WorldWideScience

Sample records for fusion science virtual

  1. Overview of theory and simulations in the Heavy Ion Fusion Science Virtual National Laboratory

    Science.gov (United States)

    Friedman, Alex

    2007-07-01

    The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) is a collaboration of Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Princeton Plasma Physics Laboratory. These laboratories, in cooperation with researchers at other institutions, are carrying out a coordinated effort to apply intense ion beams as drivers for studies of the physics of matter at extreme conditions, and ultimately for inertial fusion energy. Progress on this endeavor depends upon coordinated application of experiments, theory, and simulations. This paper describes the state of the art, with an emphasis on the coordination of modeling and experiment; developments in the simulation tools, and in the methods that underly them, are also treated.

  2. A 3-year plan for beam science in the heavy-ion fusion virtual national laboratory

    International Nuclear Information System (INIS)

    Logan, B. Grant

    2001-01-01

    In December 1998, LBNL Director Charles Shank and LLNL Director Bruce Tarter signed a Memorandum of Agreement to create the Heavy-Ion Fusion Virtual National Laboratory (HIF-VNL) with the purpose of improving the efficiency and productivity of heavy ion research through coordination of the two laboratories' efforts under one technical director. In 1999, PPPL Director Robert Goldston signed the VNL MOA for PPPL's heavy-ion fusion group to join the VNL. LBNL and LLNL each contribute about 45% of the $10.6 M/yr trilab VNL effort, and PPPL contributes currently about 10% of the VNL effort. The three labs carry out collaborative experiments, theory and simulations of a variety of intense beam scientific issues described below. The tri-lab HIF VNL program is part of the DOE Office of Fusion Energy Sciences (OFES) fusion program. A short description of the four major tasks areas of HIF-VNL research is given in the next section. The task areas are: High Current Experiment, Final Focus/Chamber Transport, Source/Injector/Low Energy Beam Transport (LEBT), and Theory/Simulation. As a result of the internal review, more detailed reviews of the designs, costs and schedules for some of the tasks have been completed, which will provide more precision in the scheduled completion dates of tasks. The process for the ongoing engineering reviews and governance for the future management of tasks is described in section 3. A description of the major milestones and scientific deliverables for flat guidance budgets are given in section 4. Section 5 describes needs for enabling technology development for future experiments that require incremental funding

  3. HEAVY ION FUSION SCIENCE VIRTUAL NATIONAL LABORATORY 4th QUARTER 2008 MILESTONE REPORT

    International Nuclear Information System (INIS)

    Bieniosek, F.M.; Anders, A.; Barnard, J.J.; Dickinson, M.R.; Greenway, W.; Henestroza, E.; Katayanagi, T.; Logan, B.G.; Lee, C.W.; Leitner, M.; Lidia, S.; More, R.M.; Ni, P.; Roy, P.K.; Seidl, P.A.; Waltron, W.

    2008-01-01

    This milestone has been met. In the previous quarter (3rd quarter FY2008), the Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) completed the new experimental target chamber facility for future Warm Dense Matter (WDM) experiments [1]. The target chamber is operational and target experiments are now underway, using beams focused by a final focus solenoid and compressed by an improved bunching waveform. Initial experiments have demonstrated the capability of the Neutralized Drift Compression Experiment (NDCX) beam to heat bulk matter in target foils. The experiments have focused on tuning and characterizing the NDCX beam in the target chamber, implementing the target assembly, and implementing target diagnostics in the target chamber environment. We have completed a characterization and initial optimization of the compressed and uncompressed NDCX beam entering the target chamber. The neutralizing plasma has been significantly improved to increase the beam neutralization in the target chamber. Preliminary results from recent beam tests of a gold cone for concentrating beam energy on target are encouraging and indicate the potential to double beam intensity on target. Other advantages of the cone include the large amount of neutralizing secondary electrons expected from the grazing incidence at the cone walls, and the shielding of the target from the edges of the beam pulse. The first target temperature measurements with the fast optical pyrometer were made on Sep. 12, 2008. The fast optical pyrometer is a unique and significant new diagnostic. These new results demonstrate for the first time beam heating of the target to a temperature well over 2000 K. The initial experimental results are suggestive of potentially interesting physics. The rapid initial rise and subsequent decay of the target temperature during the beam pulse indicate changes in the balance of beam heating and target evaporative cooling, a behavior which may be affected by phenomena such

  4. Virtual laboratory for fusion research in Japan

    International Nuclear Information System (INIS)

    Tsuda, K.; Nagayama, Y.; Yamamoto, T.; Horiuchi, R.; Ishiguro, S.; Takami, S.

    2008-01-01

    A virtual laboratory system for nuclear fusion research in Japan has been developed using SuperSINET, which is a super high-speed network operated by National Institute of Informatics. Sixteen sites including major Japanese universities, Japan Atomic Energy Agency and National Institute for Fusion Science (NIFS) are mutually connected to SuperSINET with the speed of 1 Gbps by the end of 2006 fiscal year. Collaboration categories in this virtual laboratory are as follows: the large helical device (LHD) remote participation; the remote use of supercomputer system; and the all Japan ST (Spherical Tokamak) research program. This virtual laboratory is a closed network system, and is connected to the Internet through the NIFS firewall in order to keep higher security. Collaborators in a remote station can control their diagnostic devices at LHD and analyze the LHD data as they were at the LHD control room. Researchers in a remote station can use the supercomputer of NIFS in the same environment as NIFS. In this paper, we will describe detail of technologies and the present status of the virtual laboratory. Furthermore, the items that should be developed in the near future are also described

  5. Virtuality and Reality in Science

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, G.

    1995-01-01

    This book compiles eight contributions devoted to the topical question about the relation between virtuality and reality. In the theoretical frame of quantum and relativistic particle physics, the concept of virtuality is used according to its strict and precise meaning. In this context, particles are generally invented before their discovery. Some famous historical experiments which led to the postulation and then the discovery of new particles are mentioned. These examples are used to illustrate and to discuss the concept of virtuality as well as the physical reality of virtual processes. But, how can the concept of virtuality in other scientific fields be applied ? In order to answer this question, the concepts of virtuality and reality are discussed in other branches of physics as well as in other fields such as geophysics, cosmology and biology. Philosophical and sociological implications of virtual realities are also considered. Moreover, in relation to virtuality and reality, the connections between modeling, simulation and experimentation, their respective roles, the advantages and risks of their use are discussed (in relation to nuclear sciences and geophysical problems) (N.T.)

  6. Fusion Energy Sciences Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Dart, Eli [ESNet, Berkeley, CA (United States); Tierney, Brian [ESNet, Berkeley, CA (United States)

    2012-09-26

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In December 2011, ESnet and the Office of Fusion Energy Sciences (FES), of the DOE Office of Science (SC), organized a workshop to characterize the networking requirements of the programs funded by FES. The requirements identified at the workshop are summarized in the Findings section, and are described in more detail in the body of the report.

  7. Inertial fusion science in Europe

    International Nuclear Information System (INIS)

    Bigot, B.

    2006-01-01

    Europe has built significant laser facilities to study inertial confinement fusion since the beginning of this science. The goal is to understand the processes of ignition and propagation of thermonuclear combustion. Three routes toward fusion are pursued, each of which has advantages and difficulties. The conventional routes are using a central hot spot created by the same compression and heating laser beams, either with indirect or direct drive. A more recent route, 'fast ignition', has been actively studied since the 90's, increasing the need for very high energy lasers to create the hot spot; some European lasers of this kind are already functioning, others are under construction or planned. Among European facilities, Laser Mega Joule (LMJ), which is under construction, will be the most powerful tool at the end of the decade, along with NIF in the Usa, to study and obtain fusion. LMJ is designed not only to obtain fusion but also to carry out experiments on all laser-plasma physics themes thanks to its flexibility. This facility, mainly dedicated to defence programmes, will be accessible to the academic research community. On all these facilities, numerous results are and will be obtained in the fields of High Energy Density Physics and Ultra High Intensity. (author)

  8. Recent fusion research in the National Institute for Fusion Science

    International Nuclear Information System (INIS)

    Komori, Akio; Sakakibara, Satoru; Sagara, Akio; Horiuchi, Ritoku; Yamada, Hiroshi; Takeiri, Yasuhiko

    2011-01-01

    The National Institute for Fusion Science (NIFS), which was established in 1989, promotes academic approaches toward the exploration of fusion science for steady-state helical reactor and realizes the establishment of a comprehensive understanding of toroidal plasmas as an inter-university research organization and a key center of worldwide fusion research. The Large Helical Device (LHD) Project, the Numerical Simulation Science Project, and the Fusion Engineering Project are organized for early realization of net current free fusion reactor, and their recent activities are described in this paper. The LHD has been producing high-performance plasmas comparable to those of large tokamaks, and several new findings with regard to plasma physics have been obtained. The numerical simulation science project contributes understanding and systemization of the physical mechanisms of plasma confinement in fusion plasmas and explores complexity science of a plasma for realization of the numerical test reactor. In the fusion engineering project, the design of the helical fusion reactor has progressed based on the development of superconducting coils, the blanket, fusion materials and tritium handling. (author)

  9. 76 FR 49757 - Fusion Energy Sciences Advisory Committee

    Science.gov (United States)

    2011-08-11

    ... DEPARTMENT OF ENERGY Fusion Energy Sciences Advisory Committee AGENCY: Office of Science... Services Administration, notice is hereby given that the Fusion Energy Sciences Advisory Committee will be... science, fusion science, and fusion technology related to the Fusion Energy Sciences program. Additionally...

  10. Fusion Nuclear Science Pathways Assessment

    Energy Technology Data Exchange (ETDEWEB)

    C.E. Kessel, et. al.

