WorldWideScience

Sample records for fusion systems characteristics

  1. Magnetic mirror fusion systems: Characteristics and distinctive features

    International Nuclear Information System (INIS)

    Post, R.F.

    1987-01-01

    A tutorial account is given of the main characteristics and distinctive features of conceptual magnetic fusion systems employing the magnetic mirror principle. These features are related to the potential advantages that mirror-based fusion systems may exhibit for the generation of economic fusion power

  2. INDRA: a program system for calculating the neutronics and photonics characteristics of a fusion reactor blanket

    International Nuclear Information System (INIS)

    Perry, R.T.; Gorenflo, H.; Daenner, W.

    1976-01-01

    INDRA is a program system for calculating the neutronics and photonics characteristics of fusion reactor blankets. It incorporates a total of 19 different codes and 5 large data libraries. 10 of the codes are available from the code distribution organizations. Some of them, however, have been slightly modified in order to permit a convenient transfer of information from one program module to the next. The remaining 9 programs have been prepared by the authors to complete the system with respect to flexibility and to facilitate the handling of the results. (orig./WBU) [de

  3. Basic characteristics of an efficient fusion breeder

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, C W; Harms, A A [McMaster Univ., Hamilton, Ontario (Canada). Dept. of Physics

    1977-01-01

    Some reactor physics characteristics of an efficient fusion breeder, consisting of an integrated fusion-fission reactor system with fissile and fusile fuel linkages, are examined. Core parameters of existing fission reactors and proposed fusion reactors are used to determine the system fissile fuel breeding gain, the fissile fuel doubling time, the nuclear fuel production capacity and the ratio of fusion-to-fission thermal power. It is concluded that such a symbiotic reactor configuration possesses considerable merit from the standpoint of long-term supply of fissile fuel and provides new options for the development of the next generation of nuclear energy systems.

  4. Fusion systems engineering

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Summaries of research are included for each of the following topics: (1) fusion reactor systems studies, (2) development of blanket processing technology for fusion reactors, (3) safety studies of fusion concepts, (4) the MACK/MACKLIB system for nuclear response functions, and (5) energy storage and power supply systems for fusion reactors

  5. Fusion barrier characteristics of actinides

    Science.gov (United States)

    Manjunatha, H. C.; Sridhar, K. N.

    2018-03-01

    We have studied fusion barrier characteristics of actinide compound nuclei with atomic number range 89 ≤ Z ≤ 103 for all projectile target combinations. After the calculation of fusion barrier heights and positions, we have searched for their parameterization. We have achieved the empirical formula for fusion barrier heights (VB), positions (RB), curvature of the inverted parabola (ħω) of actinide compound nuclei with atomic number range 89 ≤ Z ≤ 103 for all projectile target combinations (6 projectile target combinations. The values produced by the present formula are also compared with experiments. The present pocket formula produces fusion barrier characteristics of actinides with the simple inputs of mass number (A) and atomic number (Z) of projectile-targets.

  6. Fusion systems engineering

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Research during this report period has covered the following areas: (1) fusion reactor systems studies, (2) development of blanket processing technology for fusion reactors, (3) safety studies of fusion concepts, (4) MACKLIB-IV, a new library of nuclear response functions, (5) energy storage and power supply requirements for commercial fusion reactors, (6) blanket/shield design evaluation for commercial fusion reactors, and (7) cross section measurements, evaluations, and techniques

  7. Fusion systems engineering

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Information is given on each of the following topics: (1) fusion reactor systems studies, (2) development of blanket processing technology for fusion reactors, (3) safety studies of CTR concepts, and (4) cross section measurements and techniques

  8. Fusion in the energy system

    DEFF Research Database (Denmark)

    Fusion energy is the fundamental energy source of the Universe, as the energy of the Sun and the stars are produced by fusion of e.g. hydrogen to helium. Fusion energy research is a strongly international endeavor aiming at realizing fusion energy production in power plants on Earth. Reaching...... of integration into the future electricity system and socio-economic studies of fusion energy will be presented, referring to the programme of Socio-Economic Research on Fusion (SERF) under the European Fusion Energy Agreement (EFDA)....

  9. Fusion propulsion systems

    International Nuclear Information System (INIS)

    Haloulakos, V.E.; Bourque, R.F.

    1989-01-01

    The continuing and expanding national efforts in both the military and commercial sectors for exploration and utilization of space will require launch, assembly in space, and orbital transfer of large payloads. The currently available delivery systems, utilizing various forms of chemical propulsion, do not have the payload capacity to fulfill the planned missions. National planning documents such as Air Force Project Forecast II and the National Commission on Space Report to the President contain numerous missions and payload delivery schedules that are beyond the present capabilities of the available systems, such as the Space Shuttle and the Expendable Launch Vehicles (ELVs). The need, therefore, is very pressing to design, develop, and deploy propulsion systems that offer a quantum level increase in delivered performance. One such potential system is fusion propulsion. This paper summarizes the result of an Air Force Astronautics Laboratory (AFAL) sponsored study of fusion propulsion conducted by the McDonnell Douglas Astronautics Company (MDAC), and its subcontractor General Atomics This study explored the potential of fusion propulsion for Air Force missions. Fusion fuels and existing confinement concepts were evaluated according to elaborate criteria. Two fuels, deuterium-tritium and deuterium-helium 3 (D- 3 He) were considered worthy of further consideration. D- 3 He was selected as the most attractive for this Air Force study. The colliding translating compact torus confinement concept was evaluated in depth and found to possibly possess the low mass and compactness required. Another possible concept is inertial confinement with the propellant surrounding the target. 5 refs., 5 figs., 8 tabs

  10. Opimization of fusion-driven fissioning systems

    International Nuclear Information System (INIS)

    Chapin, D.L.; Mills, R.G.

    1976-01-01

    Potential advantages of hybrid or fusion/fission systems can be exploited in different ways. With selection of the 238 U-- 239 Pu fuel cycle, we show that the system has greatest value as a power producer. Numerical examples of relative revenue from power production vs. 239 Pu production are discussed, and possible plant characteristics described. The analysis tends to show that the hybrid may be more economically attractive than pure fusion systems

  11. Nuclear characteristics of D-D fusion reactor blankets

    International Nuclear Information System (INIS)

    Nakashima, Hideki; Ohta, Masao

    1978-01-01

    Fusion reactors operating on deuterium (D-D) cycle are considered to be of long range interest for their freedom from tritium breeding in the blanket. The present paper discusses the various possibilities of D-D fusion reactor blanket designs mainly from the standpoint of the nuclear characteristics. Neutronic and photonic calculations are based on presently available data to provide a basis of the optimal blanket design in D-D fusion reactors. It is found that it appears desirable to design a blanket with blanket/shield (BS) concept in D-D fusion reactors. The BS concept is designed to obtain reasonable shielding characteristics for superconducting magnet (SCM) by using shielding materials in the compact blanket. This concept will open the possibility of compact radiation shield design based on assured technology, and offer the advantage from the system economics point of view. (auth.)

  12. Compact magnetic fusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Linford, R.K.

    1983-12-01

    If the core (first wall, blanket, shield, and magnet coils) of fusion reactor systems could be made smaller in mass and volume for a given net electric power output than is usually predicted for the mainline tokamak/sup 1/ and mirror concepts, the cost of the technological development of the core and the construction of power plants might be significantly reduced. Although progress in plasma physics and engineering approaches should continue to yield improvements in reactor designs, certain physics features of the mainline concepts may prevent major reductions in the size of the core without straining the limits of technology. However, more than a factor of ten reduction in volume and mass of the core, at constant output power, may be possible for a class of toroidal confinement concepts in which the confining magnetic fields are supported more by currents flowing in the plasma than those in the external coils. In spite of this dramatic increase in power density (ratio of total thermal output power to the volume of the core), the design of compact systems need not rely on any materials requirements that are qualitatively more difficult than those proposed for the lower-power-density mainline fusion concepts. In some respects compact systems require less of an extension of existing technology, e.g. magnetics.

  13. Compact magnetic fusion systems

    International Nuclear Information System (INIS)

    Linford, R.K.

    1983-01-01

    If the core (first wall, blanket, shield, and magnet coils) of fusion reactor systems could be made smaller in mass and volume for a given net electric power output than is usually predicted for the mainline tokamak 1 and mirror concepts, the cost of the technological development of the core and the construction of power plants might be significantly reduced. Although progress in plasma physics and engineering approaches should continue to yield improvements in reactor designs, certain physics features of the mainline concepts may prevent major reductions in the size of the core without straining the limits of technology. However, more than a factor of ten reduction in volume and mass of the core, at constant output power, may be possible for a class of toroidal confinement concepts in which the confining magnetic fields are supported more by currents flowing in the plasma than those in the external coils. In spite of this dramatic increase in power density (ratio of total thermal output power to the volume of the core), the design of compact systems need not rely on any materials requirements that are qualitatively more difficult than those proposed for the lower-power-density mainline fusion concepts. In some respects compact systems require less of an extension of existing technology, e.g. magnetics

  14. Comments on open-ended magnetic systems for fusion

    International Nuclear Information System (INIS)

    Post, R.F.

    1990-01-01

    Differentiating characteristics of magnetic confinement systems having externally generated magnetic fields that are ''open'' are listed and discussed in the light of their several potential advantages for fusion power systems. It is pointed out that at this stage of fusion research ''high-Q'' (as deduced from long energy confinement times) is not necessarily the most relevant criterion by which to judge the potential of alternate fusion approaches for the economic generation of fusion power. An example is given of a hypothetical open-geometry fusion power system where low-Q operation is essential to meeting one of its main objectives (low neutron power flux)

  15. Physics of mirror fusion systems

    International Nuclear Information System (INIS)

    Post, R.F.

    1976-01-01

    Recent experimental results with the 2XIIB mirror machine at Lawrence Livermore Laboratory have demonstrated the stable confinement of plasmas at fusion temperatures and with energy densities equaling or exceeding that of the confining fields. The physics of mirror confinement is discussed in the context of these new results. Some possible approaches to further improving the confinement properties of mirror systems and the impact of these new approaches on the prospects for mirror fusion reactors are discussed

  16. Nuclear fusion system

    International Nuclear Information System (INIS)

    Dow, W.G.

    1981-01-01

    The invention pertains to the method and apparatus for the confining of a stream of fusible positive ions at values of density and high average kinetic energy, primarily of tightly looping motions, to produce nuclear fusion at a useful rate; more or less intimately mixed with the fusible ions will be lowerenergy electrons at about equal density, introduced solely for the purpose of neutralizing the positive space charge of the ions

  17. Solenoidal fusion system

    International Nuclear Information System (INIS)

    Linlor, W.I.

    1980-01-01

    This invention discloses apparatus and methods to produce nuclear fusion utilizing fusible material in the form of high energy ion beams confined in magnetic fields. For example, beams of deuterons and tritons are injected in the same direction relative to the axis of a vacuum chamber. The ion beams are confined by the magnetic fields of long solenoids. The products of the fusion reactions, such as neutrons and alpha particles, escape to the wall surrounding the vacuum chamber, producing heat. The momentum of the deuterons is approximately equal to the momentum of the tritons, so that both types of ions follow the same path in the confining magnetic field. The velocity of the deuteron is sufficiently greater than the velocity of the triton so that overtaking collisions occur at a relative velocity which produces a high fusion reaction cross section. Electrons for space charge neutralization are obtained by ionization of residual gas in the vacuum chamber, and additionally from solid material (Irradiated with ultra-violet light or other energetic radiation) adjacent to the confinement region. For start-up operation, injected high-energy molecular ions can be dissociated by intense laser beam, producing trapping via change of charge state. When sufficiently intense deuteron and triton beams have been produced, the laser beam can be removed, and subsequent change of charge state can be achieved by collisions

  18. Tritium accountancy in fusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.E.; Clark, E.A.; Harvel, C.D.; Farmer, D.A.; Tovo, L.L.; Poore, A.S. [Savannah River National Laboratory, Aiken, SC (United States); Moore, M.L. [Savannah River Nuclear Solutions, Aiken, SC (United States)

    2015-03-15

    The US Department of Energy (DOE) has clearly defined requirements for nuclear material control and accountability (MCA) of tritium whereas the International Atomic Energy Agency (IAEA) does not since tritium is not a fissile material. MCA requirements are expected for tritium fusion machines and will be dictated by the host country or regulatory body where the machine is operated. Material Balance Areas (MBA) are defined to aid in the tracking and reporting of nuclear material movements and inventories. Material sub-accounts (MSA) are established along with key measurement points (KMP) to further subdivide a MBA to localize and minimize uncertainties in the inventory difference (ID) calculations for tritium accountancy. Fusion systems try to minimize tritium inventory which may require continuous movement of material through the MSA. The ability of making meaningful measurements of these material transfers is described in terms of establishing the MSA structure to perform and reconcile ID calculations. For fusion machines, changes to the traditional ID equation will be discussed which includes breeding, burn-up, and retention of tritium in the fusion device. The concept of 'net' tritium quantities consumed or lost in fusion devices is described in terms of inventory taking strategies and how it is used to track the accumulation of tritium in components or fusion machines. (authors)

  19. Fusion reactor systems studies

    International Nuclear Information System (INIS)

    1993-01-01

    Fusion Technology Institute personnel actively participated in the ARIES/PULSAR project during the present contract period. Numerous presentations were made at PULSAR project meetings, major contributions were written for the ARIES-II/IV Final Report presentations and papers were given at technical conferences contributions were written for the ARIES Lessons Learned report and a very large number of electronic-mail and regular-mail communications were sent. The remaining sections of this progress report win summarize the work accomplished and in progress for the PULSAR project during the contract period. The main areas of effort are: PULSAR Research; ARIES-II/IV Report Contributions; ARIES Lessons Learned Report Contributions; and Stellarator Study

  20. Block Fusion Systems and the Center of the Group Ring

    DEFF Research Database (Denmark)

    Jacobsen, Martin Wedel

    This thesis develops some aspects of the theory of block fusion systems. Chapter 1 contains a brief introduction to the group algebra and some simple results about algebras over a field of positive characteristic. In chapter 2 we define the concept of a fusion system and the fundamental property...... of saturation. We also define block fusion systems and prove that they are saturated. Chapter 3 develops some tools for relating block fusion systems to the structure of the center of the group algebra. In particular, it is proven that a block has trivial defect group if and only if the center of the block...... algebra is one-dimensional. Chapter 4 consists of a proof that block fusion systems of symmetric groups are always group fusion systems of symmetric groups, and an analogous result holds for the alternating groups....

  1. Dust removal system for fusion experimental reactors

    International Nuclear Information System (INIS)

    Onozuka, M.; Ueda, Y.; Takahashi, K.; Oda, Y.; Seki, Y.; Ueda, S.; Aoki, I.

    1995-01-01

    Development of a dust removal system using static electricity has been conducted. It is envisioned that the system can collect and transport dust under vacuum. In the system, the dust is charged by dielectric polarization and floated by an electrostatic attraction force that is generated by the DC electric field. The dust is then transported by the electric curtain formed by the three-phase AC electric field. Experimental investigation has been conducted to examine the characteristics of the system. Current research results indicate that the dust removal system using static electricity can be used for fusion experimental reactors

  2. Dust removal system for fusion experimental reactors

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M.; Ueda, Y.; Takahashi, K.; Oda, Y. [Mitsubishi Heavy Industries, Ltd., Yokohama (Japan); Seki, Y.; Ueda, S.; Aoki, I. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan)

    1995-12-31

    Development of a dust removal system using static electricity has been conducted. It is envisioned that the system can collect and transport dust under vacuum. In the system, the dust is charged by dielectric polarization and floated by an electrostatic attraction force that is generated by the DC electric field. The dust is then transported by the electric curtain formed by the three-phase AC electric field. Experimental investigation has been conducted to examine the characteristics of the system. Current research results indicate that the dust removal system using static electricity can be used for fusion experimental reactors.

  3. Heavy Ion Fusion Systems Assessment study

    International Nuclear Information System (INIS)

    Dudziak, D.J.; Herrmannsfeldt, W.B.

    1986-07-01

    The Heavy Ion Fusion Systems Assessment (HIFSA) study was conducted with the specific objective of evaluating the prospects of using induction linac drivers to generate economical electrical power from inertial confinement fusion. The study used algorithmic models of representative components of a fusion system to identify favored areas in the multidimensional parameter space. The resulting cost-of-electricity (COE) projections are comparable to those from other (magnetic) fusion scenarios, at a plant size of 100 MWe

  4. On fusion driven systems (FDS) for transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Aagren, O (Uppsala Univ., Aangstroem laboratory, div. of electricity, Uppsala (Sweden)); Moiseenko, V.E. (Inst. of Plasma Physics, National Science Center, Kharkov Inst. of Physics and Technology, Kharkov (Ukraine)); Noack, K. (Forschungszentrum Dresden-Rossendorf (Germany))

    2008-10-15

    This report gives a brief description of ongoing activities on fusion driven systems (FDS) for transmutation of the long-lived radioactive isotopes in the spent nuclear waste from fission reactors. Driven subcritical systems appears to be the only option for efficient minor actinide burning. Driven systems offer a possibility to increase reactor safety margins. A comparatively simple fusion device could be sufficient for a fusion-fission machine, and transmutation may become the first industrial application of fusion. Some alternative schemes to create strong fusion neutron fluxes are presented

  5. On fusion driven systems (FDS) for transmutation

    International Nuclear Information System (INIS)

    Aagren, O; Moiseenko, V.E.; Noack, K.

    2008-10-01

    This report gives a brief description of ongoing activities on fusion driven systems (FDS) for transmutation of the long-lived radioactive isotopes in the spent nuclear waste from fission reactors. Driven subcritical systems appears to be the only option for efficient minor actinide burning. Driven systems offer a possibility to increase reactor safety margins. A comparatively simple fusion device could be sufficient for a fusion-fission machine, and transmutation may become the first industrial application of fusion. Some alternative schemes to create strong fusion neutron fluxes are presented

  6. Structural materials for fusion reactor blanket systems

    International Nuclear Information System (INIS)

    Bloom, E.E.; Smith, D.L.

    1984-01-01

    Consideration of the required functions of the blanket and the general chemical, mechanical, and physical properties of candidate tritium breeding materials, coolants, structural materials, etc., leads to acceptable or compatible combinations of materials. The presently favored candidate structural materials are the austenitic stainless steels, martensitic steels, and vanadium alloys. The characteristics of these alloy systems which limit their application and potential performance as well as approaches to alloy development aimed at improving performance (temperature capability and lifetime) will be described. Progress towards understanding and improving the performance of structural materials has been substantial. It is possible to develop materials with acceptable properties for fusion applications

  7. Evaluation of DD and DT fusion fuel cycles for different fusion-fission energy systems

    International Nuclear Information System (INIS)

    Gohar, Y.

    1980-01-01

    A study has been carried out in order to investigate the characteristics of an energy system to produce a new source of fissile fuel for existing fission reactors. The denatured fuel cycles were used because it gives additional proliferation resistance compared to other fuel cycles. DT and DD fusion drivers were examined in this study with a thorium or uranium blanket for each fusion driver. Various fuel cycles were studied for light-water and heavy-water reactors. The cost of electricity for each energy system was calculated

  8. Ceramics for applications in fusion systems

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1979-01-01

    Six critical applications for ceramics in fusion systems are reviewed, and structural and electrical problem areas discussed. Fusion neutron radiation effects in ceramics are considered in relation to fission neutron studies. A number of candidate materials are proposed for further evaluation

  9. Mirror Fusion Test Facility magnet system

    International Nuclear Information System (INIS)

    VanSant, J.H.; Kozman, T.A.; Bulmer, R.H.; Ng, D.S.

    1981-01-01

    In 1979, R.H. Bulmer of Lawrence Livermore National Laboratory (LLNL) discussed a proposed tandem-mirror magnet system for the Mirror Fusion Test Facility (MFTF) at the 8th symposium on Engineering Problems in Fusion Research. Since then, Congress has voted funds for expanding LLNL's MFTF to a tandem-mirror facility (designated MFTF-B). The new facility, scheduled for completion by 1985, will seek to achieve two goals: (1) Energy break-even capability (Q or the ratio of fusion energy to plasma heating energy = 1) of mirror fusion, (2) Engineering feasibility of reactor-scale machines. Briefly stated, 22 superconducting magnets contained in a 11-m-diam by 65-m-long vacuum vessel will confine a fusion plasma fueled by 80 axial streaming-plasma guns and over 40 radial neutral beams. We have already completed a preliminary design of this magnet system

  10. Fusion of Images from Dissimilar Sensor Systems

    National Research Council Canada - National Science Library

    Chow, Khin

    2004-01-01

    Different sensors exploit different regions of the electromagnetic spectrum; therefore a multi-sensor image fusion system can take full advantage of the complementary capabilities of individual sensors in the suit...

  11. Multi-terawatt fusion laser systems

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1993-01-01

    The evolution of laser fusion systems started with a description of the basic principles of the laser in 1959, then a physical demonstration showing 1000 Watts of peak optical power in 1961 to the present systems that deliver 10 14 watts of peak optical power, are presented. Physical limits to large systems are reviewed: thermal limits, material stress limits, structural limits and stability, parasitic coupling, measurement precision and diagnostics. The various steps of the fusion laser-system development process are then discussed through an historical presentation. 3 figs., 8 refs

  12. The fusion-hydrogen energy system

    International Nuclear Information System (INIS)

    Williams, L.O.

    1994-01-01

    This paper will describe the structure of the system, from energy generation and hydrogen production through distribution to the end users. It will show how stationary energy users will convert to hydrogen and will outline ancillary uses of hydrogen to aid in reducing other forms of pollution. It will show that the adoption of the fusion hydrogen energy system will facilitate the use of renewable energy such as wind and solar. The development of highly efficient fuel cells for production of electricity near the user and for transportation will be outlined. The safety of the hydrogen fusion energy system is addressed. This paper will show that the combination of fusion generation combined with hydrogen distribution will provide a system capable of virtually eliminating the negative impact on the environment from the use of energy by humanity. In addition, implementation of the energy system will provide techniques and tools that can ameliorate environmental problems unrelated to energy use. (Author)

  13. Proceedings of the Second Fusion-Fission Energy Systems Review Meeting

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-11-02

    The agenda of the meeting was developed to address, in turn, the following major areas: specific problem areas in nuclear energy systems for application of fusion-fission concepts; current and proposed fusion-fission programs in response to the identified problem areas; target costs and projected benefits associated with fusion-fission energy systems; and technical problems associated with the development of fusion-fission concepts. The greatest emphasis was placed on the characteristics of and problems, associated with fuel producing fusion-fission hybrid reactors.

  14. Nuclear characteristics of D-D fusion reactor blankets, (1)

    International Nuclear Information System (INIS)

    Nakashima, Hideki; Ohta, Masao; Seki, Yasushi.

    1977-01-01

    Fusion reactors operating on the deuterium (D-D) cycle are considered promising for their freedom from tritium breeding in the blanket. In this paper, neutronic and photonic calculations are undertaken covering several blanket models of the D-D fusion reactor, using presently available data, with a view to comparing the nuclear characteristics of these models, in particular, the nuclear heating rates and their spatial distributions. Nine models are taken up for the study, embodying various combinations of coolant, blanket, structural and reflector materials. About 10 MeV is found to be a typical value for the total nuclear energy deposition per source neutron in the models considered here. The realization of high energy gain is contingent upon finding a favorable combination of blanket composition and configuration. The resulting implications on the thermal design aspect are briefly discussed. (auth.)

  15. Data-Acquisition Systems for Fusion Devices

    NARCIS (Netherlands)

    van Haren, P. C.; Oomens, N. A.

    1993-01-01

    During the last two decades, computerized data acquisition systems (DASs) have been applied at magnetic confinement fusion devices. Present-day data acquisition is done by means of distributed computer systems and transient recorders in CAMAC systems. The development of DASs has been technology

  16. Concept evaluation of nuclear fusion driven symbiotic energy systems

    International Nuclear Information System (INIS)

    Renier, J.P.; Hoffman, T.J.

    1979-01-01

    This paper analyzes systems based on D-T and semi-catalyzed D-D fusion-powered U233 breeders. Two different blanket types were used: metallic thorium pebble-bed blankets with a batch reprocessing mode and a molten salt blanket with on-line continuous or batch reprocessing. All fusion-driven blankets are assumed to have spherical geometries, with a 85% closure. Neutronics depletion calculations were performed with a revised version of the discrete ordinates code XSDRN-PM, using multigroup (100 neutron, 21 gamma-ray groups) coupled cross-section libraries. These neutronics calculations are coupled with a scenario optimization and cost analysis code. Also, the fusion burn was shaped so as to keep the blanket maximum power density below a preset value, and to improve the performance of the fusion-driven systems. The fusion-driven symbiotes are compared with LMFBR-driven energy systems. The nuclear fission breeders that were used as drivers have parameters characteristic of heterogeneous, oxide LMFBRs. They are net plutonium users - the plutonium is obtained from the discharges of LWRs - and U233 is bred in the fission breeder thorium blankets. The analyses of the symbiotic energy systems were performed at equilibrium, at maximum rate of grid expansion, and for a given nuclear power demand

  17. Fission--fusion systems: classification and critique

    International Nuclear Information System (INIS)

    Lidsky, L.M.

    1974-01-01

    A useful classification scheme for hybrid systems is described and some common features that the scheme makes apparent are pointed out. The early history of fusion-fission systems is reviewed. Some designs are described along with advantages and disadvantages of each. The extension to low and moderate Q devices is noted. (U.S.)

  18. Decision Fusion System for Bolted Joint Monitoring

    Directory of Open Access Journals (Sweden)

    Dong Liang

    2015-01-01

    Full Text Available Bolted joint is widely used in mechanical and architectural structures, such as machine tools, industrial robots, transport machines, power plants, aviation stiffened plate, bridges, and steel towers. The bolt loosening induced by flight load and environment factor can cause joint failure leading to a disastrous accident. Hence, structural health monitoring is critical for the bolted joint detection. In order to realize a real-time and convenient monitoring and satisfy the requirement of advanced maintenance of the structure, this paper proposes an intelligent bolted joint failure monitoring approach using a developed decision fusion system integrated with Lamb wave propagation based actuator-sensor monitoring method. Firstly, the basic knowledge of decision fusion and classifier selection techniques is briefly introduced. Then, a developed decision fusion system is presented. Finally, three fusion algorithms, which consist of majority voting, Bayesian belief, and multiagent method, are adopted for comparison in a real-world monitoring experiment for the large aviation aluminum plate. Based on the results shown in the experiment, a big potential in real-time application is presented that the method can accurately and rapidly identify the bolt loosening by analyzing the acquired strain signal using proposed decision fusion system.

  19. Neutral-beam systems for magnetic-fusion reactors

    International Nuclear Information System (INIS)

    Fink, J.H.

    1981-01-01

    Neutral beams for magnetic fusion reactors are at an early stage of development, and require considerable effort to make them into the large, reliable, and efficient systems needed for future power plants. To optimize their performance to establish specific goals for component development, systematic analysis of the beamlines is essential. Three ion source characteristics are discussed: arc-cathode life, gas efficiency, and beam divergence, and their significance in a high-energy neutral-beam system is evaluated

  20. Structural materials challenges for fusion power systems

    International Nuclear Information System (INIS)

    Kurtz, Richard J.

    2009-01-01

    Full text: Structural materials in a fusion power system must function in an extraordinarily demanding environment that includes various combinations of high temperatures, reactive chemicals, time-dependent thermal and mechanical stresses, and intense damaging radiation. The fusion neutron environment produces displacement damage equivalent to displacing every atom in the material about 150 times during its expected service life, and changes in chemical composition by transmutation reactions, which includes creation of reactive and insoluble gases. Fundamental materials challenges that must be resolved to effectively harness fusion power include (1) understanding the relationships between material strength, ductility and resistance to cracking, (2) development of materials with extraordinary phase stability, high-temperature strength and resistance to radiation damage, (3) establishment of the means to control corrosion of materials exposed to aggressive environments, (4) development of technologies for large-scale fabrication and joining, and (5) design of structural materials that provide for an economically attractive fusion power system while simultaneously achieving safety and environmental acceptability goals. The most effective approach to solve these challenges is a science-based effort that couples development of physics-based, predictive models of materials behavior with key experiments to validate the models. The U.S. Fusion Materials Sciences program is engaged in an integrated effort of theory, modeling and experiments to develop structural materials that will enable fusion to reach its safety, environmental and economic competitiveness goals. In this presentation, an overview of recent progress on reduced activation ferritic/martensitic steels, nanocomposited ferritic alloys, and silicon carbide fiber reinforced composites for fusion applications will be given

  1. Magnetic systems for fusion devices

    International Nuclear Information System (INIS)

    Henning, C.D.

    1985-02-01

    Mirror experiments have led the way in applying superconductivity to fusion research because of unique requirements for high and steady magnetic fields. The first significant applications were Baseball II at LLNL and IMP at ORNL. More recently, the MFTF-B yin-yang coil was successfully tested and the entire tandem configuration is nearing completion. Tokamak magnets have also enjoyed recent success with the large coil project tests at ORNL, preceded by single coil tests in Japan and Germany. In the USSR, the T-7 Tokamak has been operational for many years and the T-15 Tokamak is under construction, with the TF coils nearing completion. Also the Tore Supra is being built in France

  2. Cost Accounting System for fusion studies

    International Nuclear Information System (INIS)

    Hamilton, W.R.; Keeton, D.C.; Thomson, S.L.

    1985-12-01

    A Cost Accounting System that is applicable to all magnetic fusion reactor design studies has been developed. This system provides: (1) definitions of the elements of cost and methods for the combination of these elements to form a cost estimate; (2) a Code of Accounts that uses a functional arrangement for identification of the plant components; and (3) definitions and methods to analyze actual cost data so that the data can be directly reported into this Cost Accounting System. The purpose of the Cost Accounting System is to provide the structure for the development of a fusion cost data base and for the development of validated cost estimating procedures. This system has been developed through use at the Fusion Engineering Design Center (FEDC) and has been applied to different confinement concepts (tokamaks and tandem mirrors) and to different types of projects (experimental devices and commercial power plants). The use of this Cost Accounting System by all magnetic fusion projects will promote the development of a common cost data base, allow the direct comparison of cost estimates, and ultimately establish the cost credibility of the program

  3. Randomized Symmetric Crypto Spatial Fusion Steganographic System

    Directory of Open Access Journals (Sweden)

    Viswanathan Perumal

    2016-06-01

    Full Text Available The image fusion steganographic system embeds encrypted messages in decomposed multimedia carriers using a pseudorandom generator but it fails to evaluate the contents of the cover image. This results in the secret data being embedded in smooth regions, which leads to visible distortion that affects the imperceptibility and confidentiality. To solve this issue, as well as to improve the quality and robustness of the system, the Randomized Symmetric Crypto Spatial Fusion Steganography System is proposed in this study. It comprises three-subsystem bitwise encryption, spatial fusion, and bitwise embedding. First, bitwise encryption encrypts the message using bitwise operation to improve the confidentiality. Then, spatial fusion decomposes and evaluates the region of embedding on the basis of sharp intensity and capacity. This restricts the visibility of distortion and provides a high embedding capacity. Finally, the bitwise embedding system embeds the encrypted message through differencing the pixels in the region by 1, checking even or odd options and not equal to zero constraints. This reduces the modification rate to avoid distortion. The proposed heuristic algorithm is implemented in the blue channel, to which the human visual system is less sensitive. It was tested using standard IST natural images with steganalysis algorithms and resulted in better quality, imperceptibility, embedding capacity and invulnerability to various attacks compared to other steganographic systems.

  4. Cost Accounting System for fusion studies

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, W.R.; Keeton, D.C.; Thomson, S.L.

    1985-12-01

    A Cost Accounting System that is applicable to all magnetic fusion reactor design studies has been developed. This system provides: (1) definitions of the elements of cost and methods for the combination of these elements to form a cost estimate; (2) a Code of Accounts that uses a functional arrangement for identification of the plant components; and (3) definitions and methods to analyze actual cost data so that the data can be directly reported into this Cost Accounting System. The purpose of the Cost Accounting System is to provide the structure for the development of a fusion cost data base and for the development of validated cost estimating procedures. This system has been developed through use at the Fusion Engineering Design Center (FEDC) and has been applied to different confinement concepts (tokamaks and tandem mirrors) and to different types of projects (experimental devices and commercial power plants). The use of this Cost Accounting System by all magnetic fusion projects will promote the development of a common cost data base, allow the direct comparison of cost estimates, and ultimately establish the cost credibility of the program.

  5. Study of DD versus DT fusion fuel cycles for different fusion-fission hybrid energy systems

    International Nuclear Information System (INIS)

    Gohar, Y.; Baker, C.C.

    1981-01-01

    A study was performed to investigate the characteristics of an energy system to produce fissile fuel for fission reactors. DD and DT fusion reactors were examined in this study with either a thorium or uranium blanket for each fusion reactor. Various fuel cycles were examined for light-water reactors including the denatured fuel cycles (which may offer proliferation resistance compared to other fuel cycles); these fuel cycles include a uranium fuel cycle with 239 Pu makeup, a thorium fuel cycle with 239 Pu makeup, a denatured uranium fuel cycle with 233 U makeup, and a denatured thorium fuel cycle with 233 U makeup. Four different blankets were considered for this study. The first two blankets have a tritium breeding capability for DT reactors. Lithium oxide (Li 2 O) was used for tritium breeding due to its high lithium density and high temperature capability; however, the use of Li 2 O may result in higher tritium inventories compared to other solid breeders

  6. High energy resolution characteristics on 14MeV neutron spectrometer for fusion experimental reactor

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tetsuo [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.; Takada, Eiji; Nakazawa, Masaharu

    1996-10-01

    A 14MeV neutron spectrometer suitable for an ITER-like fusion experimental reactor is now under development on the basis of a recoil proton counter telescope principle in oblique scattering geometry. To verify its high energy resolution characteristics, preliminary experiments are made for a prototypical detector system. The comparison results show reasonably good agreement and demonstrate the possibility of energy resolution of 2.5% in full width at half maximum for 14MeV neutron spectrometry. (author)

  7. Optical fibres for fusion plasma diagnostics systems

    International Nuclear Information System (INIS)

    Brichard, B.

    2005-01-01

    The condition to achieve and maintain the ignition of a thermonuclear fusion plasma ignition calls for the construction of a large scale fusion reactor, namely ITER. This reactor is designed to deliver an average fusion power of 500 MW. The burning of fusion plasma at such high power level will release a tremendous amount of energy in the form of particle fluxes and ionising radiation. This energy release, primarily absorbed by the plasma facing components, can significantly degrade the performances of the plasma diagnostic equipment surrounding the machine. To ensure a correct operation of the Tokamak we need to develop highly radiation-resistance devices. In plasma diagnostic systems, optical fibre is viewed as a convenient tool to transport light from the plasma edge to the diagnostic area. Radiation affects the optical performances of the fibre mainly by the occurrence of radiation-induced absorption and luminescence. Both effects degrade the light signal used for plasma diagnostic. SCK-CEN is currently assessing radiation-resistant glasses for optical fibres and is developing the associated qualification procedure. The main objectives of this study were to increase the lifetime of optical components in high radiation background and to develop a radiation resistance optical fibre capable to operate in the radiation background of ITER

  8. Angular momentum effects in the fusion of "2"8Si+"2"8Si system

    International Nuclear Information System (INIS)

    Choudhary, Atul; Verma, Dalip Singh

    2016-01-01

    In the heavy ion fusion reactions the interaction potential plays an important role as it provides the characteristics like barrier height, barrier position and barrier width in the calculations of fusion cross section. This means different types of interaction potential gives different fusion cross sections or potential parameters are predicted w.r.t the experimental data. In the literature, number of formalism for the calculation of fusion cross sections assumes that the potential barrier position and width is independent of angular momentum (ℓ). However, all the three potential characteristics are ℓ-dependent and are used in the calculation the fusion cross section for a positive Q-value system, "2"8Si+"2"8Si (Q = 10.9 MeV) and is compared with the recently measured fusion cross section

  9. Radio frequency system for nuclear fusion

    International Nuclear Information System (INIS)

    Kozeki, Shoichiro; Sagawa, Norimoto; Takizawa, Teruhiro

    1987-01-01

    The importance of radio frequency waves has been increasing in the area of nuclear fusion since they are indispensable for heating of plasma, etc. This report outlines radio frequency techniques used for nuclear fusion and describes the development of radio frequency systems (radio frequency plasma heating system and current drive system). Presently, in-depth studies are underway at various research institutes to achieve plasma heating by injection of radio frequency electric power. Three ranges of frequencies, ICRF (ion cyclotron range of frequency), LHRF (lower hybrid range of frequency) and ECRF (electron cyclotron range of frequency), are considered promissing for radio frequency heating. Candidate waves for plasma current driving include ECW (electron cyclotron wave), LHW (lower hybrid wave), MSW (magnetic sound wave), ICW (ion cyclotron wave) with minority component, and FW (fast wave). FW is the greatest in terms of current drive efficiency. In general, a radio frequency system for nuclear fusion consists of a radio frequency power source, transmission/matching circuit component and plasma connection component. (Nogami, K.)

  10. Fusion energy division computer systems network

    International Nuclear Information System (INIS)

    Hammons, C.E.

    1980-12-01

    The Fusion Energy Division of the Oak Ridge National Laboratory (ORNL) operated by Union Carbide Corporation Nuclear Division (UCC-ND) is primarily involved in the investigation of problems related to the use of controlled thermonuclear fusion as an energy source. The Fusion Energy Division supports investigations of experimental fusion devices and related fusion theory. This memo provides a brief overview of the computing environment in the Fusion Energy Division and the computing support provided to the experimental effort and theory research

  11. Laser fusion systems for industrial process heat. Third semiannual report

    International Nuclear Information System (INIS)

    Bates, F.J.; Denning, R.S.; Dykhuizen, R.C.; Goldthwaite, W.H.; Kok, K.D.; Skelton, J.C.

    1979-01-01

    This report concentrates not only on the design of the laser fusion system but also on the cost of this system and the costs of alternative sources of energy that are expected to be in competition with the laser fusion system. The absolute values of the cost of the laser fusion system are limited by the estimates of the cost of the components and subsystems making up the laser fusion energy station. The method used in calculating costs of the laser fusion and alternative systems are laid out in detail

  12. Web-Enabled ATR/Fusion Development System

    National Research Council Canada - National Science Library

    Ruda, Harald

    2001-01-01

    .... We have designed a Web-Enabled ATR/Fusion Development System (WEADS) that will allow distributed development and execution of AIR and fusion algorithms using currently available infrastructures...

  13. Materials handbook for fusion energy systems

    Science.gov (United States)

    Davis, J. W.; Marchbanks, M. F.

    A materials data book for use in the design and analysis of components and systems in near term experimental and commercial reactor concepts has been created by the Office of Fusion Energy. The handbook is known as the Materials Handbook for Fusion Energy Systems (MHFES) and is available to all organizations actively involved in fusion related research or system designs. Distribution of the MHFES and its data pages is handled by the Hanford Engineering Development Laboratory (HEDL), while its direction and content is handled by McDonnell Douglas Astronautics Company — St. Louis (MDAC-STL). The MHFES differs from other handbooks in that its format is geared more to the designer and structural analyst than to the materials scientist or materials engineer. The format that is used organizes the handbook by subsystems or components rather than material. Within each subsystem is information pertaining to material selection, specific material properties, and comments or recommendations on treatment of data. Since its inception a little more than a year ago, over 80 copies have been distributed to over 28 organizations consisting of national laboratories, universities, and private industries.

  14. Power source system for nuclear fusion

    International Nuclear Information System (INIS)

    Nakagawa, Satoshi.

    1975-01-01

    Object: When using an external system power source and an exclusive power source in a power source circuit for supplying power to the coils of a nuclear fusion apparatus, to minimize the capacity of the exclusive power source and provide an economical power source circuit construction. Structure: In the initial stage of the power supply, rectifying means provided in individual blocks are connected in parallel on the AC side, and power is supplied to the coils of the nuclear fusion apparatus from an external system power source with the exclusive power source held in the disconnected state. Further, at an instant when the limit of permissible input is reached, the afore-mentioned parallel circuit consisting of rectifying means is disconnected, while at the same time the exclusive power source is connected to the input side of the rectifying means provided in a block corresponding to the exclusive power source side, thereby supplying power to the coils of the nuclear fusion apparatus from both the external system power source and exclusive power source. (Kamimura, M.)

  15. Fusion-supported decentralized nuclear energy system

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1979-04-01

    A decentralized nuclear energy system is proposed comprising mass-produced pressurized water reactors in the size range 10 to 300 MW (thermal), to be used for the production of process heat, space heat, and electricity in applications where petroleum and natural gas are presently used. Special attention is given to maximizing the refueling interval with no interim batch shuffling in order to minimize fuel transport, reactor downtime, and opportunity for fissile diversion. These objectives demand a substantial fissile enrichment (7 to 15%). The preferred fissile fuel is U-233, which offers an order of magnitude savings in ore requirements (compared with U-235 fuel), and whose higher conversion ratio in thermal reactors serves to extend the period of useful reactivity and relieve demand on the fissile breeding plants (compared with Pu-239 fuel). Application of the neutral-beam-driven tokamak fusion-neutron source to a U-233 breeding pilot plant is examined. This scheme can be extended in part to a decentralized fusion energy system, wherein remotely located large fusion reactors supply excess tritium to a distributed system of relatively small nonbreeding D-T reactors

  16. Stabilized imploding liner fusion systems

    International Nuclear Information System (INIS)

    Book, D.L.; Cooper, A.L.; Ford, R.; Gerber, K.A.; Hammer, D.A.; Jenkins, D.J.; Robson, A.E.; Turchi, P.J.

    1977-01-01

    A new concept in imploding liner plasma compression is described in which a liquid metal liner is imploded by pistons driven by high-pressure gas, and stability of the inner surface against Rayleigh-Taylor modes is achieved by rotation. The principle has been demonstrated by using a water liner to compress air. This 'captive liner' offers the possibility of stable, reversible implosion-expansion cycles in which the plasma energy is recovered into the driving system, leading to reactor cycles with low Q and, hence, small size. A new method of setting up closed-field confinement geometries inside a liner using a rotating electron beam is described. Plasma currents induced by the beam provide initial plasma heating and generate the containment geometry. Persistence of plasma currents 100 times longer than the beam duration has been observed. Development of these methods could lead to a very compact thermonuclear reactor operating in the manner of a reciprocating engine. (author)

  17. Fusion neutronics

    CERN Document Server

    Wu, Yican

    2017-01-01

    This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronics characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics, and which have since been widely applied all over the world. Further, it introduces readers to neutronics design’s unique principles and procedures, experimental methodologies and technologies for fusion systems...

  18. Analysis of decision fusion algorithms in handling uncertainties for integrated health monitoring systems

    Science.gov (United States)

    Zein-Sabatto, Saleh; Mikhail, Maged; Bodruzzaman, Mohammad; DeSimio, Martin; Derriso, Mark; Behbahani, Alireza

    2012-06-01

    It has been widely accepted that data fusion and information fusion methods can improve the accuracy and robustness of decision-making in structural health monitoring systems. It is arguably true nonetheless, that decision-level is equally beneficial when applied to integrated health monitoring systems. Several decisions at low-levels of abstraction may be produced by different decision-makers; however, decision-level fusion is required at the final stage of the process to provide accurate assessment about the health of the monitored system as a whole. An example of such integrated systems with complex decision-making scenarios is the integrated health monitoring of aircraft. Thorough understanding of the characteristics of the decision-fusion methodologies is a crucial step for successful implementation of such decision-fusion systems. In this paper, we have presented the major information fusion methodologies reported in the literature, i.e., probabilistic, evidential, and artificial intelligent based methods. The theoretical basis and characteristics of these methodologies are explained and their performances are analyzed. Second, candidate methods from the above fusion methodologies, i.e., Bayesian, Dempster-Shafer, and fuzzy logic algorithms are selected and their applications are extended to decisions fusion. Finally, fusion algorithms are developed based on the selected fusion methods and their performance are tested on decisions generated from synthetic data and from experimental data. Also in this paper, a modeling methodology, i.e. cloud model, for generating synthetic decisions is presented and used. Using the cloud model, both types of uncertainties; randomness and fuzziness, involved in real decision-making are modeled. Synthetic decisions are generated with an unbiased process and varying interaction complexities among decisions to provide for fair performance comparison of the selected decision-fusion algorithms. For verification purposes

  19. Materials handbook for fusion energy systems

    International Nuclear Information System (INIS)

    Davis, J.W.

    1988-01-01

    The objective of this work is to provide a consistent and authoritative source of material property data for use by the fusion community in concept evaluation, design, and performance/verification studies of the various fusion energy systems. A second objective is the early identification of areas in the materials data base where insufficient information or voids exist. The effort during this reporting period has focused on two areas: (1) publication of data pages, and (2) automation of the data pages. The data pages contained new engineering information on lithium and stainless steel along with additional Supporting Documentation pages on annealed and cold worked stainless steel. These pages were distributed in May. In the area of automation, work is proceeding on schedule toward the formation of an electronic materials data base for the MFE computer network

  20. Mirror fusion test facility plasma diagnostics system

    International Nuclear Information System (INIS)

    Thomas, S.R. Jr.; Coffield, F.E.; Davis, G.E.; Felker, B.

    1979-01-01

    During the past 25 years, experiments with several magnetic mirror machines were performed as part of the Magnetic Fusion Energy (MFE) Program at LLL. The latest MFE experiment, the Mirror Fusion Test Facility (MFTF), builds on the advances of earlier machines in initiating, stabilizing, heating, and sustaining plasmas formed with deuterium. The goals of this machine are to increase ion and electron temperatures and show a corresponding increase in containment time, to test theoretical scaling laws of plasma instabilities with increased physical dimensions, and to sustain high-beta plasmas for times that are long compared to the energy containment time. This paper describes the diagnostic system being developed to characterize these plasma parameters

  1. Commercial objectives, technology transfer, and systems analysis for fusion power development

    Science.gov (United States)

    Dean, Stephen O.

    1988-09-01

    Fusion is an inexhaustible source of energy that has the potential for economic commercial applications with excellent safety and environmental characteristics. The primary focus for the fusion energy development program is the generation of central station electricity. Fusion has the potential, however, for many other applications. The fact that a large fraction of the energy released in a DT fusion reaction is carried by high energy neutrons suggests potentially unique applications. In addition, fusion R and D will lead to new products and new markets. Each fusion application must meet certain standards of economic and safety and environmental attractiveness. For this reason, economics on the one hand, and safety and environment and licensing on the other, are the two primary criteria for setting long range commercial fusion objectives. A major function of systems analysis is to evaluate the potential of fusion against these objectives and to help guide the fusion R and D program toward practical applications. The transfer of fusion technology and skills from the national labs and universities to industry is the key to achieving the long range objective of commercial fusion applications.

  2. Commercial objectives, technology transfer, and systems analysis for fusion power development

    Science.gov (United States)

    Dean, Stephen O.

    1988-03-01

    Fusion is an essentially inexhaustible source of energy that has the potential for economically attractive commercial applications with excellent safety and environmental characteristics. The primary focus for the fusion-energy development program is the generation of centralstation electricity. Fusion has the potential, however, for many other applications. The fact that a large fraction of the energy released in a DT fusion reaction is carried by high-energy neutrons suggests potentially unique applications. These include breeding of fissile fuels, production of hydrogen and other chemical products, transmutation or “burning” of various nuclear or chemical wastes, radiation processing of materials, production of radioisotopes, food preservation, medical diagnosis and medical treatment, and space power and space propulsion. In addition, fusion R&D will lead to new products and new markets. Each fusion application must meet certain standards of economic and safety and environmental attractiveness. For this reason, economics on the one hand, and safety and environment and licensing on the other hand, are the two primary criteria for setting long-range commercial fusion objectives. A major function of systems analysis is to evaluate the potential of fusion against these objectives and to help guide the fusion R&D program toward practical applications. The transfer of fusion technology and skills from the national laboratories and universities to industry is the key to achieving the long-range objective of commercial fusion applications.

  3. Radiolytic production of chemical fuels in fusion reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Fish, J D

    1977-06-01

    Miley's energy flow diagram for fusion reactor systems is extended to include radiolytic production of chemical fuel. Systematic study of the economics and the overall efficiencies of fusion reactor systems leads to a criterion for evaluating the potential of radiolytic production of chemical fuel as a means of enhancing the performance of a fusion reactor system. The ecumenicity of the schema is demonstrated by application to (1) tokamaks, (2) mirror machines, (3) theta-pinch reactors, (4) laser-heated solenoids, and (5) inertially confined, laser-pellet devices. Pure fusion reactors as well as fusion-fission hybrids are considered.

  4. Radiolytic production of chemical fuels in fusion reactor systems

    International Nuclear Information System (INIS)

    Fish, J.D.

    1977-06-01

    Miley's energy flow diagram for fusion reactor systems is extended to include radiolytic production of chemical fuel. Systematic study of the economics and the overall efficiencies of fusion reactor systems leads to a criterion for evaluating the potential of radiolytic production of chemical fuel as a means of enhancing the performance of a fusion reactor system. The ecumenicity of the schema is demonstrated by application to (1) tokamaks, (2) mirror machines, (3) theta-pinch reactors, (4) laser-heated solenoids, and (5) inertially confined, laser-pellet devices. Pure fusion reactors as well as fusion-fission hybrids are considered

  5. Characteristics of irradiation creep in the first wall of a fusion reactor

    International Nuclear Information System (INIS)

    Coghlan, W.A.; Mansur, L.K.

    1981-01-01

    A number of significant differences in the irradiation environment of a fusion reactor are expected with respect to the fission reactor irradiation environment. These differences are expected to affect the characteristics of irradiation creep in the fusion reactor. Special conditions of importance are identified as the (1) large number of defects produced per pka, (2) high helium production rate, (3) cyclic operation, (4) unique stress histories, and (5) low temperature operations. Existing experimental data from the fission reactor environment is analyzed to shed light on irradiation creep under fusion conditions. Theoretical considerations are used to deduce additional characteristics of irradiation creep in the fusion reactor environment for which no experimental data are available

  6. Operational characteristics of the OMEGA short-wavelength laser fusion facility

    International Nuclear Information System (INIS)

    Soures, J.M.; Hutchison, R.; Jacobs, S.; McCrory, R.L.; Peck, R.; Seka, W.

    1984-01-01

    Twelve beams of the OMEGA, 24 beam direct-drive laser facility have been converted to 351-nm wavelength operation. The performance characteristics of this short-wavelength facility will be discussed. Beam-to-beam energy balance of +-2.3% and on-target energy, at 351-nm, in excess of 70 J per beam have been demonstrated. Long-term performance (>600 shots) of the system has been optimized by appropriate choice of index matching liquid, optical materials and coatings. The application of this system in direct-drive laser fusion experiments will be discussed

  7. Capstone Required System Characteristics

    OpenAIRE

    2004-01-01

    roll roll Interactive Media Element This interactive illustration provides information about the characteristics of satellite communication systems, and the characteristics associated with each of the four categories of space segment (constellation of communication satellites). The four categories are: Narrowband (UHF) , Wideband (SHF), Protected (EHF), CommercialSimple mouseover interactions are used to reveal individual pieces of information. SS3613 Military Satellite Communi...

  8. Economic analysis of the fusion-driven subcritical system

    International Nuclear Information System (INIS)

    Huang Desuo; Wu Yican; Chu Delin; Hu Liqin

    2004-01-01

    The economic performance of the Fusion-Driven Subcritical system (FDS) is discussed. At first, as an example, the impacts of parameters, such as plasma aspect-ratio, elongation, normalized beta, on-axis toroidal field and the blanket energy-gain are analyzed on the costs of the typical case (moderate aspect-ratio) of FDS. Then, the economic characteristics of the 3 possible scenarios of FDS are estimated with respect to the neutronics parameters. The results calculated with the SYSCODE developed by the FDS team show that the cost of electricity of Scenario-1 (low aspect-ratio) and Scenario-2 (moderate aspect-ratio) of FDS is cheaper than that of pure fusion power plant at the same plane size (1 GW e ). The cost of electricity of the FDS power plant depends heavily on the functions of blanket and the blanket energy-gain. (authors)

  9. Opportunistic replacement of fusion power system parts

    International Nuclear Information System (INIS)

    Day, J.A.; George, L.L.

    1981-01-01

    This paper describes a maintenance problem in a fusion power plant. The problem is to specify which life limited parts should be replaced when there is an opportunity. The objective is to minimize the cost rate of replacement parts and of maintenance actions while satisfying a power plant availability constraint. The maintenance policy is to look ahead and replace all parts that will reach their life limits within a time called a screen. Longer screens yield greater system availabilities because more parts are replaced prior to their life limits

  10. Data acquisition systems for fusion devices

    International Nuclear Information System (INIS)

    Van Haren, P.C.; Oomens, N.A.

    1993-01-01

    During the last two decades, computerized data acquisition systems (DASs) have been applied at magnetic confinement fusion devices. Present-day data acquisition is done by means of distributed computer systems and transient recorders in CAMAC systems. The development of DASs has been technology driven; the emphasis has been on the development of computer hardware and system software. For future DASs, challenging problems are to be solved: The DASs have to be better optimized with respect to the needs of the users. Existing bottlenecks, such as CAMAC-computer coupling or pulse file merging, need to be eliminated. Continuous or long-pulse operation will require the introduction of event abstraction in DAS design. 59 refs., 4 figs., 1 tab

  11. Turbomolecular pumping systems for nuclear fusion devices in JAERI

    International Nuclear Information System (INIS)

    Ohga, Tokumichi; Arai, Takashi

    1978-01-01

    The turbomolecular pumping systems for the nuclear fusion devices JFT-2, JFT-2a and the injector test stands ITS-1, 2 and 3 in the Japan Atomic Energy Research Institute are mainly reported. For these vacuum systems, many requirements exist, such as oil free, large exhausting speed up to high pressure region (10 -3 Torr), compactness and easy operation and maintenance, etc., for the special usage. The outline of the systems and components, and the functions and the operational characteristics of the turbomolecular pumps are introduced. Concerning to the vacuum systems for JFT-2 and JFT-2a, the main system flow charts, the key specifications, the exhausting characteristic curves in case of starting from the atmospheric pressure for both JFT-2 and JFT-2a, and the conductance for hydrogen gas in the high vacuum side of JFT-2a are explained. As for the vacuum system for ITS-2, the main specification, the system flow chart, the main components, the functions, the conductance for hydrogen gas, the pumping characteristic curve, the starting characteristic of the turbomolecular pump, the exhausting speed for hydrogen gas and an example of mass spectrum are shown. The vacuum pressure obtained is almost 10 -5 -- 10 -6 torr for the three pumping systems. (Nakai, Y.)

  12. Multimodal Biometric System- Fusion Of Face And Fingerprint Biometrics At Match Score Fusion Level

    OpenAIRE

    Grace Wangari Mwaura; Prof. Waweru Mwangi; Dr. Calvins Otieno

    2017-01-01

    Biometrics has developed to be one of the most relevant technologies used in Information Technology IT security. Unimodal biometric systems have a variety of problems which decreases the performance and accuracy of these system. One way to overcome the limitations of the unimodal biometric systems is through fusion to form a multimodal biometric system. Generally biometric fusion is defined as the use of multiple types of biometric data or ways of processing the data to improve the performanc...

  13. An Approach to Automated Fusion System Design and Adaptation

    Directory of Open Access Journals (Sweden)

    Alexander Fritze

    2017-03-01

    Full Text Available Industrial applications are in transition towards modular and flexible architectures that are capable of self-configuration and -optimisation. This is due to the demand of mass customisation and the increasing complexity of industrial systems. The conversion to modular systems is related to challenges in all disciplines. Consequently, diverse tasks such as information processing, extensive networking, or system monitoring using sensor and information fusion systems need to be reconsidered. The focus of this contribution is on distributed sensor and information fusion systems for system monitoring, which must reflect the increasing flexibility of fusion systems. This contribution thus proposes an approach, which relies on a network of self-descriptive intelligent sensor nodes, for the automatic design and update of sensor and information fusion systems. This article encompasses the fusion system configuration and adaptation as well as communication aspects. Manual interaction with the flexibly changing system is reduced to a minimum.

  14. An Approach to Automated Fusion System Design and Adaptation.

    Science.gov (United States)

    Fritze, Alexander; Mönks, Uwe; Holst, Christoph-Alexander; Lohweg, Volker

    2017-03-16

    Industrial applications are in transition towards modular and flexible architectures that are capable of self-configuration and -optimisation. This is due to the demand of mass customisation and the increasing complexity of industrial systems. The conversion to modular systems is related to challenges in all disciplines. Consequently, diverse tasks such as information processing, extensive networking, or system monitoring using sensor and information fusion systems need to be reconsidered. The focus of this contribution is on distributed sensor and information fusion systems for system monitoring, which must reflect the increasing flexibility of fusion systems. This contribution thus proposes an approach, which relies on a network of self-descriptive intelligent sensor nodes, for the automatic design and update of sensor and information fusion systems. This article encompasses the fusion system configuration and adaptation as well as communication aspects. Manual interaction with the flexibly changing system is reduced to a minimum.

  15. CO2-laser fusion

    International Nuclear Information System (INIS)

    Stark, E.E. Jr.

    1978-01-01

    The basic concept of laser fusion is described, with a set of requirements on the laser system. Systems and applications concepts are presented and discussed. The CO 2 laser's characteristics and advantages for laser fusion are described. Finally, technological issues in the development of CO 2 laser systems for fusion applications are discussed

  16. Fusion-fission energy systems evaluation

    International Nuclear Information System (INIS)

    Teofilo, V.L.; Aase, D.T.; Bickford, W.E.

    1980-01-01

    This report serves as the basis for comparing the fusion-fission (hybrid) energy system concept with other advanced technology fissile fuel breeding concepts evaluated in the Nonproliferation Alternative Systems Assessment Program (NASAP). As such, much of the information and data provided herein is in a form that meets the NASAP data requirements. Since the hybrid concept has not been studied as extensively as many of the other fission concepts being examined in NASAP, the provided data and information are sparse relative to these more developed concepts. Nevertheless, this report is intended to provide a perspective on hybrids and to summarize the findings of the rather limited analyses made to date on this concept

  17. Fusion-fission energy systems evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Teofilo, V.L.; Aase, D.T.; Bickford, W.E.

