    International Nuclear Information System (INIS)

    Rausch, Pascal

    2012-01-01

    The understanding of phase change materials is of great importance because it enables us to predict properties and tailor alloys which might be even better suitable to tackle challenges of future memory applications. Within this thesis two topics have been approached: on the one hand the understanding of the alloy In 3 Sb 1 Te 2 and on the other hand the so called resistivity drift of amorphous Ge-Sn-Te phase change materials. The main topic covers an in depth discussion of the ternary alloy In 3 Sb 1 Te 2 . At first glance, this alloy does not fit into the established concepts of phase alloys: e.g. the existence of resonant bonding in the crystalline phase is not obvious and the number of p-electrons is very low compared to other phase change alloys. Furthermore amorphous phase change alloys with high indium content are usually not discussed in literature, an exception being the recent work by Spreafico et al. on InGeTe 2 . For the first time a complete description of In 3 Sb 1 Te 2 alloy is given in this work for the crystalline phase, amorphous phase and crystallization process. In addition comparisons are drawn to typical phase change materials like Ge 2 Sb 2 Te 5 /GeTe or prototype systems like AgInTe 2 and InTe. The second topic of this thesis deals with the issue of resistivity drift, i.e. the increase of resistivity of amorphous phase change alloys with aging. This drift effect greatly hampers the introduction of multilevel phase change memory devices into the market. Recently a systematic decrease of drift coefficient with stoichiometry has been observed in our group going from GeTe over Ge 3 Sn 1 Te 4 to Ge 2 Sn 2 Te 4 . These alloys are investigated with respect to constraint theory.

  3. ROOT Status and Future Developments

    CERN Document Server

    Brun, R; Canal, P; Rademakers, Fons; Goto, Masaharu; Canal, Philippe; Brun, Rene

    2003-01-01

    In this talk we will review the major additions and improvements made to the ROOT system in the last 18 months and present our plans for future developments. The additons and improvements range from modifications to the I/O sub-system to allow users to save and restore objects of classes that have not been instrumented by special ROOT macros, to the addition of a geometry package designed for building, browsing, tracking and visualizing detector geometries. Other improvements include enhancements to the quick analysis sub-system (TTree::Draw()), the addition of classes that allow inter-file object references (TRef, TRefArray), better support for templated and STL classes, amelioration of the Automatic Script Compiler and the incorporation of new fitting and mathematical tools. Efforts have also been made to increase the modularity of the ROOT system with the introduction of more abstract interfaces and the development of a plug-in manager. In the near future, we intend to continue the development of PROOF and...

  4. Future developments in nuclear power

    International Nuclear Information System (INIS)

    Phillips, G.J.

    1978-12-01

    To date, the peaceful application of nuclear energy has been largely restricted to the generation of electricity. Even with such an application there is potential for wider use of the nuclear energy generated in providing heat for dwellings, control of climate for the production of vegetables and providing warm water for fish and lobster farming. It is possible to envisage specific applications of nuclear power reactors to process industries requiring large blocks of energy. These and other future developments are reviewed in this report. (author)

  5. Women and development: future directions.

    Science.gov (United States)

    1995-01-01

    In 1995 the UN celebrated its 50th anniversary, and the Fourth World Conference on Women in Beijing was held. INSTRAW's acting director, Martha Duenas-Loza, gives her overview of INSTRAW's future role and identifies some major issues regarding the advancement of women. INSTRAW is mandated as a UN group to accomplish research on and training of women. Some initial findings are now becoming available. The delay was due to the attention given to pressing problems of health care, nutrition, and education. In the future the international community will not have the option of neglecting women's status issues, which currently are secondary concerns. Some urgent issues are identified as the impact of rapid population growth on the elderly in the world, particularly the majority of elderly women. Migration will have an increasing impact on economic and social infrastructures of all countries. Problems of the elderly must be addressed as individual components within development plans and programs. Other articles in this issue of "INSTRAW News" discuss the situation of elderly women and women migrants. New efforts focus on a new phase of research on women's access to credit. The research aim is to analyze the experiences of current credit mechanisms, to assess the impact on individuals and families, and to consider gender effects. A progress report is available in this issue on gender statistics and a valuation of unpaid work by women. A new module is available for training women in environmental management; a description of this module is available in this issue. The new model is based on prior modules on energy and water, but includes improvements. The future agenda reflects the complexity of problems and solutions today and in the future.

  6. Development of low activation aluminum alloys for reacting plasma experiment

    International Nuclear Information System (INIS)

    Matsumoto, K.; Kawai, H.; Saida, T.; Onozuka, M.

    1986-01-01

    In the advanced fusion devices aiming at D-T burning, structural components such as vacuum vessels, coil casings are exposed to high energy neutrons produced by D-T reaction. From a view point of maintenability of accessibility, low radioactive structural materials are strongly preferred. The authors have developed two types of improved alloys of reduced radioactivity based on 5083 aluminum alloy: Al-Mg-Bi . Cr and Al-Mg-Cu . Zr. Both of the alloys of 50mm thickness have been proved to have excellent material properties virtually equivalent to those of 5083 alloy

  7. Research on development and application of titanium and zirconium alloys

    International Nuclear Information System (INIS)

    Suzuki, Toshiyuki; Sasano, Hisaoki; Uehara, Shigeaki; Nakano, Osamu; Shibata, Michio

    1983-01-01

    It can be said that titanium and zirconium are new metals from the viewpoint of the history of metals, but both have grown to the materials supporting modern industries, titanium alloys in aerospace and ocean development, and zirconium alloys in nuclear power application. However, the properties of both alloys have not yet been clarified. In this study, the synthesis of TiNi and its properties, precipitation hardening type titanium alloys, and the effect of oxygen on the mechanical properties of both alloys were examined. TiNi is the typical intermetallic compound which shows the peculiar properties. The method of its synthesis by diffusion was examined, and it was clarified that it is useful as a structural material and also as a functional material. Precipitation hardening type alloys have not been developed in titanium alloys, but in this study, the feasibility of several alloy systems was found. Both titanium and zirconium have large affinity to oxygen, and the oxygen absorbed in the manufacturing process cannot be reduced. The tensile property of both alloys was examined in wide temperature range, and the effect of oxygen was clarified. (Kako, I.)

  8. Future developments in biliary stenting

    Science.gov (United States)

    Hair, Clark D; Sejpal, Divyesh V

    2013-01-01

    Biliary stenting has evolved dramatically over the past 30 years. Advancements in stent design have led to prolonged patency and improved efficacy. However, biliary stenting is still affected by occlusion, migration, anatomical difficulties, and the need for repeat procedures. Multiple novel plastic biliary stent designs have recently been introduced with the primary goals of reduced migration and improved ease of placement. Self-expandable bioabsorbable stents are currently being investigated in animal models. Although not US Food and Drug Administration approved for benign disease, fully covered self-expandable metal stents are increasingly being used in a variety of benign biliary conditions. In malignant disease, developments are being made to improve ease of placement and stent patency for both hilar and distal biliary strictures. The purpose of this review is to describe recent developments and future directions of biliary stenting. PMID:23837001

  9. Development of ODS-Fe{sub 3}Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wright, I.G.; Pint, B.A.; Tortorelli, P.F.; McKamey, C.G. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    The overall goal of this program is to develop an oxide dispersion-strengthened (ODS) version of Fe{sub 3}Al that has sufficient creep strength and resistance to oxidation at temperatures in the range 1000 to 1200 C to be suitable for application as heat exchanger tubing in advanced power generation cycles. The main areas being addressed are: (a) alloy processing to achieve the desired alloy grain size and shape, and (b) optimization of the oxidation behavior to provide increased service life compared to semi-commercial ODS-FeCrAl alloys intended for the same applications. The recent studies have focused on mechanically-alloyed powder from a commercial alloy vendor. These starting alloy powders were very clean in terms of oxygen content compared to ORNL-produced powders, but contained similar levels of carbon picked up during the milling process. The specific environment used in milling the powder appears to exert a considerable influence on the post-consolidation recrystallization behavior of the alloy. A milling environment which produced powder particles having a high surface carbon content resulted in a consolidated alloy which readily recrystallized, whereas powder with a low surface carbon level after milling resulted in no recrystallization even at 1380 C. A feature of these alloys was the appearance of voids or porosity after the recrystallization anneal, as had been found with ORNL-produced alloys. Adjustment of the recrystallization parameters did not reveal any range of conditions where recrystallization could be accomplished without the formation of voids. Initial creep tests of specimens of the recrystallized alloys indicated a significant increase in creep strength compared to cast or wrought Fe{sub 3}Al, but the specimens failed prematurely by a mechanism that involved brittle fracture of one of the two grains in the test cross section, followed by ductile fracture of the remaining grain. The reasons for this behavior are not yet understood. The

  10. Mechanical and tribological properties of newly developed Tribaloy alloys

    International Nuclear Information System (INIS)

    Xu, W.; Liu, R.; Patnaik, P.C.; Yao, M.X.; Wu, X.J.

    2007-01-01

    Outstanding combination of mechanical, wear and corrosion performance has been achieved in Laves intermetallic materials, termed Tribaloy alloys. In these two-phase alloys the solid solution provides high mechanical strength and fracture toughness while the Laves intermetallic phase offers excellent wear resistance. However, conventional Tribaloy alloys usually have low tensile strength and fracture toughness compared with ductile materials due to the large volume fraction of Laves phase, which has limited their application in many cases. The present research is aimed at developing advanced Tribaloy alloys with increasing ductility. Two new cobalt base alloys were developed in this research. The specimens were fabricated with a centrifugal casting technique. The material characterization was performed using the differential scanning calorimetry (DSC), scanning electron microscope (SEM), indentation and ball-on-disc tribological techniques

  11. Research and Development on Titanium Alloys

    Science.gov (United States)

    1949-10-31

    information concerning the runs made * * In order to check the general operation of the train and furnace, a number of qualitative runs were made. These runs... General Technique. * . . * * . 109 The Analysis of Titanium . . . . ... ... 112 Notes and Comments, . . . .. . .. . . . 113 The Results from Vacuum...described in this report are as follows: 1. Arc ielting Titanium-Base Alloys. 2. Evaluation of Experimental Titanium-Base Alloys. 3. Investigation of

  12. Future developments in biliary stenting

    Directory of Open Access Journals (Sweden)

    Hair CD

    2013-06-01

    Full Text Available Clark D Hair,1 Divyesh V Sejpal21Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA; 2Department of Medicine, Section of Gastroenterology, Hofstra North Shore-LIJ School of Medicine, North Shore University Hospital, Manhasset, NY, USAAbstract: Biliary stenting has evolved dramatically over the past 30 years. Advancements in stent design have led to prolonged patency and improved efficacy. However, biliary stenting is still affected by occlusion, migration, anatomical difficulties, and the need for repeat procedures. Multiple novel plastic biliary stent designs have recently been introduced with the primary goals of reduced migration and improved ease of placement. Self-expandable bioabsorbable stents are currently being investigated in animal models. Although not US Food and Drug Administration approved for benign disease, fully covered self-expandable metal stents are increasingly being used in a variety of benign biliary conditions. In malignant disease, developments are being made to improve ease of placement and stent patency for both hilar and distal biliary strictures. The purpose of this review is to describe recent developments and future directions of biliary stenting.Keywords: plastic stents, self-expandable metal stents, drug eluting stents, bioabsorbable stents, malignant biliary strictures, benign biliary strictures

  13. Development of microactuators from shape memory alloys

    International Nuclear Information System (INIS)

    Kohl, M.

    2002-04-01

    Shape memory alloys (SMAs) have the fascinating property of shape recovery, which is associated with the generation of high energy densities. Nowadays, they are already used in several very successful applications. Within the last 10 years, SMA devices have entered also the field of microsystems technology. The present report gives an overview on the current state-of-the-art. For the examples of SMA microvalves and SMA linear actuators, the microactuator development is described from the idea to the prototype in comprehensive breadth. The breadth of research and development activities on SMA microactuators presently ranges from pure scientific topics of materials research to technological problems, e.g. of micromachining, integration and contacting. Further key aspects of development are three-dimensional models for the handling of complex SMA actuator geometries and coupled simulation routines in order to take multifunctional properties into account. For actuator design, mechanical and thermal optimization criteria are introduced, whose systematic implementation allows an optimum use of the shape memory effect. Some of the presented prototypes are already competitive components. One example are normally-open SMA microvalves driven by SMA foil actuators of 20 μm thickness, which are counted among the smallest microvalves and which still are able to control pressures and flows comparable to other valve concepts. Due to their modular design they can be combined with other microfluidic components in a flexible way for realization of fluidic microsystems. Another example are SMA microgrippers, a further development of SMA linear actuators, which presently outperform other microgrippers of comparable size with respect to gripping force and stroke. (orig.)

  14. Effect of reversible hydrogen alloying and plastic deformation on microstructure development in titanium alloys

    International Nuclear Information System (INIS)

    Murzinova, M.A.

    2011-01-01

    Hydrogen leads to degradation in fracture-related mechanical properties of titanium alloys and is usually considered as a very dangerous element. Numerous studies of hydrogen interaction with titanium alloys showed that hydrogen may be considered not only as an impurity but also as temporary alloying element. This statement is based on the following. Hydrogen stabilizes high-temperature β-phase, leads to decrease in temperature of β→α transformation and extends (α + β )-phase field. The BCC β-phase exhibits lower strength and higher ductility in comparison with HCP α -phase. As a result, hydrogen improves hot workability of hard-to-deform titanium alloys. Hydrogen changes chemical composition of the phases, kinetics of phase transformations, and at low temperatures additional phase transformation (β→α + TiH 2 ) takes place, which is accompanied with noticeable change in volumes of phases. As a result, fine lamellar microstructure may be formed in hydrogenated titanium alloys after heat treatment. It was shown that controlled hydrogen alloying improves weldability and machinability of titanium alloys. After processing hydrogenated titanium preforms are subjected to vacuum annealing, and the hydrogen content decreases up to safe level. Hydrogen removal is accompanied with hydrides dissolution and β→α transformation that makes possible to control structure formation at this final step of treatment. Thus, reversible hydrogen alloying of titanium alloys allows to obtain novel microstructure with enhanced properties. The aim of the work was to study the effect of hydrogen on structure formation, namely: i) influence of hydrogen content on transformation of lamellar microstructure to globular one during deformation in (α+β)-phase field; ii) effect of dissolved hydrogen on dynamic recrystallization in single α- and β- phase regions; iii) influence of vacuum annealing temperature on microstructure development. The work was focused on the optimization of

  15. High strength cast aluminum alloy development

    Science.gov (United States)

    Druschitz, Edward A.

    The goal of this research was to understand how chemistry and processing affect the resulting microstructure and mechanical properties of high strength cast aluminum alloys. Two alloy systems were investigated including the Al-Cu-Ag and the Al-Zn-Mg-Cu systems. Processing variables included solidification under pressure (SUP) and heat treatment. This research determined the range in properties that can be achieved in BAC 100(TM) (Al-Cu micro-alloyed with Ag, Mn, Zr, and V) and generated sufficient property data for design purposes. Tensile, stress corrosion cracking, and fatigue testing were performed. CuAl2 and Al-Cu-Fe-Mn intermetallics were identified as the ductility limiting flaws. A solution treatment of 75 hours or longer was needed to dissolve most of the intermetallic CuAl 2. The Al-Cu-Fe-Mn intermetallic was unaffected by heat treatment. These results indicate that faster cooling rates, a reduction in copper concentration and a reduction in iron concentration might increase the ductility of the alloy by decreasing the size and amount of the intermetallics that form during solidification. Six experimental Al-Zn-Mg-Cu series alloys were produced. Zinc concentrations of 8 and 12wt% and Zn/Mg ratios of 1.5 to 5.5 were tested. Copper was held constant at 0.9%. Heat treating of the alloys was optimized for maximum hardness. Al-Zn-Mg-Cu samples were solution treated at 441°C (826°F) for 4 hours before ramping to 460°C (860°F) for 75 hours and then aged at 120°C (248°F) for 75 hours. X-ray diffraction showed that the age hardening precipitates in most of these alloys was the T phase (Mg32Zn 31.9Al17.1). Tensile testing of the alloys showed that the best mechanical properties were obtained in the lowest alloy condition. Chilled Al-8.2Zn-1.4Mg-0.9Cu solidified under pressure resulted in an alloy with a yield strength of 468MPa (68ksi), tensile strength of 525MPa (76ksi) and an elongation of 9%.

  16. Development of Al-Mg-Li alloys for fusion reactor

    International Nuclear Information System (INIS)

    Shoji, Yoshifusa; Yoshida, Hideo; Uno, Teruo; Baba, Yoshio; Kamada, Koji.

    1985-01-01

    Aluminum-magnesium-lithium alloys featuring low residual induced radioactivity and high electrical resistivity have been developed for fusion reactor structural materials. The addition of lithium in aluminum and Al-Mg alloys markedly increases electrical resistivity and tensile strength of them. However the elongation of Al-Mg-Li alloys containing more than 2 mass% lithium are less than 10 %. The Al-4--5 mass%Mg-1 mass%Li alloys are optimum for fusion reactor materials, and exhibit high resistivity (86 nΩm: 20 %IACS), medium strength (300 MPa) and good formability (22 % elongation). The variation of electrical resistivity of Al-Li and Al-Mg-Li alloys in solid solution can be approximated by the Matthiessen's rule. (author)

  17. Smart tungsten alloys as a material for the first wall of a future fusion power plant

    Science.gov (United States)

    Litnovsky, A.; Wegener, T.; Klein, F.; Linsmeier, Ch.; Rasinski, M.; Kreter, A.; Unterberg, B.; Coenen, J. W.; Du, H.; Mayer, J.; Garcia-Rosales, C.; Calvo, A.; Ordas, N.

    2017-06-01

    Tungsten is currently deemed as a promising plasma-facing material (PFM) for the future power plant DEMO. In the case of an accident, air can get into contact with PFMs during the air ingress. The temperature of PFMs can rise up to 1200 °C due to nuclear decay heat in the case of damaged coolant supply. Heated neutron-activated tungsten forms a volatile radioactive oxide which can be mobilized into the atmosphere. New self-passivating ‘smart’ alloys can adjust their properties to the environment. During plasma operation the preferential sputtering of lighter alloying elements will leave an almost pure tungsten surface facing the plasma. During an accident the alloying elements in the bulk are forming oxides thus protecting tungsten from mobilization. Good plasma performance and the suppression of oxidation are required for smart alloys. Bulk tungsten (W)-chroimum (Cr)-titanium (Ti) alloys were exposed together with pure tungsten (W) samples to the steady-state deuterium plasma under identical conditions in the linear plasma device PSI 2. The temperature of the samples was ~576 °C-715 °C, the energy of impinging ions was 210 eV matching well the conditions expected at the first wall of DEMO. Weight loss measurements demonstrated similar mass decrease of smart alloys and pure tungsten samples. The oxidation of exposed samples has proven no effect of plasma exposure on the oxidation resistance. The W-Cr-Ti alloy demonstrated advantageous 3-fold lower mass gain due to oxidation than that of pure tungsten. New yttrium (Y)-containing thin film systems are demonstrating superior performance in comparison to that of W-Cr-Ti systems and of pure W. The oxidation rate constant of W-Cr-Y thin film is 105 times less than that of pure tungsten. However, the detected reactivity of the bulk smart alloy in humid atmosphere is calling for a further improvement.

  18. Development of Amorphous Filler Alloys for the Joining of Nuclear Materials

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jai Young; Kim, Dong Myong; Kang, Yoon Sun; Jung, Jae Han; Yu, Ji Sang; Kim, Hae Yeol; Lee, Ho [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-08-01

    In the case of advanced CANDU fuel being useful in future, the fabrication processes for soundness insurance of a improved nuclear fuel bundle must be developed at the same time because it have three times combustibility as existing fuel. In particular, as the improved nuclear fuel bundle in which a coated layer thickness is thinner than existing that, firmity of a joint part is very important. Therefore, we need to develop a joint technique using new solder which can settle a potential problem in current joining method. As the Zr-Be alloy system is composed with the elements having high neutron permeability, they are suitable for joint of nuclear fuel pack. The various compositions Zr-Be binary metallic glass alloys were applicable to the joining the nuclear fuel bundles. The thickness of joint layer using the Zr{sub 1}-{sub x}Be{sub x} amorphous ribbon as a solder is thinner than that using physical vapor deposited Be. Among the Zr{sub 1}-{sub x}Be{sub x} amorphous binary alloys, Zr{sub 0}.7Be-0.3 binary alloy is the most appropriate for joint of nuclear fuel bundle because its joint layer is smooth and thin due to low degree of Be diffusion. In the case of the Zr{sub (}0.7-y)Ti{sub y}Be{sub 0}.3 and Zr{sub (}0.7-y)Nb{sub y}Be{sub 0}3 ternary amorphous alloys, the crystallization temperature(T{sub x}) and activation energy(E{sub x}) increase as the contents of Nb and Ti increase respectively. In the aspect of thermal stability, the ternary amorphous alloys are superior than Zr-Be binary amorphous alloys and Zr-Ti-Be amorphous alloy is superior than Zr-Nb-Be amorphous alloy. 12 refs., 5 tabs., 25 figs. (author)

  19. Development of Austenitic ODS Strengthened Alloys for Very High Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Stubbins, James [Univ. of Illinois, Urbana-Champaign, IL (United States); Heuser, Brent [Univ. of Illinois, Urbana-Champaign, IL (United States); Robertson, Ian [Kyushu Univ. (Japan); Sehitoglu, Huseyin [Univ. of Illinois, Urbana-Champaign, IL (United States); Sofronis, Petros [Kyushu Univ. (Japan); Gewirth, Andrew [Kyushu Univ. (Japan)

    2015-04-22

    This “Blue Sky” project was directed at exploring the opportunities that would be gained by developing Oxide Dispersion Strengthened (ODS) alloys based on the Fe-Cr-Ni austenitic alloy system. A great deal of research effort has been directed toward ferritic and ferritic/martensitic ODS alloys which has resulted in reasonable advances in alloy properties. Similar gains should be possible with austenitic alloy which would also take advantage of other superior properties of that alloy system. The research effort was aimed at the developing an in-depth understanding of the microstructural-level strengthening effects of ODS particles in austentic alloys. This was accomplished on a variety of alloy compositions with the main focus on 304SS and 316SS compositions. A further goal was to develop an understanding other the role of ODS particles on crack propagation and creep performance. Since these later two properties require bulk alloy material which was not available, this work was carried out on promising austentic alloy systems which could later be enhanced with ODS strengthening. The research relied on a large variety of micro-analytical techniques, many of which were available through various scientific user facilities. Access to these facilities throughout the course of this work was instrumental in gathering complimentary data from various analysis techniques to form a well-rounded picture of the processes which control austenitic ODS alloy performance. Micromechanical testing of the austenitic ODS alloys confirmed their highly superior mechanical properties at elevated temperature from the enhanced strengthening effects. The study analyzed the microstructural mechanisms that provide this enhanced high temperature performance. The findings confirm that the smallest size ODS particles provide the most potent strengthening component. Larger particles and other thermally- driven precipitate structures were less effective contributors and, in some cases, limited

  20. Development of microstructure in thermomechanical processing of zirconium alloys

    International Nuclear Information System (INIS)

    Jha, S.K.; Saibaba, N.; Jayaraj, R.N.

    2009-01-01

    Zirconium based alloys are used for the manufacture of fuel tubes pressure tubes calandria tubes and other components of Pressurized Heavy Water Reactors (PHWRS). In single or two phase zirconium alloy system a variety of microstructure can be generated by suitable heat treatments by the process of equilibrium and non equilibrium phase transformations Microstructure can also be modified by alloying with α and β stabilizers. The microstructure in Zr alloys could be single hexagonal phase (α alloys) two phase bcc and hexagonal (α + β alloys) phase, single metastable martensitic microstructure and β with ω phase. The microstructural and micro textural evolution during thermo mechanical treatments depends strongly on such initial microstructure. Hot extrusion is a significant bulk deformation step which decides the initial microstructure of the alloy. It is carried out at elevated temperature i e above the recrystallization temperature, which enable imposition of large strains in single step. This deformation causes a significant change in the microstructure of the material and depends on extrusion process parameters such as temperature, strain rate (Ram speed), reduction ratio etc. In the present paper development of microstructures, microtexture and texture have been examined. An attempt is also made to optimise the hot working parameters for different Zirconium alloys with help of these studies. (author)

  1. The development of cobalt-base alloy ball bearing

    International Nuclear Information System (INIS)

    Yu Xinshui; Chen Jianting; Wang Zaishu; Wang Ximei; Huang Chongming.

    1986-01-01

    The main technologies and experiences in developing a Cobalt-base alloy ball bearing are described. In the hardfacing of bearing races, a lower-hardness alloy of type St-6 is used rather than an alloy with hardness similar to that of the ball and finally the hardness of race is increased to match that of the ball by heat treatment. This improvement has certain advantages. The experience of whole developing technology indicates that strict control of the technology in the bearing-race hardfacing is the key problem in the quality assurance of bearings

  2. Applications of thermodynamic calculations to Mg alloy design: Mg-Sn based alloy development

    International Nuclear Information System (INIS)

    Jung, In-Ho; Park, Woo-Jin; Ahn, Sang Ho; Kang, Dae Hoon; Kim, Nack J.

    2007-01-01

    Recently an Mg-Sn based alloy system has been investigated actively in order to develop new magnesium alloys which have a stable structure and good mechanical properties at high temperatures. Thermodynamic modeling of the Mg-Al-Mn-Sb-Si-Sn-Zn system was performed based on available thermodynamic, phase equilibria and phase diagram data. Using the optimized database, the phase relationships of the Mg-Sn-Al-Zn alloys with additions of Si and Sb were calculated and compared with their experimental microstructures. It is shown that the calculated results are in good agreement with experimental microstructures, which proves the applicability of thermodynamic calculations for new Mg alloy design. All calculations were performed using FactSage thermochemical software. (orig.)

  3. Development of amorphous and nanocrystalline Al65Cu35-xZrx alloys by mechanical alloying

    International Nuclear Information System (INIS)

    Manna, I.; Chattopadhyay, P.P.; Banhart, F.; Fecht, H.J.

    2004-01-01

    Mechanical alloying of Al 65 Cu 35-x Zr x (x=5, 15 and 25 at.% Zr) elemental powder blends by planetary ball milling up to 50 h yields amorphous and/or nanocrystalline products. Microstructure of the milled product at different stages of milling has been characterized by X-ray diffraction, (XRD) high-resolution transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). Among the different alloys synthesized by mechanical alloying, Al 65 Cu 20 Zr 15 yields a predominantly amorphous product, while the other two alloys develop a composite microstructure comprising nanocrystalline and amorphous solid solutions in Al 65 Cu 10 Zr 25 and nano-intermetallic phase/compound in Al 65 Cu 30 Zr 5 , respectively. The genesis of solid-state amorphization in Al 65 Cu 20 Zr 15 and Al 65 Cu 10 Zr 25 is investigated

  4. Progress in the development of niobium alloyed high speed steel

    International Nuclear Information System (INIS)

    Guimaraes, J.R.C.

    1987-01-01

    The development of economy-grades of niobium alloyed high speed steel is described. Both the metallurgical concepts behind the steel design and the results of performance tests are presented. (Author) [pt

  5. Microstructural development in equiatomic multicomponent alloys

    International Nuclear Information System (INIS)

    Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B.

    2004-01-01

    Multicomponent alloys containing several components in equal atomic proportions have been manufactured by casting and melt spinning, and their microstructures and properties have been investigated by a combination of optical microscopy, scanning electron microscopy, electron probe microanalysis, X-ray diffractrometry and microhardness measurements. Alloys containing 16 and 20 components in equal proportions are multiphase, crystalline and brittle both as-cast and after melt spinning. A five component Fe 20 Cr 20 Mn 20 Ni 20 Co 20 alloy forms a single fcc solid solution which solidifies dendritically. A wide range of other six to nine component late transition metal rich multicomponent alloys exhibit the same majority fcc primary dendritic phase, which can dissolve substantial amounts of other transition metals such as Nb, Ti and V. More electronegative elements such as Cu and Ge are less stable in the fcc dendrites and are rejected into the interdendritic regions. The total number of phases is always well below the maximum equilibrium number allowed by the Gibbs phase rule, and even further below the maximum number allowed under non-equilibrium solidification conditions. Glassy structures are not formed by casting or melt spinning of late transition metal rich multicomponent alloys, indicating that the confusion principle does not apply, and other factors are more important in promoting glass formation

  6. Investigations of binary and ternary phase change alloys for future memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Rausch, Pascal

    2012-09-13

    The understanding of phase change materials is of great importance because it enables us to predict properties and tailor alloys which might be even better suitable to tackle challenges of future memory applications. Within this thesis two topics have been approached: on the one hand the understanding of the alloy In{sub 3}Sb{sub 1}Te{sub 2} and on the other hand the so called resistivity drift of amorphous Ge-Sn-Te phase change materials. The main topic covers an in depth discussion of the ternary alloy In{sub 3}Sb{sub 1}Te{sub 2}. At first glance, this alloy does not fit into the established concepts of phase alloys: e.g. the existence of resonant bonding in the crystalline phase is not obvious and the number of p-electrons is very low compared to other phase change alloys. Furthermore amorphous phase change alloys with high indium content are usually not discussed in literature, an exception being the recent work by Spreafico et al. on InGeTe{sub 2}. For the first time a complete description of In{sub 3}Sb{sub 1}Te{sub 2} alloy is given in this work for the crystalline phase, amorphous phase and crystallization process. In addition comparisons are drawn to typical phase change materials like Ge{sub 2}Sb{sub 2}Te{sub 5}/GeTe or prototype systems like AgInTe{sub 2} and InTe. The second topic of this thesis deals with the issue of resistivity drift, i.e. the increase of resistivity of amorphous phase change alloys with aging. This drift effect greatly hampers the introduction of multilevel phase change memory devices into the market. Recently a systematic decrease of drift coefficient with stoichiometry has been observed in our group going from GeTe over Ge{sub 3}Sn{sub 1}Te{sub 4} to Ge{sub 2}Sn{sub 2}Te{sub 4}. These alloys are investigated with respect to constraint theory.

  7. Development of the advanced nuclear materials -Development of Inconel alloys-

    International Nuclear Information System (INIS)

    Kuk, Il Hyun; Chang, Jin Sung; Lee, Chang Kyu; Park, Soon Dong; Kim, Woo Kon; Jeong, Man Kyo; Woo, Yoon Myung; Han, Chang Hee

    1995-07-01

    The performance and the integrity of the steam generator U-tubes directly affects the efficiency and economics of nuclear power plant because they are closely interrelated with the maintenance and repair. Also the steam generator U-tubes have been one of world-wide hot issues in nuclear power plants for long time because of their continuing corrosion-related degradation. Right after stress corrosion cracking of Alloy 600 tubes are reported at primary side, in which the environment is believed to be tightly controlled all the time, in mid 80's, alloy 690 has started to replace alloy 600. Alloy 690 is basically same with alloy 600 except more Cr content. Firstly minor elements in alloy 690 (C, B, N, Y, Mo) were added or controlled to improve hot workability and corrosion resistance. It would be much more desirable if the mechanism or basic understanding of the degradation phenomena of steam generator U-tubes in operation conditions can be illuminated through the alloy modification research. Alloy 600 tubes which were preproduced in cooperation with Sammi Special Steel were evaluated, being compared with imported one. Also alloy 600 and alloy 690 tubes were produced from Inconel 600 and 690 INCO- forged bar. These will be closely evaluated with purely Korean-made alloy 600 and 690 tubes. 22 tabs., 93 figs., 14 refs. (Author)

  8. PROPERTY DATABASE FOR THE DEVELOPMENT OF SHAPE MEMORY ALLOY APPLICATIONS

    OpenAIRE

    Tang , W.; CederstrÖm , J.; SandstrÖm , R.

    1991-01-01

    Important points involving the selection of shape memory alloy (SMA) application projects are discussed. The development of a property database for SMA is initiated. Both conventional data as well as characteristics which are unique for SMA are stored. As an application example of the database SMA-SELECT, important properties for Ti-Ni alloys near equi-atomic composition, such as temperature window width for superelasticity (SE), stress rate, critical yield stress, and their interaction have ...

  9. Development of a Novel, Bicombinatorial Approach to Alloy Development, and Application to Rapid Screening of Creep Resistant Titanium Alloys

    Science.gov (United States)

    Martin, Brian

    Combinatorial approaches have proven useful for rapid alloy fabrication and optimization. A new method of producing controlled isothermal gradients using the Gleeble Thermomechanical simulator has been developed, and demonstrated on the metastable beta-Ti alloy beta-21S, achieving a thermal gradient of 525-700 °C. This thermal gradient method has subsequently been coupled with existing combinatorial methods of producing composition gradients using the LENS(TM) additive manufacturing system, through the use of elemental blended powders. This has been demonstrated with a binary Ti-(0-15) wt% Cr build, which has subsequently been characterized with optical and electron microscopy, with special attention to the precipitate of TiCr2 Laves phases. The TiCr2 phase has been explored for its high temperature mechanical properties in a new oxidation resistant beta-Ti alloy, which serves as a demonstration of the new bicombinatorial methods developed as applied to a multicomponent alloy system.

  10. The Development of Corrosion Resistant Zirconium Alloy

    International Nuclear Information System (INIS)

    Abdul-Latief; Noor-Yudhi; Isfandi; Djoko-Kisworo; Pranjono

    2000-01-01

    Corrosion test of Zr alloy consisting of quenching and tempering Zry-2,Zry-4 cast, Zr-1% Nb cast, has been. conducted. In corrosion test, thechanges during β-quenching, tempering and corrosion test at varioustemperature and time in autoclave water medium, can be seen. The treatmentconsisted of heating at 1050 o C for 30 minutes, quenching in water andtempering at 200 o C, 300 o C, 400 o C, 500 o C, 600 o C as well as corrosiontests at 225 o C, 275 o C, 325 o C at 4, 8, 12 hours. Sample preparation forcorrosion test was based on ASTM G-2 procedure, which consisted of washing,rinsing, pickling (3.5 cc HF 50%; 2.9 cc HNO 3 65% and 57 cc AMB),neutralizing in 0.1 M Al(NO 3 ) 3 , 9 H 2 O and ultrasonic rinsing/washing.Measurement performed are weight gain during corrosion, hardness test andmicrostructure observation using microscope optic. The results show thatβ-quenching of Zr alloy which was followed by tempering can turn αmartensite into tempered α 1 martensit. The increase of temperingtemperature decreases the Zr alloy hardness and the lowest hardness ispossessed by Zr-1% Nb alloy. The corrosion test at 275 o C and 325 o C showsthat the weight gain depends on the tempering temperature, the temperingtemperature of 400 o C and 200 o C gives the maximum weight gain for Zry-2,Zry-4 cast, Zr-1% Nb. The largest number of hydride formed during corrosionis found in Zry-2, while the small one is in Zr-1% Nb. (author)

  11. Development of materials and process technology for dual alloy disks

    Science.gov (United States)

    Marder, J. M.; Kortovich, C. S.

    1981-01-01

    Techniques for the preparation of dual alloy disks were developed and evaluated. Four material combinations were evaluated in the form of HIP consolidated and heat treated cylindrical and plate shapes in terms of elevated temperature tensile, stress rupture and low cycle fatigue properties. The process evaluation indicated that the pe-HIP AF-115 rim/loose powder Rene 95 hub combination offered the best overall range of mechanical properties for dual disk applications. The feasibility of this dual alloy concept for the production of more complex components was demonstrated by the scale up fabrication of a prototype CFM-56 disk made from this AF-115/Rene 95 combination. The hub alloy ultimate tensile strength was approximately 92 percent of the program goal of 1520 MPa (220 ksi) at 480 C (900 F) and the rim alloy stress rupture goal of 300 hours at 675 C (1250 F)/925 MPa (134 ksi) was exceeded by 200 hours. The low cycle fatigue properties were equivalent to those exhibited by HIP and heat treated alloys. There was an absence of rupture notch sensitivity in both alloys. The joint tensile properties were approximately 85 percent of the weaker of the two materials (Rene 95) and the stress rupture properties were equivalent to those of the weaker of the two materials (Rene 95).

  12. Collection development past and future

    CERN Document Server

    Pastine, Maureen

    2013-01-01

    With the prolific changes in the electronic environment, do you sometimes feel overwhelmed by the multiplying of electronic information resources, the different methods of access, and their combined impact on collection development? If so, Collection Development is the book to help you get a handle on what's out there! In no time at all, you'll be able to select and integrate electronic resources into collection development programs at even the most traditional of libraries! In the process, you will learn alternative approaches for dealing with electronic databases, on-line access, and fiscal

  13. The development of zirconium alloy and its manufacturing

    International Nuclear Information System (INIS)

    Yuan Gaihuan; Yue Qiang

    2015-01-01

    Nuclear power which acts as one of low-carbon energy resources is the most realistic in large-scale application. It is also the preferred choice for many countries to develop energy resources and optimize its structure. Zirconium alloy is a key structural material for nuclear power plant fuel assemblies and cladding tubes of zirconium alloy are often referred as the first safeguard to nuclear power safety. With the development of nuclear power, three kinds of zirconium alloys Zr-Sn, Zr-Nb, Zr-Sn-Nb and with the representative products of Zr-4, M5, Zirlo respectively are developed and widely applied. Because of its severe operating environment and influence to nuclear safety, the requirements to zirconium alloys for physical and chemical properties, nuclear capability, tolerance and surface quality are very strict. The in-depth research and its manufacture capability become one of the main barriers for many countries who are developing the nuclear energy. In recent years, a stated-owned company, State Nuclear Bao Ti Zirconium Industry Company ('SNZ' for short) as well as National R and D Center for Nuclear Grade Zirconium material, is founded to meet the requirement of the rapid development of China's nuclear power industry. SNZ is dedicated for the fabrication and the research of nuclear grade zirconium products. After the successful completion of technology transfer of manufacturing for production chain and fully grasped of the manufacturing technology for the nuclear grade zirconium sponge through zirconium alloy tube, rod and strip products. National R and D Center for Nuclear Grade Zirconium material is cooperating with universities, nuclear energy research and design institutes and the owners of nuclear power plant to develop new zirconium alloy of self-owned brand. Through the selection of components, in-process testing and product inspection, four kinds of new zirconium alloys owns better performance than currently commercialized M5, Zirlo etc

  14. Exploration and Development of High Entropy Alloys for Structural Applications

    Directory of Open Access Journals (Sweden)

    Daniel B. Miracle

    2014-01-01

    Full Text Available We develop a strategy to design and evaluate high-entropy alloys (HEAs for structural use in the transportation and energy industries. We give HEA goal properties for low (≤150 °C, medium (≤450 °C and high (≥1,100 °C use temperatures. A systematic design approach uses palettes of elements chosen to meet target properties of each HEA family and gives methods to build HEAs from these palettes. We show that intermetallic phases are consistent with HEA definitions, and the strategy developed here includes both single-phase, solid solution HEAs and HEAs with intentional addition of a 2nd phase for particulate hardening. A thermodynamic estimate of the effectiveness of configurational entropy to suppress or delay compound formation is given. A 3-stage approach is given to systematically screen and evaluate a vast number of HEAs by integrating high-throughput computations and experiments. CALPHAD methods are used to predict phase equilibria, and high-throughput experiments on materials libraries with controlled composition and microstructure gradients are suggested. Much of this evaluation can be done now, but key components (materials libraries with microstructure gradients and high-throughput tensile testing are currently missing. Suggestions for future HEA efforts are given.

  15. Stoffenmanager Development and future plans

    NARCIS (Netherlands)

    Hollander, A.; Ustailieva, E.; Heussen, H.

    2012-01-01

    Stoffenmanager is one of the most advanced tools for managing hazardous chemicals at the work place. The workshop will provide an English language forum for international organisations, companies and authorities interested in the development and implementation of country versions of Stoffenmanager.

  16. Development of weldable, corrosion-resistant iron-aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, P.J.; Goodwin, G.M.; Wang, X.L. [Oak Ridge National Laboratory, TN (United States)

    1995-05-01

    Corrosion-resistant, weldable FeAl alloys have been developed with improved high-temperature strength industrial applications. Previous processing difficulties with these alloys led to their evaluation as weld-overlay claddings on conventional structural steels to take advantage of their good properties now. Simplified and better processing methods for monolithic FeAl components are also currently being developed so that components for industrial testing can be made. Other avenues for producing FeAl coatings are currently being explored. Neutron scattering experiments residual stress distributions in the FeAl weld-overlay cladding began in FY 1993 and continued this year.

  17. Alloy development program: contribution of the General Electric Company to the fourth quarterly report

    International Nuclear Information System (INIS)

    1973-01-01

    The purpose of this activity is to provide a sound basis for systematic comparison of alloys that are candidates for structural materials in future LMFBR cores. Information is presented concerning helium analysis of implanted foils; swelling in irradiated commercial alloys; and microstructural changes in irradiated commercial alloys

  18. The future development of immunoassay

    International Nuclear Information System (INIS)

    Ekins, R.P.

    1977-01-01

    To summarise these brief observations on the relative merits of isotopic and non-isotopic labels, the logistic advantages of non-isotopic labels are likely to be combined with sensitivities comparable with, or even greatly superior to, the corresponding radioisotopic techniques. However, in assessing the general directions that assay methodology is likely to take in the next few years, the nature of the label that is likely to be preferred in techniques of this kind is a matter of domestic rather than fundamental importance. Of greater interest is the challenge presented by the need to develop techniques which are of far higher structural specificity than those currently available - this requirement being imposed not only by the need to elucidate the physiological importance of structural heterogeneity in the molecules of substances of biological interest, but also by the need to develop 'rugged' standardisable assays for routine clinical use. Because radioimmunoassays and other saturation assays rely, in practice, on the interaction between a single binding site on the analyte molecule with the specific reagent, such techniques lack the overall higher structural specificity of 'sandwich', excess-reagent, assays. Moreover the ease of preparation and the long-term chemical stability of the labelled reagents used in the 'excess-reagent' assay system, and their intrinsically higher sensitivity, suggests that these will ultimately displace 'saturation assay' methods such as radioimmunoassay in those cases in which the analyte is capable of simultaneous reaction with two structurally specific recognition sites. On the other hand, for analytes of small molecular size, capable of binding to, or reacting with, only a single molecule of a specific reagent, the intrinsically higher specificity of limited reagent systems is likely to ensure that these will remain the methods of choice. (orig.) [de

  19. Research and Development of Some Advanced High Temperature Titanium Alloys for Aero-engine

    Directory of Open Access Journals (Sweden)

    CAI Jian-ming

    2016-08-01

    Full Text Available Some advanced high temperature titanium alloys are usually selected to be manufactured into blade, disc, case, blisk and bling under high temperature environment in compressor and turbine system of a new generation high thrust-mass ratio aero-engine. The latest research progress of 600℃ high temperature titanium alloy, fireproof titanium alloy, TiAl alloy, continuous SiC fiber reinforced titanium matrix composite and their application technology in recent years in China were reviewed in this paper. The key technologies need to be broken through in design, processing and application of new material and component are put forward, including industrial ingot composition of high purified and homogeneous control technology, preparation technology of the large size bar and special forgings, machining technology of blisk and bling parts, material property evaluation and application design technique. The future with the continuous application of advanced high temperature titanium alloys, will be a strong impetus to the development of China's aero-engine technology.

  20. Development of advanced low alloy steel for nuclear RPV

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. C.; Shin, K. S.; Lee, S. H.; Lee, B. J. [Seoul National Univ., Seoul (Korea)

    2000-04-01

    Low carbon low alloy steels are used in nuclear power plants as pressure vessel, steam generator, etc. Nuclear pressure vessel material requires good combination of strength/ toughness, good weldability and high resistance to neutron irradiation and corrosion fatigue. For SA508III steels, most widely used in the production of nuclear power plant, attaining toughness is more difficult than strength. When taking into account the loss of toughness due to neutron irradiation, attaining as low transition temperature as possible prior to operation is a critical task in the production of nuclear pressure vessels. In the present study, we investigated detrimental microstructural features of SA508III steels to toughness, then alloy design directions to achieve improved mechanical properties were devised. The next step of alloy design was determined based on phase equilibrium thermodynamics and obtained results. Low carbon low alloy steels having low transition temperatures with enough strength and hardenability were developed. Microstructure and mechanical properties of HAZ of SA508III steels and alloy designed steels were investigated. 22 refs., 147 figs., 38 tabs. (Author)

  1. Development and characterization of Al-Li alloys

    International Nuclear Information System (INIS)

    Gupta, R.K.; Nayan, Niraj; Nagasireesha, G.; Sharma, S.C.

    2006-01-01

    Increased strength to weight ratio of aluminium-lithium alloys has attracted material scientists to develop these for aerospace applications. But commercial scale production of these alloys has always been slow in view of difficulties encountered during addition of lithium and in ensuring homogeneous billet composition. A new technique of Li addition has been adapted, which gives maximum recovery of Li in the billet. Using this technique, aluminium-lithium alloys of two different grades for aerospace application were cast. Billets were hot forged and rolled to the thickness range of 3-4 mm and heat-treated for different temper conditions. Mechanical properties were evaluated in T6 (solution treated and artificial aged), T8 (solution treated, cold worked and artificial aged) and T4 (solution treated and natural aged) temper conditions. Both alloys exhibit a strong natural aging response. Reversion for short periods at 180 deg. C results in decrease of strength. With artificial reaging strength reaches above the T4 temper condition level. Characterization was carried out using optical microscope (OM) and scanning electron microscope (SEM). Experimental investigation shows that addition of lithium at high melt temperature gives lower recovery of Li, and use of impure aluminium adversely affects the mechanical properties of the alloy in all temper conditions

  2. Development and applications of beta and near beta titanium alloys

    International Nuclear Information System (INIS)

    Takemura, A.; Ohyama, H.; Nishimura, T.; Abumiya, T.

    1993-01-01

    In this report the authors introduced application of beta and near beta titanium alloys also development and processing of these alloys at Kobe Steel LTD. Ti-15Mo-5Zr-3Al is an alloy developed by Kobe Steel which has been applied for variety of sporting goods, also used as an erosion shield of steam turbine blades. Ti-15Mo-5Zr-3Al high strength wire for valve springs is under development. New beta alloys(Ti-V-Nb-Sn-Al) are under development which have lower flow stress at room temperature than Ti 15V-3Cr-3Sn-3Al, expected to improve productivity of cold forging. NNS forging and thermo mechanical treatment of Ti-10V-2Fe-3Al were studied. Ti-10V-2Fe3Al steam turbine blades and structural parts for aircraft were developed. Fine grain cold strips of Ti 15V-3Cr-3Sn-3Al are produced by annealing and pickling process. These cold strips are used for parts of a fishing rod

  3. Development of an engineering model for ferromagnetic shape memory alloys

    International Nuclear Information System (INIS)

    Tani, Yoshiaki; Todaka, Takashi; Enokizono, Masato

    2008-01-01

    This paper presents a relationship among stress, temperature and magnetic properties of a ferromagnetic shape memory alloy. In order to derive an engineering model of ferromagnetic shape memory alloys, we have developed a measuring system of the relationship among stress, temperature and magnetic properties. The samples used in this measurement are Fe68-Ni10-Cr9-Mn7-Si6 wt% ferromagnetic shape memory alloy. They are thin ribbons made by rapid cooling in air. In the measurement, the ribbon sample is inserted into a sample holder winding consisting of the B-coil and compensation coils, and magnetized in an open solenoid coil. The ribbon is stressed with attachment weights and heated with a heating wire. The specific susceptibility was increased by applying tension, and slightly increased by heating below the Curie temperature

  4. Development of high temperature property database for Alloy 800H

    International Nuclear Information System (INIS)

    Yokoyama, Norio; Watanabe, Katsutoshi; Tsuji, Hirokazu; Nakajima, Hajime.

    1993-07-01

    JAERI Material Performance Database (JMPD) has been developed since 1989 in JAERI with a view to utilizing the various kinds of characteristic data of nuclear materials efficiently. Using relational database management system, PLANNER on the mainframe, the JMPD provides the retrieval supporting system, graphic and statistical analyses system. The data obtained with 7868 sets on characteristic data of metallic materials including fatigue crack growth data, etc. have been stored in the JMPD at the end of March in 1993. A ferritic superalloy, Alloy 800H is used for the structural material of the control rods of the High Temperature Engineering Test Reactor (HTTR). Thermal stress generates which might cause a severe creep damage at a reactor scram. It therefore needs to be designed with consideration on the fracture modes induced by creep deformation after neutron irradiation. The creep data (approximately 240 sets) and tensile data (approximately 100 sets) of Alloy 800H including the effects of test environment, aging treatment and neutron irradiation have been stored in the JMPD. Furthermore, using a personal computer, high temperature property database for Alloy 800H has been developed. The present report outlines the development of high temperature property database for Alloy 800H. (author)

  5. Recent research and development in titanium alloys for biomedical applications and healthcare goods

    Directory of Open Access Journals (Sweden)

    Mitsuo Niinomi

    2003-01-01

    Full Text Available Nb, Ta and Zr are the favorable non-toxic alloying elements for titanium alloys for biomedical applications. Low rigidity titanium alloys composed of non-toxic elements are getting much attention. The advantage of low rigidity titanium alloy for the healing of bone fracture and the remodeling of bone is successfully proved by fracture model made in tibia of rabbit. Ni-free super elastic and shape memory titanium alloys for biomedical applications are energetically developed. Titanium alloys for not only implants, but also dental products like crowns, dentures, etc. are also getting much attention in dentistry. Development of investment materials suitable for titanium alloys with high melting point is desired in dental precision castings. Bioactive surface modifications of titanium alloys for biomedical applications are very important for achieving further developed biocompatibility. Low cost titanium alloys for healthcare goods, like general wheel chairs, etc. has been recently proposed.

  6. DEVELOPMENT OF TREAD ON THE BASIS OF COLOR ALLOYS RECYCLED IRON-CARBON ALLOYS PROTECTION FROM CORROSION

    Directory of Open Access Journals (Sweden)

    A. A. Pivovarchyk

    2016-01-01

    Full Text Available The results of development of the compositions of protectors for the corrosion protection low-carbon alloys used in the automotive industry, using as the raw material of the secondary aluminum raw materials. The results of research on the effectiveness of the tread designed to protect the alloy composition.

  7. Development of biodegradable magnesium alloy stents with coating

    Directory of Open Access Journals (Sweden)

    Lorenza Petrini

    2014-07-01

    Full Text Available Biodegradable stents are attracting the attention of many researchers in biomedical and materials research fields since they can absolve their specific function for the expected period of time and then gradually disappear. This feature allows avoiding the risk of long-term complications such as restenosis or mechanical instability of the device when the vessel grows in size in pediatric patients. Up to now biodegradable stents made of polymers or magnesium alloys have been proposed. However, both the solutions have limitations. The polymers have low mechanical properties, which lead to devices that cannot withstand the natural contraction of the blood vessel: the restenosis appears just after the implant, and can be ascribed to the compliance of the stent. The magnesium alloys have much higher mechanical properties, but they dissolve too fast in the human body. In this work we present some results of an ongoing study aiming to the development of biodegradable stents made of a magnesium alloy that is coated with a polymer having a high corrosion resistance. The mechanical action on the blood vessel is given by the magnesium stent for the desired period, being the stent protected against fast corrosion by the coating. The coating will dissolve in a longer term, thus delaying the exposition of the magnesium stent to the corrosive environment. We dealt with the problem exploiting the potentialities of a combined approach of experimental and computational methods (both standard and ad-hoc developed for designing magnesium alloy, coating and scaffold geometry from different points of views. Our study required the following steps: i selection of a Mg alloy suitable for stent production, having sufficient strength and elongation capability; ii computational optimization of the stent geometry to minimize stress and strain after stent deployment, improve scaffolding ability and corrosion resistance; iii development of a numerical model for studying stent

  8. Tungsten wire-nickel base alloy composite development

    Science.gov (United States)

    Brentnall, W. D.; Moracz, D. J.

    1976-01-01

    Further development and evaluation of refractory wire reinforced nickel-base alloy composites is described. Emphasis was placed on evaluating thermal fatigue resistance as a function of matrix alloy composition, fabrication variables and reinforcement level and distribution. Tests for up to 1,000 cycles were performed and the best system identified in this current work was 50v/o W/NiCrAlY. Improved resistance to thermal fatigue damage would be anticipated for specimens fabricated via optimized processing schedules. Other properties investigated included 1,093 C (2,000 F) stress rupture strength, impact resistance and static air oxidation. A composite consisting of 30v/o W-Hf-C alloy fibers in a NiCrAlY alloy matrix was shown to have a 100-hour stress rupture strength at 1,093 C (2,000 F) of 365 MN/square meters (53 ksi) or a specific strength advantage of about 3:1 over typical D.S. eutectics.

  9. Development of new zirconium alloys for PWR fuel rod claddings

    International Nuclear Information System (INIS)

    Zhao Wenjin; Zhou Bangxin; Miao Zhi; Li Cong; Jiang Hongman; Yu Xiaowei; Jiang Yourong; Huang Qiang; Gou Yuan; Huang Decheng

    2001-01-01

    An advanced zirconium alloys containing Sn, Nb, Fe and Cr have been developed. The relationships between manufacturing, microstructure and corrosion performance for the new alloys have been studied. The effects of both heat treatment and chemistry on corrosion behavior were assessed by autoclave tests in lithia water at 633 K and high-temperature steam at 773 K. Analytical electron microscopy demonstrated that the best out-of-pile corrosion performance was obtained for microstructure containing a fine and uniform distribution of β-Nb and Zr(Fe, Nb) 2 particles. Autoclave testing in LiOH solution indicated that two kinds of alloys (N18, N36) showed the lower corrosion rate than the reference Zr-4 tested, and especially, the corrosion resistance in superheated steam at 773 K was much better. Moreover, the mechanical properties were superior to Zr-4. And the hydrogen absorption data for all of alloys from corrosion reactions under various corrosion conditions showed a linear increase with the oxide thickness

  10. Development of tantalum–zirconium alloy for hydrogen purification

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sanjay, E-mail: sanjay.barc@gmail.com [Fusion Reactor Materials Section, MG, BARC, Mumbai 85 (India); IAMR, Hiroshima University, Higashihiroshima 739-8530 (Japan); Singh, Anamika [GSASM Hiroshima University, Higashihiroshima 739-8530 (Japan); Jain, Uttam; Dey, Gautam Kumar [Fusion Reactor Materials Section, MG, BARC, Mumbai 85 (India)

    2016-11-01

    Highlights: • Terminal solid solubility of Ta increases with Zr addition. • Increase in lattice parameters of Ta due to Zr addition may be the possible reason. • Enhance H solubility could also be explained on the change in e-DOS of Ta–Zr alloys. • Ta–Zr alloys could be possible combination for hydrogen purification membrane. - Abstract: Terminal solid solubility of hydrogen in Ta–Zr alloys has been studied in connection with the development of tantalum based metallic membrane for hydrogen/tritium purification. The alloys were prepared by vacuum arc melting technique and subsequently cold rolled to 0.2 mm thickness. The terminal solid solubility of hydrogen in these cold rolled samples was investigated in a modified Sieverts apparatus. The terminal solid solubility of hydrogen was marginally increased with zirconium content. The change in the lattices parameter of tantalum upon zirconium addition and the higher affinity of zirconium for hydrogen as compared to tantalum could be the possible reasons.

  11. Mechanical property, biocorrosion and in vitro biocompatibility evaluations of Mg-Li-(Al)-(RE) alloys for future cardiovascular stent application.

    Science.gov (United States)

    Zhou, W R; Zheng, Y F; Leeflang, M A; Zhou, J

    2013-11-01

    Mg-Li-based alloys were investigated for future cardiovascular stent application as they possess excellent ductility. However, Mg-Li binary alloys exhibited reduced mechanical strengths due to the presence of lithium. To improve the mechanical strengths of Mg-Li binary alloys, aluminum and rare earth (RE) elements were added to form Mg-Li-Al ternary and Mg-Li-Al-RE quarternary alloys. In the present study, six Mg-Li-(Al)-(RE) alloys were fabricated. Their microstructures, mechanical properties and biocorrosion behavior were evaluated by using optical microscopy, X-ray diffraction, scanning electronic microscopy, tensile tests, immersion tests and electrochemical measurements. Microstructure characterization indicated that grain sizes were moderately refined by the addition of rare earth elements. Tensile testing showed that enhanced mechanical strengths were obtained, while electrochemical and immersion tests showed reduced corrosion resistance caused by intermetallic compounds distributed throughout the magnesium matrix in the rare-earth-containing Mg-Li alloys. Cytotoxicity assays, hemolysis tests as well as platelet adhesion tests were performed to evaluate in vitro biocompatibilities of the Mg-Li-based alloys. The results of cytotoxicity assays clearly showed that the Mg-3.5Li-2Al-2RE, Mg-3.5Li-4Al-2RE and Mg-8.5Li-2Al-2RE alloys suppressed vascular smooth muscle cell proliferation after 5day incubation, while the Mg-3.5Li, Mg-8.5Li and Mg-8.5Li-1Al alloys were proven to be tolerated. In the case of human umbilical vein endothelial cells, the Mg-Li-based alloys showed no significantly reduced cell viabilities except for the Mg-8.5Li-2Al-2RE alloy, with no obvious differences in cell viability between different culture periods. With the exception of Mg-8.5Li-2Al-2RE, all of the other Mg-Li-(Al)-(RE) alloys exhibited acceptable hemolysis ratios, and no sign of thrombogenicity was found. These in vitro experimental results indicate the potential of Mg

  12. Development of Weldable Superplastic Forming Aluminum Alloy Sheet Final Report CRADA No. TC-1086-95

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sun, T. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-01

    Numerous applications could exist for superplastic formable, weldable aluminum alloys in the automotive, aerospace, architectural, and construction industries. In this project, LLNL and Kaiser worked with the Institute for Metals Superplasticity Problems to develop and evaluate weldable superplastic alloys.

  13. Integration of NASA-Developed Lifing Technology for PM Alloys into DARWIN (registered trademark)

    Science.gov (United States)

    McClung, R. Craig; Enright, Michael P.; Liang, Wuwei

    2011-01-01

    In recent years, Southwest Research Institute (SwRI) and NASA Glenn Research Center (GRC) have worked independently on the development of probabilistic life prediction methods for materials used in gas turbine engine rotors. The two organizations have addressed different but complementary technical challenges. This report summarizes a brief investigation into the current status of the relevant technology at SwRI and GRC with a view towards a future integration of methods and models developed by GRC for probabilistic lifing of powder metallurgy (P/M) nickel turbine rotor alloys into the DARWIN (Darwin Corporation) software developed by SwRI.

  14. Development of Silicide Coating on Molybdenum Alloy Cladding

    International Nuclear Information System (INIS)

    Lim, Woojin; Ryu, Ho Jin

    2015-01-01

    The molybdenum alloy is considered as one of the accident tolerant fuel (ATF) cladding materials due to its high temperature mechanical properties. However, molybdenum has a weak oxidation resistance at elevated temperatures. To modify the oxidation resistance of molybdenum cladding, silicide coating on the cladding is considered. Molybdenum silicide layers are oxidized to SiO 2 in an oxidation atmosphere. The SiO 2 protective layer isolates the substrate from the oxidizing atmosphere. Pack cementation deposition technique is widely adopted for silicide coating for molybdenum alloys due to its simple procedure, homogeneous coating quality and chemical compatibility. In this study, the pack cementation method was conducted to develop molybdenum silicide layers on molybdenum alloys. It was found that the Mo 3 Si layer was deposited on substrate instead of MoSi 2 because of short holding time. It means that through the extension of holding time, MoSi 2 layer can be formed on molybdenum substrate to enhance the oxidation resistance of molybdenum. The accident tolerant fuel (ATF) concept is to delay the process following an accident by reducing the oxidation rate at high temperatures and to delay swelling and rupture of fuel claddings. The current research for Atf can be categorized into three groups: First, modification of existing zirconium-based alloy cladding by improving the high temperature oxidation resistance and strength. Second, replacing Zirconium based alloys with alternative metallic materials such as refractory elements with high temperature oxidation resistance and strength. Third, designing alternative fuel structures using ceramic and composite systems

  15. Development of ductile long-range ordered alloys for fusion reactor systems

    International Nuclear Information System (INIS)

    Liu, C.T.