    2012-02-23

    With the strong commitment of the US to the success of the ITER burning plasma mission, and the project overall, it is prudent to consider how to take the most advantage of this investment. The production of energy from fusion has been a long sought goal, and the subject of several programmatic investigations and time line proposals [1]. The nuclear aspects of fusion research have largely been avoided experimentally for practical reasons, resulting in a strong emphasis on plasma science. Meanwhile, ITER has brought into focus how the interface between the plasma and engineering/technology, presents the most challenging problems for design. In fact, this situation is becoming the rule and no longer the exception. ITER will demonstrate the deposition of 0.5 GW of neutron heating to the blanket, deliver a heat load of 10-20 MW/m2 or more on the divertor, inject 50-100 MW of heating power to the plasma, all at the expected size scale of a power plant. However, in spite of this, and a number of other technologies relevant power plant, ITER will provide a low neutron exposure compared to the levels expected to a fusion power plant, and will purchase its tritium entirely from world reserves accumulated from decades of CANDU reactor operations. Such a decision for ITER is technically well founded, allowing the use of conventional materials and water coolant, avoiding the thick tritium breeding blankets required for tritium self-sufficiency, and allowing the concentration on burning plasma and plasma-engineering interface issues. The neutron fluence experienced in ITER over its entire lifetime will be ~ 0.3 MW-yr/m2, while a fusion power plant is expected to experience 120-180 MW-yr/m2 over its lifetime. ITER utilizes shielding blanket modules, with no tritium breeding, except in test blanket modules (TBM) located in 3 ports on the midplane [2], which will provide early tests of the fusion nuclear environment with very low tritium production (a few g per year).

  11. Research Needs for Magnetic Fusion Energy Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, Hutch

    2009-07-01

    Nuclear fusion — the process that powers the sun — offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITER fusion collaboration, which involves seven parties representing half the world’s population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW’s task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.)

  12. Fusion Energy Sciences Program at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Leeper, Ramon J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-15

    This presentation provides a strategic plan and description of investment areas; LANL vision for existing programs; FES portfolio and other specifics related to the Fusion Energy Sciences program at LANL.

  13. Configuration of the Virtual Laboratory for Fusion Researches in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, T.; Nagayama, Y.; Nakanishi, H.; Ishiguro, S.; Takami, S.; Tsuda, K.; Okamura, S. [National Institute for Fusion Science, National Institutes of Natural Sciences, Toki (Japan)

    2009-07-01

    SNET is a virtual laboratory system for nuclear fusion research in Japan, it has been developed since 2001 with SINET3, which is a national academic network backbone operated by National Institute of Computer sciences. Twenty one sites including major Japanese universities, JAEA and NIFS are mutually connected on SNET with the speed of 1 Gbps in 2008 fiscal year. The SNET is a closed network system based on L2 and L3 VPN and is connected to the web through the firewall at NIFS for security maintenance. Collaboration categories in SNET are as follows: the LHD remote participation; the remote use of supercomputer system; the all Japan ST (Spherical Tokamak) research program. For example, the collaborators of the first category in a remote station can control their diagnostic devices at LHD and analyze the LHD data as if they were at the LHD control room. The detail of the network policy is different from each other because each category has its own particular purpose. In October 2008, the Kyushu University and NIFS were connected by L2 VPN. The site was already connected by L3 VPN, but the data transfer rate was rather low. L2 VPN supports the bulk data transfer which is produced by QUEST, the spherical tokamak device at Kyushu University. The wide-area broadcast test began to distribute to remote stations the video which is presented at the front panel of the LHD control room. ITER activity started in 2007 and 'The ITER Remote Experimentation Centre' will be constructed at the Rokkasho village in Japan under ITER-BA agreement. SNET would be useful for distributing the data of ITER to Japanese universities and institutions. (authors)

  14. HEAVY ION FUSION SCIENCE VIRTUAL NATIONAL LABORATORY 1ST QUARTER 2010 MILESTONE REPORT: Simulations of fast correction of chromatic aberrations to establish physics specifications for implementation on NDCX-1 and NDCX-2

    International Nuclear Information System (INIS)

    Lidia, S.M.; Lund, S.M.; Seidl, P.A.

    2010-01-01

    This milestone has been accomplished. The Heavy Ion Fusion Science Virtual National Laboratory has completed simulations of a fast correction scheme to compensate for chromatic and time-dependent defocusing effects in the transport of ion beams to the target plane in the NDCX-1 facility. Physics specifications for implementation in NDCX-1 and NDCX-2 have been established. This milestone has been accomplished. The Heavy Ion Fusion Science Virtual National Laboratory has completed simulations of a fast correction scheme to compensate for chromatic and time-dependent defocusing effects in the transport of ion beams to the target plane in the NDCX-1 facility. Physics specifications for implementation in NDCX-1 and NDCX-2 have been established. Focal spot differences at the target plane between the compressed and uncompressed regions of the beam pulse have been modeled and measured on NDCX-1. Time-dependent focusing and energy sweep from the induction bunching module are seen to increase the compressed pulse spot size at the target plane by factors of two or more, with corresponding scaled reduction in the peak intensity and fluence on target. A time-varying beam envelope correction lens has been suggested to remove the time-varying aberration. An Einzel (axisymmetric electric) lens system has been analyzed and optimized for general transport lines, and as a candidate correction element for NDCX-1. Attainable high-voltage holdoff and temporal variations of the lens driving waveform are seen to effect significant changes on the beam envelope angle over the duration of interest, thus confirming the utility of such an element on NDCX-1. Modeling of the beam dynamics in NDCX-1 was performed using a time-dependent (slice) envelope code and with the 3-D, self-consistent, particle-in-cell code WARP. Proof of concept was established with the slice envelope model such that the spread in beam waist positions relative to the target plane can be minimized with a carefully designed

  15. Cold fusion saga: Lesson in science

    International Nuclear Information System (INIS)

    Lewenstein, B.V.

    1992-01-01

    A news conference at the University of Utah on March 23, 1989, ignited an explosion of scientific tempers almost as intense as the topic up for discussion - nuclear fusion. Two electrochemists, B. Stanley Pons and Martin Fleischmann, announced they had discovered a method for creating nuclear fusion at room temperature, using simple equipment available in any high school laboratory. This could mean unlimited supplies of cheap electricity in the future. The announcement set off a chain reaction involving the news media and scientists worldwide, notes Bruce V. Lewenstein of Cornell University. For the first six weeks of the saga, Lewenstein recalls, competing claims, counterclaims, and interpretations led to what many headline writers referred to as fusion confusion. Media attention faded gradually, but scientific attention didn't. Over the next two years, laboratory experiments, scientific reports, meetings, and panels kept the issue boiling. The cold-fusion saga, while more intense than some scientific research, followed familiar paths, Lewenstein believes. News coverage, political maneuvering, competition among scientists, parent rights, arguments about the interpretation of experiments - all points of contention - are normal, indeed, one might almost say integral, to modern science, he says. This is the stuff science is made of, he adds. And for those disturbed by the implications, Lewenstein cautions that cold-fusion may be the harbinger for other high-profile science, such as high-temperature superconductors

  16. Flight Hardware Virtualization for On-Board Science Data Processing

    Data.gov (United States)

    National Aeronautics and Space Administration — Utilize Hardware Virtualization technology to benefit on-board science data processing by investigating new real time embedded Hardware Virtualization solutions and...

  17. Extending Science lessons with Virtual Reality

    OpenAIRE

    Minocha, Shailey; Tudor, Ana-Despina; Tilling, Steve; Needham, Richard

    2016-01-01

    The Open University, Field Studies Council and Association for Science Education are conducting research into the use of Google Expeditions and other virtual reality tools to a) augment and extend field work experiences; and b) as an additional tool in the classrooms along with resources such as videos, photographs. \\ud \\ud The following aspects were discussed in this workshop:\\ud \\ud Does the virtual reality technology improve student engagement, and what are the implications for teachers?\\u...

  18. Assessment of the Fusion Energy Sciences Program. Final Report

    International Nuclear Information System (INIS)

    2001-01-01

    An assessment of the Office of Fusion Energy Sciences (OFES) program with guidance for future program strategy. The overall objective of this study is to prepare an independent assessment of the scientific quality of the Office of Fusion Energy Sciences program at the Department of Energy. The Fusion Science Assessment Committee (FuSAC) has been appointed to conduct this study

  19. Science Outreach in Virtual Globes; Best Practices

    Science.gov (United States)

    Treves, R. W.

    2007-12-01

    The popularity of projects such as 'Crisis in Darfur' and the IPY (International Polar Year) network link show the potential of using the rich functionality of Virtual Globes for science outreach purposes. However, the structure of outreach projects in Virtual Globes varies widely. Consider an analogy: If you pick up a science journal you immediately know where to find the contents page and what the title and cover story are meant to communicate. That is because journals have a well defined set of norms that they follow in terms of layout and design. Currently, science projects presented in virtual globes have, at best, weakly defined norms, there are little common structural elements beyond those imposed by the constraints of the virtual globe system. This is not a criticism of the science community, it is to be expected since norms take time to develop for any new technology. An example of the development of norms are pages on the web: when they first started appearing structure was unguided but over the last few years structural elements such as a left hand side navigation system and a bread crumb trail near the header have become common. In this paper I shall describe the developing norms of structure I have observed in one area of virtual globe development; Google Earth science outreach projects. These norms include text introductions, video introductions, use of folders and overlay presentation. I shall go on to examine how best to use these norms to build a clear and engaging outreach project and describe some cartographic best practices that we should also consider adopting as norms. I also will briefly explain why I think norms in science outreach aid creativity rather than limiting it despite the counter intuitive nature of this concept.

  20. Explore the virtual side of earth science

    Science.gov (United States)

    ,

    1998-01-01

    Scientists have always struggled to find an appropriate technology that could represent three-dimensional (3-D) data, facilitate dynamic analysis, and encourage on-the-fly interactivity. In the recent past, scientific visualization has increased the scientist's ability to visualize information, but it has not provided the interactive environment necessary for rapidly changing the model or for viewing the model in ways not predetermined by the visualization specialist. Virtual Reality Modeling Language (VRML 2.0) is a new environment for visualizing 3-D information spaces and is accessible through the Internet with current browser technologies. Researchers from the U.S. Geological Survey (USGS) are using VRML as a scientific visualization tool to help convey complex scientific concepts to various audiences. Kevin W. Laurent, computer scientist, and Maura J. Hogan, technical information specialist, have created a collection of VRML models available through the Internet at Virtual Earth Science (virtual.er.usgs.gov).