    1980-01-01

    This report serves as the basis for comparing the fusion-fission (hybrid) energy system concept with other advanced technology fissile fuel breeding concepts evaluated in the Nonproliferation Alternative Systems Assessment Program (NASAP). As such, much of the information and data provided herein is in a form that meets the NASAP data requirements. Since the hybrid concept has not been studied as extensively as many of the other fission concepts being examined in NASAP, the provided data and information are sparse relative to these more developed concepts. Nevertheless, this report is intended to provide a perspective on hybrids and to summarize the findings of the rather limited analyses made to date on this concept.

  18. HYFIRE: fusion-high temperature electrolysis system

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.; Benenati, R.; Dang, V.D.; Horn, F.; Isaacs, H.; Lazareth, O.; Makowitz, H.; Usher, J.

    1980-01-01

    The Brookhaven National Laboratory (BNL) is carrying out a comprehensive conceptual design study called HYFIRE of a commercial fusion Tokamak reactor, high-temperature electrolysis system. The study is placing particular emphasis on the adaptability of the STARFIRE power reactor to a synfuel application. The HYFIRE blanket must perform three functions: (a) provide high-temperature (approx. 1400 0 C) process steam at moderate pressures (in the range of 10 to 30 atm) to the high-temperature electrolysis (HTE) units; (b) provide high-temperature (approx. 700 to 800 0 C) heat to a thermal power cycle for generation of electricity to the HTE units; and (c) breed enough tritium to sustain the D-T fuel cycle. In addition to thermal energy for the decomposition of steam into its constitutents, H 2 and O 2 , electrical input is required. Power cycle efficiencies of approx. 40% require He cooling for steam superheat. Fourteen hundred degree steam coupled with 40% power cycle efficiency results in a process efficiency (conversion of fusion energy to hydrogen chemical energy) of 50%

  19. Economics of fusion driven symbiotic energy systems

    International Nuclear Information System (INIS)

    Renier, J.P.; Hoffman, T.J.

    1979-01-01

    The economic analysis of symbiotic energy systems in which U233 (to fuel advanced converters burning U233 fuel) is generated in blankets surrounding fusioning D-T plasma's depends on factors such as the plasma performance parameters, ore costs, and the relative costs of Fusion Breeders (CTR) to Advanced Fission Converters. The analysis also depends on detailed information such as initial, final makeup fuel requirements, fuel isotopics, reprocessing and fabrication costs, reprocessing losses (1%) and delays (2 years), the cost of money, and the effect of the underutilization of the factory thermal installation at the beginning of cycle. In this paper we present the results of calculations of overall fuel cycle and power costs, ore requirements, proliferation resistance and possibilities for grid expansion, based on detailed mass and energy flow diagrams and standard US INFCE cost data and introduction constraints, for realistic symbiotic scenarios involving CTR's (used as drivers) and denatured CANDU's (used as U233 burners). We compare the results with those obtained for other strategies involving heterogeneous LMFBR's which burn Pu to produce U233 for U233-burners such as the advanced CANDU converters

  20. Fusion and particle transfer around the Coulomb-Barrier in intermediate systems

    International Nuclear Information System (INIS)

    Pascholati, P.R.

    1989-01-01

    The most important characteristics of fusion reactions below and around the Coulomb-barrier are summarized. Experimental fusion cross sections for typical systems are discussed and compared with current formulae obtained from semi-classical and quantum tunneling approaches. The influence of nucleons transfer in the enhancement of the fusion cross section below the Coulomb-barrier is also shown. Sub-barrier fusion cross sections for the systems 35,37 Cl + 58,64 Ni and 33 S + 90,91,92 Zr, and near-barrier cross sections of all important transfer channels have been measured using the XTU-TANDEM at Legnaro, Italy. In 35,37 Cl + 58,64 Ni systems, the motivation further investigated was the influence of the valence proton in the enhancement of the sub-barrier fusion cross section. The data are discussed in comparison with the similar data of 34,36 S + 58,64 Ni with the aim of revealing the influence of coupled proton transfer channels. Calculations were performed using the simplified coupled channel code CCFUS including ''pick-up'' of one and two neutrons and ''stripping'' of two neutrons channels. Signatures of positive Q-values transfer channels coupled to fusion were clearly identified. For the 33 S + 90,91,92 Zr systems taking into account the coupling effects between transfer and fusion and using the semi-classical approach, transfer form-factors were extracted and succesfully employed to described the isotopic effects in fusion enhancement. (Author) [es

  1. Neutral beam systems for the magnetic fusion program

    International Nuclear Information System (INIS)

    Beal, J.W.; Staten, H.S.

    1977-01-01

    The attainment of economic, safe fusion power has been described as the most sophisticated scientific problem ever attacked by mankind. The presently established goal of the magnetic fusion program is to develop and demonstrate pure fusion central electric power stations for commercial applications. Neutral beam heating systems are a basic component of the tokamak and mirror experimental fusion plasma confinement devices. The requirements placed upon neutral beam heating systems are reviewed. The neutral beam systems in use or being developed are presented. Finally, the needs of the future are discussed

  2. New Burnup Calculation System for Fusion-Fission Hybrid System

    International Nuclear Information System (INIS)

    Isao Murata; Shoichi Shido; Masayuki Matsunaka; Keitaro Kondo; Hiroyuki Miyamaru

    2006-01-01

    Investigation of nuclear waste incineration has positively been carried out worldwide from the standpoint of environmental issues. Some candidates such as ADS, FBR are under discussion for possible incineration technology. Fusion reactor is one of such technologies, because it supplies a neutron-rich and volumetric irradiation field, and in addition the energy is higher than nuclear reactor. However, it is still hard to realize fusion reactor right now, as well known. An idea of combination of fusion and fission concepts, so-called fusion-fission hybrid system, was thus proposed for the nuclear waste incineration. Even for a relatively lower plasma condition, neutrons can be well multiplied by fission in the nuclear fuel, tritium is thus bred so as to attain its self-sufficiency, enough energy multiplication is then expected and moreover nuclear waste incineration is possible. In the present study, to realize it as soon as possible with the presently proven technology, i.e., using ITER model with the achieved plasma condition of JT60 in JAEA, Japan, a new calculation system for fusion-fission hybrid reactor including transport by MCNP and burnup by ORIGEN has been developed for the precise prediction of the neutronics performance. The author's group already has such a calculation system developed by them. But it had a problem that the cross section libraries in ORIGEN did not have a cross section library, which is suitable specifically for fusion-fission hybrid reactors. So far, those for FBR were approximately used instead in the analysis. In the present study, exact derivation of the collapsed cross section for ORIGEN has been investigated, which means it is directly evaluated from calculated track length by MCNP and point-wise nuclear data in the evaluated nuclear data file like JENDL-3.3. The system realizes several-cycle calculation one time, each of which consists of MCNP criticality calculation, MCNP fixed source calculation with a 3-dimensional precise

  3. Heavy ion fusion systems assessment - An overview

    International Nuclear Information System (INIS)

    Waganer, L.M.; Driemeyer, D.E.; Zuckerman, D.S.; Billman, K.W.

    1986-01-01

    A study is underway to evaluate the technical performance and economic attractiveness of linear induction-driven Heavy Ion Fusion (HIF) as an energy source for electrical power generation. This study is a cooperative effort of several national laboratories, universities, industrial contractors and the Electric Power Research Institute (EPRI) under the leadership of Los Alamos National Laboratory. McDonnell Douglas Astronautics Company, assisted by Titan Systems, Inc, has the responsibility to integrate the cost and performance models of the driver, reactor and balance of plant systems, evaluate different system options and assess the overall technical and economic performance of an HIF power plant. Individual system options have been designed and analyzed by the other participants in the DOE-sponsored parent study and are provided for system integration and evaluation. This paper describes the integration and evaluation effort for the HIF Systems Assessment. Specific areas discussed include, the definition of Systems Requirements, the development of Assessment Methodology, the characterization of System Options, the description of Systems Assessment Code, the assessment of Code Results, the ranking of System Options, the selection of Attractive System Options, and the determination of Preferred Operating Parameter Space. The initial study effort was to define the system requirements from the standpoint of the overall power plant. This was accomplished by establishing overall power plant performance goals and specifications. The plant was assumed to be dedicated only to electrical power production in the 2020 time frame enabling the study to look beyond developmental and startup difficulties. The net plant output was defined to be between 400 and 1500 MWe which would allow investigating the effect of plant size

  4. Fusion

    CERN Document Server

    Mahaffey, James A

    2012-01-01

    As energy problems of the world grow, work toward fusion power continues at a greater pace than ever before. The topic of fusion is one that is often met with the most recognition and interest in the nuclear power arena. Written in clear and jargon-free prose, Fusion explores the big bang of creation to the blackout death of worn-out stars. A brief history of fusion research, beginning with the first tentative theories in the early 20th century, is also discussed, as well as the race for fusion power. This brand-new, full-color resource examines the various programs currently being funded or p

  5. Fusion--fission energy systems, some utility perspectives

    International Nuclear Information System (INIS)

    Huse, R.A.; Burger, J.M.; Lotker, M.

    1974-01-01

    Some of the issues that are important in assessing fusion-- fission energy systems from a utility perspective are discussed. A number of qualitative systems-oriented observations are given along with some economic quantification of the benefits from fusion--fission hybrids and their allowed capital cost. (U.S.)

  6. Construction of a large laser fusion system

    International Nuclear Information System (INIS)

    Hurley, C.A.

    1977-01-01

    Construction of a large laser fusion machine is nearing completion at the Lawrence Livermore Laboratory (LLL). Shiva, a 20-terawatt neodymium doped glass system, will be complete in early 1978. This system will have the high power needed to demonstrate significant thermonuclear burn. Shiva will irradiate a microscopic D-T pellet with 20 separate laser beams arriving simultaneously at the target. This requires precise alignment, and stability to maintain alignment. Hardware for the 20 laser chains is composed of 140 amplifiers, 100 spatial filters, 80 isolation stages, 40 large turning mirrors, and a front-end splitter system of over 100 parts. These are mounted on a high stability, three dimensional spaceframe which serves as an optical bench. The mechanical design effort, spanning approximately 3 years, followed a classic engineering evolution. The conceptual design phase led directly to system optimization through cost and technical tradeoffs. Additional manpower was then required for detailed design and specification of hardware and fabrication. Design of long-lead items was started early in order to initiate fabrication and assembly while the rest of the design was completed. All components were ready for assembly and construction as fiscal priorities and schedules permitted

  7. Physics, systems analysis and economics of fusion power plants

    International Nuclear Information System (INIS)

    Ward, D.J.

    2006-01-01

    Fusion power is being developed because of its large resource base, low environmental impact and high levels of intrinsic safety. It is important, however, to investigate the economics of a future fusion power plant to check that the electricity produced can, in fact, have a market. Using systems code analysis, including costing algorithms, this paper gives the cost of electricity expected from a range of fusion power plants, assuming that they are brought into successful operation. Although this paper does not purport to show that a first generation of fusion plants is likely to be the cheapest option for a future energy source, such plants look likely to have a market in some countries even without taking account of fusion's environmental advantages. With improved technological maturity fusion looks likely to have a widespread potential market particularly if the value of its environmental advantages are captured, for instance through avoiding a carbon tax. (author)

  8. Colliding beam fusion reactor space propulsion system

    International Nuclear Information System (INIS)

    Wessel, Frank J.; Binderbauer, Michl W.; Rostoker, Norman; Rahman, Hafiz Ur; O'Toole, Joseph

    2000-01-01

    We describe a space propulsion system based on the Colliding Beam Fusion Reactor (CBFR). The CBFR is a high-beta, field-reversed, magnetic configuration with ion energies in the range of hundreds of keV. Repetitively-pulsed ion beams sustain the plasma distribution and provide current drive. The confinement physics is based on the Vlasov-Maxwell equation, including a Fokker Planck collision operator and all sources and sinks for energy and particle flow. The mean azimuthal velocities and temperatures of the fuel ion species are equal and the plasma current is unneutralized by the electrons. The resulting distribution functions are thermal in a moving frame of reference. The ion gyro-orbit radius is comparable to the dimensions of the confinement system, hence classical transport of the particles and energy is expected and the device is scaleable. We have analyzed the design over a range of 10 6 -10 9 Watts of output power (0.15-150 Newtons thrust) with a specific impulse of, I sp ∼10 6 sec. A 50 MW propulsion system might involve the following parameters: 4-meters diameterx10-meters length, magnetic field ∼7 Tesla, ion beam current ∼10 A, and fuels of either D-He 3 ,P-B 11 ,P-Li 6 ,D-Li 6 , etc

  9. Cryogenic systems for inertial fusion energy

    International Nuclear Information System (INIS)

    Chatain, D.; Perin, J.P.; Bonnay, P.; Bouleau, E.; Chichoux, M.; Communal, D.; Manzagol, J.; Viargues, F.; Brisset, D.; Lamaison, V.; Paquignon, G.

    2008-01-01

    The Low Temperatures Laboratory of CEA/Grenoble (France) is involved in the development of cryogenic systems for inertial fusion since a ten of years. A conceptual design for the cryogenic infrastructure of the Laser MegaJoule (LMJ) facility has been proposed. Several prototypes have been designed, built and tested like for example the 1500 bars cryo-compressor for the targets filling, the target positioner and the thermal shroud remover. The HIPER project will necessitate the development of such equipments. The main difference is that this time, the cryogenic targets are direct drive targets. The first phase of HIPER experiments is a single shot period. Based oil the experience gained the last years, not only by our laboratory but also by Omega and G.A teams, we could design the new HIPER equipments for this phase. Some experimental results obtained with the prototypes of the LMJ cryogenic system are given and a first conceptual design for the HIPER single shot cryogenic system is shown. (authors)

  10. Database for fusion devices and associated fuel systems

    International Nuclear Information System (INIS)

    Woolgar, P.W.

    1983-03-01

    A computerized database storage and retrieval system has been set up for fusion devices and the associated fusion fuel systems which should be a useful tool for the CFFTP program and other users. The features of the Wang 'Alliance' system are discussed for this application, as well as some of the limitations of the system. Recommendations are made on the operation, upkeep and further development that should take place to implement and maintain the system

  11. Nuclear fusion experimental study on 16 O + 60 Ni system

    International Nuclear Information System (INIS)

    Silva, C.P. da.

    1990-01-01

    Nuclear fusion cross section measurements were performed in the energy range near The Coulomb Barrier (E Lab -> 40-72 MeV), for the system 16 O + 60 Ni, aiming the study of Fusion Process involving heavy ions. (L.C.J.A.)

  12. The sensitivity theory for inertial confinement pellet fusion system

    International Nuclear Information System (INIS)

    Cai, Shaohui; Zhang, Yuquan.

    1986-01-01

    A sensitivity theory for inertial confinement pellet fusion system is developed based on a physical model similar to that embodied in the laser fusion code MEDUSA. The theory presented here can be an efficient tool for estimating the effects of many alternations in the data field. Our result is different from Greenspan's work in 1980. (author)

  13. Mechanical technology unique to laser fusion experimental systems

    International Nuclear Information System (INIS)

    Hurley, C.A.

    1980-01-01

    Hardware design for laser fusion experimental machines has led to a combination of engineering technologies that are critical to the successful operation of these machines. These large opto-mechanical systems are dependent on extreme cleanliness, accommodation to efficient maintenance, and high stability. These three technologies are the primary mechanical engineering criteria for laser fusion devices

  14. Tritium problems in fusion reactor systems

    International Nuclear Information System (INIS)

    Hickman, R.G.

    1975-01-01

    A brief introduction is given to the role tritium will play in the development of fusion power. The biological and worldwide environmental behavior of tritium is reviewed. The tritium problems expected in fusion power reactors are outlined. A few thoughts on tritium permeation and recent results for tritium cleanup and CT 4 accumulation are presented. Problems involving the recovery of tritium from the breeding blanket in fusion power reactors are also considered, including the possible effect of impurities in lithium blankets and the use of lithium as a regenerable getter pump. (auth)

  15. Safety analysis and evaluation methodology for fusion systems

    International Nuclear Information System (INIS)

    Fujii-e, Y.; Kozawa, Y.; Namba, C.

    1987-03-01

    Fusion systems which are under development as future energy systems have reached a stage that the break even is expected to be realized in the near future. It is desirable to demonstrate that fusion systems are well acceptable to the societal environment. There are three crucial viewpoints to measure the acceptability, that is, technological feasibility, economy and safety. These three points have close interrelation. The safety problem is more important since three large scale tokamaks, JET, TFTR and JT-60, start experiment, and tritium will be introduced into some of them as the fusion fuel. It is desirable to establish a methodology to resolve the safety-related issues in harmony with the technological evolution. The promising fusion system toward reactors is not yet settled. This study has the objective to develop and adequate methodology which promotes the safety design of general fusion systems and to present a basis for proposing the R and D themes and establishing the data base. A framework of the methodology, the understanding and modeling of fusion systems, the principle of ensuring safety, the safety analysis based on the function and the application of the methodology are discussed. As the result of this study, the methodology for the safety analysis and evaluation of fusion systems was developed. New idea and approach were presented in the course of the methodology development. (Kako, I.)

  16. Fusion power system: technology and engineering considerations

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1976-01-01

    Engineering concepts are discussed for the following topics: (1) blanket environment, (2) blanket materials, (3) tritium breeding, (4) heat removal problems, (5) materials selection for radiation shields, (6) afterheat, and (7) fusion blanket design

  17. Mirror fusion propulsion system - A performance comparison with alternate propulsion systems for the manned Mars mission

    International Nuclear Information System (INIS)

    Deveny, M.; Carpenter, S.; O'connell, T.; Schulze, N.

    1993-06-01

    The performance characteristics of several propulsion technologies applied to piloted Mars missions are compared. The characteristics that are compared are Initial Mass in Low Earth Orbit (IMLEO), mission flexibility, and flight times. The propulsion systems being compared are both demonstrated and envisioned: Chemical (or Cryogenic), Nuclear Thermal Rocket (NTR) solid core, NTR gas core, Nuclear Electric Propulsion (NEP), and a mirror fusion space propulsion system. The proposed magnetic mirror fusion reactor, known as the Mirror Fusion Propulsion System (MFPS), is described. The description is an overview of a design study that was conducted to convert a mirror reactor experiment at Lawrence Livermore National Lab (LLNL) into a viable space propulsion system. Design principles geared towards minimizing mass and maximizing power available for thrust are identified and applied to the LLNL reactor design, resulting in the MFPS. The MFPS' design evolution, reactor and fuel choices, and system configuration are described. Results of the performance comparison shows that the MFPS minimizes flight time to 60 to 90 days for flights to Mars while allowing continuous return-home capability while at Mars. Total MFPS IMLEO including propellant and payloads is kept to about 1,000 metric tons. 50 refs

  18. Multimodal Biometric System- Fusion Of Face And Fingerprint Biometrics At Match Score Fusion Level

    Directory of Open Access Journals (Sweden)

    Grace Wangari Mwaura

    2017-04-01

    Full Text Available Biometrics has developed to be one of the most relevant technologies used in Information Technology IT security. Unimodal biometric systems have a variety of problems which decreases the performance and accuracy of these system. One way to overcome the limitations of the unimodal biometric systems is through fusion to form a multimodal biometric system. Generally biometric fusion is defined as the use of multiple types of biometric data or ways of processing the data to improve the performance of biometric systems. This paper proposes to develop a model for fusion of the face and fingerprint biometric at the match score fusion level. The face and fingerprint unimodal in the proposed model are built using scale invariant feature transform SIFT algorithm and the hamming distance to measure the distance between key points. To evaluate the performance of the multimodal system the FAR and FRR of the multimodal are compared along those of the individual unimodal systems. It has been established that the multimodal has a higher accuracy of 92.5 compared to the face unimodal system at 90 while the fingerprint unimodal system is at 82.5.

  19. A Decision Fusion Framework for Treatment Recommendation Systems.

    Science.gov (United States)

    Mei, Jing; Liu, Haifeng; Li, Xiang; Xie, Guotong; Yu, Yiqin

    2015-01-01

    Treatment recommendation is a nontrivial task--it requires not only domain knowledge from evidence-based medicine, but also data insights from descriptive, predictive and prescriptive analysis. A single treatment recommendation system is usually trained or modeled with a limited (size or quality) source. This paper proposes a decision fusion framework, combining both knowledge-driven and data-driven decision engines for treatment recommendation. End users (e.g. using the clinician workstation or mobile apps) could have a comprehensive view of various engines' opinions, as well as the final decision after fusion. For implementation, we leverage several well-known fusion algorithms, such as decision templates and meta classifiers (of logistic and SVM, etc.). Using an outcome-driven evaluation metric, we compare the fusion engine with base engines, and our experimental results show that decision fusion is a promising way towards a more valuable treatment recommendation.

  20. An FPGA-based heterogeneous image fusion system design method

    Science.gov (United States)

    Song, Le; Lin, Yu-chi; Chen, Yan-hua; Zhao, Mei-rong

    2011-08-01

    Taking the advantages of FPGA's low cost and compact structure, an FPGA-based heterogeneous image fusion platform is established in this study. Altera's Cyclone IV series FPGA is adopted as the core processor of the platform, and the visible light CCD camera and infrared thermal imager are used as the image-capturing device in order to obtain dualchannel heterogeneous video images. Tailor-made image fusion algorithms such as gray-scale weighted averaging, maximum selection and minimum selection methods are analyzed and compared. VHDL language and the synchronous design method are utilized to perform a reliable RTL-level description. Altera's Quartus II 9.0 software is applied to simulate and implement the algorithm modules. The contrast experiments of various fusion algorithms show that, preferably image quality of the heterogeneous image fusion can be obtained on top of the proposed system. The applied range of the different fusion algorithms is also discussed.

  1. Introduction to the controlled nuclear fusion (magnetic containment systems)

    International Nuclear Information System (INIS)

    Cabrera, J.A.; Guasp, J.; Martin, R.

    1975-01-01

    The magnetic containment systems, their more important features, and their potentiality to became thermonuclear reactors is described. The work is based upon the first part of a set of lectures dedicated to Plasma and Fusion Physics. (author)

  2. Managing the fusion burn to improve symbiotic system performance

    International Nuclear Information System (INIS)

    Renier, J.P.; Martin, J.G.

    1979-01-01

    Symbiotic power systems, in which fissile fuel is produced in fusion-powered factories and burned in thermal reactors characterized by high conversion ratios, constitute an interesting near-term fusion application. It is shown that the economic feasibility of such systems depend on adroit management of the fusion burn. The economics of symbiotes is complex: reprocessing and fabrication of the fusion reactor blankets are important components of the production cost of fissile fuel, but burning fissile material in the breeder blanket raises overall costs and lowers the support ratio. Analyses of factories which assume that the fusion power is constant during an irradiation cycle underestimate their potential. To illustrate the effect of adroit engineering of the fusion burn, this paper analyzes systems based on D-T and semi-catalyzed D-D fusion-powered U-233 breeders. To make the D-T symbiote self-sufficient, tritium is bred in separate lithium blankets designed so as to minimize overall costs. All blankets are assumed to have spherical geometry, with 85% closure. Neutronics depletion calculations were performed with a revised version of the discrete ordinates code XSDRN-PM, using multigroup (100 neutron, 21 gamma-ray groups) coupled cross-section libraries

  3. The Gasdynamic Mirror Fusion Propulsion System -- Revisited

    International Nuclear Information System (INIS)

    Kammash, Terry; Tang, Ricky

    2005-01-01

    Many of the previous studies assessing the capability of the gasdynamic mirror (GDM) fusion propulsion system employed analyses that ignored the 'ambipolar' potential. This electrostatic potential arises as a result of the rapid escape of the electrons due to their small mass. As they escape, they leave behind an excess positive charge which manifests itself in an electric field that slows down the electrons while speeding up the ions until their respective axial diffusions are equalized. The indirect effect on the ions is that their confinement time is reduced relative to that of zero potential, and hence the plasma length must be increased to accommodate that change. But as they emerge from the thruster mirror - which serves as a magnetic nozzle - the ions acquire an added energy equal to that of the potential energy, and that in turn manifests itself in increased specific impulse and thrust. We assess the propulsive performance of the GDM thruster, based on the more rigorous theory, by applying it to a round trip Mars mission employing a continuous burn acceleration/deceleration type of trajectory. We find that the length of the device and travel time decrease with increasing plasma density, while the total vehicle mass reaches a minimum at a plasma density of 3 x 1016 cm-3. At such a density, and an initial DT ion temperature of 10 keV, a travel time of 60 days is found to be achievable at GDM propulsion parameters of about 200,000 seconds of specific impulse and approximately 47 kN of thrust

  4. Engineering aspects of particle beam fusion systems

    International Nuclear Information System (INIS)

    Cook, D.L.

    1982-01-01

    The Department of Energy is supporting research directed toward demonstration of DT fuel ignition in an Inertial Confinement Fusion (ICF) capsule. As part of the ICF effort, two major Particle Beam Fusion Accelerators (PBFA I and II) are being developed at Sandia National Laboratories with the objective of providing energetic light ion beams of sufficient power density for target implosion. Supporting light ion beam research is being performed at the Naval Research Laboratory and at Cornell University. If the answers to several key physics and engineering questions are favorable, pulsed power accelerators will be able to provide an efficient and inexpensive approach to high target gain and eventual power production applications

  5. Heat transfer and mechanical interactions in fusion nuclear systems

    International Nuclear Information System (INIS)

    Nygren, R.E.

    1984-01-01

    This general review of design issues in heat transfer and mechanical interactions of the first wall, blanket and shield systems of tokamak and mirror fusion reactors begins with a brief introduction to fusion nuclear systems. The design issues are summarized in tables and the following examples are described to illustrate these concerns: the surface heating of limiters, heat transfer from solid breeders, MHD effects in liquid metal blankets, mechanical loads from electromagnetic transients and remote maintenance

  6. A Multifeature Fusion Approach for Power System Transient Stability Assessment Using PMU Data

    Directory of Open Access Journals (Sweden)

    Yang Li

    2015-01-01

    Full Text Available Taking full advantage of synchrophasors provided by GPS-based wide-area measurement system (WAMS, a novel VBpMKL-based transient stability assessment (TSA method through multifeature fusion is proposed in this paper. First, a group of classification features reflecting the transient stability characteristics of power systems are extracted from synchrophasors, and according to the different stages of the disturbance process they are broken into three nonoverlapped subsets; then a VBpMKL-based TSA model is built using multifeature fusion through combining feature spaces corresponding to each feature subset; and finally application of the proposed model to the IEEE 39-bus system and a real-world power system is demonstrated. The novelty of the proposed approach is that it improves the classification accuracy and reliability of TSA using multifeature fusion with synchrophasors. The application results on the test systems verify the effectiveness of the proposal.

  7. Use of high temperature superconductors for future fusion magnet systems

    Energy Technology Data Exchange (ETDEWEB)

    Fietz, W H [Forschungszentrum Karlsruhe, Institut fuer Technische Physik, Karlsruhe (Germany); Celentano, G; Della Corte, A [Superconductivity Division, ENEA - Frascati Research Center, Frascati (Italy); Goldacker, W; Heller, R; Komarek, P; Kotzyba, G; Nast, R; Obst, B; Schlachter, S I; Schmidt, C; Zahn, G [Forschungszentrum Karlsruhe, Institut fuer Technische Physik, Karlsruhe (Germany); Pasztor, G; Wesche, R [Centre de Recherches en Physique des Plasmas, Villingen (Switzerland); Salpietro, E; Vostner, A [European Fusion Development Agreement, Close Support Unit, Garching (Germany)

    2005-01-01

    With the construction of ITER the feasibility of a fusion machine will be demonstrated. To commercialize fusion it is essential to keep losses as small as possible in future fusion power plants. One major component where losses can be strongly reduced is the cooling system. For example in ITER where efficiency is not a major goal, a cooling power of 64 kW at 4.4 K is foreseen taking more than 20 MW electric power. Considering the size of future commercial fusion machines this consumption of electric power for cooling will even be higher. With a magnet system working at 20 K a fusion machine would work more efficient by a factor of 5-10 with respect to electric power consumption for cryogenics. Even better than that, would be a machine with a magnet system operating at 65 K to 77 K. In this case liquid nitrogen could be used as coolant saving money for investment and operation costs. Such an increase in the operating temperature of the magnet system can be achieved by the use of High- Temperature Superconductors (HTS). In addition the use of HTS would allow much smaller efforts for thermal shielding and alternative thermal insulation concepts may be possible, e.g. for an HTS bus bar system. This contribution will give an overview about status, promises and challenges of HTS conductors on the way to an HTS fusion magnet system beyond ITER. (author)

  8. Transport and Dynamics in Toroidal Fusion Systems

    International Nuclear Information System (INIS)

    Sovinec, Carl

    2016-01-01

    The study entitled, 'Transport and Dynamics in Toroidal Fusion Systems,' (TDTFS) applied analytical theory and numerical computation to investigate topics of importance to confining plasma, the fourth state of matter, with magnetic fields. A central focus of the work is how non-thermal components of the ion particle distribution affect the 'sawtooth' collective oscillation in the core of the tokamak magnetic configuration. Previous experimental and analytical research had shown and described how the oscillation frequency decreases and amplitude increases, leading to 'monster' or 'giant' sawteeth, when the non-thermal component is increased by injecting particle beams or by exciting ions with imposed electromagnetic waves. The TDTFS study applied numerical computation to self-consistently simulate the interaction between macroscopic collective plasma dynamics and the non-thermal particles. The modeling used the NIMROD code [Sovinec, Glasser, Gianakon, et al., J. Comput. Phys. 195, 355 (2004)] with the energetic component represented by simulation particles [Kim, Parker, Sovinec, and the NIMROD Team, Comput. Phys. Commun. 164, 448 (2004)]. The computations found decreasing growth rates for the instability that drives the oscillations, but they were ultimately limited from achieving experimentally relevant parameters due to computational practicalities. Nonetheless, this effort provided valuable lessons for integrated simulation of macroscopic plasma dynamics. It also motivated an investigation of the applicability of fluid-based modeling to the ion temperature gradient instability, leading to the journal publication [Schnack, Cheng, Barnes, and Parker, Phys. Plasmas 20, 062106 (2013)]. Apart from the tokamak-specific topics, the TDTFS study also addressed topics in the basic physics of magnetized plasma and in the dynamics of the reversed-field pinch (RFP) configuration. The basic physics work contributed to a study of two

  9. Transport and Dynamics in Toroidal Fusion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sovinec, Carl [Univ. of Wisconsin, Madison, WI (United States)

    2016-09-07

    The study entitled, "Transport and Dynamics in Toroidal Fusion Systems," (TDTFS) applied analytical theory and numerical computation to investigate topics of importance to confining plasma, the fourth state of matter, with magnetic fields. A central focus of the work is how non-thermal components of the ion particle distribution affect the "sawtooth" collective oscillation in the core of the tokamak magnetic configuration. Previous experimental and analytical research had shown and described how the oscillation frequency decreases and amplitude increases, leading to "monster" or "giant" sawteeth, when the non-thermal component is increased by injecting particle beams or by exciting ions with imposed electromagnetic waves. The TDTFS study applied numerical computation to self-consistently simulate the interaction between macroscopic collective plasma dynamics and the non-thermal particles. The modeling used the NIMROD code [Sovinec, Glasser, Gianakon, et al., J. Comput. Phys. 195, 355 (2004)] with the energetic component represented by simulation particles [Kim, Parker, Sovinec, and the NIMROD Team, Comput. Phys. Commun. 164, 448 (2004)]. The computations found decreasing growth rates for the instability that drives the oscillations, but they were ultimately limited from achieving experimentally relevant parameters due to computational practicalities. Nonetheless, this effort provided valuable lessons for integrated simulation of macroscopic plasma dynamics. It also motivated an investigation of the applicability of fluid-based modeling to the ion temperature gradient instability, leading to the journal publication [Schnack, Cheng, Barnes, and Parker, Phys. Plasmas 20, 062106 (2013)]. Apart from the tokamak-specific topics, the TDTFS study also addressed topics in the basic physics of magnetized plasma and in the dynamics of the reversed-field pinch (RFP) configuration. The basic physics work contributed to a study of two-fluid effects on interchange dynamics, where

  10. Neutronics of Laser Fission-Fusion Systems

    International Nuclear Information System (INIS)

    Velarde, G.

    1976-01-01

    Neutronics of Fission-Fusion microsystems inertially confined by Lasers are analysed by transport calculation, both stationary (DTF, TIHOC) and time dependent (TDA, TIHEX), discussing the results obtained for the basic parameters of the fission process (multiplication factor, neutron generation time and Rossi-∞). (Author) 14 refs

  11. Nonlinear propagation in fusion laser systems

    International Nuclear Information System (INIS)

    Bliss, E.S.; Glass, A.J.; Glaze, J.A.

    1977-11-01

    This report was assembled to provide a brief review of the historical development of the study of self-focusing and nonlinear light propagation and its impact on the design of large, Nd-glass lasers for fusion research. No claim to completeness is made, but we feel that the enclosed summary does not miss many of the major developments in the field

  12. Neutronics of Laser Fission-Fusion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Velarde, G

    1976-07-01

    Neutronics of Fission-Fusion microsystems inertially confined by Lasers are analysed by transport calculation, both stationary (DTF, TIHOC) and time dependent (TDA, TIHEX), discussing the results obtained for the basic parameters of the fission process (multiplication factor, neutron generation time and Rossi-{infinity}). (Author) 14 refs.

  13. Generic structural mechanics aspects of fusion magnet systems

    International Nuclear Information System (INIS)

    Reich, M.; Powell, J.R.

    1980-01-01

    Structural mechanic requirements for future large superconducting fusion magnets are assessed. Current structural analysis methods and standards do not yet appear sufficient for a complete evaluation of such systems, under all potential operating and accident conditions. Recommendations are made for development of needed structural methods and specialized standards for fusion magnets. These include, among others, better composite structural methods with various failure criteria for metallic, as well as non-metallic materials, coupled thermal-electrical-structural codes, incorporating winding and fabrication effects, and use of probabilistic methods for life prediction. In order to help meet program goals for fusion commericialization, it is recommended that such work be initiated relatively soon. (orig.)

  14. Direct energy conversion system for D-3He fusion

    International Nuclear Information System (INIS)

    Tomita, Y.; Shu, L.Y.; Momota, H.

    1993-11-01

    A novel and highly efficient direct energy conversion system is proposed for utilizing D- 3 He fueled fusion. In order to convert kinetic energy of ions, we applied a pair of direct energy conversion systems each of which has a cusp-type DEC and a traveling wave DEC (TWDEC). In a cusp-type DEC, electrons are separated from the escaping ions at the first line-cusp and the energy of thermal ion components is converted at the second cusp DEC. The fusion protons go through the cusp-type DEC and arrive at the TWDEC, which principle is similar to 'LINAC.' The energy of fusion protons is recovered to electricity with an efficiency of more than 70%. These DECs bring about the high efficient fusion plant. (author)

  15. Processing and waste disposal representative for fusion breeder blanket systems

    International Nuclear Information System (INIS)

    Finn, P.A.; Vogler, S.

    1987-01-01

    This study is an evaluation of the waste handling concepts applicable to fusion breeder systems. Its goal is to determine if breeder blanket waste can be disposed of in shallow land burial, the least restrictive method under US Nuclear Regulatory regulations. The radionuclides expected in the materials used in fusion reactor blankets are described, as are plans for reprocessing and disposal of the components of different breeder blankets. An estimate of the operating costs involved in waste disposal is made

  16. Performance evaluation of multi-sensor data-fusion systems

    Indian Academy of Sciences (India)

    In this paper, the utilization of multi-sensors of different types, their characteristics, and their data-fusion in launch vehicles to achieve the goal of injecting the satellite into a precise orbit is explained. Performance requirements of sensors and their redundancy management in a typical launch vehicle are also included.

  17. Pulsed power systems for inertial confinement fusion

    International Nuclear Information System (INIS)

    VanDevender, J.P.

    1979-01-01

    Sandis's Particle Beam Fusion Program is investigating pulsed electron and light ion beam accelerators with the goal of demonstrating the practical application of such drivers as igniters in inertial confinement fusion (ICF) reactors. The power and energy requirements for net energy gain are 10 14 to 10 15 W and 1 to 10 MJ. Recent advances in pulsed power and power flow technologies permit suitable accelerators to be built. The first accelerator of this new generation is PBFA I. It operates at 2 MV, 15 MA, 30 TW for 35 ns and is scheduled for completion in June 1980. The principles of this new accelerator technology and their application to ICF will be presented

  18. Proposed design criteria for a fusion facility electrical ground system

    International Nuclear Information System (INIS)

    Armellino, C.A.

    1983-01-01

    Ground grid design considerations for a nuclear fusion reactor facility are no different than any other facility in that the basis for design must be safety first and foremost. Unlike a conventional industrial facility the available fault energy comes not only from the utility source and in-house rotating machinery, but also from energy storage capacitor banks, collapsing magnetic fields and D.C. transmission lines. It is not inconceivable for a fault condition occurrence where all available energy can be discharged. The ground grid must adequately shunt this sudden energy discharge in a way that personnel will not be exposed by step and/or touch to hazardous energy levels that are in excess of maximum tolerable levels for humans. Fault energy discharge rate is a function of the ground grid surge impedance characteristic. Closed loop paths must be avoided in the ground grid design so that during energy discharge no stray magnetic fields or large voltage potentials between remote points can be created by circulating currents. Single point connection of equipment to the ground grid will afford protection to personnel and sensitive equipment by reducing the probability of circulating currents. The overall ground grid system design is best illustrated as a wagon wheel concept with the fusion machine at the center. Radial branches or spokes reach out to the perimeter limits designated by step-and-touch high risk areas based on soil resistivity criteria considerations. Conventional methods for the design of a ground grid with all of its radial branches are still pertinent. The center of the grid could include a deep well single ground rod element the length of which is at least equivalent to the radius of an imaginary sphere that enshrouds the immediate machine area. Special facilities such as screen rooms or other shielded areas are part of the ground grid system by way of connection to radial branches

  19. Premises for use of fusion systems for actinide waste incineration

    International Nuclear Information System (INIS)

    Taczanowski, S.

    2007-01-01

    The motivation for the present study is induction of a change in the attitude of fusion community and first of all of the respective decision makers with regard to the fission power. The aim is to convince them that admittance of any kinship of fusion to fission energy is not the greatest threat for its deployment. The true problems of fusion power lie in the physical and technological difficulties that are hindering the achievement of reliable operation and economical competitiveness of fusion reactors. It seems that the strong objections against any symbiosis of fusion with fission, which one could observe for over two decades, are based upon the ignorance of the public unaware of the common nuclear roots of both processes. They manifest themselves, among others, in the non-negligible activity to be induced in fusion devices, as a result of the exposition of construction materials to very strong fluxes of fusion (14 MeV) neutrons. The latter ones in addition, are the source of a very serious material damage in these materials. Meanwhile, most of the real difficulties fusion power is still facing can be effectively relaxed while shifting the heavy burden of sufficient production of energy to energy rich fission process. Seeing all this, first are reminded some important problems of existing fission power that stem from the unavoidable production of Minor Actinides, distinct by undesirable physical properties (intense radioactivity, heat release, positive reactivity coefficients). Thus, in search for solutions Fusion-Driven Incineration (FDI) subcritical systems (well remote from super prompt criticality) are proposed. Next, the problems of nuclear fusion are addressed and the use of fission energy contained in actinides of spent nuclear fuel is suggested. The main advantage of that option of fusion power, /thanks to energy release from fissions/, is the prospect of a radical reduction of necessary plasma energy gain Q to levels achievable in much smaller i.e. much

  20. Minimally invasive arthrodesis for chronic sacroiliac joint dysfunction using the SImmetry SI Joint Fusion system.

    Science.gov (United States)

    Miller, Larry E; Block, Jon E

    2014-01-01

    Chronic sacroiliac (SI) joint-related low back pain (LBP) is a common, yet under-diagnosed and undertreated condition due to difficulties in accurate diagnosis and highly variable treatment practices. In patients with debilitating SI-related LBP for at least 6 months duration who have failed conservative management, arthrodesis is a viable option. The SImmetry(®) SI Joint Fusion System is a novel therapy for SI joint fusion, not just fixation, which utilizes a minimally invasive surgical approach, instrumented fixation for immediate stability, and joint preparation with bone grafting for a secure construct in the long term. The purpose of this report is to describe the minimally invasive SI Joint Fusion System, including patient selection criteria, implant characteristics, surgical technique, postoperative recovery, and biomechanical testing results. Advantages and limitations of this system will be discussed.

  1. Performance characteristics of a horizontal axis turbine with fusion winglet

    International Nuclear Information System (INIS)

    Zhu, Bing; Sun, Xiaojing; Wang, Ying; Huang, Diangui

    2017-01-01

    Any technique or method that can improve the efficiency in exploiting renewable wind or marine current energy has got a great significance today. It has been reported that adding a winglet at the tip of the rotor blades on a horizontal axis wind turbine can increase its power performance. The purpose of this paper is to adopt a numerical method to investigate the effects of different winglet configurations on turbine performance, especially focusing on the direction for the winglet tip to point towards (the suction side, pressure side or both sides of the main blade). The results show that the new design of an integrated fusion winglet proposed in this paper can generally improve the main blade's power producing ability, which is further enhanced with the increase of turbine's tip speed ratio with a maximum power augmentation of about 3.96%. No matter which direction the winglet tip faces, the installation angle of the winglet should match well with the real angle of incoming flow. As a whole, the turbine with winglet of two tips facing to both sides of the main blade can produce much more power than the one of winglet configuration whose tip faces only one side for different blade hub pitch angles and vast majority of tip speed ratios. The working principle behind the winglet in improving turbine performance may be that it can block the downwash fluid easily flowing around the tip section of the main blade from the pressure side to suction side, and hence diffuse and spread out the tip vortex. As a result, it finally decreases the energy loss. Besides, the relative projected rotor area in incoming flow direction will also be reduced due to the addition of the winglet, which is also helpful to turbine's power coefficient. - Highlights: • Added winglet generally increase the turbine energy extraction performance. • Winglet facing blade both sides is usually superior to that of facing one side. • Winglet can isolate downwash fluid easily flowing

  2. Fire protection system operating experience review for fusion applications

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1995-12-01

    This report presents a review of fire protection system operating experiences from particle accelerator, fusion experiment, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of fire protection system component failure rates and fire accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with these systems are discussed, including spurious operation. This information should be useful to fusion system designers and safety analysts, such as the team working on the Engineering Design Activities for the International Thermonuclear Experimental Reactor

  3. Fire protection system operating experience review for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, L.C.

    1995-12-01

    This report presents a review of fire protection system operating experiences from particle accelerator, fusion experiment, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of fire protection system component failure rates and fire accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with these systems are discussed, including spurious operation. This information should be useful to fusion system designers and safety analysts, such as the team working on the Engineering Design Activities for the International Thermonuclear Experimental Reactor.

  4. Control characteristics of cryogenic distillation column with a feedback stream for fusion reactor

    International Nuclear Information System (INIS)

    Yamanishi, Toshihiko; Okuno, Kenji

    1997-01-01

    The control characteristics of the cryogenic distillation column with a feedback stream have been discussed based on computer simulation results. This column plays an important role in fusion reactor. A new control system was proposed from the simulation results. The flow rate of top product is determined from the composition and flow rate of a main feed stream by a feedforward control loop. The flow rates of the feedback stream and vapor stream within the column are proportionally changed with a corresponding change of feed flow rate. The flow rate of vapor stream within the column is further adjusted to maintain product purity by a feedback control loop. The proposed system can control the product purity for a large fluctuation of feed composition, a change of feed flow rate, and an increase or decrease of the number of total theoretical stages of the column. The control system should be designed for each column by considering its operating conditions and function. The present study gives us a basic procedure for the design method of the control system of the cryogenic distillation column. (author)

  5. The perspectives of fusion energy: The roadmap towards energy production and fusion energy in a distributed energy system

    DEFF Research Database (Denmark)

    Naulin, Volker; Juul Rasmussen, Jens; Korsholm, Søren Bang

    2014-01-01

    at very high temperature where all matter is in the plasma state as the involved energies are orders of magnitude higher than typical chemical binding energies. It is one of the great science and engineering challenges to construct a viable power plant based on fusion energy. Fusion research is a world...... The presentation will discuss the present status of the fusion energy research and review the EU Roadmap towards a fusion power plant. Further the cost of fusion energy is assessed as well as how it can be integrated in the distributed energy system......Controlled thermonuclear fusion has the potential of providing an environmentally friendly and inexhaustible energy source for mankind. Fusion energy, which powers our sun and the stars, is released when light elements, such as the hydrogen isotopes deuterium and tritium, fuse together. This occurs...

  6. Multimodal biometric system using rank-level fusion approach.

    Science.gov (United States)

    Monwar, Md Maruf; Gavrilova, Marina L

    2009-08-01

    In many real-world applications, unimodal biometric systems often face significant limitations due to sensitivity to noise, intraclass variability, data quality, nonuniversality, and other factors. Attempting to improve the performance of individual matchers in such situations may not prove to be highly effective. Multibiometric systems seek to alleviate some of these problems by providing multiple pieces of evidence of the same identity. These systems help achieve an increase in performance that may not be possible using a single-biometric indicator. This paper presents an effective fusion scheme that combines information presented by multiple domain experts based on the rank-level fusion integration method. The developed multimodal biometric system possesses a number of unique qualities, starting from utilizing principal component analysis and Fisher's linear discriminant methods for individual matchers (face, ear, and signature) identity authentication and utilizing the novel rank-level fusion method in order to consolidate the results obtained from different biometric matchers. The ranks of individual matchers are combined using the highest rank, Borda count, and logistic regression approaches. The results indicate that fusion of individual modalities can improve the overall performance of the biometric system, even in the presence of low quality data. Insights on multibiometric design using rank-level fusion and its performance on a variety of biometric databases are discussed in the concluding section.

  7. High density linear systems for fusion power

    International Nuclear Information System (INIS)

    Ellis, W.R.; Krakowski, R.A.

    1975-01-01

    The physics and technological limitations and uncertainties associated with the linear theta pinch are discussed in terms of a generalized energy balance, which has as its basis the ratio (Q/sub E/) of total electrical energy generated to net electrical energy consumed. Included in this total is the virtual energy of bred fissile fuel, if a hybrid blanket is used, as well as the actual of real energy deposited in the blanket by the fusion neutron. The advantages and disadvantages of the pulsed operation demanded by the linear theta pinch are also discussed

  8. Cryogenic system operating experience review for fusion applications

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1992-01-01

    This report presents a review of cryogenic system operating experiences, from particle accelerator, fusion experiment, space research, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of cryogenic component failure rates and accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with cryogenic systems are discussed, including ozone formation, effects of spills, and modeling spill behavior. This information should be useful to fusion system designers and safety analysts, such as the team working on the International Thermonuclear Experimental Reactor design

  9. Development of innovative fuelling systems for fusion energy science

    International Nuclear Information System (INIS)

    Gouge, M.J.; Baylor, L.R.; Combs, S.K.; Fisher, P.W.

    1996-01-01

    The development of innovative fueling systems in support of magnetic fusion energy, particularly the International Thermonuclear Experimental Reactor (ITER), is described. The ITER fuelling system will use a combination of deuterium-tritium (D-T) gas puffing and pellet injection to achieve and maintain ignited plasmas. This combination will provide a flexible fuelling source with D-T pellets penetrating beyond the separatrix to sustain the ignited fusion plasma and with deuterium-rich gas fuelling the edge region to meet divertor requirements in a process called isotopic fuelling. More advanced systems with potential for deeper penetration, such as multistage pellet guns and compact toroid injection, are also described

  10. Advanced Fusion Reactors for Space Propulsion and Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, John J.

    2011-06-15

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles' exhaust momentum can be used directly to produce high Isp thrust and also offer possibility of power conversion into electricity. p-11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  11. Advanced Fusion Reactors for Space Propulsion and Power Systems

    Science.gov (United States)

    Chapman, John J.

    2011-01-01

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles "exhaust" momentum can be used directly to produce high ISP thrust and also offer possibility of power conversion into electricity. p- 11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  12. Energy Logic (EL): a novel fusion engine of multi-modality multi-agent data/information fusion for intelligent surveillance systems

    Science.gov (United States)

    Rababaah, Haroun; Shirkhodaie, Amir

    2009-04-01

    The rapidly advancing hardware technology, smart sensors and sensor networks are advancing environment sensing. One major potential of this technology is Large-Scale Surveillance Systems (LS3) especially for, homeland security, battlefield intelligence, facility guarding and other civilian applications. The efficient and effective deployment of LS3 requires addressing number of aspects impacting the scalability of such systems. The scalability factors are related to: computation and memory utilization efficiency, communication bandwidth utilization, network topology (e.g., centralized, ad-hoc, hierarchical or hybrid), network communication protocol and data routing schemes; and local and global data/information fusion scheme for situational awareness. Although, many models have been proposed to address one aspect or another of these issues but, few have addressed the need for a multi-modality multi-agent data/information fusion that has characteristics satisfying the requirements of current and future intelligent sensors and sensor networks. In this paper, we have presented a novel scalable fusion engine for multi-modality multi-agent information fusion for LS3. The new fusion engine is based on a concept we call: Energy Logic. Experimental results of this work as compared to a Fuzzy logic model strongly supported the validity of the new model and inspired future directions for different levels of fusion and different applications.

  13. Review of Fusion Systems and Contributing Technologies for SIHS-TD (Examen des Systemes de Fusion et des Technologies d'Appui pour la DT SIHS)

    National Research Council Canada - National Science Library

    Angel, Harry H; Ste-Croix, Chris; Kittel, Elizabeth

    2007-01-01

    The major objectives of the report were to identify and review the field of image fusion and contributing technologies and to recommend systems, algorithms and metrics for the proposed SIHS TD Vision SST fusion test bed...

  14. Laser-start-up system for magnetic mirror fusion

    International Nuclear Information System (INIS)

    Frank, A.M.; Thomas, S.R.; Denhoy, B.S.; Chargin, A.K.

    1976-01-01

    A CO 2 laser system has been developed at LLL to provide hot start-up plasmas for magnetic mirror fusion experiments. A frozen ammonia pellet is irradiated with a laser power density in excess of 10 13 W/cm 2 in a 50-ns pulse. This system uses commercially available laser systems. Optical components were fabricated both by direct machining and standard techniques. The technologies used in this system are directly applicable to reactor scale systems

  15. Cryogenic systems for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Slack, D.S.; Nelson, R.L.; Chronis, W.C.

    1985-08-01

    This paper includes an in-depth discussion of the design, fabrication, and operation of the Mirror Fusion Test Facility (MFTF) cryogenic system located at Lawrence Livermore National Laboratory (LLNL). Each subsystem discussed to present a basic composite of the entire facility. The following subsystems are included: 500kW nitrogen reliquefier, subcoolers, and distribution system; 15kW helium refrigerator/liquefier and distribution system; helium recovery and storage system; rough vacuum and high vacuum systems

  16. Ventilation Systems Operating Experience Review for Fusion Applications

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1999-01-01

    This report is a collection and review of system operation and failure experiences for air ventilation systems in nuclear facilities. These experiences are applicable for magnetic and inertial fusion facilities since air ventilation systems are support systems that can be considered generic to nuclear facilities. The report contains descriptions of ventilation system components, operating experiences with these systems, component failure rates, and component repair times. Since ventilation systems have a role in mitigating accident releases in nuclear facilities, these data are useful in safety analysis and risk assessment of public safety. An effort has also been given to identifying any safety issues with personnel operating or maintaining ventilation systems. Finally, the recommended failure data were compared to an independent data set to determine the accuracy of individual values. This comparison is useful for the International Energy Agency task on fusion component failure rate data collection

  17. Fusion Ignition Research Experiment System Integration

    International Nuclear Information System (INIS)

    Brown, T.

    1999-01-01

    The FIRE (Fusion Ignition Research Experiment) configuration has been designed to meet the physics objectives and subsystem requirements in an arrangement that allows remote maintenance of in-vessel components and hands-on maintenance of components outside the TF (toroidal-field) boundary. The general arrangement consists of sixteen wedged-shaped TF coils that surround a free-standing central solenoid (CS), a double-wall vacuum vessel and internal plasma-facing components. A center tie rod is used to help support the vertical magnetic loads and a compression ring is used to maintain wedge pressure in the inboard corners of the TF coils. The magnets are liquid nitrogen cooled and the entire device is surrounded by a thermal enclosure. The double-wall vacuum vessel integrates cooling and shielding in a shape that maximizes shielding of ex-vessel components. The FIRE configuration development and integration process has evolved from an early stage of concept selection to a higher level of machine definition and component details. This paper describes the status of the configuration development and the integration of the major subsystem components

  18. Fusion power in a future low carbon global electricity system

    DEFF Research Database (Denmark)

    Cabal, H.; Lechón, Y.; Bustreo, C.

    2017-01-01

    Fusion is one of the technologies that may contribute to a future, low carbon, global energy supply system. In this article we investigate the role that it may play under different scenarios. The global energy model ETM (originally EFDA TIMES Model) has been used to analyse the participation...

  19. Cryogenic systems for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Slack, D.S.; Chronis, W.C.; Nelson, R.L.

    1986-01-01

    This paper will include an in-depth discussion of the design, fabrication, and operation of the Mirror Fusion Test Facility (MFTF) cryogenic system located at Lawrence Livermore National Laboratory (LLNL). Each subsystem will be discussed to present a basic composite of the entire facility

  20. Introduction of fusion driven subcritical system plasma design

    International Nuclear Information System (INIS)

    Bin Wu

    2003-01-01

    Fusion driven subcritical nuclear system (FDS) is a multifunctional hybrid reactor, which could breed nuclear fuel, transmute long-lived wastes, producing tritium and so on. This paper presents an introduction of FDS plasma design. Several different advance equilibrium configurations have been proposed and a 1.5-D discharge simulation of FDS was also present

  1. Superconducting magnetic energy storage for electric utilities and fusion systems

    International Nuclear Information System (INIS)

    Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.

    1978-01-01

    Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. The Los Alamos Scientific Laboratory and the University of Wisconsin are developing superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks. In the fusion area, inductive energy transfer and storage is being developed. Both 1-ms fast-discharge theta-pinch systems and 1-to-2-s slow energy transfer tokamak systems have been demonstrated. The major components and the method of operation of a SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given of a reference design for a 10-GWh unit for load leveling, of a 30-MJ coil proposed for system stabilization, and of tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are presented. The common technology base for the various storage systems is discussed

  2. Power-balance analysis of muon-catalyzed fusion-fission hybrid reactor systems

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.

    1985-01-01

    A power-balance model of a muon-catalyzed fusion system in the context of a fission-fuel factory is developed and exercised to predict the required physics performance of systems competitive with either pure muon-catalyzed fusion systems or thermonuclear fusion-fission fuel factory hybrid systems

  3. Study of 9 Be + 29 Si system nuclear fusion

    International Nuclear Information System (INIS)

    Silva Figueira, M.C. da.

    1991-01-01

    Fusion cross sections for the 9 Be + 29 Si system have been measured in the energy range between 17 and 38 MeV (lab) by detecting the evaporation residues with the time of flight technique. Angular distributions have been measured from 7.5 0 C to 35 0 C in the laboratory frame at E( 9 Be) = 26 and 38 MeV. The measured fusion cross sections are significantly smaller than the total reaction cross sections obtained from fits to the elastic scattering data in the same energy range. Comparison with existing data for compound systems with A= 38 shows that this effect can not be understood in terms of the statistical yrast line of the formed compound nucleus. A systematic analysis of the energy dependence of the ratio between the fusion cross section and the total reaction cross section, for the system 9 Be + 29 Si and many other available in the literature has been performed. The saturation value can be associated to the nucleon or cluster separation energy of the light nuclei participant in the collision, leading to an hindrance of the fusion cross section. (author)

  4. Vacuum system operating experience review for fusion applications

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1994-03-01

    This report presents a review of vacuum system operating experiences from particle accelerator, fusion experiment, space simulation chamber, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of vacuum system component failure rates and accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with vacuum systems are discussed, including personnel safety, foreign material intrusion, and factors relevant to vacuum systems being the primary confinement boundary for tritium and activated dusts. This information should be useful to fusion system designers and safety analysts, such as the team working on the Engineering Design Activities for the International Thermonuclear Experimental Reactor

  5. Improved Controls for Fusion RF Systems. Final technical report

    International Nuclear Information System (INIS)

    Casey, Jeffrey A.

    2011-01-01

    We have addressed the specific requirements for the integrated systems controlling an array of klystrons used for Lower Hybrid Current Drive (LHCD). The immediate goal for our design was to modernize the transmitter protection system (TPS) for LHCD on the Alcator C-Mod tokamak at the MIT Plasma Science and Fusion Center (MIT-PSFC). Working with the Alcator C-Mod team, we have upgraded the design of these controls to retrofit for improvements in performance and safety, as well as to facilitate the upcoming expansion from 12 to 16 klystrons. The longer range goals to generalize the designs in such a way that they will be of benefit to other programs within the international fusion effort was met by designing a system which was flexible enough to address all the MIT system requirements, and modular enough to adapt to a large variety of other requirements with minimal reconfiguration

  6. Improved Controls for Fusion RF Systems. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Jeffrey A. [Rockfield Research Inc., Las Vegas, NV (United States)

    2011-11-08

    We have addressed the specific requirements for the integrated systems controlling an array of klystrons used for Lower Hybrid Current Drive (LHCD). The immediate goal for our design was to modernize the transmitter protection system (TPS) for LHCD on the Alcator C-Mod tokamak at the MIT Plasma Science and Fusion Center (MIT-PSFC). Working with the Alcator C-Mod team, we have upgraded the design of these controls to retrofit for improvements in performance and safety, as well as to facilitate the upcoming expansion from 12 to 16 klystrons. The longer range goals to generalize the designs in such a way that they will be of benefit to other programs within the international fusion effort was met by designing a system which was flexible enough to address all the MIT system requirements, and modular enough to adapt to a large variety of other requirements with minimal reconfiguration.