    1979-01-01

    A series of Fe-base ordered alloys with compositions (Fe,Ni,Co) 3 V are developed for fusion reactor applications. The alloys from cubic ordered structure similar to AuCu 3 below their critical ordering temperature. The alloys in the ordered state are ductile with elongation in excess of 35% at room temperture. Tensile tests of the ordered alloys at elevated temperatures indicate an unusually attractive mechanical behavior. Their strength, instead of decreasing as with conventional alloys, increases with temperature because of ordering effects. As a result, the ordered alloys are much stronger than 316 stainless steel, particularly at elevated temperatures

  16. Development of an efficient grain refiner for Al-7Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kori, S.A.; Murty, B.S.; Chakraborty, M. [Indian Inst. of Technol., Kharagpur (India). Dept. of Metall. and Mater. Eng.

    2000-03-15

    The response of Al-7Si alloy towards grain refinement by Al-Ti-B master alloys (with different Ti-B ratios) at different addition levels has been studied in detail. The results indicate that high B-containing master alloys are powerful grain refiners when compared to conventional grain refiners like Al-5Ti-lB master alloys. In the present study, indigenously developed master alloys have been used for the grain refinement of alloys Al-7Si and LM-25. Significant improvements in mechanical properties have been obtained with a combination of grain refiner and Sr as modifier. (orig.)

  17. Future development of nuclear energy systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Nuclear energy development in Japan has passed about 30 years, and reaches to a step to supply about 35 % of total electric power demand. However, together with globalization of economic and technical development, its future progressing method is required for its new efforts. Among such conditions, when considering a state of future type nuclear energy application, its contribution to further environmental conservation and international cooperation is essential, and it is required for adoption to such requirement how it is made an energy source with excellent economics.The Research Committee on 'Engineering Design on Nuclear Energy Systems' established under recognition in 1998 has been carried out some discussions on present and future status of nuclear energy development. And so forth under participation of outer specialists. Here were summarized on two year's committee actions containing them and viewpoints of nuclear industries, popularization of nuclear system technology, and so forth. (G.K.)

  18. Inconel alloys development -Development of the advanced nuclear materials-

    International Nuclear Information System (INIS)

    Kuk, Il Hiun; Jang, Jin Sung; Rhee, Chang Kyu; Chung, Man Kyo; Woo, Yun Myeoung; Han, Chang Hee

    1994-07-01

    We surveyed the current status and problems in S/G U-tubes in Korea and worldwide. Also we gathered manufacturing specifications of S/G U-tubes and compared/analyzed the differences in them company by company. We produced alloy 600 tubes (in cooperation with Sammi Special Steels) through V.I.M. (Vacuum Induction Melting; 2 ton capacity), 4 steps of hot press forging, hot extrusion (10:1 of reduction ratio), 3 steps of cold pilgerings and so on. We will continue to characterize the tubes and 2nd time preproduce the tubes using the feed-back data. With regard to alloy 690, which is getting popular for S/G U-tubes worldwide, we cast four 60 Kg ingots and two 6 Kg ingots by V.I.M.. We analyzed the chemical composition, macrostructures, hot workability, and so on ; all ingots were good except on 60 Kg ingot. Finally we produced high quality alloy 690 ingot (about 1 Kg) by E.S.R. (Electroslag Remelting) method (in cooperation with Yeoungnam University). We used CaF/CaO/Al2O3/MgO quartenary slag system. We have made directionally grown good ingots by E.S.R. and especially the hot workability at 1100 deg C - the temperature at which V.I.M. ingots showed very poor hot workability - was very much improved (from 30 to 90 % of reduction of area). We continue to analyze the effects of E.S.R. to the structure and properties of alloy 690 (grain size, morphology, and directionality; any changes of inclusions and so on). (Author)

  19. Formation of biodegradated polymers as components of future composite materials on the basis of shape memory alloy of medical appointment

    Science.gov (United States)

    Nasakina, E. O.; Baikin, A. S.; Sergiyenko, K. V.; Kaplan, M. A.; Konushkin, S. V.; Yakubov, A. D.; Izvin, A. V.; Sudarchikova, M. A.; Sevost’yanov, M. A.; Kolmakov, A. G.

    2018-04-01

    The processes of formation of polymer polylactide or polyglycylidactide films for the subsequent creation of a layered composite with a biodegradable layer on the basis of a nickel-free shape memory alloy TiNbTaZr are studied. The structure of the samples was determined using an SEM. The correspondence of morphology of surfaces of and the substrate itself is noted. High adhesion of the polymer to the future basis of the developed composite material is supposed. The formed films is homogeneous and amorphous throughout the polymer volume. By varying the volume of solutions, it is possible to obtain films of a given thickness for any type of polymer, its molecular weight, and the solution concentration of the polymer in chloroform. Poly (glycolide-lactide) should be more plastic than polylactide.

  20. Development of new low activation aluminum alloys for fusion devices

    International Nuclear Information System (INIS)

    Kamada, Kohji; Kakihana, Hidetake.

    1985-01-01

    As the materials for the R facility (a tokamak nuclear fusion device in the R project intended for D-T burning) in the Institute of Plasma Physics, Nagoya University, Al-4 % Mg-0.2 % Bi (5083 improved type) and Al-4 % Mg-1 % Li, aimed at low radioactivability, high electric resistance and high strength, have been developed. The results of the nuclear properties evaluation with 14 MeV neutrons and of the measurements of electric resistance and mechanical properties were satisfactory. The possibility of producing large Al-4 % Mg-1 % Li plate (1 m x 2 m x 25 mm) in the existing factory was confirmed, with the properties retained. The electric resistances were higher than those in the conventional aluminum alloys, and still with feasibility for the further improvement. General properties of the fusion aluminum alloys and the 26 Al formation in (n, 2n) reaction were studied. (Mori, K.)

  1. Development of a high strength, hydrogen-resistant austenitic alloy

    International Nuclear Information System (INIS)

    Chang, K.M.; Klahn, D.H.; Morris, J.W. Jr.

    1980-08-01

    Research toward high-strength, high toughness nonmagnetic steels for use in the retaining rings of large electrical generators led to the development of a Ta-modified iron-based superalloy (Fe-36 Ni-3 Ti-3 Ta-0.5 Al-1.3 Mo-0.3 V-0.01 B) which combines high strength with good toughness after suitable aging. The alloy did, however, show some degradation in fatigue resistance in gaseous hydrogen. This sensitivity was associated with a deformation-induced martensitic transformation near the fracture surface. The addition of a small amount of chromium to the alloy suppressed the martensite transformation and led to a marked improvement in hydrogen resistance

  2. Development of rheometer for semi-solid highmelting point alloys

    Directory of Open Access Journals (Sweden)

    LIU Wen

    2005-11-01

    Full Text Available A rheometer for semi-solid high-melting point alloys was developed based on the principle of a double-bucket rheometer, with which the solidifying of semi-solid high-melting point alloy melt could be effectively controlled by the control of temperature and the outer force-field; and different microstructures have also been obtained. This rheometer can be used to investigate the rheological behavior under different conditions by changing the Theological parameters. By way of full-duplex communication between the computer and each sensor, automatic control of the test equipment and real- timemeasurement of rheological parameters were realized. Finally, the influencing factors on torque are also quantitatively analyzed.

  3. Uranium - recent developments and future outlook

    International Nuclear Information System (INIS)

    Roux, A.J.A.

    1976-01-01

    The influence of the oil crisis on the demand for and supply of uranium is discussed. South Africa's large reserves of uranium and the development of an unique South African uranium enrichment process place the country in an economically favourable position for the future production of energy

  4. Isobutane alkylation. Recent developments and future perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Hommeltoft, Sven Ivar [Haldor Topsoe A/S, Nymoellevej 55, DK-2800 Lyngby (Denmark)

    2001-11-30

    In the isobutane alkylation, alkylated gasoline is obtained which is a valuable blending component for the gasoline pool. Thereby the C{sub 3}-C{sub 4} cut from the FCC units can be extensively used. Established technologies and recent developments will be reviewed and future perspectives will be given.

  5. Microstructure and texture development of 7075 alloy during homogenisation

    Science.gov (United States)

    Ghosh, Abhishek; Ghosh, Manojit

    2018-06-01

    The microstructure evolution of Al-Zn-Mg-Cu alloy during homogenisation was studied by optical microscope, field emission scanning electron microscope, energy dispersive X-ray Spectroscopy, differential scanning calorimetry and X-ray diffraction in detailed. It has been found that primary cast structure consisted of primary α (Al), lamellar eutectic structure η Mg(Zn, Cu, Al)2 and a small amount of θ (Al2Cu) phase. A transformation of primary eutectic phase from η Mg(Zn, Cu, Al)2 to S (Al2CuMg) was observed after 6 h of homogenisation treatment. The volume fraction of dendrite network structure and intermetallic phase was decreased with increase in holding time and finally disappeared after 96 h of homogenisation, which is consistent with the results of homogenisation kinetic analysis. Crystallographic texture of this alloy after casting and 96 h of homogenisation was also studied. It was found that casting process led the development of strong Goss, Brass, P and CuT components, while after homogenisation Cube, S and Copper components became predominant. Mechanical tests revealed higher hardness, yield strength and tensile strength for cast materials compared to homogenised alloys due to the presence of coarse micro-segregation of MgZn2 phase. The significant improvement of ductility was observed after 96-h homogenisation, which was attributed to dissolution of second phase particles and grain coarsening. Fracture surfaces of the cast samples indicated the presence of shrinkage porosity and consequently failure occurred in the interdendritic regions or grain boundaries with brittle mode, while homogenised alloys failed under ductile mode as evident by the presence of fine dimple surfaces.

  6. Development of Commercial Applications of a FAPY Alloy; TOPICAL

    International Nuclear Information System (INIS)

    Sikka, VK

    2001-01-01

    The Fe-16 at. (8.5 wt)% Al alloy, known as FAPY, has been identified as a superior material for heating element applications. However, while the 15-lb heats melted at the Oak Ridge National Laboratory (ORNL) could be processed into wire, the large heat melted at Hoskins Manufacturing Company (Hoskins) could not be processed under commercial processing conditions. The primary objective of the Cooperative Research and Development Agreement (CRADA) was to demonstrate that wire of the FAPY alloy could be produced under commercial conditions from air-induction-melted (AIM) heats. The specific aspects of this CRADA included: (1) Melting 15-lb heats by AIM or vacuum-induction melting (VIM) at ORNL. (2) Development of detailed processing steps including warm drawing and annealing temperature and time during cold-drawing steps. (3) Melting of 1400-lb heats at Hoskins by the Exo-Melt(trademark) process and their chemical analysis and microstructural characterization. (4) Development of tensile properties of sections of ingots from the large heats in the as-cast, hot-worked, and hot- and cold-worked conditions. (5) Microstructural characterization of cast and wrought structures and the fractured specimens. (6) Successful demonstration of processing of AIM heats at Hoskins to heating element wire. The aspects of this CRADA listed above have demonstrated that the FAPY alloy of the desired composition can be commercially produced by AIM by the use of the Exo-Melt(trademark) process. Furthermore, it also demonstrated that the wire processing steps developed for 15-lb heats at ORNL can be successfully applied to the production of wire from the large AIM heats

  7. Texture development during tensile deformation in Al-Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ohtani, S.; Inagaki, H. [Shonan Inst. of Tech., Fujisawashi (Japan)

    2002-07-01

    Tensile tests were made on commercial A1050 pure Al, A5182 Al-4.4% Mg alloy and A2017 Al-4% Cu alloy by varying the test temperature and the strain rate. Textures developed at various stages of the tensile deformation were investigated with the orientation distribution function analysis. It was found that, during the tensile test of the 1050 pure Al with the strain rate of 3 x 10{sup -4}S{sup -1} at 20 C, tensile axis readily rotated toward left angle 111 right angle stable end orientation. However, such rotation occurred only at the latest stage of the tensile deformation near the ultimate tensile stress, where stress strain curve was almost flattened and work hardening was almost saturated. It was strongly suggested that, since fine and complex dislocation cell structures were developed in such a work-hardened state, smooth and long range dislocation glide such as assumed in the classical Taylor theory would not be possible. To explain the observed texture development, cooperative movement of the dislocations in the cell walls might be necessary. In fact, addition of Mg and Cu, which suppressed strongly the development of well defined cell structures due to P-L effect or dynamic strain ageing, significantly retarded the rotation of tensile axes toward left angle 111 right angle. Interesting enough, textures developed in all these materials investigated were not affected by the strain rate and the temperature of the tensile test. (orig.)

  8. Microstructural Evolution and Mechanical Property Development of Selective Laser Melted Copper Alloys

    Science.gov (United States)

    Ventura, Anthony Patrick

    produce components around 98 percent dense with high mechanical strength and electrical conductivity. Aging heat treatments were carried out at 723 K (450 °C) directly on as-printed samples up to 128 hours. A peak yield strength of around 590 MPa could be attained with an electrical conductivity of 34.2 %IACS after 8 hours of aging. Conductivity continues to increase with further aging while the peak strength appears to be less sensitive to aging time exhibiting a broad range of time where near-peak properties exist. Nanometer-scale silicon-rich oxide particles exist throughout the material and persist during aging. Deformation twinning is observed in the peak age condition after tensile testing and several strengthening mechanisms appear to be active to varying degrees throughout aging, which accounts for the broad range of aging time where nearly the peak mechanical properties exist. The findings of this research are integral to understanding SLM copper alloys and serve as a foundation for future development of new copper alloys tailored to the SLM process.

  9. Biodegradable Magnesium Alloys: A Review of Material Development and Applications

    Science.gov (United States)

    Persaud-Sharma, Dharam; McGoron, Anthony

    2012-01-01

    Magnesium based alloys possess a natural ability to biodegrade due to corrosion when placed within aqueous substances, which is promising for cardiovascular and orthopedic medical device applications. These materials can serve as a temporary scaffold when placed in vivo, which is desirable for treatments when temporary supportive structures are required to assist in the wound healing process. The nature of these materials to degrade is attributed to the high oxidative corrosion rates of magnesium. In this review, a summary is presented for magnesium material development, biocorrosion characteristics, as well as a biological translation for these results. PMID:22408600

  10. Strategies of the future technological development

    International Nuclear Information System (INIS)

    Lelek, V.

    2011-01-01

    Attempt to formulate strategies of the future development are formulated based on raw materials for energy needs, which will be in our disposal for the interval up to the start of nuclear fast breeder reactors. Main tendencies should be broader nuclear energy use and nonelectric application. As an externally given boundary condition it is supposed that world society model will be kept as a continuity of mankind history. There are recommendation of the demands for the development of new technologies to substitute decreasing external fossil energy resources and generally growing demand for living standard. Most of the considerations are growing from the INPRO studies published in IAEA Vienna. (Author)

  11. AlSi17Cu5Mg alloy as future material for castings of pistons for internal combustion engines

    Directory of Open Access Journals (Sweden)

    J. Piątkowski

    2015-07-01

    Full Text Available The paper presents chosen properties and microstructure of AlSi17Cu5Mg alloy as future material for casting pistons in automotive industry. Tests were conducted to elaborate technology of preparation, assessment of crystallisation parameters and shaping the primary structure of the silumin with the aim to improve the working parameters and the functioning efficiency in cylinder-piston system. Refinement of Si crystals, achieved due to overheating above the temperature Tliq. causes that the alloy reaches satisfactory properties in working chamber of the engine are optimised. Such condition of material characteristics causes that hypereutectic silumins, for chosen applications in transport, may serve as an alternative to Al - Si alloys of hypoeutectic and near - eutectic type.

  12. A Study on Development of High Strength Al-Zn Based alloy for Die Casting Ⅲ

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sang-Soo; Park, Ik-Min [Pusan National University, Busan (Korea, Republic of); Yeom, Gil-Young; Lim, Kyoung-Mook [Korea Institute of Industrial Technology, Incheon (Korea, Republic of); Son, Hyun-Jin [Oh-Sung Co. Ltd., Siheung (Korea, Republic of)

    2015-09-15

    In this study, the microstructural evolution and various characteristics of Al-20⁓45wt%Zn alloys were investigated. In terms of microstructure, as the amount of Zn addition to the alloys increased, the α-phase size decreased and the α+η non-equilibrium solidification phase fraction increased. Also, increasing Zn content improved the wear resistance of the alloys, but reduced the damping capacity and toughness of the alloys. Their physical properties of the Al-Zn alloy with high Zn content, specifically the wear resistance and toughness, were superior to those of commercial ALDC12 alloys for die-casting. Based on these results, we considered the possibility of application of the developed Al-Zn alloy as a structural material.

  13. A Study on Development of High Strength Al-Zn Based alloy for Die Casting Ⅲ

    International Nuclear Information System (INIS)

    Shin, Sang-Soo; Park, Ik-Min; Yeom, Gil-Young; Lim, Kyoung-Mook; Son, Hyun-Jin

    2015-01-01

    In this study, the microstructural evolution and various characteristics of Al-20⁓45wt%Zn alloys were investigated. In terms of microstructure, as the amount of Zn addition to the alloys increased, the α-phase size decreased and the α+η non-equilibrium solidification phase fraction increased. Also, increasing Zn content improved the wear resistance of the alloys, but reduced the damping capacity and toughness of the alloys. Their physical properties of the Al-Zn alloy with high Zn content, specifically the wear resistance and toughness, were superior to those of commercial ALDC12 alloys for die-casting. Based on these results, we considered the possibility of application of the developed Al-Zn alloy as a structural material.

  14. Developing future nurse educators through peer mentoring

    Directory of Open Access Journals (Sweden)

    Rosenau PA

    2015-01-01

    Full Text Available Patricia A Rosenau, Rita F Lisella, Tracey L Clancy, Lorelli S NowellFaculty of Nursing, University of Calgary, Calgary, AB, CanadaBackground: The nursing workforce and nursing education demographic trends reinforce the urgency to cultivate future nursing leaders, educators, and mentors. The changing realities of health care environments, involving crowded student placements, overtaxed clinical mentors and preceptors, and inexperienced staff, hamper student learning and professional development. Peer mentoring has been used successfully in nursing education to enhance student engagement and the quality of the student learning experience. Although various terms like peer mentor have been used to describe the role of senior students facilitating junior student learning, the literature is silent about how peer mentoring fosters the development of future nursing education leaders.Objectives: The aim of this study was to understand how peer mentorship fosters the development of nursing education leadership in senior undergraduate nursing students enrolled in an elective undergraduate peer-mentoring credit course, Introductory Concepts in Nursing Education and Leadership Through Peer-Led Learning.Design and method: This phenomenological study explored the development of nursing education leadership in senior undergraduate students through the analysis of critical reflections of individual senior students and online discussions between triads of senior students teaching/learning across diverse junior-level theory and practice courses.Participants: Seventeen senior undergraduate nursing students enrolled in the elective course participated in the study.Results: From the critical reflections and online discussions, four themes emerged: "developing teaching philosophies and pedagogies", "learning teaching strategies", "supportive peer relationship", and "benefits of the peer mentorship program".Conclusion: The creation and promotion of peer leadership

  15. Requirements for future developments from utility point of view

    International Nuclear Information System (INIS)

    Nordloef, S.; Besch, O.A.

    1995-01-01

    On the BWR side the development of fuel has continued and during the recent years many new designs have entered the market such as ABB Atom SVEA-96, Siemens Atrium, GE-12 etc. These new designs provide new possibilities to optimize the core design and also give better utilization of the uranium. The future development work should emphasize on less susceptibility to severe secondary damage and also higher resistance to debris failure. Another utility demand is to increase the thermal margins such as dryout and PCI performance in order to avoid any restrictions during load, follow up and start up conditions. For three decades the PWR fuel design and the selection of material led to a satisfying results in the overall operational behaviour, which resulted in higher utilization of the fuel and materials. At the beginning of the seventieth, the utilities started with burnups of 30 MWd/kg u . Nowadays, burnups of 42 MWd/kg u are reached and burnups of 50 MWd/kg u as transition burnups are designed. The increase of enrichment from 3.0 w/o U-235 to 4.0 w/o U-235, the change of guide thimble and spacer material from stainless steel or inconel to zircalloy alloys and the different fuel core loading strategy from out-in-in to in-in-out improved the use of fuel and reduced the number of fresh fuel assemblies for reloads. (orig./HP)

  16. Development of the Future Physicists of Florida

    Science.gov (United States)

    Wade, A.; Weatherford, C.; Cottle, P.; Fannin, S.; Roberts, W.; Fauerbach, M.; Ponti, L.; Sear, J.

    2013-03-01

    We present the development of the ``Future Physicists of Florida'' (FPF) comprised of Florida university physics professors, middle and high school science teachers, and backed by the Florida Legislature. Our purpose is to address the lack of incoming college freshmen ready and willing to become physics majors. We will discuss the building of FPF and the development of a pipeline for middle and high school students predicted to produce the optimal number of bachelor's degrees in STEM. We will also discuss our use of community-building activities to educate the students, and their parents and teachers about the educational value of taking physics before going to college and potential careers in physics, to entertain them with fun physics related activities in order to peak their interest in physics, and to ultimately inspire the students to become physicists.

  17. Sustainable development, a summit for the future

    International Nuclear Information System (INIS)

    Dessus, B.

    2002-01-01

    The Johannesburg summit, which took place at the end of the summer of 2002, was the opportunity to spread out to the large public worldwide the notion of sustainable development, a notion that remained confidential so far. It was also a good opportunity to show that the share of energy resources is a vital point for the future. The institute of energy and environment of the French-speaking world has published a huge dossier which takes stock of the overall questions raised by the summit and answered by French-speaking experts. This article reprints some large extracts of two contributions devoted to the energy and its key role in the sustainable development. The first contribution deals with the four energy stakes of the sustainable development: the energy and the fight against poverty, the mastery of energy demand, the development of renewable energy sources, and the nuclear question. The second contribution treats of the five points of the action plan of the world energy council (CME) for the implementation of a durable energy policy in developing countries. (J.S.)

  18. Development of high-capacity nickel-metal hydride batteries using superlattice hydrogen-absorbing alloys

    International Nuclear Information System (INIS)

    Yasuoka, Shigekazu; Magari, Yoshifumi; Murata, Tetsuyuki; Tanaka, Tadayoshi; Ishida, Jun; Nakamura, Hiroshi; Nohma, Toshiyuki; Kihara, Masaru; Baba, Yoshitaka; Teraoka, Hirohito

    2006-01-01

    New R-Mg-Ni (R: rare earths) superlattice alloys with higher-capacity and higher-durability than the conventional Mm-Ni alloys with CaCu 5 structure have been developed. The oxidation resistibility of the superlattice alloys has been improved by optimizing the alloy composition by such as substituting aluminum for nickel and optimizing the magnesium content in order to prolong the battery life. High-capacity nickel-metal hydride batteries for the retail market, the Ni-MH2500/900 series (AA size type 2500mAh, AAA size type 900mAh), have been developed and commercialized by using an improved superlattice alloy for negative electrode material. alized by using an improved superlattice alloy for negative electrode material. (author)

  19. Development of powder metallurgy Al alloys for high temperature aircraft structural applications, phase 2

    Science.gov (United States)

    Chellman, D. J.

    1982-01-01

    In this continuing study, the development of mechanically alloyed heat resistant aluminum alloys for aircraft were studied to develop higher strength targets and higher service temperatures. The use of higher alloy additions to MA Al-Fe-Co alloys, employment of prealloyed starting materials, and higher extrusion temperatures were investigated. While the MA Al-Fe-Co alloys exhibited good retention of strength and ductility properties at elevated temperatures and excellent stability of properties after 1000 hour exposure at elevated temperatures, a sensitivity of this system to low extrusion strain rates adversely affected the level of strength achieved. MA alloys in the Al-Li family showed excellent notched toughness and property stability after long time exposures at elevated temperatures. A loss of Li during processing and the higher extrusion temperature 482 K (900 F) resulted in low mechanical strengths. Subsequent hot and cold working of the MA Al-Li had only a mild influence on properties.

  20. Development of Zr alloys - Fabrication of Zr-Nb alloy used in PHWRs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang In; Kim, Won Baek; Choi, Guk Sun; Lee, Chul Kyung; Jang, Dae Kyu; Seo, Chang Yeol; Sim, Kun Joo; Lee, Jae Cheon [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-07-01

    The manufacture of Zr-Nb alloy ingot by EB melting process is carried out to meet the chemical composition and mechanical and property specifications and to ensure that the ingots are free of unacceptable defects through this study. It was established that Zr-Nb alloy was made by EB melting technique including the control of adding elements, melting power and melting and cast device. 28 refs., 13 tabs., 26 figs., 23 ills. (author)

  1. Volcano Geodesy: Recent developments and future challenges

    Science.gov (United States)

    Fernandez, Jose F.; Pepe, Antonio; Poland, Michael; Sigmundsson, Freysteinn

    2017-01-01

    Ascent of magma through Earth's crust is normally associated with, among other effects, ground deformation and gravity changes. Geodesy is thus a valuable tool for monitoring and hazards assessment during volcanic unrest, and it provides valuable data for exploring the geometry and volume of magma plumbing systems. Recent decades have seen an explosion in the quality and quantity of volcano geodetic data. New datasets (some made possible by regional and global scientific initiatives), as well as new analysis methods and modeling practices, have resulted in important changes to our understanding of the geodetic characteristics of active volcanism and magmatic processes, from the scale of individual eruptive vents to global compilations of volcano deformation. Here, we describe some of the recent developments in volcano geodesy, both in terms of data and interpretive tools, and discuss the role of international initiatives in meeting future challenges for the field.

  2. The Development of the Low-Cost Titanium Alloy Containing Cr and Mn Alloying Elements

    Science.gov (United States)

    Zhu, Kailiang; Gui, Na; Jiang, Tao; Zhu, Ming; Lu, Xionggang; Zhang, Jieyu; Li, Chonghe

    2014-04-01

    The α + β-type Ti-4.5Al-6.9Cr-2.3Mn alloy has been theoretically designed on the basis of assessment of the Ti-Al-Cr-Mn thermodynamic system and the relationship between the molybdenum equivalent and mechanical properties of titanium alloys. The alloy is successfully prepared by the split water-cooled copper crucible, and its microstructures and mechanical properties at room temperature are investigated using the OM, SEM, and the universal testing machine. The results show that the Ti-4.5Al-6.9Cr-2.3Mn alloy is an α + β-type alloy which is consistent with the expectation, and its fracture strength, yield strength, and elongation reach 1191.3, 928.4 MPa, and 10.7 pct, respectively. Although there is no strong segregation of alloying elements under the condition of as-cast, the segregation of Cr and Mn is obvious at the grain boundary after thermomechanical treatment.

  3. Grid accounting service: state and future development

    International Nuclear Information System (INIS)

    Levshina, T; Sehgal, C; Bockelman, B; Weitzel, D; Guru, A

    2014-01-01

    During the last decade, large-scale federated distributed infrastructures have been continually developed and expanded. One of the crucial components of a cyber-infrastructure is an accounting service that collects data related to resource utilization and identity of users using resources. The accounting service is important for verifying pledged resource allocation per particular groups and users, providing reports for funding agencies and resource providers, and understanding hardware provisioning requirements. It can also be used for end-to-end troubleshooting as well as billing purposes. In this work we describe Gratia, a federated accounting service jointly developed at Fermilab and Holland Computing Center at University of Nebraska-Lincoln. The Open Science Grid, Fermilab, HCC, and several other institutions have used Gratia in production for several years. The current development activities include expanding Virtual Machines provisioning information, XSEDE allocation usage accounting, and Campus Grids resource utilization. We also identify the direction of future work: improvement and expansion of Cloud accounting, persistent and elastic storage space allocation, and the incorporation of WAN and LAN network metrics.

  4. Grid accounting service: state and future development

    Science.gov (United States)

    Levshina, T.; Sehgal, C.; Bockelman, B.; Weitzel, D.; Guru, A.

    2014-06-01

    During the last decade, large-scale federated distributed infrastructures have been continually developed and expanded. One of the crucial components of a cyber-infrastructure is an accounting service that collects data related to resource utilization and identity of users using resources. The accounting service is important for verifying pledged resource allocation per particular groups and users, providing reports for funding agencies and resource providers, and understanding hardware provisioning requirements. It can also be used for end-to-end troubleshooting as well as billing purposes. In this work we describe Gratia, a federated accounting service jointly developed at Fermilab and Holland Computing Center at University of Nebraska-Lincoln. The Open Science Grid, Fermilab, HCC, and several other institutions have used Gratia in production for several years. The current development activities include expanding Virtual Machines provisioning information, XSEDE allocation usage accounting, and Campus Grids resource utilization. We also identify the direction of future work: improvement and expansion of Cloud accounting, persistent and elastic storage space allocation, and the incorporation of WAN and LAN network metrics.

  5. Report on FY15 alloy 617 code rules development

    Energy Technology Data Exchange (ETDEWEB)

    Sham, Sam [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jetter, Robert I [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hollinger, Greg [Becht Engineering Co., Inc., Liberty Corner, NJ (United States); Pease, Derrick [Becht Engineering Co., Inc., Liberty Corner, NJ (United States); Carter, Peter [Stress Engineering Services, Inc., Houston, TX (United States); Pu, Chao [Univ. of Tennessee, Knoxville, TN (United States); Wang, Yanli [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    Due to its strength at very high temperatures, up to 950°C (1742°F), Alloy 617 is the reference construction material for structural components that operate at or near the outlet temperature of the very high temperature gas-cooled reactors. However, the current rules in the ASME Section III, Division 5 Subsection HB, Subpart B for the evaluation of strain limits and creep-fatigue damage using simplified methods based on elastic analysis have been deemed inappropriate for Alloy 617 at temperatures above 650°C (1200°F) (Corum and Brass, Proceedings of ASME 1991 Pressure Vessels and Piping Conference, PVP-Vol. 215, p.147, ASME, NY, 1991). The rationale for this exclusion is that at higher temperatures it is not feasible to decouple plasticity and creep, which is the basis for the current simplified rules. This temperature, 650°C (1200°F), is well below the temperature range of interest for this material for the high temperature gas-cooled reactors and the very high temperature gas-cooled reactors. The only current alternative is, thus, a full inelastic analysis requiring sophisticated material models that have not yet been formulated and verified. To address these issues, proposed code rules have been developed which are based on the use of elastic-perfectly plastic (EPP) analysis methods applicable to very high temperatures. The proposed rules for strain limits and creep-fatigue evaluation were initially documented in the technical literature (Carter, Jetter and Sham, Proceedings of ASME 2012 Pressure Vessels and Piping Conference, papers PVP 2012 28082 and PVP 2012 28083, ASME, NY, 2012), and have been recently revised to incorporate comments and simplify their application. Background documents have been developed for these two code cases to support the ASME Code committee approval process. These background documents for the EPP strain limits and creep-fatigue code cases are documented in this report.

  6. Design and development of novel MRI compatible zirconium- ruthenium alloys with ultralow magnetic susceptibility

    Science.gov (United States)

    Li, H.F.; Zhou, F.Y.; Li, L.; Zheng, Y.F.

    2016-01-01

    In the present study, novel MRI compatible zirconium-ruthenium alloys with ultralow magnetic susceptibility were developed for biomedical and therapeutic devices under MRI diagnostics environments. The results demonstrated that alloying with ruthenium into pure zirconium would significantly increase the strength and hardness properties. The corrosion resistance of zirconium-ruthenium alloys increased significantly. High cell viability could be found and healthy cell morphology observed when culturing MG 63 osteoblast-like cells and L-929 fibroblast cells with zirconium-ruthenium alloys, whereas the hemolysis rates of zirconium-ruthenium alloys are alloys and Ti-based alloys, the magnetic susceptibilities of the zirconium-ruthenium alloys (1.25 × 10−6 cm3·g−1–1.29 × 10−6 cm3·g−1 for zirconium-ruthenium alloys) are ultralow, about one-third that of Ti-based alloys (Ti–6Al–4V, ~3.5 × 10−6 cm3·g−1, CP Ti and Ti–6Al–7Nb, ~3.0 × 10−6 cm3·g−1), and one-sixth that of Co–Cr alloys (Co–Cr–Mo, ~7.7 × 10−6 cm3·g−1). Among the Zr–Ru alloy series, Zr–1Ru demonstrates enhanced mechanical properties, excellent corrosion resistance and cell viability with lowest magnetic susceptibility, and thus is the optimal Zr–Ru alloy system as therapeutic devices under MRI diagnostics environments. PMID:27090955

  7. A study into the impact of interface roughness development on mechanical degradation of oxides formed on zirconium alloys

    International Nuclear Information System (INIS)

    Platt, P.; Wedge, S.; Frankel, P.; Gass, M.; Howells, R.; Preuss, M.

    2015-01-01

    As a cladding material used to encapsulate nuclear fuel pellets, zirconium alloys are the primary barrier separating the fuel and a pressurised steam or lithiated water environment. Degradation mechanisms such as oxidation can be the limiting factor in the life-time of the fuel assembly. Key to controlling oxidation, and therefore allowing increased burn-up of fuel, is the development of a mechanistic understanding of the corrosion process. In an autoclave, the oxidation kinetics for zirconium alloys are typically cyclical, with periods of accelerated kinetics being observed in steps of ∼2 μm oxide growth. These periods of accelerated oxidation are immediately preceded by the development of a layer of lateral cracks near the metal-oxide interface, which may be associated with the development of interface roughness. The present work uses scanning electron microscopy to carry out a statistical analysis of changes in the metal-oxide interface roughness between three different alloys at different stages of autoclave oxidation. The first two alloys are Zircaloy-4 and ZIRLO ™ for which analysis is carried out at stages before, during and after first transition. The third alloy is an experimental low tin alloy, which under the same oxidation conditions and during the same time period does not appear to go through transition. Assessment of the metal-oxide interface roughness is primarily carried out based on the root mean square of the interface slope known as the R dq parameter. Results show clear trends with relation to transition points in the corrosion kinetics. Discussion is given to how this relates to the existing mechanistic understanding of the corrosion process, and the components required for possible future modelling approaches

  8. Development of vanadium base alloys for fusion first-wall/blanket applications

    International Nuclear Information System (INIS)

    Smith, D.L.; Chung, H.M.; Loomis, B.A.; Matsui, H.; Votinov, S.; VanWitzenburg, W.

    1994-01-01

    Vanadium alloys have been identified as a leading candidate material for fusion first-wall/blanket applications. Certain vanadium alloys exhibit favorable safety and environmental characteristics, good fabricability, high temperature and heat load capability, good compatibility with liquid metals and resistance to irradiation damage effects. The current focus is on vanadium alloys with (3-5)% Cr and (3-5)% Ti with a V-4Cr-4Ti alloy as the leading candidate. Preliminary results indicate that the crack-growth rates of certain alloys are not highly sensitive to irradiation. Results from the Dynamic Helium Charging Experiment (DHCE) which simulates fusion relevant helium/dpa ratios are similar to results from neutron irradiated material. This paper presents an overview of the recent results on the development of vanadium alloys for fusion first wall/blanket applications

  9. Developing prospects of NiAlMn high temperature shape memory alloy

    International Nuclear Information System (INIS)

    Zou Min

    1999-01-01

    The reason and information on high temperature shape memory alloy research are introduced briefly Also, referring to some experimental reports on NiAlMn high temperature shape memory alloy, it is pointed out that ductility and memory property of this alloy can be improved by adapting proper composition and procedure to control its microstructure. Meanwhile, the engineering details must be considered when NiAlMn high temperature shape memory alloy being developed so as to resolve the problems of its practical use

  10. Development of Alloy Coating Process of Steel Pipe for Seawater service

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jong Man; Kwon, Taeg Kyu; Lee, Sang Hyeog [Daewoo Shipbuilding and Marine Engineering Co., Ltd., Okpo (Korea)

    2001-02-01

    The new alloy coating process was developed to apply steel pipe for seawater service. This process consists of Zn-Al hot-dip coating treatment immediately following after normal galvanizing treatment. The alloy coating process formed double layer after surface treatment, and the surface layer was similar to that of Galfan steel and the intermetallic layer was also similar to that of aluminized steel. The alloy coating layer protect steel pipe galvanically and provide steel pipe with high resistance to general corrosion of seawater. This new alloy coated steel pipe had also good weldability and adhesion strength of paints compared to galvanized steel. 5 refs., 14 figs.

  11. The Moon: Resources, Future Development and Colonization

    Science.gov (United States)

    Schrunk, David; Sharpe, Burton; Cooper, Bonnie; Thangavelu, Madhu

    1999-07-01

    This unique, visionary and innovative book describes how the Moon could be colonised and developed as a platform for science, industrialization and exploration of our Solar System and beyond. Thirty years ago, the world waited with baited breath to watch history in the making, as man finally stepped onto the moon's surface. In the last few years, there has been growing interest in the idea of a return to the moon. This book describes the reasons why we should now start lunar development and settlement, and how this goal may be accomplished. The authors, all of whom are hugely experienced space scientists, consider the rationale and steps necessary for establishing permanent bases on the Moon. Their innovative and scientific-based analysis concludes that the Moon has sufficient resources for large-scale human development. Their case for development includes arguments for a solar-powered electric grid and railroad, creation of a utilities infrastructure, habitable facilities, scientific operations and the involvement of private enterprise with the public sector in the macroproject. By transferring and adapting existing technologies to the lunar environment, the authors argue that it will be possible to use lunar resources and solar power to build a global lunar infrastructure embracing power, communication, transportation, and manufacturing. This will support the migration of increasing numbers of people from Earth, and realization of the Moon's scientific potential. As an inhabited world, the Moon is an ideal site for scientific laboratories dedicated to geosciences, astronomy and life sciences, and most importantly, it would fulfil a role as a proving ground and launch pad for future Solar System exploration. The ten chapters in this book go beyond the theoretical and conceptual. With vision and foresight, the authors offer practical means for establishing permanent bases on the Moon. The book will make fascinating and stimulating reading for students in

  12. Future development of large steam turbines

    International Nuclear Information System (INIS)

    Chevance, A.

    1975-01-01

    An attempt is made to forecast the future of the large steam turbines till 1985. Three parameters affect the development of large turbines: 1) unit output; and a 2000 to 2500MW output may be scheduled; 2) steam quality: and two steam qualities may be considered: medium pressure saturated or slightly overheated steam (light water, heavy water); light enthalpie drop, high pressure steam, high temperature; high enthalpic drop; and 3) the quality of cooling supply. The largest range to be considered might be: open system cooling for sea-sites; humid tower cooling and dry tower cooling. Bi-fluid cooling cycles should be also mentioned. From the study of these influencing factors, it appears that the constructor, for an output of about 2500MW should have at his disposal the followings: two construction technologies for inlet parts and for high and intermediate pressure parts corresponding to both steam qualities; exhaust sections suitable for the different qualities of cooling supply. The two construction technologies with the two steam qualities already exist and involve no major developments. But, the exhaust section sets the question of rotational speed [fr

  13. Food production - Present and future development

    International Nuclear Information System (INIS)

    Lamm, C.G.

    1974-01-01

    This year the joint FAO/IAEA Division of Atomic Energy in Food and Agriculture celebrates its 10th anniversary. The aim of these two United Nations organizations is to ensure that the technical services of both FAO and IAEA are fully co-ordinated and their programmes are designed to assist developing Member States to apply isotopes and radiation techniques to the solution of food and agricultural problems. More precisely, the medium-term objectives of the Joint Division are to exploit the potential of nuclear techniques in research and development for increasing and stabilizing agricultural production, improving food quality, protecting agricultural products from spoilage and losses and minimizing pollution of food and the agricultural environment. This account of what radioisotopes can do for man in the agricultural field is therefore to a great extent a review of the activities of the Joint Division and a prediction of its future fields of emphasis, especially in the light of the present long-range and world-wide food crisis. (author)

  14. Recent Developments in the Formability of Aluminum Alloys

    Science.gov (United States)

    Banabic, Dorel; Cazacu, Oana; Paraianu, Liana; Jurco, Paul

    2005-08-01

    The paper presents a few recent contributions brought by the authors in the field of the formability of aluminum alloys. A new concept for calculating Forming Limit Diagrams (FLD) using the finite element method is presented. The article presents a new strategy for calculating both branches of an FLD, using a Hutchinson - Neale model implemented in a finite element code. The simulations have been performed with Abaqus/Standard. The constitutive model has been implemented using a UMAT subroutine. The plastic anisotropy of the sheet metal is described by the Cazacu-Barlat and the BBC2003 yield criteria. The theoretical predictions have been compared with the results given by the classical Hutchinson - Neale method and also with experimental data for different aluminum alloys. The comparison proves the capability of the finite element method to predict the strain localization. A computer program used for interactive calculation and graphical representation of different Yield Loci and Forming Limit Diagrams has also been developed. The program is based on a Hutchinson-Neale model. Different yield criteria (Hill 1948, Barlat-Lian and BBC 2003) are implemented in this model. The program consists in three modules: a graphical interface for input, a module for the identification and visualization of the yield surfaces, and a module for calculating and visualizing the forming limit curves. A useful facility offered by the program is the possibility to perform the sensitivity analysis both for the yield surface and the forming limit curves. The numerical results can be compared with experimental data, using the import/export facilities included in the program.

  15. Recent Developments in the Formability of Aluminum Alloys

    International Nuclear Information System (INIS)

    Banabic, Dorel; Paraianu, Liana; Jurco, Paul; Cazacu, Oana

    2005-01-01

    The paper presents a few recent contributions brought by the authors in the field of the formability of aluminum alloys. A new concept for calculating Forming Limit Diagrams (FLD) using the finite element method is presented. The article presents a new strategy for calculating both branches of an FLD, using a Hutchinson - Neale model implemented in a finite element code. The simulations have been performed with Abaqus/Standard. The constitutive model has been implemented using a UMAT subroutine. The plastic anisotropy of the sheet metal is described by the Cazacu-Barlat and the BBC2003 yield criteria. The theoretical predictions have been compared with the results given by the classical Hutchinson - Neale method and also with experimental data for different aluminum alloys. The comparison proves the capability of the finite element method to predict the strain localization. A computer program used for interactive calculation and graphical representation of different Yield Loci and Forming Limit Diagrams has also been developed. The program is based on a Hutchinson-Neale model. Different yield criteria (Hill 1948, Barlat-Lian and BBC 2003) are implemented in this model. The program consists in three modules: a graphical interface for input, a module for the identification and visualization of the yield surfaces, and a module for calculating and visualizing the forming limit curves. A useful facility offered by the program is the possibility to perform the sensitivity analysis both for the yield surface and the forming limit curves. The numerical results can be compared with experimental data, using the import/export facilities included in the program

  16. Development of shear bands in amorphous-crystalline metallic alloys

    International Nuclear Information System (INIS)

    Pozdnyakov, V.A.

    2004-01-01

    A theoretical study is made into conditions of shear band evolution in amorphous-crystalline alloys with various morphological types of structural constituents. The condition of shear band evolution in thin amorphous alloys in the interior of the crystalline matrix is obtained. It is shown that a scale effect exists which manifests itself in suppression of the process of localized plastic flow with amorphous alloy thickness decreasing down to the limit. The analysis of the condition for shear band evolution in an amorphous alloy with nanocrystalline inclusions is accomplished. The relationship of a critical stress of shear band evolution to a volume fraction of disperse crystal inclusions is obtained. A consideration is also given to the evolution of shear bands in the material containing amorphous and crystalline areas of micro meter size. For the alloy with the structure of this type conditions for propagation of localized flows by a relay race type mechanism are determined [ru

  17. Development of a high gradient rf system using a nanocrystalline soft magnetic alloy

    Directory of Open Access Journals (Sweden)

    Chihiro Ohmori

    2013-11-01

    Full Text Available The future high intensity upgrade project of the J-PARC (Japan Proton Accelerator Research Complex MR (Main Ring includes developments of high gradient rf cavities and magnet power supplies for high repetition rate. The scenario describing the cavity replacements is reported. By the replacement plan, the total acceleration voltage will be almost doubled, while the number of rf stations remains the same. The key issue is the development of a high gradient rf system using high impedance magnetic alloy, FT3L. The FT3L is produced by the transverse magnetic field annealing although the present cavity for the J-PARC adopts the magnetic alloy, FT3M, which is annealed without magnetic field. After the test production using a large spectrometer magnet in 2011, a dedicated production system for the FT3L cores was assembled in 2012. This setup demonstrated that we can produce material with 2 times higher μ_{p}^{′}Qf product compared to the cores used for present cavities. In this summer, the production system was moved to the company from J-PARC and is used for mass production of 280 FT3L cores for the J-PARC MR. The cores produced in the first test production are already used for standard machine operation. The operation experience shows that the power loss in the cores was reduced significantly as expected.

  18. Development of a tungsten heavy alloy, W-Ni-Mn, used as kinetic energy penetrator

    International Nuclear Information System (INIS)

    Zahraee, S. M.; Salehi, M. T.; Arabi, H.; Tamizifar, M.

    2007-01-01

    The objective of this research was to develop a tungsten heavy alloy having a microstructure and properties good enough to penetrate hard rolled steels as deep as possible. In addition this alloy should not have environmental problems as depleted uranium materials, For this purpose a wide spread literature survey was performed and on the base of information obtained in this survey, three compositions of tungsten heavy alloy were chosen for investigation in this research. The alloys namely 90 W-7 Ni-3 Fe, 90 W-9 Ni-Mn and 90 W-8 Ni-2 Mn were selected and after producing these alloys through powder metallurgy technique, their thermal conductivity, compression flow properties and microstructure, were studied. The results of these investigations indicated that W-Ni-Mn alloys had better flow properties and lower thermal conductivities relative to W-Ni-Fe alloy. In addition Mn helped to obtain a finer microstructure in tungsten heavy alloy. Worth mentioning that a finer microstructure as well as lower thermal conductivity in this type of alloys increased the penetration depth due to formation of adiabatic shear bands during impact

  19. Development of continuous cooling precipitation diagrams for aluminium alloys AA7150 and AA7020

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y., E-mail: yong.zhang@outlook.com [ARC Centre of Excellence for Design in Light Metals, Department of Materials Engineering, Monash University, Clayton, VIC 3800 (Australia); Milkereit, B. [University of Rostock, Faculty of Mechanical Engineering and Marine Technology, Chair of Materials Science, 18051 Rostock (Germany); University of Rostock, Institute of Physics, Polymer Physics Group, 18051 Rostock (Germany); Kessler, O. [University of Rostock, Faculty of Mechanical Engineering and Marine Technology, Chair of Materials Science, 18051 Rostock (Germany); Schick, C. [University of Rostock, Institute of Physics, Polymer Physics Group, 18051 Rostock (Germany); Rometsch, P.A. [ARC Centre of Excellence for Design in Light Metals, Department of Materials Engineering, Monash University, Clayton, VIC 3800 (Australia)

    2014-01-25

    Highlights: • The DSC method was used for developing continuous cooling precipitation diagrams. • The quench-induced particles were observed by SEM for alloys AA7150 and AA7020. • There were more quench-induced particles in alloy AA7150. • Quench sensitivity of Al alloys can be evaluated by using the CCP diagrams. -- Abstract: Two commercial 7xxx series aluminium alloys with different solute contents and different quench-induced precipitation behaviour have been investigated by using a specialised differential scanning calorimetry (DSC) technique to record exothermal heat outputs during continuous cooling. Together with hardness testing and microstructural analysis, this DSC method was used to develop continuous cooling precipitation (CCP) diagrams for alloys AA7150 and AA7020. The results show that the total precipitation heat for each alloy decreases with increasing cooling rate. However, the excess specific heat at a given cooling rate in alloy AA7150 is much higher than that in alloy AA7020. It is evident that there are atleast three different quench-induced reactions in different temperature regimes for alloy AA7150 cooled at various linear cooling rates, but only equilibrium MgZn{sub 2} (η-phase) and Al{sub 2}CuMg (S-phase) particles were observed by scanning electron microscopy (SEM). There are at least two main precipitation peaks that can be found for alloy AA7020, which correspond to Mg{sub 2}Si and MgZn{sub 2} (η-phase). Furthermore, a method is developed to evaluate the quench sensitivity of an alloy based on a determination of the critical cooling rate. The maximum hardness values are reached at cooling rates that are faster than or similar to the critical cooling rate.

  20. A review on magnesium alloys as biodegradable materials

    Science.gov (United States)

    Gu, Xue-Nan; Zheng, Yu-Feng

    2010-06-01

    Magnesium alloys attracted great attention as a new kind of degradable biomaterials. One research direction of biomedical magnesium alloys is based on the industrial magnesium alloys system, and another is the self-designed biomedical magnesium alloys from the viewpoint of biomaterials. The mechanical, biocorrosion properties and biocompatibilities of currently reported Mg alloys were summarized in the present paper, with the mechanical properties of bone tissue, the healing period postsurgery, the pathophysiology and toxicology of the alloying elements being discussed. The strategy in the future development of biomedical Mg alloys was proposed.

  1. Energy Choices. Choices for future technology development

    International Nuclear Information System (INIS)

    Billfalk, Lennart; Haegermark, Harald

    2009-03-01

    In the next few years political decisions lie ahead in Sweden and the EU regarding the detailed formulation of the EU's so-called 20-20-20 targets and accompanying EU directives. Talks on a new international post-2012 climate agreement are imminent. The EU targets involve reducing emissions of greenhouse gases by 20 per cent, increasing the proportion of renewable energy by 20 per cent and improving energy efficiency by 20 per cent - all by the year 2020. According to the analysis of the consequences of the targets that the Technology Development Group has commissioned, the reduction in carbon dioxide in the stationary energy system in the Nordic region will be 40 per cent, not 20 per cent, if all the EU targets are to be achieved. The biggest socio-economic cost is associated with achieving the efficiency target, followed by the costs associated with achieving the renewable energy target and the CO 2 target. On the basis of this analysis and compilations about technology development, we want to highlight the following important key issues: Does Sweden want to have the option of nuclear power in the future or not? How to choose good policy instruments for new electricity production and networks? How best to reduce the carbon dioxide emissions of the transport sector and how to develop control and incentive measures that promote such a development? We are proposing the following: Carry out a more in-depth analysis of the consequences of the EU targets, so that the policy instruments produce the best combination as regards climate, economy and security of supply. To achieve the EU targets would require large investments in electricity production, particularly renewable energy, and in electricity networks. Internationally harmonized policy instruments and other incentive measures are required in order for the necessary investments to take place. The policy instruments have to provide a level playing field for all players in the energy sector. The large investments

  2. Development of high-capacity nickel-metal hydride batteries using superlattice hydrogen-absorbing alloys

    Science.gov (United States)

    Yasuoka, Shigekazu; Magari, Yoshifumi; Murata, Tetsuyuki; Tanaka, Tadayoshi; Ishida, Jun; Nakamura, Hiroshi; Nohma, Toshiyuki; Kihara, Masaru; Baba, Yoshitaka; Teraoka, Hirohito

    New R-Mg-Ni (R: rare earths) superlattice alloys with higher-capacity and higher-durability than the conventional Mm-Ni alloys with CaCu 5 structure have been developed. The oxidation resistibility of the superlattice alloys has been improved by optimizing the alloy composition by such as substituting aluminum for nickel and optimizing the magnesium content in order to prolong the battery life. High-capacity nickel-metal hydride batteries for the retail market, the Ni-MH2500/900 series (AA size type 2500 mAh, AAA size type 900 mAh), have been developed and commercialized by using an improved superlattice alloy for negative electrode material.

  3. Development of Ti-12Mo-3Nb alloy for biomedical application

    International Nuclear Information System (INIS)

    Panaino, J.V.P.; Gabriel, S.B.; Mei, P.; Brum, M.V.; Nunes, C.A.

    2010-01-01

    The titanium alloys are quite satisfactory for biomedical applications due to their physical, mechanical and biological properties. Recent studies focuses on the development of beta type titanium alloys, composed of toxic elements (Nb, Mo, Ta ,...), because they have more advantages than alpha and alpha + beta (Ti- 6Al-4V) alloys such as lower modulus of elasticity, better plasticity and, moreover, the process variables can be controlled to produce selected results. This project focused on the development and characterization of Ti-12Mo-3Nb alloy in the condition 'as cast' and after thermomechanical treatment. The material was characterized in different conditions by X-ray diffraction, optical microscopy, microhardness measurements and elasticity modulus. The results showed that the forged Ti-12Mo-3Nb alloy showed the best combination of properties, being a promising candidate for use as implant. (author)

  4. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr

    Science.gov (United States)

    Li, H. F.; Xie, X. H.; Zheng, Y. F.; Cong, Y.; Zhou, F. Y.; Qiu, K. J.; Wang, X.; Chen, S. H.; Huang, L.; Tian, L.; Qin, L.

    2015-01-01

    Biodegradable metals have attracted considerable attentions in recent years. Besides the early launched biodegradable Mg and Fe metals, Zn, an essential element with osteogenic potential of human body, is regarded and studied as a new kind of potential biodegradable metal quite recently. Unfortunately, pure Zn is soft, brittle and has low mechanical strength in the practice, which needs further improvement in order to meet the clinical requirements. On the other hand, the widely used industrial Zn-based alloys usually contain biotoxic elements (for instance, ZA series contain toxic Al elements up to 40 wt.%), which subsequently bring up biosafety concerns. In the present work, novel Zn-1X binary alloys, with the addition of nutrition elements Mg, Ca and Sr were designed (cast, rolled and extruded Zn-1Mg, Zn-1Ca and Zn-1Sr). Their microstructure and mechanical property, degradation and in vitro and in vivo biocompatibility were studied systematically. The results demonstrated that the Zn-1X (Mg, Ca and Sr) alloys have profoundly modified the mechanical properties and biocompatibility of pure Zn. Zn-1X (Mg, Ca and Sr) alloys showed great potential for use in a new generation of biodegradable implants, opening up a new avenue in the area of biodegradable metals. PMID:26023878

  5. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr.

    Science.gov (United States)

    Li, H F; Xie, X H; Zheng, Y F; Cong, Y; Zhou, F Y; Qiu, K J; Wang, X; Chen, S H; Huang, L; Tian, L; Qin, L

    2015-05-29

    Biodegradable metals have attracted considerable attentions in recent years. Besides the early launched biodegradable Mg and Fe metals, Zn, an essential element with osteogenic potential of human body, is regarded and studied as a new kind of potential biodegradable metal quite recently. Unfortunately, pure Zn is soft, brittle and has low mechanical strength in the practice, which needs further improvement in order to meet the clinical requirements. On the other hand, the widely used industrial Zn-based alloys usually contain biotoxic elements (for instance, ZA series contain toxic Al elements up to 40 wt.%), which subsequently bring up biosafety concerns. In the present work, novel Zn-1X binary alloys, with the addition of nutrition elements Mg, Ca and Sr were designed (cast, rolled and extruded Zn-1Mg, Zn-1Ca and Zn-1Sr). Their microstructure and mechanical property, degradation and in vitro and in vivo biocompatibility were studied systematically. The results demonstrated that the Zn-1X (Mg, Ca and Sr) alloys have profoundly modified the mechanical properties and biocompatibility of pure Zn. Zn-1X (Mg, Ca and Sr) alloys showed great potential for use in a new generation of biodegradable implants, opening up a new avenue in the area of biodegradable metals.

  6. Research and development for future detectors

    CERN Document Server

    Collins, P R

    2003-01-01

    This review describes recent R&D for particle detectors, concentrating on results from the past year. There is particular emphasis on silicon devices, and on new technology ideas for a detector at a future Linear Collider. (59 refs)

  7. Ocean OSSEs: recent developments and future challenges

    Science.gov (United States)

    Kourafalou, V. H.

    2012-12-01

    Atmospheric OSSEs have had a much longer history of applications than OSSEs (and OSEs) in oceanography. Long standing challenges include the presence of coastlines and steep bathymetric changes, which require the superposition of a wide variety of space and time scales, leading to difficulties on ocean observation and prediction. For instance, remote sensing is critical for providing a quasi-synoptic oceanographic view, but the coverage is limited at the ocean surface. Conversely, in situ measurements are capable to monitor the entire water column, but at a single location and usually for a specific, short time. Despite these challenges, substantial progress has been made in recent years and international initiatives have provided successful OSSE/OSE examples and formed appropriate forums that helped define the future roadmap. These will be discussed, together with various challenges that require a community effort. Examples include: integrated (remote and in situ) observing system requirements for monitoring large scale and climatic changes, vs. short term variability that is particularly important on the regional and coastal spatial scales; satisfying the needs of both global and regional/coastal nature runs, from development to rigorous evaluation and under a clear definition of metrics; data assimilation in the presence of tides; estimation of real-time river discharges for Earth system modeling. An overview of oceanographic efforts that complement the standard OSSE methodology will also be given. These include ocean array design methods, such as representer-based analysis and adaptive sampling. Exciting new opportunities for both global and regional ocean OSSE/OSE studies have recently become possible with targeted periods of comprehensive data sets, such as the existing Gulf of Mexico observations from multiple sources in the aftermath of the DeepWater Horizon incident and the upcoming airborne AirSWOT, in preparation for the SWOT (Surface Water and Ocean

  8. Development of Niobium Boron grain retainer for aluminium silicon alloys

    OpenAIRE

    Nowak, Magdalena

    2011-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University Aluminium castings with a large grain structure have poor mechanical properties which are primarily due to casting defects as opposed to fine grain structure. The grain refinement practice using chemical addition is well established for wrought alloys, however in the case of casting alloys, the practice of adding grain refiners and the impact on castability is not well established. The additio...

  9. Development and testing ov danadium alloys for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Loomis, B.A.; Smith, D.L.

    1996-10-01

    V base alloys have advantages for fusion reactor first-wall and blanket structure. To screen candidate alloys and optimize a V-base alloy, physical and mechanical properties of V-Ti, V-Cr-Ti, and V-Ti- Si alloys were studied before and after irradiation in Li environment in fast fission reactors. V-4Cr-4Ti containing 500-1000 wppM Si and <1000 wppM O+N+C was investigated as the most promising alloy, and more testing is being done. Major results of the work are presented in this paper. The reference V-4Cr-4Ti had the most attractive combination of the mechanical and physical properties that are prerequisite for first-wall and blanket structures: good thermal creep, good tensile strength/ductility, high impact energy, excellent resistance to swelling, and very low ductile-brittle transition temperature before and after irradiation. The alloy was highly resistant to irradiation-induced embrittlement in Li at 420-600 C, and the effects of dynamically charged He on swelling and mechanical properties were insignificant. However, several important issues remain unresolved: welding, low-temperature irradiation, He effect at high dose and high He concentration, irradiation creep, and irradiation performance in air or He. Initial results of investigation of some of these issues are also given.

