WorldWideScience

Sample records for future alloy development

  1. Perspective on present and future alloy development efforts on austenitic stainless steels for fusion application

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, P.J.

    1984-01-01

    The purpose of this paper is to address important questions concerning how to effect further alloy development of austenitic stainless steels for resistance, and to what extent the behavior of other properties under irradiation, such as strength/embrittlement, fatigue/irradiation creep, corrosion (under irradiation), and radiation-induced activation must be influenced. To summarize current understanding, helium has been found to have major effects on swelling and embrittlement, but several metallurgical avenues are available for significant improvement relative to type 316 stainless steel. Studies on fatigue and irradiation creep, particularly including helium effects, are preliminary but have yet to reveal engineering problems requiring additional alloy development remedies. The effects of irradiation on corrosion behavior are unknown, but higher alloy nickel contents make thermal corrosion in lithium worse. 67 refs. (JDB)

  2. Shape Memory Alloy Research and Development at NASA Glenn - Current and Future Progress

    Science.gov (United States)

    Benafan, Othmane

    2015-01-01

    Shape memory alloys (SMAs) are a unique class of multifunctional materials that have the ability to recover large deformations or generate high stresses in response to thermal, mechanical and or electromagnetic stimuli. These abilities have made them a viable option for actuation systems in aerospace, medical, and automotive applications, amongst others. However, despite many advantages and the fact that SMA actuators have been developed and used for many years, so far they have only found service in a limited range of applications. In order to expand their applications, further developments are needed to increase their reliability and stability and to address processing, testing and qualification needed for large-scale commercial application of SMA actuators.

  3. Advanced smart tungsten alloys for a future fusion power plant

    Science.gov (United States)

    Litnovsky, A.; Wegener, T.; Klein, F.; Linsmeier, Ch; Rasinski, M.; Kreter, A.; Tan, X.; Schmitz, J.; Mao, Y.; Coenen, J. W.; Bram, M.; Gonzalez-Julian, J.

    2017-06-01

    The severe particle, radiation and neutron environment in a future fusion power plant requires the development of advanced plasma-facing materials. At the same time, the highest level of safety needs to be ensured. The so-called loss-of-coolant accident combined with air ingress in the vacuum vessel represents a severe safety challenge. In the absence of a coolant the temperature of the tungsten first wall may reach 1200 °C. At such a temperature, the neutron-activated radioactive tungsten forms volatile oxide which can be mobilized into atmosphere. Smart tungsten alloys are being developed to address this safety issue. Smart alloys should combine an acceptable plasma performance with the suppressed oxidation during an accident. New thin film tungsten-chromium-yttrium smart alloys feature an impressive 105 fold suppression of oxidation compared to that of pure tungsten at temperatures of up to 1000 °C. Oxidation behavior at temperatures up to 1200 °C, and reactivity of alloys in humid atmosphere along with a manufacturing of reactor-relevant bulk samples, impose an additional challenge in smart alloy development. First exposures of smart alloys in steady-state deuterium plasma were made. Smart tungsten-chroimium-titanium alloys demonstrated a sputtering resistance which is similar to that of pure tungsten. Expected preferential sputtering of alloying elements by plasma ions was confirmed experimentally. The subsequent isothermal oxidation of exposed samples did not reveal any influence of plasma exposure on the passivation of alloys.

  4. Mo-Si alloy development

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Heatherly, L.; Wright, J.L. [Oak Ridge National Lab., TN (United States)

    1996-06-01

    The objective of this task is to develop new-generation corrosion-resistant Mo-Si intermetallic alloys as hot components in advanced fossil energy conversion and combustion systems. The initial effort is devoted to Mo{sub 5}-Si{sub 3}-base (MSB) alloys containing boron additions. Three MSB alloys based on Mo-10.5Si-1.1B (wt %), weighing 1500 g were prepared by hot pressing of elemental and alloy powders at temperatures to 1600{degrees}C in vacuum. Microporosities and glassy-phase (probably silicate phases) formations are identified as the major concerns for preparation of MSB alloys by powder metallurgy. Suggestions are made to alleviate the problems of material processing.

  5. New Developments of Ti-Based Alloys for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Yuhua Li

    2014-03-01

    Full Text Available Ti-based alloys are finding ever-increasing applications in biomaterials due to their excellent mechanical, physical and biological performance. Nowdays, low modulus β-type Ti-based alloys are still being developed. Meanwhile, porous Ti-based alloys are being developed as an alternative orthopedic implant material, as they can provide good biological fixation through bone tissue ingrowth into the porous network. This paper focuses on recent developments of biomedical Ti-based alloys. It can be divided into four main sections. The first section focuses on the fundamental requirements titanium biomaterial should fulfill and its market and application prospects. This section is followed by discussing basic phases, alloying elements and mechanical properties of low modulus β-type Ti-based alloys. Thermal treatment, grain size, texture and properties in Ti-based alloys and their limitations are dicussed in the third section. Finally, the fourth section reviews the influence of microstructural configurations on mechanical properties of porous Ti-based alloys and all known methods for fabricating porous Ti-based alloys. This section also reviews prospects and challenges of porous Ti-based alloys, emphasizing their current status, future opportunities and obstacles for expanded applications. Overall, efforts have been made to reveal the latest scenario of bulk and porous Ti-based materials for biomedical applications.

  6. New Developments of Ti-Based Alloys for Biomedical Applications

    Science.gov (United States)

    Li, Yuhua; Yang, Chao; Zhao, Haidong; Qu, Shengguan; Li, Xiaoqiang; Li, Yuanyuan

    2014-01-01

    Ti-based alloys are finding ever-increasing applications in biomaterials due to their excellent mechanical, physical and biological performance. Nowdays, low modulus β-type Ti-based alloys are still being developed. Meanwhile, porous Ti-based alloys are being developed as an alternative orthopedic implant material, as they can provide good biological fixation through bone tissue ingrowth into the porous network. This paper focuses on recent developments of biomedical Ti-based alloys. It can be divided into four main sections. The first section focuses on the fundamental requirements titanium biomaterial should fulfill and its market and application prospects. This section is followed by discussing basic phases, alloying elements and mechanical properties of low modulus β-type Ti-based alloys. Thermal treatment, grain size, texture and properties in Ti-based alloys and their limitations are dicussed in the third section. Finally, the fourth section reviews the influence of microstructural configurations on mechanical properties of porous Ti-based alloys and all known methods for fabricating porous Ti-based alloys. This section also reviews prospects and challenges of porous Ti-based alloys, emphasizing their current status, future opportunities and obstacles for expanded applications. Overall, efforts have been made to reveal the latest scenario of bulk and porous Ti-based materials for biomedical applications. PMID:28788539

  7. Bulk Glassy Alloys: Historical Development and Current Research

    Directory of Open Access Journals (Sweden)

    Akihisa Inoue

    2015-06-01

    Full Text Available This paper reviews the development of current research in bulk glassy alloys by focusing on the trigger point for the synthesis of the first bulk glassy alloys by the conventional mold casting method. This review covers the background, discovery, characteristics, and applications of bulk glassy alloys, as well as recent topics regarding them. Applications of bulk glassy alloys have been expanding, particularly for Fe-based bulk glassy alloys, due to their unique properties, high glass-forming ability, and low cost. In the near future, the engineering importance of bulk glassy alloys is expected to increase steadily, and continuous interest in these novel metallic materials for basic science research is anticipated.

  8. Alloys developed for high temperature applications

    Science.gov (United States)

    Basuki, Eddy Agus; Prajitno, Djoko Hadi; Muhammad, Fadhli

    2017-01-01

    Alloys used for high temperatures applications require combinations of mechanical strength, microstructural stability and corrosion/oxidation resistance. Nickel base superalloys have been traditionally the prime materials utilized for hot section components of aircraft turbine engines. Nevertheless, due to their limited melting temperatures, alloys based on intermetallic compounds, such as TiAl base alloys, have emerged as high temperature materials and intensively developed with the main aim to replace nickel based superalloys. For applications in steam power plants operated at lower temperatures, ferritic high temperature alloys still attract high attention, and therefore, development of these alloys is in progress. This paper highlights the important metallurgical parameters of high temperature alloys and describes few efforts in the development of Fe-Ni-Al based alloys containing B2-(Fe,Ni)Al precipitates, oxide dispersion strengthening (ODS) ferritic steels and titanium aluminide based alloys include important protection system of aluminide coatings.

  9. Novel Magnesium Alloys Developed for Biomedical Application: A Review

    Institute of Scientific and Technical Information of China (English)

    Nan Li; Yufeng Zheng

    2013-01-01

    There is an increasing interest in the development of magnesium alloys both for industrial and biomedical applications.Industrial interest in magnesium alloys is based on strong demand of weight reduction of transportation vehicles for better fuel efficiency,so higher strength,and better ductility and corrosion resistance are required.Nevertheless,biomedical magnesium alloys require appropriate mechanical properties,suitable degradation rate in physiological environment,and what is most important,biosafety to human body.Rather than simply apply commercial magnesium alloys to biomedical field,new alloys should be designed from the point of view of nutriology and toxicology.This article provides a review of state-of-the-art of magnesium alloy implants and devices for orthopedic,cardiovascular and tissue engineering applications.Advances in new alloy design,novel structure design and surface modification are overviewed.The factors that influence the corrosion behavior of magnesium alloys are discussed and the strategy in the future development of biomedical magnesium alloys is proposed.

  10. Development of New Heats of Advanced Ferritic/Martensitic Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pestovich, Kimberly Shay [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Anderoglu, Osman [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aydogan, Eda [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-23

    The Fuel Cycle Research and Development program is investigating methods of transmuting minor actinides in various fuel cycle options. To achieve this goal, new fuels and cladding materials must be developed and tested to high burnup levels (e.g. >20%) requiring cladding to withstand very high doses (greater than 200 dpa) while in contact with the coolant and the fuel. To develop and qualify materials to a total fluence greater than 200 dpa requires development of advanced alloys and irradiations in fast reactors to test these alloys. Recent results from testing numerous ferritic/martensitic steels at low temperatures suggest that improvements in low temperature radiation tolerance can be achieved through carefully controlling the nitrogen content in these alloys. Thus, four new heats of HT-9 were produced with controlled nitrogen content: two by Metalwerks and two by Sophisticated Alloys. Initial results on these new alloys are presented including microstructural analysis and hardness testing. Future testing will include irradiation testing with ions and in reactor.

  11. Future Developments of QMS

    Directory of Open Access Journals (Sweden)

    Ph. D. Vidosav D. Majstorovic

    2009-12-01

    Full Text Available ISO technical committee ISO/TC 176 is responsible for the ISO 9000 family of standards for quality management and quality assurance. National delegations of 81 countries participate in its work, while another 21 (February 2009 countries have observer status. The ISO 9000 family of international quality management standards and guidelines (totally 18, has earned a global reputation as a basis for establishing effective and efficient quality management system.This paper show basic information about ISO 9001:2008, ISO 9004:2009 and future ISO TC 176 on advanced QMS model (probably ISO 9001:2015.

  12. Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application.

    Science.gov (United States)

    Li, H F; Qiu, K J; Zhou, F Y; Li, L; Zheng, Y F

    2016-11-29

    In the case of medical implants, foreign materials are preferential sites for bacterial adhesion and microbial contamination, which can lead to the development of prosthetic infections. Commercially biomedical TiNi shape memory alloys are the most commonly used materials for permanent implants in contact with bone and dental, and the prevention of infections of TiNi biomedical shape memory alloys in clinical cases is therefore a crucial challenge for orthopaedic and dental surgeons. In the present study, copper has been chosen as the alloying element for design and development novel ternary biomedical Ti‒Ni‒Cu shape memory alloys with antibacterial properties. The effects of copper alloying element on the microstructure, mechanical properties, corrosion behaviors, cytocompatibility and antibacterial properties of biomedical Ti‒Ni‒Cu shape memory alloys have been systematically investigated. The results demonstrated that Ti‒Ni‒Cu alloys have good mechanical properties, and remain the excellent shape memory effects after adding copper alloying element. The corrosion behaviors of Ti‒Ni‒Cu alloys are better than the commercial biomedical Ti‒50.8Ni alloys. The Ti‒Ni‒Cu alloys exhibit excellent antibacterial properties while maintaining the good cytocompatibility, which would further guarantee the potential application of Ti‒Ni‒Cu alloys as future biomedical implants and devices without inducing bacterial infections.

  13. Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application

    Science.gov (United States)

    Li, H. F.; Qiu, K. J.; Zhou, F. Y.; Li, L.; Zheng, Y. F.

    2016-11-01

    In the case of medical implants, foreign materials are preferential sites for bacterial adhesion and microbial contamination, which can lead to the development of prosthetic infections. Commercially biomedical TiNi shape memory alloys are the most commonly used materials for permanent implants in contact with bone and dental, and the prevention of infections of TiNi biomedical shape memory alloys in clinical cases is therefore a crucial challenge for orthopaedic and dental surgeons. In the present study, copper has been chosen as the alloying element for design and development novel ternary biomedical Ti‒Ni‒Cu shape memory alloys with antibacterial properties. The effects of copper alloying element on the microstructure, mechanical properties, corrosion behaviors, cytocompatibility and antibacterial properties of biomedical Ti‒Ni‒Cu shape memory alloys have been systematically investigated. The results demonstrated that Ti‒Ni‒Cu alloys have good mechanical properties, and remain the excellent shape memory effects after adding copper alloying element. The corrosion behaviors of Ti‒Ni‒Cu alloys are better than the commercial biomedical Ti‒50.8Ni alloys. The Ti‒Ni‒Cu alloys exhibit excellent antibacterial properties while maintaining the good cytocompatibility, which would further guarantee the potential application of Ti‒Ni‒Cu alloys as future biomedical implants and devices without inducing bacterial infections.

  14. Designation and development of biomedical Ti alloys with finer biomechanical compatibility in long-term surgical implants

    Science.gov (United States)

    Yu, Zhen-Tao; Zhang, Ming-Hua; Tian, Yu-Xing; Cheng, Jun; Ma, Xi-Qun; Liu, Han-Yuan; Wang, Chang

    2014-09-01

    Developing the new titanium alloys with excellent biomechanical compatibility has been an important research direction of surgical implants materials. Present paper summarizes the international researches and developments of biomedical titanium alloys. Aiming at increasing the biomechanical compatibility, it also introduces the exploration and improvement of alloy designing, mechanical processing, microstructure and phase transformation, and finally outlines the directions for scientific research on the biomedical titanium alloys in the future.

  15. REVIEW ON RESEARCH AND DEVELOPMENT OF MAGNESIUM ALLOYS

    Institute of Scientific and Technical Information of China (English)

    Z.Yaug; J.P.Li; J.X.Zhang; G.W.Lorimer; J.Robson

    2008-01-01

    The current research and development of magnesium alloys is summarized. Several aspects of magnesium alloys are described: cast Mg alloy, wrought Mg alloy, and novel processing. The subjects are discussed individually and recommendations for further study arc listed in the final section.

  16. Microstructure Development during Solidification of Aluminium Alloys

    NARCIS (Netherlands)

    Ruvalcaba Jimenez, D.G.

    2009-01-01

    This Thesis demonstrates studies on microstructure development during the solidification of aluminium alloys. New insights of structure development are presented here. Experimental techniques such as quenching and in-situ High-brilliance X-ray microscopy were utilized to study the microstructure evo

  17. Development of new ferritic alloys reinforced by nano titanium nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Mathon, M.H., E-mail: marie-helene.mathon@cea.fr [Laboratoire Léon Brillouin, CEA-CNRS, CEA/Saclay, 91191 Gif-sur-Yvette (France); Perrut, M., E-mail: mikael.perrut@onera.fr [Laboratoire Léon Brillouin, CEA-CNRS, CEA/Saclay, 91191 Gif-sur-Yvette (France); Poirier, L., E-mail: poirier@nitruvid.com [Bodycote France and Belgium, 9 r Jean Poulmarch, 95100 Argenteuil (France); Ratti, M., E-mail: mathieu.ratti@snecma.fr [CEA, DEN, Service de Recherches Métallurgiques Appliquées, F91191 Gif-sur-Yvette (France); Hervé, N., E-mail: nicolas.herve@cea.fr [CEA, DRT, LITEN, F38054 Grenoble (France); Carlan, Y. de, E-mail: yann.decarlan@cea.fr [CEA, DEN, Service de Recherches Métallurgiques Appliquées, F91191 Gif-sur-Yvette (France)

    2015-01-15

    Nano-reinforced steels are considered for future nuclear reactors or for application at high temperature like the heat exchangers tubes or plates. Oxide Dispersion Strengthened (ODS) alloys are the most known of the nano-reinforced alloys. They exhibit high creep strength as well as high resistance to radiation damage. This article deals with the development of new nano reinforced alloys called Nitride Dispersed Strengthened (NDS). Those are also considered for nuclear applications and could exhibit higher ductility with a simplest fabrication way. Two main fabrication routes were studied: the co-milling of Fe–18Cr1W0.008N and TiH{sub 2} powders and the plasma nitration at low temperature of a Fe–18Cr1W0.8Ti powder. The materials were studied mainly by Small Angle Neutron Scattering. The feasibility of the reinforcement by nano-nitride particles is demonstrated. The final size of the nitrides can be similar (few nanometers) to the nano-oxides observed in ODS alloys. The mechanical properties of the new NDS show an amazing ductility at high temperature for a nano-reinforced alloy.

  18. Aluminum-lithium alloy development for thixoforming

    Energy Technology Data Exchange (ETDEWEB)

    Sauermann, R.; Friedrich, B. [IME Process Metallurgy and Metal Recycling, RWTH Aachen Univ. (Germany); Puettgen, W.; Bleck, W. [IEHK Inst. for Ferrous Metallurgy, RWTH Aachen Univ. (Germany); Balitchev, E.; Hallstedt, B.; Schneider, J.M. [MCh Materials Chemistry, RWTH Aachen Univ. (Germany); Bramann, H.; Buehrig-Polaczek, A. [GI Foundry Inst., RWTH Aachen Univ. (Germany); Uggowitzer, P.J. [ETH Zuerich, Metal Physics and Technology (Germany)

    2004-12-01

    This paper presents a scientific contribution to the development of lightweight/high-performance Al-Li alloys suitable for semi-solid processing. Thermodynamic calculations identified the most promising compositions with focus on the solidus-liquidus interval, fraction of solid-versus-temperature and phase reactions. The synthesis of Al-Li precursor billets was performed by overpressure induction melting in controlled atmosphere. DTA and microstructure investigations on Al-Li specimens were carried out as well as thixocasting trials of demonstrator components. New rheocasting of Al-Li alloys was investigated to identify the potential of this alternative precursor material route. It is shown that specifically developed Al-Li alloys offer great potential for semi-solid manufacturing. (orig.)

  19. New developments in rapidly solidified magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.K. [Allied-Signal, Inc., Morristown, NJ (United States); Chang, C.F. [Allied-Signal, Inc., Morristown, NJ (United States); Raybould, D. [Allied-Signal, Inc., Morristown, NJ (United States); King, J.F. [Magnesium Elektron Ltd., Manchester (United Kingdom); Thistlethwaite, S. [Magnesium Elektron Ltd., Manchester (United Kingdom)

    1992-12-31

    In the present paper, we will examine the new developments in the rapidly solidified Mg-Al-Zn-Nd (EA55RS) alloy. We shall first briefly review the process scale-up currently employed for producing rapidly solidified magnesium alloys in large quantities, and then discuss the effect of billet size and processing parameters on the mechanical properties of various mill product forms such as extrusions and sheets. The superplastic behavior of EA55RS extrusions and rolled sheets are also discussed. Finally, some results on magnesium metal-matrix composites using rapidly solidified EA55RS matrix powders and SiC particulates are presented. (orig.)

  20. Development of Combinatorial Methods for Alloy Design and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Pharr, George M.; George, Easo P.; Santella, Michael L

    2005-07-01

    powerful technique for rapid structural and chemical characterization of alloy libraries was developed based on high intensity x-radiation available at synchrotron sources such as the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). With the technique, structural and chemical characterization of up to 2500 discrete positions on a library can made in a period of less than 4 hours. Among the parameters that can be measured are the chemical composition, crystal structure, lattice parameters, texture, and grain size. From these, one can also deduce isothermal sections of ternary phase diagrams. The equipment and techniques needed to do this are now in place for use in future combinatorial studies at the ORNL beam line at the APS. In conjunction with the chemical and structural investigations, nanoindentation techniques were developed to investigate the mechanical properties of the combinatorial libraries. The two primary mechanical properties of interest were the elastic modulus, E, and hardness, H, both of which were measured on alloy library surfaces with spatial resolutions of better than 1 m. A nanoindentation testing system at ORNL was programmed to make a series of indentations at specified locations on the library surface and automatically collect and store all the data needed to obtain hardness and modulus as a function of position. Approximately 200 indentations can be made during an overnight run, which allows for mechanical property measurement over a wide range of chemical composition in a relatively short time. Since the materials based on the Fe-Ni-Cr system often find application in highly carburizing and harsh chemical environments, simple techniques were developed to assess the resistance of Fe-Ni-Cr alloy libraries to carburization and corrosion. Alloy libraries were carburized by standard techniques, and the effectiveness of the carburization at various points along the sample surface was assessed by nanoindentation hardness measurement

  1. Shape memory alloys: New materials for future engineering

    Science.gov (United States)

    Hornbogen, E.

    1988-01-01

    Shape memory is a new material property. An alloy which experiences relative severe plastic deformation resumes its original shape again after heating by 10 to 100 C. Besides simple shape memory, in similar alloys there is the second effect where the change in shape is caused exclusively by little temperature change. In pseudo-elasticity, the alloy exhibits a rubber-like behavior, i.e., large, reversible deformation at little change in tension. Beta Cu and beta NiTi alloys have been used in practice. The probability is that soon alloys based on Fe will become available. Recently increasing applications for this alloy were found in various areas of technology, even medical technology. A review with 24 references is given, including properties, production, applications and fundamental principles of the shape memory effect.

  2. Development and application of titanium alloy casting technology in China

    Institute of Scientific and Technical Information of China (English)

    NAN Hai; XIE Cheng-mu; ZHAO Jia-qi

    2005-01-01

    The development and research of titanium cast alloy and its casting technology, especially its application inaeronautical industry in China are presented. The technology of molding, melting and casting of titanium alloy, casting quality control are introduced. The existing problems and development trend in titanium alloy casting technology are also discussed.

  3. New development of anodizing process of magnesium alloys

    Institute of Scientific and Technical Information of China (English)

    BAI Li-qun; LI Di

    2004-01-01

    Magnesium alloy, a kind of environment-friendly material with promising and excellent properties, is a good choice for a number of applications. The research and development of anodizing on magnesium alloys and its application situation are reviewed, and the anodizing development trend on magnesium alloys is summarized.

  4. The developing strategy of Chinese magnesium and magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    ZUO; Tie-yong; DU; Wen-bo

    2005-01-01

    The status and developing strategy of Chinese magnesium industry are summarized in the present paper. The output and export of Chinese magnesium ingot have rapidly increased in the recent ten years, but the magnesium products with high value, such as the wrought magnesium alloys, and their applications are insufficient. Chinese magnesium industry should develop toward the direction of large scale, specialization and collectivization in the future. The enterprises should enhance the level of management and reinforce the international competing ability with the help of governmental policies.

  5. Alloy development for irradiation performance. Quarterly progress report for period ending December 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    Progress is reported in eight sections: analysis and evaluation studies, test matrices and test methods development, Path A Alloy Development (austenitic stainless steels), Path C Alloy Development (Ti and V alloys), Path D Alloy Development (Fe alloys), Path E Alloy Development (ferritic steels), irradiation experiments and materials inventory, and materials compatibility and hydrogen permeation studies. (DLC)

  6. Alloy development for irradiation performance. Quarterly progress report for period ending December 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    Progress is reported in eight sections: analysis and evaluation studies, test matrices and test methods development, Path A Alloy Development (austenitic stainless steels), Path C Alloy Development (Ti and V alloys), Path D Alloy Development (Fe alloys), Path E Alloy Development (ferritic steels), irradiation experiments and materials inventory, and materials compatibility and hydrogen permeation studies. (DLC)

  7. Sustainable development and future generations

    NARCIS (Netherlands)

    Beekman, V.

    2004-01-01

    This paper argues, mainly on the basis of Rawls's savings principle, Wissenburg's restraint principle, Passmore's chains of love, and De-Shalit's transgenerational communities, for a double interpretation of sustainable development as a principle of intergenerational justice and a future-oriented gr

  8. Development of Zirconium alloys (for pressure tubes)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Kwon, Sang Chul; Choo, Ki Nam; Jung, Chung Hwan; Yim, Kyong Soo; Kim, Sung Soo; Baek, Jong Hyuk; Jeong, Yong Hwan; Kim, Kyong Ho; Cho, Hae Dong [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of); Hwang, S. K.; Kim, M. H. [Inha Univ., Incheon (Korea, Republic of); Kwon, S. I [Korea Univ., Seoul (Korea, Republic of); Kim, I. S. [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of)

    1997-09-01

    The objective of this research is to set up the basic technologies for the evaluation of pressure tube integrity and to develop improved zirconium alloys to prevent pressure tube failures due to DHC and hydride blister caused by excessive creep-down of pressure tubes. The experimental procedure and facilities for characterization of pressure tubes were developed. The basic research related to a better understanding of the in-reactor performances of pressure tubes leads to noticeable findings for the first time : the microstructural effect on corrosion and hydrogen pick-up behavior of Zr-2.5Nb pressure tubes, texture effect on strength and DHC resistance and enhanced recrystallization by Fe in zirconium alloys and etc. Analytical methodology for the assessment of pressure tubes with surface flaws was set up. A joint research is being under way with AECL to determine the fracture toughness of O-8 at the EOL (End of Life) that had been quadruple melted and was taken out of the Wolsung Unit-1 after 10 year operation. In addition, pressure tube with texture controlled is being made along with VNINM in Russia as a joint project between KAERI and Russia. Finally, we succeeded in developing 4 different kinds of zirconium alloys with better corrosion resistance, low hydrogen pickup fraction and higher creep strength. (author). 121 refs., 65 tabs., 260 figs

  9. DEVELOPMENT AND RESEARCH OF THE ECONOMIC ALLOY PARAMAGNETIC STEELS

    Directory of Open Access Journals (Sweden)

    A. V. Alifanov

    2016-01-01

    Full Text Available The alloys of Fe-Cr-Ni-C system for the purpose of development the economic alloy paramagnetic (not magnetic steels are investigated. A series of alloys are melted for this purpose, deformation is carried out and a structural state was studied.The area for the selection of the chemical composition of the economic alloy steels with stable paramagnetic properties is defined.

  10. Alloy development for irradiation performance: program strategy

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, E. E.; Stiegler, J. O.; Wiffen, F. W.; Dalder, E. N.C.; Reuther, T. C.; Gold, R. E.; Holmes, J. J.; Kummer, D. L.; Nolfi, F. V.

    1978-01-01

    The objective of the Alloy Development for Irradiation Performance Program is the development of structural materials for use in the first wall and blanket region of fusion reactors. The goal of the program is a material that will survive an exposure of 40 MWyr/m/sup 2/ at a temperature which will allow use of a liquid-H/sub 2/O heat transport system. Although the ultimate aim of the program is development of materials for commercial reactors by the end of this century, activities are organized to provide materials data for the relatively low performance interim machines that will precede commercial reactors.

  11. Future developments and applications of nitrogen-bearing steels and stainless steels

    Indian Academy of Sciences (India)

    J Foct

    2003-06-01

    After considerations related with the global frame of the demand of society in the field of materials and some recalling of basic properties and principles of nitrogen alloying, possible future developments are listed and discussed.

  12. ROOT Status and Future Developments

    CERN Document Server

    Brun, R; Canal, P; Rademakers, Fons; Goto, Masaharu; Canal, Philippe; Brun, Rene

    2003-01-01

    In this talk we will review the major additions and improvements made to the ROOT system in the last 18 months and present our plans for future developments. The additons and improvements range from modifications to the I/O sub-system to allow users to save and restore objects of classes that have not been instrumented by special ROOT macros, to the addition of a geometry package designed for building, browsing, tracking and visualizing detector geometries. Other improvements include enhancements to the quick analysis sub-system (TTree::Draw()), the addition of classes that allow inter-file object references (TRef, TRefArray), better support for templated and STL classes, amelioration of the Automatic Script Compiler and the incorporation of new fitting and mathematical tools. Efforts have also been made to increase the modularity of the ROOT system with the introduction of more abstract interfaces and the development of a plug-in manager. In the near future, we intend to continue the development of PROOF and...

  13. Development of Lead-Free Copper Alloy-Graphite Castings

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, P.K. [Univ. of Wisconsin-Milwaukee (US)

    1999-10-01

    In this project, graphite is used as a substitute for lead in order to maintain the machinability of plumbing components at the level of leaded brass. Graphite dispersed in Cu alloy was observed to impart good machinability and reduce the sizes of chips during machining of plumbing components in a manner similar to lead. Copper alloys containing dispersed graphite particles could be successfully cast in several plumbing fixtures which exhibited acceptable corrosion rate, solderability, platability, and pressure tightness. The power consumption for machining of composites was also lower than that of the matrix alloy. In addition, centrifugally cast copper alloy cylinders containing graphite particles were successfully made. These cylinders can therefore be used for bearing applications, as substitutes for lead-containing copper alloys. The results indicate that copper graphite alloys developed under this DOE project have a great potential to substitute for lead copper alloys in both plumbing and bearing applications.

  14. Development Program for Natural Aging Aluminum Casting Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Geoffrey K. Sigworth

    2004-05-14

    A number of 7xx aluminum casting alloys are based on the ternary Al-Zn-Mg system. These alloys age naturally to high strength at room temperature. A high temperature solution and aging treatment is not required. Consequently, these alloys have the potential to deliver properties nearly equivalent to conventional A356-T6 (Al-Si-Mg) castings, with a significant cost saving. An energy savings is also possible. In spite of these advantages, the 7xx casting alloys are seldom used, primarily because of their reputation for poor castibility. This paper describes the results obtained in a DOE-funded research study of these alloys, which is part of the DOE-OIT ''Cast Metals Industries of the Future'' Program. Suggestions for possible commercial use are also given.

  15. Microstructure Development and Characteristics of Semisolid Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Merton Flemings; srinath Viswanathan

    2001-05-15

    A drop forge viscometer was employed to investigate the flow behavior under very rapid compression rates of A357, A356 diluted with pure aluminum and Al-4.5%Cu alloys. The A357 alloys were of commercial origin (MHD and SIMA) and the rheocast, modified A356 and Al-4.5Cu alloys were produced by a process developed at the solidification laboratory of MIT.

  16. Future developments in biliary stenting

    Directory of Open Access Journals (Sweden)

    Hair CD

    2013-06-01

    Full Text Available Clark D Hair,1 Divyesh V Sejpal21Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA; 2Department of Medicine, Section of Gastroenterology, Hofstra North Shore-LIJ School of Medicine, North Shore University Hospital, Manhasset, NY, USAAbstract: Biliary stenting has evolved dramatically over the past 30 years. Advancements in stent design have led to prolonged patency and improved efficacy. However, biliary stenting is still affected by occlusion, migration, anatomical difficulties, and the need for repeat procedures. Multiple novel plastic biliary stent designs have recently been introduced with the primary goals of reduced migration and improved ease of placement. Self-expandable bioabsorbable stents are currently being investigated in animal models. Although not US Food and Drug Administration approved for benign disease, fully covered self-expandable metal stents are increasingly being used in a variety of benign biliary conditions. In malignant disease, developments are being made to improve ease of placement and stent patency for both hilar and distal biliary strictures. The purpose of this review is to describe recent developments and future directions of biliary stenting.Keywords: plastic stents, self-expandable metal stents, drug eluting stents, bioabsorbable stents, malignant biliary strictures, benign biliary strictures

  17. Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys.

    Science.gov (United States)

    Hong, Daeho; Chou, Da-Tren; Velikokhatnyi, Oleg I; Roy, Abhijit; Lee, Boeun; Swink, Isaac; Issaev, Ilona; Kuhn, Howard A; Kumta, Prashant N

    2016-11-01

    tissue without eliciting complications. CALPHAD theoretical models were used to develop new Fe-Mn-Ca/Mg alloys to enhance the degradation rates of traditional Fe-Mn alloys. In vitro experimental results also showed enhanced degradation rates and good cytocompatibility of sintered Fe-Mn-Ca/Mg compacts. 3D printing of Fe-Mn and Fe-Mn-1Ca alloys further demonstrated their feasibility as potentially viable bone grafts for the future. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Development of new metallic alloys for biomedical applications.

    Science.gov (United States)

    Niinomi, Mitsuo; Nakai, Masaaki; Hieda, Junko

    2012-11-01

    New low modulus β-type titanium alloys for biomedical applications are still currently being developed. Strong and enduring β-type titanium alloy with a low Young's modulus are being investigated. A low modulus has been proved to be effective in inhibiting bone atrophy, leading to good bone remodeling in a bone fracture model in the rabbit tibia. Very recently β-type titanium alloys with a self-tunable modulus have been proposed for the construction of removable implants. Nickel-free low modulus β-type titanium alloys showing shape memory and super elastic behavior are also currently being developed. Nickel-free stainless steel and cobalt-chromium alloys for biomedical applications are receiving attention as well. Newly developed zirconium-based alloys for biomedical applications are proving very interesting. Magnesium-based or iron-based biodegradable biomaterials are under development. Further, tantalum, and niobium and its alloys are being investigated for biomedical applications. The development of new metallic alloys for biomedical applications is described in this paper.

  19. Integrated Design and Rapid Development of Refractory Metal Based Alloys for Fossil Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, O.N.; King, P.E.; Gao, M.C.

    2008-07-01

    One common barrier in the development of new technologies for future energy generating systems is insufficiency of existing materials at high temperatures (>1150oC) and aggressive atmospheres (e.g., steam, oxygen, CO2). To overcome this barrier, integrated design methodology will be applied to the development of refractory metal based alloys. The integrated design utilizes the multi-scale computational methods to design materials for requirements of processing and performance. This report summarizes the integrated design approach to the alloy development and project accomplishments in FY 2008.

  20. Development of ODS-Fe{sub 3}Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wright, I.G.; Pint, B.A.; Tortorelli, P.F.; McKamey, C.G. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    The overall goal of this program is to develop an oxide dispersion-strengthened (ODS) version of Fe{sub 3}Al that has sufficient creep strength and resistance to oxidation at temperatures in the range 1000 to 1200 C to be suitable for application as heat exchanger tubing in advanced power generation cycles. The main areas being addressed are: (a) alloy processing to achieve the desired alloy grain size and shape, and (b) optimization of the oxidation behavior to provide increased service life compared to semi-commercial ODS-FeCrAl alloys intended for the same applications. The recent studies have focused on mechanically-alloyed powder from a commercial alloy vendor. These starting alloy powders were very clean in terms of oxygen content compared to ORNL-produced powders, but contained similar levels of carbon picked up during the milling process. The specific environment used in milling the powder appears to exert a considerable influence on the post-consolidation recrystallization behavior of the alloy. A milling environment which produced powder particles having a high surface carbon content resulted in a consolidated alloy which readily recrystallized, whereas powder with a low surface carbon level after milling resulted in no recrystallization even at 1380 C. A feature of these alloys was the appearance of voids or porosity after the recrystallization anneal, as had been found with ORNL-produced alloys. Adjustment of the recrystallization parameters did not reveal any range of conditions where recrystallization could be accomplished without the formation of voids. Initial creep tests of specimens of the recrystallized alloys indicated a significant increase in creep strength compared to cast or wrought Fe{sub 3}Al, but the specimens failed prematurely by a mechanism that involved brittle fracture of one of the two grains in the test cross section, followed by ductile fracture of the remaining grain. The reasons for this behavior are not yet understood. The

  1. Cr{sub 2}Nb-based alloy development

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Tortorelli, P.F.; Horton, J.A. [Oak Ridge National Lab., TN (United States)] [and others

    1996-08-01

    Alloys of Cr-Cr{sub 2}Nb with exceptionally high strength at 1200{degrees}C have been developed. However, these compositions suffer from limited ductility and toughness at room temperature. Despite improvements from processing modifications, as-fabricated defects still limit room temperature mechanical behavior. In contrast, an alloy system with only a small mismatch of the coefficients of thermal expansion of the two phases, Cr-Cr{sub 2}Zr, showed good fabricability. However, these alloys are weaker than Cr-Cr{sub 2}Nb compositions at high temperatures and have poor oxidation resistance. Silicide coatings can provide high-temperature oxidation and sulfidation protection of these alloys. Improvements in room temperature mechanical properties of Laves-phase-strengthened alloys will rely on further development based on increasing the ductility of the matrix phase by impurity control and compositional modifications.

  2. Development of Mg-based Hydrogen Storage Alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Mg-based hydrogen storage alloys are considered as a promising candidate for hydrogen system because of its lightweight, high storage capacity, low price and rich mineral resources. In detail,we reviewed the preparation and properties of Mg-Ni-based hydrogen storage alloys. All kinds of attempts have been done to improve the hydriding and dehydriding behaviors. It is found that the partial substitution of foreign elements can decrease the hydrogen absorption temperature,especially the substitution of a more electronegative element, such as Al and Mn. Mechanical alloying (MA) and mechanical grinding (MG) are the most effective methods to improve the hydriding/dehydriding kinetics and electrochemical capacity, and decrease the desorption temperature, but the corrosion resistance is so poor that the 80% of maximum capacity is lost within ten cycles. Microencapsulation is a useful measurement for improving the corrosion resistance and electrocatalytic activity. In order to improve the properties of the alloys for practical application, the alloys should have a large number of defects, which give activated sites, subsequently,MA, MG and electroless plating should be used to improve the hydriding/dehydriding kinetics and protect the surface of alloys, respectively. The new composite Mg-based alloys give a new way for the hydrogen storage material to practical application. Furthermore we put forward several problems which will be discussed in future.

  3. Development of Amorphous Filler Alloys for the Joining of Nuclear Materials

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jai Young; Kim, Dong Myong; Kang, Yoon Sun; Jung, Jae Han; Yu, Ji Sang; Kim, Hae Yeol; Lee, Ho [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-08-01

    In the case of advanced CANDU fuel being useful in future, the fabrication processes for soundness insurance of a improved nuclear fuel bundle must be developed at the same time because it have three times combustibility as existing fuel. In particular, as the improved nuclear fuel bundle in which a coated layer thickness is thinner than existing that, firmity of a joint part is very important. Therefore, we need to develop a joint technique using new solder which can settle a potential problem in current joining method. As the Zr-Be alloy system is composed with the elements having high neutron permeability, they are suitable for joint of nuclear fuel pack. The various compositions Zr-Be binary metallic glass alloys were applicable to the joining the nuclear fuel bundles. The thickness of joint layer using the Zr{sub 1}-{sub x}Be{sub x} amorphous ribbon as a solder is thinner than that using physical vapor deposited Be. Among the Zr{sub 1}-{sub x}Be{sub x} amorphous binary alloys, Zr{sub 0}.7Be-0.3 binary alloy is the most appropriate for joint of nuclear fuel bundle because its joint layer is smooth and thin due to low degree of Be diffusion. In the case of the Zr{sub (}0.7-y)Ti{sub y}Be{sub 0}.3 and Zr{sub (}0.7-y)Nb{sub y}Be{sub 0}3 ternary amorphous alloys, the crystallization temperature(T{sub x}) and activation energy(E{sub x}) increase as the contents of Nb and Ti increase respectively. In the aspect of thermal stability, the ternary amorphous alloys are superior than Zr-Be binary amorphous alloys and Zr-Ti-Be amorphous alloy is superior than Zr-Nb-Be amorphous alloy. 12 refs., 5 tabs., 25 figs. (author)

  4. Development of Austenitic ODS Strengthened Alloys for Very High Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Stubbins, James [Univ. of Illinois, Urbana-Champaign, IL (United States); Heuser, Brent [Univ. of Illinois, Urbana-Champaign, IL (United States); Robertson, Ian [Kyushu Univ. (Japan); Sehitoglu, Huseyin [Univ. of Illinois, Urbana-Champaign, IL (United States); Sofronis, Petros [Kyushu Univ. (Japan); Gewirth, Andrew [Kyushu Univ. (Japan)

    2015-04-22

    This “Blue Sky” project was directed at exploring the opportunities that would be gained by developing Oxide Dispersion Strengthened (ODS) alloys based on the Fe-Cr-Ni austenitic alloy system. A great deal of research effort has been directed toward ferritic and ferritic/martensitic ODS alloys which has resulted in reasonable advances in alloy properties. Similar gains should be possible with austenitic alloy which would also take advantage of other superior properties of that alloy system. The research effort was aimed at the developing an in-depth understanding of the microstructural-level strengthening effects of ODS particles in austentic alloys. This was accomplished on a variety of alloy compositions with the main focus on 304SS and 316SS compositions. A further goal was to develop an understanding other the role of ODS particles on crack propagation and creep performance. Since these later two properties require bulk alloy material which was not available, this work was carried out on promising austentic alloy systems which could later be enhanced with ODS strengthening. The research relied on a large variety of micro-analytical techniques, many of which were available through various scientific user facilities. Access to these facilities throughout the course of this work was instrumental in gathering complimentary data from various analysis techniques to form a well-rounded picture of the processes which control austenitic ODS alloy performance. Micromechanical testing of the austenitic ODS alloys confirmed their highly superior mechanical properties at elevated temperature from the enhanced strengthening effects. The study analyzed the microstructural mechanisms that provide this enhanced high temperature performance. The findings confirm that the smallest size ODS particles provide the most potent strengthening component. Larger particles and other thermally- driven precipitate structures were less effective contributors and, in some cases, limited

  5. Research and development on vanadium alloys for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Rowcliffe, A.F. [Oak Ridge National Lab., TN (United States); Matsui, H.; Abe, K. [Tohoku Univ. (Japan); Smith, D.L. [Argonne National Lab., IL (United States); Osch, E. van [NERF, Petten (Netherlands); Kazakov, V.A. [RIAR, Dimitrovgrad (Russian Federation)

    1998-03-01

    The current status of research and development on unirradiated and irradiated V-Cr-Ti alloys intended for fusion reactor structural applications is reviewed, with particular emphasis on the flow and fracture behavior of neutron-irradiated vanadium alloys. Recent progress on fabrication, joining, oxidation behavior, and the development of insulator coatings is also summarized. Fabrication of large (>500 kg) heats of V-4Cr-4Ti with properties similar to previous small laboratory heats has now been demonstrated. Impressive advances in the joining of thick sections of vanadium alloys using GTA and electron beam welds have been achieved in the past two years, although further improvements are still needed.

  6. Investigations of binary and ternary phase change alloys for future memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Rausch, Pascal

    2012-09-13

    The understanding of phase change materials is of great importance because it enables us to predict properties and tailor alloys which might be even better suitable to tackle challenges of future memory applications. Within this thesis two topics have been approached: on the one hand the understanding of the alloy In{sub 3}Sb{sub 1}Te{sub 2} and on the other hand the so called resistivity drift of amorphous Ge-Sn-Te phase change materials. The main topic covers an in depth discussion of the ternary alloy In{sub 3}Sb{sub 1}Te{sub 2}. At first glance, this alloy does not fit into the established concepts of phase alloys: e.g. the existence of resonant bonding in the crystalline phase is not obvious and the number of p-electrons is very low compared to other phase change alloys. Furthermore amorphous phase change alloys with high indium content are usually not discussed in literature, an exception being the recent work by Spreafico et al. on InGeTe{sub 2}. For the first time a complete description of In{sub 3}Sb{sub 1}Te{sub 2} alloy is given in this work for the crystalline phase, amorphous phase and crystallization process. In addition comparisons are drawn to typical phase change materials like Ge{sub 2}Sb{sub 2}Te{sub 5}/GeTe or prototype systems like AgInTe{sub 2} and InTe. The second topic of this thesis deals with the issue of resistivity drift, i.e. the increase of resistivity of amorphous phase change alloys with aging. This drift effect greatly hampers the introduction of multilevel phase change memory devices into the market. Recently a systematic decrease of drift coefficient with stoichiometry has been observed in our group going from GeTe over Ge{sub 3}Sn{sub 1}Te{sub 4} to Ge{sub 2}Sn{sub 2}Te{sub 4}. These alloys are investigated with respect to constraint theory.

  7. Development of Strip Casting Technology in Rare Earth Permanent Magnet Alloys and Hydrogen Storage Alloys in China

    Institute of Scientific and Technical Information of China (English)

    Han Weiping; Guo Binglin; Yu Xiaojun; Zhu Jinghan; Cheng Xinghua

    2007-01-01

    The SC technique is now being applied widely in material preparation, especially in rare earth functional materials in virtue of its advanced process and high performance product. The applications of SC technique in rare earth permanent magnet alloys and hydrogen storage alloys were analyzed integrative, on the basis of summary of SC technique development in this paper. The paper mainly includes development history of SC technology, effect of SC technology on alloy microstructure, application of SC technology in RE storage hydrogen alloy and sintered Nd-Fe-B alloy, development of SC equipment and SC product industry. At the same time, the paper points out the existing problem of SC products.

  8. Future focus for professional development.

    Science.gov (United States)

    Roberts, Nicole K; Coplit, Lisa D

    2013-01-01

    Professional development has evolved from individually focused sabbaticals and professional leaves to institutionally focused programs with an interest in developing faculty members' ability to teach in various environments as well as to succeed in the many endeavors they undertake. We address various issues related to professional development in the medical school arena. Professional development in medical school takes place in a context where faculty are stretched to engage in research and service not only for their own sake but also to financially support their institutions. This obligates professional developers to acknowledge and address the environments in which teaching faculty work, and to use approaches to professional development that honor the time and efforts of teaching faculty. These approaches may be brief interventions that make use of principles of education, and may include online offerings. Professional development will be most effective when professional developers acknowledge that most faculty members aspire to excellence in teaching, but they do so in an environment that pushes them to address competing concerns. Offering professional development opportunities that fit within the workplace environment, take little time, and build upon faculty's existing knowledge will assist in enhancing faculty success.

  9. Developing Future Strategic Logistics Leaders

    Science.gov (United States)

    2013-03-01

    political, and multicultural perspectives that develop the best solution with consensus from internal and external organizations. Force Sustainment can...of 2020. Interpersonal Maturity Finally, Interpersonal Maturity develops the skills of consensus building and negotiation which is critical in the...objectives. Consensus building and negotiations are vital in the ability to support the Army from across the JIIM and industrial enterprises. Mental

  10. Collection development past and future

    CERN Document Server

    Pastine, Maureen

    2013-01-01

    With the prolific changes in the electronic environment, do you sometimes feel overwhelmed by the multiplying of electronic information resources, the different methods of access, and their combined impact on collection development? If so, Collection Development is the book to help you get a handle on what's out there! In no time at all, you'll be able to select and integrate electronic resources into collection development programs at even the most traditional of libraries! In the process, you will learn alternative approaches for dealing with electronic databases, on-line access, and fiscal

  11. Minimally invasive surgery. Future developments.

    OpenAIRE

    1994-01-01

    The rapid development of minimally invasive surgery means that there will be fundamental changes in interventional treatment. Technological advances will allow new minimally invasive procedures to be developed. Application of robotics will allow some procedures to be done automatically, and coupling of slave robotic instruments with virtual reality images will allow surgeons to perform operations by remote control. Miniature motors and instruments designed by microengineering could be introdu...

  12. Future directions for SDI development

    Science.gov (United States)

    Rajabifard, Abbas; Feeney, Mary-Ellen F.; Williamson, Ian P.

    2002-08-01

    Understanding the role of spatial data infrastructure (SDI) in the society is important to acceptance of the concept and its alignment with spatial industry objectives. Much has been done to describe and understand the components and operation of different aspects of SDIs and their integration into the spatial data community. However, what is often miss-understood is that the role SDI plays is by necessity greater than the sum of individual components of SDI and stakeholder groups. SDI is fundamentally about facilitation and coordination of the exchange and sharing of spatial data between stakeholders in the spatial data community. To this end, the authors propose that the roles of SDI have been pursued through two different approaches: product- and process-based. Both approaches have value, but contribute to the evolution, uptake and utilization of the SDI concept in different ways. They provide different frameworks for dealing with SDI mandates for the objectives of spatial data access and sharing. This paper reviews the nature and concept of SDI, including the components, which have helped to build the current understanding about the importance of an infrastructure to support the interactions of the spatial data community. Several examples of how SDIs have been described are offered to aid understanding of their complexity. The need for descriptions to represent the discrepancies between the role and deliverables of an SDI, and thus, contribute to a simpler, but dynamic, understanding of the complexity of the SDI concept, are postulated. The transition between the understanding of SDIs from product-based to process-based approaches is investigated, with a review of the positions taken by current SDI initiatives throughout the world. A model of how these approaches provide a framework to meet the mandates of the relevant jurisdictions is proposed, and factors contributing to the success of such positions in the future are discussed.

  13. Stoffenmanager Development and future plans

    NARCIS (Netherlands)

    Hollander, A.; Ustailieva, E.; Heussen, H.

    2012-01-01

    Stoffenmanager is one of the most advanced tools for managing hazardous chemicals at the work place. The workshop will provide an English language forum for international organisations, companies and authorities interested in the development and implementation of country versions of Stoffenmanager.

  14. Development of Titanium Alloy Casting Technology

    Science.gov (United States)

    1976-08-01

    Tensile Property Evaluacions 34 3.1.4.4 Microstructural Evaluation 35 3.1.5 Task IiT - investigations 37 3.1.5.1 Alloy Selections 38 3.1.5.2 Tensile...ganic sintering aids (CaO, SiO 2 , etc.) for integrating the lower reactivity ceramics (Y203, ThO2, HREMO, etc.) into the mold fabrication process

  15. Turbine Blade Alloy

    Science.gov (United States)

    MacKay, Rebecca

    2001-01-01

    The High Speed Research Airfoil Alloy Program developed a fourth-generation alloy with up to an +85 F increase in creep rupture capability over current production airfoil alloys. Since improved strength is typically obtained when the limits of microstructural stability are exceeded slightly, it is not surprising that this alloy has a tendency to exhibit microstructural instabilities after high temperature exposures. This presentation will discuss recent results obtained on coated fourth-generation alloys for subsonic turbine blade applications under the NASA Ultra-Efficient Engine Technology (UEET) Program. Progress made in reducing microstructural instabilities in these alloys will be presented. In addition, plans will be presented for advanced alloy development and for computational modeling, which will aid future alloy development efforts.

  16. Development of improved ATF engineering alloy - Mechanical testing of Phase 2 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Anderoglu, Osman [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lovato, Manuel L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-06-15

    In this report we present the results on the tensile testing of phase 2 FeCrAl alloys (Mo and Nb added for high temperature strength) developed at Oak Ridge National Laboratory. We also compare FeCrAl with MA956 which is an ODS FeCrAl.

  17. Exploration and Development of High Entropy Alloys for Structural Applications

    Directory of Open Access Journals (Sweden)

    Daniel B. Miracle

    2014-01-01

    Full Text Available We develop a strategy to design and evaluate high-entropy alloys (HEAs for structural use in the transportation and energy industries. We give HEA goal properties for low (≤150 °C, medium (≤450 °C and high (≥1,100 °C use temperatures. A systematic design approach uses palettes of elements chosen to meet target properties of each HEA family and gives methods to build HEAs from these palettes. We show that intermetallic phases are consistent with HEA definitions, and the strategy developed here includes both single-phase, solid solution HEAs and HEAs with intentional addition of a 2nd phase for particulate hardening. A thermodynamic estimate of the effectiveness of configurational entropy to suppress or delay compound formation is given. A 3-stage approach is given to systematically screen and evaluate a vast number of HEAs by integrating high-throughput computations and experiments. CALPHAD methods are used to predict phase equilibria, and high-throughput experiments on materials libraries with controlled composition and microstructure gradients are suggested. Much of this evaluation can be done now, but key components (materials libraries with microstructure gradients and high-throughput tensile testing are currently missing. Suggestions for future HEA efforts are given.

  18. Development of Oxidation Protection Coatings for Gamma Titanium Aluminide Alloys

    Science.gov (United States)

    Wallace, T. A.; Bird, R. K.; Sankaran, S. N.

    2003-01-01

    Metallic material systems play a key role in meeting the stringent weight and durability requirements for reusable launch vehicle (RLV) airframe hot structures. Gamma titanium aluminides (gamma-TiAl) have been identified as high-payoff materials for high-temperature applications. The low density and good elevated temperature mechanical properties of gamma-TiAl alloys make them attractive candidates for durable lightweight hot structure and thermal protection systems at temperatures as high as 871 C. However, oxidation significantly degrades gamma-TiAl alloys under the high-temperature service conditions associated with the RLV operating environment. This paper discusses ongoing efforts at NASA Langley Research Center to develop durable ultrathin coatings for protecting gamma-TiAl alloys from high-temperature oxidation environments. In addition to offering oxidation protection, these multifunctional coatings are being engineered to provide thermal control features to help minimize heat input into the hot structures. This paper describes the coating development effort and discusses the effects of long-term high-temperature exposures on the microstructure of coated and uncoated gamma-TiAl alloys. The alloy of primary consideration was the Plansee alloy gamma-Met, but limited studies of the newer alloy gamma-Met-PX were also included. The oxidation behavior of the uncoated materials was evaluated over the temperature range of 704 C to 871 C. Sol-gel-based coatings were applied to the gamma-TiAl samples by dipping and spraying, and the performance evaluated at 871 C. Results showed that the coatings improve the oxidation resistance, but that further development is necessary.

  19. Development of Low Density Titanium Alloys for Structural Applications

    Science.gov (United States)

    Froes, F. H.; Suryanarayana, C.; Powell, C.; Ward-Close, C. Malcolm; Wilkes, D. M. J.

    1996-01-01

    In this report the results of a program designed to reduce the density of titanium by adding magnesium are presented. Because these two elements are immiscible under conventional ingot metallurgy techniques, two specialized powder metallurgy methods namely, mechanical alloying (MA) and physical vapor deposition (PVD) were implemented. The mechanical alloying experiments were done both at the University of Idaho and at the Defense Research Agency in UK. Since titanium is reactive with interstitial elements, a secondary goal of this research was to correlate solubility extensions with interstitial contamination content, especially oxygen and nitrogen. MA was carried out in SPEX 8000 shaker mils and different milling containers were utilized to control the level of contamination. Results showed that solubilities of Mg in Ti were obtained up to 28 at.% (16.4 wt. %) Mg in Ti for Ti-39.6 at. % (25 wt. %) Mg alloys, which greatly exceed those obtained under equilibrium conditions. This reflects a density reduction of approximately 26 %. Contamination of oxygen and nitrogen seemed to increase the solubility of magnesium in titanium in some cases; however, we were not able to make a clear correlation between contamination levels with solubilities. Work at the DRA has emphasized optimization of present PVD equipment, specifically composition and temperature control. Preliminary PVD data has shown Ti-Mg deposits have successfully been made up to 2 mm thick and that solubility extensions were achieved. The potential for density reduction of titanium by alloying with magnesium has been demonstrated; however, this work has only scratched the surface of the development of such low density alloys. Much research is needed before such alloys could be implemented into industry. Further funding is required in order to optimize the MA/PVD processes including contamination control, determination of optimal alloy compositions, microstructure development, and mechanical property

  20. Phase transformations and microstructure development in low alloy steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Babu, S.S.; David, S.A.; Vitek, J.M. [and others

    1995-07-01

    Microstructure development in low alloy steel welds depends on various phase transformations that are a function of weld heating and cooling. The phase changes include non-metallic oxide inclusion formation in the liquid state, weld pool solidification, and solid state transformations. In this paper the mechanism of inclusion formation during low alloy steel welding is considered and the model predictions are compared with published results. The effect of inclusions on the austenite to ferrite transformation kinetics is measured and the mechanisms of transformation are discussed. The austenite gain development is related to the driving force for transformation of {delta} ferrite to austenite.

  1. Development of weldable, corrosion-resistant iron-aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, P.J.; Goodwin, G.M.; Wang, X.L. [Oak Ridge National Laboratory, TN (United States)

    1995-05-01

    Corrosion-resistant, weldable FeAl alloys have been developed with improved high-temperature strength industrial applications. Previous processing difficulties with these alloys led to their evaluation as weld-overlay claddings on conventional structural steels to take advantage of their good properties now. Simplified and better processing methods for monolithic FeAl components are also currently being developed so that components for industrial testing can be made. Other avenues for producing FeAl coatings are currently being explored. Neutron scattering experiments residual stress distributions in the FeAl weld-overlay cladding began in FY 1993 and continued this year.

  2. Research and Development of Some Advanced High Temperature Titanium Alloys for Aero-engine

    Directory of Open Access Journals (Sweden)

    CAI Jian-ming

    2016-08-01

    Full Text Available Some advanced high temperature titanium alloys are usually selected to be manufactured into blade, disc, case, blisk and bling under high temperature environment in compressor and turbine system of a new generation high thrust-mass ratio aero-engine. The latest research progress of 600℃ high temperature titanium alloy, fireproof titanium alloy, TiAl alloy, continuous SiC fiber reinforced titanium matrix composite and their application technology in recent years in China were reviewed in this paper. The key technologies need to be broken through in design, processing and application of new material and component are put forward, including industrial ingot composition of high purified and homogeneous control technology, preparation technology of the large size bar and special forgings, machining technology of blisk and bling parts, material property evaluation and application design technique. The future with the continuous application of advanced high temperature titanium alloys, will be a strong impetus to the development of China's aero-engine technology.

  3. Cr{sub 2}Nb-based alloy development

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Tortorelli, P.F.; Horton, J.A.; Easton, D.S.; Heatherly, L.

    1996-06-01

    The objective of this work is to develop a new generation of structural materials based on intermetallic alloys for use at high temperatures in advanced fossil energy conversion systems. Target applications of such ultrahigh strength alloys include hot components (for example, air heat exchangers) in advanced energy conversion systems and heat engines. However, these materials may also find use as wear-resistant parts in coal handling systems (for example, nozzles), drill bits for oil/gas wells, and valve guides in diesel engines. One potential class of such alloys is that based on Cr-Cr{sub 2}Nb alloys. The intermetallic phase, Cr{sub 2}Nb, with a complex cubic structure (C-15) has been selected for initial development because of its high melting point (1770{degrees}C), relatively low material density (7.7 g/cm{sup 2}), and excellent high-temperature strength (at 1000 to 1250{degrees}C). This intermetallic phase, like many other Laves phases, has a wide range of compositional homogeneity suggesting the possibility of improving its mechanical and metallurgical properties by alloying additions.

  4. Development of advanced low alloy steel for nuclear RPV

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. C.; Shin, K. S.; Lee, S. H.; Lee, B. J. [Seoul National Univ., Seoul (Korea)

    2000-04-01

    Low carbon low alloy steels are used in nuclear power plants as pressure vessel, steam generator, etc. Nuclear pressure vessel material requires good combination of strength/ toughness, good weldability and high resistance to neutron irradiation and corrosion fatigue. For SA508III steels, most widely used in the production of nuclear power plant, attaining toughness is more difficult than strength. When taking into account the loss of toughness due to neutron irradiation, attaining as low transition temperature as possible prior to operation is a critical task in the production of nuclear pressure vessels. In the present study, we investigated detrimental microstructural features of SA508III steels to toughness, then alloy design directions to achieve improved mechanical properties were devised. The next step of alloy design was determined based on phase equilibrium thermodynamics and obtained results. Low carbon low alloy steels having low transition temperatures with enough strength and hardenability were developed. Microstructure and mechanical properties of HAZ of SA508III steels and alloy designed steels were investigated. 22 refs., 147 figs., 38 tabs. (Author)

  5. Developing Gradient Metal Alloys through Radial Deposition Additive Manufacturing

    Science.gov (United States)

    Hofmann, Douglas C.; Roberts, Scott; Otis, Richard; Kolodziejska, Joanna; Dillon, R. Peter; Suh, Jong-ook; Shapiro, Andrew A.; Liu, Zi-Kui; Borgonia, John-Paul

    2014-01-01

    Interest in additive manufacturing (AM) has dramatically expanded in the last several years, owing to the paradigm shift that the process provides over conventional manufacturing. Although the vast majority of recent work in AM has focused on three-dimensional printing in polymers, AM techniques for fabricating metal alloys have been available for more than a decade. Here, laser deposition (LD) is used to fabricate multifunctional metal alloys that have a strategically graded composition to alter their mechanical and physical properties. Using the technique in combination with rotational deposition enables fabrication of compositional gradients radially from the center of a sample. A roadmap for developing gradient alloys is presented that uses multi-component phase diagrams as maps for composition selection so as to avoid unwanted phases. Practical applications for the new technology are demonstrated in low-coefficient of thermal expansion radially graded metal inserts for carbon-fiber spacecraft panels. PMID:24942329

  6. Developing gradient metal alloys through radial deposition additive manufacturing.

    Science.gov (United States)

    Hofmann, Douglas C; Roberts, Scott; Otis, Richard; Kolodziejska, Joanna; Dillon, R Peter; Suh, Jong-ook; Shapiro, Andrew A; Liu, Zi-Kui; Borgonia, John-Paul

    2014-06-19

    Interest in additive manufacturing (AM) has dramatically expanded in the last several years, owing to the paradigm shift that the process provides over conventional manufacturing. Although the vast majority of recent work in AM has focused on three-dimensional printing in polymers, AM techniques for fabricating metal alloys have been available for more than a decade. Here, laser deposition (LD) is used to fabricate multifunctional metal alloys that have a strategically graded composition to alter their mechanical and physical properties. Using the technique in combination with rotational deposition enables fabrication of compositional gradients radially from the center of a sample. A roadmap for developing gradient alloys is presented that uses multi-component phase diagrams as maps for composition selection so as to avoid unwanted phases. Practical applications for the new technology are demonstrated in low-coefficient of thermal expansion radially graded metal inserts for carbon-fiber spacecraft panels.