  7. Railgun pellet injection system for fusion experimental devices

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Adv. Tech. Dev. Dept.; Oda, Y. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Adv. Tech. Dev. Dept.; Azuma, K. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Adv. Tech. Dev. Dept.; Satake, K. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Adv. Tech. Dev. Dept.; Kasai, S. [Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun 319-11 (Japan); Hasegawa, K. [Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun 319-11 (Japan)

    1995-11-01

    A railgun pellet injection system has been developed for fusion experimental devices. Using a low electric energy railgun system, hydrogen pellet acceleration tests have been conducted to investigate the application of the electromagnetic railgun system for high speed pellet injection into fusion plasmas. In the system, the pellet is pre-accelerated before railgun acceleration. A laser beam is used to induce plasma armature. The ignited plasma armature is accelerated by an electromagnetic force that accelerates the pellet. Under the same operational conditions, the energy conversion coefficient for the dummy pellets was around 0.4%, while that for the hydrogen pellets was around 0.12%. The highest hydrogen pellet velocity was 1.4 km s{sup -1} using a 1 m long railgun. Based on the findings, it is estimated that the hydrogen pellet has the potential to be accelerated to 5 km s{sup -1} using a 3 m long railgun. (orig.).

  8. Railgun pellet injection system for fusion experimental devices

    International Nuclear Information System (INIS)

    Onozuka, M.; Hasegawa, K.

    1995-01-01

    A railgun pellet injection system has been developed for fusion experimental devices. Using a low electric energy railgun system, hydrogen pellet acceleration tests have been conducted to investigate the application of the electromagnetic railgun system for high speed pellet injection into fusion plasmas. In the system, the pellet is pre-accelerated before railgun acceleration. A laser beam is used to induce plasma armature. The ignited plasma armature is accelerated by an electromagnetic force that accelerates the pellet. Under the same operational conditions, the energy conversion coefficient for the dummy pellets was around 0.4%, while that for the hydrogen pellets was around 0.12%. The highest hydrogen pellet velocity was 1.4 km s -1 using a 1 m long railgun. Based on the findings, it is estimated that the hydrogen pellet has the potential to be accelerated to 5 km s -1 using a 3 m long railgun. (orig.)

  9. Transport and Dynamics in Toroidal Fusion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Schnack, Dalton D

    2006-05-16

    This document reports the successful completion of the OFES Theory Milestone for FY2005, namely, Perform parametric studies to better understand the edge physics regimes of laboratory experiments. Simulate at increased resolution (up to 20 toroidal modes), with density evolution, late into the nonlinear phase and compare results from different types of edge modes. Simulate a single case including a study of heat deposition on nearby material walls. The linear stability properties and nonlinear evolution of Edge Localized Modes (ELMs) in tokamak plasmas are investigated through numerical computation. Data from the DIII-D device at General Atomics (http://fusion.gat.com/diii-d/) is used for the magnetohydrodynamic (MHD) equilibria, but edge parameters are varied to reveal important physical effects. The equilibrium with very low magnetic shear produces an unstable spectrum that is somewhat insensitive to dissipation coefficient values. Here, linear growth rates from the non-ideal NIMROD code (http://nimrodteam.org) agree reasonably well with ideal, i.e. non-dissipative, results from the GATO global linear stability code at low toroidal mode number (n) and with ideal results from the ELITE edge linear stability code at moderate to high toroidal mode number. Linear studies with a more realistic sequence of MHD equilibria (based on DIII-D discharge 86166) produce more significant discrepancies between the ideal and non-ideal calculations. The maximum growth rate for the ideal computations occurs at toroidal mode index n=10, whereas growth rates in the non-ideal computations continue to increase with n unless strong anisotropic thermal conduction is included. Recent modeling advances allow drift effects associated with the Hall electric field and gyroviscosity to be considered. A stabilizing effect can be observed in the preliminary results, but while the distortion in mode structure is readily apparent at n=40, the growth rate is only 13% less than the non-ideal MHD

  10. Laser fusion power reactor system (LFPRS)

    International Nuclear Information System (INIS)

    Kovacik, W.P.

    1977-01-01

    This report gives detailed information for each of the following areas: (1) reference concept description, (2) nuclear design, (3) structural design, (4) thermal and fluid systems design, (5) materials design and analysis, (6) reactor support systems and balance of plant, (7) instrumentation and control, (8) environment and safety, (9) economics assessment, and (10) development requirements

  11. Minimally invasive arthrodesis for chronic sacroiliac joint dysfunction using the SImmetry SI Joint Fusion system

    Directory of Open Access Journals (Sweden)

    Miller LE

    2014-05-01

    Full Text Available Larry E Miller,1,2 Jon E Block21Miller Scientific Consulting, Inc., Asheville, NC, USA; 2The Jon Block Group, San Francisco, CA, USA Abstract: Chronic sacroiliac (SI joint-related low back pain (LBP is a common, yet under-diagnosed and undertreated condition due to difficulties in accurate diagnosis and highly variable treatment practices. In patients with debilitating SI-related LBP for at least 6 months duration who have failed conservative management, arthrodesis is a viable option. The SImmetry® SI Joint Fusion System is a novel therapy for SI joint fusion, not just fixation, which utilizes a minimally invasive surgical approach, instrumented fixation for immediate stability, and joint preparation with bone grafting for a secure construct in the long term. The purpose of this report is to describe the minimally invasive SI Joint Fusion System, including patient selection criteria, implant characteristics, surgical technique, postoperative recovery, and biomechanical testing results. Advantages and limitations of this system will be discussed. Keywords: arthrodesis, fusion, minimally invasive, sacroiliac, SImmetry

  12. Coatings for fusion reactor environments

    International Nuclear Information System (INIS)

    Mattox, D.M.

    1979-01-01

    The internal surfaces of a tokamak fusion reactor control the impurity injection and gas recycling into the fusion plasma. Coating of internal surfaces may provide a desirable and possibly necessary design flexibility for achieving the temperatures, ion densities and containment times necessary for net energy production from fusion reactions to take place. In this paper the reactor environments seen by various componentare reviewed along with possible materials responses. Characteristics of coating-substrate systems, important to fusion applications, are delineated and the present status of coating development for fusion applications is reviewed. Coating development for fusion applications is just beginning and poses a unique and important challenge for materials development

  13. A vision fusion treatment system based on ATtiny26L

    Science.gov (United States)

    Zhang, Xiaoqing; Zhang, Chunxi; Wang, Jiqiang

    2006-11-01

    Vision fusion treatment is an important and effective project to strabismus children. The vision fusion treatment system based on the principle for eyeballs to follow the moving visual survey pole is put forward first. In this system the original position of visual survey pole is about 35 centimeters far from patient's face before its moving to the middle position between the two eyeballs. The eyeballs of patient will follow the movement of the visual survey pole. When they can't follow, one or two eyeballs will turn to other position other than the visual survey pole. This displacement is recorded every time. A popular single chip microcomputer ATtiny26L is used in this system, which has a PWM output signal to control visual survey pole to move with continuously variable speed. The movement of visual survey pole accords to the modulating law of eyeballs to follow visual survey pole.

  14. Tritium system design studies of fusion experimental breeder

    International Nuclear Information System (INIS)

    Deng Baiquan; Huang Jinhua

    2003-01-01

    A summary of the tritium system design studies for the engineering outline design of a fusion experimental breeder (FEB-E) is presented. This paper is divided into three sections. In first section, the geometry, loading features and tritium concentrations in liquid lithium of tritium breeding zones of blanket are described. The tritium flow chart corresponding to the tritium fuel cycle system has been constructed, and the inventories in ten subsystems are calculated using SWITRIM code in section 2. Results show that the necessary initial tritium storage to start up FEB-E with fusion power of 143 MW is about 319 g. In final section, the tritium leakage issues under different operation circumstances have been analyzed. It was found that the potential danger of tritium leakage could be resulted from the exhausted gas of the diverter system. It is important to elevate the tritium burnup fraction and reduce the tritium throughput. (authors)

  15. General distributed control system for fusion experiments

    International Nuclear Information System (INIS)

    Klingner, P.L.; Levings, S.J.; Wilkins, R.W.

    1986-01-01

    A general control system using distributed LSI-11 microprocessors is being developed. Common software residues in each LSI-11 and is tailored to an application by control specifications downloaded from a host computer. The microprocessors, their control interfaces, and the micro-to-host communications are CAMAC based. The host computer also supports an operator interface, coordination of multiple microprocessors, and utilities to create and maintain the control specifications. Typical applications include monitoring safety interlocks as well as controlling vacuum systems, high voltage charging systems, and diagnostics

  16. Fusion Diagrams in the - and - Systems

    Science.gov (United States)

    Asadov, M. M.; Akhmedova, N. A.

    2014-10-01

    A calculation model of the Gibbs energy of ternary oxide compounds from the binary components was used. Thermodynamic properties of -- ternary systems in the condensed state were calculated. Thermodynamic data of binary and ternary compounds were used to determine the stable sections. The probability of reactions between the corresponding components in the -- system was estimated. Fusibility diagrams of systems - and - were studied by physical-chemical analysis. The isothermal section of the phase diagram of -- at 298 K is built, as well as the projection of the liquid surface of --.

  17. Economic effect of fusion in energy market. Various externalities of energy systems and the integrated evaluation

    International Nuclear Information System (INIS)

    Ito, Keishiro

    2002-01-01

    The primacy of a nuclear fusion reactor in a competitive energy market remarkably depends on to what extent the reactor contributes to reduce the externalities of energy. The reduction effects are classified into two effects, which have quite dissimilar characteristics. One is an effect of environmental dimensions. The other is related to energy security. In this study I took up the results of EC's ExternE project studies as a representative example of the former effect. Concerning the latter effect, I clarified the fundamental characteristics of externalities related to energy security and the conceptual framework for the purpose of evaluation. In the socio-economical evaluation of research into and development investments in nuclear fusions reactors, the public will require the development of integrated evaluation systems to support the cost-effect analysis of how well the reduction effects of externalities have been integrated with the effects of technological innovation, learning, spillover, etc. (author)

  18. System study methodology development and potential utilization for fusion

    International Nuclear Information System (INIS)

    Djerassi, H.; Rouillard, J.; Leger, D.; Sarto, S.; Zappellini, G.; Gambi, G.

    1989-01-01

    The objective of this new methodology is to combine systemics with heuristics for engineering applications. The system method considers as a whole a set of dynamically interacting elements, organized for tasks. Heuristics tries to describe the rules to apply in scientific research. This methodology is a powerful tool for evaluating the options, compared with conventional analytical methods as a higher number of parameters can be taken into account, with a higher quality standard while comparing the possible options. The system method takes into account interacting data or random relationships by means of simulation modelling. Thus, a dynamical approach can be deduced and a sensitivity analysis can be performed for a very high number of options and basic data. This method can be limited to a specific objective such as a fusion reactor safety analysis, taking into account other major constraints such as the economical environment. The sophisticated architecture of a fusion reactor includes a large number of interacting systems. The new character of the fusion domain and the wide spectrum of the possible options strongly increase the advantages of a system study as a complete safety analysis can be defined before starting with the design. (orig.)

  19. Laser Intertial Fusion Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Kevin James [Univ. of California, Berkeley, CA (United States)

    2010-04-08

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 μm of tungsten to mitigate x-ray damage. The first wall is cooled by Li17Pb83 eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li17Pb83 flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li17Pb83, separated from the Li17Pb83 by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF2), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles

  20. Laser fusion system design study. Final report

    International Nuclear Information System (INIS)

    1975-01-01

    The following studies were completed: (1) The synthesis of a pointing/control system compatible with existing and advanced laser opto-mechanical configurations. (2) Attainment of the required pointing angle, longitudinal focus, and differential pathlength accuracies. (3) Maximum modularization of the sensor and gimbal assemblies to provide the required accuracies at minimum cost. Detailed information is given on each. (MOW)

  1. Conceptual design of neutron diagnostic systems for fusion experimental reactor

    International Nuclear Information System (INIS)

    Iguchi, T.; Kaneko, J.; Nakazawa, M.

    1994-01-01

    Neutron measurement in fusion experimental reactors is very important for burning plasma diagnostics and control, monitoring of irradiation effects on device components, neutron source characterization for in-situ engineering tests, etc. A conceptual design of neutron diagnostic systems for an ITER-like fusion experimental reactor has been made, which consists of a neutron yield monitor, a neutron emission profile monitor and a 14-MeV spectrometer. Each of them is based on a unique idea to meet the required performances for full power conditions assumed at ITER operation. Micro-fission chambers of 235 U (and 238 U) placed at several poloidal angles near the first wall are adopted as a promising neutron yield monitor. A collimated long counter system using a 235 U fission chamber and graphite neutron moderators is also proposed to improve the calibration accuracy of absolute neutron yield determination

  2. IEC fusion: The future power and propulsion system for space

    International Nuclear Information System (INIS)

    Hammond, Walter E.; Coventry, Matt; Miley, George H.; Nadler, Jon; Hanson, John; Hrbud, Ivana

    2000-01-01

    Rapid access to any point in the solar system requires advanced propulsion concepts that will provide extremely high specific impulse, low specific power, and a high thrust-to-power ratio. Inertial Electrostatic Confinement (IEC) fusion is one of many exciting concepts emerging through propulsion and power research in laboratories across the nation which will determine the future direction of space exploration. This is part of a series of papers that discuss different applications of the Inertial Electrostatic Confinement (IEC) fusion concept for both in-space and terrestrial use. IEC will enable tremendous advances in faster travel times within the solar system. The technology is currently under investigation for proof of concept and transitioning into the first prototype units for commercial applications. In addition to use in propulsion for space applications, terrestrial applications include desalinization plants, high energy neutron sources for radioisotope generation, high flux sources for medical applications, proton sources for specialized medical applications, and tritium production

  3. Open-ended magnetic confinement systems for fusion

    International Nuclear Information System (INIS)

    Post, R.F.; Ryutov, D.D.

    1995-05-01

    Magnetic confinement systems that use externally generated magnetic fields can be divided topologically into two classes: ''closed'' and 'open''. The tokamak, the stellarator, and the reversed-field-pinch approaches are representatives of the first category, while mirror-based systems and their variants are of the second category. While the recent thrust of magnetic fusion research, with its emphasis on the tokamak, has been concentrated on closed geometry, there are significant reasons for the continued pursuit of research into open-ended systems. The paper discusses these reasons, reviews the history and the present status of open-ended systems, and suggests some future directions for the research

  4. Laser fusion hybrid reactor systems study

    International Nuclear Information System (INIS)

    1976-07-01

    The work was performed in three phases. The first phase included a review of the many possible laser-reactor-blanket combinations and resulted in the selection of a ''demonstration size'' 500 MWe plant for further study. A number of fast fission blankets using uranium metal, uranium-molybdenum alloy, and uranium carbide as fuel were investigated. The second phase included design of the reactor vessel and internals, heat transfer system, tritium processing system, and the balance of plant, excluding the laser building and equipment. A fuel management scheme was developed, safety considerations were reviewed, and capital and operating costs were estimated. Costs developed during the second phase were unexpectedly high, and a thorough review indicated considerable unit cost savings could be obtained by scaling the plant to a larger size. Accordingly, a third phase was added to the original scope, encompassing the redesign and scaling of the plant from 500 MWe to 1200 MWe

  5. Fusion-fission of heavy systems

    International Nuclear Information System (INIS)

    Rivet, M.F.; Alami, R.; Borderie, B.; Fuchs, H.; Gardes, D.; Gauvin, H.

    1988-01-01

    The influence of the entrance channel on fission processes was studied by forming the same composite system by two different target-projectile combinations ( 40 Ar + 209 Bi and 56 Fe + 187 Re, respectively). Compound nucleus fission and quasi fission were observed and the analysis was performed in the framework of the extra-extra-push model, which provides a qualitative interpretation of the results; limits for the extra-extra-push threshold are given, but problems with quantitative predictions for the extra-push are noted. (orig.)

  6. Potential need for fusion in the U. S. energy system

    Energy Technology Data Exchange (ETDEWEB)

    Beardsworth, E; Powell, J

    1977-09-01

    For fusion to become available for commercial use in the 21st century, R and D must be undertaken now. But it is hard to justify these expenditures with a ''cost/benefit'' oriented assessment methodology, because of both the time frame and the uncertainty of the future benefits. Focusing on the factors most relevant for current consideration of fusion's commercial prospects, i.e., consumption levels and the outcomes for fission, solar, and coal, many possible futures of the U.S. energy system are posited and analyzed under various assumptions about costs. The ''Reference Energy System'' approach was modified to establish both an appropriate degree of detail and explicit time dependence, and a computer code used to organize the relevant data and to perform calculations of system cost (annual and discounted present value), resource use, and residuals that are implied by the consumption levels and technology mix in each scenario. Not-unreasonable scenarios indicate benefits in the form of direct cost savings, which may well exceed R and D costs, which could be attributed to the implementation of fusion.

  7. Metrology/viewing system for next generation fusion reactors

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Barry, R.E.; Chesser, J.B.; Menon, M.M.; Dagher, M.A.

    1997-01-01

    Next generation fusion reactors require accurate measuring systems to verify sub-millimeter alignment of plasma-facing components in the reactor vessel. A metrology system capable of achieving such accuracy must be compatible with the vessel environment of high gamma radiation, high vacuum, elevated temperature, and magnetic field. This environment requires that the system must be remotely deployed. A coherent, frequency modulated laser radar system is being integrated with a remotely operated deployment system to meet these requirements. The metrology/viewing system consists of a compact laser transceiver optics module which is linked through fiber optics to the laser source and imaging units that are located outside of the harsh environment. The deployment mechanism is a telescopic-mast positioning system. This paper identifies the requirements for the International Thermonuclear Experimental Reactor metrology and viewing system, and describes a remotely operated precision ranging and surface mapping system

  8. Requirements and new materials for fusion laser systems

    International Nuclear Information System (INIS)

    Stokowski, S.E.; Weber, M.J.; Saroyan, R.A.; Hagen, W.F.

    1977-10-01

    Higher focusable power in neodymium glass fusion lasers can be obtained through the use of new materials with lower nonlinear index (n 2 ) and better energy storage capabilities than the presently employed silicate glass. Silicate, phosphate, fluorophosphate, and beryllium fluoride glasses are discussed in terms of fusion laser requirements, particularly those for the proposed Nova laser. Examples of the variation in spectroscopic and optical properties obtainable with compositional changes are given. Results of a system evaluation of potential laser materials show that fluorophosphate glasses have many of the desired properties for use in Nova. These glasses are now being cast in large sizes (30-cm diameter) and will be tested in prototype amplifiers in 1978

  9. Tandem mirror magnet system for the mirror fusion test facility

    International Nuclear Information System (INIS)

    Bulmer, R.H.; Van Sant, J.H.

    1980-01-01

    The Tandem Mirror Fusion Test Facility (MFTF-B) will be a large magnetic fusion experimental facility containing 22 supercounducting magnets including solenoids and C-coils. State-of-the-art technology will be used extensively to complete this facility before 1985. Niobium titanium superconductor and stainless steel structural cases will be the principle materials of construction. Cooling will be pool boiling and thermosiphon flow of 4.5 K liquid helium. Combined weight of the magnets will be over 1500 tonnes and the stored energy will be over 1600 MJ. Magnetic field strength in some coils will be more than 8 T. Detail design of the magnet system will begin early 1981. Basic requirements and conceptual design are disclosed in this paper

  10. Explosion hazard in liquid nitrogen cooled fusion systems

    International Nuclear Information System (INIS)

    Brereton, S.J.

    1988-01-01

    The explosion hazard associated with the use of liquid nitrogen in a radiation environment in fusion facilities has been investigated. The principal product of irradiating liquid nitrogen is thought to be ozone, resulting from the action of radiation on oxygen impurity. Ozone is a very unstable material, and explosions may occur as it rapidly decomposes to oxygen. Occurrences of this problem in irradiated liquid nitrogen systems are reviewed. An empirical expression, from early experiments, for the yield of ozone in liquid nitrogen-oxygen mixtures exposed to gamma radiation is employed to assess the degree of ozone explosion hazard expected at fusion facilities. The problem is investigated for the Compact Ignition Tokamak (CIT) as a particular example. 16 refs., 5 figs., 1 tab

  11. Reliability-Based Decision Fusion in Multimodal Biometric Verification Systems

    Directory of Open Access Journals (Sweden)

    Kryszczuk Krzysztof

    2007-01-01

    Full Text Available We present a methodology of reliability estimation in the multimodal biometric verification scenario. Reliability estimation has shown to be an efficient and accurate way of predicting and correcting erroneous classification decisions in both unimodal (speech, face, online signature and multimodal (speech and face systems. While the initial research results indicate the high potential of the proposed methodology, the performance of the reliability estimation in a multimodal setting has not been sufficiently studied or evaluated. In this paper, we demonstrate the advantages of using the unimodal reliability information in order to perform an efficient biometric fusion of two modalities. We further show the presented method to be superior to state-of-the-art multimodal decision-level fusion schemes. The experimental evaluation presented in this paper is based on the popular benchmarking bimodal BANCA database.

  12. Requirements and new materials for fusion laser systems

    Energy Technology Data Exchange (ETDEWEB)

    Stokowski, S.E.; Weber, M.J.; Saroyan, R.A.; Hagen, W.F.

    1977-10-01

    Higher focusable power in neodymium glass fusion lasers can be obtained through the use of new materials with lower nonlinear index (n/sub 2/) and better energy storage capabilities than the presently employed silicate glass. Silicate, phosphate, fluorophosphate, and beryllium fluoride glasses are discussed in terms of fusion laser requirements, particularly those for the proposed Nova laser. Examples of the variation in spectroscopic and optical properties obtainable with compositional changes are given. Results of a system evaluation of potential laser materials show that fluorophosphate glasses have many of the desired properties for use in Nova. These glasses are now being cast in large sizes (30-cm diameter) and will be tested in prototype amplifiers in 1978.

  13. Antimatter Driven P-B11 Fusion Propulsion System

    Science.gov (United States)

    Kammash, Terry; Martin, James; Godfroy, Thomas

    2002-01-01

    One of the major advantages of using P-B11 fusion fuel is that the reaction produces only charged particles in the form of three alpha particles and no neutrons. A fusion concept that lends itself to this fuel cycle is the Magnetically Insulated Inertial Confinement Fusion (MICF) reactor whose distinct advantage lies in the very strong magnetic field that is created when an incident particle (or laser) beam strikes the inner wall of the target pellet. This field serves to thermally insulate the hot plasma from the metal wall thereby allowing thc plasma to burn for a long time and produce a large energy magnification. If used as a propulsion device, we propose using antiprotons to drive the system which we show to be capable of producing very large specific impulse and thrust. By way of validating the confinement propenies of MICF we will address a proposed experiment in which pellets coated with P-B11 fuel at the appropriate ratio will be zapped by a beam of antiprotons that enter the target through a hole. Calculations showing the density and temperature of the generated plasma along with the strength of the magnetic field and other properties of the system will be presented and discussed.

  14. Economic viability of large-scale fusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Helsley, Charles E., E-mail: cehelsley@fusionpowercorporation.com; Burke, Robert J.

    2014-01-01

    A typical modern power generation facility has a capacity of about 1 GWe (Gigawatt electric) per unit. This works well for fossil fuel plants and for most fission facilities for it is large enough to support the sophisticated generation infrastructure but still small enough to be accommodated by most utility grid systems. The size of potential fusion power systems may demand a different viewpoint. The compression and heating of the fusion fuel for ignition requires a large driver, even if it is necessary for only a few microseconds or nanoseconds per energy pulse. The economics of large systems, that can effectively use more of the driver capacity, need to be examined. The assumptions used in this model are specific for the Fusion Power Corporation (FPC) SPRFD process but could be generalized for any system. We assume that the accelerator is the most expensive element of the facility and estimate its cost to be $20 billion. Ignition chambers and fuel handling facilities are projected to cost $1.5 billion each with up to 10 to be serviced by one accelerator. At first this seems expensive but that impression has to be tempered by the energy output that is equal to 35 conventional nuclear plants. This means the cost per kWh is actually low. Using the above assumptions and industry data for generators and heat exchange systems, we conclude that a fully utilized fusion system will produce marketable energy at roughly one half the cost of our current means of generating an equivalent amount of energy from conventional fossil fuel and/or fission systems. Even fractionally utilized systems, i.e. systems used at 25% of capacity, can be cost effective in many cases. In conclusion, SPRFD systems can be scaled to a size and configuration that can be economically viable and very competitive in today's energy market. Electricity will be a significant element in the product mix but synthetic fuels and water may also need to be incorporated to make the large system

  15. Economic viability of large-scale fusion systems

    International Nuclear Information System (INIS)

    Helsley, Charles E.; Burke, Robert J.

    2014-01-01

    A typical modern power generation facility has a capacity of about 1 GWe (Gigawatt electric) per unit. This works well for fossil fuel plants and for most fission facilities for it is large enough to support the sophisticated generation infrastructure but still small enough to be accommodated by most utility grid systems. The size of potential fusion power systems may demand a different viewpoint. The compression and heating of the fusion fuel for ignition requires a large driver, even if it is necessary for only a few microseconds or nanoseconds per energy pulse. The economics of large systems, that can effectively use more of the driver capacity, need to be examined. The assumptions used in this model are specific for the Fusion Power Corporation (FPC) SPRFD process but could be generalized for any system. We assume that the accelerator is the most expensive element of the facility and estimate its cost to be $20 billion. Ignition chambers and fuel handling facilities are projected to cost $1.5 billion each with up to 10 to be serviced by one accelerator. At first this seems expensive but that impression has to be tempered by the energy output that is equal to 35 conventional nuclear plants. This means the cost per kWh is actually low. Using the above assumptions and industry data for generators and heat exchange systems, we conclude that a fully utilized fusion system will produce marketable energy at roughly one half the cost of our current means of generating an equivalent amount of energy from conventional fossil fuel and/or fission systems. Even fractionally utilized systems, i.e. systems used at 25% of capacity, can be cost effective in many cases. In conclusion, SPRFD systems can be scaled to a size and configuration that can be economically viable and very competitive in today's energy market. Electricity will be a significant element in the product mix but synthetic fuels and water may also need to be incorporated to make the large system economically

  16. Quantum chemistry calculation and experimental study on coal ash fusion characteristics of coal blend

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yushuang; Zhang Zhong-xiao; Wu Xiao-jiang; Li Jie; Guang Rong-qing; Yan Bo [University of Shanghai for Science and Technology, Shanghai (China). Department of Power Engineering

    2009-07-01

    The coal ash fusion characteristics of high fusibility coal blending with two low fusibility coals respectively were studied. The data were analyzed using quantum chemistry methods and experiment from micro-and macro-molecular structures. The results show that Ca{sup 2+}, as the electron acceptor, easily enters into the lattice of mullite, causing a transition from mullite to anorthite. Mullite is much more stable than anorthite. Ca{sup 2+} of anorthite occupies the larger cavities with the (SiO{sub 4}){sup 4-} tetrahedral or (AlO{sub 4}){sup 5-} tetrahedral rings respectively. Ca atom linked O weakens Si-O bond, leading ash fusion point to reduce effectively. The chemistry, reactivity sites and bond-formation characteristics of minerals can well explain the reaction mechanism refractory minerals and flux ash melting process at high temperature. The results of experiment are agreed with the theory analysis by using ternary phase diagrams and quantitative calculation. 27 refs., 9 figs., 3 tabs.

  17. System study methodology. Development and potential utilization for fusion

    International Nuclear Information System (INIS)

    Djerassi, H.; Rouillard, J.; Leger, D.; Zappellini, G.; Gambi, G.

    1988-01-01

    The objective of this new methodology is to combine systemics with heuristics for engineering applications. The system method considers as a whole a set of dynamically interacting elements, organized for tasks. Heuristics tries to explicit the rules to apply in scientific research. This methodology is a powerful tool to evaluate the options to be made, compared with conventional analytical methods as a higher number of parameters can be taken into account, with higher quality standard while comparing the possible options. The system method takes into account interacting data or random relationships, by means of simulation modelling. Thus, a dynamical approach can be deduced and a sensitivity analysis can be performed for a very high number of options and basic data. Experimental values collection, analysis of the problem, search of solutions, sizing of the installation from defined functions, cost evaluation (planning and operating) and ranking of the options as regard all the constraints are the main points considered for the system's application. This method can be limited to a specific objective such as a fusion reactor safety analysis. The possibility of taking into account all the options, possible accidents, quality assurance, exhaustivity of the safety analysis, identification of the residual risk and modelisation of the results are the main advantages of this approach. The sophisticated architecture of a fusion reactor includes a large number of interacting systems. The new character of the fusion domain and the wide spectrum of the possible options strongly increase the advantages of a system study as a complete safety analysis can be defined before starting with the design

  18. Report of the Fusion Energy Sciences Advisory Committee. Panel on Integrated Simulation and Optimization of Magnetic Fusion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dahlburg, Jill [General Atomics, San Diego, CA (United States); Corones, James [Krell Inst., Ames, IA (United States); Batchelor, Donald [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bramley, Randall [Indiana Univ., Bloomington, IN (United States); Greenwald, Martin [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Jardin, Stephen [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Krasheninnikov, Sergei [Univ. of California, San Diego, CA (United States); Laub, Alan [Univ. of California, Davis, CA (United States); Leboeuf, Jean-Noel [Univ. of California, Los Angeles, CA (United States); Lindl, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lokke, William [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosenbluth, Marshall [Univ. of California, San Diego, CA (United States); Ross, David [Univ. of Texas, Austin, TX (United States); Schnack, Dalton [Science Applications International Corporation, Oak Ridge, TN (United States)

    2002-11-01

    Fusion is potentially an inexhaustible energy source whose exploitation requires a basic understanding of high-temperature plasmas. The development of a science-based predictive capability for fusion-relevant plasmas is a challenge central to fusion energy science, in which numerical modeling has played a vital role for more than four decades. A combination of the very wide range in temporal and spatial scales, extreme anisotropy, the importance of geometric detail, and the requirement of causality which makes it impossible to parallelize over time, makes this problem one of the most challenging in computational physics. Sophisticated computational models are under development for many individual features of magnetically confined plasmas and increases in the scope and reliability of feasible simulations have been enabled by increased scientific understanding and improvements in computer technology. However, full predictive modeling of fusion plasmas will require qualitative improvements and innovations to enable cross coupling of a wider variety of physical processes and to allow solution over a larger range of space and time scales. The exponential growth of computer speed, coupled with the high cost of large-scale experimental facilities, makes an integrated fusion simulation initiative a timely and cost-effective opportunity. Worldwide progress in laboratory fusion experiments provides the basis for a recent FESAC recommendation to proceed with a burning plasma experiment (see FESAC Review of Burning Plasma Physics Report, September 2001). Such an experiment, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world’s energy security. An integrated simulation capability would dramatically enhance the utilization of such a facility and lead to optimization of toroidal fusion plasmas in general. This science-based predictive capability, which was cited in the FESAC

  19. Report of the Fusion Energy Sciences Advisory Committee. Panel on Integrated Simulation and Optimization of Magnetic Fusion Systems

    International Nuclear Information System (INIS)

    Dahlburg, Jill; Corones, James; Batchelor, Donald; Bramley, Randall; Greenwald, Martin; Jardin, Stephen; Krasheninnikov, Sergei; Laub, Alan; Leboeuf, Jean-Noel; Lindl, John; Lokke, William; Rosenbluth, Marshall; Ross, David; Schnack, Dalton

    2002-01-01

    Fusion is potentially an inexhaustible energy source whose exploitation requires a basic understanding of high-temperature plasmas. The development of a science-based predictive capability for fusion-relevant plasmas is a challenge central to fusion energy science, in which numerical modeling has played a vital role for more than four decades. A combination of the very wide range in temporal and spatial scales, extreme anisotropy, the importance of geometric detail, and the requirement of causality which makes it impossible to parallelize over time, makes this problem one of the most challenging in computational physics. Sophisticated computational models are under development for many individual features of magnetically confined plasmas and increases in the scope and reliability of feasible simulations have been enabled by increased scientific understanding and improvements in computer technology. However, full predictive modeling of fusion plasmas will require qualitative improvements and innovations to enable cross coupling of a wider variety of physical processes and to allow solution over a larger range of space and time scales. The exponential growth of computer speed, coupled with the high cost of large-scale experimental facilities, makes an integrated fusion simulation initiative a timely and cost-effective opportunity. Worldwide progress in laboratory fusion experiments provides the basis for a recent FESAC recommendation to proceed with a burning plasma experiment (see FESAC Review of Burning Plasma Physics Report, September 2001). Such an experiment, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world's energy security. An integrated simulation capability would dramatically enhance the utilization of such a facility and lead to optimization of toroidal fusion plasmas in general. This science-based predictive capability, which was cited in the

  20. Integration of element technology and system supporting thermonuclear fusion

    International Nuclear Information System (INIS)

    2003-01-01

    A special committee for integrated system technology survey on thermonuclear fusion (TNF) was begun on June, 1999, under an aim to generally summarize whole of shapes on technology to realize TNF reactor to summarize present state of every technologies and their positioning in whole of their TNF technology. On a base of survey of these recent informations, this report is comprehensively summarized for an integrated system technology on TNF. It has outlines on magnetic field enclosing method, outlines on inertia enclosing method, element technology supporting TNF, new power generation techniques, and ripple effects on TNF technology. (G.K.)

  1. A novel fusion imaging system for endoscopic ultrasound

    DEFF Research Database (Denmark)

    Gruionu, Lucian Gheorghe; Saftoiu, Adrian; Gruionu, Gabriel

    2016-01-01

    BACKGROUND AND OBJECTIVE: Navigation of a flexible endoscopic ultrasound (EUS) probe inside the gastrointestinal (GI) tract is problematic due to the small window size and complex anatomy. The goal of the present study was to test the feasibility of a novel fusion imaging (FI) system which uses...... time was 24.6 ± 6.6 min, while the time to reach the clinical target was 8.7 ± 4.2 min. CONCLUSIONS: The FI system is feasible for clinical use, and can reduce the learning curve for EUS procedures and improve navigation and targeting in difficult anatomic locations....

  2. Tritiated hydrogen gas storage systems for a fusion plant

    International Nuclear Information System (INIS)

    Bramy, W.; Hircq, B.; Peyrat, M.; Leger, D.

    1992-01-01

    This paper reports that USSI INGENIERIE has carried out a study financed by European Communities Commission concerning the NET/ITER project, on tritium Fuel Management and Storage systems of the International Thermonuclear Experimental Reactor. A processing block diagram for hydrogen isotopes represents all interfaces and possible links between these systems and tritiated gas mixtures flowing through the Fusion plant. Large quantities of hydrogen isotopes (up to several thousand moles of protium, deuterium and tritium) in gaseous form associated with torus fuelling and exhaust pellet injection, and neutral beam injection, must be stored and managed in such a plant

  3. Parallel file system performances in fusion data storage

    International Nuclear Information System (INIS)

    Iannone, F.; Podda, S.; Bracco, G.; Manduchi, G.; Maslennikov, A.; Migliori, S.; Wolkersdorfer, K.

    2012-01-01

    High I/O flow rates, up to 10 GB/s, are required in large fusion Tokamak experiments like ITER where hundreds of nodes store simultaneously large amounts of data acquired during the plasma discharges. Typical network topologies such as linear arrays (systolic), rings, meshes (2-D arrays), tori (3-D arrays), trees, butterfly, hypercube in combination with high speed data transports like Infiniband or 10G-Ethernet, are the main areas in which the effort to overcome the so-called parallel I/O bottlenecks is most focused. The high I/O flow rates were modelled in an emulated testbed based on the parallel file systems such as Lustre and GPFS, commonly used in High Performance Computing. The test runs on High Performance Computing–For Fusion (8640 cores) and ENEA CRESCO (3392 cores) supercomputers. Message Passing Interface based applications were developed to emulate parallel I/O on Lustre and GPFS using data archival and access solutions like MDSPLUS and Universal Access Layer. These methods of data storage organization are widely diffused in nuclear fusion experiments and are being developed within the EFDA Integrated Tokamak Modelling – Task Force; the authors tried to evaluate their behaviour in a realistic emulation setup.

  4. Parallel file system performances in fusion data storage

    Energy Technology Data Exchange (ETDEWEB)

    Iannone, F., E-mail: francesco.iannone@enea.it [Associazione EURATOM-ENEA sulla Fusione, C.R.ENEA Frascati, via E.Fermi, 45 - 00044 Frascati, Rome (Italy); Podda, S.; Bracco, G. [ENEA Information Communication Tecnologies, Lungotevere Thaon di Revel, 76 - 00196 Rome (Italy); Manduchi, G. [Associazione EURATOM-ENEA sulla Fusione, Consorzio RFX, Corso Stati Uniti, 4 - 35127 Padua (Italy); Maslennikov, A. [CASPUR Inter-University Consortium for the Application of Super-Computing for Research, via dei Tizii, 6b - 00185 Rome (Italy); Migliori, S. [ENEA Information Communication Tecnologies, Lungotevere Thaon di Revel, 76 - 00196 Rome (Italy); Wolkersdorfer, K. [Juelich Supercomputing Centre-FZJ, D-52425 Juelich (Germany)

    2012-12-15

    High I/O flow rates, up to 10 GB/s, are required in large fusion Tokamak experiments like ITER where hundreds of nodes store simultaneously large amounts of data acquired during the plasma discharges. Typical network topologies such as linear arrays (systolic), rings, meshes (2-D arrays), tori (3-D arrays), trees, butterfly, hypercube in combination with high speed data transports like Infiniband or 10G-Ethernet, are the main areas in which the effort to overcome the so-called parallel I/O bottlenecks is most focused. The high I/O flow rates were modelled in an emulated testbed based on the parallel file systems such as Lustre and GPFS, commonly used in High Performance Computing. The test runs on High Performance Computing-For Fusion (8640 cores) and ENEA CRESCO (3392 cores) supercomputers. Message Passing Interface based applications were developed to emulate parallel I/O on Lustre and GPFS using data archival and access solutions like MDSPLUS and Universal Access Layer. These methods of data storage organization are widely diffused in nuclear fusion experiments and are being developed within the EFDA Integrated Tokamak Modelling - Task Force; the authors tried to evaluate their behaviour in a realistic emulation setup.

  5. Reactor potential of the magnetically insulated inertial fusion (MICF) system

    International Nuclear Information System (INIS)

    Kammash, T.; Galbraith, D.L.

    1987-01-01

    The Magnetically Insulated Inertial Confinement Fusion (MICF) scheme is examined with regard to its potential as a power-producing reactor. This approach combines the favorable aspects of both magnetic and inertial fusions in that physical containment of the plasma is provided by a metallic shell while thermal insulation of its energy is provided by a strong, self-generated magnetic field. The plasma is created at the core of the target as a result of irradiation of the fuel-coated inner surface by a laser beam that enters through a hole in the spherical shell. The instantaneous magnetic field is generated by the current loops formed by the laser-heated, laser-ablated electrons, and preliminary experimental results at Osaka University have confirmed the presence of such a field. These same experiments have also yielded a Lawson parameter of about 5x10 12 cm -3 sec, and because of these unique properties, the plasma lifetimes in MICF have been shown to be about two orders of magnitude longer than conventional, pusher type inertial fusion schemes. In this paper a quasi one dimensional, time dependent set of particle and energy balance equations for the thermal species, namely, electrons, ions and thermal alphas which also allows for an appropriate set of fast alpha groups is utilized to assess the reactor prospects of a DT-burning MICF system. (author) [pt

  6. Demazure Modules, Fusion Products and Q-Systems

    Science.gov (United States)

    Chari, Vyjayanthi; Venkatesh, R.

    2015-01-01

    In this paper, we introduce a family of indecomposable finite-dimensional graded modules for the current algebra associated to a simple Lie algebra. These modules are indexed by an -tuple of partitions , where α varies over a set of positive roots of and we assume that they satisfy a natural compatibility condition. In the case when the are all rectangular, for instance, we prove that these modules are Demazure modules in various levels. As a consequence, we see that the defining relations of Demazure modules can be greatly simplified. We use this simplified presentation to relate our results to the fusion products, defined in (Feigin and Loktev in Am Math Soc Transl Ser (2) 194:61-79, 1999), of representations of the current algebra. We prove that the Q-system of (Hatayama et al. in Contemporary Mathematics, vol. 248, pp. 243-291. American Mathematical Society, Providence, 1998) extends to a canonical short exact sequence of fusion products of representations associated to certain special partitions .Finally, in the last section we deal with the case of and prove that the modules we define are just fusion products of irreducible representations of the associated current algebra and give monomial bases for these modules.

  7. Neutron and photon transport calculations in fusion system. 2

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Satoshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1998-03-01

    On the application of MCNP to the neutron and {gamma}-ray transport calculations for fusion reactor system, the wide range design calculation has been carried out in the engineering design activities for the international thermonuclear fusion experimental reactor (ITER) being developed jointly by Japan, USA, EU and Russia. As the objects of shielding calculation for fusion reactors, there are the assessment of dose equivalent rate for living body shielding and the assessment of the nuclear response for the soundness of in-core structures. In the case that the detailed analysis of complicated three-dimensional shapes is required, the assessment using MCNP has been carried out. Also when the nuclear response of peripheral equipment due to the gap streaming between blanket modules is evaluated with good accuracy, the calculation with MCNP has been carried out. The analyses of the shieldings for blanket modules and NBI port are explained, and the examples of the results of analyses are shown. In the blanket modules, there are penetrating holes and continuous gap. In the case of the NBI port, shielding plug cannot be installed. These facts necessitate the MCNP analysis with high accuracy. (K.I.)

  8. Overview of systems requirements for impact fusion power

    International Nuclear Information System (INIS)

    Williams, J.M.; Booth, L.A.; Krakowski, R.A.

    1979-01-01

    The development of impact fusion power reactor concepts is very limited at this time. Key systems factors in arriving at practical concepts will be conception of credible systems and subsystems which promise an acceptable overall energy balance and development of target/projectile designs and gain versus projectile energy curves which allow system design tradeoffs to be accomplished. Important system parameters will be subsystem efficiencies (particularly the accelerator), target/projectile gain as a function of target design, circulating power fraction or engineering gain, system pulse repetition rate, size/cost scaling of components, containment cavity design limits, maximum yield, minimum economical yield, minimum projectile velocity and energy, and overall economics. When more detailed conceptual designs are available, then system tradeoffs and performance optimization will be possible

  9. HALO: a reconfigurable image enhancement and multisensor fusion system

    Science.gov (United States)

    Wu, F.; Hickman, D. L.; Parker, Steve J.

    2014-06-01

    Contemporary high definition (HD) cameras and affordable infrared (IR) imagers are set to dramatically improve the effectiveness of security, surveillance and military vision systems. However, the quality of imagery is often compromised by camera shake, or poor scene visibility due to inadequate illumination or bad atmospheric conditions. A versatile vision processing system called HALO™ is presented that can address these issues, by providing flexible image processing functionality on a low size, weight and power (SWaP) platform. Example processing functions include video distortion correction, stabilisation, multi-sensor fusion and image contrast enhancement (ICE). The system is based around an all-programmable system-on-a-chip (SoC), which combines the computational power of a field-programmable gate array (FPGA) with the flexibility of a CPU. The FPGA accelerates computationally intensive real-time processes, whereas the CPU provides management and decision making functions that can automatically reconfigure the platform based on user input and scene content. These capabilities enable a HALO™ equipped reconnaissance or surveillance system to operate in poor visibility, providing potentially critical operational advantages in visually complex and challenging usage scenarios. The choice of an FPGA based SoC is discussed, and the HALO™ architecture and its implementation are described. The capabilities of image distortion correction, stabilisation, fusion and ICE are illustrated using laboratory and trials data.

  10. Induction Linac Systems Experiments for heavy ion fusion

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.; Bangerter, R.O.

    1994-06-01

    The Lawrence Berkeley Laboratory and the Lawrence Livermore National Laboratory propose to build at LBL the Induction Linac Systems Experiments (ILSE), the next logical step toward the eventual goal of a heavy ion induction accelerator powerful enough to implode or drive inertial confinement fusion targets. Though much smaller than a driver, ILSE will be at full driver scale in several important parameters. Nearly all accelerator components and beam manipulations required for a driver will be tested. It is expected that ILSE will be built in stages as funds and technical progress allow. The first stage, called Elise will include all of the electrostatic quadrupole focused parts of ILSE

  11. Optical performance of the Gemini carbon dioxide laser fusion system

    International Nuclear Information System (INIS)

    Viswanathan, V.K.; Hayden, J.J.; Liberman, I.

    1979-01-01

    The performance of the Gemini two beam carbon dioxide laser fusion system was recently upgraded by installation of optical components with improved quality in the final amplifier. A theoretical analysis was conducted in conjunction with measurements of the new performance. The analysis and experimental procedures, and results obtained are reported and compared. Good agreement was found which was within the uncertainties of the analysis and the inaccuracies of the experiments. The focal spot Strehl ratio was between 0.24 and 0.3 for both beams

  12. Ash fusion characteristics during co-gasification of biomass and petroleum coke.

    Science.gov (United States)

    Xiong, Qing-An; Li, Jiazhou; Guo, Shuai; Li, Guang; Zhao, Jiantao; Fang, Yitian

    2018-06-01

    In this study, the effect of biomass ash on petroleum coke ash fusibility was investigated at a reducing atmosphere. Some analytical methods, such as ash fusion temperatures (AFTs) analysis, X-ray diffraction (XRD), FactSage and scanning electron microscopy (SEM), were applied to determine the characteristics of ash fusion and transformation of mineral matters. The results indicated that AFTs were closely associated with ash mineral compositions. It was found that the formations of high melting point calcium silicate, vanadium trioxide and coulsonite resulted in the high AFTs of Yanqing petroleum coke (YQ). When blending with certain proportional pine sawdust (PS), corn stalk (CS), the AFTs of mixture could be decreased significantly. For PS addition, the formations of low-melting point calcium vanadium oxide should be responsible for the reduction of AFTs, whereas for CS addition the reason was ascribed to the formation of low-melting point leucite and the disappearance of high-melting V 2 O 3 . Copyright © 2018. Published by Elsevier Ltd.

  13. On experimental determination of characteristics of nuclear fusion reactions from mu-molecular resonance states

    International Nuclear Information System (INIS)

    Bystritskij, V.M.; Pen'kov, F.M.

    1997-01-01

    Charge-nonsymmetrical deuterium-helium muon complexes (dμHe) are studied. A method is proposed for experimentally determining the rates of nuclear fusion reactions in dμHe molecules in the J=1 and J=0 states (J is the orbital moment of the system) and the partial rates for radiative decay of these complexes in these states. Experiments are supposed to be carried out at meson factories with gaseous and cryogenic targets filled with a mixture of deuterium and helium

  14. The design of red-blue 3D video fusion system based on DM642

    Science.gov (United States)

    Fu, Rongguo; Luo, Hao; Lv, Jin; Feng, Shu; Wei, Yifang; Zhang, Hao

    2016-10-01

    Aiming at the uncertainty of traditional 3D video capturing including camera focal lengths, distance and angle parameters between two cameras, a red-blue 3D video fusion system based on DM642 hardware processing platform is designed with the parallel optical axis. In view of the brightness reduction of traditional 3D video, the brightness enhancement algorithm based on human visual characteristics is proposed and the luminance component processing method based on YCbCr color space is also proposed. The BIOS real-time operating system is used to improve the real-time performance. The video processing circuit with the core of DM642 enhances the brightness of the images, then converts the video signals of YCbCr to RGB and extracts the R component from one camera, so does the other video and G, B component are extracted synchronously, outputs 3D fusion images finally. The real-time adjustments such as translation and scaling of the two color components are realized through the serial communication between the VC software and BIOS. The system with the method of adding red-blue components reduces the lost of the chrominance components and makes the picture color saturation reduce to more than 95% of the original. Enhancement algorithm after optimization to reduce the amount of data fusion in the processing of video is used to reduce the fusion time and watching effect is improved. Experimental results show that the system can capture images in near distance, output red-blue 3D video and presents the nice experiences to the audience wearing red-blue glasses.

  15. Analysis of an induction linac driver system for inertial fusion

    International Nuclear Information System (INIS)

    Hovingh, J.; Brady, V.O.; Faltens, A.; Keefe, D.; Lee, E.P.

    1987-07-01

    A linear induction accelerator that produces a beam of energetic (5 to 20 GeV) heavy (130 to 210 amu) ions is a prime candidate as a driver for inertial fusion. Continuing developments in sources for ions with charge state greater than unity allow a potentially large reduction in the driver cost and an increase in the driver efficiency. The use of high undepressed tunes (σ 0 ≅ 85 0 ) and low depressed tunes (σ ≅ 8.5 0 ) also contributes to a potentially large reduction in the driver cost. The efficiency and cost of the induction linac system are discussed as a function of output energy and pulse repetition frequency for several ion masses and charge states. The cost optimization code LIACEP, including accelerating module alternatives, transport modules, and scaling laws, is presented. Items with large cost-leverage are identified as a guide to future research activities and development of technology that can yield substantial reductions in the accelerator system cost and improvement in the accelerator system efficiency. Finally, a cost-effective strategy using heavy ion induction linacs in a development scenario for inertial fusion is presented. 34 refs., 6 figs., 7 tabs

  16. Modeling Xenon Purification Systems in a Laser Inertial Fusion Engine

    Science.gov (United States)

    Hopkins, Ann; Gentile, Charles

    2011-10-01

    A Laser Inertial Fusion Engine (LIFE) is a proposed method to employ fusion energy to produce electricity for consumers. However, before it can be built and used as such, each aspect of a LIFE power plant must first be meticulously planned. We are in the process of developing and perfecting models for an exhaust processing and fuel recovery system. Such a system is especially essential because it must be able to recapture and purify expensive materials involved in the reaction so they may be reused. One such material is xenon, which is to be used as an intervention gas in the target chamber. Using Aspen HYSYS, we have modeled several subsystems for exhaust processing, including a subsystem for xenon recovery and purification. After removing hydrogen isotopes using lithium bubblers, we propose to use cryogenic distillation to purify the xenon from remaining contaminants. Aspen HYSYS allows us to analyze predicted flow rates, temperatures, pressures, and compositions within almost all areas of the xenon purification system. Through use of Aspen models, we hope to establish that we can use xenon in LIFE efficiently and in a practical manner.

  17. Sub-barrier fusion of Si+Si systems

    Science.gov (United States)

    Colucci, G.; Montagnoli, G.; Stefanini, A. M.; Bourgin, D.; Čolović, P.; Corradi, L.; Courtin, S.; Faggian, M.; Fioretto, E.; Galtarossa, F.; Goasduff, A.; Haas, F.; Mazzocco, M.; Scarlassara, F.; Stefanini, C.; Strano, E.; Urbani, M.; Szilner, S.; Zhang, G. L.

    2017-11-01

    The near- and sub-barrier fusion excitation function has been measured for the system 30Si+30Si at the Laboratori Nazionali di Legnaro of INFN, using the 30Si beam of the XTU Tandem accelerator in the energy range 47 - 90 MeV. A set-up based on a beam electrostatic deflector was used for detecting fusion evaporation residues. The measured cross sections have been compared to previous data on 28Si+28Si and Coupled Channels (CC) calculations have been performed using M3Y+repulsion and Woods-Saxon potentials, where the lowlying 2+ and 3- excitations have been included. A weak imaginary potential was found to be necessary to reproduce the low energy 28Si+28Si data. This probably simulates the effect of the oblate deformation of this nucleus. On the contrary, 30Si is a spherical nucleus, 30Si+30Si is nicely fit by CC calculations and no imaginary potential is needed. For this system, no maximum shows up for the astrophysical S-factor so that we have no evidence for hindrance, as confirmed by the comparison with CC calculations. The logarithmic derivative of the two symmetric systems highlights their different low energy trend. A difference can also be noted in the two barrier distributions, where the high-energy peak present in 28Si+28Si is not observed for 30Si+30Si, probably due to the weaker couplings in last case.

  18. Sub-barrier fusion of Si+Si systems

    Directory of Open Access Journals (Sweden)

    Colucci G.

    2017-01-01

    Full Text Available The near- and sub-barrier fusion excitation function has been measured for the system 30Si+30Si at the Laboratori Nazionali di Legnaro of INFN, using the 30Si beam of the XTU Tandem accelerator in the energy range 47 - 90 MeV. A set-up based on a beam electrostatic deflector was used for detecting fusion evaporation residues. The measured cross sections have been compared to previous data on 28Si+28Si and Coupled Channels (CC calculations have been performed using M3Y+repulsion and Woods-Saxon potentials, where the lowlying 2+ and 3− excitations have been included. A weak imaginary potential was found to be necessary to reproduce the low energy 28Si+28Si data. This probably simulates the effect of the oblate deformation of this nucleus. On the contrary, 30Si is a spherical nucleus, 30Si+30Si is nicely fit by CC calculations and no imaginary potential is needed. For this system, no maximum shows up for the astrophysical S-factor so that we have no evidence for hindrance, as confirmed by the comparison with CC calculations. The logarithmic derivative of the two symmetric systems highlights their different low energy trend. A difference can also be noted in the two barrier distributions, where the high-energy peak present in 28Si+28Si is not observed for 30Si+30Si, probably due to the weaker couplings in last case.

  19. Study on conceptual design system of tritium production fusion reactor

    International Nuclear Information System (INIS)

    He Kaihui

    2004-11-01

    Conceptual design of an advanced tritium production reactor based on spherical torus, which is intermediate application of fusion energy, was presented. Different from traditional tokamak tritium production reactor design, advanced plasma physics performance and compact structural characteristics of ST were used to minimize tritium leakage and to maximize tritium breeding ratio with arrangement of tritium production blankets as possible as it can within vacuum vessel in order to produce 1 kg excess tritium except self-sufficient plasma core, corresponding plant availability 40% or more. Based on 2D neutronics calculation, preliminary conceptual design of ST-TPR was presented. Besides systematical analyses; design risk, uncertainty and backup are introduced generally for the backgrounds of next detailed conceptual design. (author)

  20. Failure modes and effects analysis of fusion magnet systems

    International Nuclear Information System (INIS)

    Zimmermann, M.; Kazimi, M.S.; Siu, N.O.; Thome, R.J.

    1988-12-01

    A failure modes and consequence analysis of fusion magnet system is an important contributor towards enhancing the design by improving the reliability and reducing the risk associated with the operation of magnet systems. In the first part of this study, a failure mode analysis of a superconducting magnet system is performed. Building on the functional breakdown and the fault tree analysis of the Toroidal Field (TF) coils of the Next European Torus (NET), several subsystem levels are added and an overview of potential sources of failures in a magnet system is provided. The failure analysis is extended to the Poloidal Field (PF) magnet system. Furthermore, an extensive analysis of interactions within the fusion device caused by the operation of the PF magnets is presented in the form of an Interaction Matrix. A number of these interactions may have significant consequences for the TF magnet system particularly interactions triggered by electrical failures in the PF magnet system. In the second part of this study, two basic categories of electrical failures in the PF magnet system are examined: short circuits between the terminals of external PF coils, and faults with a constant voltage applied at external PF coil terminals. An electromagnetic model of the Compact Ignition Tokamak (CIT) is used to examine the mechanical load conditions for the PF and the TF coils resulting from these fault scenarios. It is found that shorts do not pose large threats to the PF coils. Also, the type of plasma disruption has little impact on the net forces on the PF and the TF coils. 39 refs., 30 figs., 12 tabs

  1. FUSION OF VENTURI AND ULTRASONIC FLOW METER FOR ENHANCED FLOW METER CHARACTERISTICS USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    K.V. Santhosh

    2015-04-01

    Full Text Available This paper proposes a technique for measurement of liquid flow using venturi and ultrasonic flow meter(UFM to have following objectives a to design a multi-sensor data fusion (MSDF architecture for using both the sensors, b improve sensitivity and linearity of venturi and ultrasonic flow meter, and c detect and diagnosis of faults in sensor if any. Fuzzy logic algorithm is used to fuse outputs of both the sensor and train the fuzzy block to produces output which has an improved characteristics in terms of both sensitivity and linearity. For identification of sensor faults a comparative test algorithm is designed. Once trained proposed technique is tested in real life, results show successful implementation of proposed objectives.

  2. Manipulator system for remote maintenance of fusion experimental reactor

    International Nuclear Information System (INIS)

    Shibanuma, Kiyoshi; Munakata, Tadashi; Murakami, Shin; Kondoh, Mitsunori.

    1991-01-01

    We have completed the conceptual design for a rail-mounted vehicle type remote maintenance system for the fusion experimental reactor (FER), which will be the first D-T burning reactor in Japan. We have fabricated a 1/5-scale model and confirmed the feasibility of the design. In this system, a rail is deployed into the vessel and supported at four horizontal ports. A vehicle then moves along the rail and handles in-vessel components with manipulators. The advantages of this concept are the high stiffness and high reliability of the rail, and the high mobility of the vehicle for efficient maintenance operations. In the FER, this concept is considered to be the first option for in-vessel maintenance. This paper describes the conceptual design of the system and the feasibility study using the 1/5-scale model. (author)

  3. Fusion events

    International Nuclear Information System (INIS)

    Aboufirassi, M; Angelique, J.C.; Bizard, G.; Bougault, R.; Brou, R.; Buta, A.; Colin, J.; Cussol, D.; Durand, D.; Genoux-Lubain, A.; Horn, D.; Kerambrun, A.; Laville, J.L.; Le Brun, C.; Lecolley, J.F.; Lefebvres, F.; Lopez, O.; Louvel, M.; Meslin, C.; Metivier, V.; Nakagawa, T.; Peter, J.; Popescu, R.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Wieloch, A.; Yuasa-Nakagawa, K.