  10. Laser-assisted development of titanium alloys: the search for new biomedical materials

    Science.gov (United States)

    Almeida, Amelia; Gupta, Dheeraj; Vilar, Rui

    2011-02-01

    Ti-alloys used in prosthetic applications are mostly alloys initially developed for aeronautical applications, so their behavior was not optimized for medical use. A need remains to design new alloys for biomedical applications, where requirements such as biocompatibility, in-body durability, specific manufacturing ability, and cost effectiveness are considered. Materials for this application must present excellent biocompatibility, ductility, toughness and wear and corrosion resistance, a large laser processing window and low sensitivity to changes in the processing parameters. Laser deposition has been investigated in order to access its applicability to laser based manufactured implants. In this study, variable powder feed rate laser cladding has been used as a method for the combinatorial investigation of new alloy systems that offers a unique possibility for the rapid and exhaustive preparation of a whole range of alloys with compositions variable along a single clad track. This method was used as to produce composition gradient Ti-Mo alloys. Mo has been used since it is among the few elements biocompatible, non-toxic β-Ti phase stabilizers. Alloy tracks with compositions in the range 0-19 wt.%Mo were produced and characterized in detail as a function of composition using microscale testing procedures for screening of compositions with promising properties. Microstructural analysis showed that alloys with Mo content above 8% are fully formed of β phase grains. However, these β grains present a cellular substructure that is associated to a Ti and Mo segregation pattern that occurs during solidification. Ultramicroindentation tests carried out to evaluate the alloys' hardness and Young's modulus showed that Ti-13%Mo alloys presented the lowest hardness and Young's modulus (70 GPa) closer to that of bone than common Ti alloys, thus showing great potential for implant applications.

  11. Design and development of novel MRI compatible zirconium- ruthenium alloys with ultralow magnetic susceptibility.

    Science.gov (United States)

    Li, H F; Zhou, F Y; Li, L; Zheng, Y F

    2016-04-19

    In the present study, novel MRI compatible zirconium-ruthenium alloys with ultralow magnetic susceptibility were developed for biomedical and therapeutic devices under MRI diagnostics environments. The results demonstrated that alloying with ruthenium into pure zirconium would significantly increase the strength and hardness properties. The corrosion resistance of zirconium-ruthenium alloys increased significantly. High cell viability could be found and healthy cell morphology observed when culturing MG 63 osteoblast-like cells and L-929 fibroblast cells with zirconium-ruthenium alloys, whereas the hemolysis rates of zirconium-ruthenium alloys are zirconium-ruthenium alloys (1.25 × 10(-6) cm(3)·g(-1)-1.29 × 10(-6) cm(3)·g(-1) for zirconium-ruthenium alloys) are ultralow, about one-third that of Ti-based alloys (Ti-6Al-4V, ~3.5 × 10(-6) cm(3)·g(-1), CP Ti and Ti-6Al-7Nb, ~3.0 × 10(-6) cm(3)·g(-1)), and one-sixth that of Co-Cr alloys (Co-Cr-Mo, ~7.7 × 10(-6) cm(3)·g(-1)). Among the Zr-Ru alloy series, Zr-1Ru demonstrates enhanced mechanical properties, excellent corrosion resistance and cell viability with lowest magnetic susceptibility, and thus is the optimal Zr-Ru alloy system as therapeutic devices under MRI diagnostics environments.

  12. EIDA Next Generation: ongoing and future developments

    Science.gov (United States)

    Strollo, Angelo; Quinteros, Javier; Sleeman, Reinoud; Trani, Luca; Clinton, John; Stammler, Klaus; Danecek, Peter; Pedersen, Helle; Ionescu, Constantin

    2015-04-01

    contents of the waveform data in an archive and in particular the following features and quality parameters are provided: gaps, statistical values, availability, overlaps, quality flags and more. It is a tool to be used for quickly exploring the contents of the waveform files before downloading them, or by clients to fulfill user specific requirements. The API reflects almost identically the FDSN dataselect service with some additional features. The characteristics are computed on fixed daily intervals (day boundaries) and in case of gaps the service can additionally provide the above features for each continuous data segment in the day interval. The newly developed services and the mediator service being designed and implemented in the near future, will facilitate interoperability and sustainability of the EIDA system and ensure a smooth integration with other Thematic (TCS) and Integrated (ICS) Core Services within EPOS.

  13. Development and evaluation of a magnesium-zinc-strontium alloy for biomedical applications--alloy processing, microstructure, mechanical properties, and biodegradation.

    Science.gov (United States)

    Guan, Ren-guo; Cipriano, Aaron F; Zhao, Zhan-yong; Lock, Jaclyn; Tie, Di; Zhao, Tong; Cui, Tong; Liu, Huinan

    2013-10-01

    A new biodegradable magnesium-zinc-strontium (Mg-Zn-Sr) alloy was developed and studied for medical implant applications. This first study investigated the alloy processing (casting, rolling, and heat treatment), microstructures, mechanical properties, and degradation properties in simulated body fluid (SBF). Aging treatment of the ZSr41 alloy at 175 °C for 8h improved the mechanical properties when compared to those of the as-cast alloy. Specifically, the aged ZSr41 alloy had an ultimate tensile strength of 270 MPa, Vickers hardness of 71.5 HV, and elongation at failure of 12.8%. The mechanical properties of the ZSr41 alloy were superior as compared with those of pure magnesium and met the requirements for load-bearing medical implants. Furthermore, the immersion of the ZSr41 alloy in SBF showed a degradation mode that progressed cyclically, alternating between pitting and localized corrosion. The steady-state average degradation rate of the aged ZSr41 alloy in SBF was 0.96 g/(m(2)·hr), while the pH of SBF immersion solution increased. The corrosion current density of the ZSr41 alloy in SBF solution was 0.41 mA/mm(2), which was much lower than 1.67 mA/mm(2) for pure Mg under the same conditions. In summary, compared to pure Mg, the mechanical properties of the new ZSr41 alloy improved while the degradation rate decreased due to the addition of Zn and Sr alloying elements and specific processing conditions. The superior mechanical properties and corrosion resistance of the new ZSr41 alloy make it a promising alloy for next-generation implant applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Present and future development at Ganil

    International Nuclear Information System (INIS)

    Ferme, J.

    1988-01-01

    GANIL has been in operation since January 1983. During this period beams from Carbon to Xenon have been available continuously for physics. There is now a demand to extend the ion range up to uranium, and to increase the beam intensity above the present level of about 3 microamperes with light ions. The corresponding modifications of the machine have been studied and will be made in the near future. Progress in ion sources, beam diagnostics, computer control is reported. Speculative considerations on the distant future are discussed

  15. Development and evaluation of a magnesium–zinc–strontium alloy for biomedical applications — Alloy processing, microstructure, mechanical properties, and biodegradation

    International Nuclear Information System (INIS)

    Guan, Ren-guo; Cipriano, Aaron F.; Zhao, Zhan-yong; Lock, Jaclyn; Tie, Di; Zhao, Tong; Cui, Tong; Liu, Huinan

    2013-01-01

    A new biodegradable magnesium–zinc–strontium (Mg–Zn–Sr) alloy was developed and studied for medical implant applications. This first study investigated the alloy processing (casting, rolling, and heat treatment), microstructures, mechanical properties, and degradation properties in simulated body fluid (SBF). Aging treatment of the ZSr41 alloy at 175 °C for 8 h improved the mechanical properties when compared to those of the as-cast alloy. Specifically, the aged ZSr41 alloy had an ultimate tensile strength of 270 MPa, Vickers hardness of 71.5 HV, and elongation at failure of 12.8%. The mechanical properties of the ZSr41 alloy were superior as compared with those of pure magnesium and met the requirements for load-bearing medical implants. Furthermore, the immersion of the ZSr41 alloy in SBF showed a degradation mode that progressed cyclically, alternating between pitting and localized corrosion. The steady-state average degradation rate of the aged ZSr41 alloy in SBF was 0.96 g/(m 2 ·hr), while the pH of SBF immersion solution increased. The corrosion current density of the ZSr41 alloy in SBF solution was 0.41 mA/mm 2 , which was much lower than 1.67 mA/mm 2 for pure Mg under the same conditions. In summary, compared to pure Mg, the mechanical properties of the new ZSr41 alloy improved while the degradation rate decreased due to the addition of Zn and Sr alloying elements and specific processing conditions. The superior mechanical properties and corrosion resistance of the new ZSr41 alloy make it a promising alloy for next-generation implant applications. - Highlights: • Developed a new biodegradable magnesium–zinc–strontium (Mg–Zn–Sr) alloy for medical implant applications • Reported Mg–Zn–Sr alloy processing and microstructure characterization • Improved mechanical properties of Mg alloy after aging treatment • Improved degradation properties of Mg alloy in simulated body fluid

  16. 2nd Gen FeCrAl ODS Alloy Development For Accident-Tolerant Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Dryepondt, Sebastien N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Massey, Caleb P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Edmondson, Philip D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    Extensive research at ORNL aims at developing advanced low-Cr high strength FeCrAl alloys for accident tolerant fuel cladding. One task focuses on the fabrication of new low Cr oxide dispersion strengthened (ODS) FeCrAl alloys. The first Fe-12Cr-5Al+Y2O3 (+ ZrO2 or TiO2) ODS alloys exhibited excellent tensile strength up to 800 C and good oxidation resistance in steam up to 1400 C, but very limited plastic deformation at temperature ranging from room to 800 C. To improve alloy ductility, several fabrication parameters were considered. New Fe-10-12Cr-6Al gas-atomized powders containing 0.15 to 0.5wt% Zr were procured and ball milled for 10h, 20h or 40h with Y2O3. The resulting powder was then extruded at temperature ranging from 900 to 1050 C. Decreasing the ball milling time or increasing the extrusion temperature changed the alloy grain size leading to lower strength but enhanced ductility. Small variations of the Cr, Zr, O and N content did not seem to significantly impact the alloy tensile properties, and, overall, the 2nd gen ODS FeCrAl alloys showed significantly better ductility than the 1st gen alloys. Tube fabrication needed for fuel cladding will require cold or warm working associated with softening heat treatments, work was therefore initiated to assess the effect of these fabrications steps on the alloy microstructure and properties. This report has been submitted as fulfillment of milestone M3FT 16OR020202091 titled, Report on 2nd Gen FeCrAl ODS Alloy Development for the Department of Energy Office of Nuclear Energy, Advanced Fuel Campaign of the Fuel Cycle R&D program.

  17. The development of hydrogen storage electrode alloys for nickel hydride batteries

    Science.gov (United States)

    Hong, Kuochih

    The development of hydrogen storage electrode alloys in the 1980s resulted in the birth and growth of the rechargeable nickel hydride (Ni/MH) battery. In this paper we describe briefly a semi-empirical electrochemical/thermodynamic approach to develop/screen a hydrogen storage alloy for electrochemical application. More specifically we will discuss the AB x Ti/Zr-based alloys. Finally, the current state of the Ni/MH batteries including commercial manufacture processes, cell performance and applications is given.

  18. Alloy development for the enhanced stability of Ω precipitates in Al-Cu-Mg-Ag alloys

    Science.gov (United States)

    Gable, B. M.; Shiflet, G. J.; Starke, E. A.

    2006-04-01

    The coarsening resistance and thermal stability of several Ω plate-dominated microstructures were controlled through altering the chemistry and thermomechanical processing of various Al-Cu-Mg-Ag alloys. Quantitative comparisons of Ω nucleation density, particle size, and thermal stability were used to illustrate the effects of alloy composition and processing conditions. The long-term stability of Ω plates was found to coincide with relatively high levels of silver and moderate magnesium additions, with the latter limiting the competition for solute with S-phase precipitation. This analysis revealed that certain microstructures initially dominated by Ω precipitation were found to remain stable through long-term isothermal and double-aging heat treatments, which represents significant improvement over the previous generation of Al-Cu-Mg-Ag alloys, in which Ω plates dissolved sacrificially after long aging times. The quantitative precipitate data, in conjunction with a thermodynamic database for the aluminum-rich corner of the Al-Cu-Mg-Ag quaternary system, were used to estimate the chemistry of the α/Ω-interphase boundary. These calculations suggest that silver is the limiting species at the α/Ω interfacial layer and that Ω plates form with varying interfacial chemistries during the early stages of artificial aging, which is directly related to the overall stability of certain plates.

  19. Development of a TiAl Alloy by Spark Plasma Sintering

    Science.gov (United States)

    Couret, Alain; Voisin, Thomas; Thomas, Marc; Monchoux, Jean-Philippe

    2017-12-01

    Spark plasma sintering (SPS) is a consolidated powder metallurgy process for which the powder sintering is achieved through an applied electric current. The present article aims to describe the method we employed to develop a TiAl-based alloy adjusted for this SPS process. Owing to its enhanced mechanical properties, this alloy was found to fully match the industrial specifications for the aeronautic and automotive industries, which require a high strength at high temperature and a reasonably good ductility at room temperature. A step-by-step method was followed for this alloy development. Starting from a basic study on the as-SPSed GE alloy (Ti-48Al-2Cr-2Nb) in which the influence of the microstructure was studied, the microstructure-alloy composition relationships were then investigated to increase the mechanical properties. As a result of this study, we concluded that tungsten had to be the major alloying element to improve the resistance at high temperature and a careful addition of boron would serve the properties at room temperature. Thus, we developed the IRIS alloy (Ti-48Al-2W-0.08B). Its microstructure and mechanical properties are described here.

  20. On the theoretical development of new creep resistant alloys and their empirical validation

    International Nuclear Information System (INIS)

    Gaude-Fugarolas, D.; Regent, N.; Carlan, Y. de

    2008-01-01

    In anticipation to the present revival of nuclear power, and to obtain more efficient, secure and environmentally-friendly power plants, new families of high temperature resistant, low activation materials are under development. This work presents an example of work performed at CEA during the development of novel ferrito-martensitic reduced activation alloys for Generation IV and Fusion applications. In the past, the process of designing a new material was mostly heuristic, requiring repeated experimental trial and error, but nowadays, synergies between the accuracy of current scientific knowledge in thermodynamics and transformation kinetics and increased computer capacity enables us to design successful new alloys using minimal empirical feedback. This work presents this comprehensive and multi-model approach to alloy and microstructure design. The CALPHAD method, thermo-kinetic modelling of precipitation reactions and artificial neural network analysis are combined in the development of new alloys having their compositions and microstructures optimised for maximum creep resistance. To complete this work, a selection of the alloys designed has been cast and the results obtained during alloy design and the modelling of various heat treatments have been verified. Optical and electronic microscopy have been used to characterise the microstructure. Uniaxial tensile tests have been used to measure the mechanical performance of the alloys presented at room, service and higher temperatures. The characterisation of the behaviour of the material in service conditions is underway with relaxation and creep tests. (authors)

  1. Development of a discriminatory biocompatibility testing model for non-precious dental casting alloys.

    LENUS (Irish Health Repository)

    McGinley, Emma Louise

    2011-12-01

    To develop an enhanced, reproducible and discriminatory biocompatibility testing model for non-precious dental casting alloys, prepared to a clinically relevant surface finishing condition, using TR146 oral keratinocyte cells.

  2. Development of a Ballistic Specification for Magnesium Alloy AZ31B

    National Research Council Canada - National Science Library

    Jones, Tyrone L; DeLorme, Richard D

    2008-01-01

    The U.S. Army Research Laboratory (ARL) and Magnesium Elektron North America (MENA) have conducted a joint effort to develop and evaluate rolled plate in commercially available magnesium alloy-temper AZ31B-H24...

  3. Development of Pb-Free Nanocomposite Solder Alloys

    Directory of Open Access Journals (Sweden)

    Animesh K. Basak

    2018-04-01

    Full Text Available As an alternative to conventional Pb-containing solder material, Sn–Ag–Cu (SAC based alloys are at the forefront despite limitations associated with relatively poor strength and coarsening of grains/intermetallic compounds (IMCs during aging/reflow. Accordingly, this study examines the improvement of properties of SAC alloys by incorporating nanoparticles in it. Two different types of nanoparticles were added in monolithic SAC alloy: (1 Al2O3 or (2 Fe and their effect on microstructure and thermal properties were investigated. Addition of Fe nanoparticles leads to the formation of FeSn2 IMCs alongside Ag3Sn and Cu6Sn5 from monolithic SAC alloy. Addition of Al2O3 nano-particles do not contribute to phase formation, however, remains dispersed along primary β-Sn grain boundaries and act as a grain refiner. As the addition of either Fe or Al2O3 nano-particles do not make any significant effect on thermal behavior, these reinforced nanocomposites are foreseen to provide better mechanical characteristics with respect to conventional monolithic SAC solder alloys.

  4. Developments in delayed hydride cracking in zirconium alloys

    International Nuclear Information System (INIS)

    Puls, Manfred P.

    2008-01-01

    Delayed hydride cracking (DHC) is a process of diffusion assisted localized hydride embrittlement at flaws or regions of high stress. Models of DHC propagation and initiation have been developed that capture the essential elements of this phenomenon in terms of parameters describing processes occurring at the micro-scale. The models and their predictions of experimental results applied to Zr alloys are assessed. The propagation model allows rationalization of the effect of direction of approach to temperature and of the effect of the state and morphology of the beta phase in Zr-2.5Nb on DHC velocity. The K I dependence of the DHC velocity can only be approximately rationalized by the propagation models. This is thought to be because these models approximate the DHC velocity by a constant and shape-invariant rate of growth of the hydride at the flaw and have not incorporated a coupling between the applied stress field due to the flaw alone and the precipitated hydrides that would result in a variation of the shape and density of the hydrided region with K I . Separately, models have been developed for DHC initiation at cracks and blunt flaws. Expressions are obtained for the threshold stress intensity factor, K IH , for DHC initiation at a crack. A model for K IH has been used to rationalize the experimental result that DHC initiation is not possible above a certain temperature, even when hydrides can form at the crack tip. For blunt flaws with root radii in the μm range, and engineering process zone procedure has been derived to determine the initiation conditions requiring that both a critical stress and a critical flaw tip displacement must be achieved for hydride fracture. The engineering process zone procedure takes account of the dependence of DHC initiation on the flaw's root radius. Although all of the foregoing models are capable of describing the essential features of DHC, they are highly idealized and in need of further refinement. (author)

  5. Digital radiography: Present detectors and future developments

    International Nuclear Information System (INIS)

    Perez-Mendez, V.

    1990-08-01

    Present detectors for digital radiography are of two classes: real time detectors and storage (non real time) types. Present real time detectors consist of image intensifier tubes with an internal cesium iodide layer x-ray converter. Non real time detectors involve linear sweep arrays or storage detectors such as film. Future detectors discussed here can be of both types utilizing new technologies such as hydrogenated amorphous silicon photodiode arrays coupled to thin film transistor arrays. 17 refs., 10 figs

  6. Development of advanced NI alloy substrates with high percentage of cube texture for biaxially oriented YBCO coated tapes

    International Nuclear Information System (INIS)

    HongLi Suo; Yue Zhao; MangMang Gao; Min Liu; YongHua Zhu; PeiKuo Gao; JianHong Wang; Lin Ma; RuiFen Fan; Yuan Ji; MeiLing Zhou

    2009-01-01

    The improvement of mechanical and magnetic properties of textured NiW alloy tapes is considered as a main challenge for RABiTS substrates in coated conductors. The present paper summaries the successful development of several textured NiW substrate tapes with high W contents as well as advanced NiW composite substrates with high strength and reduced magnetization in our previous works. The fabrication process of these tapes and their characterizations are presented in detail. The results on the texture quality and mechanical properties as well as on the magnetic behaviour of these tapes are promising in view of the future application in coated conductor and constitute an alternative to the well known Ni5W alloy substrates. (au)

  7. Corrosion behaviour of low alloy steels: from ancient past to far future

    Energy Technology Data Exchange (ETDEWEB)

    Santarini, G. [Commissariat a l' Energie Atomique, CEA-Saclay DEN/DPC, Bat 450, 91191 Gif-sur-Yvette Cedex (France)

    2004-07-01

    With the envisaged concepts of long term storage and underground disposal of high level radioactive waste, corrosion science has to face a new challenge: to obtain reliable behaviour predictions over very long periods of time, up to thousands of years. For such durations, the development of mechanistically based models becomes an absolute necessity. In France, the first candidate materials considered for the containers of high level waste are low alloy steels because of their relatively low sensitivity to localized corrosion, when compared, for example, to passive materials: this characteristics makes their corrosion behaviour less difficult to predict. In this mechanistic modelling, numerous physicochemical steps have to be taken into consideration, such as chemical and/or electrochemical reactions, solid state diffusion of point defects, liquid state diffusion of chemical species in oxide pores, etc. However, since the complex links between all these steps highly depend on the nature and on the characteristics (porosity, conductivity, protectiveness, etc.) of the corrosion products, the first stage before the model construction is to obtain experimental data on this phenomenology in the very near environment of the metal. At the opposite, once a model constructed, it is necessary to compare its predictions to field experience, and to verify that the mechanisms and phenomenology retained in the model remain unchanged over very long periods of time. In the various stages of a progressive iterative model improvement, the examination of archaeological objects is liable to provide useful information. The considerable interest of such objects, in this context, comes from the long duration of the contact with a natural environment, a duration of the same order of magnitude as the one considered for high level waste storage. However, the differences between the ancient materials and the modern ones and also the poor knowledge about the initial conditions and about the

  8. Carbon trading: Current schemes and future developments

    International Nuclear Information System (INIS)

    Perdan, Slobodan; Azapagic, Adisa

    2011-01-01

    This paper looks at the greenhouse gas (GHG) emissions trading schemes and examines the prospects of carbon trading. The first part of the paper gives an overview of several mandatory GHG trading schemes around the world. The second part focuses on the future trends in carbon trading. It argues that the emergence of new schemes, a gradual enlargement of the current ones, and willingness to link existing and planned schemes seem to point towards geographical, temporal and sectoral expansion of emissions trading. However, such expansion would need to overcome some considerable technical and non-technical obstacles. Linking of the current and emerging trading schemes requires not only considerable technical fixes and harmonisation of different trading systems, but also necessitates clear regulatory and policy signals, continuing political support and a more stable economic environment. Currently, the latter factors are missing. The global economic turmoil and its repercussions for the carbon market, a lack of the international deal on climate change defining the Post-Kyoto commitments, and unfavourable policy shifts in some countries, cast serious doubts on the expansion of emissions trading and indicate that carbon trading enters an uncertain period. - Highlights: → The paper provides an extensive overview of mandatory emissions trading schemes around the world. → Geographical, temporal and sectoral expansion of emissions trading are identified as future trends. → The expansion requires considerable technical fixes and harmonisation of different trading systems. → Clear policy signals, political support and a stable economic environment are needed for the expansion. → A lack of the post-Kyoto commitments and unfavourable policy shifts indicate an uncertain future for carbon trading.

  9. Biorefineries: Current activities and future developments

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, Ayhan [Sila Science, Trabzon (Turkey)

    2009-11-15

    This paper reviews the current refuel valorization facilities as well as the future importance of biorefineries. A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and chemicals from biomass. Biorefineries combine the necessary technologies of the biorenewable raw materials with those of chemical intermediates and final products. Char production by pyrolysis, bio-oil production by pyrolysis, gaseous fuels from biomass, Fischer-Tropsch liquids from biomass, hydrothermal liquefaction of biomass, supercritical liquefaction, and biochemical processes of biomass are studied and concluded in this review. Upgraded bio-oil from biomass pyrolysis can be used in vehicle engines as fuel. (author)

  10. Biorefineries: Current activities and future developments

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2009-01-01

    This paper reviews the current refuel valorization facilities as well as the future importance of biorefineries. A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and chemicals from biomass. Biorefineries combine the necessary technologies of the biorenewable raw materials with those of chemical intermediates and final products. Char production by pyrolysis, bio-oil production by pyrolysis, gaseous fuels from biomass, Fischer-Tropsch liquids from biomass, hydrothermal liquefaction of biomass, supercritical liquefaction, and biochemical processes of biomass are studied and concluded in this review. Upgraded bio-oil from biomass pyrolysis can be used in vehicle engines as fuel.

  11. Development of Biopesticides and Future Opportunities.

    Science.gov (United States)

    Glare, Travis R; Gwynn, Roma L; Moran-Diez, Maria E

    2016-01-01

    Biopesticides, pesticides based on living organisms or their extracts, are increasing in sales around the world, as synthetic pesticides are less available and environmental and health issues drive new approaches. Despite the increasing sales and use, there are still limitations that restrict more widespread uptake, such as slow to kill, cost, difficulties of production, lack of appropriate formulations, and reputation based on previous poor performance of biopesticides. Regulation continues to be problematic in many countries, as the processes are designed for evaluating chemistry rather than live organisms. Biopesticides do have a bright future, given the amount of investment currently in the area, improving products and growing need.

  12. Alloy Development, Processing and Characterization of Devitrified Titanium Base Microcrystalline Alloys.

    Science.gov (United States)

    1986-01-01

    1.5m wide by injecting the molten alloy onto a rotating copper ’. disk through the orifice at the bottom of the copper crucible under inert gas...icrocrystalline forms [10, 271. 7his technique adopts the combination of a water-cooled cold copper crucible with an arc heating scheme that uses non-consumable...are malted in the cold copper crucible and spun in an inert gas atmosphere. he ribbon produced has a uniform thickness of 20 to SOgm. 5’ -7 -. -F -i

  13. Microstructure evolution and texture development in thermomechanically processed Mg-Li-Al based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vinod [Department of Materials Science and Engineering, IIT Kanpur (India); Govind [Vikram Sarabhai Space Center, Trivandrum (India); Shekhar, Rajiv; Balasubramaniam, R. [Department of Materials Science and Engineering, IIT Kanpur (India); Balani, Kantesh, E-mail: kbalani@iitk.ac.in [Department of Materials Science and Engineering, IIT Kanpur (India)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Thermomechanical processing of novel LAT 971 and LATZ 9531 Mg-Al-Li based alloys. Black-Right-Pointing-Pointer Microstructural deviation from the equilibrium phase diagram. Black-Right-Pointing-Pointer Disparity in texture of these alloys after hot-rolling (recrystallization and grain growth). Black-Right-Pointing-Pointer Role of alloying and phase distribution in affecting the texture/interplaner spacing. - Abstract: In the present study, the influence of alloying and thermomechanical processing on the microstructure and texture evolution on the two Mg-Li-Al based alloys, namely Mg-9 wt% Li-7 wt% Al-1 wt% Sn (LAT971) and Mg-9 wt% Li-5 wt% Al-3 wt% Sn-1 wt% Zn (LATZ9531) has been elicited. Novel Mg-Li-Al based alloys were cast (induction melting under protective atmosphere) followed by hot rolling at {approx}573 K with a cumulative reduction of five. A contrary dual phase dendritic microstructure rich in {alpha}-Mg, instead of {beta}-Li phase predicted by equilibrium phase diagram of Mg-Li binary alloy was observed. Preferential presence of Mg-Li-Sn primary precipitates (size 4-10 {mu}m) within {alpha}-Mg phase and Mg-Li-Al secondary precipitates (<3 {mu}m) interspersed in {beta}-Li indicated their degree of dissolution during hot-rolling and homogenization in the dual phase matrix. Presence of Al, Sn and Zn alloying elements in the Mg-Li based alloy has resulted an unusual dual-phase microstructure, change in the lattice parameter, and intriguing texture evolution after hot-rolling of cast LAT 971 and LATZ9531 alloy. Strong texture was absent in the as-cast samples whereas texture development after hot-rolling revealed an increased activity of the non-basal (101{sup Macron }0) slip planes. The quantification of the grain average misorientation (less than 2 Degree-Sign ) using electron backscattered diffraction confirmed the presence of strain free grains in majority of the grains (fraction >0.75) after hot-rolling of Mg

  14. Current Status of Development of High Nickel Low Alloy Steels for Commercial Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Chul; Lee, B. S.; Park, S. G.; Lee, K. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-12-15

    SA508 Gr.3 Mn-Mo-Ni low alloy steels have been used for nuclear reactor pressure vessel steels up to now. Currently, the design goal of nuclear power plant is focusing at larger capacity and longer lifetime. Requirements of much bigger pressure vessels may cause critical problems in the manufacturing stage as well as for the welding stage. Application of higher strength steel may be required to overcome the technical problems. It is known that a higher strength and fracture toughness of low alloy steels such as SA508 Gr.4N low alloy steel could be achieved by increasing the Ni and Cr contents. Therefore, SA508 Gr.4N low alloy steel is very attractive as eligible RPV steel for the next generation PWR systems. In this report, we propose the possibility of SA508 Gr.4N low alloy steel for an application of next generation commercial RPV, based on the literature research result about development history of the RPV steels and SA508 specification. In addition, we have surveyed the research result of HSLA(High Strength Low Alloy steel), which has similar chemical compositions with SA508 Gr.4N, to understand the problems and the way of improvement of SA508 Gr.4N low alloy steel. And also, we have investigated eastern RPV steel(WWER-1000), which has higher Ni contents compared to western RPV steel.

  15. Development, preparation and characterization of uranium molybdenum alloys for dispersion fuel application

    International Nuclear Information System (INIS)

    Sinha, V.P.; Prasad, G.J.; Hegde, P.V.; Keswani, R.; Basak, C.B.; Pal, S.; Mishra, G.P.

    2009-01-01

    Most of the research and test reactors worldwide have undergone core conversion from high enriched uranium base fuel to low enriched uranium base fuel under the Reduced Enrichment for Research and Test Reactor (RERTR) program, which was launched in the late 1970s to reduce the risk of nuclear proliferation. To realize this goal, high density uranium compounds and γ-stabilized uranium alloy powder were identified. In Metallic Fuels Division of BARC, R and D efforts are on to develop these high density uranium base alloys. This paper describes the preparation flow sheet for different compositions of Uranium and molybdenum alloys by an innovative powder processing route with uranium and molybdenum metal powders as starting materials. The same composition of U-Mo alloys were also fabricated by conventional method i.e. ingot metallurgy route. The U-Mo alloys prepared by both the methods were then characterized by XRD for phase analysis. The photomicrographs of alloys with different compositions prepared by powder metallurgy and ingot metallurgy routes are also included in the paper. The paper also covers the comparison of properties of the alloys prepared by powder metallurgy and ingot metallurgy routes

  16. Development, preparation and characterization of uranium molybdenum alloys for dispersion fuel application

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, V.P. [Metallic Fuels Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)], E-mail: vedsinha@barc.gov.in; Prasad, G.J.; Hegde, P.V.; Keswani, R.; Basak, C.B.; Pal, S.; Mishra, G.P. [Metallic Fuels Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2009-04-03

    Most of the research and test reactors worldwide have undergone core conversion from high enriched uranium base fuel to low enriched uranium base fuel under the Reduced Enrichment for Research and Test Reactor (RERTR) program, which was launched in the late 1970s to reduce the risk of nuclear proliferation. To realize this goal, high density uranium compounds and {gamma}-stabilized uranium alloy powder were identified. In Metallic Fuels Division of BARC, R and D efforts are on to develop these high density uranium base alloys. This paper describes the preparation flow sheet for different compositions of Uranium and molybdenum alloys by an innovative powder processing route with uranium and molybdenum metal powders as starting materials. The same composition of U-Mo alloys were also fabricated by conventional method i.e. ingot metallurgy route. The U-Mo alloys prepared by both the methods were then characterized by XRD for phase analysis. The photomicrographs of alloys with different compositions prepared by powder metallurgy and ingot metallurgy routes are also included in the paper. The paper also covers the comparison of properties of the alloys prepared by powder metallurgy and ingot metallurgy routes.

  17. Tensile and fracture toughness properties of MA957: implications to the development of nanocomposited ferritic alloys

    International Nuclear Information System (INIS)

    Alinger, M.J.; Odette, G.R.; Lucas, G.E.

    2002-01-01

    A study to explore approaches to optimizing nanocomposited ferritic alloys was carried out on dispersion strengthened mechanically alloyed (MA) MA957, in the form of extruded bar stock. Previous studies had indicated that this alloy manifested superior high temperature strength and radiation stability, but was extremely brittle in notch impact tests. Thus our objective was to develop a combination of tensile, fracture toughness and microstructural data to clarify the basis for this brittle behavior. To this end, tensile properties and fracture toughness were characterized as a function of temperature in various orientations relative to the grain and inclusion structures. This database along with extensive fractography suggests that brittleness is due to the presence of a large volume fraction of impurity alumina stringers. In orientations where the effects of the stringers are reduced, much higher toughness was observed. These results provide a path for alloy development approach to achieve high strength and toughness

  18. Tensile and fracture toughness properties of MA957: implications to the development of nanocomposited ferritic alloys

    Science.gov (United States)

    Alinger, M. J.; Odette, G. R.; Lucas, G. E.

    2002-12-01

    A study to explore approaches to optimizing nanocomposited ferritic alloys was carried out on dispersion strengthened mechanically alloyed (MA) MA957, in the form of extruded bar stock. Previous studies had indicated that this alloy manifested superior high temperature strength and radiation stability, but was extremely brittle in notch impact tests. Thus our objective was to develop a combination of tensile, fracture toughness and microstructural data to clarify the basis for this brittle behavior. To this end, tensile properties and fracture toughness were characterized as a function of temperature in various orientations relative to the grain and inclusion structures. This database along with extensive fractography suggests that brittleness is due to the presence of a large volume fraction of impurity alumina stringers. In orientations where the effects of the stringers are reduced, much higher toughness was observed. These results provide a path for alloy development approach to achieve high strength and toughness.

  19. Development of a database system for operational use in the selection of titanium alloys

    Science.gov (United States)

    Han, Yuan-Fei; Zeng, Wei-Dong; Sun, Yu; Zhao, Yong-Qing

    2011-08-01

    The selection of titanium alloys has become a complex decision-making task due to the growing number of creation and utilization for titanium alloys, with each having its own characteristics, advantages, and limitations. In choosing the most appropriate titanium alloys, it is very essential to offer a reasonable and intelligent service for technical engineers. One possible solution of this problem is to develop a database system (DS) to help retrieve rational proposals from different databases and information sources and analyze them to provide useful and explicit information. For this purpose, a design strategy of the fuzzy set theory is proposed, and a distributed database system is developed. Through ranking of the candidate titanium alloys, the most suitable material is determined. It is found that the selection results are in good agreement with the practical situation.

  20. Future fuel cycle development for CANDU reactors

    International Nuclear Information System (INIS)

    Hatcher, S.R.; McDonnell, F.N.; Griffiths, J.; Boczar, P.G.

    1987-01-01

    The CANDU reactor has proven to be safe and economical and has demonstrated outstanding performance with natural uranium fuel. The use of on-power fuelling, coupled with excellent neutron economy, leads to a very flexible reactor system with can utilize a wide variety of fuels. The spectrum of fuel cycles ranges from natural uranium, through slightly enriched uranium, to plutonium and ultimately thorium fuels which offer many of the advantages of the fast breeder reactor system. CANDU can also burn the recycled uranium and/or the plutonium from fuel discharged from light water reactors. This synergistic relationship could obviate the need to re-enrich the reprocessed uranium and allow a simpler reprocessing scheme. Fule management strategies that will permit future fuel cycles to be used in existing CANDU reactors have been identified. Evolutionary design changes will lead to an even greater flexibility, which will guarantee the continued success of the CANDU system. (author)

  1. A Short Supplement to "A Future of Leadership Development"

    Science.gov (United States)

    Williams, Ken

    2010-01-01

    This paper is a short supplement to "A Future of Leadership Development." In this supplement, the author discusses the traits of a good leader. He also describes the factors of a good leadership development program. [For the full report, "A Future of Leadership Development," see ED520171.

  2. Development of Zn50 Brazing Alloy for Joining Mild Steel to Mild Steel (SAE1018

    Directory of Open Access Journals (Sweden)

    S.C. Nwigbo

    2014-09-01

    Full Text Available This work has developed new brazing alloys for joining mild steel to mild steel (SAE1018 at a lower temperature. The alloys blends and error analysis were done by experimental design software (Design Expert 8.0.7.1. Design of experiments was done by Scheffe quadratic mixture method. The liquidus temperatures were predicted by calculation of phase diagrams of the alloying metals. The brazing alloys were produced by gravity technique and melted using silicon carbide graphite crucible. The quality of the brazing alloys was analyzed by optical microscopy (OM, atomic absorption spectroscopy (AAS and fourier transform infrared spectroscopy (FT-IR. Brazed joints were produced by torch method with a commercial flux. Brazing temperatures (liquidus were tracked by a digital infrared/laser pyrometer. Some mechanical properties studied were tensile strength and hardness. Finally, brazed joints produced from the developed brazing alloys were compared to that produced from muntz brass. Six (6 brazing alloys were successfully developed. Zinc and manganese were the main components, to which were added; 3 to 4 %wt silver and 11 to15 %wt modifying element. The microstructure showed a typical eutectic structure with zinc-rich phase distributed uniformly in the matrix with a combination of different sizes of dendrite, rounded blocks of compounds and hypoeutectic structures. AAS results indicated minimal out-gassing of zinc and FT-IR results indicated very low presence of atmospheric gas. The range of brazing temperature for best results was recorded from 690.90 to 735.10 0C. The joints produced from the developed brazing alloys had acceptable strengths with improved stress-strain behaviour compared to muntz brass.

  3. Development of titanium alloys and surface treatments to increase the implants lifetime

    Directory of Open Access Journals (Sweden)

    Joan Lario-Femenía

    2016-12-01

    Full Text Available The population aging together with increase of life expectancy forces the development of new prosthesis which may present a higher useful life. The clinical success of implants is based on the osseointegration achievement. Therefore, metal implants must have a mechanical compatibility with the substituted bone, which is achieved through a combination of low elastic modulus, high flexural and fatigue strength. The improvement, in the short and long term, of the osseointegration depends on several factors, where the macroscopic design and dimensional, material and implant surface topography are of great importance. This article is focused on summarizing the advantages that present the titanium and its alloys to be used as biomaterials, and the development that they have suffered in recent decades to improve their biocompatibility. Consequently, the implants evolution has been recapitulated and summarized through three generations. In the recent years the interest on the surface treatments for metallic prostheses has been increased, the main objective is achieve a lasting integration between implant and bone tissue, in the shortest time possible. On this article various surface treatments currently used to modify the surface roughness or to obtain coatings are described it; it is worthy to mention the electrochemical oxidation with post-heat treated to modify the titanium oxide crystalline structure. After the literature review conducted for prepare this article, the ? titanium alloys, with a nanotubes surface of obtained by electrochemical oxidation and a subsequent step of heat treatment to obtain a crystalline structure are the future option to improve long term biocompatibility of titanium prostheses.

  4. System analysis: Developing tools for the future

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, K.; clever, J.; Draper, J.V.; Davies, B.; Lonks, A.

    1996-02-01

    This report introduces and evaluates system analysis tools that were developed, or are under development, for the Robotics Technology Development Program (RTDP). Additionally, it discusses system analysis work completed using these tools aimed at completing a system analysis of the retrieval of waste from underground storage tanks on the Hanford Reservation near Richland, Washington. The tools developed and evaluated include a mixture of commercially available tools adapted to RTDP requirements, and some tools developed in house. The tools that are included in this report include: a Process Diagramming Tool, a Cost Modeling Tool, an Amortization Modeling Tool, a graphical simulation linked to the Cost Modeling Tool, a decision assistance tool, and a system thinking tool. Additionally, the importance of performance testing to the RTDP and the results of such testing executed is discussed. Further, the results of the Tank Waste Retrieval (TWR) System Diagram, the TWR Operations Cost Model, and the TWR Amortization Model are presented, and the implication of the results are discussed. Finally, the RTDP system analysis tools are assessed and some recommendations are made regarding continuing development of the tools and process.

  5. Design and development of self-passivating biodegradable magnesium alloys using selective element oxidation

    Science.gov (United States)

    Brar, Harpreet Singh

    Metallic biomaterials such as stainless steels, titanium alloys, and cobalt-chromium alloys have been used as structural implant materials for many years. However, due to their limitations in temporary implant applications, there has been increased interest in the development of a biodegradable structural implant device. Magnesium (Mg) alloys have shown great potential as a material for biodegradable structural implant applications. However, low strength and high degradation rate of Mg under physiological conditions are major limitations, causing the implant to lose its structural integrity before the healing process is complete. The main aim of this work was to investigate the possibility of designing Mg-based alloys with ability to form selective protective oxides, thereby aiding in the reduction of the initial degradation rate. A thermodynamics-driven design was utilized to select three elements, namely Gadolinium (Gd), Scandium (Sc) and Yttrium (Y), due to the low enthalpy of formation associated with their oxide species. First, binary alloys were cast under inert atmosphere, solution treated and investigated for degradation rate in Hanks' solution. The Mg-Gd binary alloy showed the fastest degradation rate whereas the Mg-Sc binary alloy showed the slowest degradation rate. The degradation of Mg-Gd and Mg-Y was 18 and 5 times faster than Mg-Sc alloy, respectively. The microstructural analysis of the alloys was performed using X-ray Diffraction (XRD), Optical Microscopy (OM) and Scanning Electron Microscopy (SEM). It was observed that the grain size of Mg-Sc alloys is significantly smaller than Mg-Gd and Mg-Y alloys and can be a contributing factor to the reduction in degradation rate. The hardness behavior of the alloys was also investigated using Vickers microhardness Testing. To understand the oxidation behavior and kinetics, samples were oxidized in pure oxygen environment and investigated using microstructural and thermogravimetric analysis (TGA). Auger

  6. Future development of large superconducting generators

    International Nuclear Information System (INIS)

    Singh, S.K.; Mole, C.J.

    1989-01-01

    Large superconducting generators are being developed worldwide. The use of superconductors to reduce the electrical power dissipation in power equipment has been a technological possibility ever since the discovery of superconductivity, even though their use in power equipment remained an impractical dream for a long time. However, scientific and technological progress in superconductivity and cryogenics has brought this dream much closer to reality. Results obtained so far establish the technical feasibility of these machines. Analytical developments have been providing a sound basis for the design of superconducting machines and results of these design studies have shown improvements in power density of up to a factor of 10 higher than the power density for conventional machines. This paper describes the recently completed USA programs, the current foreign and USA programs, and then proposes a USA development program to maintain leadership in the field

  7. Flower development: open questions and future directions.

    Science.gov (United States)

    Wellmer, Frank; Bowman, John L; Davies, Brendan; Ferrándiz, Cristina; Fletcher, Jennifer C; Franks, Robert G; Graciet, Emmanuelle; Gregis, Veronica; Ito, Toshiro; Jack, Thomas P; Jiao, Yuling; Kater, Martin M; Ma, Hong; Meyerowitz, Elliot M; Prunet, Nathanaël; Riechmann, José Luis

    2014-01-01

    Almost three decades of genetic and molecular analyses have resulted in detailed insights into many of the processes that take place during flower development and in the identification of a large number of key regulatory genes that control these processes. Despite this impressive progress, many questions about how flower development is controlled in different angiosperm species remain unanswered. In this chapter, we discuss some of these open questions and the experimental strategies with which they could be addressed. Specifically, we focus on the areas of floral meristem development and patterning, floral organ specification and differentiation, as well as on the molecular mechanisms underlying the evolutionary changes that have led to the astounding variations in flower size and architecture among extant and extinct angiosperms.

  8. Development of future faculty teaching skills.

    Science.gov (United States)

    Penson, J B

    2010-01-01

    Doctoral and postdoctoral students considering a career as an educator would be well served by: (1) training in effective classroom communication skills, (2) the use of existing technology in teaching, (3) developing a new course or updating an existing course, and (4) availing themselves of campus teaching resources designed enhance their teaching portfolio. Universities need to place more attention on developing the teaching skills of their doctoral and postdoctoral students. This should include teaching methods and aids, communication skills, motivation, learning theory, testing, counselling and guidance, and course design. An important dimension from a guidance stand point is the conduct of a formal peer review process for beginning faculty.

  9. Future development of project management competences.

    NARCIS (Netherlands)

    Silvius, A.J.G.; Batenburg, R.

    2009-01-01

    This paper describes a study into the expected development of the competences of the project manager in the year 2027. The study was performed amongst the members of IPMA-Netherlands during the summer of 2007. In the study the 46 competences of the International Competence Baseline 3 (ICB 3) were

  10. Inventions for future sustainable development in agriculture

    NARCIS (Netherlands)

    Jacobsen, E.; Beers, P.J.; Fischer, A.R.H.

    2011-01-01

    This chapter is directed to the importance of different inventions as driver for sustainable development of agriculture. Inventions are defined as radical new ideas, perspectives and technologies that hold the potential to trigger a change in sustainable agriculture. Innovation is based on one or

  11. Development of oxide dispersion strengthened W alloys produced by hot isostatic pressing

    International Nuclear Information System (INIS)

    Martinez, J.; Savoini, B.; Monge, M.A.; Munoz, A.; Pareja, R.

    2011-01-01

    A powder metallurgy technique has been developed to produce oxide strengthened W-Ti and W-V alloys using elemental powders and nanosized powders of La 2 O 3 or Y 2 O 3 as starting materials. The alloys consolidated by hot isostatic pressing resulted in high-density materials having an ultrafine-grained structure and microhardness values in the range 7-13 GPa. Atom force microscopy studies show a topographic relief in the Ti and V pools that appear in the consolidated alloys. This relief is attributed to the heterogeneous nucleation of martensite plates. The preliminary transmission electron microscopy studies have revealed that a dispersion of nanoparticles can be induced in these alloys produced via the present technique.

  12. Development of oxide dispersion strengthened W alloys produced by hot isostatic pressing

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, J.; Savoini, B.; Monge, M.A. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Munoz, A., E-mail: angel.munoz@uc3m.es [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Pareja, R. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain)

    2011-10-15

    A powder metallurgy technique has been developed to produce oxide strengthened W-Ti and W-V alloys using elemental powders and nanosized powders of La{sub 2}O{sub 3} or Y{sub 2}O{sub 3} as starting materials. The alloys consolidated by hot isostatic pressing resulted in high-density materials having an ultrafine-grained structure and microhardness values in the range 7-13 GPa. Atom force microscopy studies show a topographic relief in the Ti and V pools that appear in the consolidated alloys. This relief is attributed to the heterogeneous nucleation of martensite plates. The preliminary transmission electron microscopy studies have revealed that a dispersion of nanoparticles can be induced in these alloys produced via the present technique.

  13. Recent developments in metal and alloy fabrication. Influence on the utilization

    International Nuclear Information System (INIS)

    1983-01-01

    The program of the colloquium includes three parts. In the first part are given developments of metals and alloys elaboration leading to a better productivity, a more precise chemical composition of alloys a greater homogeneity of micro and macrostructure and a decrease of inclusion contents. These improvement in quality are obtained by smelting, refining, ingot solidification and hot working (forging and rolling). The second part shows the consequences of fabrication processes on uses and analyses with more details these improvements by few examples: stainless steels for nuclear industry microalloyed steels, aluminum and titanium alloys. The third part treats chemical analysis to follow the evolution of alloy composition during fabrication and to modify eventually the composition of the melt. New analysis methods are necessary for their adjustment to the nature and the quantity of elements and obtain the required accuracy [fr

  14. NEW SERDP Project: Copper- Beryllium Alternatives Alloys Development

    Science.gov (United States)

    2011-02-10

    Nitronic60, HBN 304 stainless steel , as well as low friction coating\\liner systems on PH stainless steel substrates • Compression strength and...ChemistryRefining Lath Martensite : Ms≥200°C Nickel: Cleavage Resistance Cobalt: SRO Recovery Resistance Chromium: Corrosion Resistance σuts > 280 ksi σys...against representative steels ). o Compression testing from each of the Cu- and Co-based alloys will be performed per ASTM E 9 o Pin-on-Disk test per

  15. Biomass electric technologies: Status and future development

    International Nuclear Information System (INIS)

    Bain, R.L.; Overend, R.P.

    1992-01-01

    At the present time, there axe approximately 6 gigawatts (GWe) of biomass-based, grid-connected electrical generation capacity in the United States. This capacity is primarily combustion-driven, steam-turbine technology, with the great majority of the plants of a 5-50 megawatt (MW) size and characterized by heat rates of 14,770-17,935 gigajoules per kilowatt-hour (GJ/kWh) (14,000-17,000 Btu/kWh or 18%-24% efficiency), and with installed capital costs of $1,300-$1,500/kW. Cost of electricity for existing plants is in the $0.065-$O.08/kWh range. Feedstocks are mainly waste materials; wood-fired systems account for 88% of the total biomass capacity, followed by agricultural waste (3%), landfill gas (8%), and anaerobic digesters (1%). A significant amount of remote, non-grid-connected, wood-fired capacity also exists in the paper and wood products industry. This chapter discusses biomass power technology status and presents the strategy for the U.S. Department of Energy (DOE) Biomass Power Program for advancing biomass electric technologies to 18 GWe by the year 2010, and to greater than 100 GWe by the year 2030. Future generation systems will be characterized by process efficiencies in the 35%-40% range, by installed capital costs of $770-$900/kW, by a cost of electricity in the $0.04-$O.05/kWh range, and by the use of dedicated fuel-supply systems. Technology options such as integrated gasification/gas-turbine systems, integrated pyrolysis/gas-turbine systems, and innovative direct-combustion systems are discussed, including present status and potential growth. This chapter also presents discussions of the U.S. utility sector and the role of biomass-based systems within the industry, the potential advantages of biomass in comparison to coal, and the potential environmental impact of biomass-based electricity generation

  16. Development of future indications for BOTOX.

    Science.gov (United States)

    Brin, Mitchell F

    2009-10-01

    Since the late 1970s, local injections of BoNT have provided clinical benefit for patients with inappropriately contracting muscles with or without pain or sensory disturbance. Marketing authorization for some BoNTs, depending on country, include core indications of dystonia (blepharospasm and cervical dystonia), large muscle spastic disorders (not yet approved in the United States, e.g., adult post-stroke spasticity and equinus foot deformity), hyperhidrosis and aesthetic. Subsequent development has extended to selected conditions characterized by recurrent or chronic pain (migraine headache), and urologic indications (neurogenic/idiopathic overactive bladder; prostate hyperplasia), with multiple additional opportunities available. Portfolio management requires a careful individual opportunity assessment of scientific and technical aspects (basic science foundation, potential to treat unmet medical need, product-specific risk in specific populations, therapeutic margin/safety profile, and probability of successful registration pathway). This article describes ongoing development targets for BOTOX.

  17. Geomathematics theoretical foundations, applications and future developments

    CERN Document Server

    Agterberg, Frits

    2014-01-01

    This book provides a wealth of geomathematical case history studies performed by the author during his career at the Ministry of Natural Resources Canada, Geological Survey of Canada (NRCan-GSC). Several of the techniques newly developed by the author and colleagues that are described in this book have become widely adopted, not only for further research by geomathematical colleagues, but by government organizations and industry worldwide. These include Weights-of-Evidence modelling, mineral resource estimation technology, trend surface analysis, automatic stratigraphic correlation and nonlinear geochemical exploration methods. The author has developed maximum likelihood methodology and spline-fitting techniques for the construction of the international numerical geologic timescale. He has introduced the application of new theory of fractals and multifractals in the geostatistical evaluation of regional mineral resources and ore reserves and to study the spatial distribution of metals in rocks. The book also ...

  18. Mexican geothermal development and the future

    International Nuclear Information System (INIS)

    Serrano, J.M.E.V.

    1998-01-01

    Geothermics in Mexico started in 1954, by drilling the first geothermal well in Pathe, State of Hidalgo, which reached a depth of 237 meters. In 1959 electrical generation from geothermal origin began, with an installed capacity of 3.5 MW. From 1959 to 1994 Mexico increased its installed capacity to 753 MW, by developing three geothermal fields: Cerro Prieto, Los Azufres, and Los Humeros. Currently, 177 wells produce steam at a rate of 36 tons per hour (t/h) each. Comision Federal de Electricidad (CFE, Federal Commission of Electricity) has planned to increase the geothermal-electric installed capacity through construction and installation of several projects. Repowering of operating units and development of new geothermal zones will also allow Mexican geothermal growth

  19. Habenula circuit development: past, present and future

    Directory of Open Access Journals (Sweden)

    Carlo Antonio Beretta

    2012-04-01

    Full Text Available The habenular neural circuit is attracting increasing attention from researchers in fields as diverse as neuroscience, medicine, behavior, development and evolution. Recent studies have revealed that this part of the limbic system in the dorsal diencephalon is involved in reward, addiction and other behaviors and its impairment is associated with various neurological conditions and diseases. Since the initial description of the Dorsal Diencephalic Conduction system (DDC with the habenulae in its center at the end of the 19th century, increasingly sophisticated techniques have resolved much of its anatomy and have shown that these pathways relay information from different parts of the forebrain to the tegmentum, midbrain and hindbrain. The first part of this review gives a brief historical overview on how the improving experimental approaches have allowed the stepwise uncovering of much of the architecture of the habenula circuit as we know it today. Our brain distributes tasks differentially between left and right and it has become a paradigm that this functional lateralization is a universal feature of vertebrates. Moreover, task dependent differential brain activities have been linked to anatomical differences across the left-right axis in humans. A good way to further explore this fundamental issue will be to study the functional consequences of subtle changes in neural network formation, which requires that we fully understand DDC system development. As the habenular circuit is evolutionarily highly conserved, researchers have the option to perform such difficult experiments in more experimentally amenable vertebrate systems. Indeed, research in the last decade has shown that the zebrafish is well suited for the study of DDC system development and the phenomenon of functional lateralization. We will critically discuss the advantages of the zebrafish model, available techniques and others that are needed to fully understand habenular circuit

  20. Habenula circuit development: past, present, and future.

    Science.gov (United States)

    Beretta, Carlo A; Dross, Nicolas; Guiterrez-Triana, Jose A; Ryu, Soojin; Carl, Matthias

    2012-01-01

    The habenular neural circuit is attracting increasing attention from researchers in fields as diverse as neuroscience, medicine, behavior, development, and evolution. Recent studies have revealed that this part of the limbic system in the dorsal diencephalon is involved in reward, addiction, and other behaviors and its impairment is associated with various neurological conditions and diseases. Since the initial description of the dorsal diencephalic conduction system (DDC) with the habenulae in its center at the end of the nineteenth century, increasingly sophisticated techniques have resolved much of its anatomy and have shown that these pathways relay information from different parts of the forebrain to the tegmentum, midbrain, and hindbrain. The first part of this review gives a brief historical overview on how the improving experimental approaches have allowed the stepwise uncovering much of the architecture of the habenula circuit as we know it today. Our brain distributes tasks differentially between left and right and it has become a paradigm that this functional lateralization is a universal feature of vertebrates. Moreover, task dependent differential brain activities have been linked to anatomical differences across the left-right axis in humans. A good way to further explore this fundamental issue will be to study the functional consequences of subtle changes in neural network formation, which requires that we fully understand DDC system development. As the habenular circuit is evolutionarily highly conserved, researchers have the option to perform such difficult experiments in more experimentally amenable vertebrate systems. Indeed, research in the last decade has shown that the zebrafish is well suited for the study of DDC system development and the phenomenon of functional lateralization. We will critically discuss the advantages of the zebrafish model, available techniques, and others that are needed to fully understand habenular circuit development.

  1. Future energy options for developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Zaric, Z P

    1982-05-01

    An educated guess is made of the energy demand in developing countries well into the next century in order to estimate the possible role of new and renewable sources in meeting this demand. The world is roughly divided into industrialized (IND) and developing (LDC) countries. A plot of energy demand in both parts shows a possible structure of mixed energy to meet LDC demand, but there is a gap between demand and supply from conventional sources in LDCs that has to be met by new and renewable sources. When the demand for specific energy forms is projected, as much as two thirds of the final energy needed from new sources should be based on centralized-electricity and liquid-fuels technologies. Solar and geothermal energy must compete with nuclear and thermonuclear breeders, while solar prospects for chemical fuel supply in LDCs lacking adequate coal reserves seems promising. There is a large gap in research and development (R and D) spending on new energy between the two parts, which means that LDCs will have inappropriate technology at a high price. An increase in R and D spending on a regional basis should target funds to appropriate options. 6 references, 7 figures.

  2. Development of quantitative analysis for cadmium, lead and chromium in aluminum alloys by using x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Yamashita, Satoshi; Kurusu, Kazuhiko; Kudou, Aiko

    2009-01-01

    A highly reliable quantitative analysis for cadmium, lead and chromium in aluminum alloys was developed. Standard samples were made by doping cadmium, lead and chromium into several aluminum alloys, and the composition of standard samples were determined by inductively coupled plasma optical emission spectrometry and gravimetric method. The calibration curves for these standard samples by using WD-XRF and ED-XRF exhibited linear correlation. Slope of calibration curves for Al-Cu alloy and Al-Zn-Mg alloy were smaller than other alloy's one, because of the effect by coexistent elements. Then, all calibration curves agreed with each other by performing correction with α-coefficient method. (author)

  3. Alternative Energy Development and China's Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Nina; Fridley, David

    2011-06-15

    In addition to promoting energy efficiency, China has actively pursued alternative energy development as a strategy to reduce its energy demand and carbon emissions. One area of particular focus has been to raise the share of alternative energy in China’s rapidly growing electricity generation with a 2020 target of 15% share of total primary energy. Over the last ten years, China has established several major renewable energy regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear, hydro, geothermal and biomass power as well as biofuels and coal alternatives. This study thus seeks to examine China’s alternative energy in terms of what has and will continue to drive alternative energy development in China as well as analyze in depth the growth potential and challenges facing each specific technology. This study found that despite recent policies enabling extraordinary capacity and investment growth, alternative energy technologies face constraints and barriers to growth. For relatively new technologies that have not achieved commercialization such as concentrated solar thermal, geothermal and biomass power, China faces technological limitations to expanding the scale of installed capacity. While some alternative technologies such as hydropower and coal alternatives have been slowed by uneven and often changing market and policy support, others such as wind and solar PV have encountered physical and institutional barriers to grid integration. Lastly, all alternative energy technologies face constraints in human resources and raw material resources including land and water, with some facing supply limitations in critical elements such as uranium for nuclear, neodymium for wind and rare earth metals for advanced solar PV. In light of China’s potential for and barriers to growth, the resource and energy requirement for alternative energy technologies were modeled and scenario analysis

  4. Recommendations on future development of decision support systems

    DEFF Research Database (Denmark)

    MCarthur, Stephen; Chen, Minjiang; Marinelli, Mattia

    Deliverable 8.3 reports on the consolidation of experiences from visualisation, decision support prototypes experiments and recommendations on future developments of decision support systems......Deliverable 8.3 reports on the consolidation of experiences from visualisation, decision support prototypes experiments and recommendations on future developments of decision support systems...

  5. DISCOS- Current Status and Future Developments

    Science.gov (United States)

    Flohrer, T.; Lemmens, S.; Bastida Virgili, B.; Krag, H.; Klinkrad, H.; Parrilla, E.; Sanchez, N.; Oliveira, J.; Pina, F.

    2013-08-01

    We present ESA's Database and Information System Characterizing Objects in Space (DISCOS). DISCOS not only plays an essential role in the collision avoidance and re-entry prediction services provided by ESA's Space Debris Office, it is also providing input to numerous and very differently scoped engineering activities, within ESA and throughout industry. We introduce the central functionalities of DISCOS, present the available reporting capabilities, and describe selected data modelling features. Finally, we revisit the developments of the recent years and take a sneak preview of the on-going replacement of DISCOS web front-end.

  6. Discussion and Future Directions for Eye Tracker Development

    DEFF Research Database (Denmark)

    Hansen, Dan Witzner; Mulvey, Fiona; Mardanbegi, Diako

    2011-01-01

    Eye and gaze tracking have a long history but there is still plenty of room for further development. In this concluding chapter for Section 6, we consider future perspectives for the development of eye and gaze tracking.......Eye and gaze tracking have a long history but there is still plenty of room for further development. In this concluding chapter for Section 6, we consider future perspectives for the development of eye and gaze tracking....

  7. Exploration of the Future – a Key to Sustainable Development

    Directory of Open Access Journals (Sweden)

    Vatroslav Zovko

    2013-01-01

    Full Text Available Throughout the history people were fascinated and curious about the future. The future was, and still is seen as a key for prosperous development in all aspects of the society. As such, new discipline is developedfuture studies.This paper discusses the discipline of future studies and its role in the society and science. Future studies are analyzed in the context of sustainable development. It is argued that future studies and sustainable development are complementary in nature. Based on analysis of most developed countries in the world, that spend the greatest portion of their budget on research, development and science in comparison to the rest of the world, there is a conclusive link between investments in research, development and science, and the recognition of the importance of thinking about the future. Those countries started to formalize their future orientation in many respected research centres and universities through their educational programs and research. That situation poses the need for other, less well off countries, to follow up.