  1. 78 FR 15937 - Fusion Energy Sciences Advisory Committee

    Science.gov (United States)

    2013-03-13

    ... DEPARTMENT OF ENERGY Fusion Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Fusion Energy Sciences Advisory Committee. The Federal Advisory Committee Act requires that public notice of...

  2. 75 FR 8685 - Fusion Energy Sciences Advisory Committee

    Science.gov (United States)

    2010-02-25

    ... DEPARTMENT OF ENERGY Fusion Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Fusion Energy Sciences Advisory Committee. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770...

  3. 76 FR 40714 - Fusion Energy Sciences Advisory Committee

    Science.gov (United States)

    2011-07-11

    ... DEPARTMENT OF ENERGY Fusion Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Fusion Energy Sciences Advisory Committee. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770...

  4. Cold fusion, mass media and actual science

    Energy Technology Data Exchange (ETDEWEB)

    Orefice, A. (Milan Univ. (Italy))

    1990-03-01

    The peculiar affair of cold nuclear fusion, a recent and exemplary pattern of today's scientific and public habits, is considered. An overview is proposed on the contemporary approach to science and technology, both of the mass media and research worlds. It shows how mass media with its power of suggestion and ability to raise financial resources can lead many researchers into unpredictable - if not irresponsible behaviour. Yet, an eccess of empiricism may often induce researchers to rely rather on serendipity than on deeper meditation.

  5. Experiments at The Virtual National Laboratory for Heavy Ion Fusion

    International Nuclear Information System (INIS)

    Seidl, P.A.; Bieniosek, F.M.; Celata, C.M.; Faltens, A.; Kwan, J.W.; MacLaren, S.A.; Ponce, D.; Shuman, D.; Yu, S.; Ahle, L.; Lund, S.; Molvik, A.; Sangster, T.C.

    2000-01-01

    An overview of experiments is presented, in which the physical dimensions, emittance and perveance are scaled to explore driver-relevant beam dynamics. Among these are beam merging, focusing to a small spot, and bending and recirculating beams. The Virtual National Laboratory for Heavy Ion Fusion (VNL) is also developing two driver-scale beam experiments involving heavy-ion beams with I(sub beam) about 1 Ampere to provide guidance for the design of an Integrated Research Experiment (IRE) for driver system studies within the next 5 years. Multiple-beam sources and injectors are being designed and a one-beam module will be built and tested. Another experimental effort will be the transport of such a beam through about 100 magnetic quadrupoles. The experiment will determine transport limits at high aperture fill factors, beam halo formation, and the influence on beam properties of secondary electron Research into driver technology will be briefly presented, including the development of ferromagnetic core materials, induction core pulsers, multiple-beam quadrupole arrays and plasma channel formation experiments for pinched transport in reactor chambers

  6. Science assessment of fusion power plant

    International Nuclear Information System (INIS)

    Nagai, Toru; Shimazu, Yasuo

    1984-01-01

    A concept of SCIENCE ASSESSMENT (SA) is proposed to support a research program of the so-called big science. The SA System should be established before the demonstration reactor is realized, and the system is classified into four categories: (1) Resource Economy Assessment (REA) (cost evaluation and availability of rare resource materials), (2) Risk Assessment (RA) (structural safety during operation and accident), (3) Environmental Assessment (EA) (adaptability to environments), and (4) Socio-Political Assessment (SPA) (from local public acceptance to national policy acceptance). Here, REA to the published conceptual designs of commercial fusion power plants (most of them are TOKAMAK) is carried out as the first step. The energy analysis method is imployed because the final goal of fusion plant is to supply energy. The evaluation index is the energy ratio (= output/input). Computer code for energy analysis was developed, to which the material inventory table from the conceptual design and the database for the energy intensity (= energy required to obtain a unit amount of materials) were prepared. (Nogami, K.)

  7. Strategic plan for the restructured US fusion energy sciences program

    International Nuclear Information System (INIS)

    1996-08-01

    This plan reflects a transition to a restructured fusion program, with a change in focus from an energy technology development program to a fusion energy sciences program. Since the energy crisis of the early 1970's, the U.S. fusion program has presented itself as a goal- oriented fusion energy development program, with milestones that required rapidly increasing budgets. The Energy Policy Act of 1992 also called for a goal-oriented development program consistent with the Department's planning. Actual funding levels, however, have forced a premature narrowing of the program to the tokamak approach. By 1995, with no clear, immediate need driving the schedule for developing fusion energy and with enormous pressure to reduce discretionary spending, Congress cut fusion program funding for FY 1996 by one-third and called for a major restructuring of the program. Based on the recommendations of the Fusion Energy Advisory Committee (FEAC), the Department has decided to pursue a program that concentrates on world-class plasma, science, and on maintaining an involvement in fusion energy science through international collaboration. At the same time, the Japanese and Europeans, with energy situations different from ours, are continuing with their goal- oriented fusion programs. Collaboration with them provides a highly leveraged means of continued involvement in fusion energy science and technology, especially through participation in the engineering and design activities of the International Thermonuclear Experimental Reactor program, ITER. This restructured fusion energy sciences program, with its focus on fundamental fusion science and technology, may well provide insights that lead to more attractive fusion power plants, and will make use of the scientific infrastructure that will allow the United States to launch a fusion energy development program at some future date

  8. Virtual Globes: Serving Science and Society

    Directory of Open Access Journals (Sweden)

    Salman Qureshi

    2012-08-01

    Full Text Available Virtual Globes reached the mass market in 2005. They created multi-million dollar businesses in a very short time by providing novel ways to explore data geographically. We use the term “Virtual Globes” as the common denominator for technologies offering capabilities to annotate, edit and publish geographic information to a world-wide audience and to visualize information provided by the public and private sectors, as well as by citizens who volunteer new data. Unfortunately, but not surprising for a new trend or paradigm, overlapping terms such as “Virtual Globes”, “Digital Earth”, “Geospatial Web”, “Geoportal” or software specific terms are used heterogeneously. We analyze the terminologies and trends in scientific publications and ask whether these developments serve science and society. While usage can be answered quantitatively, the authors reason from the literature studied that these developments serve to educate the masses and may help to democratize geographic information by extending the producer base. We believe that we can contribute to a better distinction between software centered terms and the generic concept as such. The power of the visual, coupled with the potential of spatial analysis and modeling for public and private purposes raises new issues of reliability, standards, privacy and best practice. This is increasingly addressed in scientific literature but the required body of knowledge is still in its infancy.

  9. 78 FR 2259 - Fusion Energy Sciences Advisory Committee

    Science.gov (United States)

    2013-01-10

    ... DEPARTMENT OF ENERGY Fusion Energy Sciences Advisory Committee AGENCY: Office of Science... Energy Sciences Advisory Committee. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770... Energy Sciences; U.S. Department of Energy; 1000 Independence Avenue SW.; Washington, DC 20585-1290...

  10. Review of the Fusion Theory and Computing Program. Fusion Energy Sciences Advisory Committee (FESAC)

    International Nuclear Information System (INIS)

    Antonsen, Thomas M.; Berry, Lee A.; Brown, Michael R.; Dahlburg, Jill P.; Davidson, Ronald C.; Greenwald, Martin; Hegna, Chris C.; McCurdy, William; Newman, David E.; Pellegrini, Claudio; Phillips, Cynthia K.; Post, Douglass E.; Rosenbluth, Marshall N.; Sheffield, John; Simonen, Thomas C.; Van Dam, James

    2001-01-01

    At the November 14-15, 2000, meeting of the Fusion Energy Sciences Advisory Committee, a Panel was set up to address questions about the Theory and Computing program, posed in a charge from the Office of Fusion Energy Sciences (see Appendix A). This area was of theory and computing/simulations had been considered in the FESAC Knoxville meeting of 1999 and in the deliberations of the Integrated Program Planning Activity (IPPA) in 2000. A National Research Council committee provided a detailed review of the scientific quality of the fusion energy sciences program, including theory and computing, in 2000.

  11. Image fusion in craniofacial virtual reality modeling based on CT and 3dMD photogrammetry.

    Science.gov (United States)

    Xin, Pengfei; Yu, Hongbo; Cheng, Huanchong; Shen, Shunyao; Shen, Steve G F

    2013-09-01

    The aim of this study was to demonstrate the feasibility of building a craniofacial virtual reality model by image fusion of 3-dimensional (3D) CT models and 3 dMD stereophotogrammetric facial surface. A CT scan and stereophotography were performed. The 3D CT models were reconstructed by Materialise Mimics software, and the stereophotogrammetric facial surface was reconstructed by 3 dMD patient software. All 3D CT models were exported as Stereo Lithography file format, and the 3 dMD model was exported as Virtual Reality Modeling Language file format. Image registration and fusion were performed in Mimics software. Genetic algorithm was used for precise image fusion alignment with minimum error. The 3D CT models and the 3 dMD stereophotogrammetric facial surface were finally merged into a single file and displayed using Deep Exploration software. Errors between the CT soft tissue model and 3 dMD facial surface were also analyzed. Virtual model based on CT-3 dMD image fusion clearly showed the photorealistic face and bone structures. Image registration errors in virtual face are mainly located in bilateral cheeks and eyeballs, and the errors are more than 1.5 mm. However, the image fusion of whole point cloud sets of CT and 3 dMD is acceptable with a minimum error that is less than 1 mm. The ease of use and high reliability of CT-3 dMD image fusion allows the 3D virtual head to be an accurate, realistic, and widespread tool, and has a great benefit to virtual face model.

  12. Snowmass 2002: The Fusion Energy Sciences Summer Study

    International Nuclear Information System (INIS)

    Sauthoff, N.; Navratil, G.; Bangerter, R.