    1998-01-01

    The fusion reactions between low energy heavy ions have a very high cross section. First measurements at energies around 30-40 MeV/nucleon indicated no residue of either complete or incomplete fusion, thus demonstrating the disappearance of this process. This is explained as being due to the high amount o energies transferred to the nucleus, what leads to its total dislocation in light fragments and particles. Exclusive analyses have permitted to mark clearly the presence of fusion processes in heavy systems at energies above 30-40 MeV/nucleon. Among the complete events of the Kr + Au reaction at 60 MeV/nucleon the majority correspond to binary collisions. Nevertheless, for the most considerable energy losses, a class of events do occur for which the detected fragments appears to be emitted from a unique source. These events correspond to an incomplete projectile-target fusion followed by a multifragmentation. Such events were singled out also in the reaction Xe + Sn at 50 MeV/nucleon. For the events in which the energy dissipation was maximal it was possible to isolate an isotropic group of events showing all the characteristics of fusion nuclei. The fusion is said to be incomplete as pre-equilibrium Z = 1 and Z = 2 particles are emitted. The cross section is of the order of 25 mb. Similar conclusions were drown for the systems 36 Ar + 27 Al and 64 Zn + nat Ti. A cross section value of ∼ 20 mb was determined at 55 MeV/nucleon in the first case, while the measurement of evaporation light residues in the last system gave an upper limit of 20-30 mb for the cross section at 50 MeV/nucleon

  4. Neutron analysis of a hybrid system fusion-fission

    International Nuclear Information System (INIS)

    Dorantes C, J. J.; Francois L, J. L.

    2011-11-01

    The use of energy at world level implies the decrease of natural resources, reduction of fossil fuels, in particular, and a high environmental impact. In view of this problem, an alternative is the energy production for nuclear means, because up to now is one of the less polluting energy; however, the nuclear fuel wastes continue being even a problem without being solved. For the above mentioned this work intends the creation of a device that incorporates the combined technologies of fission and nuclear fusion, called Nuclear Hybrid Reactor Fusion-Fission (HRFF). The HRFF has been designed theoretically with base in experimental fusion reactors in different parts of the world like: United States, Russia, Japan, China and United Kingdom, mainly. The hybrid reactor model here studied corresponds at the Compact Nuclear Facility Source (CNFS). The importance of the CNFS resides in its feasibility, simple design, minor size and low cost; uses deuterium-tritium like main source of neutrons, and as fuel can use the spent fuel of conventional nuclear reactors, such as the current light water reactors. Due to the high costs of experimental research, this work consists on simulating in computer a proposed model of CNFS under normal conditions of operation, to modify the arrangement of the used fuel: MOX and IMF, to analyze the obtained results and to give final conclusions. In conclusion, the HRFF can be a versatile system for the management of spent fuel of light water reactors, so much for the possibility of actinides destruction, like for the breeding of fissile material. (Author)

  5. Economic evaluations of fusion-based energy storage systems in an electric utility

    International Nuclear Information System (INIS)

    Hwang, W.G.

    1977-01-01

    The feasibility of introducing a fusion energy storage system, which consists of a fusion-fission reactor and a water-splitting process, in an electric utility was investigated. The fusion energy storage system was assumed to be run during off-peak periods in order to make use of unused, low fuel cost capacity of an electric utility. The fusion energy storage system produces both fissile fuel and hydrogen. The produced hydrogen was assumed to be transmitted through and stored in existing natural gas trunklines for later use during peak-load hours. The peaking units in the utility were assumed to burn the hydrogen. Reserve power is usually cheap on systems with heavy nuclear fission reactor installation. The system studied utilizes this cheap energy for producing expensive fuel. The thermochemical water-splitting process was employed to recover thermal energy from the fusion-fission reactor system. The cost of fusion energy storage systems as well as the value of produced fuel were calculated. In order to simulate the operations of the fusion energy storage system for a multi-year planning period, a computer program, FESUT (Fusion Energy Simulation at the University of Texas), was developed for the present study. Two year utility simulations with the fusion energy storage system were performed

  6. The timing system of the RFX Nuclear Fusion Experiment

    International Nuclear Information System (INIS)

    Schmidt, V.; Flor, G.; Manduchi, G.; Piacentini, I.

    1992-01-01

    The REX Nuclear Fusion Experiment [1] in Padova, Italy, employs a distributed system to produce precision trigger signals for the fast control of the experiment and for the experiment-wide synchronization of data acquisition channels. The hardware of the system is based on a set of CAMAC modules. The modules have been integrated into a hardware/software system which provides the following features: 1) generation of pre-programmed timing events, 2) distribution of asynchronous (not pre-programmed) timing events, 3) gating of timing event generation by Machine Protection System, 4) automatic stop of timing sequence in case of highway damage, 5) dual-speed time base for transient recorders, 6) system-wide precision of ≤ 3 μs, time resolution ≥ 10 μs. The operation of the timing system is fully integrated into the RFX data acquisition system software. The Timing System Software consists of three layers: the lowest one corresponds directly to the CAMAC modules, the intermediate one provides pseudo-devices which essentially correspond to specific features for the modules (e.g. a dual frequency clock source for transient recorders), the highest level provides system set-up support. The system is fully operational and was first used during the commissioning of the RFX Power Supplies in spring '91. (author)

  7. AxiaLIF system: minimally invasive device for presacral lumbar interbody spinal fusion.

    Science.gov (United States)

    Rapp, Steven M; Miller, Larry E; Block, Jon E

    2011-01-01

    Lumbar fusion is commonly performed to alleviate chronic low back and leg pain secondary to disc degeneration, spondylolisthesis with or without concomitant lumbar spinal stenosis, or chronic lumbar instability. However, the risk of iatrogenic injury during traditional anterior, posterior, and transforaminal open fusion surgery is significant. The axial lumbar interbody fusion (AxiaLIF) system is a minimally invasive fusion device that accesses the lumbar (L4-S1) intervertebral disc spaces via a reproducible presacral approach that avoids critical neurovascular and musculoligamentous structures. Since the AxiaLIF system received marketing clearance from the US Food and Drug Administration in 2004, clinical studies of this device have reported high fusion rates without implant subsidence, significant improvements in pain and function, and low complication rates. This paper describes the design and approach of this lumbar fusion system, details the indications for use, and summarizes the clinical experience with the AxiaLIF system to date.

  8. Fusion of Heterogeneous Intrusion Detection Systems for Network Attack Detection

    Directory of Open Access Journals (Sweden)

    Jayakumar Kaliappan

    2015-01-01

    Full Text Available An intrusion detection system (IDS helps to identify different types of attacks in general, and the detection rate will be higher for some specific category of attacks. This paper is designed on the idea that each IDS is efficient in detecting a specific type of attack. In proposed Multiple IDS Unit (MIU, there are five IDS units, and each IDS follows a unique algorithm to detect attacks. The feature selection is done with the help of genetic algorithm. The selected features of the input traffic are passed on to the MIU for processing. The decision from each IDS is termed as local decision. The fusion unit inside the MIU processes all the local decisions with the help of majority voting rule and makes the final decision. The proposed system shows a very good improvement in detection rate and reduces the false alarm rate.

  9. Proposed rf system for the fusion materials irradiation test facility

    International Nuclear Information System (INIS)

    Fazio, M.V.; Johnson, H.P.; Hoffert, W.J.; Boyd, T.J.

    1979-01-01

    Preliminary rf system design for the accelerator portion of the Fusion Materials Irradiation Test (FMIT) Facility is in progress. The 35-MeV, 100-mA, cw deuteron beam will require 6.3 MW rf power at 80 MHz. Initial testing indicates the EIMAC 8973 tetrode is the most suitable final amplifier tube for each of a series of 15 amplifier chains operating at 0.5-MW output. To satisfy the beam dynamics requirements for particle acceleration and to minimize beam spill, each amplifier output must be controlled to +-1 0 in phase and the field amplitude in the tanks must be held within a 1% tolerance. These tolerances put stringent demands on the rf phase and amplitude control system

  10. Cybernics fusion of human, machine and information systems

    CERN Document Server

    Suzuki, Kenji; Hasegawa, Yasuhisa

    2014-01-01

    Cybernics plays a significant role in coping with an aging society using state-of-the-art technologies from engineering, clinical medicine and humanities. This new interdisciplinary field studies technologies that enhance, strengthen, and support physical and cognitive functions of human beings, based on the fusion of human, machine, and information systems. The design of a seamless interface for interaction between the interior and exterior of the human body is described in this book from diverse aspects such as the physical, neurophysiological, and cognitive levels. It is the first book to cover the many aspects of cybernics, allowing readers to understand the life support robotics technology for the elderly, including remote, in-home, hospital, institutional, community medical welfare, and vital-sensing systems. Serving as a valuable resource, this volume will interest not only graduate students, scientists, and engineers but also newcomers to the field of cybernics.

  11. Exploring novel high power density concepts for attractive fusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, M.A. [California State Univ., Los Angeles, CA (United States). Dept. of Mechanical Engineering; APEX Team

    1999-05-01

    The advanced power extraction study is aimed at exploring innovative concepts for fusion power technology (FPT) that can tremendously enhance the potential of fusion as an attractive and competitive energy source. Specifically, the study is exploring new and `revolutionary` concepts that can provide the capability to efficiently extract heat from systems with high neutron and surface heat loads while satisfying all the FPT functional requirements and maximizing reliability, maintainability, safety, and environmental requirements. The primary criteria for measuring performance of the new concepts are: (1) high power density capability with a peak neutron wall load (NWL) of {proportional_to}10 MW m{sup -2} and surface heat flux of {proportional_to}2 MW m{sup -2}; (2) high power conversion efficiency, {proportional_to}40% net; and (3) clear potential to achieve high availability; specifically low failure rate, large design margin, and short downtime for maintenance. A requirement that MTBF{>=}43 MTTR was derived as a necessary condition to achieve the required first wall/blanket availability, where MTBF is the mean time between failures and MTTR is the mean time to recover. Highlights of innovative and promising new concepts that may satisfy these criteria are provided. (orig.) 40 refs.

  12. XEUS: Exploratory Energy Utilization Systemic s for Fission Fusion Hybrid Application

    International Nuclear Information System (INIS)

    Suh, Kune Y.; Jeong, Wi S.; Son, Hyung M.

    2008-01-01

    World energy outlook requires environmental friendliness, sustain ability and improved economic feasibility. The Exploratory Energy Utilization Systemic s (XEUS) is being developed at the Seoul National University (SNU) to satisfy these demands. Generation IV (Gen IV) and fusion reactors are considered as candidates for the primary system. Battery Omnibus Reactor Integral System (BORIS) is a liquid-metal cooled fast reactor which is one of the Gen IV concepts. Fusion Engineering Lifetime Integral Explorer (FELIX) is a fusion demonstration reactor for power generation. These two concepts are considered as dominant options for future nuclear energy source from the environmental, commercial and nonproliferation points of view. XEUS may as well be applied to the fusion-fission hybrid system. The system code is being developed to analyze the steady state and transient behavior of the primary system. Compact and high efficiency heat exchangers are designed in the Loop Energy Exchanger Integral System (LEXIS). Modular Optimized Brayton Integral System (MOBIS) incorporates a Brayton cycle with supercritical fluid to achieve high power conversion ratio. The high volumetric energy density of the Brayton cycle enables designers to reduce the size and eventually the cost of the system when compared with that of the Rankine cycle. MOBIS is home to heat exchangers and turbo machineries. The advanced shell-and-tube or printed circuit heat exchanger is considered as heat transfer components to reduce size of the system. The supercritical fluid driven turbines and compressor are designed to achieve higher component efficiency. Thermo hydrodynamic characteristics of each component in MOBIS are demonstrated utilizing computational fluid dynamics software CFX R . Another key contributor to the reduction of capital costs per unit energy has to do with manufacturing and assembly processes that streamline plant construction by minimizing construction work and time. In a three

  13. Self-shielding characteristics of aqueous self-cooled blankets for next generation fusion devices

    International Nuclear Information System (INIS)

    Pelloni, S.; Cheng, E.T.; Embrechts, M.J.

    1987-11-01

    The present study examines self-shielding characteristics for two aqueous self-cooled tritium producing driver blankets for next generation fusion devices. The aqueous Self-Cooled Blanket concept (ASCB) is a very simple blanket concept that relies on just structural material and coolant. Lithium compounds are dissolved in water to provide for tritium production. An ASCB driver blanket would provide a low technology and low temperature environment for blanket test modules in a next generation fusion reactor. The primary functions of such a blanket would be shielding, energy removal and tritium production. One driver blanket considered in this study concept relates to the one proposed for the Next European Torus (NET), while the second concept is indicative for the inboard shield design for the Engineering Test Reactor proposed by the USA (TIBER II/ETR). The driver blanket for NET is based on stainless steel for the structural material and aqueous solution, while the inboard shielding blanket for TIBER II/ETR is based on a tungsten/aqueous solution combination. The purpose of this study is to investigate self-shielding and heterogeneity effects in aqueous self-cooled blankets. It is found that no significant gains in tritium breeding can be achieved in the stainless steel blanket if spatial and energy self-shielding effects are considered, and the heterogeneity effects are also insignificant. The tungsten blanket shows a 5 percent increase in tritium production in the shielding blanket when energy and spatial self-shielding effects are accounted for. However, the tungsten blanket shows a drastic increase in the tritium breeding ratio due to heterogeneity effects. (author) 17 refs., 9 figs., 9 tabs

  14. Homeland security application of the Army Soft Target Exploitation and Fusion (STEF) system

    Science.gov (United States)

    Antony, Richard T.; Karakowski, Joseph A.

    2010-04-01

    A fusion system that accommodates both text-based extracted information along with more conventional sensor-derived input has been developed and demonstrated in a terrorist attack scenario as part of the Empire Challenge (EC) 09 Exercise. Although the fusion system was developed to support Army military analysts, the system, based on a set of foundational fusion principles, has direct applicability to department of homeland security (DHS) & defense, law enforcement, and other applications. Several novel fusion technologies and applications were demonstrated in EC09. One such technology is location normalization that accommodates both fuzzy semantic expressions such as behind Library A, across the street from the market place, as well as traditional spatial representations. Additionally, the fusion system provides a range of fusion products not supported by traditional fusion algorithms. Many of these additional capabilities have direct applicability to DHS. A formal test of the fusion system was performed during the EC09 exercise. The system demonstrated that it was able to (1) automatically form tracks, (2) help analysts visualize behavior of individuals over time, (3) link key individuals based on both explicit message-based information as well as discovered (fusion-derived) implicit relationships, and (4) suggest possible individuals of interest based on their association with High Value Individuals (HVI) and user-defined key locations.

  15. Alignment system for large high-power CO2 laser fusion systems

    International Nuclear Information System (INIS)

    Bausman, M.D.; Liberman, I.; Manning, J.P.; Singer, S.

    1977-01-01

    Aligning a pulsed CO 2 laser fusion system involves control systems which insure that the centers of beams follow a prescribed path to within 1 mm, that the pointing of the beams is correct to approximately 20 microradians, and that focal spot at the location of the experimental fusion target be placed to accuracies of 10 to 20 micrometers laterally and approximately 50 micrometers axially. These alignments are accomplished by a variety of sensing techniques which include thermal pinholes and quadrant detectors, Seebeck effect silicon detectors, and imaging autocollimating Hartmann test procedures employing ir vidicon systems

  16. Performance characteristics of shape memory alloy and its applications for fusion technology

    International Nuclear Information System (INIS)

    Nishikawa, Masahiro; Watanabe, Kenji

    1987-01-01

    As a shape memory alloy, Au-Cd alloy was found in 1951. Thereafter, also in In-Tl alloy, shape memory effect was found. The U.S. Naval Ordinance Laboratory developed Ni-Ti alloy, and published in 1965 as NITINOL. As Cu group shape memory alloys, there are Cu-Zn-Al alloy, Cu-Al-Be alloy and Cu-Al-Ni alloy. Recently, iron group shape memory alloy was published. In 1975, 'Shape memory effect and its application' symposium, in 1978, 'NITINOL heat engine international conference', and in 1982 and 1986, 'Martensite transformation international conference' were held, and the method of the proper use of shape memory alloys and the problems of the alloys themselves such as fatigue have been gradually clarified. In this report, the fundamental action characteristics of shape memory alloys are discribed from the viewpoint of the application, and the possibility of applying these characteristics to nuclear fusion devices and the advantage obtained as the result are explained. Shape memory effect and pseudo-elasticity, reversible shape memory effect, the thermodynamic behavior of shape memory alloys, transformation temperature range and using temperature range and so on are described. (Kako, I.)

  17. Functional analysis for complex systems of nuclear fusion plant

    International Nuclear Information System (INIS)

    Pinna, Tonio; Dongiovanni, Danilo Nicola; Iannone, Francesco

    2016-01-01

    Highlights: • Functional analysis for complex systems. • Functional Flow Block Diagrams (FFBD). • IDEFØ diagrams. • Petri Net algorithm - Abstract: In system engineering context, a functional analysis is the systematic process of identifying, describing and correlating the functions a system must perform in order to be successful at any foreseen life-cycle phase or operational state/mode. By focusing on what the system must do disregarding the implementation, the functional analysis supports an unbiased system requirement allocation analysis. The system function architecture is defined in terms of process, protection (interlock) or nuclear safety functions. Then, the system functions are analyzed from several points of view in order to highlight the various pieces of information defining the way the system is designed to accomplish its mission as defined in the system requirement documents. The process functional flow is identified and represented by Functional Flow Block Diagrams (FFBD) while the system function interfaces are identified and represented by IDEFØ diagrams. Function interfaces are defined as relationships across identified functions in terms of function input (from other functions or requirements), output (added value or outcome of the function), controls (from other functions or systems) and mechanisms necessary to fulfill the function. The function architecture is further detailed by considering for each function: a) the phase of application, b) the actions performed c) the controlled variable and control actions to be foreseen in the implementation of the functions, d) the system involved in the control action, e) the equipment involved in the function, f) the requirements allocated to the function. The methodology here presented are suggested for the designing of fusion facilities and reactors already from the first phases of the pre-conceptual design, as it is now for DEMO.

  18. Fluorescence-pumped photolytic gas laser system for a commercial laser fusion power plant

    International Nuclear Information System (INIS)

    Monsler, M.J.

    1977-01-01

    The first results are given for the conceptual design of a short-wavelength gas laser system suitable for use as a driver (high average power ignition source) for a commercial laser fusion power plant. A comparison of projected overall system efficiencies of photolytically excited oxygen, sulfur, selenium and iodine lasers is described, using a unique windowless laser cavity geometry which will allow scaling of single amplifier modules to 125 kJ per aperture for 1 ns pulses. On the basis of highest projected overall efficiency, a selenium laser is chosen for a conceptual power plant fusion laser system. This laser operates on the 489 nm transauroral transition of selenium, excited by photolytic dissociation of COSe by ultraviolet fluorescence radiation. Power balances and relative costs for optics, electrical power conditioning and flow conditioning of both the laser and fluorescer gas streams are discussed for a system with the following characteristics: 8 operating modules, 2 standby modules, 125 kJ per module, 1.4 pulses per second, 1.4 MW total average power. The technical issues of scaling visible and near-infrared photolytic gas laser systems to this size are discussed

  19. Fusion PIC code performance analysis on the Cori KNL system

    Energy Technology Data Exchange (ETDEWEB)

    Koskela, Tuomas S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Deslippe, Jack [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Friesen, Brian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Raman, Karthic [INTEL Corp. (United States)

    2017-05-25

    We study the attainable performance of Particle-In-Cell codes on the Cori KNL system by analyzing a miniature particle push application based on the fusion PIC code XGC1. We start from the most basic building blocks of a PIC code and build up the complexity to identify the kernels that cost the most in performance and focus optimization efforts there. Particle push kernels operate at high AI and are not likely to be memory bandwidth or even cache bandwidth bound on KNL. Therefore, we see only minor benefits from the high bandwidth memory available on KNL, and achieving good vectorization is shown to be the most beneficial optimization path with theoretical yield of up to 8x speedup on KNL. In practice we are able to obtain up to a 4x gain from vectorization due to limitations set by the data layout and memory latency.

  20. An induction Linac driven heavy-ion fusion systems model

    International Nuclear Information System (INIS)

    Zuckerman, D.S.; Driemeyer, D.E.; Waganer, L.M.; Dudziak, D.J.

    1988-01-01

    A computerized systems model of a heavy-ion fusion (HIF) reactor power plant is presented. The model can be used to analyze the behavior and projected costs of a commercial power plant using an induction linear accelerator (Linac) as a driver. Each major component of the model (targets, reactor cavity, Linac, beam transport, power flow, balance of plant, and costing) is discussed. Various target, reactor cavity, Linac, and beam transport schemes are examined and compared. The preferred operating regime for such a power plant is also examined. The results show that HIF power plants can compete with other advanced energy concepts at the 1000-MW (electric) power level [cost of electricity (COE) -- 50 mill/kW . h] provided that the cost savings predicted for Linacs using higher charge-state ions (+3) can be realized

  1. Liquid Metals as Plasma-facing Materials for Fusion Energy Systems: From Atoms to Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Howard A. [Princeton Univ., NJ (United States); Koel, Bruce E. [Princeton Univ., NJ (United States); Bernasek, Steven L. [Princeton Univ., NJ (United States); Carter, Emily A. [Princeton Univ., NJ (United States); Debenedetti, Pablo G. [Princeton Univ., NJ (United States); Panagiotopoulos, Athanassios Z. [Princeton Univ., NJ (United States)

    2017-06-23

    The objective of our studies was to advance our fundamental understanding of liquid metals as plasma-facing materials for fusion energy systems, with a broad scope: from atoms to tokamaks. The flow of liquid metals offers solutions to significant problems of the plasma-facing materials for fusion energy systems. Candidate metals include lithium, tin, gallium, and their eutectic combinations. However, such liquid metal solutions can only be designed efficiently if a range of scientific and engineering issues are resolved that require advances in fundamental fluid dynamics, materials science and surface science. In our research we investigated a range of significant and timely problems relevant to current and proposed engineering designs for fusion reactors, including high-heat flux configurations that are being considered by leading fusion energy groups world-wide. Using experimental and theoretical tools spanning atomistic to continuum descriptions of liquid metals, and bridging surface chemistry, wetting/dewetting and flow, our research has advanced the science and engineering of fusion energy materials and systems. Specifically, we developed a combined experimental and theoretical program to investigate flows of liquid metals in fusion-relevant geometries, including equilibrium and stability of thin-film flows, e.g. wetting and dewetting, effects of electromagnetic and thermocapillary fields on liquid metal thin-film flows, and how chemical interactions and the properties of the surface are influenced by impurities and in turn affect the surface wetting characteristics, the surface tension, and its gradients. Because high-heat flux configurations produce evaporation and sputtering, which forces rearrangement of the liquid, and any dewetting exposes the substrate to damage from the plasma, our studies addressed such evaporatively driven liquid flows and measured and simulated properties of the different bulk phases and material interfaces. The range of our studies

  2. Fusion: introduction

    International Nuclear Information System (INIS)

    Decreton, M.

    2006-01-01

    The article gives an overview and introduction to the activities of SCK-CEN's research programme on fusion. The decision to construct the ITER international nuclear fusion experiment in Cadarache is highlighted. A summary of the Belgian contributions to fusion research is given with particular emphasis on studies of radiation effects on diagnostics systems, radiation effects on remote handling sensing systems, fusion waste management and socio-economic studies

  3. Comparative energetics of three fusion-fission symbiotic nuclear reactor systems

    International Nuclear Information System (INIS)

    Gordon, C.W.; Harms, A.A.

    1975-01-01

    The energetics of three symbiotic fusion-fission nuclear reactor concepts are investigated. The fuel and power balances are considered for various values of systems parameters. The results from this analysis suggest that symbiotic fusion-fission systems are advantageous from the standpoint of economy and resource utilization. (Auth.)

  4. KMS fusion system resource accounting and performance measurement system for RSX11M V3. 2

    Energy Technology Data Exchange (ETDEWEB)

    Downward, J. G.

    1980-01-01

    Version 3.2 of the KMS FUSION accounting system is aimed at providing the user of RSX11M V3.2 with a versatile tool for measuring the performance of the operating system, tuning the system, and providing sufficient usage statistics so that the system manager can implement chargeback accounting if it is required by the installation. Sufficient hooks are provided so that the intrepid user can expand the system substantially beyond what is currently provided.

  5. Investigation of nonplanar modular coil systems for stellarator fusion reactors

    International Nuclear Information System (INIS)

    Harmeyer, E.

    1988-12-01

    Steady-state stellarators constitute an important option for a future fusion reactor. The helical magnetic field required for plasma confinement can be produced by means of a set of modular nonplanar coils. In order to achieve optimum power density of the plasma, the magnetic flux density inside the torus is made as high as possible. State-of-the-art estimates allow values of the magnetic flux density on axis of B 0 = 4-7 T. The present report is concerned with investigations on modular nonplanar stellarator coil systems. Coil systems with poloidal periodicity l=2 and a coil system of the W VII-AS type with superposed l=0, 1, 2, 3 terms are treated. Furthermore, the parameters are simultaneously varied while keeping constant the ratios of certain magnitudes. In the parameter space of the geometric values and coil number the following quantities are evaluated: maximum magnetic flux density in the coil domain, stored magnetic energy of the coil system, magnetic force density distribution or magnetic forces, and mechanical stress distribution in the coils. Numerical methods are applied in the programme systems used for these calculations. The aim of the study is to determine an optimum regime for the above parameters. The numerical results are compared with those of analytical approximation solutions. (orig.)

  6. Employing Data Fusion in Cultural Analysis and Counterinsurgency in Tribal Social Systems

    OpenAIRE

    Merten, Steffen

    2009-01-01

    This article was published in Culture and Conflict Review (Fall 2009), v.3 no.3 "The point of this essay has been to outline ways that data fusion may be achieved, and how it can dramatically enhance the analytical capabilities of cultural analysts, especially in tribal social systems. By using Visual Analytics theory and technology to conduct the labor intensive aspects of data fusion, and accepting the theoretical justification of fusion between the geospatial, relational, and temporal d...

  7. Conceptual design report for a Fusion Engineering Device sector-handling machine and movable manipulator system

    International Nuclear Information System (INIS)

    Watts, K.D.; Masson, L.S.; McPherson, R.S.

    1982-10-01

    Design requirements, trade studies, design descriptions, conceptual designs, and cost estimates have been completed for the Fusion Engineering Device sector handling machine, movable manipulator system, subcomponent handling machine, and limiter blade handling machine. This information will be used by the Fusion Engineering Design Center to begin to determine the cost and magnitude of the effort required to perform remote maintenance on the Fusion Engineering Device. The designs presented are by no means optimum, and the costs estimates are rough-order-of-magnitude

  8. Camera-laser fusion sensor system and environmental recognition for humanoids in disaster scenarios

    International Nuclear Information System (INIS)

    Lee, Inho; Oh, Jaesung; Oh, Jun-Ho; Kim, Inhyeok

    2017-01-01

    This research aims to develop a vision sensor system and a recognition algorithm to enable a humanoid to operate autonomously in a disaster environment. In disaster response scenarios, humanoid robots that perform manipulation and locomotion tasks must identify the objects in the environment from those challenged by the call by the United States’ Defense Advanced Research Projects Agency, e.g., doors, valves, drills, debris, uneven terrains, and stairs, among others. In order for a humanoid to undertake a number of tasks, we con- struct a camera–laser fusion system and develop an environmental recognition algorithm. Laser distance sensor and motor are used to obtain 3D cloud data. We project the 3D cloud data onto a 2D image according to the intrinsic parameters of the camera and the distortion model of the lens. In this manner, our fusion sensor system performs functions such as those performed by the RGB-D sensor gener- ally used in segmentation research. Our recognition algorithm is based on super-pixel segmentation and random sampling. The proposed approach clusters the unorganized cloud data according to geometric characteristics, namely, proximity and co-planarity. To assess the feasibility of our system and algorithm, we utilize the humanoid robot, DRC-HUBO, and the results are demonstrated in the accompanying video.

  9. Camera-laser fusion sensor system and environmental recognition for humanoids in disaster scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Inho [Institute for Human and Machine Cognition (IHMC), Florida (United States); Oh, Jaesung; Oh, Jun-Ho [Korea Advanced Institute of Science and Technology (KAIST), Daejeon (Korea, Republic of); Kim, Inhyeok [NAVER Green Factory, Seongnam (Korea, Republic of)

    2017-06-15

    This research aims to develop a vision sensor system and a recognition algorithm to enable a humanoid to operate autonomously in a disaster environment. In disaster response scenarios, humanoid robots that perform manipulation and locomotion tasks must identify the objects in the environment from those challenged by the call by the United States’ Defense Advanced Research Projects Agency, e.g., doors, valves, drills, debris, uneven terrains, and stairs, among others. In order for a humanoid to undertake a number of tasks, we con- struct a camera–laser fusion system and develop an environmental recognition algorithm. Laser distance sensor and motor are used to obtain 3D cloud data. We project the 3D cloud data onto a 2D image according to the intrinsic parameters of the camera and the distortion model of the lens. In this manner, our fusion sensor system performs functions such as those performed by the RGB-D sensor gener- ally used in segmentation research. Our recognition algorithm is based on super-pixel segmentation and random sampling. The proposed approach clusters the unorganized cloud data according to geometric characteristics, namely, proximity and co-planarity. To assess the feasibility of our system and algorithm, we utilize the humanoid robot, DRC-HUBO, and the results are demonstrated in the accompanying video.

  10. Design of a fusion reaction-history measurement system with high temporal resolution

    International Nuclear Information System (INIS)

    Peng Xiaoshi; Wang Feng; Liu Shenye; Jiang Xiaohua; Tang Qi

    2010-01-01

    In order to accurately measure the history of fusion reaction for experimental study of inertial confinement fusion, we advance the design of a fusion reaction-history measurement system with high temporal resolution. The diagnostic system is composed of plastic scintillator and nose cone, an optical imaging system and the system of optic streak camera. Analyzing the capability of the system indicated that the instrument measured fusion reaction history at temporal resolution as low as 55ps and 40ps correspond to 2.45MeV DD neutrons and 14.03MeV DT neutrons. The instrument is able to measure the fusion reaction history at yields 1.5 x 10 9 DD neutrons, about 4 x 10 8 DT neutrons are required for a similar quality signal. (authors)

  11. A review of fusion device fuel cleanup systems

    International Nuclear Information System (INIS)

    Dombra, A.H.; Carney, M.

    1985-01-01

    Design options for a small fusion fuel purification system are assessed by comparing six conceptual system designs based on one of the following: a Zr/Al getter pump for in vacuo applications, a cryogenic molecular sieve adsorber at 77K, a palladium-alloy membrane diffuser, a U-bed reactor at 1170K, a two-compartment cryogenic freezer at 27-50K and 50-300K, a U-bed and non-regenerative Zr/Al gas purifier. The latter system introduces a new concept of fuel purification based on well-established techniques: recovery of purified D 2 -DT-T 2 from a helium carrier gas with the U-bed, followed by the removal of impurities from the carrier gas with the non-regenerative Zr/Al gas purifier. The main advantages of this system are simplicity, safety and relatively small quantity of tritiated waste produced by the process. The tritium in the waste is immobilized as a stable tritide of Zr/Al

  12. Liquid metal liner implosion systems with blade lattice for fusion

    International Nuclear Information System (INIS)

    Itoh, Yasuyuki; Fujiie, Yoichi

    1980-01-01

    In this paper, the liquid liner implosion systems with the blade lattice is proposed for the rotational stabilization of the liner inner surface which is facing a plasma in a fusion reactor. The blades are electrically conducting and inclined to the radial direction. Its major function is either acceleration or deceleration of the liner in the azimuthal direction. This system enables us to exclude the rotary mechanism for the liner rotation. In this system, the liner is formed as an annular flow of a liquid metal (the waterfall concept). Results show that there is no significant difference of the energy cost for the stabilization compared with the earlier proposed system where a liner is rotated rigidly before implosion. Furthermore, the application of the rotating blade lattice makes it possible to reduce the rotational kinetic energy required for the stabilization at turnaround, where the lattice acts as an impeller in the initial liner rotation. There is an optimum blade angle to maximize the compressed magnetic field energy inside the liner for a given driving energy. (author)

  13. Role of nuclear fusion in future energy systems and the environment under future uncertainties

    International Nuclear Information System (INIS)

    Tokimatsu, Koji; Fujino, Jun'ichi; Konishi, Satoshi; Ogawa, Yuichi; Yamaji, Kenji

    2003-01-01

    Debates about whether or not to invest heavily in nuclear fusion as a future innovative energy option have been made within the context of energy technology development strategies. This is because the prospects for nuclear fusion are quite uncertain and the investments therefore carry the risk of quite large regrets, even though investment is needed in order to develop the technology. The timeframe by which nuclear fusion could become competitive in the energy market has not been adequately studied, nor has roles of the nuclear fusion in energy systems and the environment. The present study has two objectives. One is to reveal the conditions under which nuclear fusion could be introduced economically (hereafter, we refer to such introductory conditions as breakeven prices) in future energy systems. The other objective is to evaluate the future roles of nuclear fusion in energy systems and in the environment. Here we identify three roles that nuclear fusion will take on when breakeven prices are achieved: (i) a portion of the electricity market in 2100, (ii) reduction of annual global total energy systems cost, and (iii) mitigation of carbon tax (shadow price of carbon) under CO 2 constraints. Future uncertainties are key issues in evaluating nuclear fusion. Here we treated the following uncertainties: energy demand scenarios, introduction timeframe for nuclear fusion, capacity projections of nuclear fusion, CO 2 target in 2100, capacity utilization ratio of options in energy/environment technologies, and utility discount rates. From our investigations, we conclude that the presently designed nuclear fusion reactors may be ready for economical introduction into energy systems beginning around 2050-2060, and we can confirm that the favorable introduction of the reactors would reduce both the annual energy systems cost and the carbon tax (the shadow price of carbon) under a CO 2 concentration constraint

  14. Outgassing characteristics of F82H ferritic steel as a low activation material for fusion reactor

    International Nuclear Information System (INIS)

    Odaka, Kenji; Satou, Osamu; Ootsuka, Michio; Abe, Tetsuya; Hara, Shigemitsu; Takatsu, Hideyuki; Enoeda, Mikio.

    1997-01-01

    Outgassing characteristics of F82H ferritic steel as a low activation material for the blanket of fusion device were investigated. A test chamber was constructed by welding F82H ferritic steel plates. The inner surface of the chamber was buffed and electropolished. The test chamber was degassed by the prebaking at temperature of 350degC for 20 h in vacuum. Then outgassing rates of the test chamber were measured by the throughput method as a function of pumping time for the cases that the test chamber was baked and not baked. The typical outgassing rate after baking at 250degC for 24 h was 3 x 10 -9 Pa·ms -1 and it seems that this value is sufficiently small to produce pressures at least as low as 10 -9 Pa in the vacuum chamber made of F82H ferritic steel. In the pump-down of the test chamber without baking after exposure to air, the outgassing rate decreases with pumping time and reached 1 x 10 -7 Pa·ms -1 at t = 10 5 s. The activation energy of hydrogen in bulk diffusion in the F82H ferritic steel was measured and found to be 7 kcal/mol. (author)

  15. Conceptual design of the fusion-driven subcritical system FDS-I

    International Nuclear Information System (INIS)

    Wu, Y.; Zheng, S.; Zhu, X.; Wang, W.; Wang, H.; Liu, S.; Bai, Y.; Chen, H.; Hu, L.; Chen, M.; Huang, Q.; Huang, D.; Zhang, S.; Li, J.; Chu, D.; Jiang, J.; Song, Y.

    2006-01-01

    The fusion-driven subcritical system (named FDS-I) was previously proposed as an intermediate step toward the final application of fusion energy. A conceptual design of the FDS-I is presented, which consists of the fusion neutron driver with relatively easy-achieved plasma parameters, and the He-gas/liquid lithium-lead Dual-cooled subcritical Waste Transmutation (DWT) blanket used to transmute long-lived radioactive wastes and to generate energy on the basis of self-sustainable fission and fusion fuel cycle. An overview of the FDS-I is given and the specifications of the design analysis are summarized

  16. 1978 source book for fusion--fission hybrid systems. Executive summary

    International Nuclear Information System (INIS)

    Crowley, J.H.; Pavlenco, G.F.; Kaminski, R.S.

    1978-12-01

    The 1978 Source Book for Fusion--Fission Hybrid Systems was prepared by United Engineers and Constructors Inc. for the U.S. Department of Energy and the Electric Power Research Institute. It reviews the current status of fusion--fission hybrid reactors, and presents the prevailing views of members of the fusion community on the RD and D timetable required for the development and commercialization of fusion--fission hybrids. The results presented are based on a review of related references as well as interviews with recognized experts in the field. Contributors from the academic and industrial communities are listed

  17. Fusion power: Expected environmental characteristics and status of R and D

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1989-01-01

    From the outset in the 1950's, fusion research has been motivated by environmental concerns as well as long-term fuel supply issues. Compared to fossil fuels both fusion and fission would produce essentially zero emissions to the atmosphere. Compared to fission, fusion reactors should offer high demonstrability of public protection from accidents and a substantial amelioration of the radioactive waste problem. Fusion still requires lengthy development, the earliest commercial deployment being likely to occur around 2025-2050. However, steady scientific progress is being made and there is a wide consensus that it is time to plan large-scale engineering development. A major international effort, called the International Thermonuclear Experimental Reactor (ITER), is being carried out under IAEA auspices to design the world's first fusion engineering test reactor, which could be constructed in the 1990's. 5 figs., 3 tabs

  18. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  19. Fusion hindrance at deep sub-barrier energies for the 11B+197Au system

    Science.gov (United States)

    Shrivastava, A.; Mahata, K.; Nanal, V.; Pandit, S. K.; Parkar, V. V.; Rout, P. C.; Dokania, N.; Ramachandran, K.; Kumar, A.; Chatterjee, A.; Kailas, S.

    2017-09-01

    Fusion cross sections for the 11B+197Au system have been measured at energies around and deep below the Coulomb barrier, to probe the occurrence of fusion hindrance in case of asymmetric systems. A deviation with respect to the standard coupled channels calculations has been observed at the lowest energy. The results have been compared with an adiabatic model calculation that considers a damping of the coupling strength for a gradual transition from sudden to adiabatic regime at very low energies. The data could be explained without inclusion of the damping factor. This implies that the influence of fusion hindrance is not significant within the measured energy range for this system. The present result is consistent with the observed trend between the degree of fusion hindrance and the charge product that reveals a weaker influence of hindrance on fusion involving lighter projectiles on heavy targets.

  20. Towards an operational sensor-fusion system for anti-personnel landmine detection

    NARCIS (Netherlands)

    Cremer, F.; Schutte, K.; Schavemaker, J.G.M.; Breejen, E. den

    2000-01-01

    To acquire detection performance required for an operational system for the detection of anti-personnel landmines, it is necessary to use multiple sensors and sensor-fusion techniques. This paper describes five decision-level sensor-fusion techniques and their common optimisation method. The

  1. A system dynamics model for tritium cycle of pulsed fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zuolong; Nie, Baojie [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China); Chen, Dehong, E-mail: dehong.chen@fds.org.cn [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China)

    2017-05-15

    As great challenges and uncertainty exist in achieving steady plasma burning, pulsed plasma burning may be a potential scenario for fusion engineering test reactor, even for fusion DEMOnstration reactor. In order to analyze dynamic tritium inventory and tritium self-sufficiency for pulsed fusion systems, a system dynamics model of tritium cycle was developed on the basis of earlier version of Tritium Analysis program for fusion System (TAS). The model was verified with TRIMO, which was developed by KIT in Germany. Tritium self-sufficiency and dynamic tritium inventory assessment were performed for a typical fusion engineering test reactor. The verification results show that the system dynamics model can be used for tritium cycle analysis of pulsed fusion reactor with sufficient reliability. The assessment results of tritium self-sufficiency indicate that the fusion reactor might only need several hundred gram tritium to startup if achieved high efficient tritium handling ability (Referred ITER: 1 h). And the initial tritium startup inventory in pulsed fusion reactor is determined by the combined influence of pulse length, burn availability, and tritium recycle time. Meanwhile, tritium self-sufficiency can be achieved under the defined condition.

  2. Affordable non-traditional source data mining for context assessment to improve distributed fusion system robustness

    Science.gov (United States)

    Bowman, Christopher; Haith, Gary; Steinberg, Alan; Morefield, Charles; Morefield, Michael

    2013-05-01

    This paper describes methods to affordably improve the robustness of distributed fusion systems by opportunistically leveraging non-traditional data sources. Adaptive methods help find relevant data, create models, and characterize the model quality. These methods also can measure the conformity of this non-traditional data with fusion system products including situation modeling and mission impact prediction. Non-traditional data can improve the quantity, quality, availability, timeliness, and diversity of the baseline fusion system sources and therefore can improve prediction and estimation accuracy and robustness at all levels of fusion. Techniques are described that automatically learn to characterize and search non-traditional contextual data to enable operators integrate the data with the high-level fusion systems and ontologies. These techniques apply the extension of the Data Fusion & Resource Management Dual Node Network (DNN) technical architecture at Level 4. The DNN architecture supports effectively assessment and management of the expanded portfolio of data sources, entities of interest, models, and algorithms including data pattern discovery and context conformity. Affordable model-driven and data-driven data mining methods to discover unknown models from non-traditional and `big data' sources are used to automatically learn entity behaviors and correlations with fusion products, [14 and 15]. This paper describes our context assessment software development, and the demonstration of context assessment of non-traditional data to compare to an intelligence surveillance and reconnaissance fusion product based upon an IED POIs workflow.

  3. A system dynamics model for tritium cycle of pulsed fusion reactor

    International Nuclear Information System (INIS)

    Zhu, Zuolong; Nie, Baojie; Chen, Dehong

    2017-01-01

    As great challenges and uncertainty exist in achieving steady plasma burning, pulsed plasma burning may be a potential scenario for fusion engineering test reactor, even for fusion DEMOnstration reactor. In order to analyze dynamic tritium inventory and tritium self-sufficiency for pulsed fusion systems, a system dynamics model of tritium cycle was developed on the basis of earlier version of Tritium Analysis program for fusion System (TAS). The model was verified with TRIMO, which was developed by KIT in Germany. Tritium self-sufficiency and dynamic tritium inventory assessment were performed for a typical fusion engineering test reactor. The verification results show that the system dynamics model can be used for tritium cycle analysis of pulsed fusion reactor with sufficient reliability. The assessment results of tritium self-sufficiency indicate that the fusion reactor might only need several hundred gram tritium to startup if achieved high efficient tritium handling ability (Referred ITER: 1 h). And the initial tritium startup inventory in pulsed fusion reactor is determined by the combined influence of pulse length, burn availability, and tritium recycle time. Meanwhile, tritium self-sufficiency can be achieved under the defined condition.

  4. Decay heat measurement on fusion reactor materials and validation of calculation code system

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio; Ikeda, Yujiro; Wada, Masayuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Decay heat rates for 32 fusion reactor relevant materials irradiated with 14-MeV neutrons were measured for the cooling time period between 1 minute and 400 days. With using the experimental data base, validity of decay heat calculation systems for fusion reactors were investigated. (author)

  5. Cooling System Design Options for a Fusion Reactor

    Science.gov (United States)

    Natalizio, Antonio; Collén, Jan; Vieider, Gottfried

    1997-06-01

    The objective of a fusion power reactor is to produce electricity safely and reliably. Accordingly, the design, objective of the heat transport system is to optimize power production, safety, and reliability. Such an optimization process, however, is constrained by many factors, including, among others: public safety, worker safety, steam cycle efficiency, reliability, and cost. As these factors impose conflicting requirements, there is a need to find an optimum design solution, i.e., one that satisfies all requirements, but not necessarily each requirement optimally. The SEAFP reactor study developed helium-cooled and water-cooled models for assessment purposes. Among other things, the current study demonstrates that neither model offers an optimum solution. Helium cooling offers a high steam cycle efficiency but poor reliability for the cooling of high heat flux components (divertor and first wall). Alternatively, water cooling offers a low steam cycle efficiency, but reasonable reliability for the cooling of such components. It is concluded that an optimum solution includes helium cooling of low heat flux components and water cooling of high heat flux components. Relative to the SEAFP helium model, this hybrid system enhances safety and reliability, while retaining the high steam cycle efficiency of that model.

  6. Progress in the development of methodology for fusion safety systems studies

    International Nuclear Information System (INIS)

    Ho, S.K.; Cambi, G.; Ciattaglia, S.; Fujii-e, Y.; Seki, Y.

    1994-01-01

    The development of fusion safety systems-study methodology, including the aspects of schematic classification of overall fusion safety system, qualitative assessment of fusion system for identification of critical accident scenarios, quantitative analysis of accident consequences and risk for safety design evaluation, and system-level analysis of accident consequences and risk for design optimization, by a consortium of international efforts is presented. The potential application of this methodology into reactor design studies will facilitate the systematic assessment of safety performance of reactor designs and enhance the impacts of safety considerations on the selection of design configurations

  7. Research on Key Technologies of Network Centric System Distributed Target Track Fusion

    Directory of Open Access Journals (Sweden)

    Yi Mao

    2017-01-01

    Full Text Available To realize common tactical picture in network-centered system, this paper proposes a layered architecture for distributed information processing and a method for distributed track fusion on the basis of analyzing the characteristics of network-centered systems. Basing on the noncorrelation of three-dimensional measurement of surveillance and reconnaissance sensors under polar coordinates, it also puts forward an algorithm for evaluating track quality (TQ using statistical decision theory. According to simulation results, the TQ value is associated with the measurement accuracy of sensors and the motion state of targets, which is well matched with the convergence process of tracking filters. Besides, the proposed algorithm has good reliability and timeliness in track quality evaluation.

  8. Processing and waste disposal needs for fusion breeder blankets system

    International Nuclear Information System (INIS)

    Finn, P.A.; Vogler, S.

    1988-01-01

    We evaluated the waste disposal and recycling requirements for two types of fusion breeder blanket (solid and liquid). The goal was to determine if breeder blanket waste can be disposed of in shallow land burial, the least restrictive method under U.S. Nuclear Regulatory Commission regulations. Described in this paper are the radionuclides expected in fusion blanket materials, plans for reprocessing and disposal of blanket components, and estimates for the operating costs involved in waste disposal. (orig.)

  9. A Protein Disulfide Isomerase Gene Fusion Expression System That Increases the Extracellular Productivity of Bacillus brevis

    Science.gov (United States)

    Kajino, Tsutomu; Ohto, Chikara; Muramatsu, Masayoshi; Obata, Shusei; Udaka, Shigezo; Yamada, Yukio; Takahashi, Haruo

    2000-01-01

    We have developed a versatile Bacillus brevis expression and secretion system based on the use of fungal protein disulfide isomerase (PDI) as a gene fusion partner. Fusion with PDI increased the extracellular production of heterologous proteins (light chain of immunoglobulin G, 8-fold; geranylgeranyl pyrophosphate synthase, 12-fold). Linkage to PDI prevented the aggregation of the secreted proteins, resulting in high-level accumulation of fusion proteins in soluble and biologically active forms. We also show that the disulfide isomerase activity of PDI in a fusion protein is responsible for the suppression of the aggregation of the protein with intradisulfide, whereas aggregation of the protein without intradisulfide was prevented even when the protein was fused to a mutant PDI whose two active sites were disrupted, suggesting that another PDI function, such as chaperone-like activity, synergistically prevented the aggregation of heterologous proteins in the PDI fusion expression system. PMID:10653729

  10. Aspects of safety and reliability for fusion magnet systems first annual report

    International Nuclear Information System (INIS)

    Powell, J.

    1976-01-01

    General systems aspects of fusion magnet safety are examined first, followed by specific detailed analyses covering structural, thermal, electrical, and other aspects of fusion magnet safety. The design examples chosen for analysis are illustrative and are not intended to be definitive, since fusion magnet designs are rapidly evolving. Included is a comprehensive collection of design and operating data relating to the safety of existing superconducting magnet systems. The remainder of the overview lists the main conclusions developed from the work to date. These should be regarded as initial steps. Since this study has concentrated on examining potential safety concerns, it may tend to overemphasize the problems of fusion magnets. In fact, many aspects of fusion magnets are well developed and are consistent with good safety practice. A short summary of the findings of this study is given

  11. Large aperture components for solid state laser fusion systems

    International Nuclear Information System (INIS)

    Simmons, W.W.

    1978-01-01

    Solid state lasers for fusion experiments must reliably deliver maximum power to small (approximately .5 mm) targets from stand-off focal distances of 1 m or more. This requirement places stringent limits upon the optical quality, resistance to damage, and overall performance of the several major components--amplifiers, Faraday isolators, spatial filters--in each amplifier train. Component development centers about achieving (1) highest functional material figure of merit, (2) best optical quality, and (3) maximum resistance to optical damage. Specific examples of the performance of large aperture components will be presented within the context of the Argus and Shiva laser systems, which are presently operational at Lawrence Livermore Laboratory. Shiva comprises twenty amplifiers, each of 20 cm output clear aperture. Terawatt beams from these amplifiers are focused through two opposed, nested clusters of f/6 lenses onto such targets. Design requirements upon the larger aperture Nova laser components, up to 35 cm in clear aperture, will also be discussed; these pose a significant challenge to the optical industry

  12. Mechanical Property Characteristics of Butt-Fusion Joint of High Density Polyethylene Pipe for NPP Safety Class Application

    International Nuclear Information System (INIS)

    Oh, Youngjin; Kim, Kyoungsu; Lee, Seunggun; Park, Heungbae; Yu, Jeongho; Kim, Jongsung; Kim, Jeonghyun; Jang, Changheui; Choi, Sunwoong

    2013-01-01

    Several NPPs in United States replaced parts of sea water or raw water system pipes to HDPE (high density polyethylene) pipes, which have outstanding resistance for oxidation and seismic loading. ASME B and PV code committee developed Code Case N-755, which describes rules for the construction of Safety Class 3 polyethylene pressure piping components. Several NPP's in US proposed relief requests in order to apply Code Case N-755. Although US NRC permitted using Code Case N-755 and HDPE materials for Class 3 buried piping, their permission was limited to only 10 years because of several concerns for material performance of HDPE. US NRC's major concerns are about material properties and the quality of fusion zone of HDPE. In this study, material property tests for HDPE fusion zone are conducted with varying standard fusion procedures. Mechanical property tests for fused material for HDPE pipes were conducted. Fused material shows lower toughness than base material and fused material of lower fusion pressure shows higher toughness than that of higher fusion pressure

  13. Systems approach for condition management design: JET neutral beam system-A fusion case study

    Energy Technology Data Exchange (ETDEWEB)

    Khella, M., E-mail: M.Khella@lboro.ac.uk [Systems Engineering Innovation Centre (SEIC) - BAE Systems, Loughborough University, Holywell Park, Leicestershire LE11 3TU (United Kingdom); Pearson, J. [Systems Engineering Innovation Centre (SEIC) - BAE Systems, Loughborough University, Holywell Park, Leicestershire LE11 3TU (United Kingdom); Dixon, R. [Electronic and Electrical Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Ciric, D.; Day, I.; King, R.; Milnes, J.; Stafford-Allen, R. [EURATOM/CCFE Fusion Association, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom)

    2011-10-15

    The maturation of any new technology can be coarsely divided into three stages of a development lifecycle: (1) fundamental research, (2) experimental rig development and testing through to (3) commercialization. With the enhancement of machines like JET, the building of ITER and the initiation of DEMO design activities, the fusion community is moving from stages 1 and 2 towards stage 3. One of the consequences of this transition will be a shift in emphasis from scientific achievement to maximizing machine reliability and availability. The fusion community should therefore be preparing itself for this shift by examining all methods and tools utilized in established engineering sectors that might help to improve these fundamental performance parameters. To this end, the Culham Centre for Fusion Energy (CCFE) has proactively engaged with UK industry to examine whether the development of condition management (CM) systems could help improve such performance parameters. This paper describes an initial CM design case study on the JET neutral beam system. The primary output of this study was the development of a CM design methodology that captures existing experience in fault detection, and classification as well as new methods for fault diagnosis. A summary of the methods used and the potential benefits of data fusion are presented here.

  14. A study on the nuclear fusion reactor - A study on the data acquisition system for the nuclear fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seoung Jong; Son, Dong Chul; Park, Il Hung; Oh, Young Do [Kyungpook University, Taegu (Korea, Republic of); Chang, Doo Hee [Hanyang University, Seoul (Korea, Republic of)

    1996-09-01

    We have constructed a VXI data acquisition system to measure plasma position at KT-1 in KAERI, using HP-VEE, HP V/382 and HP E1429A. Currently we are analyzing data. We have also established basic concepts for the plasma feedback control system at KT-1, and selected necessary hardwares and softwares. The system has been set up and is being tested. The digital feedback control system provides more versatile control of plasma position and shape than the analog system by software programming. The digital system has been chosen so that the plasma feedback control could be done in real-time (target feedback loop-time : < 0.5 msec). After considering compatibility and extensibility of the system, we have selected VxWorks for a real-time operating system, MVME 167, Pentek 4284 VME DSP based on the platform of TI TMS320C40, Pentek 4248 ADC, Pentek 4253 DAC. These Pentek modules uses a local bus to maximize the data transfer rate. To evaluate MMI which may provide operators of fusion devices for easy and simple access to data acquisition, we have written test codes with free Tcl/Tk. Tcl/Tk turned out to be easy to write powerful programs and can be useful for MMI of fusion devices. 21 ref., 7 tabs., 24 figs. (author)

  15. Systems-design and energy-balance considerations for impact fusion

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Miller, R.L.

    1979-01-01

    Areas of concern and potential problems for impact fusion are qualitatively considered within an overall systems context. A parametric and qualitative description of the general energy balance and systems considerations for an Impact Fusion Reactor (IFR) design is discussed. Reactor systems design considerations for an IFR are presented. An attempt to assess the IFR viability is made based on highly simplified but limiting projectile-target energy balances and thermonuclear burn models

  16. Parametric system studies of candidate TF coil system options for the Tokamak Fusion Core Experiment (TFCX)

    International Nuclear Information System (INIS)

    Reiersen, W.T.; Flanagan, C.A.; Miller, J.B.

    1983-01-01

    System studies were performed to determine the sensitivity of hybrid and superconducting toroidal field (TF) coil system options to maximum field at the TF coil and to field enhancement due to resistive insert coils. The studies were performed using Tokamak Fusion Core Experiment (TFCX) design assumptions, guidelines, and criteria and involved iterative execution of the Fusion Engineering Design Center (FEDC) systems code, magnetohydrodynamics (MHD) equilibrium code, and EFFI (a code to evaluate magnetic field strength). The results indicate that for TFCX with no minimum wall loading specified, a design point chosen solely on the basis of cost would likely be in the low-field region of design space where the cost advantage of hybrids is least apparent. However, as the desired neutron wall loading increases, the hybrid option suggests an increasing cost advantage over the all-superconducting option; this cost advantage is countered by increased complexity in design -- particularly in assembly and maintenance

  17. Parametric system studies of candidate TF coil system options for the Tokamak Fusion Core Experiment (TFCX)

    International Nuclear Information System (INIS)

    Reiersen, W.T.; Flanagan, C.A.; Miller, J.B.

    1983-01-01

    System studies were performed to determine the sensitivity of hybrid and superconducting toroidal field (TF) coil system options to maximum field at the TF coil and to field enhancement due to resistive insert coils. The studies were performed using Tokamak Fusion Core Experiment (TFCX) design assumptions, guidelines, and criteria and involved iterative execution of the Fusion Engineering Design Center (FEDC) systems code, magnetohydrodynamics (MHD) equilibrium code, and EFFI (a code to evaluate magnetic field strength). The results indicate that for TFCX with no minimum wall loading specified, a design point chosen solely on the basis of cost would likely be in the low-field region of design space where the cost advantage of hybrids is least apparent. However, as the desired neutron wall loading increases, the hybrid option suggests an increasing cost advantage over the all-superconducting option; this cost advantage is countered by increased complexity in design - particularly in assembly and maintenance

  18. AxiaLIF system: minimally invasive device for presacral lumbar interbody spinal fusion

    Directory of Open Access Journals (Sweden)

    Rapp SM

    2011-08-01

    Full Text Available Steven M Rapp1, Larry E Miller2,3, Jon E Block31Michigan Spine Institute, Waterford, MI, USA; 2Miller Scientific Consulting Inc, Biltmore Lake, NC, USA; 3Jon E. Block, Ph.D., Inc., San Francisco, CA, USAAbstract: Lumbar fusion is commonly performed to alleviate chronic low back and leg pain secondary to disc degeneration, spondylolisthesis with or without concomitant lumbar spinal stenosis, or chronic lumbar instability. However, the risk of iatrogenic injury during traditional anterior, posterior, and transforaminal open fusion surgery is significant. The axial lumbar interbody fusion (AxiaLIF system is a minimally invasive fusion device that accesses the lumbar (L4–S1 intervertebral disc spaces via a reproducible presacral approach that avoids critical neurovascular and musculoligamentous structures. Since the AxiaLIF system received marketing clearance from the US Food and Drug Administration in 2004, clinical studies of this device have reported high fusion rates without implant subsidence, significant improvements in pain and function, and low complication rates. This paper describes the design and approach of this lumbar fusion system, details the indications for use, and summarizes the clinical experience with the AxiaLIF system to date.Keywords: AxiaLIF, fusion, lumbar, minimally invasive, presacral

  19. Preliminary analysis of typical transients in fusion driven subcritical system (FDS-I)

    International Nuclear Information System (INIS)

    Bai Yunqing; Ke Yan; Wu Yican

    2007-01-01

    The potential safety characteristic is expected as one of the advantages of fusion-driven subcritical system (FDS-I) for the transmutation and incineration of nuclear waste compared with the critical reactor. Transients of the FDS-I may occur due to the perturbation of external neutron source, the failure of functional device, and the occurrence of the uncontrolled event. As typical transient scenarios, the following cases were analyzed: unprotected plasma overpower (UPOP), unprotected loss of flow (ULOF), unprotected transient overpower (UTOP). The transient analyses for the FDS-I were performed with a coupled two-dimensional thermal-hydraulics and neutronics transient analysis code NTC2D. The negative feedback of reactivity is the interesting safety feature of FDS-I as temperature increase, due to the fuel form of the circulating particle. The present simulation results showed that the current FDS-I design has a resistance against severe transient scenarios. (author)

  20. Characterization of the fusion-fission process in light nuclear systems

    International Nuclear Information System (INIS)

    Anjos, R.M. dos.

