WorldWideScience

Sample records for fusion test facilities

  1. Mirror Fusion Test Facility: Superconducting magnet system cost analysis

    Energy Technology Data Exchange (ETDEWEB)

    1977-07-01

    At the request of Victor Karpenko, Project manager for LLL`s Mirror Fusion Test Facility, EG&G has prepared this independent cost analysis for the proposed MFTF Superconducting Magnet System. The analysis has attempted to show sufficient detail to provide adequate definition for a basis of estimating costs.

  2. FUSION NUCLEAR SCIENCE FACILITY (FNSF) BEFORE UPGRADE TO COMPONENT TEST FACILITY (CTF)

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yueng Kay Martin [ORNL; Canik, John [ORNL; Diem, Stephanie J [ORNL; Milora, Stanley L [ORNL; Park, J. M. [Oak Ridge National Laboratory (ORNL); Sontag, Aaron C [ORNL; Fogarty, P. J. [Oak Ridge National Laboratory (ORNL); Lumsdaine, Arnold [ORNL; Murakami, Masanori [ORNL; Burgess, Thomas W [ORNL; Cole, Michael J [ORNL; Katoh, Yutai [ORNL; Korsah, Kofi [ORNL; Patton, Bradley D [ORNL; Wagner, John C [ORNL; Yoder, III, Graydon L [ORNL

    2011-01-01

    The compact (R0~1.2-1.3m) Fusion Nuclear Science Facility (FNSF) is aimed at providing a fully integrated, continuously driven fusion nuclear environment of copious fusion neutrons. This facility would be used to test, discover, and understand the complex challenges of fusion plasma material interactions, nuclear material interactions, tritium fuel management, and power extraction. Such a facility properly designed would provide, initially at the JET-level plasma pressure (~30%T2) and conditions (e.g., Hot-Ion H-Mode, Q<1)), an outboard fusion neutron flux of 0.25 MW/m2 while requiring a fusion power of ~19 MW. If and when this research is successful, its performance can be extended to 1 MW/m2 and ~76 MW by reaching for twice the JET plasma pressure and Q. High-safety factor q and moderate-plasmas are used to minimize or eliminate plasma-induced disruptions, to deliver reliably a neutron fluence of 1 MW-yr/m2 and a duty factor of 10% presently anticipated for the FNS research. Success of this research will depend on achieving time-efficient installation and replacement of all internal components using remote handling (RH). This in turn requires modular designs for the internal components, including the single-turn toroidal field coil center-post. These device goals would further dictate placement of support structures and vacuum weld seals behind the internal and shielding components. If these goals could be achieved, the FNSF would further provide a ready upgrade path to the Component Test Facility (CTF), which would aim to test, for 6 MW-yr/m2 and 30% duty cycle, the demanding fusion nuclear engineering and technologies for DEMO. This FNSF-CTF would thereby complement the ITER Program, and support and help mitigate the risks of an aggressive world fusion DEMO R&D Program. The key physics and technology research needed in the next decade to manage the potential risks of this FNSF are identified.

  3. 0.5MJ Targets for an IFE Fusion Test Facility

    Science.gov (United States)

    Lafortune, K. N.; Perkins, L. J.; Bedrossian, P.; Betti, R.; Schmitt, A.; Obenschain, S.

    2006-10-01

    There has been much recent progress in the development of both the source and targets for laser-driven, inertial confinement fusion (ICF). The next step to apply this approach to inertial fusion energy (IFE) is to build a facility that has all the required components of a reactor and demonstrates the reliability and robustness. The Fusion Test Facility proposed by NRL is one such facility [S.Obenschain, Bull. APS v50, 2005]. The cost, complexity and scale of any fusion test facility are driven by the energy required for the fusion target. As the laser-target physics has become better understood, target geometries that require less drive energy have been found. Using conventional hotspot ignition, rad-hydro-burn simulations using HYDRA of low-drive-energy, direct-drive reactor targets requiring just 0.5 MJ of drive energy to achieve gain of 10's are being studied. 1-D scoping studies have been performed to outline the source requirements. Good agreement with comprehensive, time-dependent 1-D simulations in LASNEX has been obtained for integral quantities such as gain, yield and ignition margins. The robustness of the small targets has been explored with 2-D stability studies. Shock ignition of similar targets could be employed to achieve yet higher gains with similar drive energies.

  4. Helium mass flow measurement in the International Fusion Superconducting Magnet Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Baylor, L.R.

    1986-08-01

    The measurement of helium mass flow in the International Fusion Superconducting Magnet Test Facility (IFSMTF) is an important aspect in the operation of the facility's cryogenic system. Data interpretation methods that lead to inaccurate results can cause severe difficulty in controlling the experimental superconducting coils being tested in the facility. This technical memorandum documents the methods of helium mass flow measurement used in the IFSMTF for all participants of the Large Coil Program and for other cryogenic experimentalists needing information on mass flow measurements. Examples of experimental data taken and calculations made are included to illustrate the applicability of the methods used.

  5. Mechanical behavior of the mirror fusion test Facility superconducting magnet coils

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, J.A.

    1980-01-01

    The mechanical response to winding and electromagnetic loads of the Mirror Fusion Test Facility (MFTF) superconducting coil pack is presented. The 375-ton (3300 N) MFTF Yin-Yang magnet, presently the world's largest superconducting magnet, is scheduled for acceptance cold-testing in May of 1981. The assembly is made up of two identical coils which together contain over 15 miles (24 km) of superconductor wound in 58 consecutive layers of 24 turns each. Topics associated with mechanical behavior include physical properties of the coil pack and its components, winding pre-load effects, finite element analysis, magnetic load redistribution, and the design impact of predicted conductor motion.

  6. A spallation-based irradiation test facility for fusion and future fission materials

    CERN Document Server

    Samec, K; Kadi, Y; Luis, R; Romanets, Y; Behzad, M; Aleksan, R; Bousson, S

    2014-01-01

    The EU’s FP7 TIARA program for developing accelerator-based facilities has recently demonstrated the unique capabilities of a compact and powerful spallation source for irradiating advanced nuclear materials. The spectrum and intensity of the neutron flux produced in the proposed facility fulfils the requirements of the DEMO fusion reactor for ITER, ADS reactors and also Gen III / IV reactors. Test conditions can be modulated, covering temperature from 400 to 550°C, liquid metal corrosion, cyclical or static stress up to 500 MPa and neutron/proton irradiation damage of up to 25 DPA per annum. The entire “TMIF” facility fits inside a cube 2 metres on a side, and is dimensioned for an accelerator beam power of 100 kW, thus reducing costs and offering great versatility and flexibility.

  7. Performance Test of Korea Heat Load Test Facility (KoHLT-EB) for the Plasma Facing Components of Fusion Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suk-Kwon; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae-Sung; Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The main components of the plasma facing components (PFCs) in the tokamak are the blanket first wall and divertor, which include the armour materials, the heat sink with the cooling mechanism, and the diagnostics devices for the temperature measurement. The Korea Heat Load Test facility by using electron beam (KoHLT-EB) has been operating for the plasma facing components to develop fusion engineering. This electron beam facility was constructed using a 300 kW electron gun and a cylindrical vacuum chamber. Performance tests were carried out for the calorimetric calibrations with Cu dummy mockup and for the heat load test of large Cu module. For the simulation of the heat load test of each mockup, the preliminary thermal-hydraulic analyses with ANSYS-CFX were performed. For the development of the plasma facing components in the fusion reactors, test mockups were fabricated and tested in the high heat flux test facility. To perform a beam profile test, an assessment of the possibility of electron beam Gaussian power density profile and the results of the absorbed power for that profile before the test starts are needed. To assess the possibility of a Gaussian profile, for the qualification test of the Gaussian heat load profile, a calorimeter mockup and large Cu module were manufactured to simulate real heat. For this high-heat flux test, the Korean high-heat flux test facility using an electron beam system was constructed. In this facility, a cyclic heat flux test will be performed to measure the surface heat flux, surface temperature profile, and cooling capacity.

  8. Laser-Plasma Interactions on NIKE and the Fusion Test Facility

    Science.gov (United States)

    Phillips, Lee; Weaver, James

    2008-11-01

    Recent proposed designs for a Fusion Test Facility (FTF) (Obenchain et al., Phys. Plasmas 13 056320 (2006)) for direct-drive ICF targets for energy applications involve high implosion velocities combined with higher laser irradiances. The use of high irradiances increases the likelihood of deleterious laser plasma instabilities (LPI) but the proposed use of a 248 nm KrF laser to drive these targets is expected to minimize the LPI risk. We examine, using simulation results from NRL's FAST hydrocode, the proposed operational regimes of the FTF in relation to the thresholds for the SRS, SBS, and 2-plasmon instabilities. Simulations are also used to help design and interpret ongoing experiments being conducted at NRL's NIKE facility for the purpose of generating and studying LPI. Target geometries and laser pulseshapes were devised in order to create plasma conditions with long scalelengths and low electron temperatures that allow the growth of parametric instabilities. These simulations include the effects of finite beam angles through the use of raytracing.

  9. Facilities, testing program and modeling needs for studying liquid metal magnetohydrodynamic flows in fusion blankets

    Energy Technology Data Exchange (ETDEWEB)

    Bühler, L., E-mail: leo.buehler@kit.edu [Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe (Germany); Mistrangelo, C.; Konys, J. [Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe (Germany); Bhattacharyay, R. [Institute for Plasma Research, Gandhinagar, Gujarat 382428 (India); Huang, Q. [Institute of Nuclear Energy Safety Technology (INEST), Chinese Academy of Sciences (CAS) (China); Obukhov, D. [D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (NIIEFA) (Russian Federation); Smolentsev, S. [University of California Los Angeles (UCLA) (United States); Utili, M. [ENEA C.R. Brasimone, Camugnano 40032 (Italy)

    2015-11-15

    Since many years, liquid metal flows for applications in fusion blankets have been investigated worldwide. A review is given about modeling requirements and existing experimental facilities for investigations of liquid metal related issues in blankets with the focus on magnetohydrodynamics (MHD). Most of the performed theoretical and experimental works were dedicated to fundamental aspects of MHD flows under very strong magnetic fields as they may occur in generic elements of fusion blankets like pipes, ducts, bends, expansions and contractions. Those experiments are required to progressively validate numerical tools with the purpose of obtaining codes capable to predict MHD flows at fusion relevant parameters in complex blanket geometries, taking into account electrical and thermal coupling between fluid and structural materials. Scaled mock-up experiments support the theoretical activities and help deriving engineering correlations for cases which cannot be calculated with required accuracy up to now.

  10. Remote Handling and Plasma Conditions to Enable Fusion Nuclear Science R&D Using a US Component Testing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yueng Kay Martin [ORNL; Burgess, Thomas W [ORNL; Carroll, Adam J [ORNL; Neumeyer, C. L. [Princeton Plasma Physics Laboratory (PPPL); Canik, John [ORNL; Cole, Michael J [ORNL; Dorland, W. D. [University of Maryland; Fogarty, P. J. [Oak Ridge National Laboratory (ORNL); Grisham, L. [Princeton Plasma Physics Laboratory (PPPL); Hillis, Donald Lee [ORNL; Katoh, Yutai [ORNL; Korsah, Kofi [ORNL; Kotschenreuther, M. [University of Texas, Austin; LaHaye, R. [General Atomics, San Diego; Mahajan, S. [University of Texas, Austin; Majeski, R. [Princeton Plasma Physics Laboratory (PPPL); Nelson, Brad E [ORNL; Patton, Bradley D [ORNL; Rasmussen, David A [ORNL; Sabbagh, S. A. [Columbia University; Sontag, Aaron C [ORNL; Stoller, Roger E [ORNL; Tsai, C. C. [Oak Ridge National Laboratory (ORNL); Vanlanju, P. [University of Texas, Austin; Wagner, Jill C [ORNL; Yoder, III, Graydon L [ORNL

    2009-08-01

    The use of a fusion component testing facility to study and establish, during the ITER era, the remaining scientific and technical knowledge needed by fusion Demo is considered and described in this paper. This use aims to lest components in an integrated fusion nuclear environment, for the first time, to discover and understand the underpinning physical properties, and to develop improved components for further testing, in a time-efficient manner. It requires a design with extensive modularization and remote handling of activated components, and flexible hot-cell laboratories. It further requires reliable plasma conditions to avoid disruptions and minimize their impact, and designs to reduce the divertor heat flux to the level of ITER design. As the plasma duration is extended through the planned ITER level (similar to 10(3) s) and beyond, physical properties with increasing time constants, progressively for similar to 10(4) s, similar to 10(5) s, and similar to 10(6) s, would become accessible for testing and R&D. The longest time constants of these are likely to be of the order of a week ( 106 S). Progressive stages of research operation are envisioned in deuterium, deuterium-tritium for the ITER duration, and deuterium-tritium with increasingly longer plasma durations. The fusion neutron fluence and operational duty factor anticipated for this "scientific exploration" phase of a component test facility are estimated to be up to 1 MW-yr/m(2) and up to 10%, respectively.

  11. Results from the CDE phase activity on neutron dosimetry for the international fusion materials irradiation facility test cell

    CERN Document Server

    Esposito, B; Maruccia, G; Petrizzi, L; Bignon, G; Blandin, C; Chauffriat, S; Lebrun, A; Recroix, H; Trapp, J P; Kaschuck, Y

    2000-01-01

    The international fusion materials irradiation facility (IFMIF) project deals with the study of an accelerator-based, deuterium-lithium source, producing high energy neutrons at sufficient intensity and irradiation volume to test samples of candidate materials for fusion energy reactors. IFMIF would also provide calibration and validation of data from fission reactor and other accelerator based irradiation tests. This paper describes the activity on neutron/gamma dosimetry (necessary for the characterization of the specimens' irradiation) performed in the frame of the IFMIF conceptual design evaluation (CDE) neutronics tasks. During the previous phase (conceptual design activity (CDA)) the multifoil activation method was proposed for the measurement of the neutron fluence and spectrum and a set of suitable foils was defined. The cross section variances and covariances of this set of foils have now been used for tests on the sensitivity of the IFMIF neutron spectrum determination to cross section uncertainties...

  12. Radiochemical problems of fusion reactors. 1. Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, M.B.A.

    1984-02-01

    A list of fusion reactor candidate materials is given, for use in connection with blanket structure, breeding, moderation, neutron multiplication, cooling, magnetic field generation, electrical insulation and radiation shielding. The phenomena being studied for each group of materials are indicated. Suitable irradiation test facilities are discussed under the headings (1) accelerator-based neutron sources, (2) fission reactors, and (3) ion accelerators.

  13. International Fusion Material Irradiation Facility (IFMIF) neutron source term simulation and neutronics analyses of the high flux test module

    CERN Document Server

    Simakov, S P; Heinzel, V; Moellendorff, U V

    2002-01-01

    The report describes the new results of the development work performed at Forschungszentrum Karlsruhe on the neutronics of the International Fusion Materials Irradiation Facility (IFMIF). An important step forward has been done in the simulation of neutron production of the deuteron-lithium source using the Li(d,xn) reaction cross sections from evaluated data files. The developed Monte Carlo routine and d-Li reaction data newly evaluated at INPE Obninsk have been verified against available experimental data on the differential neutron yield from deuteron-bombarded thick lithium targets. With the modified neutron source three-dimensional distributions of neutron and photon fluxes, displacement and gas production rates and nuclear heating inside the high flux test module (HFTM) were calculated. In order to estimate the uncertainty resulting from the evaluated data, two independent libraries, recently released by INPE and LANL, have been used in the transport calculations. The proposal to use a reflector around ...

  14. Program user's manual: cryogen system for the analysis for the Mirror Fusion Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    1979-04-01

    The Mirror Fusion Test Facility being designed and constructed at the Lawrence Livermore Laboratory requires a liquid helium liquefaction, storage, distribution, and recovery system and a liquid nitrogen storage and distribution system. To provide a powerful analytical tool to aid in the design evolution of this system through hardware, a thermodynamic fluid flow model was developed. This model allows the Lawrence Livermore Laboratory to verify that the design meets desired goals and to play what if games during the design evolution. For example, what if the helium flow rate is changed in the magnet liquid helium flow loop; how does this affect the temperature, fluid quality, and pressure. This manual provides all the information required to run all or portions of this program as desired. In addition, the program is constructed in a modular fashion so changes or modifications can be made easily to keep up with the evolving design.

  15. Distributed computer control system in the Nova Laser Fusion Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    1985-09-01

    The EE Technical Review has two purposes - to inform readers of various activities within the Electronics Engineering Department and to promote the exchange of ideas. The articles, by design, are brief summaries of EE work. The articles included in this report are as follows: Overview - Nova Control System; Centralized Computer-Based Controls for the Nova Laser Facility; Nova Pulse-Power Control System; Nova Laser Alignment Control System; Nova Beam Diagnostic System; Nova Target-Diagnostics Control System; and Nova Shot Scheduler. The 7 papers are individually abstracted.

  16. Safety of magnetic fusion facilities: Guidance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    This document provides guidance for the implementation of the requirements identified in DOE-STD-6002-96, Safety of Magnetic Fusion Facilities: Requirements. This guidance is intended for the managers, designers, operators, and other personnel with safety responsibilities for facilities designated as magnetic fusion facilities. While the requirements in DOE-STD-6002-96 are generally applicable to a wide range of fusion facilities, this Standard, DOE-STD-6003-96, is concerned mainly with the implementation of those requirements in large facilities such as the International Thermonuclear Experimental Reactor (ITER). Using a risk-based prioritization, the concepts presented here may also be applied to other magnetic fusion facilities. This Standard is oriented toward regulation in the Department of Energy (DOE) environment as opposed to regulation by other regulatory agencies. As the need for guidance involving other types of fusion facilities or other regulatory environments emerges, additional guidance volumes should be prepared. The concepts, processes, and recommendations set forth here are for guidance only. They will contribute to safety at magnetic fusion facilities.

  17. A Concept for a Low Pressure Noble Gas Fill Intervention in the IFE Fusion Test Facility (FTF) Target Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, C. A.; Blanchard, W. R.; Kozub, T. A.; Aristova, M.; McGahan, C.; Natta, S.; Pagdon, K.; Zelenty, J.

    2010-01-14

    An engineering evaluation has been initiated to investigate conceptual engineering methods for implementing a viable gas shield strategy in the Fusion Test Facility (FTF) target chamber. The employment of a low pressure noble gas in the target chamber to thermalize energetic helium ions prior to interaction with the wall could dramatically increase the useful life of the first wall in the FTF reactor1. For the purpose of providing flexibility, two target chamber configurations are addressed: a five meter radius sphere and a ten meter radius sphere. Experimental studies at Nike have indicated that a low pressure, ambient gas resident in the target chamber during laser pulsing does not appear to impair the ability of laser light from illuminating targets2. In addition, current investigations into delivering, maintaining, and processing low pressure gas appear to be viable with slight modification to current pumping and plasma exhaust processing technologies3,4. Employment of a gas fill solution for protecting the dry wall target chamber in the FTF may reduce, or possibly eliminate the need for other attenuating technologies designed for keeping He ions from implanting in first wall structures and components. The gas fill concept appears to provide an effective means of extending the life of the first wall while employing mostly commercial off the shelf (COTS) technologies. Although a gas fill configuration may provide a methodology for attenuating damage inflicted on chamber surfaces, issues associated with target injection need to be further analyzed to ensure that the gas fill concept is viable in the integrated FTF design5. In the proposed system, the ambient noble gas is heated via the energetic helium ions produced by target detonation. The gas is subsequently cooled by the chamber wall to approximately 800oC, removed from the chamber, and processed by the chamber gas processing system (CGPS). In an optimized scenario of the above stated concept, the chamber

  18. Accelerators for Fusion Materials Testing

    Science.gov (United States)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes >1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa (“displacement-per-atom”, the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  19. Safety assessment for the rf Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, A.; Beane, F. (eds.)

    1984-08-01

    The Radio Frequency Test Facility (RFTF) is a part of the Magnetic Fusion Program's rf Heating Experiments. The goal of the Magnetic Fusion Program (MFP) is to develop and demonstrate the practical application of fusion. RFTF is an experimental device which will provide an essential link in the research effort aiming at the realization of fusion power. This report was compiled as a summary of the analysis done to ensure the safe operation of RFTF.

  20. Engine Test Facility (ETF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Air Force Arnold Engineering Development Center's Engine Test Facility (ETF) test cells are used for development and evaluation testing of propulsion systems for...

  1. LLNL superconducting magnets test facility

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, R; Martovetsky, N; Moller, J; Zbasnik, J

    1999-09-16

    The FENIX facility at Lawrence Livermore National Laboratory was upgraded and refurbished in 1996-1998 for testing CICC superconducting magnets. The FENIX facility was used for superconducting high current, short sample tests for fusion programs in the late 1980s--early 1990s. The new facility includes a 4-m diameter vacuum vessel, two refrigerators, a 40 kA, 42 V computer controlled power supply, a new switchyard with a dump resistor, a new helium distribution valve box, several sets of power leads, data acquisition system and other auxiliary systems, which provide a lot of flexibility in testing of a wide variety of superconducting magnets in a wide range of parameters. The detailed parameters and capabilities of this test facility and its systems are described in the paper.

  2. Compressed Gas Safety for Experimental Fusion Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2004-09-01

    Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air, and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard assoicated with compressed gas cylinders and mthods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertial fusion experiments.

  3. Compressed Gas Safety for Experimental Fusion Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2004-09-01

    Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air, and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard assoicated with compressed gas cylinders and mthods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertial fusion experiments.

  4. Textiles Performance Testing Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Textiles Performance Testing Facilities has the capabilities to perform all physical wet and dry performance testing, and visual and instrumental color analysis...

  5. GPS Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Global Positioning System (GPS) Test Facility Instrumentation Suite (GPSIS) provides great flexibility in testing receivers by providing operational control of...

  6. Ouellette Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Test Facility is a joint Army/Navy state-of-the-art facility (8,100 ft2) that was designed to:Evaluate and characterize the effect of flame and thermal...

  7. Ouellette Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Test Facility is a joint Army/Navy state-of-the-art facility (8,100 ft2) that was designed to: Evaluate and characterize the effect of flame and thermal...

  8. Pressurized burner test facility

    Energy Technology Data Exchange (ETDEWEB)

    Maloney, D.J.; Norton, T.S.; Hadley, M.A. [Morgantown Energy Technology Center, WV (United States)

    1993-06-01

    The Morgantown Energy Technology Center (METC) is currently fabricating a high-pressure burner test facility. The facility was designed to support the development of gas turbine combustion systems fired on natural gas and coal-derived gaseous fuels containing fuel-bound nitrogen. Upon completion of fabrication and shake-down testing in October 1993, the facility will be available for use by industrial and university partners through Cooperative Research and Development Agreements (CRADAs) or through other cooperative arrangements. This paper describes the burner test facility and associated operating parameter ranges and informs interested parties of the availability of the facility.

  9. Structural Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Provides a wide variety of testing equipment, fixtures and facilities to perform both unique aviation component testing as well as common types of materials testing...

  10. Structural Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Provides a wide variety of testing equipment, fixtures and facilities to perform both unique aviation component testing as well as common types of materials testing...

  11. Mark 1 Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Mark I Test Facility is a state-of-the-art space environment simulation test chamber for full-scale space systems testing. A $1.5M dollar upgrade in fiscal year...

  12. Pavement Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Comprehensive Environmental and Structural Analyses The ERDC Pavement Testing Facility, located on the ERDC Vicksburg campus, was originally constructed to provide...

  13. Pavement Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Comprehensive Environmental and Structural AnalysesThe ERDC Pavement Testing Facility, located on the ERDC Vicksburg campus, was originally constructed to provide an...

  14. Environmental Test Facility (ETF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Environmental Test Facility (ETF) provides non-isolated shock testing for stand-alone equipment and full size cabinets under MIL-S-901D specifications. The ETF...

  15. Ballistic Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Ballistic Test Facility is comprised of two outdoor and one indoor test ranges, which are all instrumented for data acquisition and analysis. Full-size aircraft...

  16. Corrosion Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Corrosion Testing Facility is part of the Army Corrosion Office (ACO). It is a fully functional atmospheric exposure site, called the Corrosion Instrumented Test...

  17. The materials production and processing facility at the Spanish National Centre for fusion technologies (TechnoFusion)

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, A., E-mail: rpp@fis.uc3m.es [Departamento de Fisica, UC3M, Avda de la Universidad 30, 28911 Leganes, Madrid (Spain); Monge, M.A.; Pareja, R. [Departamento de Fisica, UC3M, Avda de la Universidad 30, 28911 Leganes, Madrid (Spain); Hernandez, M.T. [LNF-CIEMAT, Avda, Complutense, 22, 28040 Madrid (Spain); Jimenez-Rey, D. [CMAM, UAM, C/Faraday 3, 28049, Madrid (Spain); Roman, R.; Gonzalez, M.; Garcia-Cortes, I. [LNF-CIEMAT, Avda, Complutense, 22, 28040 Madrid (Spain); Perlado, M. [IFN, ETSII, UPM, C/Jose Gutierrez Abascal, 2, 28006 Madrid (Spain); Ibarra, A. [LNF-CIEMAT, Avda, Complutense, 22, 28040 Madrid (Spain)

    2011-10-15

    In response to the urgent request from the EU Fusion Program, a new facility (TechnoFusion) for research and development of fusion materials has been planned with support from the Regional Government of Madrid and the Ministry of Science and Innovation of Spain. TechnoFusion, the National Centre for Fusion Technologies, aims screening different technologies relevant for ITER and DEMO environments while promoting the contribution of international companies and research groups into the Fusion Programme. For this purpose, the centre will be provided with a large number of unique facilities for the manufacture, testing (a triple-beam multi-ion irradiation, a plasma-wall interaction device, a remote handling for under ionizing radiation testing) and analysis of critical fusion materials. Particularly, the objectives, semi-industrial scale capabilities and present status of the TechnoFusion Materials Production and Processing (MPP) facility are presented. Previous studies revealed that the MPP facility will be a very promising infrastructure for the development of new materials and prototypes demanded by the fusion technology and therefore some of them will be here briefly summarized.

  18. Seismic analysis of the Mirror Fusion Test Facility: soil structure interaction analyses of the Axicell vacuum vessel. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Maslenikov, O.R.; Mraz, M.J.; Johnson, J.J.

    1986-03-01

    This report documents the seismic analyses performed by SMA for the MFTF-B Axicell vacuum vessel. In the course of this study we performed response spectrum analyses, CLASSI fixed-base analyses, and SSI analyses that included interaction effects between the vessel and vault. The response spectrum analysis served to benchmark certain modeling differences between the LLNL and SMA versions of the vessel model. The fixed-base analysis benchmarked the differences between analysis techniques. The SSI analyses provided our best estimate of vessel response to the postulated seismic excitation for the MFTF-B facility, and included consideration of uncertainties in soil properties by calculating response for a range of soil shear moduli. Our results are presented in this report as tables of comparisons of specific member forces from our analyses and the analyses performed by LLNL. Also presented are tables of maximum accelerations and relative displacements and plots of response spectra at various selected locations.

  19. Thermal distortion test facility

    Science.gov (United States)

    Stapp, James L.

    1995-02-01

    The thermal distortion test facility (TDTF) at Phillips Laboratory provides precise measurements of the distortion of mirrors that occurs when their surfaces are heated. The TDTF has been used for several years to evaluate mirrors being developed for high-power lasers. The facility has recently undergone some significant upgrades to improve the accuracy with which mirrors can be heated and the resulting distortion measured. The facility and its associated instrumentation are discussed.

  20. Conceptual Engineering Method for Attenuating He Ion Interactions on First Wall Components in the Fusion Test Facility (FTF) Employing a Low-Pressure Noble Gas

    Energy Technology Data Exchange (ETDEWEB)

    C.A.Gentile, W.R.Blanchard, T.Kozub, C.Priniski, I.Zatz, S.Obenschain

    2009-09-21

    It has been shown that post detonation energetic helium ions can drastically reduce the useful life of the (dry) first wall of an IFE reactor due to the accumulation of implanted helium. For the purpose of attenuating energetic helium ions from interacting with first wall components in the Fusion Test Facility (FTF) target chamber, several concepts have been advanced. These include magnetic intervention (MI), deployment of a dynamically moving first wall, use of a sacrificial shroud, designing the target chamber large enough to mitigate the damage caused by He ions on the target chamber wall, and the use of a low pressure noble gas resident in the target chamber during pulse power operations. It is proposed that employing a low-pressure (~ 1 torr equivalent) noble gas in the target chamber will thermalize energetic helium ions prior to interaction with the wall. The principle benefit of this concept is the simplicity of the design and the utilization of (modified) existing technologies for pumping and processing the noble ambient gas. Although the gas load in the system would be increased over other proposed methods, the use of a "gas shield" may provide a cost effective method of greatly extending the first wall of the target chamber. An engineering study has been initiated to investigate conceptual engineering metmethods for implementing a viable gas shield strategy in the FTF.

  1. Wind Tunnel Testing Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — NASA Ames Research Center is pleased to offer the services of our premier wind tunnel facilities that have a broad range of proven testing capabilities to customers...

  2. Climatic Environmental Test Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — RTTC has an extensive suite of facilities for supporting MIL-STD-810 testing, toinclude: Temperature/Altitude, Rapid Decompression, Low/High Temperature,Temperature...

  3. Urban Test Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — RTTC has access to various facilities for use in urban testing applications,including an agreement with the Hazardous Devices School (HDS): a restrictedaccess Urban...

  4. Safety of magnetic fusion facilities: Volume 2, Guidance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This document provides guidance for the implementation of the requirements identified in Vol. 1 of this Standard. This guidance is intended for the managers, designers, operators, and other personnel with safety responsibilities for facilities designated as magnetic fusion facilities. While Vol. 1 is generally applicable in that requirements there apply to a wide range of fusion facilities, this volume is concerned mainly with large facilities such as the International Thermonuclear Experimental Reactor (ITER). Using a risk-based prioritization, the concepts presented here may also be applied to other magnetic fusion facilities. This volume is oriented toward regulation in the Department of Energy (DOE) environment.

  5. Toroid magnet test facility

    CERN Multimedia

    2002-01-01

    Because of its exceptional size, it was not feasible to assemble and test the Barrel Toroid - made of eight coils - as an integrated toroid on the surface, prior to its final installation underground in LHC interaction point 1. It was therefore decided to test these eight coils individually in a dedicated test facility.

  6. The Quest for Fusion at the National Ignition Facility

    Science.gov (United States)

    Hartouni, Edward

    2017-01-01

    Arthur Eddington speculated in 1920 on the internal constitution of stars and described the possibility of nuclear fusion based on the then new results from special relativity and measurements of light nuclei masses. By 1929 Atkinson and Houtermans worked out the calculations for nuclear fusion in stars and initiating nuclear astrophysics. All of these sciences were pressed into service during the World War II, and the applications developed, particularly under the auspices of the Manhattan Project provided both weapons with which to wage and win that conflict, but also the possibilities to harness these applications of the nuclear processes of fission and fusion for peaceful purposes. 32 years after Eddington's speculation the United States demonstrated the application of fusion in a famous nuclear weapons test. In the following years many ideas for producing ``controlled'' fusion through inertial confinement were pursued. The invention of the laser opened up new avenues which have culminated in the National Ignition Facility, NIF. I will attempt to cover the ground between Eddington, through the Manhattan Project and provide a current status of this quest at NIF. LLNL-ABS-704367-DRAFT. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  7. A cryogenic test facility

    Science.gov (United States)

    Veenendaal, Ian

    The next generation, space-borne instruments for far infrared spectroscopy will utilize large diameter, cryogenically cooled telescopes in order to achieve unprecedented sensitivities. Low background, ground-based cryogenic facilities are required for the cryogenic testing of materials, components and subsystems. The Test Facility Cryostat (TFC) at the University of Lethbridge is a large volume, closed cycle, 4K cryogenic facility, developed for this purpose. This thesis discusses the design and performance of the facility and associated external instrumentation. An apparatus for measuring the thermal properties of materials is presented, and measurements of the thermal expansion and conductivity of carbon fibre reinforced polymers (CFRPs) at cryogenic temperatures are reported. Finally, I discuss the progress towards the design and fabrication of a demonstrator cryogenic, far infrared Fourier transform spectrometer.

  8. Test facilities for VINCI®

    Science.gov (United States)

    Greuel, Dirk; Schäfer, Klaus; Schlechtriem, Stefan

    2013-09-01

    With the replacement of the current upper-stage ESC-A of the Ariane 5 launcher by an enhanced cryogenic upper-stage, ESA's Ariane 5 Midterm Evolution (A5-ME) program aims to raise the launcher's payload capacity in geostationary transfer orbit from 10 to 12 tons, an increase of 20 %. Increasing the in-orbit delivery capability of the A5-ME launcher requires a versatile, high-performance, evolved cryogenic upper-stage engine suitable for delivering multiple payloads to all kinds of orbits, ranging from low earth orbit to geostationary transfer orbit with increased perigee. In order to meet these requirements the re-ignitable liquid oxygen/liquid hydrogen expander cycle engine VINCI® currently under development is designated to power the future upper stage, featuring a design performance of 180 kN of thrust and 464 s of specific impulse. Since 2010 development tests for the VINCI® engine have been conducted at the test benches P3.2 and P4.1 at DLR test site in Lampoldshausen under the ESA A5-ME program. For the VINCI® combustion chamber development the P3.2 test facility is used, which is the only European thrust chamber test facility. Originally erected for the development of the thrust chamber of the Vulcain engine, in 2003 the test facility was modified that today it is able to simulate vacuum conditions for the ignition and startup of the VINCI® combustion chamber. To maintain the test operations under vacuum conditions over an entire mission life of the VINCI® engine, including re-ignition following long and short coasting phases, between 2000 and 2005 the test facility P4.1 was completely rebuilt into a new high-altitude simulation facility. During the past two P4.1 test campaigns in 2010 and 2011 a series of important milestones were reached in the development of the VINCI® engine. In preparation for future activities within the frame of ESA's A5-ME program DLR has already started the engineering of a stage test facility for the prospective upper stage

  9. Distributed Energy Resources Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NREL's Distributed Energy Resources Test Facility (DERTF) is a working laboratory for interconnection and systems integration testing. This state-of-the-art facility...

  10. Distributed Energy Resources Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NREL's Distributed Energy Resources Test Facility (DERTF) is a working laboratory for interconnection and systems integration testing. This state-of-the-art facility...

  11. Pressurized burner test facility

    Energy Technology Data Exchange (ETDEWEB)

    Maloney, D.J.; Norton, T.S.; Hadley, M.A.

    1993-09-01

    The US Department of Energy`s METC has recently completed construction and commissioning of a new high-pressure combustion research facility. Utilities servicing the facility enable combustion tests at scales up to 3 MW (10 MM Btu/h) and pressures in excess of 3000 kPa (30 atm). These include a preheated, high-pressure air supply that can deliver up to 1.7 kg/s (3.7 lbs/s) of combustion air, and a high-pressure, natural gas compressor that can deliver 0.8 kg/s (.19 lbs/s). In the summer of 1994 METC`s syngas generator is scheduled to come on line, at which time combustion tests on a range of fuel gases from low to medium to high heating values will be possible. The syngas generator will simulate a range of fuel gas compositions characteristic of coal gasification product streams. As part of the combustion facility, a high-pressure burner test facility is currently being constructed to support the development of gas turbine combustion systems fired on natural gas and coal-derived gaseous fuels containing fuel-bound nitrogen. The facility, illustrated in Figure 1, is a 61-centimeter (24-inch) diameter, refractory-lined vessel of modular construction, offering the flexibility to test a variety of NO{sub x} control concepts. Burner test modules are sandwiched between gas inlet and sampling plenums with a maximum combustion test zone of 2.2 m (90 inches) in length. Modules are custom designed for specific burners.

  12. National Solar Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The National Solar Thermal Test Facility (NSTTF) is the only test facility in the United States of its type. This unique facility provides experimental engineering...

  13. National Solar Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The National Solar Thermal Test Facility (NSTTF) is the only test facility in the United States of its type. This unique facility provides experimental engineering...

  14. A 33-GVA Interrupter Test Facility

    Science.gov (United States)

    1979-06-01

    REFERENCES 1. c. E. Swannack, R. A. Haarman, J. D. G. Lindsay, and D. M. Weldon, " HVDC Interrupter Experiments for Large Magnetic Energy...7759-MS, April 1979. 3. E. M. Honig, "Dual 30-kA, HVDC Interrupter Test Facility", Proc• 7th Symp. Eng. Problems of Fusion Res., Knoxville, TN

  15. Hot Hydrogen Test Facility

    Science.gov (United States)

    Swank, W. David; Carmack, Jon; Werner, James E.; Pink, Robert J.; Haggard, DeLon C.; Johnson, Ryan

    2007-01-01

    The core in a nuclear thermal rocket will operate at high temperatures and in hydrogen. One of the important parameters in evaluating the performance of a nuclear thermal rocket is specific impulse, ISP. This quantity is proportional to the square root of the propellant's absolute temperature and inversely proportional to square root of its molecular weight. Therefore, high temperature hydrogen is a favored propellant of nuclear thermal rocket designers. Previous work has shown that one of the life-limiting phenomena for thermal rocket nuclear cores is mass loss of fuel to flowing hydrogen at high temperatures. The hot hydrogen test facility located at the Idaho National Lab (INL) is designed to test suitability of different core materials in 2500°C hydrogen flowing at 1500 liters per minute. The facility is intended to test low activity uranium containing materials but is also suited for testing cladding and coating materials. In this first installment the facility is described. Automated data acquisition, flow and temperature control, vessel compatibility with various core geometries and overall capabilities are discussed.

  16. R and D needs assessment for the Engineering Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    The Engineering Test Facility (ETF), planned to be the next major US magnetic fusion device, has its mission (1) to provide the capability for moving into the engineering phase of fusion development and (2) to provide a test-bed for reactor components in a fusion environment. The design, construction, and operation of the ETF requires an increasing emphasis on certain key research and development (R and D) programs in magnetic fusion in order to provide the necessary facility design base. This report identifies these needs and discusses the apparent inadequacies of the presently planned US program to meet them, commensurate with the ETF schedule.

  17. TESLA Test Facility. Status

    Energy Technology Data Exchange (ETDEWEB)

    Aune, B. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); TESLA Collaboration

    1996-01-01

    The TESLA Test Facility (TTF), under construction at DESY by an international collaboration, is an R and D test bed for the superconducting option for future linear e+/e-colliders. It consists of an infrastructure to process and test the cavities and of a 500 MeV linac. The infrastructure has been installed and is fully operational. It includes a complex of clean rooms, an ultra-clean water plant, a chemical etching installation and an ultra-high vacuum furnace. The linac will consist of four cryo-modules, each containing eight 1 meter long nine-cell cavities operated at 1.3 GHz. The base accelerating field is 15 MV/m. A first injector will deliver a low charge per bunch beam, with the full average current (8 mA in pulses of 800 {mu}s). A more powerful injector based on RF gun technology will ultimately deliver a beam with high charge and low emittance to allow measurements necessary to qualify the TESLA option and to demonstrate the possibility of operating a free electron laser based on the Self-Amplified-Spontaneous-Emission principle. Overview and status of the facility will be given. Plans for the future use of the linac are presented. (R.P.). 19 refs.

  18. CLIC Test Facility 3

    CERN Multimedia

    Kossyvakis, I; Faus-golfe, A; Nguyen, F

    2007-01-01

    The design of CLIC is based on a two-beam scheme, where short pulses of high power 30 GHz RF are extracted from a drive beam running parallel to the main beam. The 3rd generation CLIC Test Facility (CTF3) will demonstrate the generation of the drive beam with the appropriate time structure, the extraction of 30 GHz RF power from this beam, as well as acceleration of a probe beam with 30 GHz RF cavities. The project makes maximum use of existing equipment and infrastructure of the LPI complex, which became available after the closure of LEP.

  19. Magnet Design Considerations for Fusion Nuclear Science Facility

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kessel, C. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); El-Guebaly, L. [Univ. of Wisconsin, Madison, WI (United States) Fusion Technology Institute; Titus, P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2016-06-01

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility that provides a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between the International Thermonuclear Experimental Reactor (ITER) and the demonstration power plant (DEMO). Compared with ITER, the FNSF is smaller in size but generates much higher magnetic field, i.e., 30 times higher neutron fluence with three orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center with a plasma major radius of 4.8 m and a minor radius of 1.2 m and a peak field of 15.5 T on the toroidal field (TF) coils for the FNSF. Both low-temperature superconductors (LTS) and high-temperature superconductors (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high-performance ternary restacked-rod process Nb3Sn strands for TF magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high-aspect-ratio rectangular CICC design are evaluated for FNSF magnets, but low-activation-jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. The material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.

  20. Validation test of fusion grade superconductors

    Science.gov (United States)

    Prasad, U.; Pradhan, S.; Raj, P.; Varmora, P.; Panchal, A.; Bano, A.; Ghate, M.

    2017-02-01

    The need of high magnetic field for long pulse operation of Tokamaks and future fusion reactors is an essential requirement. The superconducting magnets operating at low temperature, high current and produce high magnetic field for long time can certainly full-fill this requirement. Three types of magnets namely central solenoid, toroidal filed and poloidal filed are used for initiation, confinement and equilibrium of plasma. The presently available basic conductors for these magnets are Nb3Sn, Nb3Al, NbTi and MgB2. The presently operating SST-1 Tokamak has superconducting magnets made up of NbTi as basic conductor. The design and prototype initiative for SST-2 magnets has also begun at IPR. The low temperature and high magnetic field characterization of in-house developed and commercial superconducting strands have also been initiated in the custom made standard test facility at IPR. Encouraging results on testing of Nb3Sn, NbTi and MgB2 have been found for suitability of these conductors for magnets and current leads. The basic test set up and test results of fusion grade conductors will be discussed in this presentation.

  1. Inertial Confinement Fusion and the National Ignition Facility (NIF)

    Energy Technology Data Exchange (ETDEWEB)

    Ross, P.

    2012-08-29

    Inertial confinement fusion (ICF) seeks to provide sustainable fusion energy by compressing frozen deuterium and tritium fuel to extremely high densities. The advantages of fusion vs. fission are discussed, including total energy per reaction and energy per nucleon. The Lawson Criterion, defining the requirements for ignition, is derived and explained. Different confinement methods and their implications are discussed. The feasibility of creating a power plant using ICF is analyzed using realistic and feasible numbers. The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is shown as a significant step forward toward making a fusion power plant based on ICF. NIF is the world’s largest laser, delivering 1.8 MJ of energy, with a peak power greater than 500 TW. NIF is actively striving toward the goal of fusion energy. Other uses for NIF are discussed.

  2. Basics of Fusion-Fissison Research Facility (FFRF) as a Fusion Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Leonid E. Zakharov

    2011-06-03

    FFRF, standing for the Fusion-Fission Research Facility represents an option for the next step project of ASIPP (Hefei, China) aiming to a first fusion-fission multifunctional device [1]. FFRF strongly relies on new, Lithium Wall Fusion plasma regimes, the development of which has already started in the US and China. With R/a=4/1m/m, Ipl=5 MA, Btor=4-6 T, PDT=50- 100 MW, Pfission=80-4000MW, 1 m thick blanket, FFRF has a unique fusion mission of a stationary fusion neutron source. Its pioneering mission of merging fusion and fission consists in accumulation of design, experimental, and operational data for future hybrid applications.

  3. Arc Heated Scramjet Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Arc Heated Scramjet Test Facility is an arc heated facility which simulates the true enthalpy of flight over the Mach number range of about 4.7 to 8 for free-jet...

  4. A3 Altitude Test Facility

    Science.gov (United States)

    Dulreix, Lionel J.

    2009-01-01

    This slide presentation shows drawings, diagrams and photographs of the A3 Altitude Test Facility. It includes a review of the A3 Facility requirements, and drawings of the various sections of the facility including Engine Deck and Superstructure, Test Cell and Thrust Takeout, Structure and Altitude Support Systems, Chemical Steam generators, and the subscale diffuser. There are also pictures of the construction site, and the facility under construction. A Diagram of the A3 Steam system schematic is also shown

  5. IFMIF (International Fusion Materials Irradiation Facility) key element technology phase interim report

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hiroo; Ida, Mizuho; Sugimoto, Masayoshi; Takeuchi, Hiroshi; Yutani, Toshiaki (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-03-01

    Activities of International Fusion Materials Irradiation Facility (IFMIF) have been performed under an IEA collaboration since 1995. IFMIF is an accelerator-based deuteron (D{sup +})-lithium (Li) neutron source designed to produce an intense neutron field (2 MW/m{sup 2}, 20 dpa/year for Fe) in a volume of 500 cm{sup 3} for testing candidate fusion materials. In 2000, a 3 year Key Element technology Phase (KEP) of IFMIF was started to reduce the key technology risk factors. This interim report summarizes the KEP activities until mid 2001 in the major project work-breakdown areas of accelerator, target, test facilities and design integration. (author)

  6. Thermal Radiation Source Test Facility,

    Science.gov (United States)

    1984-01-01

    KEY WORDS (Continu on revers side I eesr and identify by block nuMb.,) Thermal Radiation Source Thermal Test Facility 20 ABSTRACT (Continue on reverse...SECTION 1 INTRODUCTION 1-1 GENERAL Defense Nuclear Agency’s Field Command, located at Kirtland AFB in New Mexico, has recently upgraded its thermal test facility...is used to evaluate damage and survivability in a nuclear environment. The thermal test facility was first established in 1979 and used O large

  7. Fusion Core Imaging Experiment Based on the Shenguang Ⅱ Facility

    Institute of Scientific and Technical Information of China (English)

    郑志坚; 曹磊峰; 滕浩; 成金秀

    2002-01-01

    A laser fusion experiment was performed based on the Shenguang Ⅱ facility. An image of thermonuclear burning region was obtained with a Fresnel zone plate-coded imaging technique, where the laser-driven target was served as an α-particle source, and the coded image obtained in the experiment was reconstructed by a numerical way.

  8. Submarine Escape Set Test Facilities

    Directory of Open Access Journals (Sweden)

    G.S.N. Murthy

    2009-07-01

    Full Text Available Submarine Escape Set (SES is used by submariners to escape from a sunken submarine. This set caters for breathing needs of the submariner under water, until he reaches the surface. Evaluation of such life-saving equipment is of paramount importance. This paper describes the submarine escape set and various constructional features and schedules of operation of test facilities designed indegenously and which can evaluate the SES. The test facility is divided into two parts: the reducer test facility, and the breathing bag test facility. The equipment has been rigorously tested and accepted by Indian Navy. Two such test facilities have been developed, one of which is installed at INS Satavahana, Visakhapatnam, and are working satisfactorily.

  9. Electromagnetic Interface Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Electromagnetic Interface Testing facilitysupports such testing asEmissions, Field Strength, Mode Stirring, EMP Pulser, 4 Probe Monitoring/Leveling System, and...

  10. Thermal energy storage testing facilities

    Science.gov (United States)

    Schoenhals, R. J.; Anderson, S. H.; Stevens, L. W.; Laster, W. R.; Elter, M. R.

    Development of a prototype testing facility for performance evaluation of electrically heated thermal energy storage units is discussed. Laboratory apparatus and test procedures are being evaluated by means of measurements and analysis. Testing procedures were improved, and test results were acquired for commercially available units. A 30 kW central unit and several smaller individual room-size units were tested.

  11. NOVA laser facility for inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, W.W.

    1983-11-30

    The NOVA laser consists of ten beams, capable of concentrating 100 to 150 kJ of energy (in 3 ns) and 100 to 150 TW of power (in 100 ps) on experimental targets by 1985. NOVA will also be capable of frequency converting the fundamental laser wavelength (1.05 ..mu..m) to its second (0.525 ..mu..m) or third (0.35 ..mu..m) harmonic. This additional capability (80 to 120 kJ at 0.525 ..mu..m, 40 to 70 kJ at 0.35 ..mu..m) was approved by the US Department of Energy (DOE) in April 1982. These shorter wavelengths are much more favorable for ICF target physics. Current construction status of the NOVA facility, intended for completion in the autumn of 1984, will be presented.

  12. FIWATKA - a first-wall thermal fatigue test facility

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, G.; Eggert, E. (Kernforschungszentrum Karlsruhe, Inst. fuer Reaktorbauelemente (Germany))

    1991-12-01

    The first wall of a fusion device receives from the plasma thermal loads in addition to neutron radiation, chemical and mechanical loads. To qualify a first-wall design, it needs to be tested under these loads, which is done out of the device in separate tests. The test facility described in this paper is designed for testing medium sized first-wall specimens under cyclic thermal loads. A technical description of the facility and its design limits are given. (orig.).

  13. EMI Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports electromagnetic interference/radio frequency interference (EMI/RFI) testing of flight hardware. It is also used to support custom RF testing up to...

  14. Static Loads Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides the capability to perform large-scale structural loads testing on spacecraft and other structures. Results from these tests can be used to verify...

  15. The Integral Test Facility Karlstein

    Directory of Open Access Journals (Sweden)

    Stephan Leyer

    2012-01-01

    Full Text Available The Integral Test Facility Karlstein (INKA test facility was designed and erected to test the performance of the passive safety systems of KERENA, the new AREVA Boiling Water Reactor design. The experimental program included single component/system tests of the Emergency Condenser, the Containment Cooling Condenser and the Passive Core Flooding System. Integral system tests, including also the Passive Pressure Pulse Transmitter, will be performed to simulate transients and Loss of Coolant Accident scenarios at the test facility. The INKA test facility represents the KERENA Containment with a volume scaling of 1 : 24. Component heights and levels are in full scale. The reactor pressure vessel is simulated by the accumulator vessel of the large valve test facility of Karlstein—a vessel with a design pressure of 11 MPa and a storage capacity of 125 m3. The vessel is fed by a benson boiler with a maximum power supply of 22 MW. The INKA multi compartment pressure suppression Containment meets the requirements of modern and existing BWR designs. As a result of the large power supply at the facility, INKA is capable of simulating various accident scenarios, including a full train of passive systems, starting with the initiating event—for example pipe rupture.

  16. Mirror Fusion Test Facility-B (MFTF-B) axicell configuration: NbTi magnet system. Manufacturing/producibility final report. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Ritschel, A.J.; White, W.L.

    1985-05-01

    This Final MFTF-B Manufacturing/Producibility Report covers facilities, tooling plan, manufacturing sequence, schedule and performance, producibility, and lessons learned for the solenoid, axicell, and transition coils, as well as a deactivation plan, conclusions, references, and appendices.

  17. The role of the National Ignition Facility in the development of inertial fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Logan, B.G.

    1996-06-01

    The authors have completed a conceptual design for a 1.8-MJ, 500-TW, 0.35-{mu}m solid-state laser system for the National Ignition Facility (NIF), which will demonstrate inertial fusion ignition and gain for national security, energy, and science applications. The technical goal of the U.S. Inertial Confinement Fusion (ICF) Program as stated in the current ICF Five-Year Program Plan is {open_quotes}to produce pure fusion ignition and burn in the laboratory, with fusion yields of 200 to 1000 MJ, in support of three missions: (1) to play an essential role in accessing physics regimes of interest in nuclear weapon design...; (2) to provide an above-ground simulation capability for nuclear weapon effects...; and (3) to develop inertial fusion energy for civilian power production.{close_quotes} This article addresses the third goal-- the development of inertial fusion energy (IFE). This article reports a variety of potential contributions the NIF could make to the development of IFE, drawn from a nationally attended workshop held at the University of California at Berkeley in Feb, 1994. In addition to demonstrating fusion ignition as a fundamental basis for IFE, the findings of the workshop, are that the NIF could also provide important data for target physics and fabrication technology, for IFE target chamber phenomena such as materials responses to target emissions, and for fusion power technology-relevant tests.

  18. Low emissions combustor test facility

    Energy Technology Data Exchange (ETDEWEB)

    Maloney, D.J.; Hadley, M.S.; Norton, T.S.

    1993-12-01

    The Morgantown Energy Technology Center (METC) is in the process of constructing a low emissions combustor test and research (LECTR) facility designed to support the development of low emissions gas turbine combustion systems fired on natural gas and coal derived gaseous fuels containing fuel bound nitrogen. The LECTR facility is a major test station located within METC`s new combustion facility. The heart of this test station is a 60 centimeter (24 inch) diameter, refractory lined pressure vessel made up of a series of flanged modules. The facility design offers the flexibility to test a variety of low emissions combustion concepts at pressures up to 3 MPa (30 atm). Upon completion of fabrication and shake-down testing in January of 1994, the facility will be available for use by industrial and university partners through Cooperative Research and Development Agreements (CRADAs) or through other cooperative arrangements. This paper is intended to describe the LECTR facility and associated operating parameter ranges and to inform interested parties of the facility availability.

  19. Solenoid Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Current Configuration: Accommodate a device under test up to 2.8 m diameter, 0.7 m height and 15,000 lbs. weight. Up to 10 g/s, 4.5 K helium flow. Up to 250 A test...

  20. Elevated Fixed Platform Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Elevated Fixed Platform (EFP) is a helicopter recovery test facility located at Lakehurst, NJ. It consists of a 60 by 85 foot steel and concrete deck built atop...

  1. Reverberant Acoustic Test Facility (RATF)

    Data.gov (United States)

    Federal Laboratory Consortium — The very large Reverberant Acoustic Test Facility (RATF) at the NASA Glenn Research Center (GRC), Plum Brook Station, is currently under construction and is due to...

  2. Freshwater Treatment and Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Freshwater Treatment and Test Facility, located at SANGB, has direct year-round access to water from Lake St. Clair and has a State of Michigan approved National...

  3. Test Facility for Volumetric Absorber

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, M.; Dibowski, G.; Pfander, M.; Sack, J. P.; Schwarzbozl, P.; Ulmer, S.

    2006-07-01

    Long-time testing of volumetric absorber modules is an inevitable measure to gain the experience and reliability required for the commercialization of the open volumetric receiver technology. While solar tower test facilities are necessary for performance measurements of complete volumetric receivers, the long-term stability of individual components can be tested in less expensive test setups. For the qualification of the aging effects of operating cycles on single elements of new absorber materials and designs, a test facility was developed and constructed in the framework of the KOSMOSOL project. In order to provide the concentrated solar radiation level, the absorber test facility is integrated into a parabolic dish system at the Plataforma Solar de Almeria (PSA) in Spain. Several new designs of ceramic absorbers were developed and tested during the last months. (Author)

  4. Gamma Irradiation Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — DMEA has a unique total dose testing laboratory accredited by the American Association for Laboratory Accreditation (A2LA). The lab[HTML_REMOVED]s two J.L. Shepherd...

  5. Ice Adhesion Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Uses Evaluate and compare the relative performance of materials and surfcae coating based on their ability to aid in ice removal Test the effectiveness of de-icing...

  6. IFMIF-KEP. International fusion materials irradiation facility key element technology phase report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    The International Fusion Materials Irradiation Facility (IFMIF) is an accelerator-based D-Li neutron source designed to produce an intense neutron field that will simulate the neutron environment of a D-T fusion reactor. IFMIF will provide a neutron flux equivalent to 2 MW/m{sup 2}, 20 dpa/y in Fe, in a volume of 500 cm{sup 3} and will be used in the development and qualification of materials for fusion systems. The design activities of IFMIF are performed under an IEA collaboration which began in 1995. In 2000, a three-year Key Element Technology Phase (KEP) of IFMIF was undertaken to reduce the key technology risk factors. This KEP report describes the results of the three-year KEP activities in the major project areas of accelerator, target, test facilities and design integration. (author)

  7. Thermal energy storage testing facility

    Science.gov (United States)

    Schoenhals, R. J.; Lin, C. P.; Kuehlert, H. F.; Anderson, S. H.