    2002-01-01

    The Fusion Summer Study 2002 will be a forum for the critical technical assessment of major next-steps in the fusion energy sciences program, and will provide crucial community input to the long-range planning activities undertaken by the DOE [Department of Energy] and the FESAC [Fusion Energy Sciences Advisory Committee]. It will be an ideal place for a broad community of scientists to examine goals and proposed initiatives in burning plasma science in magnetic fusion energy and integrated research experiments in inertial fusion energy. This meeting is open to every member of the fusion energy science community and significant international participation is encouraged. The objectives of the Fusion Summer Study are three: (1) Review scientific issues in burning plasmas to establish the basis for the following two objectives and to address the relations of burning plasma in tokamaks to innovative magnetic fusion energy (MFE) confinement concepts and of ignition in inertial fusion energy (IFE) to integrated research facilities. (2) Provide a forum for critical discussion and review of proposed MFE burning plasma experiments (e.g., IGNITOR, FIRE, and ITER) and assess the scientific and technological research opportunities and prospective benefits of these approaches to the study of burning plasmas. (3) Provide a forum for the IFE community to present plans for prospective integrated research facilities, assess present status of the technical base for each, and establish a timetable and technical progress necessary to proceed for each. Based on significant preparatory work by the fusion community prior to the July Snowmass meeting, the Snowmass working groups will prepare a draft report that documents the scientific and technological benefits of studies of burning plasmas. The report will also include criteria by which the benefits of each approach to fusion science, fusion engineering/technology, and the fusion development path can be assessed. Finally, the report

  13. Snowmass 2002: The Fusion Energy Sciences Summer Study; TOPICAL

    International Nuclear Information System (INIS)

    N. Sauthoff; G. Navratil; R. Bangerter

    2002-01-01

    The Fusion Summer Study 2002 will be a forum for the critical technical assessment of major next-steps in the fusion energy sciences program, and will provide crucial community input to the long-range planning activities undertaken by the DOE[Department of Energy] and the FESAC[Fusion Energy Sciences Advisory Committee]. It will be an ideal place for a broad community of scientists to examine goals and proposed initiatives in burning plasma science in magnetic fusion energy and integrated research experiments in inertial fusion energy. This meeting is open to every member of the fusion energy science community and significant international participation is encouraged. The objectives of the Fusion Summer Study are three: (1) Review scientific issues in burning plasmas to establish the basis for the following two objectives and to address the relations of burning plasma in tokamaks to innovative magnetic fusion energy (MFE) confinement concepts and of ignition in inertial fusion energy (IFE) to integrated research facilities. (2) Provide a forum for critical discussion and review of proposed MFE burning plasma experiments (e.g., IGNITOR, FIRE, and ITER) and assess the scientific and technological research opportunities and prospective benefits of these approaches to the study of burning plasmas. (3) Provide a forum for the IFE community to present plans for prospective integrated research facilities, assess present status of the technical base for each, and establish a timetable and technical progress necessary to proceed for each. Based on significant preparatory work by the fusion community prior to the July Snowmass meeting, the Snowmass working groups will prepare a draft report that documents the scientific and technological benefits of studies of burning plasmas. The report will also include criteria by which the benefits of each approach to fusion science, fusion engineering/technology, and the fusion development path can be assessed. Finally, the report will

  14. 78 FR 48863 - Fusion Energy Sciences Advisory Committee

    Science.gov (United States)

    2013-08-12

    ..., fusion science and fusion technology--the knowledge base needed for an economically and environmentally... Regulations, Section 102-3.65, and following consultation with the Committee Management Secretariat, General... that Act. FOR FURTHER INFORMATION CONTACT: Edmund J. Synakowski at (301) 903- 4941. Issued in...

  15. NSTX Diagnostics for Fusion Plasma Science Studies

    International Nuclear Information System (INIS)

    Kaita, R.; Johnson, D.; Roquemore, L.; Bitter, M.; Levinton, F.; Paoletti, F.; Stutman, D.

    2001-01-01

    This paper will discuss how plasma science issues are addressed by the diagnostics for the National Spherical Torus Experiment (NSTX), the newest large-scale machine in the magnetic confinement fusion (MCF) program. The development of new schemes for plasma confinement involves the interplay of experimental results and theoretical interpretations. A fundamental requirement, for example, is a determination of the equilibria for these configurations. For MCF, this is well established in the solutions of the Grad-Shafranov equation. While it is simple to state its basis in the balance between the kinetic and magnetic pressures, what they are as functions of space and time are often not easy to obtain. Quantities like the plasma pressure and current density are not directly measurable. They are derived from data that are themselves complex products of more basic parameters. The same difficulties apply to the understanding of plasma instabilities. Not only are the needs for spatial and temporal resolution more stringent, but the wave parameters which characterize the instabilities are difficult to resolve. We will show how solutions to the problems of diagnostic design on NSTX, and the physics insight the data analysis provides, benefits both NSTX and the broader scientific community

  16. Fusion science and technology at CIEMAT

    International Nuclear Information System (INIS)

    Sanchez, J.

    2012-01-01

    The presence of the agency Fusion for Energy and the significant participation of Spanish industry in the ITER project bring Spain to a relevant position in the development of fusion. This article reviews briefly the role of Ciemat in the process leading to this situation and analyzers the scientific and technological role of Ciemat in the present and future phases of the fusion programme. (Author)

  17. Inertial fusion sciences and applications 99: state of the art 1999

    International Nuclear Information System (INIS)

    Labaune, Ch.; Hogan, W.J.; Tanaka, K.A.

    2000-01-01

    This book brings together the texts of the communications presented at the conference 'Inertial fusion sciences and applications' held in Paris in 1999. These proceedings are shared into five sessions: laser fusion physics, fusion with particle beams, fusion with implosions, inertial fusion energy, and experimental applications of inertial fusion. (J.S.)

  18. Fusion interfaces for tactical environments: An application of virtual reality technology

    Science.gov (United States)

    Haas, Michael W.

    1994-01-01

    The term Fusion Interface is defined as a class of interface which integrally incorporates both virtual and nonvirtual concepts and devices across the visual, auditory, and haptic sensory modalities. A fusion interface is a multisensory virtually-augmented synthetic environment. A new facility has been developed within the Human Engineering Division of the Armstrong Laboratory dedicated to exploratory development of fusion interface concepts. This new facility, the Fusion Interfaces for Tactical Environments (FITE) Facility is a specialized flight simulator enabling efficient concept development through rapid prototyping and direct experience of new fusion concepts. The FITE Facility also supports evaluation of fusion concepts by operation fighter pilots in an air combat environment. The facility is utilized by a multidisciplinary design team composed of human factors engineers, electronics engineers, computer scientists, experimental psychologists, and oeprational pilots. The FITE computational architecture is composed of twenty-five 80486-based microcomputers operating in real-time. The microcomputers generate out-the-window visuals, in-cockpit and head-mounted visuals, localized auditory presentations, haptic displays on the stick and rudder pedals, as well as executing weapons models, aerodynamic models, and threat models.

  19. Developing the Planetary Science Virtual Observatory

    Science.gov (United States)

    Erard, Stéphane; Cecconi, Baptiste; Le Sidaner, Pierre; Henry, Florence; Chauvin, Cyril; Berthier, Jérôme; André, Nicolas; Génot, Vincent; Schmitt, Bernard; Capria, Teresa; Chanteur, Gérard

    2015-08-01

    In the frame of the Europlanet-RI program, a prototype Virtual Observatory dedicated to Planetary Science has been set up. Most of the activity was dedicated to the definition of standards to handle data in this field. The aim was to facilitate searches in big archives as well as sparse databases, to make on-line data access and visualization possible, and to allow small data providers to make their data available in an interoperable environment with minimum effort. This system makes intensive use of studies and developments led in Astronomy (IVOA), Solar Science (HELIO), and space archive services (IPDA).The current architecture connects existing data services with IVOA or IPDA protocols whenever relevant. However, a more general standard has been devised to handle the specific complexity of Planetary Science, e.g. in terms of measurement types and coordinate frames. This protocol, named EPN-TAP, is based on TAP and includes precise requirements to describe the contents of a data service (Erard et al Astron & Comp 2014). A light framework (DaCHS/GAVO) and a procedure have been identified to install small data services, and several hands-on sessions have been organized already. The data services are declared in standard IVOA registries. Support to new data services in Europe will be provided during the proposed Europlanet H2020 program, with a focus on planetary mission support (Rosetta, Cassini…).A specific client (VESPA) has been developed at VO-Paris (http://vespa.obspm.fr). It is able to use all the mandatory parameters in EPN-TAP, plus extra parameters from individual services. A resolver for target names is also available. Selected data can be sent to VO visualization tools such as TOPCAT or Aladin though the SAMP protocol.Future steps will include the development of a connection between the VO world and GIS tools, and integration of heliophysics, planetary plasma and reference spectroscopic data.The EuroPlaNet-RI project was funded by the European

  20. The status of the federal magnetic fusion program, or fusion in transition: from science to technology

    International Nuclear Information System (INIS)

    Kane, J.S.

    1983-01-01

    The current status of magnetic fusion is summarized. The science is in place; the application must be made. Government will have to underwrite the risk of the program, but the private sector must manage it. Government officials must be convinced fusion is in the interest of the taxpayer, private sector decision makers that it is commercial. Questions concerning reliability, availability, first cost, safety, environment, and sociology must be asked. Fusion energy is essentially inexhaustible, appears environmentally acceptable, and is one of a very short list of alternatives

  1. Designing virtual science labs for the Islamic Academy of Delaware

    Science.gov (United States)

    AlZahrani, Nada Saeed

    Science education is a basic part of the curriculum in modern day classrooms. Instructional approaches to science education can take many forms but hands-on application of theory via science laboratory activities for the learner is common. Not all schools have the resources to provide the laboratory environment necessary for hands-on application of science theory. Some settings rely on technology to provide a virtual laboratory experience instead. The Islamic Academy of Delaware (IAD), a typical community-based organization, was formed to support and meet the essential needs of the Muslim community of Delaware. IAD provides science education as part of the overall curriculum, but cannot provide laboratory activities as part of the science program. Virtual science labs may be a successful model for students at IAD. This study was conducted to investigate the potential of implementing virtual science labs at IAD and to develop an implementation plan for integrating the virtual labs. The literature has shown us that the lab experience is a valuable part of the science curriculum (NBPTS, 2013, Wolf, 2010, National Research Council, 1997 & 2012). The National Research Council (2012) stressed the inclusion of laboratory investigations in the science curriculum. The literature also supports the use of virtual labs as an effective substitute for classroom labs (Babateen, 2011; National Science Teachers Association, 2008). Pyatt and Simms (2011) found evidence that virtual labs were as good, if not better than physical lab experiences in some respects. Although not identical in experience to a live lab, the virtual lab has been shown to provide the student with an effective laboratory experience in situations where the live lab is not possible. The results of the IAD teacher interviews indicate that the teachers are well-prepared for, and supportive of, the implementation of virtual labs to improve the science education curriculum. The investigator believes that with the

  2. Fusion energy science: Clean, safe, and abundant energy through innovative science and technology

    International Nuclear Information System (INIS)

    2001-01-01

    Fusion energy science combines the study of the behavior of plasmas--the state of matter that forms 99% of the visible universe--with a vision of using fusion--the energy source of the stars--to create an affordable, plentiful, and environmentally benign energy source for humankind. The dual nature of fusion energy science provides an unfolding panorama of exciting intellectual challenge and a promise of an attractive energy source for generations to come. The goal of this report is a comprehensive understanding of plasma behavior leading to an affordable and attractive fusion energy source

  3. Flight Hardware Virtualization for On-Board Science Data Processing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Utilize Hardware Virtualization technology to benefit on-board science data processing by investigating new real time embedded Hardware Virtualization solutions and...

