WorldWideScience

Sample records for fusion system designed

  1. Systems-design and energy-balance considerations for impact fusion

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Miller, R.L.

    1979-01-01

    Areas of concern and potential problems for impact fusion are qualitatively considered within an overall systems context. A parametric and qualitative description of the general energy balance and systems considerations for an Impact Fusion Reactor (IFR) design is discussed. Reactor systems design considerations for an IFR are presented. An attempt to assess the IFR viability is made based on highly simplified but limiting projectile-target energy balances and thermonuclear burn models

  2. An Approach to Automated Fusion System Design and Adaptation

    Directory of Open Access Journals (Sweden)

    Alexander Fritze

    2017-03-01

    Full Text Available Industrial applications are in transition towards modular and flexible architectures that are capable of self-configuration and -optimisation. This is due to the demand of mass customisation and the increasing complexity of industrial systems. The conversion to modular systems is related to challenges in all disciplines. Consequently, diverse tasks such as information processing, extensive networking, or system monitoring using sensor and information fusion systems need to be reconsidered. The focus of this contribution is on distributed sensor and information fusion systems for system monitoring, which must reflect the increasing flexibility of fusion systems. This contribution thus proposes an approach, which relies on a network of self-descriptive intelligent sensor nodes, for the automatic design and update of sensor and information fusion systems. This article encompasses the fusion system configuration and adaptation as well as communication aspects. Manual interaction with the flexibly changing system is reduced to a minimum.

  3. An Approach to Automated Fusion System Design and Adaptation.

    Science.gov (United States)

    Fritze, Alexander; Mönks, Uwe; Holst, Christoph-Alexander; Lohweg, Volker

    2017-03-16

    Industrial applications are in transition towards modular and flexible architectures that are capable of self-configuration and -optimisation. This is due to the demand of mass customisation and the increasing complexity of industrial systems. The conversion to modular systems is related to challenges in all disciplines. Consequently, diverse tasks such as information processing, extensive networking, or system monitoring using sensor and information fusion systems need to be reconsidered. The focus of this contribution is on distributed sensor and information fusion systems for system monitoring, which must reflect the increasing flexibility of fusion systems. This contribution thus proposes an approach, which relies on a network of self-descriptive intelligent sensor nodes, for the automatic design and update of sensor and information fusion systems. This article encompasses the fusion system configuration and adaptation as well as communication aspects. Manual interaction with the flexibly changing system is reduced to a minimum.

  4. Design system for in-vessel mainipulator of fusion reactor 'DESIM'

    International Nuclear Information System (INIS)

    Adachi, Junihci; Kobayashi, Takeshi; Ise, Hideo; Sato, Keisuke; Matsuda, Hirotsugu

    1989-01-01

    A computer aided design system 'DESIM' for the in-vessel manipulators of nuclear fusion reactors has been developed to design the manipulators efficiently. The DESIM consists of the following subsystems: (1) the design system for arm mechanisms to realize optimum manipulation performance in the specified workspace; (2) the robot simulator to study manipulator movement, postures and interference problems; (3) the CAD system which is used to define the structure object data for robots, and the interface system for the data conversion from the CAD system to the robot simulator. The DESIM has been used to design the in-vessel manipulator for the Fusion Experimental Reactor (FER) to confirm the effectiveness. (author)

  5. Conceptual design of the fusion-driven subcritical system FDS-I

    International Nuclear Information System (INIS)

    Wu, Y.; Zheng, S.; Zhu, X.; Wang, W.; Wang, H.; Liu, S.; Bai, Y.; Chen, H.; Hu, L.; Chen, M.; Huang, Q.; Huang, D.; Zhang, S.; Li, J.; Chu, D.; Jiang, J.; Song, Y.

    2006-01-01

    The fusion-driven subcritical system (named FDS-I) was previously proposed as an intermediate step toward the final application of fusion energy. A conceptual design of the FDS-I is presented, which consists of the fusion neutron driver with relatively easy-achieved plasma parameters, and the He-gas/liquid lithium-lead Dual-cooled subcritical Waste Transmutation (DWT) blanket used to transmute long-lived radioactive wastes and to generate energy on the basis of self-sustainable fission and fusion fuel cycle. An overview of the FDS-I is given and the specifications of the design analysis are summarized

  6. Fusion reactor design studies

    International Nuclear Information System (INIS)

    Emmert, G.A.; Kulcinski, G.L.; Santarius, J.F.

    1990-01-01

    This report discusses the following topics on the ARIES tokamak: systems; plasma power balance; impurity control and fusion ash removal; fusion product ripple loss; energy conversion; reactor fueling; first wall design; shield design; reactor safety; and fuel cost and resources

  7. Tritium system design studies of fusion experimental breeder

    International Nuclear Information System (INIS)

    Deng Baiquan; Huang Jinhua

    2003-01-01

    A summary of the tritium system design studies for the engineering outline design of a fusion experimental breeder (FEB-E) is presented. This paper is divided into three sections. In first section, the geometry, loading features and tritium concentrations in liquid lithium of tritium breeding zones of blanket are described. The tritium flow chart corresponding to the tritium fuel cycle system has been constructed, and the inventories in ten subsystems are calculated using SWITRIM code in section 2. Results show that the necessary initial tritium storage to start up FEB-E with fusion power of 143 MW is about 319 g. In final section, the tritium leakage issues under different operation circumstances have been analyzed. It was found that the potential danger of tritium leakage could be resulted from the exhausted gas of the diverter system. It is important to elevate the tritium burnup fraction and reduce the tritium throughput. (authors)

  8. US-DOE Fusion-Breeder Program: blanket design and system performance

    International Nuclear Information System (INIS)

    Lee, J.D.

    1983-01-01

    Conceptual design studies are being used to assess the technical and economic feasibility of fusion's potential to produce fissile fuel. A reference design of a fission-suppressed blanket using conventional materials is under development. Theoretically, a fusion breeder that incorporates this fusion-suppressed blanket surrounding a 3000-MW tandem mirror fusion core produces its own tritium plus 5600 kg of 233 U per year. The 233 U could then provide fissile makeup for 21 GWe of light-water reactor (LWR) power using a denatured thorium fuel cycle with full recycle. This is 16 times the net electric power produced by the fusion breeder (1.3 GWe). The cost of electricity from this fusion-fission system is estimated to be only 23% higher than the cost from LWRs that have makeup from U 3 O 8 at present costs (55 $/kg). Nuclear performance, magnetohydrodynamics (MHD), radiation effects, and other issues concerning the fission-suppressed blanket are summarized, as are some of the present and future objectives of the fusion breeder program

  9. Design study of electrical power supply system for tokamak fusion power reactor

    International Nuclear Information System (INIS)

    1977-01-01

    Design study of the electrical power supply system for a 2000MWt Tokamak-type fusion reactor has been carried out. The purposes are to reveal and study problems in the system, leading to a plan of the research and development. Performed were study of the electrical power supply system and design of superconducting inductive energy storages and power switches. In study of the system, specification and capability of various power supplies for the fusion power reactor and design of the total system with its components were investigated. For the superconducting inductive energy storages, material choice, design calculation, and structural design were conducted, giving the size, weight and performance. For thyristor switches, circuit design in the parallel / series connection of element valves and cooling design were studied, providing the size and weight. (auth.)

  10. Design of a fusion reaction-history measurement system with high temporal resolution

    International Nuclear Information System (INIS)

    Peng Xiaoshi; Wang Feng; Liu Shenye; Jiang Xiaohua; Tang Qi

    2010-01-01

    In order to accurately measure the history of fusion reaction for experimental study of inertial confinement fusion, we advance the design of a fusion reaction-history measurement system with high temporal resolution. The diagnostic system is composed of plastic scintillator and nose cone, an optical imaging system and the system of optic streak camera. Analyzing the capability of the system indicated that the instrument measured fusion reaction history at temporal resolution as low as 55ps and 40ps correspond to 2.45MeV DD neutrons and 14.03MeV DT neutrons. The instrument is able to measure the fusion reaction history at yields 1.5 x 10 9 DD neutrons, about 4 x 10 8 DT neutrons are required for a similar quality signal. (authors)

  11. An FPGA-based heterogeneous image fusion system design method

    Science.gov (United States)

    Song, Le; Lin, Yu-chi; Chen, Yan-hua; Zhao, Mei-rong

    2011-08-01

    Taking the advantages of FPGA's low cost and compact structure, an FPGA-based heterogeneous image fusion platform is established in this study. Altera's Cyclone IV series FPGA is adopted as the core processor of the platform, and the visible light CCD camera and infrared thermal imager are used as the image-capturing device in order to obtain dualchannel heterogeneous video images. Tailor-made image fusion algorithms such as gray-scale weighted averaging, maximum selection and minimum selection methods are analyzed and compared. VHDL language and the synchronous design method are utilized to perform a reliable RTL-level description. Altera's Quartus II 9.0 software is applied to simulate and implement the algorithm modules. The contrast experiments of various fusion algorithms show that, preferably image quality of the heterogeneous image fusion can be obtained on top of the proposed system. The applied range of the different fusion algorithms is also discussed.

  12. Introduction of fusion driven subcritical system plasma design

    International Nuclear Information System (INIS)

    Bin Wu

    2003-01-01

    Fusion driven subcritical nuclear system (FDS) is a multifunctional hybrid reactor, which could breed nuclear fuel, transmute long-lived wastes, producing tritium and so on. This paper presents an introduction of FDS plasma design. Several different advance equilibrium configurations have been proposed and a 1.5-D discharge simulation of FDS was also present

  13. Systems approach for condition management design: JET neutral beam system-A fusion case study

    Energy Technology Data Exchange (ETDEWEB)

    Khella, M., E-mail: M.Khella@lboro.ac.uk [Systems Engineering Innovation Centre (SEIC) - BAE Systems, Loughborough University, Holywell Park, Leicestershire LE11 3TU (United Kingdom); Pearson, J. [Systems Engineering Innovation Centre (SEIC) - BAE Systems, Loughborough University, Holywell Park, Leicestershire LE11 3TU (United Kingdom); Dixon, R. [Electronic and Electrical Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Ciric, D.; Day, I.; King, R.; Milnes, J.; Stafford-Allen, R. [EURATOM/CCFE Fusion Association, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom)

    2011-10-15

    The maturation of any new technology can be coarsely divided into three stages of a development lifecycle: (1) fundamental research, (2) experimental rig development and testing through to (3) commercialization. With the enhancement of machines like JET, the building of ITER and the initiation of DEMO design activities, the fusion community is moving from stages 1 and 2 towards stage 3. One of the consequences of this transition will be a shift in emphasis from scientific achievement to maximizing machine reliability and availability. The fusion community should therefore be preparing itself for this shift by examining all methods and tools utilized in established engineering sectors that might help to improve these fundamental performance parameters. To this end, the Culham Centre for Fusion Energy (CCFE) has proactively engaged with UK industry to examine whether the development of condition management (CM) systems could help improve such performance parameters. This paper describes an initial CM design case study on the JET neutral beam system. The primary output of this study was the development of a CM design methodology that captures existing experience in fault detection, and classification as well as new methods for fault diagnosis. A summary of the methods used and the potential benefits of data fusion are presented here.

  14. Fusion systems engineering

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Research during this report period has covered the following areas: (1) fusion reactor systems studies, (2) development of blanket processing technology for fusion reactors, (3) safety studies of fusion concepts, (4) MACKLIB-IV, a new library of nuclear response functions, (5) energy storage and power supply requirements for commercial fusion reactors, (6) blanket/shield design evaluation for commercial fusion reactors, and (7) cross section measurements, evaluations, and techniques

  15. Conceptual design report for a Fusion Engineering Device sector-handling machine and movable manipulator system

    International Nuclear Information System (INIS)

    Watts, K.D.; Masson, L.S.; McPherson, R.S.

    1982-10-01

    Design requirements, trade studies, design descriptions, conceptual designs, and cost estimates have been completed for the Fusion Engineering Device sector handling machine, movable manipulator system, subcomponent handling machine, and limiter blade handling machine. This information will be used by the Fusion Engineering Design Center to begin to determine the cost and magnitude of the effort required to perform remote maintenance on the Fusion Engineering Device. The designs presented are by no means optimum, and the costs estimates are rough-order-of-magnitude

  16. Conceptual Design of Low Fusion Power Hybrid System for Waste Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Hee; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2016-10-15

    DRUP (Direct Reuse of Used PWR) fuel has same process with DUPIC (Direct Use of spent PWR fuel Into CANDU reactor). There are 2 big benefits by using DRUP fuel in Hybrid system. One is fissile production during operating period. Required power is decreased by fissile production from DRUP fuel. When the fusion power is reduced, integrity of structure materials is not significantly weakened due to reduction of 14.1MeV high energy neutrons. In addition, required amount of tritium for self-sufficiency TBR (Tritium Breeding Ratio ≥ 1.1) is decreased. Therefore, it is possible to further loading the SNF as much as the amount of lithium decreased. It is effective in transmutation. The other one is that DRUP fuel is also SNF. Therefore, using DRUP fuel is reusing of SNF, as a result it makes reduction of SNF from PWR. However, thermal neutron system is suitable for using DRUP fuel compared to fast neutron system. Therefore, transmutation zone designed (U-TRU)Zr fuel and fissile production zone designed DRUP fuel are separated in this study. In this paper, using DRUP fuel for low fusion power in hybrid system is suggested. Fusion power is decreased by using DRUP fuel. As a result, TBR is satisfied design condition despite of using natural lithium. In addition, not only (U-TRU)Zr fuel but also DRUP fuel are transmuted.

  17. Design study of laser fusion rocket

    International Nuclear Information System (INIS)

    Nakashima, Hideki; Shoyama, Hidetoshi; Kanda, Yukinori

    1991-01-01

    A design study was made on a rocket powered by laser fusion. Dependence of its flight performance on target gain, driver repetition rate and fuel composition was analyzed to obtain optimal design parameters of the laser fusion rocket. The results indicate that the laser fusion rocket fueled with DT or D 3 He has the potential advantages over other propulsion systems such as fission rocket for interplanetary travel. (author)

  18. Application of Recommended Design Practices for Conceptual Nuclear Fusion Space Propulsion Systems

    Science.gov (United States)

    Williams, Craig H.

    2004-01-01

    An AIAA Special Project Report was recently produced by AIAA's Nuclear and Future Flight Propulsion Technical Committee and is currently in peer review. The Report provides recommended design practices for conceptual engineering studies of nuclear fusion space propulsion systems. Discussion and recommendations are made on key topics including design reference missions, degree of technological extrapolation and concomitant risk, thoroughness in calculating mass properties (nominal mass properties, weight-growth contingency and propellant margins, and specific impulse), and thoroughness in calculating power generation and usage (power-flow, power contingencies, specific power). The report represents a general consensus of the nuclear fusion space propulsion system conceptual design community and proposes 15 recommendations. This paper expands on the Report by providing specific examples illustrating how to apply each of the recommendations.

  19. Conceptual design of laser fusion reactor, SENRI-I - 1. concept and system design

    International Nuclear Information System (INIS)

    Ido, S.; Naki, S.; Norimatsu, T.

    1981-01-01

    Design features of a laser fusion reactor concept SENRI-I and new concepts are reviewed and discussed. The unique feature is the utilization of a magnetic field to guide and control the inner liquid Li flow. Basic requirements and typical parameters used in the design are presented. Items to be discussed are constitution of the system, performance of liquid Li flow, neutronics, thermo-electric cycle, fuel cycle and new concepts

  20. Muon-catalyzed fusion experiment target and detector system. Preliminary design report

    International Nuclear Information System (INIS)

    Jones, S.E.; Watts, K.D.; Caffrey, A.J.; Walter, J.B.

    1982-03-01

    We present detailed plans for the target and particle detector systems for the muon-catalyzed fusion experiment. Requirements imposed on the target vessel by experimental conditions and safety considerations are delineated. Preliminary designs for the target vessel capsule and secondary containment vessel have been developed which meet these requirements. In addition, the particle detection system is outlined, including associated fast electronics and on-line data acquisition. Computer programs developed to study the target and detector system designs are described

  1. Advances in laser solenoid fusion reactor design

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Quimby, D.C.

    1978-01-01

    The laser solenoid is an alternate fusion concept based on a laser-heated magnetically-confined plasma column. The reactor concept has evolved in several systems studies over the last five years. We describe recent advances in the plasma physics and technology of laser-plasma coupling. The technology advances include progress on first walls, inner magnet design, confinement module design, and reactor maintenance. We also describe a new generation of laser solenoid fusion and fusion-fission reactor designs

  2. SOLASE: a conceptual laser fusion reactor design

    International Nuclear Information System (INIS)

    Conn, R.W.; Abdel-Khalik, S.I.; Moses, G.A.

    1977-12-01

    The SOLASE conceptual laser fusion reactor has been designed to elucidate the technological problems posed by inertial confinement fusion reactors. This report contains a detailed description of all aspects of the study including the physics of pellet implosion and burn, optics and target illumination, last mirror design, laser system analysis, cavity design, pellet fabrication and delivery, vacuum system requirements, blanket design, thermal hydraulics, tritium analysis, neutronics calculations, radiation effects, stress analysis, shield design, reactor and plant building layout, maintenance procedures, and power cycle design. The reactor is designed as a 1000 MW/sub e/ unit for central station electric power generation

  3. SOLASE: a conceptual laser fusion reactor design

    International Nuclear Information System (INIS)

    Conn, R.W.; Abdel-Khalik, S.I.; Moses, G.A.

    1977-12-01

    The SOLASE conceptual laser fusion reactor has been designed to elucidate the technological problems posed by inertial confinement fusion ractors. This report contains a detailed description of all aspects of the study including the physics of pellet implosion and burn, optics and target illumination, last mirror design, laser system analysis, cavity design, pellet fabrication and delivery, vacuum system requirements, blanket design, thermal hydraulics, tritium analysis, neutronics calculations, radiation effects, stress analysis, shield design, reactor and plant building layout, maintenance procedures, and power cycle design. The reactor is designed as a 1000 MW/sub e/ unit for central station electric power generation

  4. Laser Intertial Fusion Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Kevin James [Univ. of California, Berkeley, CA (United States)

    2010-04-08

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 μm of tungsten to mitigate x-ray damage. The first wall is cooled by Li17Pb83 eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li17Pb83 flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li17Pb83, separated from the Li17Pb83 by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF2), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles

  5. Introduction to magnetic fusion reactor design

    International Nuclear Information System (INIS)

    Watanabe, Kenji

    1988-01-01

    Trend of the tokamak reactor design works so far carried out is reviewed, and method of conceptual design for commercial fusion reactor is critically considered concerning the black-box conpepts. System-framework of the engineering of magnetic fusion (commercial) reactor design is proposed as four steps. Based on it the next design studies are recommended in parallel approaches for making real-overcome of reactor material problem, from the view point of technological realization and not from the economical one. Real trials are involved. (author)

  6. Fusion Engineering Device. Volume II. Design description

    International Nuclear Information System (INIS)

    1981-10-01

    This volume summarizes the design of the FED. It includes a description of the major systems and subsystems, the supporting plasma design analysis, a projected device cost and associated construction schedule, and a description of the facilities to house and support the device. This effort represents the culmination of the FY81 studies conducted at the Fusion Engineering Design Center (FEDC). Unique in these design activities has been the collaborative involvement of the Design Center personnel and numerous resource physicists from the fusion community who have made significant contributions in the physics design analysis as well as the physics support of the engineering design of the major FED systems and components

  7. Conceptual design of inertial confinement fusion power plant

    International Nuclear Information System (INIS)

    Mima, Kunioki; Yamanaka, Tatsuhiko; Nakai, Sadao

    1994-01-01

    Presented is the status of the conceptual design studies of inertial confinement fusion reactors. The recent achievements of the laser fusion research enable us to refine the conceptual design of the power plant. In the paper, main features of several new conceptual designs of ICF reactor; KOYO, SIRIUS-P, HYLIFE-II and so on are summarized. In particular, the target design and the reactor chamber design are described. Finally, the overview of the laser fusion reactor and the irradiation system is also described. (author)

  8. Tritium systems for the TITAN reversed-field pinch fusion reactor design

    International Nuclear Information System (INIS)

    Martin, R.C.; Sze, D.K.; Bartlit, J.R.; Gierszewski, P.J.

    1987-01-01

    Tritium systems for the TITAN reversed-field pinch (RFP) fusion reactor study have been designed for two blanket concepts. The TITAN-1 design uses a self-cooled liquid-lithium blanket. The TITAN-2 design uses a self-cooled aqueous-solution blanket, with lithium nitrate dissolved in the water for tritium breeding. Tritium inventory, release, and safety margins are within regulatory limits, at acceptable costs. Major issues for TITAN-1 are plasma-driven permeation, the need for a secondary coolant loop, tritium storage requirements, redundancy in the plasma exhaust system, and minimal isotopic distillation of the exhaust. TITAN-1 fuel cleanup, reprocessing, and air detritiation systems are described in detail

  9. Conceptual design of neutron diagnostic systems for fusion experimental reactor

    International Nuclear Information System (INIS)

    Iguchi, T.; Kaneko, J.; Nakazawa, M.

    1994-01-01

    Neutron measurement in fusion experimental reactors is very important for burning plasma diagnostics and control, monitoring of irradiation effects on device components, neutron source characterization for in-situ engineering tests, etc. A conceptual design of neutron diagnostic systems for an ITER-like fusion experimental reactor has been made, which consists of a neutron yield monitor, a neutron emission profile monitor and a 14-MeV spectrometer. Each of them is based on a unique idea to meet the required performances for full power conditions assumed at ITER operation. Micro-fission chambers of 235 U (and 238 U) placed at several poloidal angles near the first wall are adopted as a promising neutron yield monitor. A collimated long counter system using a 235 U fission chamber and graphite neutron moderators is also proposed to improve the calibration accuracy of absolute neutron yield determination

  10. Conceptual design of light ion beam inertia nuclear fusion reactors

    International Nuclear Information System (INIS)

    1983-07-01

    Light ion beam, inertia nuclear fusion system drew attention recently as one of the nuclear fusion systems for power reactors in the history of the research on nuclear fusion. Its beginning seemed to be the judgement that the implosion of fusion fuel pellets with light ions can be realized with the light ions which can be obtained in view of accelerator techniques. Of course, in order to generate practically usable nuclear fusion reaction by this system and maintain it, many technical difficulties must be overcome. This research was carried out for the purpose of discovering such technical problems and searching for their solution. At the time of doing the works, the following policy was adopted. Though their is the difference of fine and rough, the design of a whole reactor system is performed conformably. In order to make comparison with other reactor types and nuclear fusion systems, the design is carried out as the power plant of about one million kWe output. As the extent of the design, the works at conceptual design stage are performed to present the concept of design which satisfies the required function. Basically, the design is made from conservative standpoint. This research of design was started in 1981, and in fiscal 1982, the mutual adjustment among the design of respective parts was performed on the basis of the results in 1981, and the possible revision and new proposal were investigated. (Kako, I.)

  11. Applying design principles to fusion reactor configurations for propulsion in space

    International Nuclear Information System (INIS)

    Carpenter, S.A.; Deveny, M.E.; Schulze, N.R.

    1993-01-01

    The application of fusion power to space propulsion requires rethinking the engineering-design solution to controlled-fusion energy. Whereas the unit cost of electricity (COE) drives the engineering-design solution for utility-based fusion reactor configurations; initial mass to low earth orbit (IMLEO), specific jet power (kW(thrust)/kg(engine)), and reusability drive the engineering-design solution for successful application of fusion power to space propulsion. Three design principles (DP's) were applied to adapt and optimize three candidate-terrestrial-fusion-reactor configurations for propulsion in space. The three design principles are: provide maximum direct access to space for waste radiation, operate components as passive radiators to minimize cooling-system mass, and optimize the plasma fuel, fuel mix, and temperature for best specific jet power. The three candidate terrestrial fusion reactor configurations are: the thermal barrier tandem mirror (TBTM), field reversed mirror (FRM), and levitated dipole field (LDF). The resulting three candidate space fusion propulsion systems have their IMLEO minimized and their specific jet power and reusability maximized. A preliminary rating of these configurations was performed, and it was concluded that the leading engineering-design solution to space fusion propulsion is a modified TBTM that we call the Mirror Fusion Propulsion System (MFPS)

  12. Neutronics issues in fusion-fission hybrid reactor design

    International Nuclear Information System (INIS)

    Liu Chengan

    1995-01-01

    The coupled neutron and γ-ray transport equations and nuclear number density equations, and its computer program systems concerned in fusion-fission hybrid reactor design are briefly described. The current status and focal point for coming work of nuclear data used in fusion reactor design are explained

  13. Integrated Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    International Nuclear Information System (INIS)

    Latkowski, J.F.; Kramer, K.J.; Abbott, R.P.; Morris, K.R.; DeMuth, J.; Divol, L.; El-Dasher, B.; Lafuente, A.; Loosmore, G.; Reyes, S.; Moses, G.A.; Fratoni, M.; Flowers, D.; Aceves, S.; Rhodes, M.; Kane, J.; Scott, H.; Kramer, R.; Pantano, C.; Scullard, C.; Sawicki, R.; Wilks, S.; Mehl, M.

    2010-01-01

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. A key component of a LIFE engine is the fusion chamber subsystem. The present work details the chamber design for the pure fusion option. The fusion chamber consists of the first wall and blanket. This integrated system must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated LIFE design that meets all of these requirements is described herein.

  14. Integrated Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    Energy Technology Data Exchange (ETDEWEB)

    Latkowski, J F; Kramer, K J; Abbott, R P; Morris, K R; DeMuth, J; Divol, L; El-Dasher, B; Lafuente, A; Loosmore, G; Reyes, S; Moses, G A; Fratoni, M; Flowers, D; Aceves, S; Rhodes, M; Kane, J; Scott, H; Kramer, R; Pantano, C; Scullard, C; Sawicki, R; Wilks, S; Mehl, M

    2010-12-07

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. A key component of a LIFE engine is the fusion chamber subsystem. The present work details the chamber design for the pure fusion option. The fusion chamber consists of the first wall and blanket. This integrated system must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated LIFE design that meets all of these requirements is described herein.

  15. Fusion Engineering Device design description

    International Nuclear Information System (INIS)

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein

  16. Fusion engineering device design description

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein.

  17. Fusion engineering device design description

    International Nuclear Information System (INIS)

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein

  18. Conceptual design study of Fusion Experimental Reactor (FY87FER)

    International Nuclear Information System (INIS)

    1988-05-01

    The design study of Fusion Experimental Reactor(FER) which has been proposed to be the next step fusion device has been conducted by JAERI Reactor System Laboratory since 1982 and by FER design team since 1984. This is the final report of the FER design team program and describes the results obtained in FY1987 (partially in FY1986) activities. The contents of this report consist of the reference design which is based on the guideline in FY1986 by the Subcomitees set up in Nuclear Fusion Council of Atomic Energy Commission of Japan, the Low-Physics-Risk reactor design for achieving physics mission more reliably and the system study of FER design candidates including above two designs. (author)

  19. Web-Enabled ATR/Fusion Development System

    National Research Council Canada - National Science Library

    Ruda, Harald

    2001-01-01

    .... We have designed a Web-Enabled ATR/Fusion Development System (WEADS) that will allow distributed development and execution of AIR and fusion algorithms using currently available infrastructures...

  20. Preliminary design of fusion reactor fuel cleanup system by palladium alloy membrane method

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Konishi, Satoshi; Naruse, Yuji

    1981-10-01

    A design of palladium diffuser and Fuel Cleanup System (FCU) for D-T fusion reactor is proposed. Feasibility of palladium alloy membrane method is discussed based on the early studies by the authors. Operating conditions of the palladium diffuser are determined experimentally. Dimensions of the diffuser are estimated from computer simulation. FCU system is designed under the feed conditions of Tritium Systems Test Assembly (TSTA) at Los Alamos Scientific Laboratory. The system is composed of Pd-diffusers, catalytic oxidizer, freezer and zink beds, and has some advantages in system layout and operation. This design can readily be extended to other conditions of plasma exhaust gases. (author)

  1. Mirror Fusion Test Facility magnet system

    International Nuclear Information System (INIS)

    VanSant, J.H.; Kozman, T.A.; Bulmer, R.H.; Ng, D.S.

    1981-01-01

    In 1979, R.H. Bulmer of Lawrence Livermore National Laboratory (LLNL) discussed a proposed tandem-mirror magnet system for the Mirror Fusion Test Facility (MFTF) at the 8th symposium on Engineering Problems in Fusion Research. Since then, Congress has voted funds for expanding LLNL's MFTF to a tandem-mirror facility (designated MFTF-B). The new facility, scheduled for completion by 1985, will seek to achieve two goals: (1) Energy break-even capability (Q or the ratio of fusion energy to plasma heating energy = 1) of mirror fusion, (2) Engineering feasibility of reactor-scale machines. Briefly stated, 22 superconducting magnets contained in a 11-m-diam by 65-m-long vacuum vessel will confine a fusion plasma fueled by 80 axial streaming-plasma guns and over 40 radial neutral beams. We have already completed a preliminary design of this magnet system

  2. Laser solenoid fusion--fission design

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Taussig, R.T.

    1976-01-01

    The dependence of breeding performance on system engineering parameters is examined for laser solenoid fusion-fission reactors. Reactor performance is found to be relatively insensitive to most of the engineering parameters, and compact designs can be built based on reasonable technologies. Point designs are described for the prototype series of reactors (mid-term technologies) and for second generation systems (advanced technologies). It is concluded that the laser solenoid has a good probability of timely application to fuel breeding needs

  3. First preliminary design of an experimental fusion reactor

    International Nuclear Information System (INIS)

    1977-09-01

    A preliminary design of a tokamak experimental fusion reactor to be built in the near future is under way. The goals of the reactor are to achieve reactor-level plasma conditions for a sufficiently long operation period and to obtain design, construction and operational experience for the main components of full-scale power reactors. This design covers overall reactor system including plasma characteristics, reactor structure, blanket neutronics, shielding, superconducting magnets, neutral beam injector, electric power supply system, fuel circulating system, reactor cooling system, tritium recovery system and maintenance scheme. The main design parameters are as follows: the reactor fusion power 100 MW, torus radius 6.75 m, plasma radius 1.5 m, first wall radius 1.75 m, toroidal magnet field on axis 6 T, blanket fertile material Li 2 O, coolant He, structural material 316SS and tritium breeding ratio 0.9. (auth.)

  4. Cooling System Design Options for a Fusion Reactor

    Science.gov (United States)

    Natalizio, Antonio; Collén, Jan; Vieider, Gottfried

    1997-06-01

    The objective of a fusion power reactor is to produce electricity safely and reliably. Accordingly, the design, objective of the heat transport system is to optimize power production, safety, and reliability. Such an optimization process, however, is constrained by many factors, including, among others: public safety, worker safety, steam cycle efficiency, reliability, and cost. As these factors impose conflicting requirements, there is a need to find an optimum design solution, i.e., one that satisfies all requirements, but not necessarily each requirement optimally. The SEAFP reactor study developed helium-cooled and water-cooled models for assessment purposes. Among other things, the current study demonstrates that neither model offers an optimum solution. Helium cooling offers a high steam cycle efficiency but poor reliability for the cooling of high heat flux components (divertor and first wall). Alternatively, water cooling offers a low steam cycle efficiency, but reasonable reliability for the cooling of such components. It is concluded that an optimum solution includes helium cooling of low heat flux components and water cooling of high heat flux components. Relative to the SEAFP helium model, this hybrid system enhances safety and reliability, while retaining the high steam cycle efficiency of that model.

  5. Proposed design criteria for a fusion facility electrical ground system

    International Nuclear Information System (INIS)

    Armellino, C.A.

    1983-01-01

    Ground grid design considerations for a nuclear fusion reactor facility are no different than any other facility in that the basis for design must be safety first and foremost. Unlike a conventional industrial facility the available fault energy comes not only from the utility source and in-house rotating machinery, but also from energy storage capacitor banks, collapsing magnetic fields and D.C. transmission lines. It is not inconceivable for a fault condition occurrence where all available energy can be discharged. The ground grid must adequately shunt this sudden energy discharge in a way that personnel will not be exposed by step and/or touch to hazardous energy levels that are in excess of maximum tolerable levels for humans. Fault energy discharge rate is a function of the ground grid surge impedance characteristic. Closed loop paths must be avoided in the ground grid design so that during energy discharge no stray magnetic fields or large voltage potentials between remote points can be created by circulating currents. Single point connection of equipment to the ground grid will afford protection to personnel and sensitive equipment by reducing the probability of circulating currents. The overall ground grid system design is best illustrated as a wagon wheel concept with the fusion machine at the center. Radial branches or spokes reach out to the perimeter limits designated by step-and-touch high risk areas based on soil resistivity criteria considerations. Conventional methods for the design of a ground grid with all of its radial branches are still pertinent. The center of the grid could include a deep well single ground rod element the length of which is at least equivalent to the radius of an imaginary sphere that enshrouds the immediate machine area. Special facilities such as screen rooms or other shielded areas are part of the ground grid system by way of connection to radial branches

  6. Cost Accounting System for fusion studies

    International Nuclear Information System (INIS)

    Hamilton, W.R.; Keeton, D.C.; Thomson, S.L.

    1985-12-01

    A Cost Accounting System that is applicable to all magnetic fusion reactor design studies has been developed. This system provides: (1) definitions of the elements of cost and methods for the combination of these elements to form a cost estimate; (2) a Code of Accounts that uses a functional arrangement for identification of the plant components; and (3) definitions and methods to analyze actual cost data so that the data can be directly reported into this Cost Accounting System. The purpose of the Cost Accounting System is to provide the structure for the development of a fusion cost data base and for the development of validated cost estimating procedures. This system has been developed through use at the Fusion Engineering Design Center (FEDC) and has been applied to different confinement concepts (tokamaks and tandem mirrors) and to different types of projects (experimental devices and commercial power plants). The use of this Cost Accounting System by all magnetic fusion projects will promote the development of a common cost data base, allow the direct comparison of cost estimates, and ultimately establish the cost credibility of the program

  7. Cost Accounting System for fusion studies

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, W.R.; Keeton, D.C.; Thomson, S.L.

    1985-12-01

    A Cost Accounting System that is applicable to all magnetic fusion reactor design studies has been developed. This system provides: (1) definitions of the elements of cost and methods for the combination of these elements to form a cost estimate; (2) a Code of Accounts that uses a functional arrangement for identification of the plant components; and (3) definitions and methods to analyze actual cost data so that the data can be directly reported into this Cost Accounting System. The purpose of the Cost Accounting System is to provide the structure for the development of a fusion cost data base and for the development of validated cost estimating procedures. This system has been developed through use at the Fusion Engineering Design Center (FEDC) and has been applied to different confinement concepts (tokamaks and tandem mirrors) and to different types of projects (experimental devices and commercial power plants). The use of this Cost Accounting System by all magnetic fusion projects will promote the development of a common cost data base, allow the direct comparison of cost estimates, and ultimately establish the cost credibility of the program.

  8. Design of power control system using SMES and SVC for fusion power plant

    International Nuclear Information System (INIS)

    Niiyama, K; Yagai, T; Tsuda, M; Hamajima, T

    2008-01-01

    A SMES (Superconducting Magnetic Energy Storage System) system with converter composed of self-commutated valve devices such as GTO and IGBT is available to control active and reactive power simultaneously. A SVC (Static Var Compensators) or STATCOM (Static Synchronous Compensator) is widely employed to reduce reactive power in power plants and substations. Owing to progress of power electronics technology using GTO and IGBT devices, power converters in the SMES system and the SVC can easily control power flow in few milliseconds. Moreover, since the valve devices for the SMES are equivalent to those for the SVC, the device cost must be reduced. In this paper the basic control system combined with the SMES and SVC is designed for large pulsed loads of a nuclear fusion power plant. This combined system largely expands the reactive power control region as well as the active one. The simulation results show that the combined system is effective and prospective for the nuclear fusion power plant

  9. The heat transport system and plant design for the HYLIFE-2 fusion reactor

    International Nuclear Information System (INIS)

    Hoffman, M.A.

    1990-01-01

    HYLIFE is the name given to a family of self-healing liquid-wall reactor concepts for inertial confinement fusion. This HYLIFE-II concept employs the molten salt, Flibe, for the liquid jets instead of liquid lithium used in the original HYLIFE-I study. A preliminary conceptual design study of the heat transport system and the balance of plant of the HYLIFE-II fusion power plant is described in this paper with special emphasis on a scoping study to determine the best intermediate heat exchanger geometry and flow conditions for minimum cost of electricity. 11 refs., 8 figs

  10. Fusion reactor design and technology 1986. V. 1

    International Nuclear Information System (INIS)

    1987-01-01

    The first volume of the Proceedings of the Fourth Technical Committee Meeting and Workshop on Fusion Reactor Design and Technology organized by the IAEA (Yalta, 26 May - 6 June 1986) includes 36 papers devoted to the following topics: fusion programmes (3 papers), tokamaks (15 papers), non-tokamak reactors and open systems (9 papers), inertial confinement concepts (5 papers), fission-fusion hybrids (4 papers). Each of these papers has a separate abstract. Refs, figs and tabs

  11. Status of the Design Tool Development for ITER TBM and Fusion Reactor System in Korea

    International Nuclear Information System (INIS)

    Jin, H. G.; Lee, D. W.; Shin, K. I.; Lee, E. H.; Yoon, J. S.; Kim, S. K.; Ahn, M. Y.; Cho, S.

    2013-01-01

    Korea has developed a Helium Cooled Molten Lithium (HCML) Test Blanket Module (TBM) and Helium Cooled Ceramic Reflector (HCCR) TBM to be tested in the ITER. The main purpose for developing the TBM is to develop the design technology for the DEMO and fusion reactor, and it should be proved experimentally in the ITER. Therefore, we have developed the design scheme and codes including the safety analysis capability for obtaining the license for testing in the ITER. In this study, the current status of the design tool development is summarized. For developing the design scheme and system codes of the ITER TBM program in Korea, the developed system codes such as MARS and GAMMA+ from Gen. IV projects were modified and verified considering the fusion application. For He coolant, 3D analysis and a McEligot correlation as the heat transfer model were proposed and validated considering the high heat from the plasma side and extreme temperature difference between the wall and fluid. For tritium behavior in the He coolant, the TBEC+GAMMA code was developed, and the oxidation layer growth and its permeation rate change were considered in this development. For a liquid metal breeder such as PbLi and Li, GAMMA-FR was developed including physical properties of the generation model and basic heat transfer model in them. For MHD simulation, the Miyazaki model was implemented in GAMMA, and it was validated successfully with the experimental data. Extending the capability of GAMMA-FR, a fusion system design code (SUPERCODE) is going to be coupled with a 3D neutronics code (MCNP)

  12. Design activities of a fusion experimental breeder

    International Nuclear Information System (INIS)

    Huang, J.; Feng, K.; Sheng, G.

    1999-01-01

    The fusion reactor design studies in China are under the support of a fusion-fission hybrid reactor research Program. The purpose of this program is to explore the potential near-term application of fusion energy to support the long-term fusion energy on the one hand and the fission energy development on the other. During 1992-1996 a detailed consistent and integral conceptual design of a Fusion Experimental Breeder, FEB was completed. Beginning from 1996, a further design study towards an Engineering Outline Design of the FEB, FEB-E, has started. The design activities are briefly given. (author)

  13. Design activities of a fusion experimental breeder

    International Nuclear Information System (INIS)

    Huang, J.; Feng, K.; Sheng, G.

    2001-01-01

    The fusion reactor design studies in China are under the support of a fusion-fission hybrid reactor research Program. The purpose of this program is to explore the potential near-term application of fusion energy to support the long-term fusion energy on the one hand and the fission energy development on the other. During 1992-1996 a detailed consistent and integral conceptual design of a Fusion Experimental Breeder, FEB was completed. Beginning from 1996, a further design study towards an Engineering Outline Design of the FEB, FEB-E, has started. The design activities are briefly given. (author)

  14. Optical design considerations for laser fusion reactors

    International Nuclear Information System (INIS)

    Monsler, M.J.; Maniscalco, J.A.

    1977-09-01

    The plan for the development of commercial inertial confinement fusion (ICF) power plants is discussed, emphasizing the utilization of the unique features of laser fusion to arrive at conceptual designs for reactors and optical systems which minimize the need for advanced materials and techniques requiring expensive test facilities. A conceptual design for a liquid lithium fall reactor is described which successfully deals with the hostile x-ray and neutron environment and promises to last the 30 year plant lifetime. Schemes for protecting the final focusing optics are described which are both compatible with this reactor system and show promise of surviving a full year in order to minimize costly downtime. Damage mechanisms and protection techniques are discussed, and a recommendation is made for a high f-number metal mirror final focusing system

  15. Present status of inertial confinement fusion reactor design

    International Nuclear Information System (INIS)

    Mima, Kunioki; Ido, Shunji; Nakai, Sadao.

    1986-01-01

    Since inertial nuclear fusion reactors do not require high vacuum and high magnetic field, the structure of the reactor cavity becomes markedly simple as compared with tokamak type fusion reactors. In particular, since high vacuum is not necessary, liquid metals such as lithium and lead can be used for the first wall, and the damage of reactor structures by neutrons can be prevented. As for the core, the energy efficiency of lasers is not very high, accordingly it must be designed so that the pellet gain due to nuclear fusion becomes sufficiently high, and typically, the gain coefficient from 100 to 200 is necessary. In this paper, the perspective of pellet gain, the plan from the present status to the practical reactors, and the conceptual design of the practical reactors are discussed. The plan of fuel ignition, energy break-even and high gain by the implosion mode, of which the uncertain factor due to uneven irradiation and instability was limited to the minimum, was clarified. The scenario of the development of laser nuclear fusion reactors is presented, and the concept of the reactor system is shown. The various types of nuclear fusion-fission hybrid reactors are explained. As for the design of inertial fusion power reactors, the engineering characteristics of the core, the conceptual design, water fall type reactors and DD fuel reactors are discussed. (Kako, I.)

  16. A design study of superconducting energy storage system for a tokamak fusion reactor

    International Nuclear Information System (INIS)

    Ueda, Kazuo

    1979-01-01

    A design study of a superconducting inductive energy storage system (SC-IES) has been carried out in commission with JAERI. The SC-IES is to be applied to the power supply system for a tokamak experimental fusion reactor. The study was initiated with the definition of the requirement for the SC-IES and selection of the coil shape. The design of the coil and the cryostat has been followed. The design parameters are: stored energy 10 GJ, B max 8 T, conductor Nb-Ti, overall size 18 m (diameter) x 10 m (height). Technical problems and usefullness of SC-IES are discussed also. (author)

  17. A coupled systems code-CFD MHD solver for fusion blanket design

    Energy Technology Data Exchange (ETDEWEB)

    Wolfendale, Michael J., E-mail: m.wolfendale11@imperial.ac.uk; Bluck, Michael J.

    2015-10-15

    Highlights: • A coupled systems code-CFD MHD solver for fusion blanket applications is proposed. • Development of a thermal hydraulic systems code with MHD capabilities is detailed. • A code coupling methodology based on the use of TCP socket communications is detailed. • Validation cases are briefly discussed for the systems code and coupled solver. - Abstract: The network of flow channels in a fusion blanket can be modelled using a 1D thermal hydraulic systems code. For more complex components such as junctions and manifolds, the simplifications employed in such codes can become invalid, requiring more detailed analyses. For magnetic confinement reactor blanket designs using a conducting fluid as coolant/breeder, the difficulties in flow modelling are particularly severe due to MHD effects. Blanket analysis is an ideal candidate for the application of a code coupling methodology, with a thermal hydraulic systems code modelling portions of the blanket amenable to 1D analysis, and CFD providing detail where necessary. A systems code, MHD-SYS, has been developed and validated against existing analyses. The code shows good agreement in the prediction of MHD pressure loss and the temperature profile in the fluid and wall regions of the blanket breeding zone. MHD-SYS has been coupled to an MHD solver developed in OpenFOAM and the coupled solver validated for test geometries in preparation for modelling blanket systems.

  18. Progress in the development of methodology for fusion safety systems studies

    International Nuclear Information System (INIS)

    Ho, S.K.; Cambi, G.; Ciattaglia, S.; Fujii-e, Y.; Seki, Y.

    1994-01-01

    The development of fusion safety systems-study methodology, including the aspects of schematic classification of overall fusion safety system, qualitative assessment of fusion system for identification of critical accident scenarios, quantitative analysis of accident consequences and risk for safety design evaluation, and system-level analysis of accident consequences and risk for design optimization, by a consortium of international efforts is presented. The potential application of this methodology into reactor design studies will facilitate the systematic assessment of safety performance of reactor designs and enhance the impacts of safety considerations on the selection of design configurations

  19. Conceptual design study of a scyllac fusion test reactor

    International Nuclear Information System (INIS)

    Thomassen, K.I.

    1975-07-01

    The report describes a conceptual design study of a fusion test reactor based on the Scyllac toroidal theta-pinch approach to fusion. It is not the first attempt to describe the physics and technology required for demonstrating scientific feasibility of the approach, but it is the most complete design in the sense that the physics necessary to achieve the device goals is extrapolated from experimentally tested MHD theories of toroidal systems,and it uses technological systems whose engineering performance has been carefully calculated to ensure that they meet the machine requirements

  20. Fusion systems engineering

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Summaries of research are included for each of the following topics: (1) fusion reactor systems studies, (2) development of blanket processing technology for fusion reactors, (3) safety studies of fusion concepts, (4) the MACK/MACKLIB system for nuclear response functions, and (5) energy storage and power supply systems for fusion reactors

  1. Design optimization of single-main-amplifier KrF laser-fusion systems

    International Nuclear Information System (INIS)

    Harris, D.B.; Pendergrass, J.H.

    1985-01-01

    KrF lasers appear to be a very promising laser fusion driver for commercial applications. The Large Amplifier Module for the Aurora Laser System at Los Alamos is the largest KrF laser in the world and is currently operating at 5 kJ with 10 to 15 kJ eventually expected. The next generation system is anticipated to be a single-main-amplifier system that generates approximately 100 kJ. This paper examines the cost and efficiency tradeoffs for a complete single-main-amplifier KrF laser fusion experimental facility. It has been found that a 7% efficient $310/joule complete laser-fusion system is possible by using large amplifier modules and high optical fluences

  2. Fusion Materials Irradiation Test (FMIT) facility lithium system: a design and development status

    International Nuclear Information System (INIS)

    Brackenbury, P.J.; Bazinet, G.D.; Miller, W.C.

    1983-01-01

    The design and development of the Fusion Materials Irradiation Test (FMIT) Facility lithium system is outlined. This unique liquid lithium recirculating system, the largest of its kind in the world, is described with emphasis on the liquid lithium target assembly and other important components necessary to provide lithium flow to the target. The operational status and role of the Experimental Lithium System (ELS) in the design of the FMIT lithium system are discussed. Safety aspects of operating the FMIT lithium system in a highly radioactive condition are described. Potential spillage of the lithium is controlled by cell liners, by argon flood systems and by remote maintenance features. Lithium chemistry is monitored and controlled by a side-stream loop, where impurities measured by instruments are collected by hot and cold traps

  3. Fusion Materials Irradiation Test (FMIT) facility lithium system: a design and development status

    Energy Technology Data Exchange (ETDEWEB)

    Brackenbury, P.J.; Bazinet, G.D.; Miller, W.C.

    1983-01-01

    The design and development of the Fusion Materials Irradiation Test (FMIT) Facility lithium system is outlined. This unique liquid lithium recirculating system, the largest of its kind in the world, is described with emphasis on the liquid lithium target assembly and other important components necessary to provide lithium flow to the target. The operational status and role of the Experimental Lithium System (ELS) in the design of the FMIT lithium system are discussed. Safety aspects of operating the FMIT lithium system in a highly radioactive condition are described. Potential spillage of the lithium is controlled by cell liners, by argon flood systems and by remote maintenance features. Lithium chemistry is monitored and controlled by a side-stream loop, where impurities measured by instruments are collected by hot and cold traps.

  4. General software design for multisensor data fusion

    Science.gov (United States)

    Zhang, Junliang; Zhao, Yuming

    1999-03-01

    In this paper a general method of software design for multisensor data fusion is discussed in detail, which adopts object-oriented technology under UNIX operation system. The software for multisensor data fusion is divided into six functional modules: data collection, database management, GIS, target display and alarming data simulation etc. Furthermore, the primary function, the components and some realization methods of each modular is given. The interfaces among these functional modular relations are discussed. The data exchange among each functional modular is performed by interprocess communication IPC, including message queue, semaphore and shared memory. Thus, each functional modular is executed independently, which reduces the dependence among functional modules and helps software programing and testing. This software for multisensor data fusion is designed as hierarchical structure by the inheritance character of classes. Each functional modular is abstracted and encapsulated through class structure, which avoids software redundancy and enhances readability.

  5. Design study of an accelerator for heavy ion fusion

    International Nuclear Information System (INIS)

    Katayama, T.; Noda, A.; Tokuda, N.; Hirao, Y.

    1980-01-01

    Design of a demonstration accelerator for heavy ion fusion based on a synchrotron system is briefly described. The proposed complex system of injector linac, rapid cycling synchrotron and five accumulation rings can produce a peak current 1.6 kA, peak power 32 TW and total energy 0.3 MJ. Investigations of the intrabeam scattering give a lifetime of the beam longer than the fusion cycle time of 1 sec

  6. Fusion propulsion systems

    International Nuclear Information System (INIS)

    Haloulakos, V.E.; Bourque, R.F.

    1989-01-01

    The continuing and expanding national efforts in both the military and commercial sectors for exploration and utilization of space will require launch, assembly in space, and orbital transfer of large payloads. The currently available delivery systems, utilizing various forms of chemical propulsion, do not have the payload capacity to fulfill the planned missions. National planning documents such as Air Force Project Forecast II and the National Commission on Space Report to the President contain numerous missions and payload delivery schedules that are beyond the present capabilities of the available systems, such as the Space Shuttle and the Expendable Launch Vehicles (ELVs). The need, therefore, is very pressing to design, develop, and deploy propulsion systems that offer a quantum level increase in delivered performance. One such potential system is fusion propulsion. This paper summarizes the result of an Air Force Astronautics Laboratory (AFAL) sponsored study of fusion propulsion conducted by the McDonnell Douglas Astronautics Company (MDAC), and its subcontractor General Atomics This study explored the potential of fusion propulsion for Air Force missions. Fusion fuels and existing confinement concepts were evaluated according to elaborate criteria. Two fuels, deuterium-tritium and deuterium-helium 3 (D- 3 He) were considered worthy of further consideration. D- 3 He was selected as the most attractive for this Air Force study. The colliding translating compact torus confinement concept was evaluated in depth and found to possibly possess the low mass and compactness required. Another possible concept is inertial confinement with the propellant surrounding the target. 5 refs., 5 figs., 8 tabs

  7. Conceptual design of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1984-02-01

    This report describes the engineering conceptual design of Fusion Experimental Reactor (FER) which is to be built as a next generation tokamak machine. This design covers overall reactor systems including MHD equilibrium analysis, mechanical configuration of reactor, divertor, pumped limiter, first wall/breeding blanket/shield, toroidal field magnet, poloidal field magnet, cryostat, electromagnetic analysis, vacuum system, power handling and conversion, NBI, RF heating device, tritium system, neutronics, maintenance, cooling system and layout of facilities. The engineering comparison of a divertor with pumped limiters and safety analysis of reactor systems are also conducted. (author)

  8. Laser fusion systems for industrial process heat. Third semiannual report

    International Nuclear Information System (INIS)

    Bates, F.J.; Denning, R.S.; Dykhuizen, R.C.; Goldthwaite, W.H.; Kok, K.D.; Skelton, J.C.

    1979-01-01

    This report concentrates not only on the design of the laser fusion system but also on the cost of this system and the costs of alternative sources of energy that are expected to be in competition with the laser fusion system. The absolute values of the cost of the laser fusion system are limited by the estimates of the cost of the components and subsystems making up the laser fusion energy station. The method used in calculating costs of the laser fusion and alternative systems are laid out in detail

  9. Conceptual design of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1984-03-01

    A conceptual design study (option C) has been carried out for the fusion experimental reactor (FER). In addition to design of the tokamak reactor and associated systems based on the reference design specifications, feasibility of a water-shield reactor concept was examined as a topical study. The design study for the reference tokamak reactor has produced a reactor concept for the FER, along with major R D items for the concept, based on close examinations on thermal design, electromagnetics, neutronics and remote maintenance. Particular efforts have been directed to the area of electromagnetics. Detailed analyses with close simulation models have been performed on PF coil arrangements and configurations, shell effects of the blanket for plasma position unstability, feedback control, and eddy currents during disruptions. The major design specifications are as follows; Peak fusion power 437 MW Major radius 5.5 m Minor radius 1.1 m Plasma elongation 1.5 Plasma current 5.3 MA Toroidal beta 4 % Field on axis 5.7 T (author)

  10. Design and Implementation of Multi Agentbased Information Fusion System for Decision Making Support (A Case Study on Military Operation

    Directory of Open Access Journals (Sweden)

    Arwin Datunaya Wahyudi Sumari

    2013-09-01

    Full Text Available Quick, accurate, and complete information is highly required for supporting strategically impact decision making in a Military Operation (MO in order to reduce the decision cycle and to minimize the loss. For that purpose, we propose, design and implement a hierarchical Multi Agentbased Information Fusion System for Decision Making Support (MAIFSDMS. The information fusion is implemented by applying Maximum Score of the Total Sum of Joint Probabilities (MSJP fusion method and is done by a collection of Information Fusion Agents (IFA that forms a multiagent system. MAIFS uses a combination of generalization of Dasarathy and Joint Director’s Laboratory (JDL process models for information fusion mechanism. Information fusion products that are displayed in graphical forms provide comprehensive information regarding the MO’s area dynamics. By observing the graphics resulted from the information fusion, the commandant will have situational awareness and knowledge in order to make the most accurate strategic de cision as fast as possible.

  11. Conceptual design of a fast-ignition laser fusion reactor FALCON-D

    International Nuclear Information System (INIS)

    Goto, T.; Ogawa, Y.; Okano, K.; Hiwatari, R.; Asaoka, Y.; Someya, Y.; Sunahara, A.; Johzaki, T.

    2008-10-01

    A new conceptual design of the laser fusion power plant FALCON-D (Fast ignition Advanced Laser fusion reactor CONcept with a Dry wall chamber) has been proposed. The fast ignition method can achieve the sufficient fusion gain for a commercial operation (∼100) with about 10 times smaller fusion yield than the conventional central ignition method. FALCON-D makes full use of this property and aims at designing with a compact dry wall chamber (5 - 6 m radius). 1-D/2-D hydrodynamic simulations showed the possibility of the sufficient gain achievement with a 40 MJ target yield. The design feasibility of the compact dry wall chamber and solid breeder blanket system was shown through the thermomechanical analysis of the dry wall and neutronics analysis of the blanket system. A moderate electric output (∼400 MWe) can be achieved with a high repetition (30 Hz) laser. This dry wall concept not only reduces some difficulties accompanied with a liquid wall but also enables a simple cask maintenance method for the replacement of the blanket system, which can shorten the maintenance time. The basic idea of the maintenance method for the final optics system has also been proposed. Some critical R and D issues required for this design are also discussed. (author)

  12. Materials handbook for fusion energy systems

    Science.gov (United States)

    Davis, J. W.; Marchbanks, M. F.

    A materials data book for use in the design and analysis of components and systems in near term experimental and commercial reactor concepts has been created by the Office of Fusion Energy. The handbook is known as the Materials Handbook for Fusion Energy Systems (MHFES) and is available to all organizations actively involved in fusion related research or system designs. Distribution of the MHFES and its data pages is handled by the Hanford Engineering Development Laboratory (HEDL), while its direction and content is handled by McDonnell Douglas Astronautics Company — St. Louis (MDAC-STL). The MHFES differs from other handbooks in that its format is geared more to the designer and structural analyst than to the materials scientist or materials engineer. The format that is used organizes the handbook by subsystems or components rather than material. Within each subsystem is information pertaining to material selection, specific material properties, and comments or recommendations on treatment of data. Since its inception a little more than a year ago, over 80 copies have been distributed to over 28 organizations consisting of national laboratories, universities, and private industries.

  13. Conceptual design of the superconducting magnet system for the helical fusion reactor

    International Nuclear Information System (INIS)

    Yanagi, Nagato; Hamaguchi, Shinji; Takahata, Kazuya; Natsume, Kyohei

    2013-01-01

    Current status of conceptual design of superconducting magnet system and low temperature system for the helical fusion reactor are introduced. There are three kinds of candidates of superconducting magnets such as Cable-in-conduit (CIC), Low-Temperature Superconductor (LTS) and High-Temperature Superconductor (HTS). Their characteristic properties, coil designs and cooling systems are stated. The freezer and low temperature distribution system, bus line and current lead, and excitation power source for superconducting coil are reported. The various elements of superconducting magnet system of FFHR-d1, partial cross section of FFHR helical coil using CIC, conceptual diagram of helical coil winding method of FFHR using CIC, relation among mass flow of supercritical helium supplied into CIC conductor and temperature increasing and pressure loss, cross section structure of LTS indirect-cooling conductor at 100 kA, cross section of 100-kA HTS conductor, connection method of helical coil segment and YBCO conductor are illustrated. (S.Y.)