    1992-01-01

    Fusion cross sections measurements of highly damped processes and elastic scattering were performed for the 16, 17, 18 O + 10, 11 B and 19 F + 9 Be, in the incident energy interval 22 ≤ E LAB ≤ 64 MeV. Evidences are presented that highly damped binary processes observed in these systems are originated from a fusion-fission process rather than a dinuclear ''orbiting'' mechanism. The relative importance of the fusion-fission process in these very light systems is demonstrated both by the experimental results, which indicate a statistically balanced compound nucleus fission process occurrence, and theoretical calculations. (L.C.J.A.)

  1. Present status of laser driven fusion--fission energy systems

    International Nuclear Information System (INIS)

    Maniscalco, J.A.; Hansen, L.F.

    1978-01-01

    The potential of laser fusion driven hybrids to produce fissile fuel and/or electricity has been investigated in the laser program at the Lawrence Livermore Laboratory (LLL) for several years. Our earlier studies used neutronic methods of analysis to estimate hybrid performance. The results were encouraging, but it was apparent that a more accurate assessment of the hybrid's potential would require studies which treat the engineering, environmental, and economic issues as well as the neutronic aspects. More recently, we have collaborated with Bechtel and Westinghouse Corporations in two engineering design studies of laser fusion driven hybrid power plants. With Bechtel, we have been engaged in a joint effort to design a laser fusion driven hybrid which emphasizes fissile fuel production while the primary objective of our joint effort with Westinghouse has been to design a hybrid which emphasizes power production. The hybrid designs which have resulted from these two studies are briefly described and analyzed by considering their most important operational parameters

  2. Engineering aspects of particle-beam fusion systems

    International Nuclear Information System (INIS)

    Cook, D.L.

    1982-01-01

    The Department of Energy is supporting research directed toward demonstration of DT fuel ignition in an Inertial Confinement Fusion (ICF) capsule. As part of the ICF effort, two major Particle Beam Fusion Accelerators (PBFA I and II) are being developed at Sandia National Laboratories with the objective of providing energetic light ion beams of sufficient power density for target implosion. Supporting light ion beam research is being performed at the Naval Research Laboratory and at Cornell University. If the answers to several key physics and engineering questions are favorable, pulsed power accelerators will be able to provide an efficient and inexpensive approach to high target gain and eventual power production applications

  3. In pursuit of fusion; ARGUS laser system at Livermore

    International Nuclear Information System (INIS)

    Simmons, W.W.

    1976-01-01

    The ARGUS laser facility has been developed to achieve significant laser fusion milestones; high density (greater than 10 g/cm 3 ) implosions, high temperature (greater than 10 KeV) implosions, and high yield from advanced target designs. The ARGUS laser, central to this facility is a twin-beam, 20 cm output aperture, Nd:glass solid state laser capable of delivering greater than 3 TW of power to laser fusion targets. At the present time, ARGUS is fully operational, and has produced up to 10 9 neutrons in selected target irradiation experiments. The performance of this facility is described

  4. HVDC System Characteristics and Simulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S.I.; Han, B.M.; Jang, G.S. [Electric Enginnering and Science Research Institute, Seoul (Korea)

    2001-07-01

    This report deals with the AC-DC power system simulation method by PSS/E and EUROSTAG for the development of a strategy for the reliable operation of the Cheju-Haenam interconnected system. The simulation using both programs is performed to analyze HVDC simulation models. In addition, the control characteristics of the Cheju-Haenam HVDC system as well as Cheju AC system characteristics are described in this work. (author). 104 figs., 8 tabs.

  5. Heat transfer in inertial confinement fusion reactor systems

    International Nuclear Information System (INIS)

    Hovingh, J.

    1979-01-01

    The transfer of energy produced by the interaction of the intense pulses of short-ranged fusion microexplosion products with materials is one of the most difficult problems in inertially-confined fusion (ICF) reactor design. The short time and deposition distance for the energy results in local peak power densities on the order of 10 18 watts/m 3 . High local power densities may cause change of state or spall in the reactor materials. This will limit the structure lifetimes for ICF reactors of economic physical sizes, increasing operating costs including structure replacement and radioactive waste management. Four basic first wall protection methods have evolved: a dry-wall, a wet-wall, a magnetically shielded wall, and a fluid wall. These approaches are distinguished by the way the reactor wall interfaces with fusion debris as well as the way the ambient cavity conditions modify the fusion energy forms and spectra at the first wall. Each of these approaches requires different heat transfer considerations

  6. Critical masses of miniexplosion in fission-fusion hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Kaliski, S [Polska Akademia Nauk, Warsaw. Inst. Podstawowych Problemow Techniki

    1976-01-01

    The critical mass of the fissionable material subjected to the explosive compression and the action of the neutron stream originating from the process of D-T fusion in the spherical cavity was estimated. High energy recovery from the fissionable material was obtained and the energy of the laser pulse was minimized.

  7. Economic regimes for fission--fusion energy systems

    International Nuclear Information System (INIS)

    Deonigi, D.E.

    1974-01-01

    The objectives of this hybrid fusion-fission economic regimes study are to: (1) define the target costs to be met, (2) define the optimum fissile/electrical production ratio for hybrid blankets, (3) discover synergistic configurations, and (4) define the windows of economic hybrid design having desirable cost/benefit ratios. (U.S.)

  8. Tokamak Fusion Test Reactor neutral beam injection system vacuum chamber

    International Nuclear Information System (INIS)

    Pedrotti, L.R.

    1977-01-01

    Most of the components of the Neutral Beam Lines of the Tokamak Fusion Test Reactor (TFTR) will be enclosed in a 50 cubic meter box-shaped vacuum chamber. The chamber will have a number of unorthodox features to accomodate both neutral beam and TFTR requirements. The design constraints, and the resulting chamber design, are presented

  9. Nuclear fusion as new energy option in a global single-regional energy system model

    International Nuclear Information System (INIS)

    Eherer, C.; Baumann, M.; Dueweke, J.; Hamacher, T.

    2005-01-01

    Is there a window of opportunity for fusion on the electricity market under 'business as usual' conditions, and if not, how do the boundary conditions have to look like to open such a window? This question is addressed within a subtask of the Socio-Economic Research on Fusion (SERF) programme of the European Commission. The most advanced energy-modelling framework, the TIMES model generator developed by the Energy Technology System Analysis Project group of the IEA (ETSAP) has been used to implement a global single-regional partial equilibrium energy model. Within the current activities the potential role of fusion power in various future energy scenarios is studied. The final energy demand projections of the baseline of the investigations are based on IIASA-WEC Scenario B. Under the quite conservative baseline assumptions fusion only enters the model solution with 35 GW in 2100 and it can be observed that coal technologies dominate electricity production in 2100. Scenario variations show that the role of fusion power is strongly affected by the availability of GEN IV fission breeding technologies as energy option and by CO 2 emission caps. The former appear to be a major competitor of fusion power while the latter open a window of opportunity for fusion power on the electricity market. An interesting outcome is furthermore that the possible share of fusion electricity is more sensitive to the potential of primary resources like coal, gas and uranium, than to the share of solar and wind power in the system. This indicates that both kinds of technologies, renewables and fusion power, can coexist in future energy systems in case of CO 2 emission policies and/or resource scarcity scenarios. It is shown that Endogenous Technological Learning (ETL), a more consistent description of technological progress than mere time series, has an impact on the model results. (author)

  10. Improvement of system code importing evaluation of Life Cycle Analysis of tokamak fusion power reactors

    International Nuclear Information System (INIS)

    Kobori, Hikaru; Kasada, Ryuta; Hiwatari, Ryoji; Konishi, Satoshi

    2016-01-01

    Highlights: • We incorporated the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code. • We calculated CO_2 emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. • We found that the objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. • The tokamak fusion reactor can reduce CO_2 emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. • The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant. - Abstract: This study incorporate the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code to calculate CO_2 emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. Competitiveness of tokamak fusion power reactors is expected to be evaluated by the cost and environmental impact represented by the CO_2 emissions, compared with present and future power generating systems such as fossil, nuclear and renewables. Result indicated that (1) The objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. (2) The tokamak fusion reactor can reduce CO_2 emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. (3) The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant.

  11. Improvement of system code importing evaluation of Life Cycle Analysis of tokamak fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kobori, Hikaru [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hiwatari, Ryoji [Central Research Institute of Electric Power Industry, Tokyo (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2016-11-01

    Highlights: • We incorporated the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code. • We calculated CO{sub 2} emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. • We found that the objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. • The tokamak fusion reactor can reduce CO{sub 2} emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. • The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant. - Abstract: This study incorporate the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code to calculate CO{sub 2} emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. Competitiveness of tokamak fusion power reactors is expected to be evaluated by the cost and environmental impact represented by the CO{sub 2} emissions, compared with present and future power generating systems such as fossil, nuclear and renewables. Result indicated that (1) The objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. (2) The tokamak fusion reactor can reduce CO{sub 2} emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. (3) The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant.

  12. System characteristics of tourism policy

    OpenAIRE

    Marin Neshkov

    2012-01-01

    In the article there is made a systemic characterization and is clarified the nature of tourism policy. A more specific object of attention are some issues connected with the following: the interpretation of the interrelation „policy - tourism”; the clarific ation of the notion of „policy” in the context of tourism; theoretical overview and analysis of specialized literature; systemic characterization of policy in tourism and definition of the notion of „tourism policy”. There are defined and...

  13. Repetitive laser fusion experiment and operation using a target injection system

    International Nuclear Information System (INIS)

    Nishimura, Yasuhiko; Komeda, Osamu; Mori, Yoshitaka

    2017-01-01

    Since 2008, a collaborative research project on laser fusion development based on a high-speed ignition method using repetitive laser has been carried out with several collaborative research institutes. This paper reports the current state of operation of high repetition laser fusion experiments, such as target introduction and control based on a target injection system that allows free falling under 1 Hz, using a high repetition laser driver that has been under research and development, as well as the measurement of targets that freely fall. The HAMA laser driver that enabled high repetition fusion experiments is a titanium sapphire laser using a diode-pumped solid-state laser KURE-I of green light output as a driver pump light source. In order to carry out high repetition laser fusion experiments, the target injection device allows free falling of deuterated polystyrene solid sphere targets of 1 mm in diameter under 1 Hz. The authors integrated the developed laser and injection system, and succeeded first in the world in making the nuclear fusion reaction continuously by hitting the target to be injected with laser, which is essential technology for future laser nuclear fusion reactor. In order to realize repetition laser fusion experiments, stable laser, target synchronization control, and target position measurement technologies are indispensable. (A.O.)

  14. Plasma driving system requirements for commercial tokamak fusion reactors

    International Nuclear Information System (INIS)

    Brooks, J.N.; Kustom, R.C.; Stacey, W.M. Jr.

    1978-01-01

    The plasma driving system for a tokamak reactor is composed of an ohmic heating (OH) coil, equilibrium field (EF) coil, and their respective power supplies. Conceptual designs of an Experimental Power Reactor (EPR) and scoping studies of a Demonstration Power Reactor have shown that the driving system constitutes a significant part of the overall reactor cost. The capabilities of the driving system also set or help set important parameters of the burn cycle, such as the startup time, and the net power output. Previous detailed studies on driving system dynamics have helped to define the required characteristics for fast-pulsed superconducting magnets, homopolar generators, and very high power (GVA) power supplies for an EPR. This paper summarizes results for a single reactor configuration together with several design concepts for the driving system. Both the reactor configuration and the driving system concepts are natural extensions from the EPR. Thus, the new results presented in this paper can be compared with the previous EPR results to obtain a consistent picture of how the driving system requirements will evolve--for one particular design configuration

  15. Plasma driving system requirements for commercial tokamak fusion reactors

    International Nuclear Information System (INIS)

    Brooks, J.N.; Kustom, R.C.; Stacey, W.M. Jr.

    1977-01-01

    The plasma driving system for a tokamak reactor is composed of an ohmic heating (OH) coil, equilibrium field (EF) coil, and their respective power supplies. Conceptual designs of an Experimental Power Reactor (EPR) and scoping studies of a Demonstration Power Reactor have shown that the driving system constitutes a significant part of the overall reactor cost. The capabilities of the driving system also set or help set important parameters of the burn cycle, such as the startup time, and the net power output. Previous detailed studies on driving system dynamics have helped to define the required characteristics for fast-pulsed superconducting magnets, homopolar generators, and very high power (GVA) power supplies for an EPR. This paper summarizes results for a single reactor configuration together with several design concepts for the driving system. Both the reactor configuration and the driving system concepts are natural extensions from the EPR. Thus, the new results can be compared with the previous EPR results to obtain a consistent picture of how the driving system requirements will evolve--for one particular design configuration

  16. Functional fusion of living systems with synthetic electrode interfaces

    Directory of Open Access Journals (Sweden)

    Oskar Staufer

    2016-02-01

    Full Text Available The functional fusion of “living” biomaterial (such as cells with synthetic systems has developed into a principal ambition for various scientific disciplines. In particular, emerging fields such as bionics and nanomedicine integrate advanced nanomaterials with biomolecules, cells and organisms in order to develop novel strategies for applications, including energy production or real-time diagnostics utilizing biomolecular machineries “perfected” during billion years of evolution. To date, hardware–wetware interfaces that sample or modulate bioelectric potentials, such as neuroprostheses or implantable energy harvesters, are mostly based on microelectrodes brought into the closest possible contact with the targeted cells. Recently, the possibility of using electrochemical gradients of the inner ear for technical applications was demonstrated using implanted electrodes, where 1.12 nW of electrical power was harvested from the guinea pig endocochlear potential for up to 5 h (Mercier, P.; Lysaght, A.; Bandyopadhyay, S.; Chandrakasan, A.; Stankovic, K. Nat. Biotech. 2012, 30, 1240–1243. More recent approaches employ nanowires (NWs able to penetrate the cellular membrane and to record extra- and intracellular electrical signals, in some cases with subcellular resolution (Spira, M.; Hai, A. Nat. Nano. 2013, 8, 83–94. Such techniques include nanoelectric scaffolds containing free-standing silicon NWs (Robinson, J. T.; Jorgolli, M.; Shalek, A. K.; Yoon, M. H.; Gertner, R. S.; Park, H. Nat Nanotechnol. 2012, 10, 180–184 or NW field-effect transistors (Qing, Q.; Jiang, Z.; Xu, L.; Gao, R.; Mai, L.; Lieber, C. Nat. Nano. 2013, 9, 142–147, vertically aligned gallium phosphide NWs (Hällström, W.; Mårtensson, T.; Prinz, C.; Gustavsson, P.; Montelius, L.; Samuelson, L.; Kanje, M. Nano Lett. 2007, 7, 2960–2965 or individually contacted, electrically active carbon nanofibers. The latter of these approaches is capable of recording

  17. Overview of stoppering of open magnetic containment systems for controlled fusion

    International Nuclear Information System (INIS)

    Hinrichs, C.K.; Lichtenberg, A.J.; Dolan, T.J.

    1977-06-01

    Magnetic confinement systems with the field lines leading out of the system are subject to end loss. The rate of end loss must be reduced to a sufficiently small value in a reactor such that fusion energy is generated more rapidly than energy is lost. The basic open ended systems either have too high an end loss to satisfy the reactor criterion (single mirrors and cusps), or are too long to be considered practical (long solenoids). Various end stoppering schemes have been proposed to reduce the end loss of open ended systems, and thus make the energy balance more favorable. The end stoppering techniques reviewed in this paper are electrostatic, r.f., magnetic, material walls, and hybrid systems. We summarize here the more important characteristics and the potentialities of the first three methods of end stoppering. End stoppering with material walls has been insufficiently explored for further comment and hybrid systems, being mainly beyond the scope of this report, have been summarized in the main text

  18. Imaging Characteristics in ALK Fusion-Positive Lung Adenocarcinomas by Using HRCT

    Science.gov (United States)

    Okumura, Sakae; Kuroda, Hiroaki; Uehara, Hirofumi; Mun, Mingyon; Takeuchi, Kengo; Nakagawa, Ken

    2014-01-01

    Objectives: We aimed to identify high-resolution computed tomography (HRCT) features useful to distinguish the anaplastic lymphoma kinase gene (ALK) fusion-positive and negative lung adenocarcinomas. Methods: We included 236 surgically resected adenocarcinoma lesions, which included 27 consecutive ALK fusion-positive (AP) lesions, 115 epidermal growth factor receptor mutation-positive lesions, and 94 double-negative lesions. HRCT parameters including size, air bronchograms, pleural indentation, spiculation, and tumor disappearance rate (TDR) were compared. In addition, prevalence of small lesions (≤20 mm) and solid lesions (TDR ≤20%) were compared. Results: AP lesions were significantly smaller and had lower TDR (%) than ALK fusion-negative (AN) lesions (tumor diameter: 20.7 mm ± 14.1 mm vs. 27.4 mm ± 13.8 mm, respectively, p 20 mm (n = 7, 25.9%) showed a solid pattern. Among all small lesions, AP lesions had lower TDR and more frequent spiculation than AN lesions (p 20 mm lesions may be ALK fusion-negative. PMID:24899136

  19. Activation characteristics of candidate structural materials for a near-term Indian fusion reactor and the impact of their impurities on design considerations

    Science.gov (United States)

    H, L. SWAMI; C, DANANI; A, K. SHAW

    2018-06-01

    Activation analyses play a vital role in nuclear reactor design. Activation analyses, along with nuclear analyses, provide important information for nuclear safety and maintenance strategies. Activation analyses also help in the selection of materials for a nuclear reactor, by providing the radioactivity and dose rate levels after irradiation. This information is important to help define maintenance activity for different parts of the reactor, and to plan decommissioning and radioactive waste disposal strategies. The study of activation analyses of candidate structural materials for near-term fusion reactors or ITER is equally essential, due to the presence of a high-energy neutron environment which makes decisive demands on material selection. This study comprises two parts; in the first part the activation characteristics, in a fusion radiation environment, of several elements which are widely present in structural materials, are studied. It reveals that the presence of a few specific elements in a material can diminish its feasibility for use in the nuclear environment. The second part of the study concentrates on activation analyses of candidate structural materials for near-term fusion reactors and their comparison in fusion radiation conditions. The structural materials selected for this study, i.e. India-specific Reduced Activation Ferritic‑Martensitic steel (IN-RAFMS), P91-grade steel, stainless steel 316LN ITER-grade (SS-316LN-IG), stainless steel 316L and stainless steel 304, are candidates for use in ITER either in vessel components or test blanket systems. Tungsten is also included in this study because of its use for ITER plasma-facing components. The study is carried out using the reference parameters of the ITER fusion reactor. The activation characteristics of the materials are assessed considering the irradiation at an ITER equatorial port. The presence of elements like Nb, Mo, Co and Ta in a structural material enhance the activity level as well

  20. FUSION DECISION FOR A BIMODAL BIOMETRIC VERIFICATION SYSTEM USING SUPPORT VECTOR MACHINE AND ITS VARIATIONS

    Directory of Open Access Journals (Sweden)

    A. Teoh

    2017-12-01

    Full Text Available This paw presents fusion detection technique comparisons based on support vector machine and its variations for a bimodal biometric verification system that makes use of face images and speech utterances. The system is essentially constructed by a face expert, a speech expert and a fusion decision module. Each individual expert has been optimized to operate in automatic mode and designed for security access application. Fusion decision schemes considered are linear, weighted Support Vector Machine (SVM and linear SVM with quadratic transformation. The conditions tested include the balanced and unbalanced conditions between the two experts in order to obtain the optimum fusion module from  these techniques best suited to the target application.

  1. Experimental study of the influence of partner structure in the fusion of the almost symmetrical systems; Etude experimentale de l`influence de la structure des partenaires dans la fusion de systemes presque symetriques

    Energy Technology Data Exchange (ETDEWEB)

    Stodel-Le Lay, Christelle [Lab. de Physique Corpusculaire, Caen Univ., 14 - Caen (France)

    1998-12-04

    The cross-sections for the formation of evaporation residues in {sup 70}Zn and {sup 86}Kr reactions with {sup 150}Nd and {sup 130,136}Xe isotopes were measured for excitation energies of the compound nuclei ({sup 216,220,222}Th) varied from 7 MeV to 70 MeV, at the linear accelerator UNILAC of the nuclear facility GSI, Darmstadt (Germany). After de-excitation by evaporation (xn,pxn and {alpha}xn), the residual nuclei are separated from the primary beam and from spurious reaction products by the velocity filter SHIP and implanted into a silicon localization detector. Their subsequent decay via alpha particles with characteristic energies allows us to identify them and to deduce their yields. Experimental fusion-evaporation excitation functions are compared with those leading to the same compound nuclei obtained with other projectile and target combinations and with those calculated with a code developed at GSI. This code allows us to evaluate the evolution of the fission probability as a function of the incident energy for each system. The variation of cross-sections and of the fusion probability is studied as a function of the macroscopic and microscopic variables of the partners. For the synthesis of super-heavy elements, these results demonstrate quantitatively the interest in using partners of fusion with closed shell structures and rich in neurons (the fusion cross-section increases by a factor of 9 for a complementary pair of neutrons). On the other hand, closed shell compound nuclei do not influence the fusion cross-section. It will be worth synthesizing isotopes approaching the predicted stability region, nuclei with Z greater than 110 using neutron rich projectiles coming from secondary beams. (author) 104 refs., 71 figs., 11 tabs.

  2. Influence of INCONEL 625 composition on the activation characteristics of the vacuum vessel of experimental fusion tokamaks

    International Nuclear Information System (INIS)

    Cambi, G.; Cepraga, D.G.; Boeriu, S.; Maganzani, I.

    1995-01-01

    The radioactive inventory, the decay heat and the contact dose rate of permanent components such as the vacuum vessel of two experimental fusion tokamaks, the compact IGNITOR-ULT and the ITER-EDA fusion machines, are evaluated by using the ENEA-Bologna integrated methodology. The vacuum vessel material considered is the INCONEL 625. The neutron flux is calculated using the VITAMIN-C 171-group library, based on EFF-2 data and the 1-D transport code XSDRNPM in the S 8 -P 3 approximation. The ANITA-2 code, using updated cross sections and decay data libraries based on EAF-3 and IRDF90 evaluation files is used for activation calculations. The fusion neutron source has been normalised to a neutron first wall load of 2 MW/m 2 and 1 MW/m 2 for IGNITOR-ULT and ITER, respectively. The material irradiation have been described by multistep time histories, resulting in the designed total fluence. Variations in the composition of INCONEL 625 have been assessed and their impact on the activation characteristics are discussed, also from the point of view of waste disposal. (orig.)

  3. Clinical significance of creative 3D-image fusion across multimodalities [PET + CT + MR] based on characteristic coregistration

    International Nuclear Information System (INIS)

    Peng, Matthew Jian-qiao; Ju Xiangyang; Khambay, Balvinder S.; Ayoub, Ashraf F.; Chen, Chin-Tu; Bai Bo

    2012-01-01

    Objective: To investigate a registration approach for 2-dimension (2D) based on characteristic localization to achieve 3-dimension (3D) fusion from images of PET, CT and MR one by one. Method: A cubic oriented scheme of“9-point and 3-plane” for co-registration design was verified to be geometrically practical. After acquisiting DICOM data of PET/CT/MR (directed by radiotracer 18 F-FDG etc.), through 3D reconstruction and virtual dissection, human internal feature points were sorted to combine with preselected external feature points for matching process. By following the procedure of feature extraction and image mapping, “picking points to form planes” and “picking planes for segmentation” were executed. Eventually, image fusion was implemented at real-time workstation mimics based on auto-fuse techniques so called “information exchange” and “signal overlay”. Result: The 2D and 3D images fused across modalities of [CT + MR], [PET + MR], [PET + CT] and [PET + CT + MR] were tested on data of patients suffered from tumors. Complementary 2D/3D images simultaneously presenting metabolic activities and anatomic structures were created with detectable-rate of 70%, 56%, 54% (or 98%) and 44% with no significant difference for each in statistics. Conclusion: Currently, based on the condition that there is no complete hybrid detector integrated of triple-module [PET + CT + MR] internationally, this sort of multiple modality fusion is doubtlessly an essential complement for the existing function of single modality imaging.

  4. US-DOE Fusion-Breeder Program: blanket design and system performance

    International Nuclear Information System (INIS)

    Lee, J.D.

    1983-01-01

    Conceptual design studies are being used to assess the technical and economic feasibility of fusion's potential to produce fissile fuel. A reference design of a fission-suppressed blanket using conventional materials is under development. Theoretically, a fusion breeder that incorporates this fusion-suppressed blanket surrounding a 3000-MW tandem mirror fusion core produces its own tritium plus 5600 kg of 233 U per year. The 233 U could then provide fissile makeup for 21 GWe of light-water reactor (LWR) power using a denatured thorium fuel cycle with full recycle. This is 16 times the net electric power produced by the fusion breeder (1.3 GWe). The cost of electricity from this fusion-fission system is estimated to be only 23% higher than the cost from LWRs that have makeup from U 3 O 8 at present costs (55 $/kg). Nuclear performance, magnetohydrodynamics (MHD), radiation effects, and other issues concerning the fission-suppressed blanket are summarized, as are some of the present and future objectives of the fusion breeder program

  5. A measurement fusion method for nonlinear system identification using a cooperative learning algorithm.

    Science.gov (United States)

    Xia, Youshen; Kamel, Mohamed S

    2007-06-01

    Identification of a general nonlinear noisy system viewed as an estimation of a predictor function is studied in this article. A measurement fusion method for the predictor function estimate is proposed. In the proposed scheme, observed data are first fused by using an optimal fusion technique, and then the optimal fused data are incorporated in a nonlinear function estimator based on a robust least squares support vector machine (LS-SVM). A cooperative learning algorithm is proposed to implement the proposed measurement fusion method. Compared with related identification methods, the proposed method can minimize both the approximation error and the noise error. The performance analysis shows that the proposed optimal measurement fusion function estimate has a smaller mean square error than the LS-SVM function estimate. Moreover, the proposed cooperative learning algorithm can converge globally to the optimal measurement fusion function estimate. Finally, the proposed measurement fusion method is applied to ARMA signal and spatial temporal signal modeling. Experimental results show that the proposed measurement fusion method can provide a more accurate model.

  6. Conceptual design of the superconducting magnet system for the helical fusion reactor

    International Nuclear Information System (INIS)

    Yanagi, Nagato; Hamaguchi, Shinji; Takahata, Kazuya; Natsume, Kyohei

    2013-01-01

    Current status of conceptual design of superconducting magnet system and low temperature system for the helical fusion reactor are introduced. There are three kinds of candidates of superconducting magnets such as Cable-in-conduit (CIC), Low-Temperature Superconductor (LTS) and High-Temperature Superconductor (HTS). Their characteristic properties, coil designs and cooling systems are stated. The freezer and low temperature distribution system, bus line and current lead, and excitation power source for superconducting coil are reported. The various elements of superconducting magnet system of FFHR-d1, partial cross section of FFHR helical coil using CIC, conceptual diagram of helical coil winding method of FFHR using CIC, relation among mass flow of supercritical helium supplied into CIC conductor and temperature increasing and pressure loss, cross section structure of LTS indirect-cooling conductor at 100 kA, cross section of 100-kA HTS conductor, connection method of helical coil segment and YBCO conductor are illustrated. (S.Y.)

  7. Fusion of light ion systems at energies near and below the Coulomb barrier

    International Nuclear Information System (INIS)

    Arnould, M.; Howard, W.M.; Cusson, R.Y.

    1978-01-01

    Experimental fusion cross sections for light ion systems at energies below the Coulomb barrier become available in greater and greater number, and provide a stringent test of the macroscopic and microscopic physics involved in models of heavy-ion reactions. Measurements and predictions of the fusion cross sections for 12 C + 12 C, 12 C + 16 O and 16 O + 16 O are also of major importance in astrophysics. (orig.) [de

  8. Power System Oscillatory Behaviors: Sources, Characteristics, & Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Follum, James D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tuffner, Francis K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dosiek, Luke A. [Union College, Schenectady, NY (United States); Pierre, John W. [Univ. of Wyoming, Laramie, WY (United States)

    2017-05-17

    This document is intended to provide a broad overview of the sources, characteristics, and analyses of natural and forced oscillatory behaviors in power systems. These aspects are necessarily linked. Oscillations appear in measurements with distinguishing characteristics derived from the oscillation’s source. These characteristics determine which analysis methods can be appropriately applied, and the results from these analyses can only be interpreted correctly with an understanding of the oscillation’s origin. To describe oscillations both at their source within a physical power system and within measurements, a perspective from the boundary between power system and signal processing theory has been adopted.

  9. Design system for in-vessel mainipulator of fusion reactor 'DESIM'

    International Nuclear Information System (INIS)

    Adachi, Junihci; Kobayashi, Takeshi; Ise, Hideo; Sato, Keisuke; Matsuda, Hirotsugu

    1989-01-01

    A computer aided design system 'DESIM' for the in-vessel manipulators of nuclear fusion reactors has been developed to design the manipulators efficiently. The DESIM consists of the following subsystems: (1) the design system for arm mechanisms to realize optimum manipulation performance in the specified workspace; (2) the robot simulator to study manipulator movement, postures and interference problems; (3) the CAD system which is used to define the structure object data for robots, and the interface system for the data conversion from the CAD system to the robot simulator. The DESIM has been used to design the in-vessel manipulator for the Fusion Experimental Reactor (FER) to confirm the effectiveness. (author)

  10. Development of materials for the fusion nuclear energy system

    International Nuclear Information System (INIS)

    Park, J. Y.; Kim, S. H.; Jang, J. S.; Kim, W. J.; Jung, C. H.; Jun, B. H.; Maeng, W. Y.; Kwon, J. H.; Kim, H. P.; Hong, J. H.

    2005-01-01

    A state of the art on the nuclear material development has been reviewed based on the each component of the Tokamak typed fusion reactor. The current status of the development of structural materials such as FM steels, ODS steels, vanadium alloys and SiCf/SiC composites are introduced. The application of Li-based ceramics as a ceramic breeder and W-based alloys and C/C composites as plasma facing components for the divertor were also investigated, respectively. Some evaluation methods and results of the computational material simulation for irradiation damages and the compatibility between materials and coolant are described. Additionally, the material related research activities of ITER and ITER TBM and the collaboration activities on fusion materials between Japan and USA are briefly summarized

  11. Studies on the fusion of heavy symmetric systems

    International Nuclear Information System (INIS)

    Quint, A.B.

    1989-08-01

    In this thesis experimental results are presented, which were obtained by bombarding targets of Zr, Mo, 104 Ru, and 110 Pd with 96 Zr and 100 Mo at energies between 3.41 MeV/u and 4.95 MeV/u. These results concern total fusion cross sections as well as cross sections for special evaporation channels in dependence on the incident energy. The results are compared with different models. (HSI)

  12. Inertial confinement fusion systems using heavy ion accelerators as drivers

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.; Godlove, T.F.; Keefe, D.

    1980-03-01

    Heavy ion accelerators are the most recent entrants in the effort to identify a practical driver for inertial confinement fusion. They are of interest because of the expected efficient coupling of ion kinetic energy to the thermal energy needed to implode the pellet and because of the good electrical efficiency of high intensity particle accelerators. The beam intensities required, while formidable, lie within the range that can be studied by extensions of the theories and the technology of modern high energy accelerators

  13. HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from a LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs, 90 Sr, 129 I, 99 Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,α), (n,γ), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R = 1.0 to 3.0) requirements. These studies also indicate that masses on the order of 1.0 g at densities of rho greater than or equal to 500.0 g/cm 3 are required for a practical fusion-based fission product transmutation system

  14. European roadmap to the realization of fusion energy: Mission for solution on heat-exhaust systems

    Energy Technology Data Exchange (ETDEWEB)

    Turnyanskiy, M., E-mail: mikhail.turnyanskiy@euro-fusion.org [EUROfusion PMU Garching, Boltzmannstraße 2, D-85748 Garching (Germany); Neu, R. [Max-Planck-Institut für Plasmapysik, Boltzmannstraße 2, D-85748 Garching (Germany); Technische Universität München, Fachgebiet Plasma-Wand-Wechselwirkung, D-85748 Garching (Germany); Albanese, R.; Ambrosino, R. [Assoc. EURATOM/ENEA/CREATE/DIETI – Univ. Napoli Federico II, Via Claudio 21, I-80125 (Italy); Bachmann, C. [EUROfusion PMU Garching, Boltzmannstraße 2, D-85748 Garching (Germany); Brezinsek, S. [Association EURATOM/Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Donne, T. [EUROfusion PMU Garching, Boltzmannstraße 2, D-85748 Garching (Germany); Eich, T. [Max-Planck-Institut für Plasmapysik, Boltzmannstraße 2, D-85748 Garching (Germany); Falchetto, G. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Federici, G.; Kalupin, D.; Litaudon, X.; Mayoral, M.L.; McDonald, D.C. [EUROfusion PMU Garching, Boltzmannstraße 2, D-85748 Garching (Germany); Reimerdes, H. [EPFL, CRPP, CH-1015 Lausanne (Switzerland); Romanelli, F.; Wenninger, R. [EUROfusion PMU Garching, Boltzmannstraße 2, D-85748 Garching (Germany); You, J.-H. [Max-Planck-Institut für Plasmapysik, Boltzmannstraße 2, D-85748 Garching (Germany)

    2015-10-15

    Highlights: • A summary of the main aims of the Mission 2 for a solution on heat-exhaust systems. • A description of the EUROfusion consortium strategy to address Mission 2. • A definition of main unresolved issues and challenges in Mission 2. • Work Breakdown Structure to set up the collaborative efforts to address these challenges. - Abstract: Horizon 2020 is the largest EU Research and Innovation programme to date. The European fusion research programme for Horizon 2020 is outlined in the “Roadmap to the realization of fusion energy” and published in 2012 [1]. As part of it, the European Fusion Consortium (EUROfusion) has been established and will be responsible for implementing this roadmap through its members. The European fusion roadmap sets out a strategy for a collaboration to achieve the goal of generating fusion electricity by 2050. It is based on a goal-oriented approach with eight different missions including the development of heat-exhaust systems which must be capable of withstanding the large heat and particle fluxes of a fusion power plant (FPP). A summary of the main aims of the mission for a solution on heat-exhaust systems and the EUROfusion consortium strategy to set up an efficient Work Breakdown Structure and the collaborative efforts to address these challenges will be presented.

  15. European roadmap to the realization of fusion energy: Mission for solution on heat-exhaust systems

    International Nuclear Information System (INIS)

    Turnyanskiy, M.; Neu, R.; Albanese, R.; Ambrosino, R.; Bachmann, C.; Brezinsek, S.; Donne, T.; Eich, T.; Falchetto, G.; Federici, G.; Kalupin, D.; Litaudon, X.; Mayoral, M.L.; McDonald, D.C.; Reimerdes, H.; Romanelli, F.; Wenninger, R.; You, J.-H.

    2015-01-01

    Highlights: • A summary of the main aims of the Mission 2 for a solution on heat-exhaust systems. • A description of the EUROfusion consortium strategy to address Mission 2. • A definition of main unresolved issues and challenges in Mission 2. • Work Breakdown Structure to set up the collaborative efforts to address these challenges. - Abstract: Horizon 2020 is the largest EU Research and Innovation programme to date. The European fusion research programme for Horizon 2020 is outlined in the “Roadmap to the realization of fusion energy” and published in 2012 [1]. As part of it, the European Fusion Consortium (EUROfusion) has been established and will be responsible for implementing this roadmap through its members. The European fusion roadmap sets out a strategy for a collaboration to achieve the goal of generating fusion electricity by 2050. It is based on a goal-oriented approach with eight different missions including the development of heat-exhaust systems which must be capable of withstanding the large heat and particle fluxes of a fusion power plant (FPP). A summary of the main aims of the mission for a solution on heat-exhaust systems and the EUROfusion consortium strategy to set up an efficient Work Breakdown Structure and the collaborative efforts to address these challenges will be presented.

  16. [Rapid expression and preparation of the recombinant fusion protein sTNFRII-gAD by adenovirus vector system].

    Science.gov (United States)

    Lu, Yue; Liu, Dan; Zhang, Xiaoren; Liu, Xuerong; Shen, Wei; Zheng, Gang; Liu, Yunfan; Dong, Xiaoyan; Wu, Xiaobing; Gao, Jimin

    2011-08-01

    We expressed and prepared the recombinant fusion protein sTNFRII-gAD consisted of soluble TNF receptor II and the globular domain of adiponectin by Adenovirus Vector System in mammalian BHK21c022 cells. First we used the adenovirus vector containing EGFP gene (rAd5-EGFP) to infect BHK21c022 cells at different MOI (from 0 to 1 000), and then evaluated their transduction efficiency and cytotoxicity. Similarly, we constructed the replication-deficient adenovirus type 5-sTNFRII-gAD (rAd5-sTNFRII-gAD). We collected the supernatants for Western blotting to determine the optimal MOI by comparing the expression levels of sTNFRII-gAD fusion protein, 48 h after the BHK21c022 cells were infected by rAd5-sTNFRII-gAD at different MOIs (from 0 to 1 000). Then, we chose rAd5-sTNFRII-gAD at MOI 100 to infect five bottles of BHK21c022 cells in 100 mL of serum-free chemically defined media 100 mL, harvested the supernatant every 48 h for 6 times, and condense and purify sTNFRII-gAD fusion protein by ammonium sulfate salt-out and size-exclusion chromatography, respectively. Finally, we analyzed anti-TNFalpha activity of sTNFRII-gAD fusion protein on L929 cells in vitro. The results showed that the number of BHK21c022 cells expressing EGFP protein was increased significantly with the increase of MOI. However, some cells died at MOI of 1 000 while there was no significant cytotoxicity at MOI from 0 to 100. Western blotting analysis showed that the more adenoviruses, the higher expression of sTNFRII-gAD fusion protein in the supernatant with the highest expression at MOI 1 000. We successfully obtained about 11 mg bioactive and purified sTNFRII-gAD fusion protein at last. The in vitro assay demonstrated that the sTNFRII-gAD fusion protein was potent to antagonize TNFalpha's cytotoxicity to L929 cells. Put together, we established a recombinant adenovirus vector/BHK21 cell expression system, characteristic of the efficient serum-free culture and easy scaling-up.

  17. Application of Fusion Gyrotrons to Enhanced Geothermal Systems (EGS)

    Science.gov (United States)

    Woskov, P.; Einstein, H.; Oglesby, K.

    2013-10-01

    The potential size of geothermal energy resources is second only to fusion energy. Advances are needed in drilling technology and heat reservoir formation to realize this potential. Millimeter-wave (MMW) gyrotrons and related technologies developed for fusion energy research could contribute to enabling EGS. Directed MMW energy can be used to advance rock penetration capabilities, borehole casing, and fracking. MMWs are ideally suited because they can penetrate through small particulate extraction plumes, can be efficiently guided long distances in borehole dimensions, and continuous megawatt sources are commercially available. Laboratory experiments with a 10 kW, 28 GHz CPI gyrotron have shown that granite rock can be fractured and melted with power intensities of about 1 kW/cm2 and minute exposure times. Observed melted rock MMW emissivity and estimated thermodynamics suggest that penetrating hot, hard crystalline rock formations may be economic with fusion research developed MMW sources. Supported by USDOE, Office of Energy Efficiency and Renewable Energy and Impact Technologies, LLC.

  18. Alternate laser fusion drivers

    International Nuclear Information System (INIS)

    Pleasance, L.D.

    1979-11-01

    One objective of research on inertial confinement fusion is the development of a power generating system based on this concept. Realization of this goal will depend on the availability of a suitable laser or other system to drive the power plant. The primary laser systems used for laser fusion research, Nd 3+ : Glass and CO 2 , have characteristics which may preclude their use for this application. Glass lasers are presently perceived to be incapable of sufficiently high average power operation and the CO 2 laser may be limited by and issues associated with target coupling. These general perceptions have encouraged a search for alternatives to the present systems. The search for new lasers has been directed generally towards shorter wavelengths; most of the new lasers discovered in the past few years have been in the visible and ultraviolet region of the spectrum. Virtually all of them have been advocated as the most promising candidate for a fusion driver at one time or another

  19. A 1-kJ KrF laser system for laser fusion research

    International Nuclear Information System (INIS)

    Owadano, Y.; Okuda, I.; Tanimoto, M.; Matsumoto, Y.; Yaoita, A.; Komeiji, S.; Yano, M.

    1987-01-01

    Ultraviolet laser light has several advantages in coupling with a laser fusion target, and the KrF laser is considered to be a promising candidate for the driver because of its short wavelength, high overall efficiency, and scalability to a megajoule class system. The Electrotechnical Laboratory is developing a 1-kJ class KrF laser system to perform target-shooting experiments in the 10/sup 13/-10/sup 15/-W/cm/sup 2/, 10-20-ns range and to investigate the possibility of a compact laser fusion driver which operates at a high pumping density and high laser power density. Based on the pulsed-power technology used in Amp2 and the characteristics of the Kr-rich mixture measured, Amp3 was designed to operate at high optical power density with a Kr-rich mixture. Amp3 has four PFLs charged by a single 40-kJ Marx generator and four e-beam diodes (550 kV, 4 Ω) arranged cylindrically around the laser cell. The active volume is 660 cm/sup 2/ (29 cm in diameter) X 1 m, and 2-atm Kr is pumped at a density of 1.9 MW/cm/sup 3/. Output energy of 1 kJ is expected at an intrinsic efficiency of 8.3% and overall efficiency of 2.5%. Output energy fluence is 1.5 J/cm/sup 2/ (15 MW/cm/sup 2/) on average, which is lower than the damage threshold of our fully reflecting AR coatings (>3 J/cm/sup 2/)

  20. Characteristics of the ISABELLE vacuum system

    International Nuclear Information System (INIS)

    Aggus, J.R.; Edwards, D. Jr.; Halama, H.J.; Herrera, J.C.

    1977-01-01

    A discussion is given of the complete vacuum system of ISABELLE, emphasizing those design characteristics dictated by high vacuum, the avoidance of beam current loss, and the reduction of background. The experimental and theoretical justifications for the design are presented

  1. Developments on the RF system for the Fusion Materials Irradiation Test Facility accelerator

    International Nuclear Information System (INIS)

    Fazio, M.V.; Johnson, H.P.; Riggin, D.M.

    1979-01-01

    The rf system for the Fusion Materials Irradiation Test (FMIT) accelerator is currently in the design phase at the Los Alamos Scientific Laboratory (LASL). The 35-MeV, 100-mA deuteron beam will require approximately 6 MW of rf power at 80 MHz. The EIMAC 8973 power tetrode, capable of a 600-kW cw output, has been chosen as the final amplifier tube for each of 15 amplifier chains. The final power stage of each chain is designed to perform as a linear Class B amplifier. Each low-power rf system (less than or equal to 100W) is to be phase, amplitude, and frequency controlled to provide a drive signal for each high-power amplifier. Beam dynamics for particle acceleration and for minimal beam spill require each rf amplifier output to be phase controlled to +-1 0 . The amplitude of the accelerating field must be held to +-1%. A varactor-tuned electronic phase shifter and a linear phase detector are under development for use in this system. To complement hardware development, analog computer simulations are being performed to optimize the closed-loop control characteristics of the system

  2. Research on fatigue driving pre-warning system based on multi-information fusion

    Science.gov (United States)

    Zhao, Xuyang; Ye, Wenwu

    2018-05-01

    With the development of science and technology, transportation network has grown faster. But at the same time, the quantity of traffic accidents due to fatigue driving grows faster as well. In the meantime, fatigue driving has been one of the main causes of traffic accidents. Therefore, it is indispensable for us to study the detection of fatigue driving to help to driving safety. There are numerous approaches in discrimination method. Each type of method has its reasonable theoretical basis, but the disadvantages of traditional fatigue driving detection methods have been more and more obvious since we study the traditional physiology and psychological features of fatigue drivers. So we set up a new system based on multi-information fusion and pattern recognition theory. In the paper, the fatigue driving pre-warning system discriminates fatigue by analyzing the characteristic parameters, the parameters derived from the steering wheel angle, the driver's power of gripping and the heart rate. And the data analysis system is established based on fuzzy C-means clustering theory. Finally, KNN classifier is used to establish the relation between feature indexes and fatigue degree. It is verified that the system has the better accuracy, agility and robustness according to our confirmatory experiment.

  3. Risk assessment of computer-controlled safety systems for fusion reactors

    International Nuclear Information System (INIS)

    Fryer, M.O.; Bruske, S.Z.

    1983-01-01

    The complexity of fusion reactor systems and the need to display, analyze, and react promptly to large amounts of information during reactor operation will require a number of safety systems in the fusion facilities to be computer controlled. Computer software, therefore, must be included in the reactor safety analyses. Unfortunately, the science of integrating computer software into safety analyses is in its infancy. Combined plant hardware and computer software systems are often treated by making simple assumptions about software performance. This method is not acceptable for assessing risks in the complex fusion systems, and a new technique for risk assessment of combined plant hardware and computer software systems has been developed. This technique is an extension of the traditional fault tree analysis and uses structured flow charts of the software in a manner analogous to wiring or piping diagrams of hardware. The software logic determines the form of much of the fault trees

  4. Low-energy nuclear reaction of the 14N+169Tm system: Incomplete fusion

    Science.gov (United States)

    Kumar, R.; Sharma, Vijay R.; Yadav, Abhishek; Singh, Pushpendra P.; Agarwal, Avinash; Appannababu, S.; Mukherjee, S.; Singh, B. P.; Ali, R.; Bhowmik, R. K.

    2017-11-01

    Excitation functions of reaction residues produced in the 14N+169Tm system have been measured to high precision at energies above the fusion barrier, ranging from 1.04 VB to 1.30 VB , and analyzed in the framework of the statistical model code pace4. Analysis of α -emitting channels points toward the onset of incomplete fusion even at slightly above-barrier energies where complete fusion is supposed to be one of the dominant processes. The onset and strength of incomplete fusion have been deduced and studied in terms of various entrance channel parameters. Present results together with the reanalysis of existing data for various projectile-target combinations conclusively suggest strong influence of projectile structure on the onset of incomplete fusion. Also, a strong dependence on the Coulomb effect (ZPZT) has been observed for the present system along with different projectile-target combinations available in the literature. It is concluded that the fraction of incomplete fusion linearly increases with ZPZT and is found to be more for larger ZPZT values, indicating significantly important linear systematics.

  5. Measurements of fusion cross sections of 16O+46,50Ti systems

    International Nuclear Information System (INIS)

    Liguori Neto, R.

    1986-01-01

    Excitation functions for complete fusion of the systems 16 O + 46,50 Ti, with50)Ti, energies near and below the Coulomb barrier, were measured. With the use of the in-beam and out of beam γ spectroscopy, the formation of the compound nucleus was experimentally detected. The fusion cross was then attained by the sum of all observed compound nucleus decay channels. The limitation and advantages of measurements methods are discussed. Theoretical analysis of the experimental results using the semi-classical barrier penetration model allowed us to obtain the fusion barrier height and radius for the studied systems. These values are in good agreement with others reported for this mass range. Using the unidimensional barrier penetration model with different nuclear potentials, describing the heavy ion interactions gave theoretical fusion cross section values systematically smaller than our measured values in the energy region below the Coulomb barrier. The introduction of the nuclear surface zero point vibrations enhances the theoretical fusion cross sections in the sub-Coulomb region, but simultaneoulsy introduces an isotopic difference in the fusion excitation functions that is not observed experimentally. The statistical model predictions for the compound nucleous decay (calculated by the CASCADE program) show reasonable agreement for the more intense decay channels. (author) [pt

  6. Measurements of fusion cross sections of the 16O+46,50Ti systems

    International Nuclear Information System (INIS)

    Liguori Neto, R.

    1986-01-01

    Excitation functions for complete fusion of the systems 16 O + 46,50 Ti, with energies near and below the Coulomb barrier, were measured. With the use of the in-beam and out of beam γ spectroscopy, the formation of the compound nucleus was experimentally detected. The fusion cross section was then attained by the sum of all observed compound nucleus decay channels. The limitation and advantages of measurements methods are discussed. Theoretical analysis of the experimental results using the semi-classical barrier penetration model allowed us to obtain the fusion barrier height and radius for the studied systems. These values are in good agreement with others reported for this mass range. Using the unidimensional barrier penetration model with different nuclear potentials, describing the heavy ion interactions gave theoretical fusion cross section values systematically smaller than our measured values in the energy region below the Coulomb barrier. The introduction of the nuclear surface zero point vibrations enhances the theoretical fusion cross sections in the sub-Coulomb region, but simultaneously introduces an isotopic difference in the fusion excitation functions that is not observed experimentally. The statistical model predictions for the compound nucleus decay (calculated by the CASCADE program) show reasonable agreement for the more intense decay channels [pt

  7. Flow characteristics analysis of purge gas in unitary pebble beds by CFD simulation coupled with DEM geometry model for fusion blanket

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Youhua [University of Science and Technology of China, Hefei, Anhui, 230027 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Chen, Lei [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Liu, Songlin, E-mail: slliu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Luo, Guangnan [University of Science and Technology of China, Hefei, Anhui, 230027 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China)

    2017-01-15

    Highlights: • A unitary pebble bed was built to analyze the flow characteristics of purge gas based on DEM-CFD method. • Flow characteristics between particles were clearly displayed. • Porosity distribution, velocity field distribution, pressure field distribution, pressure drop and the wall effects on velocity distribution were studied. - Abstract: Helium is used as the purge gas to sweep tritium out when it flows through the lithium ceramic and beryllium pebble beds in solid breeder blanket for fusion reactor. The flow characteristics of the purge gas will dominate the tritium sweep capability and tritium recovery system design. In this paper, a computational model for the unitary pebble bed was conducted using DEM-CFD method to study the purge gas flow characteristics in the bed, which include porosity distribution between pebbles, velocity field distribution, pressure field distribution, pressure drop as well as the wall effects on velocity distribution. Pebble bed porosity and velocity distribution with great fluctuations were found in the near-wall region and detailed flow characteristics between pebbles were displayed clearly. The results show that the numerical simulation model has an error with about 11% for estimating pressure drop when compared with the Ergun equation.

  8. The characteristics of mechanical engineering systems

    CERN Document Server

    Holmes, R

    1977-01-01

    The Characteristics of Mechanical Engineering Systems focuses on the characteristics that must be considered when designing a mechanical engineering system. Mechanical systems are presented on the basis of component input-output relationships, paying particular attention to lumped-parameter problems and the interrelationships between lumped components or """"black-boxes"""" in an engineering system. Electric motors and generators are treated in an elementary manner, and the principles involved are explained as far as possible from physical and qualitative reasoning. This book is comprised of

  9. Measurements of fusion cross section for 12C +63,65 Cu systems

    International Nuclear Information System (INIS)

    Rocha, C.A. da.

    1987-01-01

    Cross-section measurements for nuclear fusion in the 12 C+ 63.65 Cu system, at 12 C energy range from 0.9 to 1.8 times the Coulomb barrier are presented. In order to detect and to obtain the mass identification of the evaporation residues following the fusion process, the time of flight method was adopted in conjunction with an eletrostatic deflector capable of separating the evaporation residues from the beam particles. The limitation and advantadges of this method of measurement are discussed. The excitation functions were analysed using the unidimensional barrier penetration model with different nuclear potentials. Theoretical fusion cross-section values obtained from this analysis were systematically smaller than our measured values, in the energy region below the Coulomb barrier. In order to discover which channel enhances the fusion cross-section in this region, a coupled channel calculation was performed, with the CCFUS code. The experimental data for the above reactions were compared with the systems 16.18 O+ 63.65 Cu, measured by our group. In this comparison, it was noted that the systems 12 C+ 63.65 Cu, have greater fusion cross section below the Coulomb barrier. The comparison of velocity spectra of the evaporated residues for the two systems shows that 12 C+ 63 Cu has a strong reaction channel that was not present in the 12 C+ 65 Cu system. (author) [pt

  10. Fusion Implementation

    International Nuclear Information System (INIS)

    Schmidt, J.A.

    2002-01-01

    If a fusion DEMO reactor can be brought into operation during the first half of this century, fusion power production can have a significant impact on carbon dioxide production during the latter half of the century. An assessment of fusion implementation scenarios shows that the resource demands and waste production associated with these scenarios are manageable factors. If fusion is implemented during the latter half of this century it will be one element of a portfolio of (hopefully) carbon dioxide limiting sources of electrical power. It is time to assess the regional implications of fusion power implementation. An important attribute of fusion power is the wide range of possible regions of the country, or countries in the world, where power plants can be located. Unlike most renewable energy options, fusion energy will function within a local distribution system and not require costly, and difficult, long distance transmission systems. For example, the East Coast of the United States is a prime candidate for fusion power deployment by virtue of its distance from renewable energy sources. As fossil fuels become less and less available as an energy option, the transmission of energy across bodies of water will become very expensive. On a global scale, fusion power will be particularly attractive for regions separated from sources of renewable energy by oceans

  11. Design and Implementation of Multi Agentbased Information Fusion System for Decision Making Support (A Case Study on Military Operation

    Directory of Open Access Journals (Sweden)

    Arwin Datunaya Wahyudi Sumari

    2013-09-01

    Full Text Available Quick, accurate, and complete information is highly required for supporting strategically impact decision making in a Military Operation (MO in order to reduce the decision cycle and to minimize the loss. For that purpose, we propose, design and implement a hierarchical Multi Agentbased Information Fusion System for Decision Making Support (MAIFSDMS. The information fusion is implemented by applying Maximum Score of the Total Sum of Joint Probabilities (MSJP fusion method and is done by a collection of Information Fusion Agents (IFA that forms a multiagent system. MAIFS uses a combination of generalization of Dasarathy and Joint Director’s Laboratory (JDL process models for information fusion mechanism. Information fusion products that are displayed in graphical forms provide comprehensive information regarding the MO’s area dynamics. By observing the graphics resulted from the information fusion, the commandant will have situational awareness and knowledge in order to make the most accurate strategic de cision as fast as possible.

  12. Design optimization of single-main-amplifier KrF laser-fusion systems

    International Nuclear Information System (INIS)

    Harris, D.B.; Pendergrass, J.H.

    1985-01-01

    KrF lasers appear to be a very promising laser fusion driver for commercial applications. The Large Amplifier Module for the Aurora Laser System at Los Alamos is the largest KrF laser in the world and is currently operating at 5 kJ with 10 to 15 kJ eventually expected. The next generation system is anticipated to be a single-main-amplifier system that generates approximately 100 kJ. This paper examines the cost and efficiency tradeoffs for a complete single-main-amplifier KrF laser fusion experimental facility. It has been found that a 7% efficient $310/joule complete laser-fusion system is possible by using large amplifier modules and high optical fluences

  13. Fusion hindrance for 27Al+45Sc and other systems with a positive Q value

    International Nuclear Information System (INIS)

    Jiang, C. L.; Rehm, K. E.; Esbensen, H.; Back, B. B.; Janssens, R. V. F.; DiGiovine, B.; Greene, J. P.; Henderson, D. J.; Lee, H. Y.; Pardo, R. C.; Seweryniak, D.; Ugalde, C.; Zhu, S.; Collon, P.; Notani, M.; Tang, X. D.; Deibel, C. M.; Figueira, J. M.; Marley, S. T.; Patel, N.

    2010-01-01

    Fusion evaporation cross sections for the 27 Al+ 45 Sc (Q=9.63 MeV) system are measured down to about 300 nb. Deviations from standard coupled-channels calculations were observed in this system at the lowest energies. The steep fall-off of the fusion cross sections can be reproduced by calculations using a shallow potential model, which was originally developed to explain the hindrance behavior of heavy-ion fusion in medium-mass systems with negative Q values. Comparisons of the hindrance behavior between the present experiment and other systems, for example, 28 Si+ 30 Si (Q=14.3 MeV) and 36 S+ 48 Ca (Q=7.55 MeV) are presented.

  14. A remote monitoring system of environmental electromagnetic field in magnetic confinement fusion test facilities

    International Nuclear Information System (INIS)

    Tanaka, Masahiro; Uda, Tatsuhiko; Takami, Shigeyuki; Wang, Jianqing; Fujiwara, Osamu

    2010-01-01

    A remote, continuous environmental electromagnetic field monitoring system for use in magnetic confinement fusion test facilities is developed. Using this system, both the static magnetic field and the high frequency electromagnetic field could be measured. The required frequency range of the measurement system is from 25 to 100 MHz for the ICRF (Ion Cyclotron Range of Frequencies) heating system. The outputs from the measurement instruments are measured simultaneously by custom-built software using a laptop-type personal computer connected to a local area network. In this way, the electromagnetic field strength could be monitored from a control room located about 200 m from the fusion device building. Examples of measurement data from the vicinity of a high-frequency generator and amplifier and the leakage static magnetic field from a fusion test device are presented. (author)

  15. Use of nuclear fusion systems for spent nuclear fuel degradation

    International Nuclear Information System (INIS)

    Nieto, M.; Ramos, G.; Herrera V, J. J. E.

    2009-10-01

    One of the severe problems of the nuclear industry that should be resolved to facilitate its acceptance like viable energy alternative is of the wastes. In spite of having alternative of fuel reprocessing, many of them have been abandoned by economic or security reasons. In the present work, the alternative is described for using reactors of nuclear fusion as sources of fast neutrons with two important applications in mind: the plutonium burning and the transmutation of the elements that contribute in way more important to their radioactivity, mainly the smaller actinides and the fission products of long half life. (Author)

  16. Inertial confinement fusion systems using heavy ion accelerators as drivers

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.; Godlove, T.F.; Keefe, D.

    1980-01-01

    Heavy ion accelerators are the most recent entrants in the effort to identify a practical driver for inertial confinement fusion. They are of interest because of the expected efficient coupling of ion kinetic energy to the thermal energy needed to implode the pellet and because of the good electrical efficiency of high intensity particle accelerators. The beam intensities required, while formidable, lie within the range that can be studied by extensions of the theories and the technology of modern high energy accelerators. (orig.) [de

  17. Implosion and staging systems for a Scyllac Fusion Test Reactor

    International Nuclear Information System (INIS)

    Gribble, R.F.; Linford, R.K.; Thomassen, K.I.