  4. Applications of Fusion Energy Sciences Research - Scientific Discoveries and New Technologies Beyond Fusion

    International Nuclear Information System (INIS)

    Wendt, Amy; Callis, Richard; Efthimion, Philip; Foster, John; Keane, Christopher; Onsager, Terry; O'Shea, Patrick

    2015-01-01

    Since the 1950s, scientists and engineers in the U.S. and around the world have worked hard to make an elusive goal to be achieved on Earth: harnessing the reaction that fuels the stars, namely fusion. Practical fusion would be a source of energy that is unlimited, safe, environmentally benign, available to all nations and not dependent on climate or the whims of the weather. Significant resources, most notably from the U.S. Department of Energy (DOE) Office of Fusion Energy Sciences (FES), have been devoted to pursuing that dream, and significant progress is being made in turning it into a reality. However, that is only part of the story. The process of creating a fusion-based energy supply on Earth has led to technological and scientific achievements of far-reaching impact that touch every aspect of our lives. Those largely unanticipated advances, spanning a wide variety of fields in science and technology, are the focus of this report. There are many synergies between research in plasma physics (the study of charged particles and fluids interacting with self-consistent electric and magnetic fields), high-energy physics, and condensed matter physics dating back many decades. For instance, the formulation of a mathematical theory of solitons, solitary waves which are seen in everything from plasmas to water waves to Bose-Einstein Condensates, has led to an equal span of applications, including the fields of optics, fluid mechanics and biophysics. Another example, the development of a precise criterion for transition to chaos in Hamiltonian systems, has offered insights into a range of phenomena including planetary orbits, two-person games and changes in the weather. Seven distinct areas of fusion energy sciences were identified and reviewed which have had a recent impact on fields of science, technology and engineering not directly associated with fusion energy: Basic plasma science; Low temperature plasmas; Space and astrophysical plasmas; High energy density

  5. Applications of Fusion Energy Sciences Research - Scientific Discoveries and New Technologies Beyond Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Amy [Univ. of Wisconsin, Madison, WI (United States); Callis, Richard [General Atomics, San Diego, CA (United States); Efthimion, Philip [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Foster, John [Univ. of Michigan, Ann Arbor, MI (United States); Keane, Christopher [Washington State Univ., Pullman, WA (United States); Onsager, Terry [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States); O' Shea, Patrick [Univ. of Maryland, College Park, MD (United States)

    2015-09-01

    Since the 1950s, scientists and engineers in the U.S. and around the world have worked hard to make an elusive goal to be achieved on Earth: harnessing the reaction that fuels the stars, namely fusion. Practical fusion would be a source of energy that is unlimited, safe, environmentally benign, available to all nations and not dependent on climate or the whims of the weather. Significant resources, most notably from the U.S. Department of Energy (DOE) Office of Fusion Energy Sciences (FES), have been devoted to pursuing that dream, and significant progress is being made in turning it into a reality. However, that is only part of the story. The process of creating a fusion-based energy supply on Earth has led to technological and scientific achievements of far-reaching impact that touch every aspect of our lives. Those largely unanticipated advances, spanning a wide variety of fields in science and technology, are the focus of this report. There are many synergies between research in plasma physics (the study of charged particles and fluids interacting with self-consistent electric and magnetic fields), high-energy physics, and condensed matter physics dating back many decades. For instance, the formulation of a mathematical theory of solitons, solitary waves which are seen in everything from plasmas to water waves to Bose-Einstein Condensates, has led to an equal span of applications, including the fields of optics, fluid mechanics and biophysics. Another example, the development of a precise criterion for transition to chaos in Hamiltonian systems, has offered insights into a range of phenomena including planetary orbits, two-person games and changes in the weather. Seven distinct areas of fusion energy sciences were identified and reviewed which have had a recent impact on fields of science, technology and engineering not directly associated with fusion energy: Basic plasma science; Low temperature plasmas; Space and astrophysical plasmas; High energy density

  6. Laser fusion and high energy density science

    International Nuclear Information System (INIS)

    Kodama, Ryosuke

    2005-01-01

    High-power laser technology is now opening a variety of new fields of science and technology using laser-produced plasmas. The laser plasma is now recognized as one of the important tools for the investigation and application of matter under extreme conditions, which is called high energy density science. This chapter shows a variety of applications of laser-produced plasmas as high energy density science. One of the more attractive industrial and science applications is the generation of intense pulse-radiation sources, such as the generation of electro-magnetic waves in the ranges of EUV (Extreme Ultra Violet) to gamma rays and laser acceleration of charged particles. The laser plasma is used as an energy converter in this regime. The fundamental science applications of high energy density physics are shown by introducing laboratory astrophysics, the equation of state of high pressure matter, including warm dense matter and nuclear science. Other applications are also presented, such as femto-second laser propulsion and light guiding. Finally, a new systematization is proposed to explore the possibility of the high energy density plasma application, which is called high energy plasma photonics''. This is also exploration of the boundary regions between laser technology and beam optics based on plasma physics. (author)

  7. Fusion virtual laboratory: The experiments' collaboration platform in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, H., E-mail: nakanisi@nifs.ac.jp [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Kojima, M.; Takahashi, C.; Ohsuna, M.; Imazu, S.; Nonomura, M. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Hasegawa, M. [RIAM, Kyushu University, Kasuga, Fukuoka 816-8560 (Japan); Yoshikawa, M. [PRC, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Nagayama, Y.; Kawahata, K. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2012-12-15

    'Fusion virtual laboratory (FVL)' is the experiments' collaboration platform covering multiple fusion projects in Japan. Major Japanese fusion laboratories and universities are mutually connected through the dedicated virtual private network, named SNET, on SINET4. It has 3 different categories; (i) LHD remote participation, (ii) bilateral experiments' collaboration, and (iii) remote use of supercomputer. By extending the LABCOM data system developed at LHD, FVL supports (i) and (ii) so that it can deal with not only LHD data but also the data of two remote experiments: QUEST at Kyushu University and GAMMA10 at University of Tsukuba. FVL has applied the latest 'cloud' technology for both data acquisition and storage architecture. It can provide us high availability and performance scalability of the whole system. With a well optimized TCP data transferring method, the unified data access platform for both experimental data and numerical computation results could become realistic on FVL. The FVL project will continue demonstrating the ITER-era international collaboration schemes and the necessary technology.

  8. Prospective Assessment of Virtual Screening Heuristics Derived Using a Novel Fusion Score.

    Science.gov (United States)

    Pertusi, Dante A; O'Donnell, Gregory; Homsher, Michelle F; Solly, Kelli; Patel, Amita; Stahler, Shannon L; Riley, Daniel; Finley, Michael F; Finger, Eleftheria N; Adam, Gregory C; Meng, Juncai; Bell, David J; Zuck, Paul D; Hudak, Edward M; Weber, Michael J; Nothstein, Jennifer E; Locco, Louis; Quinn, Carissa; Amoss, Adam; Squadroni, Brian; Hartnett, Michelle; Heo, Mee Ra; White, Tara; May, S Alex; Boots, Evelyn; Roberts, Kenneth; Cocchiarella, Patrick; Wolicki, Alex; Kreamer, Anthony; Kutchukian, Peter S; Wassermann, Anne Mai; Uebele, Victor N; Glick, Meir; Rusinko, Andrew; Culberson, J Christopher

    2017-09-01

    High-throughput screening (HTS) is a widespread method in early drug discovery for identifying promising chemical matter that modulates a target or phenotype of interest. Because HTS campaigns involve screening millions of compounds, it is often desirable to initiate screening with a subset of the full collection. Subsequently, virtual screening methods prioritize likely active compounds in the remaining collection in an iterative process. With this approach, orthogonal virtual screening methods are often applied, necessitating the prioritization of hits from different approaches. Here, we introduce a novel method of fusing these prioritizations and benchmark it prospectively on 17 screening campaigns using virtual screening methods in three descriptor spaces. We found that the fusion approach retrieves 15% to 65% more active chemical series than any single machine-learning method and that appropriately weighting contributions of similarity and machine-learning scoring techniques can increase enrichment by 1% to 19%. We also use fusion scoring to evaluate the tradeoff between screening more chemical matter initially in lieu of replicate samples to prevent false-positives and find that the former option leads to the retrieval of more active chemical series. These results represent guidelines that can increase the rate of identification of promising active compounds in future iterative screens.

  9. ME science as mobile learning based on virtual reality

    Science.gov (United States)

    Fradika, H. D.; Surjono, H. D.

    2018-04-01

    The purpose of this article described about ME Science (Mobile Education Science) as mobile learning application learning of Fisika Inti. ME Science is a product of research and development (R&D) that was using Alessi and Trollip model. Alessi and Trollip model consists three stages that are: (a) planning include analysis of problems, goals, need, and idea of development product, (b) designing includes collecting of materials, designing of material content, creating of story board, evaluating and review product, (c) developing includes development of product, alpha testing, revision of product, validation of product, beta testing, and evaluation of product. The article describes ME Science only to development of product which include development stages. The result of development product has been generates mobile learning application based on virtual reality that can be run on android-based smartphone. These application consist a brief description of learning material, quizzes, video of material summery, and learning material based on virtual reality.