  14. The design of red-blue 3D video fusion system based on DM642

    Science.gov (United States)

    Fu, Rongguo; Luo, Hao; Lv, Jin; Feng, Shu; Wei, Yifang; Zhang, Hao

    2016-10-01

    Aiming at the uncertainty of traditional 3D video capturing including camera focal lengths, distance and angle parameters between two cameras, a red-blue 3D video fusion system based on DM642 hardware processing platform is designed with the parallel optical axis. In view of the brightness reduction of traditional 3D video, the brightness enhancement algorithm based on human visual characteristics is proposed and the luminance component processing method based on YCbCr color space is also proposed. The BIOS real-time operating system is used to improve the real-time performance. The video processing circuit with the core of DM642 enhances the brightness of the images, then converts the video signals of YCbCr to RGB and extracts the R component from one camera, so does the other video and G, B component are extracted synchronously, outputs 3D fusion images finally. The real-time adjustments such as translation and scaling of the two color components are realized through the serial communication between the VC software and BIOS. The system with the method of adding red-blue components reduces the lost of the chrominance components and makes the picture color saturation reduce to more than 95% of the original. Enhancement algorithm after optimization to reduce the amount of data fusion in the processing of video is used to reduce the fusion time and watching effect is improved. Experimental results show that the system can capture images in near distance, output red-blue 3D video and presents the nice experiences to the audience wearing red-blue glasses.

  15. OSIRIS and SOMBRERO Inertial Fusion Power Plant Designs, Volume 2: Designs, Assessments, and Comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W. R.; Bieri, R. L.; Monsler, M. J.; Hendricks, C. D.; Laybourne, P.; Shillito, K. R.

    1992-03-01

    This is a comprehensive design study of two Inertial Fusion Energy (IFE) electric power plants. Conceptual designs are presented for a fusion reactor (called Osiris) using an induction-linac heavy-ion beam driver, and another (called SOMBRERO) using a KrF laser driver. The designs covered all aspects of IFE power plants, including the chambers, heat transport and power conversion systems, balance-of-plant facilities, target fabrication, target injection and tracking, as well as the heavy-ion and KrF drivers. The point designs were assessed and compared in terms of their environmental & safety aspects, reliability and availability, economics, and technology development needs.

  16. Review of fission-fusion pellet designs and inertial confinement system studies at EIR

    Energy Technology Data Exchange (ETDEWEB)

    Seifriz, W [Eidgenoessisches Inst. fuer Reaktorforschung, Wuerenlingen (Switzerland)

    1978-01-01

    The article summarizes the work done so far at the Swiss Federal Institute for Reactor Research (EIR) in the field of the inertial confinement fusion technique. The following subjects are reviewed: a) fission fusion pellet designs using fissionable triggers, b) uranium tampered pellets, c) tampered pellets recycling unwanted actinide wastes from fission reactors in beam-driven micro-explosion reactors, and d) symbiotic fusion/fission reactor studies.

  17. Design of a fusion engineering test facility

    International Nuclear Information System (INIS)

    Sager, P.H.

    1980-01-01

    The fusion Engineering Test Facility (ETF) is being designed to provide for engineering testing capability in a program leading to the demonstration of fusion as a viable energy option. It will combine power-reactor-type components and subsystems into an integrated tokamak system and provide a test bed to test blanket modules in a fusion environment. Because of the uncertainties in impurity control two basic designs are being developed: a design with a bundle divertor (Design 1) and one with a poloidal divertor (Design 2). The two designs are similar where possible, the latter having somewhat larger toroidal field (TF) coils to accommodate removal of the larger torus sectors required for the single-null poloidal divertor. Both designs have a major radius of 5.4 m, a minor radius of 1.3 m, and a D-shaped plasma with an elongation of 1.6. Ten TF coils are incorporated in both designs, producing a toroidal field of 5.5 T on-axis. The ohmic heating and equilibrium field (EF) coils supply sufficient volt-seconds to produce a flat-top burn of 100 s and a duty cycle of 135 s, including a start of 12 s, a burn termination of 10 s, and a pumpdown of 13 s. The total fusion power during burn is 750 MW, giving a neutron wall loading of 1.5 MW/m 2 . In Design 1 of the poloidal field (PF) coils except the fast-response EF coils are located outside the FT coils and are superconducting. The fast-response coils are located inside the TF coil bore near the torus and are normal conducting so that they can be easily replaced.In Design 2 all of the PF coils are located outside the TF coils and are superconducting. Ignition is achieved with 60 MW of neutral beam injection at 150 keV. Five megawatts of radio frequency heating (electron cyclotron resonance heating) is used to assist in the startup and limit the breakdown requirement to 25 V

  18. International Fusion Materials Irradiation Facility conceptual design activity. Present status and perspective

    International Nuclear Information System (INIS)

    Kondo, Tatsuo; Noda, Kenji; Oyama, Yukio

    1998-01-01

    For developing the materials for nuclear fusion reactors, it is indispensable to study on the neutron irradiation behavior under fusion reactor conditions, but there is not any high energy neutron irradiation facility that can simulate fusion reactor conditions at present. Therefore, the investigation of the IFMIF was begun jointly by Japan, USA, Europe and Russia following the initiative of IEA. The conceptual design activities were completed in 1997. As to the background and the course, the present status of the research on heavy irradiation and the testing means for fusion materials, the requirement and the technical basis of high energy neutron irradiation, and the international joint design activities are reported. The materials for fusion reactors are exposed to the neutron irradiation with the energy spectra up to 14 MeV. The requirements from the users that the IFMIF should satisfy, the demand of the tests for the materials of prototype and demonstration fusion reactors and the evaluation of the neutron field characteristics of the IFMIF are discussed. As to the conceptual design of the IFMIF, the whole constitution, the operational mode, accelerator system and target system are described. (K.I.)

  19. Health physics in fusion reactor design

    International Nuclear Information System (INIS)

    Wong, K.Y.; Dinner, P.J.

    1984-06-01

    Experience in the control of tritium exposures to workers and the public gained through the design and operation of Ontario Hydro's nuclear stations has been applied to fusion projects and to design studies on emerging fusion reactor concepts. Ontario Hydro performance in occupational tritium exposure control and environmental impact is reviewed. Application of tritium control technologies and dose management methodology during facility design is highlighted

  20. Design and Implementation of Multi Agent-based Information Fusion System for Supporting Decision Making (A Case Study on Military Operation

    Directory of Open Access Journals (Sweden)

    Arwin Datumaya Wahyudi Sumari

    2008-05-01

    Full Text Available Quick, accurate, and complete information is highly required for supporting strategically impact decision making in a Military Operation (MO in order to reduce the decision cycle and to minimize the loss. For that purpose, we propose, design and implement a hierarchical Multi Agent-based Information Fusion System for Decision Making Support (MAIFS-DMS. The information fusion is implemented by applying Maximum Score of the Total Sum of Joint Probabilities (MSJP fusion method and is done by a collection of Information Fusion Agents (IFA that forms a multiagent system. MAIFS uses a combination of generalization of Dasarathy and Joint Director’s Laboratory (JDL process models for information fusion mechanism. Information fusion products that are displayed in graphical forms provide comprehensive information regarding the MO area dynamics. By observing the graphics resulted from the information fusion, the commandant will have situational awareness and knowledge in order to make the most accurate strategic decision as fast as possible

  1. Osiris and SOMBRERO inertial confinement fusion power plant designs

    International Nuclear Information System (INIS)

    Meier, W.R.; Bieri, R.L.; Monsler, M.J.

    1992-03-01

    The primary objective of the of the IFE Reactor Design Studies was to provide the Office of Fusion Energy with an evaluation of the potential of inertial fusion for electric power production. The term reactor studies is somewhat of a misnomer since these studies included the conceptual design and analysis of all aspects of the IFE power plants: the chambers, heat transport and power conversion systems, other balance of plant facilities, target systems (including the target production, injection, and tracking systems), and the two drivers. The scope of the IFE Reactor Design Studies was quite ambitious. The majority of our effort was spent on the conceptual design of two IFE electric power plants, one using an induction linac heavy ion beam (HIB) driver and the other using a Krypton Fluoride (KrF) laser driver. After the two point designs were developed, they were assessed in terms of their (1) environmental and safety aspects; (2) reliability, availability, and maintainability; (3) technical issues and technology development requirements; and (4) economics. Finally, we compared the design features and the results of the assessments for the two designs

  2. Fusion target design

    International Nuclear Information System (INIS)

    Bangerter, R.O.

    1978-01-01

    Most detailed fusion target design is done by numerical simulation using large computers. Although numerical simulation is briefly discussed, this lecture deals primarily with the way in which basic physical arguments, driver technology considerations and economical power production requirements are used to guide and augment the simulations. Physics topics discussed include target energetics, preheat, stability and symmetry. A specific design example is discussed

  3. Recent designs for advanced fusion reactor blankets

    International Nuclear Information System (INIS)

    Sze, D.K.

    1994-06-01

    A series of reactor design studies based on the Tokamak configuration have been carried out under the direction of Professor Robert Conn of UCLA. They are called ARIES-1 through 4 and PULSAR 1 and 2. The key mission of these studies is to evaluate the attractiveness of fusion assuming different degrees of advancement in either physics or engineering development. Also, the requirements of engineering and physics systems for a pulsed reactor were evaluated by the PULSAR design studies. This paper discusses the directions and conclusions of the blanket and related engineering systems for those design studies

  4. Current fusion power plant design concepts

    International Nuclear Information System (INIS)

    Gore, B.F.; Murphy, E.S.

    1976-09-01

    Nine current U.S. designs for fusion power plants are described in this document. Summary tabulations include a tenth concept, for which the design document was unavailable during preparation of the descriptions. The information contained in the descriptions was used to define an envelope of fusion power plant characteristics which formed the basis for definition of reference first commercial fusion power plant design. A brief prose summary of primary plant features introduces each of the descriptions contained in the body of this document. In addition, summary tables are presented. These tables summarize in side-by-side fashion, plant parameters, processes, combinations of materials used, requirements for construction materials, requirements for replacement materials during operation, and production of wastes

  5. Cryogenic system operating experience review for fusion applications

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1992-01-01

    This report presents a review of cryogenic system operating experiences, from particle accelerator, fusion experiment, space research, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of cryogenic component failure rates and accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with cryogenic systems are discussed, including ozone formation, effects of spills, and modeling spill behavior. This information should be useful to fusion system designers and safety analysts, such as the team working on the International Thermonuclear Experimental Reactor design

  6. Inertial fusion reactor designs

    International Nuclear Information System (INIS)

    Meier, W.

    1987-01-01

    In this paper, a variety of reactor concepts are proposed. One of the prime concerns is dealing with the x-rays and debris that are emitted by the target. Internal neutron shielding can reduce radiation damage and activation, leading to longer life systems, reduced activation and fewer safety concerns. There is really no consensus on what the best reactor concept is at this point. There has been virtually no chamber technology development to date. This is the flip side of the coin of the separability of the target physics and the reactor design. Since reactor technology has not been required to do target experiments, it's not being developed. Economic analysis of conceptual designs indicates that ICF can be economically competitive with magnetic fusion, fission and fossil plants

  7. Fire protection system operating experience review for fusion applications

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1995-12-01

    This report presents a review of fire protection system operating experiences from particle accelerator, fusion experiment, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of fire protection system component failure rates and fire accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with these systems are discussed, including spurious operation. This information should be useful to fusion system designers and safety analysts, such as the team working on the Engineering Design Activities for the International Thermonuclear Experimental Reactor

  8. Fire protection system operating experience review for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, L.C.

    1995-12-01

    This report presents a review of fire protection system operating experiences from particle accelerator, fusion experiment, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of fire protection system component failure rates and fire accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with these systems are discussed, including spurious operation. This information should be useful to fusion system designers and safety analysts, such as the team working on the Engineering Design Activities for the International Thermonuclear Experimental Reactor.

  9. Conceptual design of a laser fusion power plant

    International Nuclear Information System (INIS)

    Maniscalco, J.A.; Meier, W.R.; Monsler, M.J.

    1977-01-01

    A conceptual design of a laser fusion power plant is extensively discussed. Recent advances in high gain targets are exploited in the design. A smaller blanket structure is made possible by use of a thick falling region of liquid lithium for a first wall. Major design features of the plant, reactor, and laser systems are described. A parametric analysis of performance and cost vs. design parameters is presented to show feasible design points. A more definitive follow-on conceptual design study is planned

  10. Vacuum system operating experience review for fusion applications

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1994-03-01

    This report presents a review of vacuum system operating experiences from particle accelerator, fusion experiment, space simulation chamber, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of vacuum system component failure rates and accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with vacuum systems are discussed, including personnel safety, foreign material intrusion, and factors relevant to vacuum systems being the primary confinement boundary for tritium and activated dusts. This information should be useful to fusion system designers and safety analysts, such as the team working on the Engineering Design Activities for the International Thermonuclear Experimental Reactor

  11. Safety analysis and evaluation methodology for fusion systems

    International Nuclear Information System (INIS)

    Fujii-e, Y.; Kozawa, Y.; Namba, C.

    1987-03-01

    Fusion systems which are under development as future energy systems have reached a stage that the break even is expected to be realized in the near future. It is desirable to demonstrate that fusion systems are well acceptable to the societal environment. There are three crucial viewpoints to measure the acceptability, that is, technological feasibility, economy and safety. These three points have close interrelation. The safety problem is more important since three large scale tokamaks, JET, TFTR and JT-60, start experiment, and tritium will be introduced into some of them as the fusion fuel. It is desirable to establish a methodology to resolve the safety-related issues in harmony with the technological evolution. The promising fusion system toward reactors is not yet settled. This study has the objective to develop and adequate methodology which promotes the safety design of general fusion systems and to present a basis for proposing the R and D themes and establishing the data base. A framework of the methodology, the understanding and modeling of fusion systems, the principle of ensuring safety, the safety analysis based on the function and the application of the methodology are discussed. As the result of this study, the methodology for the safety analysis and evaluation of fusion systems was developed. New idea and approach were presented in the course of the methodology development. (Kako, I.)

  12. Synergies in the design and development of fusion and generation IV fission reactors

    International Nuclear Information System (INIS)

    Bogusch, E.; Carre, F.; Knebel, J.; Aoto, K.

    2007-01-01

    Future fusion reactors or systems and Generation IV fission reactors are designed and developed in worldwide programmes mostly involving the same partners to investigate and assess their potential for realisation and contribution to meet the future energy needs beyond 2030. Huge scientific and financial effort is necessary to meet these objectives. First programmes have been launched in Generation IV International Forum (GIF) for fission and in the Broader Approach for fusion reactor system development. Except the physics basis for the energy source, future fusion and fission reactors, in particular those with fast neutron core face similar design issues and development needs. Therefore the call for the identification of synergies became evident. Beyond ITER cooled by water, future fusion reactors or systems will be designed for helium and liquid metal cooling and higher temperatures similar to those proposed for some of the six fission reactor concepts in GIF with their diverse coolants. Beside materials developments which are not discussed in this paper, design and performance of components and systems related to the diverse coolants including lifetime and maintenance aspects might offer significant potentials for synergies. Furthermore, the use of process heat for applications in addition to electricity production as well as their safety approaches might create synergistic design and development programmes. Therefore an early identification of possible synergies in the relevant programmes should be endorsed to minimise the effort for future power plants in terms of investments and resources. In addition to a general overview of a possible synergistic work programme which promotes the interaction between fusion and fission programmes towards an integrated organisation of their design and R and D programmes, some specific remarks will be given for joint design tools, numerical code systems and joint experiments in support of common technologies. (orig.)

  13. Synergies in the design and development of fusion and generation IV fission reactors

    International Nuclear Information System (INIS)

    Bogusch, E.; Carre, F.; Knebel, J.U.; Aoto, K.

    2008-01-01

    Future fusion reactor and Generation IV fission reactor systems are designed and developed in worldwide programmes to investigate and assess their potential for realisation and contribution to the future energy needs beyond 2030 mostly involving the same partners. Huge scientific and financial effort is necessary to meet these objectives. First programmes have been launched in Generation IV International Forum (GIF) for fission and in the Broader Approach for fusion reactor system development. Except for the physics basis for the energy source, future fusion and fission reactors, in particular those with fast neutron core, face similar design issues and development needs. Therefore, the call for the identification of synergies became evident. Beyond ITER cooled by water, future fusion reactor systems will be designed for high-temperature helium and liquid metal cooling but also water including supercritical water and molten salt similar to those proposed for some of the six fission reactor concepts in GIF with their diverse coolants. Beside materials developments which are not discussed in this paper, design and performance of components and systems related to the diverse coolants including lifetime and maintenance aspects might offer significant potentials for synergies. Furthermore, the use of process heat for applications in addition to electricity production as well as their safety approaches can create synergistic design and development programmes. Therefore, an early identification of possible synergies in the relevant programmes should be endorsed to minimise the effort for future power plants in terms of investments and resources. In addition to a general overview of a possible synergistic work programme which promotes the interaction between fusion and fission programmes towards an integrated organisation of their design and R and D programmes, some specific remarks will be given for joint design tools, numerical code systems and joint experiments in

  14. Heat transfer and mechanical interactions in fusion nuclear systems

    International Nuclear Information System (INIS)

    Nygren, R.E.

    1984-01-01

    This general review of design issues in heat transfer and mechanical interactions of the first wall, blanket and shield systems of tokamak and mirror fusion reactors begins with a brief introduction to fusion nuclear systems. The design issues are summarized in tables and the following examples are described to illustrate these concerns: the surface heating of limiters, heat transfer from solid breeders, MHD effects in liquid metal blankets, mechanical loads from electromagnetic transients and remote maintenance

  15. Design and fabrication of the superconducting-magnet system for the Mirror Fusion Test Facility (MFTF-B)

    International Nuclear Information System (INIS)

    Tatro, R.E.; Wohlwend, J.W.; Kozman, T.A.

    1982-01-01

    The superconducting magnet system for the Mirror Fusion Test Facility (MFTF-B) consists of 24 magnets; i.e. two pairs of C-shaped Yin-Yang coils, four C-shaped transition coils, four solenoidal axicell coils, and a 12-solenoid central cell. General Dynamics Convair Division has designed all the coils and is responsible for fabricating 20 coils. The two Yin-Yang pairs (four coils) are being fabricated by the Lawrence Livermore National Laboratory. Since MFTF-B is not a magnet development program, but rather a major physics experiment critical to the mirror fusion program, the basic philosophy has been to use proven materials and analytical techniques wherever possible. The transition and axicell coils are currently being analyzed and designed, while fabrication is under way on the solenoid magnets

  16. Design of deuterium and tritium pellet injector systems for Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Wysor, R.B.; Baylor, L.R.; Bryan, W.E.

    1985-01-01

    Three pellet injector designs developed by the Oak Ridge National Laboratory (ORNL) are planned for the Tokamak Fusion Test Reactor (TFTR) to reach the goal of a tritium pellet injector by 1988. These are the Repeating Pneumatic Injector (RPI), the Deuterium Pellet Injector (DPI) and the Tritium Pellet Injector (TPI). Each of the pellet injector designs have similar performance characteristics in that they deliver up to 4-mm-dia pellets at velocities up to 1500 m/s with a dsign goal to 2000 m/s. Similar techniques are utilized to freeze and extrude the pellet material. The injector systems incorporate three gun concepts which differ in the number of gun barrels and the method of forming and chambering the pellets. The RPI, a single barrel repeating design, has been operational on TFTR since April 1985. Fabrication and assembly are essentially complete for DPI, and TPI is presently on hold after completing about 80% of the design. The TFTR pellet injector program is described, and each of the injector systems is described briefly. Design details are discussed in other papers at this symposium

  17. Ceramic sphere-pac breeder design for fusion blankets

    International Nuclear Information System (INIS)

    Gierszewski, P.J.; Sullivan, J.D.

    1991-01-01

    Randomly packed beds of ceramic spheres are a practical approach to surrounding fusion plasmas with tritium-breeding material. This paper examines the general properties of sphere-pac beds for application in fusion breeder blankets. The design considerations and models are reviewed for packing, tritium breeding and recovery, thermal conductivity, purge-gas pressure drop, mechanical behavior and fabrication. The design correlations are compared against available fusion ceramic data. Specific conclusions are that ternary (three-size) beds are not attractive for fusion blankets, and that the fusion spheres should be as large as possible subject primarily to packing constraints. (orig.)

  18. Second preliminary design of JAERI experimental fusion reactor (JXFR)

    International Nuclear Information System (INIS)

    Sako, Kiyoshi; Tone, Tatsuzo; Seki, Yasushi; Iida, Hiromasa; Yamato, Harumi

    1979-06-01

    Second preliminary design of a tokamak experimental fusion reactor to be built in the near future has been performed. This design covers overall reactor system including plasma characteristics, reactor structure, blanket neutronics radiation shielding, superconducting magnets, neutral beam injector, electric power supply system, fuel recirculating system, reactor cooling and tritium recovery systems and maintenance scheme. Safety analyses of the reactor system have been also performed. This paper gives a brief description of the design as of January, 1979. The feasibility study of raising the power density has been also studied and is shown as appendix. (author)

  19. Fusion reactor design studies: standard accounts for cost estimates

    International Nuclear Information System (INIS)

    Schulte, S.C.; Willke, T.L.; Young, J.R.

    1978-05-01

    The fusion reactor design studies--standard accounts for cost estimates provides a common format from which to assess the economic character of magnetically confined fusion reactor design concepts. The format will aid designers in the preparation of design concept costs estimates and also provide policymakers with a tool to assist in appraising which design concept may be economically promising. The format sets forth a categorization and accounting procedure to be used when estimating fusion reactor busbar energy cost that can be easily and consistently applied. Reasons for developing the procedure, explanations of the procedure, justifications for assumptions made in the procedure, and the applicability of the procedure are described in this document. Adherence to the format when evaluating prospective fusion reactor design concepts will result in the identification of the more promising design concepts thus enabling the fusion power alternatives with better economic potential to be quickly and efficiently developed

  20. Study on conceptual design system of tritium production fusion reactor

    International Nuclear Information System (INIS)

    He Kaihui

    2004-11-01

    Conceptual design of an advanced tritium production reactor based on spherical torus, which is intermediate application of fusion energy, was presented. Different from traditional tokamak tritium production reactor design, advanced plasma physics performance and compact structural characteristics of ST were used to minimize tritium leakage and to maximize tritium breeding ratio with arrangement of tritium production blankets as possible as it can within vacuum vessel in order to produce 1 kg excess tritium except self-sufficient plasma core, corresponding plant availability 40% or more. Based on 2D neutronics calculation, preliminary conceptual design of ST-TPR was presented. Besides systematical analyses; design risk, uncertainty and backup are introduced generally for the backgrounds of next detailed conceptual design. (author)

  1. Definition and conceptual design of a small fusion reactor

    International Nuclear Information System (INIS)

    1979-04-01

    The objective of this project is to evaluate various mirror fusion reactor concepts that might result in small systems for the effective production of electrical power or stored energy (e.g., nuclear and chemical fuels). The basic two-year program goal is to select a particular concept and develop the conceptual design of a pilot plant that could provide a useful output from fusion. The pilot plant would be built and operated in the late 1980s

  2. Osiris and SOMBRERO inertial fusion power plant designs - summary, conclusions, and recommendations

    International Nuclear Information System (INIS)

    Meier, Wayne R.

    1994-01-01

    An 18 month study to evaluate the potential of inertial fusion energy (IFE) for electric power production has been completed. The primary objective of the study was to provide the US Department of Energy with an evaluation of the potential of inertial fusion for electric power production. The study included the conceptual design of two inertial fusion power plants. Osiris uses an induction linac heavy ion beam driver, and SOMBRERO uses a krypton fluoride laser driver. Conceptual designs were completed for the reactors, power conversion and plant facilities, and drivers. Environmental and safety aspects, technical issues, technology development needs, and economics of the final point designs were assessed and compared. This paper summarizes the results and conclusions of the conceptual designs and results of the assessment studies. We conclude that IFE has the potential of producing technically credible designs with environmental, safety, and economics characteristics that are just as attractive as magnetic fusion. Realizing this potential will require additional research and development on target physics, chamber design, target production and injection systems, and drivers. ((orig.))

  3. Compact magnetic fusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Linford, R.K.

    1983-12-01

    If the core (first wall, blanket, shield, and magnet coils) of fusion reactor systems could be made smaller in mass and volume for a given net electric power output than is usually predicted for the mainline tokamak/sup 1/ and mirror concepts, the cost of the technological development of the core and the construction of power plants might be significantly reduced. Although progress in plasma physics and engineering approaches should continue to yield improvements in reactor designs, certain physics features of the mainline concepts may prevent major reductions in the size of the core without straining the limits of technology. However, more than a factor of ten reduction in volume and mass of the core, at constant output power, may be possible for a class of toroidal confinement concepts in which the confining magnetic fields are supported more by currents flowing in the plasma than those in the external coils. In spite of this dramatic increase in power density (ratio of total thermal output power to the volume of the core), the design of compact systems need not rely on any materials requirements that are qualitatively more difficult than those proposed for the lower-power-density mainline fusion concepts. In some respects compact systems require less of an extension of existing technology, e.g. magnetics.

  4. Compact magnetic fusion systems

    International Nuclear Information System (INIS)

    Linford, R.K.

    1983-01-01

    If the core (first wall, blanket, shield, and magnet coils) of fusion reactor systems could be made smaller in mass and volume for a given net electric power output than is usually predicted for the mainline tokamak 1 and mirror concepts, the cost of the technological development of the core and the construction of power plants might be significantly reduced. Although progress in plasma physics and engineering approaches should continue to yield improvements in reactor designs, certain physics features of the mainline concepts may prevent major reductions in the size of the core without straining the limits of technology. However, more than a factor of ten reduction in volume and mass of the core, at constant output power, may be possible for a class of toroidal confinement concepts in which the confining magnetic fields are supported more by currents flowing in the plasma than those in the external coils. In spite of this dramatic increase in power density (ratio of total thermal output power to the volume of the core), the design of compact systems need not rely on any materials requirements that are qualitatively more difficult than those proposed for the lower-power-density mainline fusion concepts. In some respects compact systems require less of an extension of existing technology, e.g. magnetics

  5. Mechanical technology unique to laser fusion experimental systems

    International Nuclear Information System (INIS)

    Hurley, C.A.

    1980-01-01

    Hardware design for laser fusion experimental machines has led to a combination of engineering technologies that are critical to the successful operation of these machines. These large opto-mechanical systems are dependent on extreme cleanliness, accommodation to efficient maintenance, and high stability. These three technologies are the primary mechanical engineering criteria for laser fusion devices

  6. Aspects of safety and reliability for fusion magnet systems first annual report

    International Nuclear Information System (INIS)

    Powell, J.

    1976-01-01

    General systems aspects of fusion magnet safety are examined first, followed by specific detailed analyses covering structural, thermal, electrical, and other aspects of fusion magnet safety. The design examples chosen for analysis are illustrative and are not intended to be definitive, since fusion magnet designs are rapidly evolving. Included is a comprehensive collection of design and operating data relating to the safety of existing superconducting magnet systems. The remainder of the overview lists the main conclusions developed from the work to date. These should be regarded as initial steps. Since this study has concentrated on examining potential safety concerns, it may tend to overemphasize the problems of fusion magnets. In fact, many aspects of fusion magnets are well developed and are consistent with good safety practice. A short summary of the findings of this study is given

  7. Fission--fusion systems: classification and critique

    International Nuclear Information System (INIS)

    Lidsky, L.M.

    1974-01-01

    A useful classification scheme for hybrid systems is described and some common features that the scheme makes apparent are pointed out. The early history of fusion-fission systems is reviewed. Some designs are described along with advantages and disadvantages of each. The extension to low and moderate Q devices is noted. (U.S.)

  8. Conceptual design study of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1986-11-01

    Since 1980 the design study has been conducted at JAERI for the Fusion Experimental Reactor (FER) which has been proposed to be the next machine to JT-60 in the Japanese long term program of fusion reactor development. During two years from 1984 to 1985 FER concept was reviewed and redesigned. This report is the summary of the results obtained in the review and redesign activities in 1984 and 85. In the first year FER concept was discussed again and its frame work was reestablished. According to the new frame work the major reactor components of FER were designed. In the second year the whole plant system design including plant layout plan was conducted as well as the more detailed design analysis of the reactor conponents. The newly established frame for FER design is as follows: 1) Plasma : Self-ignition. 2) Operation scenario : Quasi-steady state operation with long burn pulse. 3) Neutron fluence on the first wall : 0.3 MWY/M 2 . 4) Blanket : Non-tritium breeding blanket with test modules for breeding blanket development. 5) Magnets : Superconducting Magnets. (author)

  9. Design concept of control system for cryogenic distillation columns of fusion reactor

    International Nuclear Information System (INIS)

    Yamanishi, Toshihiko; Okuno, Kenji

    1993-09-01

    Control systems were designed for cryogenic distillation columns in the main fuel cycle and the breeder blanket interface systems of fusion reactors. Three basic control modes were proposed for the column whose top product was more important; the column whose bottom product is more important; and the column having a feed back stream. The key component in the important product stream was selected for each column, and the analysis method for measurement of this key component was discussed. Some of the columns need the gas chromatography as the analysis instrument of the control system. The time required for the measurement of product purity by the gas chromatography considerably affects the stability of the control system. A significant conclusion is that permissible time is about 20 min. It is possible to complete the measurement within 20 minute by the gas chromatography. The gas chromatography is applicable for the control system of the column. (author)

  10. Radiological design criteria for fusion power test facilities

    International Nuclear Information System (INIS)

    Singh, M.S.; Campbell, G.W.

    1982-01-01

    The quest for fusion power and understanding of plasma physics has resulted in planning, design, and construction of several major fusion power test facilities, based largely on magnetic and inertial confinement concepts. We have considered radiological design aspects of the Joint European Torus (JET), Livermore Mirror and Inertial Fusion projects, and Princeton Tokamak. Our analyses on radiological design criteria cover acceptable exposure levels at the site boundary, man-rem doses for plant personnel and population at large, based upon experience gained for the fission reactors, and on considerations of cost-benefit analyses

  11. Fusion reactor design: On the road to commercialization

    International Nuclear Information System (INIS)

    Kulcinski, G.L.

    1984-01-01

    The worldwide effort in fusion is now approximately 2 billion dollars per year and over 12 billion dollars has been invested since 1951 in developing this energy source for the 21st century. A vital component of the past efforts in fusion research has been the conceptual design activities performed by scientists and engineers around the world. Almost 80 such major designs of Tokamak, Mirror, Laser and Ion Beam Reactors have been published and this article discusses how recent conceptual designs have afftected our perception of future fusion reactor performance. (orig.) [de

  12. High temperature fusion reactor design

    International Nuclear Information System (INIS)

    Harkness, S.D.; dePaz, J.F.; Gohar, M.Y.; Stevens, H.C.

    1979-01-01

    Fusion energy may have unique advantages over other systems as a source for high temperature process heat. A conceptual design of a blanket for a 7 m tokamak reactor has been developed that is capable of producing 1100 0 C process heat at a pressure of approximately 10 atmospheres. The design is based on the use of a falling bed of MgO spheres as the high temperature heat transfer system. By preheating the spheres with energy taken from the low temperature tritium breeding part of the blanket, 1086 MW of energy can be generated at 1100 0 C from a system that produces 3000 MW of total energy while sustaining a tritium breeding ratio of 1.07. The tritium breeding is accomplished using Li 2 O modules both in front of (6 cm thick) and behind (50 cm thick) the high temperature ducts. Steam is used as the first wall and front tritium breeding module coolant while helium is used in the rear tritium breeding region. The system produces 600 MW of net electricity for use on the grid

  13. Design and Testing of the Fusion Virtual Assembly System FVAS1.0

    International Nuclear Information System (INIS)

    Pengcheng Long; Songlin Liu; Yican Wu

    2006-01-01

    Virtual assembly (VA), utilizing virtual reality (VR) technologies to plan and evaluate assembly process, retains the benefits (time-saving, inexpensive and no hazardous) of VR technologies and conquers the shortcoming of physical prototypes, such as long circle, high cost, low precision, and so on. Presented in this paper is the Fusion Virtual Assembly System FVAS 1.0 that makes possible engineering application for assemblies of large-scale complex nuclear facilities. FVAS 1.0 is designed to support the planning, evaluation and demonstration of assembly process, and training assemblers, and to work on PC (personal computer) platform. In this paper, architecture and main features of FVAS are introduced firstly. Then, design of the key sections (such as collision detection, virtual roaming) are described in detail. Finally, some successful application cases are presented. To enhance the real-time performance for large-scale nuclear facilities simulation, a policy based on separation of display scene and collision detection scene has been adopted. The display scene can be predigested to reduce the time of scene refreshment, and the collision detection performance is greatly improved by using the mature interference check ability of commercial CAD systems. Convenient observation mechanism brings more practicability. So a multi-viewpoints roaming scheme has been utilized to facilitate users' assembly operation. Users can obtain much optical information from multiple angles by switching between multi-viewpoints. The ESAT superconducting tokamak is characterized by large volume, complicated constitution and high assembly precision, e.g. the strict precision requirement in the assembly for the three tori (the tori of vacuum vessel, thermal shield, and toroidal coil). FVAS 1.0 has succeeded in demonstrating the assembly process of ESAT components. Furthermore, FVAS 1.0 has been applied to evaluate FDS-I (Fusion-Driven Sub-critical system) concept from assembly point of

  14. Improved Controls for Fusion RF Systems. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Jeffrey A. [Rockfield Research Inc., Las Vegas, NV (United States)

    2011-11-08

    We have addressed the specific requirements for the integrated systems controlling an array of klystrons used for Lower Hybrid Current Drive (LHCD). The immediate goal for our design was to modernize the transmitter protection system (TPS) for LHCD on the Alcator C-Mod tokamak at the MIT Plasma Science and Fusion Center (MIT-PSFC). Working with the Alcator C-Mod team, we have upgraded the design of these controls to retrofit for improvements in performance and safety, as well as to facilitate the upcoming expansion from 12 to 16 klystrons. The longer range goals to generalize the designs in such a way that they will be of benefit to other programs within the international fusion effort was met by designing a system which was flexible enough to address all the MIT system requirements, and modular enough to adapt to a large variety of other requirements with minimal reconfiguration.

  15. Improved Controls for Fusion RF Systems. Final technical report

    International Nuclear Information System (INIS)

    Casey, Jeffrey A.

    2011-01-01

    We have addressed the specific requirements for the integrated systems controlling an array of klystrons used for Lower Hybrid Current Drive (LHCD). The immediate goal for our design was to modernize the transmitter protection system (TPS) for LHCD on the Alcator C-Mod tokamak at the MIT Plasma Science and Fusion Center (MIT-PSFC). Working with the Alcator C-Mod team, we have upgraded the design of these controls to retrofit for improvements in performance and safety, as well as to facilitate the upcoming expansion from 12 to 16 klystrons. The longer range goals to generalize the designs in such a way that they will be of benefit to other programs within the international fusion effort was met by designing a system which was flexible enough to address all the MIT system requirements, and modular enough to adapt to a large variety of other requirements with minimal reconfiguration

  16. Conceptual design of laser fusion reactor KOYO-fast

    International Nuclear Information System (INIS)

    Tomabechi, K.; Kozaki, Y.; Norimatsu, T.

    2006-01-01

    A conceptual design of the laser fusion reactor KOYO-F based on the fast ignition scheme is reported including the target design, the laser system and the design for chamber. A Yb-YAG ceramic laser operated at 200 K is the primary candidate for the compression laser and an OPCPA (optical parametric chirped pulse amplification) system is the one for the ignition laser. The chamber is basically a wet wall type but the fire position is vertically off-set to simplify the protection scheme of the ceiling. The target consists of foam insulated, cryogenic DT shells with a LiPb, reentrant guide-cone. (authors)

  17. Maximal design basis accident of fusion neutron source DEMO-TIN

    Energy Technology Data Exchange (ETDEWEB)

    Kolbasov, B. N., E-mail: Kolbasov-BN@nrcki.ru [National Research Center Kurchatov Institute (Russian Federation)

    2015-12-15

    When analyzing the safety of nuclear (including fusion) facilities, the maximal design basis accident at which the largest release of activity is expected must certainly be considered. Such an accident is usually the failure of cooling systems of the most thermally stressed components of a reactor (for a fusion facility, it is the divertor or the first wall). The analysis of safety of the ITER reactor and fusion power facilities (including hybrid fission–fusion facilities) shows that the initial event of such a design basis accident is a large-scale break of a pipe in the cooling system of divertor or the first wall outside the vacuum vessel of the facility. The greatest concern is caused by the possibility of hydrogen formation and the inrush of air into the vacuum chamber (VC) with the formation of a detonating mixture and a subsequent detonation explosion. To prevent such an explosion, the emergency forced termination of the fusion reaction, the mounting of shutoff valves in the cooling systems of the divertor and the first wall or blanket for reducing to a minimum the amount of water and air rushing into the VC, the injection of nitrogen or inert gas into the VC for decreasing the hydrogen and oxygen concentration, and other measures are recommended. Owing to a continuous feed-out of the molten-salt fuel mixture from the DEMO-TIN blanket with the removal period of 10 days, the radioactivity release at the accident will mainly be determined by tritium (up to 360 PBq). The activity of fission products in the facility will be up to 50 PBq.

  18. Managing the fusion burn to improve symbiotic system performance

    International Nuclear Information System (INIS)

    Renier, J.P.; Martin, J.G.

    1979-01-01

    Symbiotic power systems, in which fissile fuel is produced in fusion-powered factories and burned in thermal reactors characterized by high conversion ratios, constitute an interesting near-term fusion application. It is shown that the economic feasibility of such systems depend on adroit management of the fusion burn. The economics of symbiotes is complex: reprocessing and fabrication of the fusion reactor blankets are important components of the production cost of fissile fuel, but burning fissile material in the breeder blanket raises overall costs and lowers the support ratio. Analyses of factories which assume that the fusion power is constant during an irradiation cycle underestimate their potential. To illustrate the effect of adroit engineering of the fusion burn, this paper analyzes systems based on D-T and semi-catalyzed D-D fusion-powered U-233 breeders. To make the D-T symbiote self-sufficient, tritium is bred in separate lithium blankets designed so as to minimize overall costs. All blankets are assumed to have spherical geometry, with 85% closure. Neutronics depletion calculations were performed with a revised version of the discrete ordinates code XSDRN-PM, using multigroup (100 neutron, 21 gamma-ray groups) coupled cross-section libraries

  19. Conceptual design study for a laser fusion hybrid

    International Nuclear Information System (INIS)

    Maniscalco, J.A.

    1976-01-01

    Lawrence Livermore Laboratory and Bechtel Corporation have been involved in a joint effort to conceptually design a laser fusion hybrid reactor. The design which has evolved is a depleted-uranium fueled fast-fission blanket which produces fissile plutonium and electricity. A major objective of the design study was to evaluate the feasibility of producing fissile fuel with laser fusion. This feasibility evaluation was carried out by analyzing the integrated engineering performance of the complete conceptual design and by identifying the required laser/pellet performance. The performance of the laser fusion hybrid has also been compared to a typical fast breeder reactor. The results show that the laser fusion hybrid produces enough fissile material to fuel more than six light water reactors (LWRs) of equivalent thermal power while operating in a regime which requires an order of magnitude less laser and pellet performance than pure laser fusion. In comparison to a fast breeder reactor the hybrid produces 10 times more fissile fuel. An economic analysis of the design shows that the cost of electricity in a combined hybrid-LWR scenario increases by only 20 to 40 percent when the capital cost of the hybrid ranges from 2 to 3 times more than an LWR

  20. Conceptual design study for a laser fusion hybrid

    International Nuclear Information System (INIS)

    Maniscalco, J.A.

    1976-09-01

    Lawrence Livermore Laboratory and Bechtel Corporation have been involved in a joint effort to conceptually design a laser fusion hybrid reactor. The design which has evolved is a depleted-uranium fueled fast-fission blanket which produces fissile plutonium and electricity. A major objective of the design study was to evaluate the feasibility of producing fissile fuel with laser fusion. This feasibility evaluation was carried out by analyzing the integrated engineering performance of the complete conceptual design and by identifying the required laser/pellet performance. The performance of the laser fusion hybrid has also been compared to a typical fast breeder reactor. The results show that the laser fusion hybrid produces enough fissile material to fuel more than six light water reactors (LWR's) of equivalent thermal power while operating in a regime which requires an order of magnitude less laser and pellet performance than pure laser fusion. In comparison to a fast breeder reactor the hybrid produces 10 times more fissile fuel. An economic analysis of the design shows that the cost of electricity in a combined hybrid-LWR scenario is insensitive to the capital cost of the hybrid, increasing by only 20 to 40 percent when the capital cost of the hybrid ranges from 2 to 3 times more than an LWR

  1. A design of steady state fusion burner

    International Nuclear Information System (INIS)

    Hasegawa, Akira; Hatori, Tadatsugu; Itoh, Kimitaka; Ikuta, Takashi; Kodama, Yuji.

    1975-01-01

    We present a brief design of a steady state fusion burner in which a continuous burning of nuclear fuel may be achieved with output power of a gigawatt. The laser fusion is proposed to ignite the fuel. (auth.)

  2. Conceptual design study for a mirror fusion breeder

    International Nuclear Information System (INIS)

    Huang Jinhua; Deng Boquan; Li Guiqing

    1986-01-01

    A mirror fusion breeder, CHD, has been designed for providing plenty of nuclear fuel for light water reactors to meet the needs for rapid development of nuclear power in the first half of next century. The breeder is able to support the nuclear fuel needs for more than 10 LWRs of equal scale in power with fuel enriched directly in CHD without reprocessing. Measures are taken to flatten the power density distribution in the blanket so that fission is suppressed in the region close to the plasma, and by this way fuel production is enhanced for this direct enriched fusion breeder. In order to reduce the MHD pressure drop, LiPb flows in the blanket axially. Though the tritium inventory in the reactor is very low, special material and design have to be developed to reduce the permeation of tritium through the coolant pipes. The cost of electricity from the system, consisting of 11 LWR plants and one fusion breeder is predicted to be 1.05 times of that from a traditional LWR plant. This figure is insensitive both to the cost of CHD and its support ratio

  3. Tritium pellet injector design for tokamak fusion test reactor

    International Nuclear Information System (INIS)

    Fisher, P.W.; Baylor, L.R.; Bryan, W.E.

    1985-01-01

    A tritium pellet injector (TPI) system has been designed for the Tokamak Fusion Test Reactor (TFTR) Q approx. 1 phase of operation. The injector gun utilizes a radial design with eight independent barrels and a common extruder to minimize tritium inventory. The injection line contains guide tubes with intermediate vacuum pumping stations and fast valves to minimize propellant leakage to the torus. The vacuum system is designed for tritium compatibility. The entire injector system is contained in a glove box for secondary containment protection against tritium release. Failure modes and effects have been analyzed, and structural analysis has been performed for most intense predicted earthquake conditions. Details of the design and operation of this system are presented in this paper

  4. Optical design and analysis of carbon dioxide laser fusion systems using interferometry and fast Fourier transform techniques

    International Nuclear Information System (INIS)

    Viswanathan, V.K.

    1979-01-01

    The optical design and analysis of the LASL carbon dioxide laser fusion systems required the use of techniques that are quite different from the currently used method in conventional optical design problems. The necessity for this is explored and the method that has been successfully used at Los Alamos to understand these systems is discussed with examples. This method involves characterization of the various optical components in their mounts by a Zernike polynomial set and using fast Fourier transform techniques to propagate the beam, taking diffraction and other nonlinear effects that occur in these types of systems into account. The various programs used for analysis are briefly discussed

  5. Fusion systems engineering

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Information is given on each of the following topics: (1) fusion reactor systems studies, (2) development of blanket processing technology for fusion reactors, (3) safety studies of CTR concepts, and (4) cross section measurements and techniques

  6. Overview of Fusion-Fission Hybrid Reactor Design Study in China

    International Nuclear Information System (INIS)

    Huang Jinhua; Feng Kaiming; Deng Baiquan; Deng, P.Zh.; Zhang Guoshu; Hu Gang; He Kaihui; Wu Yican; Qiu Lijian; Huang Qunying; Xiao Bingjia; Liu Xiaoping; Chen Yixue; Kong, M.H.

    2002-01-01

    The motivation for developing fusion-fission hybrid reactors is discussed in the context of electricity power requirements by 2050 in China. A detailed conceptual design of the Fusion Experimental Breeder (FEB) was developed from 1986-1995. The FEB has a subignited tokamak fusion core with a major radius of 4.0 m, a fusion power of 145 MW, and a fusion energy gain Q of 3. Based on this, an engineering outline design study of the FEB, FEB-E, has been performed. This design study is a transition from conceptual to engineering design in this research. The main results beyond that given in the detailed conceptual design are included in this paper, namely, the design studies of the blanket, divertor, test blanket, and tritium and environment issues. In-depth analyses have been performed to support the design. Studies of related advanced concepts such as the waste transmutation blanket concept and the spherical tokamak core concept are also presented

  7. Vacuum system design and tritium inventory for the charge exchange diagnostic on the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Medley, S.S.

    1986-01-01

    The application of charge exchange analyzers for the measurement of ion temperature in fusion plasma experiments requires a direct connection between the diagnostic and plasma-discharge vacuum chambers. Differential pumping of the gas load from the diagnostic stripping cell operated at > or approx. = 10 -3 Torr is required to maintain the analyzer chamber at a pressure of -6 Torr. The migration of gases between the diagnostic and plasma vacuum chambers must be minimized. In particular, introduction of the analyzer stripping cell gas into the plasma chamber having a base pressure of -8 Torr must be suppressed. The charge exchange diagnostic for the Tokamak Fusion Test Reactor (TFTR) is comprised of two analyzer systems designed to contain a total of 18 independent mass/energy analyzers and one diagnostic neutral beam rated at 80 keV, 15 A. The associated arrays of multiple, interconnected vacuum systems were analyzed using the Vacuum System Transient Simulator (Vsts) computer program which models the transient transport of multigas species through complex networks of ducts, valves, traps, vacuum pumps, and other related vacuum system components. In addition to providing improved design performance at reduced costs, the analysis yields estimates for the exchange of tritium from the torus to the diagnostic components and of the diagnostic working gases to the torus

  8. Challenges of designing fusion reactors for remote maintainability

    International Nuclear Information System (INIS)

    Masson, L.S.

    1981-01-01

    One of the major problems faced by the fusion community is the development of the high level of reliability required to assure that fusion will be a viable commercial power source. Much of the responsibility for solving this problem falls directly on the designer in developing concepts that have a high level of maintainability for the next generation engineering oriented reactors; and long range, in developing full maintainability for the more complicated commercial concepts with their required high level of on-line time. The near-term challenge will include development of unique design concepts to perform inspection, maintenance, replacement, and testing under the stringent conditions imposed by the next generation engineering oriented machines. The long range challenge will focus on basic design concepts that will enable the full maintainability required by commercial fusion. In addition to the purely technical challenges, the fusion community is also faced with the problem of developing programmatic means to assure that reactor maintenance issues are given proper and timely emphasis as the nuclear phase of fusion is approached

  9. New concepts for controlled fusion reactor blanket design

    International Nuclear Information System (INIS)

    Conn, R.W.; Kulcinski, G.L.; Avci, H.; El-Maghrabi, M.

    1975-01-01

    Several new concepts for fusion reactor blanket design based on the idea of shifting, or tailoring, the neutron spectrum incident on the first structural wall are presented. The spectral shifter is a nonstructural element which can be made of graphite, silicon carbide, or three dimensionally woven carbon fibers (and containing other materials as appropriate) placed between the neutron source and the first structural wall. The softened neutron spectrum incident on the structural components leads to lower gas production and atom displacement rates than in more standard fusion blanket designs. In turn, this results in longer anticipated lifetimes for the structural materials and can significantly reduce radioactivity and afterheat levels. In addition, the neutron spectrum in the first structural wall can be made to approach the flux shape in fast breeder reactors. Such spectral softening means that existing radiation facilities may be more profitably used to provide relevant materials radiation damage data for the structural materials in these fusion blanket designs. This general class of blanket concepts are referred to as internal spectral shifter and energy converter, or ISSEC concepts. These specific design concepts fall into three main categories: ISSEC/EB concepts based on utilizing existing designs which breed tritium behind the first structural wall; ISSEC/IB concepts based on breeding tritium inside the first vacuum wall; and ISSEC/Bu concepts based on using boron, carbon, and perhaps, beryllium to obtain an energy multiplier and converter design that does not attempt to breed tritium or utilize lithium. The detailed analyses relate specifically to the nuclear performance of ISSEC systems and to a discussion of materials radiation damage problems in the structural material.(U.S.)

  10. Preconceptual design of hyfire. A fusion driven high temperature electrolysis plant

    International Nuclear Information System (INIS)

    Varljen, T.C.; Chi, J.W.H.; Karbowski, J.S.

    1983-01-01

    Brookhaven National Laboratory has been engaged in a scoping study to investigate the potential merits of coupling a fusion reactor with a high temperature blanket to a high temperature electrolysis (HTE) process to produce hydrogen and oxygen. Westinghouse is assisting this study in the areas of systems design integration, plasma engineering, balance of plant design and electrolyzer technology. The aim of the work done in the past year has been to focus on a reference design point for the plant, which has been designated HYFIRE. In prior work, the STARFIRE commercial tokamak fusion reactor was directly used as the fusion driver. This report describes a new design obtained by scaling the basic STARFIRE design to permit the achievement of a blanket power of 6000 MWt. The high temperature blanket design employs a thermally insulated refractory oxide region which provides high temperature (>1000 deg. C) steam at moderate pressures to high temperature electrolysis units. The electrolysis process selected is based on the high temperature, solid electrolyte fuel cell technology developed by Westinghouse. An initial process design and plant layout has been completed; component cost and plant economics studies are now underway to develop estimates of hydrogen production costs and to determine the sensitivity of this cost to changes in major design parameters. (author)

  11. Public acceptance of fusion energy and scientific feasibility of a fusion reactor. Design of inductively driven long pulse tokamak reactors: IDLT

    International Nuclear Information System (INIS)

    Ogawa, Yuichi

    1998-01-01

    Based on scientific data based adopted for designing ITER plasmas and on the advancement of fusion nuclear technology from the recent R and D program, the scientific feasibility of inductively-driven tokamak fusion reactors is studied. A low wall-loading DEMO fusion reactor is designed, which utilizes an austenitic stainless steel in conjunction with significant data bases and operating experiences, since we have given high priority to the early and reliable realization of a tokamak fusion plasma over the cost performance. Since the DEMO reactor with the relatively large volume (i.e., major radius of 10 m) is employed, plasma ignition is achievable with a low fusion power of 0.8 GW, and an operation period of 4 - 5 hours is available only with inductive current drive. Disadvantages of pulsed operation in commercial fusion reactors include fatigue in structural materials and the necessity of an energy storage system to compensate the electric power during the dwell time. To overcome these disadvantages, a pulse length is prolonged up to about 10 hours, resulting in the remarkable reduction of the total cycle number to 10 4 during the life of the fusion plant. (author)

  12. Advances in fusion reactor design

    International Nuclear Information System (INIS)

    Baker, C.C.

    1987-01-01

    The author addresses the tokamak as a power reactor. Contrary to popular opinion, there are still a few people that think a tokamak might make a good fusion power reactor. In thinking about advances in fusion reactor design, in the U.S., at least, that generally means advances relevant to the Starfire design. He reviews some of the features of Starfire. Starfire is the last major study done of the tokamak as a reactor in this country. It is now over eight years old in the sense that eight years ago was really the time in which major decisions were made as to its features. Starfire was a tokamak with a major radius of seven meters, about twice the linear dimensions of a machine like TIBER

  13. Multimodal biometric system using rank-level fusion approach.

    Science.gov (United States)

    Monwar, Md Maruf; Gavrilova, Marina L

    2009-08-01

    In many real-world applications, unimodal biometric systems often face significant limitations due to sensitivity to noise, intraclass variability, data quality, nonuniversality, and other factors. Attempting to improve the performance of individual matchers in such situations may not prove to be highly effective. Multibiometric systems seek to alleviate some of these problems by providing multiple pieces of evidence of the same identity. These systems help achieve an increase in performance that may not be possible using a single-biometric indicator. This paper presents an effective fusion scheme that combines information presented by multiple domain experts based on the rank-level fusion integration method. The developed multimodal biometric system possesses a number of unique qualities, starting from utilizing principal component analysis and Fisher's linear discriminant methods for individual matchers (face, ear, and signature) identity authentication and utilizing the novel rank-level fusion method in order to consolidate the results obtained from different biometric matchers. The ranks of individual matchers are combined using the highest rank, Borda count, and logistic regression approaches. The results indicate that fusion of individual modalities can improve the overall performance of the biometric system, even in the presence of low quality data. Insights on multibiometric design using rank-level fusion and its performance on a variety of biometric databases are discussed in the concluding section.

  14. Conceptual design and issues of the laser inertial fusion test (LIFT) reactor—targets and chamber systems

    Science.gov (United States)

    Norimatsu, T.; Kozaki, Y.; Shiraga, H.; Fujita, H.; Okano, K.; Members of LIFT Design Team

    2017-11-01

    We present the conceptual design of an experimental laser fusion plant known as the laser inertial fusion test (LIFT) reactor. The conceptual design aims at technically connecting a single-shot experiment and a commercial power plant. The LIFT reactor is designed on a three-phase scheme, where each phase has specific goals and the dedicated chambers of each phase are driven by the same laser. Technical issues related to the chamber technology including radiation safety to repeat burst mode operation are discussed in this paper.

  15. Osiris and SOMBRERO inertial confinement fusion power plant designs. Volume 2, Designs, assessments, and comparisons, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W.R.; Bieri, R.L.; Monsler, M.J.

    1992-03-01

    The primary objective of the of the IFE Reactor Design Studies was to provide the Office of Fusion Energy with an evaluation of the potential of inertial fusion for electric power production. The term reactor studies is somewhat of a misnomer since these studies included the conceptual design and analysis of all aspects of the IFE power plants: the chambers, heat transport and power conversion systems, other balance of plant facilities, target systems (including the target production, injection, and tracking systems), and the two drivers. The scope of the IFE Reactor Design Studies was quite ambitious. The majority of our effort was spent on the conceptual design of two IFE electric power plants, one using an induction linac heavy ion beam (HIB) driver and the other using a Krypton Fluoride (KrF) laser driver. After the two point designs were developed, they were assessed in terms of their (1) environmental and safety aspects; (2) reliability, availability, and maintainability; (3) technical issues and technology development requirements; and (4) economics. Finally, we compared the design features and the results of the assessments for the two designs.

  16. Materials design data for fusion reactors

    International Nuclear Information System (INIS)

    Tavassoli, A.A.F.

    1998-01-01

    Design data needed for fusion reactors are characterized by the diversity of materials and the complexity of loading situations found in these reactors. In addition, advanced fabrication techniques, such as hot isostatic pressing, envisaged for fabrication of single and multilayered in-vessel components, could significantly change the original materials properties for which the current design rules are written. As a result, additional materials properties have had to be generated for fusion reactors and new structural design rules formulated. This paper recalls some of the materials properties data generated for ITER and DEMO, and gives examples of how these are converted into design criteria. In particular, it gives specific examples for the properties of 316LN-IG and modified 9Cr-1Mo steels, and CuCrZr alloy. These include, determination of tension, creep, isochronous, fatigue, and creep-fatigue curves and their analysis and conversion into design limits. (orig.)

  17. Materials design data for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A.A.F. [CEA Commissariat a l`Energie Atomique, Gif sur Yvette (France). CEREM

    1998-10-01

    Design data needed for fusion reactors are characterized by the diversity of materials and the complexity of loading situations found in these reactors. In addition, advanced fabrication techniques, such as hot isostatic pressing, envisaged for fabrication of single and multilayered in-vessel components, could significantly change the original materials properties for which the current design rules are written. As a result, additional materials properties have had to be generated for fusion reactors and new structural design rules formulated. This paper recalls some of the materials properties data generated for ITER and DEMO, and gives examples of how these are converted into design criteria. In particular, it gives specific examples for the properties of 316LN-IG and modified 9Cr-1Mo steels, and CuCrZr alloy. These include, determination of tension, creep, isochronous, fatigue, and creep-fatigue curves and their analysis and conversion into design limits. (orig.) 19 refs.