    1976-01-01

    The implosion heating and adiabatic compression processes will be separated in future theta pinch devices. The circuit to achieve the fast implosion heating and power crowbar (staging) for the Scyllac Fusion Test Reactor is described here. The plasma is very tightly coupled to the circuit and presents a varying inductive load. Computer-aided circuit designs which achieve a programmed magnetic field waveform are described. The field approximates a two-step waveform, on-off-on, which is ideal for achieving the large initial plasma radius needed for stability. The components for the circuits have been developed and are being tested in experiments at Los Alamos

  18. Implosion and staging systems for a Scyllac fusion test reactor

    International Nuclear Information System (INIS)

    Gribble, R.F.; Linford, R.K.; Thomassen, K.I.

    1975-01-01

    The implosion heating and adiabatic compression processes will be separated in future theta pinch devices. The circuit to achieve the fast implosion heating and power crowbar (staging) for the Scyllac Fusion Test Reactor is described here. The plasma is very tightly coupled to the circuit and presents a varying inductive load. Computer-aided circuit designs which achieve a programmed magnetic field waveform are described. The field approximates a two-step waveform, on-off-on, which is ideal for achieving the large initial plasma radius needed for stability. The components for the circuits have been developed and are being tested in experiments at Los Alamos. (auth)

  19. Anomaly Detection for Resilient Control Systems Using Fuzzy-Neural Data Fusion Engine

    Energy Technology Data Exchange (ETDEWEB)

    Ondrej Linda; Milos Manic; Timothy R. McJunkin

    2011-08-01

    Resilient control systems in critical infrastructures require increased cyber-security and state-awareness. One of the necessary conditions for achieving the desired high level of resiliency is timely reporting and understanding of the status and behavioral trends of the control system. This paper describes the design and development of a neural-network based data-fusion system for increased state-awareness of resilient control systems. The proposed system consists of a dedicated data-fusion engine for each component of the control system. Each data-fusion engine implements three-layered alarm system consisting of: (1) conventional threshold-based alarms, (2) anomalous behavior detector using self-organizing maps, and (3) prediction error based alarms using neural network based signal forecasting. The proposed system was integrated with a model of the Idaho National Laboratory Hytest facility, which is a testing facility for hybrid energy systems. Experimental results demonstrate that the implemented data fusion system provides timely plant performance monitoring and cyber-state reporting.

  20. A SCHEME FOR TEMPLATE SECURITY AT FEATURE FUSION LEVEL IN MULTIMODAL BIOMETRIC SYSTEM

    Directory of Open Access Journals (Sweden)

    Arvind Selwal

    2016-09-01

    Full Text Available Biometric is the science of human recognition based upon using their biological, chemical or behavioural traits. These systems are used in many real life applications simply from biometric based attendance system to providing security at very sophisticated level. A biometric system deals with raw data captured using a sensor and feature template extracted from raw image. One of the challenges being faced by designers of these systems is to secure template data extracted from the biometric modalities of the user and protect the raw images. To minimize spoof attacks on biometric systems by unauthorised users one of the solutions is to use multi-biometric systems. Multi-modal biometric system works by using fusion technique to merge feature templates generated from different modalities of the human. In this work a new scheme is proposed to secure template during feature fusion level. Scheme is based on union operation of fuzzy relations of templates of modalities during fusion process of multimodal biometric systems. This approach serves dual purpose of feature fusion as well as transformation of templates into a single secured non invertible template. The proposed technique is cancelable and experimentally tested on a bimodal biometric system comprising of fingerprint and hand geometry. Developed scheme removes the problem of an attacker learning the original minutia position in fingerprint and various measurements of hand geometry. Given scheme provides improved performance of the system with reduction in false accept rate and improvement in genuine accept rate.

  1. Preliminary analysis of advanced equilibrium configuration for the fusion-driven subcritical system

    International Nuclear Information System (INIS)

    Chu Delin; Wu Bin; Wu Yican

    2003-01-01

    The Fusion-Driven Subcritical System (FDS) is a subcritical nuclear energy system driven by fusion neutron source. In this paper, an advanced plasma configuration for FDS system has been proposed, which aims at high beta, high bootstrap current and good confinement. A fixed-boundary equilibrium code has been used to obtain ideal equilibrium configuration. In order to determine the feasibility of FDS operation, a two-dimensional time-dependent free boundary simulation code has been adopted to simulate time-scale evolution of plasma current profile and boundary position. By analyses, the Reversed Shear mode as the most attractive one has been recommended for the FDS equilibrium configuration design

  2. Sub-barrier fusion and transfers in the 40Ca + 58,64Ni systems

    Science.gov (United States)

    Bourgin, D.; Courtin, S.; Haas, F.; Goasduff, A.; Stefanini, A. M.; Montagnoli, G.; Montanari, D.; Corradi, L.; Huiming, J.; Scarlassara, F.; Fioretto, E.; Simenel, C.; Rowley, N.; Szilner, S.; Mijatović, T.

    2016-05-01

    Fusion cross sections have been measured in the 40Ca + 58Ni and 40Ca + 64Ni systems at energies around and below the Coulomb barrier. The 40Ca beam was delivered by the XTU Tandem accelerator of the Laboratori Nazionali di Legnaro and evaporation residues were measured at very forward angles with the LNL electrostatic beam deflector. Coupled-channels calculations were performed which highlight possible strong effects of neutron transfers on the fusion below the barrier in the 40Ca + 64Ni system. Microscopic time-dependent Hartree-Fock calculations have also been performed for both systems. Preliminary results are shown.

  3. Sub-barrier fusion and transfers in the 40Ca + 58,64Ni systems

    Directory of Open Access Journals (Sweden)

    Bourgin D.

    2016-01-01

    Full Text Available Fusion cross sections have been measured in the 40Ca + 58Ni and 40Ca + 64Ni systems at energies around and below the Coulomb barrier. The 40Ca beam was delivered by the XTU Tandem accelerator of the Laboratori Nazionali di Legnaro and evaporation residues were measured at very forward angles with the LNL electrostatic beam deflector. Coupled-channels calculations were performed which highlight possible strong effects of neutron transfers on the fusion below the barrier in the 40Ca + 64Ni system. Microscopic time-dependent Hartree-Fock calculations have also been performed for both systems. Preliminary results are shown.

  4. Applications of intelligent-measurement systems in controlled-fusion research

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, D.W.; Lindquist, W.B.; Peterson, R.L.; Wyman, R.H.

    1981-01-01

    The paper describes the control and instrumentation for the Mirror Fusion Test Facility at the Lawrence Livermore National Laboratory, California, USA. This large-scale scientific experiment in controlled thermonuclear fusion, which is currently being expanded, originally had 3000 devices to control and 7000 sensors to monitor. A hierarchical computer control system, is used with nine minicomputers forming the supervisory system. There are approximately 55 local control and instrumentation microcomputers. In addition, each device has its own monitoring equipment, which in some cases consists of a small computer. After describing the overall system a more detailed account is given of the control and instrumentation for two large superconducting magnets

  5. Current trends in laser fusion driver and beam combination laser system using stimulated Brillouin scattering phase conjugate mirrors for a fusion driver

    International Nuclear Information System (INIS)

    Kong, Hong Jin

    2008-01-01

    Laser fusion energy (LFE) is well known as one of the promising sources if clean energy for mankind. Laser fusion researches have been actively progressed, since Japan and the Soviet Union as well as USA developed ultrahigh power lasers at the beginning of 1970s. At present in USA, NIF (National Ignition Facility), which is the largest laser fusion facility in the world, is under construction and will be completed in 2008. Japan as a leader of the laser fusion research has developed a high energy and high power laser system, Gekko XII, and is under contemplation of FIREX projects for the fast ignition. China also has SG I, II lasers for performing the fusion research, and SG III is under construction as a next step. France is also constructing LMJ (Laser countries, many other developed countries in Europe, such as Russia, Germany, UK, and so on, have their own high energy laser systems for the fusion research. In Korea, the high power laser development started with SinMyung laser in KAIST in 1994, and KLF (KAERI Laser Facility) of KAERI was recently completed in 2007. For the practical use of laser fusion energy, the laser driver should be operated with a high repetition rate around 10Hz. Yet, current high energy laser systems, Such as NIF, Gekko XII, and etc., can be operated with only several shots per day. Some researchers have developed their own techniques to reduce the thermal loads of the laser material, by using laser diodes as pump sources and ceramic laser materials with high thermal energy scaling up for the real fusion driver. For this reason, H. J. Kong et al. proposed the beam combination laser system using stimulated Brillouin scattering phase conjugate mirrors (SBS PCMs) for a fusion driver. Proposed beam combination has many advantages for energy scaling up; it is composed by simple optical systems with small amount of components, there is no interaction between neighbored sub beams, the SBS PCMs can be used for a high energy beam reflection with

  6. Medical images fusion for application in treatment planning systems in radiotherapy

    International Nuclear Information System (INIS)

    Ros, Renato Assenci

    2006-01-01

    Software for medical images fusion was developed for utilization in CAT3D radiotherapy and MNPS radiosurgery treatment planning systems. A mutual information maximization methodology was used to make the image registration of different modalities by measure of the statistical dependence between the voxels pairs. The alignment by references points makes an initial approximation to the non linear optimization process by downhill simplex method for estimation of the joint histogram. The coordinates transformation function use a trilinear interpolation and search for the global maximum value in a 6 dimensional space, with 3 degree of freedom for translation and 3 degree of freedom for rotation, by making use of the rigid body model. This method was evaluated with CT, MR and PET images from Vanderbilt University database to verify its accuracy by comparison of transformation coordinates of each images fusion with gold-standard values. The median of images alignment error values was 1.6 mm for CT-MR fusion and 3.5 mm for PET-MR fusion, with gold-standard accuracy estimated as 0.4 mm for CT-MR fusion and 1.7 mm for PET-MR fusion. The maximum error values were 5.3 mm for CT-MR fusion and 7.4 mm for PET-MR fusion, and 99.1% of alignment errors were images subvoxels values. The mean computing time was 24 s. The software was successfully finished and implemented in 59 radiotherapy routine services, of which 42 are in Brazil and 17 are in Latin America. This method does not have limitation about different resolutions from images, pixels sizes and slice thickness. Besides, the alignment may be accomplished by axial, coronal or sagittal images. (author)

  7. Characteristics of the higher education system

    NARCIS (Netherlands)

    Jongbloed, Benjamin W.A.; Sijgers, Irene; Hammer, Matthijs; ter Horst, Wolf; Nieuwenhuis, Paul; van der Sijde, Peter

    2005-01-01

    This chapter presents an overview of the main characteristics of the higher education system in the Netherlands. Section 2.1 presents some key facts about the system as a whole (types of institutions, number of students, degrees). Section 2.2 discusses the different types of higher education

  8. Overview of US heavy-ion fusion commercial electric power systems assessment project. Revision

    International Nuclear Information System (INIS)

    Dudziak, D.J.; Pendergrass, J.H.; Saylor, W.W.

    1986-01-01

    The US heavy-ion fusion (HIF) research program is oriented toward development of multiple-beam induction linacs. Over the last two years an assessment has been performed of the potential of HIF as a competitive commercial electric power source. This assessment involved several technology performance and cost issues (e.g., final beam transport system, target manufacturing, beam stability in reactor cavity environments, and reactor cavity clearing), as well as overall power plant systems integration and tradeoff studies. Results from parametric analyses using a systems code developed in the project show cost of electricity (COE) values comparable with COEs from other magnetic fusion and inertial confinement fusion (ICF) plant studies; viz, 50-60 mills/kWh (1985 dollars) for 1-GWe plants. Also, significant COE insensitivity to major accelerator, target, and reactor parameters was demonstrated

  9. Development of resonance ionization spectroscopy system for fusion material surface analysis

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tetsuo [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.; Satoh, Yasushi; Nakazawa, Masaharu

    1996-10-01

    A Resonance Ionization Spectroscopy (RIS) system is now under development aiming at in-situ observation and analysis neutral particles emitted from fusion material surfaces under irradiation of charged particles and neutrons. The basic performance of the RIS system was checked through a preliminary experiment on Xe atom detection. (author)

  10. Design of deuterium and tritium pellet injector systems for Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Wysor, R.B.; Baylor, L.R.; Bryan, W.E.

    1985-01-01

    Three pellet injector designs developed by the Oak Ridge National Laboratory (ORNL) are planned for the Tokamak Fusion Test Reactor (TFTR) to reach the goal of a tritium pellet injector by 1988. These are the Repeating Pneumatic Injector (RPI), the Deuterium Pellet Injector (DPI) and the Tritium Pellet Injector (TPI). Each of the pellet injector designs have similar performance characteristics in that they deliver up to 4-mm-dia pellets at velocities up to 1500 m/s with a dsign goal to 2000 m/s. Similar techniques are utilized to freeze and extrude the pellet material. The injector systems incorporate three gun concepts which differ in the number of gun barrels and the method of forming and chambering the pellets. The RPI, a single barrel repeating design, has been operational on TFTR since April 1985. Fabrication and assembly are essentially complete for DPI, and TPI is presently on hold after completing about 80% of the design. The TFTR pellet injector program is described, and each of the injector systems is described briefly. Design details are discussed in other papers at this symposium

  11. Novel approaches to improve iris recognition system performance based on local quality evaluation and feature fusion.

    Science.gov (United States)

    Chen, Ying; Liu, Yuanning; Zhu, Xiaodong; Chen, Huiling; He, Fei; Pang, Yutong

    2014-01-01

    For building a new iris template, this paper proposes a strategy to fuse different portions of iris based on machine learning method to evaluate local quality of iris. There are three novelties compared to previous work. Firstly, the normalized segmented iris is divided into multitracks and then each track is estimated individually to analyze the recognition accuracy rate (RAR). Secondly, six local quality evaluation parameters are adopted to analyze texture information of each track. Besides, particle swarm optimization (PSO) is employed to get the weights of these evaluation parameters and corresponding weighted coefficients of different tracks. Finally, all tracks' information is fused according to the weights of different tracks. The experimental results based on subsets of three public and one private iris image databases demonstrate three contributions of this paper. (1) Our experimental results prove that partial iris image cannot completely replace the entire iris image for iris recognition system in several ways. (2) The proposed quality evaluation algorithm is a self-adaptive algorithm, and it can automatically optimize the parameters according to iris image samples' own characteristics. (3) Our feature information fusion strategy can effectively improve the performance of iris recognition system.

  12. Waste management strategy for nuclear fusion power systems from a regulatory perspective

    Energy Technology Data Exchange (ETDEWEB)

    Heckman, R.A.

    1977-12-06

    A waste management strategy for future nuclear fusion power systems is developed using existing regulatory methodology. The first step is the development of a reference fuel cycle. Next, the waste streams from such a facility are identified. Then a waste management system is defined to safely handle and dispose of these wastes. The future regulator must identify the decisions necessary to establish waste management performance criteria. The data base and methodologies necessary to make these decisions must then be developed. Safe management of nuclear fusion wastes is not only a technological challenge, but encompasses significant social, political, and ethical questions as well.

  13. An acceleration system for Laplacian image fusion based on SoC

    Science.gov (United States)

    Gao, Liwen; Zhao, Hongtu; Qu, Xiujie; Wei, Tianbo; Du, Peng

    2018-04-01

    Based on the analysis of Laplacian image fusion algorithm, this paper proposes a partial pipelining and modular processing architecture, and a SoC based acceleration system is implemented accordingly. Full pipelining method is used for the design of each module, and modules in series form the partial pipelining with unified data formation, which is easy for management and reuse. Integrated with ARM processor, DMA and embedded bare-mental program, this system achieves 4 layers of Laplacian pyramid on the Zynq-7000 board. Experiments show that, with small resources consumption, a couple of 256×256 images can be fused within 1ms, maintaining a fine fusion effect at the same time.

  14. Waste management strategy for nuclear fusion power systems from a regulatory perspective

    International Nuclear Information System (INIS)

    Heckman, R.A.

    1977-01-01

    A waste management strategy for future nuclear fusion power systems is developed using existing regulatory methodology. The first step is the development of a reference fuel cycle. Next, the waste streams from such a facility are identified. Then a waste management system is defined to safely handle and dispose of these wastes. The future regulator must identify the decisions necessary to establish waste management performance criteria. The data base and methodologies necessary to make these decisions must then be developed. Safe management of nuclear fusion wastes is not only a technological challenge, but encompasses significant social, political, and ethical questions as well

  15. Developing maintainability for fusion power systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Zahn, H.S.; Mantz, H.C.; Curtis, C.T.; Buchheit, R.J.; Green, W.M.; Zuckerman, D.S.

    1979-11-01

    The overall purpose of the study is to identify design features of fusion power reactors which contribute to the achievement of high levels of maintainability. Previous phases evaluated several commercial tokamak reactor design concepts. This final phase compares the maintainability of a tandem mirror reactor (TMR) commercial conceptual design with the most maintainable tokamak concept selected from earlier work. A series of maintainability design guidelines and desirable TMR design features are defined. The effects of scheduled and unscheduled maintenance for most of the reactor subsystems are defined. The comparison of the TMR and tokamak reactor maintenance costs and availabilities show that both reactors have similar costs for scheduled maintenance at 19.4 and 20.8 million dollars annually and similar scheduled downtime availability impacts, achieving approximate availabilities of 79% at optimized maintenance intervals and cost of electricity.

  16. Fabrication and Installation of Radiation Shielded Spent Fuel Fusion System

    International Nuclear Information System (INIS)

    Park, Soon Dal; Park, Yang Soon; Kim, Jong Goo; Ha, Yeong Keong; Song, Kyu Seok

    2010-02-01

    Most of the generated fission gases are retained in the fuel matrix in supersaturated state, thus alter the original physicochemical properties of the fuel. And some of them are released into free volume of a fuel rod and that cause internal pressure increase of a fuel rod. Furthermore, as extending fuel burnup, the data on fission gas generation(FGG) and fission gas release(FGR) are considered very important for fuel safety investigation. Consequently, it is required to establish an experimental facility for handling of highly radioactive sample and to develop an analytical technology for measurement of retained fission gas in a spent fuel. This report describes not only on the construction of a shielded glove box which can handle highly radioactive materials but also on the modifications and instrumentations of spent fuel fusion facilities and collection apparatuses of retained fission gas

  17. Systems study of tokamak fusion--fission reactors

    International Nuclear Information System (INIS)

    Tenney, F.H.; Bathke, C.G.; Price, W.G. Jr.; Bohlke, W.H.; Mills, R.G.; Johnson, E.F.; Todd, A.M.M.; Buchanan, C.H.; Gralnick, S.L.

    1978-11-01

    This publication reports the results of a two to three year effort at a systematic analysis of a wide variety of tokamak-driven fissioning blanket reactors, i.e., fusion--fission hybrids. It addresses the quantitative problems of determining the economically most desirable mix of the two products: electric power and fissionable fuel and shows how the price of electric power can be minimized when subject to a variety of constraints. An attempt has been made to avoid restricting assumptions, and the result is an optimizing algorithm that operates in a six-dimensional parameter space. Comparisons are made on sets of as many as 100,000 distinct machine models, and the principal results of the study have been derived from the examination of several hundred thousand possible reactor configurations

  18. Fuel pellets and optical systems for inertially confined fusion

    International Nuclear Information System (INIS)

    Hendricks, C.D.

    1979-01-01

    Current laser-driven ICF targets are complex sets of concentric spherical shells made from a variety of materials including the fuel (e.g., deuterium-tritium), glass, beryllium, gold, polymeric materials, organo-metallics, and several additional organic and inorganic materials depending on the particular experiments to be done. While it is not yet known what the reactor targets will be exactly, there is little reason to believe they will be just simple, low quality glass shells containing DT gas or simple spheres of deuterated polyethylene or other fuel. Consequently, many of the current targets, materials, and fabrication techniques are considered to be applicable to the long range problems of ICF reactor target fabrication. Many current material problems and fabrication techniques are discussed and various quality factors are presented in an attempt to bring an awareness of the possible fusion reactor target materials problems to the scientific and technical community

  19. Developing maintainability for fusion power systems. Final report

    International Nuclear Information System (INIS)

    Zahn, H.S.; Mantz, H.C.; Curtis, C.T.; Buchheit, R.J.; Green, W.M.; Zuckerman, D.S.

    1979-11-01

    The overall purpose of the study is to identify design features of fusion power reactors which contribute to the achievement of high levels of maintainability. Previous phases evaluated several commercial tokamak reactor design concepts. This final phase compares the maintainability of a tandem mirror reactor (TMR) commercial conceptual design with the most maintainable tokamak concept selected from earlier work. A series of maintainability design guidelines and desirable TMR design features are defined. The effects of scheduled and unscheduled maintenance for most of the reactor subsystems are defined. The comparison of the TMR and tokamak reactor maintenance costs and availabilities show that both reactors have similar costs for scheduled maintenance at 19.4 and 20.8 million dollars annually and similar scheduled downtime availability impacts, achieving approximate availabilities of 79% at optimized maintenance intervals and cost of electricity

  20. Burn characteristics of compressed fuel pellets for D-3He inertial fusion

    International Nuclear Information System (INIS)

    Nakao, Y.; Honda, T.; Honda, Y.; Kudo, K.; Nakashima, H.

    1992-01-01

    In this paper, the feasibility of using D- 3 He fuel in inertial confinement fusion is examined by using a hydrodynamics code that includes neutron and charged-particle transport routines. The use of a small amount of deuterium-tritium (D-T) ignitor is indispensable. Burn simulations are made for quasi-isobaric D-T/D- 3 He pellet models compressed to 5000 times the liquid density. Substantial fuel gains (∼500) are obtained from pellets having parameters ρR D-T = 3 g/cm 2 and ρR total = 14 g/cm 2 and a central spark temperature of 5 keV. The amount of driver energy needed to achieve these gains is estimated to be ∼ 30 MJ when the coupling efficiency is 10%. The driver energy requirement can be reduced by using spin-polarized D-T and D- 3 He fuels

  1. Basic study of cold fusion. 1. The development of excess heat measurement system in electrolysis

    International Nuclear Information System (INIS)

    Asaoka, Yoshiyuki; Fujita, Tomonari

    1994-01-01

    We have an opportunity ripe to investigate the cold fusion phenomena. In order to declare the subjects to be examined, the precision calorimetry system was developed to try to reproduce the phenomena. The electrolysis of heavy water with palladium cathode was conducted based on the thought that it is important to confirm the cold fusion phenomena. For precision excess power measurement, the closed cell with recombiner and flow-calorimetry were adopted. The obtained accuracy for the excess power measurement of the system was ±0.2 W at up to 9 W of applied power. This is enough for the excess power reported as the cold fusion phenomena. For farther investigation, measurement of loading ratio of deuterium in the palladium cathode, maintenance of high deuterium loading and analysis of the palladium cathode are to be conducted. (author)

  2. HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs, 90 Sr, 129 I, 99 Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,α), (n,γ), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R=1.0 to 3.0) requirements

  3. Bridging the gap: axonal fusion drives rapid functional recovery of the nervous system

    Directory of Open Access Journals (Sweden)

    Jean-Sébastien Teoh

    2018-01-01

    Full Text Available Injuries to the central or peripheral nervous system frequently cause long-term disabilities because damaged neurons are unable to efficiently self-repair. This inherent deficiency necessitates the need for new treatment options aimed at restoring lost function to patients. Compared to humans, a number of species possess far greater regenerative capabilities, and can therefore provide important insights into how our own nervous systems can be repaired. In particular, several invertebrate species have been shown to rapidly initiate regeneration post-injury, allowing separated axon segments to re-join. This process, known as axonal fusion, represents a highly efficient repair mechanism as a regrowing axon needs to only bridge the site of damage and fuse with its separated counterpart in order to re-establish its original structure. Our recent findings in the nematode Caenorhabditis elegans have expanded the promise of axonal fusion by demonstrating that it can restore complete function to damaged neurons. Moreover, we revealed the importance of injury-induced changes in the composition of the axonal membrane for mediating axonal fusion, and discovered that the level of axonal fusion can be enhanced by promoting a neuron's intrinsic growth potential. A complete understanding of the molecular mechanisms controlling axonal fusion may permit similar approaches to be applied in a clinical setting.

  4. Development of fusion fuel cycles: Large deviations from US defense program systems

    Energy Technology Data Exchange (ETDEWEB)

    Klein, James Edward, E-mail: james.klein@srnl.doe.gov; Poore, Anita Sue; Babineau, David W.

    2015-10-15

    Highlights: • All tritium fuel cycles start with a “Tritium Process.” All have similar tritium processing steps. • Fusion tritium fuel cycles minimize process tritium inventories for various reasons. • US defense program facility designs did not minimize in-process inventories. • Reduced inventory tritium facilities will lower public risk. - Abstract: Fusion energy research is dominated by plasma physics and materials technology development needs with smaller levels of effort and funding dedicated to tritium fuel cycle development. The fuel cycle is necessary to supply and recycle tritium at the required throughput rate; additionally, tritium confinement throughout the facility is needed to meet regulatory and environmental release limits. Small fuel cycle development efforts are sometimes rationalized by stating that tritium processing technology has already been developed by nuclear weapons programs and these existing processes only need rescaling or engineering design to meet the needs of fusion fuel cycles. This paper compares and contrasts features of tritium fusion fuel cycles to United States Cold War era defense program tritium systems. It is concluded that further tritium fuel cycle development activities are needed to provide technology development beneficial to both fusion and defense programs tritium systems.

  5. Conceptual requirements for large fusion experiment control, data, robotics, and management systems

    International Nuclear Information System (INIS)

    Gaudreau, M.P.J.; Sullivan, J.D.

    1987-05-01

    The conceptual system requirements for the control, data, robotics, and project management (CDRM) system for the next generation of fusion experiments are developed by drawing on the success of the Tara control and data system. The requirements are described in terms of an integrated but separable matrix of well-defined interfaces among the various systems and subsystems. The study stresses modularity, performance, cost effectiveness, and exportability

  6. Operation of the cryogenic system for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Chronis, W.C.; Slack, D.S.

    1987-01-01

    The cryogenic system for the Mirror Fusion Test Facility (MFTF) at Lawrence Livermore National Laboratory (LLNL) was designed to cool the entire MFTF-B system from ambient to operating temperature in less than 10 days. The system was successfully operated in the recent plant and capital equipment (PACE) acceptance tests, and results from these tests helped us correct problem areas and improve the system

  7. A joint FED watermarking system using spatial fusion for verifying the security issues of teleradiology.

    Science.gov (United States)

    Viswanathan, P; Krishna, P Venkata

    2014-05-01

    Teleradiology allows transmission of medical images for clinical data interpretation to provide improved e-health care access, delivery, and standards. The remote transmission raises various ethical and legal issues like image retention, fraud, privacy, malpractice liability, etc. A joint FED watermarking system means a joint fingerprint/encryption/dual watermarking system is proposed for addressing these issues. The system combines a region based substitution dual watermarking algorithm using spatial fusion, stream cipher algorithm using symmetric key, and fingerprint verification algorithm using invariants. This paper aims to give access to the outcomes of medical images with confidentiality, availability, integrity, and its origin. The watermarking, encryption, and fingerprint enrollment are conducted jointly in protection stage such that the extraction, decryption, and verification can be applied independently. The dual watermarking system, introducing two different embedding schemes, one used for patient data and other for fingerprint features, reduces the difficulty in maintenance of multiple documents like authentication data, personnel and diagnosis data, and medical images. The spatial fusion algorithm, which determines the region of embedding using threshold from the image to embed the encrypted patient data, follows the exact rules of fusion resulting in better quality than other fusion techniques. The four step stream cipher algorithm using symmetric key for encrypting the patient data with fingerprint verification system using algebraic invariants improves the robustness of the medical information. The experiment result of proposed scheme is evaluated for security and quality analysis in DICOM medical images resulted well in terms of attacks, quality index, and imperceptibility.

  8. Novel hybrid Monte Carlo/deterministic technique for shutdown dose rate analyses of fusion energy systems

    International Nuclear Information System (INIS)

    Ibrahim, Ahmad M.; Peplow, Douglas E.; Peterson, Joshua L.; Grove, Robert E.

    2014-01-01

    Highlights: •Develop the novel Multi-Step CADIS (MS-CADIS) hybrid Monte Carlo/deterministic method for multi-step shielding analyses. •Accurately calculate shutdown dose rates using full-scale Monte Carlo models of fusion energy systems. •Demonstrate the dramatic efficiency improvement of the MS-CADIS method for the rigorous two step calculations of the shutdown dose rate in fusion reactors. -- Abstract: The rigorous 2-step (R2S) computational system uses three-dimensional Monte Carlo transport simulations to calculate the shutdown dose rate (SDDR) in fusion reactors. Accurate full-scale R2S calculations are impractical in fusion reactors because they require calculating space- and energy-dependent neutron fluxes everywhere inside the reactor. The use of global Monte Carlo variance reduction techniques was suggested for accelerating the R2S neutron transport calculation. However, the prohibitive computational costs of these approaches, which increase with the problem size and amount of shielding materials, inhibit their ability to accurately predict the SDDR in fusion energy systems using full-scale modeling of an entire fusion plant. This paper describes a novel hybrid Monte Carlo/deterministic methodology that uses the Consistent Adjoint Driven Importance Sampling (CADIS) method but focuses on multi-step shielding calculations. The Multi-Step CADIS (MS-CADIS) methodology speeds up the R2S neutron Monte Carlo calculation using an importance function that represents the neutron importance to the final SDDR. Using a simplified example, preliminary results showed that the use of MS-CADIS enhanced the efficiency of the neutron Monte Carlo simulation of an SDDR calculation by a factor of 550 compared to standard global variance reduction techniques, and that the efficiency enhancement compared to analog Monte Carlo is higher than a factor of 10,000

  9. System Identification of Flight Mechanical Characteristics

    OpenAIRE

    Larsson, Roger

    2013-01-01

    With the demand for more advanced fighter aircraft, relying on relaxed stability or even unstable flight mechanical characteristics to gain flight performance, more focus has been put on model-based system engineering to help with the design work. The flight control system design is one important part that relies on this modeling. Therefore it has become more important to develop flight mechanical models that are highly accurate in the whole flight envelop. For today’s newly developed fighter...

  10. Effects of neutron source ratio on nuclear characteristics of D-D fusion reactor blankets and shields

    International Nuclear Information System (INIS)

    Nakashima, Hideki; Nakao, Yasuyuki; Ohta, Masao

    1978-01-01

    An examination is made of the dependence shown by the nuclear characteristics of the blanket and shield of D-D fusion reactors on S sub( d d)/S sub( d t), the ratio between the 2.45 MeV neutrons resulting from the D-D reaction and those of 14.06 MeV from the D-T reaction. Also, an estimate is presented of this neutron source ratio S sub( d d)/S sub( d t) for the case of D-D reactors, taken as an example. It is shown that an increase of S sub( d d)/S sub( d t) reduces the amount of nuclear heating per unit source neutron, while at the same time improving the shielding characteristics. This is accountable to lowering of the energy and penetrability of incident neutrons into the blanket brought about by the increase of S sub( d d)/S sub( d t). The value of S sub( d d)/S sub( d t) in a steady state D-D fusioning plasma core is estimated to be 1.46 -- 1.72 for an ion temperature ranging from 60 -- 180 keV. The reductions obtained on H sub( t)sup( b) (total heating in the blanket), H sub( t)sup( m g)/H sub( t)sup( b) (shielding indicator = ratio between total heating in superconducting magnet and that in the blanket) and phi sup( m g)/phi sup( w) (ratio of fast neutron fluxes between that at the magnet inner surface and that at the first wall inner surface) brought about by increasing S sub( d d)/S sub( d t) from unity to the value cited above do not differ to any appreciable extent, whichever is adopted among the design models considered here, the differences being at most about 10, 15 and 25%, respectively, for these three parameters. These results would broaden the validity of the conclusion derived in the previous paper for the case of S sub( d d)/S sub( d t) = 1.0, that the blanket-shield concept would appear to be the most suitable for D-D fusion reactors. (author)

  11. Power conversion systems based on Brayton cycles for fusion reactors

    International Nuclear Information System (INIS)

    Linares, J.I.; Herranz, L.E.; Moratilla, B.Y.; Serrano, I.P.

    2011-01-01

    This paper investigates Brayton power cycles for fusion reactors. Two working fluids have been explored: helium in classical configurations and CO 2 in recompression layouts (Feher cycle). Typical recuperator arrangements in both cycles have been strongly constrained by low temperature of some of the energy thermal sources from the reactor. This limitation has been overcome in two ways: with a combined architecture and with dual cycles. Combined architecture couples the Brayton cycle with a Rankine one capable of taking advantage of the thermal energy content of the working fluid after exiting the turbine stage (iso-butane and steam fitted best the conditions of the He and CO 2 cycles, respectively). Dual cycles set a specific Rankine cycle to exploit the lowest quality thermal energy source, allowing usual recuperator arrangements in the Brayton cycle. The results of the analyses indicate that dual cycles could reach thermal efficiencies around 42.8% when using helium, whereas thermal performance might be even better (46.7%), if a combined CO 2 -H 2 O cycle was set.

  12. Oscillations in the fusion of the Si + Si systems

    International Nuclear Information System (INIS)

    Aguilera R, E.F.; Kolata, J.J.; DeYoung, P.A.; Vega, J.J.

    1986-02-01

    Excitation functions for the yields of all the residual nuclei from the 28 Si + 28,30 and 30 Si + 30 Si reactions have been measured via the γ-ray technique for center of mass energies in the region within one and two times the Coulomb barrier.Thirteen elements were identified for the first reaction and ten for the other two. While no structure is shown by the data for the 28 + 28 Si reaction, we have found evidence for intermediate width structure in the 2α and the αpn channels in 28 Si + 30 Si and for broad structure in the total fusion cross sections for 30 Si + 30 Si. Calculations using a barrier penetration model with one free parameter reproduce the experimental results quite well. Evaporation model calculations indicate that the individual structure of the nuclei involved in the respective decay chains might have an important influence upon the deexcitation process at the energies relevant to our experiments. (Author)

  13. Development of design system of manipulator for fusion reactor maintenance

    International Nuclear Information System (INIS)

    Ida, Toshio; Niikura, Setsuo; Ishiguro, Akiko; Yamada, Masao; Matsuoka, Fushiki

    1989-01-01

    A program which supports designers of a manipulator for in-vessel maintenance of a fusion reactor has been developed. The main purpose of this program is to provide the designer with a promising manipulator specification by furnishing useful information. It combines a technique of knowledge engineering with numerical solutions. This program consists of three parts: The first part is to generate candidates for the manipulator using a knowledge base; the second is to evaluate both static and dynamic properties of each candidate through numerical simulation of the maintenance task; and the third is to select the candidates having better performance and feasibility on the basis of the simulation data and knowledge base. The feasibility of the method used in this program is confirmed by the preliminary application. This application also emphasizes the importance of the knowledge base for the candidate generation and selection. Although the degree of freedom of the manipulator is restricted to less than 7 degrees in this study, further development of the capability of manipulator simulation (seven or more degrees of freedom) will enhance the effectiveness of this program. (orig.)

  14. Image fusion using MIM software via picture archiving and communication system

    International Nuclear Information System (INIS)

    Gu Zhaoxiang; Jiang Maosong

    2001-01-01

    The preliminary studies of the multimodality image registration and fusion were performed using an image fusion software and a picture archiving and communication system (PACS) to explore the methodology. Original image voluminal data were acquired with a CT scanner, MR and dual-head coincidence SPECT, respectively. The data sets from all imaging devices were queried, retrieved, transferred and accessed via DICOM PACS. The image fusion was performed at the SPECT ICON work-station, where the MIM (Medical Image Merge) fusion software was installed. The images were created by re-slicing original volume on the fly. The image volumes were aligned by translation and rotation of these view ports with respect to the original volume orientation. The transparency factor and contrast were adjusted in order that both volumes can be visualized in the merged images. The image volume data of CT, MR and nuclear medicine were transferred, accessed and loaded via PACS successfully. The perfect fused images of chest CT/ 18 F-FDG and brain MR/SPECT were obtained. These results showed that image fusion technique using PACS was feasible and practical. Further experimentation and larger validation studies were needed to explore the full potential of the clinical use

  15. Computational methods, tools and data for nuclear analyses of fusion technology systems

    International Nuclear Information System (INIS)

    Fischer, U.

    2006-01-01

    An overview is presented of the Research and Development work conducted at Forschungszentrum Karlsruhe in co-operation with other associations in the framework of the European Fusion Technology Programme on the development and qualification of computational tools and data for nuclear analyses of Fusion Technology systems. The focus is on the development of advanced methods and tools based on the Monte Carlo technique for particle transport simulations, and the evaluation and qualification of dedicated nuclear data to satisfy the needs of the ITER and the IFMIF projects. (author)

  16. Incomplete fusion reactions in 16O+159Tb system: Spin distribution measurements

    Directory of Open Access Journals (Sweden)

    Sharma Vijay R.

    2015-01-01

    Full Text Available In order to explore the reaction modes on the basis of their entry state spin population, an experiment has been done by employing particle-γ coincidence technique carried out at the Inter University Accelerator Centre, New Delhi. The preliminary analysis conclusively demonstrates, spin distribution for some reaction products populated via complete and/or incomplete fusion of 16O with 159Tb system found to be distinctly different. Further, the existence of incomplete fusion at low bombarding energies indicates the possibility to populate high spin states.

  17. Extension of the AUS reactor neutronics system for application to fusion blanket neutronics

    International Nuclear Information System (INIS)

    Robinson, G.S.

    1984-03-01

    The AUS modular code scheme for reactor neutronics computations has been extended to apply to fusion blanket neutronics. A new group cross-section library with 200 neutron groups, 37 photon groups and kerma factor data has been generated from ENDF/B-IV. The library includes neutron resonance subgroup parameters and temperature-dependent data for thermal neutron scattering matrices. The validity of the overall calculation system for fusion applications has been checked by comparison with a number of published conceptual design studies

  18. The heat transport system and plant design for the HYLIFE-2 fusion reactor

    International Nuclear Information System (INIS)

    Hoffman, M.A.

    1990-01-01

    HYLIFE is the name given to a family of self-healing liquid-wall reactor concepts for inertial confinement fusion. This HYLIFE-II concept employs the molten salt, Flibe, for the liquid jets instead of liquid lithium used in the original HYLIFE-I study. A preliminary conceptual design study of the heat transport system and the balance of plant of the HYLIFE-II fusion power plant is described in this paper with special emphasis on a scoping study to determine the best intermediate heat exchanger geometry and flow conditions for minimum cost of electricity. 11 refs., 8 figs

  19. Advanced computational tools and methods for nuclear analyses of fusion technology systems

    International Nuclear Information System (INIS)

    Fischer, U.; Chen, Y.; Pereslavtsev, P.; Simakov, S.P.; Tsige-Tamirat, H.; Loughlin, M.; Perel, R.L.; Petrizzi, L.; Tautges, T.J.; Wilson, P.P.H.

    2005-01-01

    An overview is presented of advanced computational tools and methods developed recently for nuclear analyses of Fusion Technology systems such as the experimental device ITER ('International Thermonuclear Experimental Reactor') and the intense neutron source IFMIF ('International Fusion Material Irradiation Facility'). These include Monte Carlo based computational schemes for the calculation of three-dimensional shut-down dose rate distributions, methods, codes and interfaces for the use of CAD geometry models in Monte Carlo transport calculations, algorithms for Monte Carlo based sensitivity/uncertainty calculations, as well as computational techniques and data for IFMIF neutronics and activation calculations. (author)

  20. SAFIRE: A systems analysis code for ICF [inertial confinement fusion] reactor economics

    International Nuclear Information System (INIS)

    McCarville, T.J.; Meier, W.R.; Carson, C.F.; Glasgow, B.B.

    1987-01-01

    The SAFIRE (Systems Analysis for ICF Reactor Economics) code incorporates analytical models for scaling the cost and performance of several inertial confinement fusion reactor concepts for electric power. The code allows us to vary design parameters (e.g., driver energy, chamber pulse rate, net electric power) and evaluate the resulting change in capital cost of power plant and the busbar cost of electricity. The SAFIRE code can be used to identify the most attractive operating space and to identify those design parameters with the greatest leverage for improving the economics of inertial confinement fusion electric power plants

  1. Fusion Analytics: A Data Integration System for Public Health and Medical Disaster Response Decision Support

    Science.gov (United States)

    Passman, Dina B.

    2013-01-01

    Objective The objective of this demonstration is to show conference attendees how they can integrate, analyze, and visualize diverse data type data from across a variety of systems by leveraging an off-the-shelf enterprise business intelligence (EBI) solution to support decision-making in disasters. Introduction Fusion Analytics is the data integration system developed by the Fusion Cell at the U.S. Department of Health and Human Services (HHS), Office of the Assistant Secretary for Preparedness and Response (ASPR). Fusion Analytics meaningfully augments traditional public and population health surveillance reporting by providing web-based data analysis and visualization tools. Methods Fusion Analytics serves as a one-stop-shop for the web-based data visualizations of multiple real-time data sources within ASPR. The 24-7 web availability makes it an ideal analytic tool for situational awareness and response allowing stakeholders to access the portal from any internet-enabled device without installing any software. The Fusion Analytics data integration system was built using off-the-shelf EBI software. Fusion Analytics leverages the full power of statistical analysis software and delivers reports to users in a secure web-based environment. Fusion Analytics provides an example of how public health staff can develop and deploy a robust public health informatics solution using an off-the shelf product and with limited development funding. It also provides the unique example of a public health information system that combines patient data for traditional disease surveillance with manpower and resource data to provide overall decision support for federal public health and medical disaster response operations. Conclusions We are currently in a unique position within public health. One the one hand, we have been gaining greater and greater access to electronic data of all kinds over the last few years. On the other, we are working in a time of reduced government spending

  2. A multi-agent systems approach to distributed bayesian information fusion

    NARCIS (Netherlands)

    Pavlin, G.; de Oude, P.; Maris, M.; Nunnink, J.; Hood, T.

    2010-01-01

    This paper introduces design principles for modular Bayesian fusion systems which can (i) cope with large quantities of heterogeneous information and (ii) can adapt to changing constellations of information sources on the fly. The presented approach exploits the locality of relations in causal

  3. Historical evolution of nuclear energy systems development and related activities in JAERI. Fission, fusion, accelerator utilization

    Energy Technology Data Exchange (ETDEWEB)

    Tone, Tatsuzo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    Overview of the historical evolution of nuclear energy systems development and related activities in JAERI is given in the report. This report reviews the research and development for light water reactor, fast breeder reactor, high temperature gas reactor, fusion reactor and utilization of accelerator-based neutron source. (author)

  4. Applications of the lots computer code to laser fusion systems and other physical optics problems

    International Nuclear Information System (INIS)

    Lawrence, G.; Wolfe, P.N.

    1979-01-01

    The Laser Optical Train Simulation (LOTS) code has been developed at the Optical Sciences Center, University of Arizona under contract to Los Alamos Scientific Laboratory (LASL). LOTS is a diffraction based code designed to beam quality and energy of the laser fusion system in an end-to-end calculation

  5. A Foreign Object Damage Event Detector Data Fusion System for Turbofan Engines

    Science.gov (United States)

    Turso, James A.; Litt, Jonathan S.

    2004-01-01

    A Data Fusion System designed to provide a reliable assessment of the occurrence of Foreign Object Damage (FOD) in a turbofan engine is presented. The FOD-event feature level fusion scheme combines knowledge of shifts in engine gas path performance obtained using a Kalman filter, with bearing accelerometer signal features extracted via wavelet analysis, to positively identify a FOD event. A fuzzy inference system provides basic probability assignments (bpa) based on features extracted from the gas path analysis and bearing accelerometers to a fusion algorithm based on the Dempster-Shafer-Yager Theory of Evidence. Details are provided on the wavelet transforms used to extract the foreign object strike features from the noisy data and on the Kalman filter-based gas path analysis. The system is demonstrated using a turbofan engine combined-effects model (CEM), providing both gas path and rotor dynamic structural response, and is suitable for rapid-prototyping of control and diagnostic systems. The fusion of the disparate data can provide significantly more reliable detection of a FOD event than the use of either method alone. The use of fuzzy inference techniques combined with Dempster-Shafer-Yager Theory of Evidence provides a theoretical justification for drawing conclusions based on imprecise or incomplete data.

  6. Fusion an annihilation of solitary waves for a (2+1)-dimensional nonlinear system

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Ji-Ye [Nanjing Agricultural Univ. (China). Agronomy College; Lishui Univ., Zhejiang (China). College of Mathematics and Physics; Yunnan Agricultural Univ., Kunming (China). Tobacco College; Ma, Song-Hua; Ren, Qing-Bao [Lishui Univ., Zhejiang (China). College of Mathematics and Physics; Wang, Shao-Hua [Nanjing Agricultural Univ. (China). Agronomy College

    2010-12-15

    In this paper, a new projective equation is used to obtain the variable separation solutions with two arbitrary functions of the (2+1)-dimensional Broek-Kaup system (BKK). Based on the derived solitary wave solutions and by selecting appropriate functions, some novel localized excitations such as fusion and annihilation of solitary waves are investigated. (orig.)

  7. Design of power control system using SMES and SVC for fusion power plant

    International Nuclear Information System (INIS)

    Niiyama, K; Yagai, T; Tsuda, M; Hamajima, T

    2008-01-01

    A SMES (Superconducting Magnetic Energy Storage System) system with converter composed of self-commutated valve devices such as GTO and IGBT is available to control active and reactive power simultaneously. A SVC (Static Var Compensators) or STATCOM (Static Synchronous Compensator) is widely employed to reduce reactive power in power plants and substations. Owing to progress of power electronics technology using GTO and IGBT devices, power converters in the SMES system and the SVC can easily control power flow in few milliseconds. Moreover, since the valve devices for the SMES are equivalent to those for the SVC, the device cost must be reduced. In this paper the basic control system combined with the SMES and SVC is designed for large pulsed loads of a nuclear fusion power plant. This combined system largely expands the reactive power control region as well as the active one. The simulation results show that the combined system is effective and prospective for the nuclear fusion power plant

  8. A comparison of implantation-driven permeation characteristics of fusion reactor structural materials

    Science.gov (United States)

    Longhurst, G. R.; Anderl, R. A.; Struttmann, D. A.

    1986-11-01

    Implantation-driven permeation experiments have been conducted on samples of the ferritic steel HT-9, the austenitic Primary Candidate Alloy (PCA) and the vanadium alloy V-15Cr-5Ti using D 3+ ions under conditions that simulate charge-exchange neutral loading on a fusion reactor first wall. The steels all exhibited an initially intense permeation "spike" followed by an exponential decrease to low steady-state values. That spike was not evident in the V-15Cr-5Ti experiments. Steady-state permeation was highest in the vanadium alloy and lowest in the austenitic steel. Though permeation rates in the HT-9 were lower than those in V-15Cr-5Ti, permeation transients were much faster in HT-9 than in other materials tested. Sputtering of the steel surface resulted in enhanced reemission, whereas in the vanadium tests, recombination and diffusivity both appeared to diminish as the deuterium concentration rose. We conclude that for conditions comparable to those of these experiments, tritium retention and permeation loss in first wall structures made of steels will be less than in structures made of V-15Cr-5Ti.

  9. Comparison on implantation-driven permeation characteristics of fusion reactor structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R.; Anderl, R.A.; Struttmann, D.A. (Idaho National Engineering Lab., Idaho Falls)

    Implantation-driven permeation experiments have been conducted on samples of the ferritic steel HT-9, the austenitic Primary Candidate Alloy (PCA) and the vanadium alloy V-15Cr-5Ti using D{sub 3}{sup +} ions under conditions that simulate charge-exchange neutral loading on a fusion reactor first wall. The steels all exhibited an initially intense permeation spike followed by an exponential decrease to low steady-state values. That spike was not evident in the V-15Cr-5Ti experiments. Steady-state permeation was highest in the vanadium alloy and lowest in the austenitic steel. Though permeation rates in the HT-9 were lower than those in V-15Cr-5Ti, permeation transients were much faster in HT-9 than in other materials tested. Sputtering of the steel surface resulted in enhanced reemission, whereas in the vanadium tests, recombination and diffusivity both appeared to diminish as the deuterium concentration rose. We conclude that for conditions comparable to those of these experiments, tritium retention and permeation loss in first wall structures made of steels will be less than in structures made of V-15Cr-5Ti.

  10. Comparison of implantation-driven permeation characteristics of fusion reactor structural materials

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Struttmann, D.A.

    1986-01-01

    Implantation-driven permeation experiments have been conducted on samples of the ferritic steel HT-9, the austenitic Primary Candidate Alloy (PCA) and the vanadium alloy V-15Cr-5Ti using D 3 + ions under conditions that simulate charge-exchange neutral loading on a fusion reactor first wall. The steels all exhibited an initially intense permeation ''spike'' followed by an exponential decrease to low steady-state values. That spike was not evident in the V-15Cr-5Ti experiments. Steady-state permeation was highest in the vanadium alloy and lowest in the austenitic steel. Though permeation rates in the HT-9 were lower than those in V-15Cr-5Ti, permeation transients were much faster in HT-9 than in other materials tested. Ion-beam sputtering of the surface in the steel experiments resulted in enhanced remission at the front surface, whereas in the vanadium tests, recombination and diffusivity both appeared to diminish as the deuterium concentration rose. This may be due to a phase change in the material. We conclude that for conditions comparable to those of these experiments, tritium retention and loss in first wall structures made of steels will be less than in structures made of V-15Cr-5Ti

  11. Study on fission blanket fuel cycling of a fusion-fission hybrid energy generation system

    International Nuclear Information System (INIS)

    Zhou, Z.; Yang, Y.; Xu, H.

    2011-01-01

    This paper presents a preliminary study on neutron physics characteristics of a light water cooled fission blanket for a new type subcritical fusion-fission hybrid reactor aiming at electric power generation with low technical limits of fission fuel. The major objective is to study the fission fuel cycling performance in the blanket, which may possess significant impacts on the feasibility of the new concept of fusion-fission hybrid reactor with a high energy gain (M) and tritium breeding ratio (TBR). The COUPLE2 code developed by the Institute of Nuclear and New Energy Technology of Tsinghua University is employed to simulate the neutronic behaviour in the blanket. COUPLE2 combines the particle transport code MCNPX with the fuel depletion code ORIGEN2. The code calculation results show that soft neutron spectrum can yield M > 20 while maintaining TBR >1.15 and the conversion ratio of fissile materials CR > 1 in a reasonably long refuelling cycle (>five years). The preliminary results also indicate that it is rather promising to design a high-performance light water cooled fission blanket of fusion-fission hybrid reactor for electric power generation by directly loading natural or depleted uranium if an ITER-scale tokamak fusion neutron source is achievable.

  12. Automatic calibration and signal switching system for the particle beam fusion research data acquisition facility

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, W.B.

    1979-09-01

    This report describes both the hardware and software components of an automatic calibration and signal system (Autocal) for the data acquisition system for the Sandia particle beam fusion research accelerators Hydra, Proto I, and Proto II. The Autocal hardware consists of off-the-shelf commercial equipment. The various hardware components, special modifications and overall system configuration are described. Special software has been developed to support the Autocal hardware. Software operation and maintenance are described.

  13. Video Surveillance using a Multi-Camera Tracking and Fusion System

    OpenAIRE

    Zhang , Zhong; Scanlon , Andrew; Yin , Weihong; Yu , Li; Venetianer , Péter L.

    2008-01-01

    International audience; Usage of intelligent video surveillance (IVS) systems is spreading rapidly. These systems are being utilized in a wide range of applications. In most cases, even in multi-camera installations, the video is processed independently in each feed. This paper describes a system that fuses tracking information from multiple cameras, thus vastly expanding its capabilities. The fusion relies on all cameras being calibrated to a site map, while the individual sensors remain lar...

  14. Muon-catalyzed fusion experiment target and detector system. Preliminary design report

    International Nuclear Information System (INIS)

    Jones, S.E.; Watts, K.D.; Caffrey, A.J.; Walter, J.B.

    1982-03-01

    We present detailed plans for the target and particle detector systems for the muon-catalyzed fusion experiment. Requirements imposed on the target vessel by experimental conditions and safety considerations are delineated. Preliminary designs for the target vessel capsule and secondary containment vessel have been developed which meet these requirements. In addition, the particle detection system is outlined, including associated fast electronics and on-line data acquisition. Computer programs developed to study the target and detector system designs are described

  15. Automatic calibration and signal switching system for the particle beam fusion research data acquisition facility

    International Nuclear Information System (INIS)

    Boyer, W.B.

    1979-09-01

    This report describes both the hardware and software components of an automatic calibration and signal system (Autocal) for the data acquisition system for the Sandia particle beam fusion research accelerators Hydra, Proto I, and Proto II. The Autocal hardware consists of off-the-shelf commercial equipment. The various hardware components, special modifications and overall system configuration are described. Special software has been developed to support the Autocal hardware. Software operation and maintenance are described

  16. Tokamak Fusion Core Experiment (TFCX) special-purpose remote maintenance systems

    International Nuclear Information System (INIS)

    Masson, L.S.; Welland, H.J.

    1985-01-01

    A key element in the preconceptual design of the Tokamak Fusion Core Experiment (TFCX) was the development of design concepts for special-purpose remote maintenance systems. Included were systems for shield sector replacement, vacuum vessel sector and toroidal field coil replacement, limiter blade replacement, protective tile replacement, and general-purpose maintenance. This paper addresses these systems as they apply to the copper toroidal field (TF) coil version of the TFCX

  17. Near barrier fusion, breakup and scattering for the 9Be + 144Sm system

    International Nuclear Information System (INIS)

    Paes, B.; Lubian, J.; Gomes, P.R.S.; Padron, I.; Canto, L.F.

    2009-01-01

    Full text: The investigation of the break-up process of weakly bound nuclei and its influence on the fusion cross section and elastic scattering has been investigated in the last years by different approaches. One of these approaches is the comparison of data of complete fusion (CF) cross sections with predictions from CC calculations which do not include the break-up channel. Different phenomena leading to opposite effects on the fusion cross section may be identified: static effects arising from the longer tail of the nuclear potential and the large size of the weakly bound nuclei, leading to a smaller Coulomb barrier, and dynamical effects, either like the strong coupling between the elastic and continuum states, that takes flux that otherwise would go to fusion or like the coupling of soft resonance states. Very recently a method has been developed by us to disentangle these effects. Another approach to perform this study is the investigation of the presence or absence of the threshold anomaly or the break-up threshold anomaly in the elastic scattering at near barrier energies. The attractive or repulsive characters of the polarization potentials associated with the different reaction processes, may lead to enhancement or suppression of the fusion cross section. In this contribution we analyze, by different approaches, a large set of data for the 9 Be + 144 Sm system, including CF and incomplete fusion, elastic and inelastic scattering. We use a reliable double folding potential in CC calculations which either do not take into account the break-up channel or consider resonances of the 9 Be projectile; we also perform simultaneous fits of elastic and CF cross sections; we derive the break-up cross sections and investigate the energy dependence of the real and imaginary optical potentials corresponding to the fusion and direct processes, separately; and we derive the break-up polarization potential for this system. Then, we show the agreement between these

  18. Mobile e-Commerce Recommendation System Based on Multi-Source Information Fusion for Sustainable e-Business

    Directory of Open Access Journals (Sweden)

    Yan Guo

    2018-01-01

    Full Text Available A lack of in-depth excavation of user and resources information has become the main bottleneck restricting the predictive analytics of recommendation systems in mobile commerce. This article provides a method which makes use of multi-source information to analyze consumers’ requirements for e-commerce recommendation systems. Combined with the characteristics of mobile e-commerce, this method employs an improved radial basis function (RBF network in order to determine the weights of recommendations, and an improved Dempster–Shafer theory to fuse the multi-source information. Power-spectrum estimation is then used to handle the fusion results and allow decision-making. The experimental results illustrate that the traditional method is inferior to the proposed approach in terms of recommendation accuracy, simplicity, coverage rate and recall rate. These achievements can further improve recommendation systems, and promote the sustainable development of e-business.

  19. A distributed real-time system for event-driven control and dynamic data acquisition on a fusion plasma experiment

    International Nuclear Information System (INIS)

    Sousa, J.; Combo, A.; Batista, A.; Correia, M.; Trotman, D.; Waterhouse, J.; Varandas, C.A.F.

    2000-01-01

    A distributed real-time trigger and timing system, designed in a tree-type topology and implemented in VME and CAMAC versions, has been developed for a magnetic confinement fusion experiment. It provides sub-microsecond time latencies for the transport of small data objects allowing event-driven discharge control with failure counteraction, dynamic pre-trigger sampling and event recording as well as accurate simultaneous triggers and synchronism on all nodes with acceptable optimality and predictability of timeliness. This paper describes the technical characteristics of the hardware components (central unit composed by one or more reflector crates, event and synchronism reflector cards, event and pulse node module, fan-out and fan-in modules) as well as software for both tests and integration on a global data acquisition system. The results of laboratory operation for several configurations and the overall performance of the system are presented and analysed

  20. Lasers and power systems for inertial confinement fusion reactors

    International Nuclear Information System (INIS)

    Stark, E.E. Jr.

    1978-01-01

    After discussing the role of lasers in ICF and the candidate lasers, several important areas of technology requirements are discussed. These include the beam transport system, the pulsed power system and the gas flow system. The system requirements, state of the art, as well as needs and prospects for new technology developments are given. Other technology issues and promising developments are described briefly

  1. Expert system to control a fusion energy experiment

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.R.; Canales, T.; Lager, D.

    1986-01-01

    This paper describes a system that automates neutral beam source conditioning. The system achieves this with artificial intelligence techniques by encoding the behavior of several experts as a set of if-then rules in an expert system. One of the functions of the expert system is to control an adaptive controller that, in turn, controls the neutral beam source. The architecture of the system is presented followed by a description of its performance.

  2. Expert system to control a fusion energy experiment

    International Nuclear Information System (INIS)

    Johnson, R.R.; Canales, T.; Lager, D.