  10. Virtual Experiments on the Neutron Science TeraGrid Gateway

    International Nuclear Information System (INIS)

    Lynch, Vickie E; Cobb, John W; Farhi, Emmanuel N; Miller, Stephen D; Taylor, M

    2008-01-01

    The TeraGrid's outreach effort to the neutron science community is creating an environment that is encouraging the exploration of advanced cyberinfrastructure being incorporated into facility operations in a way that leverages facility operations to multiply the scientific output of its users, including many NSF supported scientists in many disciplines. The Neutron Science TeraGrid Gateway serves as an exploratory incubator for several TeraGrid projects. Virtual neutron scattering experiments from one exploratory project will be highlighted

  11. VESPA: A community-driven Virtual Observatory in Planetary Science

    Czech Academy of Sciences Publication Activity Database

    Erard, S.; Cecconi, B.; Le Sidaner, P.; Rossi, A. P.; Capria, M.T.; Schmitt, B.; Génot, V.; André, N.; Vandaele, A. C.; Scherf, M.; Hueso, R.; Määttänen, A.; Thuillot, W.; Carry, B.; Achilleos, N.; Marmo, C.; Santolík, Ondřej; Benson, K.; Fernique, P.; Beigbeder, L.; Millour, E.; Rousseau, B.; Andrieu, F.; Chauvin, C.; Minin, M.; Ivanoski, S.; Longobardo, A.; Bollard, P.; Albert, D.; Gangloff, M.; Jourdane, N.; Bouchemit, M.; Glorian, J. M.; Trompet, L.; Al-Ubaidi, T.; Juaristi, J.; Desmars, J.; Guio, P.; Delaa, O.; Lagain, A.; Souček, Jan; Píša, David

    2018-01-01

    Roč. 150, SI (2018), s. 65-85 ISSN 0032-0633 EU Projects: European Commission(XE) 654208 - EPN2020-RI Institutional support: RVO:68378289 Keywords : Virtual Observatory * Solar System * GIS Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 1.892, year: 2016 https://www.sciencedirect.com/science/article/pii/S0032063316304937#gs1

  12. Virtual Reality Hypermedia Design Frameworks for Science Instruction.

    Science.gov (United States)

    Maule, R. William; Oh, Byron; Check, Rosa

    This paper reports on a study that conceptualizes a research framework to aid software design and development for virtual reality (VR) computer applications for instruction in the sciences. The framework provides methodologies for the processing, collection, examination, classification, and presentation of multimedia information within hyperlinked…

  13. Virtual Collections: An Earth Science Data Curation Service

    Science.gov (United States)

    Bugbee, Kaylin; Ramachandran, Rahul; Maskey, Manil; Gatlin, Patrick

    2016-01-01

    The role of Earth science data centers has traditionally been to maintain central archives that serve openly available Earth observation data. However, in order to ensure data are as useful as possible to a diverse user community, Earth science data centers must move beyond simply serving as an archive to offering innovative data services to user communities. A virtual collection, the end product of a curation activity that searches, selects, and synthesizes diffuse data and information resources around a specific topic or event, is a data curation service that improves the discoverability, accessibility, and usability of Earth science data and also supports the needs of unanticipated users. Virtual collections minimize the amount of the time and effort needed to begin research by maximizing certainty of reward and by providing a trustworthy source of data for unanticipated users. This presentation will define a virtual collection in the context of an Earth science data center and will highlight a virtual collection case study created at the Global Hydrology Resource Center data center.

  14. Virtual Collections: An Earth Science Data Curation Service

    Science.gov (United States)

    Bugbee, K.; Ramachandran, R.; Maskey, M.; Gatlin, P. N.

    2016-12-01

    The role of Earth science data centers has traditionally been to maintain central archives that serve openly available Earth observation data. However, in order to ensure data are as useful as possible to a diverse user community, Earth science data centers must move beyond simply serving as an archive to offering innovative data services to user communities. A virtual collection, the end product of a curation activity that searches, selects, and synthesizes diffuse data and information resources around a specific topic or event, is a data curation service that improves the discoverability, accessibility and usability of Earth science data and also supports the needs of unanticipated users. Virtual collections minimize the amount of time and effort needed to begin research by maximizing certainty of reward and by providing a trustworthy source of data for unanticipated users. This presentation will define a virtual collection in the context of an Earth science data center and will highlight a virtual collection case study created at the Global Hydrology Resource Center data center.

  15. Sensor data fusion for textured reconstruction and virtual representation of alpine scenes

    Science.gov (United States)

    Häufel, Gisela; Bulatov, Dimitri; Solbrig, Peter

    2017-10-01

    The concept of remote sensing is to provide information about a wide-range area without making physical contact with this area. If, additionally to satellite imagery, images and videos taken by drones provide a more up-to-date data at a higher resolution, or accurate vector data is downloadable from the Internet, one speaks of sensor data fusion. The concept of sensor data fusion is relevant for many applications, such as virtual tourism, automatic navigation, hazard assessment, etc. In this work, we describe sensor data fusion aiming to create a semantic 3D model of an extremely interesting yet challenging dataset: An alpine region in Southern Germany. A particular challenge of this work is that rock faces including overhangs are present in the input airborne laser point cloud. The proposed procedure for identification and reconstruction of overhangs from point clouds comprises four steps: Point cloud preparation, filtering out vegetation, mesh generation and texturing. Further object types are extracted in several interesting subsections of the dataset: Building models with textures from UAV (Unmanned Aerial Vehicle) videos, hills reconstructed as generic surfaces and textured by the orthophoto, individual trees detected by the watershed algorithm, as well as the vector data for roads retrieved from openly available shapefiles and GPS-device tracks. We pursue geo-specific reconstruction by assigning texture and width to roads of several pre-determined types and modeling isolated trees and rocks using commercial software. For visualization and simulation of the area, we have chosen the simulation system Virtual Battlespace 3 (VBS3). It becomes clear that the proposed concept of sensor data fusion allows a coarse reconstruction of a large scene and, at the same time, an accurate and up-to-date representation of its relevant subsections, in which simulation can take place.

  16. Review of the Strategic Plan for International Collaboration on Fusion Science and Technology Research. Fusion Energy Sciences Advisory Committee (FESAC)

    International Nuclear Information System (INIS)

    1998-01-01

    The United States Government has employed international collaborations in magnetic fusion energy research since the program was declassified in 1958. These collaborations have been successful not only in producing high quality scientific results that have contributed to the advancement of fusion science and technology, they have also allowed us to highly leverage our funding. Thus, in the 1980s, when the funding situation made it necessary to reduce the technical breadth of the U.S. domestic program, these highly leveraged collaborations became key strategic elements of the U.S. program, allowing us to maintain some degree of technical breadth. With the recent, nearly complete declassification of inertial confinement fusion, the use of some international collaboration is expected to be introduced in the related inertial fusion energy research activities as well. The United States has been a leader in establishing and fostering collaborations that have involved scientific and technological exchanges, joint planning, and joint work at fusion facilities in the U.S. and worldwide. These collaborative efforts have proven mutually beneficial to the United States and our partners. International collaborations are a tool that allows us to meet fusion program goals in the most effective way possible. Working with highly qualified people from other countries and other cultures provides the collaborators with an opportunity to see problems from new and different perspectives, allows solutions to arise from the diversity of the participants, and promotes both collaboration and friendly competition. In short, it provides an exciting and stimulating environment resulting in a synergistic effect that is good for science and good for the people of the world.

  17. Virtual Games in Social Science Education

    Science.gov (United States)

    Lopez, Jose M. Cuenca; Caceres, Myriam J. Martin

    2010-01-01

    The new technologies make the appearance of highly motivating and dynamic games with different levels of interaction possible, in which large amounts of data, information, procedures and values are included which are intimately bound with the social sciences. We set out from the hypothesis that videogames may become interesting resources for their…

  18. Virtual research environments from portals to science gateways

    CERN Document Server

    Allan, Robert N

    2009-01-01

    Virtual Research Environments examines making Information and Communication Technologies (ICT) usable by researchers working to solve "grand challenge” problems in many disciplines from social science to particle physics. It is driven by research the authors have carried out to evaluate researchers' requirements in using information services via web portals and in adapting collaborative learning tools to meet their more diverse needs, particularly in a multidisciplinary study.This is the motivation for what the authors have helped develop into the UK Virtual Research Environments (VRE)

  19. Virtual Reality and Cyberspace: From Science Fiction to Science Fact.

    Science.gov (United States)

    Stone, Robert J.

    1991-01-01

    Traces the history of virtual reality (VR), or cyberspace, and describes some of the research and development efforts currently being carried out in the United Kingdom, Europe, and the United States. Applications of VR in interactive computer-aided design (CAD), the military, leisure activities, spaceflight, teleconferencing, and medicine are…

  20. Fusion power: the transition from fundamental science to fusion reactor engineering

    International Nuclear Information System (INIS)

    Post, R.F.

    1975-01-01

    The historical development of fusion research is outlined. The basics of fusion power along with fuel cost and advantages of fusion are discussed. Some quantitative requirements for fusion power are described. (MOW)

  1. Data Fusion for Earth Science Remote Sensing

    Science.gov (United States)

    Braverman, Amy

    2007-01-01

    Beginning in 2004, NASA has supported the development of an international network of ground-based remote sensing installations for the measurement of greenhouse gas columns. This collaboration has been successful and is currently used in both carbon cycle investigations and in the efforts to validate the GOSAT space-based column observations of CO2 and CH4. With the support of a grant, this research group has established a network of ground-based column observations that provide an essential link between the satellite observations of CO2, CO, and CH4 and the extensive global in situ surface network. The Total Carbon Column Observing Network (TCCON) was established in 2004. At the time of this report seven sites, employing modern instrumentation, were operational or were expected to be shortly. TCCON is expected to expand. In addition to providing the most direct means of tying the in situ and remote sensing data sets together, TCCON provides a means of testing the retrieval algorithms of SCIAMACHY and GOSAT over the broadest variation in atmospheric state. TCCON provides a critically maintained and long timescale record for identification of temporal drift and spatial bias in the calibration of the space-based sensors. Finally, the global observations from TCCON are improving our understanding of how to use column observations to provide robust estimates of surface exchange of C02 and CH4 in advance of the launch of OCO and GOSAT. TCCON data are being used to better understand the impact of both regional fluxes and long-range transport on gradients in the C02 column. Such knowledge is essential for identifying the tools required to best use the space-based observations. The technical approach and methodology of retrieving greenhouse gas columns from near-IR solar spectra, data quality and process control are described. Additionally, the impact of and relevance to NASA of TCCON and satellite validation and carbon science are addressed.