  8. Gas detectors: recent developments and future perspectives

    International Nuclear Information System (INIS)

    Sauli, F.

    1998-01-01

    Thirty years after the invention of the multi-wire proportional chamber, and 20 from the first Vienna Wire Chamber Conference, the interest and research efforts devoted to gas detectors are still conspicuous, as demonstrated by the number of papers submitted to this conference. Innovative and performing devices have been perfected over the years, used in experiments, and still developed today. Introduced 10 years ago, the micro-strip gas chamber appears to fulfill the needs of high-luminosity trackers; progress in this field will be reported, followed by a discussion on discharge problems encountered and possible solutions. Recent and potentially more powerfull devices such as the micro-gap, narrow-gap and micro-dot chambers will be described. A new generation of detectors exploiting avalanche multiplication in narrow gaps has emerged recently, namely micromegas, CAT (compteur a trous) and the Gas Electron Multiplier (GEM); whilst still in their infancy, they have promising performances with increased reliability in harsh operating conditions. I will describe also some 'tools of trade' used to model the counting action and to analyze the properties of the detectors, discuss limitations to their performances, and suggest ways to improvement. Several still controversial subjects of study (as for example, aging), and imaginative efforts of the experimenters ensure a continuing progress in the field of gas detectors, and new editions of this conference for years to come. (author)

  9. Information System on Occupational Exposure: Future Developments

    International Nuclear Information System (INIS)

    Jean-Yves Gagnon; Waturu Mizumachi; Brian Ahier; Ted Lazo; Khammar Mrabit

    2006-01-01

    In response to pressures from deregulation and from ageing of the global nuclear power plant fleet, radiation protection personnel have found that occupational exposures are best managed through proper job planning, implementation and review to ensure that exposures are 'as low as reasonably achievable'(ALARA). A prerequisite for applying the principle of optimisation to occupational radiation protection is the timely exchange of data and information on dose reduction methods. To facilitate this global approach to work management, the OECD Nuclear Energy Agency (Nea) launched the Information System on Occupational Exposure (I.S.O.E.) in 1992. The objective of I.S.O.E. is to provide a forum for radiation protection experts from both utilities and national regulatory authorities to discuss, promote and coordinate international cooperative undertakings for the radiological protection of workers at nuclear power plants.The I.S.O.E. programme offers a variety of products in the occupational exposure area, such as: the world largest database on occupational exposure from nuclear power plants, a yearly analysis of dose trends and an overview of current developments, through I.S.O.E. Annual Reports, detailed studies, analyses, and information on current issues in operational radiation protection, through I.S.O.E. Information Sheets, a system for rapid communication of radiation protection-related information, such as effective dose reduction approaches and implementation of work management principles. A forum for discussing occupational exposure management issues through I.S.O.E. workshops, symposia and newsletters. (N.C.)

  10. Development of casting investment preventing blackening of noble metal alloys Part 2. Application of developed investment for type 4 gold alloy.

    Science.gov (United States)

    Nakai, Akira; Kakuta, Kiyoshi; Goto, Shin-ichi; Kato, Katuma; Yara, Atushi; Ogura, Hideo

    2003-09-01

    The objective of this study was to evaluate the efficacy of the developed investment for the prevention of blackening of a cast Type 4 gold and to analyze the oxides on its surface in relation to the blackening of the alloy. The experimental investments were prepared using a gypsum-bonded investment in which boron (B) or aluminum (Al) was added as a reducing agent. A Type 4 gold alloy was cast into the mold made of the prepared investment. The effect of the additives was evaluated from the color difference (deltaE*) between the as-cast surface and the polished surface of the cast specimen. B and Al were effective to prevent the blackening of a Type 4 gold alloy and the color of the as-cast surface approached that of the polished surface with increasing B and Al content. The prevention of the blackening of the gold alloy can be achieved by restraining the formation of CuO.

  11. Hydropericardium syndrome: current state and future developments.

    Science.gov (United States)

    Asthana, Manu; Chandra, Rajesh; Kumar, Rajesh

    2013-05-01

    Hydropericardium syndrome (HPS) is a highly infectious disease caused by fowl adenovirus serotype 4 (FAV-4) affecting poultry, especially broiler birds. The disease was initially reported from Angara Goth, Pakistan, and then from India during 1994, in the poultry belt of Jammu and Kashmir, and thereafter, from almost all parts of the country, causing heavy economic losses to the poultry industry. The disease occurs predominantly in broilers of the age group of 3-5 weeks, characterized by sudden onset of high mortality up to 80 %. The causative agent of HPS is fowl adenovirus 4, which is a member of the species Fowl Adenovirus C, genus Aviadenovirus, family Adenoviridae [60]. FAV-4 is non-enveloped and icosahedral in shape, measuring 70-90 nm in size and containing a linear dsDNA of approximately 45 kb in size as its genome. The livers of affected birds show necrotic foci and basophilic intranuclear inclusion bodies in the hepatocytes. The disease can be diagnosed from its gross and microscopic changes in the liver and by various serological tests, such as agar gel immunodiffusion, counterimmunoelectrophoresis, indirect haemagglutination, fluorescent antibody techniques, and ELISA. In the past few years, PCR has been used as a rapid diagnostic tool for the detection of fowl adenoviruses. The disease has been brought under control by the use of formalin-inactivated, attenuated or live vaccines in experimentally infected birds. Advancement in the field of computational immunology accelerates knowledge acquisition and simultaneously reduces the time and effort involved in screening potential epitopes, leading toward the development of epitope-based vaccines.

  12. Fabrication development and usage of vanadium alloys in DIII-D

    International Nuclear Information System (INIS)

    Smith, J.P.; Johnson, W.R.; Reis, E.E.

    1996-10-01

    GA is procuring material, designing components, and developing fabrication techniques for use of V alloy into the DIII-D divertor as elements of the Radiative Divertor Project modification. This program was developed to assist in the development of low activation alloys for fusion use by demonstrating the fabrication and installation of V alloy components in an operating tokamak. Along with fabrication development, the program includes multiple steps starting with small coupons installed in DIII-D to measure the environmental effects on V. This is being done in collaboration with DOE Fusion Materials Program (particularly at ANL and ORNL). Procurement of the material has been completed; the world's largest heat of V alloy (1200 kg V-4Cr-4Ti) was produced and converted into various products. Manufacturing process is described and chemistry results presented. Research into potential fabrication methods is being performed. Joining of V alloys was identified as the most critical fabrication issue for its use in the Radiative Divertor program. Successful welding trials were done using resistance, friction, and electron beam methods; metallography and mechanical tests were done to evaluate the welds

  13. Development of weldable, corrosion-resistant iron-aluminide (FeAl) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, P.J.; Goodwin, G.M.; Wang, X.L.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    A boron-microalloyed FeAl alloy (Fe-36Al-0.2Mo-0.05Zr-0.13C, at.%, with 100-400 appm B) with improved weldability and mechanical properties was developed in FY 1994. A new scale-up and industry technology development phase for this work began in FY 1995, pursuing two parallel paths. One path was developing monolithic FeAl component and application technology, and the other was developing coating/cladding technology for alloy steels, stainless steels and other Fe-Cr-Ni alloys. In FY 1995, it was found that cast FeAl alloys had good strength at 700-750{degrees}C, and some (2.5%) ductility in air at room-temperature. Hot-extruded FeAl with refined grain size was found to have ductility and to also have good impact-toughness at room-temperature. Further, it was discovered that powder-metallurgy (P/M) FeAl, consolidated by direct hot-extrusion at 950-1000{degrees}C to have an ultra fine-grained microstructure, had the highest ductility, strength and impact-toughness ever seen in such intermetallic alloys.

  14. Alloy development for irradiation performance. Quarterly progress report for period ending March 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ashdown, B.G. (comp.)

    1980-06-01

    This report is organized along topical lines in parallel to a Program Plan of the same title so that activities and accomplishments may be followed readily relative to that Program Plan. Thus, the work of a given laboratory may appear throughout the report. Chapters 1, 2, 8, and 9 review activities on analysis and evaluation, test methods development, status of irradiation experiments, and corrosion testing and hydrogen permeation studies, respectively. These activities relate to each of the alloy development paths. Chapters 3, 4, 5, 6, and 7 present the ongoing work on each alloy development path. The Table of Contents is annotated for the convenience of the reader.

  15. Alloy development for irradiation performance. Quarterly progress report for period ending September 30, 1980

    International Nuclear Information System (INIS)

    1980-12-01

    This report is organized along topical lines in parallel to a Program Plan of the same title so that activities and accomplishments may be followed readily relative to that Program Plan. Thus, the work of a given laboratory may appear throughout the report. Chapters 1, 2, 8, and 9 review activities on analysis and evaluation, test methods development, status of irradiation experiments, and corrosion testing and hydrogen permeation studies, respectively. These activities relate to each of the alloy development paths. Chapters 3, 4, 5, 6, and 7 present the ongoing work on each alloy development path. The Table of Contents is annotated for the convenience of the reader

  16. Alloy development for irradiation performance. Quarterly progress report for period ending March 31, 1981

    International Nuclear Information System (INIS)

    1981-07-01

    This report is organized along topical lines in parallel to a Program Plan of the same title so that activities and accomplishments may be followed readily relative to that Program Plan. Thus, the work of a given laboratory may appear throughout the report. Chapters 1, 2, 8, and 9 review activities on analysis and evaluation, test methods development, status of irradiation experiments, and corrosion testing and hydrogen permeation studies, respectively. These activities relate to each of the alloy development paths. Chapters 3, 4, 5, 6, and 7 present the ongoing work on each alloy development path. The Table of Contents is annotated for the convenience of the reader

  17. Microstructural development for copper alloys irradiated in RTNS-11

    International Nuclear Information System (INIS)

    Doran, D.G.

    1979-01-01

    Microscopy and microhardness measurements were performed on pure Cu and Cu alloyed with 5% of either Al, Ni, or Mn, all irradiated in RTNS-II up to 7.5 x 10 17 n/cm 2 . Results show that a substantial fraction of the defects are below the microscope's resolution limit and account for a large amount of the radiation hardening. The solute Al appears to lead to substantial differences in clustering of point defects within the cascade and thus affect the visibility of the clusters. The fraction of defects surviving the original cascade event is at least 9%

  18. Development of high temperature fasteners using directionally solidified eutectic alloys

    Science.gov (United States)

    George, F. D.

    1972-01-01

    The suitability of the eutectics for high temperature fasteners was investigated. Material properties were determined as a function of temperature, and included shear parallel and perpendicular to the growth direction and torsion parallel to it. Techniques for fabricating typical fastener shapes included grinding, creep forming, and direct casting. Both lamellar Ni3Al-Ni3Nb and fibrous (Co,Cr,Al)-(Cr,Co)7C3 alloys showed promise as candidate materials for high temperature fastener applications. A brief evaluation of the performance of the best fabricated fastener design was made.

  19. Development of casting techniques for uranium and uranium alloys

    International Nuclear Information System (INIS)

    Singh, S.P.

    2003-01-01

    The casting process concerning furnace set-up, mould temperatures, pouring temperatures, out gassing, post heating, casting recovery and crucible and mould clean-up is discussed. Some applications of casting theory can be made in practice, but experience in handling the metal is most valuable in the successful solution of a new problem. The casting of uranium alloys using induction stirring of the melt to promote homogeneity in the casting is described. A few remarks are made concerning safety aspects associated with the casting of uranium

  20. Developments and challenges in the utilisation of magnesium alloys

    International Nuclear Information System (INIS)

    Dahle, A.K.; StJohn, D.H.; Dunlop, G.L.

    2000-01-01

    Magnesium's largest growth market, the automotive industry, is providing many challenges that have to be met if the metal is to reach its full potential as a significant structural material for light weight vehicles. The paper outlines these challenges and describes the current situation with respect to alloys, properties, manufacturing processes and recycling. It is emphasised that concerted R and D is required along the whole value-adding chain, from metal producer to end-user, if magnesium is to achieve its full potential

  1. Smart alloys for a future fusion power plant: First studies under stationary plasma load and in accidental conditions

    Directory of Open Access Journals (Sweden)

    A. Litnovsky

    2017-08-01

    Plasma exposure was followed by the oxidation of alloys at 1000°C accomplishing the first test of these new materials both in a plasma environment and under accidental conditions. Compared to pure tungsten, smart alloys featured the 3-fold suppression of oxidation. Plasma exposure did not affect the oxidation resistance of smart alloys. At the same time, the self-passivation of the protective layer did not occur, calling for further optimization of alloys.

  2. Intermetallic alloys: Deformation, mechanical and fracture behaviour

    International Nuclear Information System (INIS)

    Dogan, B.

    1988-01-01

    The state of the art in intermetallic alloys development with particular emphasis on deformation, mechanical and fracture behaviour is documented. This review paper is prepared to lay the ground stones for a future work on mechanical property characterization and fracture behaviour of intermetallic alloys at GKSS. (orig.)

  3. A Fundamental Approach to Developing Aluminium based Bulk Amorphous Alloys based on Stable Liquid Metal Structures and Electronic Equilibrium - 154041

    Science.gov (United States)

    2017-03-28

    AFRL-AFOSR-JP-TR-2017-0027 A Fundamental Approach to Developing Aluminium -based Bulk Amorphous Alloys based on Stable Liquid-Metal Structures and...to 16 Dec 2016 4.  TITLE AND SUBTITLE A Fundamental Approach to Developing Aluminium -based Bulk Amorphous Alloys based on Stable Liquid-Metal...Air Force Research Laboratory for accurately predicting compositions of new amorphous alloys specifically based on aluminium with properties superior

  4. The development of future thinking: young children's ability to construct event sequences to achieve future goals.

    Science.gov (United States)

    Prabhakar, Janani; Hudson, Judith A

    2014-11-01

    Previous studies suggest that the ability to think about and act on the future emerges between 3 and 5 years of age. However, it is unclear what underlying processes change during the development of early future-oriented behavior. We report three experiments that tested the emergence of future thinking ability through children's ability to explicitly maintain future goals and construct future scenarios. Our main objectives were to examine the effects of goal structure and the effects of working memory demands on children's ability to construct future scenarios and make choices to satisfy future goals. The results indicate that 4-year-olds were able to successfully accomplish two temporally ordered goals even with high working memory demands and a complex goal structure, whereas 3-year-olds were able to accomplish two goals only when the working memory demands were low and the goal structure did not involve additional demands from inferential reasoning and contingencies between the temporally ordered goals. Results are discussed in terms of the development of future thinking in conjunction with working memory, inferential reasoning ability, and goal maintenance abilities. Copyright © 2014. Published by Elsevier Inc.

  5. Texture and microstructure development during hot deformation of ME20 magnesium alloy: Experiments and simulations

    International Nuclear Information System (INIS)

    Li, X.; Al-Samman, T.; Mu, S.; Gottstein, G.

    2011-01-01

    Highlights: → Second phase precipitates in ME20 hindered activation of tensile twinning at 300 deg. C. → New off-basal sheet texture during c-axis compression at low Z conditions. → Ce amplifies the role of pyramidal -slip over prismatic slip at 0.3T m . → Prismatic slip becomes equally important to deformation at 0.6T m . → Accurate texture predictions using a cluster-type Taylor model with grain interaction. - Abstract: The influence of deformation conditions and starting texture on the microstructure and texture evolution during hot deformation of a commercial rare earth (RE)-containing magnesium alloy sheet ME20 was investigated and compared with a conventional Mg sheet alloy AZ31. For all the investigated conditions, the two alloys revealed obvious distinctions in the flow behavior and the development of texture and microstructure, which was primarily attributed to the different chemistry of the two alloys. The presence of precipitates in the fine microstructure of the ME20 sheet considerably increased the recrystallization temperature and suppressed tensile twinning. This gave rise to an uncommon Mg texture development during deformation. Texture simulation using an advanced cluster-type Taylor approach with consideration of grain interaction was employed to correlate the unique texture development in the ME20 alloy with the activation scenarios of different deformation modes.

  6. Design storytelling with future scenario development; envisioning "the museum"

    NARCIS (Netherlands)

    Eggink, Wouter; Albert de la Bruheze, Adri A.

    2015-01-01

    There are different ways to tell stories with design. This paper shows possibilities of telling stories by envisioning the future. Overall, design has the very ability to envision, visualize and express things that do not exist yet. We introduce the Future Scenario Development Design methodology as

  7. Developing DIVE, a design-led futures technique for SMEs

    NARCIS (Netherlands)

    Mejia Sarmiento, J.R.; Pasman, G.J.; Hultink, H.J.; Stappers, P.J.; Vogel, C.; Muratovski, G.

    2017-01-01

    Futures techniques have long been used in large enterprises as designerly means to explore the future and guide innovation. In the automotive industry, for instance, the development of concept cars is a technique which has repeatedly proven its value. However, while big companies have broadly

  8. Development of niobium alloy/stainless steel joint by friction welding, (1)

    International Nuclear Information System (INIS)

    Kikuchi, Taiji; Kawamura, Hiroshi.

    1988-08-01

    The niobium alloy and stainless steel have been jointed by the nicrobrazing method generally. However the strength of the jointed part is weaker than that of the mother material. Therefore we developed the niobium alloy(Nb-1 % Zr)/stainless steel(SUS 304) transition joint by the friction welding method. As the tests for the development. We conducted the mechanical tests (tensile test at room temperature, 300 deg C, 500 deg C and 700 deg C, torsion fatigue test and burst test), metallographical observation and electron prove X-ray microanalysis observation. Those tests proved jointed part by the friction welding had enough properties for general uses. (author)

  9. Development of simultaneous wire feeding mechanism for nano alloy powder synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Chang Kyu [KAERI, Taejon (Korea, Republic of); Kotov, Yury A.; Samatov, Oleg M.; Beketov, Igor V.; Azarkevich, Evgeny I.; Muzarkaev, Aidar M. [Institute of Electrophysics (Russian Federation)

    2002-12-01

    In accordance with the Local Lab project, it was necessary to design a mechanism for simultaneous feed of two wires to the explosion chamber and consider the possibility of developing a model for selection of wire parameters. The goal of the work is to explore the possibility of producing powdered mixtures, alloys and intermetallic compounds by a simultaneous electric explosion of two wires made of different metals. A mechanism providing a synchronous feed of two wires to the explosion chamber and their simultaneous electric explosion extends considerably the capabilities of the electric explosion method in production of nanopowders. In this work, we developed simultaneous wire feeding mechanism for alloy nano powders successfully.

  10. Development of simultaneous wire feeding mechanism for nano alloy powder synthesis

    International Nuclear Information System (INIS)

    Rhee, Chang Kyu; Kotov, Yury A.; Samatov, Oleg M.; Beketov, Igor V.; Azarkevich, Evgeny I.; Muzarkaev, Aidar M.

    2002-12-01

    In accordance with the Local Lab project, it was necessary to design a mechanism for simultaneous feed of two wires to the explosion chamber and consider the possibility of developing a model for selection of wire parameters. The goal of the work is to explore the possibility of producing powdered mixtures, alloys and intermetallic compounds by a simultaneous electric explosion of two wires made of different metals. A mechanism providing a synchronous feed of two wires to the explosion chamber and their simultaneous electric explosion extends considerably the capabilities of the electric explosion method in production of nanopowders. In this work, we developed simultaneous wire feeding mechanism for alloy nano powders successfully

  11. A new hardware and software developed for copper alloy analyser type XRFA-5

    International Nuclear Information System (INIS)

    Lakatos, T.; Kovacs, P.; Szadai, J.; Szekely, G.

    1991-01-01

    In the production of copper alloys a large amount of waste of unknown origin and composition is melted, and rapid analysis of the melt is important. A copper alloy analyzer based on the energy-dispersive x-ray fluorescence was developed in ATOMKI earlier for copper smelting plants in Hungary. The equipment has recently been upgraded by its connection to IBM PC/AT computer. A digital signal processor and analyzer module, a new software tool for the automatic determination of eight elements, and a stand-alone analyzer program DISIP was developed. The upgraded analyzer type XRFA-5.01 is presented briefly. (R.P.) 3 refs

  12. Texture development in Al-Mg alloys during high temperature annealing

    International Nuclear Information System (INIS)

    Saitou, T.; Inagaki, H.

    2001-01-01

    To clarify the effect of Mg content on annealing textures developed in Al-Mg alloys during high temperature annealing, Al-Mg alloys containing up to 9 wt.% Mg in supersaturated solid solution were cold rolled 95% and isothermally annealed at 450 C. Their textures were investigated with the orientation distribution function analysis. It was found that, in the recrystallization textures observed at complete recrystallization, addition of more than 1 wt.% Mg was sufficient to suppress the development of {100} left angle 001 right angle. With increasing Mg content, {100} left angle 001 right angle decreased remarkably, whereas {100} left angle 013 right angle and {103} left angle 321 right angle increased. Thus, {100} left angle 013 right angle and {103} left angle 321 right angle were found to be the main orientations of the recrystallization textures of Al-Mg alloys annealed at high temperatures. {100} left angle 013 right angle developed most remarkably at 4 wt.% Mg, while {103} left angle 321 right angle showed the maximum development at 7 wt.% Mg. During subsequent grain growth at 450 C, remarkable texture changes were observed only in the alloys containing Mg in the range between 2 and 4 wt.%. In these alloys, {100} left angle 013 right angle developed at the expense of {100} left angle 001 right angle at earlier stages of grain growth, whereas {103} left angle 321 right angle increased independently of these two orientations at later stages of grain growth. Reflecting these texture changes, grain growth occurred in these alloys discontinuously. Such a discontinuous grain growth with large texture changes is expected, if strong textures are already present before grain growth, and if recrystallized grains having similar orientations are distributed by forming large clusters before grain growth. (orig.)

  13. Intermetallic alloys - overview on new materials developments for structural applications in West Germany

    International Nuclear Information System (INIS)

    Sauthoff, G.

    1990-01-01

    As a result of recent research on intermetallics for high-temperature applications several alloy systems which are based on intermetallics are regarded as promising for new materials developments, and respective developments have been initiated in West Germany. The present work is aimed a lightweight materials on one hand and at high-temperature high-strength materials on the other hand. The overview surveys the work in West Germany on γ-TiAl, Ti 5 Si 3 -based alloys, Mg 2 Si-Al, NiAl-Cr, Al 3 Nb-NiAl and Laves phase-based alloys, and the mechanical properties - strength, ductility and/or toughness - are described. (orig.) [de

  14. Development of a copper alloy to beryllium HIP bonding technology for the ITER first wall

    International Nuclear Information System (INIS)

    Sherlock, P.; Peacock, A.T.; Mc Callum, A.D.

    2005-01-01

    The primary first wall (PFW) panels of the ITER blanket concept comprise a bi-metallic copper alloy/stainless steel water-cooled heatsink faced with a plasma facing material. Precipitation strengthened CuCrZr is one option for the copper alloy of the heatsink; beryllium, in the form of tiles is an option for the plasma facing material. Over recent years, the technology needed to HIP bond the beryllium tiles to CuCrZr alloy has been developed. This paper describes small samples and larger mock-ups produced during the development of this HIP bonding technology and outlines how structural analyses were used to gain an understanding of the bonding process and refine the design

  15. Applications and development of shape-memory and superelastic alloys in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Takaoka, S.; Horikawa, H. [Furukawa Electric Co., Ltd., Hiratsuka (Japan); Kobayashi, J. [Japan Association of Shape Memory Alloys, Yokohama (Japan); Shimizu, K. [Kanazawa Inst. of Tech., Matsutou (Japan)

    2002-07-01

    The present situation of the applications and development of shape memory and superelastic alloys in Japan will collectively be introduced. Of many shape memory alloys, TiNi alloy systems have mostly been used for the applications from the point of view of fatigue and corrosion characteristics. Shape memory effect has been utilized for mainly thermal actuators with the form of coil springs. The effect associated with the B2 to R-phase transformation and its reversion exhibits recoverable strain of approximately 1%, and after a million thermal cycles the recovery characteristics are not affected. Thus, the effect is widely utilized as sensor flap of the air conditioner, water flow control valve, underfloor vent, automatic oil volume adjusting equipment for Shinkansen and water mixing valve. Another effect associated with the B2 to orthorhombic transformation and its reversion, as in TiNiCu alloys containing Cu more than 8%, can be applied to actuators required for 10,000 to 50,000 times life, and thus it is utilized as rice cooker, coffee maker and anti-scald valve. In Japan, however, the TiNi shape memory alloy systems are mainly used for applications using the superelasticity, like a rubber material. The superelasticity associated with the B2 to monoclinic stress-induced transformation and its reversion upon un-loading has been utilized as brassiere wire, eye glasses flame, antenna core wire for cellular phone and fishing wire, and that associated with the B2 to orthorhombic stress-induced transformation and its reversion upon un-loading has been as orthodontic wire, because the TiNiCu alloy wire exhibits smaller stress hysteresis than that of usual TiNi alloy wire. The TiNi shape memory alloy systems are now developed to make various shapes, such as tapes, foils and tubes, and the alloys with those shapes are examined to apply to medical uses, such as guide wire for catheter and catheter tube itself, and to any other uses. The development in Japan is rapidly

  16. Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation.

    Science.gov (United States)

    Mostaed, E; Sikora-Jasinska, M; Mostaed, A; Loffredo, S; Demir, A G; Previtali, B; Mantovani, D; Beanland, R; Vedani, M

    2016-07-01

    The search for a degradable metal simultaneously showing mechanical properties equal or higher to that of stainless steel and uniform degradation is still an open challenge. Several magnesium-based alloys have been studied, but their degradation rate has proved to be too fast and rarely homogeneous. Fe-based alloys show appropriate mechanical properties but very low degradation rate. In the present work, four novel Zn-Mg and two Zn-Al binary alloys were investigated as potential biodegradable materials for stent applications. The alloys were developed by casting process and homogenized at 350°C for 48h followed by hot extrusion at 250°C. Tube extrusion was performed at 300°C to produce tubes with outer/inner diameter of 4/1.5mm as precursors for biodegradable stents. Corrosion tests were performed using Hanks׳ modified solution. Extruded alloys exhibited slightly superior corrosion resistance and slower degradation rate than those of their cast counterparts, but all had corrosion rates roughly half that of a standard purity Mg control. Hot extrusion of Zn-Mg alloys shifted the corrosion regime from localized pitting to more uniform erosion, mainly due to the refinement of second phase particles. Zn-0.5Mg is the most promising material for stent applications with a good combination of strength, ductility, strain hardening exponent and an appropriate rate of loss of mechanical integrity during degradation. An EBSD analysis in the vicinity of the laser cut Zn-0.5Mg tube found no grain coarsening or texture modification confirming that, after laser cutting, the grain size and texture orientation of the final stent remains unchanged. This work shows the potential for Zn alloys to be considered for stent applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Using the PSCPCSP computer software for optimization of the composition of industrial alloys and development of new high-temperature nickel-base alloys

    Science.gov (United States)

    Rtishchev, V. V.

    1995-11-01

    Using computer programs some foreign firms have developed new deformable and castable high-temperature nickel-base alloys such as IN, Rene, Mar-M, Udimet, TRW, TM, TMS, TUT, with equiaxial, columnar, and single-crystal structures for manufacturing functional and nozzle blades and other parts of the hot duct of transport and stationary gas-turbine installations (GTI). Similar investigations have been carried out in Russia. This paper presents examples of the use of the PSCPCSP computer software for a quantitative analysis of structural und phase characteristics and properties of industrial alloys with change (within the grade range) in the concentrations of the alloying elements for optimizing the composition of the alloys and regimes of their heat treatment.

  18. Development in corrosion resistance by microstructural refinement in Zr-16 SS 304 alloy using suction casting technique

    Energy Technology Data Exchange (ETDEWEB)

    Das, N., E-mail: nirupamd@barc.gov.in; Sengupta, P.; Abraham, G.; Arya, A.; Kain, V.; Dey, G.K.

    2016-08-15

    Highlights: • Grain refinement was made in Zr–16 wt.% SS alloy while prepared by suction casting process. • Distribution of Laves phase, e.g., Zr{sub 2}(Fe, Cr) was raised in suction cast (SC) Zr–16 wt.% SS. • Corrosion resistance was improved in SC alloy compared to that of arc-melt-cast alloy. • Grain refinement in SC alloy assisted for an increase in its corrosion resistance. - Abstract: Zirconium (Zr)-stainless steel (SS) hybrid alloys are being considered as baseline alloys for developing metallic-waste-form (MWF) with the motivation of disposing of Zr and SS base nuclear metallic wastes. Zr–16 wt.% SS, a MWF alloy optimized from previous studies, exhibit significant grain refinement and changes in phase assemblages (soft phase: Zr{sub 2}(Fe, Cr)/α-Zr vs. hard phase: Zr{sub 3}(Fe, Ni)) when prepared by suction casting (SC) technique in comparison to arc-cast-melt (AMC) route. Variation in Cr-distribution among different phases are found to be low in suction cast alloy, which along with grain refinement restricted Cr-depletion at the Zr{sub 2}(Fe, Cr)/Zr interfaces, prone to localized attack. Hence, SC alloy, compared to AMC alloy, showed lower current density, higher potential at the breakdown of passivity and higher corrosion potential during polarization experiments (carried out under possible geological repository environments, viz., pH 8, 5 and 1) indicating its superior corrosion resistance.

  19. Development of aluminide coatings on vanadium-base alloys in liquid lithium

    International Nuclear Information System (INIS)

    Park, J.H.; Dragel, D.

    1993-01-01

    Aluminide coatings were produced on vanadium and vanadium-base alloys by exposure of the materials to liquid lithium that contained 3/5 at.% dissolved aluminum in sealed V and V-20 wt.% Ti capsules at temperatures between 775 and 880 degrees C. After each test, the capsules were opened and the samples were examined by optical microscopy and scanning electron microscopy (SEM), and analyzed by electron-energy-dispersive spectroscopy (EDS) and X-ray diffraction. Hardness of the coating layers and bulk alloys was determined by microidentation techniques. The nature of the coatings, i.e., surface coverage, thickness, and composition, varied with exposure time and temperature, solute concentration in lithium, and alloy composition. Solute elements that yielded adherent coatings on various substrates can provide a means of developing in-situ electrical insulator coatings by reaction of the reactive layers with dissolved nitrogen in liquid lithium

  20. The development of a tensile-shear punch correlation for yield properties of model austenitic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hankin, G.L.; Faulkner, R.G. [Loughborough Univ. (United Kingdom); Hamilton, M.L.; Garner, F.A. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-08-01

    The effective shear yield and maximum strengths of a set of neutron-irradiated, isotopically tailored austentic alloys were evaluated using the shear punch test. The dependence on composition and neutron dose showed the same trends as were observed in the corresponding miniature tensile specimen study conducted earlier. A single tensile-shear punch correlation was developed for the three alloys in which the maximum shear stress or Tresca criterion was successfully applied to predict the slope. The correlation will predict the tensile yield strength of the three different austenitic alloys tested to within {+-}53 MPa. The accuracy of the correlation improves with increasing material strength, to within {+-} MPa for predicting tensile yield strengths in the range of 400-800 MPa.

  1. The development of a tensile-shear punch correlation for yield properties of model austenitic alloys

    International Nuclear Information System (INIS)

    Hankin, G.L.; Faulkner, R.G.; Hamilton, M.L.; Garner, F.A.

    1997-01-01

    The effective shear yield and maximum strengths of a set of neutron-irradiated, isotopically tailored austentic alloys were evaluated using the shear punch test. The dependence on composition and neutron dose showed the same trends as were observed in the corresponding miniature tensile specimen study conducted earlier. A single tensile-shear punch correlation was developed for the three alloys in which the maximum shear stress or Tresca criterion was successfully applied to predict the slope. The correlation will predict the tensile yield strength of the three different austenitic alloys tested to within ±53 MPa. The accuracy of the correlation improves with increasing material strength, to within ± MPa for predicting tensile yield strengths in the range of 400-800 MPa

  2. Development of aluminum (Al5083)-clad ternary Ag-In-Cd alloy for JSNS decoupled moderator

    International Nuclear Information System (INIS)

    Teshigawara, M.; Harada, M.; Saito, S.; Oikawa, K.; Maekawa, F.; Futakawa, M.; Kikuchi, K.; Kato, T.; Ikeda, Y.; Naoe, T.; Koyama, T.; Ooi, T.; Zherebtsov, S.; Kawai, M.; Kurishita, H.; Konashi, K.

    2006-01-01

    To develop Ag (silver)-In (indium)-Cd (cadmium) alloy decoupler, a method is needed to bond the decoupler between Al alloy (Al5083) and the ternary Ag-In-Cd alloy. We found that a better HIP condition was temperature, pressure and holding time at 803 K, 100 MPa and 10 min. for small test pieces (φ22 mm in dia. x 6 mm in height). Hardened layer due to the formation of AlAg 2 was found in the bonding layer, however, the rupture strength of the bonding layer is more than 30 MPa, the calculated design stress. Bonding tests of a large size piece (200 x 200 x 30 mm 3 ), which simulated the real scale, were also performed according to the results of small size tests. The result also gave good bonding and enough required-mechanical-strength

  3. Alloy development for irradiation performance. Semiannual progress report for period ending September 30, 1985

    International Nuclear Information System (INIS)

    1986-02-01

    This report is the twenty-second in a series of Technical Progress Reports on ''Alloy Development for Irradiation Performance'' (ADIP), which is one element of the Fusion Reactor Materials Program, conducted in support of the magnetic Fusion Energy Program of the US Department of energy. This report is organized along topical lines with Chapters 3 through 8 devoted to the various alloy classes that are currently under investigation. Thus the work of a given laboratory may appear at several different places in the report. The materials compatibility and environmental effects work on all alloy classes is collected together in Chapter 9. The Table of Contents is annotated for the convenience of the reader

  4. Development of High-Temperature Ferritic Alloys and Performance Prediction Methods for Advanced Fission Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    G. RObert Odette; Takuya Yamamoto

    2009-08-14

    Reports the results of a comprehensive development and analysis of a database on irradiation hardening and embrittlement of tempered martensitic steels (TMS). Alloy specific quantitative semi-empirical models were derived for the dpa dose, irradiation temperature (ti) and test (Tt) temperature of yield stress hardening (or softening) .

  5. The development and characterization of a novel aluminum-copper-magnesium P/M alloy

    Science.gov (United States)

    Boland, Christopher Daniel

    Powder metallurgy (P/M) is a metal fabrication process that is characterized by high yield and ability to be automated, as well as the resultant part complexity and reproducibility. This press and sinter process is favoured by the automotive industry. Aluminum alloy P/M parts are particularly attractive because they have a high strength to weight ratio and they can be made to have high corrosion and wear resistance. There are few commercial Al P/M alloys currently in use and they occupy a small portion of the market. To expand the use of aluminum in the industry a new alloy was created, modeled after the wrought AC2024 family of alloys. P/M 2324, with a nominal composition of Al-4.4Cu-1.5Mg, was assessed using physical, chemical and mechanical methods to help maximize alloy properties through processing. The objective of this work was to develop a viable industrial alloy. The investigation of 2324 included the evaluation of starting powders, starting composition, processing methods, secondary treatments, and industrial response. All blending and compacting was completed at Dalhousie University, while sintering was undertaken at Dalhousie and GKN Sinter Metals. The green alloy was assessed for best compaction pressure using green density and strength. The sintered alloy was assessed to determine the best press and sinter variables, using dimensional change, sintered density, apparent hardness, tensile properties and microscopy. These same sintered properties were tested to determine if sintering done on a laboratory scale could be replicated industrially. The viability of heat treatment was tested using differential scanning calorimetry, hardness and tensile properties. The alloy was also subject to modifications of Cu and Mg amounts, as well as to the addition of tin to the base composition. It was determined that compaction at 400MPa and sintering at 600°C for 20min produced the best properties for the sintered bodies. The resultant mechanical properties were

  6. Development of casting investment preventing blackening of noble metal alloys part 1. Application of developed investment for Ag-Pd-Cu-Au alloy.

    Science.gov (United States)

    Kakuta, Kiyoshi; Nakai, Akira; Goto, Shin-ichi; Wakamatsu, Yasushi; Yara, Atushi; Miyagawa, Yukio; Ogura, Hideo

    2003-03-01

    The objective of this study is to develop a casting investment that prevents the blackening of the cast surface of noble metal alloys. The experimental investments were prepared using a gypsum-bonded investment in which the metallic powders such as boron (B), silicon (Si), aluminum (Al) and titanium (Ti) were added as oxidizing agents. An Ag-Pd-Cu-Au alloy was cast into the mold made of the prepared investment. The effect of the addition of each metal powder was evaluated from the color difference between the as-cast surface and the polished surface of the cast specimen. The color of the as-cast surface approached that of the polished surface with increasing B and Al content. A lower mean value in the color difference was obtained at 0.25-1.00 mass% B content. B and Al are useful as an additive in a gypsum-bonded investment to prevent the blackening of an Ag-Pd-Cu-Au alloy. The effects of Si and Ti powder addition could not be found.

  7. RADAR 2020. Outline of important future developments for installation businesses

    International Nuclear Information System (INIS)

    Pleijster, F.; Braaksma, R.; Van Hoorik, P.; Pikaart, A.; Zwinkels, A.; Muizer, A.

    2010-11-01

    This RADAR focuses on future trends in the broad field of the installation industry with the aim of developing supporting policy for the installation businesses based on the objectives of UNETO-NVO and OTIB. Trends that can be earmarked as relevant for the installation industry are: Social development, Economic development, Technological development, Organizational development, Economic development, and Political development. In this framework, attention is mainly paid to the developments in the following working areas of the installation industry: Climate Engineering, Electrical Engineering, Sanitary engineering, and ICT. [nl

  8. Development of laser welding techniques for vanadium alloys

    International Nuclear Information System (INIS)

    Strain, R.V.; Leong, K.H.; Smith, D.L.

    1996-01-01

    Laser welding is potentially advantageous because of its flexibility and the reduced amount of material affected by the weld. Bead-on-plate and butt welds were previously performed to depths of about 4 mm with a 6-kW CO 2 laser on V-4%Cr-4%Ti and V-5%Cr-5%Ti alloys. These welds were made at a speed of 0.042 m/s using argon purging at a flow rate of 2.8 m 3 /s. The purge was distributed with a diffuser nozzle aimed just behind the laser beam during the welding operation. The fusion zones of welds made under these conditions consisted of very fine, needle-shaped grains and were also harder than the bulk metal (230-270 dph, compared to ∼180 dph for the bulk metal). A limited number of impact tests showed that the as-welded ductile-brittle transition temperatures (DBTT) was above room temperature, but heat treatment at 1000 degrees C for 1 h in vacuum reduced the DBTT to <-25 degrees C. Activities during this reporting period focused on improvements in the purging system and determination of the effect of welding speed on welds. A 2-kW continuous YAG laser at Lumonics Corp. in Livonia, MI, was used to make 34 test welds for this study

  9. Educational Development and Reformation in Malaysia: Past, Present, and Future.

    Science.gov (United States)

    Ahmad, Rahimah Haji

    1998-01-01

    Discusses educational development in Malaysia, focusing on curriculum changes, issues, and future perspectives. Discusses the development of values education, its importance in the curriculum, and the government's efforts to mold a united nation with Malaysian values. Current reforms target tertiary education. The school curriculum has not been…

  10. Developing Future Leaders: The Role of Reflection in the Classroom

    Science.gov (United States)

    Roberts, Cynthia

    2008-01-01

    Leadership development continues to be a topic of conversation, education, and research. Reflection has been named as one of the key competencies needed for effective leaders particularly as the workplace grows more complex and multicultural. But how does one develop reflective skill in college students, the leaders of the future? This paper…

  11. Fabrication technological development of the oxide dispersion strengthened alloy MA957 for fast reactor applications

    International Nuclear Information System (INIS)

    ML Hamilton; DS Gelles; RJ Lobsinger; GD Johnson; WF Brown; MM Paxton; RJ Puigh; CR Eiholzer; C Martinez; MA Blotter

    2000-01-01

    A significant amount of effort has been devoted to determining the properties and understanding the behavior of the alloy MA957 to define its potential usefulness as a cladding material, in the fast breeder reactor program. The numerous characterization and fabrication studies that were conducted are documented in this report. The alloy is a ferritic stainless steel developed by International Nickel Company specifically for structural reactor applications. It is strengthened by a very fine, uniformly distributed yttria dispersoid. Its fabrication involves a mechanical alloying process and subsequent extrusion, which ultimately results in a highly elongated grain structure. While the presence of the dispersoid produces a material with excellent strength, the body centered cubic structure inherent to the material coupled with the high aspect ratio that results from processing operations produces some difficulties with ductility. The alloy is very sensitive to variations in a number of processing parameters, and if the high strength is once lost during fabrication, it cannot be recovered. The microstructural evolution of the alloy under irradiation falls into two regimes. Below about 550 C, dislocation development, αprime precipitation and void evolution in the matrix are observed, while above about 550 C damage appears to be restricted to cavity formation within oxide particles. The thermal expansion of the alloy is very similar to that of HT9 up to the temperature where HT9 undergoes a phase transition to austenitic. Pulse magnetic welding of end caps onto MA957 tubing can be accomplished in a manner similar to that in which it is performed on HT9, although the welding parameters appear to be very sensitive to variations in the tubing that result from small changes in fabrication conditions. The tensile and stress rupture behavior of the alloy are acceptable in the unirradiated condition, being comparable to HT9 below about 700 C and exceeding those of HT9 at

  12. Fabrication technological development of the oxide dispersion strengthened alloy MA957 for fast reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    ML Hamilton; DS Gelles; RJ Lobsinger; GD Johnson; WF Brown; MM Paxton; RJ Puigh; CR Eiholzer; C Martinez; MA Blotter

    2000-03-27

    A significant amount of effort has been devoted to determining the properties and understanding the behavior of the alloy MA957 to define its potential usefulness as a cladding material, in the fast breeder reactor program. The numerous characterization and fabrication studies that were conducted are documented in this report. The alloy is a ferritic stainless steel developed by International Nickel Company specifically for structural reactor applications. It is strengthened by a very fine, uniformly distributed yttria dispersoid. Its fabrication involves a mechanical alloying process and subsequent extrusion, which ultimately results in a highly elongated grain structure. While the presence of the dispersoid produces a material with excellent strength, the body centered cubic structure inherent to the material coupled with the high aspect ratio that results from processing operations produces some difficulties with ductility. The alloy is very sensitive to variations in a number of processing parameters, and if the high strength is once lost during fabrication, it cannot be recovered. The microstructural evolution of the alloy under irradiation falls into two regimes. Below about 550 C, dislocation development, {alpha}{prime} precipitation and void evolution in the matrix are observed, while above about 550 C damage appears to be restricted to cavity formation within oxide particles. The thermal expansion of the alloy is very similar to that of HT9 up to the temperature where HT9 undergoes a phase transition to austenitic. Pulse magnetic welding of end caps onto MA957 tubing can be accomplished in a manner similar to that in which it is performed on HT9, although the welding parameters appear to be very sensitive to variations in the tubing that result from small changes in fabrication conditions. The tensile and stress rupture behavior of the alloy are acceptable in the unirradiated condition, being comparable to HT9 below about 700 C and exceeding those of HT9

  13. Future Developments for Science Parks: Attracting and Developing Talent

    Science.gov (United States)

    Cadorin, Eduardo; Johansson, Sten G.; Klofsten, Magnus

    2017-01-01

    Over the years, science parks have developed and improved their processes to offer better support to their tenants and promote the growth of the region in which they are located. Since regional growth is closely associated with groups of talented people, science parks carry out various activities at the company or individual level to attract and…

  14. Development of Sulfur and Carbon Tolerant Reforming Alloy Catalysts Aided Fundamental Atomistic Insights

    Energy Technology Data Exchange (ETDEWEB)

    Suljo Linic

    2008-12-31

    Current hydrocarbon reforming catalysts suffer from rapid carbon and sulfur poisoning. Even though there is a tremendous incentive to develop more efficient catalysts, these materials are currently formulated using inefficient trial and error experimental approaches. We have utilized a hybrid experimental/theoretical approach, combining quantum Density Functional Theory (DFT) calculations and various state-of-the-art experimental tools, to formulate carbon tolerant reforming catalysts. We have employed DFT calculations to develop molecular insights into the elementary chemical transformations that lead to carbon poisoning of Ni catalysts. Based on the obtained molecular insights, we have identified, using DFT quantum calculation, various Ni alloy catalysts as potential carbon tolerant reforming catalysts. The alloy catalysts were synthesized and tested in steam reforming and partial oxidation of methane, propane, and isooctane. We demonstrated that the alloy catalysts are much more carbon-tolerant than monometallic Ni catalysts under nearly stoichiometric steam-to-carbon ratios. Under these conditions, monometallic Ni is rapidly poisoned by sp2 carbon deposits. The research approach is distinguished by two characteristics: (a) knowledge-based, bottomup approach, compared to the traditional trial and error approach, allows for a more efficient and systematic discovery of improved catalysts. (b) the focus is on exploring alloy materials which have been largely unexplored as potential reforming catalysts.

  15. Development of Sulfur and Carbon Tolerant Reforming Alloy Catalysts Aided by Fundamental Atomistics Insights

    Energy Technology Data Exchange (ETDEWEB)

    Suljo Linic

    2006-08-31

    Current hydrocarbon reforming catalysts suffer from rapid carbon and sulfur poisoning. Even though there is a tremendous incentive to develop more efficient catalysts, these materials are currently formulated using inefficient trial and error experimental approaches. We have utilized a novel hybrid experimental/theoretical approach, combining quantum Density Functional Theory (DFT) calculations and various state-of-the-art experimental tools, to formulate carbon tolerant reforming catalysts. We have employed DFT calculations to develop molecular insights into the elementary chemical transformations that lead to carbon poisoning of Ni catalysts. Based on the obtained molecular insights, we have identified, using DFT quantum calculation, Sn/Ni alloy as a potential carbon tolerant reforming catalyst. Sn/Ni alloy was synthesized and tested in steam reforming of methane, propane, and isooctane. We demonstrated that the alloy catalyst is carbon-tolerant under nearly stoichiometric steam-to-carbon ratios. Under these conditions, monometallic Ni is rapidly poisoned by sp2 carbon deposits. The research approach is distinguished by a few characteristics: (a) Knowledge-based, bottom-up approach, compared to the traditional trial and error approach, allows for a more efficient and systematic discovery of improved catalysts. (b) The focus is on exploring alloy materials which have been largely unexplored as potential reforming catalysts.

  16. The status of uranium-silicon alloy fuel development for the RERTR program

    International Nuclear Information System (INIS)

    Domagala, R.F.; Wiencek, T.C.; Thresh, H.R.; Stahl, D.

    1983-01-01

    As part of the national Reduced Enrichment Research and Test Reactor (RERTR) Program, Argonne National Laboratory (ANL) is engaged in a fuel-alloy development project. The fuel alloys are dispersed in an aluminum matrix and metallurgically roll-bonded within 6061 Al alloy. To date, 'miniplates' with up to 40 vol. fuel alloy have been successfully fabricated. Thirty-one of these plates have been or are being irradiated in the Oak Ridge Reactor (ORR). Three different fuels have been used in the ANL miniplates: U 3 Si (U + 4 wt.% Si), U 3 Si 2 (U + 7.4 wt.% Si), or ''U 3 SiAl'' (U + 3.5 wt.% Si + 1.5 wt.% Al). All three are candidates for permitting higher fuel loadings and thus lower enrichments of 235 U than would be possible with either UAl x or U 3 O 8 , the current fuels for plate-type elements. The enrichment level employed at ANL is ∼19.8%. Continuing effort involves the production of miniplates with up to ∼60 vol. % fuel, the development of a technology for full-size plate fabrication, and post-irradiation examination of miniplates already removed from the ORR. (author)

  17. The consequences of helium production on microstructural development in isotopically tailored ferritic alloys

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1996-01-01

    A series of alloys have been made adding various isotopes of nickel in order to vary the production of helium during irradiation by a two step nuclear reaction in a mixed spectrum reactor. The alloys use a base composition of Fe-12Cr with an addition of 1.5% nickel, either in the form of 60 Ni which produces no helium, 59 Ni which produces helium at a rate of about 10 appm He/dpa, or natural nickel ( Nat Ni) which provides an intermediate level of helium due to delayed development of 59 Ni. Specimens were irradiated in the HFIR at Oak Ridge, TN to ∼7 dpa at 300 and 400 degrees C. Microstructural examinations indicated that nickel additions promote precipitation in all alloys, but the effect appears to be much stronger at 400 degrees C than at 300 degrees C. There is sufficient dose by 7 dpa (and with 2 appm He) to initiate void swelling in ferritic/martensitic alloys. Little difference was found between response from 59 Ni and Nat Ni. Also, helium bubble development for high helium generation conditions appeared to be very different at 300 and 400 degrees C. At 300 degrees C, it appeared that high densities of bubbles formed whereas at 400 degrees C, bubbles could not be identified, possibly because of the complexity of the microstructure, but more likely because helium accumulated at precipitate interfaces

  18. Development of Alloy 718 tubular product for nuclear-reactor internals

    International Nuclear Information System (INIS)

    1981-01-01

    The Upper Internals Structure (UIS) of the Clinch River Breeder Reactor Plant (CRBRP) provides mixing and flow direction of the core outlet flow. Alloy 718 tubes are the major components used in the UIS to provide this flow direction. The UIS is located directly above the reactor core and is exposed to a severe environment. This environment consists of high temperature sodium, alternating temperatures induced by mixing high temperature core assembly outlet flow with cooler core assembly outlet flow and rapid changes in temperature of the core outlet flow. The paper presents the UIS configuration, functions and environmental conditions that led to the selection of Alloy 718 as the material used to protect the basic UIS structure and to provide flow direction. The use of Alloy 718 is derived from the technology produced from the Department of Energy sponsored development programs. Alloy 718 tubes are made by a roll-extrusion process. The paper describes the tube fabrication process, the development of a finish sanding procedure and the results of high temperature thermal cycle testing. The high temperature thermal cycle testing generates peak strains on the metal surfaces, where the surface effects have a maximum influence on the fatigue strength. 9 figs., 2 tabs

  19. Conventional and improved cytotoxicity test methods of newly developed biodegradable magnesium alloys

    Science.gov (United States)

    Han, Hyung-Seop; Kim, Hee-Kyoung; Kim, Yu-Chan; Seok, Hyun-Kwang; Kim, Young-Yul

    2015-11-01

    Unique biodegradable property of magnesium has spawned countless studies to develop ideal biodegradable orthopedic implant materials in the last decade. However, due to the rapid pH change and extensive amount of hydrogen gas generated during biocorrosion, it is extremely difficult to determine the accurate cytotoxicity of newly developed magnesium alloys using the existing methods. Herein, we report a new method to accurately determine the cytotoxicity of magnesium alloys with varying corrosion rate while taking in-vivo condition into the consideration. For conventional method, extract quantities of each metal ion were determined using ICP-MS and the result showed that the cytotoxicity due to pH change caused by corrosion affected the cell viability rather than the intrinsic cytotoxicity of magnesium alloy. In physiological environment, pH is regulated and adjusted within normal pH (˜7.4) range by homeostasis. Two new methods using pH buffered extracts were proposed and performed to show that environmental buffering effect of pH, dilution of the extract, and the regulation of eluate surface area must be taken into consideration for accurate cytotoxicity measurement of biodegradable magnesium alloys.

  20. The consequences of helium production on microstructural development in isotopically tailored ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D.S. [Pacific Northwest Lab., Richland, WA (United States)

    1996-10-01

    A series of alloys have been made adding various isotopes of nickel in order to vary the production of helium during irradiation by a two step nuclear reaction in a mixed spectrum reactor. The alloys use a base composition of Fe-12Cr with an addition of 1.5% nickel, either in the form of {sup 60}Ni which produces no helium, {sup 59}Ni which produces helium at a rate of about 10 appm He/dpa, or natural nickel ({sup Nat}Ni) which provides an intermediate level of helium due to delayed development of {sup 59}Ni. Specimens were irradiated in the HFIR at Oak Ridge, TN to {approx}7 dpa at 300 and 400{degrees}C. Microstructural examinations indicated that nickel additions promote precipitation in all alloys, but the effect appears to be much stronger at 400{degrees}C than at 300{degrees}C. There is sufficient dose by 7 dpa (and with 2 appm He) to initiate void swelling in ferritic/martensitic alloys. Little difference was found between response from {sup 59}Ni and {sup Nat}Ni. Also, helium bubble development for high helium generation conditions appeared to be very different at 300 and 400{degrees}C. At 300{degrees}C, it appeared that high densities of bubbles formed whereas at 400{degrees}C, bubbles could not be identified, possibly because of the complexity of the microstructure, but more likely because helium accumulated at precipitate interfaces.

  1. Supplier Development Literature Review and Key Future Research Areas

    Directory of Open Access Journals (Sweden)

    Muddassir Ahmed

    2012-10-01

    Full Text Available The purpose of this paper is to develop a Supplier Development (SD literature framework and identify the main focus areas in SD research. To this end, a comprehensive review of the existing SD academic literature has been undertaken, which includes 62 research papers. These papers are classified according to their research content and the research methodology employed. A comprehensive list of future research areas is also presented. Thus, this paper will also briefly explore proposed future research. The review of the SD literature presented here identifies the following main areas of focus: Supplier Development Activities, Practices and Success Factors; Direct or Indirect Supplier Development; Supplier Development as a Reactive or Strategic Process; Supplier Development in a Lean Six Sigma & SME context.

  2. Back to the Future: Personality and Assessment and Personality Development

    OpenAIRE

    Roberts, Brent W.

    2009-01-01

    In this essay I consider the future of personality development in light of the past effects of Personality and Assessment on the field of personality in general and personality development in particular. The essay is organized around 1) the effect of Mischel's book on the foundational theories informing personality development; 2) definitions of personality traits; 3) an alternative model of personality traits, described as the sociogenomic model of personality traits, that can bridge the div...

  3. Residual stress development and relief in high strength aluminium alloys using standard and retrogression thermal treatments

    OpenAIRE

    Robinson, J.S; Tanner, D.A

    2003-01-01

    peer-reviewed Residual stresses develop in the aluminium alloy 7010 when the material is quenched from the solution heat treatment temperature. Residual stress measurements have been made using the X-ray diffraction technique and a longitudinal split sawcut method to determine the magnitude of residual stress that develops in specimens sectioned from large open die forgings as a result of (a) quenching these specimens into water at different temperatures, and (b) cold water quenching from ...

  4. High temperature testing - a contribution to alloy development, alloy qualification and simulation of component Loading

    International Nuclear Information System (INIS)

    Scholz, A.; Schwienheer, M.; Mueller, F.; Linn, S.; Schein, M.; Walther, C.; Berger, C.

    2007-01-01

    In parallel to continued developments of steam and gas turbines as well as traffic engineering machines on the one hand, and marginal conditions like low specific fuel consumption and sufficient environment-friendliness on the other hand, the aim of improving the degree of efficiency by augmenting process parameters such as temperature and pressure is being followed. These efforts impact especially components of thermic machines and facilities subject to high thermal and mechanic exposure. Still largely unexplored is the interaction between microstructure characteristics determined through chemical composition, production processes and heat treatment, changes in the microstructure due to multiaxial load and the time-dependent deformation and stability resulting hereof. With regard to this background, improved methods of material properties determination, their modelling and transfer on the component enable to optimize wall thicknesses and degrees of efficiency. In the course of evaluation of static and cyclic material properties carried out also on faulty specimens, uncertainties occur which can originate from the testing process and analysis, as well as being influenced by the material itself and its process of production. Altogether, the demand for reliable determination of material properties and methods of scatterband treatment and their mathematical-statistical evaluation is in business. For simulation, consistent material datasets that describe the complex interaction between temperature, period of exposure and type of exposure are needed. Summarizing, the tasks dealt with qualify the entire process from production to the operational behaviour of components. (Abstract Copyright [2007], Wiley Periodicals, Inc.) [de

  5. Development of silicide coating over molybdenum based refractory alloy and its characterization

    International Nuclear Information System (INIS)

    Chakraborty, S.P.; Banerjee, S.; Sharma, I.G.; Suri, A.K.

    2010-01-01

    Molybdenum based refractory alloys are potential candidate materials for structural applications in high temperature compact nuclear reactors and fusion reactors. However, these alloys being highly susceptible to oxidation in air or oxygen at elevated temperature, undergoes severe losses from highly volatile molybdenum trioxide species. Present investigation, therefore, examines the feasibility of development of silicide type of coating over molybdenum base TZM alloy shape (Mo > 99 wt.%) using pack cementation coating technique. TZM alloy was synthesized in this laboratory from oxide intermediates of MoO 2 , TiO 2 and ZrO 2 in presence of requisite amount of carbon, by alumino-thermic reduction smelting technique. The arc melted and homogenized samples of TZM alloy substrate was then embedded in the chosen and intimately mixed pack composition consisting of inert matrix (Al 2 O 3 ), coating powder (Si) and activator (NH 4 Cl) taken in the judicious proportion. The sealed charge packs contained in an alumina crucible were heated at temperatures of 1000 o C for 8-16 h heating cycle to develop the coating. The coating phase was confirmed to be of made of MoSi 2 by XRD analysis. The morphology of the coating was studied by SEM characterization. It had revealed that the coating was diffusion bonded where Si from coating diffused inward and Mo from TZM substrate diffused outward to form the coating. The coating was found to be resistant to oxidation when tested in air up to 1200 o C. A maximum 100 μm of coating thickness was achieved on each side of the substrate.

  6. Development of boronated aluminum alloy for basket of cask for nuclear spent fuel

    International Nuclear Information System (INIS)

    Sakaguchi, Y.; Saida, T.; Matsuoka, T.; Kuri, S.; Ohsono, K.; Hode, S.

    2001-01-01

    Since 1980's Mitsubishi Heavy Industries, Ltd. (MHI) has been contributing to develop metal cask technologies for utilities and competent authorities in Japan, and have established transport and storage cask design ''MSF series'' which realizes higher payload and reliability for long term storage. MSF series transport and storage cask uses new-developed boronated aluminum as basket material. This boronated aluminum has been developed to improve characteristics of material. To achieve this object, powder metallurgy method has been adopted for manufacturing boronated material. It is well known that this method provides excellent characteristics for the material and this boronated aluminum alloy has obtained excellent both mechanical and neutron absorbing characteristics. In addition, in order to maintain material properties for long-term use this boronated material is not strengthened by aging treatment. This paper summarizes an outline of the boronated aluminum alloy for basket assemblies by powder metallurgy. (author)

  7. Laser-induced microstructural development and phase evolution in magnesium alloy

    International Nuclear Information System (INIS)

    Guan, Y.C.; Zhou, W.; Li, Z.L.; Zheng, H.Y.

    2014-01-01

    Highlights: • Secondary phase evolution caused by laser processing was firstly reported. • Microstructure development was controlled by heat flow thermodynamics and kinetics. • Solid-state transformation resulted in submicron and nano-scale precipitates. • Cluster-shaped particles in overlapped region were due to precipitation coarsening. • Properties of materials can be tailored selectively by laser processing. -- Abstract: Secondary phase plays an important role in determining microstructures and properties of magnesium alloys. This paper focuses on laser-induced microstructure development and secondary phase evolution in AZ91D Mg alloy studied by SEM, TEM and EDS analyses. Compared to bulk shape and lamellar structure of the secondary phase in as-received cast material, rapid-solidified microstructures with various morphologies including nano-precipitates were observed in laser melt zone. Formation mechanisms of microstructural evolution and effect of phase development on surface properties were further discussed

  8. Metallurgical Bonding Development of V-4Cr-4Ti Alloy for the DIII-D Radiative Divertor Program

    International Nuclear Information System (INIS)

    Smith, J.P.; Johnson, W.R.; Trester, P.W.