  7. Future of federal research and development

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, D.T.

    1995-12-31

    This paper very briefly describes factors affecting federal funding for research and development. Historical, political, and economic aspects of funding are outlined. Projections of future funding is provided in general terms. The potential of the national laboratories for continued research and development contributions is described.

  8. Recent research and development in titanium alloys for biomedical applications and healthcare goods

    Directory of Open Access Journals (Sweden)

    Mitsuo Niinomi

    2003-01-01

    Full Text Available Nb, Ta and Zr are the favorable non-toxic alloying elements for titanium alloys for biomedical applications. Low rigidity titanium alloys composed of non-toxic elements are getting much attention. The advantage of low rigidity titanium alloy for the healing of bone fracture and the remodeling of bone is successfully proved by fracture model made in tibia of rabbit. Ni-free super elastic and shape memory titanium alloys for biomedical applications are energetically developed. Titanium alloys for not only implants, but also dental products like crowns, dentures, etc. are also getting much attention in dentistry. Development of investment materials suitable for titanium alloys with high melting point is desired in dental precision castings. Bioactive surface modifications of titanium alloys for biomedical applications are very important for achieving further developed biocompatibility. Low cost titanium alloys for healthcare goods, like general wheel chairs, etc. has been recently proposed.

  9. Mechanical property, biocorrosion and in vitro biocompatibility evaluations of Mg-Li-(Al)-(RE) alloys for future cardiovascular stent application.

    Science.gov (United States)

    Zhou, W R; Zheng, Y F; Leeflang, M A; Zhou, J

    2013-11-01

    Mg-Li-based alloys were investigated for future cardiovascular stent application as they possess excellent ductility. However, Mg-Li binary alloys exhibited reduced mechanical strengths due to the presence of lithium. To improve the mechanical strengths of Mg-Li binary alloys, aluminum and rare earth (RE) elements were added to form Mg-Li-Al ternary and Mg-Li-Al-RE quarternary alloys. In the present study, six Mg-Li-(Al)-(RE) alloys were fabricated. Their microstructures, mechanical properties and biocorrosion behavior were evaluated by using optical microscopy, X-ray diffraction, scanning electronic microscopy, tensile tests, immersion tests and electrochemical measurements. Microstructure characterization indicated that grain sizes were moderately refined by the addition of rare earth elements. Tensile testing showed that enhanced mechanical strengths were obtained, while electrochemical and immersion tests showed reduced corrosion resistance caused by intermetallic compounds distributed throughout the magnesium matrix in the rare-earth-containing Mg-Li alloys. Cytotoxicity assays, hemolysis tests as well as platelet adhesion tests were performed to evaluate in vitro biocompatibilities of the Mg-Li-based alloys. The results of cytotoxicity assays clearly showed that the Mg-3.5Li-2Al-2RE, Mg-3.5Li-4Al-2RE and Mg-8.5Li-2Al-2RE alloys suppressed vascular smooth muscle cell proliferation after 5day incubation, while the Mg-3.5Li, Mg-8.5Li and Mg-8.5Li-1Al alloys were proven to be tolerated. In the case of human umbilical vein endothelial cells, the Mg-Li-based alloys showed no significantly reduced cell viabilities except for the Mg-8.5Li-2Al-2RE alloy, with no obvious differences in cell viability between different culture periods. With the exception of Mg-8.5Li-2Al-2RE, all of the other Mg-Li-(Al)-(RE) alloys exhibited acceptable hemolysis ratios, and no sign of thrombogenicity was found. These in vitro experimental results indicate the potential of Mg

  10. Multistage Development of Müller-Achenbach model for Shape Memory Alloy

    Directory of Open Access Journals (Sweden)

    Simin A. Oshkovr

    2008-01-01

    Full Text Available This research focused on the conceptual development of constitutive Müller-Achenbach model and proceeds to construct a model based on phase transition under changing temperature and load for variants of martensite in shape memory alloy CuAlNi (Copper-aluminum-nickel. Problem statement: Motivation of this research is rare information of a variant of martensite phase (M++ and prediction of the shape recovery of shape memory alloy in this stage of transformation. Approach: The mathematical equations proposed a prediction of stability of Austenite phases and extend it to multistage martensitic phase transformation. These phase transformations occurred by loading on the material. Equations described free energy landscape in CuAlNi shape memory alloys at low (260K and high temperature (440K. The model evaluated the free energy due to the phase transformation between the austenite and multistage martensitic structures. Results: Results for M++ phase showed decrease in temperature from 440K to 260K presented decrease in stress approximately from 1 kN to 0.4kN and free energy from 5 kJ/kg to 0.1 kJ/kg. Equations have been solved and plotted by software programmed in MATLAB. Conclusions/Recommendations: The model which has derived focused on homogeneous shape memory alloys, but future performance requirements will most likely be met with heterogeneous materials. Therefore, simulation models for heterogeneous materials must be developed.

  11. Development of biodegradable magnesium alloy stents with coating

    Directory of Open Access Journals (Sweden)

    Lorenza Petrini

    2014-07-01

    Full Text Available Biodegradable stents are attracting the attention of many researchers in biomedical and materials research fields since they can absolve their specific function for the expected period of time and then gradually disappear. This feature allows avoiding the risk of long-term complications such as restenosis or mechanical instability of the device when the vessel grows in size in pediatric patients. Up to now biodegradable stents made of polymers or magnesium alloys have been proposed. However, both the solutions have limitations. The polymers have low mechanical properties, which lead to devices that cannot withstand the natural contraction of the blood vessel: the restenosis appears just after the implant, and can be ascribed to the compliance of the stent. The magnesium alloys have much higher mechanical properties, but they dissolve too fast in the human body. In this work we present some results of an ongoing study aiming to the development of biodegradable stents made of a magnesium alloy that is coated with a polymer having a high corrosion resistance. The mechanical action on the blood vessel is given by the magnesium stent for the desired period, being the stent protected against fast corrosion by the coating. The coating will dissolve in a longer term, thus delaying the exposition of the magnesium stent to the corrosive environment. We dealt with the problem exploiting the potentialities of a combined approach of experimental and computational methods (both standard and ad-hoc developed for designing magnesium alloy, coating and scaffold geometry from different points of views. Our study required the following steps: i selection of a Mg alloy suitable for stent production, having sufficient strength and elongation capability; ii computational optimization of the stent geometry to minimize stress and strain after stent deployment, improve scaffolding ability and corrosion resistance; iii development of a numerical model for studying stent

  12. Lessons learned from small space systems development using magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Matunaga, S.; Sawada, H. [Dept. of Mechanical and Aerospace Engineering, Tokyo Inst. of Tech. (Japan); Furuya, H. [Dept. of Built Environment, Tokyo Inst. of Tech., Kanagawa (Japan); Kogiso, N. [Dept. of Aerospace Engineering, Osaka Prefecture Univ. (Japan)

    2003-07-01

    In this paper, we discuss the effectiveness of magnesium alloys through practical space applications in which we have developed a few small-sized space systems and have used magnesium alloys in order to reduce the total mass of the systems. We introduce three examples of our developed systems. The first one is a CanSat whose is a pico-satellite sized of 350 ml can, less than 350 g in mass, and the second one is a small docking mechanism in order to grasp and guide a micro satellite for a small mothership-daughtership satellites formation flying in orbit. The last one is a CubeSat whose is a pico-satellite sized of 10 cm{sup *}10 cm{sup *}10 cm, less than 1 kg in mass and is planned to launch into a Low Earth orbit. Outline description of the systems is given, and design restrictions against magnesium alloys and the mass reduction effect compared with aluminum alloys are discussed. Also, issues of manufacturing, processing and surface treatment for the elaborate magnesium parts are explored. (orig.)

  13. Low cost fabrication development for oxide dispersion strengthened alloy vanes

    Science.gov (United States)

    Perkins, R. J.; Bailey, P. G.

    1978-01-01

    Viable processes were developed for secondary working of oxide dispersion strengthened (ODS) alloys to near-net shapes (NNS) for aircraft turbine vanes. These processes were shown capable of producing required microstructure and properties for vane applications. Material cost savings of 40 to 50% are projected for the NNS process over the current procedures which involve machining from rectangular bar. Additional machining cost savings are projected. Of three secondary working processes evaluated, directional forging and plate bending were determined to be viable NNS processes for ODS vanes. Directional forging was deemed most applicable to high pressure turbine (HPT) vanes with their large thickness variations while plate bending was determined to be most cost effective for low pressure turbine (LPT) vanes because of their limited thickness variations. Since the F101 LPT vane was selected for study in this program, development of plate bending was carried through to establishment of a preliminary process. Preparation of ODS alloy plate for bending was found to be a straight forward process using currently available bar stock, providing that the capability for reheating between roll passes is available. Advanced ODS-NiCrAl and ODS-FeCrAl alloys were utilized on this program. Workability of all alloys was adequate for directional forging and plate bending, but only the ODS-FeCrAl had adequate workability for shaped preform extrustion.

  14. Several Issues in the Development of Ti-Nb-Based Shape Memory Alloys

    Science.gov (United States)

    Kim, Hee Young; Miyazaki, Shuichi

    2016-12-01

    Ni-free Ti-based shape memory alloys, particularly Ti-Nb-based alloys, have attracted increasing attraction since the early 2000s due to their wide application potentials in biomedical fields. Recently, there has been significant progress in understanding the martensitic transformation behavior of Ti-Nb-based alloys and many novel superelastic alloys have been developed. The superelastic properties of Ti-Nb-based alloys have been remarkably improved through the optimization of alloying elements and microstructure control. In this paper, in order to explore and establish the alloy design strategy, several important issues in the development of Ti-Nb-based shape memory alloys are reviewed. Particularly, the effects of alloying elements on the martensitic transformation temperature and the transformation strain are analyzed. The effects of omega phase and texture on the superelastic properties are also discussed.

  15. Cr{sub 2}Nb-based alloy development

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Tortorelli, P.F.; Horton, J.A. [Oak Ridge National Lab., TN (United States)] [and others

    1995-06-01

    The objective of this task is to develop a new generation of structural materials based on intermetallic alloys for use as critical hot components in advanced fossil energy conversion systems. The intermetallic phase, Cr{sub 2}Nb, with a complex cubic structure (C-15) has been selected for this development because of its high melting point (1770{degrees}C), relatively low material density (7.7 g/cm{sup 2}), excellent high-temperature strength (at 1000 to 1250{degrees}C), and potential resistance to oxidation and corrosion. This intermetallic phase, like many other Laves phases, has a wide range of compositional homogeneity suggesting the possibility of improving its mechanical and metallurgical properties by alloying additions. The major engineering concern with Cr{sub 2}Nb and other A{sub 2}B Laves phases is their poor fracture toughness and fracture resistance at ambient temperatures. The single-phase Cr{sub 2}Nb is very hard ({approximately}800 DPH) and brittle at room temperature. Because of this brittleness, the development effort has concentrated on two-phase structures containing the hard intermetallic phase Cr{sub 2}Nb and the softer Cr-rich solid solution phase. Potential applications of Cr-Cr{sub 2}Nb alloys include hot components (for example, air heat exchangers and turbine blades) in advanced energy conversion systems and heat engines, wear-resistant parts in coal handling systems (e.g., nozzles), drill bits for oil/gas wells, and valve guides in diesel engines. Current studies are focuses on enhancement of fracture resistance in tension at ambient temperatures and oxidation resistance above 1000{degrees}C. This report summarizes recent progress on controlling microstructure and improving the mechanical and metallurgical properties and the high-temperature corrosion behavior of Cr-Cr{sub 2}Nb alloys through alloying conditions, material processing, and heat treatment.

  16. Selecting indicators of future corporate business development

    Directory of Open Access Journals (Sweden)

    J. Dvořáček

    2011-01-01

    Full Text Available The paper presents applications of discriminate analysis to predicting corporate economy future developments. The discriminate analysis was applied employing 5 to 8 input indicators (discriminators. Attaining maximum accuracy, 7 discriminators suffice. A final choice of discriminators was made by further discriminate analysis applications, and by searching causes of erroneous classification, which concerned a closer examination of input data files.

  17. Integration of NASA-Developed Lifing Technology for PM Alloys into DARWIN (registered trademark)

    Science.gov (United States)

    McClung, R. Craig; Enright, Michael P.; Liang, Wuwei

    2011-01-01

    In recent years, Southwest Research Institute (SwRI) and NASA Glenn Research Center (GRC) have worked independently on the development of probabilistic life prediction methods for materials used in gas turbine engine rotors. The two organizations have addressed different but complementary technical challenges. This report summarizes a brief investigation into the current status of the relevant technology at SwRI and GRC with a view towards a future integration of methods and models developed by GRC for probabilistic lifing of powder metallurgy (P/M) nickel turbine rotor alloys into the DARWIN (Darwin Corporation) software developed by SwRI.

  18. Replacement of Cobalt base alloys hardfacing by NOREM alloy; EDF experience and development, some metallurgical considerations. Valves application (CLAMA, RAMA)

    Energy Technology Data Exchange (ETDEWEB)

    Carnus, M. [EDF DPN UTO Direction Expertise Technique, Noisy le Grand (France); Confort, X. [VELAN SAS, Lyon (France)

    2011-07-01

    Cobalt base alloys, such as Stellite 6 and 21, are used extensively in applications where superior resistance to wear and corrosion are required. However the use of Cobalt alloys hardfacing materials, especially on valves, is a major contributor to the level of radioactive contamination of nuclear facilities. NOREM alloys, an iron base and cobalt free materials, have been developed through an Electric Power Research Institute (EPRI) long running program during the eighties as an alternative of Stellite. This alloy has relatively good weldability properties, it was developed initially for repairing Stellite hardfacing (deposit over existing hardfacing alloys). This alloy has good corrosion resistance properties associated with elevated hardness (HRC 36-42). Technological properties (such as galling resistance, wear resistance) have been evaluated through different testing programs led by EPRI, AECL(Atomic Energy of Canada Limited), Valves manufacturers, EDF and others during the nineties. More recently EDF (for replacement of globe valves) has carried out testing program focused on weld deposit chemistry and mechanical properties. NOREM is a candidate for replacement of stellite hardfacing on valves. However this alloy is not so versatile as stellite alloys regarding technological properties (such as wear resistance) at elevated temperature and under high contact pressure. As a consequence some limits have to be considered for application on valves operating at elevated temperature and under high contact pressure (> 20 Mpa). Examples of application on valves, from VELAN manufacturer, for EDF PWR equipment are given. The industrial feedback from installed equipment (CLAMA, RAMA) since 2006 on EDF PWR has been good

  19. Strengthening and Toughening Design and Development of Mg-Rare Earth Alloys

    Directory of Open Access Journals (Sweden)

    ZENG Xiaoqin

    2017-01-01

    Full Text Available Magnesium alloys are the lightest structural alloys developed so far and have a great potential for lightweight applications, ranging from portable electronic devices to automobile parts. Comparing to Mg alloys containing no rare earth (RE, Mg-RE alloys attracted more and more attentions due to the higher strengths at both room temperature and elevated temperature. Strengthening methods for Mg alloys with high RE contents and low RE contents were introduced respectively in this paper. For Mg alloys with high RE contents, precipitates of β' lying in the triangular prismatic plates can impede dislocation slip effectively to enhance the strength of the alloy. For Mg alloys with low RE contents, the microstructure containing nano grains in the surface layer and twinning in the center can be obtained by surface mechanical attrition treatment. Thus the Mg alloy can be strengthened by both refinement strengthening of nano grains and twinning strengthening of RE segregated twin boundaries.

  20. Recent Developments in Friction Stir Welding of Al-alloys

    Science.gov (United States)

    Çam, Gürel; Mistikoglu, Selcuk

    2014-06-01

    The diversity and never-ending desire for a better life standard result in a continuous development of the existing manufacturing technologies. In line with these developments in the existing production technologies the demand for more complex products increases, which also stimulates new approaches in production routes of such products, e.g., novel welding procedures. For instance, the friction stir welding (FSW) technology, developed for joining difficult-to-weld Al-alloys, has been implemented by industry in manufacturing of several products. There are also numerous attempts to apply this method to other materials beyond Al-alloys. However, the process has not yet been implemented by industry for joining these materials with the exception of some limited applications. The microstructures and mechanical properties of friction stir welded Al-alloys existing in the open literature will be discussed in detail in this review. The correlations between weld parameters used during FSW and the microstructures evolved in the weld region and thus mechanical properties of the joints produced will be highlighted. However, the modeling studies, material flow, texture formation and developments in tool design are out of the scope of this work as well as the other variants of this technology, such as friction stir spot welding (FSSW).

  1. Alloy Design Workbench-Surface Modeling Package Developed

    Science.gov (United States)

    Abel, Phillip B.; Noebe, Ronald D.; Bozzolo, Guillermo H.; Good, Brian S.; Daugherty, Elaine S.

    2003-01-01

    NASA Glenn Research Center's Computational Materials Group has integrated a graphical user interface with in-house-developed surface modeling capabilities, with the goal of using computationally efficient atomistic simulations to aid the development of advanced aerospace materials, through the modeling of alloy surfaces, surface alloys, and segregation. The software is also ideal for modeling nanomaterials, since surface and interfacial effects can dominate material behavior and properties at this level. Through the combination of an accurate atomistic surface modeling methodology and an efficient computational engine, it is now possible to directly model these types of surface phenomenon and metallic nanostructures without a supercomputer. Fulfilling a High Operating Temperature Propulsion Components (HOTPC) project level-I milestone, a graphical user interface was created for a suite of quantum approximate atomistic materials modeling Fortran programs developed at Glenn. The resulting "Alloy Design Workbench-Surface Modeling Package" (ADW-SMP) is the combination of proven quantum approximate Bozzolo-Ferrante-Smith (BFS) algorithms (refs. 1 and 2) with a productivity-enhancing graphical front end. Written in the portable, platform independent Java programming language, the graphical user interface calls on extensively tested Fortran programs running in the background for the detailed computational tasks. Designed to run on desktop computers, the package has been deployed on PC, Mac, and SGI computer systems. The graphical user interface integrates two modes of computational materials exploration. One mode uses Monte Carlo simulations to determine lowest energy equilibrium configurations. The second approach is an interactive "what if" comparison of atomic configuration energies, designed to provide real-time insight into the underlying drivers of alloying processes.

  2. Strain localization and damage development in 2060 alloy during bending

    Institute of Scientific and Technical Information of China (English)

    Xiao Jin; Bao-qin Fu; Cheng-lu Zhang; Wei Liu

    2015-01-01

    The microstructure evolution and damage development of the third-generation Al–Li alloy 2060 (T8) were studied using in situ bending tests. Specimens were loaded with a series of punches of different radii, and the microstructure evolution was studied by scanning electron microscopy, electron backscatter diffraction, and digital image correlation (DIC) methods. The evolution of the microscopic fracture strain distribution and microstructure in 2060 alloy during bending was characterized, where the dispersion distribution of precipitates was recorded by backscattered electron imaging and later inputted into a DIC system for strain calculations. The experimental results showed that strain localization in the free surface of bent specimens induced damage to the microstructure. The region of crack initiation lies on the free surface with maximum strain, and the shear crack propagates along the macro-shear band in the early stages of bending. Crack propagation in the later stages was interpreted on the basis of the conventional mechanism of ductile fracture.

  3. Development of rheometer for semi-solid highmelting point alloys

    Directory of Open Access Journals (Sweden)

    LIU Wen

    2005-11-01

    Full Text Available A rheometer for semi-solid high-melting point alloys was developed based on the principle of a double-bucket rheometer, with which the solidifying of semi-solid high-melting point alloy melt could be effectively controlled by the control of temperature and the outer force-field; and different microstructures have also been obtained. This rheometer can be used to investigate the rheological behavior under different conditions by changing the Theological parameters. By way of full-duplex communication between the computer and each sensor, automatic control of the test equipment and real- timemeasurement of rheological parameters were realized. Finally, the influencing factors on torque are also quantitatively analyzed.

  4. Development of rheometer for semi-solid highmelting point alloys

    Institute of Scientific and Technical Information of China (English)

    LIU Wen; XING Shu-min; ZHANG Lin; ZHANG Mi-lian; ZHANG Hai-ying

    2005-01-01

    A rheometer for semi-solid high-melting point alloys was developed based on the principle of a double-bucket rheometer, with which the solidifying of semi-solid high-melting point alloy melt could be effectively controlled by the control of temperature and the outer force-field; and different microstructures have also been obtained. This rheometer can be used to investigate the rheological behavior under different conditions by changing the rheological parameters. By way of full-duplex communication between the computer and each sensor, automatic control of the test equipment and real- time measurement of rheological parameters were realized. Finally, the influencing factors on torque are also quantitatively analyzed.

  5. Development of CANDU advanced fuel fabrication technology - A development of amorphous alloys for the solder of nuclear reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jai Young; Lee, Ki Young; Kim, Yoon Kee; Jung, Jae Han; Yu, Ji Sang; Kim, Hae Yeol; Han, Young Su [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1996-07-01

    In the case of advanced CANDU fuel being useful in future, the fabrication processes for soundness insurance of a improved nuclear fuel bundle must be developed at the same time because it have three times combustibility as existing fuel. In particular, as the improved nuclear fuel bundle in which a coated layer thickness is thinner than existing that, firmity of a joint part is very important. Therefore, we need to develop a joint technique using new solder which can settle a potential problem in current joining method. As the Zr-Be alloy system and the Ti-Be system are composed with the elements having high neutron permeability, they are suitable for joint of nuclear fuel pack. The various compositions Zr-Be and Ti-Be binary metallic glass alloys were applicable to the joining the nuclear fuel bundles. The thickness of joint layer using the Zr{sub 1-x} Be{sub x} amorphous ribbon as a solder is thinner than that using physical vapor deposited Be. Among the Zr{sub 1-x} Be{sub x} amorphous binary alloys, Zr{sub 0.7} Be{sub 0.3} binary alloy is the most appropriated for joint of nuclear fuel bundle because its joint layer is smooth and thin due to low degree of Be diffusion. The microstructures of brazed layer using Ti{sub 1-y} Be{sub y} alloy, however, a solid-solution layer composed with Zr and Ti is formed toward the Zr cladding sheath and many of Zr is detected in the joint lever. 20 refs., 8 tabs., 23 figs. (author)

  6. Alloy

    Science.gov (United States)

    Cabeza, Sandra; Garcés, Gerardo; Pérez, Pablo; Adeva, Paloma

    2014-07-01

    The Mg98.5Gd1Zn0.5 alloy produced by a powder metallurgy route was studied and compared with the same alloy produced by extrusion of ingots. Atomized powders were cold compacted and extruded at 623 K and 673 K (350 °C and 400 °C). The microstructure of extruded materials was characterized by α-Mg grains, and Mg3Gd and 14H-LPSO particles located at grain boundaries. Grain size decreased from 6.8 μm in the extruded ingot, down to 1.6 μm for powders extruded at 623 K (350 °C). Grain refinement resulted in an increase in mechanical properties at room and high temperatures. Moreover, at high temperatures the PM alloy showed superplasticity at high strain rates, with elongations to failure up to 700 pct.

  7. Developing future nurse educators through peer mentoring

    Directory of Open Access Journals (Sweden)

    Rosenau PA

    2015-01-01

    Full Text Available Patricia A Rosenau, Rita F Lisella, Tracey L Clancy, Lorelli S NowellFaculty of Nursing, University of Calgary, Calgary, AB, CanadaBackground: The nursing workforce and nursing education demographic trends reinforce the urgency to cultivate future nursing leaders, educators, and mentors. The changing realities of health care environments, involving crowded student placements, overtaxed clinical mentors and preceptors, and inexperienced staff, hamper student learning and professional development. Peer mentoring has been used successfully in nursing education to enhance student engagement and the quality of the student learning experience. Although various terms like peer mentor have been used to describe the role of senior students facilitating junior student learning, the literature is silent about how peer mentoring fosters the development of future nursing education leaders.Objectives: The aim of this study was to understand how peer mentorship fosters the development of nursing education leadership in senior undergraduate nursing students enrolled in an elective undergraduate peer-mentoring credit course, Introductory Concepts in Nursing Education and Leadership Through Peer-Led Learning.Design and method: This phenomenological study explored the development of nursing education leadership in senior undergraduate students through the analysis of critical reflections of individual senior students and online discussions between triads of senior students teaching/learning across diverse junior-level theory and practice courses.Participants: Seventeen senior undergraduate nursing students enrolled in the elective course participated in the study.Results: From the critical reflections and online discussions, four themes emerged: "developing teaching philosophies and pedagogies", "learning teaching strategies", "supportive peer relationship", and "benefits of the peer mentorship program".Conclusion: The creation and promotion of peer leadership

  8. Ukraine crisis deeply influences NATO's future development

    Institute of Scientific and Technical Information of China (English)

    秦朗

    2014-01-01

    The ongoing Ukraine crisis is believed to be the most significant geopolitical incident after the fall of Berlin Wall.It deeply influences,among others,the future development of NATO (North Atlantic Treaty Organization),which is the world's largest military alliance and western countries'ace in the hole in case of security emergency.The crisis enhances the status and influence of NATO on the international arena,as well as impacts NATO's transition process since the end of Cold War.The old question of Where will NATO go again becomes a hot topic.%The ongoing Ukraine crisis is believed to be the most significant geopolitical incident after the fall of Berlin Wall.It deeply influences,among others,the future development of NATO (North Atlantic Treaty Organization),which is the world's largest military alliance and western countries'ace in the hole in case of security emergency.The crisis enhances the status and influence of NATO on the international arena,as well as impacts NATO's transition process since the end of Cold War.The old question of Where will NATO go again becomes a hot topic.

  9. Development of Commercial Applications of a FAPY Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, VK

    2001-08-24

    The Fe-16 at. (8.5 wt) % Al alloy, known as FAPY, has been identified as a superior material for heating element applications. However, while the 15-lb heats melted at the Oak Ridge National Laboratory (ORNL) could be processed into wire, the large heat melted at Hoskins Manufacturing Company (Hoskins) could not be processed under commercial processing conditions. The primary objective of the Cooperative Research and Development Agreement (CRADA) was to demonstrate that wire of the FAPY alloy could be produced under commercial conditions from air-induction-melted (AIM) heats. The specific aspects of this CRADA included: (1) Melting 15-lb heats by AIM or vacuum-induction melting (VIM) at ORNL. (2) Development of detailed processing steps including warm drawing and annealing temperature and time during cold-drawing steps. (3) Melting of 1400-lb heats at Hoskins by the Exo-Melt{trademark} process and their chemical analysis and microstructural characterization. (4) Development of tensile properties of sections of ingots from the large heats in the ascast, hot-worked, and hot- and cold-worked conditions. (5) Microstructural characterization of cast and wrought structures and the fractured specimens. (6) Successful demonstration of processing of AIM heats at Hoskins to heating element wire. The aspects of this CRADA listed above have demonstrated that the FAPY alloy of the desired composition can be commercially produced by AIM by the use of the Exo-Melt{trademark} process. Furthermore, it also demonstrated that the wire processing steps developed for 15-lb heats at ORNL can be successfully applied to the production of wire from the large AIM heats.

  10. AlSi17Cu5Mg alloy as future material for castings of pistons for internal combustion engines

    Directory of Open Access Journals (Sweden)

    J. Piątkowski

    2015-07-01

    Full Text Available The paper presents chosen properties and microstructure of AlSi17Cu5Mg alloy as future material for casting pistons in automotive industry. Tests were conducted to elaborate technology of preparation, assessment of crystallisation parameters and shaping the primary structure of the silumin with the aim to improve the working parameters and the functioning efficiency in cylinder-piston system. Refinement of Si crystals, achieved due to overheating above the temperature Tliq. causes that the alloy reaches satisfactory properties in working chamber of the engine are optimised. Such condition of material characteristics causes that hypereutectic silumins, for chosen applications in transport, may serve as an alternative to Al - Si alloys of hypoeutectic and near - eutectic type.

  11. Driver Behavior Modeling: Developments and Future Directions

    Directory of Open Access Journals (Sweden)

    Najah AbuAli

    2016-01-01

    Full Text Available The advances in wireless communication schemes, mobile cloud and fog computing, and context-aware services boost a growing interest in the design, development, and deployment of driver behavior models for emerging applications. Despite the progressive advancements in various aspects of driver behavior modeling (DBM, only limited work can be found that reviews the growing body of literature, which only targets a subset of DBM processes. Thus a more general review of the diverse aspects of DBM, with an emphasis on the most recent developments, is needed. In this paper, we provide an overview of advances of in-vehicle and smartphone sensing capabilities and communication and recent applications and services of DBM and emphasize research challenges and key future directions.

  12. Microstructural Evolution and Mechanical Property Development of Selective Laser Melted Copper Alloys

    Science.gov (United States)

    Ventura, Anthony Patrick

    produce components around 98 percent dense with high mechanical strength and electrical conductivity. Aging heat treatments were carried out at 723 K (450 °C) directly on as-printed samples up to 128 hours. A peak yield strength of around 590 MPa could be attained with an electrical conductivity of 34.2 %IACS after 8 hours of aging. Conductivity continues to increase with further aging while the peak strength appears to be less sensitive to aging time exhibiting a broad range of time where near-peak properties exist. Nanometer-scale silicon-rich oxide particles exist throughout the material and persist during aging. Deformation twinning is observed in the peak age condition after tensile testing and several strengthening mechanisms appear to be active to varying degrees throughout aging, which accounts for the broad range of aging time where nearly the peak mechanical properties exist. The findings of this research are integral to understanding SLM copper alloys and serve as a foundation for future development of new copper alloys tailored to the SLM process.

  13. Development of Shape Memory Alloys- Challenges and Solutions

    Science.gov (United States)

    Benafan, Othmane

    2016-01-01

    Shape memory alloys (SMAs) are a unique class of multifunctional materials that have the ability to recover large deformations or generate high stresses in response to thermal, mechanical andor electromagnetic stimuli. These abilities have made them a viable option for actuation systems in aerospace, medical, and automotive applications, amongst others. However, despite many advantages and the fact that SMA actuators have been developed and used for many years, so far they have only found service in a limited range of applications. In order to expand their applications, further developments are needed to increase their reliability and stability and to address processing, testing and qualification needed for large-scale commercial application of SMA actuators. In this seminar, historical inhibitors of SMA applications and current research efforts by NASA Glenn Research Center and collaborators will be discussed. Relationships between fundamental physicalscientific understanding, and the direct transition to engineering and design of mechanisms using these novel materials will be highlighted. Examples will be presented related to targeted alloy development, microstructural control, and bulk-scale testing as a function of stresses, temperatures and harsh environments. The seminar will conclude with a summary of SMA applications under development and current advances.

  14. Welding development for V-Cr-Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    King, J.F.; Goodwin, G.M.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1995-04-01

    A vanadium structure, cooled with helium, is a favored concept for an advanced breeding blanket for fusion systems. The objective of this task is to develop the metallurgical and technological base for the welding of thick sections of V-Cr-Ti. The subsize Charpy test results for electron beam weld metal from the V-5Cr-5Ti alloy has shown significant improvement in Charpy fracture energy compared to both gas tungsten arc weld metal and the base metal itself. These results are preliminary, however, and additional confirmation testing and analysis will be required to explain this improvement in properties.

  15. Advances of Titanium Alloys and Its Biological Surface Modification

    Institute of Scientific and Technical Information of China (English)

    XU Ke-wei; HUANG Ping

    2004-01-01

    This paper reviews the past, present and future of surface modification of titanium alloy from the point of view of preparation of hard tissue replacement implants. The development of titanium alloy is also described.

  16. Development of environmentally friendly cast alloys and composites. High zinc Al-base cast alloys

    Directory of Open Access Journals (Sweden)

    W.K. Krajewski

    2010-01-01

    Full Text Available This work is devoted to grain refinement of the foundry Al-20 wt% Zn (AlZn20 alloy, aiming at improving ductility of the sand-cast alloy The melted alloy was inoculated using traditional AlTi5B1 (TiBAl and AlTi3C0.15 (TiCAl master alloys and newly introduced (Zn,Al-Ti3 one. The performed structural examinations showed out significant increasing of the grain population of the inoculated alloy and plas-ticity increase represented by elongation. The high damping properties of the initial alloy, measured using an ultrasonic Olympus Epoch XT device, are basicly preserved after inoculation. Also tensile strength preserves its good values, while elongation shows an increase – which are beneficials of the employed grain-refining process.

  17. NICKEL-BASED ALLOYS IN GE AIRCRAFT TURBINES:PAST,PRESENT & FUTURE

    Institute of Scientific and Technical Information of China (English)

    D. Chang; R. Schafrik

    2005-01-01

    Improvements in materials have been critical to advances in the propulsion system. Over the past 50 years, many improvements have been made to nickel-based superalloys to satisfy design requirements; several key developments will be highlighted. Today, millions of pounds of superalloys are annually produced for use in turbine blades, vanes, disks, cases, and frames throughout the engine. Looking to the future, several themes emerge, although predicting the future is inherently risky.

  18. Developing health care workforces for uncertain futures.

    Science.gov (United States)

    Gorman, Des

    2015-04-01

    Conventional approaches to health care workforce planning are notoriously unreliable. In part, this is due to the uncertainty of the future health milieu. An approach to health care workforce planning that accommodates this uncertainty is not only possible but can also generate intelligence on which planning and consequent development can be reliably based. Drawing on the experience of Health Workforce New Zealand, the author outlines some of the approaches being used in New Zealand. Instead of relying simply on health care data, which provides a picture of current circumstances in health systems, the author argues that workforce planning should rely on health care intelligence--looking beyond the numbers to build understanding of how to achieve desired outcomes. As health care systems throughout the world respond to challenges such as reform efforts, aging populations of patients and providers, and maldistribution of physicians (to name a few), New Zealand's experience may offer a model for rethinking workforce planning to truly meet health care needs.

  19. NEW DEVELOPMENT IN DOUBLE GLOW SURFACE ALLOYING TECHNOLOGY

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Several kinds of special alloys are produced on the surfaces of iron and steels by using double glow surface alloying technology. Surface Ni-Cr-Mo-Nb alloy,surface precipitation hardening high speed steel and surface precipitation hardening stainless steel are introduced.

  20. Grid accounting service: state and future development

    Energy Technology Data Exchange (ETDEWEB)

    Levshina, T. [Fermilab; Sehgal, C. [Fermilab; Bockelman, B. [Nebraska U.; Weitzel, D. [Nebraska U.; Guru, A. [Nebraska U.

    2014-01-01

    During the last decade, large-scale federated distributed infrastructures have been continually developed and expanded. One of the crucial components of a cyber-infrastructure is an accounting service that collects data related to resource utilization and identity of users using resources. The accounting service is important for verifying pledged resource allocation per particular groups and users, providing reports for funding agencies and resource providers, and understanding hardware provisioning requirements. It can also be used for end-to-end troubleshooting as well as billing purposes. In this work we describe Gratia, a federated accounting service jointly developed at Fermilab and Holland Computing Center at University of Nebraska-Lincoln. The Open Science Grid, Fermilab, HCC, and several other institutions have used Gratia in production for several years. The current development activities include expanding Virtual Machines provisioning information, XSEDE allocation usage accounting, and Campus Grids resource utilization. We also identify the direction of future work: improvement and expansion of Cloud accounting, persistent and elastic storage space allocation, and the incorporation of WAN and LAN network metrics.

  1. The Bioeconomy Model in Future Sustainable Development

    Directory of Open Access Journals (Sweden)

    Ipate Nicolae

    2015-07-01

    Full Text Available The future of sustainable development is the bioeconomy with the ―global‖ solution; both global and local action for developed the renewable energy generation. When local solutions are implemented is being laid for global solutions are positive affect the national economy. The implementation of the bioeconomy strategy used by society to prevent urgent problems, such as increasing competition for natural resources, climate change, rural sustainable development. The bioeconomy is a new economic and social order and promotes systemic change from using non-renewable resources to renewables. Bioeconomy reveals that production, which involves the transformation of a limited stock of matter and energy, but respecting the same laws that govern entropy closed systems, the entropy or unavailable matter and energy in the forms tend to increase continuously. Economic growth not only increases the apparent output per unit of inputs, which is performed using finite stock of matter and energy in the world. The current economy is based on fossil fuels and other material inputs suffering entropic degradation, both in the raw material extraction and pollution. The production, even if technical progress leads to lower overall yields. The idea of a steady state as the final economic growth that perpetuated indefinitely pendulum model is an impossibility

  2. Grid accounting service: state and future development

    Science.gov (United States)

    Levshina, T.; Sehgal, C.; Bockelman, B.; Weitzel, D.; Guru, A.

    2014-06-01

    During the last decade, large-scale federated distributed infrastructures have been continually developed and expanded. One of the crucial components of a cyber-infrastructure is an accounting service that collects data related to resource utilization and identity of users using resources. The accounting service is important for verifying pledged resource allocation per particular groups and users, providing reports for funding agencies and resource providers, and understanding hardware provisioning requirements. It can also be used for end-to-end troubleshooting as well as billing purposes. In this work we describe Gratia, a federated accounting service jointly developed at Fermilab and Holland Computing Center at University of Nebraska-Lincoln. The Open Science Grid, Fermilab, HCC, and several other institutions have used Gratia in production for several years. The current development activities include expanding Virtual Machines provisioning information, XSEDE allocation usage accounting, and Campus Grids resource utilization. We also identify the direction of future work: improvement and expansion of Cloud accounting, persistent and elastic storage space allocation, and the incorporation of WAN and LAN network metrics.

  3. Critical Assessment 14: High Entropy Alloys and Their Development as Structural Materials (Postprint)

    Science.gov (United States)

    2015-01-01

    AFRL-RX-WP-JA-2015-0219 CRITICAL ASSESSMENT 14: HIGH ENTROPY ALLOYS AND THEIR DEVELOPMENT AS STRUCTURAL MATERIALS (POSTPRINT) Daniel...December 2014 4. TITLE AND SUBTITLE CRITICAL ASSESSMENT 14: HIGH ENTROPY ALLOYS AND THEIR DEVELOPMENT AS STRUCTURAL MATERIALS (POSTPRINT) 5a...available at DOI 10.1179/1743284714Y.1142 0000000749. 14. ABSTRACT The field of high entropy alloys has exploded in its first 10 years. Vast

  4. Status and Future Developments of SIRGAS

    Science.gov (United States)

    Fortes, L.; Lauría, E.; Brunini, C.; Amaya, W.; Sanchez, L.; Drewes, H.

    2007-05-01

    This paper presents the status and future developments of the SIRGAS (Geocentric Reference System for the Americas) project. Since its creation, in 1993, SIRGAS has coordinated two continental GPS campaigns in 1995 an 2000, responsible for the establishment of a very accurate 3D reference frame in the region. First focusing on South America, the project has expanded its scope to Latin America since 2001. Currently the maintenance of the SIRGAS reference frame is carried out through more than 80 continuous operating GNSS (Global Navigation Satellite System) stations available in the region, whose data is officially processed by the International GNSS Service (IGS) Regional Network Associate Analysis Centre for SIRGAS (IGS RNACC-SIR), functioning at the DGFI (Deutsches Geodatisches Forschungsinstitut), in Munich, to generate weekly coordinates and velocity information of each continuous GNSS station. Since October 2006, five additional experimental processing centers - located at the Brazilian Institute of Geography and Statistics (IBGE), National Institute of Statistics, Geography and Informatics of Mexico (INEGI), Military Geographic Institute of Argentina (IGM), University of La Plata (UNLP), Argentina, and Geographic Institute Agustín Codazzi, Colombia (IGAC) - have also been processing data from those stations in order to assume the official processing responsibility in near future. Many Latin American countries have already adopted SIRGAS as their new official reference system. Besides, efforts have been carried out in order to have the national geodetic networks of Central American countries connected to the SIRGAS reference frame, which will be accomplished by a GNSS campaign scheduled for the first semester of 2007. In terms of vertical datum, SIRGAS continues to coordinate with each member country all the necessary efforts towards making the geodetic leveling data available together with gravity information in order to support the computation of

  5. Microstructural Development during Directional Solidification of Peritectic Alloys

    Science.gov (United States)

    Lograsso, Thomas A.

    1996-01-01

    A thorough understanding of the microstructures produced through solidification in peritectic systems has yet to be achieved, even though a large number of industrially and scientifically significant materials are in this class. One type of microstructure frequently observed during directional solidification consists of alternating layers of primary solid and peritectic solid oriented perpendicular to the growth direction. This layer formation is usually reported for alloy compositions within the two-phase region of the peritectic isotherm and for temperature gradient and growth rate conditions that result in a planar solid-liquid interface. Layered growth in peritectic alloys has not previously been characterized on a quantitative basis, nor has a mechanism for its formation been verified. The mechanisms that have been proposed for layer formation can be categorized as either extrinsic or intrinsic to the alloy system. The extrinsic mechanisms rely on externally induced perturbations to the system for layer formation, such as temperature oscillations, growth velocity variations, or vibrations. The intrinsic mechanisms approach layer formation as an alternative type of two phase growth that is inherent for certain peritectic systems and solidification conditions. Convective mixing of the liquid is an additional variable which can strongly influence the development and appearance of layers due to the requisite slow growth rate. The first quantitative description of layer formation is a model recently developed by Trivedi based on the intrinsic mechanism of cyclic accumulation and depiction of solute in the liquid ahead of the interface, linked to repeated nucleation events in the absence of convection. The objective of this research is to characterize the layered microstructures developed during ground-based experiments in which external influences have been minimized as much as possible and to compare these results to the current the model. Also, the differences

  6. Perspectives on recycling centres and future developments.

    Science.gov (United States)

    Engkvist, I-L; Eklund, J; Krook, J; Björkman, M; Sundin, E

    2016-11-01

    The overall aim of this paper is to draw combined, all-embracing conclusions based on a long-term multidisciplinary research programme on recycling centres in Sweden, focussing on working conditions, environment and system performance. A second aim is to give recommendations for their development of new and existing recycling centres and to discuss implications for the future design and organisation. Several opportunities for improvement of recycling centres were identified, such as design, layout, ease with which users could sort their waste, the work environment, conflicting needs and goals within the industry, and industrialisation. Combining all results from the research, which consisted of different disciplinary aspects, made it possible to analyse and elucidate their interrelations. Waste sorting quality was recognized as the most prominent improvement field in the recycling centre system. The research identified the importance of involving stakeholders with different perspectives when planning a recycling centre in order to get functionality and high performance. Practical proposals of how to plan and build recycling centres are given in a detailed checklist.

  7. ON DEVELOPMENT OF OPTIMAL METALLURGICAL PROCESS FOR PREPARATION OF A NEW GENERATION OF INTERMETALLIC ALLOYS

    Directory of Open Access Journals (Sweden)

    Viliam Hrnčiar

    2009-06-01

    Full Text Available Intermetallic TiAl based alloys are used in extreme conditions, e.g. high temperature, aggressive atmosphere and combined high temperature mechanical loading. The contribution deals with development and optimization of plasma melting metallurgical process in new developed crystallizer with rotational and axial movement of melt, for preparation of new intermetallic alloys based on Ti-(45-48Al-(1-10Ta (at.%. The melting process parameters and their influence to final microstructure and properties of alloys are discussed. The aim of this work is to produce alloys with lower number of technological steps necessary to achieve chemical composition, homogeneity and purity as well.

  8. Development of powder metallurgy Al alloys for high temperature aircraft structural applications, phase 2

    Science.gov (United States)

    Chellman, D. J.

    1982-01-01

    In this continuing study, the development of mechanically alloyed heat resistant aluminum alloys for aircraft were studied to develop higher strength targets and higher service temperatures. The use of higher alloy additions to MA Al-Fe-Co alloys, employment of prealloyed starting materials, and higher extrusion temperatures were investigated. While the MA Al-Fe-Co alloys exhibited good retention of strength and ductility properties at elevated temperatures and excellent stability of properties after 1000 hour exposure at elevated temperatures, a sensitivity of this system to low extrusion strain rates adversely affected the level of strength achieved. MA alloys in the Al-Li family showed excellent notched toughness and property stability after long time exposures at elevated temperatures. A loss of Li during processing and the higher extrusion temperature 482 K (900 F) resulted in low mechanical strengths. Subsequent hot and cold working of the MA Al-Li had only a mild influence on properties.

  9. Ocean OSSEs: recent developments and future challenges

    Science.gov (United States)

    Kourafalou, V. H.

    2012-12-01

    Atmospheric OSSEs have had a much longer history of applications than OSSEs (and OSEs) in oceanography. Long standing challenges include the presence of coastlines and steep bathymetric changes, which require the superposition of a wide variety of space and time scales, leading to difficulties on ocean observation and prediction. For instance, remote sensing is critical for providing a quasi-synoptic oceanographic view, but the coverage is limited at the ocean surface. Conversely, in situ measurements are capable to monitor the entire water column, but at a single location and usually for a specific, short time. Despite these challenges, substantial progress has been made in recent years and international initiatives have provided successful OSSE/OSE examples and formed appropriate forums that helped define the future roadmap. These will be discussed, together with various challenges that require a community effort. Examples include: integrated (remote and in situ) observing system requirements for monitoring large scale and climatic changes, vs. short term variability that is particularly important on the regional and coastal spatial scales; satisfying the needs of both global and regional/coastal nature runs, from development to rigorous evaluation and under a clear definition of metrics; data assimilation in the presence of tides; estimation of real-time river discharges for Earth system modeling. An overview of oceanographic efforts that complement the standard OSSE methodology will also be given. These include ocean array design methods, such as representer-based analysis and adaptive sampling. Exciting new opportunities for both global and regional ocean OSSE/OSE studies have recently become possible with targeted periods of comprehensive data sets, such as the existing Gulf of Mexico observations from multiple sources in the aftermath of the DeepWater Horizon incident and the upcoming airborne AirSWOT, in preparation for the SWOT (Surface Water and Ocean

  10. Design and development of novel MRI compatible zirconium- ruthenium alloys with ultralow magnetic susceptibility

    Science.gov (United States)

    Li, H. F.; Zhou, F. Y.; Li, L.; Zheng, Y. F.

    2016-04-01

    In the present study, novel MRI compatible zirconium-ruthenium alloys with ultralow magnetic susceptibility were developed for biomedical and therapeutic devices under MRI diagnostics environments. The results demonstrated that alloying with ruthenium into pure zirconium would significantly increase the strength and hardness properties. The corrosion resistance of zirconium-ruthenium alloys increased significantly. High cell viability could be found and healthy cell morphology observed when culturing MG 63 osteoblast-like cells and L-929 fibroblast cells with zirconium-ruthenium alloys, whereas the hemolysis rates of zirconium-ruthenium alloys are 316L stainless steel, Co–Cr alloys and Ti-based alloys, the magnetic susceptibilities of the zirconium-ruthenium alloys (1.25 × 10‑6 cm3·g‑1–1.29 × 10‑6 cm3·g‑1 for zirconium-ruthenium alloys) are ultralow, about one-third that of Ti-based alloys (Ti–6Al–4V, ~3.5 × 10‑6 cm3·g‑1, CP Ti and Ti–6Al–7Nb, ~3.0 × 10‑6 cm3·g‑1), and one-sixth that of Co–Cr alloys (Co–Cr–Mo, ~7.7 × 10‑6 cm3·g‑1). Among the Zr–Ru alloy series, Zr–1Ru demonstrates enhanced mechanical properties, excellent corrosion resistance and cell viability with lowest magnetic susceptibility, and thus is the optimal Zr–Ru alloy system as therapeutic devices under MRI diagnostics environments.

  11. Development of Beryllium-Copper Alloy Ignition Capsules

    Science.gov (United States)

    Cooley, Jason; Alexander, David; Thoma, Daniel; Field, Robert; Day, Robert; Cameron, Bernard; Nobile, Arthur; Rivera, Gerald; Kelly, Ann; Papin, Pallas; Schulze, Roland; Dauelsberg, Lawrence; Alexander, Neil; Galix, Remy

    2004-11-01

    Cu-doped Be capsules are being developed for ignition on the National Ignition Facility (NIF). Our fabrication approach is based on bonding of cylindrical parts containing precision machined hemispherical cavities, followed by machining an external spherical contour to produce a spherical shell. While we have demonstrated this approach, there are several key issues that need to be resolved before a shell meeting NIF specifications can be produced. These issues are synthesis of high purity small grain size Be0.9at%Cu alloy, formation of a strong hemishell bond that will allow the capsule to contain its 400 atm fill gas at room temperature, precision machining and polishing of the capsule to meet stringent specifications for surface finish and spherical quality, and filling with DT. In this paper we report on the progress that has been made in resolving these key issues.

  12. Development of Zr alloys - Fabrication of Zr-Nb alloy used in PHWRs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang In; Kim, Won Baek; Choi, Guk Sun; Lee, Chul Kyung; Jang, Dae Kyu; Seo, Chang Yeol; Sim, Kun Joo; Lee, Jae Cheon [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-07-01

    The manufacture of Zr-Nb alloy ingot by EB melting process is carried out to meet the chemical composition and mechanical and property specifications and to ensure that the ingots are free of unacceptable defects through this study. It was established that Zr-Nb alloy was made by EB melting technique including the control of adding elements, melting power and melting and cast device. 28 refs., 13 tabs., 26 figs., 23 ills. (author)

  13. Report on FY15 alloy 617 code rules development

    Energy Technology Data Exchange (ETDEWEB)

    Sham, Sam [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jetter, Robert I [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hollinger, Greg [Becht Engineering Co., Inc., Liberty Corner, NJ (United States); Pease, Derrick [Becht Engineering Co., Inc., Liberty Corner, NJ (United States); Carter, Peter [Stress Engineering Services, Inc., Houston, TX (United States); Pu, Chao [Univ. of Tennessee, Knoxville, TN (United States); Wang, Yanli [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    Due to its strength at very high temperatures, up to 950°C (1742°F), Alloy 617 is the reference construction material for structural components that operate at or near the outlet temperature of the very high temperature gas-cooled reactors. However, the current rules in the ASME Section III, Division 5 Subsection HB, Subpart B for the evaluation of strain limits and creep-fatigue damage using simplified methods based on elastic analysis have been deemed inappropriate for Alloy 617 at temperatures above 650°C (1200°F) (Corum and Brass, Proceedings of ASME 1991 Pressure Vessels and Piping Conference, PVP-Vol. 215, p.147, ASME, NY, 1991). The rationale for this exclusion is that at higher temperatures it is not feasible to decouple plasticity and creep, which is the basis for the current simplified rules. This temperature, 650°C (1200°F), is well below the temperature range of interest for this material for the high temperature gas-cooled reactors and the very high temperature gas-cooled reactors. The only current alternative is, thus, a full inelastic analysis requiring sophisticated material models that have not yet been formulated and verified. To address these issues, proposed code rules have been developed which are based on the use of elastic-perfectly plastic (EPP) analysis methods applicable to very high temperatures. The proposed rules for strain limits and creep-fatigue evaluation were initially documented in the technical literature (Carter, Jetter and Sham, Proceedings of ASME 2012 Pressure Vessels and Piping Conference, papers PVP 2012 28082 and PVP 2012 28083, ASME, NY, 2012), and have been recently revised to incorporate comments and simplify their application. Background documents have been developed for these two code cases to support the ASME Code committee approval process. These background documents for the EPP strain limits and creep-fatigue code cases are documented in this report.

  14. Research and development status of laser cladding on magnesium alloys: A review

    Science.gov (United States)

    Liu, Jianli; Yu, Huijun; Chen, Chuanzhong; Weng, Fei; Dai, Jingjie

    2017-06-01

    Magnesium alloys are one of the most promising lightweight structural materials. However, the poor corrosion and wear resistance restrain their further application. As a kind of surface modification technique, laser cladding treatment is superior to others owing to its unique characteristics such as high efficiency and the metallurgical bonding between the coatings and substrates. In this paper, the laser cladding process and the effects of processing parameters, including laser power, scanning velocity, beam focal position, feeding ways of the material etc., are discussed in detail. The material systems preplaced on magnesium alloys are summarized. Except for the traditional metallic materials, novel ternary alloys, amorphous alloys and high entropy alloys (HEAs) are widely used and apparent advantages are exhibited. In terms of the problems existing in the laser cladding process of magnesium alloys, some potential solutions and the development tendency are reviewed.

  15. Development and Making of New Jewellery Palladium Based Alloys at JSC "Krastsvetmet"

    Institute of Scientific and Technical Information of China (English)

    YEFIMOV V. N.; MAMONOV S. N.; SHULGIN D. R.; YELTSIN S. I.

    2012-01-01

    Complex of research and development work aimed at implementation of jewellery palladium based alloys technology has been carried out at JSC Krastsvetmet.A range of palladium alloys jewellery fabrication has been organized.Compositions of a number of jewellery palladium alloys grade 850,900,950 and 990 have been proposed,their production and application in jewellery manufacture has been organized.To produce palladium alloys induction melting in inert atmosphere and melt pouring into a copper mould has been used.The ingots heat treatment conditions,as well as semi-finished jewelry plastic deformation parameters have been determined.

  16. EIDA Next Generation: ongoing and future developments

    Science.gov (United States)

    Strollo, Angelo; Quinteros, Javier; Sleeman, Reinoud; Trani, Luca; Clinton, John; Stammler, Klaus; Danecek, Peter; Pedersen, Helle; Ionescu, Constantin

    2015-04-01

    contents of the waveform data in an archive and in particular the following features and quality parameters are provided: gaps, statistical values, availability, overlaps, quality flags and more. It is a tool to be used for quickly exploring the contents of the waveform files before downloading them, or by clients to fulfill user specific requirements. The API reflects almost identically the FDSN dataselect service with some additional features. The characteristics are computed on fixed daily intervals (day boundaries) and in case of gaps the service can additionally provide the above features for each continuous data segment in the day interval. The newly developed services and the mediator service being designed and implemented in the near future, will facilitate interoperability and sustainability of the EIDA system and ensure a smooth integration with other Thematic (TCS) and Integrated (ICS) Core Services within EPOS.

  17. Development and Processing of Nickel Aluminide-Carbide Alloys

    Science.gov (United States)

    Newport, Timothy Scott

    1996-01-01

    With the upper temperature limit of the Ni-based superalloys attained, a new class of materials is required. Intermetallics appear as likely candidates because of their attractive physical properties. With a relatively low density, high thermal conductivity, excellent oxidation resistance, high melting point, and simple crystal structure, nickel aluminide (NiAl) appears to be a potential candidate. However, NiAl is limited in structural applications due to its low room temperature fracture toughness and poor elevated temperature strength. One approach to improving these properties has been through the application of eutectic composites. Researchers have shown that containerless directional solidification of NiAl-based eutectic alloys can provide improvement in both the creep strength and fracture toughness. Although these systems have shown improvements in the mechanical properties, the presence of refractory metals increases the density significantly in some alloys. Lower density systems, such as the carbides, nitrides, and borides, may provide NiAl-based eutectic structure. With little or no information available on these systems, experimental investigation is required. The objective of this research was to locate and develop NiAl-carbide eutectic alloys. Exploratory arc-melts were performed in NiAl-refractory metal-C systems. Refractory metal systems investigated included Co, Cr, Fe, Hf, Mo, Nb, Ta, Ti, W, and Zr. Systems containing carbides with excellent stability (i.e.,HfC, NbC, TaC, TiC, and ZrC) produced large blocky cubic carbides in an NiAl matrix. The carbides appeared to have formed in the liquid state and were randomly distributed throughout the polycrystalline NiAl. The Co, Cr, Fe, Mo, and W systems contained NiAl dendrites with a two-phase interdendritic microconstituent present. Of these systems, the NiAl-Mo-C system had the most promising microstructure for in-situ composites. Three processing techniques were used to evaluate the NiAl-Mo-C system

  18. Development of Semantic Description for Multiscale Models of Thermo-Mechanical Treatment of Metal Alloys

    Science.gov (United States)

    Macioł, Piotr; Regulski, Krzysztof

    2016-08-01

    We present a process of semantic meta-model development for data management in an adaptable multiscale modeling framework. The main problems in ontology design are discussed, and a solution achieved as a result of the research is presented. The main concepts concerning the application and data management background for multiscale modeling were derived from the AM3 approach—object-oriented Agile multiscale modeling methodology. The ontological description of multiscale models enables validation of semantic correctness of data interchange between submodels. We also present a possibility of using the ontological model as a supervisor in conjunction with a multiscale model controller and a knowledge base system. Multiscale modeling formal ontology (MMFO), designed for describing multiscale models' data and structures, is presented. A need for applying meta-ontology in the MMFO development process is discussed. Examples of MMFO application in describing thermo-mechanical treatment of metal alloys are discussed. Present and future applications of MMFO are described.

  19. Segregation effects and phase developments during solidification of alloy 625

    DEFF Research Database (Denmark)

    Højerslev, Christian; Tiedje, Niels Skat; Hald, John

    2006-01-01

    The solidification behaviour of pure Alloy 625, and Alloy 625 enriched respectively in iron and carbon, was investigated in situ by hot-stage light optical microscopy. Using this technique planar front solidification for distances of several hundred microns was facilitated. After solidification...

  20. Imprecise knowledge based design and development of titanium alloys for prosthetic applications.

    Science.gov (United States)

    Datta, S; Mahfouf, M; Zhang, Q; Chattopadhyay, P P; Sultana, N

    2016-01-01

    Imprecise knowledge on the composition-processing-microstructure-property correlation of titanium alloys combined with experimental data are used for developing rule based models for predicting the strength and elastic modulus of titanium alloys. The developed models are used for designing alloys suitable for orthopedic and dental applications. Reduced Space Searching Algorithm is employed for the multi-objective optimization to find composition, processing and microstructure of titanium alloys suitable for orthopedic applications. The conflicting requirements attributes of the alloys for this particular purpose are high strength with low elastic modulus, along with adequate biocompatibility and low costs. The 'Pareto' solutions developed through multi-objective optimization show that the preferred compositions for the fulfilling the above objectives lead to β or near β-alloys. The concept of decision making employed on the solutions leads to some compositions, which should provide better combination of the required attributes. The experimental development of some of the alloys has been carried out as guided by the model-based design methodology presented in this research. Primary characterizations of the alloys show encouraging results in terms of the mechanical properties.

  1. Alloy Design Challenge: Development of Low Density Superalloys for Turbine Blade Applications

    Science.gov (United States)

    MacKay, Rebecca A.; Gabb, Timothy P.; Smialek, James L.; Nathal, Michael V.

    2009-01-01

    New low density single crystal (LDS) alloys have been developed for turbine blade applications, which have the potential for significant improvements in the thrust to weight ratio over current production alloys. An innovative alloying strategy was identified to achieve high temperature creep resistance, alloy density reductions, microstructural stability, and cyclic oxidation resistance. The approach relies on the use of molybdenum (Mo) as a potent solid solution strengthener for the nickel (Ni)-base superalloy; Mo has a density much closer to Ni than other refractory elements, such as rhenium (Re) or tungsten (W). A host of testing and microstructural examinations was conducted on the superalloy single crystals, including creep rupture testing, microstructural stability, cyclic oxidation, and hot corrosion. The paper will provide an overview of the single crystal properties that were generated in this new superalloy design space. The paper will also demonstrate the feasibility of this innovative approach of low density single crystal superalloy design. It will be shown that the best LDS alloy possesses the best attributes of three generations of single crystal alloys: the low density of first-generation single crystal alloys, the excellent oxidation resistance of second-generation single crystal alloys, and a creep strength which exceeds that of second and third generation alloys.