  18. Flow design and simulation of a gas compression system for hydrogen fusion energy production

    Energy Technology Data Exchange (ETDEWEB)

    Avital, E J; Salvatore, E [School of Engineering and Materials Science, Queen Mary University of London, Mile End Rd London E1 4NS (United Kingdom); Munjiza, A [Civil Engineering, University of Split, Livanjska 2100 Split (Croatia); Suponitsky, V; Plant, D; Laberge, M, E-mail: e.avital@qmul.ac.uk [General Fusion Inc.,108-3680 Bonneville Place, Burnaby, BC V3N 4T5 (Canada)

    2017-08-15

    An innovative gas compression system is proposed and computationally researched to achieve a short time response as needed in engineering applications such as hydrogen fusion energy reactors and high speed hammers. The system consists of a reservoir containing high pressure gas connected to a straight tube which in turn is connected to a spherical duct, where at the sphere’s centre plasma resides in the case of a fusion reactor. Diaphragm located inside the straight tube separates the reservoir’s high pressure gas from the rest of the plenum. Once the diaphragm is breached the high pressure gas enters the plenum to drive pistons located on the inner wall of the spherical duct that will eventually end compressing the plasma. Quasi-1D and axisymmetric flow formulations are used to design and analyse the flow dynamics. A spike is designed for the interface between the straight tube and the spherical duct to provide a smooth geometry transition for the flow. Flow simulations show high supersonic flow hitting the end of the spherical duct, generating a return shock wave propagating upstream and raising the pressure above the reservoir pressure as in the hammer wave problem, potentially giving temporary pressure boost to the pistons. Good agreement is revealed between the two flow formulations pointing to the usefulness of the quasi-1D formulation as a rapid solver. Nevertheless, a mild time delay in the axisymmetric flow simulation occurred due to moderate two-dimensionality effects. The compression system is settled down in a few milliseconds for a spherical duct of 0.8 m diameter using Helium gas and a uniform duct cross-section area. Various system geometries are analysed using instantaneous and time history flow plots. (paper)

  19. Flow design and simulation of a gas compression system for hydrogen fusion energy production

    Science.gov (United States)

    Avital, E. J.; Salvatore, E.; Munjiza, A.; Suponitsky, V.; Plant, D.; Laberge, M.

    2017-08-01

    An innovative gas compression system is proposed and computationally researched to achieve a short time response as needed in engineering applications such as hydrogen fusion energy reactors and high speed hammers. The system consists of a reservoir containing high pressure gas connected to a straight tube which in turn is connected to a spherical duct, where at the sphere’s centre plasma resides in the case of a fusion reactor. Diaphragm located inside the straight tube separates the reservoir’s high pressure gas from the rest of the plenum. Once the diaphragm is breached the high pressure gas enters the plenum to drive pistons located on the inner wall of the spherical duct that will eventually end compressing the plasma. Quasi-1D and axisymmetric flow formulations are used to design and analyse the flow dynamics. A spike is designed for the interface between the straight tube and the spherical duct to provide a smooth geometry transition for the flow. Flow simulations show high supersonic flow hitting the end of the spherical duct, generating a return shock wave propagating upstream and raising the pressure above the reservoir pressure as in the hammer wave problem, potentially giving temporary pressure boost to the pistons. Good agreement is revealed between the two flow formulations pointing to the usefulness of the quasi-1D formulation as a rapid solver. Nevertheless, a mild time delay in the axisymmetric flow simulation occurred due to moderate two-dimensionality effects. The compression system is settled down in a few milliseconds for a spherical duct of 0.8 m diameter using Helium gas and a uniform duct cross-section area. Various system geometries are analysed using instantaneous and time history flow plots.

  20. Qualitative Reliability Issues for Solid and Liquid Wall Fusion Design

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, Lee Charles

    2001-01-01

    This report is an initial effort to identify issues affecting reliability and availability of solid and liquid wall designs for magnetic fusion power plant designs. A qualitative approach has been used to identify the possible failure modes of major system components and their effects on the systems. A general set of design attributes known to affect the service reliability has been examined for the overview solid and liquid wall designs, and some specific features of good first wall design have been discussed and applied to these designs as well. The two generalized designs compare well in regard to these design attributes. The strengths and weaknesses of each design approach are seen in the comparison of specific features.

  1. Qualitative Reliability Issues for Solid and Liquid Wall Fusion Designs

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, L.C.

    2001-01-31

    This report is an initial effort to identify issues affecting reliability and availability of solid and liquid wall designs for magnetic fusion power plant designs. A qualitative approach has been used to identify the possible failure modes of major system components and their effects on the systems. A general set of design attributes known to affect the service reliability has been examined for the overview solid and liquid wall designs, and some specific features of good first wall design have been discussed and applied to these designs as well. The two generalized designs compare well in regard to these design attributes. The strengths and weaknesses of each design approach are seen in the comparison of specific features.

  2. Qualitative Reliability Issues for Solid and Liquid Wall Fusion Designs

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    2001-01-01

    This report is an initial effort to identify issues affecting reliability and availability of solid and liquid wall designs for magnetic fusion power plant designs. A qualitative approach has been used to identify the possible failure modes of major system components and their effects on the systems. A general set of design attributes known to affect the service reliability has been examined for the overview solid and liquid wall designs, and some specific features of good first wall design have been discussed and applied to these designs as well. The two generalized designs compare well in regard to these design attributes. The strengths and weaknesses of each design approach are seen in the comparison of specific features

  3. Initial trade and design studies for the fusion engineering device

    International Nuclear Information System (INIS)

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-06-01

    The Magnetic Fusion Energy Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. The Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), initiated a program of trade and design studies in October 1980 to support the selection of the FED concept. This document presents the results of these initial trade and design studies. Based on these results, a baseline configuration has been identified and the Design Center effort for the remainder of the fiscal year will be devoted to the development of a self-consistent FED design description

  4. Mission and design of the Fusion Ignition Research Experiment (FIRE)

    International Nuclear Information System (INIS)

    Meade, D.M.; Jardin, S.C.; Schmidt, J.

    2001-01-01

    Experiments are needed to test and extend present understanding of confinement, macroscopic stability, alpha-driven instabilities, and particle/power exhaust in plasmas dominated by alpha heating. A key issue is to what extent pressure profile evolution driven by strong alpha heating will act to self-organize advanced configurations with large bootstrap current fractions and internal transport barriers. A design study of a Fusion Ignition Research Experiment (FIRE) is underway to assess near term opportunities for advancing the scientific understanding of self-heated fusion plasmas. The emphasis is on understanding the behavior of fusion plasmas dominated by alpha heating (Q≥5) that are sustained for durations comparable to the characteristic plasma time scales (≥20 τ E and ∼τ skin , where τ skin is the time for the plasma current profile to redistribute at fixed current). The programmatic mission of FIRE is to attain, explore, understand and optimize alpha-dominated plasmas to provide knowledge for the design of attractive magnetic fusion energy systems. The programmatic strategy is to access the alpha-heating-dominated regime with confidence using the present advanced tokamak data base (e.g., Elmy-H-mode, ≤0.75 Greenwald density) while maintaining the flexibility for accessing and exploring other advanced tokamak modes (e. g., reversed shear, pellet enhanced performance) at lower magnetic fields and fusion power for longer durations in later stages of the experimental program. A major goal is to develop a design concept that could meet these physics objectives with a construction cost in the range of $1B. (author)

  5. Conceptual design study of fusion experimental reactor (FY86 FER)

    International Nuclear Information System (INIS)

    Saito, Ryusei; Kashihara, Shin-ichiro; Itoh, Shin-ichi

    1987-08-01

    This report describes the results of conceptual design study on plant systems for the Fusion Experimental Reactor (FY86 FER). Design studies for FER plant systems have been continued from FY85, especially for design modifications made in accordance with revisions of plasma scaling parameters and system improvements. This report describes 1) system construction, 2) site and reactor building plan, 3) repaire and maintenance system, 4) tritium circulation system, 5) heating, ventilation and air conditioning system, 6) tritium clean-up system, 7) cooling and baking system, 8) waste treatment and storage system, 9) control system, 10) electric power system, 11) site factory plan, all of which are a part of FY86 design work. The plant systems described in this report generally have been based on the FY86 FER (ACS Reactor) which is an one of the six candidates for FER. (author)

  6. Identifying heavy-ion-beam fusion design and system features with high economic leverage

    International Nuclear Information System (INIS)

    Meier, W.R.; Hogan, W.J.

    1985-01-01

    We have conducted parametric economic studies for heavy-ion-beam fusion electric power plants. We examined the effects on the cost of electricity of several design parameters: maximum achievable chamber pulse rate, driver cost, target gain, and electric conversion efficiency, and net electric power. We found with reasonable assumptions on driver cost, target gain, and electric conversion efficiency, a 2 to 3 GWe heavy-ion-beam fusion power plant, with a chamber pulse rate of 5 to 10 Hz, can be competitive with nuclear and coal power plants

  7. Magnet Design Considerations for Fusion Nuclear Science Facility

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kessel, C. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); El-Guebaly, L. [Univ. of Wisconsin, Madison, WI (United States) Fusion Technology Institute; Titus, P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2016-06-01

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility that provides a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between the International Thermonuclear Experimental Reactor (ITER) and the demonstration power plant (DEMO). Compared with ITER, the FNSF is smaller in size but generates much higher magnetic field, i.e., 30 times higher neutron fluence with three orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center with a plasma major radius of 4.8 m and a minor radius of 1.2 m and a peak field of 15.5 T on the toroidal field (TF) coils for the FNSF. Both low-temperature superconductors (LTS) and high-temperature superconductors (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high-performance ternary restacked-rod process Nb3Sn strands for TF magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high-aspect-ratio rectangular CICC design are evaluated for FNSF magnets, but low-activation-jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. The material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.

  8. Structural materials challenges for fusion power systems

    International Nuclear Information System (INIS)

    Kurtz, Richard J.

    2009-01-01

    Full text: Structural materials in a fusion power system must function in an extraordinarily demanding environment that includes various combinations of high temperatures, reactive chemicals, time-dependent thermal and mechanical stresses, and intense damaging radiation. The fusion neutron environment produces displacement damage equivalent to displacing every atom in the material about 150 times during its expected service life, and changes in chemical composition by transmutation reactions, which includes creation of reactive and insoluble gases. Fundamental materials challenges that must be resolved to effectively harness fusion power include (1) understanding the relationships between material strength, ductility and resistance to cracking, (2) development of materials with extraordinary phase stability, high-temperature strength and resistance to radiation damage, (3) establishment of the means to control corrosion of materials exposed to aggressive environments, (4) development of technologies for large-scale fabrication and joining, and (5) design of structural materials that provide for an economically attractive fusion power system while simultaneously achieving safety and environmental acceptability goals. The most effective approach to solve these challenges is a science-based effort that couples development of physics-based, predictive models of materials behavior with key experiments to validate the models. The U.S. Fusion Materials Sciences program is engaged in an integrated effort of theory, modeling and experiments to develop structural materials that will enable fusion to reach its safety, environmental and economic competitiveness goals. In this presentation, an overview of recent progress on reduced activation ferritic/martensitic steels, nanocomposited ferritic alloys, and silicon carbide fiber reinforced composites for fusion applications will be given

  9. Mirror fusion propulsion system - A performance comparison with alternate propulsion systems for the manned Mars mission

    International Nuclear Information System (INIS)

    Deveny, M.; Carpenter, S.; O'connell, T.; Schulze, N.

    1993-06-01

    The performance characteristics of several propulsion technologies applied to piloted Mars missions are compared. The characteristics that are compared are Initial Mass in Low Earth Orbit (IMLEO), mission flexibility, and flight times. The propulsion systems being compared are both demonstrated and envisioned: Chemical (or Cryogenic), Nuclear Thermal Rocket (NTR) solid core, NTR gas core, Nuclear Electric Propulsion (NEP), and a mirror fusion space propulsion system. The proposed magnetic mirror fusion reactor, known as the Mirror Fusion Propulsion System (MFPS), is described. The description is an overview of a design study that was conducted to convert a mirror reactor experiment at Lawrence Livermore National Lab (LLNL) into a viable space propulsion system. Design principles geared towards minimizing mass and maximizing power available for thrust are identified and applied to the LLNL reactor design, resulting in the MFPS. The MFPS' design evolution, reactor and fuel choices, and system configuration are described. Results of the performance comparison shows that the MFPS minimizes flight time to 60 to 90 days for flights to Mars while allowing continuous return-home capability while at Mars. Total MFPS IMLEO including propellant and payloads is kept to about 1,000 metric tons. 50 refs

  10. Nuclear-thermal-coupled optimization code for the fusion breeding blanket conceptual design

    International Nuclear Information System (INIS)

    Li, Jia; Jiang, Kecheng; Zhang, Xiaokang; Nie, Xingchen; Zhu, Qinjun; Liu, Songlin

    2016-01-01

    Highlights: • A nuclear-thermal-coupled predesign code has been developed for optimizing the radial build arrangement of fusion breeding blanket. • Coupling module aims at speeding up the efficiency of design progress by coupling the neutronics calculation code with the thermal-hydraulic analysis code. • Radial build optimization algorithm aims at optimal arrangement of breeding blanket considering one or multiple specified objectives subject to the design criteria such as material temperature limit and available TBR. - Abstract: Fusion breeding blanket as one of the key in-vessel components performs the functions of breeding the tritium, removing the nuclear heat and heat flux from plasma chamber as well as acting as part of shielding system. The radial build design which determines the arrangement of function zones and material properties on the radial direction is the basis of the detailed design of fusion breeding blanket. For facilitating the radial build design, this study aims for developing a pre-design code to optimize the radial build of blanket with considering the performance of nuclear and thermal-hydraulic simultaneously. Two main features of this code are: (1) Coupling of the neutronics analysis with the thermal-hydraulic analysis to speed up the analysis progress; (2) preliminary optimization algorithm using one or multiple specified objectives subject to the design criteria in the form of constrains imposed on design variables and performance parameters within the possible engineering ranges. This pre-design code has been applied to the conceptual design of water-cooled ceramic breeding blanket in project of China fusion engineering testing reactor (CFETR).

  11. Nuclear-thermal-coupled optimization code for the fusion breeding blanket conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jia, E-mail: lijia@ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui (China); Jiang, Kecheng; Zhang, Xiaokang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, Anhui (China); Nie, Xingchen [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui (China); Zhu, Qinjun; Liu, Songlin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, Anhui (China)

    2016-12-15

    Highlights: • A nuclear-thermal-coupled predesign code has been developed for optimizing the radial build arrangement of fusion breeding blanket. • Coupling module aims at speeding up the efficiency of design progress by coupling the neutronics calculation code with the thermal-hydraulic analysis code. • Radial build optimization algorithm aims at optimal arrangement of breeding blanket considering one or multiple specified objectives subject to the design criteria such as material temperature limit and available TBR. - Abstract: Fusion breeding blanket as one of the key in-vessel components performs the functions of breeding the tritium, removing the nuclear heat and heat flux from plasma chamber as well as acting as part of shielding system. The radial build design which determines the arrangement of function zones and material properties on the radial direction is the basis of the detailed design of fusion breeding blanket. For facilitating the radial build design, this study aims for developing a pre-design code to optimize the radial build of blanket with considering the performance of nuclear and thermal-hydraulic simultaneously. Two main features of this code are: (1) Coupling of the neutronics analysis with the thermal-hydraulic analysis to speed up the analysis progress; (2) preliminary optimization algorithm using one or multiple specified objectives subject to the design criteria in the form of constrains imposed on design variables and performance parameters within the possible engineering ranges. This pre-design code has been applied to the conceptual design of water-cooled ceramic breeding blanket in project of China fusion engineering testing reactor (CFETR).

  12. Fusion in the energy system

    DEFF Research Database (Denmark)

    Fusion energy is the fundamental energy source of the Universe, as the energy of the Sun and the stars are produced by fusion of e.g. hydrogen to helium. Fusion energy research is a strongly international endeavor aiming at realizing fusion energy production in power plants on Earth. Reaching...... of integration into the future electricity system and socio-economic studies of fusion energy will be presented, referring to the programme of Socio-Economic Research on Fusion (SERF) under the European Fusion Energy Agreement (EFDA)....

  13. Directions for reactor target design based on the US heavy ion fusion systems assessment

    International Nuclear Information System (INIS)

    Wilson, D.C.; Dudziak, D.; Magelssen, G.; Zuckerman, D.; Dreimeyer, D.

    1986-01-01

    We studied areas of major uncertainty in target design using the cost of electricity as our figure of merit. Net electric power from the plant was fixed at 1000 MW to eliminate large effects due to economies of scale. The system is relatively insensitive to target gain. Factors of three changes in gain cause only 8 to 12% changes in electricity cost. An increase in the peak power needed to drive targets poses only a small cost risk, but requires many more beamlets be transported to the target. A shortening of the required ion range causes both cost and beamlet difficulties. A factor of 4 decrease in the required range at a fixed driver energy increases electricity cost by 44% and raises the number of beamlets to 240. Finally, the heavy ion fusion system can accommodate large increases in target costs. To address the major uncertainties, target design should concentrate on the understanding requirements for ion range and peak driver power

  14. Overview of systems requirements for impact fusion power

    International Nuclear Information System (INIS)

    Williams, J.M.; Booth, L.A.; Krakowski, R.A.

    1979-01-01

    The development of impact fusion power reactor concepts is very limited at this time. Key systems factors in arriving at practical concepts will be conception of credible systems and subsystems which promise an acceptable overall energy balance and development of target/projectile designs and gain versus projectile energy curves which allow system design tradeoffs to be accomplished. Important system parameters will be subsystem efficiencies (particularly the accelerator), target/projectile gain as a function of target design, circulating power fraction or engineering gain, system pulse repetition rate, size/cost scaling of components, containment cavity design limits, maximum yield, minimum economical yield, minimum projectile velocity and energy, and overall economics. When more detailed conceptual designs are available, then system tradeoffs and performance optimization will be possible

  15. A conceptual design study of a reversed field pinch fusion reactor

    International Nuclear Information System (INIS)

    Kondo, S.; Tanaka, S.; Terai, T.; Hashizume, H.

    1989-01-01

    A conceptual design of a Reversed-Field Pinch (RFP) fusion reactor with a solid breeder blanket REPUTER-1 has been studied through parametric system studies and detailed design and analysis in order to clarify the technical feasibility of a compact fusion reactor. F-θ pumping is used for driving the plasma current necessary for steady state operation. A maintenance policy of replacing a whole fusion power core including TF coils is proposed to cope with the requirements of high wall loading and high mass power density. For the same reason a normal conductor is selected for most of the coils. The first wall is structurally independent of the blanket. The blanket module is composed of SiC reinforced blocks which form a stable arch so as to keep the stresses in SiC basically compressive. The coolant for the first wall and the limiter is pressurized water, while the coolant for the blanket is helium gas. A number of thin Li 2 O and thick beryllium tiles are packed into the blanket block so as to obtain a proper tritium breeding ratio. A pumped limiter is chosen for the plasma exhaust system. The study has shown the technical feasibility of a high power density fusion power reactor (330 kWe/tonne) with solid breeder blanket and many key physics and engineering issues are also clarified. (orig.)

  16. AxiaLIF system: minimally invasive device for presacral lumbar interbody spinal fusion.

    Science.gov (United States)

    Rapp, Steven M; Miller, Larry E; Block, Jon E

    2011-01-01

    Lumbar fusion is commonly performed to alleviate chronic low back and leg pain secondary to disc degeneration, spondylolisthesis with or without concomitant lumbar spinal stenosis, or chronic lumbar instability. However, the risk of iatrogenic injury during traditional anterior, posterior, and transforaminal open fusion surgery is significant. The axial lumbar interbody fusion (AxiaLIF) system is a minimally invasive fusion device that accesses the lumbar (L4-S1) intervertebral disc spaces via a reproducible presacral approach that avoids critical neurovascular and musculoligamentous structures. Since the AxiaLIF system received marketing clearance from the US Food and Drug Administration in 2004, clinical studies of this device have reported high fusion rates without implant subsidence, significant improvements in pain and function, and low complication rates. This paper describes the design and approach of this lumbar fusion system, details the indications for use, and summarizes the clinical experience with the AxiaLIF system to date.

  17. Magnetic fusion technology

    CERN Document Server

    Dolan, Thomas J

    2014-01-01

    Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: ? magnet systems, ? plasma heating systems, ? control systems, ? energy conversion systems, ? advanced materials development, ? vacuum systems, ? cryogenic systems, ? plasma diagnostics, ? safety systems, and ? power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.

  18. Mechanical design of a magnetic fusion production reactor

    International Nuclear Information System (INIS)

    Neef, W.S.; Jassby, D.L.

    1986-01-01

    The mechanical aspects of a tandem mirror and tokamak concepts for the tritium production mission are compared, and a proposed breeding blanket configuration for each type of reactor is presented in detail, along with a design outline of the complete fusion reaction system. In both cases, the reactor design is developed sufficiently to permit preliminary cost estimates of all components. A qualitative comparison is drawn between both concepts from the view of mechanical design and serviceability, and suggestions are made for technology proof tests on unique mechanical features. Detailed cost breakdowns indicate less than 10% difference in the overall costs of the two reactors

  19. Neutronic design and analysis on dual-cooled waste transmutation blanket for the fusion driven sub-critical system

    International Nuclear Information System (INIS)

    Zheng Shanliang; Wu Yican; Gao Chunjing; Xu Dezheng; Li Jingjing; Zhu Xiaoxiang

    2004-01-01

    Neutronics design and analysis of dual-cooled multi-functional waste transmutation blanket (DWTB) for the fusion driven sub-critical system (FDS) are performed to ensure the system be able to meet the requirements of fuel-sufficiency and more waste transmutation ratio with low initial loading fuel inventory, which is based on 1-D burn-up calculations with home-developed code Visual BUS and the multi-group (175 neutron groups-42 Gamma groups coupled) data library HENDL1.0/MG (Hybrid Evaluated Nuclear Data Library). (authors)

  20. Inertial confinement fusion driver enhancements: Final focusing systems and compact heavy-ion driver designs

    International Nuclear Information System (INIS)

    Bieri, R.L.

    1991-01-01

    Required elements of an inertial confinement fusion power plant are modeled and discussed. A detailed analysis of two critical elements of candidate drivers is done, and new component designs are proposed to increase the credibility and feasibility of each driver system. An analysis of neutron damage to the final elements of a laser focusing system is presented, and multilayer -- dielectric mirrors are shown to have damage lifetimes which axe too short to be useful in a commercial power plant. A new final-focusing system using grazing incidence metal mirrors to protect sensitive laser optics is designed and shown to be effective in extending the lifetime of the final focusing system. The reflectivities and damage limits of grazing incidence metal mirrors are examined in detail, and the required mirror sizes are shown to be compatible with the beam sizes and illumination geometries currently envisioned for laser drivers. A detailed design and analysis is also done for compact arrays of superconducting magnetic quadrupoles, which are needed in a multi-beam heavy-ion driver. The new array model is developed in more detail than some previous conceptual designs and models arrays which are more compact than arrays scaled from existing single -- quadrupole designs. The improved integrated model for compact arrays is used to compare the effects of various quadrupole array design choices on the size and cost of a heavy-ion driver. Array design choices which significantly affect the cost of a heavy-ion driver include the choice of superconducting material and the thickness of the collar used to support the winding stresses. The effect of these array design choices on driver size and cost is examined and the array model is used to estimate driver cost savings and performance improvements attainable with aggressive quadrupole array designs with high-performance superconductors

  1. Design and Implementation of a Smart LED Lighting System Using a Self Adaptive Weighted Data Fusion Algorithm

    Directory of Open Access Journals (Sweden)

    Wen-Tsai Sung

    2013-12-01

    Full Text Available This work aims to develop a smart LED lighting system, which is remotely controlled by Android apps via handheld devices, e.g., smartphones, tablets, and so forth. The status of energy use is reflected by readings displayed on a handheld device, and it is treated as a criterion in the lighting mode design of a system. A multimeter, a wireless light dimmer, an IR learning remote module, etc. are connected to a server by means of RS 232/485 and a human computer interface on a touch screen. The wireless data communication is designed to operate in compliance with the ZigBee standard, and signal processing on sensed data is made through a self adaptive weighted data fusion algorithm. A low variation in data fusion together with a high stability is experimentally demonstrated in this work. The wireless light dimmer as well as the IR learning remote module can be instructed directly by command given on the human computer interface, and the reading on a multimeter can be displayed thereon via the server. This proposed smart LED lighting system can be remotely controlled and self learning mode can be enabled by a single handheld device via WiFi transmission. Hence, this proposal is validated as an approach to power monitoring for home appliances, and is demonstrated as a digital home network in consideration of energy efficiency.

  2. Design and Implementation of a Smart LED Lighting System Using a Self Adaptive Weighted Data Fusion Algorithm

    Science.gov (United States)

    Sung, Wen-Tsai; Lin, Jia-Syun

    2013-01-01

    This work aims to develop a smart LED lighting system, which is remotely controlled by Android apps via handheld devices, e.g., smartphones, tablets, and so forth. The status of energy use is reflected by readings displayed on a handheld device, and it is treated as a criterion in the lighting mode design of a system. A multimeter, a wireless light dimmer, an IR learning remote module, etc. are connected to a server by means of RS 232/485 and a human computer interface on a touch screen. The wireless data communication is designed to operate in compliance with the ZigBee standard, and signal processing on sensed data is made through a self adaptive weighted data fusion algorithm. A low variation in data fusion together with a high stability is experimentally demonstrated in this work. The wireless light dimmer as well as the IR learning remote module can be instructed directly by command given on the human computer interface, and the reading on a multimeter can be displayed thereon via the server. This proposed smart LED lighting system can be remotely controlled and self learning mode can be enabled by a single handheld device via WiFi transmission. Hence, this proposal is validated as an approach to power monitoring for home appliances, and is demonstrated as a digital home network in consideration of energy efficiency.

  3. Challenges of designing fusion reactors for remote maintainability

    International Nuclear Information System (INIS)

    Mason, L.S.

    1981-01-01

    One of the major problems faced by the fusion community is the development of the high level of reliability required to assure that fusion will be a viable commercial power source. Much of the responsibility for solving this problem falls directly on the designer in developing concepts that have a high level of maintainability. The problems are both near-term, in developing maintainability for next generation engineering oriented reactors; and long range, in developing full maintainability for the more commercial concepts with their required high level of on-line time. The near-time challenge will include development of unqiue design concepts to perform inspection, maintenance, replacement, and testing under the stringent conditions imposed by the next generation engineering oriented machines. The long range challenge will focus on basic design concepts that will enable the full mainatability required by commerical fusion

  4. Design windows of laser fusion power plants and conceptual design of laser-diode pumped slab laser

    International Nuclear Information System (INIS)

    Kozaki, Y.; Eguchi, T.; Izawa, Y.

    1999-01-01

    An analysis of the design space available to laser fusion power plants has been carried out, in terms of design key parameters such as target gain, laser energy and laser repetition rate, the number of fusion react ion chambers, and plant size. The design windows of economically attractive laser fusion plants is identified with the constraints of key design parameters and the cost conditions. Especially, for achieving high repetition rate lasers, we have proposed and designed a diode-pumped solid-state laser driver which consists of water-cooled zig-zag path slab amplifiers. (author)

  5. Conceptual design of the SlimCS fusion DEMO reactor

    International Nuclear Information System (INIS)

    Tobita, Kenji; Nishio, Satoshi; Enoeda, Mikio; Nakamura, Hirofumi; Hayashi, Takumi; Asakura, Nobuyuki; Utoh, Hiroyasu; Tanigawa, Hiroyasu; Nishitani, Takeo; Isono, Takaaki; Sakurai, Shinji; Kurita, Genichi; Hayashi, Takao; Oyama, Naoyuki; Liu Changle; Hamamatsu, Kiyotaka; Inoue, Takashi; Ozeki, Takahisa; Sato, Masayasu; Suzuki, Satoshi; Kawashima, Hisato; Ezato, Koichiro; Tsuru, Daigo; Koizumi, Norikiyo; Sakamoto, Keiji; Ando, Masami; Sakamoto, Yoshiteru; Shibama, Yusuke; Suzuki, Takahiro; Takechi, Manabu; Takahashi, Koji; Hirose, Takanori; Sato, Satoru; Nozawa, Takashi; Tanigawa, Hisashi; Kakudate, Satoshi; Kawamura, Yoshinori; Yamanishi, Toshihiko; Hoshino, Tsuyoshi; Ochiai, Kentaro; Ide, Shunsuke; Aiba, Nobuyuki; Shimizu, Katsuhiro; Honda, Mitsuru; Nakamichi, Masaru; Nishi, Hiroshi; Seki, Yoji; Nakamura, Yukiharu; Tsuchiya, Kunihiko; Yoshida, Tohru; Song Yuntao

    2010-08-01

    This report describes the results of the conceptual design study of the SlimCS fusion DEMO reactor aiming at demonstrating fusion power production in a plant scale and allowing to assess the economic prospects of a fusion power plant. The design study has focused on a compact and low aspect ratio tokamak reactor concept with a reduced-sized central solenoid, which is novel compared with previous tokamak reactor concept such as SSTR (Steady State Tokamak Reactor). Owing to low aspect ratio, the reactor will be capable of having comparatively high beta limit and high elongation (which can elevate the Greenwald density limit), having potential for high power density. The reactor has the main parameters of a major radius of 5.5 m, aspect ratio of 2.6, elongation of 2.0, normalized beta of 4.3, fusion out put of 2.95 GW and average neutron wall load of 3 MW/m 2 . This report covers various aspects of design study including systematic design, physics design, torus configuration, blanket, superconducting magnet, maintenance and building, which were carried out increase the engineering feasibility of the concept. (author)

  6. Conceptual design of Fusion Experimental Reactor (FER)

    International Nuclear Information System (INIS)

    Tone, T.; Fujisawa, N.

    1983-01-01

    Conceptual design studies of the Fusion Experimental Reactor (FER) have been performed. The FER has an objective of achieving selfignition and demonstrating engineering feasibility as a next generation tokamak to JT-60. Various concepts of the FER have been considered. The reference design is based on a double-null divertor. Optional design studies with some attractive features based on advanced concepts such as pumped limiter and RF current drive have been carried out. Key design parameters are; fusion power of 440 MW, average neutron wall loading of 1MW/m 2 , major radius of 5.5m, plasma minor radius of 1.1m, plasma elongation of 1.5, plasma current of 5.3MA, toroidal beta of 4%, toroidal field on plasma axis of 5.7T and tritium breeding ratio of above unity

  7. Trends in radiation protection: possible effects on fusion power plant design

    International Nuclear Information System (INIS)

    Eurajoki, Tapani; Frias, Manuel Pascual; Orlandi, Sergio

    2003-01-01

    Since the design of fusion power plants involves long-term issues, ranging over several decades, it is useful to try to foresee under what kind of regulations the first fusion plants are to be operated. Application of present radiological regulations and practice to a fusion power plant concept is considered. The current design phase of fusion power plants motivates the top-down dose assessment, but it is crucial to aim at bottom-up assessments to ensure radiation doses as low as reasonably achievable. Since several issues, relating both to our knowledge on radiation as well as to the practice of radiation protection, may change in the future, it is necessary to continuously follow the development in the further design of fusion power plants

  8. Anomaly Detection for Resilient Control Systems Using Fuzzy-Neural Data Fusion Engine

    Energy Technology Data Exchange (ETDEWEB)

    Ondrej Linda; Milos Manic; Timothy R. McJunkin

    2011-08-01

    Resilient control systems in critical infrastructures require increased cyber-security and state-awareness. One of the necessary conditions for achieving the desired high level of resiliency is timely reporting and understanding of the status and behavioral trends of the control system. This paper describes the design and development of a neural-network based data-fusion system for increased state-awareness of resilient control systems. The proposed system consists of a dedicated data-fusion engine for each component of the control system. Each data-fusion engine implements three-layered alarm system consisting of: (1) conventional threshold-based alarms, (2) anomalous behavior detector using self-organizing maps, and (3) prediction error based alarms using neural network based signal forecasting. The proposed system was integrated with a model of the Idaho National Laboratory Hytest facility, which is a testing facility for hybrid energy systems. Experimental results demonstrate that the implemented data fusion system provides timely plant performance monitoring and cyber-state reporting.

  9. Conceptual design of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1984-01-01

    Conceptual Design of Fusion Experimental Reactor (FER) of which the objective will be to realize self-ignition with D-T reaction is reported. Mechanical Configurations of FER are characterized with a noncircular plasma and a double-null divertor. The primary aim of design studies is to demonstrate fissibility of reactor structures as compact and simple as possible with removable torus sectors. The structures of each component such as a first-wall, blanket, shielding, divertor, magnet and so on have been designed. It is also discussed about essential reactor plant system requirements. In addition to the above, a brief concept of a steady-state reactor based on RF current drive is also discussed. The main aim, in this time, is to examine physical studies of a possible RF steady-state reactor. (author)

  10. Nuclear design of a very-low-activation fusion reactor

    International Nuclear Information System (INIS)

    Cheng, E.T.; Hopkins, G.R.

    1983-06-01

    An investigation was conducted to study the nuclear design aspects of using very-low-activation materials, such as SiC, MgO, and aluminum for fusion-reactor first wall, blanket, and shield applications. In addition to the advantage of very-low radioactive inventory, it was found that the very-low-activation fusion reactor can also offer an adequate tritium-breeding ratio and substantial amount of blanket nuclear heating as a conventional-material-structured reactor does. The most-stringent design constraint found in a very-low-activation fusion reactor is the limited space available in the inboard region of a tokamak concept for shielding to protect the superconducting toroidal field coil. A reference design was developed which mitigates the constraint by adopting a removable tungsten shield design that retains the inboard dimensions and gives the same shield performance as the reference STARFIRE tokamak reactor design

  11. Design of force-cooled conductors for large fusion magnets

    Energy Technology Data Exchange (ETDEWEB)

    Dresner, L.; Lue, J.W.

    1977-01-01

    Conductors cooled by supercritical helium in forced convection are under active consideration for large toroidal fusion magnets. One of the central problems in designing such force cooled conductors is to maintain an adequate stability margin while keeping the pumping power tolerably low. A method has been developed for minimizing the pumping power for fixed stability by optimally choosing the matrix-to-superconductor and the metal-to-helium ratios. Such optimized conductors reduce pumping power requirements for fusion size magnets to acceptable limits. Furthermore, the mass flow and hence pumping losses can be varied through a magnet according to the local magnetic field and magnitude of desired stability margin. Force cooled conductors give flexibility in operation, permitting, for example, higher fields to be obtained than originally intended by lowering the bath temperature or increasing the pumping power or both. This flexibility is only available if the pumping power is low to begin with. Scaling laws for the pumping requirement and stability margin as functions of operating current density, number of strands and such physical parameters as stabilizer resistivity and critical current density, have been proved. Numerical examples will be given for design of conductors intended for use in large toroidal fusion magnet systems.

  12. Design of force-cooled conductors for large fusion magnets

    International Nuclear Information System (INIS)

    Dresner, L.; Lue, J.W.

    1977-01-01

    Conductors cooled by supercritical helium in forced convection are under active consideration for large toroidal fusion magnets. One of the central problems in designing such force cooled conductors is to maintain an adequate stability margin while keeping the pumping power tolerably low. A method has been developed for minimizing the pumping power for fixed stability by optimally choosing the matrix-to-superconductor and the metal-to-helium ratios. Such optimized conductors reduce pumping power requirements for fusion size magnets to acceptable limits. Furthermore, the mass flow and hence pumping losses can be varied through a magnet according to the local magnetic field and magnitude of desired stability margin. Force cooled conductors give flexibility in operation, permitting, for example, higher fields to be obtained than originally intended by lowering the bath temperature or increasing the pumping power or both. This flexibility is only available if the pumping power is low to begin with. Scaling laws for the pumping requirement and stability margin as functions of operating current density, number of strands and such physical parameters as stabilizer resistivity and critical current density, have been proved. Numerical examples will be given for design of conductors intended for use in large toroidal fusion magnet systems

  13. Fusion neutronics

    CERN Document Server

    Wu, Yican

    2017-01-01

    This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronics characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics, and which have since been widely applied all over the world. Further, it introduces readers to neutronics design’s unique principles and procedures, experimental methodologies and technologies for fusion systems...

  14. Neutronic Parametric Study on a Conceptual Design for a Transmutation Fusion Blanket

    International Nuclear Information System (INIS)

    Tariq Siddique, M.; Kim, Myung Hyun

    2011-01-01

    Fusion energy may be the one of options of future energy. In all over the world, researchers are putting their efforts for its commercial and economical availability. Fusion-fission hybrid reactors have been studied for various applications in China. First milestone of fusion energy is expected to be the fusion fission hybrid reactors. In fusion-fission hybrid reactor the blanket design is of second prime importance after fusion source. In this study conceptual design of a fusion blanket is initiated for calculation of tritium production, transmutation of minor actinides (MA) and fission products (FP) and energy multiplication calculations

  15. Tritium handling, breeding, and containment in two conceptual fusion reactor designs: UWMAK-II and UWMAK-III

    International Nuclear Information System (INIS)

    Clemmer, R.G.; Larsen, E.M.

    1976-01-01

    Tritium is an essential component of near-term controlled thermonuclear reactor systems. Since tritium is not likely to be available on a large scale at a modest cost, fusion reactor designs must incorporate blanket systems which will be capable of breeding tritium. Because of the radiological activity and capability of assimilation into living tissues, tritium release to the environment must be strictly controlled. The University of Wisconsin has completed three conceptual designs of fusion reactors, UWMAK-I, UWMAK-II, and UWMAK-III. This report discusses the tritium systems for UWMAK-II, a reactor design with a helium cooled solid breeder blanket, and UWMAK-III, a reactor design with a high-temperature liquid breeder blanket. Tritium systems for fueling and recycling, breeding and recovery, and plant containment and control are discussed. (Auth.)

  16. Economic comparison of fusion power plant designs

    International Nuclear Information System (INIS)

    O'Neill, J.E.

    1986-01-01

    Over the past 10 yr, a number of studies have been developed for fusion power plants of various types (tokamaks, mirrors, etc.) complete with figures of merit such as cost estimates and estimates of the cost of generating electricity (COE). Each of these designs involves unresolved physics and engineering problems which, it is assumed, will eventually be worked out. Because of such uncertainties the figures of merit associated with such designs are not to be compared as absolute measures of worth but as relative indicators of progress within a given concept type. As part of Grumman's involvement in fusion energy development, an effort has been undertaken to compare economic indicators from the referenced studies in order to determine the cost trend in recent reactor design activities

  17. Safety considerations in next step fusion design and beyond

    International Nuclear Information System (INIS)

    Holland, D.F.

    1990-01-01

    Recent U.S. and international design studies provide insights into the potential safety and environmental advantages of fusion as well as the development needed to realize this potential. We in the Fusion Safety Program at EG ampersand G Idaho have analyzed the Compact Ignition Tokamak (CIT), the International Thermonuclear Engineering Reactor (ITER), and the Advanced Reactor Innovative Engineering Study (ARIES). I have reviewed these three designs to determine issues related to meeting the safety and the environmental goals that guide fusion development in the U.S. The paper lists safety and environmental issues that are generic to fusion and approaches to favorably resolve each issue. The technical developments that have the highest potential of contributing to improving the safety and environmental attractiveness of fusion are identified and discussed. These developments are in the areas of low-activation materials, plasma- facing components, and plasma physics relating to off-normal plasma events and tritium burn-up. 8 refs., 7 tabs

  18. DOE Handbook: Supplementary guidance and design experience for the fusion safety standards DOE-STD-6002-96 and DOE-STD-6003-96

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-01-01

    Two standards have been developed that pertain to the safety of fusion facilities. These are DOE- STD-6002-96, Safety of Magnetic Fusion Facilities: Requirements, and DOE-STD-6003-96, Safety of Magnetic Fusion Facilities: Guidance. The first of these standards identifies requirements that subscribers to that standard must meet to achieve safety in fusion facilities. The second standard contains guidance to assist in meeting the requirements identified in the first This handbook provides additional documentation on good operations and design practices as well as lessons learned from the experiences of designers and operators of previous fusion facilities and related systems. It is intended to capture the experience gained in the various fields and pass it on to designers of future fusion facilities as a means of enhancing success and safety. The sections of this document are presented according to the physical location of the major systems of a fusion facility, beginning with the vacuum vessel and proceeding to those systems and components outside the vacuum vessel (the "Ex-vessel Systems"). The last section describes administrative procedures that cannot be localized to specific components. It has been tacitly assumed that the general structure of the fusion facilities addressed is that of a tokamak though the same principles would apply to other magnetic confinement options.

  19. Conceptual design study of quasi-steady state fusion experimental reactor (FER-Q), part 2

    International Nuclear Information System (INIS)

    1985-12-01

    Since 1980 the design study has been conducted at JAERI for the Fusion Experimental Reactor (FER) which has been proposed to be the next machine to JT-60 in the Japanese long term program of fusion reactor development. Starting from 1984 FER design is being reviewed and redesigned. This report is a part of the interim report which describes the results obtained in the review and redesign activities in FY 1984. The results of the following design items are included: heating/current drive system, plasma position control, power supply, diagnostics, neutronics, blanket test module, repair and maintenance and safety. (author)

  20. Cryogenic systems for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Slack, D.S.; Chronis, W.C.; Nelson, R.L.

    1986-01-01

    This paper will include an in-depth discussion of the design, fabrication, and operation of the Mirror Fusion Test Facility (MFTF) cryogenic system located at Lawrence Livermore National Laboratory (LLNL). Each subsystem will be discussed to present a basic composite of the entire facility

  1. Safety methodology implementation in the conceptual design phase of a fusion reactor

    International Nuclear Information System (INIS)

    Rodriguez-Rodrigo, L.; Elbez-Uzan, J.

    2007-01-01

    The licensing of ITER in France represents the first process for licensing a fusion facility in the framework of an experimental device with a total Tritium inventory of 3 kg. The main ITER parameters are far from those expected in the future demonstration reactors where the fusion power will be at least 5 times higher and the additional heating power could also reach up to 5 times the one foreseen in ITER. Main safety requirements for these reactors are based, among other conditions, on their inherent features as low amount of fuel, very low impurity content of structural materials, minimum waste repository, no active systems for safe shut-down, and no need for evacuation of population after the most severe accident. The design of such reactors is at the stage of conceptual studies and is mainly dealing with plasma performances, tritium breeding, blanket/divertor designs and solution of engineering issues, as well as bounding accidents or classification of waste. The methodological approach for integrating safety analysis as a tool for optimizing the design of the overall fusion installation for future reactors in the conceptual design phase is sketched, including the machine itself and the different auxiliary nuclear buildings. (author)

  2. Heavy Ion Fusion Systems Assessment study

    International Nuclear Information System (INIS)

    Dudziak, D.J.; Herrmannsfeldt, W.B.

    1986-07-01

    The Heavy Ion Fusion Systems Assessment (HIFSA) study was conducted with the specific objective of evaluating the prospects of using induction linac drivers to generate economical electrical power from inertial confinement fusion. The study used algorithmic models of representative components of a fusion system to identify favored areas in the multidimensional parameter space. The resulting cost-of-electricity (COE) projections are comparable to those from other (magnetic) fusion scenarios, at a plant size of 100 MWe

  3. Cryogenic systems for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Slack, D.S.; Nelson, R.L.; Chronis, W.C.

    1985-08-01

    This paper includes an in-depth discussion of the design, fabrication, and operation of the Mirror Fusion Test Facility (MFTF) cryogenic system located at Lawrence Livermore National Laboratory (LLNL). Each subsystem discussed to present a basic composite of the entire facility. The following subsystems are included: 500kW nitrogen reliquefier, subcoolers, and distribution system; 15kW helium refrigerator/liquefier and distribution system; helium recovery and storage system; rough vacuum and high vacuum systems

  4. Cryogenic systems for inertial fusion energy

    International Nuclear Information System (INIS)

    Chatain, D.; Perin, J.P.; Bonnay, P.; Bouleau, E.; Chichoux, M.; Communal, D.; Manzagol, J.; Viargues, F.; Brisset, D.; Lamaison, V.; Paquignon, G.

    2008-01-01

    The Low Temperatures Laboratory of CEA/Grenoble (France) is involved in the development of cryogenic systems for inertial fusion since a ten of years. A conceptual design for the cryogenic infrastructure of the Laser MegaJoule (LMJ) facility has been proposed. Several prototypes have been designed, built and tested like for example the 1500 bars cryo-compressor for the targets filling, the target positioner and the thermal shroud remover. The HIPER project will necessitate the development of such equipments. The main difference is that this time, the cryogenic targets are direct drive targets. The first phase of HIPER experiments is a single shot period. Based oil the experience gained the last years, not only by our laboratory but also by Omega and G.A teams, we could design the new HIPER equipments for this phase. Some experimental results obtained with the prototypes of the LMJ cryogenic system are given and a first conceptual design for the HIPER single shot cryogenic system is shown. (authors)

  5. On fusion driven systems (FDS) for transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Aagren, O (Uppsala Univ., Aangstroem laboratory, div. of electricity, Uppsala (Sweden)); Moiseenko, V.E. (Inst. of Plasma Physics, National Science Center, Kharkov Inst. of Physics and Technology, Kharkov (Ukraine)); Noack, K. (Forschungszentrum Dresden-Rossendorf (Germany))

    2008-10-15

    This report gives a brief description of ongoing activities on fusion driven systems (FDS) for transmutation of the long-lived radioactive isotopes in the spent nuclear waste from fission reactors. Driven subcritical systems appears to be the only option for efficient minor actinide burning. Driven systems offer a possibility to increase reactor safety margins. A comparatively simple fusion device could be sufficient for a fusion-fission machine, and transmutation may become the first industrial application of fusion. Some alternative schemes to create strong fusion neutron fluxes are presented

  6. On fusion driven systems (FDS) for transmutation

    International Nuclear Information System (INIS)

    Aagren, O; Moiseenko, V.E.; Noack, K.

    2008-10-01

    This report gives a brief description of ongoing activities on fusion driven systems (FDS) for transmutation of the long-lived radioactive isotopes in the spent nuclear waste from fission reactors. Driven subcritical systems appears to be the only option for efficient minor actinide burning. Driven systems offer a possibility to increase reactor safety margins. A comparatively simple fusion device could be sufficient for a fusion-fission machine, and transmutation may become the first industrial application of fusion. Some alternative schemes to create strong fusion neutron fluxes are presented

  7. Magnet design considerations for Tokamak fusion reactors

    International Nuclear Information System (INIS)

    Purcell, J.R.; Chen, W.; Thomas, R.

    1976-01-01

    Design problems for superconducting ohmic heating and toroidal field coils for large Tokamak fusion reactors are discussed. The necessity for making these coils superconducting is explained, together with the functions of these coils in a Tokamak reactor. Major problem areas include materials related aspects and mechanical design and cryogenic considerations. Projections and comparisons are made based on existing superconducting magnet technology. The mechanical design of large-scale coils, which can contain the severe electromagnetic loading and stress generated in the winding, are emphasized. Additional major tasks include the development of high current conductors for pulsed applications to be used in fabricating the ohmic heating coils. It is important to note, however, that no insurmountable technical barriers are expected in the course of developing superconducting coils for Tokamak fusion reactors. (Auth.)

  8. Conceptual design of China fusion power plant FDS-II

    International Nuclear Information System (INIS)

    Wu, Y.; Liu, S.; Chen, H.

    2007-01-01

    As one of the series of fusion system design concepts developed by the FDS Team of China, FDS-II is designated to exploit and evaluate potential attractiveness of fusion energy application for the generation of electricity on the basis of conservatively advanced plasma parameters, which can be limitedly extrapolated from the successful operation of ITER. The principle of the blanket design is established in both the feasibility and potential attractiveness of technology to meet the requirement for tritium self-sufficiency, safety margin, operation economy and environment protection etc. The plasma physics and engineering parameters of FDS-II are selected on the basis of the progress in recent experiments and associated theoretical studies of magnetic confinement fusion plasma with a fusion power of 2∝3 GW. The neutron wall load of 2∝3 MW/m 2 and the surface heat flux of 0.5∝1 MW/m 2 are considered for high effective power conversion. The ''multi-modules'' scenario is adopted in the FDS-II blanket design to reduce thermal stress and electromagnetic forces under plasma disruption, with liquid metal lithium lead (LiPb) as tritium breeder, the Reduced Activation Ferritic/Martensitic (RAFM) steel as structural material. Two options of specific liquid LiPb blanket concepts have been proposed, named the Dual-cooled Lithium Lead (DLL) breeder blanket and the Quasi-Static Lithium Lead (SLL) breeder blanket. The DLL blanket is a dual-cooled LiPb breeder system with helium gas to cool the first wall and main structure and LiPb eutectic to be self-cooled. The flow channel inserts (FCIs), e.g. SiCf/SiC composites, are designed as the thermal and electrical insulators inside the LiPb flow channels to reduce the magnetohydrodynamic (MHD) pressure drop and to allow the coolant LiPb outlet temperature up to 700 C for high thermal efficiency. The SLL blanket is another option of the FDS-II blanket with the technology developed relatively easily. To avoid or mitigate the

  9. Design and cost evaluation of generic magnetic fusion reactor using the D-D fuel cycle

    International Nuclear Information System (INIS)

    Shannon, T.E.

    1988-01-01

    A fusion reactor systems code has been developed to evaluate the economic potential of power generation from a toroidal magnetic fusion reactor using deuterium-deuterium (D-D) fuel. A method similar to that developed by J. Sheffield, of the Oak Ridge National Laboratory, for deuterium-tritium (D-T) fuel was used to model the generic aspects of magnetic fusion reactors. The results of the systems study and cost evaluation show that the cost of electricity produced by a D-D reactor is two times higher than that produced by an equivalent D-T reactor design. The significant finding of the study is that the cost ratio between the D-D and D-T systems can potentially be reduced to 1.5 by improved engineering design and even lower by better physics performance. The absolute costs for both systems at this level are close to the costs for nuclear fission and fossil fuel plants. A design for a magnet reinforced with advanced composite materials is presented as an example of an engineering improvement that could reduce the cost of electricity produced by both reactors. However, since the magnets in the D-D reactor are much larger than in the K-T reactor, the cost ratio of the two systems is significantly reduced

  10. Tokamak Fusion Core Experiment (TFCX) special-purpose remote maintenance systems

    International Nuclear Information System (INIS)

    Masson, L.S.; Welland, H.J.

    1985-01-01

    A key element in the preconceptual design of the Tokamak Fusion Core Experiment (TFCX) was the development of design concepts for special-purpose remote maintenance systems. Included were systems for shield sector replacement, vacuum vessel sector and toroidal field coil replacement, limiter blade replacement, protective tile replacement, and general-purpose maintenance. This paper addresses these systems as they apply to the copper toroidal field (TF) coil version of the TFCX

  11. Advanced Fusion Reactors for Space Propulsion and Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, John J.

    2011-06-15

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles' exhaust momentum can be used directly to produce high Isp thrust and also offer possibility of power conversion into electricity. p-11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  12. Advanced Fusion Reactors for Space Propulsion and Power Systems

    Science.gov (United States)

    Chapman, John J.

    2011-01-01

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles "exhaust" momentum can be used directly to produce high ISP thrust and also offer possibility of power conversion into electricity. p- 11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  13. DOE Handbook: Supplementary guidance and design experience for the fusion safety standards DOE-STD-6002-96 and DOE-STD-6003-96

    International Nuclear Information System (INIS)

    1999-01-01

    Two standards have been developed that pertain to the safety of fusion facilities. These are DOE- STD-6002-96, Safety of Magnetic Fusion Facilities: Requirements, and DOE-STD-6003-96, Safety of Magnetic Fusion Facilities: Guidance. The first of these standards identifies requirements that subscribers to that standard must meet to achieve safety in fusion facilities. The second standard contains guidance to assist in meeting the requirements identified inthefirst This handbook provides additional documentation on good operations and design practices as well as lessons learned from the experiences of designers and operators of previous fusion facilities and related systems. It is intended to capture the experience gained in the various fields and pass it on to designers of future fusion facilities as a means of enhancing success and safeiy. The sections of this document are presented according to the physical location of the major systems of a t%sion facility, beginning with the vacuum vessel and proceeding to those systems and components outside the vacuum vessel (the ''Ex-vessel Systems''). The last section describes administrative procedures that cannot be localized to specific components. It has been tacitly assumed that the general structure of the fusion facilities addressed is that of a tokamak though the same principles would apply to other magnetic confinement options

  14. Development of fusion fuel cycles: Large deviations from US defense program systems

    Energy Technology Data Exchange (ETDEWEB)

    Klein, James Edward, E-mail: james.klein@srnl.doe.gov; Poore, Anita Sue; Babineau, David W.

    2015-10-15

    Highlights: • All tritium fuel cycles start with a “Tritium Process.” All have similar tritium processing steps. • Fusion tritium fuel cycles minimize process tritium inventories for various reasons. • US defense program facility designs did not minimize in-process inventories. • Reduced inventory tritium facilities will lower public risk. - Abstract: Fusion energy research is dominated by plasma physics and materials technology development needs with smaller levels of effort and funding dedicated to tritium fuel cycle development. The fuel cycle is necessary to supply and recycle tritium at the required throughput rate; additionally, tritium confinement throughout the facility is needed to meet regulatory and environmental release limits. Small fuel cycle development efforts are sometimes rationalized by stating that tritium processing technology has already been developed by nuclear weapons programs and these existing processes only need rescaling or engineering design to meet the needs of fusion fuel cycles. This paper compares and contrasts features of tritium fusion fuel cycles to United States Cold War era defense program tritium systems. It is concluded that further tritium fuel cycle development activities are needed to provide technology development beneficial to both fusion and defense programs tritium systems.

  15. Fusion breeder sphere - PAC blanket design

    International Nuclear Information System (INIS)

    Sullivan, J.D.; Palmer, B.J.F.

    1987-11-01

    There is a considerable world-wide effort directed toward the production of materials for fusion reactors. Many ceramic fabrication groups are working on making lithium ceramics in a variety of forms, to be incorporated into the tritium breeding blanket which will surround the fusion reactor. Current blanket designs include ceramic in either monolithic or packed sphere bed (sphere-pac) forms. The major thrust at AECL is the production of lithium aluminate spheres to be incorporated in a sphere-pac bed. Contemporary studies on breeder blanket design offer little insight into the requirements on the sizes of the spheres. This study examined the parameters which determine the properties of pressure drop and coolant requirements. It was determined that an optimised sphere-pac bed would be composed of two diameters of spheres: 75 weight % at 3 mm and 25 weight % at 0.3 mm

  16. AxiaLIF system: minimally invasive device for presacral lumbar interbody spinal fusion

    Directory of Open Access Journals (Sweden)

    Rapp SM

    2011-08-01

    Full Text Available Steven M Rapp1, Larry E Miller2,3, Jon E Block31Michigan Spine Institute, Waterford, MI, USA; 2Miller Scientific Consulting Inc, Biltmore Lake, NC, USA; 3Jon E. Block, Ph.D., Inc., San Francisco, CA, USAAbstract: Lumbar fusion is commonly performed to alleviate chronic low back and leg pain secondary to disc degeneration, spondylolisthesis with or without concomitant lumbar spinal stenosis, or chronic lumbar instability. However, the risk of iatrogenic injury during traditional anterior, posterior, and transforaminal open fusion surgery is significant. The axial lumbar interbody fusion (AxiaLIF system is a minimally invasive fusion device that accesses the lumbar (L4–S1 intervertebral disc spaces via a reproducible presacral approach that avoids critical neurovascular and musculoligamentous structures. Since the AxiaLIF system received marketing clearance from the US Food and Drug Administration in 2004, clinical studies of this device have reported high fusion rates without implant subsidence, significant improvements in pain and function, and low complication rates. This paper describes the design and approach of this lumbar fusion system, details the indications for use, and summarizes the clinical experience with the AxiaLIF system to date.Keywords: AxiaLIF, fusion, lumbar, minimally invasive, presacral

  17. Parametric system studies of candidate TF coil system options for the Tokamak Fusion Core Experiment (TFCX)

    International Nuclear Information System (INIS)

    Reiersen, W.T.; Flanagan, C.A.; Miller, J.B.

    1983-01-01

    System studies were performed to determine the sensitivity of hybrid and superconducting toroidal field (TF) coil system options to maximum field at the TF coil and to field enhancement due to resistive insert coils. The studies were performed using Tokamak Fusion Core Experiment (TFCX) design assumptions, guidelines, and criteria and involved iterative execution of the Fusion Engineering Design Center (FEDC) systems code, magnetohydrodynamics (MHD) equilibrium code, and EFFI (a code to evaluate magnetic field strength). The results indicate that for TFCX with no minimum wall loading specified, a design point chosen solely on the basis of cost would likely be in the low-field region of design space where the cost advantage of hybrids is least apparent. However, as the desired neutron wall loading increases, the hybrid option suggests an increasing cost advantage over the all-superconducting option; this cost advantage is countered by increased complexity in design -- particularly in assembly and maintenance

  18. Parametric system studies of candidate TF coil system options for the Tokamak Fusion Core Experiment (TFCX)

    International Nuclear Information System (INIS)

    Reiersen, W.T.; Flanagan, C.A.; Miller, J.B.