    1981-03-01

    Development of a prototype testing facility for performance evaluation of electrically heated thermal energy storage units is described. Laboratory apparatus and test procedures were evaluated by means of measurements and analysis. A 30kW central unit and several smaller individual room-size units were tested.

  8. Ignition and Inertial Confinement Fusion at The National Ignition Facility

    Science.gov (United States)

    Moses, Edward I.

    2016-10-01

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and for studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF is now conducting experiments to commission the laser drive, the hohlraum and the capsule and to develop the infrastructure needed to begin the first ignition experiments in FY 2010. Demonstration of ignition and thermonuclear bum in the laboratory is a major NIF goal. NIF will achieve this by concentrating the energy from the 192 beams into a mm3-sized target and igniting a deuterium-tritium mix, liberating more energy than is required to initiate the fusion reaction. NIP's ignition program is a national effort managed via the National Ignition Campaign (NIC). The NIC has two major goals: execution of DT ignition experiments starting in FY20l0 with the goal of demonstrating ignition and a reliable, repeatable ignition platform by the conclusion of the NIC at the end of FY2012. The NIC will also develop the infrastructure and the processes required to operate NIF as a national user facility. The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on laser fusion as a viable energy option. A laser fusion-based energy concept that builds on NIF, known as LIFE (Laser Inertial Fusion Energy), is currently under development. LIFE is inherently safe and can provide a global carbon-free energy generation solution in the 21st century. This paper describes recent progress on NIF, NIC, and the LIFE concept.

  9. Thermal energy storage test facility

    Science.gov (United States)

    Ternes, M. P.

    1980-01-01

    The thermal behavior of prototype thermal energy storage units (TES) in both heating and cooling modes is determined. Improved and advanced storage systems are developed and performance standards are proposed. The design and construction of a thermal cycling facility for determining the thermal behavior of full scale TES units is described. The facility has the capability for testing with both liquid and air heat transport, at variable heat input/extraction rates, over a temperature range of 0 to 280 F.

  10. (abstract) Cryogenic Telescope Test Facility

    Science.gov (United States)

    Luchik, T. S.; Chave, R. G.; Nash, A. E.

    1995-01-01

    An optical test Dewar is being constructed with the unique capability to test mirrors of diameter less than or equal to 1 m, f less than or equal to 6, at temperatures from 300 to 4.2 K with a ZYGO Mark IV interferometer. The design and performance of this facility will be presented.

  11. Revisiting the Design of a Fusion Development Facility

    Science.gov (United States)

    Chan, V. S.; Stambaugh, R. D.; Garofalo, A. M.; Smith, J. P.; Wong, C. P. C.

    2009-11-01

    A Fusion Development Facility (FDF) is proposed to make possible a DEMO of the ARIES-AT type as the next step after ITER. The mission of the FDF should be to carry forward advanced tokamak physics and enable development of fusion nuclear science and technology. We have added more realism to the initial FDF concept [1] including inner and outer gaps from the plasma to the first wall; an improved estimate of the inboard/outboard blanket/shield thickness to protect the magnets/insulators; control coil positions; and realistic divertor geometry. Optimizing the mix of heating and current drive power has high leverage on the operating power. We have also revisited the assumed impurity fraction and the density profile peakedness. 8pt [1] R.D. Stambaugh, et al., Bull. Am. Phys. Soc. 53, 259 (2008).

  12. Concept of Staged Approach for International Fusion Materials Irradiation Facility

    CERN Document Server

    Sugimoto, M; Takeuchi, H

    2000-01-01

    The intense neutron source for development of fusion materials planned by international collaboration makes a new step to clarify the technical issues for realizing the 40 MeV, 250 mA deuteron beam facility. The baseline concept employs two identical 125 mA linac modules whose beams are combined at the flowing lithium target. Recent work for reducing the cost loading concerns the staged deployment of the full irradiation capability in three steps. The Japanese activity about the design and development study about IFMIF accelerator in this year is presented and the schedule of next several years is overviewed.

  13. Fusion Nuclear Science Facility (FNSF) motivation and required capabilities

    Science.gov (United States)

    Peng, Y. K. M.; Park, J. M.; Canik, J. M.; Diem, S. J.; Sontag, A. C.; Lumsdaine, A.; Murakami, M.; Katoh, Y.; Burgess, T. W.; Korsah, K.; Patton, B. D.; Wagner, J. C.; Yoder, G. L.; Cole, M. J.; Fogarty, P. J.; Sawan, M.

    2011-10-01

    A compact (R0 ~ 1.2-1.3m), low aspect ratio, low-Q (test, discover, and understand new nuclear-nonnuclear synergistic interactions involving plasma material interactions, neutron material interactions, tritium fuel breeding and transport, and power extraction, and innovate and develop solutions for DEMO components. Progress will be reported on the fusion nuclear-nonnuclear coupling effects identified that motivate research on such an FNSF, and on the required capabilities in fusion plasma, device operation, and fusion nuclear science and engineering to fulfill its mission. Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC05-00OR22725.

  14. Integral test of JENDL fusion file

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Integral test of JENDL Fusion File (J-FF) is performed through analyses of available benchmark experiments. As a result, good agreement between the calculated results with J-FF and the measured data is observed as a whole. Thus, J-FF is qualified to be used for nuclear design of fusion reactors. Owing to the high quality evaluation of J-FF, cross section data in J-FF for many nuclides are recommended to be assigned as data in FENDL/E-2.0 in the IAEA Consultants` Meeting held at Karlsruhe, Germany, 24-28 June, 1996. (author)

  15. Aircraft Test & Evaluation Facility (Hush House)

    Data.gov (United States)

    Federal Laboratory Consortium — The Aircraft Test and Evaluation Facility (ATEF), or Hush House, is a noise-abated ground test sub-facility. The facility's controlled environment provides 24-hour...

  16. Mirror Fusion Test Facility-B (MFTF-B) axicell configuration: NbTi magnet system. Design and analysis summary. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Heathman, J.H.; Wohlwend, J.W.

    1985-05-01

    This report summarizes the designs and analyses produced by General Dynamics Convair for the four Axicell magnets (A1 and A20, east and west), the four Transition magnets (T1 and T2, east and west), and the twelve Solenoid magnets (S1 through S6, east and west). Over four million drawings and specifications, in addition to detailed stress analysis, thermal analysis, electrical, instrumentation, and verification test reports were produced as part of the MFTF-B design effort. Significant aspects of the designs, as well as key analysis results, are summarized in this report. In addition, drawing trees and lists off detailed analysis and test reports included in this report define the locations of the detailed design and analysis data.

  17. Model year 2010 Ford Fusion Level-1 testing report.

    Energy Technology Data Exchange (ETDEWEB)

    Rask, E.; Bocci, D.; Duoba, M.; Lohse-Busch, H.; Energy Systems

    2010-11-23

    As a part of the US Department of Energy's Advanced Vehicle Testing Activity (AVTA), a model year 2010 Ford Fusion was procured by eTec (Phoenix, AZ) and sent to ANL's Advanced Powertrain Research Facility for the purposes of vehicle-level testing in support of the Advanced Vehicle Testing Activity. Data was acquired during testing using non-intrusive sensors, vehicle network information, and facilities equipment (emissions and dynamometer). Standard drive cycles, performance cycles, steady-state cycles, and A/C usage cycles were conducted. Much of this data is openly available for download in ANL's Downloadable Dynamometer Database. The major results are shown in this report. Given the benchmark nature of this assessment, the majority of the testing was done over standard regulatory cycles and sought to obtain a general overview of how the vehicle performs. These cycles include the US FTP cycle (Urban) and Highway Fuel Economy Test cycle as well as the US06, a more aggressive supplemental regulatory cycle. Data collection for this testing was kept at a fairly high level and includes emissions and fuel measurements from an exhaust emissions bench, high-voltage and accessory current/voltage from a DC power analyzer, and CAN bus data such as engine speed, engine load, and electric machine operation. The following sections will seek to explain some of the basic operating characteristics of the MY2010 Fusion and provide insight into unique features of its operation and design.

  18. First downscattered neutron images from Inertial Confinement Fusion experiments at the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Guler Nevzat

    2013-11-01

    Full Text Available Inertial Confinement Fusion experiments at the National Ignition Facility (NIF are designed to understand and test the basic principles of self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT filled cryogenic plastic (CH capsules. The experimental campaign is ongoing to tune the implosions and characterize the burning plasma conditions. Nuclear diagnostics play an important role in measuring the characteristics of these burning plasmas, providing feedback to improve the implosion dynamics. The Neutron Imaging (NI diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by collecting images at two different energy bands for primary (13–15 MeV and downscattered (10–12 MeV neutrons. From these distributions, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. The first downscattered neutron images from imploding ICF capsules are shown in this paper.

  19. Conceptual capital-cost estimate and facility design of the Mirror-Fusion Technology Demonstration Facility

    Energy Technology Data Exchange (ETDEWEB)

    1982-09-01

    This report contains contributions by Bechtel Group, Inc. to Lawrence Livermore National Laboratory (LLNL) for the final report on the conceptual design of the Mirror Fusion Technology Demonstration Facility (TDF). Included in this report are the following contributions: (1) conceptual capital cost estimate, (2) structural design, and (3) plot plan and plant arrangement drawings. The conceptual capital cost estimate is prepared in a format suitable for inclusion as a section in the TDF final report. The structural design and drawings are prepared as partial inputs to the TDF final report section on facilities design, which is being prepared by the FEDC.

  20. Millimeter-wave Instrumentation Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Millimeter-wave Instrumentation Test Facility conducts basic research in propagation phenomena, remote sensing, and target signatures. The facility has a breadth...

  1. Thermal energy storage test facility

    Science.gov (United States)

    Ternes, M. P.

    1981-03-01

    Two loops making up the facility, using either air or liquid as the thermal transport fluid, are described. These loops will be capable of cycling residential-size thermal energy storage units through conditions simulating solar or off-peak electricity applications to evaluate the unit's performance. Construction of the liquid cycling loop was completed, and testing of thermal stratification techniques for hot and cold water is reported.

  2. The GALATEA Test-facility

    Science.gov (United States)

    Abt, I.; Doenmez, B.; Garbini, L.; Irlbeck, S.; Palermo, M.; Schulz, O.

    GALATEA is a test-facility designed to study the properties of Germanium detectors in detail. It is a powerful high precision tool to investigate bulk and surface effects in germanium detectors. A vacuum tank houses an infrared screened volume with a cooled detector inside. A system of three stages allowa a complete scan of the detector. At the moment, a 19-fold segmented Germanium detector is under investigation. The main feature of GALATEA is that there is no material between source and detector. This allows the usage of alpha and beta sources as well as of a laser beam to study surface effects. The experimental setup is described.

  3. Test program element II blanket and shield thermal-hydraulic and thermomechanical testing, experimental facility survey

    Energy Technology Data Exchange (ETDEWEB)

    Ware, A.G.; Longhurst, G.R.

    1981-12-01

    This report presents results of a survey conducted by EG and G Idaho to determine facilities available to conduct thermal-hydraulic and thermomechanical testing for the Department of Energy Office of Fusion Energy First Wall/Blanket/Shield Engineering Test Program. In response to EG and G queries, twelve organizations (in addition to EG and G and General Atomic) expressed interest in providing experimental facilities. A variety of methods of supplying heat is available.

  4. IFMIF - International Fusion Materials Irradiation Facility Conceptual Design Activity/Interim Report

    Energy Technology Data Exchange (ETDEWEB)

    Rennich, M.J.

    1995-12-01

    Environmental acceptability, safety, and economic viability win ultimately be the keys to the widespread introduction of fusion power. This will entail the development of radiation- resistant and low- activation materials. These low-activation materials must also survive exposure to damage from neutrons having an energy spectrum peaked near 14 MeV with annual radiation doses in the range of 20 displacements per atom (dpa). Testing of candidate materials, therefore, requires a high-flux source of high energy neutrons. The problem is that there is currently no high-flux source of neutrons in the energy range above a few MeV. The goal, is therefore, to provide an irradiation facility for use by fusion material scientists in the search for low-activation and damage-resistant materials. An accellerator-based neutron source has been established through a number of international studies and workshops` as an essential step for materials development and testing. The mission of the International Fusion Materials Irradiation Facility (IFMIF) is to provide an accelerator-based, deuterium-lithium (D-Li) neutron source to produce high energy neutrons at sufficient intensity and irradiation volume to test samples of candidate materials up to about a full lifetime of anticipated use in fusion energy reactors. would also provide calibration and validation of data from fission reactor and other accelerator-based irradiation tests. It would generate material- specific activation and radiological properties data, and support the analysis of materials for use in safety, maintenance, recycling, decommissioning, and waste disposal systems.

  5. Facility for testing ice drills

    Science.gov (United States)

    Nielson, Dennis L.; Delahunty, Chris; Goodge, John W.; Severinghaus, Jeffery P.

    2017-05-01

    The Rapid Access Ice Drill (RAID) is designed for subsurface scientific investigations in Antarctica. Its objectives are to drill rapidly through ice, to core samples of the transition zone and bedrock, and to leave behind a borehole observatory. These objectives required the engineering and fabrication of an entirely new drilling system that included a modified mining-style coring rig, a unique fluid circulation system, a rod skid, a power unit, and a workshop with areas for the storage of supplies and consumables. An important milestone in fabrication of the RAID was the construction of a North American Test (NAT) facility where we were able to test drilling and fluid processing functions in an environment that is as close as possible to that expected in Antarctica. Our criteria for site selection was that the area should be cold during the winter months, be located in an area of low heat flow, and be at relatively high elevation. We selected a site for the facility near Bear Lake, Utah, USA. The general design of the NAT well (NAT-1) started with a 27.3 cm (10.75 in.) outer casing cemented in a 152 m deep hole. Within that casing, we hung a 14 cm (5.5 in.) casing string, and, within that casing, a column of ice was formed. The annulus between the 14 and 27.3 cm casings provided the path for circulation of a refrigerant. After in-depth study, we chose to use liquid CO2 to cool the hole. In order to minimize the likelihood of the casing splitting due to the volume increase associated with freezing water, the hole was first cooled and then ice was formed in increments from the bottom upward. First, ice cubes were placed in the inner liner and then water was added. Using this method, a column of ice was incrementally prepared for drilling tests. The drilling tests successfully demonstrated the functioning of the RAID system. Reproducing such a facility for testing of other ice drilling systems could be advantageous to other research programs in the future.

  6. GERDA test facilities in Munich

    Energy Technology Data Exchange (ETDEWEB)

    Jelen, M.; Abt, I.; Caldwell, A.; Liu Jing; Kroeninger, K.; Lenz, D.; Liu Xiang; Majorovits, B.; Schubert, J. [Max-Planck-Inst. fuer Physik, Muenchen (Germany)

    2007-07-01

    The GERDA (Germanium Detector Array) experiment is designed to search for neutrinoless double-beta decay of {sup 76}Ge. Germanium detectors enriched in {sup 76}Ge will be submerged in pure liquid argon. The cryogenic liquid is used as cooling liquid for the detectors and as shielding against gamma radiation. Several test facilities are currently under construction at the MPI Munich. Prototype Germanium detectors are tested in conditions close to the experimental setup of GERDA. Detector parameters are determined in a specialized vacuum teststand as well as directly in liquid argon. A new vacuum teststand named Galatea is under construction. It will be used to expose germanium detectors to {alpha}- and {beta}-particles and study their response to surface events. This yields information about dead layers and the response to surface contaminations. (orig.)

  7. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, M.

    1984-10-01

    The following chapters are included in this study: (1) fusion nuclear issues, (2) survey of experimental needs, (3) requirements of the experiments, (4) non-fusion facilities, (5) fusion facilities for nuclear experiments, and (6) fusion research and development scenarios. (MOW)

  8. Survey of solar thermal test facilities

    Energy Technology Data Exchange (ETDEWEB)

    Masterson, K.

    1979-08-01

    The facilities that are presently available for testing solar thermal energy collection and conversion systems are briefly described. Facilities that are known to meet ASHRAE standard 93-77 for testing flat-plate collectors are listed. The DOE programs and test needs for distributed concentrating collectors are identified. Existing and planned facilities that meet these needs are described and continued support for most of them is recommended. The needs and facilities that are suitable for testing components of central receiver systems, several of which are located overseas, are identified. The central contact point for obtaining additional details and test procedures for these facilities is the Solar Thermal Test Facilities Users' Association in Albuquerque, N.M. The appendices contain data sheets and tables which give additional details on the technical capabilities of each facility. Also included is the 1975 Aerospace Corporation report on test facilities that is frequently referenced in the present work.

  9. PTF, a new facility for pulse field testing of large scale superconducting cables and joints

    NARCIS (Netherlands)

    Smith, Bradford A.; Hale, J. Richard; Zhukovsky, Alex; Michael, Philip C.; Minervini, Joseph V.; Olmstead, Michael M.; Dekow, Gary L.; Rosati, James; Camille, Richard J.; Gung, Chen-yu; Gwinn, David; Silva, Frank; Fairfax, Stephen A.; Shen, Stewart; Knoopers, H.G.; Wessel, S.; Krooshoop, H.J.G.; Shevchenko, O.A.; Godeke, A.; Kate, ten H.H.J.

    1997-01-01

    A magnetic Pulse Test Facility (PTF), in which samples of CICC electrical joints from each ITER home team will be tested, has been fabricated at the MIT Plasma Fusion Center under an ITER task agreement. Construction of this facility has recently been completed, and an initial test phase on the firs

  10. PTF; a new facility for pulse field testing of large scale superconducting

    NARCIS (Netherlands)

    Smith, Bradford A.; Hale, J. Richard; Zhukovsky, Alex; Michael, Philip C.; Minervini, Joseph V.; Olmstead, Michael M.; Dekow, Gary L.; Rosati, James; Camille, Richard J.; Gung, Chen-yu; Gwinn, David; Silva, Frank; Fairfax, Stephen A.; Shen, Stewart; Knoopers, H.G.; Wessel, Wilhelm A.J.; Krooshoop, Hendrikus J.G.; Chevtchenko, O.A.; Godeke, A.; ten Kate, Herman H.J.

    1997-01-01

    A magnetic Pulse Test Facility (PTF), in which samples of CICC electrical joints from each ITER home team will be tested, has been fabricated at the MIT Plasma Fusion Center under an ITER task agreement. Construction of this facility has recently been completed, and an initial test phase on the

  11. How to improve the irradiation conditions for the International Fusion Materials Irradiation Facility

    CERN Document Server

    Daum, E

    2000-01-01

    The accelerator-based intense D-Li neutron source International Fusion Materials Irradiation Facility (IFMIF) provides very suitable irradiation conditions for fusion materials development with the attractive option of accelerated irradiations. Investigations show that a neutron moderator made of tungsten and placed in the IFMIF test cell can further improve the irradiation conditions. The moderator softens the IFMIF neutron spectrum by enhancing the fraction of low energy neutrons. For displacement damage, the ratio of point defects to cascades is more DEMO relevant and for tritium production in Li-based breeding ceramic materials it leads to a preferred production via the sup 6 Li(n,t) sup 4 He channel as it occurs in a DEMO breeding blanket.

  12. Electromagnetic Interference (EMI) and TEMPEST Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Electromagnetic Interference (EMI), Electromagnetic Compatibility (EMC) and TEMPEST testing are conducted at EPG's Blacktail Canyon Test Facility in one of its two...

  13. The New LOTIS Test Facility

    Science.gov (United States)

    Bell, R. M.; Cuzner, G.; Eugeni, C.; Hutchison, S. B.; Merrick, A. J.; Robins, G. C.; Bailey, S. H.; Ceurden, B.; Hagen, J.; Kenagy, K.; Martin, H. M.; Tuell, M.; Ward, M.; West, S. C.

    2008-01-01

    The Large Optical Test and Integration Site (LOTIS) at the Lockheed Martin Space Systems Company in Sunnyvale, CA is designed for the verification and testing of optical systems. The facility consists of an 88 foot temperature stabilized vacuum chamber that also functions as a class 10k vertical flow cleanroom. Many problems were encountered in the design and construction phases. The industry capability to build large chambers is very weak. Through many delays and extra engineering efforts, the final product is very good. With 11 Thermal Conditioning Units and precision RTD s, temperature is uniform and stable within 1oF, providing an ideal environment for precision optical testing. Within this chamber and atop an advanced micro-g vibration-isolation bench is the 6.5 meter diameter LOTIS Collimator and Scene Generator, LOTIS alignment and support equipment. The optical payloads are also placed on the vibration bench in the chamber for testing. This optical system is designed to operate in both air and vacuum, providing test imagery in an adaptable suite of visible/near infrared (VNIR) and midwave infrared (MWIR) point sources, and combined bandwidth visible-through-MWIR point sources, for testing of large aperture optical payloads. The heart of the system is the LOTIS Collimator, a 6.5m f/15 telescope, which projects scenes with wavefront errors <85 nm rms out to a 0.75 mrad field of view (FOV). Using field lenses, performance can be extended to a maximum field of view of 3.2 mrad. The LOTIS Collimator incorporates an extensive integrated wavefront sensing and control system to verify the performance of the system.

  14. Solar Thermal Propulsion Test Facility

    Science.gov (United States)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. This photograph shows a fully assembled solar thermal engine placed inside the vacuum chamber at the test facility prior to testing. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move theNation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  15. Is there a relationship between prism fusion range and vergence facility?

    OpenAIRE

    Melville, A.C.; Firth, A Y

    2002-01-01

    Aim: To investigate the relationship between prism\\ud fusion range (PFR) and vergence facility (VF)\\ud measurements in subjects with normal binocular\\ud vision.\\ud \\ud \\ud Methods: Twenty-eight subjects (mean age 19 ± 1\\ud years) with normal binocular single vision (BSV)\\ud underwent measurement of the PFR and VF in a\\ud varied order, at a test distance of 1/3 m. The PFR\\ud measurements recorded were the base out (BO) range\\ud to blur and break point and base in (BI) range to\\ud break point. ...

  16. Successful start for new CLIC test facility

    CERN Multimedia

    2004-01-01

    A new test facility is being built to study key feasibility issues for a possible future linear collider called CLIC. Commissioning of the first part of the facility began in June 2003 and nominal beam parameters have been achieved already.

  17. CHARM Facility Test Area Radiation Field Description

    CERN Document Server

    Thornton, Adam

    2016-01-01

    Specification document summarising the radiation field of the CHARM facility test area. This will act as a guide to any potential users of the facility as to what they can expect in terms of radiation, given in the form of radiation spectra information and fluence for each test position, along with general radiation maps for the test area and Montrac test location.

  18. Installation and first operation of the International Fusion Materials Irradiation Facility injector at the Rokkasho site

    Energy Technology Data Exchange (ETDEWEB)

    Gobin, Raphael, E-mail: rjgobin@cea.fr; Bogard, Daniel; Bolzon, Benoit; Bourdelle, Gilles; Chauvin, Nicolas; Chel, Stéphane; Girardot, Patrick; Gomes, Adelino; Guiho, Patrice; Harrault, Francis; Loiseau, Denis; Lussignol, Yves; Misiara, Nicolas; Roger, Arnaud; Senée, Franck; Valette, Matthieu [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/Saclay, DSM/IRFU, 91191 Gif/Yvette (France); Cara, Philippe; Duglué, Daniel; Gex, Dominique [Fusion for Energy, BFD Department, Garching (Germany); Okumura, Yoshikazu [IFMIF/EVEDA Project Team, Obuchi-Omotedate, 2-166, Rokkasho, Aomori (Japan); and others

    2016-02-15

    The International Fusion Materials Irradiation Facility (IFMIF) linear IFMIF prototype accelerator injector dedicated to high intensity deuteron beam production has been designed, built, and tested at CEA/Saclay between 2008 and 2012. After the completion of the acceptance tests at Saclay, the injector has been fully sent to Japan. The re-assembly of the injector has been performed between March and May 2014. Then after the check-out phase, the production of the first proton beam occurred in November 2014. Hydrogen and deuteron beam commissioning is now in progress after having proceeded with the final tests on the entire injector equipment including high power diagnostics. This article reports the different phases of the injector installation pointing out the safety and security needs, as well as the first beam production results in Japan and chopper tests. Detailed operation and commissioning results (with H{sup +} and D{sup +} 100 keV beams) are reported in a second article.

  19. Current Status and Performance Tests of Korea Heat Load Test Facility KoHLT-EB

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sukkwon; Jin, Hyunggon; Shin, Kyuin; Choi, Boguen; Lee, Eohwak; Yoon, Jaesung; Lee, Dongwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Duckhoi; Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    A commissioning test has been scheduled to establish the installation and preliminary performance experiments of the copper hypervapotron mockups. And a qualification test will be performed to evaluate the CuCrZr duct liner in the ITER neutral beam injection facility and the ITER first wall small-scale mockups of the semi-prototype, at up to 1.5 and 5 MW/m{sup 2} high heat flux. Also, this system will be used to test other PFCs for ITER and materials for tokamak reactors. Korean high heat flux test facility(KoHLT-EB; Korea Heat Load Test facility - Electron Beam) by using an electron beam system has been constructed in KAERI to perform the qualification test for ITER blanket FW semi-prototype mockups, hypervapotron cooling devices in fusion devices, and other ITER plasma facing components. The commissioning and performance tests with the supplier of e-gun system have been performed on November 2012. The high heat flux test for hypervapotron cooling device and calorimetry were performed to measure the surface heat flux, the temperature profile and cooling performance. Korean high heat flux test facility for the plasma facing components of nuclear fusion machines will be constructed to evaluate the performance of each component. This facility for the plasma facing materials will be equipped with an electron beam system with a 60 kV acceleration gun.

  20. Controlled Archaeological Test Site (CATS) Facility

    Data.gov (United States)

    Federal Laboratory Consortium — CATS facility is at the Construction Engineering Research Laboratory (CERL), Champaign, IL. This 1-acre test site includes a variety of subsurface features carefully...

  1. Background field coils for the High Field Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Zbasnik, J.P.; Cornish, D.N.; Scanlan, R.M.; Jewell, A.M.; Leber, R.L.; Rosdahl, A.R.; Chaplin, M.R.

    1980-09-22

    The High Field Test Facility (HFTF), presently under construction at LLNL, is a set of superconducting coils that will be used to test 1-m-o.d. coils of prototype conductors for fusion magnets in fields up to 12 T. The facility consists of two concentric sets of coils; the outer set is a stack of Nb-Ti solenoids, and the inner set is a pair of solenoids made of cryogenically-stabilized, multifilamentary Nb/sub 3/Sn superconductor, developed for use in mirror-fusion magnets. The HFTF system is designed to be parted along the midplane to allow high-field conductors, under development for Tokamak fusion machines, to be inserted and tested. The background field coils were wound pancake-fashion, with cold-welded joints at both the inner and outer diameters. Turn-to-turn insulation was fabricated at LLNL from epoxy-fiberglass strip. The coils were assembled and tested in our 2-m-diam cryostat to verify their operation.

  2. National Solar Thermal Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, C.P.

    1989-12-31

    This is a brief report about a Sandia National Laboratory facility which can provide high-thermal flux for simulation of nuclear thermal flash, measurements of the effects of aerodynamic heating on radar transmission, etc

  3. Material testing facilities and programs for plasma-facing component testing

    Science.gov (United States)

    Linsmeier, Ch.; Unterberg, B.; Coenen, J. W.; Doerner, R. P.; Greuner, H.; Kreter, A.; Linke, J.; Maier, H.

    2017-09-01

    Component development for operation in a large-scale fusion device requires thorough testing and qualification for the intended operational conditions. In particular environments are necessary which are comparable to the real operation conditions, allowing at the same time for in situ/in vacuo diagnostics and flexible operation, even beyond design limits during the testing. Various electron and neutral particle devices provide the capabilities for high heat load tests, suited for material samples and components from lab-scale dimensions up to full-size parts, containing toxic materials like beryllium, and being activated by neutron irradiation. To simulate the conditions specific to a fusion plasma both at the first wall and in the divertor of fusion devices, linear plasma devices allow for a test of erosion and hydrogen isotope recycling behavior under well-defined and controlled conditions. Finally, the complex conditions in a fusion device (including the effects caused by magnetic fields) are exploited for component and material tests by exposing test mock-ups or material samples to a fusion plasma by manipulator systems. They allow for easy exchange of test pieces in a tokamak or stellarator device, without opening the vessel. Such a chain of test devices and qualification procedures is required for the development of plasma-facing components which then can be successfully operated in future fusion power devices. The various available as well as newly planned devices and test stands, together with their specific capabilities, are presented in this manuscript. Results from experimental programs on test facilities illustrate their significance for the qualification of plasma-facing materials and components. An extended set of references provides access to the current status of material and component testing capabilities in the international fusion programs.

  4. Comparative performance of image fusion methodologies in eddy current testing

    Directory of Open Access Journals (Sweden)

    S. Thirunavukkarasu

    2012-12-01

    Full Text Available Image fusion methodologies have been studied for improving the detectability of eddy current Nondestructive Testing (NDT. Pixel level image fusion has been performed on C-scan eddy current images of a sub-surface defect at two different frequencies. Multi-resolution analysis based Laplacian pyramid and wavelet fusion methodologies, statistical inference based Bayesian fusion and Principal Component Analysis (PCA based fusion methodologies have been studied towards improving the detectability of defects. The performance of the fusion methodologies has been compared using image metrics such as SNR and entropy. Bayesian based fusion methodology has shown better performance as compared to other methodologies with 33.75 dB improvement in the SNR and an improvement of 3.22 in the entropy.

  5. Magnetized Inertial Fusion (MIF) Research at the Shiva Star Facility

    Science.gov (United States)

    Degnan, James; Grabowski, C.; Domonkos, M.; Ruden, E. L.; Amdahl, D. J.; White, W. M.; Frese, M. H.; Frese, S. D.; Wurden, G. A.; Weber, T. E.

    2015-11-01

    The AFRL Shiva Star capacitor bank (1300 μF, up to 120 kV) used typically at 4 to 5 MJ stored energy, 10 to 15 MA current, 10 μs current rise time, has been used to drive metal shell (solid liner) implosions for compression of axial magnetic fields to multi-megagauss levels, suitable for compressing magnetized plasmas to MIF conditions. MIF approaches use magnetic field to reduce thermal conduction relative to inertial confinement fusion (ICF). MIF substantially reduces required implosion speed and convergence. Using profiled thickness liner enables large electrode apertures and field-reversed configuration (FRC) injection. Using a longer capture region, FRC trapped flux lifetime was made comparable to implosion time and an integrated compression test was conducted. The FRC was radially compressed a factor of ten, to 100x density >1018 cm-3 (a world FRC record), but temperatures were only 300-400 eV, compared to intended several keV. Compression to megabar pressures was inferred by the observed liner rebound, but the heating rate during the first half of the compression was less than the normal FRC decay rate. Principal diagnostics were soft x-ray imaging, soft x-ray diodes, and neutron measurements. This work has been supported by DOE-OFES.

  6. Automation Technology Improvements on SEE Test Facility

    Institute of Scientific and Technical Information of China (English)

    FAN; Hui; LIU; Jian-cheng; SHEN; Dong-jun

    2012-01-01

    <正>When user do heavy ion SEE tests in the irradiation facility, the ion beam should be uniform and the beam flux should be fit for their tests. User also wants the sample position easy to be located. These requirements are very important for our facility. This year, our team has paid great effort in improving beam parameter monitoring and auto control ability of facility. The main jobs are as follows.

  7. Antenna Test Facility (ATF): User Test Planning Guide

    Science.gov (United States)

    Lin, Greg

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the ATF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  8. Vibration and Acoustic Test Facility (VATF): User Test Planning Guide

    Science.gov (United States)

    Fantasia, Peter M.

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the VATF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  9. Sophisticated test facility to detect land mines

    NARCIS (Netherlands)

    Jong, W. de; Lensen, H.A.; Janssen, Y.H.L.

    1999-01-01

    In the framework of the Dutch government humanitarian demining project 'HOM-2000', an outdoor test facility has been realized to test, improve and develop detection equipment for land mines. This sophisticated facility, allows us to access and compare the performance of the individual and of a combi

  10. Wake Shield Facility Modal Survey Test in Vibration Acoustic Test Facility

    Science.gov (United States)

    1994-01-01

    Astronaut Ronald M. Sega stands beside the University of Houston's Wake Shield Facility before it undergoes a Modal Survey Test in the Vibration and Acoustic Test Facility Building 49, prior to being flown on space shuttle mission STS-60.

  11. Engineering design of the Nova Laser Facility for inertial-confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, W W; Godwin, R O; Hurley, C A; Wallerstein, E. P.; Whitham, K.; Murray, J. E.; Bliss, E. S.; Ozarski, R. G.; Summers, M. A.; Rienecker, F.; Gritton, D. G.; Holloway, F. W.; Suski, G. J.; Severyn, J. R.

    1982-01-25

    The design of the Nova Laser Facility for inertial confinement fusion experiments at Lawrence Livermore National Laboratory is presented from an engineering perspective. Emphasis is placed upon design-to-performance requirements as they impact the various subsystems that comprise this complex experimental facility.

  12. Energy Systems Test Area (ESTA). Power Systems Test Facilities

    Science.gov (United States)

    Situ, Cindy H.

    2010-01-01

    This viewgraph presentation provides a detailed description of the Johnson Space Center's Power Systems Facility located in the Energy Systems Test Area (ESTA). Facilities and the resources used to support power and battery systems testing are also shown. The contents include: 1) Power Testing; 2) Power Test Equipment Capabilities Summary; 3) Source/Load; 4) Battery Facilities; 5) Battery Test Equipment Capabilities Summary; 6) Battery Testing; 7) Performance Test Equipment; 8) Battery Test Environments; 9) Battery Abuse Chambers; 10) Battery Abuse Capabilities; and 11) Battery Test Area Resources.

  13. Photovoltaic Systems Test Facilities: Existing capabilities compilation

    Science.gov (United States)

    Volkmer, K.

    1982-01-01

    A general description of photovoltaic systems test facilities (PV-STFs) operated under the U.S. Department of Energy's photovoltaics program is given. Descriptions of a number of privately operated facilities having test capabilities appropriate to photovoltaic hardware development are given. A summary of specific, representative test capabilities at the system and subsystem level is presented for each listed facility. The range of system and subsystem test capabilities available to serve the needs of both the photovoltaics program and the private sector photovoltaics industry is given.

  14. Naval Aerodynamics Test Facility (NATF)

    Data.gov (United States)

    Federal Laboratory Consortium — The NATF specializes in Aerodynamics testing of scaled and fullsized Naval models, research into flow physics found on US Navy planes and ships, aerosol testing and...

  15. CryoModule Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — CMTFis able to test complete SRF cryomodules at cryogenic operating temperatures and with RF Power. CMTF will house the PIP-II Injector Experiment allowing test of...

  16. A Fusion Nuclear Science Facility for a fast-track path to DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Garofalo, A.M., E-mail: garofalo@fusion.gat.com [General Atomics, San Diego, CA (United States); Abdou, M.A. [University of California, Los Angeles, Los Angeles, CA (United States); Canik, J.M. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Chan, V.S.; Hyatt, A.W. [General Atomics, San Diego, CA (United States); Hill, D.N. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Morley, N.B. [University of California, Los Angeles, Los Angeles, CA (United States); Navratil, G.A. [Columbia University, New York, NY (United States); Sawan, M.E. [University of Wisconsin Madison, Madison, WI (United States); Taylor, T.S.; Wong, C.P.C.; Wu, W. [General Atomics, San Diego, CA (United States); Ying, A. [University of California, Los Angeles, Los Angeles, CA (United States)

    2014-10-15

    Highlights: • A FNSF is needed to reduce the knowledge gaps to a fusion DEMO and accelerate progress toward fusion energy. • FNSF will test and qualify first-wall/blanket components and materials in a DEMO-relevant fusion environment. • The Advanced Tokamak approach enables reduced size and risks, and is on a direct path to an attractive target power plant. • Near term research focus on specific tasks can enable starting FNSF construction within the next ten years. - Abstract: An accelerated fusion energy development program, a “fast-track” approach, requires proceeding with a nuclear and materials testing program in parallel with research on burning plasmas, ITER. A Fusion Nuclear Science Facility (FNSF) would address many of the key issues that need to be addressed prior to DEMO, including breeding tritium and completing the fuel cycle, qualifying nuclear materials for high fluence, developing suitable materials for the plasma-boundary interface, and demonstrating power extraction. The Advanced Tokamak (AT) is a strong candidate for an FNSF as a consequence of its mature physics base, capability to address the key issues, and the direct relevance to an attractive target power plant. The standard aspect ratio provides space for a solenoid, assuring robust plasma current initiation, and for an inboard blanket, assuring robust tritium breeding ratio (TBR) >1 for FNSF tritium self-sufficiency and building of inventory needed to start up DEMO. An example design point gives a moderate sized Cu-coil device with R/a = 2.7 m/0.77 m, κ = 2.3, B{sub T} = 5.4 T, I{sub P} = 6.6 MA, β{sub N} = 2.75, P{sub fus} = 127 MW. The modest bootstrap fraction of ƒ{sub BS} = 0.55 provides an opportunity to develop steady state with sufficient current drive for adequate control. Proceeding with a FNSF in parallel with ITER provides a strong basis to begin construction of DEMO upon the achievement of Q ∼ 10 in ITER.

  17. Construction and commissioning test report of the CEDM test facility

    Energy Technology Data Exchange (ETDEWEB)

    Chung, C. H.; Kim, J. T.; Park, W. M.; Youn, Y. J.; Jun, H. G.; Choi, N. H.; Park, J. K.; Song, C. H.; Lee, S. H.; Park, J. K

    2001-02-01

    The test facility for performance verification of the control element drive mechanism (CEDM) of next generation power plant was installed at the site of KAERI. The CEDM was featured a mechanism consisting of complicated mechanical parts and electromagnetic control system. Thus, a new CEDM design should go through performance verification tests prior to it's application in a reactor. The test facility can simulate the reactor operating conditions such as temperature, pressure and water quality and is equipped with a test chamber to accomodate a CEDM as installed in the power plant. This test facility can be used for the following tests; endurance test, coil cooling test, power measurement and reactivity rod drop test. The commissioning tests for the test facility were performed up to the CEDM test conditions of 320 C and 150 bar, and required water chemistry was obtained by operating the on-line water treatment system.

  18. Design Study of Beijing XFEL Test Facility

    CERN Document Server

    Dai, J P

    2005-01-01

    As R&D of X-ray Free Electron Laser facility in China, the construction of Beijing XFEL Test Facility (BTF) has been proposed. And the start to end simulation of BTF was made with codes PARMELA, ELEGANT and TDA. This paper presents the motivation, the scheme and the simulation results of BTF.

  19. Time-integrated measurements of fusion-produced protons emitted from PF-facilities

    Science.gov (United States)

    Malinowska, A.; Szydlowski, A.; Zebrowski, J.; Sadowski, M. J.; Scholz, M.; Schmidt, H.; Karpinski, P.; Jaskola, M.; Korman, A.

    2006-01-01

    The paper reports on measurements of fusion reaction protons, which were emitted from high-current Plasma Focus discharges. The experiments were carried out on two Plasma Focus facilities (PF-360 and PF-1000) and the obtained results are compared in the paper. The paper presents some detailed maps of the fusion proton fluxes, which were recorded with the pinhole cameras. These maps show distributions and shapes of fast proton sources within the pinch plasma column.

  20. Ballast Water Treatment Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides functionality for the full-scale testing and controlled simulation of ship ballasting operations for assessment of aquatic nuisance species (ANS)...

  1. Battery Post-Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Post-test diagnostics of aged batteries can provide additional information regarding the cause of performance degradation, which, previously, could be only inferred...

  2. 400 Area/Fast Flux Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The 400 Area at Hanford is home primarily to the Fast Flux Test Facility (FFTF), a DOE-owned, formerly operating, 400-megawatt (thermal) liquid-metal (sodium)-cooled...

  3. IFMIF : International Fusion Materials Irradiation Facility Conceptual Design Activity: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Martone, M. [ENEA, Centro Ricerche Frascati, Rome (Italy)

    1997-01-01

    This report documents the results of the Conceptual Design Activity (CDA) on the International Fusion Materials Irradiation Facility (IFMIF), conducted during 1995 and 1996. The activity is under the auspices of the International Energy Agency (IEA) Implementing Agreement for a Programme of Research and Development on Fusion Materials. An IEA Fusion Materials Executive Subcommittee was charged with overseeing the IFMIF-CDA work. Participants in the CDA are the European Union, Japan, and the United States, with the Russian Federation as an associate member.

  4. Brookhaven superconducting cable test facility

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, E.B.; Gibbs, R.J.

    1976-08-17

    Construction has started on an outdoor testing station for flexible ac superconducting power transmission cables. It is intended to serve as an intermediate step between laboratory-scale experiments and qualification testing of prototype-scale cables. The permanent equipment includes a 500 W supercritical helium refrigerator using a screw compressor and multistage turbine expanders. Helium storage for 250,000 cu ft of helium at 250 psi is provided. Initially, the cables will be tested in a horizontal cryostat some 250 ft long. High-voltage 60 Hz tests will be performed with the cable in a series resonant mode with a maximum line to ground capability of 240 kV, this is adequate for a 138 kV system design. Impulse testing up to about 650 kV is planned. The cable conductor will be energized by current transformers, initially at about 4 kA and later up to fault levels of 40 kA. The refrigerator is now at the site and testing on a dummy load will commence in the Fall of 1976. The cryostat will be installed in 1977 followed about a year later by the first cable tests.

  5. Cryogenic magnet test facility for fair

    CERN Document Server

    Schroeder, C; Marzouki, F; Stafiniac, A; Floch, E; Schnizer, P; Moritz, G; Xiang, Y; Kauschke, M; Meier, J; Hess, G ,

    2009-01-01

    For testing fast-pulsed superconducting model and pre-series magnets for FAIR (Facility of Antiproton and Ion Research), a cryogenic magnet test facility was built up at GSI. The facility is able to cool either cold masses in a universal cryostat or complete magnets in their own cryo-module. It is possible to operate bath cooled, 2 phase cooled, and supercritical cooled magnets with a maximum current up to 11 kA and a ramp rate up to 14 kA/s. Measurements of magnet heat loss, with calorimetric and a V-I methods, are available, as are quench and magnetic field measurements. Design and functionality of the test facility will be described. Results of measurements with a supercritical cooled magnet and with a 2 phase cooled SIS100 model magnet will be shown.

  6. Evaluation of CFETR as a Fusion Nuclear Science Facility using multiple system codes

    Science.gov (United States)

    Chan, V. S.; Costley, A. E.; Wan, B. N.; Garofalo, A. M.; Leuer, J. A.

    2015-02-01

    This paper presents the results of a multi-system codes benchmarking study of the recently published China Fusion Engineering Test Reactor (CFETR) pre-conceptual design (Wan et al 2014 IEEE Trans. Plasma Sci. 42 495). Two system codes, General Atomics System Code (GASC) and Tokamak Energy System Code (TESC), using different methodologies to arrive at CFETR performance parameters under the same CFETR constraints show that the correlation between the physics performance and the fusion performance is consistent, and the computed parameters are in good agreement. Optimization of the first wall surface for tritium breeding and the minimization of the machine size are highly compatible. Variations of the plasma currents and profiles lead to changes in the required normalized physics performance, however, they do not significantly affect the optimized size of the machine. GASC and TESC have also been used to explore a lower aspect ratio, larger volume plasma taking advantage of the engineering flexibility in the CFETR design. Assuming the ITER steady-state scenario physics, the larger plasma together with a moderately higher BT and Ip can result in a high gain Qfus ˜ 12, Pfus ˜ 1 GW machine approaching DEMO-like performance. It is concluded that the CFETR baseline mode can meet the minimum goal of the Fusion Nuclear Science Facility (FNSF) mission and advanced physics will enable it to address comprehensively the outstanding critical technology gaps on the path to a demonstration reactor (DEMO). Before proceeding with CFETR construction steady-state operation has to be demonstrated, further development is needed to solve the divertor heat load issue, and blankets have to be designed with tritium breeding ratio (TBR) >1 as a target.

  7. Massachusetts Large Blade Test Facility Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rahul Yarala; Rob Priore

    2011-09-02

    Project Objective: The Massachusetts Clean Energy Center (CEC) will design, construct, and ultimately have responsibility for the operation of the Large Wind Turbine Blade Test Facility, which is an advanced blade testing facility capable of testing wind turbine blades up to at least 90 meters in length on three test stands. Background: Wind turbine blade testing is required to meet international design standards, and is a critical factor in maintaining high levels of reliability and mitigating the technical and financial risk of deploying massproduced wind turbine models. Testing is also needed to identify specific blade design issues that may contribute to reduced wind turbine reliability and performance. Testing is also required to optimize aerodynamics, structural performance, encourage new technologies and materials development making wind even more competitive. The objective of this project is to accelerate the design and construction of a large wind blade testing facility capable of testing blades with minimum queue times at a reasonable cost. This testing facility will encourage and provide the opportunity for the U.S wind industry to conduct more rigorous testing of blades to improve wind turbine reliability.

  8. A combined cycle engine test facility

    Energy Technology Data Exchange (ETDEWEB)

    Engers, R.; Cresci, D.; Tsai, C. [General Applied Science Laboratories Inc., Ronkonkoma, NY (United States)

    1995-09-01

    Rocket-Based Combined-Cycle (RBCC) engines intended for missiles and/or space launch applications incorporate features of rocket propulsion systems operating in concert with airbreathing engine cycles. Performance evaluation of these types of engines, which are intended to operate from static sea level take-off to supersonic cruise or accerlerate to orbit, requires ground test capabilities which integrate rocket component testing with airbreathing engine testing. A combined cycle engine test facility has been constructed in the General Applied Science Laboratories, Inc. (GASL) Aeropropulsion Test Laboratory to meet this requirement. The facility was designed to support the development of an innovative combined cycle engine concept which features a rocket based ramjet combustor. The test requirements included the ability to conduct tests in which the propulsive force was generated by rocket only, the ramjet only and simultaneous rocket and ramjet power (combined cycle) to evaluate combustor operation over the entire engine cycle. The test facility provides simulation over the flight Mach number range of 0 to 8 and at various trajectories. The capabilities of the combined cycle engine test facility are presented.

  9. A negative ion source test facility

    Science.gov (United States)

    Melanson, S.; Dehnel, M.; Potkins, D.; Theroux, J.; Hollinger, C.; Martin, J.; Philpott, C.; Stewart, T.; Jackle, P.; Williams, P.; Brown, S.; Jones, T.; Coad, B.; Withington, S.

    2016-02-01

    Progress is being made in the development of an Ion Source Test Facility (ISTF) by D-Pace Inc. in collaboration with Buckley Systems Ltd. in Auckland, NZ. The first phase of the ISTF is to be commissioned in October 2015 with the second phase being commissioned in March 2016. The facility will primarily be used for the development and the commercialization of ion sources. It will also be used to characterize and further develop various D-Pace Inc. beam diagnostic devices.

  10. A negative ion source test facility

    Energy Technology Data Exchange (ETDEWEB)

    Melanson, S.; Dehnel, M., E-mail: morgan@d-pace.com; Potkins, D.; Theroux, J.; Hollinger, C.; Martin, J.; Stewart, T.; Jackle, P.; Withington, S. [D-Pace, Inc., P.O. Box 201, Nelson, British Columbia V1L 5P9 (Canada); Philpott, C.; Williams, P.; Brown, S.; Jones, T.; Coad, B. [Buckley Systems Ltd., 6 Bowden Road, Mount Wellington, Auckland 1060 (New Zealand)

    2016-02-15

    Progress is being made in the development of an Ion Source Test Facility (ISTF) by D-Pace Inc. in collaboration with Buckley Systems Ltd. in Auckland, NZ. The first phase of the ISTF is to be commissioned in October 2015 with the second phase being commissioned in March 2016. The facility will primarily be used for the development and the commercialization of ion sources. It will also be used to characterize and further develop various D-Pace Inc. beam diagnostic devices.

  11. Development of Thermal Shock Test Facility

    Science.gov (United States)

    Lehmann, B.; Varewijck, G.; Dufour, J.-F.

    2012-07-01

    Thermal shock testing is performed to qualify materials and processes for use in space in accordance to ECSS- Q-70-04A. The Fast Thermal Vacuum facility (FTV) has been specially designed to allow testing from -100oC up to 550oC. This large temperature test range is achieved by having two separate temperature controlled compartments. The specimen is placed on a trolley, which moves from one compartment to the other. The challenge in development of the facility was the relatively large size of the compartments (600 mm x 600 mm x 400 mm) and the required vacuum level of p~1E-05 mbar. The FTV was successfully commissioned in September 2010. The presentation summarises the results of the commissioning, facility performance, test data and lessons learned.

  12. Recessed light fixture test facility

    Energy Technology Data Exchange (ETDEWEB)

    Yarbrough, D.W.; Yoo, K.T.; Koneru, P.B.

    1979-07-01

    Test results are presented for the operation of recessed light fixtures in contact with loose fill cellulose insulation. Nine recessed fixtures were operated at different power levels in attic sections in which loose fill cellulose was purposely misapplied. Cellulose insulation was introduced into the ceiling section by pouring to depths of up to nine inches. Maximum steady state temperatures were recorded for 485 combinations of the variables insulation depth, fixture power, and attic temperature. Results are included for operation of fixtures in the absence of cellulose and with barriers to provide needed clearance between the cellulose insulation and the powered fixtures. Observed temperatures on the electrical power cable attached to a fixture and ceiling joists adjacent to powered fixtures are reported. Examination of the data shows excess operating temperatures are encountered when powered fixtures are covered by three inches of loose fill insulation. Dangerous temperatures resulting in fires in some cases were recorded when covered fixtures were operated at above rated power levels. A preliminary analysis indicates that ceiling side heat transfer accounts for 85 to 90% of the heat dissipation from powered fixtures covered by three inches of loose fill cellulosic insulation.

  13. Complex workplace radiation fields at European high-energy accelerators and thermonuclear fusion facilities

    CERN Document Server

    Bilski, P; D'Errico, F; Esposito, A; Fehrenbacher, G; Fernàndez, F; Fuchs, A; Golnik, N; Lacoste, V; Leuschner, A; Sandri, S; Silari, M; Spurny, F; Wiegel, B; Wright, P

    2006-01-01

    This report outlines the research needs and research activities within Europe to develop new and improved methods and techniques for the characterization of complex radiation fields at workplaces around high-energy accelerators and the next generation of thermonuclear fusion facilities under the auspices of the COordinated Network for RAdiation Dosimetry (CONRAD) project funded by the European Commission.

  14. Overview of recent AWE fusion-related studies, experiments and facilities

    Directory of Open Access Journals (Sweden)

    Roberts P.D.

    2013-11-01

    Full Text Available The presentation will describe the current status of modelling short and long pulse laser irradiation and its application to inertial fusion designs. Recent results will be described which give confidence in the modelling in specific regimes. An update will be given of the AWE ORION laser facility and the availability planned for academic access.

  15. IFMIF (International Fusion Materials Irradiation Facility) key element technology phase task description

    Energy Technology Data Exchange (ETDEWEB)

    Ida, M.; Nakamura, H.; Sugimoto, M.; Yutani, T.; Takeuchi, H. [eds.] [Japan Atomic Energy Research Inst., Tokai Research Establishment, Fusion Neutron Laboratory, Tokai, Ibaraki (Japan)

    2000-08-01

    In 2000, a 3 year Key Element technology Phase (KEP) of the International Fusion Materials Irradiation Facility (IFMIF) has been initiated to reduce the key technology risk factors needed to achieve continuous wave (CW) beam with the desired current and energy and to reach the corresponding power handling capabilities in the liquid lithium target system. In the KEP, the IFMIF team (EU, Japan, Russian Federation, US) will perform required tasks. The contents of the tasks are described in the task description sheet. As the KEP tasks, the IFMIF team have proposed 27 tasks for Test Facilities, 12 tasks for Target, 26 tasks for Accelerator and 18 tasks for Design Integration. The task description by RF is not yet available. The task items and task descriptions may be added or revised with the progress of KEP activities. These task description sheets have been compiled in this report. After 3 years KEP, the results of the KEP tasks will be reviewed. Following the KEP, 3 years Engineering Validation Phase (EVP) will continue for IFMIF construction. (author)

  16. Fusion-Fission Research Facility (FFRF) as a Practical Step Toward Hybrids

    Energy Technology Data Exchange (ETDEWEB)

    L. Zakharov, J. Li and Y. Wu

    2010-11-18

    The project of ASIPP (with PPPL participation), called FFRF, (R/a=4/1 m/m, Ipl=5 MA, Btor=4-6 T, PDT=50-100 MW, Pfission=80-4000 MW, 1 m thick blanket) is outlined. FFRF stands for the Fusion-Fission Research Facility with a unique fusion mission and a pioneering mission of merging fusion and fission for accumulation of design, experimental, and operational data for future hybrid applications. The design of FFRF will use as much as possible the EAST and ITER design experience. On the other hand, FFRF strongly relies on new, Lithium Wall Fusion plasma regimes, the development of which has already started in the US and China.

  17. Characterizing experiments of the PPOOLEX test facility

    Energy Technology Data Exchange (ETDEWEB)

    Puustinen, M.; Laine, J. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2008-07-15

    This report summarizes the results of the characterizing test series in 2007 with the scaled down PPOOLEX facility designed and constructed at Lappeenranta University of Technology. Air and steam/air mixture was blown into the dry well compartment and from there through a DN200 blowdown pipe to the condensation pool (wet well). Altogether eight air and four steam/air mixture experiments, each consisting of several blows (tests), were carried out. The main purpose of the experiment series was to study the general behavior of the facility and the performance of basic instrumentation. Proper operation of automation, control and safety systems was also tested. The test facility is a closed stainless steel vessel divided into two compartments, dry well and wet well. The facility is equipped with high frequency measurements for capturing different aspects of the investigated phenomena. The general behavior of the PPOOLEX facility differs significantly from that of the previous POOLEX facility because of the closed two-compartment structure of the test vessel. Heat-up by several tens of degrees due to compression in both compartments was the most obvious evidence of this. Temperatures also stratified. Condensation oscillations and chugging phenomenon were encountered in those tests where the fraction of non-condensables had time to decrease significantly. A radical change from smooth condensation behavior to oscillating one occurred quite abruptly when the air fraction of the blowdown pipe flow dropped close to zero. The experiments again demonstrated the strong diminishing effect that noncondensable gases have on dynamic unsteady loadings experienced by submerged pool structures. BWR containment like behavior related to the beginning of a postulated steam line break accident was observed in the PPOOLEX test facility during the steam/air mixture experiments. The most important task of the research project, to produce experimental data for code simulation purposes, can be

  18. Early Career. Harnessing nanotechnology for fusion plasma-material interface research in an in-situ particle-surface interaction facility

    Energy Technology Data Exchange (ETDEWEB)

    Allain, Jean Paul [Univ. of Illinois, Champaign, IL (United States)

    2014-08-08

    This project consisted of fundamental and applied research of advanced in-situ particle-beam interactions with surfaces/interfaces to discover novel materials able to tolerate intense conditions at the plasma-material interface (PMI) in future fusion burning plasma devices. The project established a novel facility that is capable of not only characterizing new fusion nanomaterials but, more importantly probing and manipulating materials at the nanoscale while performing subsequent single-effect in-situ testing of their performance under simulated environments in fusion PMI.