    1986-01-01

    This paper describes a system that automates neutral beam source conditioning. The system achieves this with artificial intelligence techniques by encoding the behavior of several experts as a set of if-then rules in an expert system. One of the functions of the expert system is to control an adaptive controller that, in turn, controls the neutral beam source. The architecture of the system is presented followed by a description of its performance

  3. HIFSA: Heavy-Ion Fusion Systems Assessment Project: Volume 1, Executive summary

    International Nuclear Information System (INIS)

    Dudziak, D.J.; Herrmannsfeldt, W.B.; Saylor, W.W.

    1987-12-01

    The Heavy-Ion Fusion Systems Assessment (HIFSA) was conducted with the specific objective of evaluating the prospects of using induction-linac heavy-ion accelerators to generate economical electrical power from Inertial Confinement Fusion (ICF). Cost/performance models of the major fusion power plant systems were used to identify promising areas in parameter space. Resulting cost-of-electricity projections for a plant size of 1 GWe are comparable to those from other fusion system studies, some of which were for much larger power plants. These favorable projections maintain over an unusually large domain of parameter space but depend especially on making large cost savings for the accelerator by using higher charge-to-mass ratio ions than assumed previously. The feasibility of realizing such savings has been shown by (1) experiments demonstrating transport stability better than anticipated for space-charge-dominated beams, and (2) theoretical predictions that the final transport and pulse compression in reactor-chamber environments will be sufficiently resistant to streaming instabilities to allow successful propagation of neutralized beams to the target. Results of the HIFSA study already have had a significant impact on the heavy-ion induction accelerator R and D program, especially in selection of the charge-state objectives. Also, the study should enhance the credibility of induction linacs as ICF drivers

  4. Design study of electrical power supply system for tokamak fusion power reactor

    International Nuclear Information System (INIS)

    1977-01-01

    Design study of the electrical power supply system for a 2000MWt Tokamak-type fusion reactor has been carried out. The purposes are to reveal and study problems in the system, leading to a plan of the research and development. Performed were study of the electrical power supply system and design of superconducting inductive energy storages and power switches. In study of the system, specification and capability of various power supplies for the fusion power reactor and design of the total system with its components were investigated. For the superconducting inductive energy storages, material choice, design calculation, and structural design were conducted, giving the size, weight and performance. For thyristor switches, circuit design in the parallel / series connection of element valves and cooling design were studied, providing the size and weight. (auth.)

  5. KMS fusion system resource accounting and performance measurement system for RSX11M V3.2

    International Nuclear Information System (INIS)

    Downward, J.G.

    1980-01-01

    Version 3.2 of the KMS FUSION accounting system is aimed at providing the user of RSX11M V3.2 with a versatile tool for measuring the performance of the operating system, tuning the system, and providing sufficient usage statistics so that the system manager can implement chargeback accounting if it is required by the installation. Sufficient hooks are provided so that the intrepid user can expand the system substantially beyond what is currently provided

  6. Robust Biometric Score Fusion by Naive Likelihood Ratio via Receiver Operating Characteristics

    NARCIS (Netherlands)

    Tao, Q.; Veldhuis, Raymond N.J.

    This paper presents a novel method of fusing multiple biometrics on the matching score level. We estimate the likelihood ratios of the fused biometric scores, via individual receiver operating characteristics (ROC) which construct the Naive Bayes classifier. Using a limited number of operation

  7. Experimental fusion excitation functions and derived barrier distributions for heavy ion systems involving prolate and oblate target nuclei

    International Nuclear Information System (INIS)

    Bierman, J.D.; Chan, P.; Liang, J.F.; Kelly, M.P.; Sonzogni, A.A.; Vandenbosch, R.

    1996-01-01

    Fusion excitation functions spanning the entire barrier region in 1 MeV energy steps for the two systems 40 Ca + 192 Os, 194 Pt are presented. The results of fission fragment angular distribution measurements for fusion-fission of 40 Ca + 197 Au at several projectile energies within the barrier region are also presented. The fusion data is of high enough precision to allow for extraction of the distribution of fusion barriers from the second differential of the product of E and σ. Basic coupled channels calculations which are in quite good agreement with the data are shown and discussed

  8. Expanding the molecular toolbox for Lactococcus lactis: construction of an inducible thioredoxin gene fusion expression system

    LENUS (Irish Health Repository)

    Douillard, Francois P

    2011-08-09

    Abstract Background The development of the Nisin Inducible Controlled Expression (NICE) system in the food-grade bacterium Lactococcus lactis subsp. cremoris represents a cornerstone in the use of Gram-positive bacterial expression systems for biotechnological purposes. However, proteins that are subjected to such over-expression in L. lactis may suffer from improper folding, inclusion body formation and\\/or protein degradation, thereby significantly reducing the yield of soluble target protein. Although such drawbacks are not specific to L. lactis, no molecular tools have been developed to prevent or circumvent these recurrent problems of protein expression in L. lactis. Results Mimicking thioredoxin gene fusion systems available for E. coli, two nisin-inducible expression vectors were constructed to over-produce various proteins in L. lactis as thioredoxin fusion proteins. In this study, we demonstrate that our novel L. lactis fusion partner expression vectors allow high-level expression of soluble heterologous proteins Tuc2009 ORF40, Bbr_0140 and Tuc2009 BppU\\/BppL that were previously insoluble or not expressed using existing L. lactis expression vectors. Over-expressed proteins were subsequently purified by Ni-TED affinity chromatography. Intact heterologous proteins were detected by immunoblotting analyses. We also show that the thioredoxin moiety of the purified fusion protein was specifically and efficiently cleaved off by enterokinase treatment. Conclusions This study is the first description of a thioredoxin gene fusion expression system, purposely developed to circumvent problems associated with protein over-expression in L. lactis. It was shown to prevent protein insolubility and degradation, allowing sufficient production of soluble proteins for further structural and functional characterization.

  9. Design of water detritiation system for fusion reactor

    International Nuclear Information System (INIS)

    Xie Bo; Wang Heyi; Liu Yunnu; Guan Rui

    2006-01-01

    The water detritiation system (WDS) of tritium plant for the International Thermonuclear Experimental Reactor (ITER) was designed. The concept of the Combined Electrolysis Catalytic Exchange and Gas Chromatography (CECE-GC) process was selected for the system and subsystems' descriptions of the WDS. ITER-WDS is characterised from the present demonstration system by rejecting the use of a recombiner and alkali electrolyzer, but a solid polymer electrolyzer (SPE) and a Pd/Ag membrane permeator system are adopted to recover tritium. (authors)

  10. Simulation and Analysis of Isotope Separation System for Fusion Fuel Recovery System

    Science.gov (United States)

    Senevirathna, Bathiya; Gentile, Charles

    2011-10-01

    This paper presents results of a simulation of the Fuel Recovery System (FRS) for the Laser Inertial Fusion Engine (LIFE) reactor. The LIFE reaction will produce exhaust gases that will need to be recycled in the FRS along with xenon, the chamber's intervention gas. Solids and liquids will first be removed and then vapor traps are used to remove large gas molecules such as lead. The gas will be reacted with lithium at high temperatures to extract the hydrogen isotopes, protium, deuterium, and tritium in hydride form. The hydrogen isotopes will be recovered using a lithium blanket processing system already in place and this product will be sent to the Isotope Separation System (ISS). The ISS will be modeled in software to analyze its effectiveness. Aspen HYSYS was chosen for this purpose for its widespread use industrial gas processing systems. Reactants and corresponding chemical reactions had to be initialized in the software. The ISS primarily consists of four cryogenic distillation columns and these were modeled in HYSYS based on design requirements. Fractional compositions of the distillate and liquid products were analyzed and used to optimize the overall system.

  11. Fusion hindrance for the positive Q -value system 12C+30Si

    Science.gov (United States)

    Montagnoli, G.; Stefanini, A. M.; Jiang, C. L.; Hagino, K.; Galtarossa, F.; Colucci, G.; Bottoni, S.; Broggini, C.; Caciolli, A.; Čolović, P.; Corradi, L.; Courtin, S.; Depalo, R.; Fioretto, E.; Fruet, G.; Gal, A.; Goasduff, A.; Heine, M.; Hu, S. P.; Kaur, M.; Mijatović, T.; Mazzocco, M.; Montanari, D.; Scarlassara, F.; Strano, E.; Szilner, S.; Zhang, G. X.

    2018-02-01

    Background: The fusion reaction 12C+30Si is a link between heavier cases studied in recent years, and the light heavy-ion systems, e.g., 12C+12C , 16O+16O that have a prominent role in the dynamics of stellar evolution. 12C+30Si fusion itself is not a relevant process for astrophysics, but it is important to establish its behavior below the barrier, where couplings to low-lying collective modes and the hindrance phenomenon may determine the cross sections. The excitation function is presently completely unknown below the barrier for the 12C+30Si reaction, thus no reliable extrapolation into the astrophysical regime for the C+C and O+O cases can be performed. Purpose: Our aim was to carry out a complete measurement of the fusion excitation function of 12C+30Si from well below to above the Coulomb barrier, so as to clear up the consequence of couplings to low-lying states of 30Si, and whether the hindrance effect appears in this relatively light system which has a positive Q value for fusion. This would have consequences for the extrapolated behavior to even lighter systems. Methods: The inverse kinematics was used by sending 30Si beams delivered from the XTU Tandem accelerator of INFN-Laboratori Nazionali di Legnaro onto thin 12C (50 μ g /cm2 ) targets enriched to 99.9 % in mass 12. The fusion evaporation residues (ER) were detected at very forward angles, following beam separation by means of an electrostatic deflector. Angular distributions of ER were measured at Ebeam=45 , 59, and 80 MeV, and they were angle integrated to derive total fusion cross sections. Results: The fusion excitation function of 12C+30Si was measured with high statistical accuracy, covering more than five orders of magnitude down to a lowest cross section ≃3 μ b . The logarithmic slope and the S factor have been extracted and we have convincing phenomenological evidence of the hindrance effect. These results have been compared with the calculations performed within the model that

  12. Data Fusion for a Vision-Radiological System: a Statistical Calibration Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Enqvist, Andreas; Koppal, Sanjeev; Riley, Phillip [University of Florida, Gainesville, FL 32611 (United States)

    2015-07-01

    Presented here is a fusion system based on simple, low-cost computer vision and radiological sensors for tracking of multiple objects and identifying potential radiological materials being transported or shipped. The main focus of this work is the development of calibration algorithms for characterizing the fused sensor system as a single entity. There is an apparent need for correcting for a scene deviation from the basic inverse distance-squared law governing the detection rates even when evaluating system calibration algorithms. In particular, the computer vision system enables a map of distance-dependence of the sources being tracked, to which the time-dependent radiological data can be incorporated by means of data fusion of the two sensors' output data. (authors)

  13. Data Fusion for a Vision-Radiological System: a Statistical Calibration Algorithm

    International Nuclear Information System (INIS)

    Enqvist, Andreas; Koppal, Sanjeev; Riley, Phillip

    2015-01-01

    Presented here is a fusion system based on simple, low-cost computer vision and radiological sensors for tracking of multiple objects and identifying potential radiological materials being transported or shipped. The main focus of this work is the development of calibration algorithms for characterizing the fused sensor system as a single entity. There is an apparent need for correcting for a scene deviation from the basic inverse distance-squared law governing the detection rates even when evaluating system calibration algorithms. In particular, the computer vision system enables a map of distance-dependence of the sources being tracked, to which the time-dependent radiological data can be incorporated by means of data fusion of the two sensors' output data. (authors)

  14. Attack Detection/Isolation via a Secure Multisensor Fusion Framework for Cyberphysical Systems

    Directory of Open Access Journals (Sweden)

    Arash Mohammadi

    2018-01-01

    Full Text Available Motivated by rapid growth of cyberphysical systems (CPSs and the necessity to provide secure state estimates against potential data injection attacks in their application domains, the paper proposes a secure and innovative attack detection and isolation fusion framework. The proposed multisensor fusion framework provides secure state estimates by using ideas from interactive multiple models (IMM combined with a novel fuzzy-based attack detection/isolation mechanism. The IMM filter is used to adjust the system’s uncertainty adaptively via model probabilities by using a hybrid state model consisting of two behaviour modes, one corresponding to the ideal scenario and one associated with the attack behaviour mode. The state chi-square test is then incorporated through the proposed fuzzy-based fusion framework to detect and isolate potential data injection attacks. In other words, the validation probability of each sensor is calculated based on the value of the chi-square test. Finally, by incorporation of the validation probability of each sensor, the weights of its associated subsystem are computed. To be concrete, an integrated navigation system is simulated with three types of attacks ranging from a constant bias attack to a non-Gaussian stochastic attack to evaluate the proposed attack detection and isolation fusion framework.

  15. Reinvestigation of the charge density distribution in arc discharge fusion system

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Lin Horng; Yee, Lee Kim; Nan, Phua Yeong; Thung, Yong Yun; Khok, Yong Thian; Rahman, Faidz Abd [Centre of Photonics and Advance Material, Universiti Tunku Abdul Rahman Kuala Lumpur (Malaysia)

    2015-04-24

    A continual arc discharge system has been setup and the light intensity of arc discharge has been profiled. The mathematical model of local energy density distribution in arc discharge fusion has been simulated which is in good qualitative agreement with light intensity profile of arc discharge in the experiments. Eventually, the local energy density distribution of arc discharge system is able to be precisely manipulated to act as heat source in the fabrication of fused fiber devices.

  16. Phase aberrations and beam cleanup techniques in carbon-dioxide laser fusion systems

    International Nuclear Information System (INIS)

    Viswanathan, V.K.

    1981-01-01

    This paper describes the various carbon dioxide laser fusion systems at Los Alamos from the point of view of an optical designer. The types of phase aberrations present in these systems, as well as the beam cleanup techniques that can be used to improve the beam optical quality, are discussed. As this is a review article, some previously published results are also used where relevant

  17. Reinvestigation of the charge density distribution in arc discharge fusion system

    International Nuclear Information System (INIS)

    Sheng, Lin Horng; Yee, Lee Kim; Nan, Phua Yeong; Thung, Yong Yun; Khok, Yong Thian; Rahman, Faidz Abd

    2015-01-01

    A continual arc discharge system has been setup and the light intensity of arc discharge has been profiled. The mathematical model of local energy density distribution in arc discharge fusion has been simulated which is in good qualitative agreement with light intensity profile of arc discharge in the experiments. Eventually, the local energy density distribution of arc discharge system is able to be precisely manipulated to act as heat source in the fabrication of fused fiber devices

  18. A system dynamics model for stock and flow of tritium in fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kwon, Saerom [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Sakamoto, Yoshiteru; Yamanishi, Toshihiko; Tobita, Kenji [Japan Atomic Energy Agency, Rokkasho-mura, Kamikita-gun, Aomori-ken 039-3212 (Japan)

    2015-10-15

    Highlights: • System dynamics model of tritium fuel cycle was developed for analyzing stock and flow of tritium in fusion power plants. • Sensitivity of tritium build-up to breeding ratio parameters has been assessed to two plant concepts having 3 GW and 1.5 GW fusion power. • D-D start-up absolutely without initial loading of tritium is possible for both of the 3 GW and 1.5 GW fusion power plant concepts. • Excess stock of tritium is generated by the steady state operation with the value of tritium breeding ratio over unity. - Abstract: In order to analyze self-efficiency of tritium fuel cycle (TFC) and share the systems thinking of TFC among researchers and engineers in the vast area of fusion reactor technology, we develop a system dynamics (SD) TFC model using a commercial software STELLA. The SD-TFC model is illustrated as a pipe diagram which consists of tritium stocks, such as plasma, fuel clean up, isotope separation, fueling with storage and blanket, and pipes connecting among them. By using this model, we survey a possibility of D-D start-up without initial loading of tritium on two kinds of fusion plant having different plasma parameters. The D-D start-up scenario can reduce the necessity of initial loading of tritium through the production in plasma by D-D reaction and in breeding blanket by D-D neutron. The model is also used for considering operation scenario to avoid excess stock of tritium which must be produced at tritium breeding ratio over unity.

  19. Data acquisition system for fusion diagnostics on the ARGUS laser

    International Nuclear Information System (INIS)

    Greenwood, J.R.; Campbell, D.E.; Frerking, C.E.

    1976-09-01

    An extensive data acquisition and analysis system has been implemented for experiments on the ARGUS laser. The system is based upon a PDP-11/40 minicomputer and CAMAC interfaces. Highspeed transient digitizers, calorimeter digitizing modules and time integrated data are interfaced through CAMAC over a fiber optic serial highway. The system allows for dynamic definition of the experimental environment by an operator, automatic data acquisition during a shot. Two interactive graphics terminals allow experimenters real-time access to target shot data

  20. Integrated cooling system for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Johnson, B.; Chang, Y.

    1979-01-01

    The MFTF components that require water cooling include the neutral beam dumps, ion dumps, plasma dumps, baffle plates, magnet liners, gas boxes, streaming guns, and the neutral beam injectors. A total heat load of nearly 500 MW for 0.5 s dissipates over 4-min intervals. A steady-flow, closed-loop system is utilized. The design of the cooling system assumes that all components require cooling simultaneously. The cooling system contains process instrumentation for loop control. Alarms and safety interlocks are incorporated for the safe operation of the system

  1. Fusion power and the environment

    International Nuclear Information System (INIS)

    Holdren, J.P.; Fowler, T.K.; Post, R.F.

    1975-01-01

    Environmental characteristics of conceptual fusion-reactor systems based on magnetic confinement are examined quantitatively, and some comparisons with fission systems are made. Fusion, like all other energy sources, will not be completely free of environmental liabilities, but the most obvious of these--tritium leakage and activation of structural materials by neutron bombardment--are susceptible to significant reduction by ingenuity in choice of materials and design. Large fusion reactors can probably be designed so that worst-case releases of radioactivity owing to accident or sabotage would produce no prompt fatalities in the public. A world energy economy relying heavily on fusion could make heavy demands on scarce nonfuel materials, a topic deserving further attention. Fusion's potential environmental advantages are not entirely ''automatic'', converting them into practical reality will require emphasis on environmental characteristics throughout the process of reactor design and engineering. The central role of environmental impact in the long-term energy dilemma of civilization justifies the highest priority on this aspect of fusion

  2. Large superconducting magnet systems for plasma and fusion applications

    International Nuclear Information System (INIS)

    Heinz, W.

    1976-05-01

    Work on superconducting magnet systems and state of the art of superconducting magnet technology are described. Conceptual design consideration and problems of large magnet systems (stability, magnetic forces, cooling modes, safety) are discussed. Recent results of experimental work at Karlsruhe are reported. An outline of American and European programs is given. (orig.) [de

  3. Inertial confinement fusion reaction chamber and power conversion system study

    International Nuclear Information System (INIS)

    Maya, I.; Schultz, K.R.; Battaglia, J.M.

    1984-09-01

    GA Technologies has developed a conceptual ICF reactor system based on the Cascade rotating-bed reaction chamber concept. Unique features of the system design include the use of low activation SiC in a reaction chamber constructed of box-shaped tiles held together in compression by prestressing tendons to the vacuum chamber. Circulating Li 2 O granules serve as the tritium breeding and energy transport material, cascading down the sides of the reaction chamber to the power conversion system. The total tritium inventory of the system is 6 kg; tritium recovery is accomplished directly from the granules via the vacuum system. A system for centrifugal throw transport of the hot Li 2 O granules from the reaction chamber to the power conversion system has been developed. A number of issues were evaluated during the course of this study. These include the response of first-layer granules to the intense microexplosion surface heat flux, cost effective fabrication of Li 2 O granules, tritium inventory and recovery issues, the thermodynamics of solids-flow options, vacuum versus helium-medium heat transfer, and the tradeoffs of capital cost versus efficiency for alternate heat exchange and power conversion system option. The resultant design options appear to be economically competitive, safe, and environmentally attractive

  4. Solid-state disk amplifiers for fusion-laser systems

    Energy Technology Data Exchange (ETDEWEB)

    Martin, W.E.; Trenholme, J.B.; Linford, G.J.; Yarema, S.M.; Hurley, C.A.

    1981-09-01

    We review the design, performance, and operation of large-aperture (10 to 46 cm) solid-state disk amplifiers for use in laser systems. We present design data, prototype tests, simulations, and projections for conventional cylindrical pump-geometry amplifiers and rectangular pump-geometry disk amplifiers. The design of amplifiers for the Nova laser system is discussed.

  5. Mechanical design for a large fusion laser system

    International Nuclear Information System (INIS)

    Hurley, C.A.

    1979-01-01

    The Nova Mechanical Systems Group at LLL is responsible for the design, fabrication, and installation of all laser chain components, for the stable support structure that holds them, and for the beam lines that transport the laser beam to the target system. This paper is an overview of the group's engineering effort, emphasizing new developments

  6. Mirror fusion test facility magnet system. Final design report

    International Nuclear Information System (INIS)

    Henning, C.D.; Hodges, A.J.; VanSant, J.H.; Dalder, E.N.; Hinkle, R.E.; Horvath, J.A.; Scanlan, R.M.; Shimer, D.W.; Baldi, R.W.; Tatro, R.E.

    1980-01-01

    Information is given on each of the following topics: (1) magnet description, (2) superconducting manufacture, (3) mechanical behavior of conductor winding, (4) coil winding, (5) thermal analysis, (6) cryogenic system, (7) power supply system, (8) structural analysis, (9) structural finite element analysis refinement, (10) structural case fault analysis, and (11) structural metallurgy

  7. Survey of the laser-solenoid fusion reactor

    International Nuclear Information System (INIS)

    Amherd, N.A.

    1975-09-01

    This report surveys the prospects for a laser-solenoid fusion reactor. A sample reactor and scaling laws are used to describe the concept's characteristics. Experimental results are reviewed, and the laser and magnet technologies that undergird the laser-solenoid concept are analyzed. Finally, a systems analysis of fusion power reactors is given, including a discussion of direct conversion and fusion-fission effects, to ascertain the system attributes of the laser-solenoid configuration

  8. Some characteristics of isotopic separation laser systems

    International Nuclear Information System (INIS)

    Pochon, E.

    1988-01-01

    The principle of Laser Isotope Separation (LIS) is simple and based on either selective electronic photoexcitation and photoionization of atomic vapor, or selective vibrational photoexcitation and photodissociation of molecules in the gas phase. These processes, respectively called SILVA (AVLIS) and SILMO (MLIS) in France, both use specific laser systems with wavelengths spanning from infrared to ultraviolet. This article describes briefly some of the characteristics of a SILVA laser system. Following a three-step process, a SILVA laser system is based on dye copper vapor lasers. The pulse dye lasers provide the tunable laser light and are optically pumped by copper vapor laser operating at high repetition rates. In order to meet plant laser system requirements, the main improvements under way relate to copper vapor laser devices the power capability, efficiency, reliability and lifetime of which have to be increased. 1 fig

  9. A hybrid image fusion system for endovascular interventions of peripheral artery disease.

    Science.gov (United States)

    Lalys, Florent; Favre, Ketty; Villena, Alexandre; Durrmann, Vincent; Colleaux, Mathieu; Lucas, Antoine; Kaladji, Adrien

    2018-03-16

    Interventional endovascular treatment has become the first line of management in the treatment of peripheral artery disease (PAD). However, contrast and radiation exposure continue to limit the feasibility of these procedures. This paper presents a novel hybrid image fusion system for endovascular intervention of PAD. We present two different roadmapping methods from intra- and pre-interventional imaging that can be used either simultaneously or independently, constituting the navigation system. The navigation system is decomposed into several steps that can be entirely integrated within the procedure workflow without modifying it to benefit from the roadmapping. First, a 2D panorama of the entire peripheral artery system is automatically created based on a sequence of stepping fluoroscopic images acquired during the intra-interventional diagnosis phase. During the interventional phase, the live image can be synchronized on the panorama to form the basis of the image fusion system. Two types of augmented information are then integrated. First, an angiography panorama is proposed to avoid contrast media re-injection. Information exploiting the pre-interventional computed tomography angiography (CTA) is also brought to the surgeon by means of semiautomatic 3D/2D registration on the 2D panorama. Each step of the workflow was independently validated. Experiments for both the 2D panorama creation and the synchronization processes showed very accurate results (errors of 1.24 and [Formula: see text] mm, respectively), similarly to the registration on the 3D CTA (errors of [Formula: see text] mm), with minimal user interaction and very low computation time. First results of an on-going clinical study highlighted its major clinical added value on intraoperative parameters. No image fusion system has been proposed yet for endovascular procedures of PAD in lower extremities. More globally, such a navigation system, combining image fusion from different 2D and 3D image

  10. Characteristics of radiated power for various TFTR [Tokamak Fusion Test Reactor] regimes

    International Nuclear Information System (INIS)

    Bush, C.E.; Schivell, J.; McNeill, D.H.

    1988-04-01

    Power loss studies were carried out to determine the impurity radiation and energy transport characteristics of various TFTR operation and confinement regimes including L-Mode, detached plasma, co-only neutral beam injection (energetic ion regime), and the enhanced confinement (''supershot'') regime. Combined bolometric, spectroscopic, and infrared photometry measurements provide a picture of impurity behavior and power accounting in TFTR. The purpose of this paper is to make a survey of the various regimes with the aim of determining the radiated power signatures of each. 10 refs., 6 figs., 1 tab

  11. Characteristics of the NE-213 large-volume neutron counters for muon catalyzed fusion investigation

    International Nuclear Information System (INIS)

    Bystritsky, V.M.; Wozniak, J.; Zinov, V.G.

    1984-01-01

    The Monte-Carlo method was used to establish the properties and feasibility of a large-volume NE-213 scin illator as an efficient neutron detector. The recoil proton spectra, calculated efficiencies for different detection thresholds and scintillator sizes are presented for the neutron energy up to 15 MeV. The time characteristics, e. g., time resolution, are discussed. It is also shown that no strong influence of light attenuation by the scintilla or itself on calculated efficiencies is observed, when gamma-calibration technique is used. The detector vol me of approximately 100 l is suggested for application in investigations of μ-atom and μ-molecular processes

  12. Spin distribution of evaporation residues formed in complete and incomplete fusion in 16O+154Sm system

    Science.gov (United States)

    Singh, D.; Linda, Sneha B.; Giri, Pankaj K.; Mahato, Amritraj; Tripathi, R.; Kumar, Harish; Afzal Ansari, M.; Sathik, N. P. M.; Ali, Rahbar; Kumar, Rakesh; Muralithar, S.; Singh, R. P.

    2017-11-01

    Spin distributions for several evaporation residues populated in the 16O+154Sm system have been measured at projectile energy ≈ 6.2 MeV/A by using the charged particle-γ-coincidence technique. The measured spin distributions of the evaporation residues populated through incomplete fusion associated with 'fast' α and 2α-emission channels are found to be entirely different from fusion-evaporation channels. It is observed that the mean input angular momentum for the evaporation residues formed in incomplete fusion channel is relatively higher than that observed for evaporation residues in complete fusion channels. The feeding intensity profile of evaporation residues populated through complete fusion and incomplete fusion have also been studied. The incomplete fusion channels are found to have narrow range feeding only for high spin states, while complete fusion channels are strongly fed over a broad spin range and widely populated. Comparison of present results with earlier data suggests that the mean input angular momentum values are relatively smaller for spherical target than that of deformed target using the same projectile and incident energy highlighting the role of target deformation in incomplete fusion dynamics.

  13. Rapamycin-induced oligomer formation system of FRB-FKBP fusion proteins.

    Science.gov (United States)

    Inobe, Tomonao; Nukina, Nobuyuki

    2016-07-01

    Most proteins form larger protein complexes and perform multiple functions in the cell. Thus, artificial regulation of protein complex formation controls the cellular functions that involve protein complexes. Although several artificial dimerization systems have already been used for numerous applications in biomedical research, cellular protein complexes form not only simple dimers but also larger oligomers. In this study, we showed that fusion proteins comprising the induced heterodimer formation proteins FRB and FKBP formed various oligomers upon addition of rapamycin. By adjusting the configuration of fusion proteins, we succeeded in generating an inducible tetramer formation system. Proteins of interest also formed tetramers by fusing to the inducible tetramer formation system, which exhibits its utility in a broad range of biological applications. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Track-mounted remote handling system for the Tokamak Fusion Engineering Test

    International Nuclear Information System (INIS)

    Kelly, V.P.; Berger, J.D.; Daubert, R.L.; Yount, J.A.

    1982-01-01

    Concepts for remote handling machines (IVM) designed to transverse the interior of toroidal vessels with guidance and support from track systems have been developed for the proposed Tokamak Fusion Engineering Test (TFET). TFET has been proposed as an upgrade for the Tokamak Fusion Test Reactor (TFTR), currently nearing completion. The track-mounted IVMs were conceived to perform in-vessel remote maintenance for TFET, including removal and replacement of pump limiter blades and protective tiles as well as other maintenance-related tasks such as vessel wall inspection leak testing and interior cleanup. The conceptual IVMs consist of three manipulator arms mounted on a common frame member: a single power manipulator arm with high load carrying capacity and two lower-capacity servomanipulator arms. Descriptions of the IVM concepts, in-vessel track systems, and ex-vessel handling systems are presented

  15. Laser fusion systems design study. Final technical report

    International Nuclear Information System (INIS)

    1975-06-01

    This study investigated: (1) the formulation and evaluation of an alignment system to accomplish pointing, focusing, centering and translation for the 20-arm SHIVA laser, (2) the formulation and evaluation of concepts for the correction of static phase distortions introduced by the accumulated optical elements in the laser chains, (3) the formulation and evaluation of concepts for the correction of optical path length differences between the arms of the SHIVA system, and (4) the conceptual design of appropriate control system hardware. (U.S.)

  16. World progress toward fusion energy

    International Nuclear Information System (INIS)

    Clarke, J.F.

    1989-09-01

    This paper will describe the progress in fusion science and technology from a world perspective. The paper will cover the current technical status, including the understanding of fusion's economic, environmental, and safety characteristics. Fusion experiments are approaching the energy breakeven condition. An energy gain (Q) of 30 percent has been achieved in magnetic confinement experiments. In addition, temperatures required for an ignited plasma (Ti = 32 KeV) and energy confinements about 75 percent of that required for ignition have been achieved in separate experiments. Two major facilities have started the experimental campaign to extend these results and achieve or exceed Q = 1 plasma conditions by 1990. Inertial confinement fusion experiments are also approaching thermonuclear conditions and have achieved a compression factor 100-200 times liquid D-T. Because of this progress, the emphasis in fusion research is turning toward questions of engineering feasibility. Leaders of the major fusion R and D programs in the European Community (EC), Japan, the United States, and the U.S.S.R. have agreed on the major steps that are needed to reach the point at which a practical fusion system can be designed. The United States is preparing for an experiment to address the last unexplored scientific issue, the physics of an ignited plasma, during the late 1990's. The EC, Japan, U.S.S.R., and the United States have joined together under the auspices of the International Atomic Energy Agency (IAEA) to jointly design and prepare the validating R and D for an international facility, the International Thermonuclear Experimental Reactor (ITER), to address all the remaining scientific issues and to explore the engineering technology of fusion around the turn of the century. In addition, a network of international agreements have been concluded between these major parties and a number of smaller fusion programs, to cooperate on resolving a complete spectrum of fusion science and

  17. Preliminary design of fusion reactor fuel cleanup system by palladium alloy membrane method

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Konishi, Satoshi; Naruse, Yuji

    1981-10-01

    A design of palladium diffuser and Fuel Cleanup System (FCU) for D-T fusion reactor is proposed. Feasibility of palladium alloy membrane method is discussed based on the early studies by the authors. Operating conditions of the palladium diffuser are determined experimentally. Dimensions of the diffuser are estimated from computer simulation. FCU system is designed under the feed conditions of Tritium Systems Test Assembly (TSTA) at Los Alamos Scientific Laboratory. The system is composed of Pd-diffusers, catalytic oxidizer, freezer and zink beds, and has some advantages in system layout and operation. This design can readily be extended to other conditions of plasma exhaust gases. (author)

  18. Novel, spherically-convergent ion systems for neutron source and fusion energy production

    International Nuclear Information System (INIS)

    Barnes, D.C.; Nebel, R.A.; Ribe, F.L.; Schauer, M.M.; Schranck, L.S.; Umstadter, K.R.

    1999-01-01

    Combining spherical convergence with electrostatic or electro-magnetostatic confinement of a nonneutral plasma offers the possibility of high fusion gain in a centimeter-sized system. The physics principles, scaling laws, and experimental embodiments of this approach are presented. Steps to development of this approach from its present proof-of-principle experiments to a useful fusion power reactor are outlined. This development path is much less expensive and simpler, compared to that for conventional magnetic confinement and leads to different and useful products at each stage. Reactor projections show both high mass power density and low to moderate wall loading. This approach is being tested experimentally in PFX-I (Penning Fusion eXperiment-Ions), which is based on the following recent advances: 1) Demonstration, in PFX (our former experiment), that it is possible to combine nonneutral electron plasma confinement with nonthermal, spherical focussing; 2) Theoretical development of the POPS (Periodically Oscillating Plasma Sphere) concept, which allows spherical compression of thermal-equilibrium ions; 3) The concept of a massively-modular approach to fusion power, and associated elimination of the critical problem of extremely high first wall loading. PFX-I is described. PFX-I is being designed as a small (<1.5 cm) spherical system into which moderate-energy electrons (up to 100 kV) are injected. These electrons are magnetically insulated from passing to the sphere and their space charge field is then used to spherically focus ions. Results of initial operation with electrons only are presented. Deuterium operation can produce significant neutron output with unprecedented efficiency (fusion gain Q). copyright 1999 American Institute of Physics

  19. A Fusion of Multiagent Functionalities for Effective Intrusion Detection System

    OpenAIRE

    Dhanalakshmi Krishnan Sadhasivan; Kannapiran Balasubramanian

    2017-01-01

    Provision of high security is one of the active research areas in the network applications. The failure in the centralized system based on the attacks provides less protection. Besides, the lack of update of new attacks arrival leads to the minimum accuracy of detection. The major focus of this paper is to improve the detection performance through the adaptive update of attacking information to the database. We propose an Adaptive Rule-Based Multiagent Intrusion Detection System (ARMA-IDS) to...

  20. Fusion technology development: first wall/blanket system and component testing in existing nuclear facilities

    International Nuclear Information System (INIS)

    Hsu, P.Y.S.; Bohn, T.S.; Deis, G.A.; Judd, J.L.; Longhurst, G.R.; Miller, L.G.; Millsap, D.A.; Scott, A.J.; Wessol, D.E.

    1980-12-01

    A novel concept to produce a reasonable simulation of a fusion first wall/blanket test environment employing an existing nuclear facility, the Engineering Test Reactor at the Idaho National Engineering Laboratory, is presented. Preliminary results show that an asymmetric, nuclear test environment with surface and volumetric heating rates similar to those expected in a fusion first wall/blanket or divertor chamber surface appears feasible. The proposed concept takes advantage of nuclear reactions within the annulus of an existing test space (15 cm in diameter and approximately 100 cm high) to provide an energy flux to the surface of a test module. The principal reaction considered involves 3 He in the annulus as follows: n + 3 He → p + t + 0.75 MeV. Bulk heating in the test module is accomplished by neutron thermalization, gamma heating, and absorption reactions involving 6 Li in the blanket breeding region. The concept can be extended to modified core configurations that will accommodate test modules of different sizes and types. It makes possible development testing of first wall/blanket systems and other fusion components on a scale and in ways not otherwise available until actual high-power fusion reactors are built

  1. Secure Fusion Estimation for Bandwidth Constrained Cyber-Physical Systems Under Replay Attacks.

    Science.gov (United States)

    Chen, Bo; Ho, Daniel W C; Hu, Guoqiang; Yu, Li; Bo Chen; Ho, Daniel W C; Guoqiang Hu; Li Yu; Chen, Bo; Ho, Daniel W C; Hu, Guoqiang; Yu, Li

    2018-06-01

    State estimation plays an essential role in the monitoring and supervision of cyber-physical systems (CPSs), and its importance has made the security and estimation performance a major concern. In this case, multisensor information fusion estimation (MIFE) provides an attractive alternative to study secure estimation problems because MIFE can potentially improve estimation accuracy and enhance reliability and robustness against attacks. From the perspective of the defender, the secure distributed Kalman fusion estimation problem is investigated in this paper for a class of CPSs under replay attacks, where each local estimate obtained by the sink node is transmitted to a remote fusion center through bandwidth constrained communication channels. A new mathematical model with compensation strategy is proposed to characterize the replay attacks and bandwidth constrains, and then a recursive distributed Kalman fusion estimator (DKFE) is designed in the linear minimum variance sense. According to different communication frameworks, two classes of data compression and compensation algorithms are developed such that the DKFEs can achieve the desired performance. Several attack-dependent and bandwidth-dependent conditions are derived such that the DKFEs are secure under replay attacks. An illustrative example is given to demonstrate the effectiveness of the proposed methods.

  2. The Positioning Accuracy of BAUV Using Fusion of Data from USBL System and Movement Parameters Measurements

    Directory of Open Access Journals (Sweden)

    Naus Krzysztof

    2016-08-01

    Full Text Available The article presents a study of the accuracy of estimating the position coordinates of BAUV (Biomimetic Autonomous Underwater Vehicle by the extended Kalman filter (EKF method. The fusion of movement parameters measurements and position coordinates fixes was applied. The movement parameters measurements are carried out by on-board navigation devices, while the position coordinates fixes are done by the USBL (Ultra Short Base Line system. The problem of underwater positioning and the conceptual design of the BAUV navigation system constructed at the Naval Academy (Polish Naval Academy—PNA are presented in the first part of the paper. The second part consists of description of the evaluation results of positioning accuracy, the genesis of the problem of selecting method for underwater positioning, and the mathematical description of the method of estimating the position coordinates using the EKF method by the fusion of measurements with on-board navigation and measurements obtained with the USBL system. The main part contains a description of experimental research. It consists of a simulation program of navigational parameter measurements carried out during the BAUV passage along the test section. Next, the article covers the determination of position coordinates on the basis of simulated parameters, using EKF and DR methods and the USBL system, which are then subjected to a comparative analysis of accuracy. The final part contains systemic conclusions justifying the desirability of applying the proposed fusion method of navigation parameters for the BAUV positioning.

  3. The Positioning Accuracy of BAUV Using Fusion of Data from USBL System and Movement Parameters Measurements.

    Science.gov (United States)

    Krzysztof, Naus; Aleksander, Nowak

    2016-08-15

    The article presents a study of the accuracy of estimating the position coordinates of BAUV (Biomimetic Autonomous Underwater Vehicle) by the extended Kalman filter (EKF) method. The fusion of movement parameters measurements and position coordinates fixes was applied. The movement parameters measurements are carried out by on-board navigation devices, while the position coordinates fixes are done by the USBL (Ultra Short Base Line) system. The problem of underwater positioning and the conceptual design of the BAUV navigation system constructed at the Naval Academy (Polish Naval Academy-PNA) are presented in the first part of the paper. The second part consists of description of the evaluation results of positioning accuracy, the genesis of the problem of selecting method for underwater positioning, and the mathematical description of the method of estimating the position coordinates using the EKF method by the fusion of measurements with on-board navigation and measurements obtained with the USBL system. The main part contains a description of experimental research. It consists of a simulation program of navigational parameter measurements carried out during the BAUV passage along the test section. Next, the article covers the determination of position coordinates on the basis of simulated parameters, using EKF and DR methods and the USBL system, which are then subjected to a comparative analysis of accuracy. The final part contains systemic conclusions justifying the desirability of applying the proposed fusion method of navigation parameters for the BAUV positioning.

  4. Liquid lithium loop system to solve challenging technology issues for fusion power plant

    Science.gov (United States)

    Ono, M.; Majeski, R.; Jaworski, M. A.; Hirooka, Y.; Kaita, R.; Gray, T. K.; Maingi, R.; Skinner, C. H.; Christenson, M.; Ruzic, D. N.

    2017-11-01

    Steady-state fusion power plant designs present major divertor technology challenges, including high divertor heat flux both in steady-state and during transients. In addition to these concerns, there are the unresolved technology issues of long term dust accumulation and associated tritium inventory and safety issues. It has been suggested that radiation-based liquid lithium (LL) divertor concepts with a modest lithium-loop could provide a possible solution for these outstanding fusion reactor technology issues, while potentially improving reactor plasma performance. The application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peak heat flux while maintaining essentially Li-free core plasma operation even during H-modes. These promising results in NSTX and related modeling calculations motivated the radiative liquid lithium divertor concept and its variant, the active liquid lithium divertor concept, taking advantage of the enhanced or non-coronal Li radiation in relatively poorly confined divertor plasmas. To maintain the LL purity in a 1 GW-electric class fusion power plant, a closed LL loop system with a modest circulating capacity of ~1 l s-1 is envisioned. We examined two key technology issues: (1) dust or solid particle removal and (2) real time recovery of tritium from LL while keeping the tritium inventory level to an acceptable level. By running the LL-loop continuously, it can carry the dust particles and impurities generated in the vacuum vessel to the outside where the dust/impurities can be removed by relatively simple dust filter, cold trap and/or centrifugal separation systems. With ~1 l s-1 LL flow, even a small 0.1% dust content by weight (or 0.5 g s-1) suggests that the LL-loop could carry away nearly 16 tons of dust per year. In a 1 GW-electric (or ~3 GW fusion power) fusion power plant, about 0.5 g s-1 of tritium is needed to maintain the fusion fuel cycle

  5. Review of fusion synfuels

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1980-01-01

    Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high-temperature electrolysis of approx. 50 to 65% are projected for fusion reactors using high-temperatures blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion

  6. Large distributed control system using Ada in fusion research

    International Nuclear Information System (INIS)

    Van Arsdall, P J; Woodruff, J P.

    1998-01-01

    Construction of the National Ignition Facility laser at Lawrence Livermore National Laboratory features a distributed control system that uses object-oriented software engineering techniques. Control of 60,000 devices is effected using a network of some 500 computers. The software is being written in Ada and communicates through CORBA. Software controls are implemented in two layers: individual device controllers and a supervisory layer. The software architecture provides services in the form of frameworks that address issues common to event-driven control systems. Those services are allocated to levels that strictly prescribe their interdependency so the levels are separately reusable. The project has completed its final design review. The delivery of the first increment takes place in October 1998. Keywords Distributed control system, object-oriented development, CORBA, application frameworks, levels of abstraction

  7. DEALS: a maintainable superconducting magnet system for tokamak fusion reactors

    International Nuclear Information System (INIS)

    Hseih, S.Y.; Danby, G.; Powell, J.R.

    1979-01-01

    The feasibility of demountable superconducting magnet systems has been examined in a design study of a DEALS [Demountable Externally Anchored Low Stress] TF magnet for an HFITR [High Field Ignition Test Reactor] Tokamak device. All parts of the system appear feasible, including the demountable superconducting joints. Measurements on small scale prototype joints indicate that movable pressure contact joints exhibit acceptable electrical, mechanical, and cryogenic performance. Such joints permit a relatively simple support structure and are readily demountable. Assembly and disassembly sequences are described whereby any failed portion of the magnet, or any part of the reactor inside the TF coils can be removed and replaced if necessary

  8. Operational characteristics of VEC vacuum system

    International Nuclear Information System (INIS)

    Viswanadham, C.; Bhavsar, S.T.; Bose, D.K.; Chintalapudi, S.N.; Das, S.K.; Tiwary, S.D.

    1979-01-01

    The main vacuum system of the Variable Energy Cyclotron which has been built indigenously has fulfilled the requirements for the smooth operation of the machine. By running two 88.9 cm diffusion pumps with freon cooled baffles and backed by 600 l/m rotary pumps, a pressure of 5 x 10 -6 torr in absence of the beam and 1 x 10 -5 torr in presence of the beam is readily achieved in the 23 m 3 volume. Various means have been adopted to maintain the system in order and contamination-free, by maintaining a pressure level of 1 x 10 -4 torr throughout the working week by a 30 cm diffusion pump, which can run even on emergency power. Cryopanels have also been installed and tried out. Details of pump-down characteristics and system performance are discussed. (auth.)

  9. Fusion materials: Technical evaluation of the technology of vandium alloys for use as blanket structural materials in fusion power systems

    International Nuclear Information System (INIS)

    1993-01-01

    The Committee's evaluation of vanadium alloys as a structural material for fusion reactors was constrained by limited data and time. The design of the International Thermonuclear Experimental Reactor is still in the concept stage, so meaningful design requirements were not available. The data on the effect of environment and irradiation on vanadium alloys were sparse, and interpolation of these data were made to select the V-5Cr-5Ti alloy. With an aggressive, fully funded program it is possible to qualify a vanadium alloy as the principal structural material for the ITER blanket in the available 5 to 8-year window. However, the data base for V-5Cr-5Ti is United and will require an extensive development and test program. Because of the chemical reactivity of vanadium the alloy will be less tolerant of system failures, accidents, and off-normal events than most other candidate blanket structural materials and will require more careful handling during fabrication of hardware. Because of the cost of the material more stringent requirements on processes, and minimal historical worlding experience, it will cost an order of magnitude to qualify a vanadium alloy for ITER blanket structures than other candidate materials. The use of vanadium is difficult and uncertain; therefore, other options should be explored more thoroughly before a final selection of vanadium is confirmed. The Committee views the risk as being too high to rely solely on vanadium alloys. In viewing the state and nature of the design of the ITER blanket as presented to the Committee, h is obvious that there is a need to move toward integrating fabrication, welding, and materials engineers into the ITER design team. If the vanadium allay option is to be pursued, a large program needs to be started immediately. The commitment of funding and other resources needs to be firm and consistent with a realistic program plan

  10. Social assessment on fusion energy technology

    International Nuclear Information System (INIS)

    Nemoto, Kazuyasu

    1981-01-01

    In regard to the research and development for fusion energy technologies which are still in the stage of demonstrating scientific availability, it is necessary to accumulate the demonstrations of economic and environmental availability through the demonstration of technological availability. The purpose of this report is to examine how the society can utilize the new fusion energy technology. The technical characteristics of fusion energy system were analyzed in two aspects, namely the production techniques of thermal energy and electric energy. Also on the social characteristics in the fuel cycle stage of fusion reactors, the comparative analysis with existing fission reactors was carried out. Then, prediction and evaluation were made what change of social cycle fusion power generation causes on the social system formalized as a socio-ecological model. Moreover, the restricting factors to be the institutional obstacles to the application of fusion energy system to the society were analyzed from three levels of the decision making on energy policy. Since the convertor of fusion energy system is steam power generation system similar to existing system, the contents and properties of the social cycle change in the American society to which such new energy technology is applied are not much different even if the conversion will be made in future. (Kako, I.)

  11. A high-power laser system for thermonuclear fusion experiments

    International Nuclear Information System (INIS)

    Azizov, Eh.A.; Ignat'ev, L.P.; Koval'skij, N.G.; Kolesnikov, Yu.A.; Mamzer, A.F.; Pergament, M.I.; Rudnitskij, Yu.P.; Smirnov, G.V.; Yagnov, V.A.; Nikolaevskij, V.G.

    1976-01-01

    A high-power laser system has been designed for an energy output of approximately 3X10 4 J. Neodymium glass was selected based on the level of technical progress, operating experience and the availability of components. The operating performance that has been achieved to date is described. (author)

  12. 1978 source book for fusion--fission hybrid systems

    International Nuclear Information System (INIS)

    Crowley, J.H.; Pavlenco, G.F.; Kaminski, R.S.

    1978-12-01

    This study summarizes the promise and timing of the hybrid concept and culminates in a generic R and D timetable. This document emphasizes the meaningfulness of the concept to tomorrow's energy needs and energy production systems rather than strict analysis of technical feasibility

  13. Unique sensor fusion system for coordinate-measuring machine tasks

    Science.gov (United States)

    Nashman, Marilyn; Yoshimi, Billibon; Hong, Tsai Hong; Rippey, William G.; Herman, Martin

    1997-09-01

    This paper describes a real-time hierarchical system that fuses data from vision and touch sensors to improve the performance of a coordinate measuring machine (CMM) used for dimensional inspection tasks. The system consists of sensory processing, world modeling, and task decomposition modules. It uses the strengths of each sensor -- the precision of the CMM scales and the analog touch probe and the global information provided by the low resolution camera -- to improve the speed and flexibility of the inspection task. In the experiment described, the vision module performs all computations in image coordinate space. The part's boundaries are extracted during an initialization process and then the probe's position is continuously updated as it scans and measures the part surface. The system fuses the estimated probe velocity and distance to the part boundary in image coordinates with the estimated velocity and probe position provided by the CMM controller. The fused information provides feedback to the monitor controller as it guides the touch probe to scan the part. We also discuss integrating information from the vision system and the probe to autonomously collect data for 2-D to 3-D calibration, and work to register computer aided design (CAD) models with images of parts in the workplace.

  14. Aurora: A short-pulse multikilojoule KrF inertial fusion laser system

    International Nuclear Information System (INIS)

    Rosocha, L.A.

    1985-01-01

    Aurora is a laser system that serves as an operating technology demonstration prototype for large-scale high-energy KrF laser systems of interest for inertial fusion applications. This system will incorporate the following elements to achieve an end-to-end 248-nm laser fusion concept demonstration: an injection-locked oscillator-amplifier front end; an optical angular multiplexer to produce 96 encoded optical channels each of 5-nsec duration; a chain of four electron-beam-driven KrF laser amplifiers; automated alignment systems for beam alignment; a decoder to provide for pulse compression of some fraction of the total beam train to be delivered to target, and a target chamber to house and diagnose fusion targets. The front end configuration uses a stable resonator master oscillator to drive an injection-locked unstable resonator slave oscillator. An extension of existing technology has been used to develop an electrooptic switchout at 248 nm that produces a 5-nsec pulse from the longer slave oscillator pulse. This short pulse is amplified by a postamplifier. Using these discharge lasers, the front end then delivers at least 250 mJ of KrF laser light output to the optical encoder

  15. Conceptual Design of Low Fusion Power Hybrid System for Waste Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Hee; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2016-10-15

    DRUP (Direct Reuse of Used PWR) fuel has same process with DUPIC (Direct Use of spent PWR fuel Into CANDU reactor). There are 2 big benefits by using DRUP fuel in Hybrid system. One is fissile production during operating period. Required power is decreased by fissile production from DRUP fuel. When the fusion power is reduced, integrity of structure materials is not significantly weakened due to reduction of 14.1MeV high energy neutrons. In addition, required amount of tritium for self-sufficiency TBR (Tritium Breeding Ratio ≥ 1.1) is decreased. Therefore, it is possible to further loading the SNF as much as the amount of lithium decreased. It is effective in transmutation. The other one is that DRUP fuel is also SNF. Therefore, using DRUP fuel is reusing of SNF, as a result it makes reduction of SNF from PWR. However, thermal neutron system is suitable for using DRUP fuel compared to fast neutron system. Therefore, transmutation zone designed (U-TRU)Zr fuel and fissile production zone designed DRUP fuel are separated in this study. In this paper, using DRUP fuel for low fusion power in hybrid system is suggested. Fusion power is decreased by using DRUP fuel. As a result, TBR is satisfied design condition despite of using natural lithium. In addition, not only (U-TRU)Zr fuel but also DRUP fuel are transmuted.

  16. An optimized symbiotic fusion and molten-salt fission reactor system

    International Nuclear Information System (INIS)

    Blinkin, V.L.; Novikov, V.M.

    A symbiotic fusion-fission reactor system which breeds nuclear fuel is discussed. In the blanket of the controlled thermonuclear reactor (CTR) uranium-233 is generated from thorium, which circulates in the form of ThF 4 mixed with molten sodium and beryllium fluorides. The molten-salt fission reactor (MSR) burns up the uranium-233 and generates tritium for the fusion reactor from lithium, which circulates in the form of LiF mixed with BeF 2 and 233 UF 4 through the MSR core. With a CTR-MSR thermal power ratio of 1:11 the system can produce electrical energy and breed fuel with a doubling time of 4-5 years. The system has the following special features: (1) Fuel reprocessing is much simpler and cheaper than for contemporary fission reactors; reprocessing consists simply in continuous removal of 233 U from the salt circulating in the CTR blanket by the fluorination method and removal of xenon from the MSR fuel salt by gas scavenging; the MSR fuel salt is periodically exchanged for fresh salt and the 233 U is then removed from it; (2) Tritium is produced in the fission reactor, which is a much simpler system than the fusion reactor; (3) The CTR blanket is almost ''clean''; no tritium is produced in it and fission fragment activity does not exceed the activity induced in the structural materials; (4) Almost all the thorium introduced into the CTR blanket can be used for producing 233 U

  17. Combining multiple ChIP-seq peak detection systems using combinatorial fusion.

    Science.gov (United States)

    Schweikert, Christina; Brown, Stuart; Tang, Zuojian; Smith, Phillip R; Hsu, D Frank

    2012-01-01

    Due to the recent rapid development in ChIP-seq technologies, which uses high-throughput next-generation DNA sequencing to identify the targets of Chromatin Immunoprecipitation, there is an increasing amount of sequencing data being generated that provides us with greater opportunity to analyze genome-wide protein-DNA interactions. In particular, we are interested in evaluating and enhancing computational and statistical techniques for locating protein binding sites. Many peak detection systems have been developed; in this study, we utilize the following six: CisGenome, MACS, PeakSeq, QuEST, SISSRs, and TRLocator. We define two methods to merge and rescore the regions of two peak detection systems and analyze the performance based on average precision and coverage of transcription start sites. The results indicate that ChIP-seq peak detection can be improved by fusion using score or rank combination. Our method of combination and fusion analysis would provide a means for generic assessment of available technologies and systems and assist researchers in choosing an appropriate system (or fusion method) for analyzing ChIP-seq data. This analysis offers an alternate approach for increasing true positive rates, while decreasing false positive rates and hence improving the ChIP-seq peak identification process.

  18. Data fusion concept in multispectral system for perimeter protection of stationary and moving objects

    Science.gov (United States)

    Ciurapiński, Wieslaw; Dulski, Rafal; Kastek, Mariusz; Szustakowski, Mieczyslaw; Bieszczad, Grzegorz; Życzkowski, Marek; Trzaskawka, Piotr; Piszczek, Marek

    2009-09-01

    The paper presents the concept of multispectral protection system for perimeter protection for stationary and moving objects. The system consists of active ground radar, thermal and visible cameras. The radar allows the system to locate potential intruders and to control an observation area for system cameras. The multisensor construction of the system ensures significant improvement of detection probability of intruder and reduction of false alarms. A final decision from system is worked out using image data. The method of data fusion used in the system has been presented. The system is working under control of FLIR Nexus system. The Nexus offers complete technology and components to create network-based, high-end integrated systems for security and surveillance applications. Based on unique "plug and play" architecture, system provides unmatched flexibility and simplistic integration of sensors and devices in TCP/IP networks. Using a graphical user interface it is possible to control sensors and monitor streaming video and other data over the network, visualize the results of data fusion process and obtain detailed information about detected intruders over a digital map. System provides high-level applications and operator workload reduction with features such as sensor to sensor cueing from detection devices, automatic e-mail notification and alarm triggering.

  19. Developing maintainability for tokamak fusion power systems. Phase II report. Volume I: executive summary

    International Nuclear Information System (INIS)

    Fuller, G.M.; Zahn, H.S.; Mantz, H.C.; Kaletta, G.R.; Waganer, L.M.; Carosella, L.A.; Conlee, J.L.

    1978-11-01

    The purpose of this report is to identify design features of fusion power reactors which contribute to the achievement of high levels of maintainability. Volume 1, the Executive Summary, presents the progress achieved toward this objective in this phase and includes a comparison with the results of the first phase study efforts. A series of maintainability design guidelines and an improved maintenance system are defined as initial steps in developing the requirements for a maintainable tokamak fusion power system. The principle comparative studies that are summarized include the determination of the benefits of various vacuum wall arrangements, the effect of unscheduled and scheduled maintenance of the first wall/blanket, some initial investigation of maintenance required for subsystems other than the first wall/blanket, and the impact of maintenance equipment failures

  20. Research and Development of Landmine Detection System by a Compact Fusion Neutron Source

    International Nuclear Information System (INIS)

    Yoshikawa, Kiyoshi; Masuda, Kai; Toku, Hisayuki; Nagasaki, Kazunobu; Mizutani, Toshiyuki; Takamatsu, Teruhisa; Imoto, Masaki; Yamamoto, Yasushi; Ohnishi, Masami; Osawa, Hodaka; Hotta, Eiki; Kohno, Toshiyuki; Okino, Akitoshi; Watanabe, Masato; Yamauchi, Kunihito; Yuura, Morimasa; Shiroya, Seiji; Misawa, Tsuyoshi; Mori, Takamasa

    2005-01-01

    Current results are described on the research and development of an advanced anti-personnel landmine detection system by using a compact discharge-type fusion neutron source called IECF (Inertial-Electrostatic Confinement Fusion). Landmines are to be identified through backscattering of neutrons, and specific-energy capture γ-rays by hydrogen and nitrogen atoms in the landmine explosives.For this purpose, improvements in the IECF were made by various methods to achieve a drastic enhancement of neutron yields of more than 10 8 n/s in pulsed operation. This required R and D on the power source, as well as analysis of envisaged detection systems with multi-sensors. The results suggest promising and practical features for humanitarian landmine detection, particularly, in Afghanistan

  1. Progress of fusion fuel processing system development at the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Nishi, Masataka; Yamanishi, Toshihiko; Kawamura, Yoshinori; Iwai, Yasunori; Isobe, Kanetsugu; O'Hira, Shigeru; Hayashi, Takumi; Nakamura, Hirofumi; Kobayashi, Kazuhiro; Suzuki, Takumi; Yamada, Masayuki; Konishi, Satoshi

    2000-01-01

    The Tritium Process Laboratory (TPL) at the Japan Atomic Energy Research Institute has been working on the development of fuel processing technology for fusion reactors as a major activity. A fusion fuel processing loop was installed and is being tested with tritium under reactor relevant conditions. The loop at the TPL consists of ZrCo based tritium storage beds, a plasma exhaust processing system using a palladium diffuser and an electrolytic reactor, cryogenic distillation columns for isotope separation, and analytical systems based on newly developed micro gas chromatographs and Raman Spectroscopy. Several extended demonstration campaigns were performed under realistic reactor conditions to test tritiated impurity processing. A sophisticated control technique of distillation column was performed at the same time, and integrated fuel circulation was successfully demonstrated. Major recent design work on the International Thermonuclear Experimental Reactor (ITER) tritium plant at the TPL is devoted to water detritiation based on liquid phase catalytic exchange for improved tritium removal from waste water

  2. Application of Recommended Design Practices for Conceptual Nuclear Fusion Space Propulsion Systems

    Science.gov (United States)

    Williams, Craig H.