    1983-01-01

    System studies were performed to determine the sensitivity of hybrid and superconducting toroidal field (TF) coil system options to maximum field at the TF coil and to field enhancement due to resistive insert coils. The studies were performed using Tokamak Fusion Core Experiment (TFCX) design assumptions, guidelines, and criteria and involved iterative execution of the Fusion Engineering Design Center (FEDC) systems code, magnetohydrodynamics (MHD) equilibrium code, and EFFI (a code to evaluate magnetic field strength). The results indicate that for TFCX with no minimum wall loading specified, a design point chosen solely on the basis of cost would likely be in the low-field region of design space where the cost advantage of hybrids is least apparent. However, as the desired neutron wall loading increases, the hybrid option suggests an increasing cost advantage over the all-superconducting option; this cost advantage is countered by increased complexity in design - particularly in assembly and maintenance

  19. Design study of a neutral beam injection system for the JAERI Experimental Fusion Reactor (JXFR)

    International Nuclear Information System (INIS)

    1977-10-01

    Design study has been made of a 200 kV, 45 MW D 0 neutral beam injection system for the JAERI Experimental Fusion Reactor (JXFR) covering the following: determination of the ion source specifications, design of components such as ion source with extraction electrodes, energy converter, cryopump and cooling system, and estimations of the energy conversion efficiency, overall power efficiency and total power required for operation of the NBI system, and also a hydrogen isotope separation method using cryo-sorption pumps. Optimizations and parameter studies of the neutralizing cell length, gas flow rate, operating pressure of ion sources, total pumping speed and pressure of energy converters are made in the design study based on reactor plasma requirements. Hollow cathode ion sources are proposed because of the extended operation time at low gas pressure (about 4.5 x 10 -3 Torr) and the high gas efficiency (40%). Life of the extraction electrodes is determined by blistering due to deuterium ions. Fast neutron radiation damage is relatively small. In-line direct converters with grounded recovery electrodes and neutralizing cells floated at negative potential -190 kV are used to recover residual deuterium ion energy without interrupting the neutral beam trajectories. Energy conversion efficiency of 80% and overall power efficiency of about 40% are obtained. (auth.)

  20. Materials handbook for fusion energy systems

    International Nuclear Information System (INIS)

    Davis, J.W.

    1988-01-01

    The objective of this work is to provide a consistent and authoritative source of material property data for use by the fusion community in concept evaluation, design, and performance/verification studies of the various fusion energy systems. A second objective is the early identification of areas in the materials data base where insufficient information or voids exist. The effort during this reporting period has focused on two areas: (1) publication of data pages, and (2) automation of the data pages. The data pages contained new engineering information on lithium and stainless steel along with additional Supporting Documentation pages on annealed and cold worked stainless steel. These pages were distributed in May. In the area of automation, work is proceeding on schedule toward the formation of an electronic materials data base for the MFE computer network

  1. Conceptual design of a laser fusion power plant. Part I. An integrated facility

    International Nuclear Information System (INIS)

    1981-07-01

    This study is a new preliminary conceptual design and economic analysis of an inertial confinement fusion (ICF) power plant performed by Bechtel under the direction of Lawrence Livermore National Laboratory (LLNL). The purpose of a new conceptual design is to examine alternatives to the LLNL HYLIFE power plant and to incorporate information from the recent liquid metal cooled power plant conceptual design study (CDS) into the reactor system and balance of plant design. A key issue in the design of a laser fusion power plant is the degree of symmetry in the illumination of the target that will be required for a proper burn. Because this matter is expected to remain unresolved for some time, another purpose of this study is to determine the effect of symmetry requirements on the total plant size, layout, and cost

  2. Design, construction, and characterization of high-performance membrane fusion devices with target-selectivity.

    Science.gov (United States)

    Kashiwada, Ayumi; Yamane, Iori; Tsuboi, Mana; Ando, Shun; Matsuda, Kiyomi

    2012-01-31

    Membrane fusion proteins such as the hemagglutinin glycoprotein have target recognition and fusion accelerative domains, where some synergistically working elements are essential for target-selective and highly effective native membrane fusion systems. In this work, novel membrane fusion devices bearing such domains were designed and constructed. We selected a phenylboronic acid derivative as a recognition domain for a sugar-like target and a transmembrane-peptide (Leu-Ala sequence) domain interacting with the target membrane, forming a stable hydrophobic α-helix and accelerating the fusion process. Artificial membrane fusion behavior between the synthetic devices in which pilot and target liposomes were incorporated was characterized by lipid-mixing and inner-leaflet lipid-mixing assays. Consequently, the devices bearing both the recognition and transmembrane domains brought about a remarkable increase in the initial rate for the membrane fusion compared with the devices containing the recognition domain alone. In addition, a weakly acidic pH-responsive device was also constructed by replacing three Leu residues in the transmembrane-peptide domain by Glu residues. The presence of Glu residues made the acidic pH-dependent hydrophobic α-helix formation possible as expected. The target-selective liposome-liposome fusion was accelerated in a weakly acidic pH range when the Glu-substituted device was incorporated in pilot liposomes. The use of this pH-responsive device seems to be a potential strategy for novel applications in a liposome-based delivery system. © 2011 American Chemical Society

  3. Combining cognitive engineering and information fusion architectures to build effective joint systems

    Science.gov (United States)

    Sliva, Amy L.; Gorman, Joe; Voshell, Martin; Tittle, James; Bowman, Christopher

    2016-05-01

    The Dual Node Decision Wheels (DNDW) architecture concept was previously described as a novel approach toward integrating analytic and decision-making processes in joint human/automation systems in highly complex sociotechnical settings. In this paper, we extend the DNDW construct with a description of components in this framework, combining structures of the Dual Node Network (DNN) for Information Fusion and Resource Management with extensions on Rasmussen's Decision Ladder (DL) to provide guidance on constructing information systems that better serve decision-making support requirements. The DNN takes a component-centered approach to system design, decomposing each asset in terms of data inputs and outputs according to their roles and interactions in a fusion network. However, to ensure relevancy to and organizational fitment within command and control (C2) processes, principles from cognitive systems engineering emphasize that system design must take a human-centered systems view, integrating information needs and decision making requirements to drive the architecture design and capabilities of network assets. In the current work, we present an approach for structuring and assessing DNDW systems that uses a unique hybrid DNN top-down system design with a human-centered process design, combining DNN node decomposition with artifacts from cognitive analysis (i.e., system abstraction decomposition models, decision ladders) to provide work domain and task-level insights at different levels in an example intelligence, surveillance, and reconnaissance (ISR) system setting. This DNDW structure will ensure not only that the information fusion technologies and processes are structured effectively, but that the resulting information products will align with the requirements of human decision makers and be adaptable to different work settings .

  4. Fusion blanket design and optimization techniques

    International Nuclear Information System (INIS)

    Gohar, Y.

    2005-01-01

    In fusion reactors, the blanket design and its characteristics have a major impact on the reactor performance, size, and economics. The selection and arrangement of the blanket materials, dimensions of the different blanket zones, and different requirements of the selected materials for a satisfactory performance are the main parameters, which define the blanket performance. These parameters translate to a large number of variables and design constraints, which need to be simultaneously considered in the blanket design process. This represents a major design challenge because of the lack of a comprehensive design tool capable of considering all these variables to define the optimum blanket design and satisfying all the design constraints for the adopted figure of merit and the blanket design criteria. The blanket design techniques of the First Wall/Blanket/Shield Design and Optimization System (BSDOS) have been developed to overcome this difficulty and to provide the state-of-the-art techniques and tools for performing blanket design and analysis. This report describes some of the BSDOS techniques and demonstrates its use. In addition, the use of the optimization technique of the BSDOS can result in a significant blanket performance enhancement and cost saving for the reactor design under consideration. In this report, examples are presented, which utilize an earlier version of the ITER solid breeder blanket design and a high power density self-cooled lithium blanket design for demonstrating some of the BSDOS blanket design techniques

  5. Divertor conceptual designs for a fusion power plant

    International Nuclear Information System (INIS)

    Norajitra, P.; Ihli, T.; Janeschitz, G.; Abdel-Khalik, S.; Mazul, I.; Malang, S.

    2007-01-01

    avoids the use of water cooling associated with He-cooled Be-ceramic blanket systems that would lead to considerable safety concerns (e.g. steam-beryllium reaction and H production). Moreover, it allows for a relatively high gas outlet temperature and, hence, a high thermal efficiency of the power conversion systems. This paper provides an overview of the development of different conceptual designs of divertors for fusion power plants; their advantages and disadvantages and expected performance are outlined and discussed. Emphasis is placed on summarizing the status and progress of R and D associated with He-cooled divertor design in Europe and USA. (orig.)

  6. System study methodology development and potential utilization for fusion

    International Nuclear Information System (INIS)

    Djerassi, H.; Rouillard, J.; Leger, D.; Sarto, S.; Zappellini, G.; Gambi, G.

    1989-01-01

    The objective of this new methodology is to combine systemics with heuristics for engineering applications. The system method considers as a whole a set of dynamically interacting elements, organized for tasks. Heuristics tries to describe the rules to apply in scientific research. This methodology is a powerful tool for evaluating the options, compared with conventional analytical methods as a higher number of parameters can be taken into account, with a higher quality standard while comparing the possible options. The system method takes into account interacting data or random relationships by means of simulation modelling. Thus, a dynamical approach can be deduced and a sensitivity analysis can be performed for a very high number of options and basic data. This method can be limited to a specific objective such as a fusion reactor safety analysis, taking into account other major constraints such as the economical environment. The sophisticated architecture of a fusion reactor includes a large number of interacting systems. The new character of the fusion domain and the wide spectrum of the possible options strongly increase the advantages of a system study as a complete safety analysis can be defined before starting with the design. (orig.)

  7. Mirror fusion--fission hybrids

    International Nuclear Information System (INIS)

    Lee, J.D.

    1978-01-01

    The fusion-fission concept and the mirror fusion-fission hybrid program are outlined. Magnetic mirror fusion drivers and blankets for hybrid reactors are discussed. Results of system analyses are presented and a reference design is described

  8. ELMO Bumpy Torus fusion-reactor design study

    International Nuclear Information System (INIS)

    Bathke, C.G.; Krakowski, R.A.

    1981-01-01

    A complete power plant design of a 1200-MWe ELMO Bumpy Torus Reactor (EBTR) is described that emphasizes those features that are unique to the EBT confinement concept, with subsystems and balance-of-plant items that are generic to magnetic fusion being adopted from past, more extensive tokamak reactor designs

  9. Status of fusion reactor blanket design

    International Nuclear Information System (INIS)

    Smith, D.L.; Sze, D.K.

    1986-02-01

    The recent Blanket Comparison and Selection Study (BCSS), which was a comprehensive evaluation of fusion reactor blanket design and the status of blanket technology, serves as an excellent basis for further development of blanket technology. This study provided an evaluation of over 130 blanket concepts for the reference case of electric power producing, DT fueled reactors in both Tokamak and Tandem Mirror (TMR) configurations. Based on a specific set of reactor operating parameters, the current understanding of materials and blanket technology, and a uniform evaluation methodology developed as part of the study, a limited number of concepts were identified that offer the greatest potential for making fusion an attractive energy source

  10. Review of fusion synfuels

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1980-01-01

    Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high-temperature electrolysis of approx. 50 to 65% are projected for fusion reactors using high-temperatures blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion

  11. Research and Application of Autodesk Fusion360 in Industrial Design

    Science.gov (United States)

    Song, P. P.; Qi, Y. M.; Cai, D. C.

    2018-05-01

    In 2016, Fusion 360, a productintroduced byAutodesk and integrating industrial design, structural design, mechanical simulation, and CAM, turns out a design platform supportingcollaboration and sharing both cross-platform and via the cloud. In previous products, design and manufacturing use to be isolated. In the course of design, research and development, the communication between designers and engineers used to go on through different software products, tool commands, and even industry terms. Moreover, difficulty also lies with the communication between design thoughts and machining strategies. Naturally, a difficult product design and R & D process would trigger a noticeable gap between the design model and the actual product. A complete product development process tends to cover several major areas, such as industrial design, mechanical design, rendering and animation, computer aided emulation (CAE), and computer aided manufacturing (CAM). Fusion 360, a perfect design solving the technical problems of cross-platform data exchange, realizes the effective control of cross-regional collaboration and presents an overview of collaboration and breaks the barriers between art and manufacturing, andblocks between design and processing. The “Eco-development of Fusion360 Industrial Chain” is both a significant means to and an inevitable trend forthe manufacturers and industrial designers to carry out innovation in China.

  12. Data acquisition systems for fusion devices

    International Nuclear Information System (INIS)

    Van Haren, P.C.; Oomens, N.A.

    1993-01-01

    During the last two decades, computerized data acquisition systems (DASs) have been applied at magnetic confinement fusion devices. Present-day data acquisition is done by means of distributed computer systems and transient recorders in CAMAC systems. The development of DASs has been technology driven; the emphasis has been on the development of computer hardware and system software. For future DASs, challenging problems are to be solved: The DASs have to be better optimized with respect to the needs of the users. Existing bottlenecks, such as CAMAC-computer coupling or pulse file merging, need to be eliminated. Continuous or long-pulse operation will require the introduction of event abstraction in DAS design. 59 refs., 4 figs., 1 tab

  13. Conceptual design of a fusion-fission hybrid reactor for transmutation of high level nuclear waste

    International Nuclear Information System (INIS)

    Qiu, L.J.; Wu, Y.C.; Yang, Y.W.; Wu, Y.; Luan, G.S.; Xu, Q.; Guo, Z.J.; Xiao, B.J.

    1994-01-01

    To assess the feasibility of the transmutation of long-lived radioactive waste using fusion-fission hybrid reactors, we are studying all the possible types of blanket, including a comparison of the thermal and fast neutron spectrum blankets. Conceptual designs of a small tokamak hybrid blanket with small inventory of actinides and fission products are presented. The small inventory of wastes makes the system safer. The small hybrid reactor system based on a fusion core with experimental parameters to be realized in the near future can effectively transmute actinides and fission products at a neutron wall loading of 1MWm -2 . An innovative energy system is also presented, including a fusion driver, fuel breeder, high level waste transmuter, fission reactor and so on. An optimal combination of all types of reactor is proposed in the system. ((orig.))

  14. New design of cable-in-conduit conductor for application in future fusion reactors

    Science.gov (United States)

    Qin, Jinggang; Wu, Yu; Li, Jiangang; Liu, Fang; Dai, Chao; Shi, Yi; Liu, Huajun; Mao, Zhehua; Nijhuis, Arend; Zhou, Chao; Yagotintsev, Konstantin A.; Lubkemann, Ruben; Anvar, V. A.; Devred, Arnaud

    2017-11-01

    The China Fusion Engineering Test Reactor (CFETR) is a new tokamak device whose magnet system includes toroidal field, central solenoid (CS) and poloidal field coils. The main goal is to build a fusion engineering tokamak reactor with about 1 GW fusion power and self-sufficiency by blanket. In order to reach this high performance, the magnet field target is 15 T. However, the huge electromagnetic load caused by high field and current is a threat for conductor degradation under cycling. The conductor with a short-twist-pitch (STP) design has large stiffness, which enables a significant performance improvement in view of load and thermal cycling. But the conductor with STP design has a remarkable disadvantage: it can easily cause severe strand indentation during cabling. The indentation can reduce the strand performance, especially under high load cycling. In order to overcome this disadvantage, a new design is proposed. The main characteristic of this new design is an updated layout in the triplet. The triplet is made of two Nb3Sn strands and one soft copper strand. The twist pitch of the two Nb3Sn strands is large and cabled first. The copper strand is then wound around the two superconducting strands (CWS) with a shorter twist pitch. The following cable stages layout and twist pitches are similar to the ITER CS conductor with STP design. One short conductor sample with a similar scale to the ITER CS was manufactured and tested with the Twente Cable Press to investigate the mechanical properties, AC loss and internal inspection by destructive examination. The results are compared to the STP conductor (ITER CS and CFETR CSMC) tests. The results show that the new conductor design has similar stiffness, but much lower strand indentation than the STP design. The new design shows potential for application in future fusion reactors.

  15. Standard mirror fusion reactor design study

    International Nuclear Information System (INIS)

    Moir, R.W.

    1978-01-01

    This report covers the work of the Magnetic Fusion Energy Division's reactor study group during FY 1976 on the standard mirror reactor. The ''standard'' mirror reactor is characterized as a steady state, neutral beam sustained, D-T fusioning plasma confined by a Yin-Yang magnetic mirror field. The physics parameters are obtained from the same physics model that explains the 2XIIB experiment. The model assumes that the drift cyclotron loss cone mode occurs on the boundary of the plasma, and that it is stabilized by warm plasma with negligible energy investment. The result of the study was a workable mirror fusion power plant, steady-state blanket removal made relatively simple by open-ended geometry, and no impurity problem due to the positive plasma potential. The Q (fusion power/injected beam power) turns out to be only 1.1 because of loss out the ends from Coulomb collisions, i.e., classical losses. This low Q resulted in 77% of the gross electrical power being used to power the injectors, thereby causing the net power cost to be high. The low Q stimulated an intensive search for Q-enhancement concepts, resulting in the LLL reactor design effort turning to the field reversal mirror and the tandem mirror, each having Q of order 5

  16. Design and characterization of a neutralized-transport experiment for heavy-ion fusion

    Directory of Open Access Journals (Sweden)

    Enrique Henestroza

    2004-08-01

    Full Text Available In heavy-ion inertial-confinement fusion systems, intense beams of ions must be transported from the exit of the final-focus magnet system through the fusion chamber to hit spots on the target with radii of about 2 mm. For the heavy-ion-fusion power-plant scenarios presently favored in the U.S., a substantial fraction of the ion-beam space charge must be neutralized during this final transport. The most effective neutralization technique found in numerical simulations is to pass each beam through a low-density plasma after the final focusing. To provide quantitative comparisons of these theoretical predictions with experiment, the Virtual National Laboratory for Heavy Ion Fusion has completed the construction and has begun experimentation with the neutralized-transport experiment. The experiment consists of three main sections, each with its own physics issues. The injector is designed to generate a very high-brightness, space-charge-dominated potassium beam, while still allowing variable perveance by a beam aperturing technique. The magnetic-focusing section, consisting of four pulsed quadrupoles, permits the study of magnet tuning, as well as the effects of phase-space dilution due to higher-order nonlinear fields. In the final section, the converging ion beam exiting the magnetic section is transported through a drift region with plasma sources for beam neutralization, and the final spot size is measured under various conditions of neutralization. In this paper, we discuss the design and characterization of the three sections in detail and present initial results from the experiment.

  17. The fusion-hydrogen energy system

    International Nuclear Information System (INIS)

    Williams, L.O.

    1994-01-01

    This paper will describe the structure of the system, from energy generation and hydrogen production through distribution to the end users. It will show how stationary energy users will convert to hydrogen and will outline ancillary uses of hydrogen to aid in reducing other forms of pollution. It will show that the adoption of the fusion hydrogen energy system will facilitate the use of renewable energy such as wind and solar. The development of highly efficient fuel cells for production of electricity near the user and for transportation will be outlined. The safety of the hydrogen fusion energy system is addressed. This paper will show that the combination of fusion generation combined with hydrogen distribution will provide a system capable of virtually eliminating the negative impact on the environment from the use of energy by humanity. In addition, implementation of the energy system will provide techniques and tools that can ameliorate environmental problems unrelated to energy use. (Author)

  18. Thermostructural design of the first wall/blanket for the TITAN-RFP fusion reactor

    International Nuclear Information System (INIS)

    Orient, G.E.; Blanchard, J.P.; Ghoniem, N.M.

    1987-01-01

    The mass power density, which is defined as the average power per unit mass within the magnet boundary, is a rough and general measure of economic competitiveness. Conn et al. (1985) have identified a target value of 100 kW(e)/tonne as a reasonable threshold for 'compact' commercial fusion systems. In pursuit of this goal, Hagenson et al. (1984) and Najmabadi et al. (1987) have pointed out the inherent characteristics of the RFP toroidal confinement concept which allow it to exceed this target value. It is inevitable that the compactness of the fusion power core will introduce a unique set of design issues. The special design concerns stem from high thermal surface fluxes, high bulk energy deposition by neutrons, and a relatively short blanket structural lifetime. In the TITAN-RFP, study Najmabadi et al. (1987) investigate a number of blanket (B) and first wall (FW) options suitable for high power density fusion reactors. Final choices were made for two designs: A high pressure aqueous blanket and a vanadium/lithium self-cooled blanket. The first design utilizes a pressurized aqueous loop containing a lithium compound dissolved in water, while the second design is based upon a self-cooled lithium-vanadium blanket. In this paper, we consider the beginning-of-life (BOL) thermostructural design and analysis of only the second concept. (orig./GL)

  19. Multi-terawatt fusion laser systems

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1993-01-01

    The evolution of laser fusion systems started with a description of the basic principles of the laser in 1959, then a physical demonstration showing 1000 Watts of peak optical power in 1961 to the present systems that deliver 10 14 watts of peak optical power, are presented. Physical limits to large systems are reviewed: thermal limits, material stress limits, structural limits and stability, parasitic coupling, measurement precision and diagnostics. The various steps of the fusion laser-system development process are then discussed through an historical presentation. 3 figs., 8 refs

  20. Designing the Cascade inertial confinement fusion reactor

    International Nuclear Information System (INIS)

    Pitts, J.H.

    1987-01-01

    The primary goal in designing inertial confinement fusion (ICF) reactors is to produce electrical power as inexpensively as possible, with minimum activation and without compromising safety. This paper discusses a method for designing the Cascade rotating ceramic-granule-blanket reactor (Pitts, 1985) and its associated power plant (Pitts and Maya, 1985). Although focus is on the cascade reactor, the design method and issues presented are applicable to most other ICF reactors

  1. Optical fibres for fusion plasma diagnostics systems

    International Nuclear Information System (INIS)

    Brichard, B.

    2005-01-01

    The condition to achieve and maintain the ignition of a thermonuclear fusion plasma ignition calls for the construction of a large scale fusion reactor, namely ITER. This reactor is designed to deliver an average fusion power of 500 MW. The burning of fusion plasma at such high power level will release a tremendous amount of energy in the form of particle fluxes and ionising radiation. This energy release, primarily absorbed by the plasma facing components, can significantly degrade the performances of the plasma diagnostic equipment surrounding the machine. To ensure a correct operation of the Tokamak we need to develop highly radiation-resistance devices. In plasma diagnostic systems, optical fibre is viewed as a convenient tool to transport light from the plasma edge to the diagnostic area. Radiation affects the optical performances of the fibre mainly by the occurrence of radiation-induced absorption and luminescence. Both effects degrade the light signal used for plasma diagnostic. SCK-CEN is currently assessing radiation-resistant glasses for optical fibres and is developing the associated qualification procedure. The main objectives of this study were to increase the lifetime of optical components in high radiation background and to develop a radiation resistance optical fibre capable to operate in the radiation background of ITER

  2. Remote maintenance design for Fusion Experimental Reactor (FER)

    International Nuclear Information System (INIS)

    Tachikawa, K.; Iida, H.; Nishio, S.; Tone, T.; Aota, T.; Iwamoto, T.; Niikura, S.; Nishizawa, H.

    1984-01-01

    Design of Fusion Experimental Reactor, FER, has been conducted by Japan Atomic Energy Research Institute (JAERI) since 1981. Two typical reactors can be classified in general from the viewpoints of remote maintenance among four design concepts of FER. In the case of the type 1 FER, the torus module consists of shield structure and blanket, and the connective joints between toruses provided at the outer region of the reactor. As for the type 2 FER, the shield structure is joined with the vacuum cryostat, and only the blanket module is allowed to move, but connection between toruses are located in the inner region of the reactor. Comparing type 1 with type 2 FER, this paper describes on the remote maintenance of FER including reactor configurations, work procedures, remote systems/equipments, repairing facility and future R and D problems. Reviewing design studies and investigation for the existing robotics technologies, R and D for FER remote maintenance technology should be performed under the reasonable long-term program. The main items of remote technology required to start urgently are multi-purpose manipulator system with performance of dextrousity, tele-viewing system which reduces operator fatigue and remote tests for commercially available components

  3. Design aspects of low activation fusion ignition experiments

    International Nuclear Information System (INIS)

    Cheng, E.T.; Creedon, R.L.; Hopkins, G.R.; Trester, P.W.; Wong, C.P.C.; Schultz, K.R.

    1986-01-01

    Preliminary design studies have been done exploring (1) materials selection, (2) shutdown biological dose rates, (3) mechanical design and (4) thermal design of a fusion ignition experiment made of low activation materials. From the results of these preliminary design studies it appears that an ignition experiment could be built of low activation materials, and that this design would allow hands-on access for maintenance

  4. Comments on open-ended magnetic systems for fusion

    International Nuclear Information System (INIS)

    Post, R.F.

    1990-01-01

    Differentiating characteristics of magnetic confinement systems having externally generated magnetic fields that are ''open'' are listed and discussed in the light of their several potential advantages for fusion power systems. It is pointed out that at this stage of fusion research ''high-Q'' (as deduced from long energy confinement times) is not necessarily the most relevant criterion by which to judge the potential of alternate fusion approaches for the economic generation of fusion power. An example is given of a hypothetical open-geometry fusion power system where low-Q operation is essential to meeting one of its main objectives (low neutron power flux)

  5. Fusion power and the environment

    International Nuclear Information System (INIS)

    Holdren, J.P.; Fowler, T.K.; Post, R.F.

    1975-01-01

    Environmental characteristics of conceptual fusion-reactor systems based on magnetic confinement are examined quantitatively, and some comparisons with fission systems are made. Fusion, like all other energy sources, will not be completely free of environmental liabilities, but the most obvious of these--tritium leakage and activation of structural materials by neutron bombardment--are susceptible to significant reduction by ingenuity in choice of materials and design. Large fusion reactors can probably be designed so that worst-case releases of radioactivity owing to accident or sabotage would produce no prompt fatalities in the public. A world energy economy relying heavily on fusion could make heavy demands on scarce nonfuel materials, a topic deserving further attention. Fusion's potential environmental advantages are not entirely ''automatic'', converting them into practical reality will require emphasis on environmental characteristics throughout the process of reactor design and engineering. The central role of environmental impact in the long-term energy dilemma of civilization justifies the highest priority on this aspect of fusion

  6. Design issues for a laboratory high gain fusion facility

    International Nuclear Information System (INIS)

    Hogan, W.J.

    1987-01-01

    In an inertial fusion laboratory high gain facility, experiments will be carried out with up to 1000 MJ of thermonuclear yield. The experiment area of such a facility will include many systems and structures that will have to operate successfully in the difficult environment created by the sudden large energy release. This paper estimates many of the nuclear effects that will occur, discusses the implied design issues and suggests possible solutions so that a useful experimental facility can be built. 4 figs

  7. Extrap conceptual fusion reactor design study

    International Nuclear Information System (INIS)

    Eninger, J.E; Lehnert, B.

    1987-12-01

    A study has recently been initiated to asses the fusion reactor potential of the Extrap concept. A reactor model is defined that fulfills certain economic and environmental criteria. This model is applied to Extrap and a reference reactor is outlined. The design is optimized by varying parameters subject to both physics and engineering constraints. Several design options are examined and key engineering issues are identified and addressed. Some preliminary results and conclusions of this work are summarized. (authors)

  8. Updated reference design of a liquid metal cooled tandem mirror fusion breeder

    International Nuclear Information System (INIS)

    Berwald, D.H.; Whitley, R.H.; Garner, J.K.

    1985-09-01

    Detailed studies of key techinical issues for liquid metal cooled fusion breeder (fusion-fission hybrid blankets) have been performed during the period 1983-4. Based upon the results of these studies, the 1982 reference liquid metal cooled tandem mirror fusion breeder blanket design was updated and is described. The updated reference blankets provides increased breeding and lower technological risk in comparison with the original reference blanket. In addition to the blanket design revisions, a plant concept, cost, and fuel cycle economics assessment is provided. The fusion breeder continues to promise an economical source of fissile fuel for the indefinite future

  9. Updated reference design of a liquid metal cooled tandem mirror fusion breeder

    Energy Technology Data Exchange (ETDEWEB)

    Berwald, D.H.; Whitley, R.H.; Garner, J.K.; Gromada, R.J.; McCarville, T.J.; Moir, R.W.; Lee, J.D.; Bandini, B.R.; Fulton, F.J.; Wong, C.P.C.; Maya, I.; Hoot, C.G.; Schultz, K.R.; Miller, L.G.; Beeston, J.M.; Harris, B.L.; Westman, R.A.; Ghoniem, N.M.; Orient, G.; Wolfer, M.; DeVan, J.H.; Torterelli, P.

    1985-09-01

    Detailed studies of key techinical issues for liquid metal cooled fusion breeder (fusion-fission hybrid blankets) have been performed during the period 1983-4. Based upon the results of these studies, the 1982 reference liquid metal cooled tandem mirror fusion breeder blanket design was updated and is described. The updated reference blankets provides increased breeding and lower technological risk in comparison with the original reference blanket. In addition to the blanket design revisions, a plant concept, cost, and fuel cycle economics assessment is provided. The fusion breeder continues to promise an economical source of fissile fuel for the indefinite future.

  10. Development of design system of manipulator for fusion reactor maintenance

    International Nuclear Information System (INIS)

    Ida, Toshio; Niikura, Setsuo; Ishiguro, Akiko; Yamada, Masao; Matsuoka, Fushiki

    1989-01-01

    A program which supports designers of a manipulator for in-vessel maintenance of a fusion reactor has been developed. The main purpose of this program is to provide the designer with a promising manipulator specification by furnishing useful information. It combines a technique of knowledge engineering with numerical solutions. This program consists of three parts: The first part is to generate candidates for the manipulator using a knowledge base; the second is to evaluate both static and dynamic properties of each candidate through numerical simulation of the maintenance task; and the third is to select the candidates having better performance and feasibility on the basis of the simulation data and knowledge base. The feasibility of the method used in this program is confirmed by the preliminary application. This application also emphasizes the importance of the knowledge base for the candidate generation and selection. Although the degree of freedom of the manipulator is restricted to less than 7 degrees in this study, further development of the capability of manipulator simulation (seven or more degrees of freedom) will enhance the effectiveness of this program. (orig.)

  11. Systems Modeling For The Laser Fusion-Fission Energy (LIFE) Power Plant

    International Nuclear Information System (INIS)

    Meier, W.R.; Abbott, R.; Beach, R.; Blink, J.; Caird, J.; Erlandson, A.; Farmer, J.; Halsey, W.; Ladran, T.; Latkowski, J.; MacIntyre, A.; Miles, R.; Storm, E.

    2008-01-01

    A systems model has been developed for the Laser Inertial Fusion-Fission Energy (LIFE) power plant. It combines cost-performance scaling models for the major subsystems of the plant including the laser, inertial fusion target factory, engine (i.e., the chamber including the fission and tritium breeding blankets), energy conversion systems and balance of plant. The LIFE plant model is being used to evaluate design trade-offs and to identify high-leverage R and D. At this point, we are focused more on doing self consistent design trades and optimization as opposed to trying to predict a cost of electricity with a high degree of certainty. Key results show the advantage of large scale (>1000 MWe) plants and the importance of minimizing the cost of diodes and balance of plant cost

  12. A multi-agent systems approach to distributed bayesian information fusion

    NARCIS (Netherlands)

    Pavlin, G.; de Oude, P.; Maris, M.; Nunnink, J.; Hood, T.

    2010-01-01

    This paper introduces design principles for modular Bayesian fusion systems which can (i) cope with large quantities of heterogeneous information and (ii) can adapt to changing constellations of information sources on the fly. The presented approach exploits the locality of relations in causal

  13. Fusion Engineering Device (FED) first wall/shield design

    International Nuclear Information System (INIS)

    Sager, P.H.; Fuller, G.; Cramer, B.; Davisson, J.; Haines, J.; Kirchner, J.

    1981-01-01

    The torus of the Fusion Engineering Device (FED) is comprised of the bulk shield and its associated spool lstructure and support system, the first wall water-cooled panel and armor systems, and the pumped limiter. The bulk shielding is provided by ten shield sectors that are installed in the spool structure in such a way as to permit extraction of the sectors through the openings between adjacent toroidal field coils with a direct radial movement. The first wall armor is installed on the inboard and top interior walls of these sectors, and the water-cooled panels are installed on the outboard interior walls and the pumped limiter in the bottom of the sectors. The overall design of the first wall and shield system is described in this paper

  14. Present status of design, research and development of nuclear fusion reactors and problems

    International Nuclear Information System (INIS)

    1983-04-01

    Seven years have elapsed since the publication of ''Progress of nuclear fusion research and perspective toward the development of power reactors'' by the Atomic Energy Society of Japan in August, 1976. During this period, the research and development of nuclear fusion have changed from plasma physics to reactor technology, being conscious of the realization of fusion reactors. There are the R project in the Institute of Plasma Physics, Nagoya University, and the design and construction of JT-60 in Japan Atomic Energy Research Institute, to put it concretely. Now the research and development taking the economical efficiency into account are adopted. However, the type of fusion reactors is not reduced to tokamak type, accordingly the research and development to meet the diverse possibilities are forwarded. The progress of tokamak reactor research, core plasma design, nuclear design and shielding design, thermal structure design, the design of superconducting magnets, disassembling and repair, safety, economical efficiency, the conceptual design of other types than tokamak and others are reported. (Kako, I.)

  15. Construction of a large laser fusion system

    International Nuclear Information System (INIS)

    Hurley, C.A.

    1977-01-01

    Construction of a large laser fusion machine is nearing completion at the Lawrence Livermore Laboratory (LLL). Shiva, a 20-terawatt neodymium doped glass system, will be complete in early 1978. This system will have the high power needed to demonstrate significant thermonuclear burn. Shiva will irradiate a microscopic D-T pellet with 20 separate laser beams arriving simultaneously at the target. This requires precise alignment, and stability to maintain alignment. Hardware for the 20 laser chains is composed of 140 amplifiers, 100 spatial filters, 80 isolation stages, 40 large turning mirrors, and a front-end splitter system of over 100 parts. These are mounted on a high stability, three dimensional spaceframe which serves as an optical bench. The mechanical design effort, spanning approximately 3 years, followed a classic engineering evolution. The conceptual design phase led directly to system optimization through cost and technical tradeoffs. Additional manpower was then required for detailed design and specification of hardware and fabrication. Design of long-lead items was started early in order to initiate fabrication and assembly while the rest of the design was completed. All components were ready for assembly and construction as fiscal priorities and schedules permitted

  16. Conceptual design study of fusion experimental reactor (FY86 FER)

    International Nuclear Information System (INIS)

    Seki, Yasushi; Iida, Hiromasa; Honda, Tsutomu.

    1987-08-01

    This report describes the study on safety for FER(Fusion Experimental Reactor) which has been designed as a next step machine to the JT-60. Though the final purpose of this study is to have an image of design base accident, maximum credible accident and to assess their risk or probability, etc., as FER plant system, the emphasis of this years study is placed on fuel-gas circulation system where the tritium inventory is maximum. This report consists of two chapters. The first chapter of this report summaries the FER system and describes FMEA(Failure Mode and Effect Analysis) and related accident progression sequence for FER plant system as a whole. The second chapter of this report is focused on fuel-gas circulation system including the purification, isotope separation system and storage system. Here, probability of risk is assessed by the probabilistic risk analysis (PRA) procedure based on FMEA, ETA and FTA. (author)

  17. Design and evaluation of a laser fusion energy station for industrial applications

    International Nuclear Information System (INIS)

    Kok, K.D.; Bates, F.J.; Denning, R.S.; Triplett, M.B.; Waddell, J.D.

    1978-01-01

    The identification and development of long-term energy options is important in the continued growth of industry in the United States. Fusion and particularly laser fusion is one of the possible options. This paper applies the criteria used by industry in the selection of an energy source to the first of a series of conceptual designs for a laser fusion energy station. Several conclusions are presented including the constraints placed on the design by the criteria

  18. Fusion technology development: role of fusion facility upgrades and fission test reactors

    International Nuclear Information System (INIS)

    Hsu, P.Y.; Deis, G.A.; Longhurst, G.R.; Miller, L.G.; Schmunk, R.E.

    1983-01-01

    The near term national fusion program is unlikely to follow the aggressive logic of the Fusion Engineering Act of 1980. Faced with level budgets, a large, new fusion facility with an engineering thrust is unlikely in the near future. Within the fusion community the idea of upgrading the existing machines (TFTR, MFTF-B) is being considered to partially mitigate the lack of a design data base to ready the nation to launch an aggressive, mission-oriented fusion program with the goal of power production. This paper examines the cost/benefit issues of using fusion upgrades to develop the technology data base which will be required to support the design and construction of the next generation of fusion machines. The extent of usefulness of the nation's fission test reactors will be examined vis-a-vis the mission of the fusion upgrades. The authors show that while fission neutrons will provide a useful test environment in terms of bulk heating and tritium breeding on a submodule scale, they can play only a supporting role in designing the integrated whole modules and systems to be used in a nuclear fusion machine

  19. Fusion technology development: role of fusion facility upgrades and fission test reactors

    International Nuclear Information System (INIS)

    Hsu, P.Y.; Deis, G.A.; Miller, L.G.; Longhurst, G.R.; Schmunk, R.E.

    1983-01-01

    The near term national fusion program is unlikely to follow the aggressive logic of the Fusion Engineering Act of 1980. Faced with level budgets, a large, new fusion facility with an engineering thrust is unlikely in the near future. Within the fusion community the idea of upgrading the existing machines (TFTR, MFTF-B) is being considered to partially mitigate the lack of a design data base to ready the nation to launch an aggressive, mission-oriented fusion program with the goal of power production. This paper examines the cost/benefit issues of using fusion upgrades to develop the technology data base which will be required to support the design and construction of the next generation of fusion machines. The extent of usefulness of the nation's fission test reactors will be examined vis-a-vis the mission of the fusion upgrades. We will show that while fission neutrons will provide a useful test environment in terms of bulk heating and tritium breeding on a submodule scale, they can play only a supporting role in designing the integrated whole modules and systems to be used in a nuclear fusion machine

  20. Magnetic mirror fusion systems: Characteristics and distinctive features

    International Nuclear Information System (INIS)

    Post, R.F.

    1987-01-01

    A tutorial account is given of the main characteristics and distinctive features of conceptual magnetic fusion systems employing the magnetic mirror principle. These features are related to the potential advantages that mirror-based fusion systems may exhibit for the generation of economic fusion power

  1. Role of nuclear fusion in future energy systems and the environment under future uncertainties

    International Nuclear Information System (INIS)

    Tokimatsu, Koji; Fujino, Jun'ichi; Konishi, Satoshi; Ogawa, Yuichi; Yamaji, Kenji

    2003-01-01

    Debates about whether or not to invest heavily in nuclear fusion as a future innovative energy option have been made within the context of energy technology development strategies. This is because the prospects for nuclear fusion are quite uncertain and the investments therefore carry the risk of quite large regrets, even though investment is needed in order to develop the technology. The timeframe by which nuclear fusion could become competitive in the energy market has not been adequately studied, nor has roles of the nuclear fusion in energy systems and the environment. The present study has two objectives. One is to reveal the conditions under which nuclear fusion could be introduced economically (hereafter, we refer to such introductory conditions as breakeven prices) in future energy systems. The other objective is to evaluate the future roles of nuclear fusion in energy systems and in the environment. Here we identify three roles that nuclear fusion will take on when breakeven prices are achieved: (i) a portion of the electricity market in 2100, (ii) reduction of annual global total energy systems cost, and (iii) mitigation of carbon tax (shadow price of carbon) under CO 2 constraints. Future uncertainties are key issues in evaluating nuclear fusion. Here we treated the following uncertainties: energy demand scenarios, introduction timeframe for nuclear fusion, capacity projections of nuclear fusion, CO 2 target in 2100, capacity utilization ratio of options in energy/environment technologies, and utility discount rates. From our investigations, we conclude that the presently designed nuclear fusion reactors may be ready for economical introduction into energy systems beginning around 2050-2060, and we can confirm that the favorable introduction of the reactors would reduce both the annual energy systems cost and the carbon tax (the shadow price of carbon) under a CO 2 concentration constraint

  2. Fusion transmutation of waste: design and analysis of the in-zinerator concept.

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, S. M.; Cipiti, Benjamin B.; Olson, Craig Lee; Guild-Bingham, Avery (Texas A& M University, College Station, TX); Venneri, Francesco (General Atomics, San Diego, CA); Meier, Wayne (LLNL, Livermore, CA); Alajo, A.B. (Texas A& M University, College Station, TX); Johnson, T. R. (Argonne Mational Laboratory, Argonne, IL); El-Guebaly, L. A. (University of Wisconsin, Madison, WI); Youssef, M. E. (University of California, Los Angeles, CA); Young, Michael F.; Drennen, Thomas E. (Hobart & William Smith College, Geneva, NY); Tsvetkov, Pavel Valeryevich (Texas A& M University, College Station, TX); Morrow, Charles W.; Turgeon, Matthew C.; Wilson, Paul (University of Wisconsin, Madison, WI); Phruksarojanakun, Phiphat (University of Wisconsin, Madison, WI); Grady, Ryan (University of Wisconsin, Madison, WI); Keith, Rodney L.; Smith, James Dean; Cook, Jason T.; Sviatoslavsky, Igor N. (University of Wisconsin, Madison, WI); Willit, J. L. (Argonne Mational Laboratory, Argonne, IL); Cleary, Virginia D.; Kamery, William (Hobart & William Smith College, Geneva, NY); Mehlhorn, Thomas Alan; Rochau, Gary Eugene

    2006-11-01

    Due to increasing concerns over the buildup of long-lived transuranic isotopes in spent nuclear fuel waste, attention has been given in recent years to technologies that can burn up these species. The separation and transmutation of transuranics is part of a solution to decreasing the volume and heat load of nuclear waste significantly to increase the repository capacity. A fusion neutron source can be used for transmutation as an alternative to fast reactor systems. Sandia National Laboratories is investigating the use of a Z-Pinch fusion driver for this application. This report summarizes the initial design and engineering issues of this ''In-Zinerator'' concept. Relatively modest fusion requirements on the order of 20 MW can be used to drive a sub-critical, actinide-bearing, fluid blanket. The fluid fuel eliminates the need for expensive fuel fabrication and allows for continuous refueling and removal of fission products. This reactor has the capability of burning up 1,280 kg of actinides per year while at the same time producing 3,000 MWth. The report discusses the baseline design, engineering issues, modeling results, safety issues, and fuel cycle impact.

  3. Fusion transmutation of waste: design and analysis of the In-Zinerator concept

    International Nuclear Information System (INIS)

    Durbin, S. M.; Cipiti, Benjamin B.; Olson, Craig Lee; Guild-Bingham, Avery; Venneri, Francesco; Meier, Wayne; Alajo, A.B.; Johnson, T. R.; El-Guebaly, L. A.; Youssef, M. E.; Young, Michael F.; Drennen, Thomas E.; Tsvetkov, Pavel Valeryevich; Morrow, Charles W.; Turgeon, Matthew C.; Wilson, Paul; Phruksarojanakun, Phiphat; Grady, Ryan; Keith, Rodney L.; Smith, James Dean; Cook, Jason T.; Sviatoslavsky, Igor N.; Willit, J. L.; Cleary, Virginia D.; Kamery, William; Mehlhorn, Thomas Alan; Rochau, Gary Eugene

    2006-01-01

    Due to increasing concerns over the buildup of long-lived transuranic isotopes in spent nuclear fuel waste, attention has been given in recent years to technologies that can burn up these species. The separation and transmutation of transuranics is part of a solution to decreasing the volume and heat load of nuclear waste significantly to increase the repository capacity. A fusion neutron source can be used for transmutation as an alternative to fast reactor systems. Sandia National Laboratories is investigating the use of a Z-Pinch fusion driver for this application. This report summarizes the initial design and engineering issues of this ''In-Zinerator'' concept. Relatively modest fusion requirements on the order of 20 MW can be used to drive a sub-critical, actinide-bearing, fluid blanket. The fluid fuel eliminates the need for expensive fuel fabrication and allows for continuous refueling and removal of fission products. This reactor has the capability of burning up 1,280 kg of actinides per year while at the same time producing 3,000 MWth. The report discusses the baseline design, engineering issues, modeling results, safety issues, and fuel cycle impact

  4. Tandem mirror magnet system for the mirror fusion test facility

    International Nuclear Information System (INIS)

    Bulmer, R.H.; Van Sant, J.H.

    1980-01-01

    The Tandem Mirror Fusion Test Facility (MFTF-B) will be a large magnetic fusion experimental facility containing 22 supercounducting magnets including solenoids and C-coils. State-of-the-art technology will be used extensively to complete this facility before 1985. Niobium titanium superconductor and stainless steel structural cases will be the principle materials of construction. Cooling will be pool boiling and thermosiphon flow of 4.5 K liquid helium. Combined weight of the magnets will be over 1500 tonnes and the stored energy will be over 1600 MJ. Magnetic field strength in some coils will be more than 8 T. Detail design of the magnet system will begin early 1981. Basic requirements and conceptual design are disclosed in this paper

  5. Neutral beam systems for the magnetic fusion program

    International Nuclear Information System (INIS)

    Beal, J.W.; Staten, H.S.

    1977-01-01

    The attainment of economic, safe fusion power has been described as the most sophisticated scientific problem ever attacked by mankind. The presently established goal of the magnetic fusion program is to develop and demonstrate pure fusion central electric power stations for commercial applications. Neutral beam heating systems are a basic component of the tokamak and mirror experimental fusion plasma confinement devices. The requirements placed upon neutral beam heating systems are reviewed. The neutral beam systems in use or being developed are presented. Finally, the needs of the future are discussed

  6. Fusion reactor design and technology program in China

    International Nuclear Information System (INIS)

    Huang, J.H.

    1994-01-01

    A fusion-fission hybrid reactor program was launched in 1987. The purpose of development of the hybrid reactor is twofold: to solve the problem of nuclear fuel supply for an expected large-scale development of fission reactor plants, and to maintain the momentum of fusion research. The program is described and the activities and progress of the program are presented. Two conceptual designs of an engineering test reactor with tokamak configuration were developed at the Southwestern Institute of Physics and the Institute of Plasma Physics. The results are a tokamak engineering test breeder (TETB) series design and a fusion-fission hybrid reactor design (SSEHR), characterized by a liquid-Li self-cooled blanket and an He-cooled solid tritium breeder blanket respectively. In parallel with the design studies, relevant technological experiments on a small or medium scale have been supported by this program. These include LHCD, ICRH and pellet injection in the area of plasma engineering; neutronics integral experiments with U, Pu, Fe and Be; various irradiation tests of austenitic and ferritic steels, magnetohydrodynamic (MHD) pressure drop experiments using a liquid metal loop; research into permeation barriers for tritium and hydrogen isotopes; solid tritium breeder tests using an in-situ loop in a fission reactor. All these experiments have proceeded successfully. The second step of this program is now starting. It seems reasonable that most of the research carried out in the first step will continue. ((orig.))

  7. SAFIRE: A systems analysis code for ICF [inertial confinement fusion] reactor economics

    International Nuclear Information System (INIS)

    McCarville, T.J.; Meier, W.R.; Carson, C.F.; Glasgow, B.B.

    1987-01-01

    The SAFIRE (Systems Analysis for ICF Reactor Economics) code incorporates analytical models for scaling the cost and performance of several inertial confinement fusion reactor concepts for electric power. The code allows us to vary design parameters (e.g., driver energy, chamber pulse rate, net electric power) and evaluate the resulting change in capital cost of power plant and the busbar cost of electricity. The SAFIRE code can be used to identify the most attractive operating space and to identify those design parameters with the greatest leverage for improving the economics of inertial confinement fusion electric power plants

  8. Neutron and photon transport calculations in fusion system. 2

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Satoshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1998-03-01

    On the application of MCNP to the neutron and {gamma}-ray transport calculations for fusion reactor system, the wide range design calculation has been carried out in the engineering design activities for the international thermonuclear fusion experimental reactor (ITER) being developed jointly by Japan, USA, EU and Russia. As the objects of shielding calculation for fusion reactors, there are the assessment of dose equivalent rate for living body shielding and the assessment of the nuclear response for the soundness of in-core structures. In the case that the detailed analysis of complicated three-dimensional shapes is required, the assessment using MCNP has been carried out. Also when the nuclear response of peripheral equipment due to the gap streaming between blanket modules is evaluated with good accuracy, the calculation with MCNP has been carried out. The analyses of the shieldings for blanket modules and NBI port are explained, and the examples of the results of analyses are shown. In the blanket modules, there are penetrating holes and continuous gap. In the case of the NBI port, shielding plug cannot be installed. These facts necessitate the MCNP analysis with high accuracy. (K.I.)

  9. Accelerator conceptual design of the international fusion materials irradiation facility

    International Nuclear Information System (INIS)

    Sugimoto, M.; Kinsho, M.; Teplyakov, V.; Berwald, D.; Bruhwiler, D.; Peakock, M.; Rathke, J.; Deitinghoff, H.; Klein, H.; Pozimski, Y.; Volk, K.; Miyahara, A.; Olivier, M.; Piechowiak, E.; Tanabe, Y.

    1998-01-01

    The accelerator system of the international fusion materials irradiation facility (IFMIF) provides the 250-mA, 40-MeV continuous-wave deuteron beam at one of the two lithium target stations. It consists of two identical linear accelerator modules, each of which independently delivers a 125-mA beam to the common footprint of 20 cm x 5 cm at the target surface. The accelerator module consists of an ion injector, a 175 MHz RFQ and eight DTL tanks, and rf power supply system. The requirements for the accelerator system and the design concept are described. The interface issues and operational considerations to attain the proposed availability are also discussed. (orig.)

  10. Opimization of fusion-driven fissioning systems

    International Nuclear Information System (INIS)

    Chapin, D.L.; Mills, R.G.

    1976-01-01

    Potential advantages of hybrid or fusion/fission systems can be exploited in different ways. With selection of the 238 U-- 239 Pu fuel cycle, we show that the system has greatest value as a power producer. Numerical examples of relative revenue from power production vs. 239 Pu production are discussed, and possible plant characteristics described. The analysis tends to show that the hybrid may be more economically attractive than pure fusion systems

  11. XEUS: Exploratory Energy Utilization Systemic s for Fission Fusion Hybrid Application

    International Nuclear Information System (INIS)

    Suh, Kune Y.; Jeong, Wi S.; Son, Hyung M.

    2008-01-01

    World energy outlook requires environmental friendliness, sustain ability and improved economic feasibility. The Exploratory Energy Utilization Systemic s (XEUS) is being developed at the Seoul National University (SNU) to satisfy these demands. Generation IV (Gen IV) and fusion reactors are considered as candidates for the primary system. Battery Omnibus Reactor Integral System (BORIS) is a liquid-metal cooled fast reactor which is one of the Gen IV concepts. Fusion Engineering Lifetime Integral Explorer (FELIX) is a fusion demonstration reactor for power generation. These two concepts are considered as dominant options for future nuclear energy source from the environmental, commercial and nonproliferation points of view. XEUS may as well be applied to the fusion-fission hybrid system. The system code is being developed to analyze the steady state and transient behavior of the primary system. Compact and high efficiency heat exchangers are designed in the Loop Energy Exchanger Integral System (LEXIS). Modular Optimized Brayton Integral System (MOBIS) incorporates a Brayton cycle with supercritical fluid to achieve high power conversion ratio. The high volumetric energy density of the Brayton cycle enables designers to reduce the size and eventually the cost of the system when compared with that of the Rankine cycle. MOBIS is home to heat exchangers and turbo machineries. The advanced shell-and-tube or printed circuit heat exchanger is considered as heat transfer components to reduce size of the system. The supercritical fluid driven turbines and compressor are designed to achieve higher component efficiency. Thermo hydrodynamic characteristics of each component in MOBIS are demonstrated utilizing computational fluid dynamics software CFX R . Another key contributor to the reduction of capital costs per unit energy has to do with manufacturing and assembly processes that streamline plant construction by minimizing construction work and time. In a three

  12. A Perspective on Equipment Design for Fusion Remote Handling

    International Nuclear Information System (INIS)

    Mills, S.; Haist, B.; Hamilton, D.

    2006-01-01

    For 8 years, JET remote operations have become more capable and confident. Many tasks have been successfully completed, even those never intended to be remote maintenance activities. The general approach to the provision of remote handling equipment at JET has been the preferred use of commercially-off-the-shelf equipment. In the areas of electrical, electronic, software and control this approach has been generally achievable. However, in the area of mechanical equipment it has been more difficult. In particular the RH tooling has been almost entirely bespoke as its requirements are highly sensitive to the design of the JET component being handled and there are many design variations. Hence, JET has required the design and manufacture of over 700 types of bespoke RH equipment. This paper will discuss the experience of introducing and developing remote handling mechanical equipment for JET. The paper will cover the relationship between the remote handling equipment and the JET component design and the potential for improving the design function. A major lesson from the introduction of remote handling to JET has been demonstration of the very close interdependency of the design of JET components with design of remote handling tooling. The JET remote handling manual was originally introduced as the vehicle to ensure remote handling compatibility by the introduction of standards. Experience has shown that in general the remote handling manual approach has been insufficient. Future fusion machines will be much more complex than JET and will demand even greater remote handling compatibility. This paper will discuss possible methods for improving this process. Equipment operating in a high radiation environment must be dependable It may spend part of its time in areas that would be extremely difficult to recover from in the case of failure. The equipment may also have a high duty cycle to minimise shutdown times and probably cannot be manually inspected on a frequent

  13. Synthetic fuels and fusion

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J A; Powell, J; Steinberg, M [Brookhaven National Lab., Upton, NY (USA)

    1981-03-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. equal to 40-60% and hydrogen production efficiencies by high temperature electrolysis of approx. equal to 50-70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long-term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

  14. Target design for high fusion yield with the double Z-pinch-driven hohlraum

    International Nuclear Information System (INIS)

    Vesey, R. A.; Herrmann, M. C.; Lemke, R. W.; Desjarlais, M. P.; Cuneo, M. E.; Stygar, W. A.; Bennett, G. R.; Campbell, R. B.; Christenson, P. J.; Mehlhorn, T. A.; Porter, J. L.; Slutz, S. A.

    2007-01-01

    A key demonstration on the path to inertial fusion energy is the achievement of high fusion yield (hundreds of MJ) and high target gain. Toward this goal, an indirect-drive high-yield inertial confinement fusion (ICF) target involving two Z-pinch x-ray sources heating a central secondary hohlraum is described by Hammer et al. [Phys. Plasmas 6, 2129 (1999)]. In subsequent research at Sandia National Laboratories, theoretical/computational models have been developed and an extensive series of validation experiments have been performed to study hohlraum energetics, capsule coupling, and capsule implosion symmetry for this system. These models have been used to design a high-yield Z-pinch-driven ICF target that incorporates the latest experience in capsule design, hohlraum symmetry control, and x-ray production by Z pinches. An x-ray energy output of 9 MJ per pinch, suitably pulse-shaped, is sufficient for this concept to drive 0.3-0.5 GJ capsules. For the first time, integrated two-dimensional (2D) hohlraum/capsule radiation-hydrodynamics simulations have demonstrated adequate hohlraum coupling, time-dependent radiation symmetry control, and the successful implosion, ignition, and burn of a high-yield capsule in the double Z-pinch hohlraum. An important new feature of this target design is mode-selective symmetry control: the use of burn-through shields offset from the capsule that selectively tune certain low-order asymmetry modes (P 2 ,P 4 ) without significantly perturbing higher-order modes and without a significant energy penalty. This paper will describe the capsule and hohlraum design that have produced 0.4-0.5 GJ yields in 2D simulations, provide a preliminary estimate of the Z-pinch load and accelerator requirements necessary to drive the system, and suggest future directions for target design work

  15. An acceleration system for Laplacian image fusion based on SoC

    Science.gov (United States)

    Gao, Liwen; Zhao, Hongtu; Qu, Xiujie; Wei, Tianbo; Du, Peng

    2018-04-01

    Based on the analysis of Laplacian image fusion algorithm, this paper proposes a partial pipelining and modular processing architecture, and a SoC based acceleration system is implemented accordingly. Full pipelining method is used for the design of each module, and modules in series form the partial pipelining with unified data formation, which is easy for management and reuse. Integrated with ARM processor, DMA and embedded bare-mental program, this system achieves 4 layers of Laplacian pyramid on the Zynq-7000 board. Experiments show that, with small resources consumption, a couple of 256×256 images can be fused within 1ms, maintaining a fine fusion effect at the same time.

  16. Conceptual design of imploding liner fusion reactors

    International Nuclear Information System (INIS)

    Turchi, P.J.; Robson, A.E.

    1976-01-01

    The basic new ingredient is the concept of rotationally stabilized liquid metal liners accelerated with free pistons. The liner motion is constrained on its outer surface by the pistons, laterally by channel walls, during acceleration, and on its inner surface, where megagauss field levels are attained by the centrifugal motion of the liner material. In this way, stable, reversible motion of the liner should be possible, permitting repetitive, pulsed operation at interior pressures far greater than can be allowed in static conductor systems. Such higher operating pressures permit the use of simple plasma geometries, such as theta pinches, with greatly reduced dimensions. Furthermore, the implosion of thick, lithium-bearing liners with large radial compression ratios inherently provides the plasma with a surrounding blanket of neutron absorbing liquid metal, thereby substantially reducing the problems of induced radioactivity and first wall damage that haunt conventional fusion reactor designs. The following article discusses the basic operation of liner reactors and several important features influencing their design

  17. Managing fusion high-level waste-A strategy for burning the long-lived products in fusion devices

    International Nuclear Information System (INIS)

    El-Guebaly, L.A.