  2. Auxetic nanomaterials: Recent progress and future development

    Science.gov (United States)

    Jiang, Jin-Wu; Kim, Sung Youb; Park, Harold S.

    2016-12-01

    Auxetic materials (materials with negative Poisson's ratio) and nanomaterials have independently been, for many years, two of the most active research fields in material science. Recently, these formerly independent fields have begun to intersect in new and interesting ways due to the recent discovery of auxeticity in nanomaterials like graphene, metal nanoplates, black phosphorus, and others. Here, we review the research emerging at the intersection of auxeticity and nanomaterials. We first survey the atomistic mechanisms, both intrinsic and extrinsic, that have been found, primarily through atomistic simulations, to cause auxeticity in nanomaterials. We then outline the available experimental evidence for auxetic nanomaterials. In order to lay the groundwork for future work in this exciting area, we close by discussing several future prospects as well as the current challenges in this field.

  3. Shape-Memory-Alloy-Based Deicing System Developed

    Science.gov (United States)

    1996-01-01

    Ice buildup on aircraft leading edge surfaces has historically been a problem. Most conventional deicing systems rely either on surface heating to melt the accreted ice or pneumatic surface inflation to mechanically debond the ice. Deicers that rely solely on surface heating require large amounts of power. Pneumatic deicers usually cannot remove thin layers of ice and lack durability. Thus, there is a need for an advanced, low-power ice protection system. As part of the NASA Small Business and Innovation Research (SBIR) program, Innovative Dynamics, Inc., developed an aircraft deicing system that utilizes the properties of Shape Memory Alloys (SMA). The SMA-based system has achieved promising improvements in energy efficiency and durability over more conventional deicers. When they are thermally activated, SMA materials change shape; this is analogous to a conventional thermal expansion. The thermal input is currently applied via conventional technology, but there are plans to implement a passive thermal input that is supplied from the energy transfer due to the formation of the ice itself. The actively powered deicer was tested in the NASA Lewis Icing Research Tunnel on a powered rotating rig in early 1995. The system showed promise, deicing both rime and glaze ice shapes as thin as 1/8 in. The first prototype SMA deicer reduced power usage by 45 percent over existing electrothermal systems. This prototype system was targeted for rotorcraft system development. However, there are current plans underway to develop a fixed-wing version of the deicer.

  4. Course Curriculum Development for the Future Cyberwarrior

    Science.gov (United States)

    2006-06-01

    human player takes the data/information/intelligence received through cyberspace and turns into knowledge to make decisions and plans to bend the...force. They argue that by allowing the engineers to dominate the career field, the stove- pipe views of cyberspace will persist. This is because...strategic vision. Because of its warfighting focus, AFIT can provide courses that optimally prepare future cyber warriors. This GRP will focus on the

  5. Developing future nurse educators through peer mentoring

    OpenAIRE

    Rosenau PA; Lisella RF; Clancy TL; Nowell LS

    2015-01-01

    Patricia A Rosenau, Rita F Lisella, Tracey L Clancy, Lorelli S NowellFaculty of Nursing, University of Calgary, Calgary, AB, CanadaBackground: The nursing workforce and nursing education demographic trends reinforce the urgency to cultivate future nursing leaders, educators, and mentors. The changing realities of health care environments, involving crowded student placements, overtaxed clinical mentors and preceptors, and inexperienced staff, hamper student learning and professional developme...

  6. Development of cast ferrous alloys for Stirling engine application

    Science.gov (United States)

    Lemkey, F. D.

    1982-01-01

    Low cost cast ferrous base alloys that can be used for cylinder and regenerator housing components of the Stirling engine were investigated. The alloys must meet the requirements of high strength and thermal fatigue resistance to approximately 1500 F, compatibility and low permeability with hydrogen, good elevated temperature oxidation/corrosion resistance, and contain a minimum of strategic elements. The phase constituents of over twenty alloy iterations were examined by X-ray diffraction. These alloy candidates were further screened for their tensile and stress rupture strength and surface stability in air at 1450 and 1600 F, respectively. Two alloys, NASAUT 1G (Fe-10Mn-20Cr-1.5C-1.0Si) and NASAUT 4G (Fe-15Mn-12Cr-3Mo-1.5C-1.0Si-1.0Nb), were chosen for more extensive elevated temperature testing. These alloys were found to exhibit nearly equivalent elevated temperature creep strength and oxidation resistance. Silicon present in these alloys at the 1 w/o level permitted the achievement of oxide scale adherence to 1600 F without loss of strength (or ductility) as was noted for equivalent additions of aluminum.

  7. Development of cast ferrous alloys for Stirling engine application

    Science.gov (United States)

    Lemkey, F. D.

    1982-01-01

    Low cost cast ferrous base alloys that can be used for cylinder and regenerator housing components of the Stirling engine were investigated. The alloys must meet the requirements of high strength and thermal fatigue resistance to approximately 1500 F, compatibility and low permeability with hydrogen, good elevated temperature oxidation/corrosion resistance, and contain a minimum of strategic elements. The phase constituents of over twenty alloy iterations were examined by X-ray diffraction. These alloy candidates were further screened for their tensile and stress rupture strength and surface stability in air at 1450 and 1600 F, respectively. Two alloys, NASAUT 1G (Fe-10Mn-20Cr-1.5C-1.0Si) and NASAUT 4G (Fe-15Mn-12Cr-3Mo-1.5C-1.0Si-1.0Nb), were chosen for more extensive elevated temperature testing. These alloys were found to exhibit nearly equivalent elevated temperature creep strength and oxidation resistance. Silicon present in these alloys at the 1 w/o level permitted the achievement of oxide scale adherence to 1600 F without loss of strength (or ductility) as was noted for equivalent additions of aluminum.

  8. Development and evaluation of Al-Ti-C master alloys as grain refiner for aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Hadia, M.A. [Aluminum Co. of Egypt, Nag Hammadi (Egypt); Ghaneya, A.A.; Niazi, A. [Assiut Univ. (Egypt)

    1996-10-01

    A series of Al-Ti-C master alloys with different amounts of titanium and carbon (Al-3.5%Ti-0.5%C, Al-3.5%Ti-0.7%C and Al-5%Ti-1%C) has been developed by adding activated graphite to molten Al-Ti binary alloys. The micro-structures of the developed alloys were investigated. The efficiency of the produced alloys as aluminum grain refiner was evaluated. The effects of the following factors were investigated: addition rate of each master alloy, the pouring temperature of the refined metal and the holding time before pouring. Also, the contact time for each refiner was studied. The results were significant and the refiner Al-5%Ti-1%C was the most effective.

  9. Development in Conducting Bus of RE-Al Alloys

    Institute of Scientific and Technical Information of China (English)

    李德富; 胡捷; 章萍芝; 石瑛; 李彦利

    2001-01-01

    Four kinds of deformed aluminum alloys were tested. One kind of RE-A1-Mg-Si alloy, which possessed high conductivity and strength, was the first priority by contrast test, The large specification bus of conducting aluminum all oys was made by thermomechanical process during the industrial experiment. The properties of the bus are as follows:the tensile strength σb is 238 MPa, the conductivity (v.s. IACS) is 54.3%, and the current-carrying capacity is beyond 3.1kA during working process. This kind of RE-Al alloy bus has been applied to several electrical transmitting and transforming work.

  10. Developing of an expert system for nonferrous alloy design

    Institute of Scientific and Technical Information of China (English)

    李义兵; 何红波; 周继承; 李斌

    2004-01-01

    Expert systems have been used widely in the predictions and design of alloy systems. But the expert systems are based on the macroscopic models that have no physical meanings. Microscopic molecular dynamics is also a standard computational technique used in materials science. An approach is presented to the design system of nonferrous alloy that integrates the molecular dynamical simulation together with an expert system. The knowledge base in the expert system is able to predict nonferrous alloy properties by using machine learning technology. The architecture of the system is presented.

  11. Cooperate, Develop and Create a Future Together

    Institute of Scientific and Technical Information of China (English)

    ZhangDejiang

    2004-01-01

    NEW technolo-gy, particularly information technology is a global trend that has given impetus to economic development, but levels of development vary according to the conditions in different countries and regions.

  12. Design and development of novel MRI compatible zirconium- ruthenium alloys with ultralow magnetic susceptibility.

    Science.gov (United States)

    Li, H F; Zhou, F Y; Li, L; Zheng, Y F

    2016-04-19

    In the present study, novel MRI compatible zirconium-ruthenium alloys with ultralow magnetic susceptibility were developed for biomedical and therapeutic devices under MRI diagnostics environments. The results demonstrated that alloying with ruthenium into pure zirconium would significantly increase the strength and hardness properties. The corrosion resistance of zirconium-ruthenium alloys increased significantly. High cell viability could be found and healthy cell morphology observed when culturing MG 63 osteoblast-like cells and L-929 fibroblast cells with zirconium-ruthenium alloys, whereas the hemolysis rates of zirconium-ruthenium alloys are zirconium-ruthenium alloys (1.25 × 10(-6) cm(3)·g(-1)-1.29 × 10(-6) cm(3)·g(-1) for zirconium-ruthenium alloys) are ultralow, about one-third that of Ti-based alloys (Ti-6Al-4V, ~3.5 × 10(-6) cm(3)·g(-1), CP Ti and Ti-6Al-7Nb, ~3.0 × 10(-6) cm(3)·g(-1)), and one-sixth that of Co-Cr alloys (Co-Cr-Mo, ~7.7 × 10(-6) cm(3)·g(-1)). Among the Zr-Ru alloy series, Zr-1Ru demonstrates enhanced mechanical properties, excellent corrosion resistance and cell viability with lowest magnetic susceptibility, and thus is the optimal Zr-Ru alloy system as therapeutic devices under MRI diagnostics environments.

  13. Sustainable Development, Knowledge Society and Smart Future Manufacturing Technologies

    National Research Council Canada - National Science Library

    Leal Filho, Walter; Úbelis, Arnolds; Bērziņa, Dina

    2015-01-01

    .... The book highlights sustainable development in relation to the knowledge society and smart future manufacturing technologies, and it helps provide a better understanding of the interplay between...

  14. Development of Deformation-Semisolid-Casting (D-SSC) Process and Applications to Some Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Recent advances in the semisolid casting technologies are introduced for aluminum alloys. The advantages of the rheocast and thixocast methods to fabricate alloys with refined spheroidized α-Al particles are described.The deformation-semisolid-casting (D-SSC) process developed by the author's group is presented. The D-SSC process is extremely effective to produce microstructures of refined intermetallic compound particles as well as the spheroidized α-Al particles in the Al-Si based alloys containing highly concentrated Fe. In the D-SSC processed Al-Si-Cu alloy high elongation of about 20% was achieved even contained concentrated impurity of Fe. The D-SSC process is also useful to produce wrought aluminum alloys with microstructures of refined α-Al particles.

  15. Software development: A paradigm for the future

    Science.gov (United States)

    Basili, Victor R.

    1989-01-01

    A new paradigm for software development that treats software development as an experimental activity is presented. It provides built-in mechanisms for learning how to develop software better and reusing previous experience in the forms of knowledge, processes, and products. It uses models and measures to aid in the tasks of characterization, evaluation and motivation. An organization scheme is proposed for separating the project-specific focus from the organization's learning and reuse focuses of software development. The implications of this approach for corporations, research and education are discussed and some research activities currently underway at the University of Maryland that support this approach are presented.

  16. Developments in microelectronics: Past and future

    Science.gov (United States)

    Zhijian, L.

    1985-04-01

    The evolution of microelectronics in China is reviewed. Current developments and fracture trends seen as characteristic of the technology are discussed and some suggestions are offered as to the advancement of microelectronics in China.

  17. Future Perspectives of Pharmaceutical Research and Development

    OpenAIRE

    Shein-Chung Chow; Fuyu Song

    2015-01-01

    As more and more innovative drug products (e.g., chemical drug and biological drug products) are going off patent protection, the development of generics/biosimilars products have become the center of attention of many pharmaceutical companies. In addition, as new drug research and development has reached the bottle-neck, the pharmaceutical industry begin to focus on the search for new or alternative medicines such as traditional Chinese medicine that can treat critical and/or life-threatenin...

  18. Funding and future diagnosis related group development.

    Science.gov (United States)

    Vertrees, J C

    2001-07-01

    Diagnosis Related Groups (DRGs) are widely used for a variety of purposes including quality improvement, hospital output measurement and funding. DRGs are a patient classification scheme which provides a means of relating the type of patients a hospital treats (i.e., its casemix) to the costs incurred by the hospital. This is done by classifying patients into mutually exclusive groups based on the patient's principal diagnosis and other information. The original Health Care Financing Administration DRGs (HCFA DRGs) have been in use since 1982. This document provides an overview of future directions for the newer DRG systems and it provides a framework for understanding the use of DRGs for funding. Newer DRG systems incorporate explicit adjustment for severity of illness, include separate measures for the likelihood of mortality, and are more independent of the underlying coding systems (e.g., ICD-10 for diagnoses, ICD-9-CM for procedures). The framework for a casemix-based budgeting system consists of five basic aspects. They are: 1) Categories--which kind of DRG will be the basis for the casemix system; 2) Relative Weights--relative weights reflect the expected cost of a case in one DRG relative to the expected cost of the average patient; 3) Base Rates/Pricing--the base rate converts the relative values to prices or budgets; 4) Adjustments--adjustments account for exogenous factors; 5) Transition Policy--this provides time so hospital administrators can learn to respond to the incentives contained in the DRG system.

  19. Possible ways of future social development

    Directory of Open Access Journals (Sweden)

    Zak L.

    2016-01-01

    Full Text Available The authors deal with a question, which is hard to answer considering the context of the future of the social evolution. The authors suppose that one should ask rather about overcoming the current wave of individualism than about overcoming the current form of capitalism. Individualism dismantles any society and it is necessary to react by building stable dual relationships. It highlights the key role of a family. Collectivism, as well as individualism, are not able to create any kind of social structure and lead the society into the liquid of chaos or into the motionless totality. It states that the economic security of various societies is to certain extent affected by all possible production factors and that the reason of the success of their functioning is a balance between power, wealth and public support. It points out that it is necessary to keep a couple and its relationship as a basic element in theory as well as in practice. In legitimate cases of a production practise, it is possible to consider the human individual as the element. It condemns inhumane artificial terms such as “homo economicus”, human resources or human capital. In the conclusions, the authors appeal to restore humanity in society by the contribution of each individual and his interpersonal relationships.

  20. Development of a discriminatory biocompatibility testing model for non-precious dental casting alloys.

    LENUS (Irish Health Repository)

    McGinley, Emma Louise

    2011-12-01

    To develop an enhanced, reproducible and discriminatory biocompatibility testing model for non-precious dental casting alloys, prepared to a clinically relevant surface finishing condition, using TR146 oral keratinocyte cells.

  1. System analysis: Developing tools for the future

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, K.; clever, J.; Draper, J.V.; Davies, B.; Lonks, A.

    1996-02-01

    This report introduces and evaluates system analysis tools that were developed, or are under development, for the Robotics Technology Development Program (RTDP). Additionally, it discusses system analysis work completed using these tools aimed at completing a system analysis of the retrieval of waste from underground storage tanks on the Hanford Reservation near Richland, Washington. The tools developed and evaluated include a mixture of commercially available tools adapted to RTDP requirements, and some tools developed in house. The tools that are included in this report include: a Process Diagramming Tool, a Cost Modeling Tool, an Amortization Modeling Tool, a graphical simulation linked to the Cost Modeling Tool, a decision assistance tool, and a system thinking tool. Additionally, the importance of performance testing to the RTDP and the results of such testing executed is discussed. Further, the results of the Tank Waste Retrieval (TWR) System Diagram, the TWR Operations Cost Model, and the TWR Amortization Model are presented, and the implication of the results are discussed. Finally, the RTDP system analysis tools are assessed and some recommendations are made regarding continuing development of the tools and process.

  2. Rethinking reference for academic libraries innovative developments and future trends

    CERN Document Server

    Forbes, Carrie

    2014-01-01

    Rethinking Reference for Academic Libraries: Innovative Developments and Future Trends, containing five sections and fourteen chapters, reviews the current state of reference services in academic libraries with an emphasis on innovative developments and future trends. The main theme that runs through the book is the urgent need for inventive, imaginative, and responsive reference and research services.

  3. Recent Developments and Future Plans for Sixtrack

    CERN Document Server

    De Maria, R; Calaga, R; Deniau, L; Giovannozzi, M; Fjellstrom, M; Levinsen, Y; McIntosh, E; Mereghetti, A; Redaelli, S; Renshall, H; Rossi, A; Sinuela, D; Schmidt, F; Tomas, R; Vlachoudis, V; Robert-Demolaize, G; Banfi, D; Barranco, J; Dalena, B; Lari, L; Previtali, V; Appleby, R; Brett, D

    2013-01-01

    SixTrack is a symplectic 6D tracking code routinely used to simulate single particle trajectories in high energy circular machines like the LHC and RHIC. The paper presents recent developments and those foreseen for extending the physics models: exact Hamiltonian, different ions and charge states, RF multipoles, non-linear fringe fields, Taylor maps, e-lenses and ion scattering. New functionality like variable number of tracked particles, time dependent strengths, GPU computations with a refactoring of the core structure are also described. The developments will benefit studies of the LHC and SPS, for collimation efficiency, ion operations, failure scenarios and HL-LHC design.

  4. Development of future faculty teaching skills.

    Science.gov (United States)

    Penson, J B

    2010-01-01

    Doctoral and postdoctoral students considering a career as an educator would be well served by: (1) training in effective classroom communication skills, (2) the use of existing technology in teaching, (3) developing a new course or updating an existing course, and (4) availing themselves of campus teaching resources designed enhance their teaching portfolio. Universities need to place more attention on developing the teaching skills of their doctoral and postdoctoral students. This should include teaching methods and aids, communication skills, motivation, learning theory, testing, counselling and guidance, and course design. An important dimension from a guidance stand point is the conduct of a formal peer review process for beginning faculty.

  5. Inventions for future sustainable development in agriculture

    NARCIS (Netherlands)

    Jacobsen, E.; Beers, P.J.; Fischer, A.R.H.

    2011-01-01

    This chapter is directed to the importance of different inventions as driver for sustainable development of agriculture. Inventions are defined as radical new ideas, perspectives and technologies that hold the potential to trigger a change in sustainable agriculture. Innovation is based on one or mo

  6. Future development of project management competences.

    NARCIS (Netherlands)

    Silvius, A.J.G.; Batenburg, R.

    2009-01-01

    This paper describes a study into the expected development of the competences of the project manager in the year 2027. The study was performed amongst the members of IPMA-Netherlands during the summer of 2007. In the study the 46 competences of the International Competence Baseline 3 (ICB 3) were

  7. Inventions for future sustainable development in agriculture

    NARCIS (Netherlands)

    Jacobsen, E.; Beers, P.J.; Fischer, A.R.H.

    2011-01-01

    This chapter is directed to the importance of different inventions as driver for sustainable development of agriculture. Inventions are defined as radical new ideas, perspectives and technologies that hold the potential to trigger a change in sustainable agriculture. Innovation is based on one or

  8. Inventions for future sustainable development in agriculture

    NARCIS (Netherlands)

    Jacobsen, E.; Beers, P.J.; Fischer, A.R.H.

    2011-01-01

    This chapter is directed to the importance of different inventions as driver for sustainable development of agriculture. Inventions are defined as radical new ideas, perspectives and technologies that hold the potential to trigger a change in sustainable agriculture. Innovation is based on one or mo

  9. Exploration of the Future – a Key to Sustainable Development

    Directory of Open Access Journals (Sweden)

    Vatroslav Zovko

    2013-01-01

    Full Text Available Throughout the history people were fascinated and curious about the future. The future was, and still is seen as a key for prosperous development in all aspects of the society. As such, new discipline is developedfuture studies.This paper discusses the discipline of future studies and its role in the society and science. Future studies are analyzed in the context of sustainable development. It is argued that future studies and sustainable development are complementary in nature. Based on analysis of most developed countries in the world, that spend the greatest portion of their budget on research, development and science in comparison to the rest of the world, there is a conclusive link between investments in research, development and science, and the recognition of the importance of thinking about the future. Those countries started to formalize their future orientation in many respected research centres and universities through their educational programs and research. That situation poses the need for other, less well off countries, to follow up.

  10. Mexican geothermal development and the future

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, J.M.E.V. [Comision Federal de Electricidad, Morelia (Mexico)

    1998-10-01

    Geothermics in Mexico started in 1954, by drilling the first geothermal well in Pathe, State of Hidalgo, which reached a depth of 237 meters. In 1959 electrical generation from geothermal origin began, with an installed capacity of 3.5 MW. From 1959 to 1994 Mexico increased its installed capacity to 753 MW, by developing three geothermal fields: Cerro Prieto, Los Azufres, and Los Humeros. Currently, 177 wells produce steam at a rate of 36 tons per hour (t/h) each. Comision Federal de Electricidad (CFE, Federal Commission of Electricity) has planned to increase the geothermal-electric installed capacity through construction and installation of several projects. Repowering of operating units and development of new geothermal zones will also allow Mexican geothermal growth.

  11. Geomathematics theoretical foundations, applications and future developments

    CERN Document Server

    Agterberg, Frits

    2014-01-01

    This book provides a wealth of geomathematical case history studies performed by the author during his career at the Ministry of Natural Resources Canada, Geological Survey of Canada (NRCan-GSC). Several of the techniques newly developed by the author and colleagues that are described in this book have become widely adopted, not only for further research by geomathematical colleagues, but by government organizations and industry worldwide. These include Weights-of-Evidence modelling, mineral resource estimation technology, trend surface analysis, automatic stratigraphic correlation and nonlinear geochemical exploration methods. The author has developed maximum likelihood methodology and spline-fitting techniques for the construction of the international numerical geologic timescale. He has introduced the application of new theory of fractals and multifractals in the geostatistical evaluation of regional mineral resources and ore reserves and to study the spatial distribution of metals in rocks. The book also ...

  12. Development of future indications for BOTOX.

    Science.gov (United States)

    Brin, Mitchell F

    2009-10-01

    Since the late 1970s, local injections of BoNT have provided clinical benefit for patients with inappropriately contracting muscles with or without pain or sensory disturbance. Marketing authorization for some BoNTs, depending on country, include core indications of dystonia (blepharospasm and cervical dystonia), large muscle spastic disorders (not yet approved in the United States, e.g., adult post-stroke spasticity and equinus foot deformity), hyperhidrosis and aesthetic. Subsequent development has extended to selected conditions characterized by recurrent or chronic pain (migraine headache), and urologic indications (neurogenic/idiopathic overactive bladder; prostate hyperplasia), with multiple additional opportunities available. Portfolio management requires a careful individual opportunity assessment of scientific and technical aspects (basic science foundation, potential to treat unmet medical need, product-specific risk in specific populations, therapeutic margin/safety profile, and probability of successful registration pathway). This article describes ongoing development targets for BOTOX.

  13. Habenula circuit development: past, present and future

    Directory of Open Access Journals (Sweden)

    Carlo Antonio Beretta

    2012-04-01

    Full Text Available The habenular neural circuit is attracting increasing attention from researchers in fields as diverse as neuroscience, medicine, behavior, development and evolution. Recent studies have revealed that this part of the limbic system in the dorsal diencephalon is involved in reward, addiction and other behaviors and its impairment is associated with various neurological conditions and diseases. Since the initial description of the Dorsal Diencephalic Conduction system (DDC with the habenulae in its center at the end of the 19th century, increasingly sophisticated techniques have resolved much of its anatomy and have shown that these pathways relay information from different parts of the forebrain to the tegmentum, midbrain and hindbrain. The first part of this review gives a brief historical overview on how the improving experimental approaches have allowed the stepwise uncovering of much of the architecture of the habenula circuit as we know it today. Our brain distributes tasks differentially between left and right and it has become a paradigm that this functional lateralization is a universal feature of vertebrates. Moreover, task dependent differential brain activities have been linked to anatomical differences across the left-right axis in humans. A good way to further explore this fundamental issue will be to study the functional consequences of subtle changes in neural network formation, which requires that we fully understand DDC system development. As the habenular circuit is evolutionarily highly conserved, researchers have the option to perform such difficult experiments in more experimentally amenable vertebrate systems. Indeed, research in the last decade has shown that the zebrafish is well suited for the study of DDC system development and the phenomenon of functional lateralization. We will critically discuss the advantages of the zebrafish model, available techniques and others that are needed to fully understand habenular circuit

  14. Discussion and Future Directions for Eye Tracker Development

    DEFF Research Database (Denmark)

    Hansen, Dan Witzner; Mulvey, Fiona; Mardanbegi, Diako

    2011-01-01

    Eye and gaze tracking have a long history but there is still plenty of room for further development. In this concluding chapter for Section 6, we consider future perspectives for the development of eye and gaze tracking.......Eye and gaze tracking have a long history but there is still plenty of room for further development. In this concluding chapter for Section 6, we consider future perspectives for the development of eye and gaze tracking....

  15. Alternative Energy Development and China's Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Nina; Fridley, David

    2011-06-15

    In addition to promoting energy efficiency, China has actively pursued alternative energy development as a strategy to reduce its energy demand and carbon emissions. One area of particular focus has been to raise the share of alternative energy in China’s rapidly growing electricity generation with a 2020 target of 15% share of total primary energy. Over the last ten years, China has established several major renewable energy regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear, hydro, geothermal and biomass power as well as biofuels and coal alternatives. This study thus seeks to examine China’s alternative energy in terms of what has and will continue to drive alternative energy development in China as well as analyze in depth the growth potential and challenges facing each specific technology. This study found that despite recent policies enabling extraordinary capacity and investment growth, alternative energy technologies face constraints and barriers to growth. For relatively new technologies that have not achieved commercialization such as concentrated solar thermal, geothermal and biomass power, China faces technological limitations to expanding the scale of installed capacity. While some alternative technologies such as hydropower and coal alternatives have been slowed by uneven and often changing market and policy support, others such as wind and solar PV have encountered physical and institutional barriers to grid integration. Lastly, all alternative energy technologies face constraints in human resources and raw material resources including land and water, with some facing supply limitations in critical elements such as uranium for nuclear, neodymium for wind and rare earth metals for advanced solar PV. In light of China’s potential for and barriers to growth, the resource and energy requirement for alternative energy technologies were modeled and scenario analysis

  16. Future developments in health care performance management.

    Science.gov (United States)

    Crema, Maria; Verbano, Chiara

    2013-01-01

    This paper highlights the challenges of performance management in health care, wherein multiple different objectives have to be pursued. The literature suggests starting with quality performance, following the sand cone theory, but considering a multidimensional concept of health care quality. Moreover, new managerial approaches coming from an industrial context and adapted to health care, such as lean management and risk management, can contribute to improving quality performance. Therefore, the opportunity to analyze them arises from studying their overlaps and links in order to identify possible synergies and to investigate the opportunity to develop an integrated methodology enabling improved performance.

  17. Future developments in instrumentation for electron crystallography.

    Science.gov (United States)

    Downing, Kenneth H

    2013-01-01

    Advances in instrumentation have proceeded at an impressive rate since the invention of the electron microscope. These advances have produced a continuous expansion of the capabilities and range of application of electron microscopy. In order to provide some insights on how continuing advances may enhance cryo-electron microscopy and electron crystallography, we review some of the active areas of instrumentation development. There is strong momentum in areas including detectors, phase contrast devices, and aberration correctors that may have substantial impact on the productivity and expectations of electron crystallographers.

  18. [Present and future developments of antithrombotic agents].

    Science.gov (United States)

    Montalescot, G

    2006-02-01

    The search for the optimal antithrombotic efficacy to bleeding risk ratio in interventional cardiology has promoted the development of new antithrombotics and to the elaboration of new association strategies. The relatively modest and inconstant antiaggregant effect of 300 mg of clopidogrel has led to the use of higher dosages of 600 mg or 900 mg. The improved biological effects justify clinical evaluation on a larger scale. While waiting for the results of the CHARISMA trial, several studies seem to demonstrate the benefits of long-term administration. New thienopyridines, the leader of which is prasugrel, have powerful biological effects and have already been assessed in larger clinical trials. The anti GPIIb/IIIa molecules, the indications of which have been recently redefined, feature in new administration strategies under evaluation. The use of direct or indirect thrombin antagonists during invasive procedures remains necessary and several molecules are candidates for replacing unfractionated heparin, with a more predictable activity. Low molecule weight heparins have been shown to be easier to use compared with unfractionated heparin. Synthetic factor Xa inhibitors are at an early stage of development. Of the direct thrombin antagonists, bivalirudine provides an improved benefit/risk ratio and is a new option in the catheter laboratory.

  19. Development of metal tungstate alloys for photoelectrochemical water splitting

    Science.gov (United States)

    Prasher, D.; Chong, M.; Chang, Y.; Sarker, P.; Huda, M. N.; Gaillard, N.

    2013-09-01

    In the present paper, we report our efforts on the development of metal tungstate alloys for efficient and economical photoelectrochemical water splitting. As suggested by density functional theory (DFT), the addition of copper to the host tungsten trioxide improves the visible light absorption. Past studies at the Hawaii Natural Energy Institute have demonstrated that water splitting with co-sputtered and spray-deposited CuWO4 with 2.2 eV band gap was feasible, although the efficiency of the process was severely limited by charge carrier recombination. Density functional theory calculation showed that CuWO4 contains unfilled mid-gap states and high electron effective mass. To improve transport properties of CuWO4, we hypothesized that copper tungstate (CuWO4) hollow nanospheres could improve holes transfer to the electrolyte and reduce recombination, improving the water splitting efficiency. Nanospheres were synthesized by sonochemical technique in which the precursors used were copper acetate, ammonium meta-tungstate and thiourea (used as a fuel to complete the reaction). All chemicals undergo a high-energy sonication by using ethylene glycol as a solvent. Preliminary linear scan voltammetry (LSV) performed for annealed CuWO4 under front side and back side simulated AM-1.5 illumination demonstrated that the CuWO4 hollow nanospheres were photoactive. Subsequent scanning (SEM) and transmission (TEM) electron microscopy studies revealed the clear formation of nano sized hollow spherical shaped CuWO4 particles. X-ray diffraction analysis showed a clear formation of triclinic CuWO4 structure during the sonochemical process.

  20. CDSN: Present status and future development

    Institute of Scientific and Technical Information of China (English)

    周公威; 张伯明; 吴忠良; 黄文辉; 王红; 黎明; 贺冬梅; 郝春月

    2005-01-01

    Since its establishment and operation in the eighties of the 20th century, China Digital Seismograph Network (CDSN) has greatly promoted the research on digital seismology in China, expanded and deepened our cognition about the earth's crust, the earth(s inner structure and the source process, which is useful to the research on earthquake prediction and reduction of earthquake disaster. Along with the development of world science and technology, the Sino-America incorporated two sides carried the second stage of technique update to CDSN from 1992 to 2001. The paper summarizes the goal and technical content of this technique update: technique character and operation status of the new generational CDSN, CDSN digital communication system built in the second stage of technique update, research progress of CDSN digital earthquake real-time analysis system.

  1. Future developments in health care performance management

    Directory of Open Access Journals (Sweden)

    Crema M

    2013-11-01

    Full Text Available Maria Crema, Chiara Verbano Department of Management and Engineering, University of Padova, Vicenza, Italy Abstract: This paper highlights the challenges of performance management in health care, wherein multiple different objectives have to be pursued. The literature suggests starting with quality performance, following the sand cone theory, but considering a multidimensional concept of health care quality. Moreover, new managerial approaches coming from an industrial context and adapted to health care, such as lean management and risk management, can contribute to improving quality performance. Therefore, the opportunity to analyze them arises from studying their overlaps and links in order to identify possible synergies and to investigate the opportunity to develop an integrated methodology enabling improved performance. Keywords: health care, lean management, clinical risk management, quality, health care processes

  2. Gas detectors recent developments and future perspectives

    CERN Document Server

    Sauli, Fabio

    1998-01-01

    Thirty years after the invention of the Multi-Wire Proportional Chamber, and twenty from the first Vienna Wire Chamber Conference, the interest and research efforts devoted to gas detectors are still conspicuous, as demonstrated by the number of papers submitted to this Conference. Innovative and performing devices have been perfected overt the years, used in experiments, and still developed today . Introduced ten years ago, the Micro-Strip Gas Chamber appears to fulfill the needs of high luminosity trackers progress in this field will be reported, followed by a discussion on discharge problems encountered and possible solutions. Recent and potentially more powerful devices such as the micro-gap, narrow-gap and micro-dot chambers will be described. A new generation of detectors exploiting av alanche multiplication in narrow gaps has emerged recently, namely MICROMEGAS, CAT (Compteur à trous) and the Gas Electron Multiplier (GEM); whilst still in their infancy, they have promising performa nces with increased...

  3. Microstructure evolution and texture development in thermomechanically processed Mg-Li-Al based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vinod [Department of Materials Science and Engineering, IIT Kanpur (India); Govind [Vikram Sarabhai Space Center, Trivandrum (India); Shekhar, Rajiv; Balasubramaniam, R. [Department of Materials Science and Engineering, IIT Kanpur (India); Balani, Kantesh, E-mail: kbalani@iitk.ac.in [Department of Materials Science and Engineering, IIT Kanpur (India)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Thermomechanical processing of novel LAT 971 and LATZ 9531 Mg-Al-Li based alloys. Black-Right-Pointing-Pointer Microstructural deviation from the equilibrium phase diagram. Black-Right-Pointing-Pointer Disparity in texture of these alloys after hot-rolling (recrystallization and grain growth). Black-Right-Pointing-Pointer Role of alloying and phase distribution in affecting the texture/interplaner spacing. - Abstract: In the present study, the influence of alloying and thermomechanical processing on the microstructure and texture evolution on the two Mg-Li-Al based alloys, namely Mg-9 wt% Li-7 wt% Al-1 wt% Sn (LAT971) and Mg-9 wt% Li-5 wt% Al-3 wt% Sn-1 wt% Zn (LATZ9531) has been elicited. Novel Mg-Li-Al based alloys were cast (induction melting under protective atmosphere) followed by hot rolling at {approx}573 K with a cumulative reduction of five. A contrary dual phase dendritic microstructure rich in {alpha}-Mg, instead of {beta}-Li phase predicted by equilibrium phase diagram of Mg-Li binary alloy was observed. Preferential presence of Mg-Li-Sn primary precipitates (size 4-10 {mu}m) within {alpha}-Mg phase and Mg-Li-Al secondary precipitates (<3 {mu}m) interspersed in {beta}-Li indicated their degree of dissolution during hot-rolling and homogenization in the dual phase matrix. Presence of Al, Sn and Zn alloying elements in the Mg-Li based alloy has resulted an unusual dual-phase microstructure, change in the lattice parameter, and intriguing texture evolution after hot-rolling of cast LAT 971 and LATZ9531 alloy. Strong texture was absent in the as-cast samples whereas texture development after hot-rolling revealed an increased activity of the non-basal (101{sup Macron }0) slip planes. The quantification of the grain average misorientation (less than 2 Degree-Sign ) using electron backscattered diffraction confirmed the presence of strain free grains in majority of the grains (fraction >0.75) after hot-rolling of Mg

  4. Development of a database system for operational use in the selection of titanium alloys

    Science.gov (United States)

    Han, Yuan-Fei; Zeng, Wei-Dong; Sun, Yu; Zhao, Yong-Qing

    2011-08-01

    The selection of titanium alloys has become a complex decision-making task due to the growing number of creation and utilization for titanium alloys, with each having its own characteristics, advantages, and limitations. In choosing the most appropriate titanium alloys, it is very essential to offer a reasonable and intelligent service for technical engineers. One possible solution of this problem is to develop a database system (DS) to help retrieve rational proposals from different databases and information sources and analyze them to provide useful and explicit information. For this purpose, a design strategy of the fuzzy set theory is proposed, and a distributed database system is developed. Through ranking of the candidate titanium alloys, the most suitable material is determined. It is found that the selection results are in good agreement with the practical situation.

  5. Current Status of Development of High Nickel Low Alloy Steels for Commercial Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Chul; Lee, B. S.; Park, S. G.; Lee, K. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-12-15

    SA508 Gr.3 Mn-Mo-Ni low alloy steels have been used for nuclear reactor pressure vessel steels up to now. Currently, the design goal of nuclear power plant is focusing at larger capacity and longer lifetime. Requirements of much bigger pressure vessels may cause critical problems in the manufacturing stage as well as for the welding stage. Application of higher strength steel may be required to overcome the technical problems. It is known that a higher strength and fracture toughness of low alloy steels such as SA508 Gr.4N low alloy steel could be achieved by increasing the Ni and Cr contents. Therefore, SA508 Gr.4N low alloy steel is very attractive as eligible RPV steel for the next generation PWR systems. In this report, we propose the possibility of SA508 Gr.4N low alloy steel for an application of next generation commercial RPV, based on the literature research result about development history of the RPV steels and SA508 specification. In addition, we have surveyed the research result of HSLA(High Strength Low Alloy steel), which has similar chemical compositions with SA508 Gr.4N, to understand the problems and the way of improvement of SA508 Gr.4N low alloy steel. And also, we have investigated eastern RPV steel(WWER-1000), which has higher Ni contents compared to western RPV steel.

  6. The development of future thinking: young children's ability to construct event sequences to achieve future goals.

    Science.gov (United States)

    Prabhakar, Janani; Hudson, Judith A

    2014-11-01

    Previous studies suggest that the ability to think about and act on the future emerges between 3 and 5 years of age. However, it is unclear what underlying processes change during the development of early future-oriented behavior. We report three experiments that tested the emergence of future thinking ability through children's ability to explicitly maintain future goals and construct future scenarios. Our main objectives were to examine the effects of goal structure and the effects of working memory demands on children's ability to construct future scenarios and make choices to satisfy future goals. The results indicate that 4-year-olds were able to successfully accomplish two temporally ordered goals even with high working memory demands and a complex goal structure, whereas 3-year-olds were able to accomplish two goals only when the working memory demands were low and the goal structure did not involve additional demands from inferential reasoning and contingencies between the temporally ordered goals. Results are discussed in terms of the development of future thinking in conjunction with working memory, inferential reasoning ability, and goal maintenance abilities.

  7. Future Earth activities in China: Towards a national sustainable development

    Institute of Scientific and Technical Information of China (English)

    WANG; Chuan-Yi; ZHOU; Tian-Jun; LIN; Zheng; JIN; Nan

    2015-01-01

    This article provides an overview to Future Earth activities carried out by the Chinese National Committee for Future Earth(CNC-FE).Future Earth is an international research programme which aims to provide critical knowledge to face the challenges posed by global environmental change and to identify opportunities for a transition to global sustainability.CNC-FE is the main body devoted to implementing the Future Earth programme in China.Incorporating Future Earth themes and national science needs,CNC-FE has identified 14 priority areas.Since its establishment,it has conducted an array of activities to fulfill its missions,including implementing projects,convening international meetings,translating and publishing Future Earth and CNC-FE related documents and promoting Future Earth and CNC-FE on various outreach occasions.CNC-FE closely follows Future Earth’s development and meanwhile integrates its themes with Chinese practice.It is hoped that implementing Future Earth in China can boost global environmental change including climate change research in China and also have positive implications for developing countries who are trying to adapt to climate change and address the challenges for the national sustainable development.

  8. Development of Zn50 Brazing Alloy for Joining Mild Steel to Mild Steel (SAE1018

    Directory of Open Access Journals (Sweden)

    S.C. Nwigbo

    2014-09-01

    Full Text Available This work has developed new brazing alloys for joining mild steel to mild steel (SAE1018 at a lower temperature. The alloys blends and error analysis were done by experimental design software (Design Expert 8.0.7.1. Design of experiments was done by Scheffe quadratic mixture method. The liquidus temperatures were predicted by calculation of phase diagrams of the alloying metals. The brazing alloys were produced by gravity technique and melted using silicon carbide graphite crucible. The quality of the brazing alloys was analyzed by optical microscopy (OM, atomic absorption spectroscopy (AAS and fourier transform infrared spectroscopy (FT-IR. Brazed joints were produced by torch method with a commercial flux. Brazing temperatures (liquidus were tracked by a digital infrared/laser pyrometer. Some mechanical properties studied were tensile strength and hardness. Finally, brazed joints produced from the developed brazing alloys were compared to that produced from muntz brass. Six (6 brazing alloys were successfully developed. Zinc and manganese were the main components, to which were added; 3 to 4 %wt silver and 11 to15 %wt modifying element. The microstructure showed a typical eutectic structure with zinc-rich phase distributed uniformly in the matrix with a combination of different sizes of dendrite, rounded blocks of compounds and hypoeutectic structures. AAS results indicated minimal out-gassing of zinc and FT-IR results indicated very low presence of atmospheric gas. The range of brazing temperature for best results was recorded from 690.90 to 735.10 0C. The joints produced from the developed brazing alloys had acceptable strengths with improved stress-strain behaviour compared to muntz brass.

  9. Development of Ti-Nb-Zr alloys with high elastic admissible strain for temporary orthopedic devices.

    Science.gov (United States)

    Ozan, Sertan; Lin, Jixing; Li, Yuncang; Ipek, Rasim; Wen, Cuie

    2015-07-01

    A new series of beta Ti-Nb-Zr (TNZ) alloys with considerable plastic deformation ability during compression test, high elastic admissible strain, and excellent cytocompatibility have been developed for removable bone tissue implant applications. TNZ alloys with nominal compositions of Ti-34Nb-25Zr, Ti-30Nb-32Zr, Ti-28Nb-35.4Zr and Ti-24.8Nb-40.7Zr (wt.% hereafter) were fabricated using the cold-crucible levitation technique, and the effects of alloying element content on their microstructures, mechanical properties (tensile strength, yield strength, compressive yield strength, Young's modulus, elastic energy, toughness, and micro-hardness), and cytocompatibilities were investigated and compared. Microstructural examinations revealed that the TNZ alloys consisted of β phase. The alloy samples displayed excellent ductility with no cracking, or fracturing during compression tests. Their tensile strength, Young's modulus, elongation at rupture, and elastic admissible strain were measured in the ranges of 704-839 MPa, 62-65 GPa, 9.9-14.8% and 1.08-1.31%, respectively. The tensile strength, Young's modulus and elongation at rupture of the Ti-34Nb-25Zr alloy were measured as 839 ± 31.8 MPa, 62 ± 3.6 GPa, and 14.8 ± 1.6%, respectively; this alloy exhibited the elastic admissible strain of approximately 1.31%. Cytocompatibility tests indicated that the cell viability ratios (CVR) of the alloys are greater than those of the control group; thus the TNZ alloys possess excellent cytocompatibility. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Future-Orientated Approaches to Curriculum Development: Fictive Scripting

    Science.gov (United States)

    Garraway, James

    2017-01-01

    Though the future cannot be accurately predicted, it is possible to envisage a number of probable developments which can promote thinking about the future and so promote a more informed stance about what should or should not be done. Studies in technology and society have claimed that the use of a type of forecasting using plausible but imaginary…

  11. Design storytelling with future scenario development; envisioning "the museum"

    NARCIS (Netherlands)

    Eggink, Wouter; Albert de la Bruhèze, Adri

    2015-01-01

    There are different ways to tell stories with design. This paper shows possibilities of telling stories by envisioning the future. Overall, design has the very ability to envision, visualize and express things that do not exist yet. We introduce the Future Scenario Development Design methodology as

  12. Future-Orientated Approaches to Curriculum Development: Fictive Scripting

    Science.gov (United States)

    Garraway, James

    2017-01-01

    Though the future cannot be accurately predicted, it is possible to envisage a number of probable developments which can promote thinking about the future and so promote a more informed stance about what should or should not be done. Studies in technology and society have claimed that the use of a type of forecasting using plausible but imaginary…

  13. Design and development of self-passivating biodegradable magnesium alloys using selective element oxidation

    Science.gov (United States)

    Brar, Harpreet Singh

    Metallic biomaterials such as stainless steels, titanium alloys, and cobalt-chromium alloys have been used as structural implant materials for many years. However, due to their limitations in temporary implant applications, there has been increased interest in the development of a biodegradable structural implant device. Magnesium (Mg) alloys have shown great potential as a material for biodegradable structural implant applications. However, low strength and high degradation rate of Mg under physiological conditions are major limitations, causing the implant to lose its structural integrity before the healing process is complete. The main aim of this work was to investigate the possibility of designing Mg-based alloys with ability to form selective protective oxides, thereby aiding in the reduction of the initial degradation rate. A thermodynamics-driven design was utilized to select three elements, namely Gadolinium (Gd), Scandium (Sc) and Yttrium (Y), due to the low enthalpy of formation associated with their oxide species. First, binary alloys were cast under inert atmosphere, solution treated and investigated for degradation rate in Hanks' solution. The Mg-Gd binary alloy showed the fastest degradation rate whereas the Mg-Sc binary alloy showed the slowest degradation rate. The degradation of Mg-Gd and Mg-Y was 18 and 5 times faster than Mg-Sc alloy, respectively. The microstructural analysis of the alloys was performed using X-ray Diffraction (XRD), Optical Microscopy (OM) and Scanning Electron Microscopy (SEM). It was observed that the grain size of Mg-Sc alloys is significantly smaller than Mg-Gd and Mg-Y alloys and can be a contributing factor to the reduction in degradation rate. The hardness behavior of the alloys was also investigated using Vickers microhardness Testing. To understand the oxidation behavior and kinetics, samples were oxidized in pure oxygen environment and investigated using microstructural and thermogravimetric analysis (TGA). Auger

  14. Development of Fe-based nanocrystalline materials by mechanical alloying

    Directory of Open Access Journals (Sweden)

    Suñol, J. J.

    2008-06-01

    Full Text Available Two alloys, Fe80NbB10 and Fe70Ni14Zr6B10, were produced by mechanical alloying. The formation of the nanocrystallites (about 7-8 nm at 80h MA was detected by X-ray diffraction. After milling for 80 h, differential scanning calorimetry scans show low-temperature recovery processes and several crystallization processes related with crystal growth and reordering of crystalline phases. The apparent activation energy values are 315 ± 40 kJ mol–1 for alloy A, and 295 ± 20 kJ mol–1 and 320 ± 25 kJ mol–1 for alloy B. Furthermore, a melt-spun Fe-based ribbon was mechanically alloyed to obtain a powdered-like alloy. The increase of the rotation speed and the ball-to-powder weight ratio reduces the necessary time to obtain the powdered form.

    Dos aleaciones, Fe80Nb10B10 (A y Fe70Ni14Zr6B10 (B, han sido producidas por aleado mecánico. Mediante difracción de rayos X se ha detectado la formación de nanocristales (7-8 nm a las 80 h de aleado. Tras molturar 80 h, las curvas calorimétricas muestran procesos exotérmicos asociados a la relajación estructural y al crecimiento cristalino y reordenación de la fase cristalina. Los valores de la energía aparente de activación de las cristalizaciones son 315 ± 40 kJ mol–1 para la aleación A, y 295 ± 20 kJ mol–1 y 320 ± 25 kJ mol–1 para la aleación B. Por otra parte, se ha procedido a la molturación de una cinta de una aleación de base hierro hasta obtener un material en forma de polvo. El incremento de la velocidad de rotación y de la relación en peso bolas polvo reduce el tiempo necesario para obtener este material.

  15. An evaluation of the benefits of utilizing rapid solidification for development of 2XXX (Al-Cu-Mg) alloys

    Science.gov (United States)

    Paris, H. G.; Chellman, D. J.

    1986-01-01

    The advantages of rapid solidification processing over ingot metallurgy processing in the development of 2XXX aluminum alloy compositions were evaluated using a similarly processed ingot metallurgy (IM) control alloy. The powder metallurgy (PM) alloy extrusions showed a reduced age-hardening response in comparison with similar IM compositions, with higher tensile properties for naturally aged extrusions but lower properties for artificially aged ones. However, the tensile properties of naturally and artificially aged PM alloy extrusions based on a version of IM 2034 alloy, but containing 0.6 weight percent zirconium, were comparable to those of the IM control extrusions and had significantly superior combinations of strength and toughness. The tensile properties of this PM alloy showed even greater advantage in 6.4-mm (0.25-in.) and 1.8-mm (0.070-in.) plate and sheet, the yield strength being about 68 MPa (10 ksi) greater than reported values for the IM 2034 alloy sheet. An artificially aged PM alloy based on 2219 alloy also showed a strength and strength-toughness combination comparable to those of the PM Al-Cu-Mg-Zr alloy, substantially outperforming the IM 2219 alloy. These results show that rapid solidification offers the flexibility needed to modify conventional IM compositions to produce new alloy compositions with superior mechanical properties.

  16. Development of oxide dispersion strengthened W alloys produced by hot isostatic pressing

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, J.; Savoini, B.; Monge, M.A. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Munoz, A., E-mail: angel.munoz@uc3m.es [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Pareja, R. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain)

    2011-10-15

    A powder metallurgy technique has been developed to produce oxide strengthened W-Ti and W-V alloys using elemental powders and nanosized powders of La{sub 2}O{sub 3} or Y{sub 2}O{sub 3} as starting materials. The alloys consolidated by hot isostatic pressing resulted in high-density materials having an ultrafine-grained structure and microhardness values in the range 7-13 GPa. Atom force microscopy studies show a topographic relief in the Ti and V pools that appear in the consolidated alloys. This relief is attributed to the heterogeneous nucleation of martensite plates. The preliminary transmission electron microscopy studies have revealed that a dispersion of nanoparticles can be induced in these alloys produced via the present technique.

  17. Development of Laser Surface Technologies for Anti-Corrosion on Magnesium Alloys: a Review

    Science.gov (United States)

    Sun, Rujian; Guan, Yingchun; Zhu, Ying

    2016-03-01

    Magnesium (Mg) alloys have been increasingly used in industries and biomaterial fields due to low density, high specific strength and biodegradability. However, poor surface-related properties are major factors that limit their practical applications. This paper mainly focuses on laser-based anti-corrosion technologies for Mg alloys, beginning with a brief review of conventional methods, and then demonstrates the feasibility of laser surface technologies including laser surface melting (LSM), laser surface alloying (LSA), laser surface cladding (LSC) and laser shock peening (LSP) in achieving enhancement of corrosion resistance. The mechanism and capability of each technique in corrosion resistance is carefully discussed. Finally, an outlook of the development of laser surface technology for Mg alloy is further concluded, aiming to serve as a guide for further research both in industry applications and biomedical devices.

  18. TOWARDS THE DEVELOPMENT OF FUTURE INTERNET ENTERPRISE SYSTEMS

    OpenAIRE

    Ioan Stefan Sacala; Mihnea Alexandru Moisescu; Mihail Sacala

    2012-01-01

    Current R&D activities, sustained by the European Commission and by FP7 financial support are focusing on the development and standardization of new technologies to sustain the “Future Internet”. In this context the development of new Internet related concepts and technologies oriented towards providing positive benefits for individuals, society, economy, culture and environment has been included in a broad concept of Future Internet Systems. One of the paradigms proposed in this area is the ...

  19. Development of laser welding techniques for vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Strain, R.V.; Leong, K.H.; Smith, D.L.

    1996-04-01

    Laser welding is potentially advantageous because of its flexibility and the reduced amount of material affected by the weld. Lasers do not require a vacuum (as do electron beam welders) and the welds they produce high depth-to-width ratios. Scoping with a small pulsed 50 J YAG laser indicated that lasers could produce successful welds in vanadium alloy (V-5%Cr-5%Ti) sheet (1 mm thick) when the fusion zone was isolated from air. The pulsed laser required an isolating chamber filled with inert gas to produce welds that did not contain cracks and showed only minor hardness increases. Following the initial scoping tests, a series of tests were preformed with a 6 kW continuous CO{sub 2} laser. Successful bead-on-plate welds were made on V-4%Cr-4%Ti and V-5%Cr-5%Ti alloys to depths of about 4 mm with this laser.

  20. Alloy development for irradiation performance. Quarterly progress report for period ending March 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ashdown, B.G. (comp.)

    1980-06-01

    This report is organized along topical lines in parallel to a Program Plan of the same title so that activities and accomplishments may be followed readily relative to that Program Plan. Thus, the work of a given laboratory may appear throughout the report. Chapters 1, 2, 8, and 9 review activities on analysis and evaluation, test methods development, status of irradiation experiments, and corrosion testing and hydrogen permeation studies, respectively. These activities relate to each of the alloy development paths. Chapters 3, 4, 5, 6, and 7 present the ongoing work on each alloy development path. The Table of Contents is annotated for the convenience of the reader.

  1. Alloy development for irradiation performance. Quarterly progress report for period ending June 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ashdown, B.G. (ed.)

    1980-10-01

    This report is organized along topical lines in parallel to a Program Plan of the same title so that activities and accomplishments may be followed readily relative to that Program Plan. Thus, the work of a given laboratory may appear throughout the report. Chapters 1, 2, 8, and 9 review activities on analysis and evaluation, test methods development, status of irradiation experiments, and corrosion testing and hydrogen permeation studies, respectively. These activities relate to each of the alloy development paths. Chapters 3, 4, 5, 6, and 7 present the ongoing work on each alloy development path. The Table of Contents is annotated for the convenience of the reader.

  2. Development of weldable, corrosion-resistant iron-aluminide (FeAl) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, P.J.; Goodwin, G.M.; Wang, X.L.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    A boron-microalloyed FeAl alloy (Fe-36Al-0.2Mo-0.05Zr-0.13C, at.%, with 100-400 appm B) with improved weldability and mechanical properties was developed in FY 1994. A new scale-up and industry technology development phase for this work began in FY 1995, pursuing two parallel paths. One path was developing monolithic FeAl component and application technology, and the other was developing coating/cladding technology for alloy steels, stainless steels and other Fe-Cr-Ni alloys. In FY 1995, it was found that cast FeAl alloys had good strength at 700-750{degrees}C, and some (2.5%) ductility in air at room-temperature. Hot-extruded FeAl with refined grain size was found to have ductility and to also have good impact-toughness at room-temperature. Further, it was discovered that powder-metallurgy (P/M) FeAl, consolidated by direct hot-extrusion at 950-1000{degrees}C to have an ultra fine-grained microstructure, had the highest ductility, strength and impact-toughness ever seen in such intermetallic alloys.

  3. Development of a novel high-entropy alloy with eminent efficiency of degrading azo dye solutions

    Science.gov (United States)

    Lv, Z. Y.; Liu, X. J.; Jia, B.; Wang, H.; Wu, Y.; Lu, Z. P.

    2016-09-01

    In addition to its scientific importance, the degradation of azo dyes is of practical significance from the perspective of environmental protection. Although encouraging progress has been made on developing degradation approaches and materials, it is still challenging to fully resolve this long-standing problem. Herein, we report that high entropy alloys, which have been emerging as a new class of metallic materials in the last decade, have excellent performance in degradation of azo dyes. In particular, the newly developed AlCoCrTiZn high-entropy alloy synthesized by mechanical alloying exhibits a prominent efficiency in degradation of the azo dye (Direct Blue 6: DB6), as high as that of the best metallic glass reported so far. The newly developed AlCoCrTiZn HEA powder has low activation energy barrier, i.e., 30 kJ/mol, for the degrading reaction and thus make the occurrence of reaction easier as compared with other materials such as the glassy Fe-based powders. The excellent capability of our high-entropy alloys in degrading azo dye is attributed to their unique atomic structure with severe lattice distortion, chemical composition effect, residual stress and high specific surface area. Our findings have important implications in developing novel high-entropy alloys for functional applications as catalyst materials.

  4. Alloy development for irradiation performance. Quarterly progress report for period ending September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    This report is organized along topical lines in parallel to a Program Plan of the same title so that activities and accomplishments may be followed readily relative to that Program Plan. Thus, the work of a given laboratory may appear throughout the report. Chapters 1, 2, 8, and 9 review activities on analysis and evaluation, test methods development, status of irradiation experiments, and corrosion testing and hydrogen permeation studies, respectively. These activities relate to each of the alloy development paths. Chapters 3, 4, 5, 6, and 7 present the ongoing work on each alloy development path. The Table of Contents is annotated for the convenience of the reader.

  5. The Development of ‘Project Competence’ of Future Teachers

    OpenAIRE

    Oksana Zhernovnykova; Olga Mishchenko; Osova Olga

    2016-01-01

    The essential characteristics and a structure of project competence of future teachers are revealed in the article. The authors notice that, to put into practice projection, that is, to have a project competence, certain skills such as analytical, gnostic, research, diagnostic, creative and reflective skills should be developed in a future teacher. Since project skills require a combination with other specific narrow methodological skills, the authors have carried to them also reflective, res...

  6. Clinical teaching improvement: past and future for faculty development.

    Science.gov (United States)

    Skeff, K M; Stratos, G A; Mygdal, W K; DeWitt, T G; Manfred, L M; Quirk, M E; Roberts, K B; Greenberg, L W

    1997-04-01

    Faculty development programs have focused on the improvement of clinical teaching for several decades, resulting in a wide variety of programs for clinical teachers. With the current constraints on medical education, faculty developers must reexamine prior work and decide on future directions. This article discusses 1) the rationale for providing faculty development for clinical teachers, 2) the competencies needed by clinical teachers, 3) the available programs to assist faculty to master those competencies, and 4) the evaluation methods that have been used to assess these programs. Given this background, we discuss possible future directions to advance the field.

  7. Texture and microstructure development during hot deformation of ME20 magnesium alloy: Experiments and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Li, X. [Institut fuer Metallkunde und Metallphysik, RWTH-Aachen University, 52056 Aachen (Germany); Al-Samman, T., E-mail: alsamman@imm.rwth-aachen.de [Institut fuer Metallkunde und Metallphysik, RWTH-Aachen University, 52056 Aachen (Germany); Mu, S.; Gottstein, G. [Institut fuer Metallkunde und Metallphysik, RWTH-Aachen University, 52056 Aachen (Germany)

    2011-10-15

    Highlights: {yields} Second phase precipitates in ME20 hindered activation of tensile twinning at 300 deg. C. {yields} New off-basal sheet texture during c-axis compression at low Z conditions. {yields} Ce amplifies the role of pyramidal -slip over prismatic slip at 0.3T{sub m}. {yields} Prismatic slip becomes equally important to deformation at 0.6T{sub m}. {yields} Accurate texture predictions using a cluster-type Taylor model with grain interaction. - Abstract: The influence of deformation conditions and starting texture on the microstructure and texture evolution during hot deformation of a commercial rare earth (RE)-containing magnesium alloy sheet ME20 was investigated and compared with a conventional Mg sheet alloy AZ31. For all the investigated conditions, the two alloys revealed obvious distinctions in the flow behavior and the development of texture and microstructure, which was primarily attributed to the different chemistry of the two alloys. The presence of precipitates in the fine microstructure of the ME20 sheet considerably increased the recrystallization temperature and suppressed tensile twinning. This gave rise to an uncommon Mg texture development during deformation. Texture simulation using an advanced cluster-type Taylor approach with consideration of grain interaction was employed to correlate the unique texture development in the ME20 alloy with the activation scenarios of different deformation modes.

  8. HEADROOM APPROACH TO DEVICE DEVELOPMENT: CURRENT AND FUTURE DIRECTIONS

    OpenAIRE

    Girling, A; Lilford, R; Cole, A; Young, T

    2015-01-01

    OBJECTIVES: The headroom approach to medical device development relies on the estimation of a value-based price ceiling at different stages of the development cycle. Such price-ceilings delineate the commercial opportunities for new products in many healthcare systems. We apply a simple model to obtain critical business information as the product proceeds along a development pathway, and indicate some future directions for the development of the approach. METHODS: Health economic modelling in...