    1998-01-01

    General Atomics (GA), in conjunction with the Department of Energy's (DOE) DIII-D Program, is carrying out a plan to utilize a vanadium alloy in the DIII-D tokamak as part of the DIII-D Radiative Divertor (RD) upgrade. The V-4Cr-4Ti alloy has been selected in the U.S. as the leading candidate vanadium alloy for fusion applications. This alloy will be used for the divertor fabrication. Manufacturing development with the V-4Cr-4Ti alloy is a focus of the DIII-D RD Program. The RD structure, part of which will be fabricated from V-4Cr-4Ti alloy, will require many product forms and types of metal/metal bonded joints. Metallurgical bonding methods development on this vanadium alloy is therefore a key area of study by GA. Several solid state (non-fusion weld) and fusion weld joining methods are being investigated. To date, GA has been successful in producing ductile, high strength, vacuum leak tight joints by all of the methods under investigation. The solid state joining was accomplished in air, i.e., without the need for a vacuum or inert gas environment to prevent interstitial impurity contamination of the V-4Cr-4Ti alloy

  9. Problems associated with modelling future biomass use in developing countries

    International Nuclear Information System (INIS)

    Turkson, J.; Fenhann, J.

    1997-01-01

    One of the main objectives of modelling biomass consumption is to obtain accurate assessment of current and future biomass supply and demand patterns. Some problems associated with biomass modelling in the developing countries are discussed, the focus is put on Africa. The wood fuel and charcoal consumption in households are investigated. Differences between rural and urban areas are pointed out. (K.A.)

  10. Regulation of water resources for sustaining global future socioeconomic development

    Science.gov (United States)

    Chen, J.; SHI, H.; Sivakumar, B.

    2016-12-01

    With population projections indicating continued growth during this century, socio-economic problems (e.g., water, food, and energy shortages) will be most likely to occur, especially if proper planning, development, and management strategies are not adopted. In the present study, firstly, we explore the vital role of dams in promoting economic growth through analyzing the relationship between dams and Gross Domestic Product (GDP) at both global and national scales. Secondly, we analyze the current situation of global water scarcity based on the data representing water resources availability, dam development, and the level of economic development. Third, with comprehensive consideration of population growth as the major driving force, water resources availability as the basic supporting factor, and topography as the important constraint, this study addresses the question of dam development in the future and predicts the locations of future dams around the world.

  11. The Philippine historical earthquakecatalog: its development, current stateand future directions

    OpenAIRE

    Bautista, M. L. P.; Bautista, B. C.

    2004-01-01

    This report will trace the development of the historical earthquake catalog of the Philippines, assess its present state and recommend future research directions. The current Philippine historical earthquake catalog is culled from various catalogs, both global and local, that were developed since the first Philippine catalog by Perrey was published in 1860. While early global catalogs gave simple mention of earthquakes in the Philippines, more focused earthquake catalogs about the Philippines...

  12. Nuclear fuel cycle and sustainable development: strategies for the future

    International Nuclear Information System (INIS)

    Bouchard, J.

    2004-01-01

    In this presentation, the author aims to define the major role of the nuclear energy in the future, according a sustainable development scenario. The today aging park and the new Generation IV technologies are presented. The transition scenario from Pu mono-recycling in PWRs to actinide global recycling in fast neutron Gen IV systems is also developed. Closed cycles and fast reactors appear as the appropriate answer to sustainable objectives in a vision of a large expansion. (A.L.B.)

  13. Present state and future of new energy technology development

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, N

    1976-08-01

    The Sunshine Project was begun in 1973 by the Japanese Ministry of Industry to investigate all alternative energy sources other than nuclear. The project is subdivided into four separate areas, those being solar energy, geothermal energy, liquefaction and gasification of coal, and hydrogen fuel. This article describes the present state of these technologies and their probable future development. Although hydrogen fuel and coal liquefaction/gasification are still in the basic research stage solar and geothermal technologies are already well developed.

  14. Electrically Driven Thermal Management: Flight Validation, Experiment Development, Future Technologies

    Science.gov (United States)

    Didion, Jeffrey R.

    2018-01-01

    Electrically Driven Thermal Management is an active research and technology development initiative incorporating ISS technology flight demonstrations (STP-H5), development of Microgravity Science Glovebox (MSG) flight experiment, and laboratory-based investigations of electrically based thermal management techniques. The program targets integrated thermal management for future generations of RF electronics and power electronic devices. This presentation reviews four program elements: i.) results from the Electrohydrodynamic (EHD) Long Term Flight Demonstration launched in February 2017 ii.) development of the Electrically Driven Liquid Film Boiling Experiment iii.) two University based research efforts iv.) development of Oscillating Heat Pipe evaluation at Goddard Space Flight Center.

  15. Development of advanced nuclear materials - Fabrication of Zr-Nb alloy used in PHWRs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang In; Kim, Won Baek; Lee, Chul Kyung; Choi, Kuk Sun; Kang, Dae Kyu; Seo, Chang Ryul [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    The following conclusions can be made from the second year research: 1. Easy control for alloying elements can be made for the following adding metals like Nb, V, Sn, Mo, Fe due to low vapor pressure. In case of Cr and Te= known to have high vapor pressure, they are controlled by adding master alloy(Zr-Cr) or quite excess of aimed composition. However, Bi was found to be very difficult to charging the certain amount into the melt. 2. Oxygen content can be adjusted by adding the Zr-10%O master alloy considering the inherent amount of oxygen in sponge zirconium. 3. The charging rod of 38 mm in diameter, 96 mm in length was made by a series of button melting, casting and vacuum welding, from this, Zr-2.5Nb ingot of 50 mm in diameter and 550 mm in length was fabricated by EB drip melting process. 4. The amount of Nb can be successfully adjusted at 2.8% with charging 15% excess. Nb as adding element is easily controlled due to high-melting -point metal and its low vapor pressure. 5. Oxygen content is not varied during remelting, casting, and drip melting, only slight change was observed in button melting stage due to uptake the desorbed gases during the melting operation. Nuclear materials in domestic nuclear power plants depend on import and this amount reaches 100 million dollars per year. The increase in demand for the development of new zirconium based alloys are expecting. All the results involving this research can be applied for the melting of reactive metals, vacuum refining and alloy design. 13 refs., 6 tabs., 10 figs., 10 ills. (author)

  16. Surface development of a brazing alloy during heat treatment-a comparison between UHV and APXPS

    Science.gov (United States)

    Rullik, L.; Johansson, N.; Bertram, F.; Evertsson, J.; Stenqvist, T.; Lundgren, E.

    2018-01-01

    In an attempt to bridge the pressure gap, APXPS was used to follow the surface development of an aluminum brazing sheet during heating in an ambient oxygen-pressure mimicking the environment of an industrial brazing furnace. The studied aluminum alloy brazing sheet is a composite material consisting of two aluminum alloy standards whose surface is covered with a native aluminum oxide film. To emphasize the necessity of studies of this system in ambient sample environments it is compared to measurements in UHV. Changes in thickness and composition of the surface oxide were followed after heating to 300 °C, 400 °C, and 500 °C. The two sets presented in this paper show that the surface development strongly depends on the environment the sample is heated in.

  17. New and future developments in catalysis catalysis by nanoparticles

    CERN Document Server

    Suib, Steven L

    2013-01-01

    New and Future Developments in Catalysis is a package of seven books that compile the latest ideas concerning alternate and renewable energy sources and the role that catalysis plays in converting new renewable feedstock into biofuels and biochemicals. Both homogeneous and heterogeneous catalysts and catalytic processes will be discussed in a unified and comprehensive approach. There will be extensive cross-referencing within all volumes. The use of catalysts in the nanoscale offers various advantages (increased efficiency and less byproducts), and these are discussed in this volume along with the various catalytic processes using nanoparticles. However, this is not without any risks and the safety aspects and effects on humans and the environment are still unknown. The present data as well as future needs are all part of this volume along with the economics involved. Offers in-depth coverage of all catalytic topics of current interest and outlines future challenges and research areas A clear and visual descr...

  18. RODOS 4.0 and the future development of RODOS

    International Nuclear Information System (INIS)

    Qu Jingyuan; Cao Jianzhu

    2002-01-01

    RODOS 4.0 was completed in 2000. This is an important milestone of the R and D of the European decision support system for nuclear emergencies started in 1989. It indicates that the RODOS system has reached to a mature status for operational use in nuclear emergency management. The author describes the major modules integrated in RODOS 4.0, including RODOS PV4.0 and RODOS PRTY 4.0. The current status of the installation of RODOS in some countries is also briefly presented. Finally, the perspectives on the future development of the RODOS system are introduced. The RODOS system has been chosen as the platform of the China national decision support system for nuclear emergency management, which is now under development. Therefore, it is obvious that understanding the major features of RODOS 4.0 and the perspectives on the RODOS system is of significant importance to the development of the Chinese system in the future

  19. [Use of powder metallurgy for development of implants of Co-Cr-Mo alloy powder].

    Science.gov (United States)

    Dabrowski, J R

    2001-04-01

    This paper discusses the application of powder metallurgy for the development of porous implantation materials. Powders obtained from Co-Cr-Mo alloy with different carbon content by water spraying and grinding, have been investigated. Cold pressing and rotary re-pressing methods were used for compressing the powder. It was found that the sintered materials obtained from water spraying have the most advantageous properties.

  20. Survey research report by the hydrogen occluding alloy utilization development committee; Suiso kyuzo gokin riyo kaihatsu iinkai chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-03-01

    This report summarizes the FY 1984 survey research results, issued by the hydrogen occluding alloy utilization development committee. The basic property subcommittee is responsible for collecting published data related to the basic properties of metal halides as much as possible, and pigeonholing them to have the data which can contribute to development of the new alloys for basic researches and engineering applications of hydrogen occluding alloys. The subcommittee members have collected these data. The common theme subcommittee has planned to collect the P-C-T diagrams of the hydrogen occluding alloys and new alloys as much as possible, for the designs, development, production and system designs of the hydrogen occluding alloys. The P-C-T diagrams have been collected for a total of 340 types of alloys, which fall into the broad categories of Mg-based, TiFe-based, TiMn-based, other Ti-based, rare-earth-based, Zr-based, Ca-based and others. The analytical methods have been also investigated while collecting P-C-T diagrams. (NEDO)

  1. Development and selection of a matrix alloy for 85Kr encapsulation

    International Nuclear Information System (INIS)

    Knoll, R.W.; McClanahan, E.D.; Tingey, G.L.; McDonald, E.L.

    1986-07-01

    Pacific Northwest Laboratory has developed and demonstrated a pilot-scale process for stable, long-term storage of radioactive 85 Kr gas from spent nuclear fuel. The process entraps the Kr into a solid metal matrix that can be safely stored at ambient pressure. For this matrix numerous alloys were first screened; those that best satisfied the selection criteria were Cu-Y, Ni-Y, and Ni-La. Of these, Cu-Y alloys containing approximately 20 at.% Y were recommended for use in the pilot-scale system. Reasons for this decision, based on the development work described in Section 5, are summarized here. Thick Cu-Y-Kr deposits (greater than or equal to1 mm) exhibit much better thermal and mechanical stability than do those of Ni-La-Kr and are at least as stable as Ni-Y-Kr deposits. Cu-Y-Kr coatings are very compatible with the sputtering process. They adhere well to the substrate, do not spall significantly during deposition, and can be deposited at higher rates than the Ni-base alloys. This faster deposition helps compensate, in terms of process efficiency, for the lower Kr capacity of Cu-Y-Kr alloys. Another advantage of Cu-Y over Ni-base alloys is the higher vapor pressure of Cu compared to Ni. This reduces the unwanted buildup of Cu on the hot anode surface, whereas deposition of Ni is a problem with Ni-Y, for example. Cu-Y-Kr deposits containing 17 to 20 at. % Y and 6 to 8 at. % Kr compared favorably to Ni 80 La 10 Kr 10 in terms of long-term Kr retention characteristics. The measurements of Cu-Y-Kr by differential scanning calorimetry also indicated stable retention of Kr because rapid release did not occur below approx.650 0 C. Finally, Cu-Y alloys are satisfactory in terms of materials costs and producibility of the sputtering target. 13 refs., 9 figs., 4 tabs

  2. High-Throughput Combinatorial Development of High-Entropy Alloys For Light-Weight Structural Applications

    Energy Technology Data Exchange (ETDEWEB)

    Van Duren, Jeroen K [Intermolecular, Inc., San Jose, CA (United States); Koch, Carl [North Carolina State Univ., Raleigh, NC (United States); Luo, Alan [The Ohio State Univ., Columbus, OH (United States); Sample, Vivek [Arconic, Pittsburgh, PA (United States); Sachdev, Anil [General Motors, Detroit, MI (United States)

    2017-12-29

    The primary limitation of today’s lightweight structural alloys is that specific yield strengths (SYS) higher than 200MPa x cc/g (typical value for titanium alloys) are extremely difficult to achieve. This holds true especially at a cost lower than 5dollars/kg (typical value for magnesium alloys). Recently, high-entropy alloys (HEA) have shown promising SYS, yet the large composition space of HEA makes screening compositions complex and time-consuming. Over the course of this 2-year project we started from 150 billion compositions and reduced the number of potential low-density (<5g/cc), low-cost (<5dollars/kg) high-entropy alloy (LDHEA) candidates that are single-phase, disordered, solid-solution (SPSS) to a few thousand compositions. This was accomplished by means of machine learning to guide design for SPSS LDHEA based on a combination of recursive partitioning, an extensive, experimental HEA database compiled from 24 literature sources, and 91 calculated parameters serving as phenomenological selection rules. Machine learning shows an accuracy of 82% in identifying which compositions of a separate, smaller, experimental HEA database are SPSS HEA. Calculation of Phase Diagrams (CALPHAD) shows an accuracy of 71-77% for the alloys supported by the CALPHAD database, where 30% of the compiled HEA database is not supported by CALPHAD. In addition to machine learning, and CALPHAD, a third tool was developed to aid design of SPSS LDHEA. Phase diagrams were calculated by constructing the Gibbs-free energy convex hull based on easily accessible enthalpy and entropy terms. Surprisingly, accuracy was 78%. Pursuing these LDHEA candidates by high-throughput experimental methods resulted in SPSS LDHEA composed of transition metals (e.g. Cr, Mn, Fe, Ni, Cu) alloyed with Al, yet the high concentration of Al, necessary to bring the mass density below 5.0g/cc, makes these materials hard and brittle, body-centered-cubic (BCC) alloys. A related, yet multi-phase BCC alloy, based

  3. Developing high strength and ductility in biomedical Co-Cr cast alloys by simultaneous doping with nitrogen and carbon.

    Science.gov (United States)

    Yamanaka, Kenta; Mori, Manami; Chiba, Akihiko

    2016-02-01

    There is a strong demand for biomedical Co-Cr-based cast alloys with enhanced mechanical properties for use in dental applications. We present a design strategy for development of Co-Cr-based cast alloys with very high strength, comparable to that of wrought Co-Cr alloys, without loss of ductility. The strategy consists of simultaneous doping of nitrogen and carbon, accompanied by increasing of the Cr content to increase the nitrogen solubility. The strategy was verified by preparing Co-33Cr-9W-0.35N-(0.01-0.31)C (mass%) alloys. We determined the carbon concentration dependence of the microstructures and their mechanical properties. Metal ion release of the alloys in an aqueous solution of 0.6% sodium chloride (NaCl) and 1% lactic acid was also evaluated to ensure their corrosion resistance. As a result of the nitrogen doping, the formation of a brittle σ-phase, a chromium-rich intermetallic compound, was significantly suppressed. Adding carbon to the alloys resulted in finer-grained microstructures and carbide precipitation; accordingly, the strength increased with increasing carbon concentration. The tensile ductility, on the other hand, increased with increasing carbon concentration only up to a point, reaching a maximum at a carbon concentration of ∼0.1mass% and decreasing with further carbon doping. However, the alloy with 0.31mass% of carbon exhibited 14% elongation and also possessed very high strength (725MPa in 0.2% proof stress). The addition of carbon did not significantly degrade the corrosion resistance. The results show that our strategy realizes a novel high-strength Co-Cr-based cast alloy that can be produced for advanced dental applications using a conventional casting procedure. The present study suggested a novel alloy design concept for realizing high-strength Co-Cr-based cast alloys. The proposed strategy is beneficial from the practical point of view because it uses conventional casting approach-a simpler, more cost-effective, industrially

  4. History, Development and Future of TRIGA Research Reactors

    International Nuclear Information System (INIS)

    2016-01-01

    Due to its particular fuel design and resulting enhanced inherent safety features, TRIGA reactors (Training, Research, Isotopes, General Atomics) constitute a ‘class of their own’ among the large variety of research reactors built world-wide. This publication summarizes in a single document the information on the past and present of TRIGA research reactors and presents an outlook in view of potential issues to be solved by TRIGA operating organizations in the near future. It covers the historical development and basic TRIGA characteristics, followed by utilization, fuel conversion and ageing management of TRIGA research reactors. It continues with issues and challenges, introduction to the global TRIGA research reactor network and concludes with future perspectives. The publication is complemented with a CD-ROM to illustrate the historical developments of TRIGA research reactors through individual facility examples and experiences

  5. Theoretical development of atomic structure: Past, present and future

    International Nuclear Information System (INIS)

    Tiwary, S.N.

    1994-11-01

    Theoretical development of atomic structure is briefly discussed. The role of correlation, relativity, quantum electrodynamic (QED), finite nuclear size (FNS) and parity nonconservation (PNC) in high precision theoretical investigation of properties of atomic and ionic systems is demonstrated. At present, we do not have a comprehensive and practical atomic structure theory which accounts all these physical effects on an equal footing. Suggestions are made for future directions. (author). 108 refs, 5 figs, 9 tabs

  6. Development of alloy-film coated dispenser cathode for terahertz vacuum electron devices application

    International Nuclear Information System (INIS)

    Barik, R.K.; Bera, A.; Raju, R.S.; Tanwar, A.K.; Baek, I.K.; Min, S.H.; Kwon, O.J.; Sattorov, M.A.; Lee, K.W.; Park, G.-S.

    2013-01-01

    High power terahertz vacuum electron devices demand high current density and uniform emission dispenser cathode. It was found that the coating of noble metals e.g., Os, Ir, and Re on the surface of tungsten dispenser cathodes enhances the emission capabilities and uniformity. Hence metal coated cathode might be the best candidate for terahertz devices applications. In this study, ternary-alloy-film cathode (2Os:2Re:1 W) and Os coated cathode have been developed and the results are presented. The cathodes made out of this alloy coating showed 1.5 times higher emission and 0.02 eV emission uniformity as compared to those of simply Os coated cathodes which can be used in terahertz devices application.

  7. Development of alloy-film coated dispenser cathode for terahertz vacuum electron devices application

    Energy Technology Data Exchange (ETDEWEB)

    Barik, R. K.; Bera, A. [School of Electrical Engineering and Computer Science, Seoul National University, Seoul (Korea, Republic of); Raju, R. S. [Central Electronics Engineering Research Institute (CEERI), Rajasthan (India); Tanwar, A. K.; Baek, I. K.; Min, S. H.; Kwon, O. J.; Sattorov, M. A. [Department of Physics and Astronomy, Center for THz-Bio Application Systems, and Seoul-Teracom Inc., Seoul National University, Seoul (Korea, Republic of); Lee, K. W. [LIG Nex1, Seoul (Korea, Republic of); Park, G.-S., E-mail: gunsik@snu.ac.kr [School of Electrical Engineering and Computer Science, Seoul National University, Seoul (Korea, Republic of); Department of Physics and Astronomy, Center for THz-Bio Application Systems, and Seoul-Teracom Inc., Seoul National University, Seoul (Korea, Republic of); Advanced Institute of Convergence Technology, Suwon-si, Gyeonggi-do (Korea, Republic of)

    2013-07-01

    High power terahertz vacuum electron devices demand high current density and uniform emission dispenser cathode. It was found that the coating of noble metals e.g., Os, Ir, and Re on the surface of tungsten dispenser cathodes enhances the emission capabilities and uniformity. Hence metal coated cathode might be the best candidate for terahertz devices applications. In this study, ternary-alloy-film cathode (2Os:2Re:1 W) and Os coated cathode have been developed and the results are presented. The cathodes made out of this alloy coating showed 1.5 times higher emission and 0.02 eV emission uniformity as compared to those of simply Os coated cathodes which can be used in terahertz devices application.

  8. Development of an EAM potential for simulation of radiation damage in Fe-Cr alloys

    International Nuclear Information System (INIS)

    Wallenius, J.; Abrikosov, I.A.; Chakarova, R.; Lagerstedt, C.; Malerba, L.; Olsson, P.; Pontikis, V.; Sandberg, N.; Terentyev, D.

    2004-01-01

    We have developed a set of EAM potentials for simulation of Fe-Cr alloys. By relaxing the requirement of reproducing the pressure-volume relation at short distances and by fitting to the thermal expansion coefficients of Fe and Cr, stability of the self-interstitial could be obtained. For Cr, properties of the paramagnetic state were applied, providing a positive Cauchy pressure. Mixed Fe-Cr pair potentials were fitted to the calculated mixing enthalpy of ferromagnetic Fe-Cr. Simulation of thermal ageing in Fe-Cr alloys using the Fe-20Cr potential exhibited pronounced Cr-precipitation for temperatures below 900 K, a feature not observed at any temperature using a potential fitted to the mixing enthalpy of Fe-5Cr

  9. Development of an EAM potential for simulation of radiation damage in Fe-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wallenius, J.; Abrikosov, I.A.; Chakarova, R.; Lagerstedt, C. E-mail: christina@neutron.kth.se; Malerba, L.; Olsson, P.; Pontikis, V.; Sandberg, N.; Terentyev, D

    2004-08-01

    We have developed a set of EAM potentials for simulation of Fe-Cr alloys. By relaxing the requirement of reproducing the pressure-volume relation at short distances and by fitting to the thermal expansion coefficients of Fe and Cr, stability of the <1 1 0> self-interstitial could be obtained. For Cr, properties of the paramagnetic state were applied, providing a positive Cauchy pressure. Mixed Fe-Cr pair potentials were fitted to the calculated mixing enthalpy of ferromagnetic Fe-Cr. Simulation of thermal ageing in Fe-Cr alloys using the Fe-20Cr potential exhibited pronounced Cr-precipitation for temperatures below 900 K, a feature not observed at any temperature using a potential fitted to the mixing enthalpy of Fe-5Cr.

  10. Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, James [Caterpillar Inc., Mossville, IL (United States)

    2017-06-13

    Gray iron has been the primary alloy for heavy duty diesel engine core castings for decades. During recent decades the limitations of gray iron have been reached in some applications, leading to the use of compacted graphite iron in engine blocks and heads. Caterpillar has had compacted graphite designs in continuous production since the late 1980’s. Due to the drive for higher power density, decreased emissions and increased fuel economy, cylinder pressures and temperatures continue to increase. Currently no viable replacement for today’s compacted graphite irons exist at an acceptable cost level. This project explored methods to develop the next generation of heavy duty diesel engine materials as well as demonstrated some results on new alloy designs although cost targets will likely not be met.

  11. The development of octagon Zr-4 alloy tube for heating reactors

    International Nuclear Information System (INIS)

    Yang Fanglin; Yang Yingli; Wang Guangshen

    1989-10-01

    The asymmetrical octagon Zr-4 alloy tubes which are used for fuel assembly in the heating reactor have been developed. The thickness of tube wall is 1.5 mm and the length is 1725 mm. The long side of the octagon is 138.7 0.3 +0.2 mm, the short side is 93.1 ± 0.1 mm. To manufacture these tubes a stretch draw forming processing method is adopted. The process is divided into two phases. In the first phase, a short draw mould is used to stretch the Zr-4 alloy tube. In the second phase, a long draw mould, its length is equal to the end-produt length, is used to complete the final processing. The size accuracy and repeatability of this method are excellent and can fully meet the design requirements

  12. Development of a high specific stiffness mechanically milled FeAl intermetallic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Baccino, R; San Filippo, D; Martel, P; Moret, F

    1996-12-31

    Powder metallurgy techniques such as gas atomization and mechanical milling have been used to develop a FeAl alloy with enhanced ductility and strength at both low and high temperature. The improvement method combines ductility increase by grain boundary strengthening, grain size reduction and oxide dispersion strengthening. The material has been characterized and tested in the form of extruded bars. Microstructure, order and texture of as-extruded and heat treated samples have been studied by TEM, X-ray diffraction and Moessbauer spectroscopy. Physical and mechanical properties of the material are compared to some conventional engineering alloys in order to discuss the conceivable applications in aeronautical and automotive industries. (authors). 22 refs., 4 figs., 2 tabs.

  13. Development of Barrier Layers for the Protection of Candidate Alloys in the VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Levi, Carlos G. [Battelle Energy Alliance, LLC, Idaho Falls, ID (United States); Jones, J. Wayne [Battelle Energy Alliance, LLC, Idaho Falls, ID (United States); Pollock, Tresa M. [Battelle Energy Alliance, LLC, Idaho Falls, ID (United States); Was, Gary S. [Battelle Energy Alliance, LLC, Idaho Falls, ID (United States)

    2015-01-22

    The objective of this project was to develop concepts for barrier layers that enable leading candi- date Ni alloys to meet the longer term operating temperature and durability requirements of the VHTR. The concepts were based on alpha alumina as a primary surface barrier, underlay by one or more chemically distinct alloy layers that would promote and sustain the formation of the pro- tective scale. The surface layers must possess stable microstructures that provide resistance to oxidation, de-carburization and/or carburization, as well as durability against relevant forms of thermo-mechanical cycling. The system must also have a self-healing ability to allow endurance for long exposure times at temperatures up to 1000°C.

  14. High-temperature brazing, present situation and development trends - brazing alloys

    International Nuclear Information System (INIS)

    Lugscheider, E.

    1980-01-01

    The range of application of high-temperature brazing is described. The process is defined. High-temperature nickel-base brazing alloys (alloying constituents, types of products. properties of the brazing alloys) and high-temperature brazing alloys for special metals and ceramics are dealt with. (orig.) [de

  15. Biodegradable magnesium-alloy stent:current situation in research

    International Nuclear Information System (INIS)

    Chen Hua; Zhao Xianxian

    2011-01-01

    In recent years, permanent metal stents are employed in the majority of interventional therapies; nevertheless, such kind of stents carries the problems of thrombosis and restenosis. Therefore, the biodegradable magnesium alloy stent has become the focus of attention. Theoretically, it has overcome the problems caused by permanent metal stents, so it is the development direction to use the biodegradable magnesium alloy in future. The authors believe that biodegradable magnesium alloy stents will be widely used in interventional procedures for many diseases. (authors)

  16. Microstructural development in a rapidly solidified Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Park, W.J.; Baek, E.R.; Lee, Sunghak; Kim, N.J.

    1991-01-01

    TEM is used to investigate microstructural development in a rapidly solidified Al-Fe-V-Si alloy. The as-cast microstructure of a rapidly solidified Al-Fe-V-Si alloy was found to vary depending on casting conditions and also through the thickness of ribbon. For completely Zone A ribbon, intercellular phase consists of a microquasi-crystalline phase, while for the Zone A and Zone B mixed ribbon, it consists of a silicide phase. In either case, formation of globular particles of a cluster microquasi-crystalline phase is observed near the air side of the ribbon. Annealing study shows significant differences in the final microstructure depending on the initial status of the ribbon. Completely Zone A ribbon, whose microstructure is composed of a microquasi-crystalline phase, results in a very coarse microstructure after annealing as compared to the Zone A and Zone B mixed ribbon. This result has important implications for the development of high-performance elevated-temperature Al alloys. 12 refs

  17. Proceedings of the 2. workshop on vanadium alloy development for fusion

    International Nuclear Information System (INIS)

    Osch, E.V. van

    1996-10-01

    From 20 to 22 May 1996 the Second IEA Vanadium Alloy Development for Fusion Workshop was held at the Netherlands Energy Research Foundation, ECN in Petten. Twenty three experts from the European Union, Japan, the Russian Federation and the United States exchanged results and analyses of completed experiments and discussed the program planning. The manufacturing of half-finished products and the optimization of subsequent heat treatments were presented and discussed in the first session. The problems and solutions to joining vanadium alloy half-finished products by welding and brazing have been addressed in another session. Corrosion and compatibility properties have been evaluated in a different session together with coating requirements. Several sessions were devoted to the effects of radiation on the mechanical properties, especially toughness, of vanadium alloys. Also the role of the transmutation product helium, in particular its introduction into specimens, was evaluated. The respective plans of the four parties for continuation of the ongoing research and development programs have been discussed with the emphasis on avoiding duplications in the area of radiation experiments. The critical issues were identified and the related priorities discussed in the time frame set by the schedule for the building of ITER test modules and with the long term DEMO requirements in mind. (orig.)

  18. Proceedings of the 2. workshop on vanadium alloy development for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Osch, E.V. van [ed.

    1996-10-01

    From 20 to 22 May 1996 the Second IEA Vanadium Alloy Development for Fusion Workshop was held at the Netherlands Energy Research Foundation, ECN in Petten. Twenty three experts from the European Union, Japan, the Russian Federation and the United States exchanged results and analyses of completed experiments and discussed the program planning. The manufacturing of half-finished products and the optimization of subsequent heat treatments were presented and discussed in the first session. The problems and solutions to joining vanadium alloy half-finished products by welding and brazing have been addressed in another session. Corrosion and compatibility properties have been evaluated in a different session together with coating requirements. Several sessions were devoted to the effects of radiation on the mechanical properties, especially toughness, of vanadium alloys. Also the role of the transmutation product helium, in particular its introduction into specimens, was evaluated. The respective plans of the four parties for continuation of the ongoing research and development programs have been discussed with the emphasis on avoiding duplications in the area of radiation experiments. The critical issues were identified and the related priorities discussed in the time frame set by the schedule for the building of ITER test modules and with the long term DEMO requirements in mind. (orig.).

  19. Development of Computational Tools for Predicting Thermal- and Radiation-Induced Solute Segregation at Grain Boundaries in Fe-based Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-30

    Radiation-induced segregation (RIS) has been frequently reported in structural materials such as austenitic, ferritic, and ferritic-martensitic stainless steels (SS) that have been widely used in light water reactors (LWRs). RIS has been linked to secondary degradation effects in SS including irradiation-induced stress corrosion cracking (IASCC). Earlier studies on thermal segregation in Fe-based alloys found that metalloids elements such as P, S, Si, Ge, Sn, etc., embrittle the materials when enrichment was observed at grain boundaries (GBs). RIS of Fe-Cr-Ni-based austenitic steels has been modeled in the U.S. 2015 fiscal year (FY2015), which identified the pre-enrichment due to thermal segregation can have an important role on the subsequent RIS. The goal of this work is to develop thermal segregation models for alloying elements in steels for future integration with RIS modeling.

  20. Hypertension in Developing Countries: A Major Challenge for the Future.

    Science.gov (United States)

    Mohsen Ibrahim, M

    2018-05-01

    Outline recent epidemiologic data regarding hypertension in developing countries, distinguish differences from developed countries, and identify challenges in management and future perspectives. Increased sugar intake, air and noise pollution, and low birth weight are emerging hypertension risk factors. The major challenges in management are difficulties in accurate diagnosis of hypertension and adequate blood pressure control. In contrast to developed countries, hypertension prevalence rates are on the rise in developing countries with no improvement in awareness or control rates. The increasing burden of hypertension is largely attributable to behavioral factors, urbanization, unhealthy diet, obesity, social stress, and inactivity. Health authorities, medical societies, and drug industry can collaborate to improve hypertension control through education programs, public awareness campaigns, legislation to limit salt intake, encourage generic drugs, development and dissemination of national guidelines, and involving nurses and pharmacists in hypertension management. More epidemiologic data are needed in the future to identify reasons behind increased prevalence and poor blood pressure control and examine trends in prevalence, awareness, treatment, and control. National programs for better hypertension control based on local culture, economic characteristics, and available resources in the population are needed. The role of new tools for hypertension management should be tested in developing world.

  1. Development of GaInNAsSb alloys: Growth, band structure, optical properties and applications

    International Nuclear Information System (INIS)

    Harris, James S. Jr.; Kudrawiec, R.; Yuen, H.B.; Bank, S.R.; Bae, H.P.; Wistey, M.A.; Jackrel, D.; Pickett, E.R.; Sarmiento, T.; Goddard, L.L.; Lordi, V.; Gugov, T.

    2007-01-01

    In the past few years, GaInNAsSb has been found to be a potentially superior material to both GaInNAs and InGaAsP for communications wavelength laser applications. It has been observed that due to the surfactant role of antimony during epitaxy, higher quality material can be grown over the entire 1.2-1.6 μm range on GaAs substrates. In addition, it has been discovered that antimony in GaInNAsSb also works as a constituent that significantly modifies the valence band. These findings motivated a systematic study of GaInNAsSb alloys with widely varying compositions. Our recent progress in growth and materials development of GaInNAsSb alloys and our fabrication of 1.5-1.6 μm lasers are discussed in this paper. We review our recent studies of the conduction band offset in (Ga,In) (N,As,Sb)/GaAs quantum wells and discuss the growth challenges of GaInNAsSb alloys. Finally, we report record setting long wavelength edge emitting lasers and the first monolithic VCSELs operating at 1.5 μm based on GaInNAsSb QWs grown on GaAs. Successful development of GaInNAsSb alloys for lasers has led to a much broader range of potential applications for this material including: solar cells, electroabsorption modulators, saturable absorbers and far infrared optoelectronic devices and these are also briefly discussed in this paper. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Development of GaInNAsSb alloys: Growth, band structure, optical properties and applications

    Energy Technology Data Exchange (ETDEWEB)

    Harris, James S. Jr.; Kudrawiec, R.; Yuen, H.B.; Bank, S.R.; Bae, H.P.; Wistey, M.A.; Jackrel, D.; Pickett, E.R.; Sarmiento, T.; Goddard, L.L.; Lordi, V.; Gugov, T. [Solid State and Photonics Laboratory, Stanford University, CIS-X 328, Via Ortega, Stanford, California 94305-4075 (United States)

    2007-08-15

    In the past few years, GaInNAsSb has been found to be a potentially superior material to both GaInNAs and InGaAsP for communications wavelength laser applications. It has been observed that due to the surfactant role of antimony during epitaxy, higher quality material can be grown over the entire 1.2-1.6 {mu}m range on GaAs substrates. In addition, it has been discovered that antimony in GaInNAsSb also works as a constituent that significantly modifies the valence band. These findings motivated a systematic study of GaInNAsSb alloys with widely varying compositions. Our recent progress in growth and materials development of GaInNAsSb alloys and our fabrication of 1.5-1.6 {mu}m lasers are discussed in this paper. We review our recent studies of the conduction band offset in (Ga,In) (N,As,Sb)/GaAs quantum wells and discuss the growth challenges of GaInNAsSb alloys. Finally, we report record setting long wavelength edge emitting lasers and the first monolithic VCSELs operating at 1.5 {mu}m based on GaInNAsSb QWs grown on GaAs. Successful development of GaInNAsSb alloys for lasers has led to a much broader range of potential applications for this material including: solar cells, electroabsorption modulators, saturable absorbers and far infrared optoelectronic devices and these are also briefly discussed in this paper. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Insulating Coating Development for Vanadium Alloys. Phase I Technical Report

    International Nuclear Information System (INIS)

    Gunda, N.; Sastri, S.; Jayaraman, M.; Karandikar, P.

    2000-01-01

    Self-cooled liquid-lithium/vanadium blanket offers many advantages for fusion power systems. Liquid metals moving through a magnetic field are subjected to magnetohydrodynamic (MHD) effects that can increase the pressure drop and affect the flow profiles and heat transfer. Insulating coatings are required to eliminate this effect. Based on the thermodynamic stability data five different coatings were selected PVD and CVD processes were developed to deposit these coatings. All coatings have resistivities much higher than the minimum required. Liquid lithium testing at Argonne National Laboratory indicates that one of the coatings showed only partial spalling. Thus, further refinement of this coating has significant potential to satisfy the requirements for Li/V blanket technology

  4. The Spanish experience - future developments in the gas industry

    International Nuclear Information System (INIS)

    Moraleda, P.

    1996-01-01

    Spanish experience is presented concerned it may be useful at the time of setting up a natural gas industry. The Spanish natural gas industry is of recent creation. Developing infrastructure and securing gas supplies have been major challenges. Challenges which, are also common for majority of the countries. The presentation is split into two blocks: the first one is on our experience in the establishment and consolidation of the market for natural gas in Spain. The second block deals with future developments aiming to strengthen the security of supply; and with the opportunities and threats the gas industry will face

  5. Lessons from photovoltaic policies in China for future development

    International Nuclear Information System (INIS)

    Huo, Mo-lin; Zhang, Dan-wei

    2012-01-01

    The paper first provides an overview of the current status of PV industry development in China, including the penetration speed, the market segments and the value chain. Further, it reviews the experience of governmental interventions composed of the legal framework, market incentives and manufacturing policies for lessons learning. After the Renewable Energy Law took effect in 2006, PV penetration was accelerated. Capital subsidies and feed-in tariffs, which were still in a trial stage, public bidding and the cooperation among relevant Ministries played important roles. A series of public R and D projects provided elemental technologies and meanwhile the preferential tax policies encouraged PV R and D nationwide. Then the paper looks into the future prospects, based on the technical potential, the national indicative targets in 2020, and the energy planning considering the governmental targets of energy transition and CO 2 mitigation. Consequently we analyze problems impeding the future development based on evidences. For instance, there was no predetermined degression of the capital subsidy to push cost reduction; the budget and the organization of public PV R and D were insufficient. Finally, we propose some recommendations on improving policy interventions. - Highlights: ► Surveys the current status of PV industry in China, including the market trend, the installation distribution and the value chain. ► Reviews the experience of governmental interventions composed of the legal framework, market policies and manufacturing policies. ► Looks into future prospects, based on the technical potential, the national targets of 2020, policies of energy transition and CO 2 mitigation. ► Analyzes barriers of future development, and proposes some recommendations on improving policy interventions.

  6. Development status und future possibilities for martensitic creep resistant steels

    Energy Technology Data Exchange (ETDEWEB)

    Hald, J. [Technical Univ. Denmark, Lyngby (Denmark). Dept. of Mechanical Engineering

    2010-07-01

    In the last four decades new stronger modified 9%Cr martensitic creep resistant steels have been introduced in power plants, which has enabled increases in maximum achievable steam conditions from the previous 250 bar and 540-560 C up to the values of 300 bar and 600-620 C currently being introduced all over the world. In order to further increase the steam parameters of steel based power plants up to a target value of 650 C/325 bar it is necessary to double the creep strength of the martensitic steels. At the same time the resistance against steam oxidation must be improved by an increase of the chromium content in the steels from 9% to 12%. However, so far all attempts to make stronger 12%Cr steels have led to breakdowns in long-term creep strength. Significant progress has been achieved in the understanding of microstructure stability of the martensitic 9-12%Cr steels: Observed microstructure instabilities in 11-12%Cr steels are explained by Z-phase precipitation, which dissolves fine MN nitrides. Improved understanding of effects of B and N on long-term creep properties has formed the basis of a series of new stronger 9%Cr test alloys with improved creep strength. In parallel 9%Cr test steels with low C content show very promising behavior in long-term tests. However, the 9%Cr steels must be surface coated to protect against steam oxidation at high temperature applications above 620%C. A possibility to use fine Z-phases for strengthening of the martensitic steels has been identified, and this opens a new pathway for development of stable strong 12%Cr steels. There are still good prospects for the realization of a 325 bar / 650 C steam power plant all based on steel. (orig.)

  7. Development of wear-resistant coatings for cobalt-base alloys

    International Nuclear Information System (INIS)

    Cockeram, B.V.

    1999-01-01

    The costs and hazards resulting from nuclear plant radiation exposure with activated cobalt wear debris could potentially be reduced by covering the cobalt-base materials with a wear resistant coating. However, the hardnesses of many cobalt-base wear alloys are significantly lower than conventional PVD hard coatings, and mechanical support of the hard coating is a concern. Four approaches have been taken to minimize the hardness differences between the substrate and PVD hard coating: (1) use a thin Cr-nitride hard coating with layers that are graded with respect to hardness, (2) use a thicker, multilayered coating (Cr-nitride or Zr-nitride) with graded layers, (3) use nitriding to harden the alloy subsurface followed by application of a multilayered coating of Cr-nitride, and (4) use of nitriding alone. Since little work has been done on application of PVD hard coatings to cobalt-base alloys, some details on process development and characterization of the coatings is presented. Scratch testing was used to evaluate the adhesion of the different coatings. A bench-top rolling contact test was used to evaluate the wear resistance of the coatings. The test results are discussed, and the more desirable coating approaches are identified

  8. Development of a Knowledge Base of Ti-Alloys From First-Principles and Thermodynamic Modeling

    Science.gov (United States)

    Marker, Cassie

    An aging population with an active lifestyle requires the development of better load-bearing implants, which have high levels of biocompatibility and a low elastic modulus. Titanium alloys, in the body centered cubic phase, are great implant candidates, due to their mechanical properties and biocompatibility. The present work aims at investigating the thermodynamic and elastic properties of bcc Tialloys, using the integrated first-principles based on Density Functional Theory (DFT) and the CALculation of PHAse Diagrams (CALPHAD) method. The use of integrated first-principles calculations based on DFT and CALPHAD modeling has greatly reduced the need for trial and error metallurgy, which is ineffective and costly. The phase stability of Ti-alloys has been shown to greatly affect their elastic properties. Traditionally, CALPHAD modeling has been used to predict the equilibrium phase formation, but in the case of Ti-alloys, predicting the formation of two metastable phases o and alpha" is of great importance as these phases also drastically effect the elastic properties. To build a knowledge base of Ti-alloys, for biomedical load-bearing implants, the Ti-Mo-Nb-Sn-Ta-Zr system was studied because of the biocompatibility and the bcc stabilizing effects of some of the elements. With the focus on bcc Ti-rich alloys, a database of thermodynamic descriptions of each phase for the pure elements, binary and Ti-rich ternary alloys was developed in the present work. Previous thermodynamic descriptions for the pure elements were adopted from the widely used SGTE database for global compatibility. The previous binary and ternary models from the literature were evaluated for accuracy and new thermodynamic descriptions were developed when necessary. The models were evaluated using available experimental data, as well as the enthalpy of formation of the bcc phase obtained from first-principles calculations based on DFT. The thermodynamic descriptions were combined into a database

  9. Development of phased array UT procedure for crack depth sizing on nickel based alloy weld

    International Nuclear Information System (INIS)

    Hirasawa, Taiji; Okada, Hisao; Fukutomi, Hiroyuki

    2012-01-01

    Recently, it is reported that the primary water stress corrosion cracking (PWSCC) has been occurred at the nickel based alloy weld components such as steam generator safe end weld, reactor vessel safe end weld, and so on, in PWR. Defect detection and sizing is important in order to ensure the reliable operation and life extension of nuclear power plants. In the reactor vessel safe end weld, it was impossible to measure crack depth of PWSCC. The crack was detected in the axial direction of the safe end weld. Furthermore, the crack had some features such as shallow, large aspect ratio (ratio of crack depth and length), sharp geometry of crack tip, and so on. Therefore, development and improvement of defect detection and sizing capabilities for ultrasonic inspection technique is required. Phased array UT technique was applied to nickel based alloy weld specimen with SCC cracks. From the experimental results, good accuracy of crack depth sizing by phased array UT for the inside inspection was shown. From these results, UT procedure for crack depth sizing was verified. Therefore, effectiveness of phased array UT for crack depth sizing in the nickel based alloy welds was shown. (author)

  10. Ni-Ti Alloys for Tribological Applications: The Effects of Serendipity on Research and Development

    Science.gov (United States)

    DellaCorte, Christopher

    2016-01-01

    Novel superelastic materials based upon Nickel-Titanium (NiTi) alloys are an emerging technology that almost escaped recognition. Though steel is the dominant material of choice for mechanical components (bearings and gears) it has intrinsic limitations related to corrosion and plastic deformation. In 2004, at the request of a small manufacturing firm, Nitinol 60 was assessed as an alternative to bearing steel. Early investigations showed it to be hard and impervious to aqueous corrosion but its tribological properties were not fully explored. Conventional wisdom in the field of tribology suggests that alloys rich in titanium are poor candidate bearing materials but NiTi, an intermetallic, demonstrates that such thinking can be and often is, wrong. Though early stage tests reveal acceptable friction and wear behavior, extensive materials engineering and processing development was essential in producing the precision microstructures needed for long-life bearings and gears. In the course of exploring this new material system other game-changing and unexpected properties, such as superelastic resilience, were observed. Today, the aerospace community is exploiting the unique characteristics of the NiTi alloy materials to solve problems on earth, underwater and in space. A fortunate decision to acknowledge a single industrial request turned out to be the key to an entirely new technology.

  11. Space facilities: Meeting future needs for research, development, and operations

    Science.gov (United States)

    The National Facilities Study (NFS) represents an interagency effort to develop a comprehensive and integrated long-term plan for world-class aeronautical and space facilities that meet current and projected needs for commercial and government aerospace research and development and space operations. At the request of NASA and the DOD, the National Research Council's Committee on Space Facilities has reviewed the space related findings of the NFS. The inventory of more than 2800 facilities will be an important resource, especially if it continues to be updated and maintained as the NFS report recommends. The data in the inventory provide the basis for a much better understanding of the resources available in the national facilities infrastructure, as well as extensive information on which to base rational decisions about current and future facilities needs. The working groups have used the inventory data and other information to make a set of recommendations that include estimates of cast savings and steps for implementation. While it is natural that the NFS focused on cost reduction and consolidations, such a study is most useful to future planning if it gives equal weight to guiding the direction of future facilities needed to satisfy legitimate national aspirations. Even in the context of cost reduction through facilities closures and consolidations, the study is timid about recognizing and proposing program changes and realignments of roles and missions to capture what could be significant savings and increased effectiveness. The recommendations of the Committee on Space Facilities are driven by the clear need to be more realistic and precise both in recognizing current incentives and disincentives in the aerospace industry and in forecasting future conditions for U.S. space activities.

  12. Development and characterization of Al-Zn alloy by ingot metallurgy and powder metallurgy with improved mechanical properties

    International Nuclear Information System (INIS)

    Waseem, M.; Awais, H.B.; Zauha, M.S.; Tariq, N.H.

    2007-01-01

    Current project focuses on the production of AI-Zn alloy AA7075 used for wide range of applications like Aircraft components, missile and other structural applications. The above alloy was developed by two different routes. One was melting /casting, after which alloy was characterized by microstructural - examination (optical and SEM) and mechanical testing. Other route was the preparation of this alloy by powder metallurgy. This involves preparation of powders, mechanical alloying, compaction, sintering, rolling, solution treatment and aging then analysis. Powders of Aluminum, Zinc and powders of master alloys of AI-Cu, AI-Mg, AI-Mn, and AI-Cr were Mechanical alloyed. Then this powder was compacted by uniaxial press to form pellets. Sintering was carried out at 500 degree C and then hot rolled in Ar atmosphere. After solution and aging treatments samples were characterized. It is observed that there is about 12-21% improvement in mechanical properties such as tensile strength, yield strength, ductility and fracture toughness due to the more fine microstructure and less segregation than ingot metallurgy route. (author)

  13. Development of low-Cr ODS FeCrAl alloys for accident-tolerant fuel cladding

    Science.gov (United States)

    Dryepondt, Sebastien; Unocic, Kinga A.; Hoelzer, David T.; Massey, Caleb P.; Pint, Bruce A.

    2018-04-01

    Low-Cr oxide dispersion strengthened (ODS) FeCrAl alloys were developed as accident tolerant fuel cladding because of their excellent oxidation resistance at very high temperature, high strength and improved radiation tolerance. Fe-12Cr-5Al wt.% gas atomized powder was ball milled with Y2O3+FeO, Y2O3+ZrO2 or Y2O3+TiO2, and the resulting powders were extruded at 950 °C. The resulting fine grain structure, particularly for the Ti and Zr containing alloys, led to very high strength but limited ductility. Comparison with variants of commercial PM2000 (Fe-20Cr-5Al) highlighted the significant impact of the powder consolidation step on the alloy grain size and, therefore, on the alloy mechanical properties at T < 500 °C. These low-Cr compositions exhibited good oxidation resistance at 1400 °C in air and steam for 4 h but could not form a protective alumina scale at 1450 °C, similar to observations for fine grained PM2000 alloys. The effect of alloy grain size, Zr and Ti additions, and impurities on the alloy mechanical and oxidation behaviors are discussed.

  14. The gas turbine: Present technology and future developments

    International Nuclear Information System (INIS)

    Minghetti, E.

    1997-03-01

    The gas turbine is the most widely used prime mover all over the world for either power generation or mechanical drive applications. The above fact is due to the recent great improvements that have been done especially in terms of efficiency, availability and reliability. The future for gas turbine technological development looks very promising. In fact, although tremendous growth has already taken place, there is still the potential for dramatic improvements in performance. Compared with the competitive prime movers (conventional steam power plants and reciprocating piston engines) the gas turbine technology is younger and still following a strong growth curve. The coming decades will witness the continued increasing in turbine inlet temperature, the development of new materials and refrigeration systems and the commercialization of inter cooled system and steam cooled turbines. With the very soon introduction of the G and H technology, expected single and combined cycle efficiencies for heavy duty machines are respectively 40% and 60%, while maintaining 'single digit' levels in pollutant emissions. In this report are given wide information on gas turbine present technology (Thermodynamics, features, design, performances, emission control, applications) and are discussed the main lines for the future developments. Finally are presented the research and technological development activities on gas turbine of Italian National Agency for new Technology Energy and the Environment Energy Department

  15. The future of HTR development and market chances

    International Nuclear Information System (INIS)

    Baust, E.; Weisbrodt, I.

    1989-01-01

    In more than thirty years of development, the pebble bed high-temperature reactor has been brought to the threshold of commercial maturity. On the basis of the experience accumulated with the 15 MW AVR reactor and the THTR-300, unit sizes tailored to demand (HTR-500, modular HTR, GHR-10) will be developed for the electricity and heat markets of the future. The high-temperature reactor is a meaningful supplement to the proven line of light-water reactors and is particularly suitable for being exported to developing countries and industrial threshold countries because of its special technical and inherent safeguards properties. There is broad worldwide interest in the HTR, as is evidenced by several existing agreements on cooperation. It is for this reason that market chances are believed to exist for the HTR after the expected revival of the nuclear power market. ABB and Siemens therefore have decided to develop and market the HTR jointly in the future as a matter of long term strategy by working through a joint subsidiary, HTR-GmbH. (orig.) [de

  16. Nuclear Research and Development Capabilities Needed to Support Future Growth

    Energy Technology Data Exchange (ETDEWEB)

    Wham, Robert M. [ORNL, P.O. Box 2008, Oak Ridge, TN 37831-6154 (United States); Kearns, Paul [Battelle Memorial Institute (United States); Marston, Ted [Marston Consulting (United States)

    2009-06-15

    The energy crisis looming before the United States can be resolved only by an approach that integrates a 'portfolio' of options. Nuclear energy, already an important element in the portfolio, should play an even more significant role in the future as the U.S. strives to attain energy independence and reduce carbon emissions. The DOE Office of Nuclear Energy asked Battelle Memorial Institute to obtain input from the commercial power generation industry on industry's vision for nuclear energy over the next 30-50 years. With this input, Battelle was asked to generate a set of research and development capabilities necessary for DOE to support the anticipated growth in nuclear power generation. This presentation, based on the report generated for the Office of Nuclear Energy, identifies the current and future nuclear research and development capabilities required to make this happen. The capabilities support: (1) continued, safe operation of the current fleet of nuclear plants; (2) the availability of a well qualified and trained workforce; (3) demonstration of the next generation nuclear plants; (4) development of a sustainable fuel cycle; (5) advanced technologies for maximizing resource utilization and minimization of waste and (6) advanced modeling and simulation for rapid and reliable development and deployment of new nuclear technologies. In order to assure these capabilities are made available, a Strategic Nuclear Energy Capability Initiative is proposed to provide the required resources during this critical period of time. (authors)

  17. Development of Cast Alumina-forming Austenitic Stainless Steel Alloys for use in High Temperature Process Environments

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, Govindarajan [ORNL; Yamamoto, Yukinori [ORNL; Brady, Michael P [ORNL; Pint, Bruce A [ORNL; Pankiw, Roman [Duraloy Technologies Inc; Voke, Don [Duraloy Technologies Inc

    2015-01-01

    There is significant interest in the development of alumina-forming, creep resistant alloys for use in various industrial process environments. It is expected that these alloys can be fabricated into components for use in these environments through centrifugal casting and welding. Based on the successful earlier studies on the development of wrought versions of Alumina-Forming Austenitic (AFA) alloys, new alloy compositions have been developed for cast products. These alloys achieve good high-temperature oxidation resistance due to the formation of protective Al2O3 scales while multiple second-phase precipitation strengthening contributes to excellent creep resistance. This work will summarize the results on the development and properties of a centrifugally cast AFA alloy. This paper highlights the strength, oxidation resistance in air and water vapor containing environments, and creep properties in the as-cast condition over the temperature range of 750°C to 900°C in a centrifugally cast heat. Preliminary results for a laboratory cast AFA composition with good oxidation resistance at 1100°C are also presented.

  18. Ni-base wrought alloy development for USC steam turbine rotor applications

    International Nuclear Information System (INIS)

    Penkalla, H.-J.; Schubert, F.

    2004-01-01

    For the development of a new generation of steam turbines for use in advanced power plants with prospective operating temperatures of about 700 o C the ferritic steels for rotor applications must be replaced by advanced wrought Ni-base superalloys as the most qualified candidate materials for this purpose. In this paper three different potential candidates are discussed under the aspects of fabricability, sufficient microstructural and mechanical stability. As a result of theoretical and experimental investigation suitable strategies for the development two modified alloys are proposed to improve the fabricability and microstructural stability. (author)

  19. Research and development of basic technologies for next generation industries, 'high-performance crystalline controlled alloys'. Evaluation on final research and development (first report); Jisedai sangyo kiban gijutsu kenkyu kaihatsu. Koseino kessho seigyo gokin (saishu kenkyu kaihatsu hyoka 1)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-05-01

    The present research work has been performing research and development of the following alloys: (1) 'single crystalline alloy' , the entire alloy being composed of one crystal eliminating crystalline boundaries as an ultra heat resistant alloy with emphasis placed on improvement in particularly the creep properties, and 'particle dispersion strengthened alloy', in which ultrafine particles of oxides are dispersed uniformly; and (2) 'ultra heat resistant and tough alloy' targeted at high-temperature toughness by using Ni-group allowing ultra plasticity forging processing by micronizing crystal particles, as an ultra plastic and highly tough alloy having better processibility than conventional alloys, and 'light-weight highly tough alloy' aimed at achieving light weight and high toughness by using Ti-group. Achievements derived from the present research and development may be summarized as follows: in alloy development, alloys having performance of the world's highest level or equivalent have been developed; a manufacturing technology to make products with complex shapes has been established by using the alloy material manufacturing technology and the alloy materials developed therefrom, where prototype components of such shapes as turbine blades and turbine disks for jet engines were fabricated successfully; and the big fruit obtained was that a large number of technological experiences were acquired from this research and development. (NEDO)

  20. A study on future nuclear reactor technology and development strategy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. Y.; Kim, S. H.; Sohn, D. S.; Suk, S. D.; Zee, S. K.; Yang, M. H.; Kim, H. J.; Park, W. S

    2000-12-01

    Development of nuclear reactor and fuel cycle technology for future is essential to meet the current issues such as enhancement of nuclear power reactor safety, economically competitive with gas turbine power generation, less production of radioactive waste, proliferation resistant fuel cycle, and public acceptance in consideration of lack of energy resources in the nuclear countries worldwide as well as in Korea. This report deals with as follows, 1) Review the world energy demand and supply perspective and analyse nature of energy and sustainable development to set-up nuclear policy in Korea 2) Recaptitulate the current long term nuclear R and D activities 3) Review nuclear R and D activities and programs of USA, Japan, France, Russia, international organizations such as IAEA, OECD/NEA 4) Recommend development directions of nuclear reactors and fuels.

  1. A study on future nuclear reactor technology and development strategy

    International Nuclear Information System (INIS)

    Kim, S. Y.; Kim, S. H.; Sohn, D. S.; Suk, S. D.; Zee, S. K.; Yang, M. H.; Kim, H. J.; Park, W. S.

    2000-12-01

    Development of nuclear reactor and fuel cycle technology for future is essential to meet the current issues such as enhancement of nuclear power reactor safety, economically competitive with gas turbine power generation, less production of radioactive waste, proliferation resistant fuel cycle, and public acceptance in consideration of lack of energy resources in the nuclear countries worldwide as well as in Korea. This report deals with as follows, 1) Review the world energy demand and supply perspective and analyse nature of energy and sustainable development to set-up nuclear policy in Korea 2) Recaptitulate the current long term nuclear R and D activities 3) Review nuclear R and D activities and programs of USA, Japan, France, Russia, international organizations such as IAEA, OECD/NEA 4) Recommend development directions of nuclear reactors and fuels

  2. Future energy demand in Laos. Scenario alternatives for development

    Energy Technology Data Exchange (ETDEWEB)

    Luukkanen, J.; Kouphokham, K.; Panula-Ontto, J. [and others

    2012-07-01

    Energy production in Laos is still dominated by traditional fuels. Fuelwood in the main source of energy and most of the energy is consumed at households for cooking. Increase in the number of cars and motorbikes is rapidly increasing the use of imported petroleum products. Electrification is one of the central targets of the Lao government. The electrification rate has increased fast in Laos and in the year 2010 over 70 % households had electricity supply. The target is to have 90 % access to electricity by the year 2020. The World Bank regards the electrification of Lao PDR to be a success story. This paper deals with the present and future energy consumption in Laos. First the historical trends of energy use in different sectors are analysed. The future scenarios are constructed using LaoLinda model. Four different future alternative development paths are analysed using the model results. The energy use data source for the analysis is from the Ministry of Energy and Mines (MEM) of Lao PDR. Economic and other data is from the Department of Statistics of Lao PDR.

  3. Recent developments and future trends in nuclear medicine instrumentation

    International Nuclear Information System (INIS)

    Zaidi, H.

    2006-01-01

    Molecular imaging using high-resolution single-photon emission computed tomography (SPECT) and positron emission tomography (PET) has advanced elegantly and has steadily gained importance in the clinical and research arenas. Continuous efforts to integrate recent research findings for the design of different geometries and various detector technologies of SPECT and PET cameras have become the goal of both the academic community and nuclear medicine industry. As PET has recently become of more interest for clinical practice, several different design trends seem to have developed. Systems are being designed for ''low cost'' clinical applications, very high-resolution research applications (including small-animal imaging), and just about everywhere in-between. The development of dual-modality imaging systems has revolutionized the practice of nuclear medicine. The major advantage being that SPECT/PET data are intrinsically aligned to anatomical information from the X-ray computed tomography (CT), without the use of external markers or internal landmarks. On the other hand, combining PET with magnetic resonance imaging (MRI) technology is scientifically more challenging owing to the strong magnetic fields. Nevertheless, significant progress has been made resulting in the design of a prototype small animal PET scanner coupled to three multichannel photomultipliers via optical fibers, so that the PET detector can be operated within a conventional MR system. Thus, many different design paths are being pursued - which ones are likely to be the main stream of future commercial systems? It will be interesting, indeed, to see which technologies become the most popular in the future. This paper briefly summarizes state-of-the art developments in nuclear medicine instrumentation. Future prospects will also be discussed. (orig.)