  19. The National Ignition Facility Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies

    CERN Document Server

    Moses, E I

    2001-01-01

    The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control roo...

  20. Kauai Test Facility hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Swihart, A

    1995-05-01

    The Department of Energy Order 55003A requires facility-specific hazards assessment be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Kauai Test Facility, Barking Sands, Kauai, Hawaii. The Kauai Test Facility`s chemical and radiological inventories were screened according to potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance to the Early Severe Health Effects threshold is 4.2 kilometers. The highest emergency classification is a General Emergency at the {open_quotes}Main Complex{close_quotes} and a Site Area Emergency at the Kokole Point Launch Site. The Emergency Planning Zone for the {open_quotes}Main Complex{close_quotes} is 5 kilometers. The Emergency Planning Zone for the Kokole Point Launch Site is the Pacific Missile Range Facility`s site boundary.

  1. a Low Temperature Regenerator Test Facility

    Science.gov (United States)

    Kashani, A.; Helvensteijn, B. P. M.; Feller, J. R.; Salerno, L. J.; Kittel, P.

    2008-03-01

    Testing regenerators presents an interesting challenge. When incorporated into a cryocooler, a regenerator is intimately coupled to the other components: expander, heat exchangers, and compressor. It is difficult to isolate the performance of any single component. We have developed a low temperature test facility that will allow us to separate the performance of the regenerator from the rest of the cryocooler. The purpose of the facility is the characterization of test regenerators using novel materials and/or geometries in temperature ranges down to 15 K. It consists of the following elements: The test column has two regenerators stacked in series. The coldest stage regenerator is the device under test. The warmer stage regenerator contains a stack of stainless steel screen, a well-characterized material. A commercial cryocooler is used to fix the temperatures at both ends of the test regenerator, cooling both heat exchangers flanging the regenerator stack. Heaters allow varying the temperatures and allow measurement of the remaining cooling power, and thus, regenerator effectiveness. A linear compressor delivers an oscillating pressure to the regenerator assembly. An inertance tube and reservoir provide the proper phase difference between mass flow and pressure. This phase shift, along with the imposed temperature differential, simulates the conditions of the test regenerator when used in an actual pulse tube cryocooler. This paper presents development details of the regenerator test facility, and test results on a second stage, stainless steel screen test regenerator.

  2. Five years operating experience at the Fast Flux Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Baumhardt, R. J.; Bechtold, R. A.

    1987-04-01

    The Fast Flux Test Facility (FFTF) is a 400 Mw(t), loop-type, sodium-cooled, fast neutron reactor. It is operated by the Westinghouse Hanford Company for the United States Department of Energy at Richland, Washington. The FFTF is a multipurpose test reactor used to irradiate fuels and materials for programs such as Liquid Metal Reactor (LMR) research, fusion research, space power systems, isotope production and international research. FFTF is also used for testing concepts to be used in Advanced Reactors which will be designed to maximize passive safety features and not require complex shutdown systems to assure safe shutdown and heat removal. The FFTF also provides experience in the operation and maintenance of a reactor having prototypic components and systems typical of large LMR (LMFBR) power plants. The 5 year operational performance of the FFTF reactor is discussed in this report. 6 refs., 10 figs., 2 tabs.

  3. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, M.

    1984-10-01

    The Nuclear Fusion Issues chapter contains a comprehensive list of engineering issues for fusion reactor nuclear components. The list explicitly defines the uncertainties associated with the engineering option of a fusion reactor and addresses the potential consequences resulting from each issue. The next chapter identifies the fusion nuclear technology testing needs up to the engineering demonstration stage. (MOW)

  4. FAST FLUX TEST FACILITY DRIVER FUEL MEETING

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1966-06-01

    The Pacific Northwest Laboratory has convened this meeting to enlist the best talents of our laboratories and industry in soliciting factual, technical information pertinent to the Pacific Northwest's Laboratory's evaluation of the potential fuel systems for the Fast Flux Test Facility. The particular factors emphasized for these fuel systems are those associated with safety, ability to meet testing objectives, and economics. The proceedings includes twenty-three presentations, along with a transcript of the discussion following each, as well as a summary discussion.

  5. Qualification Program of Korea Heat Load Test Facility KoHLT-EB for ITER Plasma Facing Components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suk-Kwon; Park, Seoung Dae; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae-Sung; Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The qualification tests were performed to evaluate the high heat flux test facility for the PFCs and fusion reactor materials. For the thermal fatigue test, two types of tungsten mock-ups were fabricated. The cooling performance was tested under the similar operation condition of ITER and fusion reactor. After the completion of the preliminary mockup test and facility qualification, the high heat flux test facility will assess the performance test for the various plasma facing components in fusion reactor materials. Preliminary thermo-hydraulic and performance tests were conducted using various test mockups for the plasma facing components in the high heat flux test facilities of the world. The previous heat flux tests were performed by using the graphite heater facilities in Korea. Several facilities which equipped with an electron beam as the uniform heat source were fabricated for the tokamak PFCs in the EU, Russia and US. These heat flux test facilities are utilized for a cyclic heat flux test of the PFCs. Each facility working for their own purpose in EU FZJ, US SNL, and Russia Efremov institute. For this purpose, KoHLTEB was constructed and this facility will be used for ITER TBM performance test with the small-scale and large-scale mockups, and prototype. Also, it has been used for other fusion application for developing plasma facing component (PFC) for ITER FW, tungsten divertor, and heat transfer experiment and so on under the domestic R and D program. Korea heat load test facility by using electron beam KoHLT-EB was constructed for the high heat flux test to verify the plasma facing components, including ITER TBM first wall.

  6. Conceptual design study of a scyllac fusion test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Thomassen, K.I. (comp.)

    1975-07-01

    The report describes a conceptual design study of a fusion test reactor based on the Scyllac toroidal theta-pinch approach to fusion. It is not the first attempt to describe the physics and technology required for demonstrating scientific feasibility of the approach, but it is the most complete design in the sense that the physics necessary to achieve the device goals is extrapolated from experimentally tested MHD theories of toroidal systems,and it uses technological systems whose engineering performance has been carefully calculated to ensure that they meet the machine requirements.

  7. C Reactor overbore test facility review

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, P.A.; Nilson, R.

    1964-04-24

    In 1961, large-size, smooth-bore, Zircaloy process tubes were installed in C-Reactor graphite channels that had been enlarged to 2.275 inches. These tubes were installed to provide a test and demonstration facility for the concept of overboring as a means of securing significant improvement in the production capability of the reactors, After two years of facility operation, it is now appropriate to consider the extent to which original objectives have been achieved, to re-examine the original objectives, and to consider the best future use of this unique facility. This report presents the general results of such a review and re-examination in more detail.

  8. The NIF: An international high energy density science and inertial fusion user facility

    Directory of Open Access Journals (Sweden)

    Moses E.I.

    2013-11-01

    Full Text Available The National Ignition Facility (NIF, a 1.8-MJ/500-TW Nd:Glass laser facility designed to study inertial confinement fusion (ICF and high-energy-density science (HEDS, is operational at Lawrence Livermore National Laboratory (LLNL. A primary goal of NIF is to create the conditions necessary to demonstrate laboratory-scale thermonuclear ignition and burn. NIF experiments in support of indirect-drive ignition began late in FY2009 as part of the National Ignition Campaign (NIC, an international effort to achieve fusion ignition in the laboratory. To date, all of the capabilities to conduct implosion experiments are in place with the goal of demonstrating ignition and developing a predictable fusion experimental platform in 2012. The results from experiments completed are encouraging for the near-term achievement of ignition. Capsule implosion experiments at energies up to 1.6 MJ have demonstrated laser energetics, radiation temperatures, and symmetry control that scale to ignition conditions. Of particular importance is the demonstration of peak hohlraum temperatures near 300 eV with overall backscatter less than 15%. Important national security and basic science experiments have also been conducted on NIF. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of laser-driven Inertial Fusion Energy (IFE. This paper will describe the results achieved so far on the path toward ignition, the beginning of fundamental science experiments and the plans to transition NIF to an international user facility providing access to HEDS and fusion energy researchers around the world.

  9. Construction of thermal ratchet structural test facility

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeong Yeon; Kim, J. B.; Yoo, B

    2000-12-01

    The objective of this study is to setup the thermal ratchet test facility to validate the NONSTA code that is under development for the inelastic structure analysis and to characterize the thermal ratchet behavior through structural thermal ratchet test. Thermal ratchet phenomenon, a progressive inelastic deformation can occur in the liquid metal reactor operating at high temperature above 500 deg C due to the moving temperature distribution along the axial direction as the hot free surface moves up and down due to the cyclic heat-up and cool-down of reactor operation. Thermal ratchet can cause a severe damage to the reactor structure. The structural ratchet test was performed and the test results were compared with those of the analysis using Chaboche constitutive model. The fabrication of the ratchet test facility was completed in 1/4 of 2000, the performance test was carried out in the second quarter of 2000, the noise reduction of thermocouples, measurements by laser displacement sensor with data acquisition system was carried out in the third quarter and the test results compared with those of the inelastic structure analysis in the forth quarter of 2000, which showed reasonable agreement with those of the tests.

  10. Safety Culture And Best Practices At Japan's Fusion Research Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Rule, K. [Princeton Plasma Physics Lab., Princeton, NJ (United States); King, M. [General Atomics, San Diego, CA (United States); Takase, Y. [Univ. of Tokyo (Japan); Oshima, Y. [Univ. of Tokyo (Japan); Nishimura, K. [National Institute for Fusion Science, Toki (Japan); Sukegawa, A. [Japan Atomic Energy Agency, Naka (Japan)

    2014-04-01

    The Safety Monitor Joint Working Group (JWG) is one of the magnetic fusion research collaborations between the US Department of Energy and the government of Japan. Visits by occupational safety personnel are made to participating institutions on a biennial basis. In the 2013 JWG visit of US representatives to Japan, the JWG members noted a number of good safety practices in the safety walkthroughs. These good practices and safety culture topics are discussed in this paper. The JWG hopes that these practices for worker safety can be adopted at other facilities. It is a well-known, but unquantified, safety principle that well run, safe facilities are more productive and efficient than other facilities (Rule, 2009). Worker safety, worker productivity, and high quality in facility operation all complement each other (Mottel, 1995).

  11. Safety Culture and Best Practices at Japan's Fusion Research Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Rule, Keith [PPPL

    2014-05-01

    The Safety Monitor Joint Working Group (JWG) is one of the magnetic fusion research collaborations between the US Department of Energy and the government of Japan. Visits by occupational safety personnel are made to participating institutions on a biennial basis. In the 2013 JWG visit of US representatives to Japan, the JWG members noted a number of good safety practices in the safety walkthroughs. These good practices and safety culture topics are discussed in this paper. The JWG hopes that these practices for worker safety can be adopted at other facilities. It is a well-known, but unquantified, safety principle that well run, safe facilities are more productive and efficient than other facilities (Rule, 2009). Worker safety, worker productivity, and high quality in facility operation all complement each other (Mottel, 1995).

  12. RFX-mod: A multi-configuration fusion facility for three-dimensional physics studies

    Energy Technology Data Exchange (ETDEWEB)

    Piovesan, P.; Bonfiglio, D.; Auriemma, F.; Bonomo, F.; Carraro, L.; Cavazzana, R.; De Masi, G.; Fassina, A.; Franz, P.; Gobbin, M.; Marrelli, L.; Martin, P.; Martines, E.; Momo, B.; Piron, L.; Valisa, M.; Veranda, M.; Vianello, N.; Zaniol, B.; Agostini, M. [Consorzio RFX, EURATOM-ENEA Association, Corso Stati Uniti 4, 35127 Padova (Italy); and others

    2013-05-15

    RFX-mod [Sonato et al., Fusion Eng. Des. 66, 161 (2003)] exploits its 192 active coils in both reversed-field pinch (RFP) and tokamak configurations with varying degrees of 3D shaping, providing also a test bed for validating stellarator codes and 3D nonlinear magnetohydrodynamic codes. This makes RFX-mod a unique and flexible facility for comparative studies on 3D shaping and control. The paper discusses how 3D fields allow access to RFP and tokamak advanced regimes. 3D fields are used to feedback control Single Helicity (SH) RFP equilibria with 1/7 helicity up to ∼2 MA. They also allow accessing SH regimes with higher density (Greenwald fraction up to 0.5), presently inaccessible in spontaneous SH regimes. Feedback on the 2/1 resistive-wall mode in RFX-mod tokamak plasmas allows for safe operation at q(a)<2, an almost unexplored promising regime. Forcing the 2/1 mode to saturate at finite but small level, a helical tokamak equilibrium with significant n = 1 modulation is produced and a new way to tailor sawteeth is found. The effects of different levels of 3D shaping on momentum transport in both RFP and tokamak helical states are discussed.

  13. Reduced cost design of liquid lithium target for international fusion material irradiation facility (IFMIF)

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hiroo; Ida, Mizuho; Sugimoto, Masayoshi; Takeuchi, Hiroshi [Department of Fussion Engineering Research, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Yutani, Toshiaki [Toshiba Corp., Tokyo (Japan)

    2001-01-01

    The International Fusion Materials Irradiation Facility (IFMIF) is being jointly planned to provide an accelerator-based D-Li neutron source to produce intense high energy neutrons (2 MW/m{sup 2}) up to 200 dpa and a sufficient irradiation volume (500 cm{sup 3}) for testing the candidate materials and components up to about a full lifetime of their anticipated use in ITER and DEMO. To realize such a condition, 40 MeV deuteron beam with a current of 250 mA is injected into high speed liquid lithium flow with a speed of 20 m/s. Following Conceptual Design Activity (1995-1998), a design study with focus on cost reduction without changing its original mission has been done in 1999. The following major changes to the CAD target design have been considered in the study and included in the new design: i) number of the Li target has been changed from 2 to 1, ii) spare of impurity traps of the Li loop was removed although the spare will be stored in a laboratory for quick exchange, iii) building volume was reduced via design changes in lithium loop length. This paper describes the reduced cost design of the lithium target system and recent status of Key Element Technology activities. (author)

  14. Materials testing facilities and programmes for fission and ion implantation damage

    Science.gov (United States)

    González de Vicente, S. M.; Boutard, J.-L.; Zinkle, S. J.; Tanigawa, H.

    2017-09-01

    Currently there is no fusion neutron dedicated source with a high enough flux to mimic irradiation conditions relevant to those to be experienced by the First Wall in a fusion reactor. Nevertheless, very valuable information can be obtained from existing irradiation sources, in particular Materials Test Reactors, Fast neutron reactors and Ion accelerators. Partial information is provided by these irradiation facilities that can be used to down select main materials candidates for DEMO fusion reactors and evaluate their performance under limited conditions. Modelling is an indispensable tool to interpret all the available information and build a test matrix of experiments to be carried out in a dedicated fusion neutron source. Available tools for testing materials exposed to ion or neutron irradiation, including their advantages and limitations when mimicking fusion conditions, are discussed in this paper. Next generation of fusion devices, such as DEMO, will need the input provided by a dedicated fusion neutron source to enable them to proceed in an efficient and safe manner to reach their full mission and performance.

  15. Sensor test facilities and capabilities at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, W.B.; Burke, L.J.; Gomez, B.J.; Livingston, L.; Nelson, D.S.; Smathers, D.C.

    1996-12-31

    Sandia National Laboratories has recently developed two major field test capabilities for unattended ground sensor systems at the Department of energy`s Nevada Test Site (NTS). The first capability utilizes the NTS large area, varied terrain, and intrasite communications systems for testing sensors for detecting and tracking vehicular traffic. Sensor and ground truth data can be collected at either of two secure control centers. This system also includes an automated ground truth capability that consists of differential Global Positioning Satellite (GPS) receivers on test vehicles and live TV coverage of critical road sections. Finally there is a high-speed, secure computer network link between the control centers and the Air Force`s Theater Air Command and Control Simulation Facility in Albuquerque NM. The second capability is Bunker 2-300. It is a facility for evaluating advanced sensor systems for monitoring activities in underground cut-and-cover facilities. The main part of the facility consists of an underground bunker with three large rooms for operating various types of equipment. This equipment includes simulated chemical production machinery and controlled seismic and acoustic signal sources. There has been a thorough geologic and electromagnetic characterization of the region around the bunker. Since the facility is in a remote location, it is well-isolated from seismic, acoustic, and electromagnetic interference.

  16. Simulation Facilities and Test Beds for Galileo

    Science.gov (United States)

    Schlarmann, Bernhard Kl.; Leonard, Arian

    2002-01-01

    Galileo is the European satellite navigation system, financed by the European Space Agency (ESA) and the European Commission (EC). The Galileo System, currently under definition phase, will offer seamless global coverage, providing state-of-the-art positioning and timing services. Galileo services will include a standard service targeted at mass market users, an augmented integrity service, providing integrity warnings when fault occur and Public Regulated Services (ensuring a continuity of service for the public users). Other services are under consideration (SAR and integrated communications). Galileo will be interoperable with GPS, and will be complemented by local elements that will enhance the services for specific local users. In the frame of the Galileo definition phase, several system design and simulation facilities and test beds have been defined and developed for the coming phases of the project, respectively they are currently under development. These are mainly the following tools: Galileo Mission Analysis Simulator to design the Space Segment, especially to support constellation design, deployment and replacement. Galileo Service Volume Simulator to analyse the global performance requirements based on a coverage analysis for different service levels and degrades modes. Galileo System Simulation Facility is a sophisticated end-to-end simulation tool to assess the navigation performances for a complete variety of users under different operating conditions and different modes. Galileo Signal Validation Facility to evaluate signal and message structures for Galileo. Galileo System Test Bed (Version 1) to assess and refine the Orbit Determination &Time Synchronisation and Integrity algorithms, through experiments relying on GPS space infrastructure. This paper presents an overview on the so called "G-Facilities" and describes the use of the different system design tools during the project life cycle in order to design the system with respect to

  17. Clemson University Wind Turbine Drivetrain Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Tuten, James Maner [Clemson Univ., SC (United States); Haque, Imtiaz [Clemson Univ., SC (United States); Rigas, Nikolaos [Clemson Univ., SC (United States)

    2016-03-30

    In November of 2009, Clemson University was awarded a competitive grant from the U.S. Department of Energy to design, build and operate a facility for full-scale, highly accelerated mechanical testing of next-generation wind turbine drivetrain technologies. The primary goal of the project was to design, construct, commission, and operate a state-of-the-art sustainable facility that permits full-scale highly accelerated testing of advanced drivetrain systems for large wind turbines. The secondary goal was to meet the objectives of the American Recovery and Reinvestment Act of 2009, especially in job creation, and provide a positive impact on economically distressed areas in the United States, and preservation and economic recovery in an expeditious manner. The project was executed according to a managed cooperative agreement with the Department of Energy and was an extraordinary success. The resultant new facility is located in North Charleston, SC, providing easy transportation access by rail, road or ship and operates on an open access model such that it is available to the U.S. Wind Industry for research, analysis, and evaluation activities. The 72 m by 97 m facility features two mechanical dynamometer test bays for evaluating the torque and blade dynamic forces experienced by the rotors of wind turbine drivetrains. The dynamometers are rated at 7.5 MW and 15 MW of low speed shaft power and are configured as independent test areas capable of simultaneous operation. All six degrees of freedom, three linear and three rotational, for blade and rotor dynamics are replicated through the combination of a drive motor, speed reduction gearbox and a controllable hydraulic load application unit (LAU). This new LAU setup readily supports accelerated lifetime mechanical testing and load analysis for the entire drivetrain system of the nacelle and easily simulates a wide variety of realistic operating scenarios in a controlled laboratory environment. The development of these

  18. Instrument Thermal Test Bed - A unique two phase test facility

    Science.gov (United States)

    Swanson, Theodore; Didion, Jeffrey

    1991-01-01

    The Instrument Thermal Test Bed (ITTB) is a modular, large-scale test facility which provides a medium for ground testing and flight qualification of spacecraft thermal control components and system configurations. The initial 'shade-down' operations are discussed herein. Operational parameters and performance characteristics were determined and quantified on a preliminary basis. The ITTB was successfully operated at evaporator power loads ranging from 600 W to 9600 W as well as in both capillary pumped and series hybrid pumped modes.

  19. Modular High Current Test Facility at LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Tully, L K; Goerz, D A; Speer, R D; Ferriera, T J

    2008-05-20

    This paper describes the 1 MA, 225 kJ test facility in operation at Lawrence Livermore National Laboratory (LLNL). The capacitor bank is constructed from three parallel 1.5 mF modules. The modules are capable of switching simultaneously or sequentially via solid dielectric puncture switches. The bank nominally operates up to 10 kV and reaches peak current with all three cabled modules in approximately 30 {micro}s. Parallel output plates from the bank allow for cable or busbar interfacing to the load. This versatile bank is currently in use for code validation experiments, railgun related activities, switch testing, and diagnostic development.

  20. Status of the irradiation test vehicle for testing fusion materials in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H.; Gomes, I.C.; Smith, D.L. [Argonne National Lab., IL (United States); Palmer, A.J.; Ingram, F.W. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Wiffen, F.W. [Dept. of Energy, Germantown, MD (United States). Office of Fusion Energy

    1998-09-01

    The design of the irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) has been completed. The main application for the ITV is irradiation testing of candidate fusion structural materials, including vanadium-base alloys, silicon carbide composites, and low-activation steels. Construction of the vehicle is underway at the Lockheed Martin Idaho Technology Company (LMITCO). Dummy test trains are being built for system checkout and fine-tuning. Reactor insertion of the ITV with the dummy test trains is scheduled for fall 1998. Barring unexpected difficulties, the ITV will be available for experiments in early 1999.

  1. The ESO Adaptive Optics Facility under Test

    Science.gov (United States)

    Arsenault, Robin; Madec, Pierre-Yves; Paufique, Jerome; La Penna, Paolo; Stroebele, Stefan; Vernet, Elise; Pirard, Jean-François; Hackenberg, Wolfgang; Kuntschner, Harald; Kolb, Johann; Muller, Nicolas; Le Louarn, Miska; Amico, Paola; Hubin, Norbert; Lizon, Jean-Louis; Ridings, Rob; Abad, Jose; Fischer, Gert; Heinz, Volker; Kiekebusch, Mario; Argomedo, Javier; Conzelmann, Ralf; Tordo, Sebastien; Donaldson, Rob; Soenke, Christian; Duhoux, Philippe; Fedrigo, Enrico; Delabre, Bernard; Jost, Andrea; Duchateau, Michel; Downing, Mark; Moreno, Javier; Manescau, Antonio; Bonaccini Calia, Domenico; Quattri, Marco; Dupuy, Christophe; Guidolin, Ivan; Comin, Mauro; Guzman, Ronald; Buzzoni, Bernard; Quentin, Jutta; Lewis, Steffan; Jolley, Paul; Kraus, Max; Pfrommer, Thomas; Garcia-Rissmann, Aurea; Biasi, Roberto; Gallieni, Daniele; Stuik, Remko

    2013-12-01

    The Adaptive Optics Facility project has received most of its subsystems in Garching and the ESO Integration Hall has become the central operation location for the next phase of the project. The main test bench ASSIST and the 2nd Generation M2-Unit (hosting the Deformable Secondary Mirror) have been granted acceptance late 2012. The DSM will now undergo a series of tests on ASSIST to qualify its optical performance which launches the System Test Phase of the AOF. The tests will validate the AO modules operation with the DSM: first the GRAAL adaptive optics module for Hawk-I in natural guide star AO mode on-axis and then its Ground Layer AO mode. This will be followed by the GALACSI (for MUSE) Wide-Field-Mode (GLAO) and then the more challenging Narrow-Field-Mode (LTAO). We will report on the status of the subsystems at the time of the conference but also on the performance of the delivered ASSIST test bench, the DSM and the 20 Watt Sodium fiber Laser pre-production unit which has validated all specifications before final manufacturing of the serial units. We will also present some considerations and tools to ensure an efficient operation of the Facility in Paranal.

  2. Facility effluent monitoring plan for the fast flux test facility

    Energy Technology Data Exchange (ETDEWEB)

    Nickels, J M; Dahl, N R

    1992-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in US Department of Energy Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A Facility Effluent Monitoring Plan determination was performed during calendar year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements.

  3. The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies

    Energy Technology Data Exchange (ETDEWEB)

    Wuest, C

    2001-10-29

    The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control room presents facility-wide status and orchestrates experiments using operating parameters predicted by physics models. A network of several hundred front-end processors (FEPs) implements device control. The object-oriented software system is implemented in the Ada and Java languages and emphasizes CORBA distribution of reusable software objects. NIF is currently scheduled to provide first light in 2004 and will be completed in 2008.

  4. Conductor and joint test results of JT-60SA CS and EF coils using the NIFS test facility

    Science.gov (United States)

    Obana, Tetsuhiro; Takahata, Kazuya; Hamaguchi, Shinji; Kizu, Kaname; Murakami, Haruyuki; Chikaraishi, Hirotaka; Noguchi, Hiroki; Kobuchi, Takashi; Moriuchi, Sadatomo; Imagawa, Shinsaku; Mito, Toshiyuki; Tsuchiya, Katsuhiko; Natsume, Kyohei; Yoshida, Kiyoshi; Nomoto, Kazuhiro; Kim, Tae-hyun

    2016-01-01

    In 2007, JAEA and NIFS launched the test project to evaluate the performance of cable-in-conduit (CIC) conductors and conductor joints for the JT-60SA CS and EF coils. In this project, conductor tests for four types of coil conductor and joint tests for seven types of conductor joint have been conducted for the past eight years using the NIFS test facility. As a result, the test project indicated that the CIC conductors and conductor joints fulfill the design requirement for the CS and EF coils. In addition, the NIFS test facility is expected to be utilized as the test facility for the development of a conductor and conductor joint for the purpose of the DEMO nuclear fusion power plant, provided that the required magnetic field strength is within 9 T.

  5. The Great Plains Wind Power Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John

    2014-01-31

    This multi-year, multi-faceted project was focused on the continued development of a nationally-recognized facility for the testing, characterization, and improvement of grid-connected wind turbines, integrated wind-water desalination systems, and related educational and outreach topics. The project involved numerous faculty and graduate students from various engineering departments, as well as others from the departments of Geosciences (in particular the Atmospheric Science Group) and Economics. It was organized through the National Wind Institute (NWI), which serves as an intellectual hub for interdisciplinary and transdisciplinary research, commercialization and education related to wind science, wind energy, wind engineering and wind hazard mitigation at Texas Tech University (TTU). Largely executed by an academic based team, the project resulted in approximately 38 peer-reviewed publications, 99 conference presentations, the development/expansion of several experimental facilities, and two provisional patents.

  6. The Great Plains Wind Power Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John [Texas Tech Univ., Lubbock, TX (United States)

    2014-01-30

    This multi-year, multi-faceted project was focused on the continued development of a nationally-recognized facility for the testing, characterization, and improvement of grid-connected wind turbines, integrated wind-water desalination systems, and related educational and outreach topics. The project involved numerous faculty and graduate students from various engineering departments, as well as others from the departments of Geosciences (in particular the Atmospheric Science Group) and Economics. It was organized through the National Wind Institute (NWI), which serves as an intellectual hub for interdisciplinary and transdisciplinary research, commercialization and education related to wind science, wind energy, wind engineering and wind hazard mitigation at Texas Tech University (TTU). Largely executed by an academic based team, the project resulted in approximately 38 peer-reviewed publications, 99 conference presentations, the development/expansion of several experimental facilities, and two provisional patents.

  7. Advanced Test Reactor National Scientific User Facility

    Energy Technology Data Exchange (ETDEWEB)

    Frances M. Marshall; Jeff Benson; Mary Catherine Thelen

    2011-08-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

  8. Test facility for rewetting experiments at CDTN

    Energy Technology Data Exchange (ETDEWEB)

    Rezende, Hugo C.; Mesquita, Amir Z.; Ladeira, Luiz C.D.; Santos, Andre A.C., E-mail: hcr@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (SETRE/CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Tecnologia de Reatores

    2015-07-01

    One of the most important subjects in nuclear reactor safety analysis is the reactor core rewetting after a Loss-of-Coolant Accident (LOCA) in a Light Water Reactor LWR. Several codes for the prediction of the rewetting evolution are under development based on experimental results. In a Pressurized Water Reactor (PWR) the reflooding phase of a LOCA is when the fuel rods are rewetted from the bottom of the core to its top after having been totally uncovered and dried out. Out-of-pile reflooding experiments performed with electrical heated fuel rod simulators show different quench behavior depending the rods geometry. A test facility for rewetting experiments (ITR - Instalacao de Testes de Remolhamento) has been constructed at the Thermal Hydraulics Laboratory of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), with the objective of performing investigations on basic phenomena that occur during the reflood phase of a LOCA in a PWR, using tubular and annular test sections. This paper presents the design aspects of the facility, and the current stage of the works. The mechanical aspects of the installation as its instrumentation are described. Two typical tests are presented and results compered with theoretical calculations using computer code. (author)

  9. Investigation of gamma-ray time shifts caused by capsule areal density variations in inertial confinement fusion experiments at the national ignition facility and the omega facility

    Science.gov (United States)

    Grafil, Elliot M.

    This thesis describes work on Cherenkov based gamma detectors used as diag- nostics at Inertial Confinement Fusion (ICF) facilities. The first part describes the calibration and commissioning of the Gamma Reaction History diagnostic which is a four cell Cherenkov detector array used to characterize the ICF implosion at the National Ignition Facility (NIF) by measuring the gamma rays generated during the fusion event. Two of the key metrics which the GRH measures are Gamma Bang Time (GBT) generated from the D(T,α)n thermonuclear burn and Ablator Peak Time (APT) caused by (n,n‧)gamma reactions in the surrounding capsule ablator. Simulations of ignition capsules predict that GBT and APT should be time synchronized. After GRH commissioning, the array was used during first year of NIF operation in the National Ignition Campaign. Contrary to expectations, time shifts between GBT and APT of order 10s of picoseconds were observed. In order to further investigate the possibility of these time shifts in view of testing both instrument and code credibility an ICF shot campaign at the smaller OMEGA facility in Rochester was devised. It was performed during two full shot days in April of 2013 and 2014 and confirmed in principle the viability of the Cherenkov detector approach but raised additional questions regarding the credibility of the simulation codes used to describe ICF experiments. Specifically the measurements show that the understanding of temporal behavior of GBT vs APT may not be properly modeled in the DRACO code used at OMEGA. In view of the OMEGA results which showed no time shifts between GBT and APT, the readout and timing synchronization system of the GRH setup at the NIF was reevaluated in the framework of this thesis. Motivated by the results, which highlighted the use of wrong optical fiber diameters and possible problems with the installed variable optical attenuators, the NIF equipment has been updated over the recent months and new timing tests will

  10. Operation of the nuclear fuel cycle test facilities -Operation of the hot test loop facilities

    Energy Technology Data Exchange (ETDEWEB)

    Chun, S. Y.; Jeong, M. K.; Park, C. K.; Yang, S. K.; Won, S. Y.; Song, C. H.; Jeon, H. K.; Jeong, H. J.; Cho, S.; Min, K. H.; Jeong, J. H.

    1997-01-01

    A performance and reliability of a advanced nuclear fuel and reactor newly designed should be verified by performing the thermal hydraulics tests. In thermal hydraulics research team, the thermal hydraulics tests associated with the development of an advanced nuclear fuel and reactor haven been carried out with the test facilities, such as the Hot Test Loop operated under high temperature and pressure conditions, Cold Test Loop, RCS Loop and B and C Loop. The objective of this project is to obtain the available experimental data and to develop the advanced measuring techniques through taking full advantage of the facilities. The facilities operated by the thermal hydraulics research team have been maintained and repaired in order to carry out the thermal hydraulics tests necessary for providing the available data. The performance tests for the double grid type bottom end piece which was improved on the debris filtering effectivity were performed using the PWR-Hot Test Loop. The CANDU-Hot Test Loop was operated to carry out the pressure drop tests and strength tests of CANFLEX fuel. The Cold Test Loop was used to obtain the local velocity data in subchannel within HANARO fuel bundle and to study a thermal mixing characteristic of PWR fuel bundle. RCS thermal hydraulic loop was constructed and the experiments have been carried out to measure the critical heat flux. In B and C Loop, the performance tests for each component were carried out. (author). 19 tabs., 78 figs., 19 refs.

  11. Upgrade of the BATMAN test facility for H- source development

    Science.gov (United States)

    Heinemann, B.; Fröschle, M.; Falter, H.-D.; Fantz, U.; Franzen, P.; Kraus, W.; Nocentini, R.; Riedl, R.; Ruf, B.

    2015-04-01

    The development of a radio frequency (RF) driven source for negative hydrogen ions for the neutral beam heating devices of fusion experiments has been successfully carried out at IPP since 1996 on the test facility BATMAN. The required ITER parameters have been achieved with the prototype source consisting of a cylindrical driver on the back side of a racetrack like expansion chamber. The extraction system, called "Large Area Grid" (LAG) was derived from a positive ion accelerator from ASDEX Upgrade (AUG) using its aperture size (ø 8 mm) and pattern but replacing the first two electrodes and masking down the extraction area to 70 cm2. BATMAN is a well diagnosed and highly flexible test facility which will be kept operational in parallel to the half size ITER source test facility ELISE for further developments to improve the RF efficiency and the beam properties. It is therefore planned to upgrade BATMAN with a new ITER-like grid system (ILG) representing almost one ITER beamlet group, namely 5 × 14 apertures (ø 14 mm). Additionally to the standard three grid extraction system a repeller electrode upstream of the grounded grid can optionally be installed which is positively charged against it by 2 kV. This is designated to affect the onset of the space charge compensation downstream of the grounded grid and to reduce the backstreaming of positive ions from the drift space backwards into the ion source. For magnetic filter field studies a plasma grid current up to 3 kA will be available as well as permanent magnets embedded into a diagnostic flange or in an external magnet frame. Furthermore different source vessels and source configurations are under discussion for BATMAN, e.g. using the AUG type racetrack RF source as driver instead of the circular one or modifying the expansion chamber for a more flexible position of the external magnet frame.

  12. Clemson University Wind Turbine Drivetrain Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Tuten, James Maner [Clemson Univ., SC (United States); Haque, Imtiaz [Clemson Univ., SC (United States); Rigas, Nikolaos [Clemson Univ., SC (United States)

    2016-03-30

    In November of 2009, Clemson University was awarded a competitive grant from the U.S. Department of Energy to design, build and operate a facility for full-scale, highly accelerated mechanical testing of next-generation wind turbine drivetrain technologies. The primary goal of the project was to design, construct, commission, and operate a state-of-the-art sustainable facility that permits full-scale highly accelerated testing of advanced drivetrain systems for large wind turbines. The secondary goal was to meet the objectives of the American Recovery and Reinvestment Act of 2009, especially in job creation, and provide a positive impact on economically distressed areas in the United States, and preservation and economic recovery in an expeditious manner. The project was executed according to a managed cooperative agreement with the Department of Energy and was an extraordinary success. The resultant new facility is located in North Charleston, SC, providing easy transportation access by rail, road or ship and operates on an open access model such that it is available to the U.S. Wind Industry for research, analysis, and evaluation activities. The 72 m by 97 m facility features two mechanical dynamometer test bays for evaluating the torque and blade dynamic forces experienced by the rotors of wind turbine drivetrains. The dynamometers are rated at 7.5 MW and 15 MW of low speed shaft power and are configured as independent test areas capable of simultaneous operation. All six degrees of freedom, three linear and three rotational, for blade and rotor dynamics are replicated through the combination of a drive motor, speed reduction gearbox and a controllable hydraulic load application unit (LAU). This new LAU setup readily supports accelerated lifetime mechanical testing and load analysis for the entire drivetrain system of the nacelle and easily simulates a wide variety of realistic operating scenarios in a controlled laboratory environment. The development of these

  13. Lessons learnt from ITER safety & licensing for DEMO and future nuclear fusion facilities

    CERN Document Server

    Taylor, Neill

    2013-01-01

    One of the strong motivations for pursuing the development of fusion energy is its potentially low environmental impact and very good safety performance. But this safety and environmental potential can only be fully realized by careful design choices. For DEMO and other fusion facilities that will require nuclear licensing, S&E objectives and criteria should be set at an early stage and taken into account when choosing basic design options and throughout the design process. Studies in recent decades of the safety of fusion power plant concepts give a useful basis on which to build the S&E approach and to assess the impact of design choices. The experience of licensing ITER is of particular value, even though there are some important differences between ITER and DEMO. The ITER project has developed a safety case, produced a preliminary safety report and had it examined by the French nuclear safety authorities, leading to the licence to construct the facility. The key technical issues that arose during ...

  14. Usability Testing and Analysis Facility (UTAF)

    Science.gov (United States)

    Wong, Douglas T.

    2010-01-01

    This slide presentation reviews the work of the Usability Testing and Analysis Facility (UTAF) at NASA Johnson Space Center. It is one of the Space Human Factors Laboratories in the Habitability and Human Factors Branch (SF3) at NASA Johnson Space Center The primary focus pf the UTAF is to perform Human factors evaluation and usability testing of crew / vehicle interfaces. The presentation reviews the UTAF expertise and capabilities, the processes and methodologies, and the equipment available. It also reviews the programs that it has supported detailing the human engineering activities in support of the design of the Orion space craft, testing of the EVA integrated spacesuit, and work done for the design of the lunar projects of the Constellation Program: Altair, Lunar Electric Rover, and Outposts

  15. NASA Plum Brook's B-2 test facility-Thermal vacuum and propellant test facility

    Science.gov (United States)

    Kudlac, Maureen; Weaver, Harold; Cmar, Mark

    2012-06-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Spacecraft Propulsion Research Facility, commonly referred to as B-2, is NASA's third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of upper stage chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs. A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility. The heat sink provided a uniform temperature environment of approximately 77K. The modernized infrared lamp array produced a nominal heat flux of 1.4 kW/m2. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface.

  16. NASA Plum Brook's B-2 Test Facility: Thermal Vacuum and Propellant Test Facility

    Science.gov (United States)

    Kudlac, Maureen T.; Weaver, Harold F.; Cmar, Mark D.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Spacecraft Propulsion Research Facility, commonly referred to as B-2, is NASA's third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of upper stage chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs. A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility. The heat sink provided a uniform temperature environment of approximately 77 K. The modernized infrared lamp array produced a nominal heat flux of 1.4 kW/sq m. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface.

  17. Design and construction of thermal striping test facility

    Energy Technology Data Exchange (ETDEWEB)

    Han, D. H.; Kim, J. M.; Nam, H. Y.; Choi, J. H.; Choi, B. H.; Jeong, J. Y.; Jeong, K. C.; Park, J. H.; Kim, T. J.; Kim, B. H

    2003-12-01

    Test facility was designed and constructed to generate of experimental data for the validation of turbulence model for analyzing thermal striping phenomena. Test facility consists mainly of test section, heat transfer system and control system. In this report design and construction process of test facility was described in detail.

  18. ARC: A compact, high-field, fusion nuclear science facility and demonstration power plant with demountable magnets

    CERN Document Server

    Sorbom, B N; Palmer, T R; Mangiarotti, F J; Sierchio, J M; Bonoli, P; Kasten, C; Sutherland, D A; Barnard, H S; Haakonsen, C B; Goh, J; Sung, C; Whyte, D G

    2014-01-01

    The affordable, robust, compact (ARC) reactor conceptual design study aims to reduce the size, cost, and complexity of a combined fusion nuclear science facility (FNSF) and demonstration fusion Pilot power plant. ARC is a 270 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has rare earth barium copper oxide (REBCO) superconducting toroidal field coils, which have joints to enable disassembly. This allows the vacuum vessel to be replaced quickly, mitigating first wall survivability concerns, and permits a single device to test many vacuum vessel designs and divertor materials. The design point has a plasma fusion gain of Q_p~13.6, yet is fully non-inductive, with a modest bootstrap fraction of only ~63%. Thus ARC offers a high power gain with relatively large external control of the current profile. This highly attractive combination is enabled by the ~23 T peak field on coil with newly available REBCO superconductor technology. External cu...

  19. Test Facility For Thermal Imaging Systems

    Science.gov (United States)

    Fontanella, Jean-Claude

    1981-10-01

    The test facility is designed to measure the main performances of thermal imaging systems : optical transfer function, minimum resolvable thermal difference, noise equivalent temperature difference and spectral response. The infrared sources are slits, MRTD four bar patterns or the output slit of a monochromator which are placed in the focal plane of two collimators. The response of the system can be measured either on the display using a photometer or in the video signal using a transient recorder. Most of the measurements are controlled by a minicomputer. Typical results are presented.

  20. Thermal effects testing at the National Solar Thermal Test Facility

    Science.gov (United States)

    Ralph, Mark E.; Cameron, Christopher P.; Ghanbari, Cheryl M.

    The National Solar Thermal Test Facility is operated by Sandia National Laboratories and located on Kirtland Air Force Base in Albuquerque, New Mexico. The permanent features of the facility include a heliostat field and associated receiver tower, two solar furnaces, two point-focus parabolic concentrators, and Engine Test Facility. The heliostat field contains 220 computer-controlled mirrors, which reflect concentrated solar energy to test stations on a 61-m tower. The field produces a peak flux density of 250 W/sq cm that is uniform over a 15-cm diameter with a total beam power of over 5 MWt. One solar furnace produces flux levels of 270 W/sq cm over and delivers a 6-mm diameter and total power of 16 kWt. A second furnace produces flux levels up to 1000 W/sq cm over a 4 cm diameter and total power of 60 kWt. Both furnaces include shutters and attenuators that can provide square or shaped pulses. The two 11-m diameter tracking parabolic point-focusing concentrators at the facility can each produce peak flux levels of 1500 W/sq cm over a 2.5-cm diameter and total power of 75 kWt. High-speed shutters have been used to produce square pulses.

  1. Nuclear data needs for neutron spectrum tailoring at International Fusion Materials Irradiation Facility (IFMIF)

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Masayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    International Fusion Materials Irradiation Facility (IFMIF) is a proposal of D-Li intense neutron source to cover all aspects of the fusion materials development in the framework of IEA collaboration. The new activity has been started to qualifying the important technical issues called Key Element technology Phase since 2000. Although the neutron spectrum can be adjusted by changing the incident beam energy, it is favorable to be carried out many irradiation tasks at the same time under the unique beam condition. For designing the tailored neutron spectrum, neutron nuclear data for the moderator-reflector materials up to 50 MeV are required. The data for estimating the induced radioactivity is also required to keep the radiation level low enough at maintenance time. The candidate materials and the required accuracy of nuclear data are summarized. (author)

  2. Fusion

    CERN Document Server

    Mahaffey, James A

    2012-01-01

    As energy problems of the world grow, work toward fusion power continues at a greater pace than ever before. The topic of fusion is one that is often met with the most recognition and interest in the nuclear power arena. Written in clear and jargon-free prose, Fusion explores the big bang of creation to the blackout death of worn-out stars. A brief history of fusion research, beginning with the first tentative theories in the early 20th century, is also discussed, as well as the race for fusion power. This brand-new, full-color resource examines the various programs currently being funded or p

  3. The National Ignition Facility: Enabling Fusion Ignition for the 21st Century

    Energy Technology Data Exchange (ETDEWEB)

    Moses, E I; Miller, G H; Wuest, C R

    2004-09-17

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, when completed in 2008, will contain a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter-diameter target chamber and room for 100 diagnostics. NIF is housed in a 26,000 square meter environmentally controlled building and is the world's largest and most energetic laser experimental system. NIF provides a scientific center for the study of inertial confinement fusion and the physics of matter at extreme energy densities and pressures. NIF's energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will study physical processes at temperatures approaching 10{sup 8} K and 10{sup 11} bar; conditions that exist naturally only in the interior of stars and planets. NIF is currently configured with four laser beams activated in late 2002. These beams are being regularly used for laser performance and physics experiments and to date nearly 250 system shots have been conducted. NIF's laser beams have generated 106 kilojoules in 23-ns pulses of infrared light and over 16 kJ in 3.5-ns pulses at the third harmonic (351 nm). A number of target experimental systems are being commissioned in support of experimental campaigns. This paper provides a detailed look the NIF laser systems, laser and optical performance, and results from laser commissioning shots. We also discuss NIF's high -energy density and inertial fusion experimental capabilities, the first experiments on NIF, and plans for future capabilities of this unique facility.

  4. Thermal effects testing at the National Solar Thermal Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ralph, M.E.; Cameron, C.P. (Sandia National Labs., Albuquerque, NM (United States)); Ghanbari, C.M. (Technadyne Engineering Consultants, Inc., Albuquerque, NM (United States))

    1992-01-01

    The National Solar Thermal Test Facility is operated by Sandia National Laboratories and located on Kirkland Air Force Base in Albuquerque, New Mexico. The permanent features of the facility include a heliostat field and associated receiver tower, two solar furnaces, two point-focus parabolic concentrators, and Engine Test Facility. The heliostat field contains 220 computer-controlled mirrors, which reflect concentrated solar energy to test stations on a 61-m tower. The field produces a peak flux density of 250 W/cm[sup 2] that is uniform over a 15-cm diameter with a total beam power of over 5 MW[sub t]. The solar beam has been used to simulate aerodynamic heating for several customers. Thermal nuclear blasts have also been simulated using a high-speed shutter in combination with heliostat control. The shutter can accommodate samples up to 1 m [times] 1 m and it has been used by several US and Canadian agencies. A glass-windowed wind tunnel is also available in the Solar Tower. It provides simultaneous exposure to the thermal flux and air flow. Each solar furnace at the facility includes a heliostat, an attenuator, and a parabolic concentrator. One solar furnace produces flux levels of 270 W/cm[sup 2] over and delivers a 6-mm diameter and total power of 16 kW[sub t]. A second furnace produces flux levels up to 1000 W/cm[sup 2] over a 4 cm diameter and total power of 60 kW[sub t]. Both furnaces include shutters and attenuators that can provide square or shaped pulses. The two 11 m diameter tracking parabolic point-focusing concentrators at the facility can each produce peak flux levels of 1500 W/cm[sup 2] over a 2.5 cm diameter and total power of 75 kW[sub t]. High-speed shutters have been used to produce square pulses.

  5. Thermal effects testing at the National Solar Thermal Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ralph, M.E.; Cameron, C.P. [Sandia National Labs., Albuquerque, NM (United States); Ghanbari, C.M. [Technadyne Engineering Consultants, Inc., Albuquerque, NM (United States)

    1992-12-31

    The National Solar Thermal Test Facility is operated by Sandia National Laboratories and located on Kirkland Air Force Base in Albuquerque, New Mexico. The permanent features of the facility include a heliostat field and associated receiver tower, two solar furnaces, two point-focus parabolic concentrators, and Engine Test Facility. The heliostat field contains 220 computer-controlled mirrors, which reflect concentrated solar energy to test stations on a 61-m tower. The field produces a peak flux density of 250 W/cm{sup 2} that is uniform over a 15-cm diameter with a total beam power of over 5 MW{sub t}. The solar beam has been used to simulate aerodynamic heating for several customers. Thermal nuclear blasts have also been simulated using a high-speed shutter in combination with heliostat control. The shutter can accommodate samples up to 1 m {times} 1 m and it has been used by several US and Canadian agencies. A glass-windowed wind tunnel is also available in the Solar Tower. It provides simultaneous exposure to the thermal flux and air flow. Each solar furnace at the facility includes a heliostat, an attenuator, and a parabolic concentrator. One solar furnace produces flux levels of 270 W/cm{sup 2} over and delivers a 6-mm diameter and total power of 16 kW{sub t}. A second furnace produces flux levels up to 1000 W/cm{sup 2} over a 4 cm diameter and total power of 60 kW{sub t}. Both furnaces include shutters and attenuators that can provide square or shaped pulses. The two 11 m diameter tracking parabolic point-focusing concentrators at the facility can each produce peak flux levels of 1500 W/cm{sup 2} over a 2.5 cm diameter and total power of 75 kW{sub t}. High-speed shutters have been used to produce square pulses.

  6. A test facility for hypervelocity rarefied flows

    Science.gov (United States)

    Macrossan, M. N.; Chiu, H.-H.; Mee, D. J.

    2001-08-01

    This paper describes a rarefied hypervelocity test facility producing gas speeds greater than 7 km/s. The X1 expansion tube at The University of Queensland has been used to produce nitrogen flows at 8.9 and 9.5 km/s with test flow durations of 50 and 40 μs respectively. Rarefied flow is indicated by values of the freestream breakdown parameter >0.1 (Cheng's rarefaction parameter tank. Nominal conditions in the expansion are derived from CFD predictions. Measured bar gauge (Pitot) pressures show that the flow is radially uniform when the Pitot pressure has decreased by a factor ten. The measured bar gauge pressures are an increasing fraction of the expected Pitot pressure as the rarefaction parameters increase.

  7. PANDA: A Multipurpose Integral Test Facility for LWR Safety Investigations

    OpenAIRE

    2012-01-01

    The PANDA facility is a large scale, multicompartmental thermal hydraulic facility suited for investigations related to the safety of current and advanced LWRs. The facility is multipurpose, and the applications cover integral containment response tests, component tests, primary system tests, and separate effect tests. Experimental investigations carried on in the PANDA facility have been embedded in international projects, most of which under the auspices of the EU and OECD and with the supp...

  8. On the physical conditions for arising a controlled fusion chain reaction supported by neutrons in fusion facilities with magnetic plasma confinement

    Directory of Open Access Journals (Sweden)

    A.N. Shmelyov

    2015-11-01

    The fusion neutron source is considered to be the “richest”: neutron generation is accompanied by relatively small-scale processes. The thermonuclear facility with low neutron absorption blanket under consideration here could create a high density neutron flux in the blanket. It can be concluded from the above that such thermonuclear facilities could be used for fast transmutation of long-lived fission products with low neutron absorption cross-section, and perhaps even without their preliminary isotopic separation.

  9. SIRIUS-T: A study of a symmetrically illuminated inertial confinement fusion tritium production facility

    Energy Technology Data Exchange (ETDEWEB)

    Badger, B.; Sviatoslavksy, I.N.; Bruggink, D.; Engelstad, R.L.; Kulcinski, G.L.; Larsen, E.M.; Lovell, E.G.; MacFarlane, J.J.; Mogahed, E.A.; Moses, G.A.; Moucha, A.; Peterson, R.R.; Powers, J.; Sawan, M.E.; Wittenberg, L.J.

    1990-12-01

    The aging US tritium production reactors are slowly being phased out and the US Department of Energy has initiated a New Production Reactors Program'' which will provide for the design, construction and operation of new facilities for the production of tritium and other special nuclear materials. Preliminary requirements are currently being prepared, leading to construction and operation by the year 2000. Unfortunately, inertial confinement fusion (ICF) cannot possibly be ready to perform such a task on this short time scale. However, it is instructive to see how well it can do in producing tritium when ICF has been demonstrated and a comparison with the proposed production schemes is conducted here. SIRIUS-T is conceptual design study of a tritium production facility utilizing direct drive symmetrically illuminated inertial confinement fusion. The T'' designation distinguishes it from SIRIUS-M, a materials facility, and SIRIUS-C, a commercial power plant. As in any other fusion related design study, a certain amount of technical extrapolation has been made in SIRIUS-T. It should be said early on, however, that in areas of uncertainty, we have always taken the conservative approach. This is evident in our choice of target gain, number of beams selected for symmetric illumination and elsewhere throughout the study. In performing the economic analysis we have also attempted to err on the conservative side. This too is evident in our costing of the driver and the reactor chamber. For these reasons, we feel that this study projects enough confidence as to make it worthy of comparison with the other proposed production systems.

  10. Source term evaluation for accident transients in the experimental fusion facility ITER

    Energy Technology Data Exchange (ETDEWEB)

    Virot, F.; Barrachin, M.; Cousin, F. [IRSN, BP3-13115, Saint Paul lez Durance (France)

    2015-03-15

    We have studied the transport and chemical speciation of radio-toxic and toxic species for an event of water ingress in the vacuum vessel of experimental fusion facility ITER with the ASTEC code. In particular our evaluation takes into account an assessed thermodynamic data for the beryllium gaseous species. This study shows that deposited beryllium dusts of atomic Be and Be(OH){sub 2} are formed. It also shows that Be(OT){sub 2} could exist in some conditions in the drain tank. (authors)

  11. Design, Evaluation and Test Technology Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The mission of this facility, which is composed of numerous specialized facilities, is to provide capabilities to simulate a wide range of environments for component...

  12. Design, Evaluation and Test Technology Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The mission of this facility, which is composed of numerous specialized facilities, is to provide capabilities to simulate a wide range of environments for component...

  13. Nuclear thermal propulsion test facility requirements and development strategy

    Science.gov (United States)

    Allen, George C.; Warren, John; Clark, J. S.

    1991-01-01

    The Nuclear Thermal Propulsion (NTP) subpanel of the Space Nuclear Propulsion Test Facilities Panel evaluated facility requirements and strategies for nuclear thermal propulsion systems development. High pressure, solid core concepts were considered as the baseline for the evaluation, with low pressure concepts an alternative. The work of the NTP subpanel revealed that a wealth of facilities already exists to support NTP development, and that only a few new facilities must be constructed. Some modifications to existing facilities will be required. Present funding emphasis should be on long-lead-time items for the major new ground test facility complex and on facilities supporting nuclear fuel development, hot hydrogen flow test facilities, and low power critical facilities.

  14. Nuclear thermal propulsion test facility requirements and development strategy

    Science.gov (United States)

    Allen, George C.; Clark, John S.; Warren, John; Perkins, David R.; Martinell, John

    1992-01-01

    The Nuclear Thermal Propulsion (NTP) subpanel of the Space Nuclear Propulsion Test Facilities Panel evaluated facility requirements and strategies for nuclear thermal propulsion systems development. High pressure, solid core concepts were considered as the baseline for the evaluation, with low pressure concepts an alternative. The work of the NTP subpanel revealed that a wealth of facilities already exists to support NTP development, and that only a few new facilities must be constructed. Some modifications to existing facilities will be required. Present funding emphasis should be on long-lead-time items for the major new ground test facility complex and on facilities supporting nuclear fuel development, hot hydrogen flow test facilities, and low power critical facilities.

  15. Basic Design of a LWR Fuel Compatibility Test Facility (PLUTO)

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Chang Hwan; Chun, Se Young; Kim, Bok Deuk; Park, Jong Kuk; Chun, Tae Hyun; Kim, Hyoung Kyu; Oh, Dong Seok

    2009-04-15

    KAERI is performing a project for developing a compatibility test facility and the relevant technology for an LWR fuel assembly. It includes the compatibility test and the long term wear test for dual fuel assemblies, and the pressure drop test, uplift force test, flow-induced vibration test, damping test, and the debris filtering capability test for a single fuel assembly. This compatibility test facility of the fuel assemblies is named PLUTO from Performance Test Facility for Fuel Assembly Hydraulics and Vibrations. The PLUTO will be basically constructed for a PWR fuel assembly, and it will be considered to test for the fuel assemblies of other reactors.