  9. Educational Development and Reformation in Malaysia: Past, Present, and Future.

    Science.gov (United States)

    Ahmad, Rahimah Haji

    1998-01-01

    Discusses educational development in Malaysia, focusing on curriculum changes, issues, and future perspectives. Discusses the development of values education, its importance in the curriculum, and the government's efforts to mold a united nation with Malaysian values. Current reforms target tertiary education. The school curriculum has not been…

  10. Intel Teach to the Future: A Partnership for Professional Development.

    Science.gov (United States)

    Metcalf, Teri; Jolly, Deborah

    This paper describes a public/private partnership program designed to provide staff development to help classroom teachers integrate technology in the curriculum by using the train-the-trainer model. The Intel[R] Teach to the Future Project was developed by Intel[R] in collaboration with other public and private sector partners, and has been…

  11. Texture development and anisotropic behaviour in a Ti-45Ni-5Cu (AT.%) shape memory alloy

    NARCIS (Netherlands)

    Zhao, Lie

    1997-01-01

    The objective of this work was to determine the relationship between texture development and anisotropy of shape memory properties. A commercial Ti-45Ni-5Cu (at.%) shape memory alloy was selected. Textures were developed by controlling rolling parameters, such as rolling temperature, intermediate an

  12. Development of Novel Two-dimensional Layers, Alloys and Heterostructures

    Science.gov (United States)

    Liu, Zheng

    2015-03-01

    The one-atom-think graphene has fantastic properties and attracted tremendous interests in these years, which opens a window towards various two-dimensional (2D) atomic layers. However, making large-size and high-quality 2D layers is still a great challenge. Using chemical vapor deposition (CVD) method, we have successfully synthesized a wide varieties of highly crystalline and large scale 2D atomic layers, including h-BN, metal dichalcogenides e.g. MoS2, WS2, CdS, GaSe and MoSe2 which belong to the family of binary 2D materials. Ternary 2D alloys including BCN and MoS2xSe2 (1 - x) are also prepared and characterized. In addition, synthesis of 2D heterostructures such as vertical and lateral graphene/h-BN, vertical and lateral TMDs are also demonstrated. Complementary to CVD grown 2D layers, 2D single-crystal (bulk) such as Phosphorene (P), WTe2, SnSe2, PtS2, PtSe2, PdSe2, WSe2xTe2 (1 - x), Ta2NiS5andTa2NiSe5 are also prepared by solid reactions. There work provide a better understanding of the atomic layered materials in terms of the synthesis, atomic structure, alloying and their physical properties. Potential applications of these 2D layers e.g. optoelectronic devices, energy device and smart coating have been explored.

  13. Microstructural development of high temperature deformed AZ31 magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shahbeigi Roodposhti, Peiman, E-mail: pshahbe@ncsu.edu; Sarkar, Apu; Murty, Korukonda Linga

    2015-02-25

    Due to their significant role in automobile industries, high temperature deformation of Mg–Al–Zn alloys (AZ31) at constant stress (i.e. creep) were studied at a wide range of stresses and temperatures to characterize underlying deformation mechanism, dynamic recrystallization (DRX) and dislocation density evolution. Various microstructures (e.g. grain growth & DRX) are noted during steady-state creep mechanisms such as grain boundary sliding (GBS), dislocation glide creep (DGC) and dislocation climb creep (DCC). Although a combination of DRX and grain growth is characteristic of low stacking fault energy materials like Mg alloys at elevated temperatures, observation reveals grain growth at low strain-rates (GBS region) along with dynamic recovery (DRV) mechanism. X-Ray Diffraction (XRD) analysis revealed a decrease in dislocation density during GBS region while it increased under dislocation based creep mechanisms which could be related to the possible DRV and DRX respectively. Scanning Electron Microscopic (SEM) characterization of the fracture surface reveals more inter-granular fracture for large grains (i.e. GBS region with DRV process) and more dimple shape fracture for small grains (i.e. DGC & DCC region with DRX)

  14. Microstructure development in Al-Cu-Ag-Mg quaternary alloy

    Science.gov (United States)

    Zhou, Bin; Froyen, L.

    2012-01-01

    The solidification behaviour of multi-component and multi-phase systems has been largely investigated in binary and ternary alloys. In the present study, a quaternary model system is proposed based on the well known Al-Cu-Ag and Al-Cu-Mg ternary eutectic alloys. The quaternary eutectic composition and temperature were determined by EDS (Energy Dispersive Spectrometry) and DSC (Differential Scanning Calorimetry) analysis, respectively. The microstructure was then characterised by SEM (Scanning Electron Microscope). In the DSC experiments, two types of quaternary eutectics were determined according to their phase composition. For each type of eutectic, various microstructures were observed, which result in different eutectic compositions. Only one of the determined eutectic compositions was further studied by the controlled growth technique in a vertical Bridgeman type furnace. In the initial part of the directionally solidified sample, competing growth between two-phase dendrites and three-phase eutectics was obtained, which was later transformed to competing growth between three-phase and four-phase eutectics. Moreover, silver enrichment was measured at the solidification front, which is possibly caused by Ag sedimentation due to gravity and Ag rejection from dendritic and three-phase eutectic growth, and its accumulation at the solidification front.

  15. The Development of Titanium Alloys for Application in the Space Shuttle Main Engine

    Science.gov (United States)

    Halchak, John A.; Jerman, Gregory A.; Zimmerman, Frank R.

    2010-01-01

    The high-strength-to-weight ratio of titanium alloys, particularly at cryogenic temperatures, make them attractive for application in rocket engines - offering the potential of superior performance while minimizing component weight. This was particularly attractive for rotating components, such as pump impellers, where titanium alloys presented the potential to achieve a major advance in rotational tip speed, with a reduction in stages and resultant saving in pump weight and complexity. The investigation into titanium alloys for application in cryogenic turbopumps began in the early 1960's. However, it was found that the reactivity of titanium limited applications and produced unique processing challenges. Specialized chemical compositions and processing techniques had to be developed. A substantial amount of material properties testing and trials in experimental turbopumps occurred, ultimately leading to application in the Space Shuttle Main Engine. One particular alloy stood out for use at liquid hydrogen temperatures, Ti-5Al-2.5Sn ELI. This alloy was employed for several critical components. This presentation deals with the development effort, the challenges that were encountered and operational experiences with Ti-5Al-2.5Sn ELI in the SSME.

  16. Applications and development of shape-memory and superelastic alloys in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Takaoka, S.; Horikawa, H. [Furukawa Electric Co., Ltd., Hiratsuka (Japan); Kobayashi, J. [Japan Association of Shape Memory Alloys, Yokohama (Japan); Shimizu, K. [Kanazawa Inst. of Tech., Matsutou (Japan)

    2002-07-01

    The present situation of the applications and development of shape memory and superelastic alloys in Japan will collectively be introduced. Of many shape memory alloys, TiNi alloy systems have mostly been used for the applications from the point of view of fatigue and corrosion characteristics. Shape memory effect has been utilized for mainly thermal actuators with the form of coil springs. The effect associated with the B2 to R-phase transformation and its reversion exhibits recoverable strain of approximately 1%, and after a million thermal cycles the recovery characteristics are not affected. Thus, the effect is widely utilized as sensor flap of the air conditioner, water flow control valve, underfloor vent, automatic oil volume adjusting equipment for Shinkansen and water mixing valve. Another effect associated with the B2 to orthorhombic transformation and its reversion, as in TiNiCu alloys containing Cu more than 8%, can be applied to actuators required for 10,000 to 50,000 times life, and thus it is utilized as rice cooker, coffee maker and anti-scald valve. In Japan, however, the TiNi shape memory alloy systems are mainly used for applications using the superelasticity, like a rubber material. The superelasticity associated with the B2 to monoclinic stress-induced transformation and its reversion upon un-loading has been utilized as brassiere wire, eye glasses flame, antenna core wire for cellular phone and fishing wire, and that associated with the B2 to orthorhombic stress-induced transformation and its reversion upon un-loading has been as orthodontic wire, because the TiNiCu alloy wire exhibits smaller stress hysteresis than that of usual TiNi alloy wire. The TiNi shape memory alloy systems are now developed to make various shapes, such as tapes, foils and tubes, and the alloys with those shapes are examined to apply to medical uses, such as guide wire for catheter and catheter tube itself, and to any other uses. The development in Japan is rapidly

  17. Supplier Development Literature Review and Key Future Research Areas

    Directory of Open Access Journals (Sweden)

    Muddassir Ahmed

    2012-10-01

    Full Text Available The purpose of this paper is to develop a Supplier Development (SD literature framework and identify the main focus areas in SD research. To this end, a comprehensive review of the existing SD academic literature has been undertaken, which includes 62 research papers. These papers are classified according to their research content and the research methodology employed. A comprehensive list of future research areas is also presented. Thus, this paper will also briefly explore proposed future research. The review of the SD literature presented here identifies the following main areas of focus: Supplier Development Activities, Practices and Success Factors; Direct or Indirect Supplier Development; Supplier Development as a Reactive or Strategic Process; Supplier Development in a Lean Six Sigma & SME context.

  18. Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation.

    Science.gov (United States)

    Mostaed, E; Sikora-Jasinska, M; Mostaed, A; Loffredo, S; Demir, A G; Previtali, B; Mantovani, D; Beanland, R; Vedani, M

    2016-07-01

    The search for a degradable metal simultaneously showing mechanical properties equal or higher to that of stainless steel and uniform degradation is still an open challenge. Several magnesium-based alloys have been studied, but their degradation rate has proved to be too fast and rarely homogeneous. Fe-based alloys show appropriate mechanical properties but very low degradation rate. In the present work, four novel Zn-Mg and two Zn-Al binary alloys were investigated as potential biodegradable materials for stent applications. The alloys were developed by casting process and homogenized at 350°C for 48h followed by hot extrusion at 250°C. Tube extrusion was performed at 300°C to produce tubes with outer/inner diameter of 4/1.5mm as precursors for biodegradable stents. Corrosion tests were performed using Hanks׳ modified solution. Extruded alloys exhibited slightly superior corrosion resistance and slower degradation rate than those of their cast counterparts, but all had corrosion rates roughly half that of a standard purity Mg control. Hot extrusion of Zn-Mg alloys shifted the corrosion regime from localized pitting to more uniform erosion, mainly due to the refinement of second phase particles. Zn-0.5Mg is the most promising material for stent applications with a good combination of strength, ductility, strain hardening exponent and an appropriate rate of loss of mechanical integrity during degradation. An EBSD analysis in the vicinity of the laser cut Zn-0.5Mg tube found no grain coarsening or texture modification confirming that, after laser cutting, the grain size and texture orientation of the final stent remains unchanged. This work shows the potential for Zn alloys to be considered for stent applications.

  19. Back to the Future: Personality and Assessment and Personality Development

    OpenAIRE

    Roberts, Brent W.

    2009-01-01

    In this essay I consider the future of personality development in light of the past effects of Personality and Assessment on the field of personality in general and personality development in particular. The essay is organized around 1) the effect of Mischel's book on the foundational theories informing personality development; 2) definitions of personality traits; 3) an alternative model of personality traits, described as the sociogenomic model of personality traits, that can bridge the div...

  20. Development in corrosion resistance by microstructural refinement in Zr-16 SS 304 alloy using suction casting technique

    Energy Technology Data Exchange (ETDEWEB)

    Das, N., E-mail: nirupamd@barc.gov.in; Sengupta, P.; Abraham, G.; Arya, A.; Kain, V.; Dey, G.K.

    2016-08-15

    Highlights: • Grain refinement was made in Zr–16 wt.% SS alloy while prepared by suction casting process. • Distribution of Laves phase, e.g., Zr{sub 2}(Fe, Cr) was raised in suction cast (SC) Zr–16 wt.% SS. • Corrosion resistance was improved in SC alloy compared to that of arc-melt-cast alloy. • Grain refinement in SC alloy assisted for an increase in its corrosion resistance. - Abstract: Zirconium (Zr)-stainless steel (SS) hybrid alloys are being considered as baseline alloys for developing metallic-waste-form (MWF) with the motivation of disposing of Zr and SS base nuclear metallic wastes. Zr–16 wt.% SS, a MWF alloy optimized from previous studies, exhibit significant grain refinement and changes in phase assemblages (soft phase: Zr{sub 2}(Fe, Cr)/α-Zr vs. hard phase: Zr{sub 3}(Fe, Ni)) when prepared by suction casting (SC) technique in comparison to arc-cast-melt (AMC) route. Variation in Cr-distribution among different phases are found to be low in suction cast alloy, which along with grain refinement restricted Cr-depletion at the Zr{sub 2}(Fe, Cr)/Zr interfaces, prone to localized attack. Hence, SC alloy, compared to AMC alloy, showed lower current density, higher potential at the breakdown of passivity and higher corrosion potential during polarization experiments (carried out under possible geological repository environments, viz., pH 8, 5 and 1) indicating its superior corrosion resistance.

  1. Development of Carbon Fiber Reinforced Stellite Alloy Based Composites for Tribocorrosion Applications

    Science.gov (United States)

    Khoddamzadeh, Alireza

    This thesis reports the design and development of two classes of new composite materials, which are low-carbon Stellite alloy matrices, reinforced with either chopped plain carbon fiber or chopped nickel-coated carbon fiber. The focus of this research is on obviating the problems related to the presence of carbides in Stellite alloys by substituting carbides as the main strengthening agent in Stellite alloys with the aforementioned carbon fibers. Stellite 25 was selected as the matrix because of its very low carbon content (0.1 wt%) and thereby relatively carbide free microstructure. The nickel coating was intended to eliminate any chance of carbide formation due to the possible reaction between carbon fibers and the matrix alloying additions. The composite specimens were fabricated using the designed hot isostatic pressing and sintering cycles. The fabricated specimens were microstructurally analyzed in order to identify the main phases present in the specimens and also to determine the possible carbide formation from the carbon fibers. The material characterization of the specimens was achieved through density, hardness, microhardness, corrosion, wear, friction, and thermal conductivity tests. These novel materials exhibit superior properties compared to existing Stellite alloys and are expected to spawn a new generation of materials used for high temperature, severe corrosion, and wear resistant applications in various industries.

  2. Development of short fatigue cracks in aluminum alloy 2524-T3 specimens

    Science.gov (United States)

    Botvina, L. R.; Nesterenko, G. I.; Soldatenkov, A. P.; Demina, Yu. A.; Sviridov, A. A.

    2017-04-01

    The development of short fatigue cracks in a 2524-T3 alloy is studied under cyclic tension conditions. Flat specimens with a stress concentrator in the form of a central hole are analyzed. The replica technique is used to determine the microcrack parameters and to estimate the cyclic damage characteristics of the alloy in the stress concentrator zone. The experimental results are compared to the fatigue lives estimated by a calculation-experimental method using the NASGRO software package. The experimental fatigue life at the stage of short crack initiation is found to be significantly shorter than the calculated fatigue life.

  3. Model for calculation of microstructural development in rapidly directionally solidified immiscible alloys

    Institute of Scientific and Technical Information of China (English)

    赵九洲

    2002-01-01

    A model has been developed for the calculation of the microstructural evolution in a rapidly directionally solidified immiscible alloy. Numerical solutions have been performed for Al-Pb immiscible alloys. The results demonstrate that at a higher solidification velocity a constitutional supercooling region appears in front of the solid/liquid interface and the liquid-liquid decomposition takes place in this region. A higher solidification velocity leads to a higher nucleation rate and, therefore, a higher number density of the minority phase droplets. As a result, the average radius of droplets in the melt at the solid/liquid interface decreases with the solidification velocity.

  4. The development of a tensile-shear punch correlation for yield properties of model austenitic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hankin, G.L.; Faulkner, R.G. [Loughborough Univ. (United Kingdom); Hamilton, M.L.; Garner, F.A. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-08-01

    The effective shear yield and maximum strengths of a set of neutron-irradiated, isotopically tailored austentic alloys were evaluated using the shear punch test. The dependence on composition and neutron dose showed the same trends as were observed in the corresponding miniature tensile specimen study conducted earlier. A single tensile-shear punch correlation was developed for the three alloys in which the maximum shear stress or Tresca criterion was successfully applied to predict the slope. The correlation will predict the tensile yield strength of the three different austenitic alloys tested to within {+-}53 MPa. The accuracy of the correlation improves with increasing material strength, to within {+-} MPa for predicting tensile yield strengths in the range of 400-800 MPa.

  5. Development of Al-TiC Alloys Using Powder Metallurgy as Grain Refiners for Aluminium and Its Alloys

    Directory of Open Access Journals (Sweden)

    Abdel-Nasser .M. Omran

    2014-07-01

    Full Text Available Al-Ti-C master alloys have been widely investigated for many years as grain refiner for aluminium and its alloys. In this work, the Al-Ti-C master alloys are synthesized using powder metallurgy technique through the mixing of aluminium and TiC powders with different TiC contents 3.75 (3, 5(4, 6.25(5 and 7.5(6 Wt% TiC(Wt% Ti. The mixing powders with different contents of TiC were pressed in cylinder shape. The pressed specimens were sintered from 450 oC in a tube furnace under argon atmosphere for 2 hrs. The produced alloys before and after sintering are examined using SEM, EDX and XRD. The results indicate that, the Al-TiC alloy containing fine TiC particles dispersed in all matrix was successfully prepared. The prepared Al-TiC alloys with different contents of TiC were evaluated using the KBI test mold as grain refiner for pure aluminum and its alloys. The results indicate that the prepared Al-TiC master alloy is high grain refining efficiency for pure aluminum and its alloys.

  6. The Evolution, Development, and Future of Affirmative Action in Government.

    Science.gov (United States)

    Davis, James Edward

    This thesis discusses the evolution, development, and future of affirmative action in government. Executive Order 11246 formally created affirmative action in 1965 as a remedy for underuse of minorities and women in the workplace and classroom. Many private businesses believe government organizations promote diversity and social equity. Many local…

  7. Development of High-Temperature Ferritic Alloys and Performance Prediction Methods for Advanced Fission Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    G. RObert Odette; Takuya Yamamoto

    2009-08-14

    Reports the results of a comprehensive development and analysis of a database on irradiation hardening and embrittlement of tempered martensitic steels (TMS). Alloy specific quantitative semi-empirical models were derived for the dpa dose, irradiation temperature (ti) and test (Tt) temperature of yield stress hardening (or softening) .

  8. TECHNICAL NOTE: Development of a SMH actuator system using hydrogen-absorbing alloys

    Science.gov (United States)

    Kwon, Tae Kyu; Pang, Du Yeol; Choi, Kwang-Hun; Yook Kim, Yong; Lee, Seong Cheol; Kim, Nam Gyun

    2006-10-01

    A special type of metal hydride (SMH) actuator has been developed and the pressure response inside the actuator has been studied against changing temperature controlled by Peltier elements. The newly developed SMH actuator is characterized by its smaller size, lower weight, noiseless operation, and compliance similar to that of human bodies. The simple SMH actuator, consisting of powdered hydrogen-absorbing alloys as a source of mechanical power, Peltier elements as a thermal source, and a cylinder with metal bellows as a mechanical element, has been developed. An assembly of copper pipes, which has good thermal conductivity, has been constructed to contain hydrogen-absorbing alloys. Hydrogen-absorbing alloys can reversibly absorb and desorb a large volume of hydrogen, more than about one thousand times their own volume. The new SMH actuator utilizes the reversible reactions between thermal energy and mechanical energy of hydrogen-absorbing alloys. Furthermore, the characteristics of the actuator for different temperature, pressure, and external loads were studied and explored to allow the developed SMH actuator to be used in medical and rehabilitation applications.

  9. Bulgarian-Polish Language Resources (Current State and Future Development

    Directory of Open Access Journals (Sweden)

    Ludmila Dimitrova

    2015-06-01

    Full Text Available Bulgarian-Polish Language Resources (Current State and Future Development The paper briefly reviews the first Bulgarian-Polish digital bilingual resources: corpora and dictionaries, which are currently developed under bilateral collaboration between IMI-BAS and ISS-PAS: joint research project “Semantics and contrastive linguistics with a focus on a bilingual electronic dictionary”, coordinated by L. Dimitrova (IMI-BAS and V. Koseska (ISS-PAS.

  10. Nuclear fuel cycle and sustainable development: strategies for the future

    Energy Technology Data Exchange (ETDEWEB)

    Bouchard, J

    2004-07-01

    In this presentation, the author aims to define the major role of the nuclear energy in the future, according a sustainable development scenario. The today aging park and the new Generation IV technologies are presented. The transition scenario from Pu mono-recycling in PWRs to actinide global recycling in fast neutron Gen IV systems is also developed. Closed cycles and fast reactors appear as the appropriate answer to sustainable objectives in a vision of a large expansion. (A.L.B.)

  11. Development of casting investment preventing blackening of noble metal alloys part 1. Application of developed investment for Ag-Pd-Cu-Au alloy.

    Science.gov (United States)

    Kakuta, Kiyoshi; Nakai, Akira; Goto, Shin-ichi; Wakamatsu, Yasushi; Yara, Atushi; Miyagawa, Yukio; Ogura, Hideo

    2003-03-01

    The objective of this study is to develop a casting investment that prevents the blackening of the cast surface of noble metal alloys. The experimental investments were prepared using a gypsum-bonded investment in which the metallic powders such as boron (B), silicon (Si), aluminum (Al) and titanium (Ti) were added as oxidizing agents. An Ag-Pd-Cu-Au alloy was cast into the mold made of the prepared investment. The effect of the addition of each metal powder was evaluated from the color difference between the as-cast surface and the polished surface of the cast specimen. The color of the as-cast surface approached that of the polished surface with increasing B and Al content. A lower mean value in the color difference was obtained at 0.25-1.00 mass% B content. B and Al are useful as an additive in a gypsum-bonded investment to prevent the blackening of an Ag-Pd-Cu-Au alloy. The effects of Si and Ti powder addition could not be found.

  12. The Development of ‘Project Competence’ of Future Teachers

    Directory of Open Access Journals (Sweden)

    Oksana Zhernovnykova

    2016-04-01

    Full Text Available The essential characteristics and a structure of project competence of future teachers are revealed in the article. The authors notice that, to put into practice projection, that is, to have a project competence, certain skills such as analytical, gnostic, research, diagnostic, creative and reflective skills should be developed in a future teacher. Since project skills require a combination with other specific narrow methodological skills, the authors have carried to them also reflective, research, the ability to find multiple problem solutions, group, management, presentation and communication skills.

  13. Development of laser welding techniques for vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Strain, R.V.; Leong, K.H.; Smith, D.L. [Argonne National Laboratory, IL (United States)

    1996-10-01

    Laser welding is potentially advantageous because of its flexibility and the reduced amount of material affected by the weld. Bead-on-plate and butt welds were previously performed to depths of about 4 mm with a 6-kW CO{sub 2} laser on V-4%Cr-4%Ti and V-5%Cr-5%Ti alloys. These welds were made at a speed of 0.042 m/s using argon purging at a flow rate of 2.8 m{sup 3}/s. The purge was distributed with a diffuser nozzle aimed just behind the laser beam during the welding operation. The fusion zones of welds made under these conditions consisted of very fine, needle-shaped grains and were also harder than the bulk metal (230-270 dph, compared to {approx}180 dph for the bulk metal). A limited number of impact tests showed that the as-welded ductile-brittle transition temperatures (DBTT) was above room temperature, but heat treatment at 1000{degrees}C for 1 h in vacuum reduced the DBTT to <{minus}25{degrees}C. Activities during this reporting period focused on improvements in the purging system and determination of the effect of welding speed on welds. A 2-kW continuous YAG laser at Lumonics Corp. in Livonia, MI, was used to make 34 test welds for this study.

  14. Fabrication technological development of the oxide dispersion strengthened alloy MA957 for fast reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    ML Hamilton; DS Gelles; RJ Lobsinger; GD Johnson; WF Brown; MM Paxton; RJ Puigh; CR Eiholzer; C Martinez; MA Blotter

    2000-03-27

    A significant amount of effort has been devoted to determining the properties and understanding the behavior of the alloy MA957 to define its potential usefulness as a cladding material, in the fast breeder reactor program. The numerous characterization and fabrication studies that were conducted are documented in this report. The alloy is a ferritic stainless steel developed by International Nickel Company specifically for structural reactor applications. It is strengthened by a very fine, uniformly distributed yttria dispersoid. Its fabrication involves a mechanical alloying process and subsequent extrusion, which ultimately results in a highly elongated grain structure. While the presence of the dispersoid produces a material with excellent strength, the body centered cubic structure inherent to the material coupled with the high aspect ratio that results from processing operations produces some difficulties with ductility. The alloy is very sensitive to variations in a number of processing parameters, and if the high strength is once lost during fabrication, it cannot be recovered. The microstructural evolution of the alloy under irradiation falls into two regimes. Below about 550 C, dislocation development, {alpha}{prime} precipitation and void evolution in the matrix are observed, while above about 550 C damage appears to be restricted to cavity formation within oxide particles. The thermal expansion of the alloy is very similar to that of HT9 up to the temperature where HT9 undergoes a phase transition to austenitic. Pulse magnetic welding of end caps onto MA957 tubing can be accomplished in a manner similar to that in which it is performed on HT9, although the welding parameters appear to be very sensitive to variations in the tubing that result from small changes in fabrication conditions. The tensile and stress rupture behavior of the alloy are acceptable in the unirradiated condition, being comparable to HT9 below about 700 C and exceeding those of HT9

  15. Identification of the Opportunities for Future Development of Tidal Energy

    Directory of Open Access Journals (Sweden)

    Navid Bozorgan

    2015-09-01

    Full Text Available An overview of status of development of tidal energy is given in this article. To reduce the dependance on fossil fuel and imported energy resources, the need for ocean energy is a global demand in developing countries. The ability to directly extract from the world’s oceans may be in the form of mechanical energy from waves, tides, or currents, or in the form of thermal energy from the sun’s heat. This paper identifies the opportunities for future development of tidal energy.

  16. 75 FR 80853 - Designing a Digital Future: Federally Funded Research and Development in Networking and...

    Science.gov (United States)

    2010-12-23

    ... Designing a Digital Future: Federally Funded Research and Development in Networking and Information... ``Designing a Digital Future: Federally Funded Research and Development in Networking and Information... report entitled ``Designing a Digital Future: Federally Funded Research and Development in Networking and...

  17. Subtask 12B1: Welding development for V-Cr-Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    King, J.F.; Goodwin, G.M.; Grossbeck, M.L.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1995-03-01

    Development of the metallurgical and technological basis for the welding of thick sections of V-Cr-Ti alloys. The weldability and weldment properties of the V-5Cr-5Ti alloy have been evaluated. Results for the Sigmajig test of the vanadium alloy were similar to the cracking resistance of stainless steels, and indicates hot-cracking is unlikely to be a problem. Subsize Charpy test results for GTA weld metal in the as-welded condition have shown a significant reduction in toughness compared to the base metal. The weld metal toughness properties were restored to approximately that of the base metal after exposure to a PWHT 950{degrees}C. The subsize Charpy toughness results for the EB weld metal from this same heat of vanadium alloy has shown significant improvement in properties compared to the GTA weld metal and the base metal. Further testing and analysis will be conducted to more fully characterize the properties of weld metal for each welding process and develop a basic understanding of the cause of the toughness decrease in the GTA welds. 5 figs., 1 tab.

  18. Subtask 12B2: Development of laser welding techniques for vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Strain, R.V.; Leong, K.H.; Keppler, E.E.; Smith, D.L. [Argonne National Laboratory, IL (United States)

    1995-03-01

    The development of techniques for joining vanadium alloys will be required for the construction of fusion devices utilizing the desirable properties of these alloys. The primary objective of this program is to develop of laser welding techniques for vanadium alloys, particularly for the manufacture of welded materials testing specimens. Laser welding is potentially advantageous because of its flexibility and the reduced amount of material effected by the weld. Lasers do not require a vacuum (as does electron beam welders) and the welds they produce have large depth-to-width ratios. Results of scoping tests using a small, pulsed laser (50 joule, YAG laser) indicated that lasers could produce successful welds in vanadium alloy (V-5%Cr-5%Ti) sheet (1-mm thick) when the fusion zone was isolated from air. The pulsed laser required an isolating chamber filled with inert gas to produce welds that did not contain cracks and showed only minor hardness increases. Successful bead-on-plate welds have been made to depths of about 4-mm using a 6 kW continuous CO{sub 2} laser with argon purging. 2 figs.

  19. The consequences of helium production on microstructural development in isotopically tailored ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D.S. [Pacific Northwest Lab., Richland, WA (United States)

    1996-10-01

    A series of alloys have been made adding various isotopes of nickel in order to vary the production of helium during irradiation by a two step nuclear reaction in a mixed spectrum reactor. The alloys use a base composition of Fe-12Cr with an addition of 1.5% nickel, either in the form of {sup 60}Ni which produces no helium, {sup 59}Ni which produces helium at a rate of about 10 appm He/dpa, or natural nickel ({sup Nat}Ni) which provides an intermediate level of helium due to delayed development of {sup 59}Ni. Specimens were irradiated in the HFIR at Oak Ridge, TN to {approx}7 dpa at 300 and 400{degrees}C. Microstructural examinations indicated that nickel additions promote precipitation in all alloys, but the effect appears to be much stronger at 400{degrees}C than at 300{degrees}C. There is sufficient dose by 7 dpa (and with 2 appm He) to initiate void swelling in ferritic/martensitic alloys. Little difference was found between response from {sup 59}Ni and {sup Nat}Ni. Also, helium bubble development for high helium generation conditions appeared to be very different at 300 and 400{degrees}C. At 300{degrees}C, it appeared that high densities of bubbles formed whereas at 400{degrees}C, bubbles could not be identified, possibly because of the complexity of the microstructure, but more likely because helium accumulated at precipitate interfaces.

  20. Development of Sulfur and Carbon Tolerant Reforming Alloy Catalysts Aided by Fundamental Atomistics Insights

    Energy Technology Data Exchange (ETDEWEB)

    Suljo Linic

    2006-08-31

    Current hydrocarbon reforming catalysts suffer from rapid carbon and sulfur poisoning. Even though there is a tremendous incentive to develop more efficient catalysts, these materials are currently formulated using inefficient trial and error experimental approaches. We have utilized a novel hybrid experimental/theoretical approach, combining quantum Density Functional Theory (DFT) calculations and various state-of-the-art experimental tools, to formulate carbon tolerant reforming catalysts. We have employed DFT calculations to develop molecular insights into the elementary chemical transformations that lead to carbon poisoning of Ni catalysts. Based on the obtained molecular insights, we have identified, using DFT quantum calculation, Sn/Ni alloy as a potential carbon tolerant reforming catalyst. Sn/Ni alloy was synthesized and tested in steam reforming of methane, propane, and isooctane. We demonstrated that the alloy catalyst is carbon-tolerant under nearly stoichiometric steam-to-carbon ratios. Under these conditions, monometallic Ni is rapidly poisoned by sp2 carbon deposits. The research approach is distinguished by a few characteristics: (a) Knowledge-based, bottom-up approach, compared to the traditional trial and error approach, allows for a more efficient and systematic discovery of improved catalysts. (b) The focus is on exploring alloy materials which have been largely unexplored as potential reforming catalysts.

  1. Development of Sulfur and Carbon Tolerant Reforming Alloy Catalysts Aided Fundamental Atomistic Insights

    Energy Technology Data Exchange (ETDEWEB)

    Suljo Linic

    2008-12-31

    Current hydrocarbon reforming catalysts suffer from rapid carbon and sulfur poisoning. Even though there is a tremendous incentive to develop more efficient catalysts, these materials are currently formulated using inefficient trial and error experimental approaches. We have utilized a hybrid experimental/theoretical approach, combining quantum Density Functional Theory (DFT) calculations and various state-of-the-art experimental tools, to formulate carbon tolerant reforming catalysts. We have employed DFT calculations to develop molecular insights into the elementary chemical transformations that lead to carbon poisoning of Ni catalysts. Based on the obtained molecular insights, we have identified, using DFT quantum calculation, various Ni alloy catalysts as potential carbon tolerant reforming catalysts. The alloy catalysts were synthesized and tested in steam reforming and partial oxidation of methane, propane, and isooctane. We demonstrated that the alloy catalysts are much more carbon-tolerant than monometallic Ni catalysts under nearly stoichiometric steam-to-carbon ratios. Under these conditions, monometallic Ni is rapidly poisoned by sp2 carbon deposits. The research approach is distinguished by two characteristics: (a) knowledge-based, bottomup approach, compared to the traditional trial and error approach, allows for a more efficient and systematic discovery of improved catalysts. (b) the focus is on exploring alloy materials which have been largely unexplored as potential reforming catalysts.

  2. The effect of substrate texture and oxidation temperature on oxide texture development in zirconium alloys

    Science.gov (United States)

    Garner, A.; Frankel, P.; Partezana, J.; Preuss, M.

    2017-02-01

    During corrosion of zirconium alloys a highly textured oxide is formed, the degree of this preferred orientation has previously been shown to be an important factor in determining the corrosion behaviour of these alloys. Two distinct experiments were designed in order to investigate the origin of this oxide texture development on two commercial alloys. Firstly, sheet samples of Zircaloy-4 were oxidised between 500 and 800 °C in air. The resulting monoclinic oxide texture strength was observed to decrease with increasing oxidation temperature. In a second experiment, orthogonal faces of Low Tin ZIRLO™ were oxidised in 360 °C water, providing different substrate textures but identical microstructures. The substrate texture was observed to have a negligible effect on the corrosion performance whilst the major orientation of both oxide phases was found to be independent of substrate orientation. It is concluded that the main driving force for oxide texture development in single-phase zirconium alloys is the compressive stress caused by the Zrsbnd ZrO2 transformation.

  3. Conventional and improved cytotoxicity test methods of newly developed biodegradable magnesium alloys

    Science.gov (United States)

    Han, Hyung-Seop; Kim, Hee-Kyoung; Kim, Yu-Chan; Seok, Hyun-Kwang; Kim, Young-Yul

    2015-11-01

    Unique biodegradable property of magnesium has spawned countless studies to develop ideal biodegradable orthopedic implant materials in the last decade. However, due to the rapid pH change and extensive amount of hydrogen gas generated during biocorrosion, it is extremely difficult to determine the accurate cytotoxicity of newly developed magnesium alloys using the existing methods. Herein, we report a new method to accurately determine the cytotoxicity of magnesium alloys with varying corrosion rate while taking in-vivo condition into the consideration. For conventional method, extract quantities of each metal ion were determined using ICP-MS and the result showed that the cytotoxicity due to pH change caused by corrosion affected the cell viability rather than the intrinsic cytotoxicity of magnesium alloy. In physiological environment, pH is regulated and adjusted within normal pH (˜7.4) range by homeostasis. Two new methods using pH buffered extracts were proposed and performed to show that environmental buffering effect of pH, dilution of the extract, and the regulation of eluate surface area must be taken into consideration for accurate cytotoxicity measurement of biodegradable magnesium alloys.

  4. Developments in the Ni-Nb-Zr amorphous alloy membranes. A review

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, S.; Chandra, D. [University of Nevada, Materials Science and Engineering, Reno, NV (United States); Hirscher, M. [Max-Planck-Institut fuer Intelligente Systeme, Stuttgart (Germany); Dolan, M.; Viano, D. [CSIRO, QCAT, Energy, Pullenvale, QLD (Australia); Isheim, D. [Northwestern University, Materials Science and Engineering, Evanston, IL (United States); Wermer, J. [Los Alamos National Laboratory, Los Alamos, NM (United States); Baricco, M. [University of Turin, Department of Chemistry and NIS, Turin (Italy); Udovic, T.J. [National Institute of Standards and Technology, Gaithersburg, MD (United States); Grant, D. [University of Nottingham, Nottingham (United Kingdom); Palumbo, O.; Paolone, A. [CNR-ISC, U.O.S. La Sapienza, Rome (Italy); Cantelli, R. [University of Rome, La Sapienza, Roma (Italy)

    2016-03-15

    Most of the global H{sub 2} production is derived from hydrocarbon-based fuels, and efficient H{sub 2}/CO{sub 2} separation is necessary to deliver a high-purity H{sub 2} product. Hydrogen-selective alloy membranes are emerging as a viable alternative to traditional pressure swing adsorption processes as a means for H{sub 2}/CO{sub 2} separation. These membranes can be formed from a wide range of alloys, and those based on Pd are the closest to commercial deployment. The high cost of Pd (USD ∝31,000 kg{sup -1}) is driving the development of less-expensive alternatives, including inexpensive amorphous (Ni{sub 60}Nb{sub 40}){sub 100-x} Zr{sub x} alloys. Amorphous alloy membranes can be fabricated directly from the molten state into continuous ribbons via melt spinning and depending on the composition can exhibit relatively high hydrogen permeability between 473 and 673 K. Here we review recent developments in these low-cost membrane materials, especially with respect to permeation behavior, electrical transport properties, and understanding of local atomic order. To further understand the nature of these solids, atom probe tomography has been performed, revealing amorphous Nb-rich and Zr-rich clusters embedded in majority Ni matrix whose compositions deviated from the nominal overall composition of the membrane. (orig.)

  5. Status and Development of Laser Processing of Magnesium Alloys%镁合金的激光加工现状与发展

    Institute of Scientific and Technical Information of China (English)

    谢丽初; 全亚杰

    2012-01-01

    The status of laser application in processing of magnesium alloys was systematically reviewed. The equipment and technology for laser processing of magnesium alloys were introduced as well as the development prospects of the laser processing technology. Laser welding can result in the welding joint with fine microstructure and good properties. The laser surface modification techniques such as laser surface melting, laser alloying and laser cladding can improve the surface properties such as hardness, wear resistance and corrosion resistance of the alloys. Laser cutting can achieve high-quality and high-speed machining of the alloys. Thus, the laser processing technology for magnesium alloys will have a wide application in the future.%综述了激光在镁合金加工中的应用现状,介绍了镁合金激光加工设备、工艺技术,并对镁合金激光加工技术的发展进行了展望.激光焊接可以获得组织细小、性能优良的镁合金焊缝;激光表面熔凝、合金化以及激光熔覆等表面改性工艺可提高镁合金的硬度、耐磨性和耐腐蚀等表面性能;激光切割可以实现镁合金的高速高质量切割加工.因此,镁合金的激光加工技术具有广阔的应用前景.

  6. Developing neuronal networks: self-organized criticality predicts the future.

    Science.gov (United States)

    Pu, Jiangbo; Gong, Hui; Li, Xiangning; Luo, Qingming

    2013-01-01

    Self-organized criticality emerged in neural activity is one of the key concepts to describe the formation and the function of developing neuronal networks. The relationship between critical dynamics and neural development is both theoretically and experimentally appealing. However, whereas it is well-known that cortical networks exhibit a rich repertoire of activity patterns at different stages during in vitro maturation, dynamical activity patterns through the entire neural development still remains unclear. Here we show that a series of metastable network states emerged in the developing and "aging" process of hippocampal networks cultured from dissociated rat neurons. The unidirectional sequence of state transitions could be only observed in networks showing power-law scaling of distributed neuronal avalanches. Our data suggest that self-organized criticality may guide spontaneous activity into a sequential succession of homeostatically-regulated transient patterns during development, which may help to predict the tendency of neural development at early ages in the future.

  7. Science communication in India: current situation, history and future developments

    OpenAIRE

    Mazzonetto Marzia

    2005-01-01

    Nowadays, India is experiencing a widespread diffusion of science communication activities. Public institutions, non-governmental organisations and a number of associations are busy spreading scientific knowledge not only via traditional media but also through specific forms of interaction with a varied public. This report aims to provide a historical overview of the diffusion of science communication in India, illustrating its current development and its future prospects.

  8. Development and future perspectives of behavioral medicine in Japan

    OpenAIRE

    Nomura, Shinobu

    2016-01-01

    Development and Future Perspectives of Behavioral Medicine in Japan The study of the “Type A behavior pattern and myocardial infarction” was one of the main themes in the early stage of Behavioral Medicine. After that, behavior modification came to be widely applied to the treatment of various kinds of chronic diseases, and a general concept of Behavioral Medicine was subsequently formed. The Japanese Society of Behavioral Medicine was established in 1992 and is comprised of researchers in th...

  9. [Robotic single site surgery: current practice and future developments].

    Science.gov (United States)

    Buchs, N C; Pugin, F; Volonté, F; Jung, M; Hagen, M E; Morel, P

    2012-06-20

    Robotic surgery has been gaining increasing acceptance for several years now, establishing itself with success in all the surgical fields. Besides, since the introduction of single site surgery, the interest for the robotic technology is more than obvious, offering technical possibilities to overcome the natural limitations of laparoscopy. This article reviews the different devices available and the indications of robotic single site surgery. Moreover, the future developments of this new technology are discussed as well.

  10. Current and future trends in metagenomics : Development of knowledge bases

    Science.gov (United States)

    Mori, Hiroshi; Yamada, Takuji; Kurokawa, Ken

    Microbes are essential for every part of life on Earth. Numerous microbes inhabit the biosphere, many of which are uncharacterized or uncultivable. They form a complex microbial community that deeply affects against surrounding environments. Metagenome analysis provides a radically new way of examining such complex microbial community without isolation or cultivation of individual bacterial community members. In this article, we present a brief discussion about a metagenomics and the development of knowledge bases, and also discuss about the future trends in metagenomics.

  11. Environmental engineering education for developing countries: framework for the future.

    Science.gov (United States)

    Ujang, Z; Henze, M; Curtis, T; Schertenleib, R; Beal, L L

    2004-01-01

    This paper presents the existing philosophy, approach, criteria and delivery of environmental engineering education (E3) for developing countries. In general, environmental engineering is being taught in almost all major universities in developing countries, mostly under civil engineering degree programmes. There is an urgent need to address specific inputs that are particularly important for developing countries with respect to the reality of urbanisation and industrialisation. The main component of E3 in the near future will remain on basic sanitation in most developing countries, with special emphasis on the consumer-demand approach. In order to substantially overcome environmental problems in developing countries, E3 should include integrated urban water management, sustainable sanitation, appropriate technology, cleaner production, wastewater minimisation and financial framework.

  12. Microstructural Development of Ti-B Alloyed Layer for Hard Tissue Applications

    Institute of Scientific and Technical Information of China (English)

    A.Miklaszewski; M.U.Jurczyk; M.Jurczyk

    2013-01-01

    Microstructural development was analyzed due to the effect of different sizes of precursor powders during surface plasma alloying modification on titanium surface.Ti-B nano and micropowders with 10 wt% B were deposited onto microcrystalline titanium substrate by plasma alloying.As a result,modified surface layer composed of Ti matrix and TiB borides was obtained.The type of the powder precursor influenced recasting process,possible occurrence of porosity and finally the obtained properties and microstructure of the surface layer.Different morphologies and sizes of TiB phase from micro,submicro to even nano increased the hardness and wear resistance of the obtained surface layers.Discussed results referred to a strong TiB precipitation dispersion provided by a fine elements homogenization during mechanical alloying process.Additionally,results of in vitro test with normal human osteoblast cells revealed proper cellular adhesion to modified surfaces.Scanning electron microscopy observation revealed the influence of gas pore size on culturing osteoblast colony.The proposed surface alloying was an effective method of producing TiB phase dispersed in α-Ti matrix with high hardness,good corrosion resistance and good cytocompatibility.Results confirmed that different types of the precursor powders influenced the properties of the surface layer.TiB phase dispersed in α-Ti matrix layer can offer new structural and biofunctional properties for innovative products in hard tissue applications.

  13. Metallurgical bonding development of V-4Cr-4Ti alloy for the DIII-D radiative divertor program

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.P.; Johnson, W.R.; Trester, P.W. [General Atomics, San Diego, CA (United States)

    1998-10-01

    General atomics (GA), in conjunction with the Department of Energy`s (DOE) DIII-D Program, is carrying out a plan to utilize a vanadium alloy in the DIII-D tokamak as part of the DIII-D radiative divertor (RD) upgrade. The V-4Cr-4Ti alloy has been selected in the U.S. as the leading candidate vanadium alloy for fusion applications. This alloy will be used for the divertor fabrication. Manufacturing development with the V-4Cr-4Ti alloy is a focus of the DIII-D RD Program. The RD structure, part of which will be fabricated from V-4Cr-4Ti alloy, will require many product forms and types of metal/metal bonded joints. Metallurgical bonding methods development on this vanadium alloy is therefore a key area of study by GA. Several solid-state (non-fusion weld) and fusion weld joining methods are being investigated. To date, GA has been successful in producing ductile, high-strength, vacuum leak-tight joints by all of the methods under investigation. The solid-state joining was accomplished in air, i.e., without the need for a vacuum or inert gas environment to prevent interstitial impurity contamination of the V-4Cr-4Ti alloy. (orig.) 7 refs.

  14. Development of Grain Boundary Precipitate-Free Zones in a Ni-Mo-Cr-W Alloy

    Science.gov (United States)

    Song, Jie; Field, Robert; Konitzer, Doug; Kaufman, Michael

    2017-02-01

    In this study, the morphology and development of precipitate-free zones (PFZs) near grain boundaries (GBs) in low coefficient of thermal expansion (CTE) Ni-Mo-Cr-W alloys (based on Haynes 244) have been investigated as a function of thermal history and composition using electron microscopy techniques. It is shown that the formation of wide, continuous PFZs adjacent to GBs can be largely attributed to a vacancy depletion mechanism. It is proposed that variations in the vacancy distributions that develop after solution heat treatment (SHT) and subsequent quenching and aging greatly influence the development of the γ'-Ni2(Mo,Cr) precipitates during the aging process and result in the development of PFZs of varying sizes. The relatively large (5 to 10 μm) PFZs are distinct from the smaller, more common PFZs that result from solute depletion due to GB precipitation that are typically observed after prolonged aging. During the course of this investigation, heat treatment parameters, such as aging time, SHT temperature, cooling rate after SHT, and heating rate to the aging temperature—all of which change vacancy concentration and distribution adjacent to GBs—were investigated and observed to have significant influence on both the size and morphology of the observed PFZs. In contrast to results from other Ni-based alloys studied previously, PFZ development in the current alloys was observed across a broad range of aging temperatures. This appears to be due to the high misfit strain energy of the γ' precipitates, resulting in a nucleation process that is sensitive to vacancy concentration. It is also shown that a slightly modified alloy with higher Mo concentrations develops smaller, more typical PFZs; this is presumably due to an increased driving force for γ' precipitation which overshadows the influence of misfit strain energy, thereby decreasing the sensitivity of precipitation on vacancy concentration.

  15. Futurism.

    Science.gov (United States)

    Foy, Jane Loring

    The objectives of this research report are to gain insight into the main problems of the future and to ascertain the attitudes that the general population has toward the treatment of these problems. In the first section of this report the future is explored socially, psychologically, and environmentally. The second section describes the techniques…

  16. Development of advanced nuclear materials - Fabrication of Zr-Nb alloy used in PHWRs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang In; Kim, Won Baek; Lee, Chul Kyung; Choi, Kuk Sun; Kang, Dae Kyu; Seo, Chang Ryul [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    The following conclusions can be made from the second year research: 1. Easy control for alloying elements can be made for the following adding metals like Nb, V, Sn, Mo, Fe due to low vapor pressure. In case of Cr and Te= known to have high vapor pressure, they are controlled by adding master alloy(Zr-Cr) or quite excess of aimed composition. However, Bi was found to be very difficult to charging the certain amount into the melt. 2. Oxygen content can be adjusted by adding the Zr-10%O master alloy considering the inherent amount of oxygen in sponge zirconium. 3. The charging rod of 38 mm in diameter, 96 mm in length was made by a series of button melting, casting and vacuum welding, from this, Zr-2.5Nb ingot of 50 mm in diameter and 550 mm in length was fabricated by EB drip melting process. 4. The amount of Nb can be successfully adjusted at 2.8% with charging 15% excess. Nb as adding element is easily controlled due to high-melting -point metal and its low vapor pressure. 5. Oxygen content is not varied during remelting, casting, and drip melting, only slight change was observed in button melting stage due to uptake the desorbed gases during the melting operation. Nuclear materials in domestic nuclear power plants depend on import and this amount reaches 100 million dollars per year. The increase in demand for the development of new zirconium based alloys are expecting. All the results involving this research can be applied for the melting of reactive metals, vacuum refining and alloy design. 13 refs., 6 tabs., 10 figs., 10 ills. (author)

  17. Development status und future possibilities for martensitic creep resistant steels

    Energy Technology Data Exchange (ETDEWEB)

    Hald, J. [Technical Univ. Denmark, Lyngby (Denmark). Dept. of Mechanical Engineering

    2010-07-01

    In the last four decades new stronger modified 9%Cr martensitic creep resistant steels have been introduced in power plants, which has enabled increases in maximum achievable steam conditions from the previous 250 bar and 540-560 C up to the values of 300 bar and 600-620 C currently being introduced all over the world. In order to further increase the steam parameters of steel based power plants up to a target value of 650 C/325 bar it is necessary to double the creep strength of the martensitic steels. At the same time the resistance against steam oxidation must be improved by an increase of the chromium content in the steels from 9% to 12%. However, so far all attempts to make stronger 12%Cr steels have led to breakdowns in long-term creep strength. Significant progress has been achieved in the understanding of microstructure stability of the martensitic 9-12%Cr steels: Observed microstructure instabilities in 11-12%Cr steels are explained by Z-phase precipitation, which dissolves fine MN nitrides. Improved understanding of effects of B and N on long-term creep properties has formed the basis of a series of new stronger 9%Cr test alloys with improved creep strength. In parallel 9%Cr test steels with low C content show very promising behavior in long-term tests. However, the 9%Cr steels must be surface coated to protect against steam oxidation at high temperature applications above 620%C. A possibility to use fine Z-phases for strengthening of the martensitic steels has been identified, and this opens a new pathway for development of stable strong 12%Cr steels. There are still good prospects for the realization of a 325 bar / 650 C steam power plant all based on steel. (orig.)

  18. Development of an Electric induction furnace for heat treatment of ferrous and non-ferrous alloys

    OpenAIRE

    Ufuoma Peter Anaidhuno; Chinedum Ogonna Mgbemena

    2015-01-01

    A 3kg capacity Electric induction furnace with a power rating of 2500W for heat treatment of ferrous and non-ferrous alloys was developed. The furnace which is made from mild steel sheet was monolithically lined with fire clay refractories and designed to attain a temperature of 12000C on the automatic control panel. This project was primarily undertaken to build local capacity in foundry practice in Nigeria and to encourage the demonstration of fundamental foundry practice for undergradua...

  19. Future energy demand in Laos. Scenario alternatives for development

    Energy Technology Data Exchange (ETDEWEB)

    Luukkanen, J.; Kouphokham, K.; Panula-Ontto, J. [and others

    2012-07-01

    Energy production in Laos is still dominated by traditional fuels. Fuelwood in the main source of energy and most of the energy is consumed at households for cooking. Increase in the number of cars and motorbikes is rapidly increasing the use of imported petroleum products. Electrification is one of the central targets of the Lao government. The electrification rate has increased fast in Laos and in the year 2010 over 70 % households had electricity supply. The target is to have 90 % access to electricity by the year 2020. The World Bank regards the electrification of Lao PDR to be a success story. This paper deals with the present and future energy consumption in Laos. First the historical trends of energy use in different sectors are analysed. The future scenarios are constructed using LaoLinda model. Four different future alternative development paths are analysed using the model results. The energy use data source for the analysis is from the Ministry of Energy and Mines (MEM) of Lao PDR. Economic and other data is from the Department of Statistics of Lao PDR.

  20. Semi-solid metal processing of aluminum alloy A356 and magnesium alloy AZ91: Comparison based on metallurgical consideration

    Energy Technology Data Exchange (ETDEWEB)

    Kleiner, S.; Beffort, O. [Swiss Federal Laboratories for Materials Testing and Research, EMPA Thun, CH-3602 Thun (Switzerland); Ogris, E.; Uggowitzer, P.J. [Institute of Metallurgy, ETH Swiss Federal Institute of Technology, CH-8092 Zuerich (Switzerland)

    2003-09-01

    Thixocasting or rheocasting of AZ and AM magnesium alloys continues to be a problematic case in semi-solid processing. The comparison with the aluminum thixo alloy A356 shows that the metallurgical and physical properties of the Mg alloy AZ91 are little compatible with this technology: The conclusions from this study are of fundamental importance for future developments in this field of research. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  1. Trends in research and development for future detectors

    CERN Document Server

    Cattai, Ariella

    2013-01-01

    Development of novel detector concepts has always played a major role in supporting and enabling scientific research. In the forthcoming phase of high energy physics (HEP), the design and development of new detectors and detector concepts will be even more important than it was in the past owing to the harsh environmental conditions and the challenging requests imposed by the physicists' needs for: improved spatial and time resolution, innovative functions, acquisition speed, radiation tolerance, minimal power consumption, robustness and reliability, minimal material and more. This overview addresses the challenges that upgrades and future projects in HEP will impose in terms of novel technologies and stresses the detectors' potential and limitations in attempting to achieve the scientific goals. In addition the increasingly strong dependence on large-scale industrial production and industrial development, especially in the area of integrated electronics, sensors and large complex systems will be addressed.

  2. A study on future nuclear reactor technology and development strategy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. Y.; Kim, S. H.; Sohn, D. S.; Suk, S. D.; Zee, S. K.; Yang, M. H.; Kim, H. J.; Park, W. S

    2000-12-01

    Development of nuclear reactor and fuel cycle technology for future is essential to meet the current issues such as enhancement of nuclear power reactor safety, economically competitive with gas turbine power generation, less production of radioactive waste, proliferation resistant fuel cycle, and public acceptance in consideration of lack of energy resources in the nuclear countries worldwide as well as in Korea. This report deals with as follows, 1) Review the world energy demand and supply perspective and analyse nature of energy and sustainable development to set-up nuclear policy in Korea 2) Recaptitulate the current long term nuclear R and D activities 3) Review nuclear R and D activities and programs of USA, Japan, France, Russia, international organizations such as IAEA, OECD/NEA 4) Recommend development directions of nuclear reactors and fuels.

  3. Development of Computational Tools for Predicting Thermal- and Radiation-Induced Solute Segregation at Grain Boundaries in Fe-based Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-30

    Radiation induced segregation (RIS) has been frequently reported in structural materials such as austenitic, ferritic, and ferritic-martensitic stainless steels (SS) that have been widely used in light water reactors (LWRs). RIS has been linked to secondary degradation effects in SS including irradiation induced stress corrosion cracking (IASCC). Earlier studies on thermal segregation in Fe based alloys found that metalloids elements such as P, S, Si, Ge, Sn etc. embrittle the materials when enrichment was observed at grain boundaries (GBs). RIS of Fe-Cr- Ni based austenitic steels has been modeled in the U.S. 2015 fiscal year (FY2015), which identified the pre-enrichment due to thermal segregation can have an important role on the subsequent RIS. The goal of this work is to develop thermal segregation models for alloying elements in steels for future integration with RIS modeling.

  4. Development of Computational Tools for Predicting Thermal- and Radiation-Induced Solute Segregation at Grain Boundaries in Fe-based Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-30

    Radiation-induced segregation (RIS) has been frequently reported in structural materials such as austenitic, ferritic, and ferritic-martensitic stainless steels (SS) that have been widely used in light water reactors (LWRs). RIS has been linked to secondary degradation effects in SS including irradiation-induced stress corrosion cracking (IASCC). Earlier studies on thermal segregation in Fe-based alloys found that metalloids elements such as P, S, Si, Ge, Sn, etc., embrittle the materials when enrichment was observed at grain boundaries (GBs). RIS of Fe-Cr-Ni-based austenitic steels has been modeled in the U.S. 2015 fiscal year (FY2015), which identified the pre-enrichment due to thermal segregation can have an important role on the subsequent RIS. The goal of this work is to develop thermal segregation models for alloying elements in steels for future integration with RIS modeling.

  5. Epitaxial silicon semiconductor detectors, past developments, future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Gruhn, C.R.

    1976-01-01

    A review of the main physical characteristics of epitaxial silicon as it relates to detector development is presented. As examples of applications results are presented on (1) epitaxial silicon avalanche diodes (ESAD); signal-to-noise, non-linear aspects of the avalanche gain mechanism, gain-bandwidth product, (2) ultrathin epitaxial silicon surface barrier (ESSB) detectors, response to heavy ions, (3) an all-epitaxial silicon diode (ESD), response to heavy ions, charge transport and charge defect. Future prospects of epitaxial silicon as it relates to new detector designs are summarized.

  6. Epitaxial silicon semiconductor detectors: past developments, future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Gruhn, C.R.

    1977-02-01

    A review of the main physical characteristics of epitaxial silicon as it relates to detector development is presented. As examples of applications results are presented on (1) epitaxial silicon avalanche diodes (ESAD); signal-to-noise, non-linear aspects of the avalanche gain mechanism, gain-bandwidth product, (2) ultrathin epitaxial silicon surface barrier (ESSB) detectors, response to heavy ions, (3) an all-epitaxial silicon diode (ESD), response to heavy ions, charge transport and charge defect. Future prospects of epitaxial silicon as it relates to new detector designs are summarized.

  7. New and future developments in catalysis activation of carbon dioxide

    CERN Document Server

    Suib, Steven L

    2013-01-01

    New and Future Developments in Catalysis is a package of books that compile the latest ideas concerning alternate and renewable energy sources and the role that catalysis plays in converting new renewable feedstock into biofuels and biochemicals. Both homogeneous and heterogeneous catalysts and catalytic processes will be discussed in a unified and comprehensive approach. There will be extensive cross-referencing within all volumes. This volume presents a complete picture of all carbon dioxide (CO2) sources, outlines the environmental concerns regarding CO2, and critica

  8. Higgs Physics at Future Colliders recent theoretical developments

    CERN Document Server

    Djouadi, A

    2004-01-01

    I review the physics of the Higgs sector in the Standard Model and its minimal supersymmetric extension, the MSSM. I will discuss the prospects for discovering the Higgs particles at the upgraded Tevatron, at the Large Hadron Collider, and at a future high--energy $e^+e^-$ linear collider with centre--of--mass energy in the 350--800 GeV range, as well as the possibilities for studying their fundamental properties. Some emphasis will be put on the theoretical developments which occurred in the last two years.

  9. Higgs physics at future colliders: Recent theoretical developments

    Indian Academy of Sciences (India)

    Abdelhak Djouadi

    2004-02-01

    I review the physics of the Higgs sector in the standard model and its minimal supersymmetric extension, the MSSM. I will discuss the prospects for discovering the Higgs particles at the ungraded Tevatron, at the large hadron collider, and at a future high-energy $e^{+}e^{-}$ linear collider with centre-of-mass energy in the 350-800 GeV range, as well as the possibilities for studying their fundamental properties. Some emphasis will be put on the theoretical developments which occurred in the last two years.

  10. Neutron irradiation effects on the microstructural development of tungsten and tungsten alloys

    Science.gov (United States)

    Hasegawa, Akira; Fukuda, Makoto; Yabuuchi, Kiyohiro; Nogami, Shuhei

    2016-04-01

    Data on the microstructural development of tungsten (W) and tungsten rhenium (Re) alloys were obtained after neutron irradiation at 400-800 °C in the Japan Materials Testing Reactor (JMTR), the experimental fast test reactor Joyo, and the High Flux Isotope Reactor (HFIR) for irradiation damage levels in the range of 0.09-1.54 displacement per atom (dpa). Microstructural observations showed that a small amount of Re (3-5%) in W-Re alloys is effective in suppressing void formation. In W-Re alloys with Re concentrations greater than 10%, acicular precipitates are the primary structural defects. In the HFIR-irradiated specimen, in which a large amount of Re was expected to be produced by the nuclear transmutation of W to Re because of the reactor's high thermal neutron flux, voids were not observed even in pure W. The synergistic effects of displacement damage and solid transmutation elements on microstructural development are discussed, and the microstructural development of tungsten materials utilized in fusion reactors is predicted.

  11. [Directions for future development of preventive medicine in Korea].

    Science.gov (United States)

    Kim, Joon Youn

    2006-05-01

    It is the actual state of the medical society in our country that many graduates of medical schools want to be clinicians, and accordingly Korea's medical situation is relatively too focused on curative medicine. However, this situation is changing due to several factors including a growing number of doctors, inappropriate regulations for medical fees, changes in social status of doctors themselves, and excessive competition between doctors. Furthermore, we expect more advances in medical field of Korea since Korean government started to attach great importance to sciences and produced policies to support sciences, and as a result, more and more interest and effort in the fields of basic research including preventive medicine is being attached especially by young doctors as compared against the past. However, decline of clinical medicine fields doesn't always mean bright future for the field of preventive medicine. True future is possible and meaningful only when we prepare for it by ourselves. In other words, as the promising future is closed to one who spares no effort, we shouldn't fear to oppose unknown challenges and simultaneously need to support colleagues who bear such a positive mind. It is the most important thing for our preventive medicine doctors to evaluate the past and the present of preventive medicine and to foster a prospective mind to prepare for the future of preventive medicine. I set forth my several views according to directions for the development of preventive medicine which we already discussed and publicized in the academic circle of preventive medicine. Those directions are recommen dation of clinical preventive medicine, promotion of preventive medicine specialty, fostering the next generations, improving the quality of genetic epidemiologic study, participation in control of environmental pollution and food safety, contribution to chronic disease control, and preparation to role in medical services for unified Korea.

  12. Preliminary Design of U-Mo Alloy Dispersion Fuel Assembly

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>As a kind of new type fuel for research reactor, high density U-Mo alloy dispersion fuel which will substitute current fuel in the future is being studied and developed by RERTR. There are two characteristics

  13. Development and selection of a matrix alloy for /sup 85/Kr encapsulation

    Energy Technology Data Exchange (ETDEWEB)

    Knoll, R.W.; McClanahan, E.D.; Tingey, G.L.; McDonald, E.L.