    2006-01-01

    Fusion devices appear to be a viable option for burning their own high-level waste (HLW). We propose a novel strategy to eliminate (or minimize) the HLW generated by fusion systems. The main source of the fusion HLW includes the structural and recycled materials, refractory metals, and liquid breeders. The basic idea involves recycling and reprocessing the waste, separating the long-lived radionuclides from the bulk low-level waste, and irradiating the limited amount of HLW in a specially designed module to transmute the long-lived products into short-lived radioisotopes or preferably, stable elements. The potential performance of the new concept seems promising. Our analysis indicated moderate to excellent transmutation rates could be achieved in advanced fusion designs. Successive irradiation should burn the majority of the HLW. The figures of merit for the concept relate to the HLW burn-up fraction, neutron economy, and impact on tritium breeding. Hopefully, the added design requirements could be accommodated easily in fusion power plants and the cost of the proposed system would be much less than disposal in a deep geological HLW repository. Overall, this innovative approach offers benefits to fusion systems and helps earn public acceptance for fusion as a HLW-free source of clean nuclear energy

  18. FUSION DECISION FOR A BIMODAL BIOMETRIC VERIFICATION SYSTEM USING SUPPORT VECTOR MACHINE AND ITS VARIATIONS

    Directory of Open Access Journals (Sweden)

    A. Teoh

    2017-12-01

    Full Text Available This paw presents fusion detection technique comparisons based on support vector machine and its variations for a bimodal biometric verification system that makes use of face images and speech utterances. The system is essentially constructed by a face expert, a speech expert and a fusion decision module. Each individual expert has been optimized to operate in automatic mode and designed for security access application. Fusion decision schemes considered are linear, weighted Support Vector Machine (SVM and linear SVM with quadratic transformation. The conditions tested include the balanced and unbalanced conditions between the two experts in order to obtain the optimum fusion module from  these techniques best suited to the target application.

  19. Preliminary analysis of advanced equilibrium configuration for the fusion-driven subcritical system

    International Nuclear Information System (INIS)

    Chu Delin; Wu Bin; Wu Yican

    2003-01-01

    The Fusion-Driven Subcritical System (FDS) is a subcritical nuclear energy system driven by fusion neutron source. In this paper, an advanced plasma configuration for FDS system has been proposed, which aims at high beta, high bootstrap current and good confinement. A fixed-boundary equilibrium code has been used to obtain ideal equilibrium configuration. In order to determine the feasibility of FDS operation, a two-dimensional time-dependent free boundary simulation code has been adopted to simulate time-scale evolution of plasma current profile and boundary position. By analyses, the Reversed Shear mode as the most attractive one has been recommended for the FDS equilibrium configuration design

  20. Ceramics for applications in fusion systems

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1979-01-01

    Six critical applications for ceramics in fusion systems are reviewed, and structural and electrical problem areas discussed. Fusion neutron radiation effects in ceramics are considered in relation to fission neutron studies. A number of candidate materials are proposed for further evaluation

  1. Conceptual design and neutronics analyses of a fusion reactor blanket simulation facility

    International Nuclear Information System (INIS)

    Beller, D.E.; Ott, K.O.; Terry, W.K.

    1987-01-01

    A new conceptual design of a fusion reactor blanket simulation facility has been developed. This design follows the principles that have been successfully employed in the Purdue Fast Breeder Blanket Facility (FBBF), where experiments have resulted in the discovery of substantial deficiencies in neutronics predictions. With this design, discrepancies between calculation and experimental data can be nearly fully attributed to calculation methods because design deficiencies that could affect results are insignificant. The conceptual design of this FBBF analog, the Fusion Reactor Blanket Facility, is presented

  2. Advanced lasers for fusion

    International Nuclear Information System (INIS)

    Krupke, W.F.; George, E.V.; Haas, R.A.

    1979-01-01

    Laser drive systems' performance requirements for fusion reactors are developed following a review of the principles of inertial confinement fusion and of the technical status of fusion research lasers (Nd:glass; CO 2 , iodine). These requirements are analyzed in the context of energy-storing laser media with respect to laser systems design issues: optical damage and breakdown, medium excitation, parasitics and superfluorescence depumping, energy extraction physics, medium optical quality, and gas flow. Three types of energy-storing laser media of potential utility are identified and singled out for detailed review: (1) Group VI atomic lasers, (2) rare earth solid state hybrid lasers, and (3) rare earth molecular vapor lasers. The use of highly-radiative laser media, particularly the rare-gas monohalide excimers, are discussed in the context of short pulse fusion applications. The concept of backward wave Raman pulse compression is considered as an attractive technique for this purpose. The basic physics and device parameters of these four laser systems are reviewed and conceptual designs for high energy laser systems are presented. Preliminary estimates for systems efficiencies are given. (Auth.)

  3. Operation of the cryogenic system for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Chronis, W.C.; Slack, D.S.

    1987-01-01

    The cryogenic system for the Mirror Fusion Test Facility (MFTF) at Lawrence Livermore National Laboratory (LLNL) was designed to cool the entire MFTF-B system from ambient to operating temperature in less than 10 days. The system was successfully operated in the recent plant and capital equipment (PACE) acceptance tests, and results from these tests helped us correct problem areas and improve the system

  4. Design of a high-flux test assembly for the Fusion Materials Irradiation Test Facility

    International Nuclear Information System (INIS)

    Opperman, E.K.; Vogel, M.A.

    1982-01-01

    The Fusion Material Test Facility (FMIT) will provide a high flux fusion-like neutron environment in which a variety of structural and non-structural materials irradiations can be conducted. The FMIT experiments, called test assemblies, that are subjected to the highest neutron flux magnitudes and associated heating rates will require forced convection liquid metal cooling systems to remove the neutron deposited power and maintain test specimens at uniform temperatures. A brief description of the FMIT facility and experimental areas is given with emphasis on the design, capabilities and handling of the high flux test assembly

  5. Improvement of system code importing evaluation of Life Cycle Analysis of tokamak fusion power reactors

    International Nuclear Information System (INIS)

    Kobori, Hikaru; Kasada, Ryuta; Hiwatari, Ryoji; Konishi, Satoshi

    2016-01-01

    Highlights: • We incorporated the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code. • We calculated CO_2 emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. • We found that the objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. • The tokamak fusion reactor can reduce CO_2 emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. • The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant. - Abstract: This study incorporate the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code to calculate CO_2 emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. Competitiveness of tokamak fusion power reactors is expected to be evaluated by the cost and environmental impact represented by the CO_2 emissions, compared with present and future power generating systems such as fossil, nuclear and renewables. Result indicated that (1) The objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. (2) The tokamak fusion reactor can reduce CO_2 emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. (3) The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant.

  6. Improvement of system code importing evaluation of Life Cycle Analysis of tokamak fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kobori, Hikaru [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hiwatari, Ryoji [Central Research Institute of Electric Power Industry, Tokyo (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2016-11-01

    Highlights: • We incorporated the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code. • We calculated CO{sub 2} emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. • We found that the objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. • The tokamak fusion reactor can reduce CO{sub 2} emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. • The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant. - Abstract: This study incorporate the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code to calculate CO{sub 2} emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. Competitiveness of tokamak fusion power reactors is expected to be evaluated by the cost and environmental impact represented by the CO{sub 2} emissions, compared with present and future power generating systems such as fossil, nuclear and renewables. Result indicated that (1) The objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. (2) The tokamak fusion reactor can reduce CO{sub 2} emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. (3) The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant.

  7. Radiolytic production of chemical fuels in fusion reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Fish, J D

    1977-06-01

    Miley's energy flow diagram for fusion reactor systems is extended to include radiolytic production of chemical fuel. Systematic study of the economics and the overall efficiencies of fusion reactor systems leads to a criterion for evaluating the potential of radiolytic production of chemical fuel as a means of enhancing the performance of a fusion reactor system. The ecumenicity of the schema is demonstrated by application to (1) tokamaks, (2) mirror machines, (3) theta-pinch reactors, (4) laser-heated solenoids, and (5) inertially confined, laser-pellet devices. Pure fusion reactors as well as fusion-fission hybrids are considered.

  8. Radiolytic production of chemical fuels in fusion reactor systems

    International Nuclear Information System (INIS)

    Fish, J.D.

    1977-06-01

    Miley's energy flow diagram for fusion reactor systems is extended to include radiolytic production of chemical fuel. Systematic study of the economics and the overall efficiencies of fusion reactor systems leads to a criterion for evaluating the potential of radiolytic production of chemical fuel as a means of enhancing the performance of a fusion reactor system. The ecumenicity of the schema is demonstrated by application to (1) tokamaks, (2) mirror machines, (3) theta-pinch reactors, (4) laser-heated solenoids, and (5) inertially confined, laser-pellet devices. Pure fusion reactors as well as fusion-fission hybrids are considered

  9. Integrated process modeling for the laser inertial fusion energy (LIFE) generation system

    Science.gov (United States)

    Meier, W. R.; Anklam, T. M.; Erlandson, A. C.; Miles, R. R.; Simon, A. J.; Sawicki, R.; Storm, E.

    2010-08-01

    A concept for a new fusion-fission hybrid technology is being developed at Lawrence Livermore National Laboratory. The primary application of this technology is base-load electrical power generation. However, variants of the baseline technology can be used to "burn" spent nuclear fuel from light water reactors or to perform selective transmutation of problematic fission products. The use of a fusion driver allows very high burn-up of the fission fuel, limited only by the radiation resistance of the fuel form and system structures. As a part of this process, integrated process models have been developed to aid in concept definition. Several models have been developed. A cost scaling model allows quick assessment of design changes or technology improvements on cost of electricity. System design models are being used to better understand system interactions and to do design trade-off and optimization studies. Here we describe the different systems models and present systems analysis results. Different market entry strategies are discussed along with potential benefits to US energy security and nuclear waste disposal. Advanced technology options are evaluated and potential benefits from additional R&D targeted at the different options is quantified.

  10. Integrated process modeling for the laser inertial fusion Energy (LIFE) generation system

    International Nuclear Information System (INIS)

    Meier, W.R.; Anklam, T.M.; Erlandson, A.C.; Miles, R.R.; Simon, A.J.; Sawicki, R.; Storm, E.

    2010-01-01

    A concept for a new fusion-fission hybrid technology is being developed at Lawrence Livermore National Laboratory. The primary application of this technology is base-load electrical power generation. However, variants of the baseline technology can be used to 'burn' spent nuclear fuel from light water reactors or to perform selective transmutation of problematic fission products. The use of a fusion driver allows very high burn-up of the fission fuel, limited only by the radiation resistance of the fuel form and system structures. As a part of this process, integrated process models have been developed to aid in concept definition. Several models have been developed. A cost scaling model allows quick assessment of design changes or technology improvements on cost of electricity. System design models are being used to better understand system interactions and to do design trade-off and optimization studies. Here we describe the different systems models and present systems analysis results. Different market entry strategies are discussed along with potential benefits to US energy security and nuclear waste disposal. Advanced technology options are evaluated and potential benefits from additional R and D targeted at the different options is quantified.

  11. Integrated process modeling for the laser inertial fusion energy (LIFE) generation system

    International Nuclear Information System (INIS)

    Meier, W R; Anklam, T M; Erlandson, A C; Miles, R R; Simon, A J; Sawicki, R; Storm, E

    2010-01-01

    A concept for a new fusion-fission hybrid technology is being developed at Lawrence Livermore National Laboratory. The primary application of this technology is base-load electrical power generation. However, variants of the baseline technology can be used to 'burn' spent nuclear fuel from light water reactors or to perform selective transmutation of problematic fission products. The use of a fusion driver allows very high burn-up of the fission fuel, limited only by the radiation resistance of the fuel form and system structures. As a part of this process, integrated process models have been developed to aid in concept definition. Several models have been developed. A cost scaling model allows quick assessment of design changes or technology improvements on cost of electricity. System design models are being used to better understand system interactions and to do design trade-off and optimization studies. Here we describe the different systems models and present systems analysis results. Different market entry strategies are discussed along with potential benefits to US energy security and nuclear waste disposal. Advanced technology options are evaluated and potential benefits from additional R and D targeted at the different options is quantified.

  12. Fusion--fission energy systems, some utility perspectives

    International Nuclear Information System (INIS)

    Huse, R.A.; Burger, J.M.; Lotker, M.

    1974-01-01

    Some of the issues that are important in assessing fusion-- fission energy systems from a utility perspective are discussed. A number of qualitative systems-oriented observations are given along with some economic quantification of the benefits from fusion--fission hybrids and their allowed capital cost. (U.S.)

  13. Experimental fusion power reactor conceptual design study. Final report. Volume III

    International Nuclear Information System (INIS)

    Baker, C.C.

    1976-12-01

    This document is the final report which describes the work carried out by General Atomic Company for the Electric Power Research Institute on a conceptual design study of a fusion experimental power reactor (EPR) and an overall EPR facility. The primary objective of the two-year program was to develop a conceptual design of an EPR that operates at ignition and produces continuous net power. A conceptual design was developed for a Doublet configuration based on indications that a noncircular tokamak offers the best potential of achieving a sufficiently high effective fuel containment to provide a viable reactor concept at reasonable cost. Other objectives included the development of a planning cost estimate and schedule for the plant and the identification of critical R and D programs required to support the physics development and engineering and construction of the EPR. This volume contains the following appendices: (1) tradeoff code analysis, (2) residual mode transport, (3) blanket/first wall design evaluations, (4) shielding design evaluation, (5) toroidal coil design evaluation, (6) E-coil design evaluation, (7) F-coil design evaluation, (8) plasma recycle system design evaluation, (9) primary coolant purification design evaluation, (10) power supply system design evaluation, (11) number of coolant loops, (12) power conversion system design evaluation, and (13) maintenance methods evaluation

  14. Multimodal Biometric System- Fusion Of Face And Fingerprint Biometrics At Match Score Fusion Level

    Directory of Open Access Journals (Sweden)

    Grace Wangari Mwaura

    2017-04-01

    Full Text Available Biometrics has developed to be one of the most relevant technologies used in Information Technology IT security. Unimodal biometric systems have a variety of problems which decreases the performance and accuracy of these system. One way to overcome the limitations of the unimodal biometric systems is through fusion to form a multimodal biometric system. Generally biometric fusion is defined as the use of multiple types of biometric data or ways of processing the data to improve the performance of biometric systems. This paper proposes to develop a model for fusion of the face and fingerprint biometric at the match score fusion level. The face and fingerprint unimodal in the proposed model are built using scale invariant feature transform SIFT algorithm and the hamming distance to measure the distance between key points. To evaluate the performance of the multimodal system the FAR and FRR of the multimodal are compared along those of the individual unimodal systems. It has been established that the multimodal has a higher accuracy of 92.5 compared to the face unimodal system at 90 while the fingerprint unimodal system is at 82.5.

  15. HYFIRE II: fusion/high-temperature electrolysis conceptual-design study. Annual report

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1983-08-01

    As in the previous HYFIRE design study, the current study focuses on coupling a Tokamak fusion reactor with a high-temperature blanket to a High-Temperature Electrolyzer (HTE) process to produce hydrogen and oxygen. Scaling of the STARFIRE reactor to allow a blanket power to 6000 MW(th) is also assumed. The primary difference between the two studies is the maximum inlet steam temperature to the electrolyzer. This temperature is decreased from approx. 1300 0 to approx. 1150 0 C, which is closer to the maximum projected temperature of the Westinghouse fuel cell design. The process flow conditions change but the basic design philosophy and approaches to process design remain the same as before. Westinghouse assisted in the study in the areas of systems design integration, plasma engineering, balance-of-plant design, and electrolyzer technology

  16. Coatings for laser fusion

    International Nuclear Information System (INIS)

    Lowdermilk, W.H.

    1981-01-01

    Optical coatings are used in lasers systems for fusion research to control beam propagation and reduce surface reflection losses. The performance of coatings is important in the design, reliability, energy output, and cost of the laser systems. Significant developments in coating technology are required for future lasers for fusion research and eventual power reactors

  17. In-Service Design and Performance Prediction of Advanced Fusion Material Systems by Computational Modeling and Simulation

    International Nuclear Information System (INIS)

    G. R. Odette; G. E. Lucas

    2005-01-01

    This final report on ''In-Service Design and Performance Prediction of Advanced Fusion Material Systems by Computational Modeling and Simulation'' (DE-FG03-01ER54632) consists of a series of summaries of work that has been published, or presented at meetings, or both. It briefly describes results on the following topics: (1) A Transport and Fate Model for Helium and Helium Management; (2) Atomistic Studies of Point Defect Energetics, Dynamics and Interactions; (3) Multiscale Modeling of Fracture consisting of: (3a) A Micromechanical Model of the Master Curve (MC) Universal Fracture Toughness-Temperature Curve Relation, KJc(T - To), (3b) An Embrittlement DTo Prediction Model for the Irradiation Hardening Dominated Regime, (3c) Non-hardening Irradiation Assisted Thermal and Helium Embrittlement of 8Cr Tempered Martensitic Steels: Compilation and Analysis of Existing Data, (3d) A Model for the KJc(T) of a High Strength NFA MA957, (3e) Cracked Body Size and Geometry Effects of Measured and Effective Fracture Toughness-Model Based MC and To Evaluations of F82H and Eurofer 97, (3f) Size and Geometry Effects on the Effective Toughness of Cracked Fusion Structures; (4) Modeling the Multiscale Mechanics of Flow Localization-Ductility Loss in Irradiation Damaged BCC Alloys; and (5) A Universal Relation Between Indentation Hardness and True Stress-Strain Constitutive Behavior. Further details can be found in the cited references or presentations that generally can be accessed on the internet, or provided upon request to the authors. Finally, it is noted that this effort was integrated with our base program in fusion materials, also funded by the DOE OFES

  18. New Burnup Calculation System for Fusion-Fission Hybrid System

    International Nuclear Information System (INIS)

    Isao Murata; Shoichi Shido; Masayuki Matsunaka; Keitaro Kondo; Hiroyuki Miyamaru

    2006-01-01

    Investigation of nuclear waste incineration has positively been carried out worldwide from the standpoint of environmental issues. Some candidates such as ADS, FBR are under discussion for possible incineration technology. Fusion reactor is one of such technologies, because it supplies a neutron-rich and volumetric irradiation field, and in addition the energy is higher than nuclear reactor. However, it is still hard to realize fusion reactor right now, as well known. An idea of combination of fusion and fission concepts, so-called fusion-fission hybrid system, was thus proposed for the nuclear waste incineration. Even for a relatively lower plasma condition, neutrons can be well multiplied by fission in the nuclear fuel, tritium is thus bred so as to attain its self-sufficiency, enough energy multiplication is then expected and moreover nuclear waste incineration is possible. In the present study, to realize it as soon as possible with the presently proven technology, i.e., using ITER model with the achieved plasma condition of JT60 in JAEA, Japan, a new calculation system for fusion-fission hybrid reactor including transport by MCNP and burnup by ORIGEN has been developed for the precise prediction of the neutronics performance. The author's group already has such a calculation system developed by them. But it had a problem that the cross section libraries in ORIGEN did not have a cross section library, which is suitable specifically for fusion-fission hybrid reactors. So far, those for FBR were approximately used instead in the analysis. In the present study, exact derivation of the collapsed cross section for ORIGEN has been investigated, which means it is directly evaluated from calculated track length by MCNP and point-wise nuclear data in the evaluated nuclear data file like JENDL-3.3. The system realizes several-cycle calculation one time, each of which consists of MCNP criticality calculation, MCNP fixed source calculation with a 3-dimensional precise

  19. Accelerator conceptual design of the international fusion materials irradiation facility

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, M.; Kinsho, M. [Japan Atomic Energy Res. Inst., Tokai, Ibaraki (Japan). Intense Neutron Source Lab.; Jameson, R.A.; Blind, B. [Los Alamos National Lab., NM (United States); Teplyakov, V. [Institute for High Energy Physics, Moscow (Russian Federation); Berwald, D.; Bruhwiler, D.; Peakock, M.; Rathke, J. [Northrop Grumman Corp., Bethpage, NY (United States); Deitinghoff, H.; Klein, H.; Pozimski, Y.; Volk, K. [Johann Wolfgang Goethe Univ., Frankfurt (Germany). Inst. fur Angewandte Phys.; Ferdinand, R.; Lagniel, J.-M. [CEA Saclay LNS, Gif-sur-Yvette (France); Miyahara, A. [Teikyo Univ., Tokyo (Japan); Olivier, M. [CEA DSM, Saclay, Gif-sur-Yvette (France); Piechowiak, E. [Northrop Grumman Corp., Baltimore, MD (United States); Tanabe, Y. [Toshiba Corp., Tsurumi-ku, Yokohama (Japan)

    1998-10-01

    The accelerator system of the international fusion materials irradiation facility (IFMIF) provides the 250-mA, 40-MeV continuous-wave deuteron beam at one of the two lithium target stations. It consists of two identical linear accelerator modules, each of which independently delivers a 125-mA beam to the common footprint of 20 cm x 5 cm at the target surface. The accelerator module consists of an ion injector, a 175 MHz RFQ and eight DTL tanks, and rf power supply system. The requirements for the accelerator system and the design concept are described. The interface issues and operational considerations to attain the proposed availability are also discussed. (orig.) 8 refs.

  20. Engineering challenges encountered in the design of the ELMO BUMPY TORUS proof-of-principle fusion device

    International Nuclear Information System (INIS)

    Dillow, C.F.; Imster, H.F.

    1982-01-01

    This paper first provides a summary of the history and current status of the Elmo Bumpy Torus (EBT) fusion concept. A brief description of the EBT-P is then provided in which the many unique features of this fusion device are highlighted. This description will provide the technical background for the following discussions of some of the more challenging mechanical engineering problems encountered to date in the evolution of the EBT-P design. The problems discussed are: optimization of the device primary structure design, optimization of the superconducting magnet x-ray shield design, design of the liquid helium supply and distribution system, and selection of high vacuum seals and pumps and their protection from the high power microwave environment. The common challenge in each of these design issues was to assure adequate performance at minimum cost

  1. Fractal reactor: An alternative nuclear fusion system based on nature's geometry

    International Nuclear Information System (INIS)

    Siler, T. L.

    2007-01-01

    The author presents his concept of the Fractal Reactor, which explores the possibility of building a plasma fusion power reactor based on the real geometry of nature [fractals], rather than the virtual geometry that Euclid postulated around 330 BC; nearly every architect of our plasma fusion devices has been influenced by his three-dimensional geometry. The idealized points, lines, planes, and spheres of this classical geometry continue to be used to represent the natural world and to describe the properties of all geometrical objects, even though they neither accurately nor fully convey nature's structures and processes. The Fractal Reactor concept contrasts the current containment mechanisms of both magnetic and inertial containment systems for confining and heating plasmas. All of these systems are based on Euclidean geometry and use geometrical designs that, ultimately, are inconsistent with the Non-Euclidean geometry and irregular, fractal forms of nature (3). The author explores his premise that a controlled, thermonuclear fusion energy system might be more effective if it more closely embodies the physics of a star

  2. HYFIRE: fusion-high temperature electrolysis system

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.; Benenati, R.; Dang, V.D.; Horn, F.; Isaacs, H.; Lazareth, O.; Makowitz, H.; Usher, J.

    1980-01-01

    The Brookhaven National Laboratory (BNL) is carrying out a comprehensive conceptual design study called HYFIRE of a commercial fusion Tokamak reactor, high-temperature electrolysis system. The study is placing particular emphasis on the adaptability of the STARFIRE power reactor to a synfuel application. The HYFIRE blanket must perform three functions: (a) provide high-temperature (approx. 1400 0 C) process steam at moderate pressures (in the range of 10 to 30 atm) to the high-temperature electrolysis (HTE) units; (b) provide high-temperature (approx. 700 to 800 0 C) heat to a thermal power cycle for generation of electricity to the HTE units; and (c) breed enough tritium to sustain the D-T fuel cycle. In addition to thermal energy for the decomposition of steam into its constitutents, H 2 and O 2 , electrical input is required. Power cycle efficiencies of approx. 40% require He cooling for steam superheat. Fourteen hundred degree steam coupled with 40% power cycle efficiency results in a process efficiency (conversion of fusion energy to hydrogen chemical energy) of 50%

  3. Superconducting magnetic energy storage for electric utilities and fusion systems

    International Nuclear Information System (INIS)

    Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.

    1978-01-01

    Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. The Los Alamos Scientific Laboratory and the University of Wisconsin are developing superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks. In the fusion area, inductive energy transfer and storage is being developed. Both 1-ms fast-discharge theta-pinch systems and 1-to-2-s slow energy transfer tokamak systems have been demonstrated. The major components and the method of operation of a SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given of a reference design for a 10-GWh unit for load leveling, of a 30-MJ coil proposed for system stabilization, and of tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are presented. The common technology base for the various storage systems is discussed

  4. Tritium accountancy in fusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.E.; Clark, E.A.; Harvel, C.D.; Farmer, D.A.; Tovo, L.L.; Poore, A.S. [Savannah River National Laboratory, Aiken, SC (United States); Moore, M.L. [Savannah River Nuclear Solutions, Aiken, SC (United States)

    2015-03-15

    The US Department of Energy (DOE) has clearly defined requirements for nuclear material control and accountability (MCA) of tritium whereas the International Atomic Energy Agency (IAEA) does not since tritium is not a fissile material. MCA requirements are expected for tritium fusion machines and will be dictated by the host country or regulatory body where the machine is operated. Material Balance Areas (MBA) are defined to aid in the tracking and reporting of nuclear material movements and inventories. Material sub-accounts (MSA) are established along with key measurement points (KMP) to further subdivide a MBA to localize and minimize uncertainties in the inventory difference (ID) calculations for tritium accountancy. Fusion systems try to minimize tritium inventory which may require continuous movement of material through the MSA. The ability of making meaningful measurements of these material transfers is described in terms of establishing the MSA structure to perform and reconcile ID calculations. For fusion machines, changes to the traditional ID equation will be discussed which includes breeding, burn-up, and retention of tritium in the fusion device. The concept of 'net' tritium quantities consumed or lost in fusion devices is described in terms of inventory taking strategies and how it is used to track the accumulation of tritium in components or fusion machines. (authors)

  5. Conceptual fusion reactor designs based on the laser heat solenoid

    International Nuclear Information System (INIS)

    Steinhauer, L.C.

    1976-01-01

    The feasibility of the laser heated solenoid (LHS) as an approach to fusion and fusion-fission commercial power generation has been examined. The LHS concept is based on magnetic confinement of a long slender plasma column which is partly heated by the axially directed beam from a powerful long wavelength laser. As a pure fusion concept, the LHS configurations studied so far are characterized by fairly difficult engineering constraints, particularly on the magnet, a large laser, and a marginally acceptable system energy balance. As a fusion-fission system, however, the LHS is capable of a very attractive energy balance, has much more relaxed engineering constraints, requires a relatively modest laser, and as such holds great potential as a power generator and fissile fuel breeding scheme

  6. Semiotic foundation for multisensor-multilook fusion

    Science.gov (United States)

    Myler, Harley R.

    1998-07-01

    This paper explores the concept of an application of semiotic principles to the design of a multisensor-multilook fusion system. Semiotics is an approach to analysis that attempts to process media in a united way using qualitative methods as opposed to quantitative. The term semiotic refers to signs, or signatory data that encapsulates information. Semiotic analysis involves the extraction of signs from information sources and the subsequent processing of the signs into meaningful interpretations of the information content of the source. The multisensor fusion problem predicated on a semiotic system structure and incorporating semiotic analysis techniques is explored and the design for a multisensor system as an information fusion system is explored. Semiotic analysis opens the possibility of using non-traditional sensor sources and modalities in the fusion process, such as verbal and textual intelligence derived from human observers. Examples of how multisensor/multimodality data might be analyzed semiotically is shown and discussion on how a semiotic system for multisensor fusion could be realized is outlined. The architecture of a semiotic multisensor fusion processor that can accept situational awareness data is described, although an implementation has not as yet been constructed.

  7. Block Fusion Systems and the Center of the Group Ring

    DEFF Research Database (Denmark)

    Jacobsen, Martin Wedel

    This thesis develops some aspects of the theory of block fusion systems. Chapter 1 contains a brief introduction to the group algebra and some simple results about algebras over a field of positive characteristic. In chapter 2 we define the concept of a fusion system and the fundamental property...... of saturation. We also define block fusion systems and prove that they are saturated. Chapter 3 develops some tools for relating block fusion systems to the structure of the center of the group algebra. In particular, it is proven that a block has trivial defect group if and only if the center of the block...... algebra is one-dimensional. Chapter 4 consists of a proof that block fusion systems of symmetric groups are always group fusion systems of symmetric groups, and an analogous result holds for the alternating groups....

  8. A Foreign Object Damage Event Detector Data Fusion System for Turbofan Engines

    Science.gov (United States)

    Turso, James A.; Litt, Jonathan S.

    2004-01-01

    A Data Fusion System designed to provide a reliable assessment of the occurrence of Foreign Object Damage (FOD) in a turbofan engine is presented. The FOD-event feature level fusion scheme combines knowledge of shifts in engine gas path performance obtained using a Kalman filter, with bearing accelerometer signal features extracted via wavelet analysis, to positively identify a FOD event. A fuzzy inference system provides basic probability assignments (bpa) based on features extracted from the gas path analysis and bearing accelerometers to a fusion algorithm based on the Dempster-Shafer-Yager Theory of Evidence. Details are provided on the wavelet transforms used to extract the foreign object strike features from the noisy data and on the Kalman filter-based gas path analysis. The system is demonstrated using a turbofan engine combined-effects model (CEM), providing both gas path and rotor dynamic structural response, and is suitable for rapid-prototyping of control and diagnostic systems. The fusion of the disparate data can provide significantly more reliable detection of a FOD event than the use of either method alone. The use of fuzzy inference techniques combined with Dempster-Shafer-Yager Theory of Evidence provides a theoretical justification for drawing conclusions based on imprecise or incomplete data.

  9. First generation of fusion power plants: Design and technology. Proceedings of the 2. IAEA technical meeting

    International Nuclear Information System (INIS)

    2008-01-01

    This series of meetings has been initiated under recommendation of the International Fusion Research Council for the IAEA and is expected to initiate, develop and mature ideas on fusion strategy that would be of benefit for all players. The present objectives of this meeting are to provide a forum to discuss concepts, technology and environmental aspects of future fusion power plants, the next step following ITER, their role in future energy mix and to assess a selection of urgent topics aiming at identifying the physics and the technological requirements that ITER and a fusion grade materials developing programme will have to address to support the construction of a DEMO(s) fusion power plant(s) prototype demonstrating viable economics. The meeting was organized in five sessions addressing five topics: - (PPCA) Power Plant Concepts and systems Analysis. - (MCP) Materials analysis/Components design/Plasma requirements - (NE) Non-Electric applications of fusion - (SESE) Social, Economic, Safety and Environmental aspects of fusion - (EP) Energy Policy, strategy and scenario for fusion development. A summary session took place at the end of the meeting. Thirty-three participants representing 12 Countries and 3 International Organizations were present at the meeting

  10. Design study of superconducting inductive energy storages for tokamak fusion reactor

    International Nuclear Information System (INIS)

    1977-08-01

    Design of the superconducting inductive energy storages (SC-IES) has been studied. One SC-IES is for the power supply system in a experimental tokamak fusion reactor, and the other in a future practical reactor. Study started with definition of the requirements of SC-IES, followed by optimization of the coil shape and determination of major parameters. Then, the coil and the vessel were designed, including the following: for SC-IES of the experimental reactor, stored energy 10 GJ, B max 8 T, conductor NbTi and size 18 m diameter x 10 m height; for SC-IES of the practical reactor, stored energy 56 GJ, B max 10.5 T, conductor Nb 3 Sn and size 26 m diameter x 15 m height. Design of the coil protection system and an outline of the auxiliary systems (for refrigeration and evacuation) are also given, and further, problems and usefullness of SC-IES. (auth.)

  11. Decision Fusion System for Bolted Joint Monitoring

    Directory of Open Access Journals (Sweden)

    Dong Liang

    2015-01-01

    Full Text Available Bolted joint is widely used in mechanical and architectural structures, such as machine tools, industrial robots, transport machines, power plants, aviation stiffened plate, bridges, and steel towers. The bolt loosening induced by flight load and environment factor can cause joint failure leading to a disastrous accident. Hence, structural health monitoring is critical for the bolted joint detection. In order to realize a real-time and convenient monitoring and satisfy the requirement of advanced maintenance of the structure, this paper proposes an intelligent bolted joint failure monitoring approach using a developed decision fusion system integrated with Lamb wave propagation based actuator-sensor monitoring method. Firstly, the basic knowledge of decision fusion and classifier selection techniques is briefly introduced. Then, a developed decision fusion system is presented. Finally, three fusion algorithms, which consist of majority voting, Bayesian belief, and multiagent method, are adopted for comparison in a real-world monitoring experiment for the large aviation aluminum plate. Based on the results shown in the experiment, a big potential in real-time application is presented that the method can accurately and rapidly identify the bolt loosening by analyzing the acquired strain signal using proposed decision fusion system.

  12. General description of preliminary design of an experimental fusion reactor and the future problems

    International Nuclear Information System (INIS)

    Sako, Kiyoshi

    1976-01-01

    Recently, the studies on plasma physics has progressed rapidly, and promising experimental data emerged successively. Especially expectation mounts high that Tokamak will develop into power reactors. In Japan, the construction of large plasma devices such as JT-60 of JAERI is going to start, and after several years, the studies on plasma physics will come to the end of first stage, then the main research and development will be directed to power reactors. The studies on the design of practical fusion reactors have been in progress since 1973 in JAERI, and the preliminary design is being carried out. The purposes of the preliminary design are the clarification of the concept of the experimental reactor and the requirements for the studies on core plasma, the examination of the problems for developing main components and systems of the reactor, and the development of design technology. The experimental reactor is the quasi-steady reactor of 100 MW fusion reaction output, and the conditions set for the design and the basis of their setting are explained. The outline of the design, namely core plasma, blankets, superconductive magnets and the shielding with them, vacuum wall, neutral particle injection heating device, core fuel supply and exhaust system, and others, is described. In case of scale-up the reactor structural material which can withstand neutron damage must be developed. (Kako, I.)

  13. Conceptual design of the JAERI demonstration fusion reactor

    International Nuclear Information System (INIS)

    Sako, K.; Tone, T.; Seki, Y.

    1976-01-01

    Conceptual design of a tokamak demonstration fusion reactor is carried out. This design is an extended and improved version of the previous design which was presented at the 5th IAEA Conference. The main design parameters are as follows: the reactor thermal power 2000 MW, torus radius 10.5 m, plasma radius 2.7 m, first wall radius 3.0 m, toroidal magnetic field on axis 6T, blanket fertile material Li 2 O, coolant He, structural material Mo-alloy and tritium breeding ratio 1.2

  14. System study methodology. Development and potential utilization for fusion

    International Nuclear Information System (INIS)

    Djerassi, H.; Rouillard, J.; Leger, D.; Zappellini, G.; Gambi, G.

    1988-01-01

    The objective of this new methodology is to combine systemics with heuristics for engineering applications. The system method considers as a whole a set of dynamically interacting elements, organized for tasks. Heuristics tries to explicit the rules to apply in scientific research. This methodology is a powerful tool to evaluate the options to be made, compared with conventional analytical methods as a higher number of parameters can be taken into account, with higher quality standard while comparing the possible options. The system method takes into account interacting data or random relationships, by means of simulation modelling. Thus, a dynamical approach can be deduced and a sensitivity analysis can be performed for a very high number of options and basic data. Experimental values collection, analysis of the problem, search of solutions, sizing of the installation from defined functions, cost evaluation (planning and operating) and ranking of the options as regard all the constraints are the main points considered for the system's application. This method can be limited to a specific objective such as a fusion reactor safety analysis. The possibility of taking into account all the options, possible accidents, quality assurance, exhaustivity of the safety analysis, identification of the residual risk and modelisation of the results are the main advantages of this approach. The sophisticated architecture of a fusion reactor includes a large number of interacting systems. The new character of the fusion domain and the wide spectrum of the possible options strongly increase the advantages of a system study as a complete safety analysis can be defined before starting with the design

  15. Manipulator system for remote maintenance of fusion experimental reactor

    International Nuclear Information System (INIS)

    Shibanuma, Kiyoshi; Munakata, Tadashi; Murakami, Shin; Kondoh, Mitsunori.

    1991-01-01

    We have completed the conceptual design for a rail-mounted vehicle type remote maintenance system for the fusion experimental reactor (FER), which will be the first D-T burning reactor in Japan. We have fabricated a 1/5-scale model and confirmed the feasibility of the design. In this system, a rail is deployed into the vessel and supported at four horizontal ports. A vehicle then moves along the rail and handles in-vessel components with manipulators. The advantages of this concept are the high stiffness and high reliability of the rail, and the high mobility of the vehicle for efficient maintenance operations. In the FER, this concept is considered to be the first option for in-vessel maintenance. This paper describes the conceptual design of the system and the feasibility study using the 1/5-scale model. (author)

  16. Automation of fusion first wall design using artificial intelligence technique

    International Nuclear Information System (INIS)

    Yoshimura, Shinobu; Yagawa, Genki; Mochizuki, Yoshihiko

    1990-01-01

    This paper describes the application of artificial intelligence techniques to a design automation of the fusion first wall to be operated in the complex environment where huge electromagnetic and thermal loading as well as heavy neutron irradiation occur. As a basic strategy of designing structure shape considering many coupled phenomena, an ordinary design procedure based on the generate and test strategy is adopted because of its simplicity and broad applicability. To automate the design procedure with maintaining its flexibility, extensibility and efficiency, artificial intelligence techniques are utilized in the following. An object-oriented knowledge representation technique is adopted to store knowledge modules, that is, objects, related to the first wall design, while a data-flow processing technique is utilized as an inference mechanism among the knowledge modules. These techniques realize the flexibility and extensibility of the system. Moreover, as an efficient design modification mechanism, which is essential in a design process, an empirical approach based on experts' empirical knowledge and a mathematical approach based on a kind of numerical sensitivity analysis are introduced. The developed system is applied to a simple example of the design of a two-dimensional model of the first wall with a cooling channel, and its fundamental performance is clearly demonstrated. (author)

  17. The reversed-field-pinch (RFP) fusion neutron source: A conceptual design

    International Nuclear Information System (INIS)

    Bathke, C.G.; Krakowski, R.A.; Miller, R.L.; Werley, K.A.

    1989-01-01

    The conceptual design of an ohmically heated, reversed-field pinch (RFP) operating at ∼5-MW/m 2 steady-state DT fusion neutron wall loading and ∼124-MW total fusion power is presented. These results are useful in projecting the development of a cost effective, low input power (∼206 MW) source of DT neutrons for large-volume (∼10 m 3 ), high-fluence (3.4 MW yr/m 2 ) fusion nuclear materials and technology testing. 19 refs., 15 figs., 9 tabs

  18. IFMIF : International Fusion Materials Irradiation Facility Conceptual Design Activity: Final report

    International Nuclear Information System (INIS)

    Martone, M.

    1997-01-01

    This report documents the results of the Conceptual Design Activity (CDA) on the International Fusion Materials Irradiation Facility (IFMIF), conducted during 1995 and 1996. The activity is under the auspices of the International Energy Agency (IEA) Implementing Agreement for a Programme of Research and Development on Fusion Materials. An IEA Fusion Materials Executive Subcommittee was charged with overseeing the IFMIF-CDA work. Participants in the CDA are the European Union, Japan, and the United States, with the Russian Federation as an associate member

  19. IFMIF : International Fusion Materials Irradiation Facility Conceptual Design Activity: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Martone, M [ENEA, Centro Ricerche Frascati, Rome (Italy)

    1997-01-01

    This report documents the results of the Conceptual Design Activity (CDA) on the International Fusion Materials Irradiation Facility (IFMIF), conducted during 1995 and 1996. The activity is under the auspices of the International Energy Agency (IEA) Implementing Agreement for a Programme of Research and Development on Fusion Materials. An IEA Fusion Materials Executive Subcommittee was charged with overseeing the IFMIF-CDA work. Participants in the CDA are the European Union, Japan, and the United States, with the Russian Federation as an associate member.

  20. Conceptual design of tritium production fusion reactor based on spherical torus

    International Nuclear Information System (INIS)

    He Kaihui; Huang Jinhua

    2003-01-01

    Conceptual design of an advanced tritium production fusion reactor based on spherical torus, which is intermediate application of fusion energy, was presented in this paper. Differing from the traditional tokamak tritium production reactor design, advanced plasma physics performance and compact structural characteristics of ST were used to minimize tritium leakage and maximize tritium breeding ratio with arrangement of tritium production blankets within vacuum vessel as possible in order to produce 1 kg excess tritium except need of self-sufficient plasma core with 40% or more corresponding plant availability. Based on 2D neutronics calculation, preliminary conceptual design of ST-TPR was presented, providing the backgrounds and reference for next detailed conceptual design

  1. Safety issues relating to the design of fusion power facilities

    International Nuclear Information System (INIS)

    Stasko, R.R.; Wong, K.Y.; Russell, S.B.

    1986-06-01

    In order to make fusion power a viable future source of energy, it will be necessary to ensure that the cost of power for fusion electric generation is competitive with advanced fission concepts. In addition, fusion power will have to live up to its original promise of being a more radiologically benign technology than fission, and be able to demonstrate excellent operational safety performance. These two requirements are interrelated, since the selection of an appropriate safety philosophy early in the design phase could greatly reduce or eliminate the capital costs of elaborate safety related and protective sytems. This paper will briefly overview a few of the key safety issues presently recognized as critical to the ultimate achievement of licensable, environmentally safe and socially acceptable fusion power facilities. 12 refs

  2. Pellet design for a laser fusion reactor

    International Nuclear Information System (INIS)

    Thiessen, A.R.; Nuckolls, J.

    1974-01-01

    The requirements for laser fusion pellet design are discussed. Computer calculations are presented of a capsule consisting of a spherical solid drop of DT surrounded by a concentric shell of DT. Gains greater than 40 fold are achieved with laser energies of approximately 0.5 MJ, and peak powers of about 10 16 W. (U.S.)

  3. Hefei experimental hybrid fusion-fission reactor conceptual design

    International Nuclear Information System (INIS)

    Qiu Lijian; Luan Guishi; Xu Qiang

    1992-03-01

    A new concept of hybrid reactor is introduced. It uses JET-like(Joint European Tokamak) device worked at sub-breakeven conditions, as a source of high energy neutrons to induce a blanket fission of depleted uranium. The solid breeding material and helium cooling technique are also used. It can produce 100 kg of 239 Pu per year by partial fission suppressed. The energy self-sustained of the fusion core is not necessary. Plasma temperature is maintained by external 20 MW ICRF (ion cyclotron resonance frequency) and 10 MW ECRF (electron cyclotron resonance frequency) heating. A steady state plasma current at 1.5 Ma is driven by 10 MW LHCD (lower hybrid current driven). Plasma density will be kept by pellet injection. ICRF can produce a high energy tail in ion distribution function and lead to significant enhancement of D-T reaction rate by 2 ∼ 5 times so that the neutron source strength reaches to the level of 1 x 10 19 n/s. This system is a passive system. It's power density is 10 W/cm 3 and the wall loading is 0.6 W/cm 2 that is the lower limitation of fusion and fission technology. From the calculation of neutrons it could always be in sub-critical and has intrinsic safety. The radiation damage and neutron flux distribution on the first wall are also analyzed. According to the conceptual design the application of this type hybrid reactor earlier is feasible

  4. Consultancy on the potential of fusion/fission sub-critical neutron systems for energy production and transmutation. Working material

    International Nuclear Information System (INIS)

    2005-01-01

    The Workshop on Sub-critical Neutron Production held at the University of Maryland and the Eisenhower Institute on 11-13 October 2004 brought together members of fusion, fission and accelerator technical communities to discuss issues of spent fuel, nonproliferation, reactor safety and the use of neutrons for sub-critical operation of nuclear reactors. The Workshop strongly recommended that the fusion community work closely with other technical communities to ensure that a wider range of technical solutions is available to solve the spent fuel problem and to utilize the current actinide inventories. Participants of the Workshop recommended that a follow-on Workshop, possibly under the aegis of the IAEA, should be held in the first half of the year 2005. The Consultancy Meeting is the response to this recommendation. The objectives of the Consultancy meeting were to hold discussions on the role of fusion/fission systems in sub-critical operations of nuclear reactors. The participants agreed that development of innovative (fourth generation) fission reactors, advanced fuel cycle options, and disposition of existing spent nuclear fuel inventories in various Member Sates can significantly benefit from including sub-critical systems, which are driven by external neutron sources. Spallation neutrons produced by accelerators have been accepted in the past as the means of driving sub-critical reactors. The accelerator community deserves credit in pioneering this novel approach to reactor design. Progress in the design and operation of fusion devices now offers additional innovative means, broadening the range of sub-critical operations of fission reactors. Participants felt that fusion should participate with accelerators in providing a range of technical options in reactor design. Participants discussed concrete steps to set up a small fusion/fission system to demonstrate actinide burning in the laboratory and what advice should be given to the Agency on its role in

  5. Conceptual design study of closed Brayton cycle gas turbines for fusion power generation

    International Nuclear Information System (INIS)

    Kuo, S.C.

    1976-01-01

    A conceptual design study is presented of closed Brayton cycle gas turbine power conversion systems suitable for integration with advanced-concept Tokamak fusion reactors (such as UWMAK-III) for efficient power generation without requiring cooling water supply for waste heat rejection. A baseline cycle configuration was selected and parametric performance analyses were made. Based on the results of the parametric analysis and trade-off and interface considerations, the reference design conditions for the baseline cycle were selected. Conceptual designs were made of the major helium gas turbine power system components including a 585-MWe single-shaft turbomachine, (three needed), regenerator, precooler, intercooler, and the piping system connecting them. Structural configuration and significant physical dimensions for major components are illustrated, and a brief discussion on major advantages, power control and crucial technologies for the helium gas turbine power system are presented

  6. Fusion Materials Irradiation Test Facility: a facility for fusion-materials qualification

    International Nuclear Information System (INIS)

    Trego, A.L.; Hagan, J.W.; Opperman, E.K.; Burke, R.J.

    1983-01-01

    The Fusion Materials Irradiation Test Facility will provide a unique testing environment for irradiation of structural and special purpose materials in support of fusion power systems. The neutron source will be produced by a deuteron-lithium stripping reaction to generate high energy neutrons to ensure damage similar to that of a deuterium-tritium neutron spectrum. The facility design is now ready for the start of construction and much of the supporting lithium system research has been completed. Major testing of key low energy end components of the accelerator is about to commence. The facility, its testing role, and the status and major aspects of its design and supporting system development are described

  7. IFMIF : International Fusion Materials Irradiation Facility Conceptual Design Activity: Executive summary

    International Nuclear Information System (INIS)

    1997-01-01

    This report is a summary of the results of the Conceptual Design Activity (CDA) on the International Fusion Materials Irradiation Facility (IFMIF), conducted during 1995 and 1996. The activity is under the auspices of the International Energy Agency (IEA) Implementing Agreement for a Programme of Research and Development on Fusion Materials. An IEA Fusion Materials Executive Subcommittee was charged with overseeing the IFMIF-CDA work. Participants in the CDA are the European Union, Japan, and the United States, with the Russian Federation as an associate member

  8. IFMIF : International Fusion Materials Irradiation Facility Conceptual Design Activity: Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    This report is a summary of the results of the Conceptual Design Activity (CDA) on the International Fusion Materials Irradiation Facility (IFMIF), conducted during 1995 and 1996. The activity is under the auspices of the International Energy Agency (IEA) Implementing Agreement for a Programme of Research and Development on Fusion Materials. An IEA Fusion Materials Executive Subcommittee was charged with overseeing the IFMIF-CDA work. Participants in the CDA are the European Union, Japan, and the United States, with the Russian Federation as an associate member.

  9. Material synergism fusion-fission

    International Nuclear Information System (INIS)

    Sankara Rao, K.B.; Raj, B.; Cook, I.; Kohyama, A.; Dudarev, S.

    2007-01-01

    In fission and fusion reactors the common features such as operating temperatures and neutron exposures will have the greatest impact on materials performance and component lifetimes. Developing fast neutron irradiation resisting materials is a common issue for both fission and fusion reactors. The high neutron flux levels in both these systems lead to unique materials problems like void swelling, irradiation creep and helium embitterment. Both fission and fusion rely on ferritic-martensitic steels based on 9%Cr compositions for achieving the highest swelling resistance but their creep strength sharply decreases above ∝ 823K. The use of oxide dispersion strengthened (ODS) alloys is envisaged to increase the operating temperature of blanket systems in the fusion reactors and fuel clad tubes in fast breeder reactors. In view of high operating temperatures, cyclic and steady load conditions and the long service life, properties like creep, low cycle fatigue,fracture toughness and creepfatigue interaction are major considerations in the selection of structural materials and design of components for fission and fusion reactors. Currently, materials selection for fusion systems has to be based upon incomplete experimental database on mechanical properties. The usage of fairly well developed databases, in fission programmes on similar materials, is of great help in the initial design of fusion reactor components. Significant opportunities exist for sharing information on technology of irradiation testing, specimen miniaturization, advanced methods of property measurement, safe windows for metal forming, and development of common materials property data base system. Both fusion and fission programs are being directed to development of clean steels with very low trace and tramp elements, characterization of microstructure and phase stability under irradiation, assessment of irradiation creep and swelling behaviour, studies on compatibility with helium and developing

  10. Implementation of a design and configuration management platform for fusion components on the Tore Supra WEST Project

    Energy Technology Data Exchange (ETDEWEB)

    Benoît, Fabrice, E-mail: fabrice-2.benoit@cea.fr [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Allegretti, Ludovic [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Aumeunier, Marie-Hélène [OPTIS, ZE de La Farlède, F-83078 Toulon Cedex 9 (France); Bucalossi, Jérôme; Doceul, Louis; Faïsse, Frederic; Firdaouss, Medhi; Geynet, Michel; Houtte, Didier van; Larroque, Sébastien; Magaud, Philippe; Maini, Patrick; Missirlian, Marc; Parrat, Hélène [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Robert, Julien [SOFYNE, F-69800 Saint Priest (France)

    2014-10-15

    Highlights: •A design and configuration management platform is under development for managing fusion components lifecycle at CEA. •Design platform ensures an efficient sharing of the data and provides connections between the different software and databases involved in fusion components design. •Design platform rollout on WEST project is ongoing as part of change control and configuration management implementation. -- Abstract: This paper presents the technical solutions and methodologies that are used and under development for managing the design lifecycle of the WEST project (W – for tungsten – Environment in Steady-state Tokamak, upgrade of Tore Supra's with actively cooled tungsten plasma facing components) fusion components and explains the interfaces that are implemented or in construction to connect together the different tools like documents management system, CAD modeler, or simulation codes around the data management backbone. It describes the methodologies used on the WEST project to optimize the design process by managing the engineering data workflow and ensuring the consistency between the different 3D representations for design or analysis as well as the specification or interfaces documents. Finally it explains how this platform contributes to reach the project targets in terms of performance, cost and schedule.

  11. Implementation of a design and configuration management platform for fusion components on the Tore Supra WEST Project

    International Nuclear Information System (INIS)

    Benoît, Fabrice; Allegretti, Ludovic; Aumeunier, Marie-Hélène; Bucalossi, Jérôme; Doceul, Louis; Faïsse, Frederic; Firdaouss, Medhi; Geynet, Michel; Houtte, Didier van; Larroque, Sébastien; Magaud, Philippe; Maini, Patrick; Missirlian, Marc; Parrat, Hélène; Robert, Julien

    2014-01-01

    Highlights: •A design and configuration management platform is under development for managing fusion components lifecycle at CEA. •Design platform ensures an efficient sharing of the data and provides connections between the different software and databases involved in fusion components design. •Design platform rollout on WEST project is ongoing as part of change control and configuration management implementation. -- Abstract: This paper presents the technical solutions and methodologies that are used and under development for managing the design lifecycle of the WEST project (W – for tungsten – Environment in Steady-state Tokamak, upgrade of Tore Supra's with actively cooled tungsten plasma facing components) fusion components and explains the interfaces that are implemented or in construction to connect together the different tools like documents management system, CAD modeler, or simulation codes around the data management backbone. It describes the methodologies used on the WEST project to optimize the design process by managing the engineering data workflow and ensuring the consistency between the different 3D representations for design or analysis as well as the specification or interfaces documents. Finally it explains how this platform contributes to reach the project targets in terms of performance, cost and schedule

  12. The international fusion materials irradiation facility

    International Nuclear Information System (INIS)

    Shannon, T.E.; Cozzani, F.; Crandall, D.H.; Wiffen, F.W.; Katsuta, H.; Kondo, T.; Teplyakov, V.; Zavialsky, L.

    1994-01-01

    It is widely agreed that the development of materials for fusion systems requires a high flux, 14 MeV neutron source. The European Union, Japan, Russia and the US have initiated the conceptual design of such a facility. This activity, under the International Energy Agency (IEA) Fusion Materials Agreement, will develop the design for an accelerator-based D-Li system. The first organizational meeting was held in June 1994. This paper describes the system to be studied and the approach to be followed to complete the conceptual design by early 1997

  13. An Updated Point Design for Heavy Ion Fusion

    International Nuclear Information System (INIS)

    Yu, S.S.; Meier, W.R.; Abbott, R.B.; Barnard, J.J.; Brown, T.; Callahan, D.A.; Heitzenroeder, P.; Latkowski, J.F.; Logan, B.G.; Pemberton, S.J.; Peterson, P.F.; Rose, D.V.; Sabbi, G.L.; Sharp, W.M.; Welch, D.R.

    2002-01-01

    An updated, self-consistent point design for a heavy ion fusion (HIF) power plant based on an induction linac driver, indirect-drive targets, and a thick liquid wall chamber has been completed. Conservative parameters were selected to allow each design area to meet its functional requirements in a robust manner, and thus this design is referred to as the Robust Point Design (RPD-2002). This paper provides a top-level summary of the major characteristics and design parameters for the target, driver, final focus magnet layout and shielding, chamber, beam propagation to the target, and overall power plant

  14. Physics of mirror fusion systems

    International Nuclear Information System (INIS)

    Post, R.F.

    1976-01-01

    Recent experimental results with the 2XIIB mirror machine at Lawrence Livermore Laboratory have demonstrated the stable confinement of plasmas at fusion temperatures and with energy densities equaling or exceeding that of the confining fields. The physics of mirror confinement is discussed in the context of these new results. Some possible approaches to further improving the confinement properties of mirror systems and the impact of these new approaches on the prospects for mirror fusion reactors are discussed

  15. Space Propulsion via Spherical Torus Fusion Reactor

    International Nuclear Information System (INIS)

    Williams, Craig H.; Juhasz, Albert J.; Borowski, Stanley K.; Dudzinski, Leonard A.

    2003-01-01

    A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 204 days, with an initial mass in low Earth orbit of 1630 mt. Engineering conceptual design, analysis, and assessment were performed on all major systems including nuclear fusion reactor, magnetic nozzle, power conversion, fast wave plasma heating, fuel pellet injector, startup/re-start fission reactor and battery, and other systems. Detailed fusion reactor design included analysis of plasma characteristics, power balance and utilization, first wall, toroidal field coils, heat transfer, and neutron/X-ray radiation

  16. Bulk-shield design for the Fusion Materials Irradiation Test facility

    International Nuclear Information System (INIS)

    Carter, L.L.; Mann, F.M.; Morford, R.J.; Johnson, D.L.; Huang, S.T.

    1982-07-01

    The accelerator-based Fusion Materials Irradiation Test (FMIT) facility will provide a high-fluence, fusion-like radiation environment for the testing of materials. While the neutron spectrum produced in the forward direction by the 35 MeV deuterons incident upon a flowing lithium target is characterized by a broad peak around 14 MeV, a high energy tail extends up to about 50 MeV. Some shield design considerations are reviewed

  17. Survey of fusion reactor technology

    International Nuclear Information System (INIS)

    Chung, M.K.; Kang, H.D.; Oh, Y.K.; Lee, K.W.; In, S.Y.; Kim, Y.C.

    1983-01-01

    The present object of the fusion research is to accomplish the scientific break even by the year of 1986. In view of current progress in the field of Fusion reactor development, we decided to carry out the conceptual design of Tokamak-type fusion reactor during the year of 82-86 in order to acquire the principles of the fusion devices, find the engineering problems and establish the basic capabilities to develop the key techniques with originality. In this year the methods for calculating the locations of the poloidal coils and distribution of the magnetic field, which is one of the most essential and complicated task in the fusion reactor design works, were established. Study on the optimization of the design method of toroidal field coil was also done. Through this work, we established the logic for the design of the toroidal field coil in tokamak and utilize this technique to the design of small compact tokamak. Apart from the development work as to the design technology of tokamak, accelerating column and high voltage power supply (200 KVDC, 100 mA) for intense D-T neutron generator were constructed and now beam transport systems are under construction. This device will be used to develop the materials and the components for the tokamak fusion reactor. (Author)

  18. Radio frequency system for nuclear fusion

    International Nuclear Information System (INIS)

    Kozeki, Shoichiro; Sagawa, Norimoto; Takizawa, Teruhiro

    1987-01-01

    The importance of radio frequency waves has been increasing in the area of nuclear fusion since they are indispensable for heating of plasma, etc. This report outlines radio frequency techniques used for nuclear fusion and describes the development of radio frequency systems (radio frequency plasma heating system and current drive system). Presently, in-depth studies are underway at various research institutes to achieve plasma heating by injection of radio frequency electric power. Three ranges of frequencies, ICRF (ion cyclotron range of frequency), LHRF (lower hybrid range of frequency) and ECRF (electron cyclotron range of frequency), are considered promissing for radio frequency heating. Candidate waves for plasma current driving include ECW (electron cyclotron wave), LHW (lower hybrid wave), MSW (magnetic sound wave), ICW (ion cyclotron wave) with minority component, and FW (fast wave). FW is the greatest in terms of current drive efficiency. In general, a radio frequency system for nuclear fusion consists of a radio frequency power source, transmission/matching circuit component and plasma connection component. (Nogami, K.)