  16. IFMIF (International Fusion Materials Irradiation Facility) conceptual design activity reduced cost report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-02-01

    This report describes the results of a preliminary reevaluation of the design and cost of the International Fusion Materials Irradiation Facility (IFMIF) Project in response to the request from the 28th FPCC meeting in January 1999. Two major ideas have been considered: 1) reduction of the total construction cost through elimination of the previously planned facility upgrade and 2) a facility deployment in 3 stages with capabilities for limited experiments in the first stage. As a result, the size and complexity of the facility could be significantly reduced, leading to substantial cost savings. In addition to these two ideas, this study also included a critical review of the original CDA specification with the objective of elimination of nonessential items. For example, the number of lithium targets was reduced from two to one. As a result of these changes in addition to the elimination of the upgrade, the total cost estimate was very substantially reduced from 797.2 MICF to 487.8 MICF, where 1 MICF = 1 Million of the IFMIF Conversion Units (approximately $1M US January, 1996). (author)

  17. The National Ignition Facility and the Promise of Inertial Fusion Energy

    Energy Technology Data Exchange (ETDEWEB)

    Moses, E I

    2010-12-13

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational. The NIF is the world's most energetic laser system capable of producing 1.8 MJ and 500 TW of ultraviolet light. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in planetary interiors and stellar environments. On September 29, 2010, the first integrated ignition experiment was conducted, demonstrating the successful coordination of the laser, cryogenic target system, array of diagnostics and infrastructure required for ignition demonstration. In light of this strong progress, the U.S. and international communities are examining the implication of NIF ignition for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a laser with 10% electrical-optical efficiency, as well as further development and advances in large-scale target fabrication, target injection, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in the 10- to 15-year time frame. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Engine (LIFE) concept and examining in detail various technology choices, as well as the advantages of both pure fusion and fusion-fission schemes. This paper will describe the unprecedented experimental capabilities of the NIF and the results achieved so far on the path toward ignition. The paper will conclude with a discussion about the need to build on the progress on NIF to develop an implementable and effective plan to achieve the promise of LIFE as a source of carbon-free energy.

  18. Gas cooled fast breeder reactor design for a circulator test facility (modified HTGR circulator test facility)

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    A GCFR helium circulator test facility sized for full design conditions is proposed for meeting the above requirements. The circulator will be mounted in a large vessel containing high pressure helium which will permit testing at the same power, speed, pressure, temperature and flow conditions intended in the demonstration plant. The electric drive motor for the circulator will obtain its power from an electric supply and distribution system in which electric power will be taken from a local utility. The conceptual design decribed in this report is the result of close interaction between the General Atomic Company (GA), designer of the GCFR, and The Ralph M. Parson Company, architect/engineer for the test facility. A realistic estimate of total project cost is presented, together with a schedule for design, procurement, construction, and inspection.

  19. High temperature indentation tests on fusion reactor candidate materials

    Energy Technology Data Exchange (ETDEWEB)

    Montanari, R. [Dipartimento di Ingegneria Meccanica, Universita di Roma-Tor Vergata, Via del Politecnico 1, I-00133 Rome (Italy)]. E-mail: roberto.montanari@uniroma2.it; Filacchioni, G. [ENEA CR Casaccia, Via Anguillarese 301, I-00060 S.M. di Galeria, Rome (Italy); Iacovone, B. [Dipartimento di Ingegneria Meccanica, Universita di Roma-Tor Vergata, Via del Politecnico 1, I-00133 Rome (Italy); Plini, P. [Dipartimento di Ingegneria Meccanica, Universita di Roma-Tor Vergata, Via del Politecnico 1, I-00133 Rome (Italy); Riccardi, B. [Associazione EURATOM-ENEA sulla Fusione, P.O. Box 65, I-00044 Frascati, Rome (Italy)

    2007-08-01

    Flat-top cylinder indenter for mechanical characterization (FIMEC) is an indentation technique employing cylindrical punches with diameters ranging from 0.5 to 2 mm. The test gives pressure-penetration curves from which the yield stress can be determined. The FIMEC apparatus was developed to test materials in the temperature range from -180 to +200 {sup o}C. Recently, the heating system of FIMEC apparatus has been modified to operate up to 500 {sup o}C. So, in addition to providing yield stress over a more extended temperature range, it is possible to perform stress-relaxation tests at temperatures of great interest for several nuclear fusion reactor (NFR) alloys. Data on MANET-II, F82H mod., Eurofer-97, EM-10, AISI 316 L, Ti6Al4V and CuCrZr are presented and compared with those obtained by mechanical tests with standard methods.

  20. Solar Thermal Propulsion Test Facility at MSFC

    Science.gov (United States)

    1999-01-01

    This photograph shows an overall view of the Solar Thermal Propulsion Test Facility at the Marshall Space Flight Center (MSFC). The 20-by 24-ft heliostat mirror, shown at the left, has dual-axis control that keeps a reflection of the sunlight on an 18-ft diameter concentrator mirror (right). The concentrator mirror then focuses the sunlight to a 4-in focal point inside the vacuum chamber, shown at the front of concentrator mirror. Researchers at MSFC have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than chemical a combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propell nt. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  1. EFFLUENT TREATMENT FACILITY PEROXIDE DESTRUCTION CATALYST TESTING

    Energy Technology Data Exchange (ETDEWEB)

    HALGREN DL

    2008-07-30

    The 200 Area Effluent Treatment Facility (ETF) main treatment train includes the peroxide destruction module (PDM) where the hydrogen peroxide residual from the upstream ultraviolet light/hydrogen peroxide oxidation unit is destroyed. Removal of the residual peroxide is necessary to protect downstream membranes from the strong oxidizer. The main component of the PDM is two reaction vessels utilizing granular activated carbon (GAC) as the reaction media. The PDM experienced a number of operability problems, including frequent plugging, and has not been utilized since the ETF changed to groundwater as the predominant feed. The unit seemed to be underperforming in regards to peroxide removal during the early periods of operation as well. It is anticipated that a functional PDM will be required for wastewater from the vitrification plant and other future streams. An alternate media or methodology needs to be identified to replace the GAC in the PDMs. This series of bench scale tests is to develop information to support an engineering study on the options for replacement of the existing GAC method for peroxide destruction at the ETF. A number of different catalysts will be compared as well as other potential methods such as strong reducing agents. The testing should lead to general conclusions on the viability of different catalysts and identify candidates for further study and evaluation.

  2. Alpha Particle Physics Experiments in the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Budny, R.V.; Darrow, D.S.; Medley, S.S.; Nazikian, R.; Zweben, S.J.; et al.

    1998-12-14

    Alpha particle physics experiments were done on the Tokamak Fusion Test Reactor (TFTR) during its deuterium-tritium (DT) run from 1993-1997. These experiments utilized several new alpha particle diagnostics and hundreds of DT discharges to characterize the alpha particle confinement and wave-particle interactions. In general, the results from the alpha particle diagnostics agreed with the classical single-particle confinement model in magnetohydrodynamic (MHD) quiescent discharges. Also, the observed alpha particle interactions with sawteeth, toroidal Alfvén eigenmodes (TAE), and ion cyclotron resonant frequency (ICRF) waves were roughly consistent with theoretical modeling. This paper reviews what was learned and identifies what remains to be understood.

  3. CICC Joint Development and Test for the Test Facility

    Institute of Scientific and Technical Information of China (English)

    武玉; 翁佩德

    2005-01-01

    The superconducting joint of the NbTi Cable-in -conduit Conductor (CICC) has been developed and tested on the magnet test facility at Institute of Plasma Physics, Chinese Academy of Sciences. The CICC is composed of (2NbTi+1Cu)×3×3×(6+1tube) strands each with 0.85 mm in diameter, which has been developed for a central solenoid model coil. The effective length of the joint is about 500 mm. There have been two common fabrication modes,one of them is to integrate the 2 CICC terminals with the copper substrate via lead-soldering, and the other is to mechanically compress the above two parts into an integrated unit. In the current range from 2 kA to 10 kA the joint resistance changes slightly. Up to now, 11 TF magnets, a central solenoid model coil, a central solenoid prototype coil, and a large PF model coil of PF large coil have been completed via the latter joint in the test facility.

  4. Electronics and Telemetry Engineering and Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Electronics Laboratory is a fully equipped facility providing the capability to support electronic product development from highly complex weapon system sensors,...

  5. New facility for testing LHC HTS power leads

    CERN Document Server

    Rabehl, Roger Jon; Fehér, S; Huang, Y; Orris, D; Pischalnikov, Y; Sylvester, C D; Tartaglia, M

    2005-01-01

    A new facility for testing HTS power leads at the Fermilab Magnet Test Facility has been designed and operated. The facility has successfully tested 19 pairs of HTS power leads, which are to be integrated into the Large Hadron Collider Interaction Region cryogenic feed boxes. This paper describes the design and operation of the cryogenics, process controls, data acquisition, and quench management systems. HTS power lead test results from the commissioning phase of the project are also presented.

  6. ORNL instrumentation performance for Slab Core Test Facility (SCTF)-Core I Reflood Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, J E; Hess, R A; Hylton, J O

    1983-11-01

    Instrumentation was developed for making measurements in experimental refill-reflood test facilities. These unique instrumentation systems were designed to survive the severe environmental conditions that exist during a simulated pressurized water reactor loss-of-coolant accident (LOCA). Measurement of in-vessel fluid phenomena such as two-phase flow velocity and void fraction and film thickness and film velocity are required for better understanding of reactor behavior during LOCAs. The Advanced Instrumentation for Reflood Studies (AIRS) Program fabricated and delivered instrumentation systems and data reduction software algorithms that allowed the above measurements to be made. Data produced by AIRS sensors during three experimental runs in the Japanese Slab Core Test Facility are presented. Although many of the sensors failed before any useful data could be obtained, the remaining probes gave encouraging and useful results. These results are the first of their kind produced during simulated refill-reflood stage of a LOCA near actual thermohydrodynamic conditions.

  7. Dynamic Response Testing in an Electrically Heated Reactor Test Facility

    Science.gov (United States)

    Bragg-Sitton, Shannon M.; Morton, T. J.

    2006-01-01

    Non-nuclear testing can be a valuable tool in development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Standard testing allows one to fully assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. The integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and full nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics, and assess potential design improvements at a relatively small fiscal investment. Initial system dynamic response testing was demonstrated on the integrated SAFE-100a heat pipe cooled, electrically heated reactor and heat exchanger hardware, utilizing a one-group solution to the point kinetics equations to simulate the expected neutronic response of the system (Bragg-Sitton, 2005). The current paper applies the same testing methodology to a direct drive gas cooled reactor system, demonstrating the applicability of the testing methodology to any reactor type and demonstrating the variation in system response characteristics in different reactor concepts. In each testing application, core power transients were controlled by a point kinetics model with reactivity feedback based on core average temperature; the neutron generation time and the temperature feedback coefficient are provided as model inputs. Although both system designs utilize a fast spectrum reactor, the method of cooling the reactor differs significantly, leading to a variable system response that can be demonstrated and assessed in a non-nuclear test facility.

  8. Mirror Fusion Test Facility data compression study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-01

    This report is organized as follows. Discussions are given of three of the most important data compression methods that have been developed and studied over the years: coding, transforms, and redundancy reduction. (A brief discussion of how to combine and synthesize these ideas, and others, into a system is given). Specific ideas for compressing MFTF diagnostics and control data are developed. Listings and instructions for using FORTRAN programs that were compiled on the Livermore MFTF computers during the course of the study are also given.

  9. Mirror fusion test facility magnet system. Final design report

    Energy Technology Data Exchange (ETDEWEB)

    Henning, C.D.; Hodges, A.J.; VanSant, J.H.; Dalder, E.N.; Hinkle, R.E.; Horvath, J.A.; Scanlan, R.M.; Shimer, D.W.; Baldi, R.W.; Tatro, R.E.

    1980-09-03

    Information is given on each of the following topics: (1) magnet description, (2) superconducting manufacture, (3) mechanical behavior of conductor winding, (4) coil winding, (5) thermal analysis, (6) cryogenic system, (7) power supply system, (8) structural analysis, (9) structural finite element analysis refinement, (10) structural case fault analysis, and (11) structural metallurgy. (MOW)

  10. Results from DR and Instrumentation Test Facilities

    CERN Document Server

    Urakawa, Junji

    2005-01-01

    The KEK Accelerator Test Facility (ATF) is a 1.3GeV storage ring capable of producing ultra-low emittance electron beams and has a beam extraction line for ILC R&D. The ATF has proven to be an ideal place for researches with small, stable beams. 2x1010 single bunch and low current 20 bunch-train with 2.8nsec bunch spacing have been extracted to develop Nano-Cavity BPM’s, FONT, Nano Beam Orbit handling (FEATHER), Optical Diffraction Radiation (ODR) monitor, a precision multi-bunch laser-based beam profile monitor and polarized positron beam generation via backward-Compton scattering by the international collaboration. A set of three cavity BPM's is installed in the ATF extraction line on a set of extremely stiff supports. The KEK group installed another set of three BPM's, with their own support mechanism. The full set of 6 will prove extremely useful. In the DR (Damping Ring), we are researching the fast ion instability, micro-wave instability with four sets of damping wiggler and developing pul...

  11. Inertial Fusion Energy Development: What is Needed and What will be Learned at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, W.J.

    1999-10-21

    Successful development of inertial fusion energy (IFE) requires that many technical issues be resolved. Separability of drivers, targets, chambers and other IFE power plant subsystems allows resolution of many of these issues in off-line facilities and programs. Periodically, major integrated facilities give a snapshot of the rate of progress toward the ultimate solutions. The National Ignition Facility (NIF) and Laser Megajoule (LMJ) are just such integrating facilities. This paper reviews the status of IFE development and projects what will be learned from the NIF and LMJ.

  12. Deuteron beam interaction with lithium jet in a neutron source test facility

    Science.gov (United States)

    Hassanein, A.

    1996-10-01

    Testing and evaluating candidate fusion reactor materials in a high-flux, high-energy neutron environment are critical to the success and economic feasibility of a fusion device. The current understanding of materials behavior in fission-like environments and existing fusion facilities is insufficient to ensure the necessary performance of future fusion reactor components. An accelerator-based deuterium—lithium system to generate the required high neutron flux for material testing is considered to be the most promising approach in the near future. In this system, a high-energy (30-40 MeV) deuteron beam impinges on a high-speed (10-20 m/s) lithium jet to produce the high-energy (≥ 14 MeV) neutrons required to simulate a fusion environment via the Li (d, n) nuclear stripping reaction. Interaction of the high-energy deuteron beam and the subsequent response of the high-speed lithium jet are evaluated in detail. Deposition of the deuteron beam, jet-thermal hydraulic response, lithium-surface vaporization rate, and dynamic stability of the jet are modeled. It is found that lower beam kinetic energies produce higher surface temperature and consequently higher Li vaporization rates. Larger beam sizes significantly reduce both bulk and surface temperatures. Thermal expansion and dynamic velocities (normal to jet direction) due to beam energy deposition and momentum transfer are much lower than jet flow velocity and decrease substantially at lower beam current densities.

  13. Neutron flux assessment of a neutron irradiation facility based on inertial electrostatic confinement fusion.

    Science.gov (United States)

    Sztejnberg Gonçalves-Carralves, M L; Miller, M E

    2015-12-01

    Neutron generators based on inertial electrostatic confinement fusion were considered for the design of a neutron irradiation facility for explanted organ Boron Neutron Capture Therapy (BNCT) that could be installed in a health care center as well as in research areas. The chosen facility configuration is "irradiation chamber", a ~20×20×40 cm(3) cavity near or in the center of the facility geometry where samples to be irradiated can be placed. Neutron flux calculations were performed to study different manners for improving scattering processes and, consequently, optimize neutron flux in the irradiation position. Flux distributions were assessed through numerical simulations of several models implemented in MCNP5 particle transport code. Simulation results provided a wide spectrum of combinations of net fluxes and energy spectrum distributions. Among them one can find a group that can provide thermal neutron fluxes per unit of production rate in a range from 4.1·10(-4) cm(-2) to 1.6·10(-3) cm(-2) with epithermal-to-thermal ratios between 0.3% and 13% and fast-to-thermal ratios between 0.01% to 8%. Neutron generators could be built to provide more than 10(10) n s(-1) and, consequently, with an arrangement of several generators appropriate enough neutron fluxes could be obtained that would be useful for several BNCT-related irradiations and, eventually, for clinical practice.

  14. Critical need for MFE: the Alcator DX advanced divertor test facility

    Science.gov (United States)

    Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Wolf, S.; Bonoli, P.; Fiore, C.; Granetz, R.; Greenwald, M.; Hutchinson, I.; Hubbard, A.; Hughes, J.; Lin, Y.; Lipschultz, B.; Parker, R.; Porkolab, M.; Reinke, M.; Rice, J.; Shiraiwa, S.; Terry, J.; Theiler, C.; Wallace, G.; White, A.; Whyte, D.; Wukitch, S.

    2013-10-01

    Three critical challenges must be met before a steady-state, power-producing fusion reactor can be realized: how to (1) safely handle extreme plasma exhaust power, (2) completely suppress material erosion at divertor targets and (3) do this while maintaining a burning plasma core. Advanced divertors such as ``Super X'' and ``X-point target'' may allow a fully detached, low temperature plasma to be produced in the divertor while maintaining a hot boundary layer around a clean plasma core - a potential game-changer for magnetic fusion. No facility currently exists to test these ideas at the required parallel heat flux densities. Alcator DX will be a national facility, employing the high magnetic field technology of Alcator combined with high-power ICRH and LHCD to test advanced divertor concepts at FNSF/DEMO power exhaust densities and plasma pressures. Its extended vacuum vessel contains divertor cassettes with poloidal field coils for conventional, snowflake, super-X and X-point target geometries. Divertor and core plasma performance will be explored in regimes inaccessible in conventional devices. Reactor relevant ICRF and LH drivers will be developed, utilizing high-field side launch platforms for low PMI. Alcator DX will inform the conceptual development and accelerate the readiness-for-deployment of next-step fusion facilities.

  15. Fusion

    Science.gov (United States)

    Herman, Robin

    1990-10-01

    The book abounds with fascinating anecdotes about fusion's rocky path: the spurious claim by Argentine dictator Juan Peron in 1951 that his country had built a working fusion reactor, the rush by the United States to drop secrecy and publicize its fusion work as a propaganda offensive after the Russian success with Sputnik; the fortune Penthouse magazine publisher Bob Guccione sank into an unconventional fusion device, the skepticism that met an assertion by two University of Utah chemists in 1989 that they had created "cold fusion" in a bottle. Aimed at a general audience, the book describes the scientific basis of controlled fusion--the fusing of atomic nuclei, under conditions hotter than the sun, to release energy. Using personal recollections of scientists involved, it traces the history of this little-known international race that began during the Cold War in secret laboratories in the United States, Great Britain and the Soviet Union, and evolved into an astonishingly open collaboration between East and West.

  16. Dynamic Response Testing in an Electrically Heated Reactor Test Facility

    Science.gov (United States)

    Bragg-Sitton, Shannon M.; Morton, T. J.

    2006-01-01

    Non-nuclear testing can be a valuable tool in the development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Standard testing allows one to fully assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. The integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and fueled nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics, and assess potential design improvements at a relatively small fiscal investment. Initial system dynamic response testing was demonstrated on the integrated SAFE-100a heat pipe (HP) cooled, electrically heated reactor and heat exchanger hardware, utilizing a one-group solution to the point kinetics equations to simulate the expected neutronic response of the system. Reactivity feedback calculations were then based on a bulk reactivity feedback coefficient and measured average core temperature. This paper presents preliminary results from similar dynamic testing of a direct drive gas cooled reactor system (DDG), demonstrating the applicability of the testing methodology to any reactor type and demonstrating the variation in system response characteristics in different reactor concepts. Although the HP and DDG designs both utilize a fast spectrum reactor, the method of cooling the reactor differs significantly, leading to a variable system response that can be demonstrated and assessed in a non-nuclear test facility. Planned system upgrades to allow implementation of higher fidelity dynamic testing are also discussed. Proposed DDG

  17. Argonne to open new facility for advanced vehicle testing

    CERN Multimedia

    2002-01-01

    Argonne National Laboratory will open it's Advanced Powertrain Research Facility on Friday, Nov. 15. The facility is North America's only public testing facility for engines, fuel cells, electric drives and energy storage. State-of-the-art performance and emissions measurement equipment is available to support model development and technology validation (1 page).

  18. Data acquisition and processing system at the NOVETTE laser-fusion facility

    Energy Technology Data Exchange (ETDEWEB)

    Auerbach, J.M.; Severyn, J.R.; Kroepfl, D.J.

    1982-01-01

    The computer hardware and software used for acquisition and processing of data from experiments at the NOVETTE laser fusion facility are described. Nearly two hundred sensors are used to measure the performance of millimeter extent targets irradiated by multi-kilojoule laser pulses. Sensor output is recorded on CAMAC based digitizers, CCD arrays, and film. CAMAC instrument outputs are acquired and collected by a network of LSI-11 microprocessors centrally controlled by a VAX 11/780. The user controls the system through menus presented on color video displays equipped with touch panels. The control VAX collects data from all microprocessors and CCD arrays and stores them in a file for transport to a second VAX 11/780 which is used for processing and final analysis. Transfer is done through a high speed fiber-optic link. Relational data bases are used extensively in the processing and archiving of data.

  19. Thin Shell, High Velocity Inertial Confinement Fusion Implosions on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ma, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hurricane, O. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Callahan, D. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Barrios, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Casey, D. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dewald, E. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dittrich, T. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Doppner, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Haan, S. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hinkel, D. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Berzak Hopkins, L. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Le Pape, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacPhee, A. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pak, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Park, H. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Patel, P. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Remington, B. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Robey, H. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Salmonson, J. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Springer, P. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tommasini, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Benedetti, L. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bionta, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bond, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bradley, D. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Caggiano, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Celliers, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cerjan, C. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Church, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dixit, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dylla-Spears, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Edgell, D. [Univ. of Rochester, NY (United States); Edwards, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Field, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fittinghoff, D. N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frenje, J. A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Gatu Johnson, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Grim, G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Guler, N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hatarik, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Herrmann, H. W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hsing, W. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Izumi, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jones, O. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Khan, S. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kilkenny, J. D. [General Atomics, San Diego, CA (United States); Knauer, J. [Univ. of Rochester, NY (United States); Kohut, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kozioziemski, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kritcher, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kyrala, G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Landen, O. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacGowan, B. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mackinnon, A. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Meezan, N. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Merrill, F. E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Moody, J. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nagel, S. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nikroo, A. [General Atomics, San Diego, CA (United States); Parham, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ralph, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosen, M. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rygg, J. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sater, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sayre, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schneider, M. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shaughnessy, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spears, B. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Town, R.P. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Volegov, P. L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wan, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Widmann, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilde, C. H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yeamans, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-04-06

    Experiments have recently been conducted at the National Ignition Facility utilizing inertial confinement fusion capsule ablators that are 175 and 165 μm in thickness, 10% and 15% thinner, respectively, than the nominal thickness capsule used throughout the high foot and most of the National Ignition Campaign. These three-shock, high-adiabat, high-foot implosions have demonstrated good performance, with higher velocity and better symmetry control at lower laser powers and energies than their nominal thickness ablator counterparts. Little to no hydrodynamic mix into the DT hot spot has been observed despite the higher velocities and reduced depth for possible instability feedthrough. Earlier results have shown good repeatability, with up to 1/2 the neutron yield coming from α-particle self-heating.

  20. The Antares facility for inertial-fusion experiments: Status and plans

    Science.gov (United States)

    Goldstone, P. D.; Allen, G. R.; Jansen, H.; Saxman, A.; Singer, S.; Thuot, M.

    Antares is a large, 30 to 40 kJ CO2 laser system which will provide a base for experiments to determine the efficiency with which 10 micrometers of light can be used to drive target implosions while maintaining an acceptable level of preheat. Construction of the facility is in the final stages and diagnostics for initial experiments are being designed and constructed with operations scheduled to begin early in FY-84. After an initial shakedown period, a series of measurements will be performed to determine the energy scaling of hot electron temperature and target coupling efficiency in selected sets of targets including simple spheres. Experiments, now planned for Helios, will be continued to determine whether CO2-produced ions are appropriate for driving inertial fusion targets with acceptable efficiency (Helios experiments have demonstrated that as much as 40% of the incident light can be converted to fast ions).

  1. Upgrade of the Cryogenic CERN RF Test Facility

    CERN Document Server

    Pirotte, O; Brunner, O; Inglese, V; Koettig, T; Maesen, P; Vullierme, B

    2014-01-01

    With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990’s in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RF test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented.

  2. Upgrade of the cryogenic CERN RF test facility

    Science.gov (United States)

    Pirotte, O.; Benda, V.; Brunner, O.; Inglese, V.; Koettig, T.; Maesen, P.; Vullierme, B.

    2014-01-01

    With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990's in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RF test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented.

  3. ARC: A compact, high-field, disassemblable fusion nuclear science facility and demonstration power plant

    Science.gov (United States)

    Sorbom, Brandon; Ball, Justin; Palmer, Timothy; Mangiarotti, Franco; Sierchio, Jennifer; Bonoli, Paul; Kasten, Cale; Sutherland, Derek; Barnard, Harold; Haakonsen, Christian; Goh, Jon; Sung, Choongki; Whyte, Dennis

    2014-10-01

    The Affordable, Robust, Compact (ARC) reactor conceptual design aims to reduce the size, cost, and complexity of a combined Fusion Nuclear Science Facility (FNSF) and demonstration fusion pilot power plant. ARC is a 270 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has Rare Earth Barium Copper Oxide (REBCO) superconducting toroidal field coils with joints to allow disassembly, allowing for removal and replacement of the vacuum vessel as a single component. Inboard-launched current drive of 25 MW LHRF power and 13.6 MW ICRF power is used to provide a robust, steady state core plasma far from disruptive limits. ARC uses an all-liquid blanket, consisting of low pressure, slowly flowing Fluorine Lithium Beryllium (FLiBe) molten salt. The liquid blanket acts as a working fluid, coolant, and tritium breeder, and minimizes the solid material that can become activated. The large temperature range over which FLiBe is liquid permits blanket operation at 800-900 K with single phase fluid cooling and allows use of a high-efficiency Brayton cycle for electricity production in the secondary coolant loop.

  4. Computational Modeling in Support of High Altitude Testing Facilities Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Simulation technology plays an important role in propulsion test facility design and development by assessing risks, identifying failure modes and predicting...

  5. Computational Modeling in Support of High Altitude Testing Facilities Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Simulation technology plays an important role in rocket engine test facility design and development by assessing risks, identifying failure modes and predicting...

  6. Fusion engineering device design description

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein.

  7. Fusion Engineering Device design description

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein.

  8. Learning Design at White Sands Test Facility

    Science.gov (United States)

    Grotewiel, Shane

    2010-01-01

    During the Fall of 2010, I spent my time at NASA White Sands Test Facility in Las Cruces, NM as an Undergraduate Student Research Program (USRP) Intern. During that time, I was given three projects to work on: Large Altitude Simulation System (LASS) basket strainer, log books, and the design of a case for touch screen monitors used for simulations. I spent most of my time on the LASS basket strainer. The LASS system has a water feed line with a basket strainer that filters out rust. In 2009, there were three misfires which cost approximately $27,000 and about 8% of the allotted time. The strainer was getting a large change in pressure that would result in a shutdown of the system. I have designed a new basket that will eliminate the large pressure change and it can be used with the old basket strainer housing. The LASS system has three steam generators (modules). Documents pertaining to these modules are stored electronically, and the majority of the documents are not able to be searched with keywords, so they have to be gone through one by one. I have come up with an idea on how to organize these files so that the Propulsion Department may efficiently search through the documents needed. Propulsion also has a LASS simulator that incorporates two touch screen monitors. Currently these monitors are in six foot by two foot metal cabinet on wheels. During simulation these monitors are used in the block house and need to be taken out of the block house when not in use. I have designed different options for hand held cases for storing and transporting the monitors in and out of the block house. The three projects previously mentioned demonstrate my contributions to the Propulsion Department and have taught me real world experience that is essential in becoming a productive engineer.

  9. TBM/MTM for HTS-FNSF: An Innovative Testing Strategy to Qualify/Validate Fusion Technologies for U.S. DEMO

    Directory of Open Access Journals (Sweden)

    Laila El-Guebaly

    2016-08-01

    Full Text Available The qualification and validation of nuclear technologies are daunting tasks for fusion demonstration (DEMO and power plants. This is particularly true for advanced designs that involve harsh radiation environment with 14 MeV neutrons and high-temperature operating regimes. This paper outlines the unique qualification and validation processes developed in the U.S., offering the only access to the complete fusion environment, focusing on the most prominent U.S. blanket concept (the dual cooled PbLi (DCLL along with testing new generations of structural and functional materials in dedicated test modules. The venue for such activities is the proposed Fusion Nuclear Science Facility (FNSF, which is viewed as an essential element of the U.S. fusion roadmap. A staged blanket testing strategy has been developed to test and enhance the DCLL blanket performance during each phase of FNSF D-T operation. A materials testing module (MTM is critically important to include in the FNSF as well to test a broad range of specimens of future, more advanced generations of materials in a relevant fusion environment. The most important attributes for MTM are the relevant He/dpa ratio (10–15 and the much larger specimen volumes compared to the 10–500 mL range available in the International Fusion Materials Irradiation Facility (IFMIF and European DEMO-Oriented Neutron Source (DONES.

  10. LLE 1998 annual report, October 1997--September 1998. Inertial fusion program and National Laser Users` Facility program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    This report summarizes research at the Laboratory for Laser Energetics (LLE), the operation of the National Laser Users` Facility (NLUF), and programs involving the education of high school, undergraduate, and graduate students for FY98. Research summaries cover: progress in laser fusion; diagnostic development; laser and optical technology; and advanced technology for laser targets.

  11. Theory of hydro-equivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Nora, R.; Betti, R.; Bose, A.; Woo, K. M.; Christopherson, A. R.; Meyerhofer, D. D. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Fusion Science Center, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Physics and/or Mechanical Engineering, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Anderson, K. S.; Shvydky, A.; Marozas, J. A.; Collins, T. J. B.; Radha, P. B.; Hu, S. X.; Epstein, R.; Marshall, F. J.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); McCrory, R. L. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Physics and/or Mechanical Engineering, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States)

    2014-05-15

    The theory of ignition for inertial confinement fusion capsules [R. Betti et al., Phys. Plasmas 17, 058102 (2010)] is used to assess the performance requirements for cryogenic implosion experiments on the Omega Laser Facility. The theory of hydrodynamic similarity is developed in both one and two dimensions and tested using multimode hydrodynamic simulations with the hydrocode DRACO [P. B. Radha et al., Phys. Plasmas 12, 032702 (2005)] of hydro-equivalent implosions (implosions with the same implosion velocity, adiabat, and laser intensity). The theory is used to scale the performance of direct-drive OMEGA implosions to the National Ignition Facility (NIF) energy scales and determine the requirements for demonstrating hydro-equivalent ignition on OMEGA. Hydro-equivalent ignition on OMEGA is represented by a cryogenic implosion that would scale to ignition on the NIF at 1.8 MJ of laser energy symmetrically illuminating the target. It is found that a reasonable combination of neutron yield and areal density for OMEGA hydro-equivalent ignition is 3 to 6 × 10{sup 13} and ∼0.3 g/cm{sup 2}, respectively, depending on the level of laser imprinting. This performance has not yet been achieved on OMEGA.

  12. ARC: A compact, high-field, fusion nuclear science facility and demonstration power plant with demountable magnets

    Energy Technology Data Exchange (ETDEWEB)

    Sorbom, B.N., E-mail: bsorbom@mit.edu; Ball, J.; Palmer, T.R.; Mangiarotti, F.J.; Sierchio, J.M.; Bonoli, P.; Kasten, C.; Sutherland, D.A.; Barnard, H.S.; Haakonsen, C.B.; Goh, J.; Sung, C.; Whyte, D.G.

    2015-11-15

    Highlights: • ARC reactor designed to have 500 MW fusion power at 3.3 m major radius. • Compact, simplified design allowed by high magnetic fields and jointed magnets. • ARC has innovative plasma physics solutions such as inboardside RF launch. • High temperature superconductors allow high magnetic fields and jointed magnets. • Liquid immersion blanket and jointed magnets greatly simplify tokamak reactor design. - Abstract: The affordable, robust, compact (ARC) reactor is the product of a conceptual design study aimed at reducing the size, cost, and complexity of a combined fusion nuclear science facility (FNSF) and demonstration fusion Pilot power plant. ARC is a ∼200–250 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has rare earth barium copper oxide (REBCO) superconducting toroidal field coils, which have joints to enable disassembly. This allows the vacuum vessel to be replaced quickly, mitigating first wall survivability concerns, and permits a single device to test many vacuum vessel designs and divertor materials. The design point has a plasma fusion gain of Q{sub p} ≈ 13.6, yet is fully non-inductive, with a modest bootstrap fraction of only ∼63%. Thus ARC offers a high power gain with relatively large external control of the current profile. This highly attractive combination is enabled by the ∼23 T peak field on coil achievable with newly available REBCO superconductor technology. External current drive is provided by two innovative inboard RF launchers using 25 MW of lower hybrid and 13.6 MW of ion cyclotron fast wave power. The resulting efficient current drive provides a robust, steady state core plasma far from disruptive limits. ARC uses an all-liquid blanket, consisting of low pressure, slowly flowing fluorine lithium beryllium (FLiBe) molten salt. The liquid blanket is low-risk technology and provides effective neutron moderation and shielding, excellent

  13. Team Update on North American Proton Facilities for Radiation Testing

    Science.gov (United States)

    LaBel, Kenneth A.; Turflinger, Thomas; Haas, Thurman; George, Jeffrey; Moss, Steven; Davis, Scott; Kostic, Andrew; Wie, Brian; Reed, Robert; Guertin, Steven; Wert, Jerry; Foster, Charles

    2016-01-01

    In the wake of the closure of the Indiana University Cyclotron Facility (IUCF), this presentation provides an overview of the options for North American proton facilities. This includes those in use by the aerospace community as well as new additions from the cancer therapy regime. In addition, proton single event testing background is provided for understanding the criteria needed for these facilities for electronics testing.

  14. IFMIF, International Fusion Materials Irradiation Facility conceptual design activity cost report

    Energy Technology Data Exchange (ETDEWEB)

    Rennich, M.J. [comp.

    1996-12-01

    This report documents the cost estimate for the International Fusion Materials Irradiation Facility (IFMIF) at the completion of the Conceptual Design Activity (CDA). The estimate corresponds to the design documented in the Final IFMIF CDA Report. In order to effectively involve all the collaborating parties in the development of the estimate, a preparatory meeting was held at Oak Ridge National Laboratory in March 1996 to jointly establish guidelines to insure that the estimate was uniformly prepared while still permitting each country to use customary costing techniques. These guidelines are described in Section 4. A preliminary cost estimate was issued in July 1996 based on the results of the Second Design Integration Meeting, May 20--27, 1996 at JAERI, Tokai, Japan. This document served as the basis for the final costing and review efforts culminating in a final review during the Third IFMIF Design Integration Meeting, October 14--25, 1996, ENEA, Frascati, Italy. The present estimate is a baseline cost estimate which does not apply to a specific site. A revised cost estimate will be prepared following the assignment of both the site and all the facility responsibilities.

  15. The National Ignition Facility: The Path to Ignition, High Energy Density Science and Inertial Fusion Energy

    Energy Technology Data Exchange (ETDEWEB)

    Moses, E

    2011-03-25

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is a Nd:Glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light. This world's most energetic laser system is now operational with the goals of achieving thermonuclear burn in the laboratory and exploring the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in the interiors of planetary and stellar environments. On September 29, 2010, NIF performed the first integrated ignition experiment which demonstrated the successful coordination of the laser, the cryogenic target system, the array of diagnostics and the infrastructure required for ignition. Many more experiments have been completed since. In light of this strong progress, the U.S. and the international communities are examining the implication of achieving ignition on NIF for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a 10% electrical-optical efficiency laser, as well as further advances in large-scale target fabrication, target injection and tracking, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in 10- to 15-years. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Energy (LIFE) baseline design and examining various technology choices for LIFE power plant This paper will describe the unprecedented experimental capabilities of the NIF, the results achieved so far on the path toward ignition, the start of fundamental science experiments and plans to transition NIF to an international user facility

  16. 10 CFR 26.125 - Licensee testing facility personnel.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Licensee testing facility personnel. 26.125 Section 26.125 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.125..., medical technology, or equivalent. He or she shall also have training and experience in the theory...

  17. Magnetic Test Facility - Sensor and Coil Calibrations

    Science.gov (United States)

    2013-08-01

    Magnetometers were taken to a low-noise magnetic facility located at the Defence Es- tablishment, Orchard Hills in Sydney. Sensors were then individually...Calibration of triaxial fluxgate gradiometer, Journal of Applied Physics, 99(8), pp. 08D913 –08D913–3. WANG-X. (2008). Automatic and adaptive correction of

  18. An Injector Test Facility for the LCLS

    Energy Technology Data Exchange (ETDEWEB)

    Colby, E., (ed.); /SLAC

    2007-03-14

    SLAC is in the privileged position of being the site for the world's first 4th generation light source as well as having a premier accelerator research staff and facilities. Operation of the world's first x-ray free electron laser (FEL) facility will require innovations in electron injectors to provide electron beams of unprecedented quality. Upgrades to provide ever shorter wavelength x-ray beams of increasing intensity will require significant advances in the state-of-the-art. The BESAC 20-Year Facilities Roadmap identifies the electron gun as ''the critical enabling technology to advance linac-based light sources'' and recognizes that the sources for next-generation light sources are ''the highest-leveraged technology'', and that ''BES should strongly support and coordinate research and development in this unique and critical technology''.[1] This white paper presents an R&D plan and a description of a facility for developing the knowledge and technology required to successfully achieve these upgrades, and to coordinate efforts on short-pulse source development for linac-based light sources.

  19. Test facility of thermal storage equipment for space power generation

    Science.gov (United States)

    Inoue, T.; Nakagawa, M.; Mochida, Y.; Ohtomo, F.; Shimizu, K.; Tanaka, K.; Abe, Y.; Nomura, O.; Kamimoto, M.

    A thermal storage equipment test facility has been built in connection with developing solar dynamic power systems (SDPSs). The test facility consists of a recuperative closed Brayton cycle system (CBC), with a mixture of helium and xenon with a molecular weight of 39.9 serving as the working fluid. CBC has been shown to be the most attractive power generation system among several types of SDPSs because of its ability to meet the required high power demand and its thermal efficiency, about 30 percent. The authors present a description of this test facility and give results of the preliminary test and the first-stage test with heat storage equipment.

  20. Thermal-structural test facilities at NASA Dryden

    Science.gov (United States)

    Deangelis, V. Michael; Anderson, Karl F.

    1992-01-01

    The National Aero-Space Plane (NASP) has renewed interest in hypersonic flight and hot-structures technology development for both the airframe and engine. The NASA Dryden Thermostructures Research Facility is a unique national facility that was designed to conduct thermal-mechanical tests on aircraft and aircraft components by simulating the flight thermal environment in the laboratory. The layout of the facility is presented, which includes descriptions of the high-bay test area, the instrumentation laboratories, the mechanical loading systems, and the state-of-the-art closed-loop thermal control system. The hot-structures test capability of the facility is emphasized by the Mach-3 thermal simulation conducted on the YF-12 airplane. The Liquid-Hydrogen Structural Test Facility, which is presently in the design phase, will provide the capability of thermally testing structures containing hydrogen.

  1. FY11 Facility Assessment Study for Aeronautics Test Program

    Science.gov (United States)

    Loboda, John A.; Sydnor, George H.

    2013-01-01

    This paper presents the approach and results for the Aeronautics Test Program (ATP) FY11 Facility Assessment Project. ATP commissioned assessments in FY07 and FY11 to aid in the understanding of the current condition and reliability of its facilities and their ability to meet current and future (five year horizon) test requirements. The principle output of the assessment was a database of facility unique, prioritized investments projects with budgetary cost estimates. This database was also used to identify trends for the condition of facility systems.

  2. Laser fusion monthly -- August 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstrom, H.G. [ed.

    1980-08-01

    This report documents the monthly progress for the laser fusion research at Lawrence Livermore National Laboratory. First it gives facilities report for both the Shiva and Argus projects. Topics discussed include; laser system for the Nova Project; the fusion experiments analysis facility; optical/x-ray streak camera; Shiva Dante System temporal response; 2{omega}{sub 0} experiment; and planning for an ICF engineering test facility.

  3. Space nuclear thermal propulsion test facilities accommodation at INEL

    Science.gov (United States)

    Hill, Thomas J.; Reed, William C.; Welland, Henry J.

    1993-01-01

    The U.S. Air Force (USAF) has proposed to develop the technology and demonstrate the feasibility of a particle bed reactor (PBR) propulsion system that could be used to power an advanced upper stage rocket engine. The U.S. Department of Energy (DOE) is cooperating with the USAF in that it would host the test facility if the USAF decides to proceed with the technology demonstration. Two DOE locations have been proposed for testing the PBR technology, a new test facility at the Nevada Test Site, or the modification and use of an existing facility at the Idaho National Engineering Laboratory. The preliminary evaluations performed at the INEL to support the PBR technology testing has been completed. Additional evaluations to scope the required changes or upgrade needed to make the proposed USAF PBR test facility meet the requirements for testing Space Exploration Initiative (SEI) nuclear thermal propulsion engines are underway.

  4. PANDA: A Multipurpose Integral Test Facility for LWR Safety Investigations

    Directory of Open Access Journals (Sweden)

    Domenico Paladino

    2012-01-01

    Full Text Available The PANDA facility is a large scale, multicompartmental thermal hydraulic facility suited for investigations related to the safety of current and advanced LWRs. The facility is multipurpose, and the applications cover integral containment response tests, component tests, primary system tests, and separate effect tests. Experimental investigations carried on in the PANDA facility have been embedded in international projects, most of which under the auspices of the EU and OECD and with the support of a large number of organizations (regulatory bodies, technical dupport organizations, national laboratories, electric utilities, industries worldwide. The paper provides an overview of the research programs performed in the PANDA facility in relation to BWR containment systems and those planned for PWR containment systems.

  5. Fusion nuclear science facilities and pilot plants based on the spherical tokamak

    Science.gov (United States)

    Menard, J. E.; Brown, T.; El-Guebaly, L.; Boyer, M.; Canik, J.; Colling, B.; Raman, R.; Wang, Z.; Zhai, Y.; Buxton, P.; Covele, B.; D'Angelo, C.; Davis, A.; Gerhardt, S.; Gryaznevich, M.; Harb, M.; Hender, T. C.; Kaye, S.; Kingham, D.; Kotschenreuther, M.; Mahajan, S.; Maingi, R.; Marriott, E.; Meier, E. T.; Mynsberge, L.; Neumeyer, C.; Ono, M.; Park, J.-K.; Sabbagh, S. A.; Soukhanovskii, V.; Valanju, P.; Woolley, R.

    2016-10-01

    A fusion nuclear science facility (FNSF) could play an important role in the development of fusion energy by providing the nuclear environment needed to develop fusion materials and components. The spherical torus/tokamak (ST) is a leading candidate for an FNSF due to its potentially high neutron wall loading and modular configuration. A key consideration for the choice of FNSF configuration is the range of achievable missions as a function of device size. Possible missions include: providing high neutron wall loading and fluence, demonstrating tritium self-sufficiency, and demonstrating electrical self-sufficiency. All of these missions must also be compatible with a viable divertor, first-wall, and blanket solution. ST-FNSF configurations have been developed simultaneously incorporating for the first time: (1) a blanket system capable of tritium breeding ratio TBR  ≈  1, (2) a poloidal field coil set supporting high elongation and triangularity for a range of internal inductance and normalized beta values consistent with NSTX/NSTX-U previous/planned operation, (3) a long-legged divertor analogous to the MAST-U divertor which substantially reduces projected peak divertor heat-flux and has all outboard poloidal field coils outside the vacuum chamber and superconducting to reduce power consumption, and (4) a vertical maintenance scheme in which blanket structures and the centerstack can be removed independently. Progress in these ST-FNSF missions versus configuration studies including dependence on plasma major radius R 0 for a range 1 m-2.2 m are described. In particular, it is found the threshold major radius for TBR  =  1 is {{R}0}≥slant 1.7 m, and a smaller R 0  =  1 m ST device has TBR  ≈  0.9 which is below unity but substantially reduces T consumption relative to not breeding. Calculations of neutral beam heating and current drive for non-inductive ramp-up and sustainment are described. An A  =  2, R 0

  6. Mine-detection test facilities at TNO-FEL test location "Waalsdorp"

    NARCIS (Netherlands)

    Rhebergen, J.B.; Zwamborn, A.P.M.

    1998-01-01

    As part of the TNO-FEL Ultra-Wide-Band Ground-Penetrating-Radar (UWB-GPR) project, a test facility for controlled GPR experiments was planned. Construction of this sand-box test facility has recently been completed. At the same site another test facility, for evaluating various commercial of the

  7. Mine-detection test facilities at TNO-FEL test location "Waalsdorp"

    NARCIS (Netherlands)

    Rhebergen, J.B.; Zwamborn, A.P.M.

    1998-01-01

    As part of the TNO-FEL Ultra-Wide-Band Ground-Penetrating-Radar (UWB-GPR) project, a test facility for controlled GPR experiments was planned. Construction of this sand-box test facility has recently been completed. At the same site another test facility, for evaluating various commercial of the she

  8. Alleviation of Facility/Engine Interactions in an Open-Jet Scramjet Test Facility

    Science.gov (United States)

    Albertson, Cindy W.; Emami, Saied

    2001-01-01

    Results of a series of shakedown tests to eliminate facility/engine interactions in an open-jet scramjet test facility are presented. The tests were conducted with the NASA DFX (Dual-Fuel eXperimental scramjet) engine in the NASA Langley Combustion Heated Scramjet Test Facility (CHSTF) in support of the Hyper-X program, The majority of the tests were conducted at a total enthalpy and pressure corresponding to Mach 5 flight at a dynamic pressure of 734 psf. The DFX is the largest engine ever tested in the CHSTF. Blockage, in terms of the projected engine area relative to the nozzle exit area, is 81% with the engine forebody leading edge aligned with the upper edge of the facility nozzle such that it ingests the nozzle boundary layer. The blockage increases to 95% with the engine forebody leading edge positioned 2 in. down in the core flow. Previous engines successfully tested in the CHSTF have had blockages of no more than 51%. Oil flow studies along with facility and engine pressure measurements were used to define flow behavior. These results guided modifications to existing aeroappliances and the design of new aeroappliances. These changes allowed fueled tests to be conducted without facility interaction effects in the data with the engine forebody leading edge positioned to ingest the facility nozzle boundary layer. Interaction effects were also reduced for tests with the engine forebody leading edge positioned 2 in. into the core flow, however some interaction effects were still evident in the engine data. A new shroud and diffuser have been designed with the goal of allowing fueled tests to be conducted with the engine forebody leading edge positioned in the core without facility interaction effects in the data. Evaluation tests of the new shroud and diffuser will be conducted once ongoing fueled engine tests have been completed.

  9. Inference of total DT fusion neutron yield from prompt gamma-ray measurements at the National Ignition Facility

    Science.gov (United States)

    Church, J. A.; Herrmann, H. W.; Stoeffl, W.; Caggiano, J. A.; Cerjan, C.; Sayre, D.

    2014-10-01

    Prompt D-T fusion gamma-rays measured at the National Ignition Facility (NIF) with the Gamma-ray Reaction History detector (GRH) have been used recently to infer the total DT fusion neutron yield of inertial confinement fusion (ICF) implosions. DT fusion produces energetic gamma-rays (16.75 MeV) with a small branching ratio of approximately (4.2 +/- 2.0)e-5 γ/n. While the large error bar precludes use of the branching ratio for an accurate yield determination, the gamma-rays themselves provide the most unperturbed measure of fusion burn and can be used for such a purpose. A cross-calibration for the DT fusion gamma-ray to neutron signal is obtained via low areal density exploding pusher implosions which have mostly unperturbed neutron and gamma-ray signals. The calibration is then used to infer total DT neutron yield from gamma-ray measurements on high areal-density, cryogenically layered implosions in which neutrons are heavily down-scattered (up to 30%). Furthermore, the difference between the gamma-ray inferred total DT yield and the primary neutron yield (unscattered neutrons) can be used to estimate the total down-scatter fraction. Error analysis and comparison of yield values will be presented. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, LLNL-ABS-657694.

  10. Space Power Facility-Capabilities for Space Environmental Testing Within a Single Facility

    Science.gov (United States)

    Sorge, Richard N.

    2013-01-01

    The purpose of this paper is to describe the current and near-term environmental test capabilities of the NASA Glenn Research Center's Space Power Facility (SPF) located at Sandusky, Ohio. The paper will present current and near-term capabilities for conducting electromagnetic interference and compatibility testing, base-shake sinusoidal vibration testing, reverberant acoustic testing, and thermal-vacuum testing. The paper will also present modes of transportation, handling, ambient environments, and operations within the facility to conduct those tests. The SPF is in the midst of completing and activating new or refurbished capabilities which, when completed, will provide the ability to conduct most or all required full-scale end-assembly space simulation tests at a single test location. It is envisioned that the capabilities will allow a customer to perform a wide range of space simulation tests in one facility at reasonable cost.

  11. Tests of composite materials at cryogenic temperatures facilities and results

    CERN Document Server

    Dahlerup-Petersen, K

    1980-01-01

    The design and installation of test facilities for the determination of macromechanical and thermal properties of fiber-reinforced polymer materials at temperatures down to 4.2K are presented. Construction and performance details are given for the following test equipment: quasi- static-tensile and compression-test facilities equipped with an automatic data acquisition system for calculation of material properties, deformation characteristics and various statistics; a thermal contraction-expansion measuring system; a thermal conductivity measurement cell. (1 refs).

  12. New electron beam facility for irradiated plasma facing materials testing in hot cell

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, N.; Kawamura, H. [Oarai Research Establishment, Ibaraki-ken (Japan); Akiba, M. [Naka Research Establishment, Ibaraki-ken (Japan)

    1995-09-01

    Since plasma facing components such as the first wall and the divertor for the next step fusion reactors are exposed to high heat loads and high energy neutron flux generated by the plasma, it is urgent to develop of plasma facing components which can resist these. Then, we have established electron beam heat facility ({open_quotes}OHBIS{close_quotes}, Oarai Hot-cell electron Beam Irradiating System) at a hot cell in JMTR (Japan Materials Testing Reactor) hot laboratory in order to estimate thermal shock resistivity of plasma facing materials and heat removal capabilities of divertor elements under steady state heating. In this facility, irradiated plasma facing materials (beryllium, carbon based materials and so on) and divertor elements can be treated. This facility consists of an electron beam unit with the maximum beam power of 50kW and the vacuum vessel. The acceleration voltage and the maximum beam current are 30kV (constant) and 1.7A, respectively. The loading time of electron beam is more than 0.1ms. The shape of vacuum vessel is cylindrical, and the mainly dimensions are 500mm in inner diameter, 1000mm in height. The ultimate vacuum of this vessel is 1 x 10{sup -4}Pa. At present, the facility for thermal shock test has been established in a hot cell. And performance estimation on the electron beam is being conducted. Presently, the devices for heat loading tests under steady state will be added to this facility.

  13. Project W-049H disposal facility test report

    Energy Technology Data Exchange (ETDEWEB)

    Buckles, D.I.

    1995-01-01

    The purpose of this Acceptance Test Report (ATR) for the Project W-049H, Treated Effluent Disposal Facility, is to verify that the equipment installed in the Disposal Facility has been installed in accordance with the design documents and function as required by the project criteria.

  14. Experimental facilities for investigation of structural material properties for fusion reactor under irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, G.M.; Strebkov, Yu.S.; Sidorenkov, A.V.; Zyryanov, A.P.; Barsanov, V.I.; Shushlebin, V.V. (Research and Development Inst. of Power Engineering, Moscow (Russia)); Rybin, V.V.; Vinokurov, V.F.; Odintsov, N.B. (Central Scientific and Research Inst. of Structural Materials, St. Petersburg (Russia)); Zykanov, V.A.; Shamardin, V.K.; Kazakov, V.A. (Scientific Research Inst. of Atomic Reactors, Dimitrovgrad (Russia))

    1992-09-01

    The study of sturctural and breeding materials for fusion reactors covers a wide range of investigations including the effect of different operating factors; irradiation is the main factor. This paper presents basic reactor characteristics, the types of investigations on structural and breeding materials carried out at these reactors, and the reactor irradiation conditions. The design of equipment used for parameter control during the irradiations is also discussed. CM-2 and BOR-60 reactors are primarily used to irradiate structural materials for the blanket, first wall and divertor at temperatures of 80 and 350deg C and fluences up to 5x10[sup 22] n/cm[sup 2]. The IVV-2 reactor is used to investigate breeding blanket materials and to study the problems of hydrogen/tritium permeability and recovery from Li-Pb eutectic and through 0.4C-16Cr-11Ni-3Mo-Ti steel. In addition, there are facilities for carrying out irradiation experiments at cryogenic temperatures as well as in different media. (orig.).

  15. First Liquid Layer Inertial Confinement Fusion Implosions at the National Ignition Facility

    Science.gov (United States)

    Olson, R. E.; Leeper, R. J.; Kline, J. L.; Zylstra, A. B.; Yi, S. A.; Biener, J.; Braun, T.; Kozioziemski, B. J.; Sater, J. D.; Bradley, P. A.; Peterson, R. R.; Haines, B. M.; Yin, L.; Berzak Hopkins, L. F.; Meezan, N. B.; Walters, C.; Biener, M. M.; Kong, C.; Crippen, J. W.; Kyrala, G. A.; Shah, R. C.; Herrmann, H. W.; Wilson, D. C.; Hamza, A. V.; Nikroo, A.; Batha, S. H.

    2016-12-01

    The first cryogenic deuterium and deuterium-tritium liquid layer implosions at the National Ignition Facility (NIF) demonstrate D2 and DT layer inertial confinement fusion (ICF) implosions that can access a low-to-moderate hot-spot convergence ratio (12 NIF utilized high convergence (CR >30 ) DT ice layer implosions. Although high CR is desirable in an idealized 1D sense, it amplifies the deleterious effects of asymmetries. To date, these asymmetries prevented the achievement of ignition at the NIF and are the major cause of simulation-experiment disagreement. In the initial liquid layer experiments, high neutron yields were achieved with CRs of 12-17, and the hot-spot formation is well understood, demonstrated by a good agreement between the experimental data and the radiation hydrodynamic simulations. These initial experiments open a new NIF experimental capability that provides an opportunity to explore the relationship between hot-spot convergence ratio and the robustness of hot-spot formation during ICF implosions.