    1986-07-01

    Pacific Northwest Laboratory has developed and demonstrated a pilot-scale process for stable, long-term storage of radioactive /sup 85/Kr gas from spent nuclear fuel. The process entraps the Kr into a solid metal matrix that can be safely stored at ambient pressure. For this matrix numerous alloys were first screened; those that best satisfied the selection criteria were Cu-Y, Ni-Y, and Ni-La. Of these, Cu-Y alloys containing approximately 20 at.% Y were recommended for use in the pilot-scale system. Reasons for this decision, based on the development work described in Section 5, are summarized here. Thick Cu-Y-Kr deposits (greater than or equal to1 mm) exhibit much better thermal and mechanical stability than do those of Ni-La-Kr and are at least as stable as Ni-Y-Kr deposits. Cu-Y-Kr coatings are very compatible with the sputtering process. They adhere well to the substrate, do not spall significantly during deposition, and can be deposited at higher rates than the Ni-base alloys. This faster deposition helps compensate, in terms of process efficiency, for the lower Kr capacity of Cu-Y-Kr alloys. Another advantage of Cu-Y over Ni-base alloys is the higher vapor pressure of Cu compared to Ni. This reduces the unwanted buildup of Cu on the hot anode surface, whereas deposition of Ni is a problem with Ni-Y, for example. Cu-Y-Kr deposits containing 17 to 20 at. % Y and 6 to 8 at. % Kr compared favorably to Ni/sub 80/La/sub 10/Kr/sub 10/ in terms of long-term Kr retention characteristics. The measurements of Cu-Y-Kr by differential scanning calorimetry also indicated stable retention of Kr because rapid release did not occur below approx.650/sup 0/C. Finally, Cu-Y alloys are satisfactory in terms of materials costs and producibility of the sputtering target. 13 refs., 9 figs., 4 tabs.

  14. POPULAR MARKETS: FROM FUTURE STUDIES TO THE DEVELOPMENT OF PRODUCTS

    Directory of Open Access Journals (Sweden)

    Antonio Thiago Benedete da Silva

    2009-10-01

    Full Text Available Strategies for running companies in low-income markets have been in the spotlight in both the academic and the corporate environments.However, the first discussions about the relevance of such markets arose during the 1980s, when scenario-prospecting studies showed that popular markets would provide many opportunities around the year 2000.Indeed, at present, the base of the pyramid has many unaddressed needs that offer business possibilities for those companies that are willing to review their strategies. In this context, product development becomes increasingly important, since products targeting consumers of the C, D and E classes may need different features from those of goods manufactured for the A and B classes.The aim of this study is to revisit past popular market forecasts and to identify development trends for goods that target low- income consumers.Our results indicate that Wright and Johnson’s (1984 studies predicted that Brazil would maintain both qualitative and quantitative progress in its socioeconomic development over the next two decades and that the development of popular products is undergoing a buoyant phase.Several functional perspectives were used to develop an understanding of the phenomenon, especially marketing, engineering and manufacturing.Key words: Future studies. Popular markets. Product development.

  15. Development of alloy-film coated dispenser cathode for terahertz vacuum electron devices application

    Energy Technology Data Exchange (ETDEWEB)

    Barik, R.K.; Bera, A. [School of Electrical Engineering and Computer Science, Seoul National University, Seoul (Korea, Republic of); Raju, R.S. [Central Electronics Engineering Research Institute (CEERI), Rajasthan (India); Tanwar, A.K.; Baek, I.K.; Min, S.H.; Kwon, O.J.; Sattorov, M.A. [Department of Physics and Astronomy, Center for THz-Bio Application Systems, and Seoul-Teracom Inc., Seoul National University, Seoul (Korea, Republic of); Lee, K.W. [LIG Nex1, Seoul (Korea, Republic of); Park, G.-S., E-mail: gunsik@snu.ac.kr [School of Electrical Engineering and Computer Science, Seoul National University, Seoul (Korea, Republic of); Department of Physics and Astronomy, Center for THz-Bio Application Systems, and Seoul-Teracom Inc., Seoul National University, Seoul (Korea, Republic of); Advanced Institute of Convergence Technology, Suwon-si, Gyeonggi-do (Korea, Republic of)

    2013-07-01

    High power terahertz vacuum electron devices demand high current density and uniform emission dispenser cathode. It was found that the coating of noble metals e.g., Os, Ir, and Re on the surface of tungsten dispenser cathodes enhances the emission capabilities and uniformity. Hence metal coated cathode might be the best candidate for terahertz devices applications. In this study, ternary-alloy-film cathode (2Os:2Re:1 W) and Os coated cathode have been developed and the results are presented. The cathodes made out of this alloy coating showed 1.5 times higher emission and 0.02 eV emission uniformity as compared to those of simply Os coated cathodes which can be used in terahertz devices application.

  16. Development of microarc oxidation process to improve corrosion resistance on AZ91HP magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Rong-fa; SHAN Da-yong; HAN En-hou; GUO Shi-bo

    2006-01-01

    A new anodizing process,which does not contain chromate but can improve the corrosion resistance of magnesium alloys significantly,was developed using a microarc power supply. Surface morphology was observed and the coating was compact and ceramic-like. In addition,the corrosion resistance of samples before and after anodization by the new process and a method in US Patent 5470664 was compared by potentiodymaic polarization curves,electrochemical impedance spectroscopy (EIS) and salt spray test. The results show that the anodization can improve the corrosion resistance of magnesium alloy. The samples obtained by the new process and the method mentioned in the US Patent 5470664 achieve 9 and 7 rates after 336 h salt spray test,respectively.

  17. Development of Stellite alloy composites with sintering/HIPing technique for wear-resistant applications

    Energy Technology Data Exchange (ETDEWEB)

    Opris, C.D. [Department of Mechanical and Aerospace Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, Ont., K1S 5B6 (Canada); Liu, R. [Department of Mechanical and Aerospace Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, Ont., K1S 5B6 (Canada)]. E-mail: rliu@mae.carleton.ca; Yao, M.X. [Deloro Stellite Inc., Belleville, Ont., K8N 5C4 (Canada); Wu, X.J. [Institute for Aerospace Research, National Research Council of Canada, Ottawa, Ont., K1A 0R6 (Canada)

    2007-07-01

    Cobalt-based superalloys, Stellite 694 and Stellite 712, composites were developed with the reinforcement of titanium-carbide particles for wear-resistant applications. The specimens were fabricated using the powder metallurgy technique, combined with hot isostatic pressing. Calorimetric effects of the alloy powders were investigated using the differential scanning calorimetry technique, which provided the theoretical basis of designing the sintering cycles. The phases formed in the microstructures were analyzed using the scanning electron microscope (SEM) and energy dispersive X-ray spectrum (EDS) techniques. The wear test was conducted on a ball-on-disc tribometer. It was demonstrated that the wear resistance of the alloys had been increased significantly by the titanium-carbide reinforcement and the hot isostatic pressing process had enhanced the wear resistance of the materials.

  18. Development of Barrier Layers for the Protection of Candidate Alloys in the VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Levi, Carlos G. [Battelle Energy Alliance, LLC, Idaho Falls, ID (United States); Jones, J. Wayne [Battelle Energy Alliance, LLC, Idaho Falls, ID (United States); Pollock, Tresa M. [Battelle Energy Alliance, LLC, Idaho Falls, ID (United States); Was, Gary S. [Battelle Energy Alliance, LLC, Idaho Falls, ID (United States)

    2015-01-22

    The objective of this project was to develop concepts for barrier layers that enable leading candi- date Ni alloys to meet the longer term operating temperature and durability requirements of the VHTR. The concepts were based on alpha alumina as a primary surface barrier, underlay by one or more chemically distinct alloy layers that would promote and sustain the formation of the pro- tective scale. The surface layers must possess stable microstructures that provide resistance to oxidation, de-carburization and/or carburization, as well as durability against relevant forms of thermo-mechanical cycling. The system must also have a self-healing ability to allow endurance for long exposure times at temperatures up to 1000°C.

  19. Proceedings of the 2. workshop on vanadium alloy development for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Osch, E.V. van [ed.

    1996-10-01

    From 20 to 22 May 1996 the Second IEA Vanadium Alloy Development for Fusion Workshop was held at the Netherlands Energy Research Foundation, ECN in Petten. Twenty three experts from the European Union, Japan, the Russian Federation and the United States exchanged results and analyses of completed experiments and discussed the program planning. The manufacturing of half-finished products and the optimization of subsequent heat treatments were presented and discussed in the first session. The problems and solutions to joining vanadium alloy half-finished products by welding and brazing have been addressed in another session. Corrosion and compatibility properties have been evaluated in a different session together with coating requirements. Several sessions were devoted to the effects of radiation on the mechanical properties, especially toughness, of vanadium alloys. Also the role of the transmutation product helium, in particular its introduction into specimens, was evaluated. The respective plans of the four parties for continuation of the ongoing research and development programs have been discussed with the emphasis on avoiding duplications in the area of radiation experiments. The critical issues were identified and the related priorities discussed in the time frame set by the schedule for the building of ITER test modules and with the long term DEMO requirements in mind. (orig.).

  20. Development of a Two-Phase Model for the Hot Deformation of Highly-Alloyed Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    A. J. Beaudoin; J. A. Dantzig; I. M. Robertson; B. E. Gore; S. F. Harnish; H. A. Padilla

    2005-10-31

    Conventional processing methods for highly alloyed aluminum consist of ingot casting, followed by hot rolling and thermal treatments. Defects result in lost productivity and wasted energy through the need to remelt and reprocess the material. This research centers on developing a fundamental understanding for deformation of wrought 705X series alloys, a key alloy system used in structural airframe applications. The development of damage at grain boundaries is characterized through a novel test that provides initiation of failure while preserving a controlled deformation response. Data from these mechanical tests are linked to computer simulations of the hot rolling process through a critical measure of damage. Transmission electron microscopy provides fundamental insight into deformation at these high working temperatures, and--in a novel link between microscale and macroscale response--the evolution of microstructure (crystallographic orientation) provides feedback for tuning of friction in the hot rolling process. The key product of this research is a modeling framework for the analysis of industrial hot rolling.

  1. Surface modification of magnesium alloys developed for bioabsorbable orthopedic implants: a general review.

    Science.gov (United States)

    Wang, Jiali; Tang, Jian; Zhang, Peng; Li, Yangde; Wang, Jue; Lai, Yuxiao; Qin, Ling

    2012-08-01

    As a bioabsorbable metal with mechanical properties close to bone, pure magnesium or its alloys have great potential to be developed as medical implants for clinical applications. However, great efforts should be made to avoid its fast degradation in vivo for orthopedic applications when used for fracture fixation. Therefore, how to decease degradation rate of pure magnesium or its alloys is one of the focuses in Research and Development (R&D) of medical implants. It has been recognized that surface modification is an effective method to prevent its initial degradation in vivo to maintain its desired mechanical strength. This article reviews the recent progress in surface modifications for prevention of fast degradation of magnesium or its alloys using in vitro testing model, a fast yet relevant model before moving towards time-consuming and expensive in vivo testing. Pros and cons of various surface modifications are also discussed for the goal to design available products to be applied in clinical trials. Copyright © 2012 Wiley Periodicals, Inc.

  2. Development of Weld Overlay System for Dissimilar Metal Alloy 82/182 Butt Welds

    Energy Technology Data Exchange (ETDEWEB)

    Park, K. S.; Byeon, J. G.; Kim, Y. J. [Doosan Heavy Industries and Construction Co., Ltd., Changwon (Korea, Republic of)

    2008-10-15

    As a result of the alloy 600 PWSCC(Primary Water Stress Corrosion Cracking), leak in the dissimilar welds in pressurizer nozzle was discovered recently in several US plants and the advanced companies had developed repair techniques. 2 or 3 years from now, more than half of the nuclear power plants in the country will be operated more than 20 years. Therefore, we need to develop repair techniques of dissimilar welds in pressurizer nozzle. With above backgrounds, we have developed a Prototype of Repair System for dissimilar welds in pressurizer nozzle.

  3. Mobile display technologies: Past developments, present technologies, and future opportunities

    Science.gov (United States)

    Ohshima, Hiroyuki

    2014-01-01

    It has been thirty years since the first active matrix (AM) flat panel display (FPD) was industrialized for portable televisions (TVs) in 1984. The AM FPD has become a dominant electronic display technology widely used from mobile displays to large TVs. The development of AM FPDs for mobile displays has significantly changed our lives by enabling new applications, such as notebook personal computers (PCs), smartphones and tablet PCs. In the future, the role of mobile displays will become even more important, since mobile displays are the live interface for the world of mobile communications in the era of ubiquitous networks. Various developments are being conducted to improve visual performance, reduce power consumption and add new functionality. At the same time, innovative display concepts and novel manufacturing technologies are being investigated to create new values.

  4. Ideas for a Cooperative Software Development for Future GGOS Stations

    Science.gov (United States)

    Neidhardt, A.; Ettl, M.

    2012-12-01

    The development of software is a creative process, which offers a huge degree of freedom. In scientific fields a lot of researchers develop their own software for specific needs. Everyone has their own preferences and backgrounds regarding the used programming languages, styles, and platforms. This complexity results in software which is not always directly usable by others in the communities. In addition, the software is often error-prone as hidden bugs are not always revealed. Therefore ideas came up to solve these problems at the Geodetic Observatory Wettzell. The results were coding layouts and policies, documentation strategies, the usage of version control, and a consistent process of continuous integration. Within this, the discussed quality factors can define quality metrics which help to quantize code quality. The resulting software is a repository of tested modules that can be used in different programs for the geodetic space techniques. This is one possible contribution to future GGOS stations.

  5. The Roman Law Tradition and Its Future Development in China

    Institute of Scientific and Technical Information of China (English)

    WANG Zhenmin

    2006-01-01

    In Late Qing Dynasty,the Chinese Law Family was disintegrated and the Western Law was introduced into China.Finally,China adopted the European continental Roman law tradition.This paper analyzes the reason for China's borrowing of such legal system and probes its development and reform in the later years.It also tries to answer the question of what will be the possible impact upon the current Chinese legal system since China now implements the policy of "one country two systems" in order to realize its reunification with Hong Kong,Macau and Taiwan.In addition,it will make some prediction upon the future development of Chinese legal system.

  6. [Robotic colorectal surgery: current status and future developments].

    Science.gov (United States)

    Jayne, D

    2013-08-01

    Robotic assistance has the potential to compensate for the limitations inherent in standard laparoscopic surgery. The daVinci® surgical system remains the only currently available commercial robotic system. It has found popularity in rectal cancer surgery where its application has consistently been shown to reduce the need to convert to open surgery. With this exception, the technological advances of the robotic system have not so far translated into any reproducible patient benefit. The first part of this manuscript presents an overview of the current daVinci® platform, its applications, the evidence base and future developments in colorectal surgery. The second part of the manuscript looks at other robot systems in development and the different innovations and strategies taken to advance minimally invasive surgery.The English full-text version of this article is available at SpringerLink (under supplemental).

  7. [Future development of radioecological investigations--new international projects].

    Science.gov (United States)

    Sanzharova, N I

    2014-01-01

    Information is given on the future development of nuclear power engineering and the need to ensure environmental safety. The complexity of the emerging problems requires a wide international integration of scientific investigations. Also described are ecological projects that have been implemented by the IAER after the Chernobyl NPP accident, as well as a new project, MODARIA, which will pay special attention to the improvement of models for radionuclide transfer and estimation of radiation effects on both humans and biota. The strategy and agenda for the development of radioecological studies in the 21st century are described which are being realized by the nine key research centers (European Radioecology Alliance) under the EC project STAR.

  8. Surface tension of liquid metals and alloys--recent developments.

    Science.gov (United States)

    Egry, I; Ricci, E; Novakovic, R; Ozawa, S

    2010-09-15

    Surface tension measurements are a central task in the study of surfaces and interfaces. For liquid metals, they are complicated by the high temperatures and the consequently high reactivity characterising these melts. In particular, oxidation of the liquid surface in combination with evaporation phenomena requires a stringent control of the experimental conditions, and an appropriate theoretical treatment. Recently, much progress has been made on both sides. In addition to improving the conventional sessile drop technique, new containerless methods have been developed for surface tension measurements. This paper reviews the experimental progress made in the last few years, and the theoretical framework required for modelling and understanding the relevant physico-chemical surface phenomena.

  9. Pharmacovigilance and Biomedical Informatics: A Model for Future Development.

    Science.gov (United States)

    Beninger, Paul; Ibara, Michael A

    2016-12-01

    The discipline of pharmacovigilance is rooted in the aftermath of the thalidomide tragedy of 1961. It has evolved as a result of collaborative efforts by many individuals and organizations, including physicians, patients, Health Authorities, universities, industry, the World Health Organization, the Council for International Organizations of Medical Sciences, and the International Conference on Harmonisation. Biomedical informatics is rooted in technologically based methodologies and has evolved at the speed of computer technology. The purpose of this review is to bring a novel lens to pharmacovigilance, looking at the evolution and development of the field of pharmacovigilance from the perspective of biomedical informatics, with the explicit goal of providing a foundation for discussion of the future direction of pharmacovigilance as a discipline. For this review, we searched [publication trend for the log10 value of the numbers of publications identified in PubMed] using the key words [informatics (INF), pharmacovigilance (PV), phar-macovigilance þ informatics (PV þ INF)], for [study types] articles published between [1994-2015]. We manually searched the reference lists of identified articles for additional information. Biomedical informatics has made significant contributions to the infrastructural development of pharmacovigilance. However, there has not otherwise been a systematic assessment of the role of biomedical informatics in enhancing the field of pharmacovigilance, and there has been little cross-discipline scholarship. Rapidly developing innovations in biomedical informatics pose a challenge to pharmacovigilance in finding ways to include new sources of safety information, including social media, massively linked databases, and mobile and wearable wellness applications and sensors. With biomedical informatics as a lens, it is evident that certain aspects of pharmacovigilance are evolving more slowly. However, the high levels of mutual interest in

  10. Challenges and future in vaccines, drug development, and immunomodulatory therapy.

    Science.gov (United States)

    Kling, Heather M; Nau, Gerard J; Ross, Ted M; Evans, Thomas G; Chakraborty, Krishnendu; Empey, Kerry M; Flynn, JoAnne L

    2014-08-01

    Pulmonary diseases and infections are among the top contributors to human morbidity and mortality worldwide, and despite the successful history of vaccines and antimicrobial therapeutics, infectious disease still presents a significant threat to human health. Effective vaccines are frequently unavailable in developing countries, and successful vaccines have yet to be developed for major global maladies, such as tuberculosis. Furthermore, antibiotic resistance poses a growing threat to human health. The "Challenges and Future in Vaccines, Drug Development, and Immunomodulatory Therapy" session of the 2013 Pittsburgh International Lung Conference highlighted several recent and current studies related to treatment and prevention of antibiotic-resistant bacterial infections, highly pathogenic influenza, respiratory syncytial virus, and tuberculosis. Research presented here focused on novel antimicrobial therapies, new vaccines that are either in development or currently in clinical trials, and the potential for immunomodulatory therapies. These studies are making important contributions to the areas of microbiology, virology, and immunology related to pulmonary diseases and infections and are paving the way for improvements in the efficacy of vaccines and antimicrobials.

  11. Behavioral medicine in China: history, current status, and future development.

    Science.gov (United States)

    Bai, Bo; Ji, Feng

    2014-08-01

    Behavioral medicine in China has developed quickly in the last three decades. We briefly summarized the history, the main scope and achievements, and the future development of behavioral medicine in China. We did a literature search and discussed with senior scholars in behavioral medicine in China. The concept and main scope of behavioral medicine in China have been developed largely in accordance with the international perspective. Research in behavioral medicine in China significantly contributed to the better understanding of the relationship between various health behavioral factors and psychosomatic disorders and possible mechanisms of this relationship. The following aspects will be the main areas to be further developed in behavioral medicine in China: (1) Basic theories of behavioral medicine and theoretical mechanisms of higher nervous activities in human behavior regulation. (2) Etiology, pathogenesis, and mechanisms of common diseases that are closely related to human lifestyle behaviors. (3) Assessment criteria for unhealthy and disease-related behaviors. (4) Behavioral therapy of psychosomatic disorders, and rehabilitation technologies of disability. (5) Application of major findings from research of behavioral medical science in clinical practice and in health promotion of the whole society. Behavioral medicine in China, as a multidisciplinary subject, plays a relevant role in preventing behavior-related psychosomatic diseases and in promoting health of the public.

  12. Development of wear-resistant coatings for cobalt-base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cockeram, B.V.

    1999-03-01

    The costs and hazards resulting from nuclear plant radiation exposure with activated cobalt wear debris could potentially be reduced by covering the cobalt-base materials with a wear resistant coating. However, the hardnesses of many cobalt-base wear alloys are significantly lower than conventional PVD hard coatings, and mechanical support of the hard coating is a concern. Four approaches have been taken to minimize the hardness differences between the substrate and PVD hard coating: (1) use a thin Cr-nitride hard coating with layers that are graded with respect to hardness, (2) use a thicker, multilayered coating (Cr-nitride or Zr-nitride) with graded layers, (3) use nitriding to harden the alloy subsurface followed by application of a multilayered coating of Cr-nitride, and (4) use of nitriding alone. Since little work has been done on application of PVD hard coatings to cobalt-base alloys, some details on process development and characterization of the coatings is presented. Scratch testing was used to evaluate the adhesion of the different coatings. A bench-top rolling contact test was used to evaluate the wear resistance of the coatings. The test results are discussed, and the more desirable coating approaches are identified.

  13. Development of Cast Alumina-forming Austenitic Stainless Steel Alloys for use in High Temperature Process Environments

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, Govindarajan [ORNL; Yamamoto, Yukinori [ORNL; Brady, Michael P [ORNL; Pint, Bruce A [ORNL; Pankiw, Roman [Duraloy Technologies Inc; Voke, Don [Duraloy Technologies Inc

    2015-01-01

    There is significant interest in the development of alumina-forming, creep resistant alloys for use in various industrial process environments. It is expected that these alloys can be fabricated into components for use in these environments through centrifugal casting and welding. Based on the successful earlier studies on the development of wrought versions of Alumina-Forming Austenitic (AFA) alloys, new alloy compositions have been developed for cast products. These alloys achieve good high-temperature oxidation resistance due to the formation of protective Al2O3 scales while multiple second-phase precipitation strengthening contributes to excellent creep resistance. This work will summarize the results on the development and properties of a centrifugally cast AFA alloy. This paper highlights the strength, oxidation resistance in air and water vapor containing environments, and creep properties in the as-cast condition over the temperature range of 750°C to 900°C in a centrifugally cast heat. Preliminary results for a laboratory cast AFA composition with good oxidation resistance at 1100°C are also presented.

  14. Novel Directional Solidification Processing of Hypermonotectic Alloys

    Science.gov (United States)

    Kaukler, William; Fedoseyev, Alex

    2002-01-01

    A model has been developed that determines the size of Liquid (sub 11) droplets generated during application of ultrasonic energy (as a function of amplitude) to immiscible alloys. The initial results are in accordance with experimental results based on Succinonitrile - Glycerol "alloys" and pure tin dispersions. Future work will take into account the importance of other effects, e.g., thermo-vibrational convection, sound attenuation, viscosity variations, and compositional changes.

  15. The future for vaccine development against Entamoeba histolytica.

    Science.gov (United States)

    Quach, Jeanie; St-Pierre, Joëlle; Chadee, Kris

    2014-01-01

    Entamoeba histolytica is the causative agent of amebiasis, one of the top three parasitic causes of mortality worldwide. In the majority of infected individuals, E. histolytica asymptomatically colonizes the large intestine, while in others, the parasite breaches the mucosal epithelial barrier to cause amebic colitis and can disseminate to soft organs to cause abscesses. Vaccinations using native and recombinant forms of the parasite Gal-lectin have been successful in protecting animals against intestinal amebiasis and amebic liver abscess. Protection against amebic liver abscesses has also been reported by targeting other E. histolytica components including the serine-rich protein and the 29-kDa-reductase antigen. To date, vaccines against the Gal-lectin hold the most promise but clinical trials will be required to validate its efficacy in humans. Here, we review the current strategies and future perspectives involved in the development of a vaccine against E. histolytica.

  16. Developing 1D nanostructure arrays for future nanophotonics

    Directory of Open Access Journals (Sweden)

    Cooke DG

    2006-01-01

    Full Text Available AbstractThere is intense and growing interest in one-dimensional (1-D nanostructures from the perspective of their synthesis and unique properties, especially with respect to their excellent optical response and an ability to form heterostructures. This review discusses alternative approaches to preparation and organization of such structures, and their potential properties. In particular, molecular-scale printing is highlighted as a method for creating organized pre-cursor structure for locating nanowires, as well as vapor–liquid–solid (VLS templated growth using nano-channel alumina (NCA, and deposition of 1-D structures with glancing angle deposition (GLAD. As regards novel optical properties, we discuss as an example, finite size photonic crystal cavity structures formed from such nanostructure arrays possessing highQand small mode volume, and being ideal for developing future nanolasers.

  17. The future for vaccine development against Entamoeba histolytica

    Science.gov (United States)

    Quach, Jeanie; St-Pierre, Joëlle; Chadee, Kris

    2014-01-01

    Entamoeba histolytica is the causative agent of amebiasis, one of the top three parasitic causes of mortality worldwide. In the majority of infected individuals, E. histolytica asymptomatically colonizes the large intestine, while in others, the parasite breaches the mucosal epithelial barrier to cause amebic colitis and can disseminate to soft organs to cause abscesses. Vaccinations using native and recombinant forms of the parasite Gal-lectin have been successful in protecting animals against intestinal amebiasis and amebic liver abscess. Protection against amebic liver abscesses has also been reported by targeting other E. histolytica components including the serine-rich protein and the 29-kDa-reductase antigen. To date, vaccines against the Gal-lectin hold the most promise but clinical trials will be required to validate its efficacy in humans. Here, we review the current strategies and future perspectives involved in the development of a vaccine against E. histolytica. PMID:24504133

  18. Robotic technology in spine surgery: current applications and future developments.

    Science.gov (United States)

    Stüer, Carsten; Ringel, Florian; Stoffel, Michael; Reinke, Andreas; Behr, Michael; Meyer, Bernhard

    2011-01-01

    Medical robotics incrementally appears compelling in nowadays surgical work. The research regarding an ideal interaction between physician and computer assistance has reached a first summit with the implementation of commercially available robots (Intuitive Surgical's® da Vinci®). Moreover, neurosurgery--and herein spine surgery--seems an ideal candidate for computer assisted surgery. After the adoption of pure navigational support from brain surgery to spine surgery a meanwhile commercially available miniature robot (Mazor Surgical Technologies' The Spine Assist®) assists in drilling thoracic and lumbar pedicle screws. Pilot studies on efficacy, implementation into neurosurgical operating room work flow proved the accuracy of the system and we shortly outline them. Current applications are promising, and future possible developments seem far beyond imagination. But still, medical robotics is in its infancy. Many of its advantages and disadvantages must be delicately sorted out as the patients safety is of highest priority. Medical robots may achieve a physician's supplement but not substitute.

  19. Section III, Division 5 - Development and Future Directions

    Energy Technology Data Exchange (ETDEWEB)

    D. K. Morton; R I Jetter; James E Nestell; T. D. Burchell; T L (Sam) Sham

    2012-07-01

    This paper provides commentary on a new division under Section III of the ASME Boiler and Pressure Vessel (BPV) Code. This new Division 5 has an issuance date of November 1, 2011 and is part of the 2011 Addenda to the 2010 Edition of the BPV Code. The new Division covers the rules for the design, fabrication, inspection and testing of components for high temperature nuclear reactors. Information is provided on the scope and need for Division 5, the structure of Division 5, where the rules originated, the various changes made in finalizing Division 5, and the future near-term and long-term expectations for Division 5 development. Portions of this paper were based on Chapter 17 of the Companion Guide to the ASME Boiler & Pressure Vessel Code, Fourth Edition, © ASME, 2012, Reference.

  20. Scenario drafting to anticipate future developments in technology assessment

    Directory of Open Access Journals (Sweden)

    Retèl Valesca P

    2012-08-01

    Full Text Available Abstract Background Health Technology Assessment (HTA information, and in particular cost-effectiveness data is needed to guide decisions, preferably already in early stages of technological development. However, at that moment there is usually a high degree of uncertainty, because evidence is limited and different development paths are still possible. We developed a multi-parameter framework to assess dynamic aspects of a technology -still in development-, by means of scenario drafting to determine the effects, costs and cost-effectiveness of possible future diffusion patterns. Secondly, we explored the value of this method on the case of the clinical implementation of the 70-gene signature for breast cancer, a gene expression profile for selecting patients who will benefit most from chemotherapy. Methods To incorporate process-uncertainty, ten possible scenarios regarding the introduction of the 70-gene signature were drafted with European experts. Out of 5 most likely scenarios, 3 drivers of diffusion (non-compliance, technical failure, and uptake were quantitatively integrated in a decision-analytical model. For these scenarios, the cost-effectiveness of the 70-gene signature expressed in Incremental Cost-Effectiveness Ratios (ICERs was compared to clinical guidelines, calculated from the past (2005 until the future (2020. Results In 2005 the ICER was €1,9 million/quality-adjusted-life-year (QALY, meaning that the 70-gene signature was not yet cost-effective compared to the current clinical guideline. The ICER for the 70-gene signature improved over time with a range of €1,9 million to €26,145 in 2010 and €1,9 million to €11,123/QALY in 2020 depending on the separate scenario used. From 2010, the 70-gene signature should be cost-effective, based on the combined scenario. The uptake-scenario had strongest influence on the cost-effectiveness. Conclusions When optimal diffusion of a technology is sought, incorporating process

  1. Status and Future Developments in Large Accelerator Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Karen S. White

    2006-10-31

    Over the years, accelerator control systems have evolved from small hardwired systems to complex computer controlled systems with many types of graphical user interfaces and electronic data processing. Today's control systems often include multiple software layers, hundreds of distributed processors, and hundreds of thousands of lines of code. While it is clear that the next generation of accelerators will require much bigger control systems, they will also need better systems. Advances in technology will be needed to ensure the network bandwidth and CPU power can provide reasonable update rates and support the requisite timing systems. Beyond the scaling problem, next generation systems face additional challenges due to growing cyber security threats and the likelihood that some degree of remote development and operation will be required. With a large number of components, the need for high reliability increases and commercial solutions can play a key role towards this goal. Future control systems will operate more complex machines and need to present a well integrated, interoperable set of tools with a high degree of automation. Consistency of data presentation and exception handling will contribute to efficient operations. From the development perspective, engineers will need to provide integrated data management in the beginning of the project and build adaptive software components around a central data repository. This will make the system maintainable and ensure consistency throughout the inevitable changes during the machine lifetime. Additionally, such a large project will require professional project management and disciplined use of well-defined engineering processes. Distributed project teams will make the use of standards, formal requirements and design and configuration control vital. Success in building the control system of the future may hinge on how well we integrate commercial components and learn from best practices used in other industries.

  2. Microalgal Cultivation in Secondary Effluent: Recent Developments and Future Work

    Directory of Open Access Journals (Sweden)

    Junping Lv

    2017-01-01

    Full Text Available Eutrophication of water catchments and the greenhouse effect are major challenges in developing the global economy in the near future. Secondary effluents, containing high amounts of nitrogen and phosphorus, need further treatment before being discharged into receiving water bodies. At the same time, new environmentally friendly energy sources need to be developed. Integrating microalgal cultivation for the production of biodiesel feedstock with the treatment of secondary effluent is one way of addressing both issues. This article provides a comprehensive review of the latest progress in microalgal cultivation in secondary effluent to remove pollutants and accumulate lipids. Researchers have discovered that microalgae remove nitrogen and phosphorus effectively from secondary effluent, accumulating biomass and lipids in the process. Immobilization of appropriate microalgae, and establishing a consortium of microalgae and/or bacteria, were both found to be feasible ways to enhance pollutant removal and lipid production. Demonstrations of pilot-scale microalgal cultures in secondary effluent have also taken place. However there is still much work to be done in improving pollutants removal, biomass production, and lipid accumulation in secondary effluent. This includes screening microalgae, constructing the consortium, making use of flue gas and nitrogen, developing technologies related to microalgal harvesting, and using lipid-extracted algal residues (LEA.

  3. Critical Technologies for the Development of Future Space Elevator Systems

    Science.gov (United States)

    Smitherman, David V., Jr.

    2005-01-01

    A space elevator is a tether structure extending through geosynchronous earth orbit (GEO) to the surface of the earth. Its center of mass is in GEO such that it orbits the earth in sync with the earth s rotation. In 2004 and 2005, the NASA Marshall Space Flight Center and the Institute for Scientific Research, Inc. worked under a cooperative agreement to research the feasibility of space elevator systems, and to advance the critical technologies required for the future development of space elevators for earth to orbit transportation. The discovery of carbon nanotubes in the early 1990's was the first indication that it might be possible to develop materials strong enough to make space elevator construction feasible. This report presents an overview of some of the latest NASA sponsored research on space elevator design, and the systems and materials that will be required to make space elevator construction possible. In conclusion, the most critical technology for earth-based space elevators is the successful development of ultra high strength carbon nanotube reinforced composites for ribbon construction in the 1OOGPa range. In addition, many intermediate technology goals and demonstration missions for the space elevator can provide significant advancements to other spaceflight and terrestrial applications.

  4. Phase selection rules for complex multi-component alloys with equiatomic or close-to-equiatomic compositions

    Institute of Scientific and Technical Information of China (English)

    GUO Sheng; LIU Chain T.

    2013-01-01

    Alloying greatly expands the amount of available materials beyond the naturally existing ones,and more importantly offers the material scientists opportunities to initiatively control the composition-structure-property relationship in materials.Since commonly used metallic materials are mostly multi-component alloys,the know-how of alloying through compositional control,certainly plays a critical role in designing materials with desired structure and properties.However,alloying in multi-component alloys is an extremely complicated issue,as the alloyed products could be the amorphous phase,various solid solutions and intermetallic compounds containing two or more alloy components.By narrowing down the scope of the multi-component alloys to those with equiatomic or close-to-equiatomic compositions only,and also aiming at framing out the rules that govern the phase selection upon alloying in multi-component alloys in a broad sense,we have identified here a simple and easily executable two-parameter scheme that can effectively predict the formation of the amorphous phase,solid solutions and intermetallic compounds,in multi-component alloys,simply from the given alloy compositions.We believe this scheme reveals a clear physical scenario governing the phase selection in multi-component alloys,helps to simplify the alloy design,and benefits the future development of advanced metallic alloys like bulk metallic glasses and high entropy alloys.

  5. Constructing Positive Futures: Modeling the Relationship between Adolescents' Hopeful Future Expectations and Intentional Self Regulation in Predicting Positive Youth Development

    Science.gov (United States)

    Schmid, Kristina L.; Phelps, Erin; Lerner, Richard M.

    2011-01-01

    Intentional self regulation and hopeful expectations for the future are theoretically-related constructs shown to lead to positive youth development (PYD). However, the nature of their relationship over time has not been tested. Therefore, this study explored the associations between hopeful future expectations and intentional self regulation in…

  6. Constructing Positive Futures: Modeling the Relationship between Adolescents' Hopeful Future Expectations and Intentional Self Regulation in Predicting Positive Youth Development

    Science.gov (United States)

    Schmid, Kristina L.; Phelps, Erin; Lerner, Richard M.

    2011-01-01

    Intentional self regulation and hopeful expectations for the future are theoretically-related constructs shown to lead to positive youth development (PYD). However, the nature of their relationship over time has not been tested. Therefore, this study explored the associations between hopeful future expectations and intentional self regulation in…

  7. Current trends and future directions in flower development research.

    Science.gov (United States)

    Scutt, Charlie P; Vandenbussche, Michiel

    2014-11-01

    Flowers, the reproductive structures of the approximately 400 000 extant species of flowering plants, exist in a tremendous range of forms and sizes, mainly due to developmental differences involving the number, arrangement, size and form of the floral organs of which they consist. However, this tremendous diversity is underpinned by a surprisingly robust basic floral structure in which a central group of carpels forms on an axis of determinate growth, almost invariably surrounded by two successive zones containing stamens and perianth organs, respectively. Over the last 25 years, remarkable progress has been achieved in describing the molecular mechanisms that control almost all aspects of flower development, from the phase change that initiates flowering to the final production of fruits and seeds. However, this work has been performed almost exclusively in a small number of eudicot model species, chief among which is Arabidopsis thaliana. Studies of flower development must now be extended to a much wider phylogenetic range of flowering plants and, indeed, to their closest living relatives, the gymnosperms. Studies of further, more wide-ranging models should provide insights that, for various reasons, cannot be obtained by studying the major existing models alone. The use of further models should also help to explain how the first flowering plants evolved from an unknown, although presumably gymnosperm-like ancestor, and rapidly diversified to become the largest major plant group and to dominate the terrestrial flora. The benefits for society of a thorough understanding of flower development are self-evident, as human life depends to a large extent on flowering plants and on the fruits and seeds they produce. In this preface to the Special Issue, we introduce eleven articles on flower development, representing work in both established and further models, including gymnosperms. We also present some of our own views on current trends and future directions of the

  8. ICT and farmers: lessons learned and future developments

    Directory of Open Access Journals (Sweden)

    Maria Koukouli

    2010-11-01

    Full Text Available Information and Communication Technologies (ICT evolution is well advancing Moore‟s Law prediction of geometric progression of computer performance indexes. Indeed, these technologies are not only fast developed but, in addition, are giving birth tonewer ones nicely branching existing “old fashion” ICT systems and tools. These innovations of ICT are not only regenerating traditional sciences, like Agriculture, and practices, like farming, but also, awake well neglected human sensitiveness andindifference for poverty, environmental protection, climatic deterioration issues and the future of our planet as a whole. To refer to a few examples of these innovations affecting Agriculture and Environmental Sciences: Cloud Computing provides equality in resources management and exploitability to small budget farms against the big ones. Web2 browser allows, as a platform, effective runtime environment and considerably easy access to applications by farmers lacking proper education and training. Parallel Computing brings exponentially increased core processing to low-end computers facilitating the use of huge computer power by small agricultural research units. Never the less agricultural and farming communities, in their majority, do not adopt new ICT tools and systems to the degree required for substantial agricultural development. In this paper, experience gained over the years is used to evaluate and reason poor performance in the area of applicability of ICT innovations and tools by the vast majority of farmers throughout the world.

  9. Future of oil and gas development in the western Amazon

    Science.gov (United States)

    Finer, Matt; Babbitt, Bruce; Novoa, Sidney; Ferrarese, Francesco; Eugenio Pappalardo, Salvatore; De Marchi, Massimo; Saucedo, Maria; Kumar, Anjali

    2015-02-01

    The western Amazon is one of the world’s last high-biodiversity wilderness areas, characterized by extraordinary species richness and large tracts of roadless humid tropical forest. It is also home to an active hydrocarbon (oil and gas) sector, characterized by operations in extremely remote areas that require new access routes. Here, we present the first integrated analysis of the hydrocarbon sector and its associated road-building in the western Amazon. Specifically, we document the (a) current panorama, including location and development status of all oil and gas discoveries, of the sector, and (b) current and future scenario of access (i.e. access road versus roadless access) to discoveries. We present an updated 2014 western Amazon hydrocarbon map illustrating that oil and gas blocks now cover 733 414 km2, an area much larger than the US state of Texas, and have been expanding since the last assessment in 2008. In terms of access, we documented 11 examples of the access road model and six examples of roadless access across the region. Finally, we documented 35 confirmed and/or suspected untapped hydrocarbon discoveries across the western Amazon. In the Discussion, we argue that if these reserves must be developed, use of the offshore inland model—a method that strategically avoids the construction of access roads—is crucial to minimizing ecological impacts in one of the most globally important conservation regions.

  10. TOURISM FUTURE SUSTAINABLE DEVELOPMENT BASED ON SOCIO-STATISTICAL STUDIES

    Directory of Open Access Journals (Sweden)

    Cristian Valentin HAPENCIUC

    2007-06-01

    Full Text Available The restructuring the global economy is the main factor of which depends the future of sustainable development, major changes being needed in the human behavior, in the system of values and life style. In order to raise people’s sensitivity regarding the importance of constructing ties between natures and cultures, between different world cultures, cultural and natural heritage must be used as efficiently as possible. The second part of this paper refers to a study made on tourism in Bucovina region. This case study may be considered a useful instrument for identifying malfunction in the touristic sector in the south of Bucovina region, in order to supply all necessary information for further development strategies and policies in the field. The statistics in tourism is used in the study of the most stable features of touristic activity behaviour. This study will allow the configuration of a general outlook, which is necessary in order to take the best decisions when it comes to elaborating forecasts in the field.

  11. Alumina Based 500 C Electronic Packaging Systems and Future Development

    Science.gov (United States)

    Chen, Liang-Yu

    2012-01-01

    NASA space and aeronautical missions for probing the inner solar planets as well as for in situ monitoring and control of next-generation aeronautical engines require high-temperature environment operable sensors and electronics. A 96% aluminum oxide and Au thick-film metallization based packaging system including chip-level packages, printed circuit board, and edge-connector is in development for high temperature SiC electronics. An electronic packaging system based on this material system was successfully tested and demonstrated with SiC electronics at 500 C for over 10,000 hours in laboratory conditions previously. In addition to the tests in laboratory environments, this packaging system has more recently been tested with a SiC junction field effect transistor (JFET) on low earth orbit through the NASA Materials on the International Space Station Experiment 7 (MISSE7). A SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE7 suite to International Space Station via a Shuttle mission and tested on the orbit for eighteen months. A summary of results of tests in both laboratory and space environments will be presented. The future development of alumina based high temperature packaging using co-fired material systems for improved performance at high temperature and more feasible mass production will also be discussed.

  12. THE POTENTIAL IMPACT OF TEHNOLOGICAL DEVELOPMENT ON FUTURE JOBS

    Directory of Open Access Journals (Sweden)

    ŞTEFAN COSMIN-ALEXANDRU

    2015-12-01

    Full Text Available Technological developments in the last decades have reached unbelievable levels, what was once the domain of science fiction movies is now a reality, and this developments have left few areas of human life unchanged. In this paper we aim to explore the changes that technology brought to the way people work and, especially to the way people will work. While we acknowledge that any prediction about the future is almost always proved wrong from the get go, we think that the importance of the subject warrants the risk. The paper draws its routes from some of the most influential theories about how technology will impact the way people work and is main objective is to spark a conversation about the merits of lack thereof that they contain. It is by no means an extensive work, but rather the beginning of a research focus that will, hopefully bring new insights in the above mentioned field. For the sake of convenience we have grouped the predictions in three categories: “Business as usual”, “Lateral developments” and “All bets are off” based on how profound the change would be. Each of this levels offers different benefits, as well as different challenges, our hope is that throw a process of thorough consideration solutions can be generated to maximize the former while minimizing the latter.

  13. Development of Navigation Doppler Lidar for Future Landing Mission

    Science.gov (United States)

    Amzajerdian, Farzin; Hines, Glenn D.; Petway, Larry B.; Barnes, Bruce W.; Pierrottet, Diego F.; Carson, John M., III

    2016-01-01

    A coherent Navigation Doppler Lidar (NDL) sensor has been developed under the Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project to support future NASA missions to planetary bodies. This lidar sensor provides accurate surface-relative altitude and vector velocity data during the descent phase that can be used by an autonomous Guidance, Navigation, and Control (GN&C) system to precisely navigate the vehicle from a few kilometers above the ground to a designated location and execute a controlled soft touchdown. The operation and performance of the NDL was demonstrated through closed-loop flights onboard the rocket-propelled Morpheus vehicle in 2014. In Morpheus flights, conducted at the NASA Kennedy Space Center, the NDL data was used by an autonomous GN&C system to navigate and land the vehicle precisely at the selected location surrounded by hazardous rocks and craters. Since then, development efforts for the NDL have shifted toward enhancing performance, optimizing design, and addressing spaceflight size and mass constraints and environmental and reliability requirements. The next generation NDL, with expanded operational envelope and significantly reduced size, will be demonstrated in 2017 through a new flight test campaign onboard a commercial rocketpropelled test vehicle.

  14. Development of FeSiBNbCu Nanocrystalline Soft Magnetic Alloys with High B s and Good Manufacturability

    Science.gov (United States)

    Wan, Fangpei; He, Aina; Zhang, Jianhua; Song, Jiancheng; Wang, Anding; Chang, Chuntao; Wang, Xinmin

    2016-10-01

    In order to develop Fe-based nanocrystalline soft magnetic alloys with high saturation magnetic flux density ( B s) and good manufacturability, the effect of the Nb content on the thermal stability, microstructural evolution and soft magnetic properties of Fe78- x Si13B8Nb x Cu1 ( x = 0, 1, 2 and 3) alloys were investigated. It is found that proper Nb addition is effective in widening the optimum annealing temperature range and refining the α-Fe grain in addition to enhancing the soft magnetic properties. For the representative Fe76 Si13B8Nb2Cu1 alloy, the effective annealing time can be over 60 min in the optimal temperature range of 500-600°C. FeSiBNbCu nanocrystalline soft magnetic alloys with desirable soft magnetic properties including high B s of 1.39 T, low coercivity ( H c) of 1.5 A/m and high effective permeability ( μ e) of 21,500 at 1 kHz have been developed. The enhanced soft magnetic performance and manufacturability of the FeSiBNbCu nanocrystalline alloys are attributed to the high activated energy for the precipitation of α-Fe(Si) and the second phase. These alloys with excellent performance have promising applications in electromagnetic fields like inductors.

  15. Production of FR Tubing from Advanced ODS Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lavender, Curt [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Omberg, Ron [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lewandowski, John [Case Western Reserve Univ., Cleveland, OH (United States)

    2016-10-25

    Significant research is underway to develop LWR nuclear fuels with improved accident tolerance. One of the leading candidate materials for cladding are the FeCrAl alloys. New alloys produced at ORNL called Gen I and Gen II FeCrAl alloys possess excellent oxidation resistance in steam up to 1400°C and in parallel methods are being developed to produce tubing from these alloys. Century tubing continues to produce excellent tubing from FeCrAl alloys. This memo reports receipt of ~21 feet of Gen I FeCrAl alloy tubing. This tubing will be used for future tests including burst testing, mechanical testing and irradiation testing.

  16. Development of Advanced Wear and Corrosion Resistant Systems Through Laser Surface Alloying and Materials Simulations

    Energy Technology Data Exchange (ETDEWEB)

    R. P. Martukanitz and S. Babu

    2007-05-03

    Laser surfacing in the form of cladding, alloying, and modifications are gaining widespread use because of its ability to provide high deposition rates, low thermal distortion, and refined microstructure due to high solidification rates. Because of these advantages, laser surface alloying is considered a prime candidate for producing ultra-hard coatings through the establishment or in situ formation of composite structures. Therefore, a program was conducted by the Applied Research Laboratory, Pennsylvania State University and Oak Ridge National Laboratory to develop the scientific and engineering basis for performing laser-based surface modifications involving the addition of hard particles, such as carbides, borides, and nitrides, within a metallic matrix for improved wear, fatigue, creep, and corrosion resistance. This has involved the development of advanced laser processing and simulation techniques, along with the refinement and application of these techniques for predicting and selecting materials and processing parameters for the creation of new surfaces having improved properties over current coating technologies. This program has also resulted in the formulation of process and material simulation tools capable of examining the potential for the formation and retention of composite coatings and deposits produced using laser processing techniques, as well as positive laboratory demonstrations in producing these coatings. In conjunction with the process simulation techniques, the application of computational thermodynamic and kinetic models to design laser surface alloying materials was demonstrated and resulted in a vast improvement in the formulation of materials used for producing composite coatings. The methodology was used to identify materials and to selectively modify microstructures for increasing hardness of deposits produced by the laser surface alloying process. Computational thermodynamic calculations indicated that it was possible to induce the

  17. Development of high plasticity Al-Si alloy and its casting process

    Institute of Scientific and Technical Information of China (English)

    郭国文; 李元元; 陈维平; 张大童; 龙雁

    2002-01-01

    Aiming to meet the challenge of the shape complexity and high plasticity demanded for the upper connective plate(UCP) in motorcycle, a high plasticity Al-Si alloy named HGZL-02 was developed by optimizing the chemical composition and casting process. Premium UCP castings were obtained by using optimized casting process. Results show that fine and dense microstructure are obtained in the UCP castings. An average of 224MPa in ultimate tensile strength, 149MPa in yield strength and 13.2% in elongation are achieved for T6 heat-treated UPS castings.

  18. Development of Forsterite Based Insulating Board for Alloy Steel Con—casting Tundish

    Institute of Scientific and Technical Information of China (English)

    ZHAOJi-zeng; ZHOULei; 等

    1994-01-01

    To meet the operation requirement of com-casting tundish for alloy steel.a forsterite based insulating board has been developed.The effects of binder ,fiber and other additives on the properties of the properties of the products have been described;the theoretial reason of assuring containing clear steel by using inorganic binder bonded forsterite based insulating board were also discussed;the mineral composition and microstructure of the products have been analyzed by means of XRD.SEM and microscope ,The results indicate that the forsteite based insulating board with excel-lent performance and dood application results has been obtained.

  19. Recommendations for future development in cattle transport in Europe.

    Science.gov (United States)

    Hartung, J; Marahrens, M; von Holleben, K

    2003-03-01

    Every year millions of calves and cattle are transported across, from and to Europe. Most of these animals are going to slaughter houses in the respective countries or in another community state or coming or going abroad (extra-EU). These transports give cause for concern for at least three reasons: First, it can cause severe stress in animals entailing poor welfare. Second, stressful transports may have a negative effect on meat quality. Third, there is the risk of spread of infectious diseases over large distances. Existing legislation does not provide enough protection to transported animals especially over long distances largely because considerable parts of the regulations are not sufficiently based on scientific evidence. In recent years some research is carried out including the EU financed CATRA research project (contract QLK5-CT 1999-0157) concentrating on the welfare and meat quality aspects of cattle transport. This paper summarises important results of this recent research and gives some recommendations for future legislation. The welfare of the animals is limited by their needs not by a fixed maximum transport time, if vehicle and transport conditions are appropriate. Bulls, steers and heifers are reacting differently on transport. Adapt transport schemes to the needs of the animals. Meat quality is only effected in extreme situations. Some animals develop an energy deficit after 6 h of transport. Develop appropriate feeding regimes for long transport. Abolish stressful loading and unloading in staging posts (injuries, infectious diseases). Staging posts are particularly stressful for bulls. Educate handlers and drivers more intensively. Pay drivers inverse to losses. Develop monitor systems for long and short distance transport (e.g. records, GPS). Improve vehicle design (e.g. vibration).

  20. Recent Developments and Probable Future Scenarios Concerning Seafarer Labour Markets

    DEFF Research Database (Denmark)

    Wagtmann, Maria Anne; Poulsen, René Taudal

    2009-01-01

    for the maritime industries. In connection with this, the follow­ing issues are covered: the age and nationality structure of the coming seafaring workforce, future scenarios concerning the provision of seafaring education, and possible future reorgani­sation of broader shore-based maritime labour between nations...

  1. Future development of the PLATO Observatory for Antarctic science

    Science.gov (United States)

    Ashley, Michael C. B.; Bonner, Colin S.; Everett, Jon R.; Lawrence, Jon S.; Luong-Van, Daniel; McDaid, Scott; McLaren, Campbell; Storey, John W. V.

    2010-07-01

    PLATO is a self-contained robotic observatory built into two 10-foot shipping containers. It has been successfully deployed at Dome A on the Antarctic plateau since January 2008, and has accumulated over 730 days of uptime at the time of writing. PLATO provides 0.5{1kW of continuous electrical power for a year from diesel engines running on Jet-A1, supplemented during the summertime with solar panels. One of the 10-foot shipping containers houses the power system and fuel, the other provides a warm environment for instruments. Two Iridium satellite modems allow 45 MB/day of data to be transferred across the internet. Future enhancements to PLATO, currently in development, include a more modular design, using lithium iron-phosphate batteries, higher power output, and a light-weight low-power version for eld deployment from a Twin Otter aircraft. Technologies used in PLATO include a CAN (Controller Area Network) bus, high-reliability PC/104 com- puters, ultracapacitors for starting the engines, and fault-tolerant redundant design.

  2. Fuel cells: State of the Art and Future Developments

    Energy Technology Data Exchange (ETDEWEB)

    Apfel, H.; Cremers, C.; Stimming, U. [Technische Univ. Muenchen (Germany). Physik-Department E19

    2004-07-01

    Providing electricity and heats is one key issue of our civilization today and in the future. Conserving non-renewable resources and reducing emissions become more and more important in the development of energy converters. Fuel cells are one possibility. They convert energy with high efficiency and extremely low mission of pollutants. In this paper construction and operation of fuel cells are explained briefly. Applications for high (SOFC) and low (PEM) temperature fuel cells are shown by means of several existing prototypes. The main issues inhibiting higher power densities are discussed and a possible solution by an structure of the catalysis is presented. (orig.) [German] Die Bereitstellung von Elektrizitaet und Waerme ist und bleibt eine wesentliche technologische Aufgabe der zivilisatorischen Gesellschaft. Resourcenschonung und Minimierung der Schadstoffemissionen gewinnen zunehmend an Bedeutung. Brennstoffzellen sind Energiewandler, die mit hoher Effizienz bei extrem geringen Schadstoffemissionen arbeiten. Aufbau und Funktionsweise von Brennstoffzellen werden kurz vorgestellt. Es werden Anwendungsbeispiele fuer Hochtemperatur-Brennstoffzellen (z. B. SOFC) fuer die stationaere Erzeugung von Elektrizitaet und Waerme aus Erdgas und fuer Niedertemperatur-Brennstoffzellen (z. B. PEMFC) mit fluessigen Energietraegern im Fahrzeugbereich gegeben. Fuer die Entwicklung geeigneter Brennstoffzellensysteme muss die Peripherie, insbesondere die Gasaufbereitung, so gestaltet werden, dass der hohe elektrische Wirkungsgrad und die Schadstoffarmut erhalten bleiben. Die mikroskopischen Prozesse in Brennstoffzellen werden beleuchtet, und es wird, anhand einer potentiell deutlich verbesserten Katalysatorstruktur, ein moeglicher Weg zur Ueberwindung momentaner Schwierigkeiten bei der Entwicklung von Brennstoffzellen diskutiert. (orig.)

  3. Current status of robotic assisted pelvic surgery and future developments.

    Science.gov (United States)

    Ahmed, Kamran; Khan, Mohammad Shamim; Vats, Amit; Nagpal, Kamal; Priest, Oliver; Patel, Vanash; Vecht, Joshua A; Ashrafian, Hutan; Yang, Guang-Zhong; Athanasiou, Thanos; Darzi, Ara

    2009-10-01

    The aim of this review is to assess the role of robotics in pelvic surgery in terms of outcomes. We have also highlighted the issues related to training and future development of robotic systems. We searched MEDLINE, EMBASE and the Cochrane Databases from 1980 to 2009 for systematic reviews of randomised controlled trials, prospective observational studies, retrospective studies and case reports assessing robotic surgery. During the last decade, there has been a tremendous rise in the use of robotic surgical systems for all forms of precision operations including pelvic surgery. The short-term results of robotic pelvic surgery in the fields of urology, colorectal surgery and gynaecology have been shown to be comparable to the laparoscopic and open surgery. Robotic surgery offers an opportunity where many of these obstacles encountered during open and laparoscopic surgery can be overcome. Robotic surgery is a continually advancing technology, which has opened new horizons for performing pelvic surgery with precision and accuracy. Although its use is rapidly expanding in all surgical disciplines, particularly in pelvic surgery, further comparative studies are needed to provide robust guidance about the most appropriate application of this technology within the surgical armamentarium.

  4. The CMS High Level Trigger System: Experience and Future Development

    CERN Document Server

    Bauer, Gerry; Bowen, Matthew; Branson, James G; Bukowiec, Sebastian; Cittolin, Sergio; Coarasa, J A; Deldicque, Christian; Dobson, Marc; Dupont, Aymeric; Erhan, Samim; Flossdorf, Alexander; Gigi, Dominique; Glege, Frank; Gomez-Reino, R; Hartl, Christian; Hegeman, Jeroen; Holzner, André; Y L Hwong; Masetti, Lorenzo; Meijers, Frans; Meschi, Emilio; Mommsen, R K; O'Dell, Vivian; Orsini, Luciano; Paus, Christoph; Petrucci, Andrea; Pieri, Marco; Polese, Giovanni; Racz, Attila; Raginel, Olivier; Sakulin, Hannes; Sani, Matteo; Schwick, Christoph; Shpakov, Dennis; Simon, M; Spataru, A C; Sumorok, Konstanty

    2012-01-01

    The CMS experiment at the LHC features a two-level trigger system. Events accepted by the first level trigger, at a maximum rate of 100 kHz, are read out by the Data Acquisition system (DAQ), and subsequently assembled in memory in a farm of computers running a software high-level trigger (HLT), which selects interesting events for offline storage and analysis at a rate of order few hundred Hz. The HLT algorithms consist of sequences of offline-style reconstruction and filtering modules, executed on a farm of 0(10000) CPU cores built from commodity hardware. Experience from the operation of the HLT system in the collider run 2010/2011 is reported. The current architecture of the CMS HLT, its integration with the CMS reconstruction framework and the CMS DAQ, are discussed in the light of future development. The possible short- and medium-term evolution of the HLT software infrastructure to support extensions of the HLT computing power, and to address remaining performance and maintenance issues, are discussed.

  5. FORECAST ON FUTURE LEVEL OF ECONOMY DEVELOPMENT OF CHINA

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    China is a country in the period of economy takeoff. We cannot use the common method to forecast its fu-ture econotmy level. This paper establishes an economic level forecast model of the countries whose economy is in the takeoff because of the stimulation of model country. The enlightenment of the model is from physics. If there are two sub-stances, A and B, and a medium between them, according to physics, when substance A is hotter than B, B' s tempera-ture will inevitably rise and close to that of A. Thus, this system tends to be a state of balance. Three factors affect heatconduction between substance A and B. They are the difference of temperature between two substances, the conductivityof medium and the characteristics of themselves. The model is testified through two examples. And then we forecast theeconomic development level of China in long term. This paper raises a model to solve the problem of research approaches.However, since there are some limitations on data source, problems will appear. For example, in certain years, our fore-cast results do not suit the real situation. But in the long term, the tendency is accurate. Then this model can be amendedin accordance with different situations.

  6. Future developments in brain-machine interface research

    Directory of Open Access Journals (Sweden)

    Mikhail A. Lebedev

    2011-01-01

    Full Text Available Neuroprosthetic devices based on brain-machine interface technology hold promise for the restoration of body mobility in patients suffering from devastating motor deficits caused by brain injury, neurologic diseases and limb loss. During the last decade, considerable progress has been achieved in this multidisciplinary research, mainly in the brain-machine interface that enacts upper-limb functionality. However, a considerable number of problems need to be resolved before fully functional limb neuroprostheses can be built. To move towards developing neuroprosthetic devices for humans, brain-machine interface research has to address a number of issues related to improving the quality of neuronal recordings, achieving stable, long-term performance, and extending the brain-machine interface approach to a broad range of motor and sensory functions. Here, we review the future steps that are part of the strategic plan of the Duke University Center for Neuroengineering, and its partners, the Brazilian National Institute of Brain-Machine Interfaces and the École Polytechnique Fédérale de Lausanne (EPFL Center for Neuroprosthetics, to bring this new technology to clinical fruition.

  7. Classical swine fever in pigs: recent developments and future perspectives.

    Science.gov (United States)

    Chander, Vishal; Nandi, S; Ravishankar, C; Upmanyu, V; Verma, Rishendra

    2014-06-01

    Classical swine fever (CSF) is one of the most devastating epizootic diseases of pigs, causing high morbidity and mortality worldwide. The diversity of clinical signs and similarity in disease manifestations to other diseases make CSF difficult to diagnose with certainty. The disease is further complicated by the presence of a number of different strains belonging to three phylogenetic groups. Advanced diagnostic techniques allow detection of antigens or antibodies in clinical samples, leading to implementation of proper and effective control programs. Polymerase chain reaction (PCR)-based methods, including portable real-time PCR, provide diagnosis in a few hours with precision and accuracy, even at the point of care. The disease is controlled by following a stamping out policy in countries where vaccination is not practiced, whereas immunization with live attenuated vaccines containing the 'C' strain is effectively used to control the disease in endemic countries. To overcome the problem of differentiation of infected from vaccinated animals, different types of marker vaccines, with variable degrees of efficacy, along with companion diagnostic assays have been developed and may be useful in controlling and even eradicating the disease in the foreseeable future. The present review aims to provide an overview and status of CSF as a whole with special reference to swine husbandry in India.