  4. Oil development in China: Current status and future trends

    International Nuclear Information System (INIS)

    Ma Linwei; Fu Feng; Li Zheng; Liu Pei

    2012-01-01

    The future of oil has become an important topic of the discussion of energy policy in China. This paper attempts to present a full picture of the current status and future trends of China’s oil development through system analysis. First, we map a Sankey diagram of China’s oil flow to reveal the physical pattern of China’s oil supply and consumption. Then, we present the historical and ongoing trends of China’s oil flow from key aspects such as oil demand, oil resource availability, technology improvement, and policy adjustment. Based on these understandings, we design three scenarios of China’s oil demand in 2030, and analyze policy implications for oil saving, automotive energy development, and energy security. From the analysis, we draw some conclusions for policy decisions, such as to control the total oil consumption to avoid energy security risks, to enhance oil saving in all sectors with road transportation as the emphasis, and to increase the investment on oil production and refining to secure oil supply and reduce emissions. - Highlights: ► A Sankey Diagram to reveal the physical pattern of China’s oil supply and consumption. ► Present the ongoing trends of China’s oil development. ► Discuss important policy issues such as oil saving, energy security, and emissions reduction.

  5. Development, Operation, and Future Prospects for Implementing Biogas Plants

    DEFF Research Database (Denmark)

    Lybæk, Rikke

    2014-01-01

    technology are emphasized: its capacity as a renewable energy and GHG-avoiding technology, and as a waste processing and environmental technology. It is argued that biogas can provide a future platform for the use of household waste and other types of organic materials (gas boosters) to enhance gas yield......, as is the case of biomass from nature conservation, straw, deep litter, etc. Further, the chapter discusses whether or not biogas technology can create new job opportunities in rural areas that lack development. Economic results from operating centralized biogas plants in Denmark now also stress the importance...

  6. [Ecology and health in Chile: present and future development].

    Science.gov (United States)

    Oyarzún, M

    1997-09-01

    In response to the progressive environmental deterioration, the Ecological Society of America has made a proposal, called "Sustainable Biosphere Initiative", to do research, teaching and decision making processes on biodiversity, global change and the effects of human activities on environment. The goal of appropriate environmental protection and welfare for mankind includes health and quality of life. Presently, Chile faces a number of environmental problems such as pollution, excessive urban growth, loss of agricultural areas, disposal of solid waste and species extinction. The lack of education and information in Chile, on these problems, is worrisome. The role of universities to overcome this deficit should be crucial in the future sustainable development of Chile.

  7. [Treatment of posterior noninfectious uveitis : Current situation and future developments].

    Science.gov (United States)

    Pleyer, U; Pohlmann, D; Stübiger, N

    2016-05-01

    Treatment of autoimmune diseases has undergone significant changes and developments in recent years. New classes of active substances, in particular biologics and small molecules have resulted in previously unknown success in the treatment of many diseases. In particular patients suffering from autoimmune rheumatic or dermatological diseases have benefited. For autoimmune uveitis there are numerous reports indicating excellent therapeutic and preventive effects; however, statutory approval for therapy in adults is still pending. This article outlines recent advances and future therapeutic options for the treatment of posterior segment noninfectious uveitis.

  8. Future development of the electricity systems with distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    Bayod-Rujula, Angel A. [Department of Electrical Engineering, Centro Politecnico Superior, University of Zaragoza, C/Maria de Luna, 3, 50018 Zaragoza (Spain)

    2009-03-15

    Electrical power systems have been traditionally designed taking energy from high-voltage levels, and distributing it to lower voltage level networks. There are large generation units connected to transmission networks. But in the future there will be a large number of small generators connected to the distribution networks. Efficient integration of this distributed generation requires network innovations. A development of active distribution network management, from centralised to more distributed system management, is needed. Information, communication, and control infrastructures will be needed with increasing complexity of system management. Some innovative concepts such as microgrids and virtual utilities will be presented. (author)

  9. New and future developments in catalysis activation of carbon dioxide

    CERN Document Server

    Suib, Steven L

    2013-01-01

    New and Future Developments in Catalysis is a package of books that compile the latest ideas concerning alternate and renewable energy sources and the role that catalysis plays in converting new renewable feedstock into biofuels and biochemicals. Both homogeneous and heterogeneous catalysts and catalytic processes will be discussed in a unified and comprehensive approach. There will be extensive cross-referencing within all volumes. This volume presents a complete picture of all carbon dioxide (CO2) sources, outlines the environmental concerns regarding CO2, and critica

  10. Epitaxial silicon semiconductor detectors, past developments, future prospects

    International Nuclear Information System (INIS)

    Gruhn, C.R.

    1976-01-01

    A review of the main physical characteristics of epitaxial silicon as it relates to detector development is presented. As examples of applications results are presented on (1) epitaxial silicon avalanche diodes (ESAD); signal-to-noise, non-linear aspects of the avalanche gain mechanism, gain-bandwidth product, (2) ultrathin epitaxial silicon surface barrier (ESSB) detectors, response to heavy ions, (3) an all-epitaxial silicon diode (ESD), response to heavy ions, charge transport and charge defect. Future prospects of epitaxial silicon as it relates to new detector designs are summarized

  11. Superconducting Cable Development for Future High Energy Physics Detector Magnets

    Science.gov (United States)

    Horvath, I. L.

    1995-11-01

    Under the leadership of the Swiss Federal Institute of Technology (ETHZ) an international ad hoc collaboration for superconducting cables developed an aluminium stabilised superconducting cable for future detector magnets. With the financial support of the Swiss government, this R&D work was carried out for the European Organisation for Nuclear Research (CERN). In this report the manufacturing process is described and results of the quality control measurements are summarised. These tests showed that the industrial manufacturing of an aluminium stabilised superconducting cable is feasible.

  12. Future developments in physical protection against the insider threat

    International Nuclear Information System (INIS)

    Winblad, A.E.

    1985-01-01

    This report discusses a number of hardware elements that are being developed for future protection systems against insider adversaries. These elements will assist in enforcing administrative and procedural security rules, provide additional detection and delay capability for critical components, and improve the processing and display of security information. The incorporation of this hardware will add useful layers of protection to the employee-screening and human-reliability programs currently in use. User-friendly evaluation models that can aid in the overall design of more effective protection systems are also described. 2 refs., 6 figs

  13. Future developments in physical protection against the insider threat

    International Nuclear Information System (INIS)

    Winblad, A.E.

    1985-01-01

    This report discusses a number of hardware elements that are being developed for future protection systems against insider adversaries. These elements will assist in enforcing administrative and procedural security rules, provide additional detection and delay capability for critical components, and improve the processing and display of security information. The incorporation of this hardware will add useful layers of protection to the employee-screening and human-reliability programs currently in use. User-friendly evaluation models that can aid in the overall design of more effective protection systems are also described

  14. POPULAR MARKETS: FROM FUTURE STUDIES TO THE DEVELOPMENT OF PRODUCTS

    Directory of Open Access Journals (Sweden)

    Antonio Thiago Benedete da Silva

    2009-10-01

    Full Text Available Strategies for running companies in low-income markets have been in the spotlight in both the academic and the corporate environments.However, the first discussions about the relevance of such markets arose during the 1980s, when scenario-prospecting studies showed that popular markets would provide many opportunities around the year 2000.Indeed, at present, the base of the pyramid has many unaddressed needs that offer business possibilities for those companies that are willing to review their strategies. In this context, product development becomes increasingly important, since products targeting consumers of the C, D and E classes may need different features from those of goods manufactured for the A and B classes.The aim of this study is to revisit past popular market forecasts and to identify development trends for goods that target low- income consumers.Our results indicate that Wright and Johnson’s (1984 studies predicted that Brazil would maintain both qualitative and quantitative progress in its socioeconomic development over the next two decades and that the development of popular products is undergoing a buoyant phase.Several functional perspectives were used to develop an understanding of the phenomenon, especially marketing, engineering and manufacturing.Key words: Future studies. Popular markets. Product development.

  15. Development of Advanced Wear and Corrosion Resistant Systems Through Laser Surface Alloying and Materials Simulations

    Energy Technology Data Exchange (ETDEWEB)

    R. P. Martukanitz and S. Babu

    2007-05-03

    Laser surfacing in the form of cladding, alloying, and modifications are gaining widespread use because of its ability to provide high deposition rates, low thermal distortion, and refined microstructure due to high solidification rates. Because of these advantages, laser surface alloying is considered a prime candidate for producing ultra-hard coatings through the establishment or in situ formation of composite structures. Therefore, a program was conducted by the Applied Research Laboratory, Pennsylvania State University and Oak Ridge National Laboratory to develop the scientific and engineering basis for performing laser-based surface modifications involving the addition of hard particles, such as carbides, borides, and nitrides, within a metallic matrix for improved wear, fatigue, creep, and corrosion resistance. This has involved the development of advanced laser processing and simulation techniques, along with the refinement and application of these techniques for predicting and selecting materials and processing parameters for the creation of new surfaces having improved properties over current coating technologies. This program has also resulted in the formulation of process and material simulation tools capable of examining the potential for the formation and retention of composite coatings and deposits produced using laser processing techniques, as well as positive laboratory demonstrations in producing these coatings. In conjunction with the process simulation techniques, the application of computational thermodynamic and kinetic models to design laser surface alloying materials was demonstrated and resulted in a vast improvement in the formulation of materials used for producing composite coatings. The methodology was used to identify materials and to selectively modify microstructures for increasing hardness of deposits produced by the laser surface alloying process. Computational thermodynamic calculations indicated that it was possible to induce the

  16. The development of episodic future thinking in middle childhood.

    Science.gov (United States)

    Ferretti, F; Chiera, A; Nicchiarelli, S; Adornetti, I; Magni, R; Vicari, S; Valeri, G; Marini, A

    2018-02-01

    The ability to imagine future events (episodic future thinking-EFT) emerges in preschoolers and further improves during middle childhood and adolescence. In the present study, we focused on the possible cognitive factors that affect EFT and its development. We assessed the ability to mentally project forward in time of a large cohort of 135 6- to 11-year-old children through a task with minimal narrative demands (the Picture Book Trip task adapted from Atance and Meltzoff in Cogn Dev 20(3):341-361. doi:10.1016/j.cogdev.2005.05.001, 2005) in order to avoid potential linguistic effects on children's performance. The results showed that this task can be used to assess the development of EFT at least until the age of 8. Furthermore, EFT scores correlated with measures of phonological short-term and verbal working memory. These results support the possibility that cognitive factors such as working memory play a key role in EFT.

  17. New trends for future reactors. A research and development review

    International Nuclear Information System (INIS)

    Anzieu, P.

    2002-01-01

    Third generation reactors proposed to the market are mostly LWR, pressurized or boiling, with confirmed competitiveness. A special effort to increase the safety level is sensible and should be improved. At least, solutions are studied to better use plutonium. The development of a new generation of NPPs offers opportunity to have another step towards more safety, for example in being fail-safe, and towards a minimization of ultimate waste produced. In this field, CEA dedicates its main effort to the development of a gas cooled reactor and constraint on safety, waste minimization are indicated. At least some examples of progression in the safety level of a plant are shown from an existing one to an hypothetical future reactor

  18. Current trends and future development in pharmacologic stress testing

    International Nuclear Information System (INIS)

    Bae, Jin Ho; Lee, Jae Tae

    2005-01-01

    Pharmacologic stress testing for myocardial perfusion imaging is a widely used noninvasive method for the evaluation of known or suspected coronary artery disease. The use of exercise for cardiac stress has been practiced for over 60 years and clinicians are familiar with its using. However, there are inevitable situations in which exercise stress is inappropriate. A large number of patients with cardiac problems are unable to exercise to their full potential due to comorbidity such as osteoarthritis, vascular disease and pulmonary disease and a standard exercise stress test for myocardial perfusion imaging is suboptimal means for assessment of coronary artery disease. This problem has led to the development of the pharmacologic stress test and to a great increase in its popularity. All of the currently used pharmacologic agents have well-documented diagnostic value. This review deals the physiological actions, clinical protocols, safety, nuclear imaging applications of currently available stress agents and future development of new vasodilating agents

  19. Development of electrically insulating self-healing coatings in vanadium alloys for lithium fusion reactor

    International Nuclear Information System (INIS)

    1999-01-01

    Problems on electrically insulating self-healing coatings (SHC) on vanadium alloys for lithium fusion reactor systems are considered. In particular, the SHC stability and radiation resistance in lithium and effect of magnetic field on the efficiency of the TNR lithium systems are studied. New technological methods for application of self-healing coatings and study on their properties are developed. The vanadium-lithium materials testing in pile loops for solution of the above problems under conditions of the lithium TNR is described [ru

  20. Development of a Ballistic Specification for Magnesium Alloy AZ31B

    National Research Council Canada - National Science Library

    Jones, Tyrone L; DeLorme, Richard D

    2008-01-01

    .... The magnesium alloy plates were parametrically compared with the minimum performance requirements of aluminum alloy 5083-H131 temper rolled plate using various armor-piercing and fragment-simulating projectiles (FSPs...

  1. Report on investigations and studies on development of materials for hydrogen absorbing alloys; Suiso kyuzo gokin no zairyo no kaihatsu ni kansuru chosa kenkyu hokokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-03-01

    This paper describes investigations and studies on hydrogen absorbing alloy materials and the technologies to utilize them. In the investigations and studies, literatures were collected and put into order, questionnaire surveys were performed and analyzed, lecture meetings and panel discussions were held, and the discussion results were summarized. In the present status of developing hydrogen absorbing alloys, the current status of and problems in developing such hydrogen absorbing alloys as Ti-based, Mg-based, and rare earth-based alloys were put into order. Discussions were given on prospects of possibilities of developing new alloys, making them amorphous, and putting them into mass production. In the current status of developing the utilizing technologies, such technologies as hydrogen storage systems and heat pumps were put into order and discussed. With regard to problems in hydrogen absorbing alloys, discussions were given on alloy weight, pulverization, activation, heat conductivity, and alloy costs. In discussing the safety, discussions were given on the safety and compliance with related laws and regulations relative to hydrogen transportation using a great amount of hydrogen absorbing alloys, their storage, and heat storage systems. In addition, questionnaire surveys were carried out with an objective to identify the status of developing hydrogen absorbing alloys and needs from the industries. (NEDO)

  2. Future generations of CANDU: advantages and development with passive safety

    International Nuclear Information System (INIS)

    Duffey, R. B.

    2006-01-01

    Atomic Energy of Canada Limited (AECL) advances water reactor and CANDLT technology using an evolutionary development strategy. This strategy ensures that innovations are based firmly on current experience and keeps our development programs focused on one reactor concept, reducing risks, development costs, and product development cycle times. It also assures our customers that our products will never become obsolete or unsupported, and the continuous line of water reactor development is secure and supported into the future. Using the channel reactor advantage of modularity, the subdivided core has the advantage of passive safety by heat removal to the low- pressure moderator. With continuous improvements, the Advanced CANDU Reactor TM (ACR-1000TM) concept will likely remain highly competitive for a number of years and leads naturally to the next phase of CANDU development, namely the Generation IV CANDU -SCWR concept. This is conventional water technology, since supercritical boilers and turbines have been operating for some time in coal-fired power plants. Significant cost, safety, and performance advantages would result from the CANDU-SCWR concept, plus the flexibility of a range of plant sizes suitable for both small and large electric grids, and the ability for co-generation of electric power, process heat, and hydrogen. In CANDU-SCWR, novel developments are included in the primary circuit layout and channel design. The R and D in Canada is integrated with the Generation IV international Forum (GIF) plans, and has started on examining replaceable insulating liners that would ensure channel life, and on providing completely passive reactor decay heat removal directly to the moderator heat sink without forced cooling. In the interests of sustainability, hydrogen production by a CANDU- SCWR is also be included as part of the system requirements, where the methods for hydrogen production will depend on the outlet temperature of the reactor

  3. Challenges and Future in Vaccines, Drug Development, and Immunomodulatory Therapy

    Science.gov (United States)

    Nau, Gerard J.; Ross, Ted M.; Evans, Thomas G.; Chakraborty, Krishnendu; Empey, Kerry M.; Flynn, JoAnne L.

    2014-01-01

    Pulmonary diseases and infections are among the top contributors to human morbidity and mortality worldwide, and despite the successful history of vaccines and antimicrobial therapeutics, infectious disease still presents a significant threat to human health. Effective vaccines are frequently unavailable in developing countries, and successful vaccines have yet to be developed for major global maladies, such as tuberculosis. Furthermore, antibiotic resistance poses a growing threat to human health. The “Challenges and Future in Vaccines, Drug Development, and Immunomodulatory Therapy” session of the 2013 Pittsburgh International Lung Conference highlighted several recent and current studies related to treatment and prevention of antibiotic-resistant bacterial infections, highly pathogenic influenza, respiratory syncytial virus, and tuberculosis. Research presented here focused on novel antimicrobial therapies, new vaccines that are either in development or currently in clinical trials, and the potential for immunomodulatory therapies. These studies are making important contributions to the areas of microbiology, virology, and immunology related to pulmonary diseases and infections and are paving the way for improvements in the efficacy of vaccines and antimicrobials. PMID:25148426

  4. Challenges and future in vaccines, drug development, and immunomodulatory therapy.

    Science.gov (United States)

    Kling, Heather M; Nau, Gerard J; Ross, Ted M; Evans, Thomas G; Chakraborty, Krishnendu; Empey, Kerry M; Flynn, JoAnne L

    2014-08-01

    Pulmonary diseases and infections are among the top contributors to human morbidity and mortality worldwide, and despite the successful history of vaccines and antimicrobial therapeutics, infectious disease still presents a significant threat to human health. Effective vaccines are frequently unavailable in developing countries, and successful vaccines have yet to be developed for major global maladies, such as tuberculosis. Furthermore, antibiotic resistance poses a growing threat to human health. The "Challenges and Future in Vaccines, Drug Development, and Immunomodulatory Therapy" session of the 2013 Pittsburgh International Lung Conference highlighted several recent and current studies related to treatment and prevention of antibiotic-resistant bacterial infections, highly pathogenic influenza, respiratory syncytial virus, and tuberculosis. Research presented here focused on novel antimicrobial therapies, new vaccines that are either in development or currently in clinical trials, and the potential for immunomodulatory therapies. These studies are making important contributions to the areas of microbiology, virology, and immunology related to pulmonary diseases and infections and are paving the way for improvements in the efficacy of vaccines and antimicrobials.

  5. Accredited Standards Committee N15 Developments And Future Directions

    International Nuclear Information System (INIS)

    Mathews, Caroline E.; May, Melanie; Preston, Lynne

    2009-01-01

    Accredited Standards Committee (ASC) N15, Methods of Nuclear Material Control, is sponsored by the Institute of Nuclear Materials Management (INMM) to develop standards for protection, control and accounting of special nuclear materials in all phases of the nuclear fuel cycle, including analytical procedures where necessary and special to this purpose, except that physical protection of special nuclear material within a nuclear power plant is not included. Voluntary consensus standards complement federal regulations and technical standards and fulfill an important role for the nuclear regulatory agencies. This paper describes the N15 standards development process, with INMM as the Standards Developing Organization (SDO) and the N15 Committee responsible for implementation. Key components of the N15 standards development process include ANSI accreditation; compliance with the ANSI Essential Requirements (ER), coordination with other SDOs, communication with stakeholders, maintenance of balance between interest categories, and ANSI periodic audits. Recent and future ASC N15 activities are discussed, with a particular focus on new directions in anticipation of renewed growth in nuclear power.

  6. Microdosing and drug development: past, present and future

    Science.gov (United States)

    Lappin, Graham; Noveck, Robert; Burt, Tal

    2015-01-01

    Introduction Microdosing is an approach to early drug development where exploratory pharmacokinetic data are acquired in humans using inherently safe sub-pharmacologic doses of drug. The first publication of microdose data was 10 years ago and this review comprehensively explores the microdose concept from conception, over the past decade, up until the current date. Areas covered The authors define and distinguish the concept of microdosing from similar approaches. The authors review the ability of microdosing to provide exploratory pharmacokinetics (concentration-time data) but exclude microdosing using positron emission tomography. The article provides a comprehensive review of data within the peer-reviewed literature as well as the latest applications and a look into the future, towards where microdosing may be headed. Expert opinion Evidence so far suggests that microdosing may be a better predictive tool of human pharmacokinetics than alternative methods and combination with physiologically based modelling may lead to much more reliable predictions in the future. The concept has also been applied to drug-drug interactions, polymorphism and assessing drug concentrations over time at its site of action. Microdosing may yet have more to offer in unanticipated directions and provide benefits that have not been fully realised to date. PMID:23550938

  7. The promises and challenges of future reactor system developments

    International Nuclear Information System (INIS)

    Kim, S. H.; Chang, M. H.; Kim, H. J.

    2007-01-01

    Nuclear power is an inevitable option in Korea to overcome the scarcity of national energy resources and to reduce its overseas energy dependency. During the past three decades, Korea has accomplished outstanding achievements in facilitating a nuclear power development. The share of nuclear power in electricity generation has been rapidly increasing since 1978. Nuclear power has provided Korea with a most economically and environmentally-friendly way of generating electric energy, and has contributed a lot to its national economy growth. It will continue to do so in the future. For a stable and economical supply of electricity, nationwide efforts toward achieving self-reliance in nuclear power technology have been pursued. To date, a series of nuclear technology self-reliance programs such as CANDU fuel technology, PWR fuel technology, and nuclear reactor (KSNPP) technology have been successfully completed. KSNP is a technologically advanced power plant modified by Koreas' own operating experience and domestic technology and designed by adapting several advanced technologies suitable for its national situation. The KSNP was applied to the construction of Yonggwang 5 and 6 and Ulchin 5 and 6 and is now being replicated to provide a stable, economical and reliable electric power supply. Through a comprehensive nuclear Research and Development programs, an enhancement of its indigenous nuclear technology capability is currently being pursued. The effort has focused on improving its indigenous nuclear power technology such as improvements in safety and economy of the KSNP (KSNP+), a 600 MWe class KSNP and advanced fuels, and the establishment of industrial codes and standards. In addition, a Korean Advanced Power Reactor (APR 1400) and a System integrated Modular Advanced Reactor (SMART) are currently under development. The APR 1400 with a capacity of 1,400 MWe will be characterized by its drastically enhanced safety, reliability, and operability as well as its

  8. Development of a high density fuel based on uranium-molybdenum alloys with high compatibility in high temperatures

    International Nuclear Information System (INIS)

    Oliveira, Fabio Branco Vaz de

    2008-01-01

    This work has as its objective the development of a high density and low enriched nuclear fuel based on the gamma-UMo alloys, for utilization where it is necessary satisfactory behavior in high temperatures, considering its utilization as dispersion. For its accomplishment, it was started from the analysis of the RERTR ('Reduced Enrichment for Research and Test Reactors') results and some theoretical works involving the fabrication of gamma-uranium metastable alloys. A ternary addition is proposed, supported by the properties of binary and ternary uranium alloys studied, having the objectives of the gamma stability enhancement and an ease to its powder fabrication. Alloys of uranium-molybdenum were prepared with 5 to 10% Mo addition, and 1 and 3% of ternary, over a gamma U7Mo binary base alloy. In all the steps of its preparation, the alloys were characterized with the traditional techniques, to the determination of its mechanical and structural properties. To provide a process for the alloys powder obtention, its behavior under hydrogen atmosphere were studied, in thermo analyser-thermo gravimeter equipment. Temperatures varied from the ambient up to 1000 deg C, and times from 15 minutes to 16 hours. The results validation were made in a semi-pilot scale, where 10 to 50 g of powders of some of the alloys studied were prepared, under static hydrogen atmosphere. Compatibility studies were conducted by the exposure of the alloys under oxygen and aluminum, to the verification of possible reactions by means of differential thermal analysis. The alloys were exposed to a constant heat up to 1000 deg C, and their performances were evaluated in terms of their reaction resistance. On the basis of the results, it was observed that ternary additions increases the temperatures of the reaction with aluminum and oxidation, in comparison with the gamma UMo binaries. A set of conditions to the hydration of the alloys were defined, more restrictive in terms of temperature, time and

  9. Is there a future for nuclear power in developing countries?

    International Nuclear Information System (INIS)

    Srinivasan, M.R.

    1997-01-01

    While the future for nuclear power remains uncertain in many developing countries, India, along with China and South Korea, will require nuclear power to grow significantly in the coming decades. India will find its dependence on imported fuels increasing substantially. It will be prudent, therefore, to pursue the nuclear power programme in an efficient and cost effective manner aiming for substantially increased growth rate. We have to look at novel ways of bringing in additional investments from governmental sources (central and state) and the public through bonding. There may also be prospects of private sector participation and overseas investments. Those options remain to be explored, and now is the time to mount an effort for new methods of resource mobilization

  10. Developing 1D nanostructure arrays for future nanophotonics

    Directory of Open Access Journals (Sweden)

    Cooke DG

    2006-01-01

    Full Text Available AbstractThere is intense and growing interest in one-dimensional (1-D nanostructures from the perspective of their synthesis and unique properties, especially with respect to their excellent optical response and an ability to form heterostructures. This review discusses alternative approaches to preparation and organization of such structures, and their potential properties. In particular, molecular-scale printing is highlighted as a method for creating organized pre-cursor structure for locating nanowires, as well as vapor–liquid–solid (VLS templated growth using nano-channel alumina (NCA, and deposition of 1-D structures with glancing angle deposition (GLAD. As regards novel optical properties, we discuss as an example, finite size photonic crystal cavity structures formed from such nanostructure arrays possessing highQand small mode volume, and being ideal for developing future nanolasers.

  11. Health Physics Innovations Developed During Cassini for Future Space Applications

    Science.gov (United States)

    Nickell, Rodney E.; Rutherford, Theresa M.; Marmaro, George M.

    1999-01-01

    The long history of space flight includes missions that used Space Nuclear Auxiliary Power devices, starting with the Transit 4A Spacecraft (1961), continuing through the Apollo, Pioneer, Viking, Voyager, Galileo, Ulysses, Mars Pathfinder, and most recently, Cassini (1997). All Major Radiological Source (MRS) missions were processed at Kennedy Space Center/Cape Canaveral Air Station (KSC/CCAS) Launch Site in full compliance with program and regulatory requirements. The cumulative experience gained supporting these past missions has led to significant innovations which will be useful for benchmarking future MRS mission ground processing. Innovations developed during ground support for the Cassini mission include official declaration of sealed-source classifications, utilization of a mobile analytical laboratory, employment of a computerized dosimetry record management system, and cross-utilization of personnel from related disciplines.

  12. Study on tooth development, past, present, and future.

    Science.gov (United States)

    Jung, Han-Sung; Hitoshi, Yamamoto; Kim, Hee-Jin

    2003-04-01

    For decades, the understanding of craniofacial development has been a central issue in odontology and developmental biology. As a consequence, a significant number of deformities are being studied for their variety of genotype and phenotype. Although there is little doubt about the essential roles of homeobox genes, transcription factors, and growth factors, we now know at least the fundamental strategy of craniofacial biology. The tooth as an organ performs a whole range of functions, each of which is truly indispensable for the maintenance of life. The possession of teeth is, therefore, obviously coupled with the complication of the natural structure of an individual organism. In the following, we shall focus on a brief history of tooth studies and some suggestions for obtaining a full understanding of teeth in the future. Copyright 2003 Wiley-Liss, Inc.

  13. Sciences of geodesy II innovations and future developments

    CERN Document Server

    Xu, Guochang

    2014-01-01

    This series of reference books describes the sciences of different fields in and around geodesy. Each chapter, is written by experts in the respective fields and covers an individual field and describes the history, theory, the objective, the technology, and the development, the highlight of the research, the applications, the problems, as well as future directions. Contents of Volume II include: Geodetic LEO Satellite Missions, Satellite Altimetry, Airborne Lidar, GNSS Software Receiver, Geodetic Boundary Problem, GPS and INS, VLBI, Geodetic Reference Systems, Spectral Analysis, Earth Tide and Ocean Loading Tide, Remote Sensing, Photogrammetry, Occultation, Geopotential Determination, Geoid Determination, Local Gravity Field, Geopotential Determination, Magnet Field, Mobile Mapping, General Relativity, Wide-area Precise Positioning etc.

  14. Future development of IR thermovision weather satellite equipment

    Science.gov (United States)

    Listratov, A. V.

    1974-01-01

    The self radiation of the surface being viewed is used for image synthesis in IR thermovision equipment. The installation of such equipment aboard weather satellites makes it possible to obtain cloud cover pictures of the earth's surface in a complete orbit, regardless of the illumination conditions, and also provides quantitative information on the underlying surface temperature and cloud top height. Such equipment is used successfully aboard the Soviet satellites of the Meteor system, and experimentally on the American satellites of the Nimbus series. With regard to surface resolution, the present-day IR weather satellite equipment is inferior to the television equipment. This is due primarily to the comparatively low detectivity of the IR detectors used. While IR equipment has several fundamental advantages in comparison with the conventional television equipment, the problem arises of determining the possibility for future development of weather satellite IR thermovision equipment. Criteria are examined for evaluating the quality of IR.

  15. Development of polarized e+ beams for future linear colliders

    International Nuclear Information System (INIS)

    Chiba, M.; Hamatsu, R.; Endo, A.

    1995-01-01

    We have so far been carrying out systematic investigations to create polarized e + on the basis of two new methods. One method is to use β + decay of radioactive nuclei with short life-time produced with a proton cyclotron and the other method is to use e + e - pair creation from polarized γ beams made through backward Compton scattering of laser lights. Here we describe technical details on productions of polarized e + and measurements of the polarization. The experiments of producing polarized e + will soon start. Although the e + intensity is not sufficiently high, we will acquire lots of know-how for further development of polarized e + sources with high quality which will possibly be applied to future linear colliders. (author)

  16. Scenario drafting to anticipate future developments in technology assessment

    Directory of Open Access Journals (Sweden)

    Retèl Valesca P

    2012-08-01

    Full Text Available Abstract Background Health Technology Assessment (HTA information, and in particular cost-effectiveness data is needed to guide decisions, preferably already in early stages of technological development. However, at that moment there is usually a high degree of uncertainty, because evidence is limited and different development paths are still possible. We developed a multi-parameter framework to assess dynamic aspects of a technology -still in development-, by means of scenario drafting to determine the effects, costs and cost-effectiveness of possible future diffusion patterns. Secondly, we explored the value of this method on the case of the clinical implementation of the 70-gene signature for breast cancer, a gene expression profile for selecting patients who will benefit most from chemotherapy. Methods To incorporate process-uncertainty, ten possible scenarios regarding the introduction of the 70-gene signature were drafted with European experts. Out of 5 most likely scenarios, 3 drivers of diffusion (non-compliance, technical failure, and uptake were quantitatively integrated in a decision-analytical model. For these scenarios, the cost-effectiveness of the 70-gene signature expressed in Incremental Cost-Effectiveness Ratios (ICERs was compared to clinical guidelines, calculated from the past (2005 until the future (2020. Results In 2005 the ICER was €1,9 million/quality-adjusted-life-year (QALY, meaning that the 70-gene signature was not yet cost-effective compared to the current clinical guideline. The ICER for the 70-gene signature improved over time with a range of €1,9 million to €26,145 in 2010 and €1,9 million to €11,123/QALY in 2020 depending on the separate scenario used. From 2010, the 70-gene signature should be cost-effective, based on the combined scenario. The uptake-scenario had strongest influence on the cost-effectiveness. Conclusions When optimal diffusion of a technology is sought, incorporating process

  17. Accounting for future redesign to balance performance and development costs

    International Nuclear Information System (INIS)

    Villanueva, D.; Haftka, R.T.; Sankar, B.V.

    2014-01-01

    Most components undergo tests after they are designed and are redesigned if necessary. Tests help designers find unsafe and overly conservative designs, and redesign can restore safety or increase performance. In general, the expected changes to the performance and reliability of the design after the test and redesign are not considered. In this paper, we explore how modeling a future test and redesign provides a company an opportunity to balance development costs versus performance by simultaneously designing the design and the post-test redesign rules during the initial design stage. Due to regulations and tradition, safety margin and safety factor based design is a common practice in industry as opposed to probabilistic design. In this paper, we show that it is possible to continue to use safety margin based design, and employ probability solely to select safety margins and redesign criteria. In this study, we find the optimum safety margins and redesign criterion for an integrated thermal protection system. These are optimized in order to find a minimum mass design with minimal redesign costs. We observed that the optimum safety margin and redesign criterion call for an initially conservative design and use the redesign process to trim excess weight rather than restore safety. This would fit well with regulatory constraints, since regulations usually impose minimum safety margins. - Highlights: • Modeling future tests and redesign allows balancing performance and development cost. • We optimize safety margins and redesign criteria for desired balance. • We design with safety margins, with probabilistic optimization to decide the margins. • Redesign also allowed the trade-off of conservativeness and performance. • In our case it paid to be conservative initially but redesign for more

  18. Status and Future Developments in Large Accelerator Control Systems

    International Nuclear Information System (INIS)

    Karen S. White

    2006-01-01

    Over the years, accelerator control systems have evolved from small hardwired systems to complex computer controlled systems with many types of graphical user interfaces and electronic data processing. Today's control systems often include multiple software layers, hundreds of distributed processors, and hundreds of thousands of lines of code. While it is clear that the next generation of accelerators will require much bigger control systems, they will also need better systems. Advances in technology will be needed to ensure the network bandwidth and CPU power can provide reasonable update rates and support the requisite timing systems. Beyond the scaling problem, next generation systems face additional challenges due to growing cyber security threats and the likelihood that some degree of remote development and operation will be required. With a large number of components, the need for high reliability increases and commercial solutions can play a key role towards this goal. Future control systems will operate more complex machines and need to present a well integrated, interoperable set of tools with a high degree of automation. Consistency of data presentation and exception handling will contribute to efficient operations. From the development perspective, engineers will need to provide integrated data management in the beginning of the project and build adaptive software components around a central data repository. This will make the system maintainable and ensure consistency throughout the inevitable changes during the machine lifetime. Additionally, such a large project will require professional project management and disciplined use of well-defined engineering processes. Distributed project teams will make the use of standards, formal requirements and design and configuration control vital. Success in building the control system of the future may hinge on how well we integrate commercial components and learn from best practices used in other industries

  19. The role of solid-solution strengthening in the development of alloys for HTR applications

    International Nuclear Information System (INIS)

    Dean, A.V.

    1978-09-01

    In this paper the fundamental factors (lattice distortion, stacking fault energy and diffusion rates) which contribute to solid-solution strengthening are examined and used as a basis for indicating the composition of alloys likely to posses the highest strength at elevated temperatures. Alloys based on Ni-Cr-W-Mo should possess the best properties but alloys based on Ni-Cr-Nb-Ti are also recommended for further study. The effect of alloy composition on corrosion resistance has been excluded from this examination but it should be possible to adjust alloy composition in order to optimise corrosion resistance. (orig./IHOE) [de

  20. Critical Technologies for the Development of Future Space Elevator Systems

    Science.gov (United States)

    Smitherman, David V., Jr.

    2005-01-01

    A space elevator is a tether structure extending through geosynchronous earth orbit (GEO) to the surface of the earth. Its center of mass is in GEO such that it orbits the earth in sync with the earth s rotation. In 2004 and 2005, the NASA Marshall Space Flight Center and the Institute for Scientific Research, Inc. worked under a cooperative agreement to research the feasibility of space elevator systems, and to advance the critical technologies required for the future development of space elevators for earth to orbit transportation. The discovery of carbon nanotubes in the early 1990's was the first indication that it might be possible to develop materials strong enough to make space elevator construction feasible. This report presents an overview of some of the latest NASA sponsored research on space elevator design, and the systems and materials that will be required to make space elevator construction possible. In conclusion, the most critical technology for earth-based space elevators is the successful development of ultra high strength carbon nanotube reinforced composites for ribbon construction in the 1OOGPa range. In addition, many intermediate technology goals and demonstration missions for the space elevator can provide significant advancements to other spaceflight and terrestrial applications.

  1. Cryobiotechnology of apple (Malus spp.): development, progress and future prospects.

    Science.gov (United States)

    Wang, Min-Rui; Chen, Long; Teixeira da Silva, Jaime A; Volk, Gayle M; Wang, Qiao-Chun

    2018-05-01

    Cryopreservation provides valuable genes for further breeding of elite cultivars, and cryotherapy improves the production of virus-free plants in Malus spp., thus assisting the sustainable development of the apple industry. Apple (Malus spp.) is one of the most economically important temperate fruit crops. Wild Malus genetic resources and existing cultivars provide valuable genes for breeding new elite cultivars and rootstocks through traditional and biotechnological breeding programs. These valuable genes include those resistant to abiotic factors such as drought and salinity, and to biotic factors such as fungi, bacteria and aphids. Over the last three decades, great progress has been made in apple cryobiology, making Malus one of the most extensively studied plant genera with respect to cryopreservation. Explants such as pollen, seeds, in vivo dormant buds, and in vitro shoot tips have all been successfully cryopreserved, and large Malus cryobanks have been established. Cryotherapy has been used for virus eradication, to obtain virus-free apple plants. Cryopreservation provided valuable genes for further breeding of elite cultivars, and cryotherapy improved the production of virus-free plants in Malus spp., thus assisting the sustainable development of the apple industry. This review provides updated and comprehensive information on the development and progress of apple cryopreservation and cryotherapy. Future research will reveal new applications and uses for apple cryopreservation and cryotherapy.

  2. Development trends for insertion devices of future synchrotron light sources

    Directory of Open Access Journals (Sweden)

    C. S. Hwang

    2011-04-01

    Full Text Available The in-vacuum undulator with a permanent magnet at room temperature is a mature technology and is widely used; with a short period length in a medium-energy facility, it can enhance photon brilliance in the hard x-ray region. A cryogenic permanent magnet has been investigated as an in-vacuum undulator; this undulator will become the best prospective device to satisfy the requirements of a photon source with great brilliance in the hard x-ray region. For the further hard x-ray region, a superconducting wiggler can provide great flux with a continuous spectrum, whereas a superconducting undulator will provide great brilliance with a discrete spectrum. High-temperature superconducting wires are highly promising for use in the development of superconducting undulators; unique algorithms for their development with an extremely short period in a small-magnet gap have been devised. Some out-of-vacuum planar undulators with special functions must also be fabricated to enable diverse applications in various light-source facilities. This article describes current and future developments for insertion devices in storage-ring and free-electron-laser facilities and discusses their feasibility for use therein.

  3. The geopolitics of future tourism development in an expanding EU

    Directory of Open Access Journals (Sweden)

    Peter Antony Singleton

    2016-09-01

    Full Text Available Purpose – The purpose of this paper is to assert the link between the process of EU accession, the consolidation of democratic processes and the improvement of economic and tourism infrastructure to incoming tourism flows. Design/methodology/approach – The methodology of this paper involves explanation of an analysis exploring links between governmental systems and the order necessary for economic development and tourism. The argument is supported by the recent history of tourism development in three countries, two within the EU and one outside. Findings – Accession to the EU (especially in the case of Eastern European countries constitutes a way to emulate the democratic freedoms and greater economic prosperity of existing EU member states. Tourism is one of the areas of economy that benefits from the stability and growth EU membership can bring. Accession to the EU has had beneficial effects for acceding in terms of political stability and tourism growth. Originality/value – The opportunities that EU membership can bring to tourism development for example (also strategies to exploit these opportunities depend to a large degree on the international relations between the EU and its rivals. The extent to which tourism demands ebb and flow is governed by a range of factors, but the issues of conflict and security are game breakers. Understanding the factors and trends involved in the peaceful resolution of conflict (democratic model or use of force to resolve conflict (military model is key in the analysis of future tourism opportunities.

  4. Predicting the future development of depression or PTSD after injury.

    Science.gov (United States)

    Richmond, Therese S; Ruzek, Josef; Ackerson, Theimann; Wiebe, Douglas J; Winston, Flaura; Kassam-Adams, Nancy

    2011-01-01

    The objective was to develop a predictive screener that when given soon after injury will accurately differentiate those who will later develop depression or posttraumatic stress disorder (PTSD) from those who will not. This study used a prospective, longitudinal cohort design. Subjects were randomly selected from all injured patients in the emergency department; the majority was assessed within 1 week postinjury with a short predictive screener, followed with in-person interviews after 3 and 6 months to determine the emergence of depression or PTSD within 6 months after injury. A total of 192 completed a risk factor survey at baseline; 165 were assessed over 6 months. Twenty-six subjects [15.8%, 95% confidence interval (CI) 10.2-21.3] were diagnosed with depression, four (2.4%, 95% CI 0.7-5.9) with PTSD and one with both. The final eight-item predictive screener was derived; optimal cutoff scores were ≥2 (of 4) depression risk items and ≥3 (of 5) PTSD risk items. The final screener demonstrated excellent sensitivity and moderate specificity both for clinically significant symptoms and for the diagnoses of depression and PTSD. A simple screener that can help identify those patients at highest risk for future development of PTSD and depression postinjury allows the judicious allocation of costly mental health resources. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Microalgal Cultivation in Secondary Effluent: Recent Developments and Future Work

    Directory of Open Access Journals (Sweden)

    Junping Lv

    2017-01-01

    Full Text Available Eutrophication of water catchments and the greenhouse effect are major challenges in developing the global economy in the near future. Secondary effluents, containing high amounts of nitrogen and phosphorus, need further treatment before being discharged into receiving water bodies. At the same time, new environmentally friendly energy sources need to be developed. Integrating microalgal cultivation for the production of biodiesel feedstock with the treatment of secondary effluent is one way of addressing both issues. This article provides a comprehensive review of the latest progress in microalgal cultivation in secondary effluent to remove pollutants and accumulate lipids. Researchers have discovered that microalgae remove nitrogen and phosphorus effectively from secondary effluent, accumulating biomass and lipids in the process. Immobilization of appropriate microalgae, and establishing a consortium of microalgae and/or bacteria, were both found to be feasible ways to enhance pollutant removal and lipid production. Demonstrations of pilot-scale microalgal cultures in secondary effluent have also taken place. However there is still much work to be done in improving pollutants removal, biomass production, and lipid accumulation in secondary effluent. This includes screening microalgae, constructing the consortium, making use of flue gas and nitrogen, developing technologies related to microalgal harvesting, and using lipid-extracted algal residues (LEA.

  6. Shippingport Atomic Power Station Operating Experience, Developments and Future Plans

    International Nuclear Information System (INIS)

    Feinroth, H.; Oldham, G.M.; Stiefel, J.T.

    1963-01-01

    This paper describes and evaluates five years of operation and test of the Shippingport Atomic Power Station and discusses the current technical developments and future plans of the Shippingport programme. This programme is directed towards development of the basic technology of light-water reactors to provide the basis for potential reduction in the costs of nuclear power. The Shippingport reactor plant has operated for over five years and has been found to integrate readily into a utility system either as a base load or peak load unit. Plant component performance has been reliable. There have been no problems in contamination or waste disposal. Access to primary coolant components for maintenance has been good, demonstrating the integrity of fuel elements. Each of the three refuelling operations performed since start-up of Shippingport has required successively less time to accomplish. Recently, the third seed was refuelled in 32 working days, about one quarter the time required for the first refuelling. The formal requirements of personnel training, written administrative procedures, power plant manuals, etc., which have been a vital factor in the successful implementation of the Shippingport programme, are described. The results obtained from the comprehensive test programme carried out at Shippingport are compared with calculations, and good agreement has been obtained. Reactor core performance, plant stability, and response to load changes, fuel element and control rod performance, long-term effects such as corrosion and radiation level build-up, component performance, etc., are discussed in this paper. The principal objective of the current and future programmes of the Shippingport Project in advancing the basic technology of water-cooled reactors is discussed. This programme includes the continued operation of the Shippingport plant, and the development, design, manufacture and test operation of a long-life, highpower density second core - Core 2. At its

  7. Ferromagnetic bulk glassy alloys

    International Nuclear Information System (INIS)

    Inoue, Akihisa; Makino, Akihiro; Mizushima, Takao

    2000-01-01

    This paper deals with the review on the formation, thermal stability and magnetic properties of the Fe-based bulk glassy alloys in as-cast bulk and melt-spun ribbon forms. A large supercooled liquid region over 50 K before crystallization was obtained in Fe-(Al, Ga)-(P, C, B, Si), Fe-(Cr, Mo, Nb)-(Al, Ga)-(P, C, B) and (Fe, Co, Ni)-Zr-M-B (M=Ti, Hf, V, Nb, Ta, Cr, Mo and W) systems and bulk glassy alloys were produced in a thickness range below 2 mm for the Fe-(Al, Ga)-(P, C, B, Si) system and 6 mm for the Fe-Co-(Zr, Nb, Ta)-(Mo, W)-B system by copper-mold casting. The ring-shaped glassy Fe-(Al, Ga)-(P, C, B, Si) alloys exhibit much better soft magnetic properties as compared with the ring-shaped alloy made from the melt-spun ribbon because of the formation of the unique domain structure. The good combination of high glass-forming ability and good soft magnetic properties indicates the possibility of future development as a new bulk glassy magnetic material

  8. A combinatorial approach to the development of a creep resistant beta titanium alloy

    Science.gov (United States)

    Peterson, Benjamin H.

    Timetal 21S has been selected as a baseline for the development of a new high temperature beta titanium alloy. A combinatorial approach employing directed laser deposition of elemental powders has been used to produce a number of test coupons with controlled variations of composition. In addition to the variation of the baseline elements (Ti, Mo, Nb, Al and Si), the alloys contain varying amounts of neutral elements (Zr and Sn), beta-stabilizers (W) and dispersoid formers (B, C and Ge). Subsequently, the creep properties, represented by their minimum creep rates, have been assessed using an Instron Electrothermal Mechanical Tester (ETMT). The microstructures of the test coupons have been characterized using a range of techniques and have been quantified using rigorous stereological techniques to populate databases and subsequently train and test Bayesian Neural Network models for the prediction of creep properties. Additionally, advanced characterization techniques and computation tools have been employed to aid in the identification of the creep rate-limiting microstructural features. For example, SEM and TEM studies show a critical dependence of the size of alpha-denuded beta regions on the creep properties in these beta-Ti alloys. The most important microstructural features (volume fraction alpha, alpha lath thickness and beta mean free path) and alloying additions (Sn and Ge) have been identified and are discussed. The ETMT, used to investigate creep properties in the work, has also been characterized and compared with traditional tensile and creep testing methods. Computational models incorporating heat transfer and electrostatics were used to investigate the temperature profiles that result from the interaction of joule heating, conductive cooling and radiative cooling in subscale Ti-6Al-4V samples at five current densities in the ETMT. The tensile properties, including YS, UTS, E and total elongation, of sub-scale specimens have been evaluated over a range

  9. [Development of antituberculous drugs: current status and future prospects].

    Science.gov (United States)

    Tomioka, Haruaki; Namba, Kenji

    2006-12-01

    latently infected with MTB. Unfortunately, no new drugs except rifabutin and rifapentine has been marketed for TB in the US and other countries during the 40 years after release of rifampicin. There are a number of constraints that have deterred companies from investing in new anti-TB drugs. The research is expensive, slow and difficult, and requires specialized facilities for handling MTB. There are few animal models that closely mimic the human TB disease. Development time of any anti-TB drug will be long. In fact, clinical trials will require the minimum six-month therapy, with a follow-up period of one year or more. In addition, it is hard to demonstrate obvious benefit of a new anti-TB agents over pre-existing drugs, since clinical trials involve multidrug combination therapy using highly effective ordinary anti-TB drugs. Finaly, there is the perceived lack of commercial return to companies engaged in the development of new anti-TB drugs, because over 95% of TB cases worldwide are in developing countries. In this symposium, we reviewed the following areas. 1. Critical new information on the entire genome of MTB recently obtained and increasing knowledge of various mycobacterial virulence genes are greatly promoting the identification of genes that code for new drug targets. In this context, Dr. Namba reviewed the status of new types of compounds which are being developed as anti-TB drug. He also discussed the development of new antimycobacterial drugs according to new and potential pharmacological targets and the best clinical development plans for new-TB drugs in relation to corporate strategy. 2. Using such findings for mycobacterial genomes, bioinformatics/genomics/proteomics-based drug design and drug development using quantitative structure-activity relationships may be possible in the near future. In this context, Dr. Suwa and Dr. Suzuki reviewed the usefulness of chemical genomics in searching novel drug targets for development of new antituberculous drugs. The

  10. The Future of Sustainable Development: Welcome to the European Journal of Sustainable Development Research

    Directory of Open Access Journals (Sweden)

    Marc A. Rosen

    2017-01-01

    Full Text Available Sustainable development is an objective for humanity of crucial importance to how we develop and evolve. It is also a rapidly growing discipline that is becoming increasingly applied in numerous areas, reflecting humanity's desire to ensure its activities can be sustained into the future and do not adversely affect the ecology or environment. Sustainable development is often defined based on the 1987 statement of the World Commission on Environment and Development (i.e., the Brundtland Commission. In that milestone document, sustainable development was defined as "development that meets the needs of the present without compromising the ability of future generations to meet their own needs." But new definitions are being developed as the discipline expands and becomes more multidisciplinary and complex.

  11. Texture development and anisotropic behaviour of a TI-44.2NI4.9CU (AT.%) shape memory alloy

    NARCIS (Netherlands)

    Zhao, L.

    1997-01-01

    The objective of this work was to determine the relationship between texture development and anisotropy of shape memory properties. A commercial Ti-45Ni-5Cu (at.%) shape memory alloy was selected. Textures were developed by controlling rolling parameters, such as rolling temperature, intermediate

  12. THE POTENTIAL IMPACT OF TEHNOLOGICAL DEVELOPMENT ON FUTURE JOBS

    Directory of Open Access Journals (Sweden)

    ŞTEFAN COSMIN-ALEXANDRU

    2015-12-01

    Full Text Available Technological developments in the last decades have reached unbelievable levels, what was once the domain of science fiction movies is now a reality, and this developments have left few areas of human life unchanged. In this paper we aim to explore the changes that technology brought to the way people work and, especially to the way people will work. While we acknowledge that any prediction about the future is almost always proved wrong from the get go, we think that the importance of the subject warrants the risk. The paper draws its routes from some of the most influential theories about how technology will impact the way people work and is main objective is to spark a conversation about the merits of lack thereof that they contain. It is by no means an extensive work, but rather the beginning of a research focus that will, hopefully bring new insights in the above mentioned field. For the sake of convenience we have grouped the predictions in three categories: “Business as usual”, “Lateral developments” and “All bets are off” based on how profound the change would be. Each of this levels offers different benefits, as well as different challenges, our hope is that throw a process of thorough consideration solutions can be generated to maximize the former while minimizing the latter.

  13. The Philippine historical earthquakecatalog: its development, current stateand future directions

    Directory of Open Access Journals (Sweden)

    B. C. Bautista

    2004-06-01

    Full Text Available This report will trace the development of the historical earthquake catalog of the Philippines, assess its present state and recommend future research directions. The current Philippine historical earthquake catalog is culled from various catalogs, both global and local, that were developed since the first Philippine catalog by Perrey was published in 1860. While early global catalogs gave simple mention of earthquakes in the Philippines, more focused earthquake catalogs about the Philippines gave more explicit descriptions of earthquake accounts and adopted descriptions by local historians. Over the years, various historians and seismologists continued to compile their catalogs whose contents depended on the author?s perspectives and purposes. These works varied from simple listings to others including detailed descriptions. It was only recently that an attempt made to parameterize the magnitudes and epicenters of Philippine historical earthquakes using magnitude-felt area relations was done. A more detailed catalog, however, is now underway that will show details of intensity distribution for each significant historical earthquake. By comparing the historical catalog with the recent catalog and assuming that the recent catalog is complete, we find that there are still a substantial amount of historical earthquakes that needs to be reviewed and located. Possible sources of new information are local libraries, museums and archives in the Philippines, Spain and other Southeast Asian countries to which the country was in contact with during historical times.

  14. Present Situation and Future Development Trend of Smart Clothing

    Directory of Open Access Journals (Sweden)

    Ju Fengfan

    2017-09-01

    Full Text Available With the rapid development of science and technology, our daily clothes are changing quietly. Wearable smart clothing has gradually the leading role in the clothing market. This article first explains the concept of wearable intelligent clothing in china, and then I analyze the various types of wearable smart clothing that is currently facing problems, and summarized about the key points and future directions of wearable intelligent clothing design. From the beginning of 2013, smart watches, bracelets, glasses have entered the public vision, become a "trendsetter who sought the object", this year the industry was identified as "the first year of wearable equipment". In simple terms, a wearable device is a portable device that can be worn directly on the body, or integrated into the user's clothing or accessories. However, with the development of wireless sensor technology, kinds of wearable smart clothing gradually appeared in people's life, the smart clothing is made up of small chip, electronic components, power equipment, embedded into clothing, can achieve a specific function, in order to facilitate people's life.

  15. Highly immersive virtual reality laparoscopy simulation: development and future aspects.

    Science.gov (United States)

    Huber, Tobias; Wunderling, Tom; Paschold, Markus; Lang, Hauke; Kneist, Werner; Hansen, Christian

    2018-02-01

    Virtual reality (VR) applications with head-mounted displays (HMDs) have had an impact on information and multimedia technologies. The current work aimed to describe the process of developing a highly immersive VR simulation for laparoscopic surgery. We combined a VR laparoscopy simulator (LapSim) and a VR-HMD to create a user-friendly VR simulation scenario. Continuous clinical feedback was an essential aspect of the development process. We created an artificial VR (AVR) scenario by integrating the simulator video output with VR game components of figures and equipment in an operating room. We also created a highly immersive VR surrounding (IVR) by integrating the simulator video output with a [Formula: see text] video of a standard laparoscopy scenario in the department's operating room. Clinical feedback led to optimization of the visualization, synchronization, and resolution of the virtual operating rooms (in both the IVR and the AVR). Preliminary testing results revealed that individuals experienced a high degree of exhilaration and presence, with rare events of motion sickness. The technical performance showed no significant difference compared to that achieved with the standard LapSim. Our results provided a proof of concept for the technical feasibility of an custom highly immersive VR-HMD setup. Future technical research is needed to improve the visualization, immersion, and capability of interacting within the virtual scenario.

  16. Future of oil and gas development in the western Amazon

    International Nuclear Information System (INIS)

    Finer, Matt; Babbitt, Bruce; Novoa, Sidney; Ferrarese, Francesco; Pappalardo, Salvatore Eugenio; Marchi, Massimo De; Saucedo, Maria; Kumar, Anjali

    2015-01-01

    The western Amazon is one of the world’s last high-biodiversity wilderness areas, characterized by extraordinary species richness and large tracts of roadless humid tropical forest. It is also home to an active hydrocarbon (oil and gas) sector, characterized by operations in extremely remote areas that require new access routes. Here, we present the first integrated analysis of the hydrocarbon sector and its associated road-building in the western Amazon. Specifically, we document the (a) current panorama, including location and development status of all oil and gas discoveries, of the sector, and (b) current and future scenario of access (i.e. access road versus roadless access) to discoveries. We present an updated 2014 western Amazon hydrocarbon map illustrating that oil and gas blocks now cover 733 414 km 2 , an area much larger than the US state of Texas, and have been expanding since the last assessment in 2008. In terms of access, we documented 11 examples of the access road model and six examples of roadless access across the region. Finally, we documented 35 confirmed and/or suspected untapped hydrocarbon discoveries across the western Amazon. In the Discussion, we argue that if these reserves must be developed, use of the offshore inland model—a method that strategically avoids the construction of access roads—is crucial to minimizing ecological impacts in one of the most globally important conservation regions. (letter)

  17. Simulation of cathode spot crater formation and development on CuCr alloy in vacuum arc

    Science.gov (United States)

    Wang, Lijun; Zhang, Xiao; Wang, Yuan; Yang, Ze; Jia, Shenli

    2018-04-01

    The two-dimensional (2D) rotary axisymmetric model is used to describe the formation and development of a cathode spot on a copper-chromium alloy (CuCr) in a vacuum arc. The model includes hydrodynamic equations and the heat transfer equation. Parameters used in this model come from experiments and other researchers' work. The influence of parameters is analyzed, and the simulation results are compared with pure metal simulation results. In simulation, the depth of the cathode crater is from 0.5 μm to 1.1 μm, the radius of the cathode crater is from 1.6 μm to 2.6 μm, the maximum velocity of the droplet is from 200 m/s to 600 m/s, and the maximum temperature is from 3500 K to 5000 K which is located in the area with a radius of 0.5-1.5 μm. The simulation results show that a smooth cathode surface is advantageous for reducing ablation, the ablation on the CuCr alloy is smaller than that on the pure metal cathode electrode, and the cathode spot appears on the chromium grain only on CuCr. The simulation results are in good agreement with the experiment.

  18. Development and Testing of Dispersion-Strengthened Tungsten Alloys via Spark Plasma Sinterin

    Science.gov (United States)

    Lang, Eric; Madden, Nathan; Smith, Charles; Krogstad, Jessica; Allain, Jean Paul

    2017-10-01

    Tungsten (W) is a common plasma-facing component (PFC) material in the divertor region of tokamak fusion devices due to its high melting point and high sputter threshold. However, W is intrinsically brittle and is further embrittled under neutron irradiation, and the low recrystallization temperature pose complications in fusion environments. More ductile W alloys, such as dispersion-strengthened tungsten are being developed. In this work, W samples are processed via spark plasma sintering (SPS) with TiC, ZrC, and TaC dispersoids alloyed from 0.5 to 10 weight %. SPS is a powder compaction technique that provides high pressure and heating rates via electrical current, allowing for a lower final temperature and hold time for compaction. Initial testing of material properties, smicrostructure, and composition of specimens will be presented. Deuterium and helium irradiations have been performed in IGNIS, a multi-functional, in-situ irradiation and characterization facility at the University of Illinois. High-flux, low-energy exposures at the Magnum-PSI facility at DIFFER exposed samples to a D fluence of 1×1026 cm-2 and He fluence of 1x1025-1x1026 cm-2 at temperatures of 300-1000 C. In-situ chemistry changes via XPS and ex-situ morphology changes via SEM will be studied. Work supported by US DOE Contract DE-SC0014267.

  19. Development of a Numerical Model for High-Temperature Shape Memory Alloys

    Science.gov (United States)

    DeCastro, Jonathan A.; Melcher, Kevin J.; Noebe, Ronald D.; Gaydosh, Darrell J.

    2006-01-01

    A thermomechanical hysteresis model for a high-temperature shape memory alloy (HTSMA) actuator material is presented. The model is capable of predicting strain output of a tensile-loaded HTSMA when excited by arbitrary temperature-stress inputs for the purpose of actuator and controls design. Common quasi-static generalized Preisach hysteresis models available in the literature require large sets of experimental data for model identification at a particular operating point, and substantially more data for multiple operating points. The novel algorithm introduced here proposes an alternate approach to Preisach methods that is better suited for research-stage alloys, such as recently-developed HTSMAs, for which a complete database is not yet available. A detailed description of the minor loop hysteresis model is presented in this paper, as well as a methodology for determination of model parameters. The model is then qualitatively evaluated with respect to well-established Preisach properties and against a set of low-temperature cycled loading data using a modified form of the one-dimensional Brinson constitutive equation. The computationally efficient algorithm demonstrates adherence to Preisach properties and excellent agreement to the validation data set.

  20. Reduced-activation steels: present status and future development

    International Nuclear Information System (INIS)

    Klueh, R.L.