    2004-01-01

    An AIAA Special Project Report was recently produced by AIAA's Nuclear and Future Flight Propulsion Technical Committee and is currently in peer review. The Report provides recommended design practices for conceptual engineering studies of nuclear fusion space propulsion systems. Discussion and recommendations are made on key topics including design reference missions, degree of technological extrapolation and concomitant risk, thoroughness in calculating mass properties (nominal mass properties, weight-growth contingency and propellant margins, and specific impulse), and thoroughness in calculating power generation and usage (power-flow, power contingencies, specific power). The report represents a general consensus of the nuclear fusion space propulsion system conceptual design community and proposes 15 recommendations. This paper expands on the Report by providing specific examples illustrating how to apply each of the recommendations.

  3. Systems Modeling For The Laser Fusion-Fission Energy (LIFE) Power Plant

    International Nuclear Information System (INIS)

    Meier, W.R.; Abbott, R.; Beach, R.; Blink, J.; Caird, J.; Erlandson, A.; Farmer, J.; Halsey, W.; Ladran, T.; Latkowski, J.; MacIntyre, A.; Miles, R.; Storm, E.

    2008-01-01

    A systems model has been developed for the Laser Inertial Fusion-Fission Energy (LIFE) power plant. It combines cost-performance scaling models for the major subsystems of the plant including the laser, inertial fusion target factory, engine (i.e., the chamber including the fission and tritium breeding blankets), energy conversion systems and balance of plant. The LIFE plant model is being used to evaluate design trade-offs and to identify high-leverage R and D. At this point, we are focused more on doing self consistent design trades and optimization as opposed to trying to predict a cost of electricity with a high degree of certainty. Key results show the advantage of large scale (>1000 MWe) plants and the importance of minimizing the cost of diodes and balance of plant cost

  4. System for automatic x-ray-image analysis, measurement, and sorting of laser fusion targets

    International Nuclear Information System (INIS)

    Singleton, R.M.; Perkins, D.E.; Willenborg, D.L.

    1980-01-01

    This paper describes the Automatic X-Ray Image Analysis and Sorting (AXIAS) system which is designed to analyze and measure x-ray images of opaque hollow microspheres used as laser fusion targets. The x-ray images are first recorded on a high resolution film plate. The AXIAS system then digitizes and processes the images to accurately measure the target parameters and defects. The primary goals of the AXIAS system are: to provide extremely accurate and rapid measurements, to engineer a practical system for a routine production environment and to furnish the capability of automatically measuring an array of images for sorting and selection

  5. The 'Lumbar Fusion Outcome Score' (LUFOS): a new practical and surgically oriented grading system for preoperative prediction of surgical outcomes after lumbar spinal fusion in patients with degenerative disc disease and refractory chronic axial low back pain.

    Science.gov (United States)

    Mattei, Tobias A; Rehman, Azeem A; Teles, Alisson R; Aldag, Jean C; Dinh, Dzung H; McCall, Todd D

    2017-01-01

    In order to evaluate the predictive effect of non-invasive preoperative imaging methods on surgical outcomes of lumbar fusion for patients with degenerative disc disease (DDD) and refractory chronic axial low back pain (LBP), the authors conducted a retrospective review of 45 patients with DDD and refractory LBP submitted to anterior lumbar interbody fusion (ALIF) at a single center from 2007 to 2010. Surgical outcomes - as measured by Visual Analog Scale (VAS/back pain) and Oswestry Disability Index (ODI) - were evaluated pre-operatively and at 6 weeks, 3 months, 6 months, and 1 year post-operatively. Linear mixed-effects models were generated in order to identify possible preoperative imaging characteristics (including bone scan/99mTc scintigraphy increased endplate uptake, Modic endplate changes, and disc degeneration graded according to Pfirrmann classification) which may be predictive of long-term surgical outcomes . After controlling for confounders, a combined score, the Lumbar Fusion Outcome Score (LUFOS), was developed. The LUFOS grading system was able to stratify patients in two general groups (Non-surgical: LUFOS 0 and 1; Surgical: LUFOS 2 and 3) that presented significantly different surgical outcomes in terms of estimated marginal means of VAS/back pain (p = 0.001) and ODI (p = 0.006) beginning at 3 months and continuing up to 1 year of follow-up. In conclusion,  LUFOS has been devised as a new practical and surgically oriented grading system based on simple key parameters from non-invasive preoperative imaging exams (magnetic resonance imaging/MRI and bone scan/99mTc scintigraphy) which has been shown to be highly predictive of surgical outcomes of patients undergoing lumbar fusion for treatment for refractory chronic axial LBP.

  6. Fusion, space and solar plasmas as complex systems

    International Nuclear Information System (INIS)

    Dendy, R O; Chapman, S C; Paczuski, M

    2007-01-01

    Complex systems science seeks to identify simple universal models that capture the key physics of extended macroscopic systems, whose behaviour is governed by multiple nonlinear coupled processes that operate across a wide range of spatiotemporal scales. In such systems, it is often the case that energy release occurs intermittently, in bursty events, and the phenomenology can exhibit scaling, that is a significant degree of self-similarity. Within plasma physics, such systems include Earth's magnetosphere, the solar corona and toroidal magnetic confinement experiments. Guided by broad understanding of the dominant plasma processes-for example, turbulent transport in tokamaks or reconnection in some space and solar contexts-one may construct minimalist complex systems models that yield relevant global behaviour. Examples considered here include the sandpile approach to tokamaks and the magnetosphere and a multiple loops model for the solar coronal magnetic carpet. Such models can address questions that are inaccessible to analytical treatment and are too demanding for contemporary computational resources; thus they potentially yield new insights, but risk being simplistic. Central to the utility of these models is their capacity to replicate distinctive aspects of observed global phenomenology, often strongly nonlinear, or of event statistics, for which no explanation can be obtained from first principles considerations such as the underlying equations. For example, a sandpile model, which embodies critical-gradient-triggered avalanching transport associated with nearest-neighbour mode coupling and simple boundary conditions (and little else), can be used to generate some of the distinctive observed elements of tokamak confinement phenomenology such as ELMing and edge pedestals. The same sandpile model can also generate distributions of energy-release events whose distinctive statistics resemble those observed in the auroral zone. Similarly, a multiple loops model

  7. Conceptual design of laser fusion reactor, SENRI-I - 1. concept and system design

    International Nuclear Information System (INIS)

    Ido, S.; Naki, S.; Norimatsu, T.

    1981-01-01

    Design features of a laser fusion reactor concept SENRI-I and new concepts are reviewed and discussed. The unique feature is the utilization of a magnetic field to guide and control the inner liquid Li flow. Basic requirements and typical parameters used in the design are presented. Items to be discussed are constitution of the system, performance of liquid Li flow, neutronics, thermo-electric cycle, fuel cycle and new concepts

  8. THIDA: code system for calculation of the exposure dose rate around a fusion device

    International Nuclear Information System (INIS)

    Iida, Hiromasa; Igarashi, Masahito.

    1978-12-01

    A code system THIDA has been developed for calculation of the exposure dose rates around a fusion device. It consists of the following: one- and two-dimensional discrete ordinate transport codes; induced activity calculation code; activation chain, activation cross section, radionuclide gamma-ray energy/intensity and gamma-ray group constant files; and gamma ray flux to exposure dose rate conversion coefficients. (author)

  9. Remote systems requirements of the high-yield lithium injection fusion energy converter concept

    International Nuclear Information System (INIS)

    Walker, P.E.

    1978-01-01

    Remote systems will be required in the high-yield lithium injection fusion energy converter power plant proposed by Lawrence Livermore Laboratory. During inspection operations, viewing of the chamber interior and certain pumps, valve fittings, and welds must be done remotely. Ideas for remote maintenance of laser-beam blast baffles, optics, and target material traps are described. Radioisotope sources, their distributions, and exposure rates at various points in the reactor vicinity are presented

  10. Study of the application of advanced control systems to fusion experiments and reactors. Final report

    International Nuclear Information System (INIS)

    1974-05-01

    The work accomplished to date toward the formulation of an advanced control system concept for large-scale magnetically confined thermonuclear fusion devices is summarized. The work was concentrated in three major areas: (1) general control studies and identification of control issues, (2) exploration of possible direct interactions with AEC National Laboratories, and (3) identification of simulation requirements to support control studies. (U.S.)

  11. Remote systems requirements of the High Yield Lithium Injection Fusion Energy (HYLIFE) converter concept

    International Nuclear Information System (INIS)

    Walker, P.E.

    1978-10-01

    Remote systems will be required in the High Yield Lithium Injection Fusion Energy Converter power plant proposed by Lawrence Livermore Laboratory. During inspection operations, viewing of the chamber interior and certain pumps, valve fittings and welds must be done remotely. Ideas for remote maintenance of laser beam blast baffles, optics, and target material traps are described. Radioisotope sources and their distributions, and exposure rates at various points in the reactor vicinity are presented

  12. System model for analysis of the mirror fusion-fission reactor

    International Nuclear Information System (INIS)

    Bender, D.J.; Carlson, G.A.

    1977-01-01

    This report describes a system model for the mirror fusion-fission reactor. In this model we include a reactor description as well as analyses of capital cost and blanket fuel management. In addition, we provide an economic analysis evaluating the cost of producing the two hybrid products, fissile fuel and electricity. We also furnish the results of a limited parametric analysis of the modeled reactor, illustrating the technological and economic implications of varying some important reactor design parameters

  13. Fusion cross section measurements of astrophysical interest for light heavy ions systems within the STELLA project

    Directory of Open Access Journals (Sweden)

    Fruet Guillaume

    2017-01-01

    The experimental setup composed of an ultra high vacuum reaction chamber, a set of 3 silicon strip detectors, up to 36 LaBr3(Ce scintillators from the UK FATIMA collaboration, and a fast rotating target system will be described. The 12C+12C fusion reaction has been studied from Elab = 11 to 5.6 MeV using STELLA at the Andromède facility in Orsay, France. Preliminary commissioning results are presented in this article.

  14. Combining cognitive engineering and information fusion architectures to build effective joint systems

    Science.gov (United States)

    Sliva, Amy L.; Gorman, Joe; Voshell, Martin; Tittle, James; Bowman, Christopher

    2016-05-01

    The Dual Node Decision Wheels (DNDW) architecture concept was previously described as a novel approach toward integrating analytic and decision-making processes in joint human/automation systems in highly complex sociotechnical settings. In this paper, we extend the DNDW construct with a description of components in this framework, combining structures of the Dual Node Network (DNN) for Information Fusion and Resource Management with extensions on Rasmussen's Decision Ladder (DL) to provide guidance on constructing information systems that better serve decision-making support requirements. The DNN takes a component-centered approach to system design, decomposing each asset in terms of data inputs and outputs according to their roles and interactions in a fusion network. However, to ensure relevancy to and organizational fitment within command and control (C2) processes, principles from cognitive systems engineering emphasize that system design must take a human-centered systems view, integrating information needs and decision making requirements to drive the architecture design and capabilities of network assets. In the current work, we present an approach for structuring and assessing DNDW systems that uses a unique hybrid DNN top-down system design with a human-centered process design, combining DNN node decomposition with artifacts from cognitive analysis (i.e., system abstraction decomposition models, decision ladders) to provide work domain and task-level insights at different levels in an example intelligence, surveillance, and reconnaissance (ISR) system setting. This DNDW structure will ensure not only that the information fusion technologies and processes are structured effectively, but that the resulting information products will align with the requirements of human decision makers and be adaptable to different work settings .

  15. Case for the fusion hybrid

    International Nuclear Information System (INIS)

    Rose, R.P.

    1981-01-01

    The use of nuclear fusion to produce fuel for nuclear fission power stations is discussed in the context of a crucial need for future energy options. The fusion hybrid is first considered as an element in the future of nuclear fission power to provide long term assurance of adequate fuel supplies for both breeder and convertor reactors. Generic differences in neutronic characteristics lead to a fuel production potential of fusion-fission hybrid systems which is significantly greater than that obtainable with fission systems alone. Furthermore, cost benefit studies show a variety of scenarios in which the hybrid offers sufficient potential to justify development costs ranging in the tens of billions of dollars. The hybrid is then considered as an element in the ultimate development of fusion electric power. The hybrid offers a near term application of fusion where experience with the requisite technologies can be derived as a vital step in mapping a credible route to eventual commercial feasibility of pure fusion systems. Finally, the criteria for assessment of future energy options are discussed with prime emphasis on the need for rational comparision of alternatives

  16. Mirror fusion--fission hybrids

    International Nuclear Information System (INIS)

    Lee, J.D.

    1978-01-01

    The fusion-fission concept and the mirror fusion-fission hybrid program are outlined. Magnetic mirror fusion drivers and blankets for hybrid reactors are discussed. Results of system analyses are presented and a reference design is described

  17. A Fusion of Multiagent Functionalities for Effective Intrusion Detection System

    Directory of Open Access Journals (Sweden)

    Dhanalakshmi Krishnan Sadhasivan

    2017-01-01

    Full Text Available Provision of high security is one of the active research areas in the network applications. The failure in the centralized system based on the attacks provides less protection. Besides, the lack of update of new attacks arrival leads to the minimum accuracy of detection. The major focus of this paper is to improve the detection performance through the adaptive update of attacking information to the database. We propose an Adaptive Rule-Based Multiagent Intrusion Detection System (ARMA-IDS to detect the anomalies in the real-time datasets such as KDD and SCADA. Besides, the feedback loop provides the necessary update of attacks in the database that leads to the improvement in the detection accuracy. The combination of the rules and responsibilities for multiagents effectively detects the anomaly behavior, misuse of response, or relay reports of gas/water pipeline data in KDD and SCADA, respectively. The comparative analysis of the proposed ARMA-IDS with the various existing path mining methods, namely, random forest, JRip, a combination of AdaBoost/JRip, and common path mining on the SCADA dataset conveys that the effectiveness of the proposed ARMA-IDS in the real-time fault monitoring. Moreover, the proposed ARMA-IDS offers the higher detection rate in the SCADA and KDD cup 1999 datasets.

  18. A gamma-ray spectrometer system for fusion applications

    CERN Document Server

    Esposito, B; Kaschuck, Y A; Martin-Solis, J R; Portnov, D V

    2002-01-01

    A NaI scintillator spectrometer system for the measurement of gamma-ray spectra in tokamak discharges has been developed and installed on the Frascati Tokamak Upgrade. Two NaI scintillators are viewing the plasma at two different angles with respect to the equatorial plane. The main features of the spectrometer system (energy range: 0.3-23 MeV) and of the unfolding technique used to restore physical spectra from the pulse-height distributions are described: a method of solution with regularisation for matrix equations of large size, allowing to process count distributions with significant statistical noise, has been developed. A dedicated software, portable to any platform, has been written both for the acquisition and the analysis of the spectra. The typical gamma-ray spectra recorded in hydrogen and deuterium discharges, also with additional heating, are presented and discussed; two components have been observed: (a) thick-target Bremsstrahlung gamma-rays produced by runaway electrons hitting the Inconel po...

  19. Fractal reactor: An alternative nuclear fusion system based on nature's geometry

    International Nuclear Information System (INIS)

    Siler, T. L.

    2007-01-01

    The author presents his concept of the Fractal Reactor, which explores the possibility of building a plasma fusion power reactor based on the real geometry of nature [fractals], rather than the virtual geometry that Euclid postulated around 330 BC; nearly every architect of our plasma fusion devices has been influenced by his three-dimensional geometry. The idealized points, lines, planes, and spheres of this classical geometry continue to be used to represent the natural world and to describe the properties of all geometrical objects, even though they neither accurately nor fully convey nature's structures and processes. The Fractal Reactor concept contrasts the current containment mechanisms of both magnetic and inertial containment systems for confining and heating plasmas. All of these systems are based on Euclidean geometry and use geometrical designs that, ultimately, are inconsistent with the Non-Euclidean geometry and irregular, fractal forms of nature (3). The author explores his premise that a controlled, thermonuclear fusion energy system might be more effective if it more closely embodies the physics of a star

  20. Developmental validation of the PowerPlex(®) Fusion 6C System.

    Science.gov (United States)

    Ensenberger, Martin G; Lenz, Kristy A; Matthies, Learden K; Hadinoto, Gregory M; Schienman, John E; Przech, Angela J; Morganti, Michael W; Renstrom, Daniel T; Baker, Victoria M; Gawrys, Kori M; Hoogendoorn, Marlijn; Steffen, Carolyn R; Martín, Pablo; Alonso, Antonio; Olson, Hope R; Sprecher, Cynthia J; Storts, Douglas R

    2016-03-01

    The PowerPlex(®) Fusion 6C System is a 27-locus, six-dye, multiplex that includes all markers in the expanded CODIS core loci and increases overlap with STR database standards throughout the world. Additionally, it contains two, rapidly mutating, Y-STRs and is capable of both casework and database workflows, including direct amplification. A multi-laboratory developmental validation study was performed on the PowerPlex(®) Fusion 6C System. Here, we report the results of that study which followed SWGDAM guidelines and includes data for: species specificity, sensitivity, stability, precision, reproducibility and repeatability, case-type samples, concordance, stutter, DNA mixtures, and PCR-based procedures. Where appropriate we report data from both extracted DNA samples and direct amplification samples from various substrates and collection devices. Samples from all studies were separated on both Applied Biosystems 3500 series and 6-dye capable 3130 series Genetic Analyzers and data is reported for each. Together, the data validate the design and demonstrate the performance of the PowerPlex(®) Fusion 6C System. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  1. Potential need for fusion in the U.S. energy system

    International Nuclear Information System (INIS)

    Beardsworth, E.; Powell, J.

    1977-09-01

    For fusion to become available for commercial use in the 21st century, R and D must be undertaken now. But it is hard to justify these expenditures with a ''cost/benefit'' oriented assessment methodology, because of both the time frame and the uncertainty of the future benefits. Focusing on the factors most relevant for current consideration of fusion's commercial prospects, i.e., consumption levels and the outcomes for fission, solar, and coal, many possible futures of the U.S. energy system are posited and analyzed under various assumptions about costs. The ''Reference Energy System'' approach was modified to establish both an appropriate degree of detail and explicit time dependence, and a computer code used to organize the relevant data and to perform calculations of system cost (annual and discounted present value), resource use, and residuals that are implied by the consumption levels and technology mix in each scenario. Not-unreasonable scenarios indicate benefits in the form of direct cost savings, which may well exceed R and D costs, which could be attributed to the implementation of fusion

  2. Neutron excess generation by fusion neutron source for self-consistency of nuclear energy system

    International Nuclear Information System (INIS)

    Saito, Masaki; Artisyuk, V.; Chmelev, A.

    1999-01-01

    The present day fission energy technology faces with the problem of transmutation of dangerous radionuclides that requires neutron excess generation. Nuclear energy system based on fission reactors needs fuel breeding and, therefore, suffers from lack of neutron excess to apply large-scale transmutation option including elimination of fission products. Fusion neutron source (FNS) was proposed to improve neutron balance in the nuclear energy system. Energy associated with the performance of FNS should be small enough to keep the position of neutron excess generator, thus, leaving the role of dominant energy producers to fission reactors. The present paper deals with development of general methodology to estimate the effect of neutron excess generation by FNS on the performance of nuclear energy system as a whole. Multiplication of fusion neutrons in both non-fissionable and fissionable multipliers was considered. Based on the present methodology it was concluded that neutron self-consistency with respect to fuel breeding and transmutation of fission products can be attained with small fraction of energy associated with innovated fusion facilities. (author)

  3. Antibacterial characteristics of thermal plasma spray system.

    Science.gov (United States)

    Goudarzi, M; Saviz, Sh; Ghoranneviss, M; Salar Elahi, A

    2018-03-15

    The objective of this study is to investigate antibacterial characteristics of a thermal plasma spray system. For this purpose, copper powder was coated on a handmade atmospheric plasma spraying system made by the stainless steel 316 substrate, which is preheated at different temperatures before spraying. A number of deposition characteristics such as antibacterial characteristics, adhesion strength and hardness of coating, was investigated. All of the spray parameters are fixed except the substrate temperature. The chemical composition was analyzed by X-ray diffraction (XRD). A scanning electron microscopy (SEM) and back scattering electron microscopy (BSE) were used to show the coating microstructure, its thickness and also the powder micrograph. The energy dispersive X-ray spectroscopy (EDX) was used to analyze the coating particles. Hardness of the deposition was examined by Vickers tester (HV0.1). Its adhesion strength was declared by cross cut tester (TQC). In addition, the percentage of bactericidal coating was evidenced with Staphylococcus aurous and Escherichia coli bacteria. Study results show that as the substrates temperature increases, the number of splats in the shape of pancake increases, the greatness and percentage of the deposition porosity both decrease. The increment of the substrate temperature leads to more oxidation and makes thicker dendrites on the splat. The enhancement of the substrate temperature also enlarges thickness and efficiency of coating. The interesting results are that antibacterial properties of coatings against the Escherichia coli are more than Staphylococcus aurous bacteria. However the bactericidal percentage of the coatings against Staphylococcus aurous and Escherichia coli bacteria roughly does not change with increasing the substrate temperature. Furthermore, by increment of the substrate temperature, coatings with both high adhesion and hardness are obtained. Accordingly, the temperature of substrate can be an

  4. Propulsion and Power Generation Capabilities of a Dense Plasma Focus (DPF) Fusion System for Future Military Aerospace Vehicles

    International Nuclear Information System (INIS)

    Knecht, Sean D.; Mead, Franklin B.; Thomas, Robert E.; Miley, George H.; Froning, David

    2006-01-01

    The objective of this study was to perform a parametric evaluation of the performance and interface characteristics of a dense plasma focus (DPF) fusion system in support of a USAF advanced military aerospace vehicle concept study. This vehicle is an aerospace plane that combines clean 'aneutronic' dense plasma focus (DPF) fusion power and propulsion technology, with advanced 'lifting body'-like airframe configurations utilizing air-breathing MHD propulsion and power technology within a reusable single-stage-to-orbit (SSTO) vehicle. The applied approach was to evaluate the fusion system details (geometry, power, T/W, system mass, etc.) of a baseline p-11B DPF propulsion device with Q = 3.0 and thruster efficiency, ηprop = 90% for a range of thrust, Isp and capacitor specific energy values. The baseline details were then kept constant and the values of Q and ηprop were varied to evaluate excess power generation for communication systems, pulsed-train plasmoid weapons, ultrahigh-power lasers, and gravity devices. Thrust values were varied between 100 kN and 1,000 kN with Isp of 1,500 s and 2,000 s, while capacitor specific energy was varied from 1 - 15 kJ/kg. Q was varied from 3.0 to 6.0, resulting in gigawatts of excess power. Thruster efficiency was varied from 0.9 to 1.0, resulting in hundreds of megawatts of excess power. Resulting system masses were on the order of 10's to 100's of metric tons with thrust-to-weight ratios ranging from 2.1 to 44.1, depending on capacitor specific energy. Such a high thrust/high Isp system with a high power generation capability would allow military versatility in sub-orbital space, as early as 2025, and beyond as early as 2050. This paper presents the results that coincide with a total system mass between 15 and 20 metric tons

  5. Vacuum system for the tokamak fusion test reactor (TFTR)

    International Nuclear Information System (INIS)

    Lange, W.J.; Green, D.; Sink, D.A.

    1976-01-01

    The vacuum system for TFTR is described. Insofar as possible, conventional and ultrahigh vacuum (UHV) components and technology will be employed. Subassemblies will be prebaked in vacuum to reduce subsequent outgassing, and assembly will employ TIG welding and metal gaskets. It is not anticipated that the totally assembled torus with its numerous diagnostic appendages will be baked in situ to a high temperature, however a lower bakeout temperature (approximately 250 0 C) is under consideration. Final vacuum conditioning will be performed using discharge cleaning to obtain a specific outgassing rate of less than or = to 10 -10 Torr liter/sec cm 2 hydrogen isotopes and less than or = to 10 -12 Torr liter/sec cm 2 of other gases, and a base pressure of less than or = to 5 x 10 -8 Torr

  6. Economic implications of fusion-fission energy systems

    International Nuclear Information System (INIS)

    Deonigi, D.E.; Schulte, S.C.

    1979-04-01

    The principal conclusions that can be made based on the estimated costs reported in this paper are twofold. First, hybrid reactors operating symbiotically with conventional fission reactors are a potentially attractive supply alternative. Estimated hybrid energy system costs are slightly greater than estimated costs of the most attractive alternatives. However, given the technological, economic, and institutional uncertainties associated with future energy supply, differences of such magnitude are of little significance. Second, to be economically viable, hybrid reactors must be both fuel producers and electricity producers. A data point representing each hybrid reactor driver-blanket concept is plotted as a function of net electrical production efficiency and annual fuel production. The plots illustrate that the most economically viable reactor concepts are those that produce both fuel and electricity

  7. Spin distribution of evaporation residues formed in complete and incomplete fusion in 16O+154Sm system

    Directory of Open Access Journals (Sweden)

    D. Singh

    2017-11-01

    Full Text Available Spin distributions for several evaporation residues populated in the 16O+154Sm system have been measured at projectile energy ≈ 6.2 MeV/A by using the charged particle–γ-coincidence technique. The measured spin distributions of the evaporation residues populated through incomplete fusion associated with ‘fast’ α and 2α-emission channels are found to be entirely different from fusion–evaporation channels. It is observed that the mean input angular momentum for the evaporation residues formed in incomplete fusion channel is relatively higher than that observed for evaporation residues in complete fusion channels. The feeding intensity profile of evaporation residues populated through complete fusion and incomplete fusion have also been studied. The incomplete fusion channels are found to have narrow range feeding only for high spin states, while complete fusion channels are strongly fed over a broad spin range and widely populated. Comparison of present results with earlier data suggests that the mean input angular momentum values are relatively smaller for spherical target than that of deformed target using the same projectile and incident energy highlighting the role of target deformation in incomplete fusion dynamics.

  8. Direct measurement of the impulse in a magnetic thrust chamber system for laser fusion rocket

    Energy Technology Data Exchange (ETDEWEB)

    Maeno, Akihiro; Yamamoto, Naoji; Nakashima, Hideki [Interdisciplinary Graduate School of Engineering Science, Kyushu University, 6-1 Kasuga-kouen, Kasuga, Fukuoka 816-8580 (Japan); Fujioka, Shinsuke; Johzaki, Tomoyuki [Institute of Laser Engineering, Osaka University, Suita, Osaka 565-087 (Japan); Mori, Yoshitaka [Graduate School for the Creation of New Photonics Industries, Hamamatsu, Shizuoka 431-1202 (Japan); Sunahara, Atsushi [Institute for Laser Technology, Suita, Osaka 565-087 (Japan)

    2011-08-15

    An experiment is conducted to measure an impulse for demonstrating a magnetic thrust chamber system for laser fusion rocket. The impulse is produced by the interaction between plasma and magnetic field. In the experiment, the system consists of plasma and neodymium permanent magnets. The plasma is created by a single-beam laser aiming at a polystyrene spherical target. The impulse is 1.5 to 2.2 {mu}Ns by means of a pendulum thrust stand, when the laser energy is 0.7 J. Without magnetic field, the measured impulse is found to be zero. These results indicate that the system for generating impulse is working.

  9. Interferogram reduction and interpretation as applied to the optical analysis of a laser fusion system

    International Nuclear Information System (INIS)

    Viswanathan, V.K.; Sollid, J.E.; Hall, W.S.; Liberman, I.; Lawrence, G.

    1978-01-01

    The 10 kJ Eight-Beam CO 2 Laser Fusion System, currently under construction at Los Alamos Scientific Laboratory (LASL), has approximately 100 optical elements per beam. The nominal system is diffraction limited and degradations in performance are caused primarily by imperfect components and alignment errors. Consequently, analysis and predictions for the system are very much dependent on the proper description of the imperfect components. The approach taken at LASL has been to characterize the components interferometrically. An example of this procedure, using an actual interferogram of a manufactured component, will be presented and the various limitations will be discussed

  10. Risk assessment of a fusion-reactor fuel-processing system

    International Nuclear Information System (INIS)

    Bruske, S.Z.; Holland, D.F.

    1983-07-01

    The probabilistic risk assessment (PRA) methodology provides a means to systematically examine the potential for accidents that may result in a release of hazardous materials. This report presents the PRA for a typical fusion reactor fuel processing system. The system used in the analysis is based on the Tritium Systems Test Assembly, which is being operated at the Los Alamos National Laboratory. The results of the evaluation are presented in a probability-consequence plot that describes the probability of various accidental tritium release magnitudes

  11. Liquid metal coolants for fusion-fission hybrid system: A neutronic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Renato V.A.; Velasquez, Carlos E.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Costa, Antonella L., E-mail: claubia@nuclear.ufmg.br [Universidade de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Barros, Graiciany P. [Comissão Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Based on a work already published by the UFMG Nuclear Engineering Department, it was suggested to use different coolant materials in a fusion-fission system after a fuel burnup simulation, including that one used in reference work. The goal is to compare the neutron parameters, such as the effect multiplication factor and actinide amounts in transmutation layer, for each used coolant and find the best(s) coolant material(s) to be applied in the considered system. Results indicate that the lead and lead-bismuth coolant are the most suitable choices to be applied to cool the system. (author)

  12. Development of a remote handling system for replacement of armor tiles in the Fusion Experimental Reactor

    International Nuclear Information System (INIS)

    Adachi, J.; Kakudate, S.; Oka, K.; Seki, M.

    1995-01-01

    The armor tiles of the Fusion Experimental Reactor (FER) planned by JAERI are categorized as scheduled maintenance components, since they are damaged by severe heat and particle loads from the plasma during operation. A remote handling system is thus required to replace a large number of tiles rapidly in the highly activated reactor. However, the simple teaching-playback method cannot be adapted to this system because of deflection of the tiles caused by thermal deformation and so on. We have developed a control system using visual feedback control to adapt to this deflection and an end-effector for a single arm. We confirm their performance in tests. (orig.)

  13. High-power microwave transmission and launching systems for fusion plasma heating systems

    International Nuclear Information System (INIS)

    Bigelow, T.S.

    1989-01-01

    Microwave power in the 30- to 300-GHz frequency range is becoming widely used for heating of plasma in present-day fusion energy magnetic confinement experiments. Microwave power is effective in ionizing plasma and heating electrons through the electron cyclotron heating (ECH) process. Since the power is absorbed in regions of the magnetic field where resonance occurs and launching antennas with narrow beam widths are possible, power deposition location can be highly controlled. This is important for maximizing the power utilization efficiency and improving plasma parameters. Development of the gyrotron oscillator tube has advanced in recent years so that a 1-MW continuous-wave, 140-GHz power source will soon be available. Gyrotron output power is typically in a circular waveguide propagating a circular electric mode (such as TE 0,2 ) or a whispering-gallery mode (such as TE 15,2 ), depending on frequency and power level. An alternative high-power microwave source currently under development is the free-electron laser (FEL), which may be capable of generating 2-10 MW of average power at frequencies of up to 500 GHz. The FEL has a rectangular output waveguide carrying the TE 0,1 mode. Because of its higher complexity and cost, the high-average-power FEL is not yet as extensively developed as the gyrotron. In this paper, several types of operating ECH transmission systems are discussed, as well systems currently being developed. The trend in this area is toward higher power and frequency due to the improvements in plasma density and temperature possible. Every system requires a variety of components, such as mode converters, waveguide bends, launchers, and directional couplers. Some of these components are discussed here, along with ongoing work to improve their performance. 8 refs

  14. Fusion reactor design studies

    International Nuclear Information System (INIS)

    Emmert, G.A.; Kulcinski, G.L.; Santarius, J.F.

    1990-01-01

    This report discusses the following topics on the ARIES tokamak: systems; plasma power balance; impurity control and fusion ash removal; fusion product ripple loss; energy conversion; reactor fueling; first wall design; shield design; reactor safety; and fuel cost and resources

  15. Extending the capabilities of the DIII-D Plasma Control System for worldwide fusion research collaborations

    International Nuclear Information System (INIS)

    Penaflor, B.G.; Ferron, J.R.; Walker, M.L.; Humphreys, D.A.; Leuer, J.A.; Piglowski, D.A.; Johnson, R.D.; Xiao, B.J.; Hahn, S.H.; Gates, D.A.

    2009-01-01

    This paper will discuss the recent enhancements which have been made to the DIII-D Plasma Control System (PCS) in order to further extend its usefulness as a shared tool for worldwide fusion research. The PCS developed at General Atomics is currently being used in a number of fusion research experiments worldwide, including the DIII-D Tokamak Facility in San Diego, and most recently the KSTAR Tokamak in South Korea. A number of enhancements have been made to support the ongoing needs of the DIII-D Tokamak in addition to meeting the needs of other PCS users worldwide. Details of the present PCS hardware and software architecture along with descriptions of the latest enhancements will be given.

  16. Acceleration systems for heavy-ion beams for inertial confinement fusion

    International Nuclear Information System (INIS)

    Faltens, A.; Judd, D.L.; Keefe, D.

    1977-01-01

    Heavy-ion beam pulse parameters needed to achieve useful electric power generation through inertial confinement fusion have been set forth. For successful ignition of a high-gain D-T target a few magajoules of energy per pulse, delivered at a peak power of several hundred terawatts, are needed; it must be deposited with an energy density of 20 to 30 magajoules per gram of the target material on which it impinges. Additional requirements must be met if this form of fusion is to be used for practical power generation; for example, the igniter system for a 1 GWe power plant should have a repetition rate in the neighborhood of 1 to 10 Hz, an overall electrical conversion efficiency from mains to beam of greater than 10%, and high availability. At present under discussion are the needs for a Heavy-Ion Demonstration Experiment (HIDE); an example set of parameters is given for comparison with those for a power plant

  17. Conceptual design of the cryogenic system for the helical-type fusion power plant FFHR

    International Nuclear Information System (INIS)

    Yamada, S.; Sagara, A.; Imagawa, S.; Mito, T.; Motojima, O.

    2007-01-01

    The force-free helical-type fusion reactor, FFHR, is proposed on the basis of the engineering achievements and confinement properties of the experimental fusion device of LHD. The outputs of the thermal power and electric power are optimized to 3 and 1 GW, respectively. Total weight of the superconducting (SC) coils and their supporting structures of the FFHR are estimated to be 18,000 t. An equivalent refrigeration capacity of 98 kW is necessary for coping with different plant loads. Mass-flow rate of the main circulation compressors is 9.5 kg/s and their power consumption is 29 MW. The FFHR is used for the co-generation system of electricity and hydrogen. The pressurized hydrogen of 100 t per day can be produced, when the stem electrolyzer of 150 MW class is applied. Electric power consumption of the hydrogen liquefaction with 100 t per day is estimated to be 26 MW

  18. Noise temperature improvement for magnetic fusion plasma millimeter wave imaging systems.

    Science.gov (United States)

    Lai, J; Domier, C W; Luhmann, N C

    2014-03-01

    Significant progress has been made in the imaging and visualization of magnetohydrodynamic and microturbulence phenomena in magnetic fusion plasmas [B. Tobias et al., Plasma Fusion Res. 6, 2106042 (2011)]. Of particular importance have been microwave electron cyclotron emission imaging and microwave imaging reflectometry systems for imaging T(e) and n(e) fluctuations. These instruments have employed heterodyne receiver arrays with Schottky diode mixer elements directly connected to individual antennas. Consequently, the noise temperature has been strongly determined by the conversion loss with typical noise temperatures of ~60,000 K. However, this can be significantly improved by making use of recent advances in Monolithic Microwave Integrated Circuit chip low noise amplifiers to insert a pre-amplifier in front of the Schottky diode mixer element. In a proof-of-principle design at V-Band (50-75 GHz), significant improvement of noise temperature from the current 60,000 K to measured 4000 K has been obtained.

  19. Noise temperature improvement for magnetic fusion plasma millimeter wave imaging systems

    International Nuclear Information System (INIS)

    Lai, J.; Domier, C. W.; Luhmann, N. C.

    2014-01-01

    Significant progress has been made in the imaging and visualization of magnetohydrodynamic and microturbulence phenomena in magnetic fusion plasmas [B. Tobias et al., Plasma Fusion Res. 6, 2106042 (2011)]. Of particular importance have been microwave electron cyclotron emission imaging and microwave imaging reflectometry systems for imaging T e and n e fluctuations. These instruments have employed heterodyne receiver arrays with Schottky diode mixer elements directly connected to individual antennas. Consequently, the noise temperature has been strongly determined by the conversion loss with typical noise temperatures of ∼60 000 K. However, this can be significantly improved by making use of recent advances in Monolithic Microwave Integrated Circuit chip low noise amplifiers to insert a pre-amplifier in front of the Schottky diode mixer element. In a proof-of-principle design at V-Band (50–75 GHz), significant improvement of noise temperature from the current 60 000 K to measured 4000 K has been obtained

  20. The possible role of fusion in the Indian energy system of the future

    International Nuclear Information System (INIS)

    Hamacher, T.; Shukla, R.P.; Seebregts, A.J.

    2003-01-01

    Already in the year 2050 India will be the most populated country in the world. Population growth and sustained economic growth will make India to one of the biggest economies in the world, consuming huge amounts of energy. The study shows that India would consume in 2100 a third of the global electricity demand of 2000. If no intervention are considered, coal will keep its position as dominant source in the electricity sector throughout the whole 21st century. This would result in tremendous CO 2 emissions. The picture changes completely, if stringent restrictions on CO 2 emissions are applied. In the case of strict emission reductions new technologies like fusion could make an inroad to the Indian energy system. Especially if it is assumed that the safety and environmental advantages of fusion compared to fission are accounted for

  1. Nuclear science experiments with a bright neutron source from fusion reactions on the OMEGA Laser System

    Science.gov (United States)

    Forrest, C. J.; Knauer, J. P.; Schroeder, W. U.; Glebov, V. Yu.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Sickles, M.; Stoeckl, C.; Szczepanski, J.

    2018-04-01

    Subnanosecond impulses of 1013 to 1014 neutrons, produced in direct-drive laser inertial confinement fusion implosions, have been used to irradiate deuterated targets at the OMEGA Laser System (Boehly et al., 1997). The target compounds include heavy water (D2O) and deuterated benzene (C6D6). Yields and energy spectra of neutrons from D(n,2n)p to study the breakup reaction have been measured at a forward angle of θlab = 3 .5∘ ± 3.5° with a sensitive, high-dynamic-range neutron time-of-flight spectrometer to infer the double-differential breakup cross section d2 σ/dE d Ω for 14-MeV D-T fusion neutrons.

  2. Demountable low stress high field toroidal field magnet system for tokamak fusion reactors

    International Nuclear Information System (INIS)

    Powell, J.; Hsieh, D.; Lehner, J.; Suenaga, M.

    1978-01-01

    A new type of superconducting magnet system for large fusion reactors is described. Instead of winding large planar or multi-axis coils, as has been proposed in previous fusion reactor designs, the superconducting coils are made by joining together several prefabricated conductor sections. The joints can be unmade and sections removed if they fail. Conductor sections can be made at a factory and shipped to the reactor site for assembly. The conductor stress level in the assembled coil can be kept small by external support of the coil at a number of points along its perimeter, so that the magnetic forces are transmitted to an external warm reinforcement structure. This warm reinforcement structure can also be the primary containment for the fusion reactor, constructed similar to a PCRV (Prestressed Concrete Reactor Vessel) used in fission reactors. Low thermal conductivity, high strength supports are used to transfer the magnetic forces to the external reinforcement through a hydraulic system. The hydraulic supports are movable and can be programmed to accommodate thermal contraction and to minimize stress in the superconducting coil. (author)

  3. Demountable low stress high field toroidal field magnet system for tokamak fusion reactors

    International Nuclear Information System (INIS)

    Powell, J.; Hsieh, D.; Lehner, J.; Suenaga, M.

    1977-01-01

    A new type of superconducting magnet system for large fusion reactors is described in this report. Instead of winding large planar or multi-axis coils, as has been proposed in previous fusion reactor designs, the superconducting coils are made by joining together several prefabricated conductor sections. The joints can be unmade and sections removed if they fail. Conductor sections can be made at a factory and shipped to the reactor site for assembly. The conductor stress level in the assembled coil can be kept small by external support of the coil at a number of points along its perimeter, so that the magnetic forces are transmitted to an external warm reinforcement structure. This warm reinforcement structure can also be the primary containment for the fusion reactor, constructed similar to a PCRV (Prestressed Concrete Reactor Vessel) used in fission reactors. Low thermal conductivity, high strength supports are used to transfer the magnetic forces to the external reinforcement through a hydraulic system. The hydraulic supports are movable and can be programmed to accommodate thermal contraction and to minimize stress in the superconducting coil

  4. Evaluation of tritium transport in the biomass-fusion hybrid system and its environmental impact

    Energy Technology Data Exchange (ETDEWEB)

    Namba, Kyosuke [Graduate School of Energy Science, Kyoto University, Kyoto (Japan); Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Kyoto (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Kyoto (Japan); Yamamoto, Yasushi [Faculty of Engineering Science, Kansai University, Osaka (Japan)

    2015-10-15

    Highlights: • We assumed that tritium migrates from biomass hybrid fusion system to fuel cell vehicles. • We developed a seven-compartment model to describe the water flow and tritium in an urban area Osaka. • Tritium concentration of surface soil water run by 4 Bq/L level after 60 years later. • The tritium does not deserve health hazard but easily detectable in the environment. - Abstract: The behavior of tritium contained in the biofuel produced by the fusion energy is analyzed. Hydrogen product is contaminated with tritium from breeding blanket of fusion plant within the regulation limit and released to atmosphere when used for fuel cell vehicles. In the model city, Osaka, seven-compartment model describes the behavior of exhausted tritium by adapting the environment water flow and its migration was analyzed with STELLA system dynamics code. Tritium (HTO) with a concentration of 5000 Bq//m{sup 3} exhausted from the running vehicle increases decades and reaches steady state after about 50 years, at around 40 Bq/m{sup 3} in atmosphere and 4 Bq/L in surface soil water that does not deserve health hazard, however causes contamination of large populated area.

  5. Distributed Fusion Estimation for Multisensor Multirate Systems with Stochastic Observation Multiplicative Noises

    Directory of Open Access Journals (Sweden)

    Peng Fangfang

    2014-01-01

    Full Text Available This paper studies the fusion estimation problem of a class of multisensor multirate systems with observation multiplicative noises. The dynamic system is sampled uniformly. Sampling period of each sensor is uniform and the integer multiple of the state update period. Moreover, different sensors have the different sampling rates and observations of sensors are subject to the stochastic uncertainties of multiplicative noises. At first, local filters at the observation sampling points are obtained based on the observations of each sensor. Further, local estimators at the state update points are obtained by predictions of local filters at the observation sampling points. They have the reduced computational cost and a good real-time property. Then, the cross-covariance matrices between any two local estimators are derived at the state update points. At last, using the matrix weighted optimal fusion estimation algorithm in the linear minimum variance sense, the distributed optimal fusion estimator is obtained based on the local estimators and the cross-covariance matrices. An example shows the effectiveness of the proposed algorithms.

  6. Neutronics analysis of minor actinides transmutation in a fusion-driven subcritical system

    International Nuclear Information System (INIS)

    Yang, Chao; Cao, Liangzhi; Wu, Hongchun; Zheng, Youqi; Zu, Tiejun

    2013-01-01

    Highlights: • A fusion fission hybrid system for MA transmutation is proposed. • The analysis of neutronics effects on the transmutation is performed. • The transmutation rate of MA reaches 86.5% by 25 times of recycling. -- Abstract: The minor actinides (MAs) transmutation in a fusion-driven subcritical system is analyzed in this paper. The subcritical reactor is driven by a tokamak D-T fusion device with relatively easily achieved plasma parameters and tokamak technologies. The MAs discharged from the light water reactor (LWR) are loaded in transmutation zone. Sodium is used as the coolant. The mass percentage of the reprocessed plutonium (Pu) in the fuel is raised from 0 to 48% and stepped by 12% to determine its effect on the MAs transmutation. The lesser the Pu is loaded, the larger the MAs transmutation rate is, but the smaller the energy multiplication factor is. The neutronics analysis of two loading patterns is performed and compared. The loading pattern where the mass percentage of Pu in two regions is 15% and 32.9% respectively is conducive to the improvement of the transmutation fraction within the limits of burn-up. The final transmutation fraction of MAs can reach 17.8% after five years of irradiation. The multiple recycling is investigated. The transmutation fraction of MAs can reach about 61.8% after six times of recycling, and goes up to about 86.5% after 25

  7. Effect of breakup on near barrier fusion

    International Nuclear Information System (INIS)

    Dasgupta, M.; Berriman, A.C.; Butt, R.D.; Hinde, D.J.; Morton, C.R.; Newton, J.O.

    2000-01-01

    Full text: Unstable neutron-rich nuclei having very weakly bound neutrons exhibit characteristic features such as a neutron halo extending to large radii, and a low energy threshold for breakup. These features may dramatically affect fusion and other reaction processes. It is well accepted that the extended nuclear matter distribution will lead to an enhancement in fusion cross-sections over those for tightly bound nuclei. The effect of couplings to channels which act as doorways to breakup is, however, controversial, with model predictions differing in the relative magnitudes of enhancement and suppression. To investigate the effect on fusion of couplings specific to unstable neutron-rich nuclei, it is necessary to understand (and then predict) the cross-sections expected for their stable counterparts. This requires knowledge of the energy of the average fusion barrier, and information on the couplings. Experimentally all this information can be obtained from precisely measured fusion cross-sections. Such precision measurements of complete fusion cross-sections for 9 Be + 208 Pb and 6 Li, 7 Li + 209 Bi systems have been done at the Australian National University. The distribution of fusion barriers extracted from these data were used to reliably predict the expected fusion cross-sections. Comparison of the theoretical expectations with the experimentally measured cross-sections show conclusively that complete fusion, at above barrier energies, for all three systems is suppressed (by about 30%) compared with the fusion of more tightly bound nuclei. These measurements, in conjunction with incomplete fusion cross-sections, which were also measured, should encourage a complete theoretical description of fusion and breakup

  8. Concerning the modelling of systems in terms of Quantum Electrodynamics: the special case of 'Cold Fusion'

    International Nuclear Information System (INIS)

    Abyaneh, Morteza; Fleischmann, Martin; Del Giudice, Emilio; Vitiello, Giuseppe

    2006-01-01

    A question we are asked repeatedly is: 'what are the causes of the opposition to your belief in the reality of 'Cold Fusion?'. This question is normally asked in the context of the statement that Quantum Mechanics shows that this phenomenon is impossible (a view that we share). Our answer is always based on the statement 'but what about the modelling of such systems in terms of QED?' which is always met by the insistence that Quantum Mechanics shows that Cold Fusion is impossible. We conclude that scientists do not understand QED or, if they have some understanding of this subject, then this must be subject to some major misconceptions. This pointless dialogue (perhaps more correctly described as two monologues conducted in parallel) and the insistence on the primacy of Quantum Mechanics in the modelling of systems in the Natural Sciences is unfortunate because it obscures the outcome of the investigations in the more normal fields of the Natural Sciences (more normal than Cold Fusion). A brief outline of the work which has led to the formulation of the concept of coherence will therefore be given under the aegis of the revolutions in our understanding of the Natural Sciences which has taken place since the latter part of the 19. Century. The main illustration of the way we can demonstrate the applicability of these concepts will be based on the study of nucleation and phase growth. The development of micro-electrode substrates allows us to study the statistics of the formation of the first nucleus; it will be shown that these statistics are strictly in line with concepts developed from QED coherence. We conclude that QED coherence is not just a concept to be confined to sub-atomic physics, cosmology etc. but that it pervades the modelling of the whole of the Natural Sciences including that of 'Cold Fusion'. Some of the major steps which have taken place in the development of this subject area will be illustrated

  9. Attenuation capability of low activation-modified high manganese austenitic stainless steel for fusion reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Eissa, M.M. [Steel Technology Department, Central Metallurgical Research and Development Institute (CMRDI), Helwan (Egypt); El-kameesy, S.U.; El-Fiki, S.A. [Physics Department, Faculty of Science, Ain Shams University, Cairo (Egypt); Ghali, S.N. [Steel Technology Department, Central Metallurgical Research and Development Institute (CMRDI), Helwan (Egypt); El Shazly, R.M. [Physics Department, Faculty of Science, Al-Azhar University, Cairo (Egypt); Saeed, Aly, E-mail: aly_8h@yahoo.com [Nuclear Power station Department, Faculty of Engineering, Egyptian-Russian University, Cairo (Egypt)

    2016-11-15

    Highlights: • Improvement stainless steel alloys to be used in fusion reactors. • Structural, mechanical, attenuation properties of investigated alloys were studied. • Good agreement between experimental and calculated results has been achieved. • The developed alloys could be considered as candidate materials for fusion reactors. - Abstract: Low nickel-high manganese austenitic stainless steel alloys, SSMn9Ni and SSMn10Ni, were developed to use as a shielding material in fusion reactor system. A standard austenitic stainless steel SS316L was prepared and studied as a reference sample. The microstructure properties of the present stainless steel alloys were investigated using Schaeffler diagram, optical microscopy, and X-ray diffraction pattern. Mainly, an austenite phase was observed for the prepared stainless steel alloys. Additionally, a small ferrite phase was observed in SS316L and SSMn10Ni samples. The mechanical properties of the prepared alloys were studied using Vickers hardness and tensile tests at room temperature. The studied manganese stainless steel alloys showed higher hardness, yield strength, and ultimate tensile strength than SS316L. On the other hand, the manganese stainless steel elongation had relatively lower values than the standard SS316L. The removal cross section for both slow and total slow (primary and those slowed down in sample) neutrons were carried out using {sup 241}Am-Be neutron source. Gamma ray attenuation parameters were carried out for different gamma ray energy lines which emitted from {sup 60}Co and {sup 232}Th radioactive sources. The developed manganese stainless steel alloys had a higher total slow removal cross section than SS316L. While the slow neutron and gamma rays were nearly the same for all studied stainless steel alloys. From the obtained results, the developed manganese stainless steel alloys could be considered as candidate materials for fusion reactor system with low activation based on the short life

  10. Magnetic fusion technology

    CERN Document Server

    Dolan, Thomas J

    2014-01-01

    Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: ? magnet systems, ? plasma heating systems, ? control systems, ? energy conversion systems, ? advanced materials development, ? vacuum systems, ? cryogenic systems, ? plasma diagnostics, ? safety systems, and ? power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.

  11. A coupled systems code-CFD MHD solver for fusion blanket design

    Energy Technology Data Exchange (ETDEWEB)

    Wolfendale, Michael J., E-mail: m.wolfendale11@imperial.ac.uk; Bluck, Michael J.

    2015-10-15

    Highlights: • A coupled systems code-CFD MHD solver for fusion blanket applications is proposed. • Development of a thermal hydraulic systems code with MHD capabilities is detailed. • A code coupling methodology based on the use of TCP socket communications is detailed. • Validation cases are briefly discussed for the systems code and coupled solver. - Abstract: The network of flow channels in a fusion blanket can be modelled using a 1D thermal hydraulic systems code. For more complex components such as junctions and manifolds, the simplifications employed in such codes can become invalid, requiring more detailed analyses. For magnetic confinement reactor blanket designs using a conducting fluid as coolant/breeder, the difficulties in flow modelling are particularly severe due to MHD effects. Blanket analysis is an ideal candidate for the application of a code coupling methodology, with a thermal hydraulic systems code modelling portions of the blanket amenable to 1D analysis, and CFD providing detail where necessary. A systems code, MHD-SYS, has been developed and validated against existing analyses. The code shows good agreement in the prediction of MHD pressure loss and the temperature profile in the fluid and wall regions of the blanket breeding zone. MHD-SYS has been coupled to an MHD solver developed in OpenFOAM and the coupled solver validated for test geometries in preparation for modelling blanket systems.

  12. Design characteristics of the Sludge Mobilization System

    International Nuclear Information System (INIS)

    McMahon, C.L.

    1990-01-01

    Radioactive waste stored in underground tanks at the West Valley Demonstration Project is being processed into low-level waste and solidified in cement. High-level waste also stored underground will be vitrified and solidified into canistered glass logs. To move the waste from where it resides at the Waste Tank Farm to the Vitrification Facility requires equipment to prepare the storage tanks for low-level and high-level waste processing, equipment to mobilize and mix the radioactive sludge into a homogeneous slurry, and equipment to transfer the slurry for vitrification. The design of the Sludge Mobilization System has incorporated the necessary components to effect the preparation and transfer of waste in five operational phases. The first phase of the Sludge Mobilization System, which began in 1987, prepared the waste tanks to process radioactive liquid for delivery to the Cement Solidification System and to support the mobilization equipment. The second phase, beginning in 1991, will wash the sludge that remains after the liquid supernatant is decanted to prepare it for mobilization operations. The third phase will combine the contents of various waste tanks into one tank. The fourth phase will resuspend and mix the contents of the high-level waste tank. The fifth and final phase of the Sludge Mobilization System will entail transferring the waste mixture to the Vitrification Facility for processing into glass logs. Provisions for recycling the waste streams or slurries within the tank farm or for returning process streams to the Waste Tank Farm from the Vitrification Facility are also included in the final phase. This document addresses the Sludge Mobilization System equipment design characteristics in terms of its use in each of the five operational phases listed above

  13. Tools and methods for implementing the control systems on the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Minor, E.G.; Labiak, W.G.

    1981-01-01

    Installation of the major hardware subsystems for MFTF is nearing completion. These subsystems include the Fusion Chamber System, the eighty KV Neutral Beam System, the Superconducting Magnet System, and the Personnel Safety System. The Local Controls group has undertaken a uniform aproach to implementing the control systems for all of these hardware subsystems. This approach has two major aspects: (1) to provide a stand-alone computer control system with a remote, portable terminal so that computer control can be provided at the site of the hardware for initial testing, (2) to provide hardware simulators so that the complicated MFTF computer control system can be tested independent of the hardware. The software and hardware tools which were developed to carry out this plan will be described. Our experiences with bringing up subsystems containing up to 900 separate channels of control and status will also be described

  14. Energy system for the generation of divertor magnetic fields in the PDX fusion research device

    International Nuclear Information System (INIS)

    Turitzin, N.M.

    1975-01-01

    One of the major problems encountered in the development of Tokamak type fusion reactors is the presence of impurities in the plasma. The PDX device is designed to study the operation of poloidal magnetic field divertors and consequent magnetic limiters for controlling and reducing the amount of impurities. A system of coils placed at specific locations produces a required field configuration for the poloidal divertor. This paper describes the system of energy supplies required and the interrelations of field coil currents during plasma current initiation, growth and steady state

  15. Distributed intelligence in a LAN architecture increases the flexibility in control systems for fusion experiments

    International Nuclear Information System (INIS)

    Tenten, W.; Fuss, L.; Hoge, W.

    1987-01-01

    The control system for the TEXTOR Neutral Beam Injectors is designed implementing approved concepts and techniques. A powerful super mini computer serves as a central node between the operators console and the experimental process. Devices form a console for suitable man machine interaction. The link to the process is mainly based on communication with a network of industry standard programmable controllers. A distinction is made between the functionally dedicated and in most cases locally distributed logic controllers, a central controller and the computerized console level. Introduction of such networks in control system for fusion experiments results in a number of advantages

  16. A design study of superconducting energy storage system for a tokamak fusion reactor

    International Nuclear Information System (INIS)

    Ueda, Kazuo

    1979-01-01

    A design study of a superconducting inductive energy storage system (SC-IES) has been carried out in commission with JAERI. The SC-IES is to be applied to the power supply system for a tokamak experimental fusion reactor. The study was initiated with the definition of the requirement for the SC-IES and selection of the coil shape. The design of the coil and the cryostat has been followed. The design parameters are: stored energy 10 GJ, B max 8 T, conductor Nb-Ti, overall size 18 m (diameter) x 10 m (height). Technical problems and usefullness of SC-IES are discussed also. (author)

  17. Energy system for the generation of divertor magnetic fields in the PDX fusion research device

    International Nuclear Information System (INIS)

    Turitzin, N.M.

    1976-05-01

    One of the major problems encountered in the development of Tokamak type fusion reactors is the presence of impurities in the plasma. The PDX device is designed to study the operation of poloidal magnetic field divertors and consequent magnetic limiters for controlling and reducing the amount of impurities. A system of coils placed at specific locations produces a required field configuration for the poloidal divertor. This paper describes the system of energy supplies required and the interrelations of field coil currents during plasma current initiation, growth and steady state

  18. Fiber optic transmission system delivered to Fusion Research Center of Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Hayashida, Mutsuo; Hiramoto, Kiyoshi; Yamazaki, Kunihiro

    1983-01-01

    In general there are many electromagnetically induced noises in the premises of factories, power plants and substations. Under such electrically bad environments, for the computer data transmission that needs high speed processing and high reliability, the optical fiber cable is superion to the coaxial cable or the flat-type cable in aspects of the inductionlessness and a wide bandwidth. Showa Electric Wire and Cable Co., Ltd. has delivered and installed a computer data transmission system consisting of optical modems and optical fiber cables for connecting every experiment building in the premises of Fusion Research Center of Japan Atomic Energy Research Institute. This paper describes the outline of this system. (author)

  19. System and method for generating steady state confining current for a toroidal plasma fusion reactor

    International Nuclear Information System (INIS)

    Fisch, N.J.

    1981-01-01

    A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave rf energy is injected into said plasma to establish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected rf energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected rf energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range delta . The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width delta in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated in the plasma

  20. System and method for generating steady state confining current for a toroidal plasma fusion reactor

    International Nuclear Information System (INIS)

    Bers, A.

    1981-01-01

    A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave rf energy is injected into said plasma to estalish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected rf energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected rf energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range delta . The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width delta in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated inthe plasma