  8. Solar and Space Weather Radiophysics Current Status and Future Developments

    CERN Document Server

    Gary, Dale E

    2005-01-01

    The book explores what can be learned about the Sun and interplanetary space using present-day and future radio observations and techniques. The emphasis is on interpretation of radio data with high spatial and spectral resolution, motivated by the planned construction of a new, powerful, solar-dedicated radio array called the Frequency Agile Solar Radiotelescope (FASR). The book is unique in exploring a broad frequency range, which corresponds to heights ranging from the low solar atmosphere out to the Earth. The book contains a thorough review of the entire field of solar and Space Weather radio research; gives background information suitable for advanced undergraduates, graduates, and researchers in solar and Space Weather research and related fields; and looks at what new results may be expected in the next two decades with FASR and other new instruments now under development. The individual chapters are written by international experts in each topic, and although each chapter may be read as a stand-alone...

  9. Status of muon collider research and development and future plans

    Directory of Open Access Journals (Sweden)

    1999-08-01

    Full Text Available The status of the research on muon colliders is discussed and plans are outlined for future theoretical and experimental studies. Besides work on the parameters of a 3–4 and 0.5 TeV center-of-mass (COM energy collider, many studies are now concentrating on a machine near 0.1 TeV (COM that could be a factory for the s-channel production of Higgs particles. We discuss the research on the various components in such muon colliders, starting from the proton accelerator needed to generate pions from a heavy-Z target and proceeding through the phase rotation and decay (π→μν_{μ} channel, muon cooling, acceleration, storage in a collider ring, and the collider detector. We also present theoretical and experimental R&D plans for the next several years that should lead to a better understanding of the design and feasibility issues for all of the components. This report is an update of the progress on the research and development since the feasibility study of muon colliders presented at the Snowmass '96 Workshop [R. B. Palmer, A. Sessler, and A. Tollestrup, Proceedings of the 1996 DPF/DPB Summer Study on High-Energy Physics (Stanford Linear Accelerator Center, Menlo Park, CA, 1997].

  10. Progress and future development of hybrid rapeseed in China

    Institute of Scientific and Technical Information of China (English)

    Fu Tingdong; Zhou Yongming

    2013-01-01

    The hybrid growth of rapeseed now has reached to 4.7 × 106 hm2,accounting for 70%of total rapeseed growth area in China. Over the last 40 years,the researches and utilizations of hybrid rapeseed in China have sig-nificantly contributed to the development of rapeseed industry in China. The production of hybrid rapeseed mainly utilizes cytoplasmic male sterility(CMS),combined at the same time with nuclear male sterility and other pollinat-ing-control systems in China. The hybrid rapeseed studies in China are also characterized by the improvement of quality and oil content in hybrid breeding. Future studies to enhance the heterosis of rapeseed will be focused on several important issues,including the combination of heterosis and ideotype breeding,further increase of oil con-tent in hybrids,utilization of sub-genomic heterosis and resistance improvement. The paper will discuss the follow-ing perspectives in hybrid rapeseed studies:relationships among heterosis,quality and disease traits,solutions for excessive source and pool in hybrids compared with open-pollinated cultivars,and the importance of increasing harvest index of hybrids to achieve a better yield in hybrids.

  11. The Future of Clinical Pharmacy: Developing a Holistic Model

    Directory of Open Access Journals (Sweden)

    Patricia A. Shane

    2013-11-01

    Full Text Available This concept paper discusses the untapped promise of often overlooked humanistic skills to advance the practice of pharmacy. It highlights the seminal work that is, increasingly, integrated into medical and nursing education. The work of these educators and the growing empirical evidence that validates the importance of humanistic skills is raising questions for the future of pharmacy education and practice. To potentiate humanistic professional competencies, e.g., compassion, empathy, and emotional intelligence, how do we develop a more holistic model that integrates reflective and affective skills? There are many historical and current transitions in the profession and practice of pharmacy. If our education model is refocused with an emphasis on pharmacy’s therapeutic roots, the field has the opportunity to play a vital role in improving health outcomes and patient-centered care. Beyond the metrics of treatment effects, achieving greater patient-centeredness will require transformations that improve care processes and invest in patients’ experiences of the treatment and care they receive. Is layering on additional science sufficient to yield better health outcomes if we neglect the power of empathic interactions in the healing process?

  12. A combinatorial approach to the development of composition-microstructure-property relationships in titanium alloys using directed laser deposition

    Science.gov (United States)

    Collins, Peter C.

    2004-12-01

    The Laser Engineered Net Shaping (LENS(TM)) system, a type of directed laser manufacturing, has been used to create compositionally graded materials. Using elemental blends, it is possible to quickly vary composition, thus allowing fundamental aspects of phase transformations and microstructural development for particular alloy systems to be explored. In this work, it is shown that the use of elemental blends has been refined, such that bulk homogeneous specimens can be produced. When tested, the mechanical properties are equivalent to conventionally prepared specimens. Additionally, when elemental blends are used in LENS(TM) process, it is possible to deposit compositionally graded materials. In addition to the increase in design flexibility that such compositionally graded, net shape, unitized structures offer, they also afford the capability to rapidly explore composition-microstructure-property relationships in a variety of alloy systems. This research effort focuses on the titanium alloy system. Several composition gradients based on different classes of alloys (designated alpha, alpha + beta, and beta alloys) have been produced with the LENS(TM). Once deposited, such composition gradients have been exploited in two ways. Firstly, binary gradients (based on the Ti-xV and Ti-xMo systems) have been heat treated, allowing the relationships between thermal histories and microstructural features (i.e. phase composition and volume fraction) to be explored. Neural networks have been used to aid in the interpretation of strengthening mechanisms in these binary titanium alloy systems. Secondly, digitized steps in composition have been achieved in the Ti-xAl-yV system. Thus, alloy compositions in the neighborhood of Ti-6Al-4V, the most widely used titanium alloy, have been explored. The results of this have allowed for the investigation of composition-microstructure-property relationships in Ti-6-4 based systems.

  13. Software-Based Challenges of Developing the Future Distribution Grid

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Emma; Kiliccote, Sila; McParland, Charles

    2014-06-01

    The software that the utility industry currently uses may be insufficient to analyze the distribution grid as it rapidly modernizes to include active resources such as distributed generation, switch and voltage control, automation, and increasingly complex loads. Although planners and operators have traditionally viewed the distribution grid as a passive load, utilities and consultants increasingly need enhanced analysis that incorporates active distribution grid loads in order to ensure grid reliability. Numerous commercial and open-source tools are available for analyzing distribution grid systems. These tools vary in complexity from providing basic load-flow and capacity analysis under steady-state conditions to time-series analysis and even geographical representations of dynamic and transient events. The need for each type of analysis is not well understood in the industry, nor are the reasons that distribution analysis requires different techniques and tools both from those now available and from those used for transmission analysis. In addition, there is limited understanding of basic capability of the tools and how they should be practically applied to the evolving distribution system. The study reviews the features and state of the art capability of current tools, including usability and visualization, basic analysis functionality, advanced analysis including inverters, and renewable generation and load modeling. We also discuss the need for each type of distribution grid system analysis. In addition to reviewing basic functionality current models, we discuss dynamics and transient simulation in detail and draw conclusions about existing software?s ability to address the needs of the future distribution grid as well as the barriers to modernization of the distribution grid that are posed by the current state of software and model development. Among our conclusions are that accuracy, data transfer, and data processing abilities are key to future

  14. New Screening Test Developed for the Blanching Resistance of Copper Alloys

    Science.gov (United States)

    Thomas-Ogbuji, Linus U.

    2004-01-01

    NASA's extensive efforts towards more efficient, safer, and more affordable space transportation include the development of new thrust-cell liner materials with improved capabilities and longer lives. For rocket engines fueled with liquid hydrogen, an important metric of liner performance is resistance to blanching, a phenomenon of localized wastage by cycles of oxidation-reduction due to local imbalance in the oxygen-fuel ratio. The current liner of the Space Shuttle Main Engine combustion chamber, a Cu-3Ag-0.5Zr alloy (NARloy-Z) is degraded in service by blanching. Heretofore, evaluating a liner material for blanching resistance involved elaborate and expensive hot-fire tests performed on rocket test stands. To simplify that evaluation, researchers at the NASA Glenn Research Center developed a screening test that uses simple, in situ oxidation-reduction cycling in a thermogravimetric analyzer (TGA). The principle behind this test is that resistance to oxidation or to the reduction of oxide, or both, implies resistance to blanching. Using this test as a preliminary tool to screen alloys for blanching resistance can improve reliability and save time and money. In this test a small polished coupon is hung in a TGA furnace at the desired (service) temperature. Oxidizing and reducing gases are introduced cyclically, in programmed amounts. Cycle durations are chosen by calibration, such that all copper oxides formed by oxidation are fully reduced in the next reduction interval. The sample weight is continuously acquired by the TGA as usual.

  15. Dynamic recrystallization and texture development during hot deformation of magnesium alloy AZ31

    Institute of Scientific and Technical Information of China (English)

    YANG Xu-yue; JI Ze-sheng; H. MIURA; T. SAKAI

    2009-01-01

    The dynamic recrystallization(DRX) and texture development, taking place during hot deformation of magnesium alloy AZ31 with a strong wire texture, were studied in compression at 673 K (0.73 Tm). Two kinds of samples were machined parallelly to the extruded and transverse directions of Mg alloy rods. New fine grains are evolved at original grain boundaries corrugated at low strains and develop rapidly in the medium range of strain, finally leading to a roughly full evolution of equiaxial fine grains. Kink bands are evolved at grain boundaries corrugated and also frequently in grain interiors at low strains. The boundary misorientations of kink band increase rapidly with increasing strain and approach a saturation value in high strain. The average size of the regions fragmented by kink band is almost the same as that of new grains evolved in high strain. These characteristics of new grain evolution process are not changed by the orientation of the samples, while the flow behaviors clearly depend on it. It is concluded that new grain evolution can be controlled by a deformation-induced continuous reaction, i.e. continuous dynamic recrystallization(DRX). The latter is discussed by comparing with conventional, i.e. discontinuous DRX.

  16. Dynamic recrystallization and texture development during hot deformation of a magnesium alloy AZ31

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.; Miura, H.; Sakai, T. [Univ. of Electro-Communications, Dept. of Mechanical Engineering and Intelligent Systems, Chofu, Tokyo (Japan)]. E-mail: Sakai@mce.uec.ac.jp

    2002-07-01

    Dynamic recrystallization (DRX) and texture development, taking place during hot deformation of a magnesium alloy AZ31 with a strong wire texture, was studied in compression at 673K (0.73T{sub m}). Two kinds of samples were machined parallel to the extruded and transverse direction of the Mg alloy rods. New fine grains are evolved at original grain boundaries corrugated at low strains and developed rapidly in the medium range of strain, finally leading to a roughly full evolution of equiaxial fine grains. Kink bands are evolved at grain boundaries corrugated and also frequently in grain interiors at low strains. The boundary misorientations of kink band increase rapidly with increasing strain and approach a saturation value in high strain. The average size of the regions fragmented by kink band is almost the same as that of new grains evolved in high strain. These characteristics of new grain evolution process are not changed by the orientation of the samples, while the flow behaviors clearly depend on it. It is concluded that new grain evolution can be controlled by a deformation-induced continuous reaction, i.e. continuous dynamic recrystallization (DRX). The latter is discussed comparing with conventional, i.e. discontinuous, DRX. (author)

  17. Measurement of oxide adherence to PFM alloys.

    Science.gov (United States)

    Mackert, J R; Parry, E E; Hashinger, D T; Fairhurst, C W

    1984-11-01

    A method has been reported for evaluating adherence of an oxide to its substrate metal to a maximum value of about 40 MPa. Oxidized alloy plates were cemented between two aluminum cylinders with a high-strength cyanoacrylate cement and loaded in tension until failure occurred either at the oxide/metal interface, within the oxide layer, or in the cement itself. Significant differences were found among the oxide adherence values obtained from different PFM alloys. The oxides formed on five of the alloys exhibited adherence strengths in excess of the published value for cohesive strength of dental opaque porcelain, indicating that they possess sufficient adherence to act as the transition zone between the porcelain and the alloy. In addition, a correspondence was found between the quality of porcelain bond for a given alloy and its oxide adherence strength. These results remove the principal objection to the oxide-layer theory of porcelain bonding in dental alloy systems and emphasize the importance of oxide adherence in the establishment of a bond. It is therefore suggested that future work devoted to porcelain-metal bonding should seek to elucidate the mechanism of oxide adherence to PFM alloys and explore the development of new alloys which form adherent oxides.

  18. Development and regulation of biosimilars: current status and future challenges.

    Science.gov (United States)

    Tsiftsoglou, Asterios S; Ruiz, Sol; Schneider, Christian K

    2013-06-01

    provided through several Committee for Medicinal Products for Human Use (CHMP) guidelines as well as individual scientific advice requested from the European Medicines Agency (EMA) by various companies for the development and regulation of biosimilars. This review is mainly focused on the current status of regulation of biosimilars in the EU as well as on future challenges lying ahead for the improvement of the requirements needed for the marketing authorization of biosimilars. Emphasis is given on the quality requirements concerning these medicinal products (biologics).

  19. Compatibility of Anti-Wear Additives with Non-Ferrous Engine Bearing Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhou, Yan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-01

    Investigate the compatibility of engine lubricant antiwear (AW) additives, specifically conventional zinc dialkyldithiophosphate (ZDDP) and newly developed ionic liquids (ILs), with selected non-ferrous engine bearing alloys, specifically aluminum and bronze alloys that are commonly used in connecting rod end journal bearings and bushings, to gain fundamental understanding to guide future development of engine lubricants

  20. Design and development of a shape memory alloy activated heat pipe-based thermal switch

    Science.gov (United States)

    Benafan, O.; Notardonato, W. U.; Meneghelli, B. J.; Vaidyanathan, R.

    2013-10-01

    This work reports on the design, fabrication and testing of a thermal switch wherein the open and closed states were actuated by shape memory alloy (SMA) elements while heat was transferred by a two-phase heat pipe. The motivation for such a switch comes from NASA’s need for thermal management in advanced spaceport applications associated with future lunar and Mars missions. As the temperature can approximately vary between -233 and 127 ° C during lunar day/night cycles, the switch was designed to reject heat from a cryogen tank into space during the night cycle while providing thermal isolation during the day cycle. A Ni47.1Ti49.6Fe3.3 (at.%) alloy that exhibited a reversible phase transformation between a trigonal R-phase and a cubic austenite phase was used as the sensing and actuating elements. Thermomechanical actuation, accomplished through an antagonistic spring system, resulted in strokes up to 7 mm against bias forces of up to 45 N. The actuation system was tested for more than thirty cycles, equivalent to one year of operation. The thermal performance, accomplished via a variable length, closed two-phase heat pipe, was evaluated, resulting in heat transfer rates of 13 W using pentane and 10 W using R-134a as working fluids. Experimental data were also compared to theoretical predictions where possible. Direct comparisons between different design approaches of SMA helical actuators, highlighting the effects of the helix angle, were carried out to give a layout of more accurate design methodologies.

  1. Effect of Alloying Element Antimony on Macrostructural and Microstructural Development in A356 Alloy Directionally Solidified under Unsteady-state Conditions

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Microstructure development is well accepted to have a major effect on mechanical properties during its services.One of the most interesting ways to improve mechanical properties is to reduce secondary dendrite arm spacing (SDAS). SDAS also plays an important role in controlling and providing the well distributed and fine microstructure resulting in better tensile strength and elongation. To reduce SDAS, it is commonly known by increasing cooling rate and increasing interface instability by limited-soluble alloy addition. It is, however,unclear that how both cooling rate and limited-soluble alloy, e.g. Sb, relate to each other. This may be the reason that the limited-soluble alloy may not effectively reduce SDAS. To better understand this phenomenon,influences of Sb on solid/liquid interface instability using columnar to equiaxed transition (CET) were studied in the directionally solidification experiment. From macrographs and micrographs, it was observed that at 0.06-0.18 wt pct Sb the CET min, CET max, CET zone and %CET area gradually increased. The increases of CET max and CET zone in samples with 0.06 to 0.18 wt pct Sb addition results from recalesced zone. On the other hand, the variations of CET max and CET zone in samples with 0.24 to 0.30 wt pct Sb results from equiaxed grain formations that prohibit the growth of columnar grain and latent heat from intermetallic phase solidified.

  2. Strip Casting of High Performance Structural Alloys

    Institute of Scientific and Technical Information of China (English)

    S S Park; J G Lee; Nack J Kim

    2004-01-01

    There exists a great need for the development of high performance alloys due to increasing demands for energy conservation and environmental protection. Application of strip casting shows a strong potential for the improvement of properties of existing alloys and also for the development of novel alloy systems with superior properties. The present paper reviews our Center's activities in the development of high performance alloys by strip casting. Examples include (1) Al alloys, (2) wrought Mg alloys, and (3) bulk metallic glass (BMG) alloys.

  3. Magnetic particle imaging: current developments and future directions

    Directory of Open Access Journals (Sweden)

    Panagiotopoulos N

    2015-04-01

    of different theories and technical approaches on the way to the actual implementation of the basic concept of MPI have been seen in the last few years. Research groups around the world are working on different scanner geometries, from closed bore systems to single-sided scanners, and use reconstruction methods that are either based on actual calibration measurements or on theoretical models. This review aims at giving an overview of current developments and future directions in MPI about a decade after its first appearance. Keywords: magnetic particle imaging, superparamagnetic iron oxide nanoparticles, magnetic particle spectrometer, peripheral nerve stimulation, cardiovascular interventions

  4. Development of a Numerical Model for High-Temperature Shape Memory Alloys

    Science.gov (United States)

    DeCastro, Jonathan A.; Melcher, Kevin J.; Noebe, Ronald D.; Gaydosh, Darrell J.

    2006-01-01

    A thermomechanical hysteresis model for a high-temperature shape memory alloy (HTSMA) actuator material is presented. The model is capable of predicting strain output of a tensile-loaded HTSMA when excited by arbitrary temperature-stress inputs for the purpose of actuator and controls design. Common quasi-static generalized Preisach hysteresis models available in the literature require large sets of experimental data for model identification at a particular operating point, and substantially more data for multiple operating points. The novel algorithm introduced here proposes an alternate approach to Preisach methods that is better suited for research-stage alloys, such as recently-developed HTSMAs, for which a complete database is not yet available. A detailed description of the minor loop hysteresis model is presented in this paper, as well as a methodology for determination of model parameters. The model is then qualitatively evaluated with respect to well-established Preisach properties and against a set of low-temperature cycled loading data using a modified form of the one-dimensional Brinson constitutive equation. The computationally efficient algorithm demonstrates adherence to Preisach properties and excellent agreement to the validation data set.

  5. Development and Demonstration of Adanced Tooling Alloys for Molds and Dies

    Energy Technology Data Exchange (ETDEWEB)

    Kevin M. McHugh; Enrique J. Lavernia

    2006-01-01

    This report summarizes research results in the project Development and Demonstration of Advanced Tooling Alloys for Molds and Dies. Molds, dies and related tooling are used to manufacture most of the plastic and metal products we use every day. Conventional fabrication of molds and dies involves a multiplicity of machining, benching and heat treatment unit operations. This approach is very expensive and time consuming. Rapid Solidifcation Process (RSP) Tooling is a spray-forming technology tailored for producing molds and dies. The appraoch combines rapid solidifcation processing and net-shape materials processing in a single step. An atomized spray of a tool-forming alloy, typically a tool steel, is deposited onto an easy-to-form tool pattern to replicate the pattern's shape and surface features. By so doing, the approach eliminates many machining operations in conventional mold making, significantly reducing cost, lead time and energy. Moreover, rapid solidification creates unique microstructural features by suppressing carbide precipitation and growth, and creating metastable phases. This can result in unique material properties following heat treatment. Spray-formed and aged tool steel dies have exhibited extended life compared to conventional dies in many forming operations such as forging, extrusion and die casting. RSP Tooling technolocy was commercialized with the formation of RSP Tooling, LLC in Solon, Oh.

  6. Development of Low Cost Gas Atomization of Precursor Powders for Simplified ODS Alloy Production

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iver [Ames Lab., Ames, IA (United States)

    2014-08-05

    A novel gas atomization reaction synthesis (GARS) method was developed in this project to enable production (at our partner’s facility) a precursor Ni-Cr-Y-Ti powder with a surface oxide and an internal rare earth (RE) containing intermetallic compound (IMC) phase. Consolidation and heat-treatment experiments were performed at Ames Lab to promote the exchange of oxygen from the surface oxide to the RE intermetallic to form nano-metric oxide dispersoids. Alloy selection was aided by an internal oxidation and serial grinding experiments at Ames Lab and found that Hf-containing alloys may form more stable dispersoids than Ti-containing alloy, i.e., the Hf-containing system exhibited five different oxide phases and two different intermetallics compared to the two oxide phases and one intermetallic in the Ti-containing alloys. Since the simpler Ti-containing system was less complex to characterize, and make observations on the effects of processing parameters, the Ti-containing system was selected by Ames Lab for experimental atomization trials at our partner. An internal oxidation model was developed at Ames Lab and used to predict the heat treatment times necessary for dispersoid formation as a function of powder size and temperature. A new high-pressure gas atomization (HPGA) nozzle was developed at Ames Lab with the aim of promoting fine powder production at scales similar to that of the high gas-flow and melt-flow of industrial atomizers. The atomization nozzle was characterized using schlieren imaging and aspiration pressure testing at Ames Lab to determine the optimum melt delivery tip geometry and atomization pressure to promote enhanced secondary atomization mechanisms. Six atomization trials were performed at our partner to investigate the effects of: gas atomization pressure and reactive gas concentration on the particle size distribution (PSD) and the oxygen content of the resulting powder. Also, the effect on the rapidly solidified microstructure (as a

  7. Recent developments in wear- and corrosion-resistant alloys for the oil industry

    Energy Technology Data Exchange (ETDEWEB)

    Raghu, D. [Deloro Stellite Inc., Goshen, IN (United States). Stellite Coatings Div.; Wu, J.B.C. [Stoody Deloro Stellite, Inc., St. Louis, MO (United States)

    1997-11-01

    Oil production and refining pose very severe wear and corrosion environments. Material designers are challenged with the need to design and develop materials that combine high corrosion resistance with good wear resistance. Coupled with that is the need for these materials to meet requirements such as fracture toughness and resistance to sulfide and chloride stress corrosion cracking. Often, increasing wear resistance compromises the corrosion and welding characteristics. This article covers a variety of material developments that address the problems of wear and corrosion, including alloy design fundamentals and pertinent wear properties and general corrosion resistance compared to traditional wear-resistant materials. Proven applications, with particular reference to petroleum and petrochemical areas, are discussed. Potential applications are also cited.

  8. Development of brazing foils to join monocrystalline tungsten alloys with ODS-EUROFER steel

    Energy Technology Data Exchange (ETDEWEB)

    Kalin, B.A. [Moscow Engineering Physics Institute (State University), 31 Kashirskoye Sh., Moscow 115409 (Russian Federation)]. E-mail: BAKalin@mephi.ru; Fedotov, V.T. [Moscow Engineering Physics Institute (State University), 31 Kashirskoye Sh., Moscow 115409 (Russian Federation); Sevrjukov, O.N. [Moscow Engineering Physics Institute (State University), 31 Kashirskoye Sh., Moscow 115409 (Russian Federation); Kalashnikov, A.N. [Moscow Engineering Physics Institute (State University), 31 Kashirskoye Sh., Moscow 115409 (Russian Federation); Suchkov, A.N. [Moscow Engineering Physics Institute (State University), 31 Kashirskoye Sh., Moscow 115409 (Russian Federation); Moeslang, A. [Forschungszentrum Karlsruhe, Institut fuer Materialforschung I, 76021 Karlsruhe (Germany); Rohde, M. [Forschungszentrum Karlsruhe, Institut fuer Materialforschung I, 76021 Karlsruhe (Germany)

    2007-08-01

    Results on rapidly solidified filler metals for brazing W with W and monocrystalline W with EUROFER steel (FS) are presented. Rapidly quenched powder-type filler metals based on Ti{sub bal}-V-Cr-Be were developed to braze polycrystalline W with monocrystalline W. In addition, Fe{sub bal}-Ta-Ge-Si-B-Pd alloys were developed to braze monocrystalline W with FS for helium gas cooled divertors and plasma-facing components. The W to FS brazed joints were fabricated under vacuum at 1150 {sup o}C, using a Ta spacer of 0.1 mm in thickness to account for the different thermal expansions. The monocrystalline tungsten as well as the related brazed joints withstood 30 cycles between 750 {sup o}C/20 min and air cooling/3-5 min.

  9. Towards the development of technical specifications for the production of lithium-lead alloys for the ITER HCLL TMB

    Energy Technology Data Exchange (ETDEWEB)

    Barrado, Ana Isabel, E-mail: anaisabel.barrado@ciemat.es [CIEMAT. Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (Spain); Conde, Estefania; Fernandez, Marta [CIEMAT. Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (Spain); Gomez-Salazar, Jose Maria [UCM. Dpto. De Ciencia de Materiales e Ingenieria Metalurgica (Spain); Quejido, Alberto; Quinones, Javier [CIEMAT. Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (Spain)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Pb-Li alloy plays a key role in the new commercial fusion reactors functionality. Black-Right-Pointing-Pointer It is important to have a complete characterization to define their physicochemical properties. Black-Right-Pointing-Pointer Methodology developed is a key tool that allows performing quality control procedures. Black-Right-Pointing-Pointer Determine concentrations of major and trace elements, which can be found in Pb-Li alloy. - Abstract: The ITER and DEMO projects are developing new Test Blanket Modules (TBM), where the Pb-Li alloy plays a key role in the new commercial fusion reactors functionality. The Breeding Blanket (BB) has to perform several functions which are essential for the reactor operation. The HCLL TBM is one of the Breeding Blanket concepts to be tested in ITER. It is cooled by He and uses the eutectic liquid metal LLE (Lithium-Lead Eutectic) as breeder material (enriched at 90% in {sup 6}Li). Pb-Li eutectic alloy has no known uses outside of fusion technology, so the available databases of this material are currently incomplete. It is very important, within the material specifications, to have a complete characterization in order to define their chemical and physical properties, because any variation in the alloy composition has significant consequences in their behaviour, and therefore in their regenerative function inside the blanket. The chemical characterization methodology developed and presented in this paper (useful for both Pb-Li alloys as any Pb alloy) is a key tool that allows performing standard quality control procedures for base material and/or monitoring the alloy during the reactor operation. This report provides a procedure to perform a wide material chemical characterization, assessing the concentrations of major elements, as well as a review of trace level elements that can be found both in the eutectic alloy and in starting materials. In this determination plays an important

  10. Developing Interdisciplinary Workforce to Meet Future Aerospace Challenges

    Science.gov (United States)

    Misra, Ajay

    2017-01-01

    The presentation will focus on the importance of interdisciplinary research for addressing future aerospace challenges. Examples of current research activities at NASA's Glenn Research Center will be provided to illustrate the importance of interdisciplinary research. Challenges with conducting interdisciplinary research will be discussed.

  11. The Future of Product Line Development at NASA

    Science.gov (United States)

    Lutz, Robyn R.

    2006-01-01

    This viewgraph presentation reviews NASA's software production in the light of a product line similar to a commercial product line. The authors propose to identify, investigate, evaluate and apply product-line engineering techniques to NASA's product lines in order to improve the timeliness, robustness and effectiveness of these future systems.

  12. Process development for 9Cr nanostructured ferritic alloy (NFA) with high fracture toughness

    Science.gov (United States)

    Byun, Thak Sang; Yoon, Ji Hyun; Hoelzer, David T.; Lee, Yong Bok; Kang, Suk Hoon; Maloy, Stuart A.

    2014-06-01

    This article is to summarize the process development and key characterization results for the newly-developed Fe-9Cr based nanostructured ferritic alloys (NFAs) with high fracture toughness. One of the major drawbacks from pursuing ultra-high strength in the past development of NFAs is poor fracture toughness at high temperatures although a high fracture toughness is essential to prevent cracking during manufacturing and to mitigate or delay irradiation-induced embrittlement in irradiation environments. A study on fracture mechanism using the NFA 14YWT found that the low-energy grain boundary decohesion in fracture process at a high temperature (>200 °C) resulted in low fracture toughness. Lately, efforts have been devoted to explore an integrated process to enhance grain bonding. Two base materials were produced through mechanical milling and hot extrusion and designated as 9YWTV-PM1 and 9YWTV-PM2. Isothermal annealing (IA) and controlled rolling (CR) treatments in two phase region were used to enhance diffusion across the interfaces and boundaries. The PM2 alloy after CR treatments showed high fracture toughness (KJQ) at represented temperatures: 240-280 MPa √m at room temperature and 160-220 MPa √m at 500 °C, which indicates that the goal of 100 MPa √m over possible nuclear application temperature range has been well achieved. Furthermore, it is also confirmed by comparison that the CR treatments on 9YWTV-PM2 result in high fracture toughness similar to or higher than those of the conventional ferritic-martensitic steels such as HT9 and NF616.

  13. Advances in the Development of Processing - Microstructure Relations for Titanium Alloys (Postprint)

    Science.gov (United States)

    2016-05-06

    microstructure and composition on the superplastic flow behavior of α/β titanium alloys. Particular attention is given to models describing the refinement...titanium alloys, challenges in the rolling of foil of and gamma-TiAl alloys, and the effect of microstructure and composition on the superlastic flow...materials to billets, slabs , sheet etc. via upsetting, drawing/cogging, and rolling to produce semi-finished products such as billets, plate, and

  14. Fireside corrosion of nickel base alloys in future 700 C coal fired power plants; Rauchgasseitige Korrosion von Nickelbasislegierungen fuer zukuenftige 700 C-Dampfkraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Luettschwager, Frank

    2011-09-27

    nickel base alloys in comparison to air oxidation, even when there is no gaseous sulphur oxide, like SO{sub 2} or SO{sub 3}. This effect may be found by examining model systems, for example inert deposits like metal oxides, silicates or aluminosilicates and corrosive deposits like alkali sulphates. Kinetic investigations are carried out with a newly developed electrochemical pickling method, which allows to calculate the rates of hot corrosion underneath deposits. A material ranking is given for the alloys 263, 617 and 740, and it can be shown that under coal firing conditions lignite ash is much more corrosive than hard coal ash. Finally, thermodynamical calculations show possible reaction products formed during the combustion of various world market coals in power units. The coals' potential of corrosion attacks is evaluated qualitatively by using experimental and thermodynamical data. (orig.)

  15. Aluminum alloy weldability. Identification of weld solidification cracking mechanisms through novel experimental technique and model development

    Energy Technology Data Exchange (ETDEWEB)

    Coniglio, Nicolas

    2008-07-01

    The objective of the present thesis is to make advancements in understanding solidification crack formation in aluminum welds, by investigating in particular the aluminum 6060/4043 system. Alloy 6060 is typical of a family of Al-Mg-Si extrusion alloys, which are considered weldable only when using an appropriate filler alloy such as 4043 (Al-5Si). The effect of 4043 filler dilution (i.e. weld metal silicon content) on cracking sensitivity and solidification path of Alloy 6060 welds are investigated. Afterwards, cracking models are developed to propose mechanisms for solidification crack initiation and growth. Cracking Sensitivity. Building upon the concept that silicon improves weldability and that weldability can be defined by a critical strain rate, strain rate-composition combinations required for solidification crack formation in the Al- 6060/4043 system were determined using the newly developed Controlled Tensile Weldability (CTW) test utilizing local strain extensometer measurements. Results, presented in a critical strain rate - dilution map, show a crack - no crack boundary which reveals that higher local strain rates require higher 4043 filler dilution to avoid solidification cracking when arc welding Alloy 6060. Using the established crack - no crack boundary as a line of reference, additional parameters were examined and their influence on cracking characterized. These parameter influences have included studies of weld travel speed, weld pool contaminants (Fe, O, and H), and grain refiner additions (TiAl{sub 3} + Boron). Each parameter has been independently varied and its effect on cracking susceptibility quantified in terms of strain rate - composition combinations. Solidification Path. Solidification path of the Al-6060/4043 system was characterized using thermal analysis and phase identification. Increasing 4043 filler dilution from 0 to 16% in Alloy 6060 arc welds resulted in little effect on thermal arrests and microstructure, no effect on

  16. Lightweight High Temperature Beta Gamma Alloy/Process Development for Disk and Blade Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary material and manufacturing limitations of gamma TiAl alloys include processing difficulties, requiring costly non-conventional processing requirements,...

  17. Oxide Dispersion Strengthened Fe(sub 3)Al-Based Alloy Tubes: Application Specific Development for the Power Generation Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kad, B.K.

    1999-07-01

    A detailed and comprehensive research and development methodology is being prescribed to produce Oxide Dispersion Strengthened (ODS)-Fe3Al thin walled tubes, using powder extrusion methodologies, for eventual use at operating temperatures of up to 1100C in the power generation industry. A particular 'in service application' anomaly of Fe3Al-based alloys is that the environmental resistance is maintained up to 1200C, well beyond where such alloys retain sufficient mechanical strength. Grain boundary creep processes at such high temperatures are anticipated to be the dominant failure mechanism.

  18. Deformation behaviour and microstructure development of magnesium AZ 31 alloy during hot and semi-hot deformation

    Energy Technology Data Exchange (ETDEWEB)

    Kawalla, R.; Stolnikov, A. [Institut fuer Metallformung, TU Bergakademie Freiberg, Bernhard-von-Cotta-Str. 4, 09596 Freiberg (Germany)

    2004-07-01

    Deformation properties and microstructure development between 20 and 450 C were investigated for Magnesium AZ31 alloy. It was found that this alloy softens preferably by dynamic recrystallisation. This process starts at suitable deformation conditions above 150 C. However, the temperature region above 250 C is more interesting for the production process the semi-finished products. The recrystallised grain size depends heavily on the deformation temperature. A grain size with a mean diameter smaller than 10 {mu}m can be created below 300 C. For further processing of Magnesium sheets, temperatures above 100 C are suitable, but temperatures above 300 C are responsible for superplasticity. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  19. Development of a melt foaming process with particulate reinforced aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Leitlmeier, D. [ARC Leichtmetellkompetenzzentrum Ranshofen GmbH, Ranshofen (Austria)]. E-mail: dietmar.leitlmeier@arcs.ac.at; Degischer, H.P. [Technische Universitat Wien, Wien (Austria)]. E-mail: sek308@pop.tuwien.ac.at; Babcsan, N. [Univ. of Misckolc, Dept. of Nonmetallic Material, Miskolc (Hungary)]. E-mail: femnorbi@gold.uni-miskolc.hu; Flankl, H.J. [Huette Klein Reichenbach, Schwarzenau (Austria)]. E-mail: hkb@aon.at

    2002-07-01

    This paper reports on investigations by Huette Klein-Reichenbach and LKR in the course of the development of a new processing technique for cellular aluminum, to produce net shape parts of foamed aluminum via the melt route by gas injection. The foaming depends on the interaction between the blowing gas, the ceramic particles and the melt. The stabilization of the foam by different particle contents in interaction with air, oxygen and nitrogen as blowing gas has been investigated for some matrix alloys with respect to the processing parameters. The resulting cell structure is characterized by computed X-ray tomography, light optical and scanning electron microscopy. The microstructure of the cell walls is presented as well as the achieved pore size and the local mass density distribution. (author)

  20. Nuclear Power for Sustainable Development : Current Status and Future Prospects

    OpenAIRE

    Adamantiades, A.; Kessides, I.

    2009-01-01

    Interest in nuclear power has been revived as a result of volatile fossil fuel prices, concerns about the security of energy supplies, and global climate change. This paper describes the current status and future plans for expansion of nuclear power, the advances in nuclear reactor technology, and their impacts on the associated risks and performance of nuclear power. Advanced nuclear reactors have been designed to be simpler and safer, and to have lower costs than currently operating reactor...

  1. Neurosurgery in Lebanon: History, Development, and Future Challenges.

    Science.gov (United States)

    Fares, Youssef; Fares, Jawad

    2017-03-01

    Lebanon stands out as the one of the first countries in the Middle East and the Arab world to practice the medical specialty of neurosurgery. In addition, Lebanon has one of the best reputations for neurosurgery in this region. This article documents the history and current status of Lebanese neurosurgery. Residency and fellowship trainings are also highlighted, and political, socioeconomic, and academic challenges for the future of the profession are presented. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Modeling of Stress Development During Thermal Damage Healing in Fiber-reinforced Composite Materials Containing Embedded Shape Memory Alloy Wires

    NARCIS (Netherlands)

    Bor, Teunis Cornelis; Warnet, Laurent; Akkerman, Remko; de Boer, Andries

    2010-01-01

    Fiber-reinforced composite materials are susceptible to damage development through matrix cracking and delamination. This article concerns the use of shape memory alloy (SMA) wires embedded in a composite material to support healing of damage through a local heat treatment. The composite material

  3. Modeling of Stress Development During Thermal Damage Healing in Fiber-reinforced Composite Materials Containing Embedded Shape Memory Alloy Wires

    NARCIS (Netherlands)

    Bor, T.C.; Warnet, L.; Akkerman, R.; Boer, de A.

    2010-01-01

    Fiber-reinforced composite materials are susceptible to damage development through matrix cracking and delamination. This article concerns the use of shape memory alloy (SMA) wires embedded in a composite material to support healing of damage through a local heat treatment. The composite material co

  4. Development of Nanoporous Ni-Sn Alloy and Application for Chemoselective Hydrogenation of Furfural to Furfuryl Alcohol

    Directory of Open Access Journals (Sweden)

    Rodiansono Rodiansono

    2014-03-01

    Full Text Available A very simple synthetic procedure was developed for the preparation of Ni-Sn alloy catalysts that were utilised for chemoselective hydrogenation of furfural, producing furfuryl alcohol almost exclusively. The mixture of nickel nanoparticles supported on aluminium hydroxide (R-Ni/AlOH and a solution containing tin was treated under hydrothermal condition, producing the as prepared nickel-tin alloy supported on aluminium hydroxide (Ni-Sn/AlOH. H2 treatment at range of temperature of 673-873 K for 1.5 h to the as prepared Ni-Sn/AlOH produced nanoporous Ni-Sn alloy catalysts. XRD patterns and SEM images revealed that the formation of Ni-Sn alloy of Ni3Sn and Ni3Sn2 phases and the transformation of crystalline gibbsite and bayerite into amorphous alumina were clearly observed after H2 treatment at 873 K. The formation of the Ni-Sn alloy may have played a key role in the enhancement of the chemoselectivity. © 2014 BCREC UNDIP. All rights reservedReceived: 1st September 2013; Revised: 26th November 2013; Accepted: 7th December 2013[How to Cite: Rodiansono, R., Hara, T., Ichikuni, N., Shimazu, S. (2014. Development of Nanoporous Ni-Sn Alloy and Application for Chemoselective Hydrogenation of Furfural to Furfuryl Alcohol. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (1: 53-59. (doi:10.9767/bcrec.9.1.5529.53-59][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.1.5529.53-59

  5. Creep Resistant Zinc Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  6. Creep Resistant Zinc Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  7. Investigation on low activated materials on the base of V-Ti-Cr alloys

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Low activated materials on the base of vanadium are among the key materials for future fusion reactors. In the Russian Federation the long term National Program on the development of such vanadium alloys is under the way.

  8. Investigation on low activated materials on the base of V-Ti-Cr alloys

    Institute of Scientific and Technical Information of China (English)

    Potapenko; M.; Shikov; A.; Chernov; V.; Drobishev; V.; Gubkin; I.

    2005-01-01

    Low activated materials on the base of vanadium are among the key materials for future fusion reactors. In the Russian Federation the long term National Program on the development of such vanadium alloys is under the way.……

  9. Health physics innovations developed during Cassini for future space applications

    Science.gov (United States)

    Nickell, Rod; Rutherford, Theresa; Marmaro, George

    1999-01-01

    There has been a long history of space missions involving Space Nuclear Auxiliary Power (SNAP) devices starting with the Transit 4A Spacecraft (1961), on through the Apollo, Pioneer, Viking, Voyager, Galileo, Ulysses, Mars Pathfinder, and most recently, Cassini (1997). All of these Major Radiological Source (MRS) missions were processed at the Kennedy Space Center/Cape Canaveral Air Station (KSC/CCAS) Launch Site in full compliance with program and regulatory requirements. The cumulative experience gained supporting these past missions has led to significant innovations which will be useful for bench-marking future MRS ground processing.

  10. GH4169合金研制进展%Progress in GH4169 Alloy Development

    Institute of Scientific and Technical Information of China (English)

    杜金辉; 吕旭东; 邓群; 庄景云

    2012-01-01

    As a result of higher high temperature strength, excellent rupture stress, creep and fatigue properties, as well as good processing and welding performance, GH4169 alloy has been widely used in aerospace, petrochemical and other fields. With continuous improvement on performance of aeronautical and astronautical engines, some higher requirements were put forward to the key material GH4169 Such as temperature bearing capability, rupture stress and creep properties as well as fatigue resistant performance were improved to meet the demands of high performance, high reliability and long service life of the advanced aeroengines. The achievement of basic research and development of industrial manufacture technologies were systematically expounded from aspects of alloy modification, optimization of melting process, improvement of hot deformation technology for the past fifty years in this paper. Expounded contents include: development of alloying principle of modified alloy with higher temperature bearing capability for improving the thermal stability; triple melting technology for the preparation of large sizd clean ingot without segregation, promotion of hot processing technology of press forging and radial forging combination for the preparation of fine grained bar; new progress of hot die forging and isothermal forging for the realization of near net forming.%GH4169合金具有较高的高温强度,优异的持久、蠕变和疲劳性能,同时具备良好的加工和焊接性能,广泛用于航空、航天、石化等领域。随着航空、航天发动机性能的不断提高,对发动机关键用材GH4169在承温能力、持久蠕变性能和抗疲劳性能提出了更高要求,以满足先进航空发动机高性能、高可靠性、长寿命的需求。从合金改型、冶炼工艺优化、热加工技术提升等方面,系统论述了GH4169合金近50年基础研究成果及工程制备技术的进展。内容包括基于提高热稳定性

  11. Integrating futures studies with organizational development : design options for the scenario project "RSW2020"

    NARCIS (Netherlands)

    Twist, van M.J.W.; Steen, van der M.; Vlist, van der M.J.; Demkes, R.H.J.

    2011-01-01

    Most futures studies are not used by managers and strategists and do not influence the direction of organizational development. Although the contribution of future studies to management is in theory all but self-evident, the practice in organizations is that futures knowledge is hardly used, or at m

  12. Building Futurism into the Institution's Strategic Planning and Human Resource Development Model.

    Science.gov (United States)

    Groff, Warren H.

    A process for building futurism into the institution's strategic planning and human resource development model is described. It is an attempt to assist faculty and staff to understand the future and the formulation and revision of professional goals in relation to an image of the future. A conceptual framework about the changing nature of human…

  13. Development of an efficient grain refiner for Al-7Si alloy and its modification with strontium

    Energy Technology Data Exchange (ETDEWEB)

    Kori, S.A.; Murty, B.S.; Chakraborty, M. [Indian Inst. of Technol., Kharagpur (India). Dept. of Metall. and Mater. Eng.

    2000-05-15

    The grain refining response of Al and Al-7Si alloy has been studied with various Al-Ti, Al-B and Al-Ti-B master alloys at different addition levels. The results show that Al-B and B rich Al-Ti-B master alloys cannot grain refine Al, while they are efficient grain refiners to Al-7Si alloy. The level of grain refinement saturates after 0.03% of Ti or B for most of the master alloys studied both at short and long holding times. The grain refining efficiency of some elements other than Ti and B on Al-7Si alloy has also been studied. Interestingly, all the elements studied (B, Cr, Fe, Mg, Ni, Ti and Zr) have resulted in some grain refinement of Al-7Si alloy at short holding time and have shown fading/poisoning on long holding, which increased in the order of B (no poisoning), Ti, Cr, Ni, Fe, Mg, Zr. Sr (0.02%) has been found to provide complete modification of the eutectic in Al-7Si alloy within 2 min, which is not lost even after long holding up to 120 min. Significant improvements in the mechanical properties have been obtained by a combination of grain refinement and modification to an extent that was not possible by either of them alone. (orig.)

  14. Development of a high creep strength hot-chamber die-casting zinc alloy

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, F.E. (International Lead Zinc Research Organization, Inc., Research Triangle Park, NC (United States))

    1992-05-01

    Alloys of Zn-0.3% Al-1.3% Cu-0.3% Mn-0.01% Mg were pressure die cast with Li levels of 0, 0.07, 0.13, and 0.19% Li. The creep properties of these alloys were between those of Zamak 5. and ILZRO 16. Immersion testing of die steel coupons in one of the Li-containing alloys showed rates of erosion similar to those known for Zamak alloys 3 and 5. The mechanism of impoved creep values in the Li-containing alloys appears to be Li-Zn compounds which at first are located on grain boundaries. After aging at 100deg C, they are found predominantly within the grains. Shortterm tensile properties of the Li-containing alloys are 75-85 percent of the properties of Zamak 5, except for the alloy containing the lowest amount of lithium. Elongation and impact values are low. The latter attribute may be caused by the high levels of Mn in these alloys, which form Al-Mn particles on grain boundaries. (orig.).

  15. Alloy development for irradiation performance. Quarterly progress report for period ending December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Ashdown, B.G. (comp.)

    1980-04-01

    Progress is reported concerning preparation of a materials handbook for fusion, creep-fatigue of first-wall structural materials, test results on miniature compact tension fracture toughness specimens, austenitic stainless steels, Fe-Ni-Cr alloys, iron-base alloys with long-range crystal structure, ferritic steels, irradiation experiments, corrosion testing, and hydrogen permeation studies. (FS)

  16. The hook claw Components holes cobalt based alloy technology developed%钩爪组件小孔钴基合金堆焊技术研制

    Institute of Scientific and Technical Information of China (English)

    罗斌; 郑继雷

    2013-01-01

    In this paper, the hook component in nuclear reactor control rod drive system as the research object, built on the basis of holes cobalt-based alloy surfacing technology, first for the the hook claw assemblies holes cobalt-based alloy surfacing the main content of the technology involved in the development process to the detailed analysis of the the entire surfacing technology involved in the development process of technological innovation point basis, aimed at for future research and practical work carried out reference and help.%  本文以核反应堆控制棒驱动系统中钩爪组件为研究对象,提出了一种建立在小孔钴基合金基础之上的堆焊技术,首先针对钩爪组件小孔钴基合金堆焊技术在研制过程中所涉及到的主要内容进行了详细分析,在此基础之上提出了整个堆焊技术在研制过程中所涉及到的技术创新点,旨在于为今后相关研究与实践工作的开展提供一定的参考与帮助。

  17. Oxide phase development upon high temperature oxidation of {gamma}-NiCrAl alloys

    Energy Technology Data Exchange (ETDEWEB)

    Nijdam, T.J.; Pers, N.M. van der; Sloof, W.G. [Department of Materials Science and Engineering, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft (Netherlands)

    2006-03-15

    The amount of each oxide phase developed upon thermal oxidation of a {gamma}-Ni-27Cr-9Al (at.%) alloy at 1353 K and 1443 K and a partial oxygen pressure of 20 kPa is determined with in-situ high temperature X-ray Diffractometry (XRD). The XRD results are compared with microstructural observations from Scanning Electron Microscope (SEM) backscattered electron images, and model calculations using a coupled thermodynamic-kinetic oxidation model. It is shown that for short oxidation times, the oxide scale consists of an outer layer of NiO on top of an intermediate layer of Cr{sub 2}O{sub 3} and an inner zone of isolated {alpha}-Al{sub 2}O{sub 3} precipitates in the alloy. The amounts of Cr{sub 2}O{sub 3} and NiO in the oxide scale attain their maximum values when successively continuous Cr{sub 2}O{sub 3} and {alpha}-Al{sub 2}O{sub 3} layers are formed. Then a transition from very fast to slow parabolic growth kinetics occurs. During the slow parabolic growth, the total amount of non-protective oxide phases (i.e. all oxide phases excluding {alpha}-Al{sub 2}O{sub 3}) in the oxide scale maintain at an approximately constant value. The formation of NiCr{sub 2}O{sub 4} and subsequently NiAl{sub 2}O{sub 4} happens as a result of solid-state reactions between the oxide phases within the oxide scale. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  18. Rethinking scales? Possible future(s) for regional development planning in South Africa - a think piece

    CSIR Research Space (South Africa)

    Makoni, EN

    2008-10-01

    Full Text Available The first part of this discussion will provide an overview on the significance of the region in promoting regional development. This analysis will be done within the context of New Regionalism. The second part will outline the current challenges...

  19. Talent Development: A "Must" for a Promising Future

    Science.gov (United States)

    Roberts, Julia Link

    2008-01-01

    In the movement toward an integrated P-16 system of education, educators need to address a number of questions about talent development. Why is talent development important for society in general? What must be in place in a P-16 system in order to nurture the development of talent in a school and throughout a school system? And what must be in…

  20. Emotional Aspects of Childhood Career Development: Importance and Future Agenda

    Science.gov (United States)

    Oliveira, Íris M.; Taveira, Maria do Céu; Porfeli, Erik J.

    2015-01-01

    Childhood is a central period for career and social-emotional development. However, the literature covering childhood career development and the role of emotions in careers is scarce. In this article, we advocate for the consideration of emotions in childhood career development. Emotional aspects of children's career exploration, key-figures and…

  1. Moral Development at the Crossroads: New Trends and Possible Futures

    Science.gov (United States)

    Lapsley, Daniel; Carlo, Gustavo

    2014-01-01

    This article introduces a special section on moral development. We claim that the field is now undergoing a resurgence of theoretical and methodological innovation after the eclipse of paradigmatic moral stage theory. Although research on prosocial development, moral emotions, and social domain theory has sustained interest in moral development,…

  2. Moral Development at the Crossroads: New Trends and Possible Futures

    Science.gov (United States)

    Lapsley, Daniel; Carlo, Gustavo

    2014-01-01

    This article introduces a special section on moral development. We claim that the field is now undergoing a resurgence of theoretical and methodological innovation after the eclipse of paradigmatic moral stage theory. Although research on prosocial development, moral emotions, and social domain theory has sustained interest in moral development,…

  3. Educational Planning for the Future Development of Pasco-Hernando Community College.

    Science.gov (United States)

    McGuffey, C. W.; And Others

    The purpose of this study was to develop a long-range educational plan for the future development and expansion of the current program and facilities of Pasco-Hernando Community College. An analysis has been made of available data and related information as a basis for the preparation of a generalized plan to guide the future development of the…

  4. Cancer Treatment-Related Cardiotoxicity: Understanding the Current State of Knowledge and Developing Future Research Priorities

    Science.gov (United States)

    Cancer Treatment-Related Cardiotoxicity: Understanding the Current State of Knowledge and Developing Future Research Priorities, a 2013 workshop sponsored by the Epidemiology and Genomics Research Program.

  5. Nasal drug delivery - recent developments and future prospects.

    Science.gov (United States)

    Illum, Lisbeth

    2012-07-20

    The present review sets out to discuss recent developments and prospects of absorption promoters and absorption modulator systems being developed commercially by companies specialising in nasal drug delivery of normal small molecular weight drugs and biological drugs such as peptide and proteins. The absorption promoter systems selected for discussion in this review are those with the most promising preclinical and/or clinical data and sufficient toxicology data and/or company development efforts to warrant use in marketed products i.e. CPE-215 (cyclopenta decalactone (azone)) developed by CPEX Pharma, Intravail (alkylsaccharides) developed by Aegis Therapeutics, ChiSys(TM) (chitosan) and PecSys(TM) (low methylated pectin) in development by Archimedes Pharma and CriticalSorb(TM) (polyglycol mono- and diesters of 12-hydroxystearate (70%), polyethylene glycol (30%)) developed by Critical Pharmaceuticals. Copyright © 2012. Published by Elsevier B.V.

  6. 低成本Cu-Zn-Al-X弹性材料的研究进展%Research and Development of Low Cost Cu-Zn-Al-X Elastic Alloy

    Institute of Scientific and Technical Information of China (English)

    李杰; 王永如; 戴姣燕; 肖来荣; 李周; 宗亚平

    2012-01-01

    The component, properties, characteristics of processing technique and strengthening mechanism of Cu-Zn-Al-X elastic alloys, as well as the effect of elements (such as Al,Ni,Co) on properties of the alloy, are expounded in detail. Meanwhile, the development and research progress in the field of Cu-Zn-Al-X copper base elastic alloy at home and abroad are introduced. Tendence of Cu-Zn- Al-Co and Cu-Zn-Al-Ni alloy substitute phosphor bronze gradually in future and optimized design of components, development of advanced technology and so on are pointed out.%详细地阐述了各元素(Al、Ni、Co等)对Cu-Zn-Al-X系列材料的作用以及该系列材料的成分类型、性能、制备工艺特点和强化机理.同时,介绍了国内外在该系铜基弹性合金材料方面的研究进展.指出在未来的发展中Cu-Zn-Al-Co与Cu-Zn-Al-Ni系列具有逐渐部分替代锡磷青铜的趋势,成分优化设计、新工艺开发等将会成为重点研究对象.

  7. Status of Muon Collider Research and Development and Future Plans

    CERN Document Server

    Ankenbrandt, C M; Autin, Bruno; Balbekov, Valeri I; Barger, Vernon D; Benary, Odette; Berg, J Scott; Berger, Michael S; Black, Edgar L; Blondel, Alain; Bogacz, S Alex; Bolton, T; Caspi, Sholomo; Celata, Chrisine; Chou, Weiren; Cline, David B; Corlett, John; Cremaldi, Lucien; Diehl, H Thomas; Drozhdin, Alexandr; Fernow, Richard C; Finley, David A; Fukui, Yasuo; Furman, Miguel A; Gabriel, Tony; Gallardo, Juan C; Garren, Alper A; Geer, Stephen H; Ginzburg, Ilya F; Green, Michael A; Guler, Hulya; Gunion, John F; Gupta, Ramesh; Han, Tao; Hanson, Gail G; Hassanein, Ahmed; Holtkamp, Norbert; Johnson, Colin; Johnstone, Carol; Kahn, Stephen A; Kaplan, Daniel M; Kim, Eun San; King, Bruce J; Kirk, Harold G; Kuno, Yoshitaka; Paul Lebrun; Lee, Kevin; Lee, Peter; Li, Derun; Lissauer, David; Littenberg, Laurence S; Lu, Changguo; Luccio, Alfredo; Lykken, Joseph D; McDonald, Kirk T; McInturff, Alfred D; Miller, John R; Mills, Frederick E; Mokhov, Nikolai V; Moretti, Alfred; Mori, Yoshiharu; Neuffer, David V; Ng, King-Yuen; Noble, Robert J; Norem, James H; Onel, Yasar; Palmer, Robert B; Parsa, Zohreh; Pischalnikov, Yuriy; Popovic, Milorad; Prebys, EricJ; Qian, Zubao; Raja, Rajendran; Reed, Claude B; Rehák, Pavel; Roser, Thomas; Rossmanith, Robert; Scanlan, Ronald M; Sessler, Andrew M; Schadwick, Brad; Shu, Quan-Sheng; Silvestrov, Gregory I; Skrinsky, Alexandr N; Smith, Dale; Spentzouris, Panagiotis; Stefanski, Ray; Striganov, Sergei; Stumer, Iuliu; Summers, Don; Tcherniatine, Valeri; Teng, Lee C; Tollestrup, Alvin V; Torun, Yagmur; Trbojevic, Dejan; Turner, William C; Vahsen, Sven E; Van Ginneken, Andy; Vsevolozhskaya, Tatiana A; Wan, Weishi; Wang, Haipeng; Weggel, Robert; Willen, Erich H; Wilson, Edmund J N; Winn, David R; Wurtele, Jonathan S; Ankenbrandt, Charles M.

    1999-01-01

    The status of the research on muon colliders is discussed and plans are outlined for future theoretical and experimental studies. Besides continued work on the parameters of a 3-4 and 0.5 TeV center-of-mass (CoM) energy collider, many studies are now concentrating on a machine near 0.1 TeV (CoM) that could be a factory for the s-channel production of Higgs particles. We discuss the research on the various components in such muon colliders, starting from the proton accelerator needed to generate pions from a heavy-Z target and proceeding through the phase rotation and decay ($\\pi \\to \\mu \

  8. A view on the future development of the Intelsat system

    Science.gov (United States)

    Jefferis, A. K.

    1992-03-01

    Changes in the telecommunications environment, including deregulation, competition in the provision of services, growth in use of optical fiber cables and new opportunities for satellite related services will all affect the quantity and type of future services to be provided by Intelsat. Despite some of the adverse factors strong growth is predicted over the next two decades requiring new types of satellite and changes in some of the transmission techniques. For the public switched network (PSN) services a substantive change to a simplified version of TDMA appears necessary, with baseband switching in the satellite, and possibly the use of intersatellite links. Conventional satellite designs, but with more flexible spot beams, are predicted for the non-PSN services. In the paper the technical, operational and economic implications of such satellites are addressed.

  9. Development and Validation of Capabilities to Measure Thermal Properties of Layered Monolithic U-Mo Alloy Plate-Type Fuel

    Science.gov (United States)

    Burkes, Douglas E.; Casella, Andrew M.; Buck, Edgar C.; Casella, Amanda J.; Edwards, Matthew K.; MacFarlan, Paul J.; Pool, Karl N.; Smith, Frances N.; Steen, Franciska H.

    2014-07-01

    The uranium-molybdenum (U-Mo) alloy in a monolithic form has been proposed as one fuel design capable of converting some of the world's highest power research reactors from the use of high enriched uranium to low enriched uranium. One aspect of the fuel development and qualification process is to demonstrate appropriate understanding of the thermal-conductivity behavior of the fuel system as a function of temperature and expected irradiation conditions. The purpose of this paper is to verify functionality of equipment installed in hot cells for eventual measurements on irradiated uranium-molybdenum (U-Mo) monolithic fuel specimens, refine procedures to operate the equipment, and validate models to extract the desired thermal properties. The results presented here demonstrate the adequacy of the equipment, procedures, and models that have been developed for this purpose based on measurements conducted on surrogate depleted uranium-molybdenum (DU-Mo) alloy samples containing a Zr diffusion barrier and clad in aluminum alloy 6061 (AA6061). The results are in excellent agreement with thermal property data reported in the literature for similar U-Mo alloys as a function of temperature.

  10. Development of dispersion-strengthened Ni-Cr-ThOz alloys for the space shuttle thermal protection system

    Science.gov (United States)

    Blankenship, C. P.; Saunders, N. T.

    1972-01-01

    Manufacturing processes were developed for TD-NiCr providing small sheet (45 x 90 cm), and larger sheet (60 x 150 cm) and foil. The alternate alloy, DS-NiCr, was produced by pack-chromizing Ni-ThO2 sheet. Formability criteria are being established for basic sheet forming processes, which are brake forming, corrugation forming, joggling, dimpling, and beading. Resistance spot welding (fusion and solid state), resistance seam welding, solid state diffusion welding, and brazing are included in the joining programs. Major emphasis is centered on an Al-modified Ni-Cr-ThO2 alloy development. These alloys, containing 3 to 5% Al, form the protective Al2O3 scale. This enhances oxidation resistance under reentry conditions. Both TD-NiCrAl and DS-NiCrAl alloys are included. A tentative composition of Ni-16Cr-3.5Al-2ThO2 was selected based on oxidation resistance and fabricability.

  11. The Future of Web and Mobile Game Development

    Directory of Open Access Journals (Sweden)

    Kevin Curran

    2012-01-01

    Full Text Available Since HTML5 has become open to the public many developers have been experimenting with the new possibilities for web development, the aim of this research paper is to give an overview of what this means to the game development community. This research paperwill evaluate new HTML5 elements and JavaScript features. We highlight WebGL, Canvas and WebSockets, which have given developers the opportunity to flaunt their creativity by manipulatingimages, creating3D environments and providing real-time interaction.