  2. Can virtual science foster real skills? A study of inquiry skills in a virtual world

    Science.gov (United States)

    Dodds, Heather E.

    Online education has grown into a part of the educational market answering the demand for learning at the learner's choice of time and place. Inquiry skills such as observing, questioning, collecting data, and devising fair experiments are an essential element of 21st-century online science coursework. Virtual immersive worlds such as Second Life are being used as new frontiers in science education. There have been few studies looking specifically at science education in virtual worlds that foster inquiry skills. This quantitative quasi-experimental nonrandomized control group pretest and posttest study explored what affect a virtual world experience had on inquiry skills as measured by the TIPS (Test of Integrated Process Skills) and TIPS II (Integrated Process Skills Test II) instruments. Participants between the ages of 18 and 65 were recruited from educator mailing lists and Second Life discussion boards and then sorted into the experimental group, which received instructions to utilize several displays in Mendelian genetics at the Genome Island location within Second Life, or the control group, which received text-based PDF documents of the same genetics course content. All participants, in the form of avatars, were experienced Second Life residents to reduce any novelty effect. This study found a greater increase in inquiry skills in the experimental group interacting using a virtual world to learn science content (0.90 points) than a control group that is presented only with online text-based content (0.87 points). Using a mixed between-within ANOVA (analysis of variance), with an alpha level of 0.05, there was no significant interaction between the control or experimental groups and inquiry skills, F (1, 58) = .783, p = .380, partial eta squared = .013, at the specified .05 alpha level suggesting no significant difference as a result of the virtual world exercise. However, there is not enough evidence to state that there was no effect because there was a

  3. A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion

    International Nuclear Information System (INIS)

    Schissel, D.P.; Abla, G.; Burruss, J.R.; Feibush, E.; Fredian, T.W.; Goode, M.M.; Greenwald, M.J.; Keahey, K.; Leggett, T.; Li, K.; McCune, D.C.; Papka, M.E.; Randerson, L.; Sanderson, A.; Stillerman, J.; Thompson, M.R.; Uram, T.; Wallace, G.

    2006-01-01

    This report summarizes the work of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was a collaboration itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. Developing a reliable energy system that is economically and environmentally sustainable is the long-term goal of Fusion Energy Science (FES) research. In the U.S., FES experimental research is centered at three large facilities with a replacement value of over $1B. As these experiments have increased in size and complexity, there has been a concurrent growth in the number and importance of collaborations among large groups at the experimental sites and smaller groups located nationwide. Teaming with the experimental community is a theoretical and simulation community whose efforts range from applied analysis of experimental data to fundamental theory (e.g., realistic nonlinear 3D plasma models) that run on massively parallel computers. Looking toward the future, the large-scale experiments needed for FES research are staffed by correspondingly large, globally dispersed teams. The fusion program will be increasingly oriented toward the International Thermonuclear Experimental Reactor (ITER) where even now, a decade before operation begins, a large

  4. Inertial fusion science and technology for the next century

    International Nuclear Information System (INIS)

    Campbell, E M; Hogan, W J; Landes, S

    1999-01-01

    This paper reviews the leading edge of the basic and applied science and technology that use high-intensity facilities and looks at what opportunities lie ahead. The more than 15,000 experiments on the Nova laser since 1985 and many thousands more on other laser, particle beam, and pulsed power facilities around the world have established the new laboratory field of high-energy-density plasma physics and have furthered development of inertial fusion. New capabilities such as those provided by high-brightness femtosecond lasers have enabled the study of matter in conditions previously unachievable on earth. These experiments, along with advanced calculations now practical because of the progress in computing capability, have established the specifications for the National Ignition Facility and Laser MegaJoule and have enhanced new scientific fields such as laboratory astrophysics. Science and technology developed in inertial fusion have found near-term commercial use, have enabled steady progress toward the goal of fusion ignition and gain in the laboratory, and have opened up new fields of study for the 21st century

  5. Impacting the Science Community through Teacher Development: Utilizing Virtual Learning.

    Science.gov (United States)

    Boulay, Rachel; van Raalte, Lisa

    2014-01-01

    Commitment to the STEM (science, technology, engineering, math) pipeline is slowly declining despite the need for professionals in the medical field. Addressing this, the John A. Burns School of Medicine developed a summer teacher-training program with a supplemental technology-learning component to improve science teachers' knowledge and skills of Molecular Biology. Subsequently, students' skills, techniques, and application of molecular biology are impacted. Science teachers require training that will prepare them for educating future professionals and foster interest in the medical field. After participation in the program and full access to the virtual material, twelve high school science teachers completed a final written reflective statement to evaluate their experiences. Using thematic analysis, knowledge and classroom application were investigated in this study. Results were two-fold: teachers identified difference areas of gained knowledge from the teacher-training program and teachers' reporting various benefits in relation to curricula development after participating in the program. It is concluded that participation in the program and access to the virtual material will impact the science community by updating teacher knowledge and positively influencing students' experience with science.

  6. Virtual reality hardware for use in interactive 3D data fusion and visualization

    Science.gov (United States)

    Gourley, Christopher S.; Abidi, Mongi A.

    1997-09-01

    Virtual reality has become a tool for use in many areas of research. We have designed and built a VR system for use in range data fusion and visualization. One major VR tool is the CAVE. This is the ultimate visualization tool, but comes with a large price tag. Our design uses a unique CAVE whose graphics are powered by a desktop computer instead of a larger rack machine making it much less costly. The system consists of a screen eight feet tall by twenty-seven feet wide giving a variable field-of-view currently set at 160 degrees. A silicon graphics Indigo2 MaxImpact with the impact channel option is used for display. This gives the capability to drive three projectors at a resolution of 640 by 480 for use in displaying the virtual environment and one 640 by 480 display for a user control interface. This machine is also the first desktop package which has built-in hardware texture mapping. This feature allows us to quickly fuse the range and intensity data and other multi-sensory data. The final goal is a complete 3D texture mapped model of the environment. A dataglove, magnetic tracker, and spaceball are to be used for manipulation of the data and navigation through the virtual environment. This system gives several users the ability to interactively create 3D models from multiple range images.

  7. Information Fusion Issues in the UK Environmental Science Community

    Science.gov (United States)

    Giles, J. R.

    2010-12-01

    The Earth is a complex, interacting system which cannot be neatly divided by discipline boundaries. To gain an holistic understanding of even a component of an Earth System requires researchers to draw information from multiple disciplines and integrate these to develop a broader understanding. But the barriers to achieving this are formidable. Research funders attempting to encourage the integration of information across disciplines need to take into account culture issues, the impact of intrusion of projects on existing information systems, ontologies and semantics, scale issues, heterogeneity and the uncertainties associated with combining information from diverse sources. Culture - There is a cultural dualism in the environmental sciences were information sharing is both rewarded and discouraged. Researchers who share information both gain new opportunities and risk reducing their chances of being first author in an high-impact journal. The culture of the environmental science community has to be managed to ensure that information fusion activities are encouraged. Intrusion - Existing information systems have an inertia of there own because of the intellectual and financial capital invested within them. Information fusion activities must recognise and seek to minimise the potential impact of their projects on existing systems. Low intrusion information fusions systems such as OGC web-service and the OpenMI Standard are to be preferred to whole-sale replacement of existing systems. Ontology and Semantics - Linking information across disciplines requires a clear understanding of the concepts deployed in the vocabulary used to describe them. Such work is a critical first step to creating routine information fusion. It is essential that national bodies, such as geological surveys organisations, document and publish their ontologies, semantics, etc. Scale - Environmental processes operate at scales ranging from microns to the scale of the Solar System and

  8. VESPA: developing the planetary science Virtual Observatory in H2020

    Science.gov (United States)

    Erard, Stéphane; Cecconi, Baptiste; Le Sidaner, Pierre; Capria, Teresa; Rossi, Angelo Pio

    2016-04-01

    The Europlanet H2020 programme will develop a research infrastructure in Horizon 2020. The programme includes a follow-on to the FP7 activity aimed at developing the Planetary Science Virtual Observatory (VO). This activity is called VESPA, which stands for Virtual European Solar and Planetary Access. Building on the IDIS activity of Europlanet FP7, VESPA will distribute more data, will improve the connected tools and infrastructure, and will help developing a community of both users and data providers. One goal of the Europlanet FP7 programme was to set the basis for a European Virtual Observatory in Planetary Science. A prototype has been set up during FP7, most of the activity being dedicated to the definition of standards to handle data in this field. The aim was to facilitate searches in big archives as well as sparse databases, to make on-line data access and visualization possible, and to allow small data providers to make their data available in an interoperable environment with minimum effort. This system makes intensive use of studies and developments led in Astronomy (IVOA), Solar Science (HELIO), plasma physics (SPASE), and space archive services (IPDA). It remains consistent with extensions of IVOA standards.