  16. Exploration of steady-state scenarios for the Fusion Development Facility (FDF)

    Science.gov (United States)

    Chan, V. S.; Garofalo, A. M.; Stambaugh, R. D.; Choi, M.; Kinsey, J. E.; Lao, L. L.; Snyder, P. B.; St. John, H. E.; Turnbull, A. D.

    2011-10-01

    A Fusion Nuclear Science Facility (FNSF) has to operate at 105 times longer duration than that of present tokamak discharges. The scalability of plasma sustainment to such a long time is an issue that needs to be resolved by scientific understanding. We carry out steady-state (SS) scenario development of the FDF (a candidate for FNSF-AT) using an iterative process toward a self-consistent solution via alternating temperature profiles and current profile evolution. The temperature profile evolves according to a physics-based transport model GLF23. SS requires large off-axis current drive (CD). To achieve this with no NBI is highly challenging. It however simplifies tritium containment, increases area for tritium breeding, and avoids costly negative-ion NBI technology. We find that with ECH/ECCD only, too much power is required. A SS baseline equilibrium is found by adding LHCD: Qfus ~ 4 , H98 y 2 ~ 1 . 2 , fBS ~ 70 %, Pfus ~ 260 MW, PEC = 35 MW, PLH = 21 MW. The GATO ideal MHD code finds the equilibrium stable to n = 1 internal kink at κ = 2 . 3 . Work supported by General Atomics internal funds.

  17. Enhanced Computational Infrastructure for Data Analysis at the DIII-D National Fusion Facility

    Energy Technology Data Exchange (ETDEWEB)

    Schissel, D.P.; Peng, Q.; Schachter, J.; Terpstra, T.B.; Casper, T.A.; Freeman, J.; Jong, R.; Keith, K.M.; Meyer, W.H.; Parker, C.T.

    1999-08-01

    Recently a number of enhancements to the computer hardware infrastructure have been implemented at the DIII-D National Fusion Facility. Utilizing these improvements to the hardware infrastructure, software enhancements are focusing on streamlined analysis, automation, and graphical user interface (GUI) systems to enlarge the user base. The adoption of the load balancing software package LSF Suite by Platform Computing has dramatically increased the availability of CPU cycles and the efficiency of their use. Streamlined analysis has been aided by the adoption of the MDSplus system to provide a unified interface to analyzed DIII-D data. The majority of MDSplus data is made available in between pulses giving the researcher critical information before setting up the next pulse. Work on data viewing and analysis tools focuses on efficient GUI design with object-oriented programming (OOP) for maximum code flexibility. Work to enhance the computational infrastructure at DIII-D has included a significant effort to aid the remote collaborator since the DIII-D National Team consists of scientists from 9 national laboratories, 19 foreign laboratories, 16 universities, and 5 industrial partnerships. As a result of this work, DIII-D data is available on a 24 x 7 basis from a set of viewing and analysis tools that can be run either on the collaborators' or DIII-Ds computer systems. Additionally, a Web based data and code documentation system has been created to aid the novice and expert user alike.

  18. Development of robotics facility docking test hardware

    Science.gov (United States)

    Loughead, T. E.; Winkler, R. V.

    1984-01-01

    Design and fabricate test hardware for NASA's George C. Marshall Space Flight Center (MSFC) are reported. A docking device conceptually developed was fabricated, and two docking targets which provide high and low mass docking loads were required and were represented by an aft 61.0 cm section of a Hubble space telescope (ST) mockup and an upgrading of an existing multimission modular spacecraft (MSS) mockup respectively. A test plan is developed for testing the hardware.

  19. Propeller Test Facilities Â

    Data.gov (United States)

    Federal Laboratory Consortium — Description: Three electrically driven whirl test stands are used to determine propeller (or other rotating device) performance at various rotational speeds. These...

  20. Nuclear data requirements for fusion reactor nucleonics

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, M.R.; Abdou, M.A.

    1980-01-01

    Nuclear data requirements for fusion reactor nucleonics are reviewed and the present status of data are assessed. The discussion is divided into broad categories dealing with data for Fusion Materials Irradiation Test Facility (FMIT), D-T Fusion Reactors, Alternate Fuel Cycles and the Evaluated Data Files that are available or would be available in the near future.

  1. Technical Evaluation of Oak Ridge Filter Test Facility

    CERN Document Server

    Kriskovich, J R

    2002-01-01

    Two evaluations of the Oak Ridge Department of Energy (DOE) Filter Test Facility (FTF) were performed on December 11 and 12, 2001, and consisted of a quality assurance and a technical evaluation. This report documents results of the technical evaluation.

  2. Super Conducting and Conventional Magnets Test & Mapping Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — Vertical Magnet Test Facility: Accommodate a device up to 3.85 m long, 0.61 m diameter, and 14,400 lbs. Configured for 5 psig sub-cooled liquid helium bath cooling...

  3. Micro-Combined Heat and Power Device Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NIST has developed a test facility for micro-combined heat and power (micro-CHP) devices to measure their performance over a range of different operating strategies...

  4. Preconceptual design of the new production reactor circulator test facility

    Energy Technology Data Exchange (ETDEWEB)

    Thurston, G.

    1990-06-01

    This report presents the results of a study of a new circulator test facility for the New Production Reactor Modular High-Temperature Gas-Cooled Reactor. The report addresses the preconceptual design of a stand-alone test facility with all the required equipment to test the Main Circulator/shutoff valve and Shutdown Cooling Circulator/shutoff valve. Each type of circulator will be tested in its own full flow, full power helium test loop. Testing will cover the entire operating range of each unit. The loop will include a test vessel, in which the circulator/valve will be mounted, and external piping. The external flow piping will include a throttle valve, flowmeter, and heat exchanger. Subsystems will include helium handling, helium purification, and cooling water. A computer-based data acquisition and control system will be provided. The estimated costs for the design and construction of this facility are included. 2 refs., 15 figs.

  5. Performance evolution of 60 kA HTS cable prototypes in the EDIPO test facility

    Science.gov (United States)

    Bykovsky, N.; Uglietti, D.; Sedlak, K.; Stepanov, B.; Wesche, R.; Bruzzone, P.

    2016-08-01

    During the first test campaign of the 60 kA HTS cable prototypes in the EDIPO test facility, the feasibility of a novel HTS fusion cable concept proposed at the EPFL Swiss Plasma Center (SPC) was successfully demonstrated. While the measured DC performance of the prototypes at magnetic fields from 8 T to 12 T and for currents from 30 kA to 70 kA was close to the expected one, an initial electromagnetic cycling test (1000 cycles) revealed progressive degradation of the performance in both the SuperPower and SuperOx conductors. Aiming to understand the reasons for the degradation, additional cycling (1000 cycles) and warm up-cool down tests were performed during the second test campaign. I c performance degradation of the SuperOx conductor reached ∼20% after about 2000 cycles, which was reason to continue with a visual inspection of the conductor and further tests at 77 K. AC tests were carried out at 0 and 2 T background fields without transport current and at 10 T/50 kA operating conditions. Results obtained in DC and AC tests of the second test campaign are presented and compared with appropriate data published recently. Concluding the first iteration of the HTS cable development program at SPC, a summary and recommendations for the next activity within the HTS fusion cable project are also reported.

  6. Qualification tests and facilities for the ITER superconductors

    Science.gov (United States)

    Bruzzone, P.; Wesche, R.; Stepanov, B.; Cau, F.; Bagnasco, M.; Calvi, M.; Herzog, R.; Vogel, M.

    2009-06-01

    All the ITER superconductors are tested as short length samples in the SULTAN test facility at CRPP. Twenty-four TF conductor samples with small layout variations were tested since February 2007 with the aim of verifying the design and qualification of the manufacturers. The sample assembly and the measurement techniques at CRPP are discussed. Starting in 2010, another test facility for ITER conductors, named EDIPO, will be operating at CRPP to share with SULTAN the load of the samples for the acceptance tests during the construction of ITER.

  7. Calibration of Results of Water Meter Test Facility

    OpenAIRE

    Andrius Bončkus; Gediminas Gediminas

    2011-01-01

    The results of water meter test facility calibration are presented. More than 30 test facilities are used in Lithuania nowadays. All of them are certificated for water meter of class 2 verification. The results of inter-laboratory comparison of multi-jet water meter calibration at flow rate Q = 5 m3/h are presented. Lithuanian Energy Institute was appointed as reference laboratory for the comparison. Twelve water meter verification and calibration laboratories from Lithuania participated in t...

  8. An Assessment of Testing Requirement Impacts on Nuclear Thermal Propulsion Ground Test Facility Design

    Science.gov (United States)

    Shipers, Larry R.; Ottinger, Cathy A.; Sanchez, Lawrence C.

    1994-07-01

    Programs to develop solid core nuclear thermal propulsion (NTP) systems have been under way at the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA), and the Department of Energy (DOE). These programs have recognized the need for a new ground test facility to support development of NTP systems. However, the different military and civilian applications have led to different ground test facility requirements. The Department of Energy (DOE) in its role as landlord and operator of the proposed research reactor test facilities has initiated an effort to explore opportunities for a common ground test facility to meet both DoD and NASA needs. The baseline design and operating limits of the proposed DoD NTP ground test facility are described. The NASA ground test facility requirements are reviewed and their potential impact on the DoD facility baseline is discussed.

  9. An assessment of testing requirement impacts on nuclear thermal propulsion ground test facility design

    Energy Technology Data Exchange (ETDEWEB)

    Shipers, L.R.; Ottinger, C.A.; Sanchez, L.C.

    1993-10-25

    Programs to develop solid core nuclear thermal propulsion (NTP) systems have been under way at the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA), and the Department of Energy (DOE). These programs have recognized the need for a new ground test facility to support development of NTP systems. However, the different military and civilian applications have led to different ground test facility requirements. The Department of Energy (DOE) in its role as landlord and operator of the proposed research reactor test facilities has initiated an effort to explore opportunities for a common ground test facility to meet both DoD and NASA needs. The baseline design and operating limits of the proposed DoD NTP ground test facility are described. The NASA ground test facility requirements are reviewed and their potential impact on the DoD facility baseline is discussed.

  10. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume III

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, M.

    1984-10-01

    This chapter deals with the analysis and engineering scaling of solid breeded blankets. The limits under which full component behavior can be achieved under changed test conditions are explored. The characterization of these test requirements for integrated testing contributes to the overall test matrix and test plan for the understanding and development of fusion nuclear technology. The second chapter covers the analysis and engineering scaling of liquid metal blankets. The testing goals for a complete blanket program are described. (MOW)

  11. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume III

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, M.

    1984-10-01

    This chapter deals with the analysis and engineering scaling of solid breeded blankets. The limits under which full component behavior can be achieved under changed test conditions are explored. The characterization of these test requirements for integrated testing contributes to the overall test matrix and test plan for the understanding and development of fusion nuclear technology. The second chapter covers the analysis and engineering scaling of liquid metal blankets. The testing goals for a complete blanket program are described. (MOW)

  12. Fast Flux Test Facility (FFTF) standby plan

    Energy Technology Data Exchange (ETDEWEB)

    Hulvey, R.K.

    1997-03-06

    The FFTF Standby Plan, Revision 0, provides changes to the major elements and project baselines to maintain the FFTF plant in a standby condition and to continue washing sodium from irradiated reactor fuel. The Plan is consistent with the Memorandum of Decision approved by the Secretary of Energy on January 17, 1997, which directed that FFTF be maintained in a standby condition to permit the Department to make a decision on whether the facility should play a future role in the Department of Energy`s dual track tritium production strategy. This decision would be made in parallel with the intended December 1998 decision on the selection of the primary, long- term source of tritium. This also allows the Department to review the economic and technical feasibility of using the FFTF to produce isotopes for the medical community. Formal direction has been received from DOE-RL and Fluor 2020 Daniel Hanford to implement the FFTF standby decision. The objective of the Plan is maintain the condition of the FFTF systems, equipment and personnel to preserve the option for plant restart within three and one-half years of a decision to restart, while continuing deactivation work which is consistent with the standby mode.

  13. Gyrotron development at KIT: FULGOR test facility and gyrotron concepts for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, M., E-mail: martin.schmid@kit.edu [Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany); Franck, J.; Kalaria, P.; Avramidis, K.A.; Gantenbein, G.; Illy, S. [Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany); Jelonnek, J. [Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany); Institute of High Frequency Techniques and Electronics (IHE), Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany); Pagonakis, I. Gr.; Rzesnicki, T. [Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany); Thumm, M. [Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany); Institute of High Frequency Techniques and Electronics (IHE), Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany)

    2015-10-15

    Highlights: • Substantial extension of the KIT gyrotron test facility FULGOR has started. • FULGOR will be able to test gyrotrons with continuous RF output power up to 4 MW. • Design of 240 GHz gyrotrons for efficient electron cyclotron current drive is progressing. • Output power of 240 GHz gyrotrons with conventional cavity up to 830 kW, with coaxial cavity up to 2 MW is feasible. • Multi-frequency operation with gyrotrons is also possible (170–267 GHz). - Abstract: At the Karlsruhe Institute of Technology (KIT), theoretical and experimental foundations for the development of future gyrotrons for fusion applications are being laid down. This includes the construction of the new Fusion Long Pulse Gyrotron Laboratory (FULGOR) test facility as well as physical design studies towards DEMO-compatible gyrotrons. Initially FULGOR will comprise of a 10 MW CW power supply, a 5 MW water cooling system (upgradeable to 10 MW), a superconducting 10 T magnet, one or two 2 MW ECRH test loads and a new control and data acquisition system for all these elements. The test facility will then be equipped to test the conventional 1 MW or coaxial 2 MW gyrotrons for DEMO, currently under design, as well as possible upgraded gyrotrons for W7-X and ITER. The design of the new high voltage DC power supply (HVDCPS) is flexible enough to handle gyrotrons with 4 MW CW output power (conceivably up to 170 GHz), but also test gyrotrons with higher frequencies (>250 GHz) which, due to physical limitations in the gyrotron design, will require less power but have more stringent demands on voltage stability.

  14. Design progress on ITER port plug test facility

    Energy Technology Data Exchange (ETDEWEB)

    Levesy, B., E-mail: bruno.levesy@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Beaumont, B. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Bruno, L.; Cerisier, T. [CNIM, Z.I de Bregaillon, 83507 La Seyne sur Mer (France); Cordier, J.J.; Dammann, A.; Giancarli, L.; Henderson, M. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Romannikov, A. [ITER Agency, Russian Research Center ' Kurchatov Institute' , pl. Kurchatova I., 1, Moscow 123182 (Russian Federation); Rumyantsev, Y. [JSC ' Cryogenmash' , 143907 Moscow reg., Balashikha (Russian Federation); Udintsev, V.S. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2012-08-15

    To achieve the overall ITER machine availability target, the availability of diagnostics and heating port plugs shall be as high as 99.5%. To fulfill these requirements, it is mandatory to test the port plugs at operating temperature before installation on the machine and after refurbishment. The ITER port plug test facility (PPTF) provides the possibility to test upper and equatorial port plugs before installation on the machine. The port plug test facility is composed of several test stands. These test stands are first used in the domestic agencies and on the ITER Organization site to test the port plugs at the end of manufacturing. Two of these stands are installed later in the ITER hot cell facility to test the port plugs after refurbishment. The port plugs to be tested are the Ion Cyclotron (IC) heating and current drive antennas, Electron Cyclotron (EC) heating and current drive launchers, diagnostics and test blanket modules port plugs. Test stands shall be capable to perform environmental and functional tests. The test stands are composed of one vacuum tank (3.3 m in diameter, 5.6 m long) and the associated heating, vacuum and control systems. The vacuum tank shall achieve an ultimate pressure of 1 Multiplication-Sign 10{sup -5} Pa at 100 Degree-Sign C containing a port plug. The heating system shall provide water at 240 Degree-Sign C and 4.4 MPa to heat up the port plugs. Openings are provided on the back of the vacuum tank to insert probes for the functional tests. This paper describes the tests to be performed on the port plugs and the conceptual design of the port plug test facility. The configuration of the standalone test stands and the integration in the hot cell facility are presented.

  15. Thermal Testing Facilities and Efforts at Dryden Flight Research Center

    Science.gov (United States)

    Holguin, Andrew; Kostyk, Christopher B.

    2010-01-01

    This presentation provides the thermal testing panel discussion with an overview of the thermal test facilities at the Dryden Flight Research Center (DFRC) as well as highlights from the thermal test efforts of the past year. This presentation is a little more in-depth than the corresponding material in the center overview presentation.

  16. A flight test facility design for examining digital information transfer

    Science.gov (United States)

    Knox, Charles E.

    1990-01-01

    Information is given in viewgraph form on a flight test facility design for examining digital information transfer. Information is given on aircraft/ground exchange, data link research activities, data link display format, a data link flight test, and the flight test setup.

  17. Cryocooled Facilities for Superconducting Coils Testing in Gaseous Helium

    Science.gov (United States)

    Naumov, A. V.; Keilin, V. E.; Kovalev, I. A.; Surin, M. I.; Shcherbakov, V. I.; Shevchenko, S. A.; Ilin, A. A.

    Two superconducting coil test facilities equipped by Sumitomo SRDK-415D cryocoolers were developed, manufactured and tested. The motivation for their constructing was to make cheaper the testing (and especially training of LTS magnets) by liquid helium (LHe) saving. It is well known that the helium price increases rapidly and this tendency most probably will continue for a long time, as the demand of helium grows faster than its production. The utilization of heat-exchange gas considerably reduces many problems, that arise in the design of completely dry LTS magnets. The goal was to decrease or even completely avoid the consumption of rather expensive liquid helium for testing the laboratory size Nb-Ti and Nb3Sn coils including their training process. Several superconducting magnets were tested by using these facilities. For example, the first facility was successfully used for testing of 13 T, 60 kg coil cooled by cryocooler in helium gas (several torr pressure) heat exchange atmosphere. The precooling time was about 45 hours. The quench current (240 A at 4.2 K) was equal to that reached in the pool boiling LHe cryostat. The second facility with 420 mm wide access bore can be used for testing of corresponding size superconducting coils with very modest consumption of liquid helium with its level well below the lower flange of the coil. Each test facility is equipped by 2 pairs of HTS current leads. Design and operational experience of one of them is described.

  18. A method for comparison testing of window accessories: The AMSCO thermal test facility

    Energy Technology Data Exchange (ETDEWEB)

    Lexen, T.C.; Muldary, P.F.

    1985-01-01

    A test facility has been developed for the comparison of the thermal performance of window accessories. The facility is presented as a developmental tool, allowing direct comparison testing of prototypes and new products, under controlled interior and real weather conditions. Nighttime U-value testing is emphasized; testing options and limitations are discussed, along with future plans.

  19. Fuel cell hybrid drive train test facility

    NARCIS (Netherlands)

    J. Bruinsma; Edwin Tazelaar; Bram Veenhuizen; I. Zafina; H. Bosma

    2009-01-01

    Fuel cells are expected to play an important role in the near future as prime energy source on board of road-going vehicles. In order to be able to test all important functional aspects of a fuel cell hybrid drive train, the Automotive Institute of the HAN University has decided to realize a

  20. String 2, test facility for the LHC

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    String 2 is the long chain seen to the right, representing one complete cell of bending dipoles, focusing quadrupoles and corrector magnets. On 17 June 2002 the test string reached the nominal running current of 11 860 A and magnetic field of 8.335 T for the LHC.

  1. Fuel cell hybrid drive train test facility

    NARCIS (Netherlands)

    J. Bruinsma; Edwin Tazelaar; Bram Veenhuizen; I. Zafina; H. Bosma

    2009-01-01

    Fuel cells are expected to play an important role in the near future as prime energy source on board of road-going vehicles. In order to be able to test all important functional aspects of a fuel cell hybrid drive train, the Automotive Institute of the HAN University has decided to realize a station

  2. System model of a natural circulation integral test facility

    Science.gov (United States)

    Galvin, Mark R.

    The Department of Nuclear Engineering and Radiation Health Physics (NE/RHP) at Oregon State University (OSU) has been developing an innovative modular reactor plant concept since being initiated with a Department of Energy (DoE) grant in 1999. This concept, the Multi-Application Small Light Water Reactor (MASLWR), is an integral pressurized water reactor (PWR) plant that utilizes natural circulation flow in the primary and employs advanced passive safety features. The OSU MASLWR test facility is an electrically heated integral effects facility, scaled from the MASLWR concept design, that has been previously used to assess the feasibility of the concept design safety approach. To assist in evaluating operational scenarios, a simulation tool that models the test facility and is based on both test facility experimental data and analytical methods has been developed. The tool models both the test facility electric core and a simulated nuclear core, allowing evaluation of a broad spectrum of operational scenarios to identify those scenarios that should be explored experimentally using the test facility or design-quality multi-physics tools. Using the simulation tool, the total cost of experimentation and analysis can be reduced by directing time and resources towards the operational scenarios of interest.

  3. Test facilities for evaluating nuclear thermal propulsion systems

    Science.gov (United States)

    Beck, David F.; Allen, George C.; Shipers, Larry R.; Dobranich, Dean; Ottinger, Cathy A.; Harmon, Charles D.; Fan, Wesley C.; Todosow, Michael

    1993-01-01

    Interagency panels evaluating nuclear thermal propulsion (NTP) development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and baseline performance of some of the major subsystems designed to support a proposed ground test complex for evaluating nuclear thermal propulsion fuel elements and engines being developed for the Space Nuclear Thermal Propulsion (SNTP) program. Some preliminary results of evaluating this facility for use in testing other NTP concepts are also summarized.

  4. Feasibility study for Facility Design Accelerators TechnoFusion; Estudio de viabilidad para el diseno de la instalacion de aceleradores de technofusion

    Energy Technology Data Exchange (ETDEWEB)

    Marqueta, A.; Gonzalez, L.; Gomez, A.; Sanchez, F.; Vila, R.

    2011-07-01

    This paper TechnoFusion included within the project, which aims at developing the technologies required for future commercial fusion reactors. Among the seven areas that divide, one of the most technologically demanding is the Materials Irradiation, which belongs at the Accelerator Facility, reason for this paper.

  5. LHC’s cryogenic magnet test facility

    CERN Multimedia

    1994-01-01

    This string of magnets was designed to test the cryogenic systems that will keep the LHC colder than 270 degrees below zero. The LHC’s beams will be accelerated to an energy of 7 TeV so powerful superconducting magnets must be used to hold the beams on course as they race around the giant accelerator. These magnets are kept at 1.9 K (-270.3°C).

  6. Space exploration initiative candidate nuclear propulsion test facilities

    Science.gov (United States)

    Baldwin, Darrell; Clark, John S.

    1993-01-01

    One-page descriptions for approximately 200 existing government, university, and industry facilities which may be available in the future to support SEI nuclear propulsion technology development and test program requirements are provided. To facilitate use of the information, the candidate facilities are listed both by location (Index L) and by Facility Type (Index FT). The included one-page descriptions provide a brief narrative description of facility capability, suggest potential uses for each facility, and designate a point of contact for additional information that may be needed in the future. The Nuclear Propulsion Office at NASA Lewis presently plans to maintain, expand, and update this information periodically for use by NASA, DOE, and DOD personnel involved in planning various phases of the SEI Nuclear Propulsion Project.

  7. WIND TURBINE DRIVETRAIN TEST FACILITY DATA ACQUISITION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Mcintosh, J.

    2012-01-03

    The Wind Turbine Drivetrain Test Facility (WTDTF) is a state-of-the-art industrial facility used for testing wind turbine drivetrains and generators. Large power output wind turbines are primarily installed for off-shore wind power generation. The facility includes two test bays: one to accommodate turbine nacelles up to 7.5 MW and one for nacelles up to 15 MW. For each test bay, an independent data acquisition system (DAS) records signals from various sensors required for turbine testing. These signals include resistance temperature devices, current and voltage sensors, bridge/strain gauge transducers, charge amplifiers, and accelerometers. Each WTDTF DAS also interfaces with the drivetrain load applicator control system, electrical grid monitoring system and vibration analysis system.

  8. Biaxial wheel/hub test facility. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, G.; Grubisic, V. [eds.

    2000-07-01

    The 4{sup th} meeting aims to exchange the experience and knowledge of engineers during several presentations and discussions about new developments required for a reliable, time and cost reducing validation of the wheel/hub assembly. Tremendous development of the wheel performance, described by the ratio of the rated load (kg) versus the wheel weight (kg) had taken place during the last 5000 years. Starting from the ratio of 3 for wooden 2-piece-disc-wheels in Mesopotamia it needed nearly 1000 years to increase the ratio to approx 5 at light-weight spoke wheels for fighting carriages, found in the grave of king Tutenchamon in Egypt. Modern light alloy wheels of commercial vehicles reach values up to 160 kg/kg. Additionally the comlex design of the modern systems for cars and commercial vehicles comprising wheel, brake, hub, bearing, spindle and hub carrier, including different materials and their treatment, fasteners, press-fits, require an appropriate testing procedure. The variable loading conditions, caused by operational wheel forces, brake and torque moments including heating, may result in changing tolerances and press-fits during operation and consequently in different damage mechanisms. This can be simulated in the Biaxial Wheel Test Machine, whereby corresponding load programs are necessary. An overview about all biaxial test machines in usage at the end of 1999 is shown in the introduction. The total number is 17 for cars, 7 for commercial vehicles and 1 for trains. The six presentations of this meeting were consequently concentrated on: (a) recommendations for a standardization of load programs of the German Wheel Committee, (b) the simulation of brake and torque events and (c) the possibility for a numerical stress analyses and fatigue life assessment. (orig./AKF)

  9. Laboratory Facilities for Testing Thermal Engines

    Directory of Open Access Journals (Sweden)

    Ioan Ruja

    2010-10-01

    Full Text Available This work presents an electromechanical plant through with which is realised couples different resistant, MR (0 ÷ MRN, on the gearbox shaft of internal combustion engine. The purpose is to study the plant in phase and stationary behaviour of the main technical parameters that define the engine operation such as: torque, speed, temperature, pressure, vibration, burnt gas, noise, forces. You can take measurements to determine engine performance testing and research on improving engine thermal efficiency. With the proposed plant is built by measuring the characteristic internal combustion engines (tuning characteristic and functional characteristic and determine the technical performance of interest, optimal.

  10. Development of a Large Scale, High Speed Wheel Test Facility

    Science.gov (United States)

    Kondoleon, Anthony; Seltzer, Donald; Thornton, Richard; Thompson, Marc

    1996-01-01

    Draper Laboratory, with its internal research and development budget, has for the past two years been funding a joint effort with the Massachusetts Institute of Technology (MIT) for the development of a large scale, high speed wheel test facility. This facility was developed to perform experiments and carry out evaluations on levitation and propulsion designs for MagLev systems currently under consideration. The facility was developed to rotate a large (2 meter) wheel which could operate with peripheral speeds of greater than 100 meters/second. The rim of the wheel was constructed of a non-magnetic, non-conductive composite material to avoid the generation of errors from spurious forces. A sensor package containing a multi-axis force and torque sensor mounted to the base of the station, provides a signal of the lift and drag forces on the package being tested. Position tables mounted on the station allow for the introduction of errors in real time. A computer controlled data acquisition system was developed around a Macintosh IIfx to record the test data and control the speed of the wheel. This paper describes the development of this test facility. A detailed description of the major components is presented. Recently completed tests carried out on a novel Electrodynamic (EDS) suspension system, developed by MIT as part of this joint effort are described and presented. Adaptation of this facility for linear motor and other propulsion and levitation testing is described.

  11. Aerospace Structures Test Facility Environmental Test Chambers (ETC)

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The ETCs test the structural integrity of aerospace structures in representative operating temperatures and aerodynamic load distributions. The test article...

  12. Integral Test Facility PKL: Experimental PWR Accident Investigation

    OpenAIRE

    2012-01-01

    Investigations of the thermal-hydraulic behavior of pressurized water reactors under accident conditions have been carried out in the PKL test facility at AREVA NP in Erlangen, Germany for many years. The PKL facility models the entire primary side and significant parts of the secondary side of a pressurized water reactor (PWR) at a height scale of 1 : 1. Volumes, power ratings and mass flows are scaled with a ratio of 1 : 145. The experimental facility consists of 4 primary loops with circul...

  13. Boundary and PMI Diagnostics for the DIII-D National Fusion Facility

    Science.gov (United States)

    Thomas, D. M.; Bray, B. D.; Chrobak, C.; Leonard, A. W.; Allen, S. L.; Lasnier, C. J.; McLean, A. G.; Briesemeister, A. R.; Boedo, J. A.; Elder, D.; Watkins, J. G.

    2014-10-01

    The Boundary and Plasma Materials Interaction Center is planning an improved set of boundary and divertor diagnostics for DIII-D in order to develop and validate robust heat flux solutions for future fusion devices on a timescale relevant to the design of FNSF. We intend to develop and test advanced divertor configurations on DIII-D using high performance plasma scenarios that are compatible with advanced tokamak operations in FNSF as well as providing a comprehensive testbed for modeling. Simultaneously, candidate PFC material solutions can be easily tested in these scenarios. Additional diagnostic capability is vital to help understand and validate these solutions. We will describe a number of desired measurements and our plans for deployment. These include better accounting of divertor radiation, including species identification and spatial distribution, divertor/SOL main ion temperature and neutral pressure, fuller 2D Te /ne imaging, and toroidally separated 3D heat flux measurements. Work supported by the US Department of Energy under DE-FC02-04ER54698, DE-AC52-07NA27344, DE-AC05-00OR22725, DE-FG02-07EAR54917, and DE-AC04-94AL85000.

  14. Photovoltaic test facility at Florida solar energy center

    Energy Technology Data Exchange (ETDEWEB)

    Atmanam, G.; Maytrott, C.; Wedekind, D.

    1984-05-01

    A photovoltaic flexible test facility has been developed at the Florida Solar Energy Center. The primary objective was to provide a test bed so that a variety of advanced technology subsystems (arrays and power conditioners) can be characterized and evaluated expeditiously in grid-interactive photovoltaic system operation. Also the systems' and subsystems' safety and reliability can be tested under imposed utility fault and extreme conditions. Such conditions include the utility outage, utility underand over-voltage and possible transient surges. The facility is designed to incorporate two complete parallel photovoltaic systems, one including the roof-mounted array and the other the tracking/adjustable array. The initial performance and test results are presented here along with a description of the facility.

  15. Electromagnetic Interference/Compatibility (EMI/EMC) Control Test and Measurement Facility: User Test Planning Guide

    Science.gov (United States)

    Scully, Robert C.

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the EMI/EMC Test Facility. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  16. 200 area effluent treatment facility opertaional test report

    Energy Technology Data Exchange (ETDEWEB)

    Crane, A.F.

    1995-10-26

    This document reports the results of the 200 Area Effluent Treatment Facility (200 Area ETF) operational testing activities. These Operational testing activities demonstrated that the functional, operational and design requirements of the 200 Area ETF have been met and identified open items which require retesting.

  17. Development of a fault test experimental facility model using Matlab

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Iraci Martinez; Moraes, Davi Almeida, E-mail: martinez@ipen.br, E-mail: dmoraes@dk8.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The Fault Test Experimental Facility was developed to simulate a PWR nuclear power plant and is instrumented with temperature, level and pressure sensors. The Fault Test Experimental Facility can be operated to generate normal and fault data, and these failures can be added initially small, and their magnitude being increasing gradually. This work presents the Fault Test Experimental Facility model developed using the Matlab GUIDE (Graphical User Interface Development Environment) toolbox that consists of a set of functions designed to create interfaces in an easy and fast way. The system model is based on the mass and energy inventory balance equations. Physical as well as operational aspects are taken into consideration. The interface layout looks like a process flowchart and the user can set the input variables. Besides the normal operation conditions, there is the possibility to choose a faulty variable from a list. The program also allows the user to set the noise level for the input variables. Using the model, data were generated for different operational conditions, both under normal and fault conditions with different noise levels added to the input variables. Data generated by the model will be compared with Fault Test Experimental Facility data. The Fault Test Experimental Facility theoretical model results will be used for the development of a Monitoring and Fault Detection System. (author)

  18. The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies

    Energy Technology Data Exchange (ETDEWEB)

    Moses, E I; Wuest, C R

    2002-10-16

    The National Ignition Facility (NIF), currently under construction at the University of California's Lawrence Livermore National Laboratory, is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, 351-nm laser system and a 10-meter diameter target chamber with room for nearly 100 experimental diagnostics. NIF is being built by the National Nuclear Security Administration and when completed will be the world's largest laser experimental system, providing a national center to study inertial confinement fusion and the physics of matter at extreme energy densities and pressures. NIF will provide 192 energetic laser beams that will compress small fusion targets to conditions where they will ignite and burn, liberating more energy than is required to initiate the fusion reactions. NIF experiments will allow the study of physical processes at temperatures approaching 100 million K and 100 billion times atmospheric pressure. These conditions exist naturally only in the interior of stars and in nuclear weapons explosions. In the course of designing the world's most energetic laser system, a number of significant technology breakthroughs have been achieved. Research is also underway to develop a shorter pulse capability on NIF for very high power and extreme electromagnetic field research and applications. We discuss here the technology challenges and solutions that have made NIF possible, along with enhancements to NIF's design that could lead to near-exawatt power levels.

  19. The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies

    Energy Technology Data Exchange (ETDEWEB)

    Moses, E I

    2002-01-11

    The National Ignition Facility (NIF), currently under construction at the University of California's Lawrence Livermore National Laboratory is a $2.25B stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, 351-nm laser system. NIF is being built by the National Nuclear Security Agency and when completed will be the world's largest laser system, providing a national center to study inertial confinement fusion and the physics of extreme energy densities and pressures. In NIF up to 192 energetic laser beams will compress small fusion targets to conditions where they will ignite and burn, liberating more energy than is required to initiate the fusion reactions. NIF experiments will allow the study of physical processes at temperatures approaching 100 million K and 100 billion times atmospheric pressure. These conditions exist naturally only in the interior of stars and in nuclear weapons explosions. In the course of designing the world's most energetic laser system, a number of significant technology breakthroughs have been achieved. Research is also underway to develop a shorter pulse capability on NIF for high power applications. We discuss here the technology challenges and solutions that have made NIF possible along with enhancements to NIF's design that could lead to exawatt power levels.

  20. Facility for cold flow testing of solid rocket motor models

    Science.gov (United States)

    Bacchus, D. L.; Hill, O. E.; Whitesides, R. Harold

    1992-02-01

    A new cold flow test facility was designed and constructed at NASA Marshall Space Flight Center for the purpose of characterizing the flow field in the port and nozzle of solid propellant rocket motors (SRM's). A National Advisory Committee was established to include representatives from industry, government agencies, and universities to guide the establishment of design and instrumentation requirements for the new facility. This facility design includes the basic components of air storage tanks, heater, submicron filter, quiet control valve, venturi, model inlet plenum chamber, solid rocket motor (SRM) model, exhaust diffuser, and exhaust silencer. The facility was designed to accommodate a wide range of motor types and sizes from small tactical motors to large space launch boosters. This facility has the unique capability of testing ten percent scale models of large boosters such as the new Advanced Solid Rocket Motor (ASRM), at full scale motor Reynolds numbers. Previous investigators have established the validity of studying basic features of solid rocket motor development programs include the acquisition of data to (1) directly evaluate and optimize the design configuration of the propellant grain, insulation, and nozzle; and (2) provide data for validation of the computational fluid dynamics, (CFD), analysis codes and the performance analysis codes. A facility checkout model was designed, constructed, and utilized to evaluate the performance characteristics of the new facility. This model consists of a cylindrical chamber and converging/diverging nozzle with appropriate manifolding to connect it to the facility air supply. It was designed using chamber and nozzle dimensions to simulate the flow in a 10 percent scale model of the ASRM. The checkout model was recently tested over the entire range of facility flow conditions which include flow rates from 9.07 to 145 kg/sec (20 to 320 Ibm/sec) and supply pressure from 5.17 x 10 exp 5 to 8.27 x 10 exp 6 Pa. The

  1. High Power RF Test Facility at the SNS

    CERN Document Server

    Kang, Yoon W; Campisi, Isidoro E; Champion, Mark; Crofford, Mark; Davis, Kirk; Drury, Michael A; Fuja, Ray E; Gurd, Pamela; Kasemir, Kay-Uwe; McCarthy, Michael P; Powers, Tom; Shajedul Hasan, S M; Stirbet, Mircea; Stout, Daniel; Tang, Johnny Y; Vassioutchenko, Alexandre V; Wezensky, Mark

    2005-01-01

    RF Test Facility has been completed in the SNS project at ORNL to support test and conditioning operation of RF subsystems and components. The system consists of two transmitters for two klystrons powered by a common high voltage pulsed converter modulator that can provide power to two independent RF systems. The waveguides are configured with WR2100 and WR1150 sizes for presently used frequencies: 402.5 MHz and 805 MHz. Both 402.5 MHz and 805 MHz systems have circulator protected klystrons that can be powered by the modulator capable of delivering 11 MW peak and 1 MW average power. The facility has been equipped with computer control for various RF processing and complete dual frequency operation. More than forty 805 MHz fundamental power couplers for the SNS superconducting linac (SCL) cavitites have been RF conditioned in this facility. The facility provides more than 1000 ft2 floor area for various test setups. The facility also has a shielded cave area that can support high power tests of normal conducti...

  2. PACTEL and PWR PACTEL Test Facilities for Versatile LWR Applications

    Directory of Open Access Journals (Sweden)

    Virpi Kouhia

    2012-01-01

    Full Text Available This paper describes construction and experimental research activities with two test facilities, PACTEL and PWR PACTEL. The PACTEL facility, comprising of reactor pressure vessel parts, three loops with horizontal steam generators, a pressurizer, and emergency core cooling systems, was designed to model the thermal-hydraulic behaviour of VVER-440-type reactors. The facility has been utilized in miscellaneous applications and experiments, for example, in the OECD International Standard Problem ISP-33. PACTEL has been upgraded and modified on a case-by-case basis. The latest facility configuration, the PWR PACTEL facility, was constructed for research activities associated with the EPR-type reactor. A significant design basis is to utilize certain parts of PACTEL, and at the same time, to focus on a proper construction of two new loops and vertical steam generators with an extensive instrumentation. The PWR PACTEL benchmark exercise was launched in 2010 with a small break loss-of-coolant accident test as the chosen transient. Both facilities, PACTEL and PWR PACTEL, are maintained fully operational side by side.

  3. Data fusion: a new concept in non-destructive testing; Fusion de donnees: un nouveau concept en controle non destructif

    Energy Technology Data Exchange (ETDEWEB)

    Georgel, B.; Lavayssiere, B.

    1995-12-31

    Non-destructive testing of some components (made of austenitic steel, or of a complex shape for example) requires quite often the use of several methods such as X-ray, ultrasonics, Eddy Currents. Then, a skilled operator is able to perform the expertise of the specimen. The main goal of this paper is to show that 3D diagnosis may be improved in term of reliability and precision by fusion of several NDT techniques. A data fusion algorithm is more that trying to improve the visualisation or the rendering of NDT data sets. It consists for each volume element, in computing a new value representing the combined information and in formulating a diagnosis on this basis. To achieve such a goal, know-how in modeling of physical phenomena and in applied mathematics is crucial. (authors). 4 refs., 2 figs.

  4. Neutron Yield and Ion Temperature from DD and DT Fusion in National Ignition Facility High-Foot Implosions

    Science.gov (United States)

    Knauer, J. P.; Gatu Johnson, M.; Frenje, J. A.; Petrasso, R. D.; Caggiano, J. A.; Callahan, D. A.; Casey, D. T.; Cerjan, C. J.; Doeppner, T.; Eckart, M. J.; Grim, G. P.; Hartouni, E. P.; Hatarik, R.; Hinkel, D. E.; Hurricane, O. A.; Kritcher, A.; Le Pape, S.; Ma, T.; Munro, D. H.; Patel, P. K.; Ralph, J. E.; Sayre, D. B.; Spears, B. K.; Yeamans, C. B.; Kilkenny, J. D.

    2015-11-01

    Simultaneous measures of neutrons emitted from DT fusion implosions are postulated to provide insight into the fuel conditions during neutron emission. Neutron spectral diagnostics of National Ignition Facility ``high-foot'' implosions measure both the DT and DD fusion neutron spectra. Equivalent ion temperature is measured from the width of the DT and DD neutron emission and the respective yields from the peak areas. This work has focused on reasons for differing inferred temperatures from the DT and DD spectra and the yield ratio. Spatial and temporal averages of the DT and DD reactivities as corrections to the homogeneous and static temperature distributions are shown. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  5. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

    2008-04-01

    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: • Identifies pre-conceptual design requirements • Develops test loop equipment schematics and layout • Identifies space allocations for each of the facility functions, as required • Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems • Identifies pre-conceptual utility and support system needs • Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs.

  6. Upgrade to Cryomodule Test Facility at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Powers; Trent Allison; G. Davis; Michael Drury; Christiana Grenoble; Lawrence King; Tomasz Plawski; Joseph Preble

    2003-09-01

    The cryomodule test facility (CMTF) was originally implemented in the late eighties for testing of a small fraction of the cryomodules during the production run for the Continuous Electron Beam Accelerator Facility [1]. The original system was built using a dedicated wiring scheme and a pair of 2 kW, 1497 MHz RF sources. This dedicated system made it difficult to test cryomodules and other RF structures of non-standard configuration. Additionally, due to a previously installed cyclotron, there were static magnetic fields in excess of 6 Gauss within the test cave, which limited the capability of the facility when measuring the quality factor of superconducting cavities. Testing of the Spallation Neutron Source cryomodules as well as future upgrades to the CEBAF accelerator necessitated that the facility be reconfigured to be flexible both with respect to RF source power and cryomodule wiring configuration. This paper will describe the implementation of a generalized wiring scheme t hat is easily adapted to different cryomodule configurations. It will also describe the capabilities of the LabView based low level RF controls and the related data acquisition systems currently being used to test cryomodules and related hardware. The high power RF source capabilities will be described. The magnetic shielding put in place in order to reduce the ambient magnetic file to levels below 50 mGauss will also be described.

  7. Calibration of Results of Water Meter Test Facility

    Directory of Open Access Journals (Sweden)

    Andrius Bončkus

    2011-04-01

    Full Text Available The results of water meter test facility calibration are presented. More than 30 test facilities are used in Lithuania nowadays. All of them are certificated for water meter of class 2 verification. The results of inter-laboratory comparison of multi-jet water meter calibration at flow rate Q = 5 m3/h are presented. Lithuanian Energy Institute was appointed as reference laboratory for the comparison. Twelve water meter verification and calibration laboratories from Lithuania participated in the ILC. The deviations from reference values were described by the normalized deviation En.Article in Lithuanian

  8. Overview of Linear Collider Test Facilities and Results

    CERN Document Server

    Hayano, H

    2004-01-01

    Linear Collider technology will be recommended by the International Technology Recommendation Panel (ITRP) to the International Linear Collider Steering Committee (ILCSC), soon. Towards this recommendation, many efforts of the developments and the output results of each technology have been made to satisfy the requirements of the technical review committee report (TRC). The test facilities of each linear collider design are the place of the key technology demonstration and realization. The overview of the LC test facilities activities and outputs of TTF, NLCTA, ATF/GLCTA and CTF are summarized and reviewed.

  9. Large valve test facilities of AREVA NP GmbH

    Energy Technology Data Exchange (ETDEWEB)

    Beisiegel, A.; Wagner, T.; Stecher, W.

    2011-07-01

    As market leader in the field of nuclear power plant technology, AREVA runs an internationally-unique test and qualification infrastructure for power plant components. The associated Thermal-Hydraulic Platform with different test facilities in Karlstein and Erlangen has been recognized as a test body according to ISO 17025. The DAkkS the German Society for Accreditation has now also certified the Thermal-hydraulic Platorm as an independent inspection body Type C according to ISO 17020.

  10. New Test Facilities For GNSS Testing And Dynamic Calibration

    Directory of Open Access Journals (Sweden)

    Trzuskowsky Andreas

    2014-06-01

    Full Text Available With Galileo, the European GNSS (Global Navigation Satellite System starting early services in 2015, open-area-testing of applications which use the new positioning system gets more and more important. This contribution gives an overview on existing test sites like railGATE, automotiveGATE and seaGATE, it highlights the latest addition for dynamic calibration with geodetic precision and finally describes the testing regime of the BONUS project ANCHOR, where multiple test sites are used for maximum benefit in a maritime application.

  11. Assessment of fusion facility dose rate map using mesh adaptivity enhancements of hybrid Monte Carlo/deterministic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Ahmad M., E-mail: ibrahimam@ornl.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Wilson, Paul P. [University of Wisconsin-Madison, 1500 Engineering Dr., Madison, WI 53706 (United States); Sawan, Mohamed E., E-mail: sawan@engr.wisc.edu [University of Wisconsin-Madison, 1500 Engineering Dr., Madison, WI 53706 (United States); Mosher, Scott W.; Peplow, Douglas E.; Grove, Robert E. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States)

    2014-10-15

    Highlights: •Calculate the prompt dose rate everywhere throughout the entire fusion energy facility. •Utilize FW-CADIS to accurately perform difficult neutronics calculations for fusion energy systems. •Develop three mesh adaptivity algorithms to enhance FW-CADIS efficiency in fusion-neutronics calculations. -- Abstract: Three mesh adaptivity algorithms were developed to facilitate and expedite the use of the CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques in accurate full-scale neutronics simulations of fusion energy systems with immense sizes and complicated geometries. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as much geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility and resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation. Additionally, because of the significant increase in the efficiency of FW-CADIS simulations, the three algorithms enabled this difficult calculation to be accurately solved on a regular computer cluster, eliminating the need for a world-class super computer.

  12. Analyses of the OSU-MASLWR Experimental Test Facility

    Directory of Open Access Journals (Sweden)

    F. Mascari

    2012-01-01

    Full Text Available Today, considering the sustainability of the nuclear technology in the energy mix policy of developing and developed countries, the international community starts the development of new advanced reactor designs. In this framework, Oregon State University (OSU has constructed, a system level test facility to examine natural circulation phenomena of importance to multi-application small light water reactor (MASLWR design, a small modular pressurized water reactor (PWR, relying on natural circulation during both steady-state and transient operation. The target of this paper is to give a review of the main characteristics of the experimental facility, to analyse the main phenomena characterizing the tests already performed, the potential transients that could be investigated in the facility, and to describe the current IAEA International Collaborative Standard Problem that is being hosted at OSU and the experimental data will be collected at the OSU-MASLWR test facility. A summary of the best estimate thermal hydraulic system code analyses, already performed, to analyze the codes capability in predicting the phenomena typical of the MASLWR prototype, thermal hydraulically characterized in the OSU-MASLWR facility, is presented as well.

  13. Basalt near-surface test facility test plans

    Energy Technology Data Exchange (ETDEWEB)

    Krug, A.D.

    1979-06-01

    The NSTF is under construction at Gable Mountain for in-situ testing, which will be conducted in two phases: Phase I, using electric heaters to simulate nuclear waste canisters in order to study the thermomechanical response of basalt; and Phase II, using spent fuel canisters. The tests planned for Phases I and II are described. (DLC)

  14. The Test Facility for the EAST Superconducting Magnets

    Institute of Scientific and Technical Information of China (English)

    Wu Yu; Weng Peide

    2005-01-01

    A large facility for testing superconducting magnets has been in operation at the Institute of Plasma Physics of the Chinese Academy of Sciences since the completion of its construction that began in 1999. A helium refrigerator is used to cool the magnets and liquefy helium which can provide 3.8 K ~ 4.5 K, 1.8 bar ~ 5 bar, 20 g/s ~ 40 g/s supercritical helium for the coils or a 150 L/h liquefying helium capacity. Other major parts include a large vacuum vessel (3.5 m in diameter and 6.1 m in height) with a liquid nitrogen temperature shield, two pairs of current lead,three sets of 14.5 kA~ 50 kA power supply with a fast dump quench protection circuitry, a data acquisition and control system, a vacuum pumping system, and a gas tightness inspecting devise.The primary goal of the test facility is to test the EAST TF and PF magnets in relation to their electromagnetic, stability, thermal, hydraulic, and mechanical performance. The construction of this facility was completed in 2002, followed by a series of systematic coil testing. By now ten TF magnets, a central solenoid model coil, a central solenoid prototype coil, and a model coil of the PF large coil have been successfully tested in the facility.

  15. The Test Facility for the EAST Superconducting Magnets

    Science.gov (United States)

    Wu, Yu; Weng, Peide

    2005-08-01

    A large facility for testing superconducting magnets has been in operation at the Institute of Plasma Physics of the Chinese Academy of Sciences since the completion of its construction that began in 1999. A helium refrigerator is used to cool the magnets and liquefy helium which can provide 3.8 K-4.5 K, 1.8 bar-5 bar, 20 g/s-40 g/s supercritical helium for the coils or a 150 L/h liquefying helium capacity. Other major parts include a large vacuum vessel (3.5 m in diameter and 6.1 m in height) with a liquid nitrogen temperature shield, two pairs of current lead, three sets of 14.5 kA-50 kA power supply with a fast dump quench protection circuitry, a data acquisition and control system, a vacuum pumping system, and a gas tightness inspecting devise. The primary goal of the test facility is to test the EAST TF and PF magnets in relation to their electromagnetic, stability, thermal, hydraulic, and mechanical performance. The construction of this facility was completed in 2002, followed by a series of systematic coil testing. By now ten TF magnets, a central solenoid model coil, a central solenoid prototype coil, and a model coil of the PF large coil have been successfully tested in the facility.

  16. Design and Construction of a Hydroturbine Test Facility

    Science.gov (United States)

    Ayli, Ece; Kavurmaci, Berat; Cetinturk, Huseyin; Kaplan, Alper; Celebioglu, Kutay; Aradag, Selin; Tascioglu, Yigit; ETU Hydro Research Center Team

    2014-11-01

    Hydropower is one of the clean, renewable, flexible and efficient energy resources. Most of the developing countries invest on this cost-effective energy source. Hydroturbines for hydroelectric power plants are tailor-made. Each turbine is designed and constructed according to the properties, namely the head and flow rate values of the specific water source. Therefore, a center (ETU Hydro-Center for Hydro Energy Research) for the design, manufacturing and performance tests of hydraulic turbines is established at TOBB University of Economics and Technology to promote research in this area. CFD aided hydraulic and structural design, geometry optimization, manufacturing and performance tests of hydraulic turbines are the areas of expertise of this center. In this paper, technical details of the design and construction of this one of a kind test facility in Turkey, is explained. All the necessary standards of IEC (International Electrotechnical Commission) are met since the test facility will act as a certificated test center for hydraulic turbines.

  17. Bayesian Analysis of Inertial Confinement Fusion Experiments at the National Ignition Facility

    CERN Document Server

    Gaffney, J A; Sonnad, V; Libby, S B

    2012-01-01

    We develop a Bayesian inference method that allows the efficient determination of several interesting parameters from complicated high-energy-density experiments performed on the National Ignition Facility (NIF). The model is based on an exploration of phase space using the hydrodynamic code HYDRA. A linear model is used to describe the effect of nuisance parameters on the analysis, allowing an analytic likelihood to be derived that can be determined from a small number of HYDRA runs and then used in existing advanced statistical analysis methods. This approach is applied to a recent experiment in order to determine the carbon opacity and X-ray drive; it is found that the inclusion of prior expert knowledge and fluctuations in capsule dimensions and chemical composition significantly improve the agreement between experiment and theoretical opacity calculations. A parameterisation of HYDRA results is used to test the application of both Markov chain Monte Carlo (MCMC) and genetic algorithm (GA) techniques to e...

  18. European accelerator facilities for single event effects testing

    Energy Technology Data Exchange (ETDEWEB)

    Adams, L.; Nickson, R.; Harboe-Sorensen, R. [ESA-ESTEC, Noordwijk (Netherlands); Hajdas, W.; Berger, G.

    1997-03-01

    Single event effects are an important hazard to spacecraft and payloads. The advances in component technology, with shrinking dimensions and increasing complexity will give even more importance to single event effects in the future. The ground test facilities are complex and expensive and the complexities of installing a facility are compounded by the requirement that maximum control is to be exercised by users largely unfamiliar with accelerator technology. The PIF and the HIF are the result of experience gained in the field of single event effects testing and represent a unique collaboration between space technology and accelerator experts. Both facilities form an essential part of the European infrastructure supporting space projects. (J.P.N.)

  19. The Wastewater Treatment Test Facility at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, S.A.; Kent, T.E.; Taylor, P.A. [Oak Ridge National Lab., TN (United States)

    1995-12-01

    The Wastewater Treatment Test Facility (WTTF) contains 0.5 L/min test systems which provide a wide range of physical and chemical separation unit operations. The facility is a modified 48 foot trailer which contains all the unit operations of the ORNL`s Process Waste Treatment Plant and Nonradiological Wastewater Treatment Plant including chemical precipitation, clarification, filtration, ion-exchange, air stripping, activated carbon adsorption, and zeolite system. This facility has been used to assess treatability of potential new wastewaters containing mixed radioactive, hazardous organic, and heavy metal compounds. With the ability to simulate both present and future ORNL wastewater treatment systems, the WTTF has fast become a valuable tool in solving wastewater treatment problems at the Oak Ridge reservation.

  20. Leak test of the charcoal filter in the nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Sang Yeol; Lee, Key Soon; Hong, Kwon Pyo; Oh, Yon Woo; Park, Dae Kyu; Ahn, Sang Bok; Choo, Yong Sun; Kim, Sung Jung

    1998-06-01

    In the heating, ventilation and air conditioning(HVAC) system, pre-filter, HEPA(high efficiency particle air) filter and charcoal filter are instrumented in order to filter off the radioactive substance in the nuclear facility. Equipment of the charcoal filter off the radioactive substance in the nuclear facility. Equipment of the charcoal filter at the hot cell where manipulates the nuclear fuel irradiated in the nuclear reactor is essential for shutting off the leakage of the radioiodine which is produced from the cutting procedures of nuclear fuel. Also, the leak test of installed filter should be performed perfectly. In addition, charcoal filter is instrumented to filter the radioactive gas such as radioiodine which is produced in the nuclear facility. In this technical report, the theoretical discussion, the experimental procedures and the precautions of the leak test of charcoal filter are described. (author). 8 refs., 4 tabs., 8 figs.

  1. Vehicle Test Facilities at Aberdeen Test Center and Yuma Test Center

    Science.gov (United States)

    2012-02-27

    wetted down provides a low coefficient of friction road surface used for testing traction control and anti-lock brake features. 2.8.3 Mud Bypass...military vehicles in accordance with MIL-STD-913A9 and MIL-STD-209K10. The facility has a 50-ton metric (55-ton) overhead chain hoist with a...braking (including split friction , low friction and J-turn), steering and handling, drawbar pull, fuel consumption, cooling, rolling resistance, tractive

  2. Cold Vacuum Drying Facility Stack Air Sampling System Qualification Tests

    Energy Technology Data Exchange (ETDEWEB)

    Glissmeyer, John A.

    2001-01-24

    This report documents tests that were conducted to verify that the air monitoring system for the Cold Vacuum Drying Facility ventilation exhaust stack meets the applicable regulatory criteria regarding the placement of the air sampling probe, sample transport, and stack flow measurement accuracy.