  12. Major City Development Forecast: Designing the Innovative Future

    Directory of Open Access Journals (Sweden)

    Lavrikova Yuliya Georgievna

    2017-01-01

    Full Text Available The article describes the results of application of the authors’ approach to forecasting the development of the city (in the case of one of the largest Russian cities – Ekaterinburg. The main results of the development of multi-variant long-term forecast of Ekaterinburg socio-economic development are presented: the provisions of the approach used to create such documents are set out, a brief description of the forecasting methodology is given, the key aspects of city life in the context of the proposed development scenarios are forecasted, the main risks of long-term development of the city are described. The study is based on the use of the whole set of forecasting methods such as mathematical modeling, balance and cohort-component methods, extrapolation methods and expert evaluation method. The article describes the situation in Ekaterinburg regarding other cities and evaluates key development prospects of a municipal unit. It is recommended to use the approach based on the given scenario “junctions” (each of which gives two alternative scenarios; this helped identify eight options for the city transformation. Three Ekaterinburg development scenarios are covered in detail, which provided an opportunity for considering economic and social components of a municipal system in different conditions. They are inertial, basic and innovative city development (the authors mark the importance of the innovation scenario. The authors also characterize the possible ways of transforming demographic potential, economic and human resources. The study also identifies the degree of risks and threats to Ekaterinburg long-term development, estimates external and internal (technological, infrastructural, demographic and environmental risks. The obtained results are an important element of the city development planning system, since effective management of municipal socio-economic system development can only be implemented with proper presentation of

  13. Small Fluxgate Magnetometers: Development and Future Trends in Spain

    Science.gov (United States)

    Ciudad, David; Díaz-Michelena, Marina; Pérez, Lucas; Aroca, Claudio

    2010-01-01

    In this paper, we give an overview of the research on fluxgate magnetometers carried out in Spain. In particular we focus in the development of the planar-type instruments. We summarize the fabrication processes and signal processing developments as well as their use in complex systems and space. PMID:22294904

  14. Watershed management and sustainable development: Lessons learned and future directions

    Science.gov (United States)

    Karlyn Eckman; Hans M. Gregerson; Allen L. Lundgren

    2000-01-01

    Fundamental belief underlying the direction and content of this paper is that the paradigms of land and water management evolving into the 21st century increasingly favor a watershed focused approach. Underlying that approach is an appreciation of the processes of sustainable development and resource use. The increasing recognition that sustainable development and...

  15. Development, Operation, and Future Prospects for Implementing Biogas Plants

    DEFF Research Database (Denmark)

    Lybæk, Rikke

    2014-01-01

    of developing new gas boosters to support a further development of the biogas sector. The chapter ends with a discussion of new trends in biogas production, for example, how new organizational models can be designed as well as how the use of alternative boosters—like blue biomass—can be applied. Finally, biogas...

  16. Investigations of linear contraction and shrinkage stresses development in hypereutectic al-si binary alloys

    Directory of Open Access Journals (Sweden)

    J. Mutwil

    2009-07-01

    Full Text Available Shrinkage phenomena during solidification and cooling of hypereutectic aluminium-silicon alloys (AlSi18, AlSi21 have been examined. A vertical shrinkage rod casting with circular cross-section (constant or fixed: tapered has been used as a test sample. Two type of experiments have been conducted: 1 on development of the test sample linear dimension changes (linear expansion/contraction, 2 on development of shrinkage stresses in the test sample. By the linear contraction experiments the linear dimension changes of the test sample and the metal test mould as well a temperature in six points of the test sample have been registered. By shrinkage stresses examination a shrinkage tension force and linear dimension changes of the test sample as well a temperature in three points of the test sample have been registered. Registered time dependences of the test bar and the test mould linear dimension changes have shown, that so-called pre-shrinkage extension has been mainly by mould thermal extension caused. The investigation results have shown that both: the linear contraction as well as the shrinkage stresses development are evident dependent on metal temperature in a warmest region the sample (thermal centre.

  17. Development of multilayer perceptron networks for isothermal time temperature transformation prediction of U-Mo-X alloys

    Energy Technology Data Exchange (ETDEWEB)

    Johns, Jesse M.; Burkes, Douglas

    2017-07-01

    In this work, a multilayered perceptron (MLP) network is used to develop predictive isothermal time-temperature-transformation (TTT) models covering a range of U-Mo binary and ternary alloys. The selected ternary alloys for model development are U-Mo-Ru, U-Mo-Nb, U-Mo-Zr, U-Mo-Cr, and U-Mo-Re. These model’s ability to predict 'novel' U-Mo alloys is shown quite well despite the discrepancies between literature sources for similar alloys which likely arise from different thermal-mechanical processing conditions. These models are developed with the primary purpose of informing experimental decisions. Additional experimental insight is necessary in order to reduce the number of experiments required to isolate ideal alloys. These models allow test planners to evaluate areas of experimental interest; once initial tests are conducted, the model can be updated and further improve follow-on testing decisions. The model also improves analysis capabilities by reducing the number of data points necessary from any particular test. For example, if one or two isotherms are measured during a test, the model can construct the rest of the TTT curve over a wide range of temperature and time. This modeling capability reduces the cost of experiments while also improving the value of the results from the tests. The reduced costs could result in improved material characterization and therefore improved fundamental understanding of TTT dynamics. As additional understanding of phenomena driving TTTs is acquired, this type of MLP model can be used to populate unknowns (such as material impurity and other thermal mechanical properties) from past literature sources.

  18. The Challenge of Urban and Regional Development in the Future

    Directory of Open Access Journals (Sweden)

    Tedjo Suminto

    2004-01-01

    Full Text Available The task of development is part of the overall national task carried out along governance. This task has been entrusted to the government as a gradual long-term task, planning, and sustainable. Implied in it, the intention to achieve a better state. Contained within the dimension of time setting goals, achieving goals, and overall utilization of benefits for citizens throughout the country. Enshrined also be aware that there will be found a variety of difficulties, limitations, and problems that must be solved. The problems of urban development in Indonesia can be viewed from two approaches, namely macro and micro approaches. A macro approach urban problems are reviewed in the context of the region (national scale. While the approach is seen as a micro city neighborhoods. This problem is closely related to the natural growth of the city population and population migration. Based on research on urban and regional development, it can be concluded: 1 the problem of urbanization of rural and small towns to large cities should be addressed; 2 urban spatial arrangements should be improved to do with increasingly limited land for development and urban development; 3 the provision of facilities and infrastructure of the city, city management, and financing of urban development, integration between government, society, and the private sector should be increased; 4 study of urban models that can accommodate all the problems of the city should be developed continuously.

  19. Study of the structure and development of the set of reference materials of composition and structure of heat resisting nickel and intermetallic alloys

    Directory of Open Access Journals (Sweden)

    E. B. Chabina

    2016-01-01

    Full Text Available Relevance of research: There are two sizes (several microns and nanodimensional of strengthening j'-phase in single-crystal heat resisting nickel and intermetallic alloys, used for making blades of modern gas turbine engines (GTD. For in-depth study of structural and phase condition of such alloys not only qualitative description of created structure is necessary, but quantitative analysis of alloy components geometrical characteristics. Purpose of the work: Development of reference material sets of heat resisting nickel and intermetallic alloy composition and structure. Research methods: To address the measurement problem of control of structural and geometrical characteristics of single-crystal heat resisting and intermetallic alloys by analytical microscopy and X-ray diffraction analysis the research was carried out using certified measurement techniques on facilities, entered in the Register of Measurement Means of the Russian Federation. The research was carried out on microsections, foils and plates, cut in the plane {100}. Results: It is established that key parameters, defining the properties of these alloys are particle size of strengthening j' -phase, the layer thickness of j-phase between them and parameters of phases lattice. Metrological requirements for reference materials of composition and structure of heat resisting nickel and intermetallic alloys are formulated. The necessary and sufficient reference material set providing the possibility to determine the composition and structure parameters of single-crystal heat resisting nickel and intermetallic alloys is defined. The developed RM sets are certified as in-plant reference materials. Conclusion: The reference materials can be used for graduation of spectral equipment when conducting element analysis of specified class alloys; for calibration of means of measuring alloy structure parameters; for measurement of alloys phases lattice parameters; for structure reference pictures

  20. Future Regulations – A Catalyst for Technology Development

    Science.gov (United States)

    Summary of current mobile source regulations and EPA mobile source regulatory authority with an emphasis on how EPA regulations are a driver for the development and introduction of automotive technology.

  1. Eras of Web Mapping Developments: Past, Present and Future

    Science.gov (United States)

    Veenendaal, Bert

    2016-06-01

    Developments in web mapping and web based geographic information systems (GIS) have evolved rapidly over the past two decades. What began as online map images available to a small group of geospatial experts and professionals has developed to a comprehensive and interactive web map based on integrated information from multiple sources and manipulated by masses of users globally. This paper introduces a framework that outlines the eras of web mapping and significant developments among those eras. From this framework, some of the influences and trends can be determined, particularly those in relation to the development of technologies and their relation to the growth in the number and diversity of users and applications that utilise web mapping and geospatial information online.

  2. Reduced-activation steels: Future development for improved creep strength

    Science.gov (United States)

    Klueh, R. L.

    2008-08-01

    Reduced-activation steels for fusion applications were developed in the 1980s to replace the elevated-temperature commercial steels first considered. The new steels were patterned after the commercial steels, with the objective that the new steels have yield stress and ultimate tensile strength and impact toughness in a Charpy test comparable to or better than the steels they replaced. That objective was achieved in reduced-activation steels developed in Japan, Europe, and the United States. Although tensile and impact toughness of the reduced-activation steels exceed those of the commercial steels they were patterned after, their creep-rupture properties are inferior to some commercial steels they replaced. They are even more inferior to commercial steels developed since the 1980s. In this paper, compositional differences between reduced-activation steels and new commercial steels are examined, and compositions are proposed for development of new-and-improved reduced-activation steels.

  3. Future Development Strategies for S Group Based on SWOT Analysis

    Institute of Scientific and Technical Information of China (English)

    Guohui; QI; Ligen; CHEN

    2014-01-01

    In recent years,the real estate development enterprises are facing the gradually increased government’s macro-control,and the increasingly fierce market competition,so it is very imperative to timely adjust and change the enterprises’ development strategies to adapt to the new development situation.With S Group as the study object,we use SWOT analysis to analyze the company’s internal and external environment,study the current situation of the company and the existing problems,and clearly point out the opportunities and challenges facing the company.Finally we put forth some targeted strategic recommendations,in order to provide a reference for the development of S Group.

  4. Development of Ti-12Mo-3Nb alloy for biomedical application; Desenvolvimento da liga Ti-12Mo-3Nb para aplicacao biomedica

    Energy Technology Data Exchange (ETDEWEB)

    Panaino, J.V.P.; Gabriel, S.B., E-mail: josevicentepanaino@hotmail.co [Centro Universidade de Volta Redonda (UNIFOA), RJ (Brazil); Mei, P. [Universidade Estadual de Campinas (DEMa/UNICAMP), SP (Brazil). Dept. de Materiais; Brum, M.V. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Programa de Engenharia Metalurgica e de Materiais; Nunes, C.A. [Universidade de Sao Paulo (EEL/USP), Lorena, SP (Brazil). Escola de Engenharia

    2010-07-01

    The titanium alloys are quite satisfactory for biomedical applications due to their physical, mechanical and biological properties. Recent studies focuses on the development of beta type titanium alloys, composed of toxic elements (Nb, Mo, Ta ,...), because they have more advantages than alpha and alpha + beta (Ti- 6Al-4V) alloys such as lower modulus of elasticity, better plasticity and, moreover, the process variables can be controlled to produce selected results. This project focused on the development and characterization of Ti-12Mo-3Nb alloy in the condition 'as cast' and after thermomechanical treatment. The material was characterized in different conditions by X-ray diffraction, optical microscopy, microhardness measurements and elasticity modulus. The results showed that the forged Ti-12Mo-3Nb alloy showed the best combination of properties, being a promising candidate for use as implant. (author)

  5. Organizational Culture and Scale Development: Methodological Challenges and Future Directions

    OpenAIRE

    Bavik Ali; Duncan Tara

    2014-01-01

    Defining and measuring organizational culture (OC) is of paramount importance to organizations because a strong culture could potentially increase service quality and yield sustainable competitive advantages. However, such process could be challenging to managers because the scope of OC has been defined differently across disciplines and industries, which has led to the development of various scales for measuring OC. In addition, previously developed OC scales may also not be fully applicable...

  6. [Clinical neuropsychology in perspective: future challenges based on current developments].

    Science.gov (United States)

    Verdejo-García, Antonio; Tirapu-Ustárroz, Javier

    2012-02-01

    New lines of translational, interdisciplinary research are emerging among different fields of the neurosciences, which often point at clinical neuropsychology as the hinge discipline capable of linking the basic findings with their clinical implications and thereby endow them with some meaning for phenomenological experience. To establish the great lines of progress made in the fields of neuroscience and neuropsychology in recent years, so as to be able to foresee the strategic lines and priorities of neuroscience in the near future. To achieve this aim, the first step will be to identify the changes of paradigm that have taken place in the areas of neuroscience and psychology in the last two decades. The next step will be to propose new topics and fields of application that these changes in paradigm offer and demand from neuroscience. The false dichotomies of genes versus environment, mind versus brain, and reason versus emotion are considered, as are the new applications of neuropsychology to the understanding of psychopathological disorders, from the neurodegenerative to neurodevelopment, from 'dirty' drugs to cognitive and affective enhancers.

  7. Bioresorbable vascular scaffolds technology: current use and future developments

    Directory of Open Access Journals (Sweden)

    Giacchi G

    2016-07-01

    Full Text Available Giuseppe Giacchi, Luis Ortega-Paz, Salvatore Brugaletta, Kohki Ishida, Manel Sabaté Cardiology Department, Clinic Cardiovascular Institute, Hospital Clinic, August Pi and Sunyer Biomedical Research Institute (IDIBAPS, University of Barcelona, Barcelona, Spain Abstract: Coronary bioresorbable vascular scaffolds are a new appealing therapeutic option in interventional cardiology. The most used and studied is currently the Absorb BVS™. Its backbone is made of poly-l-lactide and coated by a thin layer of poly-d,l-lactide, it releases everolimus and is fully degraded to H2O and CO2 in 2–3 years. Absorb BVS™ seems to offer several theoretical advantages over metallic stent, as it gives temporary mechanical support to vessel wall without permanently caging it. Therefore, long-term endothelial function and structure are not affected. A possible future surgical revascularization is not compromised. Natural vasomotion in response to external stimuli is also recovered. Several observational and randomized trials have been published about BVS clinical outcomes. The main aim of this review is to carry out a systematic analysis about Absorb BVS™ studies, evaluating also the technical improvements of the Absorb GT1 BVS™. Keywords: Absorb GT1, Absorb BVS™, bioresorbable vascular scaffold, BRS, coronary scaffold

  8. Influence of student experiences in developing skills as future teachers

    Directory of Open Access Journals (Sweden)

    David Hortigüela Alcalá

    2015-04-01

    Full Text Available This study, conducted in four subjects in the Faculty of Education at the University of Burgos during the year 2013-2014, analyzes the student’s perceptions about the transfer of learning obtained in the future vocational skills, in this this case teaching. A pretest-posttest is done, checking how their perception towards learning transfer changes once they have completed the courses. Mixed methodology study is used, performing a both descriptive (mean and standard deviation factors and inferential (ANOVA and one qualitative, in which some interviews with teachers are use once they have completed the courses. Two groups are generated; A where they have been used as a tool peer-assessment and self-assessments and monitoring of learning, and B, in which there has been not formative evaluation process. In this case the teacher has been the only one who has participated in the evaluation and qualification. In group A has been a significant increase in factor related to the transfer of teaching skills. This change occurs in pretest and in group B. It was concluded that the inclusion of open and participatory methodologies in the classroom, that enable the learner part of their own learning process, produces a more positive impact on students’ perceptions of their learning transfer.

  9. Global energy futures and human development: a framework for analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pasternak, A.D. [Lawrence Livermore National Lab., CA (United States)

    2001-07-01

    This paper explores the relationship between measures of human well-being and consumption of energy and electricity. A correlation is shown between the United Nations Human Development Index (HDI) and annual per- capita electricity consumption for 60 populous countries comprising 90% of the world population. In this correlation, HDI reaches a maximum value when electricity consumption is about 4,000 kWh per person per year, well below consumption levels for most developed countries but also well above the level for developing countries. The correlation with electricity use is better than with total primary energy use. Global electricity consumption associated with a ''Human Development Scenario'' is estimated by adding to U.S. Department of Energy projections for the year 2020 increments of additional electricity consumption sufficient to reach 4,000 kWh per capita on a country-by-country basis. A roughly constant ratio of primary energy consumption to electric energy consumption is observed for countries with high levels of electricity use, and this ratio is used to estimate global primary energy consumption in the Human Development Scenario. The Human Development Scenario implies significantly greater global consumption of electricity and primary energy than do projections for 2020 by the DOE and others. (author)

  10. Development of tsunami early warning systems and future challenges

    Directory of Open Access Journals (Sweden)

    J. Wächter

    2012-06-01

    Full Text Available Fostered by and embedded in the general development of information and communications technology (ICT, the evolution of tsunami warning systems (TWS shows a significant development from seismic-centred to multi-sensor system architectures using additional sensors (e.g. tide gauges and buoys for the detection of tsunami waves in the ocean.

    Currently, the beginning implementation of regional tsunami warning infrastructures indicates a new phase in the development of TWS. A new generation of TWS should not only be able to realise multi-sensor monitoring for tsunami detection. Moreover, these systems have to be capable to form a collaborative communication infrastructure of distributed tsunami warning systems in order to implement regional, ocean-wide monitoring and warning strategies.

    In the context of the development of the German Indonesian Tsunami Early Warning System (GITEWS and in the EU-funded FP6 project Distant Early Warning System (DEWS, a service platform for both sensor integration and warning dissemination has been newly developed and demonstrated. In particular, standards of the Open Geospatial Consortium (OGC and the Organization for the Advancement of Structured Information Standards (OASIS have been successfully incorporated.

    In the FP7 project Collaborative, Complex and Critical Decision-Support in Evolving Crises (TRIDEC, new developments in ICT (e.g. complex event processing (CEP and event-driven architecture (EDA are used to extend the existing platform to realise a component-based technology framework for building distributed tsunami warning systems.

  11. The Current Status of Hydrogen Storage Alloy Development for Electrochemical Applications.

    Science.gov (United States)

    Young, Kwo-Hsiung; Nei, Jean

    2013-10-17

    In this review article, the fundamentals of electrochemical reactions involving metal hydrides are explained, followed by a report of recent progress in hydrogen storage alloys for electrochemical applications. The status of various alloy systems, including AB₅, AB₂, A₂B₇-type, Ti-Ni-based, Mg-Ni-based, BCC, and Zr-Ni-based metal hydride alloys, for their most important electrochemical application, the nickel metal hydride battery, is summarized. Other electrochemical applications, such as Ni-hydrogen, fuel cell, Li-ion battery, air-metal hydride, and hybrid battery systems, also have been mentioned.

  12. The Current Status of Hydrogen Storage Alloy Development for Electrochemical Applications

    Directory of Open Access Journals (Sweden)

    Kwo-hsiung Young

    2013-10-01

    Full Text Available In this review article, the fundamentals of electrochemical reactions involving metal hydrides are explained, followed by a report of recent progress in hydrogen storage alloys for electrochemical applications. The status of various alloy systems, including AB5, AB2, A2B7-type, Ti-Ni-based, Mg-Ni-based, BCC, and Zr-Ni-based metal hydride alloys, for their most important electrochemical application, the nickel metal hydride battery, is summarized. Other electrochemical applications, such as Ni-hydrogen, fuel cell, Li-ion battery, air-metal hydride, and hybrid battery systems, also have been mentioned.

  13. Telehealth in the developing world: current status and future prospects

    Directory of Open Access Journals (Sweden)

    Scott RE

    2015-02-01

    Full Text Available Richard E Scott,1,2 Maurice Mars11Department of TeleHealth, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa; 2NT Consulting - Global e-Health Inc., Calgary, AB, CanadaAbstract: In a setting of constant change and confusing terminology, telehealth continues to gain ground in both developed and developing countries within the overarching milieu of e-health. Evidence shows telehealth has been used in essentially all countries of the world, but is embedded in few. Uses and needs of telehealth vary between the developed and developing world; the latter struggles with both communicable diseases and noncommunicable diseases, and with very few resources. Common clinical applications include teleconsultation, telecardiology (transmission of ECGs, teleradiology, and teledermatology. Many telehealth projects exist throughout Latin America and the Caribbean, Asia, and Africa, but there is little published evidence and only isolated examples of sustained programs, although several sustained humanitarian networks exist. Application of mobile solutions (m-health is on the rise in many developing countries. Telehealth is still not integrated into existing health care systems globally. Reasons vary: lack of proven large-scale operations, poor evidence base, inadequate implementation, lack of attention to the “soft side” of implementation (readiness, change management, and many others. For the developing world, reasons can be more pragmatic, including limited resources, unreliable power, poor connectivity, and high cost for the poverty stricken – those most in need. Telehealth is poised to improve health and health care in the developing world, driven by both altruistic and profit motives. But to have the desired effect, telehealth must address very specific and evidence-based health “needs” of each facility, region, or country; the shortage of health workers and specialist services; and the required skills upgrading and training

  14. Space Applications in Support of Future Urban Development in Armenia

    Science.gov (United States)

    Alhaddad, Bahaaeddin; Reppucci, Antonio; Moreno, Laura

    2016-08-01

    The fast growing of some cities has produced important changes in the urban sectors not always following sustainability criteria. As results, most urban growth falls outside formal planning controls and many cities suffer poor urban services management, traffic, and congestion, loss of green areas, poor air quality, and noise. The main advantages of satellite-based EO products are to support the decision-making process, and the development and operation of smart services. Satellite-based urban morphology analysis can help to identify the transformation of the urban development and evolution. The pilot presented here is a demonstration in the framework of the collaboration between ESA and ADB, called EOTAP "Earth Observation for a Transforming Asia Pacific". Aim of the pilot is to exploit satellite Earth observation data for sustainable growth and help preparing a series of city development and investment plans.

  15. Blueberry production in Chile: current status and future developments

    Directory of Open Access Journals (Sweden)

    Jorge B. Retamales

    2014-03-01

    Full Text Available Chile has become a major actor in the blueberry industry as the most important supplier of off-season fresh fruit for the northern hemisphere. Blueberry exports passed from US$ 30 million (around 4,000 tons in 2000 to US$ 380 million (94,000 tons in 2011. The characteristics of the major blueberry growing regions (North, Central, South-central and South are presented in terms of acreage, varieties, management practices, extension of the harvest season, and soil and climatic conditions. Most fruit is from highbush varieties, picked by hand and exported fresh by boat to United States. Largest proportion of fruit is exported from mid December to late January, which coincides with lowest prices. The south-central region (latitudes 34º50' to 38º15' S was in 2007 the most important one with 5,075 ha (51.1% of area planted. Among the challenges for the Chilean blueberry industry in the near future are: 1. Lower profitability due to lower rates of currency exchange and higher costs, 2 - Greater scarcity and higher cost of labor, 3.- Need for higher productivity and sustainable production practices, 4- Fruit of high and consistent quality, and 5.- Greater investment in research. As a case study the article presents three approaches that can help identify areas with low availability of labor and improve its efficiency. The article shows the use of geomatic tools to establish labor availability, application of growth regulators to reduce crop load, increase fruit size and improve harvest efficiency, and the use of shakers to harvest fresh fruit for long distance markets. More research is needed to improve yields, reduce costs and give greater economical and ecological sustainability to the Chilean blueberry industry.

  16. Status of Developing Afghan Governance and Lessons for Future Endeavors

    Directory of Open Access Journals (Sweden)

    Steven H Sternlieb

    2013-05-01

    Full Text Available Building the capacity of and reforming Afghan governance is widely viewed as the key to success in Afghanistan. Assessing progress, however, is hampered by limited data outside the Afghan security ministries – the Ministries of Defense and Interior – and by the lack of a common definition of governance. Available reporting suggests building governance capacity is far from complete. Varying definitions of governance, coupled with the use of the term by numerous organizations without defining it, results in addressing too broad a range of issues. It would be more useful to concentrate on the core of governance – providing the services the Afghan government has committed to provide to its citizens. This, in turn, requires that Afghan ministries have the functional capacity to carry out their responsibilities, including financial management, budget formulation and execution, policy and strategic planning, and service delivery. However, time is growing short. The Afghan experience provides some important lessons that could guide future endeavors for the international community. First, this paper discusses progress in building ministerial capacity. Second, it discusses recent efforts to link continued financial assistance to Afghanistan with improved governance. Third, it describes how the lack of a commonly accepted definition of governance complicates assessing progress. Finally, it offers conclusions and observations about the failure to establish an autonomous Afghan governance capacity. For more than a decade, improving governance has been recognized as the most difficult and critical challenge involving Afghan reconstruction. The Special Inspector General for Afghanistan Reconstruction (SIGAR reports that U.S. policymakers have consistently identified building the capacity of and reforming Afghan governance as the key to success in Afghanistan (SIGAR 2012, 22.

  17. Current status and future development of Chinese Government Public Information Online

    Institute of Scientific and Technical Information of China (English)

    LIANG; Huiwei; WANG; Zhigeng

    2010-01-01

    Since its launch last year,the Chinese Government Public Information Online(CGPIO)platform’s basic construction has developed rapidly.This paper describes the technology and service status of the platform,analyzes its problems,and details the future development of the alliance platform in the future.

  18. Development of high strength Sn-Mg solder alloys with reasonable ductility

    Science.gov (United States)

    Alam, Md Ershadul; Gupta, Manoj

    2013-09-01

    This study discussed the development of a series of new lead-free Sn-Mg solders by incorporating varying amounts of Mg (0.8, 1.5 and 2.5 wt. %) into pure Sn using disintegrated melt deposition technique followed by room temperature extrusion. All extruded Sn and Sn-Mg solder samples were characterized. Microstructural characterization studies revealed equiaxed grain morphology, minimal porosity and relatively uniform distribution of secondary phase. Better coefficient of thermal expansion was observed for Sn-2.5Mg sample when compared to conventional Sn-37Pb solder. Melting temperature of Sn-1.5Mg was found to be 212°C which is much lower than the conventional Sn-Ag-Cu or Sn-Cu (227°C) solders. Microhardness was increased with increasing amount of Mg in pure Sn. Room temperature tensile test results revealed that newly developed Sn-Mg solders exhibit enhanced strengths (0.2% yield strength and ultimate tensile strength) with comparable (if not better) ductility when compared to other commercially available and widely used Sn-based solder alloys.

  19. Development of Yield and Tensile Strength Design Curves for Alloy 617

    Energy Technology Data Exchange (ETDEWEB)

    Nancy Lybeck; T. -L. Sham

    2013-10-01

    The U.S. Department of Energy Very High Temperature Reactor Program is acquiring data in preparation for developing an Alloy 617 Code Case for inclusion in the nuclear section of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel (B&PV) Code. A draft code case was previously developed, but effort was suspended before acceptance by ASME. As part of the draft code case effort, a database was compiled of yield and tensile strength data from tests performed in air. Yield strength and tensile strength at temperature are used to set time independent allowable stress for construction materials in B&PV Code, Section III, Subsection NH. The yield and tensile strength data used for the draft code case has been augmented with additional data generated by Idaho National Laboratory and Oak Ridge National Laboratory in the U.S. and CEA in France. The standard ASME Section II procedure for generating yield and tensile strength at temperature is presented, along with alternate methods that accommodate the change in temperature trends seen at high temperatures, resulting in a more consistent design margin over the temperature range of interest.

  20. Development Situation and Future Tendency of Liaohe Oil Province

    Institute of Scientific and Technical Information of China (English)

    Cao Weigeng

    1995-01-01

    @@ Liaohe Oil Province is the third largest one stably developing in China. It's composed of more than 20 oil and gas fields with complicated geological conditions. It has various types of reservoir developing 14 sets of oil-bearig horizon with multi-types of crude oil (light oil,heavy oil and high pour-point oil). From 1970 to the end of 1993, there were 22 oilfields which have been put into exploitation, including Huaxiling Oilfield etc. More, Shuangnan and Kailu Oilfields are now on trial production. Since 1984,the annual incremental production of crude oil from these fields reached over 85× 104 t (see Fig. 1).

  1. Review: New Vaccine Against Tuberculosis: Current Developments and Future Challenges

    Science.gov (United States)

    Liu, Jun

    2009-04-01

    Tuberculosis (TB) continues to be a global health threat. BCG was developed as an attenuated live vaccine for tuberculosis control nearly a century ago. Despite being the most widely used vaccine in human history, BCG is not an ideal vaccine and has two major limitations: its poor efficacy against adult pulmonary TB and its disconcerting safety in immunocompromised individuals. A safer and more effective TB vaccine is urgently needed. This review article discusses current strategies to develop the next generation of TB vaccines to replace BCG. While some progresses have been made in the past decade, significant challenges lie ahead.

  2. Scenario drafting to anticipate future developments in technology assessment

    NARCIS (Netherlands)

    Retel, V.P.; Joore, M.A.; Rutgers, E.J.; Harten, van W.H.

    2012-01-01

    Background Health Technology Assessment (HTA) information, and in particular cost-effectiveness data is needed to guide decisions, preferably already in early stages of technological development. However, at that moment there is usually a high degree of uncertainty, because evidence is limited and d

  3. History and Future of Professional Development Schools in Kansas

    Science.gov (United States)

    Mercer, Debbie; Myers, Scott

    2014-01-01

    This article provides a history of the Professional Development School (PDS) movement in Kansas, as well as the major influences and challenges ahead as partnerships continue to grow and adapt. Mercer and Myers highlight the Kansas State Department of Education's (KSDE's) engagement in dialogue about the professional learning continuum of licensed…

  4. CAS Maps Out a Blueprint for Its Future Development

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ At the enlarged summer session of the Party's Leading Group at CAS held from July 25 to 29 in Beijing,the CAS leadership called for implementing the third-phase work of the Knowledge Innovation Program (KIP) through innovation and reform, so as to open up new prospects for CAS development in the years to come.

  5. Reflections and Future Prospects for Evaluation in Human Resource Development

    Science.gov (United States)

    Han, Heeyoung; Boulay, David

    2013-01-01

    Human resource development (HRD) evaluation has often been criticized for its limited function in organizational decision making. This article reviews evaluation studies to uncover the current status of HRD evaluation literature. The authors further discuss general evaluation theories in terms of value, use, and evaluator role to extend the…

  6. Reflections and Future Prospects for Evaluation in Human Resource Development

    Science.gov (United States)

    Han, Heeyoung; Boulay, David

    2013-01-01

    Human resource development (HRD) evaluation has often been criticized for its limited function in organizational decision making. This article reviews evaluation studies to uncover the current status of HRD evaluation literature. The authors further discuss general evaluation theories in terms of value, use, and evaluator role to extend the…

  7. Local alternative energy futures: developing economies/building communities

    Energy Technology Data Exchange (ETDEWEB)

    Totten, M.; Glass, B.; Freedberg, M.; Webb, L.

    1980-12-01

    A separate abstract was prepared for each of the three parts of the conference. A sufficient range of information is presented to enable interested parties to explore the viable alternatives for community self-sufficiency. The parts are entitled: Financial Incentives and Funding Sources; Standards, Regulations, Mandates, Ordinances, Covenants; and Community/Economic Development. (MCW)

  8. Biosensors for Mycotoxin Analysis: Recent Developments and Future Prospects

    Science.gov (United States)

    The toxicity and prevalence of mycotoxins in commodities and foods has necessitated the development of rapid methods in order to ensure the protection of human food and animal feed supplies. Testing for mycotoxins can be accomplished by many techniques that range from determinative tests in which t...

  9. Learning for a Future: Refugee Education in Developing Countries.

    Science.gov (United States)

    Crisp, Jeff, Ed.; Talbot, Christopher, Ed.; Cipollone, Daiana B., Ed.

    This collection of papers is the product of research conducted by the United Nations High Commissioner for Refugees (UNHCR). The papers, which were presented at a 2001 workshop, "Refugee Education in Developing Countries: Policy and Practice," are: "Education in Emergencies" (Margaret Sinclair), which reviews the rationale for…

  10. The Future of Development of China’s Printing Industry

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The tendency in general Digitizing,Networking,diversification and quickness. Digitizing,networking-Digital and network technology will penetrate the in- dustry even far and wide; Diversification-The color and type of printing products will be developed; Quickness-Quick printing at re- quest and streamlined delivery is a new goal of the printers.

  11. Future Directions: Social Development in the Context of Social Justice

    Science.gov (United States)

    Killen, Melanie; Smetana, Judith G.

    2010-01-01

    Many societies and cultures have become increasingly diverse and heterogeneous over the past decade. This diversity has a direct bearing on social justice in children's and adolescents' social development. Increased diversity can have positive consequences, such as the possibility for increased empathy, tolerance, perspective taking, and the…

  12. Electric bicycles in The Netherlands: Current developments and future possibilities

    NARCIS (Netherlands)

    Rooijen, T. van

    2010-01-01

    Developments with electric bicycles in the Netherlands are progressing rapidly. The number of electric bicycles sold is rises every year. Cycling is a very popular mode of transport in The Netherlands. In 2008 more than one million bicycles were sold. At the moment one out of ten bicycles sold is al

  13. Electric bicycles in The Netherlands: Current developments and future possibilities

    NARCIS (Netherlands)

    Rooijen, T. van

    2010-01-01

    Developments with electric bicycles in the Netherlands are progressing rapidly. The number of electric bicycles sold is rises every year. Cycling is a very popular mode of transport in The Netherlands. In 2008 more than one million bicycles were sold. At the moment one out of ten bicycles sold is

  14. Development, Operation, and Future Prospects for Implementing Biogas Plants

    DEFF Research Database (Denmark)

    Lybæk, Rikke

    2014-01-01

    , as is the case of biomass from nature conservation, straw, deep litter, etc. Further, the chapter discusses whether or not biogas technology can create new job opportunities in rural areas that lack development. Economic results from operating centralized biogas plants in Denmark now also stress the importance...

  15. Development and Application of a Theory of Plastic Deformation of Cemented Alloys

    Science.gov (United States)

    1961-03-23

    found widespread applications in the carbide tool industry, in bearings, and in some structural parts . In spite of -’.:e high strengths of alloys such...thermal stresses do play a part in the behavior of such cemented alloys, but there has been no simple correlation between these stresses and mechanical...using transverse rupture bars. Mont of the room-temperature measurements were performed on a 1Hounsfield Tensometer using a three-point loading device

  16. A combinatorial approach of developing alloy thin films using co-sputtering technique for displays

    Institute of Scientific and Technical Information of China (English)

    Jaydeep SARKAR; Tien-Heng HUANG; Lih-Ping WANG; Peter H.McDONALD; Chi-Fung LO; Paul S.GILMAN

    2009-01-01

    In this study we have used a combinatorial approach for producing binary and ternary alloy thin film libraries using a lab-scale RF co-sputtering system. Initially we used two elemental sputtering targets, i.e. aluminum (Al) target and neodymium (Nd) target, to produce a film library of varying composition and successfully identified a suitable composition range (1.95-2.38 at% Nd) in which resistance to hillock formation and resistivity of the film spots were found to be satisfactory in annealed state (350℃, 30 min). In another case, in order to form ternary alloy composition library we have used two sputtering targets, i.e. an Al-0.5 at% Nd alloy target and an elemental Ni target. Though, co-sputtered Al-0.6 at% Nd-0.9 at% Ni alloy films showed satisfactory resistance to hillock formation and low resistivity after annealing, film deposited from a ternary alloy target with the same composition failed to show satis-factory resistance to hillock formation during annealing. In case of Al-0.6 at% Nd-0.9 at% Ni alloy target, 250 nm thick film showed poor resistance to hillock formation than the 500 nm thick film. This clearly showed thickness-dependent hillock performance of AI-0.6 at% Nd-0.9 at% Ni alloy. In this study it was found that, in addition to the process variables, metallurgical microstructure of the alloy sputtering targets had significant effect on the film properties which was not obvious from the results of films deposited using co-sputtering of the individual elemental targets.

  17. A combinatorial approach of developing alloy thin films using co-sputtering technique for displays

    Institute of Scientific and Technical Information of China (English)

    Jaydeep; SARKAR; Tien-Heng; HUANG; Lih-Ping; WANG; Peter; H.; McDONALD; Chi-Fung; LO; Paul; S.; GILMAN

    2009-01-01

    In this study we have used a combinatorial approach for producing binary and ternary alloy thin film libraries using a lab-scale RF co-sputtering system. Initially we used two elemental sputtering targets, i.e. aluminum (Al) target and neodymium (Nd) target, to produce a film library of varying composition and successfully identified a suitable composition range (1.95―2.38 at% Nd) in which resistance to hillock formation and resistivity of the film spots were found to be satisfactory in annealed state (350℃, 30 min). In another case, in order to form ternary alloy composition library we have used two sputtering targets, i.e. an Al-0.5 at% Nd alloy target and an elemental Ni target. Though, co-sputtered Al-0.6 at% Nd-0.9 at% Ni alloy films showed satisfactory resistance to hillock formation and low resistivity after annealing, film deposited from a ternary alloy target with the same composition failed to show satis- factory resistance to hillock formation during annealing. In case of Al-0.6 at% Nd-0.9 at% Ni alloy target, 250 nm thick film showed poor resistance to hillock formation than the 500 nm thick film. This clearly showed thickness-dependent hillock performance of Al-0.6 at% Nd-0.9 at% Ni alloy. In this study it was found that, in addition to the process variables, metallurgical microstructure of the alloy sputtering targets had significant effect on the film properties which was not obvious from the results of films deposited using co-sputtering of the individual elemental targets.

  18. Phase Development and Crystallization Kinetics of NiTi Prepared by Mechanical Alloying

    Institute of Scientific and Technical Information of China (English)

    Xunyong JIANG; Xueping GAO; Deying SONG

    2003-01-01

    NiTi alloy is produced by mechanical alloying(MA). It becomes amorphous after milling for enough time, such as 100 h in this paper. DSC measurement shows that the crystallization temperature is 676 K for the amorphous powder. Activation energy of crystallization is 199.98 kJ/mol for MA powder, which is lower than that of amorphous prepared by magnetron sputtering.Avrami parameter of crystallization is 1.07.

  19. Organizational Culture and Scale Development: Methodological Challenges and Future Directions

    Directory of Open Access Journals (Sweden)

    Bavik Ali

    2014-12-01

    Full Text Available Defining and measuring organizational culture (OC is of paramount importance to organizations because a strong culture could potentially increase service quality and yield sustainable competitive advantages. However, such process could be challenging to managers because the scope of OC has been defined differently across disciplines and industries, which has led to the development of various scales for measuring OC. In addition, previously developed OC scales may also not be fully applicable in the hospitality and tourism context. Therefore, by highlighting the key factors affecting the business environment and the unique characteristics of hospitality industry, this paper aims to align the scope of OC closely with the industry and to put forth the need for a new OC scale that accurately responds to the context of the hospitality industry.

  20. Rhodococcus equi (Prescottella equi) vaccines; the future of vaccine development.

    Science.gov (United States)

    Giles, C; Vanniasinkam, T; Ndi, S; Barton, M D

    2015-09-01

    For decades researchers have been targeting prevention of Rhodococcus equi (Rhodococcus hoagui/Prescottella equi) by vaccination and the horse breeding industry has supported the ongoing efforts by researchers to develop a safe and cost effective vaccine to prevent disease in foals. Traditional vaccines including live, killed and attenuated (physical and chemical) vaccines have proved to be ineffective and more modern molecular-based vaccines including the DNA plasmid, genetically attenuated and subunit vaccines have provided inadequate protection of foals. Newer, bacterial vector vaccines have recently shown promise for R. equi in the mouse model. This article describes the findings of key research in R. equi vaccine development and looks at alternative methods that may potentially be utilised.

  1. Positron Emission Tomography: state of the art and future developments

    Science.gov (United States)

    Pizzichemi, M.

    2016-08-01

    Positron emission tomography (PET) plays a fundamental role in medical imaging, with a wide range of applications covering, among the others, oncology, neurology and cardiology. PET has undergone a steady technological evolution since its introduction in mid 20th century, from the development of 3D PET in the late 1980s, to the invention of PET/CT in the 1990s and more recently with the introduction of PET/MR scanners. The current research topics aiming to develop the next generation of PET scanners are summarized in this paper, focusing on the efforts to increase the sensitivity of the detectors, as long as improving their timing, spatial and energy resolutions, with the final goal of reducing the amount of radioactive dose received by the patients and the duration of the exams while improving at the same time the detectability of lesions.

  2. Ipilimumab: from preclinical development to future clinical perspectives in melanoma.

    Science.gov (United States)

    Letendre, Paul; Monga, Varun; Milhem, Mohammed; Zakharia, Yousef

    2017-03-01

    The arsenal for the treatment of metastatic melanoma is limited. A new approach to therapy using checkpoint blockade has improved overall survival in this patient population. Ipilimumab a CTLA-4 monoclonal antibody is a first in class drug that has pioneered this revolution. In this review, the authors provide an account of the different stages that led to the development of ipilimumab, its approval in the clinical setting for the treatment of advanced melanoma and ongoing investigations of combinatorial immune therapy.

  3. Supplementary Education in Turkey: Recent Developments and Future Prospectss

    OpenAIRE

    Tansel, Aysit

    2013-01-01

    This paper aims to provide the recent developments on the supplementary education system in Turkey. The national examinations for advancing to higher levels of schooling are believed to fuel the demand for Supplementary Education Centers (SEC). Further, we aim to understand the distribution of the SECs and of the secondary schools across the provinces of Turkey in order to evaluate the spacial equity considerations. The evolution of the SECs and of the secondary schools over time are describe...

  4. Supplementary Education in Turkey; Recent Developments and Future Prospects

    OpenAIRE

    Tansel, Aysit

    2013-01-01

    Purpose: This paper aims to provide the recent developments on the supplementary education system in Turkey. The national examinations for advancing to higher levels of schooling are believed to fuel the demand for Supplementary Education Centers (SEC). Further, we aim to understand the distribution of the SECs and of the secondary schools across the provinces of Turkey in order to evaluate the spacial equity considerations. Design/Methodology/Approach: The evolution of the SECs and o...

  5. Vaccine development for Tuberculosis: Past, Present and Future Challenges

    OpenAIRE

    Dileep Tiwari; Shafiul Haque; Ramesh Chandra

    2011-01-01

    About one third of the world's population is infected with Mycobacterium tuberculosis (M. tb), and new infections occur at a rate of about one per second. Additionally, more people in the developed world contact tuberculosis (TB) because their immune systems are more likely to be compromised due to higher exposure to immunosuppressive drugs, substance abuse, or AIDS. The distribution of tuberculosis is not uniform across the globe, still the treatment is difficult and requires long courses of...

  6. Technical Aspects of Telepathology with Emphasis on Future Development

    Directory of Open Access Journals (Sweden)

    P. Schwarzmann

    2000-01-01

    Full Text Available Pathology undergoes presently changes due to new developments in diagnostic opportunities and cost saving efforts in health care. Out of the wide field of telepathology the paper selects three prototype applications: telepathology in teleeducation, expert advice for preselected details of a slide and finally telepathology for remote diagnosis. The most challenging field for remote diagnosis is the application in the frozen section scenario. The paper starts with the mental experiment to map conventional procedures to counterparts in telepathology.

  7. Recent developments and future trends of industrial agents

    OpenAIRE

    Leitão, Paulo; Vrba, Pavel

    2011-01-01

    The agent technology provides a new way to design and engineer control solutions based on the decentralization of control over distributed structures, addressing the current requirements for modern control systems in industrial domains. This paper presents the current situation of the development and deployment of agent technology, discussing the initiatives and the current trends faced for a wider dissemination and industrial adoption, based on the work that is being carried out by the IEEE ...

  8. Is Open Science the Future of Drug Development?

    Science.gov (United States)

    Shaw, Daniel L.

    2017-01-01

    Traditional drug development models are widely perceived as opaque and inefficient, with the cost of research and development continuing to rise even as production of new drugs stays constant. Searching for strategies to improve the drug discovery process, the biomedical research field has begun to embrace open strategies. The resulting changes are starting to reshape the industry. Open science—an umbrella term for diverse strategies that seek external input and public engagement—has become an essential tool with researchers, who are increasingly turning to collaboration, crowdsourcing, data sharing, and open sourcing to tackle some of the most pressing problems in medicine. Notable examples of such open drug development include initiatives formed around malaria and tropical disease. Open practices have found their way into the drug discovery process, from target identification and compound screening to clinical trials. This perspective argues that while open science poses some risks—which include the management of collaboration and the protection of proprietary data—these strategies are, in many cases, the more efficient and ethical way to conduct biomedical research. PMID:28356902

  9. Biomarkers and future targets for development in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Menon, Parvathi; Kiernan, Matthew C; Vucic, Steve

    2014-01-01

    Although the pathophysiological mechanisms underlying the development of amyotrophic lateral sclerosis (ALS) remain to be fully elucidated, there have been significant advances in the understanding of ALS pathogenesis, with evidence emerging of a complex interaction between genetic factors and dysfunction of vital molecular pathways. Glutamate- mediated excitoxicity is an important pathophysiological pathway in ALS, and was identified as an important therapeutic biomarker leading to development of the only pharmacologically based disease-modifying treatment currently available for ALS. More recently, a putative role of voltage-gated persistent Na(+) channels in ALS pathogenesis has been suggested and underscored by neuroprotective effects of Na(+) channel blocking agents in animal models. In addition, advances in ALS genetics have lead to identification of novel pathophysiological processes that could potentially serve as therapeutic targets in ALS. Genetic therapies, including antisense oligonucleotide approaches have been shown to exert neuroprotective effects in animal models of ALS, and Phase I human trial have been completed demonstrating the feasibility of such a therapeutic approach. The present review summarises the advances in ALS pathogenesis, emphasising the importance of these processes as potential targets for drug development in ALS.

  10. Biomatrices and biomaterials for future developments of bioprinting and biofabrication

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, M; Iwanaga, S; Henmi, C; Arai, K [Graduate School of Science and Engineering for Research, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Nishiyama, Y, E-mail: maknaka@eng.u-toyama.ac.j [Bioprinting Project of Kanagawa Academy of Science and Technology (April 2005-March 2008), Kawasaki (Japan)

    2010-03-15

    The next step beyond conventional scaffold-based tissue engineering is cell-based direct biofabrication techniques. In industrial processes, various three-dimensional (3D) prototype models have been fabricated using several different rapid prototyping methods, such as stereo-lithography, 3D printing and laser sintering, as well as others, in which a variety of chemical materials are utilized. However, with direct cell-based biofabrication, only biocompatible materials can be used, and the manufacturing process must be performed under biocompatible and physiological conditions. We have developed a direct 3D cell printing system using inkjet and gelation techniques with inkjet droplets, and found that it had good potential to construct 3D structures with multiple types of cells. With this system, we have used alginate and fibrin hydrogel materials, each of which has advantages and disadvantages. Herein, we discuss the roles of hydrogel for biofabrication and show that further developments in biofabrication technology with biomatrices will play a major part, as will developments in manufacturing technology. It is important to explore suitable biomatrices as the next key step in biofabrication techniques.

  11. Biomatrices and biomaterials for future developments of bioprinting and biofabrication.

    Science.gov (United States)

    Nakamura, M; Iwanaga, S; Henmi, C; Arai, K; Nishiyama, Y

    2010-03-01

    The next step beyond conventional scaffold-based tissue engineering is cell-based direct biofabrication techniques. In industrial processes, various three-dimensional (3D) prototype models have been fabricated using several different rapid prototyping methods, such as stereo-lithography, 3D printing and laser sintering, as well as others, in which a variety of chemical materials are utilized. However, with direct cell-based biofabrication, only biocompatible materials can be used, and the manufacturing process must be performed under biocompatible and physiological conditions. We have developed a direct 3D cell printing system using inkjet and gelation techniques with inkjet droplets, and found that it had good potential to construct 3D structures with multiple types of cells. With this system, we have used alginate and fibrin hydrogel materials, each of which has advantages and disadvantages. Herein, we discuss the roles of hydrogel for biofabrication and show that further developments in biofabrication technology with biomatrices will play a major part, as will developments in manufacturing technology. It is important to explore suitable biomatrices as the next key step in biofabrication techniques.

  12. Future robotic platforms in urologic surgery: recent developments.

    Science.gov (United States)

    Herrell, S Duke; Webster, Robert; Simaan, Nabil

    2014-01-01

    To review recent developments at Vanderbilt University of new robotic technologies and platforms designed for minimally invasive urologic surgery and their design rationale and potential roles in advancing current urologic surgical practice. Emerging robotic platforms are being developed to improve performance of a wider variety of urologic interventions beyond the standard minimally invasive robotic urologic surgeries conducted currently with the da Vinci platform. These newer platforms are designed to incorporate significant advantages of robotics to improve the safety and outcomes of transurethral bladder surgery and surveillance, further decrease the invasiveness of interventions by advancing LESS surgery, and to allow for previously impossible needle access and ablation delivery. Three new robotic surgical technologies that have been developed at Vanderbilt University are reviewed, including a robotic transurethral system to enhance bladder surveillance and transurethral bladder tumor, a purpose-specific robotic system for LESS, and a needle-sized robot that can be used as either a steerable needle or small surgeon-controlled micro-laparoscopic manipulator.

  13. Future robotic platforms in urologic surgery: Recent Developments

    Science.gov (United States)

    Herrell, S. Duke; Webster, Robert; Simaan, Nabil

    2014-01-01

    Purpose of review To review recent developments at Vanderbilt University of new robotic technologies and platforms designed for minimally invasive urologic surgery and their design rationale and potential roles in advancing current urologic surgical practice. Recent findings Emerging robotic platforms are being developed to improve performance of a wider variety of urologic interventions beyond the standard minimally invasive robotic urologic surgeries conducted presently with the da Vinci platform. These newer platforms are designed to incorporate significant advantages of robotics to improve the safety and outcomes of transurethral bladder surgery and surveillance, further decrease the invasiveness of interventions by advancing LESS surgery, and allow for previously impossible needle access and ablation delivery. Summary Three new robotic surgical technologies that have been developed at Vanderbilt University are reviewed, including a robotic transurethral system to enhance bladder surveillance and TURBT, a purpose-specific robotic system for LESS, and a needle sized robot that can be used as either a steerable needle or small surgeon-controlled micro-laparoscopic manipulator. PMID:24253803

  14. Clinical trials in the development of biosimilars: future considerations

    Directory of Open Access Journals (Sweden)

    Huneycutt BJ

    2015-07-01

    Full Text Available Brenda J Huneycutt,1 Earl Gillespie,2 Gillian R Woollett1 1FDA Regulatory Strategy and Policy, Avalere Health, LLC, Washington, DC, 2Health Advances, LLC, Weston, MA, USA Abstract: A number of biosimilars have been approved in highly regulated markets throughout the world. Biosimilar development follows its own unique path – relying primarily on analytics to compare a potential biosimilar to its reference product and giving a reduced, confirmatory role to clinical trials. In addition, the ability to extrapolate data to support approval for indications without a clinical trial gives this abbreviated pathway potential significant value. In fact, so far, all the approved biosimilars in Europe received approval for all the reference product's indications. However, this is not the case in other regions. Regulatory agencies of the highly regulated markets agree in general on many principles underlying biosimilar product development and approval, but differ in important aspects as reflected by the data burdens and approval decisions for four classes of products explored in this paper – somatropins, filgrastims, epoetins, and infliximabs. These case studies also highlight some biosimilar sponsor latitude as reflected in the varying clinical data packages submitted to the same regulatory agency for biosimilars to the same reference product. There also exists biosimilar sponsor latitude in deciding whether to use the biosimilar pathway at all or seek approval through the stand-alone biologics regulatory pathway. This, of course, is a commercial decision based on the weights each biosimilar sponsor gives to the various risks and benefits for each option, for each product, and for each market. Further, it remains an open question whether a single, biosimilar development plan for global commercialization can be used to satisfy each regulatory agency. Keywords: somatropin, filgrastim, epoetin, infliximab

  15. Current and future developments in diesel powered hovercraft

    Science.gov (United States)

    Leonard, J. C.; Stevens, M. J.; Buttigieg, J. A.

    After evaluating the development status of the application of diesel power to air-cushion vehicles (ACVs) and surface-effect ships (SESs), attention is given to the AP1-88 ACV, which is both the first and largest operational diesel-powered amphibious craft of this type. An account is given of the ACV and SES features that are dictated by the need to accommodate diesel power sources; the major advantages and disadvantages of diesel (vs gas turbine) engines are discussed. Although cost reductions are achievable against gas turbine powerplant use, lower payload fractions and slightly lower performance capabilities appear to be inescapable.

  16. Future of photovoltaic energy conversion in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, S.

    1980-04-01

    Recent studies reveal that photovoltaic energy conversion will be economically viable for usage in developing countries. An overview of programs designed to lower the costs of such conversion systems is presented. Government goals are reviewed, as well as application projects relative to rural usage. A summary of the state-of-the-art in both advanced research and commercially available technology is presented. It is concluded that with the range of the work being done, such systems will be viable for many rural applications within 5 years.

  17. Talents Create a Brighter Future for the Developing Land

    Institute of Scientific and Technical Information of China (English)

    Yu Mingyi

    2004-01-01

    @@ Yongxiu County lies in the southern bank of the middle and lower reaches of the Yangtze River of long history and beautiful scene, which is the southern gate of Jiujiang, the national charming city as well as a pearl in the Changjiu Industrial Passageway. It governs 16 villages and towns, 2 farming groups and Tuolin Lake Landscape Administration Bureau covering 2,035 square kilometers that has the population of over 360,000. Nature's endowment,history's favor and country's care, all these produce special advantage of Yongxiu's development that contains the huge potential of Yongxiu's take-off.

  18. Vaccine development for Tuberculosis: Past, Present and Future Challenges

    Directory of Open Access Journals (Sweden)

    Dileep Tiwari

    2011-06-01

    Full Text Available About one third of the world's population is infected with Mycobacterium tuberculosis (M. tb, and new infections occur at a rate of about one per second. Additionally, more people in the developed world contact tuberculosis (TB because their immune systems are more likely to be compromised due to higher exposure to immunosuppressive drugs, substance abuse, or AIDS. The distribution of tuberculosis is not uniform across the globe, still the treatment is difficult and requires long courses of multiple antibiotics. However, antibiotic resistance is a growing problem in multidrugresistant (MDR tuberculosis. But mostly the prevention relies on screening programs and vaccination, usually with Bacillus Calmette- Guérin (BCG vaccine. BCG is the most commonly used vaccine worldwide, but not as a powerful vaccine. BCG also provides some protection against severe forms of pediatric TB, but has been shown to be unreliable against adult pulmonary TB which accounts for most of the disease burden worldwide. Currently, there is an urgent need for novel, more effective vaccine that can prevent all forms of TB including drug resistant strains for all age groups and among people with HIV. The first recombinant tuberculosis vaccine rBCG30, entered clinical trials in year 2004, but, still no effective vaccine is available in a market. Study showed that DNA TB vaccine given with conventional chemotherapy can accelerate the disappearance of bacteria as well as protect against re-infection in mice and it is quite effective against TB. A very promising TB vaccine, MVA85A, is currently in phase II trials and is based on a genetically modified vaccinia virus. Many other strategies are also being used to develop novel vaccines, including both subunit vaccines such as Hybrid-1, HyVac4 or M72, and recombinant adenoviruses such as Ad35. Some of these vaccines can be effectively administered without needles making them preferable for areas where HIV is very common and few of

  19. Review of creep resistant alloys for power plant applications

    Directory of Open Access Journals (Sweden)

    A. Nagode

    2011-01-01

    Full Text Available A paper describes the most popular alloys for power plant application as well as the most promising alloys for future application in that technology. The components in power plants operate in severe conditions (high temperatures and pressures and they are expected reliable service for 30 years and more. The correct choice of the material is, thus, of a very importance. The paper describes the development as well as advantages and disadvantages of convenient ferritic/martensitic steels, ferritic/bainitic steels, austenitic stainless steels and the new alloys for the application at temperatures of 650°C and more.

  20. Constitutive model development for lead free solder alloys at multiple specimen scales

    Science.gov (United States)

    Xiao, Qiang

    A fundamental study of thermal-mechanical response of Sn3.9Ag0.6Cu at different specimen scales was conducted. The investigation includes aging effects on microstructure and tensile property. It also includes tensile creep behavior and microstructure changes. At all stages, we compared our Sn3.9Ag0.6Cu measurements with the well known 63Sn37Pb lead-tin eutectic. The constitutive models were then developed based on the experimental data. This work led to some important conclusions, which indicate that (i) the thin cast material exhibited a much finer as-quenched microstructure than the bulk material with the IMC phase restricted to a thin network. Both the bulk and thin cast materials continually softened during room temperature aging, while both materials initially softened and then subsequently hardened when aged at 120°C and 180°C. The thin cast material was in all cases significantly softer than the bulk material, and responded to aging as if it were bulk material aged at a higher temperature, (ii) the Sn3.9Ag0.6Cu alloy showed much lower absolute creep rates than the 63SnPb37. The power law defined stress exponent significantly increases with increasing stress in both the 63Sn37Pb and Sn3.9Ag0.6Cu alloys, therefore the Dorn model is unsuitable for these materials over large stress and temperature ranges. Both sets of experimental data were successfully fit with the present power law stress dependant energy barrier model and the Garofalo model, and (iii) the thin cast material is less creep-resistant than the bulk material. In the bulk material the relevant climb process occurs within a finely dispersed IMC eutectic which covers broad areas within the material. In the thin cast material the relevant climb process occurs primarily in the beta-Sn grains which continuously surround isolated, coarse IMC particles. This resulted in the activation energy of the bulk material being larger than that for the thin cast material. The strength deficiency of the thin cast

  1. Development of medical writing in India: Past, present and future

    Science.gov (United States)

    Sharma, Suhasini

    2017-01-01

    Pharmaceutical medical writing has grown significantly in India in the last couple of decades. It includes preparing regulatory, safety, and publication documents as well as educational and communication material related to health and health-care products. Medical writing requires medical understanding, knowledge of drug development and the regulatory and safety domains, understanding of research methodologies, and awareness of relevant regulations and guidelines. It also requires the ability to analyze, interpret, and present biomedical scientific data in the required format and good writing skills. Medical writing is the fourth most commonly outsourced clinical development activity, and its global demand has steadily increased due to rising cost pressures on the pharmaceutical industry. India has the unique advantages of a large workforce of science graduates and medical professionals trained in English and lower costs, which make it a suitable destination for outsourcing medical writing services. However, the current share of India in global medical writing business is very small. This industry in India faces some real challenges, such as the lack of depth and breadth in domain expertise, inadequate technical writing skills, high attrition rates, and paucity of standardized training programs as well as quality assessment tools. Focusing our time, attention, and resources to address these challenges will help the Indian medical writing industry gain its rightful share in the global medical writing business. PMID:28194338

  2. Development of medical writing in India: Past, present and future.

    Science.gov (United States)

    Sharma, Suhasini

    2017-01-01

    Pharmaceutical medical writing has grown significantly in India in the last couple of decades. It includes preparing regulatory, safety, and publication documents as well as educational and communication material related to health and health-care products. Medical writing requires medical understanding, knowledge of drug development and the regulatory and safety domains, understanding of research methodologies, and awareness of relevant regulations and guidelines. It also requires the ability to analyze, interpret, and present biomedical scientific data in the required format and good writing skills. Medical writing is the fourth most commonly outsourced clinical development activity, and its global demand has steadily increased due to rising cost pressures on the pharmaceutical industry. India has the unique advantages of a large workforce of science graduates and medical professionals trained in English and lower costs, which make it a suitable destination for outsourcing medical writing services. However, the current share of India in global medical writing business is very small. This industry in India faces some real challenges, such as the lack of depth and breadth in domain expertise, inadequate technical writing skills, high attrition rates, and paucity of standardized training programs as well as quality assessment tools. Focusing our time, attention, and resources to address these challenges will help the Indian medical writing industry gain its rightful share in the global medical writing business.

  3. NASA Composite Materials Development: Lessons Learned and Future Challenges

    Science.gov (United States)

    Tenney, Darrel R.; Davis, John G., Jr.; Pipes, R. Byron; Johnston, Norman

    2009-01-01

    Composite materials have emerged as the materials of choice for increasing the performance and reducing the weight and cost of military, general aviation, and transport aircraft and space launch vehicles. Major advancements have been made in the ability to design, fabricate, and analyze large complex aerospace structures. The recent efforts by Boeing and Airbus to incorporate composite into primary load carrying structures of large commercial transports and to certify the airworthiness of these structures is evidence of the significant advancements made in understanding and use of these materials in real world aircraft. NASA has been engaged in research on composites since the late 1960 s and has worked to address many development issues with these materials in an effort to ensure safety, improve performance, and improve affordability of air travel for the public good. This research has ranged from synthesis of advanced resin chemistries to development of mathematical analyses tools to reliably predict the response of built-up structures under combined load conditions. The lessons learned from this research are highlighted with specific examples to illustrate the problems encountered and solutions to these problems. Examples include specific technologies related to environmental effects, processing science, fabrication technologies, nondestructive inspection, damage tolerance, micromechanics, structural mechanics, and residual life prediction. The current state of the technology is reviewed and key issues requiring additional research identified. Also, grand challenges to be solved for expanded use of composites in aero structures are identified.