  19. Overview of the Fusion Engineering Device (FED) design

    International Nuclear Information System (INIS)

    Steiner, D.; Flanagan, C.A.

    1981-01-01

    The device has a major radius of 5.0 m with a plasma minor radius of 1.3 m elongated by 1.6. Capability is provided for operating the toroidal field coils up to 10 T, but the bulk of the operations are designed for 8 T. At 8-T conditions the fusion power is approx. 180 MW (neutron wall loading approx. 0.4 MW/m 2 ) and a plasma Q of approx. 5 is expected. At 10-T conditions, which are expected to be limited to about 10% of the total operations, the fusion power is approx. 450 MW (approx. 1.0 MW/m 2 ) and ignition is expected

  20. Overview of the fusion engineering device (FED) design

    International Nuclear Information System (INIS)

    Steiner, D.; Flanagan, C.A.

    1981-10-01

    The device has a major radius of 5.0 m with a plasma minor radius of 1.3 m elongated by 1.6. Capability is provided for operating the toroidal field coils up to 10 T, but the bulk of the operations are designed for 8 T. At 8-T conditions, the fusion power is approx. 180 MW (neutron wall loading approx. 0.4 MW/m 2 ) and a plasma Q of approx. 5 is expected. At 10-T conditions, which are expected to be limited to about 10% of the total operations, the fusion power is approx. 450 MW (approx. 1.0 MW/m 2 ) and ignition is expected

  1. Multimodal Biometric System- Fusion Of Face And Fingerprint Biometrics At Match Score Fusion Level

    OpenAIRE

    Grace Wangari Mwaura; Prof. Waweru Mwangi; Dr. Calvins Otieno

    2017-01-01

    Biometrics has developed to be one of the most relevant technologies used in Information Technology IT security. Unimodal biometric systems have a variety of problems which decreases the performance and accuracy of these system. One way to overcome the limitations of the unimodal biometric systems is through fusion to form a multimodal biometric system. Generally biometric fusion is defined as the use of multiple types of biometric data or ways of processing the data to improve the performanc...

  2. Identifying heavy-ion-beam fusion design and system features with high economic leverage

    International Nuclear Information System (INIS)

    Meier, W.R.; Hogan, W.J.

    1985-01-01

    In this article the authors consider a heavy-ion-beam (HIB) fusion power plant that consists of a driver, a target factory, and one or more power units. A power unit is defined as all the buildings and equipment needed to generate electric power, provided the target and beams are delivered to the reaction chamber. Because the maximum achievable pulse rate in a single chamber is limited, more than one reaction chamber may be required to achieve the desired output of a single power unit. They distinguish between multiple power units and multiple reaction chambers so that they can examine separately the effects of increasing the number of reaction chambers at a constant net power and of increasing the power level by driving more power units with a single driver. The authors conducted studies to investigate the effects on the cost of electricity (COE) of variations in several design parameters. In particular, they examined the effects of maximum achievable chamber pulse rate, driver cost, target gain, electric conversion efficiency, and net electric power. They found that with a combination of improvements over their base case, HIB fusion can be economically competitive with present and future power sources

  3. Fusion research principles

    CERN Document Server

    Dolan, Thomas James

    2013-01-01

    Fusion Research, Volume I: Principles provides a general description of the methods and problems of fusion research. The book contains three main parts: Principles, Experiments, and Technology. The Principles part describes the conditions necessary for a fusion reaction, as well as the fundamentals of plasma confinement, heating, and diagnostics. The Experiments part details about forty plasma confinement schemes and experiments. The last part explores various engineering problems associated with reactor design, vacuum and magnet systems, materials, plasma purity, fueling, blankets, neutronics

  4. Impact of Blanket Configuration on the Design of a Fusion-Driven Transmutation Reactor

    Directory of Open Access Journals (Sweden)

    Bong Guen Hong

    2018-02-01

    Full Text Available A configuration of a fusion-driven transmutation reactor with a low aspect ratio tokamak-type neutron source was determined in a self-consistent manner by using coupled analysis of tokamak systems and neutron transport. We investigated the impact of blanket configuration on the characteristics of a fusion-driven transmutation reactor. It was shown that by merging the TRU burning blanket and tritium breeding blanket, which uses PbLi as the tritium breeding material and as coolant, effective transmutation is possible. The TRU transmutation capability can be improved with a reduced blanket thickness, and fast fluence at the first wall can be reduced.  Article History: Received: July 10th 2017; Received: Dec 17th 2017; Accepted: February 2nd 2018; Available online How to Cite This Article: Hong, B.G. (2018 Impact of Blanket Configuration on the Design of a Fusion-Driven Transmutation Reactor. International Journal of Renewable Energy Development, 7(1, 65-70. https://doi.org/10.14710/ijred.7.1.65-70

  5. A SCHEME FOR TEMPLATE SECURITY AT FEATURE FUSION LEVEL IN MULTIMODAL BIOMETRIC SYSTEM

    Directory of Open Access Journals (Sweden)

    Arvind Selwal

    2016-09-01

    Full Text Available Biometric is the science of human recognition based upon using their biological, chemical or behavioural traits. These systems are used in many real life applications simply from biometric based attendance system to providing security at very sophisticated level. A biometric system deals with raw data captured using a sensor and feature template extracted from raw image. One of the challenges being faced by designers of these systems is to secure template data extracted from the biometric modalities of the user and protect the raw images. To minimize spoof attacks on biometric systems by unauthorised users one of the solutions is to use multi-biometric systems. Multi-modal biometric system works by using fusion technique to merge feature templates generated from different modalities of the human. In this work a new scheme is proposed to secure template during feature fusion level. Scheme is based on union operation of fuzzy relations of templates of modalities during fusion process of multimodal biometric systems. This approach serves dual purpose of feature fusion as well as transformation of templates into a single secured non invertible template. The proposed technique is cancelable and experimentally tested on a bimodal biometric system comprising of fingerprint and hand geometry. Developed scheme removes the problem of an attacker learning the original minutia position in fingerprint and various measurements of hand geometry. Given scheme provides improved performance of the system with reduction in false accept rate and improvement in genuine accept rate.

  6. Track-mounted remote handling system for the Tokamak Fusion Engineering Test

    International Nuclear Information System (INIS)

    Kelly, V.P.; Berger, J.D.; Daubert, R.L.; Yount, J.A.

    1982-01-01

    Concepts for remote handling machines (IVM) designed to transverse the interior of toroidal vessels with guidance and support from track systems have been developed for the proposed Tokamak Fusion Engineering Test (TFET). TFET has been proposed as an upgrade for the Tokamak Fusion Test Reactor (TFTR), currently nearing completion. The track-mounted IVMs were conceived to perform in-vessel remote maintenance for TFET, including removal and replacement of pump limiter blades and protective tiles as well as other maintenance-related tasks such as vessel wall inspection leak testing and interior cleanup. The conceptual IVMs consist of three manipulator arms mounted on a common frame member: a single power manipulator arm with high load carrying capacity and two lower-capacity servomanipulator arms. Descriptions of the IVM concepts, in-vessel track systems, and ex-vessel handling systems are presented

  7. Interplanetary propulsion using inertial fusion

    International Nuclear Information System (INIS)

    Orth, C.D.; Hogan, W.J.; Hoffman, N.; Murray, K.; Klein, G.; Diaz, F.C.

    1987-01-01

    Inertial fusion can be used to power spacecraft within the solar system and beyond. Such spacecraft have the potential for short-duration manned-mission performance exceeding other technologies. We are conducting a study to assess the systems aspects of inertial fusion as applied to such missions, based on the conceptual engine design of Hyde (1983) we describe the required systems for an entirely new spacecraft design called VISTA that is based on the use of DT fuel. We give preliminary design details for the power conversion and power conditioning systems for manned missions to Mars of total duration of about 100 days. Specific mission performance results will be published elsewhere, after the study has been completed

  8. Designs of tandem-mirror fusion reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Barr, W.L.; Boghosian, B.M.

    1981-01-01

    We have completed a comparative evaluation of several end plug configurations for tandem mirror fusion reactors with thermal barriers. The axi-cell configuration has been selected for further study and will be the basis for a detailed conceptual design study to be carried out over the next two years. The axi-cell end plug has a simple mirror cell produced by two circular coils followed by a transition coil and a yin-yang pair, which provides for MHD stability

  9. Present status of laser driven fusion--fission energy systems

    International Nuclear Information System (INIS)

    Maniscalco, J.A.; Hansen, L.F.

    1978-01-01

    The potential of laser fusion driven hybrids to produce fissile fuel and/or electricity has been investigated in the laser program at the Lawrence Livermore Laboratory (LLL) for several years. Our earlier studies used neutronic methods of analysis to estimate hybrid performance. The results were encouraging, but it was apparent that a more accurate assessment of the hybrid's potential would require studies which treat the engineering, environmental, and economic issues as well as the neutronic aspects. More recently, we have collaborated with Bechtel and Westinghouse Corporations in two engineering design studies of laser fusion driven hybrid power plants. With Bechtel, we have been engaged in a joint effort to design a laser fusion driven hybrid which emphasizes fissile fuel production while the primary objective of our joint effort with Westinghouse has been to design a hybrid which emphasizes power production. The hybrid designs which have resulted from these two studies are briefly described and analyzed by considering their most important operational parameters

  10. Developmental validation of the PowerPlex(®) Fusion 6C System.

    Science.gov (United States)

    Ensenberger, Martin G; Lenz, Kristy A; Matthies, Learden K; Hadinoto, Gregory M; Schienman, John E; Przech, Angela J; Morganti, Michael W; Renstrom, Daniel T; Baker, Victoria M; Gawrys, Kori M; Hoogendoorn, Marlijn; Steffen, Carolyn R; Martín, Pablo; Alonso, Antonio; Olson, Hope R; Sprecher, Cynthia J; Storts, Douglas R

    2016-03-01

    The PowerPlex(®) Fusion 6C System is a 27-locus, six-dye, multiplex that includes all markers in the expanded CODIS core loci and increases overlap with STR database standards throughout the world. Additionally, it contains two, rapidly mutating, Y-STRs and is capable of both casework and database workflows, including direct amplification. A multi-laboratory developmental validation study was performed on the PowerPlex(®) Fusion 6C System. Here, we report the results of that study which followed SWGDAM guidelines and includes data for: species specificity, sensitivity, stability, precision, reproducibility and repeatability, case-type samples, concordance, stutter, DNA mixtures, and PCR-based procedures. Where appropriate we report data from both extracted DNA samples and direct amplification samples from various substrates and collection devices. Samples from all studies were separated on both Applied Biosystems 3500 series and 6-dye capable 3130 series Genetic Analyzers and data is reported for each. Together, the data validate the design and demonstrate the performance of the PowerPlex(®) Fusion 6C System. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  11. The RCC-MR design code for LMFBR components. A useful basis for fusion reactor design tools development

    International Nuclear Information System (INIS)

    Acker, D.; Chevereau, G.

    1986-01-01

    LMFBR and fusion reactors exhibit common features with regard to structural materials, temperature service level, loading types. So, design and construction rules used in France for LMFBR, that is to say RCC-MR Code, can constitute a good basis for fusion reactors design. Some original aspects of RCC-MR design rules are described, relating to unsignificant creep, ratchetting effect, fatigue and creep damage limits, creep damage evaluation, fatigue damage evaluation, buckling. The main originality of RCC-MR consists to propose comprehensive simplified rules based on elastic calculations and extended from classical cold temperatures to the elevated temperature domain. (author)

  12. Design and Implementation of a Smart Home System Using Multisensor Data Fusion Technology

    Science.gov (United States)

    Chou, Po-Huan; Chang, Hsing-Cheng; Lin, Shyan-Lung; Yang, Shih-Chin; Su, Heng-Yi; Chang, Chih-Chien; Cheng, Yuan-Sheng; Kuo, Yu-Chen

    2017-01-01

    This paper aims to develop a multisensor data fusion technology-based smart home system by integrating wearable intelligent technology, artificial intelligence, and sensor fusion technology. We have developed the following three systems to create an intelligent smart home environment: (1) a wearable motion sensing device to be placed on residents’ wrists and its corresponding 3D gesture recognition algorithm to implement a convenient automated household appliance control system; (2) a wearable motion sensing device mounted on a resident’s feet and its indoor positioning algorithm to realize an effective indoor pedestrian navigation system for smart energy management; (3) a multisensor circuit module and an intelligent fire detection and alarm algorithm to realize a home safety and fire detection system. In addition, an intelligent monitoring interface is developed to provide in real-time information about the smart home system, such as environmental temperatures, CO concentrations, communicative environmental alarms, household appliance status, human motion signals, and the results of gesture recognition and indoor positioning. Furthermore, an experimental testbed for validating the effectiveness and feasibility of the smart home system was built and verified experimentally. The results showed that the 3D gesture recognition algorithm could achieve recognition rates for automated household appliance control of 92.0%, 94.8%, 95.3%, and 87.7% by the 2-fold cross-validation, 5-fold cross-validation, 10-fold cross-validation, and leave-one-subject-out cross-validation strategies. For indoor positioning and smart energy management, the distance accuracy and positioning accuracy were around 0.22% and 3.36% of the total traveled distance in the indoor environment. For home safety and fire detection, the classification rate achieved 98.81% accuracy for determining the conditions of the indoor living environment. PMID:28714884

  13. Design and Implementation of a Smart Home System Using Multisensor Data Fusion Technology.

    Science.gov (United States)

    Hsu, Yu-Liang; Chou, Po-Huan; Chang, Hsing-Cheng; Lin, Shyan-Lung; Yang, Shih-Chin; Su, Heng-Yi; Chang, Chih-Chien; Cheng, Yuan-Sheng; Kuo, Yu-Chen

    2017-07-15

    This paper aims to develop a multisensor data fusion technology-based smart home system by integrating wearable intelligent technology, artificial intelligence, and sensor fusion technology. We have developed the following three systems to create an intelligent smart home environment: (1) a wearable motion sensing device to be placed on residents' wrists and its corresponding 3D gesture recognition algorithm to implement a convenient automated household appliance control system; (2) a wearable motion sensing device mounted on a resident's feet and its indoor positioning algorithm to realize an effective indoor pedestrian navigation system for smart energy management; (3) a multisensor circuit module and an intelligent fire detection and alarm algorithm to realize a home safety and fire detection system. In addition, an intelligent monitoring interface is developed to provide in real-time information about the smart home system, such as environmental temperatures, CO concentrations, communicative environmental alarms, household appliance status, human motion signals, and the results of gesture recognition and indoor positioning. Furthermore, an experimental testbed for validating the effectiveness and feasibility of the smart home system was built and verified experimentally. The results showed that the 3D gesture recognition algorithm could achieve recognition rates for automated household appliance control of 92.0%, 94.8%, 95.3%, and 87.7% by the 2-fold cross-validation, 5-fold cross-validation, 10-fold cross-validation, and leave-one-subject-out cross-validation strategies. For indoor positioning and smart energy management, the distance accuracy and positioning accuracy were around 0.22% and 3.36% of the total traveled distance in the indoor environment. For home safety and fire detection, the classification rate achieved 98.81% accuracy for determining the conditions of the indoor living environment.

  14. Proceedings of the Second Fusion-Fission Energy Systems Review Meeting

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-11-02

    The agenda of the meeting was developed to address, in turn, the following major areas: specific problem areas in nuclear energy systems for application of fusion-fission concepts; current and proposed fusion-fission programs in response to the identified problem areas; target costs and projected benefits associated with fusion-fission energy systems; and technical problems associated with the development of fusion-fission concepts. The greatest emphasis was placed on the characteristics of and problems, associated with fuel producing fusion-fission hybrid reactors.

  15. Conceptual design of the blanket and power conversion system for a mirror hybrid fusion-fission reactor. 12-month progress report, July 1, 1975--June 30, 1976

    International Nuclear Information System (INIS)

    Schultz, K.R.; Baxi, C.B.; Rao, R.

    1976-01-01

    This report presents the conceptual design and preliminary feasibility assessment for the hybrid blanket and power conversion system of the Mirror Hybrid Fusion-Fission Reactor. Existing gas-cooled fission reactor technology is directly applicable to the Mirror Hybrid Reactor. There are a number of aspects of the present conceptual design that require further design and analysis effort. The blanket and power conversion system operating parameters have not been optimized. The method of supporting the blanket modules and the interface between these modules and the primary loop helium ducting will require further design work. The means of support and containment of the primary loop components must be studied. Nevertheless, in general, the conceptual design appears quite feasible

  16. A review of fusion device fuel cleanup systems

    International Nuclear Information System (INIS)

    Dombra, A.H.; Carney, M.

    1985-01-01

    Design options for a small fusion fuel purification system are assessed by comparing six conceptual system designs based on one of the following: a Zr/Al getter pump for in vacuo applications, a cryogenic molecular sieve adsorber at 77K, a palladium-alloy membrane diffuser, a U-bed reactor at 1170K, a two-compartment cryogenic freezer at 27-50K and 50-300K, a U-bed and non-regenerative Zr/Al gas purifier. The latter system introduces a new concept of fuel purification based on well-established techniques: recovery of purified D 2 -DT-T 2 from a helium carrier gas with the U-bed, followed by the removal of impurities from the carrier gas with the non-regenerative Zr/Al gas purifier. The main advantages of this system are simplicity, safety and relatively small quantity of tritiated waste produced by the process. The tritium in the waste is immobilized as a stable tritide of Zr/Al

  17. Design study of an indirect cooling superconducting magnet for a fusion device

    International Nuclear Information System (INIS)

    Mito, Toshiyuki; Hemmi, Tsutomu

    2009-01-01

    The design study of superconducting magnets adapting a new coil winding scheme of an indirect cooling method is reported. The superconducting magnet system for the spherical tokamak (ST), which is proposed to study the steady state plasma experiment with Q - equiv-1, requires high performances with a high current density compared to the ordinal magnet design because of its tight spatial restriction. The superconducting magnet system for the fusion device has been used in the condition of high magnetic field, high electromagnetic force, and high heat load. The pool boiling liquid helium cooling outside of the conductor or the forced flow of supercritical helium cooling inside of the conductor, such as cable-in-conduit conductors, were used so far for the cooling method of the superconducting magnet for a fusion application. The pool cooling magnet has the disadvantages of low mechanical rigidities and low withstand voltages of the coil windings. The forced flow cooling magnet with cable-in-conduit conductors has the disadvantages of the restriction of the coil design because of the path of the electric current must be the same as that of the cooling channel for refrigerant. The path of the electric current and that of the cooling channel for refrigerant can be independently designed by adopting the indirect cooling method that inserts the independent cooling panel in the coil windings and cools the conductor from the outside. Therefore the optimization of the coil windings structure can be attempted. It was shown that the superconducting magnet design of the high current density became possible by the indirect cooling method compared with those of the conventional cooling scheme. (author)

  18. Heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Keefe, D.; Sessler, A.M.

    1980-01-01

    Inertial fusion has not yet been as well explored as magnetic fusion but can offer certain advantages as an alternative source of electric energy for the future. Present experiments use high-power beams from lasers and light-ion diodes to compress the deuterium-tritium (D-T) pellets but these will probably be unsuitable for a power plant. A more promising method is to use intense heavy-ion beams from accelerator systems similar to those used for nuclear and high-energy physics; the present paper addresses itself to this alternative. As will be demonstrated the very high beam power needed poses new design questions, from the ion-source through the accelerating system, the beam transport system, to the final focus. These problems will require extensive study, both theoretically and experimentally, over the next several years before an optimum design for an inertial fusion driver can be arrived at. (Auth.)

  19. Heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Keefe, D.; Sessler, A.M.

    1980-07-01

    Inertial fusion has not yet been as well explored as magnetic fusion but can offer certain advantages as an alternative source of electric energy for the future. Present experiments use high-power beams from lasers and light-ion diodes to compress the deuterium-tritium (D-T) pellets but these will probably be unsuitable for a power plant. A more promising method is to use intense heavy-ion beams from accelerator systems similar to those used for nuclear and high-energy physics; the present paper addresses itself to this alternative. As will be demonstrated the very high beam power needed poses new design questions, from the ion source through the accelerating system, the beam transport system, to the final focus. These problems will require extensive study, both theoretically and experimentally, over the next several years before an optimum design for an inertial fusion driver can be arrived at

  20. Randomized Symmetric Crypto Spatial Fusion Steganographic System

    Directory of Open Access Journals (Sweden)

    Viswanathan Perumal

    2016-06-01

    Full Text Available The image fusion steganographic system embeds encrypted messages in decomposed multimedia carriers using a pseudorandom generator but it fails to evaluate the contents of the cover image. This results in the secret data being embedded in smooth regions, which leads to visible distortion that affects the imperceptibility and confidentiality. To solve this issue, as well as to improve the quality and robustness of the system, the Randomized Symmetric Crypto Spatial Fusion Steganography System is proposed in this study. It comprises three-subsystem bitwise encryption, spatial fusion, and bitwise embedding. First, bitwise encryption encrypts the message using bitwise operation to improve the confidentiality. Then, spatial fusion decomposes and evaluates the region of embedding on the basis of sharp intensity and capacity. This restricts the visibility of distortion and provides a high embedding capacity. Finally, the bitwise embedding system embeds the encrypted message through differencing the pixels in the region by 1, checking even or odd options and not equal to zero constraints. This reduces the modification rate to avoid distortion. The proposed heuristic algorithm is implemented in the blue channel, to which the human visual system is less sensitive. It was tested using standard IST natural images with steganalysis algorithms and resulted in better quality, imperceptibility, embedding capacity and invulnerability to various attacks compared to other steganographic systems.

  1. Extension of the AUS reactor neutronics system for application to fusion blanket neutronics

    International Nuclear Information System (INIS)

    Robinson, G.S.

    1984-03-01

    The AUS modular code scheme for reactor neutronics computations has been extended to apply to fusion blanket neutronics. A new group cross-section library with 200 neutron groups, 37 photon groups and kerma factor data has been generated from ENDF/B-IV. The library includes neutron resonance subgroup parameters and temperature-dependent data for thermal neutron scattering matrices. The validity of the overall calculation system for fusion applications has been checked by comparison with a number of published conceptual design studies

  2. Recent fusion research in the National Institute for Fusion Science

    International Nuclear Information System (INIS)

    Komori, Akio; Sakakibara, Satoru; Sagara, Akio; Horiuchi, Ritoku; Yamada, Hiroshi; Takeiri, Yasuhiko

    2011-01-01

    The National Institute for Fusion Science (NIFS), which was established in 1989, promotes academic approaches toward the exploration of fusion science for steady-state helical reactor and realizes the establishment of a comprehensive understanding of toroidal plasmas as an inter-university research organization and a key center of worldwide fusion research. The Large Helical Device (LHD) Project, the Numerical Simulation Science Project, and the Fusion Engineering Project are organized for early realization of net current free fusion reactor, and their recent activities are described in this paper. The LHD has been producing high-performance plasmas comparable to those of large tokamaks, and several new findings with regard to plasma physics have been obtained. The numerical simulation science project contributes understanding and systemization of the physical mechanisms of plasma confinement in fusion plasmas and explores complexity science of a plasma for realization of the numerical test reactor. In the fusion engineering project, the design of the helical fusion reactor has progressed based on the development of superconducting coils, the blanket, fusion materials and tritium handling. (author)

  3. Design of a Rail Gun System for Mitigating Disruptions in Fusion Reactors

    Science.gov (United States)

    Lay, Wei-Siang

    Magnetic fusion devices, such as the tokamak, that carry a large amount of current to generate the plasma confining magnetic fields have the potential to lose magnetic stability control. This can lead to a major plasma disruption, which can cause most of the stored plasma energy to be lost to localized regions on the walls, causing severe damage. This is the most important issue for the $20B ITER device (International Thermonuclear Experimental Reactor) that is under construction in France. By injecting radiative materials deep into the plasma, the plasma energy could be dispersed more evenly on the vessel surface thus mitigating the harmful consequences of a disruption. Methods currently planned for ITER rely on the slow expansion of gases to propel the radiative payloads, and they also need to be located far away from the reactor vessel, which further slows down the response time of the system. Rail guns are being developed for aerospace applications, such as for mass transfer from the surface of the moon and asteroids to low earth orbit. A miniatured version of this aerospace technology seems to be particularly well suited to meet the fast time response needs of an ITER disruption mitigation system. Mounting this device close to the reactor vessel is also possible, which substantially increases its performance because the stray magnetic fields near the vessel walls could be used to augment the rail gun generated magnetic fields. In this thesis, the potential viability on Rail Gun based DMS is studied to investigate its projected fast time response capability by design, fabrication, and experiment of an NSTX-U sized rail gun system. Material and geometry based tests are used to find the most suitable armature design for this system for which the desirable attributes are high specific stiffness and high electrical conductivity. With the best material in these studies being aluminum 7075, the experimental Electromagnetic Particle Injector (EPI) system has propelled

  4. Fusion power plant simulations: a progress report

    International Nuclear Information System (INIS)

    Cook, J.M.; Pattern, J.S.; Amend, W.E.

    1976-01-01

    The objective of the fusion systems analysis at ANL is to develop simulations to compare alternative conceptual designs of magnetically confined fusion power plants. The power plant computer simulation progress is described. Some system studies are also discussed

  5. A practical approach for active camera coordination based on a fusion-driven multi-agent system

    Science.gov (United States)

    Bustamante, Alvaro Luis; Molina, José M.; Patricio, Miguel A.

    2014-04-01

    In this paper, we propose a multi-agent system architecture to manage spatially distributed active (or pan-tilt-zoom) cameras. Traditional video surveillance algorithms are of no use for active cameras, and we have to look at different approaches. Such multi-sensor surveillance systems have to be designed to solve two related problems: data fusion and coordinated sensor-task management. Generally, architectures proposed for the coordinated operation of multiple cameras are based on the centralisation of management decisions at the fusion centre. However, the existence of intelligent sensors capable of decision making brings with it the possibility of conceiving alternative decentralised architectures. This problem is approached by means of a MAS, integrating data fusion as an integral part of the architecture for distributed coordination purposes. This paper presents the MAS architecture and system agents.

  6. Database for fusion devices and associated fuel systems

    International Nuclear Information System (INIS)

    Woolgar, P.W.

    1983-03-01

    A computerized database storage and retrieval system has been set up for fusion devices and the associated fusion fuel systems which should be a useful tool for the CFFTP program and other users. The features of the Wang 'Alliance' system are discussed for this application, as well as some of the limitations of the system. Recommendations are made on the operation, upkeep and further development that should take place to implement and maintain the system

  7. Recent developments in the design of conceptual fusion reactors

    International Nuclear Information System (INIS)

    Ribe, F.L.

    1977-01-01

    Since the first round of conceptual fusion reactor designs in 1973 - 1974, there has been considerable progress in design improvement. Two recent tokamak designs of the Wisconsin and Culham groups, with increased plasma beta and wall loading (power density), lead to more compact reactors with easier maintenance. The Reference Theta-Pinch Reactor has undergone considerable upgrading in the design of the first wall insulator and blanket. In addition, a conceptual homopolar energy storage and transfer system has been designed. In the case of the mirror reactor, there are design changes toward improved modular construction and ease of handling, as well as improved direct converters. Conceptual designs of toroidal-multiple-mirror, liner-compression, and reverse-field pinch reactors are also discussed. A design is presented of a toroidal multiple-mirror reactor that combines the advantages of steady-state operation and high-aspect ratio. The liner-compression reactor eliminates a major problem of radiation damage by using a liquid-metal first wall that also serves as a neutron-thermalizing blanket. The reverse-field pinch reactor operates at higher beta, larger current density and larger aspect ratio than a tokamak reactor. These properties allow the possibility of ignition by ohmic heating alone and greater ease of maintenance

  8. Power-balance analysis of muon-catalyzed fusion-fission hybrid reactor systems

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.

    1985-01-01

    A power-balance model of a muon-catalyzed fusion system in the context of a fission-fuel factory is developed and exercised to predict the required physics performance of systems competitive with either pure muon-catalyzed fusion systems or thermonuclear fusion-fission fuel factory hybrid systems

  9. Neutron analysis of a hybrid system fusion-fission

    International Nuclear Information System (INIS)

    Dorantes C, J. J.; Francois L, J. L.

    2011-11-01

    The use of energy at world level implies the decrease of natural resources, reduction of fossil fuels, in particular, and a high environmental impact. In view of this problem, an alternative is the energy production for nuclear means, because up to now is one of the less polluting energy; however, the nuclear fuel wastes continue being even a problem without being solved. For the above mentioned this work intends the creation of a device that incorporates the combined technologies of fission and nuclear fusion, called Nuclear Hybrid Reactor Fusion-Fission (HRFF). The HRFF has been designed theoretically with base in experimental fusion reactors in different parts of the world like: United States, Russia, Japan, China and United Kingdom, mainly. The hybrid reactor model here studied corresponds at the Compact Nuclear Facility Source (CNFS). The importance of the CNFS resides in its feasibility, simple design, minor size and low cost; uses deuterium-tritium like main source of neutrons, and as fuel can use the spent fuel of conventional nuclear reactors, such as the current light water reactors. Due to the high costs of experimental research, this work consists on simulating in computer a proposed model of CNFS under normal conditions of operation, to modify the arrangement of the used fuel: MOX and IMF, to analyze the obtained results and to give final conclusions. In conclusion, the HRFF can be a versatile system for the management of spent fuel of light water reactors, so much for the possibility of actinides destruction, like for the breeding of fissile material. (Author)

  10. Overview of the STARFIRE reference commercial tokamak fusion power reactor design

    International Nuclear Information System (INIS)

    Baker, C.C.; Abdou, M.A.; DeFreece, D.A.; Trachsel, C.A.; Graumann, D.; Barry, K.

    1980-01-01

    The purpose of the STARFIRE study is to develop a design concept for a commercial tokamak fusion electric power plant based on the deuterium/tritium/lithium fuel cycle. The major features for STARFIRE include a steady-state operating mode based on a continuous rf lower-hybrid current drive and auxiliary heating, solid tritium breeder material, pressurized water cooling, limiter/vacuum system for impurity control and exhaust, high tritium burnup, superconducting EF coils outside the TF superconducting coils, fully remote maintenance, and a low-activation shield

  11. Magnetic fusion reactor economics

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1995-01-01

    An almost primordial trend in the conversion and use of energy is an increased complexity and cost of conversion systems designed to utilize cheaper and more-abundant fuels; this trend is exemplified by the progression fossil fission → fusion. The present projections of the latter indicate that capital costs of the fusion ''burner'' far exceed any commensurate savings associated with the cheapest and most-abundant of fuels. These projections suggest competitive fusion power only if internal costs associate with the use of fossil or fission fuels emerge to make them either uneconomic, unacceptable, or both with respect to expensive fusion systems. This ''implementation-by-default'' plan for fusion is re-examined by identifying in general terms fusion power-plant embodiments that might compete favorably under conditions where internal costs (both economic and environmental) of fossil and/or fission are not as great as is needed to justify the contemporary vision for fusion power. Competitive fusion power in this context will require a significant broadening of an overly focused program to explore the physics and simbiotic technologies leading to more compact, simplified, and efficient plasma-confinement configurations that reside at the heart of an attractive fusion power plant

  12. Power source system for nuclear fusion

    International Nuclear Information System (INIS)

    Nakagawa, Satoshi.

    1975-01-01

    Object: When using an external system power source and an exclusive power source in a power source circuit for supplying power to the coils of a nuclear fusion apparatus, to minimize the capacity of the exclusive power source and provide an economical power source circuit construction. Structure: In the initial stage of the power supply, rectifying means provided in individual blocks are connected in parallel on the AC side, and power is supplied to the coils of the nuclear fusion apparatus from an external system power source with the exclusive power source held in the disconnected state. Further, at an instant when the limit of permissible input is reached, the afore-mentioned parallel circuit consisting of rectifying means is disconnected, while at the same time the exclusive power source is connected to the input side of the rectifying means provided in a block corresponding to the exclusive power source side, thereby supplying power to the coils of the nuclear fusion apparatus from both the external system power source and exclusive power source. (Kamimura, M.)

  13. Tritium Systems Test Assembly: design for major device fabrication review

    International Nuclear Information System (INIS)

    Anderson, J.L.; Sherman, R.H.

    1977-06-01

    This document has been prepared for the Major Device Fabrication Review for the Tritium Systems Test Assembly (TSTA). The TSTA is dedicated to the development, demonstration, and interfacing of technologies related to the deuterium-tritium fuel cycle for fusion reactor systems. The principal objectives for TSTA are: (a) demonstrate the fuel cycle for fusion reactor systems; (b) develop test and qualify equipment for tritium service in the fusion program; (c) develop and test environmental and personnel protective systems; (d) evaluate long-term reliability of components; (e) demonstrate long-term safe handling of tritium with no major releases or incidents; and (f) investigate and evaluate the response of the fuel cycle and environmental packages to normal, off-normal, and emergency situations. This document presents the current status of a conceptual design and cost estimate for TSTA. The total cost to design, construct, and operate TSTA through FY-1981 is estimated to be approximately $12.2 M

  14. Issues in radioactive waste management for fusion power

    International Nuclear Information System (INIS)

    Maninger, R.C.; Dorn, D.W.

    1983-01-01

    Analysis of recent conceptual designs reveals that commercial fusion power systems will raise issues of occupational and public health and safety. This paper focuses on radioactive wastes from fusion reactor materials activated by neutrons. The analysis shows that different selections of materials and neutronic designs can make differences in orders-of magnitude of the kinds and amounts of radioactivity to be expected. By careful and early evaluation of the impacts of the selections on waste management, designers can produce fusion power systems with radiation from waste well below today's limits for occupational and public health and safety

  15. Issues in radioactive-waste management for fusion power

    International Nuclear Information System (INIS)

    Maninger, R.C.; Dorn, D.W.

    1982-01-01

    Analysis of recent conceptual designs reveals that commercial fusion power systems will raise issues of occupational and public health and safety. This paper focuses on radioactive wastes from fusion reactor materials activated by neutrons. The analysis shows that different selections of materials and neutronic designs can make differences in orders-of-magnitude of the kinds and amounts of radioactivity to be expected. By careful and early evaluation of the impacts of the selections on waste management, designers can produce fusion power systems with radiation from waste well below today's limits for occupational and public health and safety

  16. Evaluation of divertor conceptual designs for a fusion power plant

    International Nuclear Information System (INIS)

    Ferrari, M.; Giancarli, L.; Kleefeldt, K.; Nardi, C.; Roedig, M.; Reimann, J.; Salavy, J.F.

    2001-01-01

    In the frame of the preliminary study of plants suitable for the energy production from the fusion power, particular emphasis has been given on the divertor studies. Since a significant percentage of the power generated from the fusion process is absorbed in the divertor, the thermal efficiency of the power conversion cycle requires a high coolant outlet temperature of the divertor, leading to solutions that are different from those adopted for the present experimental fusion plants. Therefore, copper alloys having extremely high thermal conductivity, cannot be used as structural material for this kind of devices. The most suitable coolants to be used in the divertor are water, helium and liquid metals. A conceptual design study has been developed for each of these three fluids, with the aim to evaluate the maximum allowable thermal flux at the divertor target plate and the R and D requirements for each solution. While a water-cooled divertor can be designed with a limited R and D effort, the development of helium or liquid metal cooled divertors requires a more engaging R and D program

  17. The RCC-MR design code for LMFBR components. A useful basic for fusion reactor design tools development

    International Nuclear Information System (INIS)

    Acker, D.; Chevereau, G.

    1985-11-01

    LMFBR and fusion reactors exhibit common features with regard to structural materials (Stainless steels), temperature service level (550-600 0 C), loading types. So, design and construction rules used in France for LMFBR, that is to say RCC-MR Code, can constitute a good basis for fusion reactors design. Some original aspects of RCC-MR design rules are described, relating to unsignificant creep, ratchetting effect, fatigue and creep damage limits, creep damage evaluation, fatigue damage evaluation, buckling. The main originality of RCC-MR consists to propose comprehensive simplified rules based on elastic calculations and extended from classical cold temperatures to the elevated temperature domain

  18. Design of magnetic analysis system for magnetic proton recoil spectrometer

    International Nuclear Information System (INIS)

    Qi Jianmin; Jiang Shilun; Zhou Lin; Peng Taiping

    2010-01-01

    Magnetic proton recoil (MPR) spectrometer is a novel diagnostic instrument with high performance for measurements of the neutron spectra from inertial confinement fusion (ICF) experiments and high power fusion devices. The design of the magnetic analysis system, which is a key part of the compact MPR-type spectrometer, has been completed through two-dimensional beam transport simulations and three-dimensional particle transport simulation. The analysis of the system's parameters and performances was performed, as well as system designs based on preferential principles of energy resolution, detection efficiency, and count rate, respectively. The results indicate that the magnetic analysis system can achieve a detection efficiency of 10 -5 ∼ 10 -4 level at the resolution range of 1.5% to 3.0% and fulfill the design goals of the compact MPR spectrometer. (authors)

  19. Overview of the TITAN-II reversed-field pinch aqueous fusion power core design

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.P.C.; Creedon, R.L.; Grotz, S.; Cheng, E.T.; Sharafat, S.; Cooke, P.I.H.

    1988-03-01

    TITAN-II is a compact, high power density Reversed-Field Pinch fusion power reactor design based on the aqueous lithium solution fusion power core concept. The selected breeding and structural materials are LiNO/sub 3/ and 9-C low activation ferritic steel, respectively. TITAN-II is a viable alternative to the TITAN-I lithium self-cooled design for the Reversed-Field Pinch reactor to operate at a neutron wall loading of 18 MWm/sup 2/. Submerging the complete fusion power core and the primary loop in a large pool of cool water will minimize the probability of radioactivity release. Since the protection of the large pool integrity is the only requirement for the protection of the public, TITAN-II is a passive safety assurance design. 13 refs., 3 figs., 1 tab.

  20. Overview of the TITAN-II reversed-field pinch aqueous fusion power core design

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.P.C.; Creedon, R.L.; Cheng, E.T. (General Atomic Co., San Diego, CA (USA)); Grotz, S.P.; Sharafat, S.; Cooke, P.I.H. (California Univ., Los Angeles (USA). Dept. of Mechanical, Aerospace and Nuclear Engineering; California Univ., Los Angeles, CA (USA). Inst. for Plasma and Fusion Research); TITAN Research Group

    1989-04-01

    TITAN-II is a compact, high-power-density Reversed-Field Pinch fusion power reactor design based on the aqueous lithium solution fusion power core concept. The selected breeding and structural materials are LiNO/sub 3/ and 9-C low activation ferritic steel, respectively. TITAN-II is a viable alternative to the TITAN-I lithium self-cooled design for the Reversed-Field Pinch reactor to operate at a neutron wall loading of 18 MW/m/sup 2/. Submerging the complete fusion power core and the primary loop in a large pool of cool water will minimize the probability of radioactivity release. Since the protection of the large pool integrity is the only requirement for the protection of the public, TITAN-II is a level 2 of passive safety assurance design. (orig.).

  1. Developing maintainability for tokamak fusion power systems. Phase II report. Volume I: executive summary

    International Nuclear Information System (INIS)

    Fuller, G.M.; Zahn, H.S.; Mantz, H.C.; Kaletta, G.R.; Waganer, L.M.; Carosella, L.A.; Conlee, J.L.

    1978-11-01

    The purpose of this report is to identify design features of fusion power reactors which contribute to the achievement of high levels of maintainability. Volume 1, the Executive Summary, presents the progress achieved toward this objective in this phase and includes a comparison with the results of the first phase study efforts. A series of maintainability design guidelines and an improved maintenance system are defined as initial steps in developing the requirements for a maintainable tokamak fusion power system. The principle comparative studies that are summarized include the determination of the benefits of various vacuum wall arrangements, the effect of unscheduled and scheduled maintenance of the first wall/blanket, some initial investigation of maintenance required for subsystems other than the first wall/blanket, and the impact of maintenance equipment failures

  2. Light ion driven inertial fusion reactor concepts

    International Nuclear Information System (INIS)

    Cook, D.L.; Sweeney, M.A.; Buttram, M.T.; Prestwich, K.R.; Moses, G.A.; peterson, R.R.; Lovell, E.G.; Englestad, R.L.

    1980-01-01

    The possibility of designing fusion reactor systems using intense beams of light ions has been investigated. concepts for beam production, transport, and focusing on target have been analyzed in light of more conservative target performance estimates. Analyses of the major criteria which govern the design of the beam-target-cavity tried indicate the feasibility of designing power systems at the few hundred megawatt (electric) level. This paper discusses light ion fusion reactor (LIFR) concepts and presents an assessment of the design limitations through quantitative examples

  3. Design study of plant system for the fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    Iida, Hiromasa; Kuroda, Hideo; Yamada, Masao; Suzuki, Tatsushi; Honda, Tsutomu; Ohmura, Hiroshi; Itoh, Shinichi.

    1986-11-01

    This report describes design study results of the FER plant system. The purpose of this study is to have an image of the FER plant system as a whole by designing major auxiliary systems, reactor building and maintenance and radwaste desposal systems. The major auxiliary systems include tritium, cooling, evacuation and fueling systems. For these each systems, flowdiagrams are studied and designs of devices and pipings are conducted. In the reactor building design, layout of the above auxiliary systems in the building is studied with careful zoning concept by the radiation level. Structural integrity of the reactor building is also studied including seismic analysis. In the design of the maintenance and radwaste system flowdiagram of failed reactor components is developed and transfer vehicles and buildings are designed. Finally assuming JAERI Naka site as the reactor site layout of the whole FER plant system is developed. (author)

  4. Fusion-driven sub-critical dual-cooled waste transmutation blanket: design and analysis

    International Nuclear Information System (INIS)

    Wang Weihua; Wu Yican; Ke Yan; Kang Zhicheng; Wang Hongyan; Huang Qunying

    2003-01-01

    The Fusion-Driven Sub-critical System (FDS) is one of the Chinese programs to be further developed for fusion application. Its Dual-cooled Waste Transmutation Blanket (DWTB), as one the most important part of the FDS is cooled by helium and liquid metal, and have the features of safety, tritium self-sustaining, high efficiency and feasibility. Its conceptual design has been finished. This paper is mainly involved with the basic structure design and thermal-hydraulics analysis of DWTB. On the basis of a three-dimensional (3-D) model of radial-toroidal sections of the segment box, thermal temperature gradients and structure analysis made with a comprehensive finite element method (FEM) have been performed with the computer code ANSYS5.7 and computational fluid dynamic finite element codes. The analysis refers to the steady-state operating condition of an outboard blanket segment. Furthermore, the mechanical loads due to coolant pressure in normal operating conditions have been also taken into account. All the above loads have been combined as an input for a FEM stress analysis and the resulting stress distribution has been evaluated. Finally, the structure design and Pb-17Li flow velocity has been optimized according to the calculations and analysis

  5. Design of water detritiation system for fusion reactor

    International Nuclear Information System (INIS)

    Xie Bo; Wang Heyi; Liu Yunnu; Guan Rui

    2006-01-01

    The water detritiation system (WDS) of tritium plant for the International Thermonuclear Experimental Reactor (ITER) was designed. The concept of the Combined Electrolysis Catalytic Exchange and Gas Chromatography (CECE-GC) process was selected for the system and subsystems' descriptions of the WDS. ITER-WDS is characterised from the present demonstration system by rejecting the use of a recombiner and alkali electrolyzer, but a solid polymer electrolyzer (SPE) and a Pd/Ag membrane permeator system are adopted to recover tritium. (authors)

  6. Economic evaluations of fusion-based energy storage systems in an electric utility

    International Nuclear Information System (INIS)

    Hwang, W.G.

    1977-01-01

    The feasibility of introducing a fusion energy storage system, which consists of a fusion-fission reactor and a water-splitting process, in an electric utility was investigated. The fusion energy storage system was assumed to be run during off-peak periods in order to make use of unused, low fuel cost capacity of an electric utility. The fusion energy storage system produces both fissile fuel and hydrogen. The produced hydrogen was assumed to be transmitted through and stored in existing natural gas trunklines for later use during peak-load hours. The peaking units in the utility were assumed to burn the hydrogen. Reserve power is usually cheap on systems with heavy nuclear fission reactor installation. The system studied utilizes this cheap energy for producing expensive fuel. The thermochemical water-splitting process was employed to recover thermal energy from the fusion-fission reactor system. The cost of fusion energy storage systems as well as the value of produced fuel were calculated. In order to simulate the operations of the fusion energy storage system for a multi-year planning period, a computer program, FESUT (Fusion Energy Simulation at the University of Texas), was developed for the present study. Two year utility simulations with the fusion energy storage system were performed

  7. Fusion reactor safety

    International Nuclear Information System (INIS)

    1987-12-01

    Nuclear fusion could soon become a viable energy source. Work in plasma physics, fusion technology and fusion safety is progressing rapidly in a number of Member States and international collaboration continues on work aiming at the demonstration of fusion power generation. Safety of fusion reactors and technological and radiological aspects of waste management are important aspects in the development and design of fusion machines. In order to provide an international forum to review and discuss the status and the progress made since 1983 in programmes related to operational safety aspects of fusion reactors, their waste management and decommissioning concepts, the IAEA had organized the Technical Committee on ''Fusion Reactor Safety'' in Culham, 3-7 November 1986. All presentations of this meeting were divided into four sessions: 1. Statements on National-International Fusion Safety Programmes (5 papers); 2. Operation and System Safety (15 papers); 3. Waste Management and Decommissioning (5 papers); 4. Environmental Impacts (6 papers). A separate abstract was prepared for each of these 31 papers. Refs, figs, tabs

  8. Conceptual design study of fusion experimental reactor (FY86 FER)

    International Nuclear Information System (INIS)

    Kobayashi, Takeshi; Yamada, Masao; Mizoguchi, Tadanori

    1987-09-01

    This report describes the results of the reactor configuration/structure design for the fusion experimental reactor (FER) performed in FY 1986. The design was intended to meet the physical and engineering mission of the next step device which was decided by the subcommittee on the next step device of the nuclear fusion council. The objectives of the design study in FY 1986 are to advance and optimize the design concept of the last year because the recommendation of the subcommittee was basically the same as the design philosophy of the last year. Six candidate reactor configurations which correspond to options C ∼ D presented by the subcommittee were extensively examined. Consequently, ACS reactor (Advanced Option-C with Single Null Divertor) was selected as the reference configuration from viewpoints of technical risks and cost performance. Regarding the reactor structure, the following items were investigated intensively: minimization of reactor size, protection of first wall against plasma disruption, simplification of shield structure, reactor configuration which enables optimum arrangement of poloidal field coils. (author)

  9. Fusion research at ORNL

    International Nuclear Information System (INIS)

    1982-03-01

    The ORNL Fusion Program includes the experimental and theoretical study of two different classes of magnetic confinement schemes - systems with helical magnetic fields, such as the tokamak and stellarator, and the ELMO Bumpy Torus (EBT) class of toroidally linked mirror systems; the development of technologies, including superconducting magnets, neutral atomic beam and radio frequency (rf) heating systems, fueling systems, materials, and diagnostics; the development of databases for atomic physics and radiation effects; the assessment of the environmental impact of magnetic fusion; and the design of advanced demonstration fusion devices. The program involves wide collaboration, both within ORNL and with other institutions. The elements of this program are shown. This document illustrates the program's scope; and aims by reviewing recent progress

  10. Mechanical design for a large fusion laser system

    International Nuclear Information System (INIS)

    Hurley, C.A.

    1979-01-01

    The Nova Mechanical Systems Group at LLL is responsible for the design, fabrication, and installation of all laser chain components, for the stable support structure that holds them, and for the beam lines that transport the laser beam to the target system. This paper is an overview of the group's engineering effort, emphasizing new developments

  11. Development of a modular systems code to analyse the implications of physics assumptions on the design of a demonstration fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Tobias

    2013-07-03

    The successful development and operation of a demonstration power plant (DEMO) is the next important step on roadmaps for fusion energy after ITER that is currently constructed in France. In the first phase of the development process for such devices, the conceptual design phase, the primary aim is to identify coherent designs that are composed of self-consistent sets of values for all key parameters like machine size, plasma current or magnetic field strength. This multidimensional parameter space can be explored with systems codes in order to identify areas that seem to be suited for more detailed investigation. Systems codes are composed of simplified models for all crucial systems of fusion devices that take into account all requirements and constraints of each component. This thesis is about the development of a new systems code called TREND (Tokamak Reactor code for the Evaluation of Next-step Devices). TREND is implemented with modular code architecture and consists of modules for geometry, core plasma physics, divertor, power flow, technology and costing. The main focus has been on the core physics module, since the development of TREND was done in parallel to work on physics design guidelines for DEMO. Moreover, the validation of TREND in terms of benchmarks with other European and Japanese systems codes is discussed. For these benchmarks, specific parameter sets were selected and the observed deviations were traced back to differences concerning the individual modellings. One of these parameter sets constitutes also the basis for parameter studies that were conducted with TREND. The general idea behind these studies is the analysis of implications that arise from specific assumptions on selected key parameters. Besides constant fusion power and constant additional heating power, the plasma density is fixed with respect to the Greenwald limit. The benchmarks helped particularly to detect shortages in the modellings of all involved systems codes

  12. Development of a modular systems code to analyse the implications of physics assumptions on the design of a demonstration fusion power plant

    International Nuclear Information System (INIS)

    Hartmann, Tobias

    2013-01-01

    The successful development and operation of a demonstration power plant (DEMO) is the next important step on roadmaps for fusion energy after ITER that is currently constructed in France. In the first phase of the development process for such devices, the conceptual design phase, the primary aim is to identify coherent designs that are composed of self-consistent sets of values for all key parameters like machine size, plasma current or magnetic field strength. This multidimensional parameter space can be explored with systems codes in order to identify areas that seem to be suited for more detailed investigation. Systems codes are composed of simplified models for all crucial systems of fusion devices that take into account all requirements and constraints of each component. This thesis is about the development of a new systems code called TREND (Tokamak Reactor code for the Evaluation of Next-step Devices). TREND is implemented with modular code architecture and consists of modules for geometry, core plasma physics, divertor, power flow, technology and costing. The main focus has been on the core physics module, since the development of TREND was done in parallel to work on physics design guidelines for DEMO. Moreover, the validation of TREND in terms of benchmarks with other European and Japanese systems codes is discussed. For these benchmarks, specific parameter sets were selected and the observed deviations were traced back to differences concerning the individual modellings. One of these parameter sets constitutes also the basis for parameter studies that were conducted with TREND. The general idea behind these studies is the analysis of implications that arise from specific assumptions on selected key parameters. Besides constant fusion power and constant additional heating power, the plasma density is fixed with respect to the Greenwald limit. The benchmarks helped particularly to detect shortages in the modellings of all involved systems codes

  13. Liquid Metals as Plasma-facing Materials for Fusion Energy Systems: From Atoms to Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Howard A. [Princeton Univ., NJ (United States); Koel, Bruce E. [Princeton Univ., NJ (United States); Bernasek, Steven L. [Princeton Univ., NJ (United States); Carter, Emily A. [Princeton Univ., NJ (United States); Debenedetti, Pablo G. [Princeton Univ., NJ (United States); Panagiotopoulos, Athanassios Z. [Princeton Univ., NJ (United States)

    2017-06-23

    The objective of our studies was to advance our fundamental understanding of liquid metals as plasma-facing materials for fusion energy systems, with a broad scope: from atoms to tokamaks. The flow of liquid metals offers solutions to significant problems of the plasma-facing materials for fusion energy systems. Candidate metals include lithium, tin, gallium, and their eutectic combinations. However, such liquid metal solutions can only be designed efficiently if a range of scientific and engineering issues are resolved that require advances in fundamental fluid dynamics, materials science and surface science. In our research we investigated a range of significant and timely problems relevant to current and proposed engineering designs for fusion reactors, including high-heat flux configurations that are being considered by leading fusion energy groups world-wide. Using experimental and theoretical tools spanning atomistic to continuum descriptions of liquid metals, and bridging surface chemistry, wetting/dewetting and flow, our research has advanced the science and engineering of fusion energy materials and systems. Specifically, we developed a combined experimental and theoretical program to investigate flows of liquid metals in fusion-relevant geometries, including equilibrium and stability of thin-film flows, e.g. wetting and dewetting, effects of electromagnetic and thermocapillary fields on liquid metal thin-film flows, and how chemical interactions and the properties of the surface are influenced by impurities and in turn affect the surface wetting characteristics, the surface tension, and its gradients. Because high-heat flux configurations produce evaporation and sputtering, which forces rearrangement of the liquid, and any dewetting exposes the substrate to damage from the plasma, our studies addressed such evaporatively driven liquid flows and measured and simulated properties of the different bulk phases and material interfaces. The range of our studies

  14. Coatings for fusion reactor environments

    International Nuclear Information System (INIS)

    Mattox, D.M.

    1979-01-01

    The internal surfaces of a tokamak fusion reactor control the impurity injection and gas recycling into the fusion plasma. Coating of internal surfaces may provide a desirable and possibly necessary design flexibility for achieving the temperatures, ion densities and containment times necessary for net energy production from fusion reactions to take place. In this paper the reactor environments seen by various componentare reviewed along with possible materials responses. Characteristics of coating-substrate systems, important to fusion applications, are delineated and the present status of coating development for fusion applications is reviewed. Coating development for fusion applications is just beginning and poses a unique and important challenge for materials development

  15. HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from a LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs, 90 Sr, 129 I, 99 Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,α), (n,γ), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R = 1.0 to 3.0) requirements. These studies also indicate that masses on the order of 1.0 g at densities of rho greater than or equal to 500.0 g/cm 3 are required for a practical fusion-based fission product transmutation system

  16. Feasibility study on sensor data fusion for the CP-140 aircraft: fusion architecture analyses

    Science.gov (United States)

    Shahbazian, Elisa

    1995-09-01

    Loral Canada completed (May 1995) a Department of National Defense (DND) Chief of Research and Development (CRAD) contract, to study the feasibility of implementing a multi- sensor data fusion (MSDF) system onboard the CP-140 Aurora aircraft. This system is expected to fuse data from: (a) attributed measurement oriented sensors (ESM, IFF, etc.); (b) imaging sensors (FLIR, SAR, etc.); (c) tracking sensors (radar, acoustics, etc.); (d) data from remote platforms (data links); and (e) non-sensor data (intelligence reports, environmental data, visual sightings, encyclopedic data, etc.). Based on purely theoretical considerations a central-level fusion architecture will lead to a higher performance fusion system. However, there are a number of systems and fusion architecture issues involving fusion of such dissimilar data: (1) the currently existing sensors are not designed to provide the type of data required by a fusion system; (2) the different types (attribute, imaging, tracking, etc.) of data may require different degree of processing, before they can be used within a fusion system efficiently; (3) the data quality from different sensors, and more importantly from remote platforms via the data links must be taken into account before fusing; and (4) the non-sensor data may impose specific requirements on the fusion architecture (e.g. variable weight/priority for the data from different sensors). This paper presents the analyses performed for the selection of the fusion architecture for the enhanced sensor suite planned for the CP-140 aircraft in the context of the mission requirements and environmental conditions.

  17. Inertial Fusion Power Plant Concept of Operations and Maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Anklam, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Knutson, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dunne, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kasper, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sheehan, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lang, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Roberts, V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mau, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-01-15

    Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oil refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.

  18. Osiris and SOMBRERO inertial confinement fusion power plant designs

    International Nuclear Information System (INIS)

    Meier, W.R.; Bieri, R.L.; Monsler, M.J.

    1992-03-01

    Conceptual designs and assessments have been completed for two inertial fusion energy (IFE) electric power plants. The detailed designs and results of the assessment studies are presented in this report. Osiris is a heavy-ion-beam (HIB) driven power plant and SOMBRERO is a Krypton-Fluoride (KrF) laser-driven power plant. Both plants are sized for a net electric power of 1000 MWe

  19. Phase aberrations and beam cleanup techniques in carbon-dioxide laser fusion systems

    International Nuclear Information System (INIS)

    Viswanathan, V.K.

    1981-01-01

    This paper describes the various carbon dioxide laser fusion systems at Los Alamos from the point of view of an optical designer. The types of phase aberrations present in these systems, as well as the beam cleanup techniques that can be used to improve the beam optical quality, are discussed. As this is a review article, some previously published results are also used where relevant

  20. Evaluation of CFETR as a Fusion Nuclear Science Facility using multiple system codes

    Science.gov (United States)

    Chan, V. S.; Costley, A. E.; Wan, B. N.; Garofalo, A. M.; Leuer, J. A.