    2007-01-01

    Full text of publication follows: Reduced-activation steels for fusion reactor applications were developed in the 1980's to replace the commercial elevated- temperature steels first considered. In the United States, this involved replacing Sandvik HT9 and modified 9Cr-1Mo steels. Reduced-activation steels, which were developed for more rapid radioactivity decay following exposure in a fusion neutron environment, were patterned after the commercial steels they were to replace. The objective for the reduced-activation steels was that they have strengths (yield stress and ultimate tensile strength from room temperature to 600 deg. C) and impact toughness (measured in a Charpy test) comparable to or better than the steels they were replacing. That objective was achieved in reduced-activation steels developed in Japan, Europe, and the United States. Since the reduced-activation steels were developed in the 1980's, reactor designers have been interested designs for increased efficiency of future fusion plants. This means reactors will need to operate at higher temperatures-above 550 deg. C, which is the upper-temperature limit for the reduced-activation steels. Although the tensile and impact toughness of the reduced-activation steels exceed those of the commercial steels they were patterned after, their creep-rupture properties are inferior to some of the commercial steels they replaced. furthermore, they are much inferior to commercial steels that have been developed since the 1980's. Reasons for why the creep-rupture properties for the new commercial ferritic/martensitic steels are superior to the earlier commercial steels and the reduced-activation steels were examined. The reasons involve compositional changes that were made in the earlier commercial steels to give the new commercial steels their superior properties. Computational thermodynamics calculations were carried out to compare the expected equilibrium phases. It appears that similar changes in composition

  1. Development of On-line Monitoring System for Shape Memory Alloy Composite

    International Nuclear Information System (INIS)

    Lee, Jin Kyung; Park, Young Chul; Lee, Min Rae; Lee, Dong Hwa; Lee, Kyu Chang

    2003-01-01

    A hot press method was use for the optimal manufacturing condition for a shape memory alloy(SMA) composite. The bonding between the matrix and the reinforcement within the SMA composite by the hot press method was strengthened by cold rolling. In this study, the objective was to develop an on-line monitoring system for the prevention of the crack initiation and propagation by shape memory effort of SMA composite. Shape memory effect was used to prevent the SMA composite from cracking. For the system to be developed, an optimal hE parameter should be determined based on the degree of damage and crack initiation. When the SHA composite was heated by the plate heater attached at the composite, the propagating cracks appeared to be controlled by the compressive force of SMA

  2. Laser surface alloying of aluminium-transition metal alloys

    International Nuclear Information System (INIS)

    Almeida, A.; Vilar, R.

    1998-01-01

    Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM) alloys. Cr and Mo are particularly interesting alloying elements to produce stable high-strength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO 2 laser . This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloy, over the last years. (Author) 16 refs

  3. Current and future developments in nucleic acid-based diagnostics

    International Nuclear Information System (INIS)

    Viljoen, G.J.; Romito, M.; Kara, P.D.

    2005-01-01

    -of-care use. Advances in biosensors, the development of integrated systems, such as lab-on-a-chip devices, and enhanced communications systems are likely to play significant future roles in allowing for rapid therapeutic and management strategies to deal with disease outbreaks. (author)

  4. Futures

    DEFF Research Database (Denmark)

    Pedersen, Michael Haldrup

    2017-01-01

    Currently both design thinking and critical social science experience an increased interest in speculating in alternative future scenarios. This interest is not least related to the challenges issues of global sustainability present for politics, ethics and design. This paper explores the potenti......Currently both design thinking and critical social science experience an increased interest in speculating in alternative future scenarios. This interest is not least related to the challenges issues of global sustainability present for politics, ethics and design. This paper explores...... the potentials of speculative thinking in relation to design and social and cultural studies, arguing that both offer valuable insights for creating a speculative space for new emergent criticalities challenging current assumptions of the relations between power and design. It does so by tracing out discussions...... of ‘futurity’ and ‘futuring’ in design as well as social and cultural studies. Firstly, by discussing futurist and speculative approaches in design thinking; secondly by engaging with ideas of scenario thinking and utopianism in current social and cultural studies; and thirdly by showing how the articulation...

  5. Progress of application, research and development, and design guidelines for shape memory alloy devices for cultural heritage structures in Italy

    Science.gov (United States)

    Castellano, Maria G.; Indirli, Maurizio; Martelli, Alessandro

    2001-07-01

    A wide ranging R&D Project (ISTECH) on validation and application of the Innovative Antiseismic Techniques (IATs) for the restoration of Cultural Heritage Structures (CUHESs), especially masonry buildings, based on the Shape Memory Alloys (SMAs), has been funded by the European Commission (EC), in the framework of the Environment and Climate RTD Programme. Because Traditional Restoration Techniques (TRTs) have sometimes proved inadequate in avoiding collapses and often too invasive, the use of superelastic SMA Devices (SMADs) has been developed. Theoretical and numerical studies, as well as intensive testing of material specimens, devices, structural models and in situ campaigns, show that SMADs can substantially increase the stability of masonry CUHESs exposed to an earthquake. Different SMAD types have been investigated to fulfil different structural needs and they can be custom designed taking into account each monument's characteristics. The successful results of the research and its exploitation led to important applications in Italy: the S. Giorgio Church Bell-Tower, located at Trignano, S. Martino in Rio, Reggio Emilia, damaged by the 15th October 1996 earthquake, the transept tympana of the S. Francesco Basilica in Assisi and the S. Feliciano Cathedral façade in Foligno, both heavily damaged by the September 1997 earthquake. In addition, further studies and applications of SMAD technology are foreseen in Italy in the next future, in the framework of Italian and European research projects and proposals.

  6. Compatibility of Anti-Wear Additives with Non-Ferrous Engine Bearing Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhou, Yan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-01

    Investigate the compatibility of engine lubricant antiwear (AW) additives, specifically conventional zinc dialkyldithiophosphate (ZDDP) and newly developed ionic liquids (ILs), with selected non-ferrous engine bearing alloys, specifically aluminum and bronze alloys that are commonly used in connecting rod end journal bearings and bushings, to gain fundamental understanding to guide future development of engine lubricants

  7. The development of platinum-based alloys and their thermodynamic database

    Directory of Open Access Journals (Sweden)

    Cornish L.A.

    2002-01-01

    Full Text Available A series of quaternary platinum-based alloys have been demonstrated to exhibit the same two-phase structure as Ni-based superalloys and showed good mechanical properties. The properties of ternary alloys were a good indication that the quaternary alloys, with their better microstructure, will be even better. The quaternary alloy composition has been optimised at Pt84:Al11:Ru2:Cr3 for the best microstructure and hardness. Work has begun on establishing a thermodynamic database for Pt-Al-Ru-Cr alloys, and further work will be done to enhance the mechanical and oxidation properties of the alloys by adding small amounts of other elements to the base composition of Pt84:Al11:Ru2:Cr3.

  8. The development of additive manufacturing technique for nickel-base alloys: A review

    Science.gov (United States)

    Zadi-Maad, Ahmad; Basuki, Arif

    2018-04-01

    Nickel-base alloys are an attractive alloy due to its excellent mechanical properties, a high resistance to creep deformation, corrosion, and oxidation. However, it is a hard task to control performance when casting or forging for this material. In recent years, additive manufacturing (AM) process has been implemented to replace the conventional directional solidification process for the production of nickel-base alloys. Due to its potentially lower cost and flexibility manufacturing process, AM is considered as a substitute technique for the existing. This paper provides a comprehensive review of the previous work related to the AM techniques for Ni-base alloys while highlighting current challenges and methods to solving them. The properties of conventionally manufactured Ni-base alloys are also compared with the AM fabricated alloys. The mechanical properties obtained from tension, hardness and fatigue test are included, along with discussions of the effect of post-treatment process. Recommendations for further work are also provided.

  9. Development of Mo base alloys for conductive metal-alumina cermet applications

    International Nuclear Information System (INIS)

    Stephens, J.J.; Damkroger, B.K.; Monroe, S.L.

    1996-01-01

    A study of thermal expansion for binary Mo-V and ternary Mo-V-Fe/Mo-V-Co alloys has been conducted, with the aim of finding a composition which matches the CTE of 94% alumina ceramic. The overall goal was to identify an alloy which can be used in conductive 27 vol.% metal/73 vol.% alumina cermets. Besides thermal expansion properties, two additional requirements exist for this alloy: (1) compatibility with a hydrogen sinter fire atmosphere and (2) a single phase BCC microstructure. They have identified a ternary alloy with a nominal composition of Mo-22wt.% V-3Fe for use in cermet fabrication efforts. This paper summarizes thermal expansion properties of the various alloys studied, and compares the results with previous CTE data for Mo-V binary alloys

  10. Consolidated fuel reprocessing program. Developments for the future in reprocessing

    International Nuclear Information System (INIS)

    Burch, W.D.

    1982-01-01

    The future reprocessing developments focus on three major areas: (1) the retention of gaseous fission products to reduce off-site doses to very low values; (2) the initial steps of breakdown, shearing, and dissolution of breeder fuels; and (3) advanced facility and equipment concepts, which are expected to lead to a reliable, cost-effective, totally remotely operated and maintained plant. Work in the first area - removal of fission gases (the most important of which is 85 Kr) - is largely completed through tracer and bench-scale engineering equipment. Efforts are now mainly devoted to breeder fuels and advanced remote concepts. A facility, the Integrated Equipment Test Facility, which will be used to carry out much of this work, is nearing completion in Oak Ridge. In it a large, simulated, remote reprocessing cell will house a disassembly-shear machine for either breeder or LWR fuels, a rotary continuous dissolver, a solvent extraction cycle utilizing a new generation of centrifugal contactors, and related equipment

  11. The CMS High Level Trigger System: Experience and Future Development

    CERN Document Server

    Bauer, Gerry; Bowen, Matthew; Branson, James G; Bukowiec, Sebastian; Cittolin, Sergio; Coarasa, J A; Deldicque, Christian; Dobson, Marc; Dupont, Aymeric; Erhan, Samim; Flossdorf, Alexander; Gigi, Dominique; Glege, Frank; Gomez-Reino, R; Hartl, Christian; Hegeman, Jeroen; Holzner, André; Y L Hwong; Masetti, Lorenzo; Meijers, Frans; Meschi, Emilio; Mommsen, R K; O'Dell, Vivian; Orsini, Luciano; Paus, Christoph; Petrucci, Andrea; Pieri, Marco; Polese, Giovanni; Racz, Attila; Raginel, Olivier; Sakulin, Hannes; Sani, Matteo; Schwick, Christoph; Shpakov, Dennis; Simon, M; Spataru, A C; Sumorok, Konstanty

    2012-01-01

    The CMS experiment at the LHC features a two-level trigger system. Events accepted by the first level trigger, at a maximum rate of 100 kHz, are read out by the Data Acquisition system (DAQ), and subsequently assembled in memory in a farm of computers running a software high-level trigger (HLT), which selects interesting events for offline storage and analysis at a rate of order few hundred Hz. The HLT algorithms consist of sequences of offline-style reconstruction and filtering modules, executed on a farm of 0(10000) CPU cores built from commodity hardware. Experience from the operation of the HLT system in the collider run 2010/2011 is reported. The current architecture of the CMS HLT, its integration with the CMS reconstruction framework and the CMS DAQ, are discussed in the light of future development. The possible short- and medium-term evolution of the HLT software infrastructure to support extensions of the HLT computing power, and to address remaining performance and maintenance issues, are discussed.

  12. Status of muon collider research and development and future plans

    Directory of Open Access Journals (Sweden)

    1999-08-01

    Full Text Available The status of the research on muon colliders is discussed and plans are outlined for future theoretical and experimental studies. Besides work on the parameters of a 3–4 and 0.5 TeV center-of-mass (COM energy collider, many studies are now concentrating on a machine near 0.1 TeV (COM that could be a factory for the s-channel production of Higgs particles. We discuss the research on the various components in such muon colliders, starting from the proton accelerator needed to generate pions from a heavy-Z target and proceeding through the phase rotation and decay (π→μν_{μ} channel, muon cooling, acceleration, storage in a collider ring, and the collider detector. We also present theoretical and experimental R&D plans for the next several years that should lead to a better understanding of the design and feasibility issues for all of the components. This report is an update of the progress on the research and development since the feasibility study of muon colliders presented at the Snowmass '96 Workshop [R. B. Palmer, A. Sessler, and A. Tollestrup, Proceedings of the 1996 DPF/DPB Summer Study on High-Energy Physics (Stanford Linear Accelerator Center, Menlo Park, CA, 1997].

  13. Automated anaesthesia record systems, observations on future trends of development.

    Science.gov (United States)

    Heinrichs, W

    1995-02-01

    The introduction of electronic anaesthesia documentation systems was attempted as early as in 1979, although their efficient application has become reality only in the past few years. Today, documentation technology is offered by most of the monitor manufacturers and new systems are being developed by various working groups. The advantages of the electronic protocol are apparent: Continuous high quality documentation, comparability of data due to the availability of a anaesthesia data bank, reduction of the workload of the anaesthesia staff and availability of new additional information. Disadvantages of the electronic protocol have also been discussed. Typically, by going through the process of entering data on the course of the anaesthetic procedure on the protocol sheet, the information is mentally absorbed and evaluated by the anaesthetist. This mental processing of information may, however, be missing when the data are recorded fully automatically--without active involvement on the part of the anaesthetist. It seems that electronic anaesthesia protocols will be required in the near future. The advantages of accurate documentation and quality control in the presence of careful planning will outweight cost considerations. However, at this time, almost none of the commercially available systems have matured to a point where their purchase can be recommended without reservation. There is still a lack of standards for the subsequent exchange of data and a solution to a number of ergonomic problems still remains to be found.

  14. Future development of the PLATO Observatory for Antarctic science

    Science.gov (United States)

    Ashley, Michael C. B.; Bonner, Colin S.; Everett, Jon R.; Lawrence, Jon S.; Luong-Van, Daniel; McDaid, Scott; McLaren, Campbell; Storey, John W. V.

    2010-07-01

    PLATO is a self-contained robotic observatory built into two 10-foot shipping containers. It has been successfully deployed at Dome A on the Antarctic plateau since January 2008, and has accumulated over 730 days of uptime at the time of writing. PLATO provides 0.5{1kW of continuous electrical power for a year from diesel engines running on Jet-A1, supplemented during the summertime with solar panels. One of the 10-foot shipping containers houses the power system and fuel, the other provides a warm environment for instruments. Two Iridium satellite modems allow 45 MB/day of data to be transferred across the internet. Future enhancements to PLATO, currently in development, include a more modular design, using lithium iron-phosphate batteries, higher power output, and a light-weight low-power version for eld deployment from a Twin Otter aircraft. Technologies used in PLATO include a CAN (Controller Area Network) bus, high-reliability PC/104 com- puters, ultracapacitors for starting the engines, and fault-tolerant redundant design.

  15. Development of food irradiation in Japan and future subjects

    International Nuclear Information System (INIS)

    Ito, Hitoshi

    2003-01-01

    The study of food irradiation in Japan begun in 1955. The national project investigated the irradiation technologies and the irradiation effects on seven foods such as potato, rice, wheat, wiener wheat, orange and processed marine products. Only irradiation technique of potato has been made practical use since 1974. After this project, some researches on food irradiation were reported. For examples, the radiation sterilization of feed, spice, grapefruit, frozen shrimp, cock and beef. Some databases of irradiated foods are opened. The biological and radiochemical effects of gamma ray, X-ray and electron ray on food has not been observed. New aspects of irradiation, the measures for food poisoning, food safety and sanitary, has a great deal of public attention. In order to prepare the distribution of irradiated food in the world, we should develop a detection method, prevention technology of bad-tasting, quarantine treatment technology and control technology of irradiation process. History of food irradiation in Japan and future subjects are explained. (S.Y.)

  16. The Future of Clinical Pharmacy: Developing a Holistic Model

    Directory of Open Access Journals (Sweden)

    Patricia A. Shane

    2013-11-01

    Full Text Available This concept paper discusses the untapped promise of often overlooked humanistic skills to advance the practice of pharmacy. It highlights the seminal work that is, increasingly, integrated into medical and nursing education. The work of these educators and the growing empirical evidence that validates the importance of humanistic skills is raising questions for the future of pharmacy education and practice. To potentiate humanistic professional competencies, e.g., compassion, empathy, and emotional intelligence, how do we develop a more holistic model that integrates reflective and affective skills? There are many historical and current transitions in the profession and practice of pharmacy. If our education model is refocused with an emphasis on pharmacy’s therapeutic roots, the field has the opportunity to play a vital role in improving health outcomes and patient-centered care. Beyond the metrics of treatment effects, achieving greater patient-centeredness will require transformations that improve care processes and invest in patients’ experiences of the treatment and care they receive. Is layering on additional science sufficient to yield better health outcomes if we neglect the power of empathic interactions in the healing process?

  17. Classical swine fever in pigs: recent developments and future perspectives.

    Science.gov (United States)

    Chander, Vishal; Nandi, S; Ravishankar, C; Upmanyu, V; Verma, Rishendra

    2014-06-01

    Classical swine fever (CSF) is one of the most devastating epizootic diseases of pigs, causing high morbidity and mortality worldwide. The diversity of clinical signs and similarity in disease manifestations to other diseases make CSF difficult to diagnose with certainty. The disease is further complicated by the presence of a number of different strains belonging to three phylogenetic groups. Advanced diagnostic techniques allow detection of antigens or antibodies in clinical samples, leading to implementation of proper and effective control programs. Polymerase chain reaction (PCR)-based methods, including portable real-time PCR, provide diagnosis in a few hours with precision and accuracy, even at the point of care. The disease is controlled by following a stamping out policy in countries where vaccination is not practiced, whereas immunization with live attenuated vaccines containing the 'C' strain is effectively used to control the disease in endemic countries. To overcome the problem of differentiation of infected from vaccinated animals, different types of marker vaccines, with variable degrees of efficacy, along with companion diagnostic assays have been developed and may be useful in controlling and even eradicating the disease in the foreseeable future. The present review aims to provide an overview and status of CSF as a whole with special reference to swine husbandry in India.

  18. Future developments in brain-machine interface research.

    Science.gov (United States)

    Lebedev, Mikhail A; Tate, Andrew J; Hanson, Timothy L; Li, Zheng; O'Doherty, Joseph E; Winans, Jesse A; Ifft, Peter J; Zhuang, Katie Z; Fitzsimmons, Nathan A; Schwarz, David A; Fuller, Andrew M; An, Je Hi; Nicolelis, Miguel A L

    2011-01-01

    Neuroprosthetic devices based on brain-machine interface technology hold promise for the restoration of body mobility in patients suffering from devastating motor deficits caused by brain injury, neurologic diseases and limb loss. During the last decade, considerable progress has been achieved in this multidisciplinary research, mainly in the brain-machine interface that enacts upper-limb functionality. However, a considerable number of problems need to be resolved before fully functional limb neuroprostheses can be built. To move towards developing neuroprosthetic devices for humans, brain-machine interface research has to address a number of issues related to improving the quality of neuronal recordings, achieving stable, long-term performance, and extending the brain-machine interface approach to a broad range of motor and sensory functions. Here, we review the future steps that are part of the strategic plan of the Duke University Center for Neuroengineering, and its partners, the Brazilian National Institute of Brain-Machine Interfaces and the École Polytechnique Fédérale de Lausanne (EPFL) Center for Neuroprosthetics, to bring this new technology to clinical fruition.

  19. Future developments in brain-machine interface research

    Directory of Open Access Journals (Sweden)

    Mikhail A. Lebedev

    2011-01-01

    Full Text Available Neuroprosthetic devices based on brain-machine interface technology hold promise for the restoration of body mobility in patients suffering from devastating motor deficits caused by brain injury, neurologic diseases and limb loss. During the last decade, considerable progress has been achieved in this multidisciplinary research, mainly in the brain-machine interface that enacts upper-limb functionality. However, a considerable number of problems need to be resolved before fully functional limb neuroprostheses can be built. To move towards developing neuroprosthetic devices for humans, brain-machine interface research has to address a number of issues related to improving the quality of neuronal recordings, achieving stable, long-term performance, and extending the brain-machine interface approach to a broad range of motor and sensory functions. Here, we review the future steps that are part of the strategic plan of the Duke University Center for Neuroengineering, and its partners, the Brazilian National Institute of Brain-Machine Interfaces and the École Polytechnique Fédérale de Lausanne (EPFL Center for Neuroprosthetics, to bring this new technology to clinical fruition.

  20. Capacity Building for School Development: Current Problems and Future Challenges

    Science.gov (United States)

    Ho, Dora; Lee, Moosung

    2016-01-01

    This article offers a theoretical discussion on the current problems and future challenges of school capacity building in early childhood education (ECE), aiming to highlight some key areas for future research. In recent years, there has been a notable policy shift from monitoring quality through inspection to improving quality through school…

  1. Process development for 9Cr nanostructured ferritic alloy (NFA) with high fracture toughness

    International Nuclear Information System (INIS)

    Byun, Thak Sang; Yoon, Ji Hyun; Hoelzer, David T.; Lee, Yong Bok; Kang, Suk Hoon; Maloy, Stuart A.

    2014-01-01

    This article is to summarize the process development and key characterization results for the newly-developed Fe–9Cr based nanostructured ferritic alloys (NFAs) with high fracture toughness. One of the major drawbacks from pursuing ultra-high strength in the past development of NFAs is poor fracture toughness at high temperatures although a high fracture toughness is essential to prevent cracking during manufacturing and to mitigate or delay irradiation-induced embrittlement in irradiation environments. A study on fracture mechanism using the NFA 14YWT found that the low-energy grain boundary decohesion in fracture process at a high temperature (>200 °C) resulted in low fracture toughness. Lately, efforts have been devoted to explore an integrated process to enhance grain bonding. Two base materials were produced through mechanical milling and hot extrusion and designated as 9YWTV-PM1 and 9YWTV-PM2. Isothermal annealing (IA) and controlled rolling (CR) treatments in two phase region were used to enhance diffusion across the interfaces and boundaries. The PM2 alloy after CR treatments showed high fracture toughness (K JQ ) at represented temperatures: 240–280 MPa √m at room temperature and 160–220 MPa √m at 500 °C, which indicates that the goal of 100 MPa √m over possible nuclear application temperature range has been well achieved. Furthermore, it is also confirmed by comparison that the CR treatments on 9YWTV-PM2 result in high fracture toughness similar to or higher than those of the conventional ferritic–martensitic steels such as HT9 and NF616

  2. The development of future-oriented control: an electrophysiological investigation.

    Science.gov (United States)

    Waxer, Matthew; Morton, J Bruce

    2011-06-01

    Cognitive control, or the ability to focus attention and select task-appropriate responses, is not static but can be dynamically adjusted in the face of changing environmental circumstances. Several models suggest a role for conflict-monitoring in triggering these adjustments, whereby instances of response uncertainty are detected by the anterior cingulate cortex and strengthen attention-guiding rules actively maintained by lateral prefrontal cortex. Given the continued development of active maintenance mechanisms into adolescence, these models predict that the capacity to dynamically modulate control should be protracted in its development. The present study tested this prediction by examining age-related differences in behavioral and electrophysiological adaptations to prior conflict. Children, adolescents, and adults were administered the Dimensional Change Card Sort (DCCS; Zelazo, 2006) - a developmentally-appropriate task modified so that response conflict varied from trial to trial - as cortical activity was measured by means of event-related potentials (ERPs). Although all groups showed a robust conflict effect, there were pronounced age-related differences in behavioral and electrophysiological adaptations to prior conflict. First, responses to incongruent trials were faster following incongruent trials than following congruent trials, but only for adults and adolescents. Second, ERP components that indexed response conflict, and the cortical source of these components, were modulated by preceding conflict for adults and adolescents, but not children. Taken together, the findings suggest that adults and adolescents take advantage of prior conflict to prepare for the future, whereas children respond to cognitive challenges as they occur. Theoretical implications are discussed. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Layup practices at EDF PWR fleet and future developments

    International Nuclear Information System (INIS)

    Ramos, Olga Alos; Pablo, Sergio De Maria; Wintergerst, Matthieu

    2014-01-01

    A proper lay-up can only be achieved by plant specific lay-up procedures. The layup control practices are necessary to prevent corrosion damage during shutdown and are an important part of the life time extension of a nuclear power plant. EDF operational experience in this area confirms that damage to plant equipment from improper layup procedures is a cause of reduced plant reliability and availability and can increase the corrosion products ingress into the SG during start-up. The plant preservation strategy applied across the EDF fleet is based on the following principles: Anticipated time frame of the required layup: short-term outages can become long-term outages, and can necessitate the use of unplanned preservation techniques. Dry layup for a long-term outage of the condensate/feedwater system: condenser vacuum assisted draining at high temperature, estimation of air requirements (flow rate, humidity...) to guarantee the optimum conditions inside the system. Wet lay up for a short-term outage of the condensate/feedwater system: system filled with operating medium, avoiding air ingress into the system, injection of chemical agents if necessary. Dry lay-up or wet lay up for the steam generators depending on maintenance work or radiation protection needed. This article presents the EDF layup program and the improvements in layup practices. It provides information on the layup procedures, best practices and recommendations, operating experience, considerations for different durations of outages; the implementation of a preservation working group, the selection of the systems that will be included in the lay-up program. Finally, future developments will be presented, such as the development of a 'convective model' to determine air requirements (humidity, flow rate...) and the drying rate to dry a heat exchanger. (author)

  4. Integrated Computational Materials Engineering Development of Alternative Cu-Be Alloys

    Science.gov (United States)

    2012-08-01

    metastable FCC state @ Room temp.  Alloying to suppress martensitic transformation  Significant work-hardening associated with the phase... transformation  Existing CoCr alloy rely upon cold- or warm- work to achieve high strength (size dependent!) ● No equivalent to L12- strengthened Ni... strengthened Copper and Cobalt alloy VIM/VAR melting Homogen- ization Hot working >4” dia. Solution treatment Machining Tempering Processing

  5. Aluminum alloy weldability. Identification of weld solidification cracking mechanisms through novel experimental technique and model development

    Energy Technology Data Exchange (ETDEWEB)

    Coniglio, Nicolas

    2008-07-01

    The objective of the present thesis is to make advancements in understanding solidification crack formation in aluminum welds, by investigating in particular the aluminum 6060/4043 system. Alloy 6060 is typical of a family of Al-Mg-Si extrusion alloys, which are considered weldable only when using an appropriate filler alloy such as 4043 (Al-5Si). The effect of 4043 filler dilution (i.e. weld metal silicon content) on cracking sensitivity and solidification path of Alloy 6060 welds are investigated. Afterwards, cracking models are developed to propose mechanisms for solidification crack initiation and growth. Cracking Sensitivity. Building upon the concept that silicon improves weldability and that weldability can be defined by a critical strain rate, strain rate-composition combinations required for solidification crack formation in the Al- 6060/4043 system were determined using the newly developed Controlled Tensile Weldability (CTW) test utilizing local strain extensometer measurements. Results, presented in a critical strain rate - dilution map, show a crack - no crack boundary which reveals that higher local strain rates require higher 4043 filler dilution to avoid solidification cracking when arc welding Alloy 6060. Using the established crack - no crack boundary as a line of reference, additional parameters were examined and their influence on cracking characterized. These parameter influences have included studies of weld travel speed, weld pool contaminants (Fe, O, and H), and grain refiner additions (TiAl{sub 3} + Boron). Each parameter has been independently varied and its effect on cracking susceptibility quantified in terms of strain rate - composition combinations. Solidification Path. Solidification path of the Al-6060/4043 system was characterized using thermal analysis and phase identification. Increasing 4043 filler dilution from 0 to 16% in Alloy 6060 arc welds resulted in little effect on thermal arrests and microstructure, no effect on

  6. Divertor development for a future fusion power plant

    International Nuclear Information System (INIS)

    Norajitra, Prachai

    2011-01-01

    Nuclear fusion is considered as a future source of sustainable energy supply. In the first chapter, the physical principle of magnetic plasma confinement, and the function of a tokamak are described. Since the discovery of the H-mode in ASDEX experiment ''Divertor I'' in 1982, the divertor has been an integral part of all modern tokamaks and stellarators, not least the ITER machine. The goal of this work is to develop a feasible divertor design for a fusion power plant to be built after ITER. This task is particularly challenging because a fusion power plant formulates much greater demands on the structural material and the design than ITER in terms of neutron wall load and radiation. First several divertor concepts proposed in the literature e.g. the Power Plant Conceptual Study (PPCS) using different coolants are reviewed and analyzed with respect to their performance. As a result helium cooled divertor concept exhibited the best potential to come up to the highest safety requirements and therefore has been chosen for the design process. From the third chapter the necessary steps towards this goal are described. First, the boundary conditions for the arrangement of a divertor with respect to the fusion plasma are discussed, as this determines the main thermal and neutronic load parameters. Based on the loads material selection criteria are inherently formulated. In the next step, the reference design is defined in accordance with the established functional design specifications. The developed concept is of modular nature and consists of cooling fingers of tungsten using an impingement cooling in order to achieve a heat dissipation of 10 MW/m 2 . In the next step, the design was subjected to the thermal-hydraulic and thermo-mechanical calculations in order to analyze and improve the performance and the manufacturing technologies. Based on these results, a prototype was produced and experimentally tested on their cooling capacity, their thermo-cyclic loading

  7. Process development for fabrication of Ag-15% In-5% Cd alloys and rods for the control rods of IPEN critical unit

    International Nuclear Information System (INIS)

    Figueredo, A.M. de.

    1985-12-01

    The development of two process at the Nuclear and Energetic Research Institute (IPEN-Brazil) are described. - the production of Ag-15% In-5%. Cd alloys with nuclear grade. The fabrication of rods from Ag-15% In-5% Cd alloy for use at the critical unit. The methods for quality control of alloy and rod are presented, and main problems are identified. (C.G.C.)

  8. Software-Based Challenges of Developing the Future Distribution Grid

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Emma; Kiliccote, Sila; McParland, Charles

    2014-06-01

    The software that the utility industry currently uses may be insufficient to analyze the distribution grid as it rapidly modernizes to include active resources such as distributed generation, switch and voltage control, automation, and increasingly complex loads. Although planners and operators have traditionally viewed the distribution grid as a passive load, utilities and consultants increasingly need enhanced analysis that incorporates active distribution grid loads in order to ensure grid reliability. Numerous commercial and open-source tools are available for analyzing distribution grid systems. These tools vary in complexity from providing basic load-flow and capacity analysis under steady-state conditions to time-series analysis and even geographical representations of dynamic and transient events. The need for each type of analysis is not well understood in the industry, nor are the reasons that distribution analysis requires different techniques and tools both from those now available and from those used for transmission analysis. In addition, there is limited understanding of basic capability of the tools and how they should be practically applied to the evolving distribution system. The study reviews the features and state of the art capability of current tools, including usability and visualization, basic analysis functionality, advanced analysis including inverters, and renewable generation and load modeling. We also discuss the need for each type of distribution grid system analysis. In addition to reviewing basic functionality current models, we discuss dynamics and transient simulation in detail and draw conclusions about existing software?s ability to address the needs of the future distribution grid as well as the barriers to modernization of the distribution grid that are posed by the current state of software and model development. Among our conclusions are that accuracy, data transfer, and data processing abilities are key to future

  9. Lightweight High Temperature Beta Gamma Alloy/Process Development for Disk and Blade Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary material and manufacturing limitations of gamma TiAl alloys include processing difficulties, requiring costly non-conventional processing requirements,...

  10. The development of platinum-based alloys and their thermodynamic database

    OpenAIRE

    Cornish L.A.; Hohls J.; Hill P.J.; Prins S.; Süss R.; Compton D.N.

    2002-01-01

    A series of quaternary platinum-based alloys have been demonstrated to exhibit the same two-phase structure as Ni-based superalloys and showed good mechanical properties. The properties of ternary alloys were a good indication that the quaternary alloys, with their better microstructure, will be even better. The quaternary alloy composition has been optimised at Pt84:Al11:Ru2:Cr3 for the best microstructure and hardness. Work has begun on establishing a thermodynamic database for Pt-Al-Ru-Cr ...

  11. Improved rapidly-quenched hydrogen-absorbing alloys for development of improved-capacity nickel metal hydride batteries

    Science.gov (United States)

    Ise, Tadashi; Hamamatsu, Takeo; Imoto, Teruhiko; Nogami, Mitsuzo; Nakahori, Shinsuke

    The effects of annealing a rapidly-quenched hydrogen-absorbing alloy with a stoichiometric ratio of 4.76 were investigated concerning its hydrogen-absorbing properties, crystal structure and electrochemical characteristics. Annealing at 1073 K homogenized the alloy microstructure and flattened its plateau slope in the P-C isotherms. However, annealing at 1273 K segregated a second phase rich in rare earth elements, increased the hydrogen-absorbing pressure and decreased the hydrogen-absorbing capacity. As the number of charge-discharge cycles increases, the particle size distribution of the rapidly-quenched alloy became broad due to partial pulverization. However, particle size distribution of the rapidly-quenched, annealed, alloy was sharp, since the annealing homogenized the microstructure, thereby improving the cycle characteristics. A high-capacity rectangular nickel metal hydride battery using a rapidly-quenched, annealed, surface-treated alloy for the negative electrode and an active material coated with cobalt compound containing sodium for the positive electrode was developed. The capacity of the resulting battery was 30% greater than that of a conventional battery.

  12. Calculation of phase equilibria in Ti-Al-Cr-Mn quaternary system for developing lower cost titanium alloys

    International Nuclear Information System (INIS)

    Lu, X.G.; Li, C.H.; Chen, L.Y.; Qiu, A.T.; Ding, W.Z.

    2011-01-01

    Highlights: → This paper is about the concept of designing the lower cost titanium alloy. → The thermodynamic database of Ti-Al-Cr-Mn system is built up by Calphad method. → The pseudobinary sections with Cr: Mn = 3:1 and Al = 3, 4.5 and 6.0 wt% are calculated. → This may provide the theoretical support for designing the lower cost titanium alloy. - Abstract: The Ti-Al-Cr-Mn system is a potentially useful system for lower cost titanium alloy development; however, there are few reports about the experimental phase diagrams and the thermodynamical assessment for this system. In this study, the previous investigations for the thermodynamic descriptions of the sub-systems in the Ti-Al-Cr-Mn system are reviewed, our previous assessment for the related sub-systems in this quaternary system is summarized, the thermodynamical database of this quaternary system is built up by directly extrapolating from all sub-systems assessed by means of the Calphad method, then the pseudobinary sections with Cr:Mn = 3:1 and Al = 0.0, 3.0, 4.5 and 6.0 wt% are calculated, respectively. These pseudobinary phase diagrams may provide the theoretical support for designing the lower cost titanium alloys with different microstructures (α, α + β, and β titanium alloy).

  13. The irradiation-induced microstructural development and the role of γ' on void formation in Ni-based alloys

    Science.gov (United States)

    Kato, Takahiko; Nakata, Kiyotomo; Masaoka, Isao; Takahashi, Heishichiro; Takeyama, Taro; Ohnuki, Soumei; Osanai, Hisashi

    1984-05-01

    The microstructural development for Inconel X-750, N1-13 at%A1, and Ni-11.5 at%Si alloys during irradiation was investigated. These alloys were previously heat-treated at temperatures of 723-1073 K, and γ' precipitates were produced. Irradiation was performed in a high voltage electron microscope (1000 kV) in the temperature range 673-823 K. In the case of solution-treated Inconel, interstitial dislocation loops were formed initially, while voids were nucleated after longer times. When the Inconel specimen containing a high number density of small γ' was irradiated, dislocation loops were formed in both the matrix and precipitate-matrix interface. The loops formed on the interface scarcely grew during irradiation. On the other hand, for the Ni-Al alloy fine γ' nucleated during irradiation, the large γ' precipitated by pre-aging, dissolved. A similar resolution process was also observed in Ni-Si alloy. Furthermore, in the Ni-Si alloy precipitates of γ' formed preferentially at interstitial dislocation loops and both specimen surfaces.

  14. The irradiation induced microstructural development and the role of γ' on void formation in Ni-based alloys

    International Nuclear Information System (INIS)

    Kato, T.; Nakata, K.; Masaoka, I.; Takahashi, H.; Takeyama, T.; Ohnuki, S.; Osanai, H.

    1984-01-01

    The microstructural development for Inconel X-750, Ni-13 at% Al, and Ni-11.5 at% Si alloys during irradiation was investigated. These alloys were previously heat-treated at temperatures of 723-1073 K, and γ' precipitates were produced. Irradiation was performed in a high voltage electron microscope in the temperature range 627-823 K. In the case of solution-treated Inconel, interstitial dislocation loops were formed initially, while voids were nucleated after longer times. When the Inconel specimen containing a high number density of small γ' was irradiated, dislocation loops were formed in both the matrix and precipitate-matrix interface. The loops formed on the interface scarcely grew during irradiation. On the other hand, for the Ni-Al alloy fine γ' nucleated during irradiation, the large γ' precipitated by pre-aging, dissolved. A similar resolution process was also observed in Ni-Si alloy. Furthermore, in the Ni-Si alloy precipitates of γ' formed preferentially at interstitial dislocation loops and both specimen surfaces. (orig.)

  15. Development and industrial mastering hot rolling procedure for low-ductile steels and alloys

    International Nuclear Information System (INIS)

    Degterenko, V.K.; Sokolov, V.A.

    1980-01-01

    The technique for the development of the sheet hot rolling procedure for low-ductile steels and alloys (0Kh17N14M2, 12Kh21N5T, 20Kh25N20C2,40Kh13, 36NKhTYu etc.) is proposed, using plastometer which permits to obtain the data on the deformation resistance in the wide range of temperatures (800-1300 deg C), of deformation degrees (0.1-0.3) and deformation rates (0.001-300 c -1 ). With the help of the plastometric data processed on the computer the calculation of the rolling regimes for the sheet with improved surface quality is carried out at the more uniform loading on the mill stands

  16. Effect of milling time on the structure, micro-hardness, and thermal behavior of amorphous/nanocrystalline TiNiCu shape memory alloys developed by mechanical alloying

    International Nuclear Information System (INIS)

    Alijani, Fatemeh; Amini, Rasool; Ghaffari, Mohammad; Alizadeh, Morteza; Okyay, Ali Kemal

    2014-01-01

    Highlights: • Potential to produce B1′ (thermal- and stress-induced) and B2 was established. • Martensitic transformation occurred without the formation of intermediate R-phase. • Formation of unwanted intermetallics during heating was hindered by milling. • During milling, microhardness was increased, then reduced, and afterward re-increased. • By milling evolution, thermal crystallization steps changed from 3 to 2. - Abstract: In the present paper, the effect of milling process on the chemical composition, structure, microhardness, and thermal behavior of Ti–41Ni–9Cu compounds developed by mechanical alloying was evaluated. The structural characteristic of the alloyed powders was evaluated by X-ray diffraction (XRD). The chemical composition homogeneity and the powder morphology and size were studied by scanning electron microscopy coupled with electron dispersive X-ray spectroscopy. Moreover, the Vickers micro-indentation hardness of the powders milled for different milling times was determined. Finally, the thermal behavior of the as-milled powders was studied by differential scanning calorimetery. According to the results, at the initial stages of milling (typically 0–12 h), the structure consisted of a Ni solid solution and amorphous phase, and by the milling evolution, nanocrystalline martensite (B19′) and austenite (B2) phases were initially formed from the initial materials and then from the amorphous phase. It was found that by the milling development, the composition uniformity is increased, the inter-layer thickness is reduced, and the powders microhardness is initially increased, then reduced, and afterward re-increased. It was also realized that the thermal behavior of the alloyed powders and the structure of heat treated samples is considerably affected by the milling time

  17. Oxide Dispersion Strengthened Fe(sub 3)Al-Based Alloy Tubes: Application Specific Development for the Power Generation Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kad, B.K.

    1999-07-01

    A detailed and comprehensive research and development methodology is being prescribed to produce Oxide Dispersion Strengthened (ODS)-Fe3Al thin walled tubes, using powder extrusion methodologies, for eventual use at operating temperatures of up to 1100C in the power generation industry. A particular 'in service application' anomaly of Fe3Al-based alloys is that the environmental resistance is maintained up to 1200C, well beyond where such alloys retain sufficient mechanical strength. Grain boundary creep processes at such high temperatures are anticipated to be the dominant failure mechanism.

  18. Development and Testing of a Shape Memory Alloy-Driven Composite Morphing Radiator

    Science.gov (United States)

    Walgren, P.; Bertagne, C.; Wescott, M.; Benafan, O.; Erickson, L.; Whitcomb, J.; Hartl, D.

    2018-01-01

    Future crewed deep space missions will require thermal control systems that can accommodate larger fluctuations in temperature and heat rejection loads than current designs. To maintain the crew cabin at habitable temperatures throughout the entire mission profile, radiators will be required to exhibit turndown ratios (defined as the ratio between the maximum and minimum heat rejection rates) as high as 12:1. Potential solutions to increase radiator turndown ratios include designs that vary the heat rejection rate by changing shape, hence changing the rate of radiation to space. Shape memory alloys exhibit thermally driven phase transformations and thus can be used for both the control and actuation of such a morphing radiator with a single active structural component that transduces thermal energy into motion. This work focuses on designing a high-performance composite radiator panel and investigating the behavior of various SMA actuators in this application. Three designs were fabricated and subsequently tested in a relevant thermal vacuum environment; all three exhibited repeatable morphing behavior, and it is shown through validated computational analysis that the morphing radiator concept can achieve a turndown ratio of 27:1 with a number of simple configuration changes.

  19. Development and Testing of a Shape Memory Alloy-Driven Composite Morphing Radiator

    Science.gov (United States)

    Walgren, P.; Bertagne, C.; Wescott, M.; Benafan, O.; Erickson, L.; Whitcomb, J.; Hartl, D.

    2018-03-01

    Future crewed deep space missions will require thermal control systems that can accommodate larger fluctuations in temperature and heat rejection loads than current designs. To maintain the crew cabin at habitable temperatures throughout the entire mission profile, radiators will be required to exhibit turndown ratios (defined as the ratio between the maximum and minimum heat rejection rates) as high as 12:1. Potential solutions to increase radiator turndown ratios include designs that vary the heat rejection rate by changing shape, hence changing the rate of radiation to space. Shape memory alloys exhibit thermally driven phase transformations and thus can be used for both the control and actuation of such a morphing radiator with a single active structural component that transduces thermal energy into motion. This work focuses on designing a high-performance composite radiator panel and investigating the behavior of various SMA actuators in this application. Three designs were fabricated and subsequently tested in a relevant thermal vacuum environment; all three exhibited repeatable morphing behavior, and it is shown through validated computational analysis that the morphing radiator concept can achieve a turndown ratio of 27:1 with a number of simple configuration changes.

  20. The effect of substrate texture and oxidation temperature on oxide texture development in zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Garner, A., E-mail: alistair.garner@manchester.ac.uk [Materials Performance Centre, University of Manchester, Grosvenor Street, Manchester, M17HS (United Kingdom); Frankel, P. [Materials Performance Centre, University of Manchester, Grosvenor Street, Manchester, M17HS (United Kingdom); Partezana, J. [Westinghouse Electric Company, 1332 Beulah Road, Pittsburgh, PA 15235 (United States); Preuss, M. [Materials Performance Centre, University of Manchester, Grosvenor Street, Manchester, M17HS (United Kingdom)

    2017-02-15

    During corrosion of zirconium alloys a highly textured oxide is formed, the degree of this preferred orientation has previously been shown to be an important factor in determining the corrosion behaviour of these alloys. Two distinct experiments were designed in order to investigate the origin of this oxide texture development on two commercial alloys. Firstly, sheet samples of Zircaloy-4 were oxidised between 500 and 800 °C in air. The resulting monoclinic oxide texture strength was observed to decrease with increasing oxidation temperature. In a second experiment, orthogonal faces of Low Tin ZIRLO{sub ™} were oxidised in 360 °C water, providing different substrate textures but identical microstructures. The substrate texture was observed to have a negligible effect on the corrosion performance whilst the major orientation of both oxide phases was found to be independent of substrate orientation. It is concluded that the main driving force for oxide texture development in single-phase zirconium alloys is the compressive stress caused by the Zr−ZrO{sub 2} transformation. - Highlights: • Substrate orientation does not significantly affect oxide texture development. • Corrosion performance is independent of substrate texture. • Monoclinic oxide texture strength decreases with increasing oxidation temperature. • The main driving force for texture development is the oxidation-induced stress.

  1. Modeling of Stress Development During Thermal Damage Healing in Fiber-reinforced Composite Materials Containing Embedded Shape Memory Alloy Wires

    NARCIS (Netherlands)

    Bor, Teunis Cornelis; Warnet, Laurent; Akkerman, Remko; de Boer, Andries

    2010-01-01

    Fiber-reinforced composite materials are susceptible to damage development through matrix cracking and delamination. This article concerns the use of shape memory alloy (SMA) wires embedded in a composite material to support healing of damage through a local heat treatment. The composite material

  2. Development of Nanoporous Ni-Sn Alloy and Application for Chemoselective Hydrogenation of Furfural to Furfuryl Alcohol

    Directory of Open Access Journals (Sweden)

    Rodiansono Rodiansono

    2014-03-01

    Full Text Available A very simple synthetic procedure was developed for the preparation of Ni-Sn alloy catalysts that were utilised for chemoselective hydrogenation of furfural, producing furfuryl alcohol almost exclusively. The mixture of nickel nanoparticles supported on aluminium hydroxide (R-Ni/AlOH and a solution containing tin was treated under hydrothermal condition, producing the as prepared nickel-tin alloy supported on aluminium hydroxide (Ni-Sn/AlOH. H2 treatment at range of temperature of 673-873 K for 1.5 h to the as prepared Ni-Sn/AlOH produced nanoporous Ni-Sn alloy catalysts. XRD patterns and SEM images revealed that the formation of Ni-Sn alloy of Ni3Sn and Ni3Sn2 phases and the transformation of crystalline gibbsite and bayerite into amorphous alumina were clearly observed after H2 treatment at 873 K. The formation of the Ni-Sn alloy may have played a key role in the enhancement of the chemoselectivity. © 2014 BCREC UNDIP. All rights reservedReceived: 1st September 2013; Revised: 26th November 2013; Accepted: 7th December 2013[How to Cite: Rodiansono, R., Hara, T., Ichikuni, N., Shimazu, S. (2014. Development of Nanoporous Ni-Sn Alloy and Application for Chemoselective Hydrogenation of Furfural to Furfuryl Alcohol. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (1: 53-59. (doi:10.9767/bcrec.9.1.5529.53-59][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.1.5529.53-59

  3. Future development in heavy water reactors in Canada

    International Nuclear Information System (INIS)

    Donnelly, J.; Hart, R.G.

    1982-01-01

    1982 marks the 35th anniversary of the start-up of Canada's first research and test reactor, NRX. Its first power reactor has been operating successfully for the past 20 years. With 5,000 MWe of domestic capacity installed, Canada's major CANDU (Canada Deuterium, Uranium) nuclear program has a further 9,500 MWe under construction in Canada for completion by 1990 as well as committed offshore projects in Argentina, Korea and Romania. The CANDU operating record, by any measure of performance, has been outstanding. This performance is largely due to the discipline imposed on the development, design, construction and operation by two fundamental choices: natural uranium and heavy water. The impact of these two choices on availability, fuel utilization, safety and economics is discussed. Future plans call for building on those characteristics which have made CANDU so successful. When time for change comes, current assessments indicate that it will be possible to convert to more efficient advanced fuel cycles without major changes to the basic CANDU design. Primary attention is being focussed on thorium fuel cycles to ensure an abundant and continuing supply of low cost energy for the long term. The resource savings available from these fuel cycles in expanding systems are reviewed and compared with those available from LWR's and Fast Breeders. The results clearly illustrate the versatility of the CANDU reactor. It can benefit from enrichment plants or get along without them. It can complement LWR's or compete with them. It can complement Fast Breeder Reactors or compete with them as well. In the very long term CANDU's and Fast Breeders combined offer the potential of burning all the world's uranium and all the world's thorium. (author)

  4. A study on the Development of Zr-Ti-Mn-V-Ni hydrogen Storage Alloy for Ni-MH Rechargeable Battery

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Myung; Jung, Jae Han; Lee, Sang Min; Lee, Jae Young [Department of Meterial Science and Engineering, Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1996-12-15

    The Zr-based AB{sub 5} type Laves phase hydrogen storage alloys have some promising properties, long cycle life, high discharge capacity, as electrode materials in reversible metal hydride batteries. However, when these alloys are used as negative electrode for battery, there is a problem that their rate capabilities are worse than those of commercialized AB{sub 5} type hydrogen storage alloys. In this work, we tried to develop the Zr-based AB type Laves phase hydrogen storage alloys which have high capacity and, especially, high rate capability (author). 21 refs., 2 tabs., 13 figs.

  5. Fireside corrosion of nickel base alloys in future 700 C coal fired power plants; Rauchgasseitige Korrosion von Nickelbasislegierungen fuer zukuenftige 700 C-Dampfkraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Luettschwager, Frank

    2011-09-27

    nickel base alloys in comparison to air oxidation, even when there is no gaseous sulphur oxide, like SO{sub 2} or SO{sub 3}. This effect may be found by examining model systems, for example inert deposits like metal oxides, silicates or aluminosilicates and corrosive deposits like alkali sulphates. Kinetic investigations are carried out with a newly developed electrochemical pickling method, which allows to calculate the rates of hot corrosion underneath deposits. A material ranking is given for the alloys 263, 617 and 740, and it can be shown that under coal firing conditions lignite ash is much more corrosive than hard coal ash. Finally, thermodynamical calculations show possible reaction products formed during the combustion of various world market coals in power units. The coals' potential of corrosion attacks is evaluated qualitatively by using experimental and thermodynamical data. (orig.)

  6. Magnetic particle imaging: current developments and future directions

    Directory of Open Access Journals (Sweden)

    Panagiotopoulos N

    2015-04-01

    of different theories and technical approaches on the way to the actual implementation of the basic concept of MPI have been seen in the last few years. Research groups around the world are working on different scanner geometries, from closed bore systems to single-sided scanners, and use reconstruction methods that are either based on actual calibration measurements or on theoretical models. This review aims at giving an overview of current developments and future directions in MPI about a decade after its first appearance. Keywords: magnetic particle imaging, superparamagnetic iron oxide nanoparticles, magnetic particle spectrometer, peripheral nerve stimulation, cardiovascular interventions

  7. Development of an efficient grain refiner for Al-7Si alloy and its modification with strontium

    Energy Technology Data Exchange (ETDEWEB)

    Kori, S.A.; Murty, B.S.; Chakraborty, M. [Indian Inst. of Technol., Kharagpur (India). Dept. of Metall. and Mater. Eng.

    2000-05-15

    The grain refining response of Al and Al-7Si alloy has been studied with various Al-Ti, Al-B and Al-Ti-B master alloys at different addition levels. The results show that Al-B and B rich Al-Ti-B master alloys cannot grain refine Al, while they are efficient grain refiners to Al-7Si alloy. The level of grain refinement saturates after 0.03% of Ti or B for most of the master alloys studied both at short and long holding times. The grain refining efficiency of some elements other than Ti and B on Al-7Si alloy has also been studied. Interestingly, all the elements studied (B, Cr, Fe, Mg, Ni, Ti and Zr) have resulted in some grain refinement of Al-7Si alloy at short holding time and have shown fading/poisoning on long holding, which increased in the order of B (no poisoning), Ti, Cr, Ni, Fe, Mg, Zr. Sr (0.02%) has been found to provide complete modification of the eutectic in Al-7Si alloy within 2 min, which is not lost even after long holding up to 120 min. Significant improvements in the mechanical properties have been obtained by a combination of grain refinement and modification to an extent that was not possible by either of them alone. (orig.)

  8. Developing mathematical models to predict tensile properties of pulsed current gas tungsten arc welded Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Balasubramanian, M.; Jayabalan, V.; Balasubramanian, V.

    2008-01-01

    Titanium (Ti-6Al-4V) alloy has gathered wide acceptance in the fabrication of light weight structures requiring a high strength-to-weight ratio, such as transportable bridge girders, military vehicles, road tankers and railway transport systems. The preferred welding process of titanium alloy is frequently gas tungsten arc (GTA) welding due to its comparatively easier applicability and better economy. In the case of single pass GTA welding of thinner section of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current process. Many considerations come into the picture and one need to carefully balance various pulse current parameters to arrive at an optimum combination. Hence, in this investigation an attempt has been made to develop mathematical models to predict tensile properties of pulsed current GTA welded titanium alloy weldments. Four factors, five level, central composite, rotatable design matrix is used to optimise the required number of experiments. The mathematical models have been developed by response surface method (RSM). The adequacy of the models has been checked by ANOVA technique. By using the developed mathematical models, the tensile properties of the joints can be predicted with 99% confidence level

  9. Developing mathematical models to predict tensile properties of pulsed current gas tungsten arc welded Ti-6Al-4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, M. [Department of Production Engineering, Sathyabama University, Old Mamallapuram Road, Chennai 600 119 (India)], E-mail: manianmb@rediffmail.com; Jayabalan, V. [Department of Manufacturing Engineering, Anna University, Guindy, Chennai 600 025 (India)], E-mail: jbalan@annauniv.edu; Balasubramanian, V. [Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar 608 002 (India)], E-mail: visvabalu@yahoo.com

    2008-07-01

    Titanium (Ti-6Al-4V) alloy has gathered wide acceptance in the fabrication of light weight structures requiring a high strength-to-weight ratio, such as transportable bridge girders, military vehicles, road tankers and railway transport systems. The preferred welding process of titanium alloy is frequently gas tungsten arc (GTA) welding due to its comparatively easier applicability and better economy. In the case of single pass GTA welding of thinner section of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current process. Many considerations come into the picture and one need to carefully balance various pulse current parameters to arrive at an optimum combination. Hence, in this investigation an attempt has been made to develop mathematical models to predict tensile properties of pulsed current GTA welded titanium alloy weldments. Four factors, five level, central composite, rotatable design matrix is used to optimise the required number of experiments. The mathematical models have been developed by response surface method (RSM). The adequacy of the models has been checked by ANOVA technique. By using the developed mathematical models, the tensile properties of the joints can be predicted with 99% confidence level.

  10. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation.

    Science.gov (United States)

    Vojtěch, D; Kubásek, J; Serák, J; Novák, P

    2011-09-01

    In the present work Zn-Mg alloys containing up to 3wt.% Mg were studied as potential biodegradable materials for medical use. The structure, mechanical properties and corrosion behavior of these alloys were investigated and compared with those of pure Mg, AZ91HP and casting Zn-Al-Cu alloys. The structures were examined by light and scanning electron microscopy (SEM), and tensile and hardness testing were used to characterize the mechanical properties of the alloys. The corrosion behavior of the materials in simulated body fluid with pH values of 5, 7 and 10 was determined by immersion tests, potentiodynamic measurements and by monitoring the pH value evolution during corrosion. The surfaces of the corroded alloys were investigated by SEM, energy-dispersive spectrometry and X-ray photoelectron spectroscopy. It was found that a maximum strength and elongation of 150MPa and 2%, respectively, were achieved at Mg contents of approximately 1wt.%. These mechanical properties are discussed in relation to the structural features of the alloys. The corrosion rates of the Zn-Mg alloys were determined to be significantly lower than those of Mg and AZ91HP alloys. The former alloys corroded at rates of the order of tens of microns per year, whereas the corrosion rates of the latter were of the order of hundreds of microns per year. Possible zinc doses and toxicity were estimated from the corrosion behavior of the zinc alloys. It was found that these doses are negligible compared with the tolerable biological daily limit of zinc. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. History of the development of zirconium alloys for use in nuclear reactors

    International Nuclear Information System (INIS)

    Rickover, H.G.; Geiger, L.D.; Lustman, B.

    1975-01-01

    The technical problems and the major decisions made during the early development of zirconium alloys for use in naval reactors are outlined. A summary is given of the development of commercial sources of supply for zirconium and hafnium metal over the period 1950 to 1965, and the problems encountered in obtaining zirconium needed for early naval prototype and shipboard reactors are identified. Steps taken in the Government procurement process are described and statistics on production amounts, prices, and inventory are included. Also included are the technical aspects associated with the development of zirconium for water-cooled nuclear reactors, beginning in early 1949 when the Bettis Atomic Power Laboratory was established as a part of the Naval Reactors Program. While in the course of the next 25 years, small-scale investigations were performed on other potential core structural materials such as stainless steel, niobium, aluminum, and beryllium, the pressure for continual development, improvement, and application of zirconium was predominant and unrelenting. (U.S.)

  12. Development of Self-Healing Zirconium-Silicide Coatings for Improved Performance Zirconium-Alloy Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar [University of Wisconsin-Madison; Mariani, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bai, Xianming [Idaho National Lab. (INL), Idaho Falls, ID (United States); Xu, Peng [Westinghouse Electric Company; Lahoda, Ed [Westinghouse Electric Company

    2018-03-31

    oxide film matrix which develops at high temperatures. Cold spray and thermal spray deposition of ZrSi2 have been performed by systematically varying deposition parameters. While deposition of coating was achieved, further process optimization is required to improve coating quality deposited using these methods. An optimal zirconium-silicide slurry coating for mechanical properties and corrosion resistance/oxide protection was developed based on a theoretical characterization. The slurry coating was investigated using a range of similar compositional coatings to accurately characterize the best coating with respect its mechanical integrity and environmental protection for zirconium alloy substrates. Distinctive oxide layers of ZrSi2 prepared at 1000°C and 1400°C in ambient air were subjected to a 3.9 MeV Si2+ ions irradiation at 305°C and their radiation responses were characterized and analyzed. Nanocomposite oxides consisting of ZrO2 nanocrystals embedded in amorphous SiO2 matrix formed on ZrSi2 surface after oxidation at 1000°C. Radiation-induced phase mixing of the oxide phases and amorphization of ZrO2 was observed up to ~ 820 nm in depth, about one-third of the total radiation damaged region (2.5 µm in thickness) as estimated by SRIM calculation. Polygonal crystalline ZrSiO4 grains in dual-layered oxide scale on ZrSi2 at 1400°C were completely amorphized under the ion-irradiation. Given the high corrosion resistance of ZrSiO4 and immobilization of Si in aqueous environments conclusively demonstrated in this study, it is anticipated that the irradiated oxide scale would have a superior corrosion resistance compared to unirradiated surface. The results can be applied to not only baseline data for radiation response of the potential neutron deflector in advanced reactors but also development of nanocomposite structural materials in future spacecraft, sensors, detector subjected to high radiation dose. A quench test facility was designed and built to study

  13. Future NTP Development Synergy Leveraged from Current J-2X Engine Development

    Science.gov (United States)

    Ballard, Richard O.

    2008-01-01

    This paper is a discussion of how the many long-lead development elements required for the realization of a future nuclear thermal propulsion (NTP) system can be effectively leveraged from the ongoing work being conducted on the J-2X engine program for the Constellation Program. Development studies conducted to date for NTP forward planning have identified a number of technical areas that will require advancement to acceptable technology readiness levels (TRLs) before they can be utilized in NTP system development. These include high-temperature, high-area ratio nozzle extension; long-life, low-NPSP. turbomachinery; and low-boiloff propellant management; and a qualified nuclear fuel element. The current J-2X program is working many of these areas that can be leveraged to support NTP development in a highly compatible and synergistic fashion. In addition to supporting technical development, there are other programmatic issues being worked in the J-2X program that can be leveraged by a future NTP development program. These include compliance with recently-evolved space system requirements such as human-rating, fault tolerance and fracture control. These and other similar mandatory system requirements have been adopted by NASA and can result in a significant technical impact beyond elevation of the root technologies required by NTP. Finally, the exploitation of experience, methodologies, and procedures developed by the J-2X program in the areas of verification, qualification, certification, altitude simulation testing, and facility definition will be especially applicable to a future NTP system. The similarities in system mission (in-space propulsion) and operational environment (vacuum, zero-gee) between J-2X and NTP make this highly synergistic. Thus, it can be $hown that the collective benefit of leveraging experience and technologies developed during the J-2X program can result in significant savings in development cost and schedule for NTP.

  14. North Korea's nuclear weapons development. Implications for future policy

    International Nuclear Information System (INIS)

    Pollack, J.D.