  4. REGIONAL DEVELOPMENT - PAST, PRESENT AND FUTURE IN ROMANIA

    Directory of Open Access Journals (Sweden)

    SIMONA BIRIESCU

    2011-01-01

    Full Text Available Romania's participation in the implementation of EU regional policy means, first opportunity to benefit from a system of values that can be found between economic efficiency, environmental protection,ensuring minimum standards of existence, the definition of a "European lifestyle, urban values, qualified human resources. Moreover, European integration and openness to the EU internal market and the challenge involves increasing competitiveness, which can negatively affect the process of building an economy, like Romania. In this context, structural instruments are the most important resource that Romania will have to face the challenges of change and integration. However, regional development policy can not solely be the key to overall development of a state, especially in terms of its actual effects on growth are difficult to assess. A critical dimension of this is represented on the nature of economic and quality of other public policies that form the core of economic policy mix of a state: the legal protection of property rights and market economy, taxation, antitrust, etc.

  5. ARE COMPONENTS THE FUTURE OF WEB–APPLICATION DEVELOPMENT?

    Directory of Open Access Journals (Sweden)

    Ioana LUPAŞC

    2006-01-01

    Full Text Available The software industry is still creating much of its product in a “monolithic” fashion. The products may be more modular and configurable than they used to be, but most projects cannot be said to be truly component based. Even some projects being built with component-enabled technologies are not taking full advantage of the component model. It is quite possible to misuse component capabilities and as a result, to forfeit many of their benefits. Many organizations are becoming aware of the advantages and are getting their developers trained in the new technologies and the proper way to use them. It takes time for an organization to adopt such a significant change in their current practices. Some of the trade magazines would have us believe that the industry is years ahead of where it truly is – those of us in the trenches know that the reaction time is a little longer in the real world. The change to component-based development has begun, however.

  6. DEVELOPMENT AND ASSESSMENT OF COATINGS FOR FUTURE POWER GENERATION TURBINES

    Energy Technology Data Exchange (ETDEWEB)

    Alvin, Maryanne; Klotz, K.; McMordie, B.; Gleeson, B.; Zhu, D.; Warnes, B.; Kang, B.; Tannenbaum, J.

    2012-01-01

    The NETL-Regional University Alliance (RUA) continues to advance technology development critical to turbine manufacturer efforts for achieving DOE Fossil Energy (FE's) Advanced Turbine Program Goals. In conjunction with NETL, Coatings for Industry (CFI), the University of Pittsburgh, NASA GRC, and Corrosion Control Inc., efforts have been focused on development of composite thermal barrier coating (TBC) architectures that consist of an extreme temperature coating, a commercially applied 7-8 YSZ TBC, a reduced cost bond coat, and a diffusion barrier coating that are applied to nickel-based superalloys or single crystal airfoil substrate materials for use at temperatures >1450 C (> 2640 F). Additionally, construction of a unique, high temperature ({approx}1100 C; {approx}2010 F), bench-scale, micro-indentation, nondestructive (NDE) test facility at West Virginia University (WVU) was completed to experimentally address in-situ changes in TBC stiffness during extended cyclic oxidation exposure of coated single crystal coupons in air or steam containing environments. The efforts and technical accomplishments in these areas are presented in the following sections of this paper.

  7. Future Therapeutics in Alzheimer's Disease: Development Status of BACE Inhibitors.

    Science.gov (United States)

    Evin, Genevieve

    2016-06-01

    Alzheimer's disease (AD) is the primary cause of dementia in the elderly. It remains incurable and poses a huge socio-economic challenge for developed countries with an aging population. AD manifests by progressive decline in cognitive functions and alterations in behaviour, which are the result of the extensive degeneration of brain neurons. The AD pathogenic mechanism involves the accumulation of amyloid beta peptide (Aβ), an aggregating protein fragment that self-associates to form neurotoxic fibrils that trigger a cascade of cellular events leading to neuronal injury and death. Researchers from academia and the pharmaceutical industry have pursued a rational approach to AD drug discovery and targeted the amyloid cascade. Schemes have been devised to prevent the overproduction and accumulation of Aβ in the brain. The extensive efforts of the past 20 years have been translated into bringing new drugs to advanced clinical trials. The most progressed mechanism-based therapies to date consist of immunological interventions to clear Aβ oligomers, and pharmacological drugs to inhibit the secretase enzymes that produce Aβ, namely β-site amyloid precursor-cleaving enzyme (BACE) and γ-secretase. After giving an update on the development and current status of new AD therapeutics, this review will focus on BACE inhibitors and, in particular, will discuss the prospects of verubecestat (MK-8931), which has reached phase III clinical trials.

  8. Human resource management - development tendencies and future perspectives

    Directory of Open Access Journals (Sweden)

    Norbert Thom

    2001-01-01

    Full Text Available The dynamics with which changes are taking place in companies has led many managers to better appreciate the necessity and the advantages of comprehensive human resource management. This pressure to change has also helped to generate numerous social innovations within the field of human resource management. The call for each sub-area to play its part in increasing the value of the enterprise is setting new accents in human resource management. The main starting points for increasing the value of an enterprise lie in improving productivity, employee creativity, and motivation. The author bases his ideas on a model of the sub-functions of human resource management used at his own institute, which is subdivided into three basic categories: process functions, cross-section functions, and meta-functions. The human resource management functions discussed can have a positive impact on the above aims. Productivity, for example, is increased through personnel development and personnel placement measures. Personnel retention instruments (incentive systems are almost certain to have an impact on motivation. Ways to influence creativity include selection measures (looking out for candidates with creative potential during the recruitment process and personnel development measures (consciously enhancing a person’s capacity for interdisciplinary thinking, practicing creative techniques.

  9. Nuclear Fuel Design Technology Development for the Future Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Yang Hyun; Lee, Byung Ho; Cheon, Jin Sik; Oh, Je Yong; Yim, Jeong Sik; Sohn, Dong Seong; Lee, Byung Uk; Ko, Han Suk; So, Dong Sup; Koo, Dae Seo

    2006-04-15

    The test MOX fuels have been irradiated in the Halden reactor, and their burnup attained 40 GWd/t as of October 2005. The fuel temperature and internal pressure were measured by the sensors installed in the fuels and test rig. The COSMOS code, which was developed by KAERI, well predicted in-reactor behavior of MOX fuel. The COSMOS code was verified by OECD-NEA benchmarks, and the result confirmed the superiority of COSMOS code. MOX in-pile database (IFA-629.3, IFA-610.2 and 4) in Halden was also used for the verification of code. The COSMOS code was improved by introducing Graphic User Interface (GUI) and batch mode. The PCMI analysis module was developed and introduced by the new fission gas behavior model. The irradiation test performed under the arbitrary rod internal pressure could also be analyzed with the COSMOS code. Several presentations were made for the preparation to transfer MOX fuel performance analysis code to the industry, and the transfer of COSMOS code to the industry is being discussed. The user manual and COSMOS program (executive file) were provided for the industry to test the performance of COSMOS code. To envisage the direction of research, the MOX fuel research trend of foreign countries, specially focused on USA's GENP policy, was analyzed.

  10. The Efficiency of the Chinese Commodity Futures Markets: Development and Empirical Evidence

    Institute of Scientific and Technical Information of China (English)

    Yu Xin; Gongmeng Chen; Michael Firth

    2006-01-01

    This study investigates the efficiency of the Chinese metal futures (i.e. copper and aluminum) traded on China's Shanghai Futures Exchange. First, we thoroughly analyze the development of China's commodity futures markets, which provides a fundamental background. Then we examine the random walk and unbiasedness hypotheses for two metal futures during 1999-2004. Based on the empirical evidence, we argue that China's copper and aluminum futures markets are efficient, and that they aid the process of price discovery because futures prices can be considered as unbiased predictors of future spot prices. We attribute this efficiency to the regulatory changes made in 1999 and the increased financial skills and acumen of the participants in the market.

  11. Development of inclusions in 3104 alloy melt during heating and holding treatments

    Institute of Scientific and Technical Information of China (English)

    Xiao-xiong Luo; Hai-tao Zhang; Xing Han; Shi-jie Guo; Dan-dan Chen; Jian-zhong Cui; Hiromi Nagaumi

    2016-01-01

    Developments in the contents of different typical inclusions in 3104 alloy melt were described during heating and holding proc-essing. The settling process of inclusion particles was investigated by measuring the contents of inclusions in the surface, center, and bottom layers of the molten metal. In the results, main inclusions observed and determined by Prefil and PoDFA methods are MgO, Al2O3, spinel (MgAl2O4), and TiB2 particles or thin films. It is found that some small particles of Al2O3 and MgO are transformed into spinel particles, and the formation rate increases as the temperature and the holding period of melt increase. The content of inclusions increases from 3.37 mm2×kg-1 to 7.54 mm2×kg-1 and then decreases to 3.08 mm2×kg−1 after holding for 90 min. This is attributed to a settling phenomenon and a significant increase in settling velocity after holding for 60 min. The content of inclusion particles decreases by means of settlement and flo-tation in liquid aluminum with an increase in holding time. The theoretical analysis and experiment results are in essential agreement with those from industrial production.

  12. Development and experimental evaluation of a novel annuloplasty ring with a shape memory alloy core

    Science.gov (United States)

    Purser, Molly Ferris

    A novel annuloplasty ring with a shape memory alloy core has been developed to facilitate minimally invasive mitral valve repair. In its activated (austenitic) phase, this prototype ring provides comparable mechanical properties as commercial semi-rigid rings. In its pre-activated (martensitic) phase, this ring is flexible enough to be introduced through an 8 mm trocar and easily manipulated with robotic instruments within the confines of a left atrial model. The core is constructed of 0.508 mm diameter NiTi, which is maintained below its M s temperature (24°C) during deployment and suturing. After suturing, the stiffener is heated to its Af temperature (37°C, normal human body temperature) enabling the NiTi to retain its optimal geometry and stiffness characteristics indefinitely. The NiTi core is shape set in a furnace to the appropriate size and optimal geometry during fabrication. The ring is cooled in a saline bath prior to surgery, making it compliant and easy to manipulate. Evaluation of the ring included mechanical testing, robotic evaluation, static pressure testing, dynamic flow testing and fatigue testing. Experimental results suggest that the NiTi core ring could be a viable alternative to flexible bands in robot-assisted mitral valve repair.

  13. Development of a rotor alloy for advanced ultra super critical turbine power generation system

    Energy Technology Data Exchange (ETDEWEB)

    Miyashita, Shigekazu; Yamada, Masayuki; Suga, Takeo; Imai, Kiyoshi; Nemoto, Kuniyoshi; Yoshioka, Youmei [Toshiba Corporation, Yokohama (Japan)

    2008-07-01

    A Ni-based superalloy ''TOS1X'', for the rotor material of the 700 class advanced ultra super critical (A-USC) turbine power generation system was developed. TOS1X is an alloy that is improved in the creep rupture strength of Inconel trademark 617 maintaining both forgeability and weldability. The 7 t weight model rotor made of TOS1X was manufactured by double melt process, vacuum induction melting and electro slag remelting, and forging. During forging process, forging cracks and any other abnormalities were not detected on the ingots. The metallurgical and the mechanical properties in this rotor were investigated. Macro and micro structure observation, and some mechanical tests were conducted. According to the metallurgical structure investigation, there was no remarkable segregation in whole area and the forging effect was reached in the center part of the rotor ingot. The results of tensile test and creep rupture test proved that proof stress and tensile stress of the TOS1X are higher than those of Inconel trademark 617 and creep rupture strength of TOS1X is much superior than that of Inconel trademark 617. (orig.)

  14. Development of a non-explosive release actuator using shape memory alloy wire.

    Science.gov (United States)

    Yoo, Young Ik; Jeong, Ju Won; Lim, Jae Hyuk; Kim, Kyung-Won; Hwang, Do-Soon; Lee, Jung Ju

    2013-01-01

    We have developed a newly designed non-explosive release actuator that can replace currently used release devices. The release mechanism is based on a separation mechanism, which relies on segmented nuts and a shape memory alloy (SMA) wire trigger. A quite fast and simple trigger operation is made possible through the use of SMA wire. This actuator is designed to allow a high preload with low levels of shock for the solar arrays of medium-size satellites. After actuation, the proposed device can be easily and instantly reset. Neither replacement, nor refurbishment of any components is necessary. According to the results of a performance test, the release time, preload capacity, and maximum shock level are 50 ms, 15 kN, and 350 G, respectively. In order to increase the reliability of the actuator, more than ten sets of performance tests are conducted. In addition, the proposed release actuator is tested under thermal vacuum and extreme vibration environments. No degradation or damage was observed during the two environment tests, and the release actuator was able to operate successfully. Considering the test results as a whole, we conclude that the proposed non-explosive release actuator can be applied reliably to intermediate-size satellites to replace existing release systems.

  15. Status of the Development of Beryllium-Copper Alloy Ignition Capsules by Precision Machining

    Science.gov (United States)

    Nobile, Arthur

    2005-10-01

    Cu-doped Be capsules are being developed for ignition on the National Ignition Facility (NIF). The fabrication approach being pursued at Los Alamos is based on bonding of cylindrical parts containing precision machined hemispherical cavities, followed by machining the external contour to produce a spherical capsule. While we have demonstrated this approach, there are several key issues that need to be resolved before a capsule meeting NIF specifications can be produced. These issues are synthesis of high purity small grain size Be-Cu alloy, formation of a hemishell bond strong enough to allow the capsule to be machined after the hemishells are bonded, precision machining and polishing of the capsule to meet stringent specifications for surface finish and spherical quality, and filling with DT. In this paper we report on the progress that has been made on these issues. This work is performed at Los Alamos National Laboratory and supported by U.S. Department of Energy under contract number W7405-ENG36

  16. Development of Ag-Mg-{alpha} alloy sheathed Bi2223 wires 2; Gingokin shisu Bi2223 senzai no kaihatsu 2

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, J.; Hikichi, Y.; Koizumi, T.; Hasegawa, T. [Showa Electric Wire and Cable Co., Ltd., Kanagawa (Japan); Nagaya, S. [Chubu Electric Power Co., Ltd., Aichi (Japan)

    1999-06-07

    It is important to raise the strength of the sheath material in order to prevent Ic degradation of the silver sheath wire rod by the stress in handling and in the operation. Authors found that the Ag-Mg-Sb alloy was useful as a high-intense sheath material, and we developed Bi2223 wire rod with the tensile strength over 200MPa. In the inside where the practical application examination advanced in various items such as cable and transformer, refrigerating machine cooling magnet, we would require the wire rod in each application. In this paper, characteristics of Ag-Mg-{alpha} alloy sheath wire rod of various shapes and dimensions developed recently are reported. (NEDO)

  17. Future technological developments to fulfill AG2020 targets

    DEFF Research Database (Denmark)

    Markussen, Mads Ville; Østergård, Hanne; Borch, Kristian

    2010-01-01

    This report constitute an analysis of selected technologies that are anticipated to underpin the images described in Giaoutzi et al (2008) and it proposes policy measures to promote these technologies. It builds on Borch et al (2008) where a more detailed description of technologies can be found....... Based on the technological narratives and imperatives, we select a set of present available technologies that are able to support the society in reaching the targets set up by AG2020. For each of these technologies, we evaluate the strengths and weaknesses of the technology to reach the target as well...... as the threats for development of the technology in the respective images. Finally policies for promoting and spreading technologies are proposed....

  18. The development of foot microsurgery: the past and the future

    Institute of Scientific and Technical Information of China (English)

    蔡锦方

    2003-01-01

    The occurrence and development of microsurgical technique is one of the most wonderful medical achievements in the twentieth century. By assistance of optic system, it has successfully made surgery from macroscopic field into microcosmic world and evidently broadened the applied scope of surgical technique. The microsurgical technique has also made surgery more accurate. Now it has been used most widely in the reparative and reconstructive surgery and almost leaves nothing to be desired in small vascular anastomosis. Microsurgery has greatly extended the scope and depth of the reparative and reconstructive surgery and made many accurate operations which were never proceeded to come true before. Many new subjects therefore have been formed for this reason.

  19. Present and future radioactive nuclear beam developments at Argonne

    Energy Technology Data Exchange (ETDEWEB)

    Decrock, P.

    1996-11-01

    A scheme for building an ISOL-based radioactive nuclear beam facility at the Argonne Physics Division, is currently evaluated. The feasibility and efficiency of the different steps in the proposed production- and acceleration cycles are being tested. At the Dynamitron Facility of the ANL Physics Division, stripping yields of Kr, Xe and Ph beams in a windowless gas cell have been measured and the study of fission of {sup 238}U induced by fast neutrons from the {sup 9}Be(dn) reaction is in progress. Different aspects of the post-acceleration procedure are currently being investigated. In parallel with this work, energetic radioactive beams such as {sup 17}F, {sup 18}F and {sup 56}Ni have recently been developed at Argonne using the present ATLAS facility.

  20. Thermoelectric Energy Conversion: Future Directions and Technology Development Needs

    Science.gov (United States)

    Fleurial, Jean-Pierre

    2007-01-01

    This viewgraph presentation reviews the process of thermoelectric energy conversion along with key technology needs and challenges. The topics include: 1) The Case for Thermoelectrics; 2) Advances in Thermoelectrics: Investment Needed; 3) Current U.S. Investment (FY07); 4) Increasing Thermoelectric Materials Conversion Efficiency Key Science Needs and Challenges; 5) Developing Advanced TE Components & Systems Key Technology Needs and Challenges; 6) Thermoelectrics; 7) 200W Class Lightweight Portable Thermoelectric Generator; 8) Hybrid Absorption Cooling/TE Power Cogeneration System; 9) Major Opportunities in Energy Industry; 10) Automobile Waste Heat Recovery; 11) Thermoelectrics at JPL; 12) Recent Advances at JPL in Thermoelectric Converter Component Technologies; 13) Thermoelectrics Background on Power Generation and Cooling Operational Modes; 14) Thermoelectric Power Generation; and 15) Thermoelectric Cooling.

  1. Development of ODS FeCrAl alloys for accident-tolerant fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Dryepondt, Sebastien N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hoelzer, David T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pint, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Unocic, Kinga A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-18

    FeCrAl alloys are prime candidates for accident-tolerant fuel cladding due to their excellent oxidation resistance up to 1400 C and good mechanical properties at intermediate temperature. Former commercial oxide dispersion strengthened (ODS) FeCrAl alloys such as PM2000 exhibit significantly better tensile strength than wrought FeCrAl alloys, which would alloy for the fabrication of a very thin (~250 m) ODS FeCrAl cladding and limit the neutronic penalty from the replacement of Zr-based alloys by Fe-based alloys. Several Fe-12-Cr-5Al ODS alloys where therefore fabricated by ball milling FeCrAl powders with Y2O3 and additional oxides such as TiO2 or ZrO2. The new Fe-12Cr-5Al ODS alloys showed excellent tensile strength up to 800 C but limited ductility. Good oxidation resistance in steam at 1200 and 1400 C was observed except for one ODS FeCrAl alloy containing Ti. Rolling trials were conducted at 300, 600 C and 800 C to simulate the fabrication of thin tube cladding and a plate thickness of ~0.6mm was reached before the formation of multiple edge cracks. Hardness measurements at different stages of the rolling process, before and after annealing for 1h at 1000 C, showed that a thinner plate thickness could likely be achieved by using a multi-step approach combining warm rolling and high temperature annealing. Finally, new Fe-10-12Cr-5.5-6Al-Z gas atomized powders have been purchased to fabricate the second generation of low-Cr ODS FeCrAl alloys. The main goals are to assess the effect of O, C, N and Zr contents on the ODS FeCrAl microstructure and mechanical properties, and to optimize the fabrication process to improve the ductility of the 2nd gen ODS FeCrAl while maintaining good mechanical strength and oxidation resistance.

  2. 高强高导铜银合金的研究现状及发展趋势%Researching Prospect and Developing Tendency on High-strength and High-conductivity Copper-Silver Alloys

    Institute of Scientific and Technical Information of China (English)

    沈月; 付作鑫; 张国全; 孔健稳; 张吉明; 刘满门; 胡洁琼; 王松; 谢明

    2012-01-01

    Cu-Ag合金作为先进的导体材料,广泛应用于微电子、交通、航空航天及机械制造等工业领域.回顾了近年来高强高导Cu-Ag合金的主要研究进展.针对Cu-Ag合金的导电性和力学性能,主要从合金设计中的Ag成分设计、微合金化和加工工艺中的制备方法、热处理及变形处理等方面进行评述.分析了Cu-Ag合金的成分设计原则,比较了上述几种加工工艺的特点,并提出大塑性变形将会是一种非常有前景的制备高强高导Cu-Ag合金及其它合金的加工工艺.最后指出了现阶段研究中存在的问题及未来发展的趋势.%As an advanced conductive material. Cu-Ag alloy has been widely used in some fields, such as microelectronics, transportation, aerospace and machinery manufacturing industries. The essay mainly focuses on the research progress of high-strength and high-conductivity Cu-Ag alloy. Based on current researches on conductivity and mechanical property of Cu-Ag alloy, how to deal with Ag content in alloy design,micro-alloying,preparation method, heat treatment and the deformation process art reviewed. The choice of Ag content in alloy design is analyzed and the features of the above process are compared It is proposed that severe plastic deforaiation will be a very promising processing technology to prepare high-strength and high-conductivity Cu Ag alloys and other alloys. Finally, existing problems in recent research and future developing tendency are pointed out

  3. Animal venom studies: Current benefits and future developments

    Institute of Scientific and Technical Information of China (English)

    Yuri; N; Utkin

    2015-01-01

    Poisonous organisms are represented in many taxa, including kingdom Animalia. During evolution, animals have developed special organs for production and injection of venoms. Animal venoms are complex mixtures, compositions of which depend on species producing venom. The most known and studied poisonous terrestrial animals are snakes, scorpions and spiders. Among marine animals, these are jellyfishes, anemones and cone snails. The toxic substances in the venom ofthese animals are mainly of protein and peptide origin. Recent studies have indicated that the single venom may contain up to several hundred different components producing diverse physiological effects. Bites or stings by certain poisonous species result in severe envenomations leading in some cases to death. This raises the problem of bite treatment. The most effective treatment so far is the application of antivenoms. To enhance the effectiveness of such treatments, the knowledge of venom composition is needed. On the other hand, venoms contain substances with unique biological properties, which can be used both in basic science and in clinical applications. The best example of toxin application in basic science is α-bungarotoxin the discovery of which made a big impact on the studies of nicotinic acetylcholine receptor. Today compositions of venom from many species have already been examined. Based on these data, one can conclude that venoms contain a large number of individual components belonging to a limited number of structural types. Often minor changes in the amino acid sequence give rise to new biological properties. Change in the living conditions of poisonous animals lead to alterations in the composition of venoms resulting in appearance of new toxins. At the same time introduction of new methods of proteomics and genomics lead to discoveries of new compounds, which may serve as research tools or as templates for the development of novel drugs. The application of these sensitive and

  4. Robotic applications in abdominal surgery: their limitations and future developments.

    Science.gov (United States)

    Taylor, G W; Jayne, D G

    2007-03-01

    In the past 20 years, the technical aspects of abdominal surgery have changed dramatically. Operations are now routinely performed by laparoscopic techniques utilizing small abdominal incisions, with less patient discomfort, earlier recovery, improved cosmesis, and in many cases reduced economic burden on the healthcare provider. These benefits have largely been seen in the application of laparoscopic techniques to relatively straightforward procedures. It is not clear whether the same benefits carry through to more complex abdominal operations, which are more technically demanding and for which current laparoscopic instrumentation is less well adapted. The aim of surgical robotics is to address these problems and allow the advantages of minimal access surgery to be seen in a greater range of operations. A literature search was performed to ascertain the current state of the art in surgical robotics for the abdomen, and the technologies emerging within this field. The reference lists of the sourced articles were also searched for further relevant papers. Currently available robotic devices for abdominal surgery are limited to large, costly 'slave-master' or telemanipulator systems, such as the da Vinci (Intuitive Surgical, Sunny Vale, CA). In addition to their size and expense, these systems share the same limitation, by virtue of the fulcrum effect on instrument manipulation inherent in the use of ports by which external instruments gain access to the abdominal cavity. In order to overcome these limitations several smaller telemanipulator systems are being developed, and progress towards freely mobile intracorporeal devices is being made. While current robotic systems have considerable advantages over conventional laparoscopic techniques, they are not without limitations. Miniaturisation of robotic components and systems is feasible and necessary to allow minimally invasive techniques to reach full potential. The ultimate extrapolation of this progress is the

  5. Emerging Issues and Future Developments in Capsule Endoscopy.

    Science.gov (United States)

    Slawinski, Piotr R; Obstein, Keith L; Valdastri, Pietro

    2015-01-01

    Capsule endoscopy (CE) has transformed from a research venture into a widely used clinical tool and the primary means for diagnosing small bowel pathology. These orally administered capsules traverse passively through the gastrointestinal tract via peristalsis and are used in the esophagus, stomach, small bowel, and colon. The primary focus of CE research in recent years has been enabling active CE manipulation and extension of the technology to therapeutic functionality; thus, widening the scope of the procedure. This review outlines clinical standards of the technology as well as recent advances in CE research. Clinical capsule applications are discussed with respect to each portion of the gastrointestinal tract. Promising research efforts are presented with an emphasis on enabling active capsule locomotion. The presented studies suggest, in particular, that the most viable solution for active capsule manipulation is actuation of a capsule via exterior permanent magnet held by a robot. Developing capsule procedures adhering to current healthcare standards, such as enabling a tool channel or irrigation in a therapeutic device, is a vital phase in the adaptation of CE in the clinical setting.

  6. Overview of robotic colorectal surgery: Current and future practical developments.

    Science.gov (United States)

    Roy, Sudipta; Evans, Charles

    2016-02-27

    Minimal access surgery has revolutionised colorectal surgery by offering reduced morbidity and mortality over open surgery, while maintaining oncological and functional outcomes with the disadvantage of additional practical challenges. Robotic surgery aids the surgeon in overcoming these challenges. Uptake of robotic assistance has been relatively slow, mainly because of the high initial and ongoing costs of equipment but also because of limited evidence of improved patient outcomes. Advances in robotic colorectal surgery will aim to widen the scope of minimal access surgery to allow larger and more complex surgery through smaller access and natural orifices and also to make the technology more economical, allowing wider dispersal and uptake of robotic technology. Advances in robotic endoscopy will yield self-advancing endoscopes and a widening role for capsule endoscopy including the development of motile and steerable capsules able to deliver localised drug therapy and insufflation as well as being recharged from an extracorporeal power source to allow great longevity. Ultimately robotic technology may advance to the point where many conventional surgical interventions are no longer required. With respect to nanotechnology, surgery may eventually become obsolete.

  7. Curative treatment of oesophageal carcinoma: current options and future developments

    Directory of Open Access Journals (Sweden)

    Bruns Christiane

    2011-05-01

    Full Text Available Abstract Since the 1980s major advances in surgery, radiotherapy and chemotherapy have established multimodal approaches as curative treatment options for oesophageal cancer. In addition the introduction of functional imaging modalities such as PET-CT created new opportunities for a more adequate patient selection and therapy response assessment. The majority of oesophageal carcinomas are represented by two histologies: squamous cell carcinoma and adenocarcinoma. In recent years an epidemiological shift towards the latter was observed. From a surgical point of view, adenocarcinomas, which are usually located in the distal third of the oesophagus, may be treated with a transhiatal resection, whereas squamous cell carcinomas, which are typically found in the middle and the upper third, require a transthoracic approach. Since overall survival after surgery alone is poor, multimodality approaches have been developed. At least for patients with locally advanced tumors, surgery alone can no longer be advocated as routine treatment. Nowadays, scientific interest is focused on tumor response to induction radiochemotherapy. A neoadjuvant approach includes the early and accurate assessment of clinical response, optimally performed by repeated PET-CT imaging and endoscopic ultrasound, which may permit early adaption of the therapeutic concept. Patients with SCC that show clinical response by PET CT are considered to have a better prognosis, regardless of whether surgery will be performed or not. In non-responding patients salvage surgery improves survival, especially if complete resection is achieved.

  8. Concurrent Development and Certification of SOFTCOMAG 49AA Alloy for Aeronautical Applications

    Directory of Open Access Journals (Sweden)

    Ashok Kumar

    2012-01-01

    Full Text Available Softcomag 49AA alloy consisting of 49 wt per cent Fe, 49 wt. per cent Co and 2 wt per cent V is a soft magnetic alloy with a combination of very high saturation magnetisation and high magnetostriction and used for several aeronautical applications such as generators (stators and rotors, fixed iron moving armature units etc. Though this alloy is brittle in nature, it can be formed into hot rolled bars and cold rolled sheets by adopting suitable thermo mechanical treatments. In order to indigenise and subsequent type certification for aeronautical applications, the alloy was produced using 100 per cent virgin raw materials in a vacuum induction melting (VIM furnace which not only ensures substantial reduction of inclusions, but also the production of homogeneous alloy as a result of induction stirring. The chemical composition was examined and hot working parameters of the alloy were so optimised that they would result in the best combination of magnetic, physical and mechanical properties for the end use, which forms the central theme behind the developmental activity that was simultaneously covered by a comprehensive certification process. The material thus produced is subjected to stringent quality control checks in accordance with stipulated airworthiness norms. The paper discusses in detail the indigenisation efforts and airworthiness certification of the alloy Softcomag 49AA and its comparison with equivalent grades, namely PERMENDUR 49 and VACOFLUX 50.Defence Science Journal, 2012, 62(1, pp.67-72, DOI:http://dx.doi.org/10.14429/dsj.62.1093 

  9. Development and properties of Ti–In binary alloys as dental biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q.Y. [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Wang, Y.B. [Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Lin, J.P. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Zheng, Y.F., E-mail: yfzheng@pku.edu.cn [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China)

    2013-04-01

    The objective of this study is to investigate the effect of alloying element indium on the microstructure, mechanical properties, corrosion behavior and in vitro cytotoxicity of Ti–In binary alloys, with the addition of 1, 5, 10 and 15 at.% indium. The phase constitution was studied by optical microscopic observation and X-ray diffraction measurements. The mechanical properties were characterized by tension and microhardness tests. Potentiodynamic polarization measurements were employed to investigate the corrosion behavior in artificial saliva solutions with and without fluoride. In vitro cytotoxicity was conducted by using L929 and NIH 3T3 mouse fibroblast cell lines, with commercially pure Ti (CP–Ti, ASTM grade 2) as negative control. All of the binary Ti–In alloys investigated in this work were found to have higher strength and microhardness than CP–Ti. Electrochemical results showed that Ti–In alloys exhibited the same order of magnitude of passivation current densities with CP–Ti in artificial saliva solutions. With the presence of NaF, Ti–10In and Ti–15In showed transpassive behavior and lower current densities at high potentials. All experimental Ti–In alloys showed good cytocompatibility, at the same level as CP–Ti. The addition of indium to titanium was effective on increasing the strength and microhardness, without impairing its good corrosion resistance and cytocompatibility. - Highlights: ► The addition of In into Ti can increase the mechanical property. ► Ti-In alloys exhibited similar passivation behavior with CP-Ti. ► Ti-In alloys had good cytocompatibility comparable with CP-Ti. ► Ti-10In and Ti-15In showed transpassive baheviour with the addition of NaF.

  10. Development of a Nitrogen-Modified Stainless-Steel Hardfacing Alloy

    Science.gov (United States)

    Smith, Ryan Thomas

    A 2nd generation hardfacing alloy, Nitromaxx, has been designed though an integrated approach of chemical modification, characterization, and testing. Nitromaxx is a stainless-steel alloy modified with 0.5wt% nitrogen which has improved elevated temperature properties and wear performance. This is achieved by changing both the microstructure phase balance and inherent deformation characteristics of the metal. The alloy is fabricated by a powder metallurgy-hot isostatic pressing (PM-HIP) method, rather than traditional cladding methods. This allows for alloy property modification by equilibrium heat treatment while eliminating significant fabrication defects, so that component life is extended wear and galling performance is improved. The design approach involved extensive characterization of severely worn and galled surfaces of the 1st generation of hardfacing alloys. Observation of samples after galling testing showed highly inhomogeneous deformation in regions of the gall scar, leading to the design hypothesis that strain-localization is a controlling mechanism in severe wear of stainless-steels. Additionally, the presence and subsequent loss was investigated and correlated microstructurally to the transition to poor galling behavior in the existing stainless steel hardfacing NOREM02. This provided new insight and identification of key microstructural and mechanical properties that improve galling performance: 1) increased strain-hardening rate in the metal matrix at elevated temperature, 2) increased yield strength in the matrix leading to higher hardness, and 3) increased volume fraction of hard, non-deforming phases. All of these alloy design goals can be realized by the addition of nitrogen, which 1) at high concentration is shown to lower the stacking fault energy in the stainless steel matrix, 2) increases interstitial matrix strengthening, and 3) increases the volume fraction of nitride phases. These observations have been confirmed qualitatively and

  11. Development of a Fan for Future Space Suit Applications

    Science.gov (United States)

    Paul. Heather L.; Converse, David; Dionne, Steven; Moser, Jeff

    2010-01-01

    NASA's next generation space suit system will place new demands on the fan used to circulate breathing gas through the ventilation loop of the portable life support system. Long duration missions with frequent extravehicular activities (EVAs), the requirement for significant increases in reliability and durability, and a mission profile that imposes strict limits on weight, volume and power create the basis for a set of requirements that demand more performance than is available from existing fan designs. This paper describes the development of a new fan to meet these needs. A centrifugal fan was designed with a normal operating speed of approximately 39,400 rpm to meet the ventilation flow requirements while also meeting the aggressive minimal packaging, weight and power requirements. The prototype fan also operates at 56,000 rpm to satisfy a second operating condition associated with a single fan providing ventilation flow to two spacesuits connected in series. This fan incorporates a novel nonmetallic "can" to keep the oxygen flow separate from the motor electronics, thus eliminating ignition potential. The nonmetallic can enables a small package size and low power consumption. To keep cost and schedule within project bounds a commercial motor controller was used. The fan design has been detailed and implemented using materials and approaches selected to address anticipated mission needs. Test data is presented to show how this fan performs relative to anticipated ventilation requirements for the EVA portable life support system. Additionally, data is presented to show tolerance to anticipated environmental factors such as acoustics, shock, and vibration. Recommendations for forward work to progress the technology readiness level and prepare the fan for the next EVA space suit system are also discussed.

  12. Development of continuous implantable renal replacement: past and future.

    Science.gov (United States)

    Fissell, William H; Fleischman, Aaron J; Humes, H David; Roy, Shuvo

    2007-12-01

    Most of the 400,000+ patients in the United States with kidney failure depend on dialysis treatments in dedicated dialysis centers for 3 h to 5 h, usually 3 times a week, but they still suffer from accelerated cardiovascular disease and infections. Extended daily dialysis, for 6 to 8 hours every day, seems to be associated with better outcomes but would overwhelm the dialysis networks and severely limit patient activity. Technology to miniaturize and automate home dialysis will be necessary to offer extended daily dialysis to most dialysis patients. Miniaturization of existing hollow-fiber polymer membranes is constrained by requirements for high driving pressures for circulation and convective clearance. Recent advances in membrane technology based on microelectromechanical systems (MEMS) promise to enable the development of continuous implantable renal replacement therapy. Silicon nanoporous membranes with a highly monodisperse pore size distribution have been produced using protocols amenable to low-cost batch fabrication similar to those used to produce microelectronics. Hydraulic permeability of the flat-sheet membranes with critical pore sizes in the range of 8-100 nm has been measured to confirm that conventional fluid transport models are sufficiently accurate for predictive design for bulk liquid flow in an implantable hemofilter. Membrane biocompatibility was tested in vitro with human proximal tubule cells and revealed that silicon does not exhibit cytotoxicity, as evidenced by the formation of confluent cell layers with tight junctions and central cilia. Filtration characterization demonstrated that the nanoporous membranes exhibit size-dependent solute rejection in agreement with steric hindrance models. These advances in membrane technology are fundamentally enabling for a paradigm shift from an in-center to implantable dialysis system.

  13. Recent developments of the aluminium-lithium system alloys for aircraft uses; Recentes desenvolvimentos das ligas do sistema aluminio-litio para fins aeronauticos

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Marcelo; Plaut, Ronald Lesley

    1992-12-31

    A brief review is made of the latest developments in the production of Aluminium-Lithium alloys. The necessity for new materials in the field of aeronautics has speeded up research on metallic and non-metallic materials. Lately, a good part of the research in the field of metallic components has been directed at Al-Li alloys. More recently, with the development of quaternary alloys Al-Li-X-X, the old problem of low toughness was overcome. The finality of this study is to cover the developments of the mentioned alloys, including the fundamentals of physical metallurgy of the complex system recently developed Al-Li-Cu-Mg. (author) 27 refs., 2 figs., 4 tabs.

  14. 铝合金铸造副车架开发%Development of Aluminum Alloy Casting Sub-frame

    Institute of Scientific and Technical Information of China (English)

    陈磊; 程稳正; 孙珏; 王仕伟; 陈志刚; 侯杰

    2015-01-01

    以铝合金材料代替传统钢材是乘用车底盘结构件轻量化设计的有效方式之一,尤其在高端乘用车上应用更为广泛。介绍了铝合金副车架的设计开发过程。开发实践表明,采用铝合金材料及挤压铸造工艺,通过合理的结构设计及系统的工艺开发,可达到底盘系统对于结构件强度及耐久性的严格要求,提高整车的轻量化水平。%The substitution of traditional steel with aluminum alloy is an effective approach of lightweight design of passenger car chassis structural parts, especially in high-end passenger car. This article introduces the development process of aluminum alloy sub-frame. The development practice shows that, with the application of aluminum alloy and extrusion casting technology, with the aid of rational design of structure and systemic development of technology, the strict requirements on strength and durability of chassis structural component can be satisfied, and the lightweight level of vehicle is improved.

  15. Development and application of high-precision laser welding technology for manufacturing Ti alloy frames of glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. S.; Yang, M. S.; Kim, W. K.; Lee, D. Y.; Kim, J. M.; Leem, B. C.; Shin, J. S.; Lee, D. H

    1999-12-01

    The research and development efforts of the high precision laser welding technology for manufacturing titanium alloy frames of glasses. For this purpose, laser welding device with the high beam quality is designed and fabricated, which consists of a optical fiber transmission part, a welding monitoring part and a welding controller. The welding nozzle and holding fixtures for manufacturing titanium and shape memory alloy frames of glasses. Titanium and shape memory alloy frames of glasses to be developed were experimentally manufactured by utilizing the laser welding using the optical fiber of GI 400 {mu}m. As a result, the seam welding with the bead width of 0.3 mm or less and the weld penetration of 0.3-0.4mm could be accomplished. The fundamental technology was established through design of welding jigs with a variety of configurations and adequate welding conditions. Also, for the purpose to enable the companies participating in this project to commercialize the developed technology acceleratedly, a training program for the engineers belonging to such companies was conducted along with the technology transfer through joint experiments with the engineers. (author)

  16. Cerium-Based, Intermetallic-Strengthened Aluminum Casting Alloy: High-Volume Co-product Development

    Science.gov (United States)

    Sims, Zachary C.; Weiss, D.; McCall, S. K.; McGuire, M. A.; Ott, R. T.; Geer, Tom; Rios, Orlando; Turchi, P. A. E.

    2016-07-01

    Several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanical properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.

  17. Development and properties of Ti-In binary alloys as dental biomaterials.

    Science.gov (United States)

    Wang, Q Y; Wang, Y B; Lin, J P; Zheng, Y F

    2013-04-01

    The objective of this study is to investigate the effect of alloying element indium on the microstructure, mechanical properties, corrosion behavior and in vitro cytotoxicity of Ti-In binary alloys, with the addition of 1, 5, 10 and 15 at.% indium. The phase constitution was studied by optical microscopic observation and X-ray diffraction measurements. The mechanical properties were characterized by tension and microhardness tests. Potentiodynamic polarization measurements were employed to investigate the corrosion behavior in artificial saliva solutions with and without fluoride. In vitro cytotoxicity was conducted by using L929 and NIH 3T3 mouse fibroblast cell lines, with commercially pure Ti (CP-Ti, ASTM grade 2) as negative control. All of the binary Ti-In alloys investigated in this work were found to have higher strength and microhardness than CP-Ti. Electrochemical results showed that Ti-In alloys exhibited the same order of magnitude of passivation current densities with CP-Ti in artificial saliva solutions. With the presence of NaF, Ti-10In and Ti-15In showed transpassive behavior and lower current densities at high potentials. All experimental Ti-In alloys showed good cytocompatibility, at the same level as CP-Ti. The addition of indium to titanium was effective on increasing the strength and microhardness, without impairing its good corrosion resistance and cytocompatibility.

  18. Nature conservation and tourism development in the Dutch Wadden Sea region: a common future?

    NARCIS (Netherlands)

    Revier, Hans

    2013-01-01

    This chapter is about the development of tourism in the Dutch Wadden Sea Region in combination with nature conservation. The main question is whether they have a common future. There are some future points stated: - Nature and landscape of the Wadden Sea are the main pull factors for the tourism de

  19. Nature conservation and tourism development in the Dutch Wadden Sea region: a common future?

    NARCIS (Netherlands)

    Hans Revier

    2013-01-01

    This chapter is about the development of tourism in the Dutch Wadden Sea Region in combination with nature conservation. The main question is whether they have a common future. There are some future points stated: - Nature and landscape of the Wadden Sea are the main pull factors for the tourism de

  20. Catalyst Alloys Processing

    Science.gov (United States)

    Tan, Xincai

    2014-10-01

    Catalysts are one of the key materials used for diamond formation at high pressures. Several such catalyst products have been developed and applied in China and around the world. The catalyst alloy most widely used in China is Ni70Mn25Co5 developed at Changsha Research Institute of Mining and Metallurgy. In this article, detailed techniques for manufacturing such a typical catalyst alloy will be reviewed. The characteristics of the alloy will be described. Detailed processing of the alloy will be presented, including remelting and casting, hot rolling, annealing, surface treatment, cold rolling, blanking, finishing, packaging, and waste treatment. An example use of the catalyst alloy will also be given. Industrial experience shows that for the catalyst alloy products, a vacuum induction remelt furnace can be used for remelting, a metal mold can be used for casting, hot and cold rolling can be used for forming, and acid pickling can be used for metal surface cleaning.

  1. Development of pressure control system in counter gravity casting for large thin-walled A357 aluminum alloy components

    Institute of Scientific and Technical Information of China (English)

    LI Xin-lei; HAO Qi-tang; JIE Wan-qi; ZHOU Yu-chuan

    2008-01-01

    Counter gravity casting equipments(CGCE) were widely used to produce large thin-walled A357 aluminum alloy components. To improve the pressure control precision of CGCE to get high quality castings, a pressure control system based on fuzzy-PID hybrid control technology and the digital assembled valve was developed. The actual pressure tracking experiment results show that the special system by applying PID controller and fuzzy controller to varied phases, is not only able to inherit the small error and good static stability of classical PID control, but also has fuzzy control's advantage of fully adapting itself to the object. The pressure control error is less than 0.3 kPa. By using this pressure control system, large complex thin-walled A357 aluminum alloy castings with high quality was successfully produced.

  2. Development of bonding techniques for cryogenic components (2). HIP bonding between Cu Alloys and Ti, cryogenic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Shigeru; Ouchi, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Fukaya, Kiyoshi [Nihon Advanced Technology Ltd., Tokai, Ibaraki (Japan); Ishiyama, Shintaro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Tsuchiya, Yoshinori; Nakajima, Hideo [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2003-03-01

    Several joints between dissimilar materials are required in the superconducting (SC) magnet system of SC linear accelerator or fusion reactor, Pure titanium (Ti) is one of candidate materials for a jacket of SC coil of fusion reactor because Ti is non-magnetic material and has a feature that its thermal expansion is similar to SC material in addition to good corrosion resistance and workability. Also, Ti does not require strict control of environment during reaction heat treatment of SC material. Copper (Cu) or Cu-alloy is used in electrical joints and cryogenic stainless steel (SS) is used in cryogenic pipes. Therefore, it is necessary to develop new bonding techniques for joints between Ti, Cu, and SS because jacket, electrical joint and cryogenic pipe have to be bonded each other to cool SC coils. Japan Atomic Energy Research Institute (JAERI) has started to develop dissimilar material joints bonded by hot isostatic pressing (HIP), which can bring a high strength joint with good tolerance and can applied to a large or complex geometry device. HIP conditions for Cu-Ti, Cu alloy-Ti, Cu alloy-SS were investigated in this study and most stable HIP condition were evaluated by microscopic observation, tensile and bending tests at room temperature. (author)

  3. Newly developed vacuum differential pressure casting of thin-walled complicated Al-alloy castings

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The newly designed vacuum differential pressure casting (VDPC) unit was introduced, by which the capability of the VDPC process to produce thin-walled complicated Al-alloy castings, that are free from oxides, gas pore and shrinkage cavity and thus enhance overall part quality, was studied. Experimental results were compared with those of traditional gravity pouring and vacuum suction casting. The first series of experiments were focused on investigating the castability of thin section Al-alloy casting. In the second series of experiments the metallographic evidence, casting strength and soundness were examined. Finally, case studies of very interesting thin walled complicated casting applications were described. The advantages of the described technique have made possible to produce thin walled complicated Al-alloy casting (up to a section thickness of 1 mm), which is not practical for gravity pouring and vacuum suction casting.

  4. Development of nanostructured CoFe-based alloys for high temperature magnetic applications.

    Science.gov (United States)

    Panda, A K; Mohanta, O; Ghosh, M; Mitra, A

    2009-09-01

    The effect of substituting Fe by Co on the crystallization, structural and magnetic behaviour of Fe(72-x)Co(x)Si4B20Nb4 (X = 10, 20, 36, 50 at%) and Co36Fe36Si(4-Y)Al(y)B20Nb4 (Y = 0, 1 at%) alloys prepared in the form of melt spun ribbons has been discussed. Alloys containing optimum content of cobalt = 36 at% showed consistent coercivity at elevated temperatures. This soft magnetic property was further improved with aluminium incorporation. Transmission electron microscopy (TEM) indicated that such enhancement in the properties was due to finer dispersions of (CoFe)SiAl nanoparticles in amorphous matrix. Nanocrystallisation also raised the Curie temperature of the aluminium contained alloy.

  5. Technology Development Roadmap: A Technology Development Roadmap for a Future Gravitational Wave Mission

    Science.gov (United States)

    Camp, Jordan; Conklin, John; Livas, Jeffrey; Klipstein, William; McKenzie, Kirk; Mueller, Guido; Mueller, Juergen; Thorpe, James Ira; Arsenovic, Peter; Baker, John; Bender, Peter; Brinker, Edward; Crow, John; Spero, Robert; deVine Glenn; Ziemer, John

    2013-01-01

    -led mission after 2020-both use the same technologies. Further, NASA participation in an ESA-led mission would likely augment the eLISA architecture with a third arm to become the SGO Mid architecture. For these reasons, this TDR for a future GW mission applies to both designs and both programmatic paths forward. It is adaptable to the different timelines and roles for an ESA-led or a NASA-led mission, and it is adaptable to available resources. Based on a mature understanding of the interaction between technology and risk, the authors of this TDR have chosen a set of objectives that are more expansive than is usual. The objectives for this roadmap are: (1) reduce technical and development risks and costs; (2) understand and, where possible, relieve system requirements and consequences; (3) increase technical insight into critical technologies; and (4) validate the design at the subsystem level. The emphasis on these objectives, particularly the latter two, is driven by outstanding programmatic decisions, namely whether a future GW mission is ESA-led or NASA-led, and availability of resources. The relative emphasis is best understood in the context of prioritization.

  6. Beliefs in the Future as a Positive Youth Development Construct: A Conceptual Review

    Directory of Open Access Journals (Sweden)

    Rachel C. F. Sun

    2012-01-01

    Full Text Available Beliefs in the future are an internalization of hope and optimism about future outcomes. This paper reviews and compares several theories of hope and optimism and highlights the features constituting beliefs in the future. This paper points out that beliefs in the future include a series of goal-directed thoughts and motivation, such as setting up valued and attainable goals, planning pathways, and maintaining self-confidence and mastery, so as to keep adolescents engaged in the pursuit of goals. This kind of personal mastery, together with sociocultural values, family, school, and peers are the antecedents leading to beliefs in the future, which is related to adolescents’ well-being and positive development. In order to cultivate adolescents’ beliefs in the future, enabling their ability to manipulate goal-directed thoughts and motivation and providing a supportive environment including their family, school, peers, and the society are recommended.

  7. High strength microstructural forms developed in titanium alloys by rapid heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ivasishin, O.M. [Institute of Metal Physics, Kiev (Ukraine)

    2001-09-01

    It is shown that rapid heat treatment of alpha+beta and beta titanium alloys, which includes rapid heating of alloys with initial equiaxed microstructure into single-phase beta field is able to produce microstructural forms in which high strength can be well balanced with other mechanical properties. Main advantage of rapid heating approach comes from the possibility to extend the level of ''useful'' strength. Desirably high strength is provided by intragranular morphology and microchemistry while beta-grain refinement permits a reliability of such high strength conditions. (orig.)

  8. Development of Low Cost, High Performance AlZn4.5Mg1 Alloy 7020

    Science.gov (United States)

    2009-02-01

    MPa) U.T.S. (MPa) El. (%) Data Reference 7005-T651 290 (42) 370 (54) 15 typical [6] 6061 -T651 300 (44) 337 (49) 19 experiment [15] 7018...Aluminum Association chemical composition limits [14]. Alloy Si Fe Cu Mn Mg Cr Ni Zn Ti V Zr Date 6061 0.40 0.8 0.7 0.15 0.40 0.15...Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys, (www.eaa.net/en/about- aluminium /standards/international-registration), The Aluminum

  9. Development of a dispersion strengthened copper alloy using a MA-HIP method

    Directory of Open Access Journals (Sweden)

    T. Yamada

    2016-12-01

    Full Text Available A new Cu-Al alloy was fabricated by a MA-HIP method for application to the heat sink materials of divertors. With the increase in MA time, the grain size and Vickers hardness decreased and increased, respectively. At MA time of 32hrs, the hardness of the alloy was comparable to that of Glidcop® although the grain size was much larger. X-ray diffractometry, electrical resistivity measurements and STEM-EDS analyses suggested precipitation of Al-rich phase by MA for 32hrs followed by HIP.

  10. Initial Development in Joining of ODS Alloys Using Friction Stir Welding

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Weiju [ORNL; Feng, Zhili [ORNL

    2007-08-01

    Solid-state welding of oxide-dispersion-strengthened (ODS) alloy MA956 sheets using friction stir welding (FSW) was investigated. Butt weld was successfully produced. The weld and base metals were characterized using optical microscopy, scanning electronic microscopy, transmission electronic microscopy, and energy dispersion x-ray spectrum. Microhardness mapping was also conducted over the weld region. Analyses indicate that the distribution of the strengthening oxides was preserved in the weld. Decrease in microhardness of the weld was observed but was insignificant. The preliminary results seem to confirm the envisioned feasibility of FSW application to ODS alloy joining. For application to Gen IV nuclear reactor heat exchanger, further investigation is suggested.

  11. Development of 3rd generation AHSS with medium Mn content alloying compositions

    Energy Technology Data Exchange (ETDEWEB)

    Aydin, Huseyin, E-mail: huseyin.aydin@mail.mcgill.ca [McGill University, Department of Mining and Materials Engineering, Montreal, QC (Canada); Essadiqi, Elhachmi [Université Internationale de Rabat, UIR, Aerospace Engineering School, Rabat, Technopolis Shore Bypass Rabat-Salé (Morocco); Jung, In-Ho; Yue, Stephen [McGill University, Department of Mining and Materials Engineering, Montreal, QC (Canada)

    2013-03-01

    In this paper, four different steel compositions, centered on Mn as the main alloying element, are designated as candidates for Third Generation AHSS grades. The design of these steels is based on controlling the deformation behavior of the retained austenite. Thus, heat treatment process parameters are determined in order to obtain different amounts and morphologies of retained austenite. The evolution of the microstructure, during processing as well as deformation, is characterized by using optical, electron microscopy techniques and mechanical tests. The effect of alloy composition and processing parameters on the deformation mechanisms of these steels is discussed.

  12. A Method to Develop Sustainable Water Management Strategies for an Uncertain Future

    NARCIS (Netherlands)

    Haasnoot, M.; Middelkoop, H.; Beek, E. van; Deursen, W.P.A. van

    2011-01-01

    Development of sustainable water management strategies involves identifi cation of vulnerability and adaptation possibilities, followed by an effect analysis of these adaptation strategies under different possible futures. Recent scenario studies on water management were mainly ‘what-if’ assessments

  13. A method to develop sustainable water management strategies for an uncertain future

    NARCIS (Netherlands)

    Haasnoot, M.; Middelkoop, H.; Beek, van E.; Deursen, van W.P.A.

    2009-01-01

    Development of sustainable water management strategies involves identification of vulnerability and adaptation possibilities, followed by an effect analysis of these adaptation strategies under different possible futures. Recent scenario studies on water management were mainly ‘what-if’ assessments

  14. Development of a persistent superconducting joint between Bi-2212/Ag-alloy multifilamentary round wires

    Science.gov (United States)

    Chen, Peng; Trociewitz, Ulf P.; Davis, Daniel S.; Bosque, Ernesto S.; Hilton, David K.; Kim, Youngjae; Abraimov, Dmytro V.; Starch, William L.; Jiang, Jianyi; Hellstrom, Eric E.; Larbalestier, David C.

    2017-02-01

    Superconducting joints are one of the key components needed to make Ag-alloy clad Bi2Sr2CaCu2O8+x (Bi-2212) superconducting round wire (RW) successful for high-field, high-homogeneity magnet applications, especially for nuclear magnetic resonance magnets in which persistent current mode operation is highly desired. In this study, a procedure for fabricating superconducting joints between Bi-2212 RWs during coil reaction was developed. Melting temperatures of Bi-2212 powder with different amounts of Ag addition were investigated by differential thermal analysis so as to provide information for selecting the proper joint matrix. Test joints of 1.3 mm dia. wires heat treated in 1 bar flowing oxygen using the typical partial melt Bi-2212 heat treatment (HT) had transport critical currents I c of ˜900 A at 4.2 K and self-field, decreasing to ˜480 A at 14 T evaluated at 0.1 μV cm-1 at 4.2 K. Compared to the I c of the open-ended short conductor samples with identical 1 bar HT, the I c values of the superconducting joint are ˜20% smaller than that of conductor samples measured in parallel field but ˜20% larger than conductor samples measured in perpendicular field. Microstructures examined by scanning electron microscopy clearly showed the formation of a superconducting Bi-2212 interface between the two Bi-2212 RWs. Furthermore, a Bi-2212 RW closed-loop solenoid with a superconducting joint heat treated in 1 bar flowing oxygen showed an estimated joint resistance below 5 × 10-12 Ω based on its field decay rate. This value is sufficiently low to demonstrate the potential for persistent operation of large inductance Bi-2212 coils.

  15. Evolution of microstructure and hardness of AE42 alloy after heat treatments

    DEFF Research Database (Denmark)

    Huang, Y.D.; Dieringa, H.; Hort, N.;

    2008-01-01

    The AE42 magnesium alloy was developed for high pressure die casting (HPDC) from low-aluminum magnesium alloys. In this alloy the rare earth (RE) elements were shown to increase creep resistance by forming AlxREy intermetallics along the grain boundaries. The present work investigates...... the microstructure of squeeze cast AE42 magnesium alloy and evaluates its hardness before and after heat treatments. The change in hardness is discussed based on the microstructural observations. Some suggestions are given concerning future design of alloy compositions in order to improve high temperature creep...... properties even further. It is shown that the microstructure of the squeeze-cast AE42 alloy is stable at high temperature 450 degrees C. The subsequent solution and ageing treatments have a limited effect on the hardness. The weak age-hardening is attributed to the precipitation of small amount Of Mg17Al12...

  16. Human Resource Development Planning in a Community College Program Based on a View of the Future.

    Science.gov (United States)

    Dowd, Steven B.

    In recognition of the importance of futures information in planning efforts and continued staff development in achieving institutional goals, Lincoln Land Community College (LLCC), in Springfield, Illinois, undertook a project to develop and validate a strategic planning process for human resource development of faculty and staff in a radiologic…

  17. Positron annihilation spectroscopy as a tool to develop self healing in aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hautakangas, S.; Schut, H. [Faculty of Applied Physics, section NPM2, Delft University of Technology, Mekelweg 15, 2629 JB, Delft (Netherlands); Zwaag, S. van der; Rivera Diaz del Castillo, P.E.J. [Faculty of Aerospace Engineering, Section Fundamentals of Advanced Materials, Delft University of Technology, Kluyverweg 1, 2629 HS Delft (Netherlands); Dijk, N.H. van [Faculty of Applied Physics, Section FAME, Delft University of Technology, Mekelweg 15, 2629 JB, Delft (Netherlands)

    2007-07-01

    Positron lifetime and Doppler broadening spectroscopy have been applied to probe the free volume generation (vacancies, dislocations and nano-cracks) during plastic deformation of a commercial aluminium AA2024 (T3) alloy. Aim of the total program is to study how solute atoms can be driven to the areas where initial cracking may occur in order to prevent the failure of the specimen. The phenomenon of closing the nano-crack is called Self Healing, and can provide extra strength and ductility to the alloy under some loading conditions. Plastic deformation of over-aged aluminum alloy at room temperature increases the average positron lifetime from initial value of 190 ps to 203 ps. The low momentum parameter S increases in agreement with the increase of open volume defects. The elastic deformation of the sample does not have a recordable effect on the positron annihilation data. It is also shown that the induced damage does not recover after loading the sample, i.e. the AA2024 in the T3 state is non self healing material, as expected, providing important first state result in the research of self healing Al alloys. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Fabrication Technological Development of the Oxide Dispersion Strengthened Alloy MA957 for Fast Reactor Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Margaret L.; Gelles, David S.; Lobsinger, Ralph J.; Johnson, Gerald D.; Brown, W. F.; Paxton, Michael M.; Puigh, Raymond J.; Eiholzer, Cheryl R.; Martinez, C.; Blotter, M. A.

    2000-02-28

    A significant amount of effort has been devoted to determining the properties and understanding the behavior of the alloy MA957 to define its potential usefulness as a cladding material in the fast breeder reactor program. The numerous characterization and fabrication studies that were conducted are documented in this report.

  19. Recent breakthrough development of the magnetic shape memory effect in Ni Mn Ga alloys

    Science.gov (United States)

    Söderberg, O.; Ge, Y.; Sozinov, A.; Hannula, S.-P.; Lindroos, V. K.

    2005-10-01

    Magnetic shape memory (MSM) alloys or ferromagnetic shape memory alloy (FSMA) materials discovered by Ullakko et al (1996 Appl. Phys. Lett. 69 1966-8) have received increasing interest, since they can produce a large strain with rather high frequencies without a change in the external temperature. These materials have potential for actuator and sensor applications. MSM materials exhibit giant magnetic field induced strain (MFIS) based on the rearrangements of the crystallographic domains (twin variants). The magnetization energy of the material is lowered when such twin variants that have the easy axis of magnetization along the field start to grow due to twin boundary motion. Currently, the best working MSM materials are the near-stoichiometric Ni2MnGa Heusler alloys in which the properties are highly composition dependent. Their modulated martensitic structures, 5M and 7M, show 6% or 10% response respectively in a magnetic field less than 800 kA m-1. The MSM service temperature of the 5M alloys is between 150 and 333 K, and the optimal frequency region is up to 500 Hz. The fatigue life of the MSM elements has been shown to be at least 50 × 106 shape change cycles. This paper reviews the research work carried out at Helsinki University of Technology on MSM materials since 1998.

  20. Development of a Flapping Wing Design Incorporating Shape Memory Alloy Actuation

    Science.gov (United States)

    2010-03-01

    Hong Wang , Chen-Hsien Fan. “Optimal Design of Rotary Manipulators Using Shape Memory Alloy Wire Actuated Flexures,” Sensors & Actuators A: Physical... Chih -Ming Ho. “Unsteady Aerodynamics and Flow Control for Flapping Wing Flyers,” Progress in Aerospace Sciences, 39: 635-681 (November 2003