  3. Fermilab Test Beam Facility Annual Report. FY 2014

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States). et al.

    2015-01-01

    Fermilab Test Beam Facility (FTBF) operations are summarized for FY 2014. It is one of a series of publications intended to gather information in one place. In this case, the information concerns the individual experiments that ran at FTBF. Each experiment section was prepared by the relevant authors, and was edited for inclusion in this summary.

  4. Reference Excitation Unit for Micro-Vibration Test Facilities

    Science.gov (United States)

    Veal, Dan; Hughes, Ben; Wagner, Mark

    2012-07-01

    The verification of hardware, in particular with respect to micro-vibration requirements, is challenging for both numerical simulation and experimental methodology. A commonly used test approach is to measure the interface reaction forces, torques, accelerations, velocities or displacements in all six degrees of freedom generated by the unit under test. In Europe, several test facilities exist to measure these generated micro-vibration forces based on dynamometer, pendulum and reverse pendulum principles. All these facilities and test setups need to be validated and calibrated with traceability to recognized international standards to ensure validity of the measurement results. Ideally, inter-facility comparisons would be conducted with identical excitation input signals and identical boundary conditions to increase confidence in the validity of the measurement produced by different facilities. To facilitate this requirement, the National Physical Laboratory (NPL) - the UK’s national measurement institute, is developing a reference vibration excitation unit that will be capable of generating vibrations, linear or angular, of known amplitude and direction traceable to international standards. This activity is funded by the European Space Agency (ESA) in the frame of a Technology Research Study. This paper covers the design of the unit and how the vibrations generated will be traceable to international standards.

  5. 21 CFR 58.15 - Inspection of a testing facility.

    Science.gov (United States)

    2010-04-01

    ... assurance unit records of findings and problems, or to actions recommended and taken. (b) The Food and Drug... marketing permit if the testing facility refuses to permit inspection. The determination that a nonclinical laboratory study will not be considered in support of an application for a research or marketing permit...

  6. Direct sunlight facility for testing and research in HCPV

    Science.gov (United States)

    Sciortino, Luisa; Agnello, Simonpietro; Barbera, Marco; Bonsignore, Gaetano; Buscemi, Alessandro; Candia, Roberto; Cannas, Marco; Collura, Alfonso; Di Cicca, Gaspare; Gelardi, Franco Mario; Cicero, Ugo Lo; Montagnino, Fabio Maria; Napoli, Gianluca; Paredes, Filippo; Spallino, Luisa; Varisco, Salvo

    2014-09-01

    A facility for testing different components for HCPV application has been developed in the framework of "Fotovoltaico ad Alta Efficienza" (FAE) project funded by the Sicilian Regional Authority (PO FESR Sicilia 2007/2013 4.1.1.1). The testing facility is equipped with an heliostat providing a wide solar beam inside the lab, an optical bench for mounting and aligning the HCPV components, electronic equipments to characterize the I-V curves of multijunction cells operated up to 2000 suns, a system to circulate a fluid in the heat sink at controlled temperature and flow-rate, a data logging system with sensors to measure temperatures in several locations and fluid pressures at the inlet and outlet of the heat sink, and a climatic chamber with large test volume to test assembled HCPV modules.

  7. Direct sunlight facility for testing and research in HCPV

    Energy Technology Data Exchange (ETDEWEB)

    Sciortino, Luisa, E-mail: luisa.sciortino@unipa.it; Agnello, Simonpietro, E-mail: luisa.sciortino@unipa.it; Bonsignore, Gaetano; Cannas, Marco; Gelardi, Franco Mario; Napoli, Gianluca; Spallino, Luisa [Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123 PA (Italy); Barbera, Marco [Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123 PA, Italy and Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Palermo G. S. Vaiana, Piazza del Parlamento 1, 90134 PA (Italy); Buscemi, Alessandro; Montagnino, Fabio Maria; Paredes, Filippo [IDEA s.r.l., Contrada Molara, Zona Industriale III Fase, 90018 Termini Imerese (Panama) (Italy); Candia, Roberto; Collura, Alfonso; Di Cicca, Gaspare; Cicero, Ugo Lo; Varisco, Salvo [Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Palermo G. S. Vaiana, Piazza del Parlamento 1, 90134 PA (Italy)

    2014-09-26

    A facility for testing different components for HCPV application has been developed in the framework of 'Fotovoltaico ad Alta Efficienza' (FAE) project funded by the Sicilian Regional Authority (PO FESR Sicilia 2007/2013 4.1.1.1). The testing facility is equipped with an heliostat providing a wide solar beam inside the lab, an optical bench for mounting and aligning the HCPV components, electronic equipments to characterize the I-V curves of multijunction cells operated up to 2000 suns, a system to circulate a fluid in the heat sink at controlled temperature and flow-rate, a data logging system with sensors to measure temperatures in several locations and fluid pressures at the inlet and outlet of the heat sink, and a climatic chamber with large test volume to test assembled HCPV modules.

  8. Development and testing of the improved focusing quadrupole for heavy ion fusion accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, R R; Martovetsky, N N; Meinke, R B; Chiesa, L; Lietzke, A F; Sabbi, G L; Seidl, P A

    2003-10-23

    An improved version of the focusing magnet for a Heavy Ion Fusion (HIF) accelerator was designed, built and tested in 2002-2003. This quadrupole has higher focusing power and lower error field than the previous version of the focusing quadrupoles successfully built and tested in 2001. We discuss the features of the new design, selected fabrication issues and test results.

  9. SINGLE EVENT EFFECTS TEST FACILITY AT OAK RIDGE NATIONAL LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    Riemer, Bernie [ORNL; Gallmeier, Franz X [ORNL; Dominik, Laura J [ORNL

    2015-01-01

    Increasing use of microelectronics of ever diminishing feature size in avionics systems has led to a growing Single Event Effects (SEE) susceptibility arising from the highly ionizing interactions of cosmic rays and solar particles. Single event effects caused by atmospheric radiation have been recognized in recent years as a design issue for avionics equipment and systems. To ensure a system meets all its safety and reliability requirements, SEE induced upsets and potential system failures need to be considered, including testing of the components and systems in a neutron beam. Testing of ICs and systems for use in radiation environments requires the utilization of highly advanced laboratory facilities that can run evaluations on microcircuits for the effects of radiation. This paper provides a background of the atmospheric radiation phenomenon and the resulting single event effects, including single event upset (SEU) and latch up conditions. A study investigating requirements for future single event effect irradiation test facilities and developing options at the Spallation Neutron Source (SNS) is summarized. The relatively new SNS with its 1.0 GeV proton beam, typical operation of 5000 h per year, expertise in spallation neutron sources, user program infrastructure, and decades of useful life ahead is well suited for hosting a world-class SEE test facility in North America. Emphasis was put on testing of large avionics systems while still providing tunable high flux irradiation conditions for component tests. Makers of ground-based systems would also be served well by these facilities. Three options are described; the most capable, flexible, and highest-test-capacity option is a new stand-alone target station using about one kW of proton beam power on a gas-cooled tungsten target, with dual test enclosures. Less expensive options are also described.

  10. Preliminary safety evaluation (PSE) for Sodium Storage Facility at the Fast Flux Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, B.R.

    1994-09-30

    This evaluation was performed for the Sodium Storage Facility (SSF) which will be constructed at the Fast Flux Test Facility (FFTF) in the area adjacent to the South and West Dump Heat Exchanger (DHX) pits. The purpose of the facility is to allow unloading the sodium from the FFTF plant tanks and piping. The significant conclusion of this Preliminary Safety Evaluation (PSE) is that the only Safety Class 2 components are the four sodium storage tanks and their foundations. The building, because of its imminent risk to the tanks under an earthquake or high winds, will be Safety Class 3/2, which means the building has a Safety Class 3 function with the Safety Class 2 loads of seismic and wind factored into the design.

  11. AREAL test facility for advanced accelerator and radiation source concepts

    Energy Technology Data Exchange (ETDEWEB)

    Tsakanov, V.M., E-mail: tsakanov@asls.candle.am [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Amatuni, G.A.; Amirkhanyan, Z.G.; Aslyan, L.V.; Avagyan, V.Sh.; Danielyan, V.A.; Davtyan, H.D.; Dekhtiarov, V.S.; Gevorgyan, K.L.; Ghazaryan, N.G.; Grigoryan, B.A.; Grigoryan, A.H.; Hakobyan, L.S. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Haroutiunian, S.G. [Yerevan State University, 0025 Yerevan (Armenia); Ivanyan, M.I.; Khachatryan, V.G.; Laziev, E.M. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Manukyan, P.S. [State Engineering University of Armenia, 0009 Yerevan (Armenia); Margaryan, I.N.; Markosyan, T.M. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); and others

    2016-09-01

    Advanced Research Electron Accelerator Laboratory (AREAL) is a 50 MeV electron linear accelerator project with a laser driven RF gun being constructed at the CANDLE Synchrotron Research Institute. In addition to applications in life and materials sciences, the project aims as a test facility for advanced accelerator and radiation source concepts. In this paper, the AREAL RF photoinjector performance, the facility design considerations and its highlights in the fields of free electron laser, the study of new high frequency accelerating structures, the beam microbunching and wakefield acceleration concepts are presented.

  12. Performance evaluation of the Solar Building Test Facility

    Science.gov (United States)

    Jensen, R. N.

    1981-01-01

    The general performance of the NASA Solar Building Test Facility (SBTF) and its subsystems and components over a four year operational period is discussed, and data are provided for a typical one year period. The facility consists of a 4645 sq office building modified to accept solar heated water for operation of an absorption air conditioner and a baseboard heating system. An adjoining 1176 sq solar flat plate collector field with a 114 cu tank provides the solar heated water. The solar system provided 57 percent of the energy required for heating and cooling on an annual basis. The average efficiency of the solar collectors was 26 percent over a one year period.

  13. VISTA : thermal-hydraulic integral test facility for SMART reactor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, K. Y.; Park, H. S.; Cho, S.; Park, C. K.; Lee, S. J.; Song, C. H.; Chung, M. K. [KAERI, Taejon (Korea, Republic of)

    2003-07-01

    Preliminary performance tests were carried out using the thermal-hydraulic integral test facility, VISTA (Experimental Verification by Integral Simulation of Transients and Accidents), which has been constructed to simulate the SMART-P. The VISTA facility is an integral test facility including the primary and secondary systems as well as safety-related Passive Residual Heat Removal (PRHR) systems. Its scaled ratio with respect to the SMART-P is 1/1 in height and 1/96 in volume and heater power. Several steady states and power changing tests have been carried out to verify the overall thermal hydraulic primary and secondary characteristics in the range of 10% to 100% power operation. As for the preliminary results, the steady state conditions were found to coincide with the expected design values of the SMART-P. But the major thermal hydraulic parameters are greatly affected by the initial water level and the nitrogen pressure in the reactor's upper annular cavity. The power step/ramp changing tests are successfully carried out and the system responses are observed. The primary natural circulation operation is achieved, but advanced control logics need to be developed to reach the natural circulation mode without pressure excursion. In the PRHR transient tests, the natural circulation flow rate through the PRHR system was found to be about 10 percent in the early phases of PRHR operation.

  14. Test of 60 kA coated conductor cable prototypes for fusion magnets

    Science.gov (United States)

    Uglietti, D.; Bykovsky, N.; Sedlak, K.; Stepanov, B.; Wesche, R.; Bruzzone, P.

    2015-12-01

    Coated conductors could be promising materials for the fabrication of the large magnet systems of future fusion devices. Two prototype conductors (flat cables in steel conduits), each about 2 m long, were manufactured using coated conductor tapes (4 mm wide) from Super Power and SuperOx, with a total tape length of 1.6 km. Each flat cable is assembled from 20 strands, each strand consisting of a stack of 16 tapes surrounded by two half circular copper profiles, twisted and soldered. The tapes were measured at 12 T and 4.2 K and the results of the measurements were used for the assessment of the conductor electromagnetic properties at low temperature and high field. The two conductors were assembled together in a sample that was tested in the European Dipole (EDIPO) facility. The current sharing temperatures of the two conductors were measured at background fields from 8 T up to 12 T and for currents from 30 kA up to 70 kA: the measured values are within a few percent of the values expected from the measurements on tapes (short samples). After electromagnetic cycling, T cs at 12 T and 50 kA decreased from about 12 K to 11 K (about 10%), corresponding to less than 3% of I c.

  15. Integral Test Facility PKL: Experimental PWR Accident Investigation

    Directory of Open Access Journals (Sweden)

    Klaus Umminger

    2012-01-01

    Full Text Available Investigations of the thermal-hydraulic behavior of pressurized water reactors under accident conditions have been carried out in the PKL test facility at AREVA NP in Erlangen, Germany for many years. The PKL facility models the entire primary side and significant parts of the secondary side of a pressurized water reactor (PWR at a height scale of 1 : 1. Volumes, power ratings and mass flows are scaled with a ratio of 1 : 145. The experimental facility consists of 4 primary loops with circulation pumps and steam generators (SGs arranged symmetrically around the reactor pressure vessel (RPV. The investigations carried out encompass a very broad spectrum from accident scenario simulations with large, medium, and small breaks, over the investigation of shutdown procedures after a wide variety of accidents, to the systematic investigation of complex thermal-hydraulic phenomena. This paper presents a survey of test objectives and programs carried out to date. It also describes the test facility in its present state. Some important results obtained over the years with focus on investigations carried out since the beginning of the international cooperation are exemplarily discussed.

  16. INTESPACE's new thermal-vacuum test facility: SIMMER

    Science.gov (United States)

    Duprat, Raymond; Mouton, Andre

    1992-01-01

    The development of an European satellite market over the last 10 years, the industrialization of space applications, and the new requirements from satellite prime contractors have led INTESPACE to increase the test center's environmental testing capacities through the addition of a new thermal-vacuum test facility of impressive dimensions referred to as the SIMMER. The SIMMER is a simulator specifically created for the purpose of conducting acceptance tests of satellites and of large structures of the double launching ARIANE IV or half ARIANE V classes. The chamber is 8.3 meters long with a diameter of 10 meters. The conceptual design of a chamber in the horizontal plane and at floor level is in a view to simplify test preparation and to permit final electrical checks of the spacecraft in its actual test configuration prior to the closing of the chamber. The characteristics of the SIMMER complies with the requirements being currently defined in terms of thermal-vacuum tests: (1) thermal regulation (temperatures cycling between 100 K and 360 K); (2) clean vacuum (10(exp -6) mbar); (3) 600 measurement channels; and (4) 100 000 cleanliness class. The SIMMER is located in INTESPACE's space vehicle test complex in which a large variety of environmental test facilities are made available for having a whole test program completed under one and a same roof.

  17. INTESPACE's new thermal-vacuum test facility: SIMMER

    Science.gov (United States)

    Duprat, Raymond; Mouton, Andre

    1992-11-01

    The development of an European satellite market over the last 10 years, the industrialization of space applications, and the new requirements from satellite prime contractors have led INTESPACE to increase the test center's environmental testing capacities through the addition of a new thermal-vacuum test facility of impressive dimensions referred to as the SIMMER. The SIMMER is a simulator specifically created for the purpose of conducting acceptance tests of satellites and of large structures of the double launching ARIANE IV or half ARIANE V classes. The chamber is 8.3 meters long with a diameter of 10 meters. The conceptual design of a chamber in the horizontal plane and at floor level is in a view to simplify test preparation and to permit final electrical checks of the spacecraft in its actual test configuration prior to the closing of the chamber. The characteristics of the SIMMER complies with the requirements being currently defined in terms of thermal-vacuum tests: (1) thermal regulation (temperatures cycling between 100 K and 360 K); (2) clean vacuum (10(exp -6) mbar); (3) 600 measurement channels; and (4) 100 000 cleanliness class. The SIMMER is located in INTESPACE's space vehicle test complex in which a large variety of environmental test facilities are made available for having a whole test program completed under one and a same roof.

  18. Vibrational Stability of SRF Accelerator Test Facility at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    McGee, M.W.; Volk, J.T.; /Fermilab

    2009-05-01

    Recently developed, the Superconducting Radio Frequency (SRF) Accelerator Test Facilities at Fermilab support the International Linear Collider (ILC), High Intensity Neutrino Source (HINS), a new high intensity injector (Project X) and other future machines. These facilities; Meson Detector Building (MDB) and New Muon Lab (NML) have very different foundations, structures, relative elevations with respect to grade level and surrounding soil composition. Also, there are differences in the operating equipment and their proximity to the primary machine. All the future machines have stringent operational stability requirements. The present study examines both near-field and ambient vibration in order to develop an understanding of the potential contribution of near-field sources (e.g. compressors, ultra-high and standard vacuum equipment, klystrons, modulators, utility fans and pumps) and distant noise sources to the overall system displacements. Facility vibration measurement results and methods of possible isolation from noise sources are presented and discussed.

  19. 5-Megawatt solar-thermal test facility: environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-01-30

    An Environmental Assessment of the 5 Megawatt Solar Thermal Test Facility (STTF) is presented. The STTF is located at Albuquerque, New Mexico. The facility will have the capability for testing scale models of major subsystems comprising a solar thermal electrical power plant. The STTF capabilities will include testing a solar energy collector subsystem comprised of heliostat arrays, a receiver subsystem which consists of a boiler/superheater in which a working fluid is heated, and a thermal storage subsystem which includes tanks of high heat capacity material which stores thermal energy for subsequent use. The STTF will include a 200-foot receiver tower on which experimental receivers will be mounted. The Environmental Assessment describes the proposed STTF, its anticipated benefits, and the environment affected. It also evaluates the potential environmental impacts associated with STTF construction and operation.

  20. I and C functional test facility user guide

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Ki Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-07-01

    The objective of I and C functional test facility (FTF) is to validate newly developed digital control and protection algorithm, alarm reduction algorithm and the function of operator support system and so on. Test facility is divided into three major parts; software, hardware and graphic user interface. Software consists of mathematical modeling which simulates 3 loop pressurizer water reactor, 993 MWe Westinghouse plant and supervisory module which interpret user instructions and data interface program. FTF is implemented in HP747I workstation using FORTRAN77 and ``C`` language under UNIX operating system. This User Guide provides file structure, instructions and program modification method and provides initial data, malfunction list, process variables list and simulation diagram as an appendix to test developed prototype. 12 figs. (Author).

  1. ESO adaptive optics facility progress and first laboratory test results

    Science.gov (United States)

    Arsenault, Robin; Madec, Pierre-Yves; Paufique, Jérome; La Penna, Paolo; Stroebele, Stefan; Vernet, Elise; Pirard, Jean-Francois; Hackenberg, Wolfgang; Kuntschner, Harald; Kolb, Johann; Muller, Nicolas; Garcia-Rissmann, Aurea; Le Louarn, Miska; Amico, Paola; Hubin, Norbert; Lizon, Jean-Louis; Ridings, Rob; Haguenauer, Pierre; Abad, Jose A.; Fischer, Gerhard; Heinz, Volker; Kiekebusch, Mario; Argomedo, Javier; Conzelmann, Ralf; Tordo, Sebastien; Donaldson, Rob; Soenke, Christian; Duhoux, Philippe; Fedrigo, Enrico; Delabre, Bernard; Jost, Andrea; Duchateau, Michel; Downing, Mark; Reyes Moreno, Javier; Manescau, Antonio; Bonaccini Calia, Domenico; Quattri, Marco; Dupuy, Christophe; Guidolin, Ivan M.; Comin, Mauro; Guzman, Ronald; Buzzoni, Bernard; Quentin, Jutta; Lewis, Steffan; Jolley, Paul; Kraus, Max; Pfrommer, Thomas; Biasi, Roberto; Gallieni, Daniele; Stuik, Remko; Kaenders, Wilhelm; Ernstberger, Bernhard; Friedenauer, Axel

    2014-07-01

    The Adaptive Optics Facility project is completing the integration of its systems at ESO Headquarters in Garching. The main test bench ASSIST and the 2nd Generation M2-Unit (hosting the Deformable Secondary Mirror) have been granted acceptance late 2012. The DSM has undergone a series of tests on ASSIST in 2013 which have validated its optical performance and launched the System Test Phase of the AOF. This has been followed by the performance evaluation of the GRAAL natural guide star mode on-axis and will continue in 2014 with its Ground Layer AO mode. The GALACSI module (for MUSE) Wide-Field-Mode (GLAO) and the more challenging Narrow-Field-Mode (LTAO) will then be tested. The AOF has also taken delivery of the second scientific thin shell mirror and the first 22 Watt Sodium laser Unit. We will report on the system tests status, the performances evaluated on the ASSIST bench and advancement of the 4Laser Guide Star Facility. We will also present the near future plans for commissioning on the telescope and some considerations on tools to ensure an efficient operation of the Facility in Paranal.

  2. Plans for an ERL Test Facility at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Erik [CERN; Bruning, O S [CERN; Calaga, Buchi Rama Rao [CERN; Schirm, Karl-Martin [CERN; Torres-Sanchez, R [CERN; Valloni, Alessandra [CERN; Aulenbacher, Kurt [Mainz; Bogacz, Slawomir [JLAB; Hutton, Andrew [JLAB; Klein, M [University of Liverpool

    2014-12-01

    The baseline electron accelerator for LHeC and one option for FCC-he is an Energy Recovery Linac. To prepare and study the necessary key technologies, CERNhas started – in collaboration with JLAB and Mainz University – the conceptual design of an ERL Test Facility (ERL-TF). Staged construction will allow the study under different conditions with up to 3 passes, beam energies of up to about 1 GeV and currents of up to 50 mA. The design and development of superconducting cavity modules, including coupler and HOM damper designs, are also of central importance for other existing and future accelerators and their tests are at the heart of the current ERL-TF goals. However, the ERL-TF could also provide a unique infrastructure for several applications that go beyond developing and testing the ERL technology at CERN. In addition to experimental studies of beam dynamics, operational and reliability issues in an ERL, it could equally serve for quench tests of superconducting magnets, as physics experimental facility on its own right or as test stand for detector developments. This contribution will describe the goals and the concept of the facility and the status of the R&D.

  3. East Mesa geothermal pump test facility (EMPTF). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Olander, R.G.; Roberts, G.K.

    1984-11-28

    The design, fabrication and installation of a geothermal pump test facility (EMPFT) at the DOE geothermal site at East Mesa, California which is capable of testing 70 to 750 horsepower downwell pumps in a controlled geothermal environment were completed. The facility consists of a skid-mounted brine control module, a 160 foot below test well section, a hydraulic turbine for power recovery, a gantry-mounted hoist for pump handling and a 3-phase, 480 VAC, 1200 amp power supply to handle pump electric requirements. Geothermal brine is supplied to the EMPTF from one of the facility wells at East Mesa. The EMPTF is designed with a great amount of flexibility. The 20-inch diameter test well can accommodate a wide variety of pumps. The controls are interactive and can be adjusted to obtain a full complement of pump operation data, or set to maintain constant conditions to allow long-term testing with a minimum of operator support. The hydraulic turbine allows the EMPTF user to recover approximately 46% of the input pump power to help defray the operating cost of the unit. The hoist is provided for material handling and pump servicing and reduces the equipment that the user must supply for pump installation, inspection and removal.

  4. East Mesa geothermal pump test facility (EMPTF). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Olander, R.G.; Roberts, G.K.

    1984-11-28

    Barber-Nichols has completed the design, fabrication and installation of a geothermal pump test facility at the DOE geothermal site at East Mesa, California which is capable of testing 70 to 750 horsepower downwell pumps in a controlled geothermal environment. The facility consists of a skid-mounted brine control module, a 160 foot below ground test well section, a hydraulic turbine for power recovery, a gantry-mounted hoist for pump handling and a 3-phase, 480 VAC, 1200 amp power supply to handle pump electric requirements. Geothermal brine is supplied to the EMPTF from one of the facility wells at East Mesa. The EMPTF is designed with a great amount of flexibility to attract the largest number of potential users. The 20-inch diameter test well can accommodate a wide variety of pumps. The controls are interactive and can be adjusted to obtain a full complement of pump operation data, or set to maintain constant conditions to allow long-term testing with a minimum of operator support. The hydraulic turbine allows the EMPTF user to recover approximately 46% of the input pump power to help defray the operating cost of the unit. The hoist is provided for material handling and pump servicing and reduces the equipment that the user must supply for pump installation, inspection and removal.

  5. Multi-Sensor Fusion with Interaction Multiple Model and Chi-Square Test Tolerant Filter.

    Science.gov (United States)

    Yang, Chun; Mohammadi, Arash; Chen, Qing-Wei

    2016-11-02

    Motivated by the key importance of multi-sensor information fusion algorithms in the state-of-the-art integrated navigation systems due to recent advancements in sensor technologies, telecommunication, and navigation systems, the paper proposes an improved and innovative fault-tolerant fusion framework. An integrated navigation system is considered consisting of four sensory sub-systems, i.e., Strap-down Inertial Navigation System (SINS), Global Navigation System (GPS), the Bei-Dou2 (BD2) and Celestial Navigation System (CNS) navigation sensors. In such multi-sensor applications, on the one hand, the design of an efficient fusion methodology is extremely constrained specially when no information regarding the system's error characteristics is available. On the other hand, the development of an accurate fault detection and integrity monitoring solution is both challenging and critical. The paper addresses the sensitivity issues of conventional fault detection solutions and the unavailability of a precisely known system model by jointly designing fault detection and information fusion algorithms. In particular, by using ideas from Interacting Multiple Model (IMM) filters, the uncertainty of the system will be adjusted adaptively by model probabilities and using the proposed fuzzy-based fusion framework. The paper also addresses the problem of using corrupted measurements for fault detection purposes by designing a two state propagator chi-square test jointly with the fusion algorithm. Two IMM predictors, running in parallel, are used and alternatively reactivated based on the received information form the fusion filter to increase the reliability and accuracy of the proposed detection solution. With the combination of the IMM and the proposed fusion method, we increase the failure sensitivity of the detection system and, thereby, significantly increase the overall reliability and accuracy of the integrated navigation system. Simulation results indicate that the

  6. Materials-related issues in the safety and licensing of nuclear fusion facilities

    Science.gov (United States)

    Taylor, N.; Merrill, B.; Cadwallader, L.; Di Pace, L.; El-Guebaly, L.; Humrickhouse, P.; Panayotov, D.; Pinna, T.; Porfiri, M.-T.; Reyes, S.; Shimada, M.; Willms, S.

    2017-09-01

    Fusion power holds the promise of electricity production with a high degree of safety and low environmental impact. Favourable characteristics of fusion as an energy source provide the potential for this very good safety and environmental performance. But to fully realize the potential, attention must be paid in the design of a demonstration fusion power plant (DEMO) or a commercial power plant to minimize the radiological hazards. These hazards arise principally from the inventory of tritium and from materials that become activated by neutrons from the plasma. The confinement of these radioactive substances, and prevention of radiation exposure, are the primary goals of the safety approach for fusion, in order to minimize the potential for harm to personnel, the public, and the environment. The safety functions that are implemented in the design to achieve these goals are dependent on the performance of a range of materials. Degradation of the properties of materials can lead to challenges to key safety functions such as confinement. In this paper the principal types of material that have some role in safety are recalled. These either represent a potential source of hazard or contribute to the amelioration of hazards; in each case the related issues are reviewed. The resolution of these issues lead, in some instances, to requirements on materials specifications or to limits on their performance.

  7. An Experience of Thermowell Design in RCP Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. S.; Kim, B. D.; Youn, Y. J.; Jeon, W. J.; Kim, S.; Bae, B. U.; Cho, Y. J.; Choi, H. S.; Park, J. K; Cho, S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Flow rates for the test should vary in the range of 90% to 130% of rated flowrate under prototypic operational conditions, as shown in Table 1. Generally for the flow control, a combination of a control valve and an orifice was used in previous RCP test facilities. From the commissioning startup of the RCP test facility, it was found the combination of valve and orifice induced quite a large vibration for the RCP. As a solution to minimize the vibration and to facilitate the flowrate control, one of KAERI's staff suggested a variable restriction orifice (VRO), which controls most of the required flowrates except highest flowrates, as shown in Fig. 2. For the highest flowrates, e.g., around run-out flowrate (130%), control valves in bypass lines were also used to achieve required flowrates. From a performance test, it was found the VRO is very effective measures to control flowrates in the RCP test facility. During the commissioning startup operation, one of thermowells located at the upstream of the RCP was cracked due to high speed coolant velocity, which was - fortunately - found under a leakage test before running the RCP test loop. The cracked thermowell, whose tapered-shank was detached from the weld collar after uninstalling, is shown in Fig. 3. As can be seen the figure, most of the cross-section at the root of the thermowell shank was cracked. In this paper, an investigation of the integrity of thermowells in the RCP test facility was performed according to the current code and overall aspects on the thermowell designs were also discussed. An RCP test facility has been constructed in KAERI. During the commissioning startup operation, one of thermowells was cracked due to high speed coolant velocity. To complete the startup operation, a modified design of thermowells was proposed and all the original thermowells were replaced by the modified ones. From evaluation of the original and modified designs of thermowells according to the recent PTC code, the

  8. Fabrication and integrity test preparation of HIP-joined W and ferritic-martensitic steel mockups for fusion reactor development

    Science.gov (United States)

    Lee, Dong Won; Shin, Kyu In; Kim, Suk Kwon; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae Sung; Choi, Bo Guen; Moon, Se Youn; Hong, Bong Guen

    2014-10-01

    Tungsten (W) and ferritic-martensitic steel (FMS) as armor and structural materials, respectively, are the major candidates for plasma-facing components (PFCs) such as the blanket first wall (BFW) and the divertor, in a fusion reactor. In the present study, three W/FMS mockups were successfully fabricated using a hot isostatic pressing (HIP, 900 °C, 100 MPa, 1.5 hrs) with a following post-HIP heat treatment (PHHT, tempering, 750 °C, 70 MPa, 2 hrs), and the W/FMS joining method was developed based on the ITER BFW and the test blanket module (TBM) development project from 2004 to the present. Using a 10-MHz-frequency flat-type probe to ultrasonically test of the joint, we found no defects in the fabricated mockups. For confirmation of the joint integrity, a high heat flux test will be performed up to the thermal lifetime of the mockup under the proper test conditions. These conditions were determined through a preliminary analysis with conventional codes such as ANSYS-CFX for thermal-hydraulic conditions considering the test facility, the Korea heat load test facility with an electron beam (KoHLT-EB), and its water coolant system at the Korea Atomic Energy Research Institute (KAERI).

  9. Calibration and Testing Facility for Silicon Microseismometers for Planetary Applications

    Science.gov (United States)

    Irshad, Ranah; Teanby, N. A.; Calcutt, S. B.; Pike, W. T.; Bowles, N. E.; Flynn, W.; Temple, J. M.

    2009-09-01

    A calibration and test facility has been developed for microseismometers designed to measure seismic data on planetary or lunar surfaces. The set-up allows the testing of microseismometers under vacuum, at temperatures from 300K down to 70K. In addition, the facility is designed for calibration of the microseismometers using a commercial broad-band seismometer as a reference, that remains at a constant temperature of 300K. The facility consists of a solid granite block which acts as a support for both the commercial seismometer and the microseismometers to be tested. The entire set-up is isolated from ambient seismic noise by a 10 ton seismic mass and pneumatic isolators that are part of an existing calibration facility in a class 100 cleanroom at Oxford. The commercial seismometer sits on top of the horizontal granite slab and the microseismometers are mounted directly opposite, underneath the granite, on thermally isolated supports in a vacuum chamber and surrounded by a radiative cooling system. A small oscillating mass will be coupled to the granite in such a way as to provide identical vibrations to both seismometers. The performance of the microseismometers may thus be characterised as a function of temperature and pressure. The facility also incorporates a dual fibre-optic laser vibrometer system which can measure the surface vibrations of the microseismometer accommodation relative to the base of the granite. This allows the characterisation of the mechanical transfer function of the thermally isolating legs supporting the microseismometers, as well as the absolute motion recorded on each instrument. This work is supported by the STFC.

  10. RF Test Results from Cryomodule 1 at the Fermilab SRF Beam Test Facility

    CERN Document Server

    Harms, E; Chase, B; Cullerton, E; Hocker, A; Jensen, C; Joireman, P; Klebaner, A; Kubicki, T; Kucera, M; Legan, A; Leibfritz, J; Martinez, A; McGee, M; Nagaitsev, S; Nezhevenko, O; Nicklaus, D; Pfeffer, H; Pischalnikov, Y; Prieto, P; Reid, J; Schappert, W; Tupikov, V; Varghese, P; Branlard, J

    2012-01-01

    Powered operation of Cryomodule 1 (CM-1) at the Fermilab SRF Beam Test Facility began in late 2010. Since then a series of tests first on the eight individual cavities and then the full cryomodule have been performed. We report on the results of these tests and lessons learned which will have an impact on future module testing at Fermilab.

  11. Thermal Vacuum Facility for Testing Thermal Protection Systems

    Science.gov (United States)

    Daryabeigi, Kamran; Knutson, Jeffrey R.; Sikora, Joseph G.

    2002-01-01

    A thermal vacuum facility for testing launch vehicle thermal protection systems by subjecting them to transient thermal conditions simulating re-entry aerodynamic heating is described. Re-entry heating is simulated by controlling the test specimen surface temperature and the environmental pressure in the chamber. Design requirements for simulating re-entry conditions are briefly described. A description of the thermal vacuum facility, the quartz lamp array and the control system is provided. The facility was evaluated by subjecting an 18 by 36 in. Inconel honeycomb panel to a typical re-entry pressure and surface temperature profile. For most of the test duration, the average difference between the measured and desired pressures was 1.6% of reading with a standard deviation of +/- 7.4%, while the average difference between measured and desired temperatures was 7.6% of reading with a standard deviation of +/- 6.5%. The temperature non-uniformity across the panel was 12% during the initial heating phase (t less than 500 sec.), and less than 2% during the remainder of the test.

  12. Conceptual design study advanced concepts test (ACT) facility

    Energy Technology Data Exchange (ETDEWEB)

    Zaloudek, F.R.

    1978-09-01

    The Advanced Concepts Test (ACT) Project is part of program for developing improved power plant dry cooling systems in which ammonia is used as a heat transfer fluid between the power plant and the heat rejection tower. The test facility will be designed to condense 60,000 lb/hr of exhaust steam from the No. 1 turbine in the Kern Power Plant at Bakersfield, CA, transport the heat of condensation from the condenser to the cooling tower by an ammonia phase-change heat transport system, and dissipate this heat to the environs by a dry/wet deluge tower. The design and construction of the test facility will be the responsibility of the Electric Power Research Institute. The DOE, UCC/Linde, and the Pacific Northwest Laboratories will be involved in other phases of the project. The planned test facilities, its structures, mechanical and electrical equipment, control systems, codes and standards, decommissioning requirements, safety and environmental aspects, and energy impact are described. Six appendices of related information are included. (LCL)

  13. Integrated Disposal Facility FY 2012 Glass Testing Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M.; Kerisit, Sebastien N.; Krogstad, Eirik J.; Burton, Sarah D.; Bjornstad, Bruce N.; Freedman, Vicky L.; Cantrell, Kirk J.; Snyder, Michelle MV; Crum, Jarrod V.; Westsik, Joseph H.

    2013-03-29

    PNNL is conducting work to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility for Hanford immobilized low-activity waste (ILAW). Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program, PNNL is implementing a strategy, consisting of experimentation and modeling, to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. Key activities in FY12 include upgrading the STOMP/eSTOMP codes to do near-field modeling, geochemical modeling of PCT tests to determine the reaction network to be used in the STOMP codes, conducting PUF tests on selected glasses to simulate and accelerate glass weathering, developing a Monte Carlo simulation tool to predict the characteristics of the weathered glass reaction layer as a function of glass composition, and characterizing glasses and soil samples exhumed from an 8-year lysimeter test. The purpose of this report is to summarize the progress made in fiscal year (FY) 2012 and the first quarter of FY 2013 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of LAW glasses.

  14. Start-up phase of the HELOKA-LP low pressure helium test facility for IFMIF irradiation modules

    Energy Technology Data Exchange (ETDEWEB)

    Schlindwein, Georg, E-mail: georg.schlindwein@kit.edu [Institute for Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Arbeiter, Frederik; Freund, Jana [Institute for Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Helium Loop Karlsruhe-Low Pressure (HELOKA-LP) succesfully taken to operation at the end of 2009. Black-Right-Pointing-Pointer Verified that HELOKA-LP fulfils all requirements to test the High Flux Test Module (HFTM). Black-Right-Pointing-Pointer Some improvements could be done (e.g. reduction of power consumption, enhancement of control path parameters). Black-Right-Pointing-Pointer We obtained a chronological sequence of the helium gas impurity which is important for the International Fusion Irradiation Facility (IFMIF). - Abstract: As part of the Engineering Validation and Engineering Design Activities (EVEDA) for the International Fusion Materials Irradiation Facility (IFMIF) , it is foreseen to design and test a 1:1 scale prototype of the IFMIF High Flux Test Module (HFTM) . The module has been designed to be cooled by a low pressure helium gas flowing through minichannels to remove the nuclear heat. The Helium Loop Karlsruhe-Low Pressure (HELOKA-LP) has been designed to provide coolant at 1:1 HFTM operational conditions: massflow 12-120 g/s, inlet pressure 0.3-0.6 MPa, inlet temperature RT - 250 Degree-Sign C. A secondary objective is to use the experience gained with HELOKA-LP for the planning of the IFMIF helium cooling system. The facility has been put into operation in 2009, and has since then been in a test and optimization phase. It was proven, that the above mentioned requirements for the facility are achieved. The paper describes the process layout and components of the facility. The performance is characterized by the results of several steady state and transient benchmark tests. Typical start-up and transition times relevant for the operation mode in the IFMIF irradiation campaigns are obtained. Additionally first results on the impurity ingress and the cooling gas chemistry are described.

  15. Groundwater Remediation and Alternate Energy at White Sands Test Facility

    Science.gov (United States)

    Fischer, Holger

    2008-01-01

    White Sands Test Facility Core Capabilities: a) Remote Hazardous Testing of Reactive, Explosive, and Toxic Materials and Fluids; b) Hypergolic Fluids Materials and Systems Testing; c) Oxygen Materials and System Testing; d) Hypervelocity Impact Testing; e)Flight Hardware Processing; and e) Propulsion Testing. There is no impact to any drinking water well. Includes public wells and the NASA supply well. There is no public exposure. Groundwater is several hundred feet below ground. No air or surface water exposure. Plume is moving very slowly to the west. Plume Front Treatment system will stop this westward movement. NASA performs on-going monitoring. More than 200 wells and zones are routinely sampled. Approx. 850 samples are obtained monthly and analyzed for over 300 different hazardous chemicals.

  16. Thermal Protection System Aerothermal Screening Tests in HYMETS Facility

    Science.gov (United States)

    Szalai, Christine E.; Beck, Robin A. S.; Gasch, Matthew J.; Alumni, Antonella I.; Chavez-Garcia, Jose F.; Splinter, Scott C.; Gragg, Jeffrey G.; Brewer, Amy

    2011-01-01

    The Entry, Descent, and Landing (EDL) Technology Development Project has been tasked to develop Thermal Protection System (TPS) materials for insertion into future Mars Entry Systems. A screening arc jet test of seven rigid ablative TPS material candidates was performed in the Hypersonic Materials Environmental Test System (HYMETS) facility at NASA Langley Research Center, in both an air and carbon dioxide test environment. Recession, mass loss, surface temperature, and backface thermal response were measured for each test specimen. All material candidates survived the Mars aerocapture relevant heating condition, and some materials showed a clear increase in recession rate in the carbon dioxide test environment. These test results supported subsequent down-selection of the most promising material candidates for further development.

  17. Fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1989-01-01

    This paper discuses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics.

  18. A high resolution cavity BPM for the CLIC Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Chritin, N.; Schmickler, H.; Soby, L.; /CERN; Lunin, A.; Solyak, N.; Wendt, M.; Yakovlev, V.; /Fermilab

    2010-08-01

    In frame of the development of a high resolution BPM system for the CLIC Main Linac we present the design of a cavity BPM prototype. It consists of a waveguide loaded dipole mode resonator and a monopole mode reference cavity, both operating at 15 GHz, to be compatible with the bunch frequencies at the CLIC Test Facility. Requirements, design concept, numerical analysis, and practical considerations are discussed.

  19. A high resolution cavity BPM for the CLIC Test Facility

    CERN Document Server

    Chritin, N; Soby, L; Lunin, A; Solyak, N; Wendt, M; Yakovlev, V

    2012-01-01

    In frame of the development of a high resolution BPM system for the CLIC Main Linac we present the design of a cavity BPM prototype. It consists of a waveguide loaded dipole mode resonator and a monopole mode reference cavity, both operating at 15 GHz, to be compatible with the bunch frequencies at the CLIC Test Facility. Requirements, design concept, numerical analysis, and practical considerations are discussed.

  20. Analyses of the OSU-MASLWR Experimental Test Facility

    OpenAIRE

    2012-01-01

    Today, considering the sustainability of the nuclear technology in the energy mix policy of developing and developed countries, the international community starts the development of new advanced reactor designs. In this framework, Oregon State University (OSU) has constructed, a system level test facility to examine natural circulation phenomena of importance to multi-application small light water reactor (MASLWR) design, a small modular pressurized water reactor (PWR), relying on natural cir...

  1. Testing hot cell shielding in the fuel conditioning facility.

    Science.gov (United States)

    Courtney, J C; Klann, R T

    1997-01-01

    A comprehensive shield test program for a hot cell complex, the Fuel Conditioning Facility at Argonne National Laboratory, has been completed with minimum radiation exposure to participants. The recently modified shielding design for two hot cells and their associated transfer paths for irradiated materials was analyzed and tested for attenuating gamma rays from mixed fission product sources. Testing was accomplished using 0.37 TBq (10 Ci) and 518 TBq (14,000 Ci) 60Co sources. Of specific concern were radiation levels around wall penetrations and the interface between transport casks and the cell floor. Detailed measurements were made for surfaces that bound the hot cells, a transfer tunnel between the two cells, and storage pits that extend below the floors of both cells. In addition to surface measurements, dose equivalent rates in adjacent corridors were determined when the larger source was exposed. Results indicate that with some administrative controls, the facility shields are adequate to meet the design criterion that limits annual dose to less than 10 mSv (1 rem) for facility workers.

  2. Linear Accelerator Test Facility at LNF Conceptual Design Report

    CERN Document Server

    Valente, Paolo; Bolli, Bruno; Buonomo, Bruno; Cantarella, Sergio; Ceccarelli, Riccardo; Cecchinelli, Alberto; Cerafogli, Oreste; Clementi, Renato; Di Giulio, Claudio; Esposito, Adolfo; Frasciello, Oscar; Foggetta, Luca; Ghigo, Andrea; Incremona, Simona; Iungo, Franco; Mascio, Roberto; Martelli, Stefano; Piermarini, Graziano; Sabbatini, Lucia; Sardone, Franco; Sensolini, Giancarlo; Ricci, Ruggero; Rossi, Luis Antonio; Rotundo, Ugo; Stella, Angelo; Strabioli, Serena; Zarlenga, Raffaele

    2016-01-01

    Test beam and irradiation facilities are the key enabling infrastructures for research in high energy physics (HEP) and astro-particles. In the last 11 years the Beam-Test Facility (BTF) of the DA{\\Phi}NE accelerator complex in the Frascati laboratory has gained an important role in the European infrastructures devoted to the development and testing of particle detectors. At the same time the BTF operation has been largely shadowed, in terms of resources, by the running of the DA{\\Phi}NE electron-positron collider. The present proposal is aimed at improving the present performance of the facility from two different points of view: extending the range of application for the LINAC beam extracted to the BTF lines, in particular in the (in some sense opposite) directions of hosting fundamental physics and providing electron irradiation also for industrial users; extending the life of the LINAC beyond or independently from its use as injector of the DA{\\Phi}NE collider, as it is also a key element of the electron/...

  3. A new level of plasticity: Drosophila smooth-like testes muscles compensate failure of myoblast fusion.

    Science.gov (United States)

    Kuckwa, Jessica; Fritzen, Katharina; Buttgereit, Detlev; Rothenbusch-Fender, Silke; Renkawitz-Pohl, Renate

    2016-01-15

    The testis of Drosophila resembles an individual testis tubule of mammals. Both are surrounded by a sheath of smooth muscles, which in Drosophila are multinuclear and originate from a pool of myoblasts that are set aside in the embryo and accumulate on the genital disc later in development. These muscle stem cells start to differentiate early during metamorphosis and give rise to all muscles of the inner male reproductive system. Shortly before the genital disc and the developing testes connect, multinuclear nascent myotubes appear on the anterior tips of the seminal vesicles. Here, we show that adhesion molecules are distinctly localized on the seminal vesicles; founder cell (FC)-like myoblasts express Dumbfounded (Duf) and Roughest (Rst), and fusion-competent myoblast (FCM)-like cells mainly express Sticks and stones (Sns). The smooth but multinuclear myotubes of the testes arose by myoblast fusion. RNAi-mediated attenuation of Sns or both Duf and Rst severely reduced the number of nuclei in the testes muscles. Duf and Rst probably act independently in this context. Despite reduced fusion in all of these RNAi-treated animals, myotubes migrated onto the testes, testes were shaped and coiled, muscle filaments were arranged as in the wild type and spermatogenesis proceeded normally. Hence, the testes muscles compensate for fusion defects so that the myofibres encircling the adult testes are indistinguishable from those of the wild type and male fertility is guaranteed.

  4. Integrated Disposal Facility FY2011 Glass Testing Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Westsik, Joseph H.

    2011-09-29

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 x 10{sup 5} m{sup 3} of glass (Certa and Wells 2010). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 8.9 x 10{sup 14} Bq total activity) of long-lived radionuclides, principally {sup 99}Tc (t{sub 1/2} = 2.1 x 10{sup 5}), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2011 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses.

  5. Development of an underwater spin facility for combined environment testing

    Energy Technology Data Exchange (ETDEWEB)

    Roach, D.P.; Nusser, M.A.

    1991-01-01

    In response to a request from the US Government, Sandia National Laboratories has developed an instrumentation system to monitor the conditions along an underwater, rotating drive shaft. It was desired to study the structural integrity and signal acquisition capabilities of the Shaft Instrumentation System (SIS) in an environment which closely simulates the actual deployment conditions. In this manner, the SIS response to ill-defined conditions, such as flow field turbulence or temperature fluctuations, could be determined. An Underwater Spin Facility was developed in order to verify the operation of the instrumentation and telemetric data acquisition system in a combined environment of external pressure, transient axial loads and centrifugal force. The main components of the Underwater Spin Facility are a large, five foot diameter pressure vessel, a dynamically sealed shaft, a drive train assembly and a shaker table interface which is used to apply the axial loads. This paper presents a detailed description of the design of the Underwater Spin Facility. It also discusses the SIS certification test program in order to demonstrate the successful performance of the Underwater Spin Facility. 8 refs., 10 figs.

  6. Fusion Reactor and Fusion Reactor Materials:Concept Design of the ITER Test Blanket Modules

    Institute of Scientific and Technical Information of China (English)

    HUANGJinhua; LIZaixing; ZHUYukun; HUGang

    2003-01-01

    Performances required: prospect to be adopted in DEMO. Shielding for V.V. and TFC in ITER. Design principles: the peak temperature and stress should not exceed technical limits. The structure of test blanket modules (TBM) should be simple for easy fabrication, and TBM should be robust for reliability.

  7. Embracing Safe Ground Test Facility Operations and Maintenance

    Science.gov (United States)

    Dunn, Steven C.; Green, Donald R.

    2010-01-01

    Conducting integrated operations and maintenance in wind tunnel ground test facilities requires a balance of meeting due dates, efficient operation, responsiveness to the test customer, data quality, effective maintenance (relating to readiness and reliability), and personnel and facility safety. Safety is non-negotiable, so the balance must be an "and" with other requirements and needs. Pressure to deliver services faster at increasing levels of quality in under-maintained facilities is typical. A challenge for management is to balance the "need for speed" with safety and quality. It s especially important to communicate this balance across the organization - workers, with a desire to perform, can be tempted to cut corners on defined processes to increase speed. Having a lean staff can extend the time required for pre-test preparations, so providing a safe work environment for facility personnel and providing good stewardship for expensive National capabilities can be put at risk by one well-intending person using at-risk behavior. This paper documents a specific, though typical, operational environment and cites management and worker safety initiatives and tools used to provide a safe work environment. Results are presented and clearly show that the work environment is a relatively safe one, though still not good enough to keep from preventing injury. So, the journey to a zero injury work environment - both in measured reality and in the minds of each employee - continues. The intent of this paper is to provide a benchmark for others with operational environments and stimulate additional sharing and discussion on having and keeping a safe work environment.

  8. Facility for generating crew waste water product for ECLSS testing

    Science.gov (United States)

    Buitekant, Alan; Roberts, Barry C.

    1990-01-01

    An End-use Equipment Facility (EEF) has been constructed which is used to simulate water interfaces between the Space Station Freedom Environmental Control and Life Support Systems (ECLSS) and man systems. The EEF is used to generate waste water to be treated by ECLSS water recovery systems. The EEF will also be used to close the water recovery loop by allowing test subjects to use recovered hygiene and potable water during several phases of testing. This paper describes the design and basic operation of the EEF.

  9. Facility for generating crew waste water product for ECLSS testing

    Science.gov (United States)

    Buitekant, Alan; Roberts, Barry C.

    1990-01-01

    An End-use Equipment Facility (EEF) has been constructed which is used to simulate water interfaces between the Space Station Freedom Environmental Control and Life Support Systems (ECLSS) and man systems. The EEF is used to generate waste water to be treated by ECLSS water recovery systems. The EEF will also be used to close the water recovery loop by allowing test subjects to use recovered hygiene and potable water during several phases of testing. This paper describes the design and basic operation of the EEF.

  10. Design and operation of an outdoor microalgae test facility

    Energy Technology Data Exchange (ETDEWEB)

    Weissman, J.C.; Tillett, D.M.; Goebel, R.P. (Microbial Products, Inc., Vacaville, CA (USA))

    1989-10-01

    The objective of the project covered in this report is to establish and operate a facility in the American Southwest to test the concept of producing microalgae on a large scale. This microalgae would then be used as a feedstock for producing liquid fuels. The site chosen for this project was an existing water research station in Roswell, New Mexico; the climate and water resources are representative of those in the Southwest. For this project, researchers tested specific designs, modes of operation, and strains of microalgae; proposed and evaluated modifications to technological concepts; and assessed the progress toward meeting cost objectives.

  11. Status of the cold test facility for the JT-60SA tokamak toroidal field coils

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Maksoud, Walid, E-mail: walid.abdelmaksoud@cea.fr; Bargueden, Patrick; Bouty, André; Dispau, Gilles; Donati, André; Eppelle, Dominique; Genini, Laurent; Guiho, Patrice; Guihard, Quentin; Joubert, Jean-Michel; Kuster, Olivier; Médioni, Damien; Molinié, Frédéric; Sinanna, Armand; Solenne, Nicolas; Somson, Sébastien; Vieillard, Laurence

    2015-10-15

    Highlights: • The 5 K cryogenic loop includes a 500 W refrigerator and a She cold pump. • The coils are energized thanks to a 25.7 kA power supply and HTS current leads. • Temperature margin tests between 5 K and 7.5 K will be made on each coil. • A magnet safety system protects each double pancake of the coil in case of quench. • Instrumentation is monitored on a 1 Hz to 10 kHz fast acquisition system. - Abstract: JT-60SA is a fusion experiment which is jointly constructed by Japan and Europe and which shall contribute to the early realization of fusion energy, by providing support to the operation of ITER, and by addressing key physics issues for ITER and DEMO. In order to achieve these goals, the existing JT-60U experiment will be upgraded to JT-60SA by using superconducting coils. The 18 TF coils of the JT-60SA device will be provided by European industry and tested in a Cold Test Facility (CTF) at CEA Saclay. The coils will be tested at the nominal current of 25.7 kA and will be cooled with supercritical helium between 5 K and 7.5 K to check the temperature margin against a quench. The main objective of these tests is to check the TF coils performance and hence mitigate the fabrication risks. The most important components of the facility are: a 11.5 m × 6.5 m large cryostat in which the TF coils will be thermally insulated by vacuum; a 500 W helium refrigerator and a valve box to cool the coils down to 5 K and circulate 24 g/s of supercritical helium through the winding pack and through the casing; a power supply and HTS current leads to energize the coil; the control and instrumentation equipment (sensors, PLC's, supervision system, fast data acquisition system, etc.) and the Magnet Safety System (MSS) that protects the coils in case of quench. The paper will give an overview of the design of this large facility and the status of its realization.

  12. Completion of NDCX-II Facility and Initial Tests

    Science.gov (United States)

    Kwan, Joe; Arbelaez, Diego; Greenway, Wayne; Jung, Jin-Young; Lidia, Steve; Lipton, Thomas; Roy, Prabir; Seidl, Peter; Takakuwa, Jeff; Waldron, William; Friedman, Alex; Grote, David; Sharp, William; Gilson, Erik

    2011-10-01

    The Neutralized Drift Compression Experiment-II (NDCX-II) will generate ion beam pulses for studies of Warm Dense Matter and heavy-ion-driven Inertial Fusion Energy. The machine will accelerate 20-50 nC of Li+ to 1.2-3 MeV energy, starting from a 10.9-cm alumino-silicate ion source. At the end of the accelerator the ions are focused to a mm spot size on a thin foil (planar) target; and the pulse length compressed to sub-ns during beam transport in a neutralizing plasma. While using solenoids for beam focusing, the acceleration and compression will be done by special voltage waveforms along the induction linac. The construction project started in July 2009 and will be complete by March 2012, or earlier. Progress on construction, component and initial beam tests will be reported. Work supported by DOE-OFES.

  13. Evaluating and planning the radioactive waste options for dismantling the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rule, K.; Scott, J.; Larson, S. [Princeton Plasma Physics Lab., NJ (United States)] [and others

    1995-12-31

    The Tokamak Fusion Test Reactor (TFTR) is a one-of-a kind tritium fusion research reactor, and is planned to be decommissioned within the next several years. This is the largest fusion reactor in the world and as a result of deuterium-tritum reactions is tritium contaminated and activated from 14 Mev neutrons. This presents many unusual challenges when dismantling, packaging and disposing its components and ancillary systems. Special containers are being designed to accommodate the vacuum vessel, neutral beams, and tritium delivery and processing systems. A team of experienced professionals performed a detailed field study to evaluate the requirements and appropriate methods for packaging the radioactive materials. This team focused on several current and innovative methods for waste minimization that provides the oppurtunmost cost effective manner to package and dispose of the waste. This study also produces a functional time-phased schedule which conjoins the waste volume, weight, costs and container requirements with the detailed project activity schedule for the entire project scope. This study and project will be the first demonstration of the decommissioning of a tritium fusion test reactor. The radioactive waste disposal aspects of this project are instrumental in demonstrating the viability of a fusion power reactor with regard to its environmental impact and ultimate success.