    2015-02-01

    This paper presents the results of a multi-system codes benchmarking study of the recently published China Fusion Engineering Test Reactor (CFETR) pre-conceptual design (Wan et al 2014 IEEE Trans. Plasma Sci. 42 495). Two system codes, General Atomics System Code (GASC) and Tokamak Energy System Code (TESC), using different methodologies to arrive at CFETR performance parameters under the same CFETR constraints show that the correlation between the physics performance and the fusion performance is consistent, and the computed parameters are in good agreement. Optimization of the first wall surface for tritium breeding and the minimization of the machine size are highly compatible. Variations of the plasma currents and profiles lead to changes in the required normalized physics performance, however, they do not significantly affect the optimized size of the machine. GASC and TESC have also been used to explore a lower aspect ratio, larger volume plasma taking advantage of the engineering flexibility in the CFETR design. Assuming the ITER steady-state scenario physics, the larger plasma together with a moderately higher BT and Ip can result in a high gain Qfus ˜ 12, Pfus ˜ 1 GW machine approaching DEMO-like performance. It is concluded that the CFETR baseline mode can meet the minimum goal of the Fusion Nuclear Science Facility (FNSF) mission and advanced physics will enable it to address comprehensively the outstanding critical technology gaps on the path to a demonstration reactor (DEMO). Before proceeding with CFETR construction steady-state operation has to be demonstrated, further development is needed to solve the divertor heat load issue, and blankets have to be designed with tritium breeding ratio (TBR) >1 as a target.

  1. Critical safety issues in the design of fusion machines

    International Nuclear Information System (INIS)

    Kramer, W.

    1991-01-01

    In the course of developing fusion machines both general safety considerations and safety assessments for the various components and systems of actual machines increase in number and become more and more coherent. This is particularly true for the NET/ITER projects where safety analysis plays an increasing role for the design of the machine. Since in a D/T tokamak the radiological hazards will be dominant basic radiological safety objectives are discussed. Critical safety issues as identified in particular by the NET/ITER community are reviewed. Subsequently, issues of major concern are considered both for normal operation and for conceivable accidents. The following accidents are considered to be crucial: Loss of cooling in plasma facing components, loss of vacuum, tritium system failure, and magnet system failure. To mitigate accident consequences a confinement concept based on passive features and multiple barriers including detritiation and filtering has to be applied. The reactor building as final barrier needs special attention to cope with both internal and external hazards. (orig.)

  2. Rational design of an EGF-IL18 fusion protein: Implication for developing tumor therapeutics

    International Nuclear Information System (INIS)

    Lu Jianxin; Peng Ying; Meng Zhefeng; Jin Liqin; Lu Yongsui; Guan Minxin

    2005-01-01

    Interleukin-18 (IL-18) is a proinflammatory cytokine. This protein has a role in regulating immune responses and exhibits significant anti-tumor activities. Epidermal growth factor (EGF) is an important growth factor that plays a central role in the regulation of cell cycle and differentiation. It was proposed that a targeted delivery of IL-18 by generation of IL-18-EGF fusion protein might decrease adverse effects and result in enhancing cytotoxic and antitumor activities. In the present study, a fusion protein, consisting of EGFR binding domain fused to human IL-18 mature peptide via a linker peptide of (Gly 4 Ser) 3, was constructed and expressed in the insect cell line Sf9 using Bac-to-Bac baculovirus expression system. We showed that the purified recombinant fusion protein induced similar levels of IFN-γ to that of native IL-18 protein in human PBMC in the presence of ConA. Furthermore, EGF receptor competitive test in human epithelial cancer A431 cell line showed that EGF-IL18 fusion protein can specifically bind with EGFR by competing with native EGF protein. These suggest that this rationally designed protein can be further developed as novel tumor therapeutics

  3. Conceptual design of a fission-based integrated test facility for fusion reactor components

    International Nuclear Information System (INIS)

    Watts, K.D.; Deis, G.A.; Hsu, P.Y.S.; Longhurst, G.R.; Masson, L.S.; Miller, L.G.

    1982-01-01

    The testing of fusion materials and components in fission reactors will become increasingly important because of lack of fusion engineering test devices in the immediate future and the increasing long-term demand for fusion testing when a fusion reactor test station becomes available. This paper presents the conceptual design of a fission-based Integrated Test Facility (ITF) developed by EG and G Idaho. This facility can accommodate entire first wall/blanket (FW/B) test modules such as those proposed for INTOR and can also accommodate smaller cylindrical modules similar to those designed by Oak Ridge National laboratory (ORNL) and Westinghouse. In addition, the facility can be used to test bulk breeder blanket materials, materials for tritium permeation, and components for performance in a nuclear environment. The ITF provides a cyclic neutron/gamma flux as well as the numerous module and experiment support functions required for truly integrated tests

  4. Jason: heavy-ion-driven inertial fusion

    International Nuclear Information System (INIS)

    Callan, C.G. Jr.; Dashen, R.F.; Garwin, R.L.; Muller, R.A.; Richter, B.; Rosenbluth, M.N.

    1978-02-01

    A few of the problems in heavy-ion-driven inertial-fusion systems are reviewed. Nothing was found within the scope of this study that would in principle bar such systems from delivering the energy and peak power required to ignite the fuel pellet. Indeed, ion-fusion seems to show great promise, but the conceptual design of ion-fusion systems is still in a primitive state. A great deal of work, mostly theoretical, remains to be done before proceeding with massive hardware development. Conclusions are given about the state of the work

  5. Data-Acquisition Systems for Fusion Devices

    NARCIS (Netherlands)

    van Haren, P. C.; Oomens, N. A.

    1993-01-01

    During the last two decades, computerized data acquisition systems (DASs) have been applied at magnetic confinement fusion devices. Present-day data acquisition is done by means of distributed computer systems and transient recorders in CAMAC systems. The development of DASs has been technology

  6. Fusion safety data base

    International Nuclear Information System (INIS)

    Laats, E.T.; Hardy, H.A.

    1983-01-01

    The purpose of this Fusion Safety Data Base Program is to provide a repository of data for the design and development of safe commercial fusion reactors. The program is sponsored by the United States Department of Energy (DOE), Office of Fusion Energy. The function of the program is to collect, examine, permanently store, and make available the safety data to the entire US magnetic-fusion energy community. The sources of data will include domestic and foreign fusion reactor safety-related research programs. Any participant in the DOE Program may use the Data Base Program from his terminal through user friendly dialog and can view the contents in the form of text, tables, graphs, or system diagrams

  7. Laser fusion systems design study. Final technical report

    International Nuclear Information System (INIS)

    1975-06-01

    This study investigated: (1) the formulation and evaluation of an alignment system to accomplish pointing, focusing, centering and translation for the 20-arm SHIVA laser, (2) the formulation and evaluation of concepts for the correction of static phase distortions introduced by the accumulated optical elements in the laser chains, (3) the formulation and evaluation of concepts for the correction of optical path length differences between the arms of the SHIVA system, and (4) the conceptual design of appropriate control system hardware. (U.S.)

  8. Fusion-supported decentralized nuclear energy system

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1979-04-01

    A decentralized nuclear energy system is proposed comprising mass-produced pressurized water reactors in the size range 10 to 300 MW (thermal), to be used for the production of process heat, space heat, and electricity in applications where petroleum and natural gas are presently used. Special attention is given to maximizing the refueling interval with no interim batch shuffling in order to minimize fuel transport, reactor downtime, and opportunity for fissile diversion. These objectives demand a substantial fissile enrichment (7 to 15%). The preferred fissile fuel is U-233, which offers an order of magnitude savings in ore requirements (compared with U-235 fuel), and whose higher conversion ratio in thermal reactors serves to extend the period of useful reactivity and relieve demand on the fissile breeding plants (compared with Pu-239 fuel). Application of the neutral-beam-driven tokamak fusion-neutron source to a U-233 breeding pilot plant is examined. This scheme can be extended in part to a decentralized fusion energy system, wherein remotely located large fusion reactors supply excess tritium to a distributed system of relatively small nonbreeding D-T reactors

  9. Concept design of CFETR superconducting magnet system based on different maintenance ports

    International Nuclear Information System (INIS)

    Zheng, Jinxing; Liu, Xufeng; Song, Yuntao; Wan, Yuanxi; Li, Jiangang; Wu, Sontao; Wan, Baonian; Ye, Minyou; Wei, Jianghua; Xu, Weiwei; Liu, Sumei; Weng, Peide; Lu, Kun; Luo, Zhengping

    2013-01-01

    Highlights: • This article discussed the concept design of the magnet system of CFETR based on different maintenance port cases. • The major and minor radius of plasma is 5.7 m and 1.6 m, and the central magnetic field was designed as 4.5/5.0 T. • The different maintenance ports design have little impact on the design of TF and CS coils’ design, but have certain impact on the PF coils’ design. -- Abstract: CFETR which stands for “China Fusion Engineering Test Reactor” is a new tokamak device. Its magnet system includes the Toroidal Field (TF) winding, Center solenoid winding (CS) and Poloidal Field (PF) winding. The main goal of the project is to build a fusion engineering Tokamak reactor with its fusion power is 50–200 MW and should be self-sufficiency by blanket. In order to ensure the maintenance ports design and maintenance method, this article discussed the concept design of the magnet system based on different maintenance port cases. The paper detailed studied the magnet system of CFETR including the electromagnetic analysis and parameters for TF (CS)PF. Besides, the volt-seconds of ohmic field are presented as detailed as possible in this paper. In addition, the calculations and optimizations of equilibrium field which should guarantee the plasma discharge of single null shape is carried out. The design work reported here illustrates that the present maintenance ports will not have a great impact on the design of the magnet system. The concept design of the magnet system can meet the requirement of the physical target

  10. A system dynamics model for tritium cycle of pulsed fusion reactor

    International Nuclear Information System (INIS)

    Zhu, Zuolong; Nie, Baojie; Chen, Dehong

    2017-01-01

    As great challenges and uncertainty exist in achieving steady plasma burning, pulsed plasma burning may be a potential scenario for fusion engineering test reactor, even for fusion DEMOnstration reactor. In order to analyze dynamic tritium inventory and tritium self-sufficiency for pulsed fusion systems, a system dynamics model of tritium cycle was developed on the basis of earlier version of Tritium Analysis program for fusion System (TAS). The model was verified with TRIMO, which was developed by KIT in Germany. Tritium self-sufficiency and dynamic tritium inventory assessment were performed for a typical fusion engineering test reactor. The verification results show that the system dynamics model can be used for tritium cycle analysis of pulsed fusion reactor with sufficient reliability. The assessment results of tritium self-sufficiency indicate that the fusion reactor might only need several hundred gram tritium to startup if achieved high efficient tritium handling ability (Referred ITER: 1 h). And the initial tritium startup inventory in pulsed fusion reactor is determined by the combined influence of pulse length, burn availability, and tritium recycle time. Meanwhile, tritium self-sufficiency can be achieved under the defined condition.

  11. A system dynamics model for tritium cycle of pulsed fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zuolong; Nie, Baojie [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China); Chen, Dehong, E-mail: dehong.chen@fds.org.cn [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China)

    2017-05-15

    As great challenges and uncertainty exist in achieving steady plasma burning, pulsed plasma burning may be a potential scenario for fusion engineering test reactor, even for fusion DEMOnstration reactor. In order to analyze dynamic tritium inventory and tritium self-sufficiency for pulsed fusion systems, a system dynamics model of tritium cycle was developed on the basis of earlier version of Tritium Analysis program for fusion System (TAS). The model was verified with TRIMO, which was developed by KIT in Germany. Tritium self-sufficiency and dynamic tritium inventory assessment were performed for a typical fusion engineering test reactor. The verification results show that the system dynamics model can be used for tritium cycle analysis of pulsed fusion reactor with sufficient reliability. The assessment results of tritium self-sufficiency indicate that the fusion reactor might only need several hundred gram tritium to startup if achieved high efficient tritium handling ability (Referred ITER: 1 h). And the initial tritium startup inventory in pulsed fusion reactor is determined by the combined influence of pulse length, burn availability, and tritium recycle time. Meanwhile, tritium self-sufficiency can be achieved under the defined condition.

  12. Neutronics design for a spherical tokamak fusion-transmutation reactor

    International Nuclear Information System (INIS)

    Deng Meigen; Feng Kaiming; Yang Bangchao

    2002-01-01

    Based on studies of the spherical tokamak fusion reactors, a concept of fusion-transmutation reactor is put forward. By using the one-dimension transport and burn-up code BISON3.0 to process optimized design, a set of plasma parameters and blanket configuration suitable for the transmutation of MA (Minor Actinides) nuclear waste is selected. Based on the one-dimension calculation, two-dimension calculation has been carried out by using two-dimension neutronics code TWODANT. Combined with the neutron flux given by TWODANT calculation, burn-up calculation has been processed by using the one-dimension radioactivity calculation code FDKR and some useful and reasonable results are obtained

  13. Engineering design of the Nova Laser Facility for inertial-confinement fusion

    International Nuclear Information System (INIS)

    Simmons, W.W.; Godwin, R.O.; Hurley, C.A.

    1982-01-01

    The design of the Nova Laser Facility for inertial confinement fusion experiments at Lawrence Livermore National Laboratory is presented from an engineering perspective. Emphasis is placed upon design-to-performance requirements as they impact the various subsystems that comprise this complex experimental facility

  14. Fusion power system: technology and engineering considerations

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1976-01-01

    Engineering concepts are discussed for the following topics: (1) blanket environment, (2) blanket materials, (3) tritium breeding, (4) heat removal problems, (5) materials selection for radiation shields, (6) afterheat, and (7) fusion blanket design

  15. Conceptual design of the cryogenic system for the helical-type fusion power plant FFHR

    International Nuclear Information System (INIS)

    Yamada, S.; Sagara, A.; Imagawa, S.; Mito, T.; Motojima, O.

    2007-01-01

    The force-free helical-type fusion reactor, FFHR, is proposed on the basis of the engineering achievements and confinement properties of the experimental fusion device of LHD. The outputs of the thermal power and electric power are optimized to 3 and 1 GW, respectively. Total weight of the superconducting (SC) coils and their supporting structures of the FFHR are estimated to be 18,000 t. An equivalent refrigeration capacity of 98 kW is necessary for coping with different plant loads. Mass-flow rate of the main circulation compressors is 9.5 kg/s and their power consumption is 29 MW. The FFHR is used for the co-generation system of electricity and hydrogen. The pressurized hydrogen of 100 t per day can be produced, when the stem electrolyzer of 150 MW class is applied. Electric power consumption of the hydrogen liquefaction with 100 t per day is estimated to be 26 MW

  16. Remote sensing image fusion

    CERN Document Server

    Alparone, Luciano; Baronti, Stefano; Garzelli, Andrea

    2015-01-01

    A synthesis of more than ten years of experience, Remote Sensing Image Fusion covers methods specifically designed for remote sensing imagery. The authors supply a comprehensive classification system and rigorous mathematical description of advanced and state-of-the-art methods for pansharpening of multispectral images, fusion of hyperspectral and panchromatic images, and fusion of data from heterogeneous sensors such as optical and synthetic aperture radar (SAR) images and integration of thermal and visible/near-infrared images. They also explore new trends of signal/image processing, such as

  17. Conceptual design of a mirror reactor for a fusion engineering research facility (FERF)

    International Nuclear Information System (INIS)

    Batzer, T.H.; Burleigh, R.C.; Carlson, G.A.; Dexter, W.L.; Hamilton, G.W.; Harvey, A.R.; Hickman, R.G.; Hoffman, M.A.; Hooper, E.B. Jr.; Moir, R.W.; Nelson, R.L.; Pittenger, L.C.; Smith, B.H.; Taylor, C.E.; Werner, R.W.; Wilcox, T.P.

    1975-01-01

    A conceptual design is presented for a small mirror fusion reactor for a Fusion Engineering Research Facility (FERF). The reactor produces 3.4 MW of fusion power and a useful neutron flux of about 10 14 n.cm -2 .s -1 . Superconducting ''yin-yang'' coils are used, and the plasma is sustained by injection of energetic neutral D 0 and T 0 . Conceptual layouts are given for the reactor, its major components, and supporting facilities. (author)

  18. State-of-the-art 3-D neutronics analysis methods for fusion energy systems

    International Nuclear Information System (INIS)

    Wilson, P.P.H.; Feder, R.; Fischer, U.; Loughlin, M.; Petrizzi, L.; Wu, Y.

    2007-01-01

    Recent advances in radiation transport simulation tools enable an increased fidelity and accuracy in modeling complex geometries in fusion systems. Future neutronics calculations for design and analysis will increasingly be based directly on 3-D CAD-based geometries, allowing enhanced model complexity, reduced human effort and improved quality assurance. Improvements have been made in both stochastic and deterministic radiation transport methodologies. To adapt the MCNP stochastic transport software, the translator approach allows CAD geometries to be converted from their native formats into standard input files, while the direct geometry approach uses computer graphics algorithms to perform the radiation transport on the CAD geometry itself. The former takes advantage of the efficiency of the native MCNP software without modifications while the latter permits the modeling of more complex surfaces. The ATTILA radiation transport package uses a finite-element formulation of the discrete-ordinate methodology to provide a deterministic solution on a tetrahedral mesh derived automatically from a CAD-based geometry. All of these tools are being applied to a dedicated benchmark problem consisting of a 40 degree sector of the ITER machine defined only in a CAD-based solid model. The specific benchmark problems exercise the ability to use a CAD-based geometry to solve a range of fusion neutronics problems including neutron wall loading, deep penetration and narrow duct streaming. The results of this exercise will be used to validate/qualify these tools for use on ITER. At the same time, many of these tools are being used to support the design of ITER components and other related fusion systems. UW has provided high-fidelity nuclear analysis of ITER first wall and shield modules identifying local effects of geometric features. ASIPP has used the MCAM tool to update and extend the existing ITER basic model and used it for neutronics analysis of the proposed Chinese ITER

  19. State-of-the-art 3-D neutronics analysis methods for fusion energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, P.P.H. [Wisconsin-Madison Univ., Madison, WI (United States); Feder, R. [Princeton Plasma Physics Lab. (United States); Fischer, U. [Forschungszentrum Karlsruhe (Germany); Loughlin, M. [United Kingdom Atomic Energy Authority (United Kingdom); Petrizzi, L. [ENEA-Frascati (Italy); Wu, Y. [Academy of Sciences (China). Inst. of Plasma Physics; Youssef, M. [California Univ., Los Angeles, CA (United States)

    2007-07-01

    Recent advances in radiation transport simulation tools enable an increased fidelity and accuracy in modeling complex geometries in fusion systems. Future neutronics calculations for design and analysis will increasingly be based directly on 3-D CAD-based geometries, allowing enhanced model complexity, reduced human effort and improved quality assurance. Improvements have been made in both stochastic and deterministic radiation transport methodologies. To adapt the MCNP stochastic transport software, the translator approach allows CAD geometries to be converted from their native formats into standard input files, while the direct geometry approach uses computer graphics algorithms to perform the radiation transport on the CAD geometry itself. The former takes advantage of the efficiency of the native MCNP software without modifications while the latter permits the modeling of more complex surfaces. The ATTILA radiation transport package uses a finite-element formulation of the discrete-ordinate methodology to provide a deterministic solution on a tetrahedral mesh derived automatically from a CAD-based geometry. All of these tools are being applied to a dedicated benchmark problem consisting of a 40 degree sector of the ITER machine defined only in a CAD-based solid model. The specific benchmark problems exercise the ability to use a CAD-based geometry to solve a range of fusion neutronics problems including neutron wall loading, deep penetration and narrow duct streaming. The results of this exercise will be used to validate/qualify these tools for use on ITER. At the same time, many of these tools are being used to support the design of ITER components and other related fusion systems. UW has provided high-fidelity nuclear analysis of ITER first wall and shield modules identifying local effects of geometric features. ASIPP has used the MCAM tool to update and extend the existing ITER basic model and used it for neutronics analysis of the proposed Chinese ITER

  20. Conceptual radiation shielding design of superconducting tokamak fusion device by PHITS

    International Nuclear Information System (INIS)

    Sukegawa, Atsuhiko M.; Kawasaki, Hiromitsu; Okuno, Koichi

    2010-01-01

    A complete 3D neutron and photon transport analysis by Monte Carlo transport code system PHITS (Particle and Heavy Ion Transport code System) have been performed for superconducting tokamak fusion device such as JT-60 Super Advanced (JT-60SA). It is possible to make use of PHITS in the port streaming analysis around the devices for the tokamak fusion device, the duct streaming analysis in the building where the device is installed, and the sky shine analysis for the site boundary. The neutron transport analysis by PHITS makes it clear that the shielding performance of the superconducting tokamak fusion device with the cryostat is improved by the graphical results. From the standpoint of the port streaming and the duct streaming, it is necessary to calculate by 3D Monte Carlo code such as PHITS for the neutronics analysis of superconducting tokamak fusion device. (author)

  1. Fusion: an energy source for synthetic fuels

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J; Steinberg, M.

    1980-01-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion

  2. Heavy-ion fusion: future promise and future directions

    International Nuclear Information System (INIS)

    Dudziak, D.J.; Saylor, W.W.; Pendergrass, J.H.

    1986-01-01

    The previous papers in this heavy-ion fusion special session have described work performed as part of the Heavy-Ion Fusion Systems Assessment (HIFSA) Project. Key technical issues in the design and costing of targets, induction linacs, beam transport, reactor, balance of plant, and systems integration have been identified and described. The HIFSA systems model was used to measure the relative value of improvements in physics understanding and technology developments in many different areas. Within the limits of our 1986 knowledge and imagination, this study defines the most attractive heavy-ion fusion (HIF) power plant concepts. The project has deliberately avoided narrowing the focus to a point facility design; thus, the generic systems modeling capability developed in the process allows for relative comparisons among design options. We will describe what are thought to be achievable breakthroughs and what the relative significance of the breakthroughs will be, although the specific mechanism for achieving some breakthroughs may not be clear at this point. This degree of optimism concerning such breakthroughs is probably at least as conservative as that used in other fusion assessments

  3. Experimental fusion power reactor conceptual design study. Final report. Volume II

    International Nuclear Information System (INIS)

    Baker, C.C.

    1976-12-01

    This document is the final report which describes the work carried out by General Atomic Company for the Electric Power Research Institute on a conceptual design study of a fusion experimental power reactor (EPR) and an overall EPR facility. The primary objective of the two-year program was to develop a conceptual design of an EPR that operates at ignition and produces continuous net power. A conceptual design was developed for a Doublet configuration based on indications that a noncircular tokamak offers the best potential of achieving a sufficiently high effective fuel containment to provide a viable reactor concept at reasonable cost. Other objectives included the development of a planning cost estimate and schedule for the plant and the identification of critical R and D programs required to support the physics development and engineering and construction of the EPR. This volume contains the following sections: (1) reactor components, (2) auxiliary systems, (3) operations, (4) facility design, (5) program considerations, and (6) conclusions and recommendations

  4. Issues in radioactivity for fusion energy: remote maintenance rating

    International Nuclear Information System (INIS)

    Dorn, D.W.; Maninger, R.C.

    1983-01-01

    Recent technical progress in fusion research has been sufficient to encourage the development of conceptual designs for fusion power systems. These design efforts suggest that more attention should be paid to the safety and environmental effects of the radioactivity induced in the structural materials by the fusion neutrons. In particular, radioactivity from neutron activation of the structural components of a fusion power system will be a concern for occupational exposure of personnel. Careful choice of structural materials can significantly reduce this exposure. We propose the Remote Maintenance Rating (RMR) as a numerical means of comparing materials and machine designs with respect to occupational exposures. The RMR is defined as the dose rate at the surface of a uniformly activated, thick, infinite slab with the same composition and density as the machine component. We used the RMR rating system to evaluate the suitability of several different iron-based alloys. The specific fusion power system design used in our evaluation was a conceptual design from the Mirror Advanced Reactor Study (MARS). We determined that HT-9 is significantly better in terms of radiological dose rates at early times than the other iron-based alloys (by a factor of 3 to 7). We also calculated the behavior of both silicon carbide (SiC) and aluminum (Al), two low activation materials often proposed for reactors

  5. HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs, 90 Sr, 129 I, 99 Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,α), (n,γ), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R=1.0 to 3.0) requirements

  6. Evaluation of CFETR as a Fusion Nuclear Science Facility using multiple system codes

    International Nuclear Information System (INIS)

    Chan, V.S.; Garofalo, A.M.; Leuer, J.A.; Costley, A.E.; Wan, B.N.

    2015-01-01

    This paper presents the results of a multi-system codes benchmarking study of the recently published China Fusion Engineering Test Reactor (CFETR) pre-conceptual design (Wan et al 2014 IEEE Trans. Plasma Sci. 42 495). Two system codes, General Atomics System Code (GASC) and Tokamak Energy System Code (TESC), using different methodologies to arrive at CFETR performance parameters under the same CFETR constraints show that the correlation between the physics performance and the fusion performance is consistent, and the computed parameters are in good agreement. Optimization of the first wall surface for tritium breeding and the minimization of the machine size are highly compatible. Variations of the plasma currents and profiles lead to changes in the required normalized physics performance, however, they do not significantly affect the optimized size of the machine. GASC and TESC have also been used to explore a lower aspect ratio, larger volume plasma taking advantage of the engineering flexibility in the CFETR design. Assuming the ITER steady-state scenario physics, the larger plasma together with a moderately higher B T and I p can result in a high gain Q fus  ∼ 12, P fus  ∼ 1 GW machine approaching DEMO-like performance. It is concluded that the CFETR baseline mode can meet the minimum goal of the Fusion Nuclear Science Facility (FNSF) mission and advanced physics will enable it to address comprehensively the outstanding critical technology gaps on the path to a demonstration reactor (DEMO). Before proceeding with CFETR construction steady-state operation has to be demonstrated, further development is needed to solve the divertor heat load issue, and blankets have to be designed with tritium breeding ratio (TBR) >1 as a target. (paper)

  7. Poloidal field system for the ITER hard design option

    International Nuclear Information System (INIS)

    Schultz, J.H.; Pillsbury, R.D.

    1992-01-01

    This paper reports on ITER, the International Thermonuclear Experimental Reactor, a collaborative design by the US, EC, Japan, and the USSR of a tokamak fusion reactor that will demonstrate the physics and test the technology needed for commercial fusion reactors. In 1990, the ITER team completed a Conceptual Design Activity (CDA) in which a candidate design was shown to meet the specified goals of the ITER activity at a conceptual level. The four parties have agreed to an Engineering Design Activity (EDA) that includes the necessary additional design and analysis, along with the R and D needed to construct ITER with confidence. The CDA design includes a toroidal field (TF) magnet system that provides the main containment field and a poloidal field (PF) system used to control plasma current and position. The PF system is also used as transformer primary to induce and sustain current in the plasma. Since the volt-seconds available for full-current plasma burn are less than 10% of the total available volt-seconds from the PF system, an area of concern in the CDA design is that unfavorable plasma conditions could compromise the ability of the physics base case design to achieve long pulse burns. A High Aspect Ratio Design (HARD) was conceived as an alternative design option with a much larger bore in the central solenoid to enhance ITER's capabilities for long-burn operation

  8. Engineering design of a fusion test reactor (FTR) and fusion engineering research facility (FERF) based on a toroidal theta pinch

    International Nuclear Information System (INIS)

    Abdou, M.; Burke, R.J.; Dauzvardis, P.V.; Foss, M.; Gerstl, S.A.W.; Maroni, V.A.; Pierce, A.W.; Turner, A.F.; Krakowski, R.A.; Linford, R.K.; Oliphant, T.A.; Ribe, F.L.; Thomassen, K.I.

    1975-01-01

    This paper describes two advanced toroidal theta-pinch devices which are being proposed for future construction. The Fusion Test Reactor (FTR) is being designed to produce thermonuclear energy (at 20 MeV/neutron) equal to the maximum plasma energy (Q=1) and to demonstrate α-particle heating. The Fusion Engineering and Research Facility (FERF) is being designed to test materials in a fusion environment where the average 14-MeV neutron flux from the plasma is greater than or of the order of 5.10 13 n/cm 2 .s over large surface areas. These devices employ the staged theta-pinch principle where the heating is accomplished by rapid (about 0.1 μs) implosion and expansion followed by a slow compression of the plasma. The rapid implosion injects as much heat as possible at as large a plasma radious as possible so that the plasma remains stable even after further compression. The final compression to ignition requires the transfer of a large amount of magnetic energy which implies a long transfer time (about 1 ms) for realistic voltages in the driving circuit. Throughout the heating and burn cycle the plasma must remain in equilibrium and stable to the dominant MHD-modes. A sufficiently large plasma radius guarantees stability against the m = 1 modes. These equilibrium and stability conditions and the requirements on thermonuclear burn determine the design parameters for either machine. The design parameters must also be consistent with economic limitations and technological feasibility of components. In addition to these requirements, the FERF must provide a steady and reliable source of fusion neutrons. (author)

  9. Concept evaluation of nuclear fusion driven symbiotic energy systems

    International Nuclear Information System (INIS)

    Renier, J.P.; Hoffman, T.J.

    1979-01-01

    This paper analyzes systems based on D-T and semi-catalyzed D-D fusion-powered U233 breeders. Two different blanket types were used: metallic thorium pebble-bed blankets with a batch reprocessing mode and a molten salt blanket with on-line continuous or batch reprocessing. All fusion-driven blankets are assumed to have spherical geometries, with a 85% closure. Neutronics depletion calculations were performed with a revised version of the discrete ordinates code XSDRN-PM, using multigroup (100 neutron, 21 gamma-ray groups) coupled cross-section libraries. These neutronics calculations are coupled with a scenario optimization and cost analysis code. Also, the fusion burn was shaped so as to keep the blanket maximum power density below a preset value, and to improve the performance of the fusion-driven systems. The fusion-driven symbiotes are compared with LMFBR-driven energy systems. The nuclear fission breeders that were used as drivers have parameters characteristic of heterogeneous, oxide LMFBRs. They are net plutonium users - the plutonium is obtained from the discharges of LWRs - and U233 is bred in the fission breeder thorium blankets. The analyses of the symbiotic energy systems were performed at equilibrium, at maximum rate of grid expansion, and for a given nuclear power demand

  10. Direct energy conversion system for D-3He fusion

    International Nuclear Information System (INIS)

    Tomita, Y.; Shu, L.Y.; Momota, H.

    1993-11-01

    A novel and highly efficient direct energy conversion system is proposed for utilizing D- 3 He fueled fusion. In order to convert kinetic energy of ions, we applied a pair of direct energy conversion systems each of which has a cusp-type DEC and a traveling wave DEC (TWDEC). In a cusp-type DEC, electrons are separated from the escaping ions at the first line-cusp and the energy of thermal ion components is converted at the second cusp DEC. The fusion protons go through the cusp-type DEC and arrive at the TWDEC, which principle is similar to 'LINAC.' The energy of fusion protons is recovered to electricity with an efficiency of more than 70%. These DECs bring about the high efficient fusion plant. (author)

  11. Evaluation of DD and DT fusion fuel cycles for different fusion-fission energy systems

    International Nuclear Information System (INIS)

    Gohar, Y.

    1980-01-01

    A study has been carried out in order to investigate the characteristics of an energy system to produce a new source of fissile fuel for existing fission reactors. The denatured fuel cycles were used because it gives additional proliferation resistance compared to other fuel cycles. DT and DD fusion drivers were examined in this study with a thorium or uranium blanket for each fusion driver. Various fuel cycles were studied for light-water and heavy-water reactors. The cost of electricity for each energy system was calculated

  12. The design of an ECRH system for JET-EP

    DEFF Research Database (Denmark)

    Verhoeven, A.G.A.; Bongers, W.A.; Elzendoorn, B.S.Q.

    2003-01-01

    An electron cyclotron resonance heating (ECRH) system has been designed for JET in the framework of the JET enhanced performance project (JET-EP) under the European fusion development agreement. Due to financial constraints it has been decided not to implement this project. Nevertheless, the design...

  13. The design of an ECRH system for JET-EP

    NARCIS (Netherlands)

    Verhoeven, A. G. A.; Bongers, W. A.; Elzendoorn, B. S. Q.; Graswinckel, M.; Hellingman, P.; Kooijman, W.; Kruijt, O. G.; Maagdenberg, J.; Ronden, D.; Stakenborg, J.; Sterk, A. B.; Tichler, J.; Alberti, S.; Goodman, T.; Henderson, M.; Hoekzema, J. A.; Oosterbeek, J. W.; Fernandez, A.; Likin, K.; Bruschi, A.; Cirant, S.; Novaks, S.; Piosczyk, B.; Thumm, M.; Bindslev, H.; Kaye, A.; Fleming, C.; Zohm, H.

    2003-01-01

    An electron cyclotron resonance heating (ECRH) system has been designed for JET in the framework of the JET enhanced performance project (JET-EP) under the European fusion development agreement. Due to financial constraints it has been decided not to implement this project. Nevertheless, the design

  14. Design study of electrostatically plugged cusp fusion reactor

    International Nuclear Information System (INIS)

    Dolan, T.J.

    1976-01-01

    This study concentrates on the following aspects of an electrostatically plugged cusp reactor that will be different from other fusion reactor designs: the coil geometry and structural supports, high voltage electrodes, plasma parameters, power balance, and operating cycle. Assuming the electron density distribution in the anodes to have a characteristic width of two electron Larmor radii, which is consistent with present experimental results, the theory predicts that a device with a magnetic field strength, B = 8 T sustained solely by electron beam injection at 300 kV will have a power gain ratio, Q, of about 5. A toroidal multipole cusp configuration with six cusps was selected for the present design, based on a study of the ratio of plasma volume to coil volume. Coil forces are sustained by cryogenic trusses between like coils, fiberglass compression columns, and room temperature hoops. Radiation collimators in front of the high voltage electrodes greatly reduce the radiation impinging on the cathodes, helping to avoid breakdown and to prolong insulator life. The operating cycle consists of a startup period of about 20 s, followed by a fusion burn period lasting about 200 s (limited by impurity buildup) and a 20-s flushing period

  15. Conceptual design of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1985-01-01

    The Fusion Experimental Reactor (FER) being developed at JAERI as a next generation tokamak to JT-60 has a major mission of realizing a self-ignited long-burning DT plasma and demonstrating engineering feasibility. During FY82 and FY83 a comprehensive and intensive conceptual design study has been conducted for a pulsed operation FER as a reference option which employs a conventional inductive current drive and a double-null divertor. In parallel with the reference design, studies have been carried out to evaluate advanced reactor concepts such as quasi-steady state operation and steady state operation based on RF current drive and pumped limiter, and comparative studies for single-null divertor/pumped limiter. This report presents major results obtained primarily from FY83 design studies, while the results of FY82 design studies are described in previous references (JAERI-M 83-213--216). (author)

  16. Use of high temperature superconductors for future fusion magnet systems

    Energy Technology Data Exchange (ETDEWEB)

    Fietz, W H [Forschungszentrum Karlsruhe, Institut fuer Technische Physik, Karlsruhe (Germany); Celentano, G; Della Corte, A [Superconductivity Division, ENEA - Frascati Research Center, Frascati (Italy); Goldacker, W; Heller, R; Komarek, P; Kotzyba, G; Nast, R; Obst, B; Schlachter, S I; Schmidt, C; Zahn, G [Forschungszentrum Karlsruhe, Institut fuer Technische Physik, Karlsruhe (Germany); Pasztor, G; Wesche, R [Centre de Recherches en Physique des Plasmas, Villingen (Switzerland); Salpietro, E; Vostner, A [European Fusion Development Agreement, Close Support Unit, Garching (Germany)

    2005-01-01

    With the construction of ITER the feasibility of a fusion machine will be demonstrated. To commercialize fusion it is essential to keep losses as small as possible in future fusion power plants. One major component where losses can be strongly reduced is the cooling system. For example in ITER where efficiency is not a major goal, a cooling power of 64 kW at 4.4 K is foreseen taking more than 20 MW electric power. Considering the size of future commercial fusion machines this consumption of electric power for cooling will even be higher. With a magnet system working at 20 K a fusion machine would work more efficient by a factor of 5-10 with respect to electric power consumption for cryogenics. Even better than that, would be a machine with a magnet system operating at 65 K to 77 K. In this case liquid nitrogen could be used as coolant saving money for investment and operation costs. Such an increase in the operating temperature of the magnet system can be achieved by the use of High- Temperature Superconductors (HTS). In addition the use of HTS would allow much smaller efforts for thermal shielding and alternative thermal insulation concepts may be possible, e.g. for an HTS bus bar system. This contribution will give an overview about status, promises and challenges of HTS conductors on the way to an HTS fusion magnet system beyond ITER. (author)

  17. Design aspects of a multipurpose fusion power plant for desalination and agrochemical processes

    International Nuclear Information System (INIS)

    Sabri, Z.A.

    1975-02-01

    A description is given of the skeletal structure of a multipurpose fusion power plant, designed for desalination and agrochemicals production. The plant is a complex that comprises dual purpose power and desalination units, separation and processing units for recovery of soluble salts in the effluent of the desalination unit, mariculture units for production of algae for food and as food for shrimp and other fish species. The electrical power unit is a two-component fusion device that burns deuterium and helium-3 utilizing a fast fusion cycle

  18. Conceptual design of SC magnet system for ITER, (5)

    International Nuclear Information System (INIS)

    Nakajima, Hideo; Nishi, Masataka; Yoshida, Kiyoshi; Tsuji, Hiroshi; Egusa, Shigenori; Seguchi, Tadao; Hagiwara, Miyuki; Kirk, M.A.; Birtcher, R.C.

    1991-08-01

    Japan Atomic Energy Research Institute (JAERI) has been developing a superconducting magnet system for a fusion reactor. One of the key items in developing the superconducting magnets is material development and evaluation. The data of superconducting materials, structural alloys, and non-metallic materials are generated to establish a material data base at JAERI. This report is prepared to provide available data generated by JAERI to designers of superconducting magnets throughout the world. The following review papers written for the International Thermonuclear Experimental Reactor (ITER) report on conceptual design of magnet system are combined here. I. Superconducting Material Data II. Mechanical Properties of the Japanese Cryogenic Steels (JCS) at Cryogenic Temperature III. Review of Radiation Degradation Studies at JAERI on Composite Organic Insulators Used in Fusion Magnets (author)

  19. Conceptual design study of quasi-steady state fusion experimental reactor (FEQ-Q), part 1

    International Nuclear Information System (INIS)

    1985-12-01

    Since 1980 the design study has been conducted at JAERI for the Fusion Experimental Reactor (FER) which has been proposed to be the next machine to JT-60 in the Japanese long term program of fusion reactor development. Starting from 1984 JER design is being reviewed and redesigned. This report is a part of the interim report which describes the results obtained in the review and redesign activities in FY 1984. The results of the following design items are included; core plasma, reactor structure, reactor core components, magnets. (author)

  20. Heat transfer in inertial confinement fusion reactor systems

    International Nuclear Information System (INIS)

    Hovingh, J.

    1979-01-01

    The transfer of energy produced by the interaction of the intense pulses of short-ranged fusion microexplosion products with materials is one of the most difficult problems in inertially-confined fusion (ICF) reactor design. The short time and deposition distance for the energy results in local peak power densities on the order of 10 18 watts/m 3 . High local power densities may cause change of state or spall in the reactor materials. This will limit the structure lifetimes for ICF reactors of economic physical sizes, increasing operating costs including structure replacement and radioactive waste management. Four basic first wall protection methods have evolved: a dry-wall, a wet-wall, a magnetically shielded wall, and a fluid wall. These approaches are distinguished by the way the reactor wall interfaces with fusion debris as well as the way the ambient cavity conditions modify the fusion energy forms and spectra at the first wall. Each of these approaches requires different heat transfer considerations

  1. System model for analysis of the mirror fusion-fission reactor

    International Nuclear Information System (INIS)

    Bender, D.J.; Carlson, G.A.

    1977-01-01

    This report describes a system model for the mirror fusion-fission reactor. In this model we include a reactor description as well as analyses of capital cost and blanket fuel management. In addition, we provide an economic analysis evaluating the cost of producing the two hybrid products, fissile fuel and electricity. We also furnish the results of a limited parametric analysis of the modeled reactor, illustrating the technological and economic implications of varying some important reactor design parameters

  2. A Decision Fusion Framework for Treatment Recommendation Systems.

    Science.gov (United States)

    Mei, Jing; Liu, Haifeng; Li, Xiang; Xie, Guotong; Yu, Yiqin

    2015-01-01

    Treatment recommendation is a nontrivial task--it requires not only domain knowledge from evidence-based medicine, but also data insights from descriptive, predictive and prescriptive analysis. A single treatment recommendation system is usually trained or modeled with a limited (size or quality) source. This paper proposes a decision fusion framework, combining both knowledge-driven and data-driven decision engines for treatment recommendation. End users (e.g. using the clinician workstation or mobile apps) could have a comprehensive view of various engines' opinions, as well as the final decision after fusion. For implementation, we leverage several well-known fusion algorithms, such as decision templates and meta classifiers (of logistic and SVM, etc.). Using an outcome-driven evaluation metric, we compare the fusion engine with base engines, and our experimental results show that decision fusion is a promising way towards a more valuable treatment recommendation.

  3. Design of intense neutron source for fusion material study and the role of universities

    International Nuclear Information System (INIS)

    Ishino, Shiori

    1993-01-01

    Need and requirement for the intense neutron source for fusion materials study have been discussed for many years. Recently, international climate has been becoming gradually maturing to consider this problem more seriously because of the recognition of crucial importance of solving materials problems for fusion energy development. The present symposium was designed to discuss the problems associated with the intense neutron source for material irradiation studies which will have a potential for the National Institute for Fusion Science to become one of the important future research areas. The symposium comprises five sessions; first, the role of materials research in fusion development strategies was discussed followed by a brief summary of current IFMIF (International Fusion Materials Irradiation Facility) activity. Despite the pressing need for intense fusion neutron source, currently available neutron sources are reactor or accelerator based sources of which FFTF and LASREF were discussed. Then, various concepts of intense neutron source candidates were presented including ESNIT, which are currently under design by JAERI. In the fourth session, discussions were made on the study of materials with the intense neutron source from the viewpoint of materials scientists and engineers as the user of the facility. This is followed by discussions on the role of universities from the two stand points, namely, fusion irradiation studies and fusion materials development. Finally summary discussions were made by the participants, indicating important role fundamental studies in universities for the full utilization of irradiation data and the need of pure 14 MeV neutron source for fundamental studies together with the intense surrogate neutron sources. (author)

  4. Fusion technology 1998

    International Nuclear Information System (INIS)

    Beaumont, B.; Libeyre, P.; Gentile, B. de; Tonon, G.

    1998-01-01

    The Symposium On Fusion Technology (SOFT) is held every two years with the objective to set the stage for the exchange of information on the design, construction and operation of fusion experiments and on the technology which is being developed for the next step devices and fusion reactors. By decision of the International Organizing Committee, the 20. SOFT includes invited talks, and oral and poster contributions in the following topics: plasma facing components, plasma heating and current drive, plasma engineering and control, experimental systems and diagnostics, magnets and power supplies, fuel technologies, remote operation, blanket and shield technologies, safety and environment, and system engineering and future devices. This symposium differs from the previous ones of this series by the way the present proceedings are produced. In order to have the written material available to the participants and the community at the nearest to the conference event, the papers have been collected 2 months in advance and printed in the present books. The goal was to deliver them to each participant upon arrival to the conference centre. These books contain all the papers corresponding to poster presentation, and the abstracts of the oral contributions and invited papers. The papers corresponding to these presentations, both oral and invited, will be published in 1999, after a standard review process, in a supplement of Fusion Engineering and Design. (author)

  5. Progress on the conceptual design of a mirror hybrid fusion--fission reactor

    International Nuclear Information System (INIS)

    Moir, R.W.; Lee, J.D.; Burleigh, R.J.

    1975-01-01

    A conceptual design study was made of a fusion-fission reactor for the purpose of producing fissile material and electricity. The fusion component is a D-T plasma confined by a pair of magnetic mirror coils in a Yin-Yang configuration and is sustained by neutral beam injection. The neutrons from the fusion plasma drive the fission assembly which is composed of natural uranium carbide fuel rods clad with stainless steel and helium cooled. It was shown conceptually how the reactor might be built using essentially present-day technology and how the uranium-bearing blanket modules can be routinely changed to allow separation of the bred fissile fuel

  6. Investigation of different cage designs and mechano-regulation algorithms in the lumbar interbody fusion process - a finite element analysis.

    Science.gov (United States)

    Postigo, Sergio; Schmidt, Hendrik; Rohlmann, Antonius; Putzier, Michael; Simón, Antonio; Duda, Georg; Checa, Sara

    2014-04-11

    Lumbar interbody fusion cages are commonly used to treat painful spinal degeneration and instability by achieving bony fusion. Many different cage designs exist, however the effect of cage morphology and material properties on the fusion process remains largely unknown. This finite element model study aims to investigate the influence of different cage designs on bone fusion using two mechano-regulation algorithms of tissue formation. It could be observed that different cages play a distinct key role in the mechanical conditions within the fusion region and therefore regulate the time course of the fusion process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Nuclear characteristics of D-D fusion reactor blankets

    International Nuclear Information System (INIS)

    Nakashima, Hideki; Ohta, Masao

    1978-01-01

    Fusion reactors operating on deuterium (D-D) cycle are considered to be of long range interest for their freedom from tritium breeding in the blanket. The present paper discusses the various possibilities of D-D fusion reactor blanket designs mainly from the standpoint of the nuclear characteristics. Neutronic and photonic calculations are based on presently available data to provide a basis of the optimal blanket design in D-D fusion reactors. It is found that it appears desirable to design a blanket with blanket/shield (BS) concept in D-D fusion reactors. The BS concept is designed to obtain reasonable shielding characteristics for superconducting magnet (SCM) by using shielding materials in the compact blanket. This concept will open the possibility of compact radiation shield design based on assured technology, and offer the advantage from the system economics point of view. (auth.)

  8. Demountable low stress high field toroidal field magnet system for tokamak fusion reactors

    International Nuclear Information System (INIS)

    Powell, J.; Hsieh, D.; Lehner, J.; Suenaga, M.

    1977-01-01

    A new type of superconducting magnet system for large fusion reactors is described in this report. Instead of winding large planar or multi-axis coils, as has been proposed in previous fusion reactor designs, the superconducting coils are made by joining together several prefabricated conductor sections. The joints can be unmade and sections removed if they fail. Conductor sections can be made at a factory and shipped to the reactor site for assembly. The conductor stress level in the assembled coil can be kept small by external support of the coil at a number of points along its perimeter, so that the magnetic forces are transmitted to an external warm reinforcement structure. This warm reinforcement structure can also be the primary containment for the fusion reactor, constructed similar to a PCRV (Prestressed Concrete Reactor Vessel) used in fission reactors. Low thermal conductivity, high strength supports are used to transfer the magnetic forces to the external reinforcement through a hydraulic system. The hydraulic supports are movable and can be programmed to accommodate thermal contraction and to minimize stress in the superconducting coil

  9. Demountable low stress high field toroidal field magnet system for tokamak fusion reactors

    International Nuclear Information System (INIS)

    Powell, J.; Hsieh, D.; Lehner, J.; Suenaga, M.

    1978-01-01

    A new type of superconducting magnet system for large fusion reactors is described. Instead of winding large planar or multi-axis coils, as has been proposed in previous fusion reactor designs, the superconducting coils are made by joining together several prefabricated conductor sections. The joints can be unmade and sections removed if they fail. Conductor sections can be made at a factory and shipped to the reactor site for assembly. The conductor stress level in the assembled coil can be kept small by external support of the coil at a number of points along its perimeter, so that the magnetic forces are transmitted to an external warm reinforcement structure. This warm reinforcement structure can also be the primary containment for the fusion reactor, constructed similar to a PCRV (Prestressed Concrete Reactor Vessel) used in fission reactors. Low thermal conductivity, high strength supports are used to transfer the magnetic forces to the external reinforcement through a hydraulic system. The hydraulic supports are movable and can be programmed to accommodate thermal contraction and to minimize stress in the superconducting coil. (author)

  10. Code of a Tokamak Fusion Energy Facility ITER

    International Nuclear Information System (INIS)

    Yasuhide Asada; Kenzo Miya; Kazuhiko Hada; Eisuke Tada

    2002-01-01

    The technical structural code for ITER (International Thermonuclear Experimental Fusion Reactor) and, as more generic applications, for D-T burning fusion power facilities (hereafter, Fusion Code) should be innovative because of their quite different features of safety and mechanical components from nuclear fission reactors, and the necessity of introducing several new fabrication and examination technologies. Introduction of such newly developed technologies as inspection-free automatic welding into the Fusion Code is rationalized by a pilot application of a new code concept of s ystem-based code for integrity . The code concept means an integration of element technical items necessary for construction, operation and maintenance of mechanical components of fusion power facilities into a single system to attain an optimization of the total margin of these components. Unique and innovative items of the Fusion Code are typically as follows: - Use of non-metals; - Cryogenic application; - New design margins on allowable stresses, and other new design rules; - Use of inspection-free automatic welding, and other newly developed fabrication technologies; - Graded approach of quality assurance standard to cover radiological safety-system components as well as non-safety-system components; - Consideration on replacement components. (authors)

  11. Fusion energy

    International Nuclear Information System (INIS)

    Gross, R.A.

    1984-01-01

    This textbook covers the physics and technology upon which future fusion power reactors will be based. It reviews the history of fusion, reaction physics, plasma physics, heating, and confinement. Descriptions of commercial plants and design concepts are included. Topics covered include: fusion reactions and fuel resources; reaction rates; ignition, and confinement; basic plasma directory; Tokamak confinement physics; fusion technology; STARFIRE: A commercial Tokamak fusion power plant. MARS: A tandem-mirror fusion power plant; and other fusion reactor concepts

  12. Potential design modifications for the High Yield Lithium Injection Fusion Energy (HYLIFE) reaction chamber

    International Nuclear Information System (INIS)

    Pitts, J.H.; Hovingh, J.; Meier, W.R.; Monsler, M.J.; Powell, E.G.; Walker, P.E.

    1979-01-01

    Generation of electric power from inertial confinement fusion requires a reaction chamber. One promising type, the High Yield Lithium Injection Fusion Energy (HYLIFE) chamber, includes a falling array of liquid lithium jets. These jets act as: (1) a renewable first wall and blanket to shield metal components from x-ray and neutron exposure, (2) a tritium breeder to replace tritium burned during the fusion process, and (3) an absorber and transfer medium for fusion energy. Over 90% of the energy produced in the reaction chamber is absorbed in the lithium jet fall. Design aspects are included

  13. TPX: Contractor preliminary design review. Volume 2, PF systems engineering

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, H.A. [Lawrence Livermore National Lab., CA (United States)

    1995-07-28

    This system development specification covers the Poloidal Field (PF) Magnet System, WBS 14 in the Princeton Plasma Physics Laboratory TPX Program to build a tokamak fusion reactor. This specification establishes the performance, design, development and test requirements of the PF Magnet System.

  14. TPX: Contractor preliminary design review. Volume 2, PF systems engineering

    International Nuclear Information System (INIS)

    Calvin, H.A.

    1995-01-01

    This system development specification covers the Poloidal Field (PF) Magnet System, WBS 14 in the Princeton Plasma Physics Laboratory TPX Program to build a tokamak fusion reactor. This specification establishes the performance, design, development and test requirements of the PF Magnet System

  15. Fusion methodologies in crisis management higher level fusion and decision making

    CERN Document Server

    Scott, Peter

    2016-01-01

    This book emphasizes a contemporary view on the role of higher level fusion in designing crisis management systems. It provides the formal foundations, architecture, and implementation strategies required for building dynamic current and future situational pictures. It goes on to discuss the state-of-the-art computational approaches to designing such processes and their inherent challenges. This book integrates recent advances in decision theory with those in fusion methodology to define an end-to-end framework for decision support in crisis management. The text discusses modern fusion and decision support methods for dealing with heterogeneous and often unreliable, low fidelity, contradictory, and redundant data and information, as well as rare, unknown, unconventional or even unimaginable critical situations. The book also examines the role of context in situation management, cognitive aspects of decision making and situation management, approaches to domain representation, visualization, as well as the rol...

  16. Alignment system for large high-power CO2 laser fusion systems

    International Nuclear Information System (INIS)

    Bausman, M.D.; Liberman, I.; Manning, J.P.; Singer, S.

    1977-01-01

    Aligning a pulsed CO 2 laser fusion system involves control systems which insure that the centers of beams follow a prescribed path to within 1 mm, that the pointing of the beams is correct to approximately 20 microradians, and that focal spot at the location of the experimental fusion target be placed to accuracies of 10 to 20 micrometers laterally and approximately 50 micrometers axially. These alignments are accomplished by a variety of sensing techniques which include thermal pinholes and quadrant detectors, Seebeck effect silicon detectors, and imaging autocollimating Hartmann test procedures employing ir vidicon systems

  17. Homeland security application of the Army Soft Target Exploitation and Fusion (STEF) system

    Science.gov (United States)

    Antony, Richard T.; Karakowski, Joseph A.

    2010-04-01

    A fusion system that accommodates both text-based extracted information along with more conventional sensor-derived input has been developed and demonstrated in a terrorist attack scenario as part of the Empire Challenge (EC) 09 Exercise. Although the fusion system was developed to support Army military analysts, the system, based on a set of foundational fusion principles, has direct applicability to department of homeland security (DHS) & defense, law enforcement, and other applications. Several novel fusion technologies and applications were demonstrated in EC09. One such technology is location normalization that accommodates both fuzzy semantic expressions such as behind Library A, across the street from the market place, as well as traditional spatial representations. Additionally, the fusion system provides a range of fusion products not supported by traditional fusion algorithms. Many of these additional capabilities have direct applicability to DHS. A formal test of the fusion system was performed during the EC09 exercise. The system demonstrated that it was able to (1) automatically form tracks, (2) help analysts visualize behavior of individuals over time, (3) link key individuals based on both explicit message-based information as well as discovered (fusion-derived) implicit relationships, and (4) suggest possible individuals of interest based on their association with High Value Individuals (HVI) and user-defined key locations.

  18. Single-flux-quantum logic circuits exploiting collision-based fusion gates

    International Nuclear Information System (INIS)

    Asai, T.; Yamada, K.; Amemiya, Y.

    2008-01-01

    We propose a single-flux-quantum (SFQ) logic circuit based on the fusion computing systems--collision-based and reaction-diffusion fusion computers. A fusion computing system consists of regularly arrayed unit cells (fusion gates), where each unit has two input arms and two output arms and is connected to its neighboring cells with the arms. We designed functional SFQ circuits that implemented the fusion computation. The unit cell was able to be made with ten Josephson junctions. Circuit simulation with standard Nb/Al-AlOx/Nb 2.5-kA/cm 2 process parameters showed that the SFQ fusion computing systems could operate at 10 GHz clock

  19. Laser fusion reactor design in a fast ignition with a dry wall chamber

    International Nuclear Information System (INIS)

    Ogawa, Yichi; Goto, Takuya; Ninomiya, Daisuke; Hiwatari, Ryoji; Asaoka, Yoshiyuki; Okano, Kunihiko

    2007-01-01

    One of the critical issues in laser fusion reactor design is high pulse heat load on the first wall by the X-rays and the fast/debris ions from fusion burn. There are mainly two concepts for the first wall of laser fusion reactor, a dry wall and a liquid metal wall. We should notice that the fast ignition method can achieve sufficiently high pellet gain with smaller (about 1/10 of the conventional central ignition method) input energy. To take advantage of this property, the design of a laser fusion reactor with a small size dry wall chamber may become possible. Since a small fusion pulse leads to a small electric power, high repetition of laser irradiation is required to keep sufficient electric power. Then we tried to design a laser fusion reactor with a dry wall chamber and a high repetition laser. This is a new challenging path to realize a laser fusion plant. Based on the point model of the core plasma, we have estimated that fusion energy in one pulse can be reduced to be 40 MJ with a pellet gain around G>100. To evaluate the validity of this simple estimation and to optimize the pellet design and the pulse shaping for the fast ignition scenario, we have introduced 1-D hydrodynamic simulation code ILESTA-1D and carried out implosion simulations. Since the code is one-dimensional, the detailed physics process of fast heating cannot be reproduced. Thus the fast heating is reflected in the code as the additional artificial heating source in the energy equation. It is modeled as a homogeneous heating of electrons in core region at the time just before when the maximum compression is achieved. At present we obtained the pellet gain G∝100 with the same input energy as the above estimation by a simple point model (350kJ for implosion, 50kJ for heating and assuming 20% coupling of heating laser). A dry wall is exposed to several threats due to the cyclic load by the high energy X-ray and charged particles: surface melting, physical and chemical sputtering

  20. Secure Fusion Estimation for Bandwidth Constrained Cyber-Physical Systems Under Replay Attacks.

    Science.gov (United States)

    Chen, Bo; Ho, Daniel W C; Hu, Guoqiang; Yu, Li; Bo Chen; Ho, Daniel W C; Guoqiang Hu; Li Yu; Chen, Bo; Ho, Daniel W C; Hu, Guoqiang; Yu, Li

    2018-06-01

    State estimation plays an essential role in the monitoring and supervision of cyber-physical systems (CPSs), and its importance has made the security and estimation performance a major concern. In this case, multisensor information fusion estimation (MIFE) provides an attractive alternative to study secure estimation problems because MIFE can potentially improve estimation accuracy and enhance reliability and robustness against attacks. From the perspective of the defender, the secure distributed Kalman fusion estimation problem is investigated in this paper for a class of CPSs under replay attacks, where each local estimate obtained by the sink node is transmitted to a remote fusion center through bandwidth constrained communication channels. A new mathematical model with compensation strategy is proposed to characterize the replay attacks and bandwidth constrains, and then a recursive distributed Kalman fusion estimator (DKFE) is designed in the linear minimum variance sense. According to different communication frameworks, two classes of data compression and compensation algorithms are developed such that the DKFEs can achieve the desired performance. Several attack-dependent and bandwidth-dependent conditions are derived such that the DKFEs are secure under replay attacks. An illustrative example is given to demonstrate the effectiveness of the proposed methods.