    2010-01-01

    This essay assesses North Korea's long-standing quest for nuclear weapons; alternative strategies for inhibiting Pyongyang's weapons development; and the potential implications for regional security and nonproliferation should the Democratic People's Republic of Korea (DPRK) retain and enhance its weapons programs. North Korea's pursuit of a nuclear weapons capability has long provoked heated debate among policy makers and research analysts about the purposes of engagement with the North, reflecting the repeated frustrations in efforts to negotiate Korean denuclearization. These debates reflect widely divergent views of the North Korean regime; its sustainability as an autonomous political, economic, and military system; and the potential consequences of continued nuclear development in this isolated, highly idiosyncratic state. These questions assume additional salience as North Korea approaches a leadership succession for only the second time in its six-decade history. The effort to inhibit North Korea's pursuit of nuclear weapons is among the longest running and least successful sagas in international security and non-proliferation policy of the past quarter century. In early 2010, Pyongyang claims a rudimentary nuclear capability by possession of weaponized plutonium, the conduct of two nuclear tests, and advances in the production of enriched uranium as an alternative means of fissile material production, though the latter step is nominally justified as a source for reactor fuel. North Korea defends its pursuit of a nuclear deterrent to counter what Pyongyang deems existential threats posed by the United States.Despite the resumption of high-level diplomatic contact between Washington and Pyongyang in late 2009, realization of a non-nuclear Korean Peninsula remains a very remote prospect. The DPRK insists that a peace agreement between the U.S. and North Korea and hence the cessation of 'hostile DPRK-U.S. relations' are necessary before any consideration of

  15. Development and Validation of Capabilities to Measure Thermal Properties of Layered Monolithic U-Mo Alloy Plate-Type Fuel

    Science.gov (United States)

    Burkes, Douglas E.; Casella, Andrew M.; Buck, Edgar C.; Casella, Amanda J.; Edwards, Matthew K.; MacFarlan, Paul J.; Pool, Karl N.; Smith, Frances N.; Steen, Franciska H.

    2014-07-01

    The uranium-molybdenum (U-Mo) alloy in a monolithic form has been proposed as one fuel design capable of converting some of the world's highest power research reactors from the use of high enriched uranium to low enriched uranium. One aspect of the fuel development and qualification process is to demonstrate appropriate understanding of the thermal-conductivity behavior of the fuel system as a function of temperature and expected irradiation conditions. The purpose of this paper is to verify functionality of equipment installed in hot cells for eventual measurements on irradiated uranium-molybdenum (U-Mo) monolithic fuel specimens, refine procedures to operate the equipment, and validate models to extract the desired thermal properties. The results presented here demonstrate the adequacy of the equipment, procedures, and models that have been developed for this purpose based on measurements conducted on surrogate depleted uranium-molybdenum (DU-Mo) alloy samples containing a Zr diffusion barrier and clad in aluminum alloy 6061 (AA6061). The results are in excellent agreement with thermal property data reported in the literature for similar U-Mo alloys as a function of temperature.

  16. Development financing during a crisis : securitization of future receivables

    OpenAIRE

    Ketkar, Suhas; Ratha, Dilip

    2001-01-01

    Mexico's Telmex undertook the first future-flow securitization transaction in 1987. From then through 1999, the principal credit rating agencies rated more than 200 transactions totaling $47.3 billion. Studying several sources, the authors draw conclusions about the rationale for using this asset class, the size of its unrealized potential, and the main constraints on its growth. Typicall...

  17. Future Battles and the Development of Military Concepts

    Science.gov (United States)

    2013-08-22

    the Asia Pacific area. These measures are specifically designed to "challenge and threaten the ability of U.S. and allied forces to both get to the...34the rise of crime, overpopulation , tribalism, and disease are rapidly destroying the social fabric of our planet." 11 He asserts that future military

  18. The Millennial Generation: Developing Leaders for the Future Security Environment

    Science.gov (United States)

    2011-02-15

    While Millenials possess a number of admirable and positive traits that posture them well for the future, there are also some challenges with this...why the military isn‟t producing more of them. The article concluded that the most beneficial experiences were, “ sustained international experience

  19. Investigations of linear contraction and shrinkage stresses development in hypereutectic al-si binary alloys

    Directory of Open Access Journals (Sweden)

    J. Mutwil

    2009-07-01

    Full Text Available Shrinkage phenomena during solidification and cooling of hypereutectic aluminium-silicon alloys (AlSi18, AlSi21 have been examined. A vertical shrinkage rod casting with circular cross-section (constant or fixed: tapered has been used as a test sample. Two type of experiments have been conducted: 1 on development of the test sample linear dimension changes (linear expansion/contraction, 2 on development of shrinkage stresses in the test sample. By the linear contraction experiments the linear dimension changes of the test sample and the metal test mould as well a temperature in six points of the test sample have been registered. By shrinkage stresses examination a shrinkage tension force and linear dimension changes of the test sample as well a temperature in three points of the test sample have been registered. Registered time dependences of the test bar and the test mould linear dimension changes have shown, that so-called pre-shrinkage extension has been mainly by mould thermal extension caused. The investigation results have shown that both: the linear contraction as well as the shrinkage stresses development are evident dependent on metal temperature in a warmest region the sample (thermal centre.

  20. Development of thermophysical calculator for stainless steel casting alloys by using CALPHAD approach

    Directory of Open Access Journals (Sweden)

    In-Sung Cho

    2017-11-01

    Full Text Available The calculation of thermophysical properties of stainless steel castings and its application to casting simulation is discussed. It is considered that accurate thermophysical properties of the casting alloys are necessary for the valid simulation of the casting processes. Although previous thermophysical calculation software requires a specific knowledge of thermodynamics, the calculation method proposed in the present study does not require any special knowledge of thermodynamics, but only the information of compositions of the alloy. The proposed calculator is based on the CALPHAD approach for modeling of multi-component alloys, especially in stainless steels. The calculator proposed in the present study can calculate thermophysical properties of eight-component systems on an iron base alloy (Fe-C-Si-Cr-Mn-Ni-Cu-Mo, and several Korean standard stainless steel alloys were calculated and discussed. The calculator can evaluate the thermophysical properties of the alloys such as density, heat capacity, enthalpy, latent heat, etc, based on full Gibbs energy for each phase. It is expected the proposed method can help casting experts to devise the casting design and its process easily in the field of not only stainless steels but also other alloy systems such as aluminum, copper, zinc, etc.

  1. Development of multilayer perceptron networks for isothermal time temperature transformation prediction of U-Mo-X alloys

    Energy Technology Data Exchange (ETDEWEB)

    Johns, Jesse M., E-mail: jesse.johns@pnnl.gov; Burkes, Douglas, E-mail: douglas.burkes@pnnl.gov

    2017-07-15

    In this work, a multilayered perceptron (MLP) network is used to develop predictive isothermal time-temperature-transformation (TTT) models covering a range of U-Mo binary and ternary alloys. The selected ternary alloys for model development are U-Mo-Ru, U-Mo-Nb, U-Mo-Zr, U-Mo-Cr, and U-Mo-Re. These model's ability to predict 'novel' U-Mo alloys is shown quite well despite the discrepancies between literature sources for similar alloys which likely arise from different thermal-mechanical processing conditions. These models are developed with the primary purpose of informing experimental decisions. Additional experimental insight is necessary in order to reduce the number of experiments required to isolate ideal alloys. These models allow test planners to evaluate areas of experimental interest; once initial tests are conducted, the model can be updated and further improve follow-on testing decisions. The model also improves analysis capabilities by reducing the number of data points necessary from any particular test. For example, if one or two isotherms are measured during a test, the model can construct the rest of the TTT curve over a wide range of temperature and time. This modeling capability reduces the cost of experiments while also improving the value of the results from the tests. The reduced costs could result in improved material characterization and therefore improved fundamental understanding of TTT dynamics. As additional understanding of phenomena driving TTTs is acquired, this type of MLP model can be used to populate unknowns (such as material impurity and other thermal mechanical properties) from past literature sources.

  2. Path E alloys: ferritic material development for magnetic fusion energy applications

    International Nuclear Information System (INIS)

    Holmes, J.J.

    1980-09-01

    The application of ferritic materials in irradiation environments has received greatly expanded attention in the last few years, both internationally and in the United States. Ferritic materials are found to be resistant to irradiation damage and have in many cases superior properties to those of AISI 316. It has been shown that for magnetic fusion energy applications the low thermal expansion behavior of the ferritic alloy class will result in lower thermal stresses during reactor operation, leading to significantly longer ETF operating lifetimes. The Magnetic Fusion Energy Program therefore now includes a ferritic alloy option for alloy selection and this option has been designated Path E

  3. The Current Status of Hydrogen Storage Alloy Development for Electrochemical Applications

    Science.gov (United States)

    Young, Kwo-hsiung; Nei, Jean

    2013-01-01

    In this review article, the fundamentals of electrochemical reactions involving metal hydrides are explained, followed by a report of recent progress in hydrogen storage alloys for electrochemical applications. The status of various alloy systems, including AB5, AB2, A2B7-type, Ti-Ni-based, Mg-Ni-based, BCC, and Zr-Ni-based metal hydride alloys, for their most important electrochemical application, the nickel metal hydride battery, is summarized. Other electrochemical applications, such as Ni-hydrogen, fuel cell, Li-ion battery, air-metal hydride, and hybrid battery systems, also have been mentioned. PMID:28788349

  4. Development and Evaluation of Wide Clearance Braze Joints in Gamma Prime Alloys.

    Science.gov (United States)

    1982-03-01

    process , it also cleans crack surfaces, and this opens a way to repair the very costly parts. Since the alloys contain aluminum and titanium , post- weld ...assembly was comr Let ,d by weld tacking the ends of the T-bar with a TIG torch. Sufficient T-bars of each parent alloy were prepared so that each surface...fluorocarbon cleaning process (FCP). For the right filler metal combination (Ren6 80 with D 15 alloy ) joint tensile strengths rivalled the base metal

  5. Oil sands: Strategies for future development - An overview

    International Nuclear Information System (INIS)

    Yildirim, E.

    1995-01-01

    The Alberta Chamber of Resources developed a Task Force in 1993 to promote oil sands development, and to identify and publicize the social and economic benefits of oil sands operations. Formation, mission of the National Task Force, impediments and opportunities for development were summarized. Attributes of oil sands, benefits of their development, impediments to development, strategic development and potential growth scenarios were discussed. Cooperation between government and industry was deemed essential. Recommendations included development of a bitumen pipeline network, provision of incentives to encourage development, encouragement of risk and reward sharing between bitumen producers and up graders, and diversification of products and by-products. 7 figs., 12 refs

  6. Developing the School of the Future Based on Quality Principles

    Science.gov (United States)

    Doukas, Constantinos I.; Kotsanis, Yannis; Economu, Vassilis; Riviou, Katerina

    Our school's vision is to deliver a more attractive, qualitative and technologically equipped school to our students in order to prepare them to be active 21st Century citizens. In this paper we present the on-going effort that we have made during the last years, towards this direction. Our initial step towards building the "School of the Future" is the implementation of a "Classroom of the Future", as well as the experience gained through our participation in the homonym project. In this classroom our students have a light-weight portable "electronic schoolbag" (Tablet PC) and are connected wirelessly to the interactive whiteboard of their classroom and their teacher's "electronic" tools. This schoolbag contains all of their books and sheets as well as virtual labs, simulations, multimedia material, their schoolwork and every tool related to the educational process.

  7. Power Nuclear Reactors: technology and innovation for development in future

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2009-01-01

    The conference is about some historicals task of the fission technology as well as many types of Nuclear Reactors. Enrichment of fuel, wastes, research reactors and power reactors, a brief advertisment about Uruguay electric siystem and power generation, energetic worldwide, proliferation, safety reactors, incidents, accidents, Three-Mile Island accident, Chernobil accident, damages, risks, classification and description of Power reactors steam generation, nuclear reactor cooling systems, future view

  8. Developing Earth and Space Scientists for the Future

    Science.gov (United States)

    Manduca, Cathryn A.; Cifuentes, Inés

    2007-09-01

    As the world's largest organization of Earth and space scientists, AGU safeguards the future of pioneering research by ensuring that ``the number and diversity of Earth and space scientists continue to grow through the flow of young talent into the field'' (AGU Strategic Plan 2008, Goal IV). Achieving this goal is the focus of the AGU Committee on Education and Human Resources (CEHR), one of the Union's three outreach committees.

  9. Dynamical reduction models: present status and future developments

    Energy Technology Data Exchange (ETDEWEB)

    Bassi, Angelo [Dipartimento di Fisica Teorica, Universita degli Studi di Trieste, Strada Costiera 11, 34014 Trieste (Italy); Mathematisches Institut der Ludwig-Maximilians Universitaet, Theresienstr. 39, 80333 Munich (Germany)

    2007-05-15

    We review the major achievements of the dynamical reduction program, showing why and how it provides a unified, consistent description of physical phenomena, from the microscopic quantum domain to the macroscopic classical one. We discuss the difficulties in generalizing the existing models in order to comprise also relativistic quantum field theories. We point out possible future lines of research, ranging from mathematical physics to phenomenology.

  10. Study of the structure and development of the set of reference materials of composition and structure of heat resisting nickel and intermetallic alloys

    Directory of Open Access Journals (Sweden)

    E. B. Chabina

    2016-01-01

    Full Text Available Relevance of research: There are two sizes (several microns and nanodimensional of strengthening j'-phase in single-crystal heat resisting nickel and intermetallic alloys, used for making blades of modern gas turbine engines (GTD. For in-depth study of structural and phase condition of such alloys not only qualitative description of created structure is necessary, but quantitative analysis of alloy components geometrical characteristics. Purpose of the work: Development of reference material sets of heat resisting nickel and intermetallic alloy composition and structure. Research methods: To address the measurement problem of control of structural and geometrical characteristics of single-crystal heat resisting and intermetallic alloys by analytical microscopy and X-ray diffraction analysis the research was carried out using certified measurement techniques on facilities, entered in the Register of Measurement Means of the Russian Federation. The research was carried out on microsections, foils and plates, cut in the plane {100}. Results: It is established that key parameters, defining the properties of these alloys are particle size of strengthening j' -phase, the layer thickness of j-phase between them and parameters of phases lattice. Metrological requirements for reference materials of composition and structure of heat resisting nickel and intermetallic alloys are formulated. The necessary and sufficient reference material set providing the possibility to determine the composition and structure parameters of single-crystal heat resisting nickel and intermetallic alloys is defined. The developed RM sets are certified as in-plant reference materials. Conclusion: The reference materials can be used for graduation of spectral equipment when conducting element analysis of specified class alloys; for calibration of means of measuring alloy structure parameters; for measurement of alloys phases lattice parameters; for structure reference pictures

  11. Development of Ti-12Mo-3Nb alloy for biomedical application; Desenvolvimento da liga Ti-12Mo-3Nb para aplicacao biomedica

    Energy Technology Data Exchange (ETDEWEB)

    Panaino, J.V.P.; Gabriel, S.B., E-mail: josevicentepanaino@hotmail.co [Centro Universidade de Volta Redonda (UNIFOA), RJ (Brazil); Mei, P. [Universidade Estadual de Campinas (DEMa/UNICAMP), SP (Brazil). Dept. de Materiais; Brum, M.V. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Programa de Engenharia Metalurgica e de Materiais; Nunes, C.A. [Universidade de Sao Paulo (EEL/USP), Lorena, SP (Brazil). Escola de Engenharia

    2010-07-01

    The titanium alloys are quite satisfactory for biomedical applications due to their physical, mechanical and biological properties. Recent studies focuses on the development of beta type titanium alloys, composed of toxic elements (Nb, Mo, Ta ,...), because they have more advantages than alpha and alpha + beta (Ti- 6Al-4V) alloys such as lower modulus of elasticity, better plasticity and, moreover, the process variables can be controlled to produce selected results. This project focused on the development and characterization of Ti-12Mo-3Nb alloy in the condition 'as cast' and after thermomechanical treatment. The material was characterized in different conditions by X-ray diffraction, optical microscopy, microhardness measurements and elasticity modulus. The results showed that the forged Ti-12Mo-3Nb alloy showed the best combination of properties, being a promising candidate for use as implant. (author)

  12. Development of new zirconium based alloys for burn-up extension of light water reactor fuels, (1)

    International Nuclear Information System (INIS)

    Isobe, Takeshi; Matsuo, Yutaka

    1992-01-01

    Steam corrosion tests and tensile were conducted to investigate the effects of alloying elements such as Sn, Nb, Fe, Cr, Mo and V, and the mechanical properties of Nb-containing Zr-base alloys. The corrosion resistance of Zr-base alloys in comparison to Zr'y-4 was significantly improved by the reduction of the Sn content by 0.5 wt% and by a small addition of Nb (about 0.05 to 0.2 wt%). However, the decrease in solute Sn atoms degraded mechanical properties. The increase of the total content of Fe and Cr from 0.3 to 0.7 wt% improved the mechanical properties without affecting the corrosion resistance. The decrease of the Fe/Cr ratio from 6.0 to 0.5 increased the corrosion resistance. Small addition of Mo and/or V resulted in a further improvement of mechanical properties. Based on these experiments, three Nb-containing Zr-base alloys with equivalent mechanical properties and superior corrosion resistance to Zr'y-4 were developed. (author)

  13. Tungsten wire--nickel base alloy composite development. Contractor report, 1 Jun 1974--29 Feb 1976

    International Nuclear Information System (INIS)

    Brentnall, W.D.; Moracz, D.J.

    1976-03-01

    Further development and evaluation of refractory wire reinforced nickel-base alloy composites is described. Emphasis was placed on evaluating thermal fatigue resistance as a function of matrix alloy composition, fabrication variables and reinforcement level and distribution. Tests for up to 1,000 cycles were performed, and the best system identified in this current work was 50v/o W/NiCrAlY. Improved resistance to thermal fatigue damage would be anticipated for specimens fabricated via optimized processing schedules. Other properties investigated included 1,093 C (2,000 F) stress rupture strength, impact resistance and static air oxidation. A composite consisting of 30v/o W--Hf--C alloy fibers in a NiCrAlY alloy matrix was shown to have a 100-hour stress rupture strength at 1,093 C (2,000 F) of 365 MN/m 2 (53 ksi) or a specific strength advantage of about 3:1 over typical D.S. eutectics

  14. Development of new positive-grid alloy and its application to long-life batteries for automotive industry

    Science.gov (United States)

    Furukawa, Jun; Nehyo, Y.; Shiga, S.

    Positive-grid corrosion and its resulting creep or growth is one of the major causes of the failure of automotive lead-acid batteries. The importance of grid corrosion and growth is increasing given the tendency for rising temperatures in the engine compartments of modern vehicles. In order to cope with this situation, a new lead alloy has been developed for positive-grids by utilizing an optimized combination of lead-calcium-tin and barium. In addition to enhanced mechanical strength at high temperature, the corrosion-resistance of the grid is improved by as much as two-fold so that the high temperature durability of batteries using such grids has been demonstrated in both hot SAE J240 tests and in field trials in Japan and Thailand. A further advantage of the alloy is its recycleability compared with alloys containing silver. The new alloy gives superior performance in both 12-V flooded and 36-V valve-regulated lead-acid (VRLA) batteries.

  15. Development of an alternative route for recycling AA2050 aluminum alloy by powder metallurgy

    International Nuclear Information System (INIS)

    Guido, V.; Oliveira, A.C. de; Travessa, D.N.; Cardoso, K.R.

    2014-01-01

    This paper presents an alternative solid state route to recycling AA2050 aeronautical aluminium alloy chips. The first stage in the recycling process, reported in this work, is the obtainment of the alloy powder by high energy ball milling to subsequent cold pressing and hot extrusion. The process started with the cleaning of chips with the aim of contaminant removing from machining process and transport, followed by the high energy ball milling to result in the AA2050 alloy powder. The powder obtained was characterized by laser size particle analysis, scanning electron microscopy (SEM), X-Ray diffraction (DRX) and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The results show the feasibility of obtaining a powder having appropriate particle size and chemical composition in accordance with the specification for alloy. (author)

  16. Development of an environmentally benign anticorrosion coating for aluminum alloy using green pigments and organofunctional silanes

    Science.gov (United States)

    Yin, Zhangzhang

    Aerospace aluminum alloys such as Al alloy 2024-T3 and 7075-T6 are subject to localized corrosion due the existence of intermetallics containing Cu, Mg or Zn. Current protection measurement employs substantial use of chromate and high VOC organics, both of which are identified as environment and health hazards. The approach of this study is to utilize a combination of organofunctional silanes and a compatible inhibitor integrated into high-performance waterborne resins. First, an extensive pigment screening has been done to find replacements for chromates using the testing methodology for fast corrosion inhibition evaluation and pigment. Zinc phosphate and calcium zinc phosphomolybdate were found to have the best overall performance on Al alloys. Some new corrosion inhibitors were synthesized by chemical methods or modified by plasma polymerization for use in the coatings. Low-VOC, chromate-free primers (superprimer) were developed using these pigments with silane and acrylic-epoxy resins. The developed superprimer demonstrated good corrosion inhibition on aluminum substrates. The functions of inhibitor and silane in the coating were investigated. Both silane and inhibitor are critical for the performance of the superprimer. Silane was found to improve the adhesion of the coating to the substrate and also facilitate corrosion prevention. Addition of zinc phosphate to the coating improved the resistance of a scratched area against corrosion. The microstructure of the acrylic-epoxy superprimer coating was studied. SEM/EDAX revealed that the superprimer has a self-assembled stratified double-layer structure which accounts for the strong anti-corrosion performance of the zinc phosphate pigment. Zinc phosphate leaches out from the coating to actively protect the scratched area. The leaching of pigment was confirmed in the ICP-MS analysis and the leaching rate was measured. Coating-metal interface and the scribe of coated panels subjected to corrosion test was studied

  17. DEVELOPMENT OF LASER CLADDING WEAR-RESISTANT COATING ON TITANIUM ALLOYS

    OpenAIRE

    RUILIANG BAO; HUIJUN YU; CHUANZHONG CHEN; BIAO QI; LIJIAN ZHANG

    2006-01-01

    Laser cladding is an advanced surface modification technology with broad prospect in making wear-resistant coating on titanium alloys. In this paper, the influences of laser cladding processing parameters on the quality of coating are generalized as well as the selection of cladding materials on titanium alloys. The microstructure characteristics and strengthening mechanism of coating are also analyzed. In addition, the problems and precaution measures in the laser cladding are pointed out.

  18. Radiation detectors for personnel monitoring - current developments and future trends

    International Nuclear Information System (INIS)

    Kannan, S.

    2003-01-01

    The radiation detectors for personnel monitoring range from the conventional passive dosimeters like the film badge and the TLD, to sophisticated active dosimeters for integrated gamma, beta and neutron dose measurement. With the availability of high accuracy active dosimeters, the process of personnel monitoring, acceptability among radiation workers, record keeping and dose control have become more simplified. However the high level of sophistication in the active dosimeter has its own inevitable price tag and the new breed of active dosimeters are prohibitively costly. The silver lining, in the otherwise dark cost scenario of these dosimeters is the potential for cost reduction at least in some of the dosimeters in the near future

  19. Recent Developments and Research Progress on Friction Stir Welding of Titanium Alloys: An Overview

    Science.gov (United States)

    Karna, Sivaji; Cheepu, Muralimohan; Venkateswarulu, D.; Srikanth, V.

    2018-03-01

    Titanium and its alloys are joined by various welding processes. However, Fusion welding of titanium alloys resulted solidification problems like porosity, segregation and columnar grains. The problems occurred in conventional welding processes can be resolved using a solid state welding i.e. friction stir welding. Aluminium and Magnesium alloys were welded by friction stir welding. However alloys used for high temperature applications such as titanium alloys and steels are arduous to weld using friction stir welding process because of tool limitations. Present paper summarises the studies on joining of Titanium alloys using friction stir welding with different tool materials. Selection of tool material and effect of welding conditions on mechanical and microstructure properties of weldments were also reported. Major advantage with friction stir welding is, we can control the welding temperature above or below β-transus temperature by optimizing the process parameters. Stir zone in below beta transus condition consists of bi-modal microstructure and microstructure in above β-transus condition has large prior β- grains and α/β laths present in the grain. Welding experiments conducted below β- transus condition has better mechanical properties than welding at above β-transus condition. Hardness and tensile properties of weldments are correlated with the stir zone microstructure.

  20. Preparing Students for the Future: Making Career Development a Priority.

    Science.gov (United States)

    Hughey, Kenneth F.; Hughey, Judith K.

    1999-01-01

    Presents information relevant to school counseling about the implications of work changes. Outlines foundational guides for student success: improving decision making, learning about career paths, acquiring employability skills, and developing lifelong learning attitudes. Describes activities to facilitate career development. (SK)

  1. Future development LMFBR-steam generators SNR2

    International Nuclear Information System (INIS)

    Essebaggers, J.; Pors, J.G.

    1975-01-01

    The development work for steam generators for large LMFBR plants by Neratoom will be reviewed consisting of: 1. Development engineering information. 2. Concept select studies followed by conceptual designs of selected models. 3. Development manufacturing techniques. 4. Detail design of a prototype unit. 5. Testing of sub-constructions for prototype steam generators. In this presentation item 1 and 2 above will be high lighted, identifying the development work for the SNR-2 steam generators on short term basis. (author)

  2. Emotional Aspects of Childhood Career Development: Importance and Future Agenda

    Science.gov (United States)

    Oliveira, Íris M.; Taveira, Maria do Céu; Porfeli, Erik J.

    2015-01-01

    Childhood is a central period for career and social-emotional development. However, the literature covering childhood career development and the role of emotions in careers is scarce. In this article, we advocate for the consideration of emotions in childhood career development. Emotional aspects of children's career exploration, key-figures and…

  3. Research and development for the nuclear energy of the future

    International Nuclear Information System (INIS)

    Bernard, P.

    2002-01-01

    In the framework of the energy demand increase facing the environment protection, the three main objectives of the research and development for the nuclear energy are developed in this document: to support the today nuclear industry, to answer the public anxiety concerning the sanitary and environmental impact of nuclear activities, to design, evaluate and develop new reactors. (A.L.B.)

  4. Moral Development at the Crossroads: New Trends and Possible Futures

    Science.gov (United States)

    Lapsley, Daniel; Carlo, Gustavo

    2014-01-01

    This article introduces a special section on moral development. We claim that the field is now undergoing a resurgence of theoretical and methodological innovation after the eclipse of paradigmatic moral stage theory. Although research on prosocial development, moral emotions, and social domain theory has sustained interest in moral development,…

  5. Precipitation sensitivity to alloy composition in Fe-Cr-Mn austenitic steels developed for reduced activation for fusion application

    International Nuclear Information System (INIS)

    Maziasz, P.J.; Klueh, R.L.

    1988-01-01

    Special austenitic steels are being designed in which alloying elements like Mo, Nb, and Ni are replaced with Mn, W, V, Ti, and/or Ta to reduce the long-term radioactivity induced by fusion reactor irradiation. However, the new steels still need to have properties otherwise similar to commercial steels like type 316. Precipitation strongly affects strength and radiation-resistance in austenitic steels during irradiation at 400--600/degree/C, and precipitation is also usually quite sensitive to alloy composition. The initial stage of development was to define a base Fe-Cr-Mn-C composition that formed stable austenite after annealing and cold-working, and resisted recovery or excessive formation of coarse carbide and intermetallic phases during elevated temperature annealing. These studies produced a Fe-12Cr-20Mn-0.25C base alloy. The next stage was to add the minor alloying elements W, Ti, V, P, and B for more strength and radiation-resistance. One of the goals was to produce fine MC precipitation behavior similar to the Ti-modified Fe-Cr-Ni prime candidate alloy (PCA). Additions of Ti+V+P+B produced fine MC precipitation along network dislocations and recovery/recrystallization resistance in 20% cold worked material aged at 800/degree/C for 166h, whereas W, Ti, W+Ti, or Ti+P+B additions did not. Addition of W+Ti+V+P+B also produced fine MC, but caused some σ phase formation and more recrystallization as well. 29 refs., 14 figs., 9 tabs

  6. Development of solid-state joining technology of dissimilar metals using amorphous metastable alloy powders

    International Nuclear Information System (INIS)

    Lee, Min Ku; Rhee, Chang Kyu; Uhm, Young Rang; Park, Jin Ju; Lee, Jeong Gu; Kim, Gwang Ho; Hong, Sung Mo; Lee, Jong Geuk; Kim, Kyoung Ho

    2007-04-01

    Many nuclear components such as nozzles, steam generator, pipes, condensers, and heat exchangers require a realization of the reliable and high-performance joining or welding between the dissimilar metals or alloys, despite the fact that their melting points, thermal expansion coefficients and physical properties are quite different from each other. The conventional arc welding processes (SMAW, TIG), however, which is currently used as a welding process for NPP components, have not met the requirements of obtaining a reliable and high-quality dissimilar joints, as demonstrated from a number of the previously reported accidents or material failures in the welded joints. This originates from the various weaknesses of the arc welding processes (more than 1700 .deg. C) such as high residual stresses which is sensitive to SCC, porous or deformed joint structures, a formation of grain-coarsened HAZ and an induced degradation of the base metals in the vicinity of the joint. Moreover, they are not applicable to a joining of the dissimilar metals when their melting point or mechanical/physical properties are quite different. In this research, the low-temperature joining (700 .deg. C - 800 .deg. C) and simultaneously strong diffusion bonding technologies between the dissimilar Ti and Cu metals have been developed for the applications to the dissimilar joints of various nuclear tube components

  7. Development of a non-explosive release actuator using shape memory alloy wire.

    Science.gov (United States)

    Yoo, Young Ik; Jeong, Ju Won; Lim, Jae Hyuk; Kim, Kyung-Won; Hwang, Do-Soon; Lee, Jung Ju

    2013-01-01

    We have developed a newly designed non-explosive release actuator that can replace currently used release devices. The release mechanism is based on a separation mechanism, which relies on segmented nuts and a shape memory alloy (SMA) wire trigger. A quite fast and simple trigger operation is made possible through the use of SMA wire. This actuator is designed to allow a high preload with low levels of shock for the solar arrays of medium-size satellites. After actuation, the proposed device can be easily and instantly reset. Neither replacement, nor refurbishment of any components is necessary. According to the results of a performance test, the release time, preload capacity, and maximum shock level are 50 ms, 15 kN, and 350 G, respectively. In order to increase the reliability of the actuator, more than ten sets of performance tests are conducted. In addition, the proposed release actuator is tested under thermal vacuum and extreme vibration environments. No degradation or damage was observed during the two environment tests, and the release actuator was able to operate successfully. Considering the test results as a whole, we conclude that the proposed non-explosive release actuator can be applied reliably to intermediate-size satellites to replace existing release systems.

  8. Development of liquid-nitrogen-cooling friction stir spot welding for AZ31 magnesium alloy joints

    Science.gov (United States)

    Wu, Dong; Shen, Jun; Zhou, Meng-bing; Cheng, Liang; Sang, Jia-xing

    2017-10-01

    A liquid-nitrogen-cooling friction stir spot welding (C-FSSW) technology was developed for welding AZ31 magnesium alloy sheets. The liquid-nitrogen cooling degraded the deformability of the welded materials such that the width of interfacial cracks increased with increasing cooling time. The grain size of the stirred zone (SZ) and the heat-affected zone (HAZ) of the C-FSSW-welded joints decreased, whereas that of the thermomechanically affected zone (TMAZ) increased with increasing cooling time. The maximum tensile shear load of the C-FSSW-welded joints welded with a cooling time of 5 or 7 s was larger than that of the friction stir spot welding (FSSW)-welded joint, and the tensile shear load decreased with increasing cooling time. The microhardness of the C-FSSW-welded joints was greater than that of the FSSW-welded joint. Moreover, the microhardness of the SZ and the HAZ of the C-FSSW-welded joints increased, whereas that of the TMAZ decreased, with increasing cooling time.

  9. Development of ODS FeCrAl alloys for accident-tolerant fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Dryepondt, Sebastien N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hoelzer, David T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pint, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Unocic, Kinga A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-18

    FeCrAl alloys are prime candidates for accident-tolerant fuel cladding due to their excellent oxidation resistance up to 1400 C and good mechanical properties at intermediate temperature. Former commercial oxide dispersion strengthened (ODS) FeCrAl alloys such as PM2000 exhibit significantly better tensile strength than wrought FeCrAl alloys, which would alloy for the fabrication of a very thin (~250 m) ODS FeCrAl cladding and limit the neutronic penalty from the replacement of Zr-based alloys by Fe-based alloys. Several Fe-12-Cr-5Al ODS alloys where therefore fabricated by ball milling FeCrAl powders with Y2O3 and additional oxides such as TiO2 or ZrO2. The new Fe-12Cr-5Al ODS alloys showed excellent tensile strength up to 800 C but limited ductility. Good oxidation resistance in steam at 1200 and 1400 C was observed except for one ODS FeCrAl alloy containing Ti. Rolling trials were conducted at 300, 600 C and 800 C to simulate the fabrication of thin tube cladding and a plate thickness of ~0.6mm was reached before the formation of multiple edge cracks. Hardness measurements at different stages of the rolling process, before and after annealing for 1h at 1000 C, showed that a thinner plate thickness could likely be achieved by using a multi-step approach combining warm rolling and high temperature annealing. Finally, new Fe-10-12Cr-5.5-6Al-Z gas atomized powders have been purchased to fabricate the second generation of low-Cr ODS FeCrAl alloys. The main goals are to assess the effect of O, C, N and Zr contents on the ODS FeCrAl microstructure and mechanical properties, and to optimize the fabrication process to improve the ductility of the 2nd gen ODS FeCrAl while maintaining good mechanical strength and oxidation resistance.

  10. Rethinking scales? Possible future(s) for regional development planning in South Africa - a think piece

    CSIR Research Space (South Africa)

    Makoni, EN

    2008-10-01

    Full Text Available -wide development programmes and projects, within a long 11 term perspective; taking into consideration the resources, economic, political, social and natural constraints and opportunities; they are also expected to act as vehicles for addressing..., 1999; Keating, 1998; Storper, 1995) regions are perceived to be more innovative and resilient in engaging with the complexities of the capitalist global economy. This focused attention on regions as critical units of study is imperative given...

  11. Distance learning: the future of continuing professional development.

    Science.gov (United States)

    Southernwood, Julie

    2008-10-01

    The recent development of a market economy in higher education has resulted in the need to tailor the product to the customers, namely students, employers and commissioning bodies. Distance learning is an opportunity for nurse educators and institutions to address marketing initiatives and develop a learning environment in order to enhance continuing professional development. It provides options for lifelong learning for healthcare professionals--including those working in community settings--that is effective and cost efficient. Development of continuing professional development programmes can contribute to widening the participation of community practitioners in lifelong learning, practice and role development. This paper considers the opportunities that web-based and online education programmes can provide community practitioners to promote professional skills while maintaining a work-life balance, and the role of the lecturer in successfully supporting professionals on web-based learning programmes.

  12. Effect of rolling reduction on the development of rolling and recrystallization textures in Al-Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Endou, S; Inagaki, H [Shonan Inst. of Tech., Fujisawashi (Japan)

    2002-07-01

    In order to investigate the effect of Mg content on the development of the rolling textures in Al pure Al, Al-3% Mg alloy and Al-5% Mg alloy were cold rolled by varying rolling reductions up to 97%. Their rolling textures were investigated by the orientation distribution function analysis. The extent of work hardening introduced by cold rolling was estimated by the hardness measurements. It was found that, at all rolling reductions, the main orientations of the rolling textures depended strongly on the Mg content. In pure Al, {l_brace}123{r_brace} left angle 634 right angle was always the main orientation, whereas {l_brace}112{r_brace} left angle 111 right angle was most strong in the Al-3%Mg alloy. In the Al-5% Mg alloy, the development of both {l_brace}123{r_brace} left angle 634 right angle and {l_brace}112{r_brace} left angle 111 right angle were strongly suppressed, whereas {l_brace}110{r_brace} left angle 112 right angle developed remarkably. In pure Al, most of the texture development occurred at the later half of work hardening, i.e. at rolling reductions above 70%. With increasing Mg content, rolling texture tended to develop already at lower rolling reductions. Dynamic recovery, which occurred at very high rolling reductions, suppressed the development of the rolling textures. All these results strongly suggested that the formation of dislocation cell structures and shear banding are origins of the formation of these rolling textures. On annealing these specimens at 450 C for 30 min, recrystallization textures developed only in specimens having strong rolling textures, i. e. in the specimens cold rolled more than 70%. {l_brace}100{r_brace} left angle 001 right angle developed only in pure Al and in the Al-3% Mg ally, in which {l_brace}123{r_brace} left angle 634 right angle and {l_brace}112{r_brace} left angle 111 right angle were strong in the rolling textures. Recrystallization textures of the Al-5% Mg alloy was wather random. Its main orientation, {l

  13. Development and characterization of monolithic fuel miniplate alloy U-2.5Zr-7.5Nb, coated in zircaloy

    International Nuclear Information System (INIS)

    Machado, Geraldo Correa

    2014-01-01

    The autocthonal production of nuclear fuel in Brazil for test and research reactors is restricted to MTR (Material Test Reactor) fuel type dispersion plate, using U3Si2 alloy, coated and dispersed in aluminum, developed by IPEN-SP for use in IEA-R1 reactor. Moreover, the UO 2 fuel rod type for power reactors is manufactured by Rezende (RJ) with a German technology by INB under license. Currently, Brazil is performing two programs of developing reactors. Currently, Brazil is developing two reactors. One of them is the development, by CNEN, the Brazilian Multipurpose Reactor (RMB), for testing, research and radioisotope production. The other one is the development a power reactor for naval propulsion, conducted by the Brazilian Navy. This dissertation presents the development and characterization of monolithic fuel miniplate alloy U-2.5Zr-7.5Nb, coated in zircaloy (ZRY), on a laboratory scale. Due to its innovative features and properties, this fuel can be used as fuel in both test reactors, research and producing radioisotopes for power reactors as small and medium sizes. Thus, this high potential fuel can be used in domestic reactors currently under development. The development of monolithic fuel plate type is made using the technique called 'picture-frame' where a sandwich composed of a monolith alloy U-2.5Zr- 7.5Nb coupled to a frame and coated sheets of Zry is obtained. The alloy U-2.5Zr-7.5Nb was obtained by melting in an induction furnace and then was cast into rectangular ingots of graphite, thus achieving an ingot with approximate dimensions of 170 x 50 x 60 mm. The obtained ingot was hot rolled at 850 ºC, with a 50 % reduction in thickness, in order to refine the raw structure of fusion. Samples cut from the alloy U-2.5Zr-7.5Nb, with dimensions 20 x 20 x 6 mm were placed in frames and plates Zry and joined by TIG (Tungsten Inert Gas) under an atmosphere of argon, obtaining a set of 10 mm thick, 45 mm wide and 100 mm long. The sandwiches were hot rolled to

  14. Future value now. Cashing sustainability in area development

    International Nuclear Information System (INIS)

    Huismans, G.; De Vaan, M.

    2011-06-01

    Several actors have an interest in the added value of a high quality of area development - and they also want to invest. In more and more places new strategies are developed to realize sustainable areas. Inspiring examples show that even within the present context much is possible. In many places in the Netherlands, targets in terms of energy, water, waste and green are operationalized and embedded in the financial business cases for area developments. [nl

  15. Past and future challenges in developing remote systems technology

    International Nuclear Information System (INIS)

    Ferguson, K.R.

    1978-01-01

    During the early development of remote systems for processing and examining fuel and materials from nuclear reactors, the facility designer and operator worked closely together to meet the challenges of this new field. Numerous challenges still face the nuclear remote systems engineer, e.g., the development of systems that reduce the exposure of workers, the need for advances in basic technology, and the development of cost-effective facilities. The solution to these and other challenges can be accelerated by an expanded program of information exchange, an aggressive development program, and improved project management procedures

  16. Xi. Sleep and development: conclusions and future directions.

    Science.gov (United States)

    Sadeh, Avi; El-Sheikh, Mona

    2015-03-01

    Literature on sleep and child development is growing in novel directions across several disciplines necessitating guiding conceptual principles and methodological tools. First, this volume presents a summary of discussions from an SRCD-sponsored multidisciplinary forum on sleep and development, which includes presentation of key issues and guiding recommendations for research priorities in this fast developing field. Second, enhancing accessibility to child development researchers, state of the science sleep assessment methodologies are presented with a discussion of their advantages and disadvantages. Third, seven empirical studies conducted with "typically" developing infants and children provide examples of relations between sleep and some of the many individual and familial factors that influence and are influenced by sleep. In the presentation of empirical findings, a developmental ecological systems perspective adapted to sleep was espoused to illustrate some of the multiple levels of influence in the study of child sleep and development. Collectively, studies in this volume build significantly on the literature through: (a) illustrating linkages between various sleep parameters (e.g., quality, sleeping arrangements) and other key developmental domains (e.g., attachment, parenting); (b) demonstration of longitudinal relations connecting sleep with development, which is scarce in this field; and (c) utilization of actigraphy-based assessments of sleep duration and quality, which are underutilized in the literature yet important for a more nuanced understanding of sleep and development. © 2015 The Society for Research in Child Development, Inc.

  17. Development of DCC software dynamic test facility: past and future

    International Nuclear Information System (INIS)

    McDonald, A.M.; Thai, N.D.; Buijs, W.J.

    1996-01-01

    This paper describes a test facility for future dynamic testing of DCC software used in the control computers of CANDU nuclear power stations. It is a network of three computers: the DCC emulator, the dynamic CANDU plant simulator and the testing computer. Shared network files are used for input/output data exchange between computers. The DCC emulator runs directly on the binary image of the DCC software. The dynamic CANDU plant simulator accepts control signals from the DCC emulator and returns realistic plant behaviour. The testing computer accepts test scripts written in AECL Test Language. Both dynamic test and static tests may be performed on the DCC software to verify control program outputs and dynamic responses. (author)

  18. Plant maneuvrability in France: recent developments and future prospects

    International Nuclear Information System (INIS)

    Gautier, A.; Guesdon, B.

    1986-06-01

    In the early 1970's, it was correctly anticipated that in 10 year's time PWR's would become major contributors to energy production in France and would therefore have to participate largely in adjustment of supply to demand. A substantial effort was launched between vendor (FRAMATOME), utility (EDF) and the French Atomic Energy Commission (CEA) to greatly improve PWR's flexibility, resulting in the current situation where both frequency control and load follow are now routinely performed on most plants in operation. Based on rapidly accumulating operational experience and on all expertise acquired in the past decade, a second-generation core control strategy is now being finalized for application on all future 1400 MW plants (with commercial operation scheduled in 1992 for first unit). This core control includes a maximized Reactor Advanced Maneuvrability Package (RAMP or Dispositif maximise de Manoeuvrabilite Accrue DMAX in French) and an automated system control boron concentration (SYCOBOR)

  19. Development of materials characterization techniques and their future aspects

    International Nuclear Information System (INIS)

    Hayashi, Shun-ichi; Kimura, Masao; Tanaka, Koki; Ikematsu, Yoichi; Mizukami, Kazumi

    2010-01-01

    Steel industry uniformly makes various qualities controlling both the internal textures and the surfaces of the steel productions, which are manufactured several 10 tons at a time, with the nano-scale. Recently, processing technology with nano-level has been approaching with atomic level because of manufacturing higher grade steel plate. So it is important that atomic level characterization increases along with it. On the other hand, shortage of raw materials and its sudden rise of the price make management situation worse. Analytical technology is expected to propose the next generation of steel plate with competitive edge and its operation provision. In this article, we will introduce several examples of our researches and give the future aspects of analytical technologies for steel industry. (author)

  20. ANALYSIS OF FOREIGN EXPERIENCE OF SYSTEMIC DEVELOPMENT OF FUTURE SOCIAL PEDAGOGISTS’ INFORMATIONAL CULTURE

    Directory of Open Access Journals (Sweden)

    Oleksandr A. Ratsul

    2014-10-01

    Full Text Available The article deals with the analysis of foreign experience of systemic development of future social pedagogists’ informational culture. A number of cultural universals are identified, each of them is treated as the core of culture. A list of components of future social pedagogists’ information culture is given. Personality traits that enable future social pedagogists to participate effectively in all kinds of work with information are characterized. Two structural levels (contents and functions in future social pedagogists’ information culture are singled out. Main functions of future social pedagogists’ information culture are defined. The structural organization of future social pedagogists’ information culture is analyzed.

  1. Development and properties of Ti–In binary alloys as dental biomaterials

    International Nuclear Information System (INIS)

    Wang, Q.Y.; Wang, Y.B.; Lin, J.P.; Zheng, Y.F.

    2013-01-01

    The objective of this study is to investigate the effect of alloying element indium on the microstructure, mechanical properties, corrosion behavior and in vitro cytotoxicity of Ti–In binary alloys, with the addition of 1, 5, 10 and 15 at.% indium. The phase constitution was studied by optical microscopic observation and X-ray diffraction measurements. The mechanical properties were characterized by tension and microhardness tests. Potentiodynamic polarization measurements were employed to investigate the corrosion behavior in artificial saliva solutions with and without fluoride. In vitro cytotoxicity was conducted by using L929 and NIH 3T3 mouse fibroblast cell lines, with commercially pure Ti (CP–Ti, ASTM grade 2) as negative control. All of the binary Ti–In alloys investigated in this work were found to have higher strength and microhardness than CP–Ti. Electrochemical results showed that Ti–In alloys exhibited the same order of magnitude of passivation current densities with CP–Ti in artificial saliva solutions. With the presence of NaF, Ti–10In and Ti–15In showed transpassive behavior and lower current densities at high potentials. All experimental Ti–In alloys showed good cytocompatibility, at the same level as CP–Ti. The addition of indium to titanium was effective on increasing the strength and microhardness, without impairing its good corrosion resistance and cytocompatibility. - Highlights: ► The addition of In into Ti can increase the mechanical property. ► Ti-In alloys exhibited similar passivation behavior with CP-Ti. ► Ti-In alloys had good cytocompatibility comparable with CP-Ti. ► Ti-10In and Ti-15In showed transpassive baheviour with the addition of NaF

  2. Small Fluxgate Magnetometers: Development and Future Trends in Spain

    Science.gov (United States)

    Ciudad, David; Díaz-Michelena, Marina; Pérez, Lucas; Aroca, Claudio

    2010-01-01

    In this paper, we give an overview of the research on fluxgate magnetometers carried out in Spain. In particular we focus in the development of the planar-type instruments. We summarize the fabrication processes and signal processing developments as well as their use in complex systems and space. PMID:22294904

  3. New development is targeted at the future nuclear generating market

    Energy Technology Data Exchange (ETDEWEB)

    1974-01-01

    The results are given of a survey of the reserves, exploitation and processing of uranium ore in the USA, Australia, Canada, France (including Gabon and Niger), and South Africa indicating estimated development up to 1990 and the estimated impact of the development of mining on the world natural uranium and enriched fuel market.

  4. Small fluxgate magnetometers: development and future trends in Spain.

    Science.gov (United States)

    Ciudad, David; Díaz-Michelena, Marina; Pérez, Lucas; Aroca, Claudio

    2010-01-01

    In this paper, we give an overview of the research on fluxgate magnetometers carried out in Spain. In particular we focus in the development of the planar-type instruments. We summarize the fabrication processes and signal processing developments as well as their use in complex systems and space.

  5. Small Fluxgate Magnetometers: Development and Future Trends in Spain

    OpenAIRE

    Lucas Pérez; Claudio Aroca; Marina Díaz-Michelena; David Ciudad

    2010-01-01

    In this paper, we give an overview of the research on fluxgate magnetometers carried out in Spain. In particular we focus in the development of the planar-type instruments. We summarize the fabrication processes and signal processing developments as well as their use in complex systems and space.

  6. Small Fluxgate Magnetometers: Development and Future Trends in Spain

    Directory of Open Access Journals (Sweden)

    Lucas Pérez

    2010-03-01

    Full Text Available In this paper, we give an overview of the research on fluxgate magnetometers carried out in Spain. In particular we focus in the development of the planar-type instruments. We summarize the fabrication processes and signal processing developments as well as their use in complex systems and space.

  7. Research on Hearing and Balance--Current and Future Developments.

    Science.gov (United States)

    Snow, James B., Jr.

    1997-01-01

    This article reviews current research that has located disease genes causing hearing impairments, discovered the ability of sensory cells of the inner ear to regenerate, developed vaccines to prevent otitis media, developed programmable hearing aids, improved cochlear implants, and demonstrated the positive effects of physical therapy with balance…

  8. Watershed management and sustainable development: Lessons learned and future directions

    Science.gov (United States)

    Karlyn Eckman; Hans M. Gregerson; Allen L. Lundgren

    2000-01-01

    Fundamental belief underlying the direction and content of this paper is that the paradigms of land and water management evolving into the 21st century increasingly favor a watershed focused approach. Underlying that approach is an appreciation of the processes of sustainable development and resource use. The increasing recognition that sustainable development and...

  9. The Development of an In-Situ TEM Technique for Studying Corrosion Behavior as Applied to Zirconium-Based Alloys

    Science.gov (United States)

    Harlow, Wayne

    Zirconium-based alloys are a commonly used material for nuclear fuel rod cladding, due to its low neutron cross section and good corrosion properties. However, corrosion is still a limiting factor in fuel rod lifespan, which restricts burn up levels, and thus efficiency, that can be achieved. While long-term corrosion behavior has been studied through both reactor and autoclave samples, the oxide nucleation and growth behavior has not been extensively studied. This work develops a new technique to study the initial stages of corrosion in zirconium-based alloys and the microstructural effects on this process by developing an environmental cell system for the TEM. Nanoscale oxidation parameters are developed, as is a new FIB technique to support this method. Precession diffraction is used in conjunction with in-situ TEM to observe the initial stages of corrosion in these alloys, and oxide thickness is estimated using low-loss EELS. In addition, the stress stabilization of tetragonal ZrO 2 is explored in the context of sample preparation for TEM. It was found that in-situ environmental TEM using an environmental cell replicates the oxidation behavior observed in autoclaved samples in both oxide structure and phases. Utilizing this technique, it was shown that cracking of the oxide layer in zirconium-based alloys is related to oxide relaxation, and not thermal changes. The effect of secondary phase particles on oxidation behavior did not present significant results, however a new method for studying initial oxidation rates using low-loss EELS was developed.

  10. The Challenge of Urban and Regional Development in the Future

    Directory of Open Access Journals (Sweden)

    Tedjo Suminto

    2004-01-01

    Full Text Available The task of development is part of the overall national task carried out along governance. This task has been entrusted to the government as a gradual long-term task, planning, and sustainable. Implied in it, the intention to achieve a better state. Contained within the dimension of time setting goals, achieving goals, and overall utilization of benefits for citizens throughout the country. Enshrined also be aware that there will be found a variety of difficulties, limitations, and problems that must be solved. The problems of urban development in Indonesia can be viewed from two approaches, namely macro and micro approaches. A macro approach urban problems are reviewed in the context of the region (national scale. While the approach is seen as a micro city neighborhoods. This problem is closely related to the natural growth of the city population and population migration. Based on research on urban and regional development, it can be concluded: 1 the problem of urbanization of rural and small towns to large cities should be addressed; 2 urban spatial arrangements should be improved to do with increasingly limited land for development and urban development; 3 the provision of facilities and infrastructure of the city, city management, and financing of urban development, integration between government, society, and the private sector should be increased; 4 study of urban models that can accommodate all the problems of the city should be developed continuously.

  11. Development and application of high-precision laser welding technology for manufacturing Ti alloy frames of glasses

    International Nuclear Information System (INIS)

    Kim, S. S.; Yang, M. S.; Kim, W. K.; Lee, D. Y.; Kim, J. M.; Leem, B. C.; Shin, J. S.; Lee, D. H.

    1999-12-01

    The research and development efforts of the high precision laser welding technology for manufacturing titanium alloy frames of glasses. For this purpose, laser welding device with the high beam quality is designed and fabricated, which consists of a optical fiber transmission part, a welding monitoring part and a welding controller. The welding nozzle and holding fixtures for manufacturing titanium and shape memory alloy frames of glasses. Titanium and shape memory alloy frames of glasses to be developed were experimentally manufactured by utilizing the laser welding using the optical fiber of GI 400 μm. As a result, the seam welding with the bead width of 0.3 mm or less and the weld penetration of 0.3-0.4mm could be accomplished. The fundamental technology was established through design of welding jigs with a variety of configurations and adequate welding conditions. Also, for the purpose to enable the companies participating in this project to commercialize the developed technology acceleratedly, a training program for the engineers belonging to such companies was conducted along with the technology transfer through joint experiments with the engineers. (author)

  12. Future Regulations – A Catalyst for Technology Development

    Science.gov (United States)

    Summary of current mobile source regulations and EPA mobile source regulatory authority with an emphasis on how EPA regulations are a driver for the development and introduction of automotive technology.

  13. Overview of Biotechnology Futures: Possible Applications to Land Force Development

    National Research Council Canada - National Science Library

    Egudo, Margaret

    2004-01-01

    This review of selected scientific and technological advances occurring in the field of biotechnology discusses their possible impact for Land Force capability development in the next decade or two...

  14. Present and future of bioleaching in developing countries

    OpenAIRE

    Acevedo, Fernando

    2002-01-01

    Nowadays bioleaching occupies an increasingly important place among the available mining technologies. Today bioleaching is no longer a promising technology but an actual economical alternative for treating specific mineral ores. An important number of the current large-scale bioleaching operations are located in developing countries. This situation is determined by the fact that several developing countries have significant mineral reserves and by the characteristics of bioleaching that make...

  15. China's tourism development, contemporary market analysis and future prospects

    OpenAIRE

    shen, ziwen

    2008-01-01

    China's tourism industry is the achievement of the openness to the outside world and the implementation of economics reform. With years of changes in Chinese political and economic sectors, it has grown out of nothing, and experienced progress from small to large, from rapid growth to steady development, reaching toward its maturity since 1978. This paper explains the main stages of its development and indentifies the important changes before 2000. Moreover this paper shows that China's to...

  16. Global energy futures and human development: a framework for analysis

    International Nuclear Information System (INIS)

    Pasternak, A.D.

    2001-01-01

    This paper explores the relationship between measures of human well-being and consumption of energy and electricity. A correlation is shown between the United Nations Human Development Index (HDI) and annual per- capita electricity consumption for 60 populous countries comprising 90% of the world population. In this correlation, HDI reaches a maximum value when electricity consumption is about 4,000 kWh per person per year, well below consumption levels for most developed countries but also well above the level for developing countries. The correlation with electricity use is better than with total primary energy use. Global electricity consumption associated with a ''Human Development Scenario'' is estimated by adding to U.S. Department of Energy projections for the year 2020 increments of additional electricity consumption sufficient to reach 4,000 kWh per capita on a country-by-country basis. A roughly constant ratio of primary energy consumption to electric energy consumption is observed for countries with high levels of electricity use, and this ratio is used to estimate global primary energy consumption in the Human Development Scenario. The Human Development Scenario implies significantly greater global consumption of electricity and primary energy than do projections for 2020 by the DOE and others. (author)

  17. Development of tsunami early warning systems and future challenges

    Directory of Open Access Journals (Sweden)

    J. Wächter

    2012-06-01

    Full Text Available Fostered by and embedded in the general development of information and communications technology (ICT, the evolution of tsunami warning systems (TWS shows a significant development from seismic-centred to multi-sensor system architectures using additional sensors (e.g. tide gauges and buoys for the detection of tsunami waves in the ocean.

    Currently, the beginning implementation of regional tsunami warning infrastructures indicates a new phase in the development of TWS. A new generation of TWS should not only be able to realise multi-sensor monitoring for tsunami detection. Moreover, these systems have to be capable to form a collaborative communication infrastructure of distributed tsunami warning systems in order to implement regional, ocean-wide monitoring and warning strategies.

    In the context of the development of the German Indonesian Tsunami Early Warning System (GITEWS and in the EU-funded FP6 project Distant Early Warning System (DEWS, a service platform for both sensor integration and warning dissemination has been newly developed and demonstrated. In particular, standards of the Open Geospatial Consortium (OGC and the Organization for the Advancement of Structured Information Standards (OASIS have been successfully incorporated.

    In the FP7 project Collaborative, Complex and Critical Decision-Support in Evolving Crises (TRIDEC, new developments in ICT (e.g. complex event processing (CEP and event-driven architecture (EDA are used to extend the existing platform to realise a component-based technology framework for building distributed tsunami warning systems.

  18. Global energy futures and human development: a framework for analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pasternak, A.D. [Lawrence Livermore National Lab., CA (United States)

    2001-07-01

    This paper explores the relationship between measures of human well-being and consumption of energy and electricity. A correlation is shown between the United Nations Human Development Index (HDI) and annual per- capita electricity consumption for 60 populous countries comprising 90% of the world population. In this correlation, HDI reaches a maximum value when electricity consumption is about 4,000 kWh per person per year, well below consumption levels for most developed countries but also well above the level for developing countries. The correlation with electricity use is better than with total primary energy use. Global electricity consumption associated with a ''Human Development Scenario'' is estimated by adding to U.S. Department of Energy projections for the year 2020 increments of additional electricity consumption sufficient to reach 4,000 kWh per capita on a country-by-country basis. A roughly constant ratio of primary energy consumption to electric energy consumption is observed for countries with high levels of electricity use, and this ratio is used to estimate global primary energy consumption in the Human Development Scenario. The Human Development Scenario implies significantly greater global consumption of electricity and primary energy than do projections for 2020 by the DOE and others. (author)

  19. Political ideologies as shapers of future tourism development

    Directory of Open Access Journals (Sweden)

    Craig Webster

    2016-09-01

    Full Text Available Purpose –The purpose of this paper is to identify the link between political ideology and the management of tourism in countries. The authors stipulate that the predominant political ideology in the country influences the nature and logic of state interventions in the tourism industry. Design/methodology/approach – The paper elaborates several case studies from various countries – Bulgaria, Cyprus, Scandinavia, Russia, USA, China, Japan, Indonesia, and North Korea. Findings – Countries with predominant (neoliberal ideology do not typically interfere in tourism regulation, while nationalism leads governments to stimulate inbound and domestic tourism. Communist ideological approaches tend to be burdensome, inhibiting growth while stressing the promotion of the socialist achievements of a country. Countries that are traditionally thought of as social democratic have been evolving in recent years to regulate tourism in ways that are more liberal in nature than social democratic. Practical implications – Political ideologies shape the acceptability of government support for private tourist companies, legislation in field of tourism, limitation/stimulation of inbound/outbound tourist flows. For the future the authors expect greater politicisation of tourism, active tourism “wars” between countries, greater control of governments on populations, thriving nationalism, “aggressive” environmentalism. Originality/value – This is one of the first papers to discuss the impact of the political ideology on the management of tourism at the national level.

  20. Nuclear power for sustainable development. Current status and future prospects

    International Nuclear Information System (INIS)

    Adamantiades, A.; Kessides, I.

    2009-01-01

    Interest in nuclear power has been revived as a result of volatile fossil fuel prices, concerns about the security of energy supplies, and global climate change. This paper describes the current status and future plans for expansion of nuclear power, the advances in nuclear reactor technology, and their impacts on the associated risks and performance of nuclear power. Advanced nuclear reactors have been designed to be simpler and safer, and to have lower costs than currently operating reactors. By addressing many of the public health and safety risks that plagued the industry since the accidents at Three Mile Island and Chernobyl, these reactors may help break the current deadlock over nuclear power. In that case, nuclear power could make a significant contribution towards reducing greenhouse gas emissions. However, significant issues persist, fueling reservations among the public and many decision makers. Nuclear safety, disposal of radioactive wastes, and proliferation of nuclear explosives need to be addressed in an effective and credible way if the necessary public support is to be obtained. (author)