  14. Thermal Vacuum Control Systems Options for Test Facilities

    Science.gov (United States)

    Marchetti, John

    2008-01-01

    This presentation suggests several Thermal Vacuum System (TVAC) control design approach methods for TVAC facilities. Over the past several years many aerospace companies have or are currently upgrading their TVAC testing facilities whether it be by upgrading old equipment or purchasing new. In doing so they are updating vacuum pumping and thermal capabilities of their chambers as well as their control systems. Although control systems are sometimes are considered second to the vacuum or thermal system upgrade process, they should not be taken lightly and must be planned and implemented with the equipment it is to control. Also, emphasis should be placed on how the operators will use the system as well as the requirements of "their" customers. Presented will be various successful methods of TVAC control systems from Programmable Logic Controller (PLC) based to personal computer (PC) based control.

  15. Vibrational measurement for commissioning SRF Accelerator Test Facility at Fermilab

    CERN Document Server

    McGee, M W; Martinez, A; Pischalnikov, Y; Schappert, W

    2012-01-01

    The commissioning of two cryomodule components is underway at Fermilab's Superconducting Radio Frequency (SRF) Accelerator Test Facility. The research at this facility supports the next generation high intensity linear accelerators such as the International Linear Collider (ILC), a new high intensity injector (Project X) and other future machines. These components, Cryomodule #1 (CM1) and Capture Cavity II (CC2), which contain 1.3 GHz cavities are connected in series in the beamline and through cryogenic plumbing. Studies regarding characterization of ground motion, technical and cultural noise continue. Mechanical transfer functions between the foundation and critical beamline components have been measured and overall system displacement characterized. Baseline motion measurements given initial operation of cryogenic, vacuum systems and other utilities are considered.

  16. Vibrational measurement for commissioning SRF Accelerator Test Facility at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    McGee, M.W.; Leibfritz, J.; Martinez, A.; Pischalnikov, Y.; Schappert, W.; /Fermilab

    2011-03-01

    The commissioning of two cryomodule components is underway at Fermilab's Superconducting Radio Frequency (SRF) Accelerator Test Facility. The research at this facility supports the next generation high intensity linear accelerators such as the International Linear Collider (ILC), a new high intensity injector (Project X) and other future machines. These components, Cryomodule No.1 (CM1) and Capture Cavity II (CC2), which contain 1.3 GHz cavities are connected in series in the beamline and through cryogenic plumbing. Studies regarding characterization of ground motion, technical and cultural noise continue. Mechanical transfer functions between the foundation and critical beamline components have been measured and overall system displacement characterized. Baseline motion measurements given initial operation of cryogenic, vacuum systems and other utilities are considered.

  17. Sandia National Laboratories' new high level acoustic test facility

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J. D.; Hendrick, D. M.

    1989-01-01

    A high intensity acoustic test facility has been designed and is under construction at Sandia National Laboratories in Albuquerque, NM. The chamber is designed to provide an acoustic environment of 154dB (re 20 {mu}Pa) overall sound pressure level over the bandwidth of 50 Hz to 10,000 Hz. The chamber has a volume of 16,000 cubic feet with interior dimensions of 21.6 ft {times} 24.6 ft {times} 30 ft. The construction of the chamber should be complete by the summer of 1990. This paper discusses the design goals and constraints of the facility. The construction characteristics are discussed in detail, as are the acoustic performance design characteristics. The authors hope that this work will help others in designing acoustic chambers. 12 refs., 6 figs.

  18. Meeting today's requirements for large thermal vacuum test facilities

    Science.gov (United States)

    Corinth, R. L.; Rouse, J. A.

    1986-01-01

    The Lockheed Thermal Vacuum Facility at Sunnyvale, California, completed in late 1986, one of the largest multi-program facilities constructed to date is described. The horizontal 12.2 m diameter by 24.4 m long chamber has removable heads at each end and houses a thermal shroud providing a test volume 10.4 m diameter by 24.4 m long. The chamber and thermal shroud are configured to permit the insertion of a 6.1 m wide by 24.4 m long vibration isolated optical bench. The pumpimg system incorporates an internal cryopumping array, turbomolecular pumps and cryopumps to handle multi-program needs and ranges of gas loads. The high vacuum system is capable of achieving clean, dry and empty pressures below 1.3 times 10 to the minus 6 power Pa (10 to the minus 8 power torr.)

  19. An Electronic Pressure Profile Display system for aeronautic test facilities

    Science.gov (United States)

    Woike, Mark R.

    1990-01-01

    The NASA Lewis Research Center has installed an Electronic Pressure Profile Display system. This system provides for the real-time display of pressure readings on high resolution graphics monitors. The Electronic Pressure Profile Display system will replace manometer banks currently used in aeronautic test facilities. The Electronic Pressure Profile Display system consists of an industrial type Digital Pressure Transmitter (DPI) unit which interfaces with a host computer. The host computer collects the pressure data from the DPI unit, converts it into engineering units, and displays the readings on a high resolution graphics monitor in bar graph format. Software was developed to accomplish the above tasks and also draw facility diagrams as background information on the displays. Data transfer between host computer and DPT unit is done with serial communications. Up to 64 channels are displayed with one second update time. This paper describes the system configuration, its features, and its advantages over existing systems.

  20. Pyroprocessing of Fast Flux Test Facility Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    B.R. Westphal; G.L. Fredrickson; G.G. Galbreth; D. Vaden; M.D. Elliott; J.C. Price; E.M. Honeyfield; M.N. Patterson; L. A. Wurth

    2013-10-01

    Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primary fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electrorefined uranium products exceeded 99%.

  1. Thermal lensing compensation for AIGO high optical power test facility

    Science.gov (United States)

    Degallaix, Jérôme; Zhao, Chunnong; Ju, Li; Blair, David

    2004-03-01

    We present finite element modelling of thermal lensing occurring in an interferometer test mass. Our simulations include the thermo-optic effect and mechanical expansion of the optics. For the High Optical Power Test Facility (HOPTF) operated by the Australian International Gravitational Observatory (AIGO), the optical path length measured across the laser beam radius is 45 nm for 1.2 W absorbed power for the input sapphire test mass. The AIGO thermal lens is much stronger than the one in Advanced LIGO and will degrade the interferometer performance. Direct thermal compensation and the use of an external compensation plate were investigated to minimize thermal lensing consequences in the interferometer. For the AIGO situation, a fused silica external plate is the most practical solution to correct thermally induced wavefront distortions. The compensation plate requires lower thermal power than direct compensation and does not increase the test mass temperature.

  2. Thermal lensing compensation for AIGO high optical power test facility

    Energy Technology Data Exchange (ETDEWEB)

    Degallaix, Jerome [School of Physics, University of Western Australia, Stirling Highway, Crawley, WA 6009 (Australia); Zhao Chunnong [Computer and Information Science, Edith Cowan University, Mount Lawley, WA 6050 (Australia); Ju Li [School of Physics, University of Western Australia, Stirling Highway, Crawley, WA 6009 (Australia); Blair, David [School of Physics, University of Western Australia, Stirling Highway, Crawley, WA 6009 (Australia)

    2004-03-07

    We present finite element modelling of thermal lensing occurring in an interferometer test mass. Our simulations include the thermo-optic effect and mechanical expansion of the optics. For the High Optical Power Test Facility (HOPTF) operated by the Australian International Gravitational Observatory (AIGO), the optical path length measured across the laser beam radius is 45 nm for 1.2 W absorbed power for the input sapphire test mass. The AIGO thermal lens is much stronger than the one in Advanced LIGO and will degrade the interferometer performance. Direct thermal compensation and the use of an external compensation plate were investigated to minimize thermal lensing consequences in the interferometer. For the AIGO situation, a fused silica external plate is the most practical solution to correct thermally induced wavefront distortions. The compensation plate requires lower thermal power than direct compensation and does not increase the test mass temperature.

  3. Consolidated Incineration Facility waste burn test. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Burns, D.B.

    1995-01-11

    The Savannah River Technology Center (SRTC) is Providing technical support for start-up and operation of the Consolidated Incineration Facility. This support program includes a series of pilot incineration tests performed at the Environmental Protection Agency`s (EPA`s) Incineration Research Facility (MF) using surrogate CIF mixed wastes. The objectives for this test program included measuring incinerator offgas particulate loading and size distributions as a function of several operating variables, characterizing kiln bottom ash and offgas particulates, determining heavy metal partition between the kiln bottom ash and incinerator stack gas, and measuring kiln organics emissions (particularly polychlorinated dioxins and furans). These tests were designed to investigate the effect of the following operating parameters: Incineration Temperature; Waste Feed Rate; Waste Density; Kiln Solids Residence Time; and Waste Composition. Tests were conducted at three kiln operating temperatures. Three solid waste simulants were burned, two waste mixtures (paper, plastic, latex, and PVC) with one containing spiked toxic organic and metal compounds, and one waste type containing only paper. Secondary Combustion Chamber (SCC) offgases were sampled for particulate loading and size distribution, organic compounds, polychlorinated dibenzo[p]dioxins and polychlorinated dibenzofurans (PCDD/PCDF), metals, and combustion products. Kiln bottom ash and offgas particulates were characterized to determine the principal elements and compounds comprising these secondary wastes.

  4. A fuel cell balance of plant test facility

    Science.gov (United States)

    Dicks, A. L.; Martin, P. A.

    Much attention is focused in the fuel cell community on the development of reliable stack technology, but to successfully exploit fuel cells, they must form part of integrated power generation systems. No universal test facilities exist to evaluate SOFC stacks and comparatively little research has been undertaken concerning the issues of the rest of the system, or balance of plant (BOP). BG, in collaboration with Eniricerche, has therefore recently designed and built a test facility to evaluate different configurations of the BOP equipment for a 1-5 kWe solid oxide fuel cell (SOFC) stack. Within this BOP project, integrated, dynamic models have been developed. These have shown that three characteristic response times exist when the stack load is changed and that three independent control loops are required to manage the almost instantaneous change in power output from an SOFC stack, maintain the fuel utilisation and control the stack temperature. Control strategies and plant simplifications, arising from the dynamic modelling, have also been implemented in the BOP test facility. An SOFC simulator was designed and integrated into the control system of the test rig to behave as a real SOFC stack, allowing the development of control strategies without the need for a real stack. A novel combustor has been specifically designed, built and demonstrated to be capable of burning the low calorific anode exhaust gas from an SOFC using the oxygen depleted cathode stream. High temperature, low cost, shell and tube heat exchangers have been shown to be suitable for SOFC systems. Sealing of high temperature anode recirculation fans has, however, been shown to be a major issue and identified as a key area for further investigation.

  5. High-energy-density plasmas generation on GEKKO-LFEX laser facility for fast-ignition laser fusion studies and laboratory astrophysics

    Science.gov (United States)

    Fujioka, S.; Zhang, Z.; Yamamoto, N.; Ohira, S.; Fujii, Y.; Ishihara, K.; Johzaki, T.; Sunahara, A.; Arikawa, Y.; Shigemori, K.; Hironaka, Y.; Sakawa, Y.; Nakata, Y.; Kawanaka, J.; Nagatomo, H.; Shiraga, H.; Miyanaga, N.; Norimatsu, T.; Nishimura, H.; Azechi, H.

    2012-12-01

    The world's largest peta watt (PW) laser LFEX, which delivers energy up to 2 kJ in a 1.5 ps pulse, has been constructed beside the GEKKO XII laser at the Institute of Laser Engineering, Osaka University. The GEKKO-LFEX laser facility enables the creation of materials having high-energy-density which do not exist naturally on the Earth and have an energy density comparable to that of stars. High-energy-density plasma is a source of safe, secure, environmentally sustainable fusion energy. Direct-drive fast-ignition laser fusion has been intensively studied at this facility under the auspices of the Fast Ignition Realization Experiment (FIREX) project. In this paper, we describe improvement of the LFEX laser and investigations of advanced target design to increase the energy coupling efficiency of the fast-ignition scheme. The pedestal of the LFEX pulse, which produces a long preformed plasma and results in the generation of electrons too energetic to heat the fuel core, was reduced by introducing an amplified optical parametric fluorescence quencher and saturable absorbers in the front-end system of the LFEX laser. Since fast electrons are scattered and stopped by the strong electric field of highly ionized high-Z (i.e. gold) ions, a low-Z cone was studied for reducing the energy loss of fast electrons in the cone tip region. A diamond-like carbon cone was fabricated for the fast-ignition experiment. An external magnetic field, which is demonstrated to be generated by a laser-driven capacitor-coil target, will be applied to the compression of the fuel capsule to form a strong magnetic field to guide the fast electrons to the fuel core. In addition, the facility offers a powerful means to test and validate astronomical models and computations in the laboratory. As well as demonstrating the ability to recreate extreme astronomical conditions by the facilities, our theoretical description of the laboratory experiment was compared with the generally accepted explanation

  6. Upgrade of the BATMAN test facility for H{sup −} source development

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, B., E-mail: bernd.heinemann@ipp.mpg.de; Fröschle, M.; Falter, H.-D.; Fantz, U.; Franzen, P.; Kraus, W.; Nocentini, R.; Riedl, R.; Ruf, B. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany)

    2015-04-08

    The development of a radio frequency (RF) driven source for negative hydrogen ions for the neutral beam heating devices of fusion experiments has been successfully carried out at IPP since 1996 on the test facility BATMAN. The required ITER parameters have been achieved with the prototype source consisting of a cylindrical driver on the back side of a racetrack like expansion chamber. The extraction system, called “Large Area Grid” (LAG) was derived from a positive ion accelerator from ASDEX Upgrade (AUG) using its aperture size (ø 8 mm) and pattern but replacing the first two electrodes and masking down the extraction area to 70 cm2. BATMAN is a well diagnosed and highly flexible test facility which will be kept operational in parallel to the half size ITER source test facility ELISE for further developments to improve the RF efficiency and the beam properties. It is therefore planned to upgrade BATMAN with a new ITER-like grid system (ILG) representing almost one ITER beamlet group, namely 5 × 14 apertures (ø 14 mm). Additionally to the standard three grid extraction system a repeller electrode upstream of the grounded grid can optionally be installed which is positively charged against it by 2 kV. This is designated to affect the onset of the space charge compensation downstream of the grounded grid and to reduce the backstreaming of positive ions from the drift space backwards into the ion source. For magnetic filter field studies a plasma grid current up to 3 kA will be available as well as permanent magnets embedded into a diagnostic flange or in an external magnet frame. Furthermore different source vessels and source configurations are under discussion for BATMAN, e.g. using the AUG type racetrack RF source as driver instead of the circular one or modifying the expansion chamber for a more flexible position of the external magnet frame.

  7. Information fusion in regularized inversion of tomographic pumping tests

    Science.gov (United States)

    Bohling, G.C.; ,

    2008-01-01

    In this chapter we investigate a simple approach to incorporating geophysical information into the analysis of tomographic pumping tests for characterization of the hydraulic conductivity (K) field in an aquifer. A number of authors have suggested a tomographic approach to the analysis of hydraulic tests in aquifers - essentially simultaneous analysis of multiple tests or stresses on the flow system - in order to improve the resolution of the estimated parameter fields. However, even with a large amount of hydraulic data in hand, the inverse problem is still plagued by non-uniqueness and ill-conditioning and the parameter space for the inversion needs to be constrained in some sensible fashion in order to obtain plausible estimates of aquifer properties. For seismic and radar tomography problems, the parameter space is often constrained through the application of regularization terms that impose penalties on deviations of the estimated parameters from a prior or background model, with the tradeoff between data fit and model norm explored through systematic analysis of results for different levels of weighting on the regularization terms. In this study we apply systematic regularized inversion to analysis of tomographic pumping tests in an alluvial aquifer, taking advantage of the steady-shape flow regime exhibited in these tests to expedite the inversion process. In addition, we explore the possibility of incorporating geophysical information into the inversion through a regularization term relating the estimated K distribution to ground penetrating radar velocity and attenuation distributions through a smoothing spline model. ?? 2008 Springer-Verlag Berlin Heidelberg.

  8. Evaluation of Geopolymer Concrete for Rocket Test Facility Flame Deflectors

    Science.gov (United States)

    Allgood, Daniel C.; Montes, Carlos; Islam, Rashedul; Allouche, Erez

    2014-01-01

    The current paper presents results from a combined research effort by Louisiana Tech University (LTU) and NASA Stennis Space Center (SSC) to develop a new alumina-silicate based cementitious binder capable of acting as a high performance refractory material with low heat ablation rate and high early mechanical strength. Such a binder would represent a significant contribution to NASA's efforts to develop a new generation of refractory 'hot face' liners for liquid or solid rocket plume environments. This project was developed as a continuation of on-going collaborations between LTU and SSC, where test sections of a formulation of high temperature geopolymer binder were cast in the floor and walls of Test Stand E-1 Cell 3, an active rocket engine test stand flame trench. Additionally, geopolymer concrete panels were tested using the NASA-SSC Diagnostic Test Facility (DTF) thruster, where supersonic plume environments were generated on a 1ft wide x 2ft long x 6 inch deep refractory panel. The DTF operates on LOX/GH2 propellants producing a nominal thrust of 1,200 lbf and the combustion chamber conditions are Pc=625psig, O/F=6.0. Data collected included high speed video of plume/panel area and surface profiles (depth) of the test panels measured on a 1-inch by 1-inch giving localized erosion rates during the test. Louisiana Tech conducted a microstructure analysis of the geopolymer binder after the testing program to identify phase changes in the material.

  9. Low Temperature Thermal Vacuum Test Facility for Optical Instruments

    Science.gov (United States)

    Sollner, B.

    2012-07-01

    The challenging goals for current and future scientific missions require further improvements and investigations on space simulation on earth. As a present example for the efforts to be undertaken in order to fulfil those requirements, a specific test set up including the installation of a complete new thermal vacuum test facility is presented, which is designed in the framework of the JWST Near-Infrared Spectrograph (NIRSpec) test campaign at IABG mbH. The qualification tests for the NIRSpec Optical Assembly require temperatures below 20K on three independent heat sinks as well as a helium cooled shroud which surrounds the test object. Furthermore low vibration levels in a clean class5 environment, combined with a long term stability of the parameters to be determined are necessary. Additional specific devices are introduced into the test setup and the test chamber, to allow temporary thermal decoupling, short- term optical access and high optical isolation. Moreover, major improvements on the levelling and positioning of the test setup inside the thermal vacuum chamber are implemented.

  10. The Testing Behind The Test Facility: The Acoustic Design of the NASA Glenn Research Center's World-Class Reverberant Acoustic Test Facility

    Science.gov (United States)

    Hozman, Aron D.; Hughes, William O.; McNelis, Mark E.; McNelis, Anne M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA's space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 cu ft in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada's acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

  11. Design of resolution testing facility for ultraviolet imager

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    We present a resolution testing system of ultraviolet (UV) imager.In this system,an UV Czerny-Turner monochromator with a small f-number is designed to get more energy as an UV radiation source,and its stray light is rejected effectively by light traps.And UV diffuser is employed in order to get uniform light distribution on the resolving power test target.We also design a novel UV collimator which makes infinite UV testing targets.It can reduce the difficulty of optical design and the machining cost,and utilize UV energy at maximum extent.This facility has been applied in the imaging quality evaluation of the UV instrument,and the results accord with the theoretical analysis.

  12. The ITER Neutral Beam Test Facility towards SPIDER operation

    Science.gov (United States)

    Toigo, V.; Dal Bello, S.; Gaio, E.; Luchetta, A.; Pasqualotto, R.; Zaccaria, P.; Bigi, M.; Chitarin, G.; Marcuzzi, D.; Pomaro, N.; Serianni, G.; Agostinetti, P.; Agostini, M.; Antoni, V.; Aprile, D.; Baltador, C.; Barbisan, M.; Battistella, M.; Boldrin, M.; Brombin, M.; Dalla Palma, M.; De Lorenzi, A.; Delogu, R.; De Muri, M.; Fellin, F.; Ferro, A.; Gambetta, G.; Grando, L.; Jain, P.; Maistrello, A.; Manduchi, G.; Marconato, N.; Pavei, M.; Peruzzo, S.; Pilan, N.; Pimazzoni, A.; Piovan, R.; Recchia, M.; Rizzolo, A.; Sartori, E.; Siragusa, M.; Spada, E.; Spagnolo, S.; Spolaore, M.; Taliercio, C.; Valente, M.; Veltri, P.; Zamengo, A.; Zaniol, B.; Zanotto, L.; Zaupa, M.; Boilson, D.; Graceffa, J.; Svensson, L.; Schunke, B.; Decamps, H.; Urbani, M.; Kushwah, M.; Chareyre, J.; Singh, M.; Bonicelli, T.; Agarici, G.; Garbuglia, A.; Masiello, A.; Paolucci, F.; Simon, M.; Bailly-Maitre, L.; Bragulat, E.; Gomez, G.; Gutierrez, D.; Mico, G.; Moreno, J.-F.; Pilard, V.; Chakraborty, A.; Baruah, U.; Rotti, C.; Patel, H.; Nagaraju, M. V.; Singh, N. P.; Patel, A.; Dhola, H.; Raval, B.; Fantz, U.; Fröschle, M.; Heinemann, B.; Kraus, W.; Nocentini, R.; Riedl, R.; Schiesko, L.; Wimmer, C.; Wünderlich, D.; Cavenago, M.; Croci, G.; Gorini, G.; Rebai, M.; Muraro, A.; Tardocchi, M.; Hemsworth, R.

    2017-08-01

    SPIDER is one of two projects of the ITER Neutral Beam Test Facility under construction in Padova, Italy, at the Consorzio RFX premises. It will have a 100 keV beam source with a full-size prototype of the radiofrequency ion source for the ITER neutral beam injector (NBI) and also, similar to the ITER diagnostic neutral beam, it is designed to operate with a pulse length of up to 3600 s, featuring an ITER-like magnetic filter field configuration (for high extraction of negative ions) and caesium oven (for high production of negative ions) layout as well as a wide set of diagnostics. These features will allow a reproduction of the ion source operation in ITER, which cannot be done in any other existing test facility. SPIDER realization is well advanced and the first operation is expected at the beginning of 2018, with the mission of achieving the ITER heating and diagnostic NBI ion source requirements and of improving its performance in terms of reliability and availability. This paper mainly focuses on the preparation of the first SPIDER operations—integration and testing of SPIDER components, completion and implementation of diagnostics and control and formulation of operation and research plan, based on a staged strategy.

  13. I and C functional test facility malfunction cause and effect

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kee Choon

    1997-06-01

    The objective of I and C function test facility (FTF) is to validate newly developed digital control and protection algorithm, alarm reduction algorithm and the function of operator support system and so on. To realize transient and accident situation in the FTF, the result of the activation of malfunction should be similar to the situation of real nuclear power plants. In this technical report, describe the Group, Malfunction No., Description, Option, Recommendations, Considered in Subroutine, Limitations, Cause, and Effect of the malfunctions implemented in FTF. (author).

  14. The GALATEA test-facility for High Purity Germanium Detectors

    CERN Document Server

    Abt, I; Doenmez, B; Garbini, L; Irlbeck, S; Majorovits, B; Palermo, M; Schulz, O; Seitz, H; Stelzer, F

    2014-01-01

    GALATEA is a test facility designed to investigate bulk and surface effects in high purity germanium detectors. A vacuum tank houses an infrared screened volume with a cooled detector inside. A system of three stages allows an almost complete scan of the detector. The main feature of GALATEA is that there is no material between source and detector. This allows the usage of alpha and beta sources as well as of a laser beam to study surface effects. A 19-fold segmented true-coaxial germanium detector was used for commissioning.

  15. The GALATEA test-facility for high purity germanium detectors

    Science.gov (United States)

    Abt, I.; Caldwell, A.; Dönmez, B.; Garbini, L.; Irlbeck, S.; Majorovits, B.; Palermo, M.; Schulz, O.; Seitz, H.; Stelzer, F.

    2015-05-01

    GALATEA is a test facility designed to investigate bulk and surface effects in high purity germanium detectors. A vacuum tank houses a cold volume with the detector inside. A system of three precision motorized stages allows an almost complete scan of the detector. The main feature of GALATEA is that there is no material between source and detector. This allows the usage of alpha and beta sources to study surface effects. A 19-fold segmented true-coaxial germanium detector was used for commissioning. A first analysis of data obtained with an alpha source is presented here.

  16. The GALATEA test-facility for high purity germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Abt, I.; Caldwell, A.; Dönmez, B.; Garbini, L.; Irlbeck, S.; Majorovits, B.; Palermo, M., E-mail: palermo@mpp.mpg.de; Schulz, O.; Seitz, H.; Stelzer, F.

    2015-05-11

    GALATEA is a test facility designed to investigate bulk and surface effects in high purity germanium detectors. A vacuum tank houses a cold volume with the detector inside. A system of three precision motorized stages allows an almost complete scan of the detector. The main feature of GALATEA is that there is no material between source and detector. This allows the usage of alpha and beta sources to study surface effects. A 19-fold segmented true-coaxial germanium detector was used for commissioning. A first analysis of data obtained with an alpha source is presented here.

  17. Vehicle Testing and Integration Facility; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-02

    Engineers at the National Renewable Energy Laboratory’s (NREL’s) Vehicle Testing and Integration Facility (VTIF) are developing strategies to address two separate but equally crucial areas of research: meeting the demands of electric vehicle (EV) grid integration and minimizing fuel consumption related to vehicle climate control. Dedicated to renewable and energy-efficient solutions, the VTIF showcases technologies and systems designed to increase the viability of sustainably powered vehicles. NREL researchers instrument every class of on-road vehicle, conduct hardware and software validation for EV components and accessories, and develop analysis tools and technology for the Department of Energy, other government agencies, and industry partners.

  18. University of Minnesota Aquifer Thermal Energy Storage Field Test Facility

    Science.gov (United States)

    Walton, M.; Hoyer, M. C.

    1982-12-01

    The University of Minnesota Aquifer Thermal Energy Storage (ATES) Field Test Facility became operational. Experiments demonstrated that the Franconia-Ironton-Galesville aquifer will accept injection of 300 gpm (18.9 1 sec (-1)) at reasonable pressures with a heat buildup in the injection well of about 44 psi (31.6 m) over 8 days. Heating of the ground water caused precipitation of carbonate in the piping and injection well, but with proper water conditioning, the system will work satisfactorily at elevated temperatures.

  19. Selected Applications of Planar Imaging Velocimetry in Combustion Test Facilities

    Science.gov (United States)

    Willert, Christian; Stockhausen, Guido; Voges, Melanie; Klinner, Joachim; Schodl, Richard; Hassa, Christoph; Schürmans, Bruno; Güthe, Felix

    This chapter provides an overview on the application of particle image velocimetry (PIV) and Doppler global velocimetry (DGV) in combustion test facilities that are operated at pressures of up to 10 bar. Emphasis is placed on the experimental aspects of each application rather than the interpretation of the acquired flow-field data because many of the encountered problems and chosen solution strategies are unique to this area of velocimetry application. In particular, imaging configurations, seeding techniques, data-acquisition strategies as well as pre- and postprocessing methodologies are outlined.

  20. Fast Flux Test Facility final safety analysis report. Amendment 73

    Energy Technology Data Exchange (ETDEWEB)

    Gantt, D.A.

    1993-08-01

    This report provides Final Safety Analysis Report (FSAR) Amendment 73 for incorporation into the Fast Flux Test Facility (FFTR) FSAR set. This page change incorporates Engineering Change Notices (ECNs) issued subsequent to Amendment 72 and approved for incorparoration before May 6, 1993. These changes include: Chapter 3, design criteria structures, equipment, and systems; chapter 5B, reactor coolant system; chapter 7, instrumentation and control systems; chapter 9, auxiliary systems; chapter 11, reactor refueling system; chapter 12, radiation protection and waste management; chapter 13, conduct of operations; chapter 17, technical specifications; chapter 20, FFTF criticality specifications; appendix C, local fuel failure events; and appendix Fl, operation at 680{degrees}F inlet temperature.

  1. Fast Flux Test Facility final safety analysis report. Amendment 73

    Energy Technology Data Exchange (ETDEWEB)

    Gantt, D.A.

    1993-08-01

    This report provides Final Safety Analysis Report (FSAR) Amendment 73 for incorporation into the Fast Flux Test Facility (FFTR) FSAR set. This page change incorporates Engineering Change Notices (ECNs) issued subsequent to Amendment 72 and approved for incorparoration before May 6, 1993. These changes include: Chapter 3, design criteria structures, equipment, and systems; chapter 5B, reactor coolant system; chapter 7, instrumentation and control systems; chapter 9, auxiliary systems; chapter 11, reactor refueling system; chapter 12, radiation protection and waste management; chapter 13, conduct of operations; chapter 17, technical specifications; chapter 20, FFTF criticality specifications; appendix C, local fuel failure events; and appendix Fl, operation at 680{degrees}F inlet temperature.

  2. Model for collisional fast ion diffusion into Tokamak Fusion Test Reactor loss cone

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.S. [New York Univ., NY (United States). Courant Inst. of Mathematical Sciences]|[Korea Advanced Inst. of Science and Technology, Seoul (Korea, Republic of); Zweben, S.J.; Schivell, J.; Budny, R.; Scott, S. [Princeton Univ., NJ (United States). Plasma Physics Lab.

    1994-08-01

    An analytic model is developed to estimate the classical pitch angle scattering loss of energetic fusion product ions into prompt loss orbits in a tokamak geometry. The result is applied to alpha particles produced by deutrium-tritium fusion reactions in a plasma condition relevant to Tokamak Fusion Test Reactor (TFTR). A poloidal angular distribution of collisional fast ion loss at the first wall is obtained and the numerical result from the TRANSP code is discussed. The present model includes the effect that the prompt loss boundary moves away from the slowing-down path due to reduction in banana thickness, which enables us to understand, for the first time. the dependence of the collisional loss rate on Z{sub eff}.

  3. Gunite and Associated Tanks Treatability Study Equipment Testing at the Tanks Technology Cold Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Burks, BL

    2001-02-27

    This report provides a summary of the cold tests performed on the equipment to be used in the Gunite and Associated Tanks Treatability Study. The testing was performed from June 1996 to May 1997 at the Tanks Technology Cold Test Facility located at the 7600 complex at Oak Ridge National Laboratory. Testing of specific equipment grouped into the following sections: (1) Modified Light-Duty Utility Arm Testing, (2) Remotely Operated Vehicle Testing, (3) Waste Dislodging and Conveyance System and Balance of Plant Equipment Testing, (4) Camera and Lighting System Testing, and (5) Characterization End-Effector Testing. Each section contains descriptions of a series of tests that summarize the test objectives, testing performed, and test results. General conclusions from the testing are also provided.

  4. Environmental Assessment for the LGF Spill Test Facility at Frenchman Flat, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Patton, S.E.; Novo, M.G.; Shinn, J.H.

    1986-04-01

    The LGF Spill Test Facility at Frenchman Flat, Nevada Test Site, is being constructed by the United States Department of Energy (DOE). In this Environmental Assessment, environmental consequences of spilling hazardous materials in the Frenchman Flat basin are evaluated and mitigations and recommendations are stated in order to protect natural resources and reduce land-use impacts. Guidelines and restrictions concerning spill-test procedures will be determined by the LGF Test Facility Operations Manager and DOE based on toxicity documentation for the test material, provided by the user, and mitigations imposed by the Environmental Assessment. In addition to Spill Test Facility operational procedures, certain assumptions have been made in preparation of this document: no materials will be considered for testing that have cumulative, long-term persistence in the environment; spill tests will consist of releases of 15 min or less; and sufficient time will be allowed between tests for recovery of natural resources. Geographic limits to downwind concentrations of spill materials were primarily determined from meteorological data, human occupational exposure standards to hazardous materials and previous spill tests. These limits were established using maximum spill scenarios and environmental impacts are discussed as worst case scenarios; however, spill-test series will begin with smaller spills, gradually increasing in size after the impacts of the initial tests have been evaluated.

  5. Operation and commissioning of IFMIF (International Fusion Materials Irradiation Facility) LIPAc injector

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, Y., E-mail: okumura.yoshikazu@jaea.go.jp, E-mail: rjgobin@cea.fr; Knaster, J.; Ayala, J.-M.; Marqueta, A.; Perez, M.; Pruneri, G.; Scantamburlo, F. [IFMIF/EVEDA Project Team, Obuchi-Omotedate, 039-3212 Rokkasho, Aomori (Japan); Gobin, R., E-mail: okumura.yoshikazu@jaea.go.jp, E-mail: rjgobin@cea.fr; Bolzon, B.; Chauvin, N.; Chel, S.; Harrault, F.; Senée, F.; Valette, M. [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/Saclay, DSM/IRFU, 91191 Gif/Yvette (France); Heidinger, R.; Cara, P.; Gex, D.; Phillips, G. [F4E, Fusion for Energy, BFD Department, D-85748 Garching (Germany); Ichimiya, R.; Ihara, A. [JAEA, Division of Rokkasho BA Project, Obuchi-Omotedate, 039-3212 Rokkasho, Aomori (Japan); and others

    2016-02-15

    The objective of linear IFMIF prototype accelerator is to demonstrate 125 mA/CW deuterium ion beam acceleration up to 9 MeV. The injector has been developed in CEA Saclay and already demonstrated 140 mA/100 keV deuterium beam [R. Gobin et al., Rev. Sci. Instrum. 85, 02A918 (2014)]. The injector was disassembled and delivered to the International Fusion Energy Research Center in Rokkasho, Japan. After reassembling the injector, commissioning has started in 2014. Up to now, 100 keV/120 mA/CW hydrogen and 100 keV/90 mA/CW deuterium ion beams have been produced stably from a 10 mm diameter extraction aperture with a low beam emittance of 0.21 π mm mrad (rms, normalized). Neutron production by D-D reaction up to 2.4 × 10{sup 9} n/s has been observed in the deuterium operation.

  6. Engine testing the design, building, modification and use of powertrain test facilities

    CERN Document Server

    MARTYR, A J

    2012-01-01

    Engine Testing is a unique, well-organized and comprehensive collection of the different aspects of engine and vehicle testing equipment and infrastructure for anyone involved in facility design and management, physical testing and the maintenance, upgrading and trouble shooting of testing equipment. Designed so that its chapters can all stand alone to be read in sequence or out of order as needed, Engine Testing is also an ideal resource for automotive engineers required to perform testing functions whose jobs do not involve engine testing on a regular basis. This recognized standard refer

  7. Design of an epithermal column for BNCT based on D D fusion neutron facility

    Science.gov (United States)

    Durisi, E.; Zanini, A.; Manfredotti, C.; Palamara, F.; Sarotto, M.; Visca, L.; Nastasi, U.

    2007-05-01

    Boron Neutron Capture Therapy (BNCT) is currently performed on patients at nuclear reactors. At the same time the international BNCT community is engaged in the development of alternative facilities for in-hospital treatments. This paper investigates the potential of a novel high-output D-D neutron generator, developed at Lawrence Berkeley National Laboratory (CA, USA), for BNCT. The simulation code MCNP-4C is used to realize an accurate study of the epithermal column in view of the treatment of deep tumours. Different materials and Beam Shaping Assemblies (BSA) are investigated and an optimized configuration is proposed. The neutron beam quality is defined by the standard free beam parameters, calculated averaging over the collimator aperture. The results are discussed and compared with the performances of other facilities.

  8. Assessment of NDE Methods on Inspection of HDPE Butt Fusion Piping Joints for Lack of Fusion with Validation from Mechanical Testing

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Michael T.; Cinson, Anthony D.; Crawford, Susan L.; Doctor, Steven R.; Moran, Traci L.; Watts, Michael W.

    2010-12-01

    Studies at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, are being conducted to evaluate nondestructive examinations (NDE) coupled with mechanical testing of butt fusion joints in high-density polyethylene (HDPE) pipe for assessing lack of fusion. The work provides information to the U.S. Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques of HDPE butt fusion joints in Section III, Division 1, Class 3, buried piping systems in nuclear power plants. This paper describes results from preliminary assessments using ultrasonic and microwave nondestructive techniques and mechanical testing with the high-speed tensile impact test and the side-bend test for determining joint integrity. A series of butt joints were fabricated in 3408, 12-in. IPS DR-11 HDPE material by varying the fusion parameters to create good joints and joints containing a range of lack-of-fusion conditions. Six of these butt joints were volumetrically examined with time-of-flight diffraction (TOFD), phased-array (PA) ultrasound, and the Evisive microwave system. The outer-diameter weld beads were removed for the microwave inspection. In two of the four pipes, both the outer and inner weld beads were removed and the pipe joints re-evaluated. The pipes were sectioned and the joints destructively evaluated with the side-bend test by cutting portions of the fusion joint into slices that were planed and bent. The last step in this limited study will be to correlate the fusion parameters, nondestructive, and destructive evaluation results to validate the effectiveness of what each NDE technology detects and what each does not detect. The results of the correlation will be used in identifying any future work that is needed.

  9. Performance evaluation of multi-sensor data fusion technique for test range application

    Indian Academy of Sciences (India)

    Shrabani Bhattacharya; R Appavu Raj

    2004-04-01

    We have adopted the state-vector fusion technique for fusing multiple sensors track data to provide complete and precise trajectory information about the flight vehicle under test, for the purpose of flight safety monitoring and decisionmaking at Test Range. The present paper brings out the performance of the algorithm for different process noise and measurement noise using simulated as well as real track data.

  10. The Mission and Technology of a Gas Dynamic Trap Neutron Source for Fusion Material and Component Testing and Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, A; Kulcinski, J; Molvik, A; Ryutov, D; Santarius, J; Simonen, T; Wirth, B D; Ying, A

    2009-11-23

    The successful operation (with {beta} {le} 60%, classical ions and electrons with Te = 250 eV) of the Gas Dynamic Trap (GDT) device at the Budker Institute of Nuclear Physics (BINP) in Novosibirsk, Russia, extrapolates to a 2 MW/m{sup 2} Dynamic Trap Neutron Source (DTNS), which burns only {approx}100 g of tritium per full power year. The DTNS has no serious physics, engineering, or technology obstacles; the extension of neutral beam lines to steady state can use demonstrated engineering; and it supports near-term tokamaks and volume neutron sources. The DTNS provides a neutron spectrum similar to that of ITER and satisfies the missions specified by the materials community to test fusion materials (listed as one of the top grand challenges for engineering in the 21st century by the U.S. National Academy of Engineering) and subcomponents (including tritium-breeding blankets) needed to construct DEMO. The DTNS could serve as the first Fusion Nuclear Science Facility (FNSF), called for by ReNeW, and could provide the data necessary for licensing subsequent FSNFs.

  11. Development of IASCC Test Facility for Neutron-irradiated Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. W.; Kim, D. J.; Hwang, S. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    From literature review and benchmark studies on recent technologies for IASCC evaluation of highly irradiated stainless steels, the requirements to establish IASCC test facility were drawn. According to the requirements, IASCC test facility for assessment of life time and integrity of RVIs in Korean PWRs will be designed in detail and constructed in hot cells of KAERI. Irradiation assisted stress corrosion cracking (IASCC) has been regarded as the main cause for intergranular cracking incidents in reactor vessel internals (RVIs) in light water reactors (LWRs). IASCC was reported in a fuel rod in the 1960s, a control rod in the 1970s, and a baffle former bolt in recent years. For a proactive management of IASCC of these components, a lot of work has been performed in boiling water reactors (BWRs). From these works, IASCC mechanism and its relation to radiation-induced segregation (RIS), neutron fluence, and applied stress were proposed to describe IASCC behavior of RVIs in BWRs. However, the IASCC mechanism of RVIs in pressurized water reactors (PWRs) is not fully understood yet as compared with that in BWRs owing to a lack of reliable data. Recently, worldwide efforts have been made to investigate the IASCC susceptibility of RVIs in PWRs.

  12. Experimental facility for testing nuclear instruments for planetary landing missions

    Science.gov (United States)

    Golovin, Dmitry; Mitrofanov, Igor; Litvak, Maxim; Kozyrev, Alexander; Sanin, Anton; Vostrukhin, Andrey

    2017-04-01

    The experimental facility for testing and calibration of nuclear planetology instruments has been built in the frame of JINR and Space Research Institute (Moscow) cooperation. The Martian soil model from silicate glass with dimensions 3.82 x 3.21 m and total weight near 30 tons has been assembled in the facility. The glass material was chosen for imitation of dry Martian regolith. The heterogeneous model has been proposed and developed to achieve the most possible similarity with Martian soil in part of the average elemental composition by adding layers of necessary materials, such as iron, aluminum, and chlorine. The presence of subsurface water ice is simulated by adding layers of polyethylene at different depths inside glass model assembly. Neutron generator was used as a neutron source to induce characteristic gamma rays for testing active neutron and gamma spectrometers to define elements composition of the model. The instrumentation was able to detect gamma lines attributed to H, O, Na, Mg, Al, Si, Cl, K, Ca and Fe. The identified elements compose up to 95 wt % of total mass of the planetary soil model. This results will be used for designing scientific instruments to performing experiments of active neutron and gamma ray spectroscopy on the surface of the planets during Russian and international missions Luna-Glob, Luna-Resource and ExoMars-2020.

  13. Commissioning of the ATLAS thermal-hydraulic integral test facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon-Sik [Thermal Hydraulics Safety Research Division, Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)], E-mail: yskim3@kaeri.re.kr; Choi, Ki-Yong; Park, Hyeon-Sik; Cho, Seok; Kim, Bok-Deug; Choi, Nam-Hyeon; Baek, Won-Pil [Thermal Hydraulics Safety Research Division, Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2008-10-15

    KAERI recently constructed a new thermal-hydraulic integral test facility for advanced pressurized water reactors (PWRs) - ATLAS. The ATLAS facility has the following characteristics: (a) 1/2-height and length, 1/288-volume, and full pressure simulation of APR1400, (b) maintaining a geometrical similarity with APR1400 including 2(hot legs) x 4(cold legs) reactor coolant loops, direct vessel injection (DVI) of emergency core cooling water, integrated annular downcomer, etc., (c) incorporation of specific design characteristics of OPR1000 such as cold leg injection and low-pressure safety injection pumps, (d) maximum 10% of the scaled nominal core power. The ATLAS will mainly be used to simulate various accident and transient scenarios for evolutionary PWRs, OPR1000 and APR1400: the simulation capability of broad scenarios including the reflood phase of a large-break loss-of-coolant accident (LOCA), small-break LOCA scenarios including DVI line breaks, a steam generator tube rupture, a main steam line break, a feed line break, a mid-loop operation, etc. The ATLAS is now in operation after an extensive series of commissioning tests in 2006.

  14. Test technology on divergence angle of laser range finder based on CCD imaging fusion

    Science.gov (United States)

    Shi, Sheng-bing; Chen, Zhen-xing; Lv, Yao

    2016-09-01

    Laser range finder has been equipped with all kinds of weapons, such as tank, ship, plane and so on, is important component of fire control system. Divergence angle is important performance and incarnation of horizontal resolving power for laser range finder, is necessary appraised test item in appraisal test. In this paper, based on high accuracy test on divergence angle of laser range finder, divergence angle test system is designed based on CCD imaging, divergence angle of laser range finder is acquired through fusion technology for different attenuation imaging, problem that CCD characteristic influences divergence angle test is solved.

  15. Manual for operation of the multipurpose thermalhydraulic test facility TOPFLOW (Transient Two Phase Flow Test Facility); Betriebshandbuch fuer die Mehrzweck-Thermohydraulikversuchsanlage TOPFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, M.; Carl, H.; Schuetz, H.; Pietruske, H.; Lenk, S. [SAAS Systemanalyse und Automatisierungsservice GmbH, Possendorf (Germany)

    2004-07-01

    The Forschungszentrum Rossendorf (FZR) e. V. is constructing a new large-scale test facility, TOPFLOW, for thermalhydraulic single effect tests. The acronym stands for transient two phase flow test facility. It will mainly be used for the investigation of generic and applied steady state and transient two phase flow phenomena and the development and validation of models of computational fluid dynamic (CFD) codes. The manual of the test facility must always be available for the staff in the control room and is restricted condition during operation of personnel and also reconstruction of the facility. (orig./GL)

  16. Testing of the Defense Waste Processing Facility Cold Chemical Dissolution Method in Sludge Batch 9 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Young, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Brown, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-10

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) tests the applicability of the digestion methods used by the DWPF Laboratory for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) Receipt samples and SRAT Product process control samples. DWPF SRAT samples are typically dissolved using a method referred to as the DWPF Cold Chemical or Cold Chem Method (CC), (see DWPF Procedure SW4- 15.201). Testing indicates that the CC method produced mixed results. The CC method did not result in complete dissolution of either the SRAT Receipt or SRAT Product with some fine, dark solids remaining. However, elemental analyses did not reveal extreme biases for the major elements in the sludge when compared with analyses obtained following dissolution by hot aqua regia (AR) or sodium peroxide fusion (PF) methods. The CC elemental analyses agreed with the AR and PF methods well enough that it should be adequate for routine process control analyses in the DWPF after much more extensive side-by-side tests of the CC method and the PF method are performed on the first 10 SRAT cycles of the Sludge Batch 9 (SB9) campaign. The DWPF Laboratory should continue with their plans for further tests of the CC method during these 10 SRAT cycles.

  17. MagLev Cobra: Test Facilities and Operational Experiments

    Science.gov (United States)

    Sotelo, G. G.; Dias, D. H. J. N.; de Oliveira, R. A. H.; Ferreira, A. C.; De Andrade, R., Jr.; Stephan, R. M.

    2014-05-01

    The superconducting MagLev technology for transportation systems is becoming mature due to the research and developing effort of recent years. The Brazilian project, named MagLev-Cobra, started in 1998. It has the goal of developing a superconducting levitation vehicle for urban areas. The adopted levitation technology is based on the diamagnetic and the flux pinning properties of YBa2Cu3O7-δ (YBCO) bulk blocks in the interaction with Nd-Fe-B permanent magnets. A laboratory test facility with permanent magnet guideway, linear induction motor and one vehicle module is been built to investigate its operation. The MagLev-Cobra project state of the art is presented in the present paper, describing some construction details of the new test line with 200 m.

  18. Aviation Engine Test Facilities (AETF) fire protection study

    Science.gov (United States)

    Beller, R. C.; Burns, R. E.; Leonard, J. T.

    1989-07-01

    An analysis is presented to the effectiveness of various types of fire fighting agents in extinguishing the kinds of fires anticipated in Aviation Engine Test Facilities (AETF), otherwise known as Hush Houses. The agents considered include Aqueous Film-Forming Foam, Halon 1301, Halon 1211 and water. Previous test work has shown the rapidity with which aircraft, especially high performance aircraft, can be damaged by fire. Based on this, tentative criteria for this evaluation included a maximum time of 20 s from fire detection to extinguishment and a period of 30 min in which the agent would prevent reignition. Other issues examined included: toxicity, corrosivity, ease of personnel egress, system reliability, and cost effectiveness. The agents were evaluated for their performance in several fire scenarios, including: under frame fire, major engine fire, engine disintegration fire, high-volume pool fire with simultaneous spill fire, internal electrical fire, and runaway engine fire.

  19. Status of the Dual-Axis Radiographic Hydrodynamics Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Burns, M.J.; Allison, P.W.; Carlson, R.L.; Downing, J.N.; Moir, D.C.; Shurter, R.P.

    1996-09-01

    The Dual-Axis Radiographic Hydrodynamics Test (DARHT) Facility will employ two electron linear induction accelerators to produce intense, bremsstrahlung x-ray pulses for flash radiography with sub-millimeter spatial resolution of very dense (attentuations>10{sup 5}), dynamic objects. We will produce an intense x-ray pulse using a 19.75-MeV, 3.5-4 kA, 60-ns flattop electron beam focused on a tungsten target. A 3.75-MeV injector with either a cold velvet cathode or a laser-driven photocathode will produce a beam to be accelerated through a series of 64 ferrite-loaded induction cells with solenoid focusing. Accelerator technology demonstrations have been underway for several years at the DARHT Integrated Test Stand and results including beam energy, emittance, and beam breakup measurements are discussed.

  20. Safety training and safe operating procedures written for PBFA (Particle Beam Fusion Accelerator) II and applicable to other pulsed power facilities

    Energy Technology Data Exchange (ETDEWEB)

    Donovan, G.L.; Goldstein, S.A.

    1986-12-01

    To ensure that work in advancing pulsed power technology is performed with an acceptably low risk, pulsed power research facilities at Sandia National Laboratories must satisfy general safety guidelines established by the Department of Energy, policies and formats of the Environment, Safety, and Health (ES and H) Department, and detailed procedures formulated by the Pulsed Power Sciences Directorate. The approach to safety training and to writing safe operating procedures, and the procedures presented here are specific to the Particle Beam Fusion Accelerator II (PBFA II) Facility but are applicable as guidelines to other research and development facilities which have similar hazards.

  1. PEROXIDE DESTRUCTION TESTING FOR THE 200 AREA EFFLUENT TREATMENT FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    HALGREN DL

    2010-03-12

    The hydrogen peroxide decomposer columns at the 200 Area Effluent Treatment Facility (ETF) have been taken out of service due to ongoing problems with particulate fines and poor destruction performance from the granular activated carbon (GAC) used in the columns. An alternative search was initiated and led to bench scale testing and then pilot scale testing. Based on the bench scale testing three manganese dioxide based catalysts were evaluated in the peroxide destruction pilot column installed at the 300 Area Treated Effluent Disposal Facility. The ten inch diameter, nine foot tall, clear polyvinyl chloride (PVC) column allowed for the same six foot catalyst bed depth as is in the existing ETF system. The flow rate to the column was controlled to evaluate the performance at the same superficial velocity (gpm/ft{sup 2}) as the full scale design flow and normal process flow. Each catalyst was evaluated on peroxide destruction performance and particulate fines capacity and carryover. Peroxide destruction was measured by hydrogen peroxide concentration analysis of samples taken before and after the column. The presence of fines in the column headspace and the discharge from carryover was generally assessed by visual observation. All three catalysts met the peroxide destruction criteria by achieving hydrogen peroxide discharge concentrations of less than 0.5 mg/L at the design flow with inlet peroxide concentrations greater than 100 mg/L. The Sud-Chemie T-2525 catalyst was markedly better in the minimization of fines and particle carryover. It is anticipated the T-2525 can be installed as a direct replacement for the GAC in the peroxide decomposer columns. Based on the results of the peroxide method development work the recommendation is to purchase the T-2525 catalyst and initially load one of the ETF decomposer columns for full scale testing.

  2. Integrated Disposal Facility FY2010 Glass Testing Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Serne, R Jeffrey; Mattigod, Shas V.

    2010-09-30

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 × 105 m3 of glass (Puigh 1999). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 0.89 × 1018 Bq total activity) of long-lived radionuclides, principally 99Tc (t1/2 = 2.1 × 105), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessement (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2010 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses. The emphasis in FY2010 was the completing an evaluation of the most sensitive kinetic rate law parameters used to predict glass weathering, documented in Bacon and Pierce (2010), and transitioning from the use of the Subsurface Transport Over Reactive Multi-phases to Subsurface Transport Over Multiple Phases computer code for near-field calculations. The FY2010 activities also consisted of developing a Monte Carlo and Geochemical Modeling framework that links glass composition to alteration phase formation by 1) determining the structure of unreacted and reacted glasses for use as input information into Monte Carlo

  3. Advanced Test Reactor National Scientific User Facility Progress

    Energy Technology Data Exchange (ETDEWEB)

    Frances M. Marshall; Todd R. Allen; James I. Cole; Jeff B. Benson; Mary Catherine Thelen

    2012-10-01

    The Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) is one of the world’s premier test reactors for studying the effects of intense neutron radiation on reactor materials and fuels. The ATR began operation in 1967, and has operated continuously since then, averaging approximately 250 operating days per year. The combination of high flux, large test volumes, and multiple experiment configuration options provide unique testing opportunities for nuclear fuels and material researchers. The ATR is a pressurized, light-water moderated and cooled, beryllium-reflected highly-enriched uranium fueled, reactor with a maximum operating power of 250 MWth. The ATR peak thermal flux can reach 1.0 x1015 n/cm2-sec, and the core configuration creates five main reactor power lobes (regions) that can be operated at different powers during the same operating cycle. In addition to these nine flux traps there are 68 irradiation positions in the reactor core reflector tank. The test positions range from 0.5” to 5.0” in diameter and are all 48” in length, the active length of the fuel. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material radiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. Goals of the ATR NSUF are to define the cutting edge of nuclear technology research in high temperature and radiation environments, contribute to improved industry performance of current and future light water reactors, and stimulate cooperative research between user groups conducting basic and applied research. The ATR NSUF has developed partnerships with other universities and national laboratories to enable ATR NSUF researchers to perform research at these other facilities, when the research objectives

  4. Common Data Acquisition Systems (DAS) Software Development for Rocket Propulsion Test (RPT) Test Facilities

    Science.gov (United States)

    Hebert, Phillip W., Sr.; Davis, Dawn M.; Turowski, Mark P.; Holladay, Wendy T.; Hughes, Mark S.

    2012-01-01

    The advent of the commercial space launch industry and NASA's more recent resumption of operation of Stennis Space Center's large test facilities after thirty years of contractor control resulted in a need for a non-proprietary data acquisition systems (DAS) software to support government and commercial testing. The software is designed for modularity and adaptability to minimize the software development effort for current and future data systems. An additional benefit of the software's architecture is its ability to easily migrate to other testing facilities thus providing future commonality across Stennis. Adapting the software to other Rocket Propulsion Test (RPT) Centers such as MSFC, White Sands, and Plumbrook Station would provide additional commonality and help reduce testing costs for NASA. Ultimately, the software provides the government with unlimited rights and guarantees privacy of data to commercial entities. The project engaged all RPT Centers and NASA's Independent Verification & Validation facility to enhance product quality. The design consists of a translation layer which provides the transparency of the software application layers to underlying hardware regardless of test facility location and a flexible and easily accessible database. This presentation addresses system technical design, issues encountered, and the status of Stennis development and deployment.

  5. Power Systems Development Facility Gasification Test Run TC11

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2003-04-30

    This report discusses Test Campaign TC11 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). Test run TC11 began on April 7, 2003, with startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until April 18, 2003, when a gasifier upset forced the termination of the test run. Over the course of the entire test run, gasifier temperatures varied between 1,650 and 1,800 F at pressures from 160 to 200 psig during air-blown operations and around 135 psig during enriched-air operations. Due to a restriction in the oxygen-fed lower mixing zone (LMZ), the majority of the test run featured air-blown operations.

  6. Separate effects tests to determine the effective thermal conductivityin the PBMR HTTU test facility

    OpenAIRE

    2014-01-01

    Thermal-fluid simulations are used extensively to predict the maximum fuel temperatures, flows, pressure drops and thermal capacitance of pebble bed gas cooled reactors in support of the reactor safety case. The PBMR company developed the HTTU non-nuclear test facility in cooperation with M-Tech Industrial (Pty) Ltd. and the North-West University in South Africa to conduct comprehensive separate effects tests as well as integrated effects tests to study the different thermal-fluid phenomena. ...