  1. Design study of fusion Demo plant at JAERI

    International Nuclear Information System (INIS)

    Tobita, K.; Nishio, S.; Enoeda, M.

    2006-01-01

    Three options of fusion Demo plant are proposed characterized by functions of the center solenoid (Cs). The prime option uses a downsized CS, which does not provide sufficient V-s for plasma current ramp-up but supplies enough coil current for plasma shaping. This option produces a fusion output of 3 GW with a major radius of 5.5 m, aspect ratio of 2.6, normalized beta of 4.3 and maximum field of 16.4 T. The estimated reactor weight is lighter than that of other conventional tokamak reactors, suggesting an economic advantage. The plant uses rather conservative technologies such as Nb 3 Al superconductor, water-cooled solid breeder blanket, low activation ferritic steel as the structural material and tungsten monoblock divertor plate. The design philosophy and key issues related to the constituent technologies of the plant are described in the present paper

  2. Fusion and particle transfer around the Coulomb-Barrier in intermediate systems

    International Nuclear Information System (INIS)

    Pascholati, P.R.

    1989-01-01

    The most important characteristics of fusion reactions below and around the Coulomb-barrier are summarized. Experimental fusion cross sections for typical systems are discussed and compared with current formulae obtained from semi-classical and quantum tunneling approaches. The influence of nucleons transfer in the enhancement of the fusion cross section below the Coulomb-barrier is also shown. Sub-barrier fusion cross sections for the systems 35,37 Cl + 58,64 Ni and 33 S + 90,91,92 Zr, and near-barrier cross sections of all important transfer channels have been measured using the XTU-TANDEM at Legnaro, Italy. In 35,37 Cl + 58,64 Ni systems, the motivation further investigated was the influence of the valence proton in the enhancement of the sub-barrier fusion cross section. The data are discussed in comparison with the similar data of 34,36 S + 58,64 Ni with the aim of revealing the influence of coupled proton transfer channels. Calculations were performed using the simplified coupled channel code CCFUS including ''pick-up'' of one and two neutrons and ''stripping'' of two neutrons channels. Signatures of positive Q-values transfer channels coupled to fusion were clearly identified. For the 33 S + 90,91,92 Zr systems taking into account the coupling effects between transfer and fusion and using the semi-classical approach, transfer form-factors were extracted and succesfully employed to described the isotopic effects in fusion enhancement. (Author) [es

  3. Recent designs for advanced fusion reactor blankets

    International Nuclear Information System (INIS)

    Sze, D.K.

    1994-01-01

    A series of reactor design studies based on the Tokamak configuration have been carried out under the direction of Professor Robert Conn of UCLA. They are called ARIES-I through IV. The key mission of these studies is to evaluate the attractiveness of fusion assuming different degrees of advancement in either physics or engineering development. This paper discusses the directions and conclusions of the blanket and related engineering systems for those design studies. ARIES-1 investigated the use of SiC composite as the structural material to increase the blanket temperature and reduce the blanket activation. Li 2 ZrO 3 was used as the breeding material due to its high temperature stability and good tritium recovery characteristics. The ARIES-IV is a modification of ARIES-1. The plasma was in the second stability regime. Li 2 O was used as the breeding material to remove Zr. A gaseous divertor was used to replace the conventional divertor so that high Z divertor target is not required. The physics of ARIES-II was the same as ARIES-IV. The engineering design of the ARIES-II was based on a self-cooled lithium blanket with a V-alloy as the structural material. Even though it was assumed that the plasma was in the second stability regime, the plasma beta was still rather low (3.4%). The ARIES-III is an advanced fuel (D- 3 He) tokamak reactor. The reactor design assumed major advancement on the physics, with a plasma beta of 23.9%. A conventional structural material is acceptable due to the low neutron wall loading. From the radiation damage point of view, the first wall can last the life of the reactor, which is expected to be a major advantage from the engineering design and waste disposal point of view

  4. The European Fusion Programme

    International Nuclear Information System (INIS)

    Palumbo, D.

    1983-01-01

    The European Fusion Programme is coordinated by Euratom and represents a long term cooperative project of Member States of the European Communities in the field of fusion, designed to lead to the joint construction of prototypes. The main lines of the programme proposed for 1982 to 1986 are: (1) the continuation of a strong effort on tokamaks with emphasis on JET construction, operation and upgrading, (2) conceptual design of NET and development of the related technology, and (3) further work on two alternative magnetic confinement systems. The current status and future plans for this programme are discussed in the paper. (author)

  5. Prospects for developing attractive inertial fusion concepts

    International Nuclear Information System (INIS)

    Cornwall, T.; Bodner, S.; Herrmannsfeldt, W.B.; Hogan, W.; Storm, E.; VanDevender, J.P.

    1986-01-01

    The authors discuss the role of inertial fusion in relationship to defense activities as well as in relation to energy alternatives. Other general advantages to inertial fusion besides maintaining the system more cheaply and easily, are discussed such as certain designs and the use of very short wavelength with a very modest laser intensity. A discussion on the direct illumination approach is offered. The progress made in high-gain target physics and the potential for development of solid-state lasers as a potential multimegajoule driver and a potential high-rep-rate fusion driver are discussed. Designs for reaction chambers are examined, as is the heavy-ion fusion program. Light-ion accelerators are also discussed

  6. Vacuum pumping of tritium in fusion power reactors

    International Nuclear Information System (INIS)

    Coffin, D.O.; Walthers, C.R.

    1979-01-01

    Compound cryopumps of three different designs will be tested with deuterium-tritium (DT) mixtures under simulated fusion reactor conditions at the Tritium Systems Test Assembly (TSTA) now being constructed at the Los Alamos Scientific Laboratory (LASL). The first of these pumps is already in operation, and its preliminary performance is presented. The supporting vacuum facility necessary to regenerate these fusion facility cryopumps is also described. The next generation of fusion system vacuum pumps may include non-cryogenic or conventional-cryogenic hybrid systems, several of which are discussed

  7. HIFSA: Heavy-Ion Fusion Systems Assessment Project: Volume 2, Technical analyses

    International Nuclear Information System (INIS)

    Dudziak, D.J.

    1987-12-01

    A two-year project was undertaken to assess the commercial potential of heavy-ion fusion (HIF) as an economical electric power production technology. Because the US HIF development program is oriented toward the use of multiple-beam induction linacs, the study was confined to this particular driver technology. The HIF systems assessment (HIFSA) study involved several subsystem design, performance, and cost studies (e.g., the induction linac, final beam transport, beam transport in reactor cavity environments, cavity clearing, target manufacturing, and reactor plant). In addition, overall power plant systems integration, parametric analyses, and tradeoff studies were performed using a systems code developed specifically for the HIFSA project. Systems analysis results show values for cost of electricity (COE) comparable to those from other inertial- and magnetic-confinement fusion plant studies; viz., 50 to 60 mills/kWh (1985 dollars) for 1-GWe plant sizes. Also, significant COE insensitivity to major accelerator, target, and reactor parameters near the minima was demonstrated. Conclusions from the HIFSA study have already led to substantial modifications of the US HIF research and development program. Separate abstracts were prepared for 17 papers in these analyses

  8. Comparative energetics of three fusion-fission symbiotic nuclear reactor systems

    International Nuclear Information System (INIS)

    Gordon, C.W.; Harms, A.A.

    1975-01-01

    The energetics of three symbiotic fusion-fission nuclear reactor concepts are investigated. The fuel and power balances are considered for various values of systems parameters. The results from this analysis suggest that symbiotic fusion-fission systems are advantageous from the standpoint of economy and resource utilization. (Auth.)

  9. First wall studies of a laser-fusion hybrid reactor design

    International Nuclear Information System (INIS)

    Hovingh, J.

    1976-09-01

    The design of a first wall for a 20 MW thermonuclear power laser fusion hybrid reactor is presented. The 20 mm thick graphite first wall is located 3.5 m from the DT microexplosion with a thermonuclear yield of 10 MJ. Estimates of the energy deposition, temperature, stresses, and material vaporized from the first wall due to the interaction of the x-rays, charged particle debris, and reflected laser light with the graphite are presented, along with a brief description of the analytical methods used for these estimations. Graphite is a viable first wall material for inertially-confined fusion reactors, with lifetimes of a year possible

  10. Design study of blanket structure for tokamak experimental fusion reactor

    International Nuclear Information System (INIS)

    1979-11-01

    Design study of the blanket structure for JAERI Experimental Fusion Reactor (JXFR) has been carried out. Studied here were fabrication and testing of the blanket structure (blanket cells, blanket rings, piping and blanket modules), assembly and disassembly of the blanket module, and monitering and testing technique. Problems in design and fabrication of the blanket structure could be revealed. Research and development problems for the future were also disclosed. (author)

  11. Inertial confinement fusion reaction chamber and power conversion system study. Final report

    International Nuclear Information System (INIS)

    Maya, I.; Schultz, K.R.; Bourque, R.F.

    1985-10-01

    This report summarizes the results of the second year of a two-year study on the design and evaluation of the Cascade concept as a commercial inertial confinement fusion (ICF) reactor. We developed a reactor design based on the Cascade reaction chamber concept that would be competitive in terms of both capital and operating costs, safe and environmentally acceptable in terms of hazard to the public, occupational exposure and radioactive waste production, and highly efficient. The Cascade reaction chamber is a double-cone-shaped rotating drum. The granulated solid blanket materials inside the rotating chamber are held against the walls by centrifugal force. The fusion energy is captured in a blanket of solid carbon, BeO, and LiAlO 2 granules. These granules are circulated to the primary side of a ceramic heat exchanger. Primary-side granule temperatures range from 1285 K at the LiAlO 2 granule heat exchanger outlet to 1600 K at the carbon granule heat exchanger inlet. The secondary side consists of a closed-cycle gas turbine power conversion system with helium working fluid, operating at 1300 K peak outlet temperature and achieving a thermal power conversion efficiency of 55%. The net plant efficiency is 49%. The reference design is a plant producing 1500 MW of D-T fusion power and delivering 815 MW of electrical power for sale to the utility grid. 88 refs., 44 figs., 47 tabs

  12. Design issues and implications for the structural integrity and lifetime of fusion power plant components

    International Nuclear Information System (INIS)

    Karditas, P.J.

    1996-05-01

    This review discusses, with example calculations, the criteria, and imposed constraints and limitations, for the design of fusion components and assesses the implications for successful design and power plant operation. The various loading conditions encountered during the operation of a tokamak lead to structural damage and possible failure by such mechanisms as yielding, thermal creep rupture and fatigue due to thermal cycling, plastic strain cycling (ratcheting), crack growth-propagation and radiation induced swelling and creep. Of all the possible damage mechanisms, fatigue, creep and their combination are the most important in the structural design and lifetime of fusion power plant components operating under steady or load varying conditions. Also, the effect of neutron damage inflicted onto the structural materials and the degradation of key properties is of major concern in the design and lifetime prediction of components. Structures are classified by, and will be restricted by existing or future design codes relevant to medium and high temperature power plant environments. The ways in which existing design codes might be used in present and near future design activities, and the implications, are discussed; the desirability of an early start towards the development of fusion-specific design codes is emphasised. (UK)

  13. Economic viability of large-scale fusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Helsley, Charles E., E-mail: cehelsley@fusionpowercorporation.com; Burke, Robert J.

    2014-01-01

    A typical modern power generation facility has a capacity of about 1 GWe (Gigawatt electric) per unit. This works well for fossil fuel plants and for most fission facilities for it is large enough to support the sophisticated generation infrastructure but still small enough to be accommodated by most utility grid systems. The size of potential fusion power systems may demand a different viewpoint. The compression and heating of the fusion fuel for ignition requires a large driver, even if it is necessary for only a few microseconds or nanoseconds per energy pulse. The economics of large systems, that can effectively use more of the driver capacity, need to be examined. The assumptions used in this model are specific for the Fusion Power Corporation (FPC) SPRFD process but could be generalized for any system. We assume that the accelerator is the most expensive element of the facility and estimate its cost to be $20 billion. Ignition chambers and fuel handling facilities are projected to cost $1.5 billion each with up to 10 to be serviced by one accelerator. At first this seems expensive but that impression has to be tempered by the energy output that is equal to 35 conventional nuclear plants. This means the cost per kWh is actually low. Using the above assumptions and industry data for generators and heat exchange systems, we conclude that a fully utilized fusion system will produce marketable energy at roughly one half the cost of our current means of generating an equivalent amount of energy from conventional fossil fuel and/or fission systems. Even fractionally utilized systems, i.e. systems used at 25% of capacity, can be cost effective in many cases. In conclusion, SPRFD systems can be scaled to a size and configuration that can be economically viable and very competitive in today's energy market. Electricity will be a significant element in the product mix but synthetic fuels and water may also need to be incorporated to make the large system

  14. Economic viability of large-scale fusion systems

    International Nuclear Information System (INIS)

    Helsley, Charles E.; Burke, Robert J.

    2014-01-01

    A typical modern power generation facility has a capacity of about 1 GWe (Gigawatt electric) per unit. This works well for fossil fuel plants and for most fission facilities for it is large enough to support the sophisticated generation infrastructure but still small enough to be accommodated by most utility grid systems. The size of potential fusion power systems may demand a different viewpoint. The compression and heating of the fusion fuel for ignition requires a large driver, even if it is necessary for only a few microseconds or nanoseconds per energy pulse. The economics of large systems, that can effectively use more of the driver capacity, need to be examined. The assumptions used in this model are specific for the Fusion Power Corporation (FPC) SPRFD process but could be generalized for any system. We assume that the accelerator is the most expensive element of the facility and estimate its cost to be $20 billion. Ignition chambers and fuel handling facilities are projected to cost $1.5 billion each with up to 10 to be serviced by one accelerator. At first this seems expensive but that impression has to be tempered by the energy output that is equal to 35 conventional nuclear plants. This means the cost per kWh is actually low. Using the above assumptions and industry data for generators and heat exchange systems, we conclude that a fully utilized fusion system will produce marketable energy at roughly one half the cost of our current means of generating an equivalent amount of energy from conventional fossil fuel and/or fission systems. Even fractionally utilized systems, i.e. systems used at 25% of capacity, can be cost effective in many cases. In conclusion, SPRFD systems can be scaled to a size and configuration that can be economically viable and very competitive in today's energy market. Electricity will be a significant element in the product mix but synthetic fuels and water may also need to be incorporated to make the large system economically

  15. R and D of tritium technology for fusion in CAEP: progress and prospect

    International Nuclear Information System (INIS)

    Jiangfeng, Song; Daqiao, Meng; Rong, Li; Zhiyong, Huang; Guoqiang, Huang; Chang-an, Chen; Xiaojun, Deng; Cheng, Qin; Xiaojing, Qian; Guikai, Zhang

    2015-01-01

    China has decided to develop its own fusion engineering test reactor and has also joined ITER. Tritium plant is one of the key systems of fusion system. Programs supposed by China ministry of Science and technology named 'Conceptual design and key technologies research on TBM tritium system' and 'Conceptual design and key technologies research on tritium plant for fusion reactor' were finished in 2013 and 2014. After several years of research, we have finished the design of TBM tritium system, TEP, SDS, WDS, ISS and tritium safety system. The key technologies such as TES, CPS, hydrogen storage materials for SDS, catalysts for WDS, palladium alloy membranes for TEP are under research. In this paper, the progress and prospect of tritium technology for R and D of fusion is introduced. (author)

  16. Inherent/passive safety for fusion

    International Nuclear Information System (INIS)

    Piet, S.J.

    1986-06-01

    The concept of inherent or passive passive safety for fusion energy is explored, defined, and partially quantified. Four levels of safety assurance are defined, which range from true inherent safety to passive safety to protection via active engineered safeguard systems. Fusion has the clear potential for achieving inherent or passive safety, which should be an objective of fusion research and design. Proper material choice might lead to both inherent safety and high mass power density, improving both safety and economics. When inherent safety is accomplished, fusion will be well on the way to achieving its ultimate potential and to be truly different and superior

  17. KrF amplifier design issues and application to inertial confinement fusion system design

    International Nuclear Information System (INIS)

    Sullivan, J.A.; Allen, G.R.; Berggren, R.R.

    1993-01-01

    Los Alamos National Laboratory has assembled an array of experimental and theoretical tools to optimize amplifier design for future single-pulse KrF lasers. The next opportunity to exercise these tools is with the design of the second-generation NIKE system under construction at the Naval Research Laboratory with the collaboration of Los Alamos National Laboratory. Los Alamos has applied these amplifier design tools to the conceptual design of a 100-kJ Laser Target Test Facility and a 3-MJ Laboratory Microfusion Facility. (author)

  18. Novel, spherically-convergent ion systems for neutron source and fusion energy production

    International Nuclear Information System (INIS)

    Barnes, D.C.; Nebel, R.A.; Ribe, F.L.; Schauer, M.M.; Schranck, L.S.; Umstadter, K.R.

    1999-01-01

    Combining spherical convergence with electrostatic or electro-magnetostatic confinement of a nonneutral plasma offers the possibility of high fusion gain in a centimeter-sized system. The physics principles, scaling laws, and experimental embodiments of this approach are presented. Steps to development of this approach from its present proof-of-principle experiments to a useful fusion power reactor are outlined. This development path is much less expensive and simpler, compared to that for conventional magnetic confinement and leads to different and useful products at each stage. Reactor projections show both high mass power density and low to moderate wall loading. This approach is being tested experimentally in PFX-I (Penning Fusion eXperiment-Ions), which is based on the following recent advances: 1) Demonstration, in PFX (our former experiment), that it is possible to combine nonneutral electron plasma confinement with nonthermal, spherical focussing; 2) Theoretical development of the POPS (Periodically Oscillating Plasma Sphere) concept, which allows spherical compression of thermal-equilibrium ions; 3) The concept of a massively-modular approach to fusion power, and associated elimination of the critical problem of extremely high first wall loading. PFX-I is described. PFX-I is being designed as a small (<1.5 cm) spherical system into which moderate-energy electrons (up to 100 kV) are injected. These electrons are magnetically insulated from passing to the sphere and their space charge field is then used to spherically focus ions. Results of initial operation with electrons only are presented. Deuterium operation can produce significant neutron output with unprecedented efficiency (fusion gain Q). copyright 1999 American Institute of Physics

  19. Fusion cost normalization

    International Nuclear Information System (INIS)

    Schulte, S.C.; Willke, T.L.

    1978-01-01

    The categorization and accounting methods described in this paper provide a common format that can be used to assess the economic character of magnetically confined fusion reactor design concepts. The format was developed with assistance from the fusion economics community, thus ensuring that the methods meet with the approval of potential users. The format will aid designers in the preparation of design concept cost estimates and also provide policy makers with a tool to assist in appraising which design concepts may be economically promising. Adherence to the format when evaluating prospective fusion reactor design concepts will result in the identification of the more promising concepts, thus enabling the fusion power alternatives with better economic potential to be quickly and efficiently developed

  20. Progress on the reference mirror fusion reactor design

    International Nuclear Information System (INIS)

    Carlson, G.A.; Doggett, J.N.; Moir, R.W.

    1976-01-01

    The design of a reference mirror fusion reactor is underway at Lawrence Livermore Laboratory. The reactor, rated at about 900 MWe, features steady-state operation, an absence of plasma impurity problems, and good accessibility for blanket maintenance. It is concluded that a mirror reactor appears workable, but its dollar/kWe cost will be considerably higher than present-day nuclear costs. The cost would be reduced most markedly by an increase in plasma Q

  1. Conceptual design study of fusion experimental reactor (FY86 FER)

    International Nuclear Information System (INIS)

    Nakashima, Kunihiko; Okano, Kunihiko; Miyamoto, Kazuhiro.

    1987-09-01

    This report describes the results of a conceptual study on the RF system in the typical candidates for the Fusion Experimental Reactor (FER), which were picked out through the '86FER scoping studies. According to the FER operation scenario, three RF systems, that is, ICRF (heating), LHRF (current drive and heating), ECRF (auxiliary heating) were studied. Main concern in these RF systems is the launcher, which may be so designed that required power match the geometrical constraints of the reactor. Then studies were concentrated on the launcher configuration. A prug-in concept of the launcher was adopted in each system and vacancies except transmission space were filled with water. The ICRF launcher had the 2 x 2 loop arrays antenna and the faraday shield area of 1.5 m x 1 m to provide a power of 20 MW. The LHRF launcher had the grillantenna with 28 x 8 open waveguides, and included multi junction-type power splitters which were connected to 56 transmission wave guides. The grild was designed to have two functions of current drive and heating, and provide a power of 20 MW each. The ECRF launcher had a boundle of open wave guides which a reflection mirror each, and three plain mirrors. Assuming a oscillator unit size of 200 kW, it had 40 oversized wave guides to provide a power of 3 MW. (author)

  2. Compact approach to fusion power reactors

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.; Bathke, C.G.; Miller, R.L.

    1984-01-01

    The potential of the Reversed-Field Pinch (RFP) for development into an efficient, compact, copper-coil fusion reactor has been quantified by comprehensive parametric tradeoff studies. These compact systems promise to be competitive in size, power density, and cost to alternative energy sources. Conceptual engineering designs that largely substantiate these promising results have since been completed. This 1000-MWe(net) design is described along with a detailed rationale and physics/technology assessment for the compact approach to fusion

  3. Nonlinear propagation in fusion laser systems

    International Nuclear Information System (INIS)

    Bliss, E.S.; Glass, A.J.; Glaze, J.A.

    1977-11-01

    This report was assembled to provide a brief review of the historical development of the study of self-focusing and nonlinear light propagation and its impact on the design of large, Nd-glass lasers for fusion research. No claim to completeness is made, but we feel that the enclosed summary does not miss many of the major developments in the field

  4. The perspectives of fusion energy: The roadmap towards energy production and fusion energy in a distributed energy system

    DEFF Research Database (Denmark)

    Naulin, Volker; Juul Rasmussen, Jens; Korsholm, Søren Bang

    2014-01-01

    at very high temperature where all matter is in the plasma state as the involved energies are orders of magnitude higher than typical chemical binding energies. It is one of the great science and engineering challenges to construct a viable power plant based on fusion energy. Fusion research is a world...... The presentation will discuss the present status of the fusion energy research and review the EU Roadmap towards a fusion power plant. Further the cost of fusion energy is assessed as well as how it can be integrated in the distributed energy system......Controlled thermonuclear fusion has the potential of providing an environmentally friendly and inexhaustible energy source for mankind. Fusion energy, which powers our sun and the stars, is released when light elements, such as the hydrogen isotopes deuterium and tritium, fuse together. This occurs...

  5. Premises for use of fusion systems for actinide waste incineration

    International Nuclear Information System (INIS)

    Taczanowski, S.

    2007-01-01

    The motivation for the present study is induction of a change in the attitude of fusion community and first of all of the respective decision makers with regard to the fission power. The aim is to convince them that admittance of any kinship of fusion to fission energy is not the greatest threat for its deployment. The true problems of fusion power lie in the physical and technological difficulties that are hindering the achievement of reliable operation and economical competitiveness of fusion reactors. It seems that the strong objections against any symbiosis of fusion with fission, which one could observe for over two decades, are based upon the ignorance of the public unaware of the common nuclear roots of both processes. They manifest themselves, among others, in the non-negligible activity to be induced in fusion devices, as a result of the exposition of construction materials to very strong fluxes of fusion (14 MeV) neutrons. The latter ones in addition, are the source of a very serious material damage in these materials. Meanwhile, most of the real difficulties fusion power is still facing can be effectively relaxed while shifting the heavy burden of sufficient production of energy to energy rich fission process. Seeing all this, first are reminded some important problems of existing fission power that stem from the unavoidable production of Minor Actinides, distinct by undesirable physical properties (intense radioactivity, heat release, positive reactivity coefficients). Thus, in search for solutions Fusion-Driven Incineration (FDI) subcritical systems (well remote from super prompt criticality) are proposed. Next, the problems of nuclear fusion are addressed and the use of fission energy contained in actinides of spent nuclear fuel is suggested. The main advantage of that option of fusion power, /thanks to energy release from fissions/, is the prospect of a radical reduction of necessary plasma energy gain Q to levels achievable in much smaller i.e. much

  6. Thermochemical hydrogen production based on magnetic fusion

    International Nuclear Information System (INIS)

    Krikorian, O.H.; Brown, L.C.

    1982-01-01

    Conceptual design studies have been carried out on an integrated fusion/chemical plant system using a Tandem Mirror Reactor fusion energy source to drive the General Atomic Sulfur-Iodine Water-Splitting Cycle and produce hydrogen as a future feedstock for synthetic fuels. Blanket design studies for the Tandem Mirror Reactor show that several design alternatives are available for providing heat at sufficiently high temperatures to drive the General Atomic Cycle. The concept of a Joule-boosted decomposer is introduced in one of the systems investigated to provide heat electrically for the highest temperature step in the cycle (the SO 3 decomposition step), and thus lower blanket design requirements and costs. Flowsheeting and conceptual process designs have been developed for a complete fusion-driven hydrogen plant, and the information has been used to develop a plot plan for the plant and to estimate hydrogen production costs. Both public and private utility financing approaches have been used to obtain hydrogen production costs of $12-14/GJ based on July 1980 dollars

  7. Critical plasma-materials issues for fusion reactor designs

    International Nuclear Information System (INIS)

    Wilson, K.L.; Bauer, W.

    1983-01-01

    Plasma-materials interactions are a dominant driving force in the design of fusion power reactors. This paper presents a summary of plasma-materials interactions research. Emphasis is placed on critical aspects related to reactor design. Particular issues to be addressed are plasma edge characterization, hydrogen recycle, impurity introduction, and coating development. Typical wall fluxes in operating magnetically confined devices are summarized. Recent calculations of tritium inventory and first wall permeation, based on laboratory measurements of hydrogen recycling, are given for various reactor operating scenarios. Impurity introduction/wall erosion mechanisms considered include sputtering, chemical erosion, and evaporation (melting). Finally, the advanced material development for in-vessel components is discussed. (author)

  8. Design of an 18 Tesla, tandem mirror, fusion reactor, hybrid choke coil

    International Nuclear Information System (INIS)

    Parmer, J.F.; Agarwal, K.; Gurol, H.; Mancuso, A.; Michels, P.H.; Peck, S.D.; Burgeson, J.; Dalder, E.N.

    1987-01-01

    A hybrid, part normal part superconducting 18-Tesla solenoid choke coil is designed for a tandem mirror fusion reactor. The present state of the art is represented by the 12-Tesla, superconducting NbSn coil. Future applications other than tandem mirror fusion devices needing high field solenoids might require hybrid magnets of the type described herein. The hybrid design was generated because of critical field performance limitations on present, practical superconducting wires. A hybrid design might be required (due to structural limits) even if the critical field were higher. Also, hybrids could be a cost-effective way of getting very high fields for certain applications. The 18-Tesla solenoid described is composed of an inner coil made of water-cooled, high-strength zirconium copper which generates 3 Tesla. A superconducting NbSn background coil contributes the remaining 15 Tesla. The focus of the design study was on the inner coil. Demonstration fabrication and testing was performed

  9. Design assumptions and bases for small D-T-fueled Sperical Tokamak (ST) fusion core

    International Nuclear Information System (INIS)

    Peng, Y.K.M.; Galambos, J.D.; Fogarty, P.J.

    1996-01-01

    Recent progress in defining the assumptions and clarifying the bases for a small D-T-fueled ST fusion core are presented. The paper covers several issues in the physics of ST plasmas, the technology of neutral beam injection, the engineering design configuration, and the center leg material under intense neutron irradiation. This progress was driven by the exciting data from pioneering ST experiments, a heightened interest in proof-of-principle experiments at the MA level in plasma current, and the initiation of the first conceptual design study of the small ST fusion core. The needs recently identified for a restructured fusion energy sciences program have provided a timely impetus for examining the subject of this paper. Our results, though preliminary in nature, strengthen the case for the potential realism and attractiveness of the ST approach

  10. Fusion--fission hybrid concepts for laser-induced fusion

    International Nuclear Information System (INIS)

    Maniscalco, J.

    1976-01-01

    Fusion-fission hybrid concepts are viewed as subcritical fission reactors driven and controlled by high-energy neutrons from a laser-induced fusion reactor. Blanket designs encompassing a substantial portion of the spectrum of different fission reactor technologies are analyzed and compared by calculating their fissile-breeding and fusion-energy-multiplying characteristics. With a large number of different fission technologies to choose from, it is essential to identify more promising hybrid concepts that can then be subjected to in-depth studies that treat the engineering safety, and economic requirements as well as the neutronic aspects. In the course of neutronically analyzing and comparing several fission blanket concepts, this work has demonstrated that fusion-fission hybrids can be designed to meet a broad spectrum of fissile-breeding and fusion-energy-multiplying requirements. The neutronic results should prove to be extremely useful in formulating the technical scope of future studies concerned with evaluating the technical and economic feasibility of hybrid concepts for laser-induced fusion

  11. Design descriptions of the Prometheus-L and -H inertial fusion energy drivers

    Energy Technology Data Exchange (ETDEWEB)

    Linford, G.J. (TRW Inc., Bld. O1/1220, Redondo Beach, CA 90278 (United States)); Driemeyer, D.E. (McDonnell Douglas Aerospace Co. (MDAC), St. Louis, MO 63166 (United States)); Fornaca, S.W. (TRW Inc., Bld. O1/1220, Redondo Beach, CA 90278 (United States)); Maschke, A.W. (TRW Inc., Bld. O1/1220, Redondo Beach, CA 90278 (United States))

    1994-08-01

    Two innovative drivers have been designed for a prototype 1000MW thermonuclear power plant planned for operation early in the next century. The Prometheus-L driver is a 4MJ KrF master oscillator power amplifier laser system designed to operate at a 5.6Hz repetition rate. Output pulses from the KrF master oscillator are synchronized with the pulsed-power excitation of the KrF power amplifiers and the launching of the inertial fusion energy deuterium/tritium targets. The Prometheus-L laser architecture features 960 5kJ electric discharge KrF power amplifiers pumping 60 crossed stimulated rotational Raman scattering H[sub 2] amplifiers serving as beam accumulators. Pulse compression of the 60 accumulator beams is accomplished in 60 chirped, self-seeded SF[sub 6] stimulated Brillouin scattering pulse compressors. Grazing incidence metal focusing mirrors minimize back-streaming radiation damage from the target chamber. This architecture permits the laser driver to deliver spectrally broad-band, temporally complex optical pulses in 60 beam lines to implode the direct-drive IFE targets within a 5m radius target chamber.The Prometheus-H driver is a 7.8MJ 4GeV Pb[sup ++] heavy ion (HI) inertial fusion energy system designed to operate at a 3.5He repetition rate. The HI driver design is based on a short, ramped gradient, 5MeV accelerator, followed by a longer, 2km constant gradient, single beam linear accelerator operated in a 50kHz burst mode to generate sequentially 18 4GeV beamlets. A two-sided irradiation geometry was developed for indirect-drive HI targets. Six beamlets are used for the 45ns precursor HI pulses stored in two superconducting storage rings, 12 superconducting storage rings accumulate the 12 main beamlets, with a final buncher generating the 8ns HI pulses which arrive at the target chamber simultaneously. Final focusing is accomplished with large aperture triplet focusing magnets through Pb-vapor neutralization cells to reduce the effect of space charge.

  12. Review of Fusion Systems and Contributing Technologies for SIHS-TD (Examen des Systemes de Fusion et des Technologies d'Appui pour la DT SIHS)

    National Research Council Canada - National Science Library

    Angel, Harry H; Ste-Croix, Chris; Kittel, Elizabeth

    2007-01-01

    The major objectives of the report were to identify and review the field of image fusion and contributing technologies and to recommend systems, algorithms and metrics for the proposed SIHS TD Vision SST fusion test bed...

  13. Failure modes and effects analysis of fusion magnet systems

    International Nuclear Information System (INIS)

    Zimmermann, M.; Kazimi, M.S.; Siu, N.O.; Thome, R.J.

    1988-12-01

    A failure modes and consequence analysis of fusion magnet system is an important contributor towards enhancing the design by improving the reliability and reducing the risk associated with the operation of magnet systems. In the first part of this study, a failure mode analysis of a superconducting magnet system is performed. Building on the functional breakdown and the fault tree analysis of the Toroidal Field (TF) coils of the Next European Torus (NET), several subsystem levels are added and an overview of potential sources of failures in a magnet system is provided. The failure analysis is extended to the Poloidal Field (PF) magnet system. Furthermore, an extensive analysis of interactions within the fusion device caused by the operation of the PF magnets is presented in the form of an Interaction Matrix. A number of these interactions may have significant consequences for the TF magnet system particularly interactions triggered by electrical failures in the PF magnet system. In the second part of this study, two basic categories of electrical failures in the PF magnet system are examined: short circuits between the terminals of external PF coils, and faults with a constant voltage applied at external PF coil terminals. An electromagnetic model of the Compact Ignition Tokamak (CIT) is used to examine the mechanical load conditions for the PF and the TF coils resulting from these fault scenarios. It is found that shorts do not pose large threats to the PF coils. Also, the type of plasma disruption has little impact on the net forces on the PF and the TF coils. 39 refs., 30 figs., 12 tabs

  14. Conceptual Design of Main Cooling System for a Fusion Power Reactor with Water Cooled Lithium-Lead Blanket. TW1-TRP-PPCS1, Deliverable 8

    International Nuclear Information System (INIS)

    Natalizio, Antonio; Collen, Jan

    2002-06-01

    The HTS (Heat Transfer System) conceptual design developed for the PPCS (Power-Plant Conceptual Study) plant model is compliant with the single failure criterion - i.e., the failure of a single active component (e.g., pump) will not cause the reactor to shutdown. The system effective availability (capacity factor), however, is only marginally better than that of the SEAFP design, as the number of loops could not be decreased further, due to coolant inventory limitations. The PPCS Plant Model A has about 70 % more fusion power than the SEAFP model. Therefore, keeping the same number of loops as in the SEAFP model would have implied a 70 % larger inventory. To improve plant availability and safety, however, the number of blanket and first wall loops have been reduced from eight to six, implying a further increase in loop inventory of about 25 %. For these and other reasons, the coolant inventory, at risk from a loss-of-coolant accident, has increased significantly, relative to the SEAFP design (∼130 vs. 50 m 3 ). The proposed heat transport system conceptual design meets, or exceeds, all project specifications

  15. Fluid mechanics of fusion lasers. Final technical report

    International Nuclear Information System (INIS)

    Shwartx, J.; Golik, R.J.; Merkle, C.L.; Ausherman, D.R.; Fishman, E.

    1978-04-01

    The primary objective of this study is to define the fluid mechanical requirements for a repetitively-pulsed high energy laser that may be used as a driver in an inertial confinement fusion system designed for electric power generation. Emphasis was placed on defining conceptual designs of efficient laser flow systems that are capable of conserving gas and minimizing operating power requirements. The development of effective pressure wave suppression concepts to produce acceptable beam quality for fusion applications was also considered

  16. Safety analysis and environmental effects of fusion concepts

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Fusion reactor concepts have been analyzed to determine the probable interactions with the environment and the resultant environmental effects. Two research projects on tritium oxidation in the atmosphere and carbon-14 formation in fusion reactors are briefly described. A study and report were completed, investigating the potential public safety impact of accidents in fusion power plants. After reviewing the existing information on conceptual fusion reactor designs, PNL identified areas of safety concern, making recommendations on how development of safety information might be best accomplished. Inventories of potentially dispersible toxic materials were classified, and general conclusions were made about their relative importance. The report specifies energy sources with a potential to initiate or propagate an accident. An important product of the study was an assessment logic developed to identify potential accident scenarios that could lead to the release of contaminants to the environment. Though the limited amount of fusion design information allows only a general assessment of accident-initiating events, the logic provides a method for making more detailed safety analyses as more design information becomes available. The same logic was used to identify technological areas where an R and D investment would enhance the technical bases for fusion designs as well as the understanding of safety implications in fusion systems

  17. An overview of Aurora: a multi-kilojoule KrF laser system for inertial confinement fusion

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Bowling, P.S.; Burrows, M.D.; Kang, M.; Hanlon, J.; McLeod, J.; York, G.W.

    1986-01-01

    Aurora is a short-pulse high-power krypton-fluoride laser system that serves as an end-to-end technology demonstration prototype for large-scale ultraviolet laser systems of interest for short wavelength inertial confinement fusion (ICF) studies. The system is designed to employ optical angular multiplexing and serial amplification by electron-beam-driven KrF laser amplifiers to deliver 248 nm, 5-ns duration multi-kilojoule laser pulses to ICF targets using a beam train of approximately 1 km in length. The goals for the system are discussed and the design features of the major system components: front-end lasers, amplifier train, and the alignment and controls systems are summarised. (author)

  18. Energy from inertial fusion

    International Nuclear Information System (INIS)

    1995-03-01

    This book contains 22 articles on inertial fusion energy (IFE) research and development written in the framework of an international collaboration of authors under the guidance of an advisory group on inertial fusion energy set up in 1991 to advise the IAEA. It describes the actual scientific, engineering and technological developments in the field of inertial confinement fusion (ICF). It also identifies ways in which international co-operation in ICF could be stimulated. The book is intended for a large audience and provides an introduction to inertial fusion energy and an overview of the various technologies needed for IFE power plants to be developed. It contains chapters on (i) the fundamentals of IFE; (ii) inertial confinement target physics; (iii) IFE power plant design principles (requirements for power plant drivers, solid state laser drivers, gas laser drivers, heavy ion drivers, and light ion drivers, target fabrication and positioning, reaction chamber systems, power generation and conditioning and radiation control, materials management and target materials recovery), (iv) special design issues (radiation damage in structural materials, induced radioactivity, laser driver- reaction chamber interfaces, ion beam driver-reaction chamber interfaces), (v) inertial fusion energy development strategy, (vi) safety and environmental impact, (vii) economics and other figures of merit; (viii) other uses of inertial fusion (both those involving and not involving implosions); and (ix) international activities. Refs, figs and tabs

  19. Conceptual design strategy for liquid-metal-wall inertial-fusion reactors

    International Nuclear Information System (INIS)

    Monsler, M.J.; Meier, W.R.

    1981-02-01

    The liquid-metal-wall chamber has emerged as an attractive reactor concept for inertial fusion energy conversion. The principal feature of this concept is a thick, free-flowing blanket of liquid metal used to protect the structure of the reactor. The development and design of liquid-metal-wall chambers over the past decade provides a basis for formulating a conceptual design strategy for such chambers. Both the attractive and unattractive features of a LMW chamber are enumerated, and a design strategy is formulated which accommodates the engineering constraints while minimizing the liquid-metal flow rate

  20. Conceptual design strategy for liquid-metal-wall inertial-fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Monsler, M.J.; Meier, W.R.

    1981-02-01

    The liquid-metal-wall chamber has emerged as an attractive reactor concept for inertial fusion energy conversion. The principal feature of this concept is a thick, free-flowing blanket of liquid metal used to protect the structure of the reactor. The development and design of liquid-metal-wall chambers over the past decade provides a basis for formulating a conceptual design strategy for such chambers. Both the attractive and unattractive features of a LMW chamber are enumerated, and a design strategy is formulated which accommodates the engineering constraints while minimizing the liquid-metal flow rate.

  1. Establishment of design and performance requirements using cost and systems analysis

    International Nuclear Information System (INIS)

    Waganer, L.M.; Carosella, L.A.; Defreece, D.A.

    1977-01-01

    The current uncertainty in design approach and performance requirements for a commercial fusion power plant poses a problem for the designer in configuring the plant and for the utilities in analyzing the attractiveness of a future fusion power plant. To provide direction and insight in this area, a systems analysis model was constructed at McDonnell Douglas, utilizing fusion subsystem algorithms with subsystem cost estimating relationships into a self-consistent computerized model for several fusion reactor concepts. Cost estimating data has been compiled by utilizing McDonnell Douglas' experience in fabricating large, complex metal assemblies and soliciting the accumulated store of knowledge in existing power plants and new emerging technologies such as the Clinch River Breeder Reactor. Using the computer model, sensitivities to plasma, reactor and plant parameters are a few of the options that have been evaluated to yield recommended concepts/techniques/solutions. This is a very beneficial tool in assessing the impact of the fusion reactor on the electrical power community and charting the optimum developmental approach

  2. Inertial fusion program. Progress report, July 1-December 31, 1978

    International Nuclear Information System (INIS)

    Perkins, R.B.

    1980-11-01

    Progress at Los Alamos Scientific Laboratory (LASL) in the development of high-energy short-pulse CO 2 laser systems for fusion research is reported. Improvements to LASL's two-beam system, Gemini, are outlined and experimental results are discussed. Our eight-beam system, Helios, was fired successfully on target for the first time, and became the world's most powerful gas laser for laser fusion studies. Work on Antares, our 100- to 200-TW target irradiation system, is summarized, indicating that design work and building construction are 70 and 48% complete, respectively. A baseline design for automatic centering of laser beams onto the various relay mirrors and the optical design of the Antares front end are discussed. The results of various fusion reactor studies are summarized, as well as investigations of synthetic-fuel production through application of fusion energy to hydrogen production by thermochemical water splitting. Studies on increased efficiency of energy extraction in CO 2 lasers and on lifetimes of cryogenic pellets in a reactor environment are summarized, as well as the results of studies on pellet injection, tracking, and beam synchronization

  3. Fusion reactors-high temperature electrolysis (HTE)

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1978-01-01

    Results of a study to identify and develop a reference design for synfuel production based on fusion reactors are given. The most promising option for hydrogen production was high-temperature electrolysis (HTE). The main findings of this study are: 1. HTE has the highest potential efficiency for production of synfuels from fusion; a fusion to hydrogen energy efficiency of about 70% appears possible with 1800 0 C HTE units and 60% power cycle efficiency; an efficiency of about 50% possible with 1400 0 C HTE units and 40% power cycle efficiency. 2. Relative to thermochemical or direct decomposition methods HTE technology is in a more advanced state of development, 3. Thermochemical or direct decomposition methods must have lower unit process or capital costs if they are to be more attractive than HTE. 4. While design efforts are required, HTE units offer the potential to be quickly run in reverse as fuel cells to produce electricity for restart of Tokamaks and/or provide spinning reserve for a grid system. 5. Because of the short timescale of the study, no detailed economic evaluation could be carried out.A comparison of costs could be made by employing certain assumptions. For example, if the fusion reactor-electrolyzer capital installation is $400/(KW(T) [$1000/KW(E) equivalent], the H 2 energy production cost for a high efficiency (about 70 %) fusion-HTE system is on the same order of magnitude as a coal based SNG plant based on 1976 dollars. 6. The present reference design indicates that a 2000 MW(th) fusion reactor could produce as much at 364 x 10 6 scf/day of hydrogen which is equivalent in heating value to 20,000 barrels/day of gasoline. This would fuel about 500,000 autos based on average driving patterns. 7. A factor of three reduction in coal feed (tons/day) could be achieved for syngas production if hydrogen from a fusion-HTE system were used to gasify coal, as compared to a conventional syngas plant using coal-derived hydrogen

  4. Primary heat transfer loop design for the Cascade inertial confinement fusion reactor

    International Nuclear Information System (INIS)

    Murray, K.A.; McDowell, M.W.

    1984-05-01

    This study investigates a heat exchanger and balance of plant design to accompany the Cascade inertial confinement fusion reaction chamber concept. The concept uses solid Li 2 O or other lithium-ceramic granules, held to the wall of a rotating reaction chamber by centrifugal action, as a tritium breeding blanket and first wall protection. The Li 2 O granules enter the chamber at 800 K and exit at 1200 K after absorbing the thermal energy produced by the fusion process

  5. Physics, systems analysis and economics of fusion power plants

    International Nuclear Information System (INIS)

    Ward, D.J.

    2006-01-01

    Fusion power is being developed because of its large resource base, low environmental impact and high levels of intrinsic safety. It is important, however, to investigate the economics of a future fusion power plant to check that the electricity produced can, in fact, have a market. Using systems code analysis, including costing algorithms, this paper gives the cost of electricity expected from a range of fusion power plants, assuming that they are brought into successful operation. Although this paper does not purport to show that a first generation of fusion plants is likely to be the cheapest option for a future energy source, such plants look likely to have a market in some countries even without taking account of fusion's environmental advantages. With improved technological maturity fusion looks likely to have a widespread potential market particularly if the value of its environmental advantages are captured, for instance through avoiding a carbon tax. (author)

  6. Economic regimes for fission--fusion energy systems

    International Nuclear Information System (INIS)

    Deonigi, D.E.

    1974-01-01

    The objectives of this hybrid fusion-fission economic regimes study are to: (1) define the target costs to be met, (2) define the optimum fissile/electrical production ratio for hybrid blankets, (3) discover synergistic configurations, and (4) define the windows of economic hybrid design having desirable cost/benefit ratios. (U.S.)

  7. Conceptual design of the Purdue compact torus/passive liner fusion reactor

    International Nuclear Information System (INIS)

    Terry, W.K.

    1981-01-01

    This proposal describes a program for the conceptual development of a novel fusion reactor design, the Purdue Compact Torus/Passive Liner Reactor. The key features of the concept are described and a comparison is made with a conventional tokamak

  8. LIBRA - a light ion beam fusion conceptual reactor design

    International Nuclear Information System (INIS)

    Badger, B.; Moses, G.A.; Engelstad, R.L.; Kulcinski, G.L.; Lovell, E.; MacFarlane, J.; Peterson, R.R.; Sawan, M.E.; Sviatovslavsky, I.N.; Wittenberg, L.J.; Cook, D.L.; Olson, R.E.; Stinnett, R.W.; Ehrhardt, J.; Kessler, G.; Stein, E.

    1990-08-01

    The LIBRA light ion beam fusion commercial reactor study is a self-consistent conceptual design of a 330 MWe power plant with an accompanying economic analysis. Fusion targets are imploded by 4 MJ shaped pulses of 30 MeV Li ions at a rate of 3 Hz. The target gain is 80, leading to a yield of 320 MJ. The high intensity part of the ion pulse is delivered by 16 diodes through 16 separate z-pinch plasma channels formed in 100 torr of helium with trace amounts of lithium. The blanket is an array of porous flexible silicon carbind tubes with Li 17 Pb 83 flowing downward through them. These tubes (INPORT units) shield the target chamber wall from both neutron damage and the shock overpressure of the target explosion. The target chamber is 'self-pumped' by the target explosion generated overpressure into a surge tank partially filled with Li 17 Pb 83 that surrounds the target chamber. This scheme refreshes the chamber at the desired 3 Hz frequently without excessive pumping demands. The blanket multiplication is 1.2 and the tritium breeding ratio is 1.4. The direct capital cost of a 331 MWe LIBRA design is estimated to be 2843 Dollar/kWe while a 1200 MWe LIBRA design will cost approximately 1300 Dollar/kWe. (orig.) [de

  9. Catalogue of nuclear fusion codes - 1976

    International Nuclear Information System (INIS)

    1976-10-01

    A catalogue is presented of the computer codes in nuclear fusion research developed by JAERI, Division of Thermonuclear Fusion Research and Division of Large Tokamak Development in particular. It contains a total of about 100 codes under the categories: Atomic Process, Data Handling, Experimental Data Processing, Engineering, Input and Output, Special Languages and Their Application, Mathematical Programming, Miscellaneous, Numerical Analysis, Nuclear Physics, Plasma Physics and Fusion Research, Plasma Simulation and Numerical Technique, Reactor Design, Solid State Physics, Statistics, and System Program. (auth.)

  10. Analysis of decision fusion algorithms in handling uncertainties for integrated health monitoring systems

    Science.gov (United States)

    Zein-Sabatto, Saleh; Mikhail, Maged; Bodruzzaman, Mohammad; DeSimio, Martin; Derriso, Mark; Behbahani, Alireza

    2012-06-01

    It has been widely accepted that data fusion and information fusion methods can improve the accuracy and robustness of decision-making in structural health monitoring systems. It is arguably true nonetheless, that decision-level is equally beneficial when applied to integrated health monitoring systems. Several decisions at low-levels of abstraction may be produced by different decision-makers; however, decision-level fusion is required at the final stage of the process to provide accurate assessment about the health of the monitored system as a whole. An example of such integrated systems with complex decision-making scenarios is the integrated health monitoring of aircraft. Thorough understanding of the characteristics of the decision-fusion methodologies is a crucial step for successful implementation of such decision-fusion systems. In this paper, we have presented the major information fusion methodologies reported in the literature, i.e., probabilistic, evidential, and artificial intelligent based methods. The theoretical basis and characteristics of these methodologies are explained and their performances are analyzed. Second, candidate methods from the above fusion methodologies, i.e., Bayesian, Dempster-Shafer, and fuzzy logic algorithms are selected and their applications are extended to decisions fusion. Finally, fusion algorithms are developed based on the selected fusion methods and their performance are tested on decisions generated from synthetic data and from experimental data. Also in this paper, a modeling methodology, i.e. cloud model, for generating synthetic decisions is presented and used. Using the cloud model, both types of uncertainties; randomness and fuzziness, involved in real decision-making are modeled. Synthetic decisions are generated with an unbiased process and varying interaction complexities among decisions to provide for fair performance comparison of the selected decision-fusion algorithms. For verification purposes

  11. Overview of the Magnetic Fusion Energy Devlopment and Technology Program

    International Nuclear Information System (INIS)

    1978-03-01

    This publication gives a comprehensive introduction to controlled fusion research. Topics covered in the discussion include the following: (1) fusion system engineering and advanced design, (2) plasma engineering, (3) magnetic systems, (4) materials, (5) environment and safety, and (6) alternate energy applications

  12. Management of nontritium radioactive wastes from fusion power plants

    International Nuclear Information System (INIS)

    Kaser, J.D.; Postma, A.K.; Bradley, D.J.

    1976-09-01

    This report identifies nontritium radioactive waste sources for current conceptual fusion reactor designs. Quantities and compositions of the radwaste are estimated for the tokamaks of the University of Wisconsin (UWMAK-I), the Princeton Plasma Physics Laboratory (PPPL), and the Oak Ridge National Laboratory (ORNL); the Reference Theta Pinch Reactor of the Los Alamos Scientific Laboratory (LASL); and the Minimum Activation Blanket of the Brookhaven National Laboratory (BNL). Disposal of large amounts of radioactive waste appears necessary for fusion reactors. Although the curie (Ci) level of the wastes is comparable to that of fission products in fission reactors, the isotopes are less hazardous, and have shorter half-lives. Therefore radioactivity from fusion power production should pose a smaller risk than radioactivity from fission reactors. Radioactive waste sources identified for the five reference plants are summarized. Specific radwaste treatments or systems had to be assumed to estimate these waste quantities. Future fusion power plant conceptual designs should include radwaste treatment system designs so that assumed designs do not have to be used to assess the environmental effects of the radioactive waste

  13. Biological Systems Thinking for Control Engineering Design

    Directory of Open Access Journals (Sweden)

    D. J. Murray-Smith

    2004-01-01

    Full Text Available Artificial neural networks and genetic algorithms are often quoted in discussions about the contribution of biological systems thinking to engineering design. This paper reviews work on the neuromuscular system, a field in which biological systems thinking could make specific contributions to the development and design of automatic control systems for mechatronics and robotics applications. The paper suggests some specific areas in which a better understanding of this biological control system could be expected to contribute to control engineering design methods in the future. Particular emphasis is given to the nonlinear nature of elements within the neuromuscular system and to processes of neural signal processing, sensing and system adaptivity. Aspects of the biological system that are of particular significance for engineering control systems include sensor fusion, sensor redundancy and parallelism, together with advanced forms of signal processing for adaptive and learning control. 

  14. Lower activation materials and magnetic fusion reactors

    International Nuclear Information System (INIS)

    Conn, R.W.; Bloom, E.E.; Davis, J.W.; Gold, R.E.; Little, R.; Schultz, K.R.; Smith, D.L.; Wiffen, F.W.

    1984-01-01

    Radioactivity in fusion reactors can be effectively controlled by materials selection. The detailed relationship between the use of a material for construction of a magnetic fusion reactor and the material's characteristics important to waste disposal, safety, and system maintainability has been studied. The quantitative levels of radioactivation are presented for many materials and alloys, including the role of impurities, and for various design alternatives. A major outcome has been the development of quantitative definitions to characterize materials based on their radioactivation properties. Another key result is a four-level classification scheme to categorize fusion reactors based on quantitative criteria for waste management, system maintenance, and safety. A recommended minimum goal for fusion reactor development is a reference reactor that (a) meets the requirements for Class C shallow land burial of waste materials, (b) permits limited hands-on maintenance outside the magnet's shield within 2 days of a shutdown, and (c) meets all requirements for engineered safety. The achievement of a fusion reactor with at least the characteristics of the reference reactor is a realistic goal. Therefore, in making design choices or in developing particular materials or alloys for fusion reactor applications, consideration must be given to both the activation characteristics of a material and its engineering practicality for a given application

  15. Study of 9 Be + 29 Si system nuclear fusion

    International Nuclear Information System (INIS)

    Silva Figueira, M.C. da.

    1991-01-01

    Fusion cross sections for the 9 Be + 29 Si system have been measured in the energy range between 17 and 38 MeV (lab) by detecting the evaporation residues with the time of flight technique. Angular distributions have been measured from 7.5 0 C to 35 0 C in the laboratory frame at E( 9 Be) = 26 and 38 MeV. The measured fusion cross sections are significantly smaller than the total reaction cross sections obtained from fits to the elastic scattering data in the same energy range. Comparison with existing data for compound systems with A= 38 shows that this effect can not be understood in terms of the statistical yrast line of the formed compound nucleus. A systematic analysis of the energy dependence of the ratio between the fusion cross section and the total reaction cross section, for the system 9 Be + 29 Si and many other available in the literature has been performed. The saturation value can be associated to the nucleon or cluster separation energy of the light nuclei participant in the collision, leading to an hindrance of the fusion cross section. (author)

  16. Aurora multikilojoule KrF laser system prototype for inertial confinement fusion

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Hanlon, J.A.; Mc Leod, J.; Kang, M.; Kortegaard, B.L.; Burrows, M.D.; Bowling, P.S.

    1987-01-01

    Aurora is the Los Alamos National Laboratory short-pulse, high-power, KrF laser system. It serves as an end-to-end technology demonstration for large-scale ultraviolet laser systems of interest for short wavelength, inertial confinement fusion (ICF) investigations. The systems is a prototype for using optical angular multiplexing and serial amplification by large electron-beam-driven KrF laser amplifiers to deliver stacked, 248-nm, 5-ns duration multikilojoule laser pulses to ICF targets using an --1-km-long optical beam path. The entire Aurora KrF laser system is described and the design features of the following major system components are summarized: front-end lasers, amplifier train, multiplexer, optical relay train, demultiplexer, target irradiation apparatus, and alignment and controls systems

  17. Engineering systems designs for a recirculating heavy ion induction accelerator

    International Nuclear Information System (INIS)

    Newton, M.A.; Barnard, J.J.; Reginato, L.L.; Yu, S.S.

    1991-05-01

    Recirculating heavy ion induction accelerators are being investigated as possible drivers for heavy ion fusion. Part of this investigation has included the generation of a conceptual design for a recirculator system. This paper will describe the overall engineering conceptual design of this recirculator, including discussions of the dipole magnet system, the superconducting quadrupole system and the beam acceleration system. Major engineering issues, evaluation of feasibility, and cost tradeoffs of the complete recirculator system will be presented and discussed. 5 refs., 4 figs

  18. The TITAN reversed-field-pinch fusion reactor study

    International Nuclear Information System (INIS)

    1990-01-01

    This report discusses research on the titan-1 fusion power core. The major topics covered are: titan-1 fusion-power-core engineering; titan-1 divertor engineering; titan-1 tritium systems; titan-1 safety design and radioactive-waste disposal; and titan-1 maintenance procedures

  19. The TITAN reversed-field-pinch fusion reactor study

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report discusses research on the titan-1 fusion power core. The major topics covered are: titan-1 fusion-power-core engineering; titan-1 divertor engineering; titan-1 tritium systems; titan-1 safety design and radioactive-waste disposal; and titan-1 maintenance procedures.

  20. Characterization of the fusion-fission process in light nuclear systems

    International Nuclear Information System (INIS)

    Anjos, R.M. dos.

    1992-01-01

    Fusion cross sections measurements of highly damped processes and elastic scattering were performed for the 16, 17, 18 O + 10, 11 B and 19 F + 9 Be, in the incident energy interval 22 ≤ E LAB ≤ 64 MeV. Evidences are presented that highly damped binary processes observed in these systems are originated from a fusion-fission process rather than a dinuclear ''orbiting'' mechanism. The relative importance of the fusion-fission process in these very light systems is demonstrated both by the experimental results, which indicate a statistically balanced compound nucleus fission process occurrence, and theoretical calculations. (L.C.J.A.)