  7. Investigation of advanced reburning in a bench scale test facility

    Energy Technology Data Exchange (ETDEWEB)

    Gruel, U.; Spliethoff, H.; Hein, K.R.G. [Universitaet Stuttgart, Stuttgart (Germany). Inst. fuer Verfahrenstechnik und Dampfkesselwesen

    1998-12-31

    Interest in Germany in NO{sub x} control is high, and German emissions standards are among the most stringent. Because there is no direct relationship between coal nitrogen and NO{sub x} combustion conditions are of major influence on the NO{sub x} emissions. The control of NO{sub x} emissions by modifications of the combustion process is challenging. In the first period of the project, baseline investigations were carried out using black coal concerning unstaged combustion as well as air and fuel staged combustion to determine the boundary conditions at the test facility and to allow the comparison of different facilities. In the second period of the project, baseline tests with addition of ammonia in the unstaged air and fuel-staged combustion were carried out. The effects of temperature and stoichiometry in the reduction zone were investigated, as well as the influence of the reburn gas composition. Profile measurements of the gaseous species and the temperature in the flue gas explained the negative effect of pre-mixed methane and ammonia as reburn fuel for NO{sub x} reduction. Pre-mixed methane and ammonia performed poorly for NO{sub x} reduction, in some cases NO{sub x} emissions even increased through ammonia addition. In the third period of the project, test runs with methane as reburn fuel and ammonia injection in the substoichiometric reduction zone were conducted. The main purpose was to determine the minimum and the most effective residence time between reburn fuel and ammonia addition at which no NO formation out of the oxygen remaining from the primary zone would take place. Also important was the minimum residence time between ammonia injection and burnout air addition. 5 refs., 22 figs., 7 tabs.

  8. The OSU Hydro-Mechanical Fuel Test Facility: Standard Fuel Element Testing

    Energy Technology Data Exchange (ETDEWEB)

    Wade R. Marcum; Brian G. Woods; Ann Marie Phillips; Richard G. Ambrosek; James D. Wiest; Daniel M. Wachs

    2001-10-01

    Oregon State University (OSU) and the Idaho National Laboratory (INL) are currently collaborating on a test program which entails hydro-mechanical testing of a generic plate type fuel element, or standard fuel element (SFE), for the purpose of qualitatively demonstrating mechanical integrity of uranium-molybdenum monolithic plates as compared to that of uranium aluminum dispersion, and aluminum fuel plates due to hydraulic forces. This test program supports ongoing work conducted for/by the fuel development program and will take place at OSU in the Hydro-Mechanical Fuel Test Facility (HMFTF). Discussion of a preliminary test matrix, SFE design, measurement and instrumentation techniques, and facility description are detailed in this paper.

  9. PRELIMINARY ASSESSMENT OF NDE METHODS ON INSPECTION OF HDPE BUTT FUSION PIPING JOINTS FOR LACK OF FUSION WITH VALIDATION FROM MECHANICAL TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Susan L.; Doctor, Steven R.; Cinson, Anthony D.; Watts, Michael W.; Moran, Traci L.; Anderson, Michael T.

    2010-07-22

    Studies at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, are being conducted to evaluate nondestructive examinations (NDE) coupled with mechanical testing of butt fusion joints in high density polyethylene (HDPE) pipe for assessing lack of fusion. The work provides information to the United States Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques of HDPE butt fusion joints in Section III, Division 1, Class 3, buried piping systems in nuclear power plants. This paper describes results from preliminary assessments using ultrasonic and microwave nondestructive techniques and mechanical testing with the high speed tensile impact test and the bend test for determining joint integrity. A series of butt joints were fabricated in 3408, 12 inch (30.5 cm) IPS DR-11 HDPE material by varying the fusion parameters to create good joints and joints containing a range of lack of fusion conditions. Six of these butt joints were volumetrically examined with time of flight diffraction (TOFD), phased array (PA) ultrasound, and the Evisive microwave system. The outer diameter (OD) weld beads were removed for microwave evaluation and the pipes ultrasonically re-evaluated. In two of the six pipes both the outer and inner diameter (ID) weld beads were removed and the pipe joints re-evaluated. Several of the pipes were sectioned and the joints destructively evaluated with the following techniques: high speed tensile test, bend test, and focused immersion ultrasound on a joint section removed from the pipe coupled with slicing through the joint and examining the revealed surfaces. The fusion parameters, nondestructive, and destructive evaluation results will be correlated to validate the effectiveness of what each NDE technology detects and what each does not detect. This is an initial limited study which will aid in identifying key future work.

  10. The BNL Accelerator Test Facility and experimental program

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi, I. (Brookhaven National Lab., Upton, NY (United States) State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics)

    1991-01-01

    The Accelerator Test Facility (ATF) at BNL is a users' facility for experiments in Accelerator and Beam Physics. The ATF provides high brightness electron beams and high power laser pulses synchronized to the electron beam, suitable for studies of new methods of high gradient acceleration and state of the art free electron lasers. The electrons are produced by a laser photocathode rf gun and accelerated to 50 to 100 MeV by two traveling wave accelerator sections. The lasers include a 10 mJ, 10 ps Nd:YAG laser and a 100 mJ, 10 ps CO{sub 2} laser. A number of users from National Laboratories, universities and industry take part in experiments at the ATF. The experimental program includes various acceleration schemes, Free-Electron Laser experiments and a program on the development of high brightness electron beams. The AFT's experimental program commenced in early 1991 at an energy of about 4 MeV. The full program, with 50 MeV and the High power laser will begin operation this year. 28 refs., 4 figs.

  11. The BNL Accelerator Test Facility and experimental program

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi, I. [Brookhaven National Lab., Upton, NY (United States)]|[State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics

    1992-09-01

    The Accelerator Test Facility (ATF) at BNL is a users` facility for experiments in Accelerator and Beam Physics. The ATF provides high brightness electron beams and high-power laser pulses synchronized to the electron beam, suitable for studies of new methods of high-gradient acceleration and state-of-the-art Free-Electron Lasers. The electrons are produced by a laser photocathode rf gun and accelerated to 50 MeV by two traveling wave accelerator sections. The lasers include a 10 mJ, 10 ps ND:YAG laser and a 500 mJ, 10 to 100 ps C0{sub 2} laser. A number of users from National Laboratories, universities and industry take part in experiments at the ATF. The experimental program includes various laser acceleration schemes, Free-Electron Laser experiments and a program on the development of high-brightness electron beams. The ATF`s experimental program commenced in early 1991 at an energy of about 4 MeV. The full program, with 50 MeV and the high-power laser will begin operation this year.

  12. The BNL Accelerator Test Facility and experimental program

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi, I. (Brookhaven National Lab., Upton, NY (United States) State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics)

    1992-01-01

    The Accelerator Test Facility (ATF) at BNL is a users' facility for experiments in Accelerator and Beam Physics. The ATF provides high brightness electron beams and high-power laser pulses synchronized to the electron beam, suitable for studies of new methods of high-gradient acceleration and state-of-the-art Free-Electron Lasers. The electrons are produced by a laser photocathode rf gun and accelerated to 50 MeV by two traveling wave accelerator sections. The lasers include a 10 mJ, 10 ps ND:YAG laser and a 500 mJ, 10 to 100 ps C0{sub 2} laser. A number of users from National Laboratories, universities and industry take part in experiments at the ATF. The experimental program includes various laser acceleration schemes, Free-Electron Laser experiments and a program on the development of high-brightness electron beams. The ATF's experimental program commenced in early 1991 at an energy of about 4 MeV. The full program, with 50 MeV and the high-power laser will begin operation this year.

  13. Experiments with the HORUS-II test facility

    Energy Technology Data Exchange (ETDEWEB)

    Alt, S.; Lischke, W. [Univ. for Applied Sciences Zittau/Goerlitz, Zittau (Germany). Dept. of Nuclear Engineering

    1997-12-31

    Within the scope of the German reactor safety research the thermohydraulic computer code ATHLET which was developed for accident analyses of western nuclear power plants is more and more used for the accident analysis of VVER-plants particularly for VVER-440,V-213. The experiments with the HORUS-facilities and the analyses with the ATHLET-code have been realized at the Technical University Zittau/Goerlitz since 1991. The aim of the investigations was to improve and verify the condensation model particularly the correlations for the calculation of the heat transfer coefficients in the ATHLET-code for pure steam and steam-noncondensing gas mixtures in horizontal tubes. About 130 condensation experiments have been performed at the HORUS-II facility. The experiments have been carried out with pure steam as well as with noncondensing gas injections into the steam mass flow. The experimental simulations are characterized as accident simulation tests for SBLOCA for VVER-conditions. The simulation conditions had been adjusted correspondingly to the parameters of a postulated SBLOCA`s fourth phase at the original plant. 4 refs.

  14. Test plan for the soils facility demonstration: A petroleum contaminated soil bioremediation facility

    Energy Technology Data Exchange (ETDEWEB)

    Lombard, K.H.

    1994-08-01

    The objectives of this test plan are to show the value added by using bioremediation as an effective and environmentally sound method to remediate petroleum contaminated soils (PCS) by: demonstrating bioremediation as a permanent method for remediating soils contaminated with petroleum products; establishing the best operating conditions for maximizing bioremediation and minimizing volatilization for SRS PCS during different seasons; determining the minimum set of analyses and sampling frequency to allow efficient and cost-effective operation; determining best use of existing site equipment and personnel to optimize facility operations and conserve SRS resources; and as an ancillary objective, demonstrating and optimizing new and innovative analytical techniques that will lower cost, decrease time, and decrease secondary waste streams for required PCS assays.

  15. Power Systems Development Facility Gasification Test Campaing TC18

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2005-08-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high pressure solids handling systems. This report details Test Campaign TC18 of the PSDF gasification process. Test campaign TC18 began on June 23, 2005, and ended on August 22, 2005, with the gasifier train accumulating 1,342 hours of operation using Powder River Basin (PRB) subbituminous coal. Some of the testing conducted included commissioning of a new recycle syngas compressor for gasifier aeration, evaluation of PCD filter elements and failsafes, testing of gas cleanup technologies, and further evaluation of solids handling equipment. At the conclusion of TC18, the PSDF gasification process had been operated for more than 7,750 hours.

  16. Production Facility Prototype Blower 1000 Hour Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Frank Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-18

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was need for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GM 12.4 blower was selected, and is now installed at the LANL facility for target and component flow testing. Two extended test of >1000 hr operation have been completed. Those results and discussion thereof are reported herein. Also included in Appendix A is the detailed description of the blower and its installation, while Appendix B documents the pressure vessel design analysis. The blower has been operated for 1000 hours as a preliminary investigation of long term performance, operation and possible maintenance issues. The blower performed well, with no significant change in blower head or mass flow rate developed under the operating conditions. Upon inspection, some oil had leaked out of the shaft seal of the blower. The shaft seal and bearing race have been replaced. Test results and conclusions are in Appendix B.

  17. Development of Modeling Approaches for Nuclear Thermal Propulsion Test Facilities

    Science.gov (United States)

    Jones, Daniel R.; Allgood, Daniel C.; Nguyen, Ke

    2014-01-01

    High efficiency of rocket propul-sion systems is essential for humanity to venture be-yond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rock-ets with relatively high thrust and twice the efficiency of the Space Shuttle Main Engine. NASA is in the pro-cess of developing a new NTP engine, and is evaluat-ing ground test facility concepts that allow for the thor-ough testing of NTP devices. NTP engine exhaust, hot gaseous hydrogen, is nominally expected to be free of radioactive byproducts from the nuclear reactor; how-ever, it has the potential to be contaminated due to off-nominal engine reactor performance. Several options are being investigated to mitigate this hazard potential with one option in particular that completely contains the engine exhaust during engine test operations. The exhaust products are subsequently disposed of between engine tests. For this concept (see Figure 1), oxygen is injected into the high-temperature hydrogen exhaust that reacts to produce steam, excess oxygen and any trace amounts of radioactive noble gases released by off-nominal NTP engine reactor performance. Water is injected to condense the potentially contaminated steam into water. This water and the gaseous oxygen (GO2) are subsequently passed to a containment area where the water and GO2 are separated into separate containment tanks.

  18. The pixel tracking telescope at the Fermilab Test Beam Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kwan, Simon; Lei, CM [Fermi National Accelerator Laboratory, Batavia, IL (United States); Menasce, Dario; Moroni, Luigi; Ngadiuba, Jennifer [Istituto Nazionale di Fisica Nucleare, Sezione di Milano Bicocca, and Università degli Studi di Milano Bicocca, Piazza della Scienza 3, 20126 Milano (Italy); Prosser, Alan; Rivera, Ryan [Fermi National Accelerator Laboratory, Batavia, IL (United States); Terzo, Stefano [Istituto Nazionale di Fisica Nucleare, Sezione di Milano Bicocca, and Università degli Studi di Milano Bicocca, Piazza della Scienza 3, 20126 Milano (Italy); Turqueti, Marcos [Fermi National Accelerator Laboratory, Batavia, IL (United States); Uplegger, Lorenzo, E-mail: uplegger@fnal.gov [Fermi National Accelerator Laboratory, Batavia, IL (United States); Vigani, Luigi; Dinardo, Mauro E. [Fermi National Accelerator Laboratory, Batavia, IL (United States)

    2016-03-01

    An all silicon pixel telescope has been assembled and used at the Fermilab Test Beam Facility (FTBF) since 2009 to provide precise tracking information for different test beam experiments with a wide range of Detectors Under Test (DUTs) requiring high resolution measurement of the track impact point. The telescope is based on CMS pixel modules left over from the CMS forward pixel production. Eight planes are arranged to achieve a resolution of less than 8 μm on the 120 GeV proton beam transverse coordinate at the DUT position. In order to achieve such resolution with 100×150 μm{sup 2} pixel cells, the planes were tilted to 25 degrees to maximize charge sharing between pixels. Crucial for obtaining this performance is the alignment software, called Monicelli, specifically designed and optimized for this system. This paper will describe the telescope hardware, the data acquisition system and the alignment software constituting this particle tracking system for test beam users.

  19. Thermal vacuum life test facility for radioisotope thermoelectric generators

    Energy Technology Data Exchange (ETDEWEB)

    Deaton, R.L.; Goebel, C.J.; Amos, W.R.

    1990-01-01

    In the late 1970's, the Department of Energy (DOE) assigned Monsanto Research Corporation, Mound Facility, now operated by EG G Mound Applied Technologies, the responsibility for assembling and testing General Purpose Heat Source (GPHS) radioisotope thermoelectric generators (RTGs). Assembled and tested were five RTGs, which included four flight units and one non-flight qualification unit. Figure 1 shows the RTG, which was designed by General Electric AstroSpace Division (GE/ASD) to produce 285 W of electrical power. A detailed description of the processes for RTG assembly and testing is presented by Amos and Goebel (1989). The RTG performance data are described by Bennett, et al. (1986). The flight units will provide electrical power for the National Aeronautics and Space Administration's (NASA) Galileo mission to Jupiter (two RTGs) and the joint NASA/European Space Agency (ESA) Ulysses mission to study the polar regions of the sun (one RTG). The remaining flight unit will serve as the spare for both missions, and a non-flight qualification unit was assembled and tested to ensure that performance criteria were adequately met. 4 refs., 3 figs.

  20. Thermal vacuum life test facility for radioisotope thermoelectric generators

    Science.gov (United States)

    Deaton, R. L.; Goebel, C. J.; Amos, W. R.

    In the late 1970's, the Department of Energy (DOE) assigned Monsanto Research Corporation, Mound Facility, now operated by EG and G Mound Applied Technologies, the responsibility for assembling and testing General Purpose Heat Source (GPHS) radioisotope thermoelectric generators (RTGs). Assembled and tested were five RTGs, which included four flight units and one non-flight qualification unit. Figure 1 shows the RTG, which was designed by General Electric AstroSpace Division (GE/ASD) to produce 285 W of electrical power. A detailed description of the processes for RTG assembly and testing is presented by Amos and Goebel (1989). The RTG performance data are described by Bennett, et al., (1986). The flight units will provide electrical power for the National Aeronautics and Space Administration's (NASA) Galileo mission to Jupiter (two RTGs) and the joint NASA/European Space Agency (ESA) Ulysses mission to study the polar regions of the sun (one RTG). The remaining flight unit will serve as the spare for both missions, and a non-flight qualification unit was assembled and tested to ensure that performance criteria were adequately met.

  1. Production Facility Prototype Blower 1000 Hour Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Frank Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-18

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was needed for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GM 12.4 blower was selected, and is now installed at the LANL facility for target and component flow testing. Two extended tests of >1000 hr operation have been completed. Those results and discussion thereof are reported herein. Also included in Appendix A is the detailed description of the blower and its installation, while Appendix B documents the pressure vessel design analysis. The blower has been operated for 1000 hours as a preliminary investigation of long-term performance, operation and possible maintenance issues. The blower performed well, with no significant change in blower head or mass flow rate developed under the operating conditions. Upon inspection, some oil had leaked out of the shaft seal of the blower. The shaft seal and bearing race have been replaced. Test results and conclusions are in Appendix B.

  2. Testing time for deep water[Deep water test facility in Rotterdam, NL

    Energy Technology Data Exchange (ETDEWEB)

    Snieckus, Darius

    2000-06-01

    A new deep water test facility in Rotterdam in the Netherlands is described. The construction is a basin measuring 45m by 36m and some 10.5m deep: it can accommodate large scale model tests at depths equivalent to 1000m by using a hydraulic 'moveable' floor buoyed by syntactic foam. For simulation of depths of 3000m it opens its 'deep pit' - a well 5m diameter and 20m deep. The facility can also simulate the winds, waves and currents met offshore in places such as the Shetlands, West Africa and the Gulf of Mexico. The article includes pictures and diagrams of the facility.

  3. Fabrication of Meter-Scale Laser Resistant Mirrors for the National Ignition Facility, a Fusion Laser

    Energy Technology Data Exchange (ETDEWEB)

    Stolz, C J; Weinzapfel, C L; Rigatti, A L; Oliver, J B; Taniguchi, J; Bevis, R P; Rajasansi, J S

    2003-07-07

    Large-aperture laser-resistant mirrors are required for the construction of the National Ignition Facility, a 1.8 MJ laser. In order to fabricate the 1408 mirrors, a development program was started in 1994 to improve coating quality, manufacturing rate, and lower unit cost. New technologies and metrology tools were scaled to meter size for facilitization in 1999 at Spectra-Physics and the Laboratory of Laser Energetics at the University of Rochester. Pilot production, to fabricate 5-10% of each component, commenced in 2001 and full production rates were achieved in 2002. Coating production will be completed in 2008 with the coating of 460 m{sup 2} of high-damage-threshold precision coatings on 100 tons of BK7 glass with yields exceeding 90%.

  4. A Linked Fusion of Things, Services, and Data to Support a Collaborative Data Management Facility

    Energy Technology Data Exchange (ETDEWEB)

    Stephan, Eric G.; Elsethagen, Todd O.; Wynne, Adam S.; Sivaraman, Chitra; Macduff, Matt C.; Berg, Larry K.; Shaw, William J.

    2013-09-30

    The purpose of this paper is to illustrate the use of semantic technologies and approaches to seamlessly link things, services, and data in the proposed design of a scientific offshore wind energy research for the U.S. Department of Energy Wind and Water Technology Office of the Office of Energy Efficiency and Renewable Energy (EERE). By adapting linked community best practices, we were able to design a collaborative facility supporting both operational staff and end users that incorporates off-the-shelf components and overcome traditional barriers between devices, resulting data, and processing services. This was made largely possible through complementary advances in the Internet of Things (IoT), semantic web, Linked Services, and Linked Data communities, which provide the foundation for our design.

  5. Emittance Measurements of the SSRL Gun Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Michael; Clendenin, James; Fisher, Alan; Miller, Roger; Palmer, Dennis; Park, Sam; Schmerge, John; Weaver, Jim; Wiedemann, Helmut; Winick, Herman; Yeremian, Dian; /SLAC; Meyerhofer, David; Reis, David; /Rochester U.

    2011-09-01

    A photocathode RF gun test stand is under construction in the injector vault of the Stanford Synchrotron Radiation Laboratory at SLAC. The goal of this facility is to produce an electron beam with a normalized emittance of 1-3[mm-mr], a longitudinal bunch duration of the order of 10[ps] FWHM and approximately 1[nC] of charge per bunch. The beam will be generated from a laser driven copper photocathode RF gun developed in collaboration with BNL, LBL and UCLA. The 3-5[MeV] beam from the gun will be accelerated using a SLAC three meter S-band accelerator section. The emittance of the electron beam will be measured through the use of quadrupole scans with phosphor screens and also a wire scanner. The details of the experimental setup will be discussed, and first measurements will be presented and compared with results from PARMELA simulations.

  6. The LOBI Integral System Test Facility Experimental Programme

    Directory of Open Access Journals (Sweden)

    Carmelo Addabbo

    2012-01-01

    Full Text Available The LOBI project has been carried out in the framework of the European Commission Reactor Safety Research Programme in close collaboration with institutional and/or industrial research organizations of EC member countries. The primary objective of the research programme was the generation of an experimental data base for the assessment of the predictive capabilities of thermal-hydraulic system codes used in pressurised water reactor safety analysis. Within this context, experiments have been conducted in the LOBI integral system test facility designed, constructed, and operated (1979–1991 at the Ispra Site of the Joint Research Centre. This paper provides a historical perspective and summarizes major achievements of the research programme which has represented an effective approach to international collaboration in the field of reactor safety research and development. Emphasis is also placed on knowledge management aspects of the acquired experimental data base and on related online open access/retrieval user functionalities.

  7. Beam Instrumentation for the Single Electron DAFNE Beam Test Facility

    CERN Document Server

    Mazzitelli, G; Valente, P; Vescovi, M

    2003-01-01

    The DAΦNE Beam Test Facility (BTF) has been successfully commissioned in February 2002, and started operation in November of the same year. Although the BTF is a beam transfer line optimized for single particle production, mainly for high energy detectors calibration, it can provide electrons and positrons in a wide range of multiplicity: between 1-1010, with energies from a few tens of MeV up to 800 MeV. The large multiplicity range requires many different diagnostic devices, from high-energy calorimeters and ionization/fluorescence chambers in the few particles range, to standard beam diagnostics systems. The schemes of operation, the commissioning results, as well as the beam diagnostics are presented.

  8. SHEAR STRENGTH MEASURING EQUIPMENT EVALUATION AT THE COLD TEST FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    MEACHAM JE

    2009-09-09

    Retrievals under current criteria require that approximately 2,000,000 gallons of double-shell tank (DST) waste storage space not be used to prevent creating new tanks that might be susceptible to buoyant displacement gas release events (BDGRE). New criteria are being evaluated, based on actual sludge properties, to potentially show that sludge wastes do not exhibit the same BDGRE risk. Implementation of the new criteria requires measurement of in situ waste shear strength. Cone penetrometers were judged the best equipment for measuring in situ shear strength and an A.P. van den berg Hyson 100 kN Light Weight Cone Penetrometer (CPT) was selected for evaluation. The CPT was procured and then evaluated at the Hanford Site Cold Test Facility. Evaluation demonstrated that the equipment with minor modification was suitable for use in Tank Farms.

  9. Status of Wakefield Monitor Experiments at the CLIC Test Facility

    CERN Document Server

    Lillestøl, Reidar; Aftab, Namra; Corsini, Roberto; Döbert, Steffen; Farabolini, Wilfrid; Grudiev, Alexej; Javeed, Sumera; Pfingstner, Juergen; Wuensch, Walter

    2016-01-01

    For the very low emittance beams in CLIC, it is vital to mitigate emittance growth which leads to reduced luminosity in the detectors. One factor that leads to emittance growth is transverse wakefields in the accelerating structures. In order to combat this the structures must be aligned with a precision of a few um. For achieving this tolerance, accelerating structures are equipped with wakefield monitors that measure higher-order dipole modes excited by the beam when offset from the structure axis. We report on such measurements, performed using prototype CLIC accelerating structures which are part of the module installed in the CLIC Test Facility 3 (CTF3) at CERN. Measurements with and without the drive beam that feeds rf power to the structures are compared. Improvements to the experimental setup are discussed, and finally remaining measurements that should be performed before the completion of the program are summarized.

  10. Knowledge Management at the Fast Flux Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Wootan, David W.; Omberg, Ronald P.

    2013-06-01

    One of the goals of the Department of Energy’s Office of Nuclear Energy, initiated under the Fuel Cycle Research and Development Program (FCRD) and continued under the Advanced Reactor Concepts Program (ARC) is to preserve the knowledge that has been gained in the United States on Liquid Metal Reactors (LMRs) that could support the development of an environmentally and economically sound nuclear fuel cycle. The Fast Flux Test Facility (FFTF) is the most recent LMR to operate in the United States, from 1982 to 1992, and was designed as a fully instrumented test reactor with on-line, real time test control and performance monitoring of components and tests installed in the reactor. The 10 years of operation of the FFTF provided a very useful framework for testing the advances in LMR safety technology based on passive safety features that may be of increased importance to new designs after the events at Fukushima. Knowledge preservation at the FFTF is focused on the areas of design, construction, and startup of the reactor, as well as on preserving information obtained from 10 years of successful operating history and extensive irradiation testing of fuels and materials. In order to ensure protection of information at risk, the program to date has sequestered reports, files, tapes, and drawings to allow for secure retrieval. The FFTF knowledge management program includes a disciplined and orderly approach to respond to client’s requests for documents and data in order to minimize the search effort and ensure that future requests for this information can be readily accommodated.

  11. Steam line rupture experiments with the PPOOLEX test facility

    Energy Technology Data Exchange (ETDEWEB)

    Laine, J.; Puustinen, M. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2008-07-15

    The results of the steam line rupture experiment series in 2007 with the scaled down PPOOLEX test facility designed and constructed at Lappeenranta University of Technology are reported. The test facility is a closed stainless steel vessel divided into two compartments, dry well and wet well. Air was blown into the dry well compartment and from there through a DN200 blowdown pipe to the condensation pool. Altogether five experiments, each consisting of several blows (tests), were carried out. The main purpose of the experiment series was to study the initial phase of a postulated steam line break accident inside a BWR containment. Specifically, thermal stratification in the dry well compartment and ejection of water plug from the blowdown pipe were of interest. In addition, the effect of counterpressure on bubble dynamics was studied. A temperature difference of approximately 15 deg. C between the upper and lower part of the dry well was measured. In the wet well gas space, a temperature difference of more than 30 deg. C was registered. These were measured during the compression period of the tests. Towards the end of the tests the temperature differences tended to disappear. To get a more detailed picture of temperature distribution in the wet well, especially close to the water level, a dense net of measurements is required in future experiments. In longer experiments, heat conduction to structures and heat losses to surroundings should also be taken into account. Ejection of water plugs from the blowdown pipe did not cause notable loads to the structures due to the suppressing effect of the dry well compartment. The maximum measured pressure pulse at the pool bottom was only 10 kPa and the maximum strain amplitude at the pool bottom rounding was negligible both in axial and circumferential direction. As the counterpressure of the system increased, but the flow rate remained the same, the maximum size of the air bubbles at the blowdown pipe outlet got smaller and

  12. Towards a programme of testing and qualification for structural and plasma-facing materials in ‘fusion neutron’ environments

    Science.gov (United States)

    Stork, D.; Heidinger, R.; Muroga, T.; Zinkle, S. J.; Moeslang, A.; Porton, M.; Boutard, J.-L.; Gonzalez, S.; Ibarra, A.

    2017-09-01

    Materials damage by 14.1MeV neutrons from deuterium-tritium (D-T) fusion reactions can only be characterised definitively by subjecting a relevant configuration of test materials to high-intensity ‘fusion-neutron spectrum sources’, i.e. those simulating closely D-T fusion-neutron spectra. This provides major challenges to programmes to design and construct a demonstration fusion reactor prior to having a large-scale, high-intensity source of such neutrons. In this paper, we discuss the different aspects related to these ‘relevant configuration’ tests, including: • generic issues in materials qualification/validation, comparing safety requirements against those of investment protection; • lessons learned from the fission programme, enabling a reduced fusion materials testing programme; • the use and limitations of presently available possible irradiation sources to optimise a fusion neutron testing program including fission-neutron irradiation of isotopically and chemically tailored steels, ion damage by high-energy helium ions and self-ion beams, or irradiation studies with neutron sources of non-fusion spectra; and • the different potential sources of simulated fusion neutron spectra and the choice using stripping reactions from deuterium-beam ions incident on light-element targets.

  13. VEHIL: test facility for fault management testing of advanced driver assistance systems

    NARCIS (Netherlands)

    Gietelink, O.J.; Ploeg, J.; Schutter, B. de; Verhaegen, M.A.H.

    2003-01-01

    This paper presents the latest developments of the VEHIL facility, which aims to make the development process of intelligent vehicles safer, cheaper and more manageable. The main feature of VEHIL is that a complete intelligent vehicle can be tested in a hardware-in-the-loop simulation environment. T

  14. ERDA test facilities, East Mesa Test Site. Geothermal resource investigations, Imperial Valley, California

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    Detailed specifications which must be complied with in the construction of the ERDA Test Facilities at the East Mesa Site for geothermal resource investigations in Imperial Valley, California are presented for use by prospective bidders for the construction contract. The principle construction work includes a 700 gpm cooling tower with its associated supports and equipment, pipelines from wells, electrical equipment, and all earthwork. (LCL)

  15. Osteoclast Fusion

    DEFF Research Database (Denmark)

    Marie Julie Møller, Anaïs; Delaissé, Jean-Marie; Søe, Kent

    2017-01-01

    suggesting that fusion partners may specifically select each other and that heterogeneity between the partners seems to play a role. Therefore, we set out to directly test the hypothesis that fusion factors have a heterogenic involvement at different stages of nuclearity. Therefore, we have analyzed...... on the nuclearity of fusion partners. While CD47 promotes cell fusions involving mono-nucleated pre-osteoclasts, syncytin-1 promotes fusion of two multi-nucleated osteoclasts, but also reduces the number of fusions between mono-nucleated pre-osteoclasts. Furthermore, CD47 seems to mediate fusion mostly through......Investigations addressing the molecular keys of osteoclast fusion are primarily based on end-point analyses. No matter if investigations are performed in vivo or in vitro the impact of a given factor is predominantly analyzed by counting the number of multi-nucleated cells, the number of nuclei per...

  16. Study of fast reactor safety test facilities. Preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Bell, G.I.; Boudreau, J.E.; McLaughlin, T.; Palmer, R.G.; Starkovich, V.; Stein, W.E.; Stevenson, M.G.; Yarnell, Y.L.

    1975-05-01

    Included are sections dealing with the following topics: (1) perspective and philosophy of fast reactor safety analysis; (2) status of accident analysis and experimental needs; (3) experiment and facility definitions; (4) existing in-pile facilities; (5) new facility options; and (6) data acquisition methods. (DG)

  17. Review of Transient Testing of Fast Reactor Fuels in the Transient REActor Test Facility (TREAT)

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, C.; Wachs, D.; Carmack, J.; Woolstenhulme, N.

    2017-01-01

    The restart of the Transient REActor Test (TREAT) facility provides a unique opportunity to engage the fast reactor fuels community to reinitiate in-pile experimental safety studies. Historically, the TREAT facility played a critical role in characterizing the behavior of both metal and oxide fast reactor fuels under off-normal conditions, irradiating hundreds of fuel pins to support fast reactor fuel development programs. The resulting test data has provided validation for a multitude of fuel performance and severe accident analysis computer codes. This paper will provide a review of the historical database of TREAT experiments including experiment design, instrumentation, test objectives, and salient findings. Additionally, the paper will provide an introduction to the current and future experiment plans of the U.S. transient testing program at TREAT.

  18. Power Systems Development Facility Gasification Test Run TC09

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2002-09-30

    This report discusses Test Campaign TC09 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). The Transport Gasifier was operated as a pressurized gasifier during TC09 in air- and oxygen-blown modes. Test Run TC09 was started on September 3, 2002, and completed on September 26, 2002. Both gasifier and PCD operations were stable during the test run, with a stable baseline pressure drop. The oxygen feed supply system worked well and the transition from air to oxygen was smooth. The gasifier temperature varied between 1,725 and 1,825 F at pressures from 125 to 270 psig. The gasifier operates at lower pressure during oxygen-blown mode due to the supply pressure of the oxygen system. In TC09, 414 hours of solid circulation and over 300 hours of coal feed were attained with almost 80 hours of pure oxygen feed.

  19. An outdoor test facility for the Cherenkov Telescope Array mirrors

    CERN Document Server

    Medina, M C; Maya, J; Mancilla, A; Larrarte, J J; Rasztocky, E; Benitez, M; Dipold, J; Platino, M

    2013-01-01

    The Cherenkov Telescopes Array (CTA) is planned to be an Observatory for very high energy gamma ray astronomy and will consist of several tens of telescopes which account for a reflective surface of more than 10000 m$^2$. The mirrors of these telescopes will be formed by a set of facets. Different technological solutions, for a fast and cost efficient production of light-weight mirror facets are under test inside the CTA Consortium. Most of them involve composite structures whose behavior under real observing conditions is not yet fully tested. An outdoor test facility has been built in one of the candidate sites for CTA, in Argentina (San Antonio de los Cobres [SAC], 3600m a.s.l) in order to monitor the optical and mechanical properties of these facets exposed to the local atmospheric conditions for a given period of time. In this work we present the preliminary results of the first Middle Size Telescope (MST) mirror-monitoring campaign, started in 2013.

  20. Power Systems Development Facility Gasification Test Campaign TC17

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2004-11-30

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR (formerly Kellogg Brown & Root) Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results gasification operation with Illinois Basin bituminous coal in PSDF test campaign TC17. The test campaign was completed from October 25, 2004, to November 18, 2004. System startup and initial operation was accomplished with Powder River Basin (PRB) subbituminous coal, and then the system was transitioned to Illinois Basin coal operation. The major objective for this test was to evaluate the PSDF gasification process operational stability and performance using the Illinois Basin coal. The Transport Gasifier train was operated for 92 hours using PRB coal and for 221 hours using Illinois Basin coal.

  1. Full Scale Component Test Facility KOPRA - Qualification Test of EPR Control Rod Drive Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Sykora, Alexander; Herr, Wolfgang [AREVA NP GmbH, P.O. Box 3220, 91050 Erlangen (Germany); Champomier, Francois [AREVA NP SAS, Tour AREVA - Cedex 16, 92084 Paris-La Defense (France)

    2008-07-01

    The test facility KOPRA is designed for full scale-tests on nuclear components under operational conditions. One part of it is the component test loop for developing and qualifying nuclear core components respecting temperature, pressure and mass flow of pressurized water reactor conditions. The KOPRA test facility and its measuring equipment is presented through qualification tests for the control rod drive mechanism and the control rod drive line of the new European Pressurized Water Reactor (EPR). The control rod drive mechanism qualification test program is split into three different test phases. At first, performance tests are conducted to verify the adequate performance of the new equipment, e.g. measurement of rod cluster control assembly drop time under different thermal hydraulic conditions, impact velocity of drive rod on CRDM latch tips and drive rod acceleration during stepping operation by means of strain gauges or through direct measurement. After these functional tests follow the stability tests to ensure that proper functioning is reliably achieved over an appreciable amount of time and the endurance tests to quantify the amount of time and/or the number of steps during which no appreciable wear, that could possibly alter the correct behaviour, is to be expected. (authors)

  2. 40 CFR 86.161-00 - Air conditioning environmental test facility ambient requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Air conditioning environmental test... conditioning environmental test facility ambient requirements. The goal of an air conditioning test facility is..., within the test cell, during all phases of the air conditioning test sequence to 95 ±2 °F on average and...

  3. CFD simulation of air discharge tests in the PPOOLEX facility

    Energy Technology Data Exchange (ETDEWEB)

    Tanskanen, V.; Puustinen, M. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2008-07-15

    This report summarizes the CFD simulation results of two air discharge tests of the characterizing test program in 2007 with the scaled down PPOOLEX facility. Air was blown to the dry well compartment and from there through a DN200 blowdown pipe into the condensation pool (wet well). The selected tests were modeled with Fluent CFD code. Test CHAR-09-1 was simulated to 28.92 seconds of real time and test CHAR-09-3 to 17.01 seconds. The VOF model was used as a multiphase model and the standard k epsilon-model as a turbulence model. Occasional convergence problems, usually at the beginning of bubble formation, required the use of relatively short time stepping. The simulation time costs threatened to become unbearable since weeks or months of wall-clock time with 1-2 processors were needed. Therefore, the simulated time periods were limited from the real duration of the experiments. The results obtained from the CFD simulations are in a relatively good agreement with the experimental results. Simulated pressures correspond well to the measured ones and, in addition, fluctuations due to bubble formations and breakups are also captured. Most of the differences in temperature values and in their behavior seem to depend on the locations of the measurements. In the vicinity of regions occupied by water in the experiments, thermocouples getting wet and drying slowly may have had an effect on the measured temperature values. Generally speaking, most temperatures were simulated satisfyingly and the largest discrepancies could be explained by wetted thermocouples. However, differences in the dry well and blowdown pipe top measurements could not be explained by thermocouples getting wet. Heat losses and dry well / wet well heat transfer due to conduction have neither been estimated in the experiments nor modeled in the simulations. Estimation of heat conduction and heat losses should be carried out in future experiments and they should be modeled in future simulations, too. (au)

  4. Power Systems Development Facility Gasification Test Campaign TC25

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2008-12-01

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC25, the second test campaign using a high moisture lignite coal from the Red Hills mine in Mississippi as the feedstock in the modified Transport Gasifier configuration. TC25 was conducted from July 4, 2008, through August 12, 2008. During TC25, the PSDF gasification process operated for 742 hours in air-blown gasification mode. Operation with the Mississippi lignite was significantly improved in TC25 compared to the previous test (TC22) with this fuel due to the addition of a fluid bed coal dryer. The new dryer was installed to dry coals with very high moisture contents for reliable coal feeding. The TC25 test campaign demonstrated steady operation with high carbon conversion and optimized performance of the coal handling and gasifier systems. Operation during TC25 provided the opportunity for further testing of instrumentation enhancements, hot gas filter materials, and advanced syngas cleanup technologies. The PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane with syngas from the Transport Gasifier.

  5. Power Systems Development Facility Gasification Test Run TC07

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2002-04-05

    This report discusses Test Campaign TC07 of the Kellogg Brown & Root, Inc. (KBR) Transport Reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). The Transport Reactor was operated as a pressurized gasifier during TC07. Prior to TC07, the Transport Reactor was modified to allow operations as an oxygen-blown gasifier. Test Run TC07 was started on December 11, 2001, and the sand circulation tests (TC07A) were completed on December 14, 2001. The coal-feed tests (TC07B-D) were started on January 17, 2002 and completed on April 5, 2002. Due to operational difficulties with the reactor, the unit was taken offline several times. The reactor temperature was varied between 1,700 and 1,780 F at pressures from 200 to 240 psig. In TC07, 679 hours of solid circulation and 442 hours of coal feed, 398 hours with PRB coal and 44 hours with coal from the Calumet mine, and 33 hours of coke breeze feed were attained. Reactor operations were problematic due to instrumentation problems in the LMZ resulting in much higher than desired operating temperatures in the reactor. Both reactor and PCD operations were stable and the modifications to the lower part of the gasifier performed well while testing the gasifier with PRB coal feed.

  6. Power Systems Development Facility Gasification Test Campaign TC25

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2008-12-01

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC25, the second test campaign using a high moisture lignite coal from the Red Hills mine in Mississippi as the feedstock in the modified Transport Gasifier configuration. TC25 was conducted from July 4, 2008, through August 12, 2008. During TC25, the PSDF gasification process operated for 742 hours in air-blown gasification mode. Operation with the Mississippi lignite was significantly improved in TC25 compared to the previous test (TC22) with this fuel due to the addition of a fluid bed coal dryer. The new dryer was installed to dry coals with very high moisture contents for reliable coal feeding. The TC25 test campaign demonstrated steady operation with high carbon conversion and optimized performance of the coal handling and gasifier systems. Operation during TC25 provided the opportunity for further testing of instrumentation enhancements, hot gas filter materials, and advanced syngas cleanup technologies. The PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane with syngas from the Transport Gasifier.

  7. Thermal hydraulic studies in steam generator test facility

    Energy Technology Data Exchange (ETDEWEB)

    Vinod, V.; Suresh Kumar, V.A.; Noushad, I.B.; Ellappan, T.R.; Rajan, K.K.; Rajan, M.; Vaidyanathan, G. [Engineering Development Group Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India)

    2005-07-01

    Full text of publication follows: A 500 MWe fast breeder reactor is being constructed at Kalpakkam, India. This is a sodium cooled reactor with two primary and two secondary sodium loops with total 8 steam generators. The typical advantage of fast breeder plants is the high operating temperature of steam cycles and the high plant efficiency. To produce this high pressure and high temperature steam, once through straight tube vertical sodium heated steam generators are used. The steam is generated from the heat produced in the reactor core and being transported through primary and secondary sodium circuits. The steam generator is a 25 m high middle supported steam generator with expansion bend and 23 m heat transfer length. Steam Generator Test Facility (SGTF) constructed at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam aims at performing various tests on a 5.5 MWt steam generator. This vertically simulated test article is similar in all respects to the proposed 157 MWt steam generator module for the Prototype Fast Breeder Reactor (PFBR), with reduced number of tubes. Heat transfer performance tests are done with this 19 tube steam generator at various load conditions. Sodium circuit for the SGTF is equipped with oil fired heater as heat source and centrifugal sodium pump, to pump sodium at 105 m{sup 3}/hr flow rate. Other typical components like sodium to air heat exchanger, sodium purification system and hydrogen leak detection system is also present in the sodium circuit. High pressure steam produced in the steam generator is dumped in a condenser and recycled. Important tests planned in SGTF are the heat transfer performance test, stability test, endurance test and performance test of steam generator under various transients. The controlled operation of steam generator will be studied with possible control schemes. A steady state simulation of the steam generator is done with a mathematical model. This paper gives the details of heat transfer

  8. Atmospheric Reentry Materials and Structures Evaluation Facility (ARMSEF). User Test Planning Guide

    Science.gov (United States)

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the ARMSEF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  9. A diamond detector for inertial confinement fusion X-ray bang-time measurements at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    MacPhee, A G; Brown, C; Burns, S; Celeste, J; Glenzer, S H; Hey, D; Jones, O S; Landen, O; Mackinnon, A J; Meezan, N; Parker, J; Edgell, D; Glebov, V Y; Kilkenny, J; Kimbrough, J

    2010-11-09

    An instrument has been developed to measure X-ray bang-time for inertial confinement fusion capsules; the time interval between the start of the laser pulse and peak X-ray emission from the fuel core. The instrument comprises chemical vapor deposited polycrystalline diamond photoconductive X-ray detectors with highly ordered pyrolytic graphite X-ray monochromator crystals at the input. Capsule bang-time can be measured in the presence of relatively high thermal and hard X-ray background components due to the selective band pass of the crystals combined with direct and indirect X-ray shielding of the detector elements. A five channel system is being commissioned at the National Ignition Facility at Lawrence Livermore National Laboratory for implosion optimization measurements as part of the National Ignition Campaign. Characteristics of the instrument have been measured demonstrating that X-ray bang-time can be measured with {+-} 30ps precision, characterizing the soft X-ray drive to +/- 1eV or 1.5%.

  10. Inertial Confinement Fusion alpha-heating signatures in prompt gamma-ray measurements at the National Ignition Facility

    Science.gov (United States)

    Church, Jennifer; Herrmann, Hans; Cerjan, Charlie; Sayre, Daniel; Carpenter, Arthur; Liebman, Judy; Stoeffl, Wolfgang; Kim, Yongho

    2015-11-01

    Prompt gamma-rays measured at the National Ignition Facility (NIF) with the Gamma-ray Reaction History detector (GRH) supply vital diagnostic information, such as the peak burn time, burn width, and total neutron yield, from prompt DT-fusion gamma-ray emission during high convergence implosion experiments. Additionally, the stagnated cold shell density distribution may be inferred from the time-integrated, calibrated 12C (n,n' γ) signal, thus providing estimates of remaining ablator carbon areal density. Furthermore, simulations suggest that alpha heating signatures might be accessible using more highly resolved temporal gamma-ray emission. Correlation of these signatures with time-dependent neutron emission will constrain the implosion dynamics immediately prior to thermonuclear burn. Measurement of these gamma-ray signatures will be discussed along with updates on our work toward inferred total DT yield and 12C areal density. This work performed under the auspices of the U.S. Dept. of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07-NA27344, LLNL-ABS-670282.

  11. 10-MWe pilot-plant-receiver panel test requirements document solar thermal test facility

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-25

    Testing plans for a full-scale test receiver panel and supporting hardware which essentially duplicate both physically and functionally, the design planned for the Barstow Solar Pilot Plant are presented. Testing is to include operation during normal start and shutdown, intermittent cloud conditions, and emergencies to determine the panel's transient and steady state operating characteristics and performance under conditions equal to or exceeding those expected in the pilot plant. The effects of variations of input and output conditions on receiver operation are also to be investigated. Test hardware are described, including the pilot plant receiver, the test receiver assembly, receiver panel, flow control, electrical control and instrumentation, and structural assembly. Requirements for the Solar Thermal Test Facility for the tests are given. The safety of the system is briefly discussed, and procedures are described for assembly, installation, checkout, normal and abnormal operations, maintenance, removal and disposition. Also briefly discussed are quality assurance, contract responsibilities, and test documentation. (LEW)

  12. Test Results From The Idaho National Laboratory 15kW High Temperature Electrolysis Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Carl M. Stoots; Keith G. Condie; James E. O' Brien; J. Stephen Herring; Joseph J. Hartvigsen

    2009-07-01

    A 15kW high temperature electrolysis test facility has been developed at the Idaho National Laboratory under the United States Department of Energy Nuclear Hydrogen Initiative. This facility is intended to study the technology readiness of using high temperature solid oxide cells for large scale nuclear powered hydrogen production. It is designed to address larger-scale issues such as thermal management (feed-stock heating, high temperature gas handling, heat recuperation), multiple-stack hot zone design, multiple-stack electrical configurations, etc. Heat recuperation and hydrogen recycle are incorporated into the design. The facility was operated for 1080 hours and successfully demonstrated the largest scale high temperature solid-oxide-based production of hydrogen to date.

  13. Fast Flux Test Facility (FFTF) Briefing Book 1 Summary

    Energy Technology Data Exchange (ETDEWEB)

    WJ Apley

    1997-12-01

    This report documents the results of evaluations preformed during 1997 to determine what, if an, future role the Fast Flux Test Facility (FFTF) might have in support of the Department of Energy’s tritium productions strategy. An evaluation was also conducted to assess the potential for the FFTF to produce medical isotopes. No safety, environmental, or technical issues associated with producing 1.5 kilograms of tritium per year in the FFTF have been identified that would change the previous evaluations by the Department of Energy, the JASON panel, or Putnam, Hayes & Bartlett. The FFTF can be refitted and restated by July 2002 for a total expenditure of $371 million, with an additional $64 million of startup expense necessary to incorporate the production of medical isotopes. Therapeutic and diagnostic applications of reactor-generated medical isotopes will increase dramatically over the next decade. Essential medical isotopes can be produced in the FFTF simultaneously with tritium production, and while a stand-alone medical isotope mission for the facility cannot be economically justified given current marker conditions, conservative estimates based on a report by Frost &Sullivan indicate that 60% of the annual operational costs (reactor and fuel supply) could be offset by revenues from medical isotope production within 10 yeas of restart. The recommendation of the report is for the Department of Energy to continue to maintain the FFTF in standby and proceed with preparation of appropriate Nations Environmental Policy Act documentation in full consultation with the public to consider the FFTF as an interim tritium production option (1.5 kilograms/year) with a secondary mission of producing medical isotopes.

  14. Fuel-Coolant Interaction visualization in TROI test facility

    Energy Technology Data Exchange (ETDEWEB)

    Na, Young Su; Hong, Seong-Ho; Song, Jin Ho; Hong, Seong-Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    It is necessary to observe the FCI (Fuel-Coolant Interaction) phenomena at the condition of vessel failure to IVR. We carried out a visualization test on the interaction of a corium melt and water to observe the premixing phase without a free fall of a melt jet in a gas phase before contacting the cooling water. This paper is based on the previous study presented at Ninth Korea-Japan Symposium on Nuclear Hydraulics and Safety, we added the results on sieved debris distribution. The visualization test on the FCI without a free fall of a corium melt jet in a gas phase was conducted carefully in the TROI test facility. A prototypic corium consisting of uranium oxide and zirconium oxide with a weight ratio of UO{sub 2} to ZrO{sub 2} of 80 to 20, respectively, was heated up using the induction heating method. It was observed that a corium melt jet penetrated into water with 1000 mm in depth, and it took about 0.6 seconds from opening the releasing valve, which was confirmed by the sequential variation of the temperature measured by the sacrificial thermocouples installed in the direction of a falling melt jet. The cumulative mass fraction of the debris smaller than 1.0 mm was 15%, and the mass mean diameter of the debris was 2.9 mm. This visualization test can generate the valuable information such as the behavior of the corium melt jet and the size of mixing zone for validating the computer code.

  15. Power Systems Development Facility Gasification Test Campaign TC24

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2008-03-30

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC24, the first test campaign using a bituminous coal as the feedstock in the modified Transport Gasifier configuration. TC24 was conducted from February 16, 2008, through March 19, 2008. The PSDF gasification process operated for about 230 hours in air-blown gasification mode with about 225 tons of Utah bituminous coal feed. Operational challenges in gasifier operation were related to particle agglomeration, a large percentage of oversize coal particles, low overall gasifier solids collection efficiency, and refractory degradation in the gasifier solids collection unit. The carbon conversion and syngas heating values varied widely, with low values obtained during periods of low gasifier operating temperature. Despite the operating difficulties, several periods of steady state operation were achieved, which provided useful data for future testing. TC24 operation afforded the opportunity for testing of various types of technologies, including dry coal feeding with a developmental feeder, the Pressure Decoupled Advanced Coal (PDAC) feeder; evaluating a new hot gas filter element media configuration; and enhancing syngas cleanup with water-gas shift catalysts. During TC24, the PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane.

  16. Parametric Thermal Models of the Transient Reactor Test Facility (TREAT)

    Energy Technology Data Exchange (ETDEWEB)

    Bradley K. Heath

    2014-03-01

    This work supports the restart of transient testing in the United States using the Department of Energy’s Transient Reactor Test Facility at the Idaho National Laboratory. It also supports the Global Threat Reduction Initiative by reducing proliferation risk of high enriched uranium fuel. The work involves the creation of a nuclear fuel assembly model using the fuel performance code known as BISON. The model simulates the thermal behavior of a nuclear fuel assembly during steady state and transient operational modes. Additional models of the same geometry but differing material properties are created to perform parametric studies. The results show that fuel and cladding thermal conductivity have the greatest effect on fuel temperature under the steady state operational mode. Fuel density and fuel specific heat have the greatest effect for transient operational model. When considering a new fuel type it is recommended to use materials that decrease the specific heat of the fuel and the thermal conductivity of the fuel’s cladding in order to deal with higher density fuels that accompany the LEU conversion process. Data on the latest operating conditions of TREAT need to be attained in order to validate BISON’s results. BISON’s models for TREAT (material models, boundary convection models) are modest and need additional work to ensure accuracy and confidence in results.

  17. Arc Jet Facility Test Condition Predictions Using the ADSI Code

    Science.gov (United States)

    Palmer, Grant; Prabhu, Dinesh; Terrazas-Salinas, Imelda

    2015-01-01

    The Aerothermal Design Space Interpolation (ADSI) tool is used to interpolate databases of previously computed computational fluid dynamic solutions for test articles in a NASA Ames arc jet facility. The arc jet databases are generated using an Navier-Stokes flow solver using previously determined best practices. The arc jet mass flow rates and arc currents used to discretize the database are chosen to span the operating conditions possible in the arc jet, and are based on previous arc jet experimental conditions where possible. The ADSI code is a database interpolation, manipulation, and examination tool that can be used to estimate the stagnation point pressure and heating rate for user-specified values of arc jet mass flow rate and arc current. The interpolation is performed in the other direction (predicting mass flow and current to achieve a desired stagnation point pressure and heating rate). ADSI is also used to generate 2-D response surfaces of stagnation point pressure and heating rate as a function of mass flow rate and arc current (or vice versa). Arc jet test data is used to assess the predictive capability of the ADSI code.

  18. Development and operation of a mobile test facility for education

    Science.gov (United States)

    Davis, Christopher T.

    The automotive industry saw a large shift towards vehicle electrification after the turn of the century. It became necessary to ensure that new and existing engineers were qualified to design and calibrate these new systems. To ensure this training, Michigan Tech received a grant to develop a curriculum based around vehicle electrification. As part of this agenda, the Michigan Tech Mobile Laboratory was developed to provide hands-on training for professional engineers and technicians in hybrid electric vehicles and vehicle electrification. The Mobile Lab has since then increased the scope of the delivered curriculum to include other automotive areas and even customizable course content to meet specific needs. This thesis outlines the development of the Mobile Laboratory and its powertrain test facilities. The focus of this thesis is to discuss the different hardware and software systems within the lab and test cells. Detailed instructions on the operation and maintenance of each of the systems are discussed. In addition, this thesis outlines the setup and operation of the necessary equipment for several of the experiments for the on and off campus courses and seminars.

  19. Development scenario for laser fusion

    Energy Technology Data Exchange (ETDEWEB)

    Maniscalco, J.A.; Hovingh, J.; Buntzen, R.R.

    1976-03-30

    This scenario proposes establishment of test and engineering facilities to (1) investigate the technological problems associated with laser fusion, (2) demonstrate fissile fuel production, and (3) demonstrate competitive electrical power production. Such facilities would be major milestones along the road to a laser-fusion power economy. The relevant engineering and economic aspects of each of these research and development facilities are discussed. Pellet design and gain predictions corresponding to the most promising laser systems are presented for each plant. The results show that laser fusion has the potential to make a significant contribution to our energy needs. Beginning in the early 1990's, this new technology could be used to produce fissile fuel, and after the turn of the century it could be used to generate electrical power.

  20. Testing of ceramic filter materials at the PCFB test facility; Keraamisten suodinmateriaalien testaus PCFB-koelaitoksessa

    Energy Technology Data Exchange (ETDEWEB)

    Kuivalainen, R.; Eriksson, T.; Lehtonen, P.; Tiensuu, J. [Foster Wheeler Energia Oy, Karhula (Finland)

    1997-10-01

    Pressurized Circulating Fluidized Bed (PCFB) combustion technology has been developed in Karhula, Finland since 1986. In 1989, a 10 MW PCFB test facility was constructed. The test facility has been used for performance testing with different coal types through the years 1990-1994 for obtaining data for design and commercialization of the high-efficiency low-emission PCFB combustion technology. The main objective of the project Y53 was to evaluate advanced candle filter materials for the Hot Gas Clean-up Unit (HGCU) to be used in a commercial PCFB Demonstration Project. To achieve this goal, the selected candle materials were exposed to actual high temperature, high pressure coal combustion flue gases for a period of 1000-1500 h during the PCFB test runs. The test runs were carried out in three test segments in Foster Wheeler`s PCFB test facility at the Karhula R and D Center. An extensive inspection and sampling program was carried out after the second test segment. Selected sample candles were analyzed by the filter supplier and the preliminary results were encouraging. The material strength had decreased only within expected range. Slight elongation of the silicon carbide candles was observed, but at this phase the elongation can not be addressed to creep, unlike in the candles tested in 1993-94. The third and last test segment was completed successfully in October 1996. The filter system was inspected and several sample candles were selected for material characterization. The results will be available in February - March 1997. (orig.)