  9. Use of virtual reality for optimizing the life cycle of a fusion component

    Energy Technology Data Exchange (ETDEWEB)

    Keller, D., E-mail: delphine.keller@cea.fr [CEA, IRFM, F-13108 St-Paul-Lez-Durance (France); Doceul, L.; Ferlay, F.; Louison, C.; Pilia, A.; Pavy, K. [CEA, IRFM, F-13108 St-Paul-Lez-Durance (France); Chodorge, L.; Andriot, C. [CEA Saclay – DIGITEO Moulon, DRT/LIST/DIASI/LSI, F-91191 Gif Sur Yvette (France)

    2015-12-15

    Efficient development of a complex system such as a fusion component needs a stringent integration of standard and new constraints. For example, compared to the previous fusion experimental devices, remote handling (RH) and safety requirements are in ITER key parameters which must be integrated since the earliest design. For optimizing such integration studies, CEA, IRFM decided in 2010 to implement the use of virtual reality (VR) tools during the life cycle (from design to operation) of a fusion component. This paper describes a first feedback of such use for fusion engineering purposes. After a short overview of the CEA, IRFM VR platform capabilities, three main uses will be described: design review, simulation of remote handling and hands-on operations, with man in the loop. The Design review mode was intensively used within the framework of a fruitful collaboration with ITER design Integration Team. This mode, fully compatible with CAD software, enables scale one data visualization with stereoscopic rendering. It improves the efficiency in detecting inconsistencies inside models and machine sub-system design optimization needs. Several accessibility cases of major Safety Important Components (SIC-1) were studied giving important requirements to the design at an early stage. CEA, IRFM, in close collaboration with expertise of CEA, LIST for VR simulation software, applies VR technologies for designing RH maintenance scenario for ITER Test Blanket System (TBS) and Ion cyclotron Resonance Heating (ICRH) Port Plugs. RH compatibility studies using VR pointed out major design drivers while helping to propose credible solution. VR platform is intensively used in the design of WEST (Tungsten (W) Environment Steady-state Tokamak) components and assembly studies, providing important information about the feasibility of assembly processes, optimization of physical mock-ups and ergonomic posture and gestures of operator. Finally, new perspectives, as the integration of

  10. Use of virtual reality for optimizing the life cycle of a fusion component

    International Nuclear Information System (INIS)

    Keller, D.; Doceul, L.; Ferlay, F.; Louison, C.; Pilia, A.; Pavy, K.; Chodorge, L.; Andriot, C.

    2015-01-01

    Efficient development of a complex system such as a fusion component needs a stringent integration of standard and new constraints. For example, compared to the previous fusion experimental devices, remote handling (RH) and safety requirements are in ITER key parameters which must be integrated since the earliest design. For optimizing such integration studies, CEA, IRFM decided in 2010 to implement the use of virtual reality (VR) tools during the life cycle (from design to operation) of a fusion component. This paper describes a first feedback of such use for fusion engineering purposes. After a short overview of the CEA, IRFM VR platform capabilities, three main uses will be described: design review, simulation of remote handling and hands-on operations, with man in the loop. The Design review mode was intensively used within the framework of a fruitful collaboration with ITER design Integration Team. This mode, fully compatible with CAD software, enables scale one data visualization with stereoscopic rendering. It improves the efficiency in detecting inconsistencies inside models and machine sub-system design optimization needs. Several accessibility cases of major Safety Important Components (SIC-1) were studied giving important requirements to the design at an early stage. CEA, IRFM, in close collaboration with expertise of CEA, LIST for VR simulation software, applies VR technologies for designing RH maintenance scenario for ITER Test Blanket System (TBS) and Ion cyclotron Resonance Heating (ICRH) Port Plugs. RH compatibility studies using VR pointed out major design drivers while helping to propose credible solution. VR platform is intensively used in the design of WEST (Tungsten (W) Environment Steady-state Tokamak) components and assembly studies, providing important information about the feasibility of assembly processes, optimization of physical mock-ups and ergonomic posture and gestures of operator. Finally, new perspectives, as the integration of

  11. Enabling Data Intensive Science through Service Oriented Science: Virtual Laboratories and Science Gateways

    Science.gov (United States)

    Lescinsky, D. T.; Wyborn, L. A.; Evans, B. J. K.; Allen, C.; Fraser, R.; Rankine, T.

    2014-12-01

    We present collaborative work on a generic, modular infrastructure for virtual laboratories (VLs, similar to science gateways) that combine online access to data, scientific code, and computing resources as services that support multiple data intensive scientific computing needs across a wide range of science disciplines. We are leveraging access to 10+ PB of earth science data on Lustre filesystems at Australia's National Computational Infrastructure (NCI) Research Data Storage Infrastructure (RDSI) node, co-located with NCI's 1.2 PFlop Raijin supercomputer and a 3000 CPU core research cloud. The development, maintenance and sustainability of VLs is best accomplished through modularisation and standardisation of interfaces between components. Our approach has been to break up tightly-coupled, specialised application packages into modules, with identified best techniques and algorithms repackaged either as data services or scientific tools that are accessible across domains. The data services can be used to manipulate, visualise and transform multiple data types whilst the scientific tools can be used in concert with multiple scientific codes. We are currently designing a scalable generic infrastructure that will handle scientific code as modularised services and thereby enable the rapid/easy deployment of new codes or versions of codes. The goal is to build open source libraries/collections of scientific tools, scripts and modelling codes that can be combined in specially designed deployments. Additional services in development include: provenance, publication of results, monitoring, workflow tools, etc. The generic VL infrastructure will be hosted at NCI, but can access alternative computing infrastructures (i.e., public/private cloud, HPC).The Virtual Geophysics Laboratory (VGL) was developed as a pilot project to demonstrate the underlying technology. This base is now being redesigned and generalised to develop a Virtual Hazards Impact and Risk Laboratory

  12. Design and Testing of the Fusion Virtual Assembly System FVAS1.0

    International Nuclear Information System (INIS)

    Pengcheng Long; Songlin Liu; Yican Wu

    2006-01-01

    Virtual assembly (VA), utilizing virtual reality (VR) technologies to plan and evaluate assembly process, retains the benefits (time-saving, inexpensive and no hazardous) of VR technologies and conquers the shortcoming of physical prototypes, such as long circle, high cost, low precision, and so on. Presented in this paper is the Fusion Virtual Assembly System FVAS 1.0 that makes possible engineering application for assemblies of large-scale complex nuclear facilities. FVAS 1.0 is designed to support the planning, evaluation and demonstration of assembly process, and training assemblers, and to work on PC (personal computer) platform. In this paper, architecture and main features of FVAS are introduced firstly. Then, design of the key sections (such as collision detection, virtual roaming) are described in detail. Finally, some successful application cases are presented. To enhance the real-time performance for large-scale nuclear facilities simulation, a policy based on separation of display scene and collision detection scene has been adopted. The display scene can be predigested to reduce the time of scene refreshment, and the collision detection performance is greatly improved by using the mature interference check ability of commercial CAD systems. Convenient observation mechanism brings more practicability. So a multi-viewpoints roaming scheme has been utilized to facilitate users' assembly operation. Users can obtain much optical information from multiple angles by switching between multi-viewpoints. The ESAT superconducting tokamak is characterized by large volume, complicated constitution and high assembly precision, e.g. the strict precision requirement in the assembly for the three tori (the tori of vacuum vessel, thermal shield, and toroidal coil). FVAS 1.0 has succeeded in demonstrating the assembly process of ESAT components. Furthermore, FVAS 1.0 has been applied to evaluate FDS-I (Fusion-Driven Sub-critical system) concept from assembly point of

  13. Heavy-ion-fusion-science: summary of US progress

    International Nuclear Information System (INIS)

    Yu, S.S.; Logan, B.G.; Barnard, J.J.; Bieniosek, F.M.; Briggs, R.J.; Cohen, R.H.; Coleman, J.E.; Davidson, R.C.; Friedman, A.; Gilson, E.P.; Grisham, L.R.; Grote, D.P.; Henestroza, E.; Kaganovich, I.D.; Covo, M. Kireeff; Kishek, R.A.; Kwan, J.W.; Lee, E.P.; Leitner, M.A.; Lund, S.M.; Molvik, A.W.; Olson, C.L.; Qin, H.; Roy, P.K.; Sefkow, A.; Seidl, P.A.; Startsev, E.A.; Vay, J-L.; Waldron, W.L.; Welch, D.R.

    2007-01-01

    Over the past two years noteworthy experimental and theoretical progress has been made towards the top-level scientific question for the US programme on heavy-ion-fusion-science and high energy density physics: 'How can heavy-ion beams be compressed to the high intensity required to create high energy density matter and fusion conditions?' New results in transverse and longitudinal beam compression, high-brightness transport and beam acceleration will be reported. Central to this campaign is final beam compression. With a neutralizing plasma, we demonstrated transverse beam compression by an areal factor of over 100 and longitudinal compression by a factor of > 50. We also report on the first demonstration of simultaneous transverse and longitudinal beam compression in plasma. High beam brightness is key to high intensity on target, and detailed experimental and theoretical studies on the effect of secondary electrons on beam brightness degradation are reported. A new accelerator concept for near-term low-cost target heating experiments was invented, and the predicted beam dynamics validated experimentally. We show how these scientific campaigns have created new opportunities for interesting target experiments in the warm dense matter regime. Finally, we summarize progress towards heavy-ion fusion, including the demonstration of a compact driver-size high-brightness ion injector. For all components of our high intensity campaign, the new results have been obtained via tightly coupled efforts in experiments, simulations and theory

  14. Science Initiatives of the US Virtual Astronomical Observatory

    Science.gov (United States)

    Hanisch, R. J.

    2012-09-01

    The United States Virtual Astronomical Observatory program is the operational facility successor to the National Virtual Observatory development project. The primary goal of the US VAO is to build on the standards, protocols, and associated infrastructure developed by NVO and the International Virtual Observatory Alliance partners and to bring to fruition a suite of applications and web-based tools that greatly enhance the research productivity of professional astronomers. To this end, and guided by the advice of our Science Council (Fabbiano et al. 2011), we have focused on five science initiatives in the first two years of VAO operations: 1) scalable cross-comparisons between astronomical source catalogs, 2) dynamic spectral energy distribution construction, visualization, and model fitting, 3) integration and periodogram analysis of time series data from the Harvard Time Series Center and NASA Star and Exoplanet Database, 4) integration of VO data discovery and access tools into the IRAF data analysis environment, and 5) a web-based portal to VO data discovery, access, and display tools. We are also developing tools for data linking and semantic discovery, and have a plan for providing data mining and advanced statistical analysis resources for VAO users. Initial versions of these applications and web-based services are being released over the course of the summer and fall of 2011, with further updates and enhancements planned for throughout 2012 and beyond.

  15. Science Initiatives of the US Virtual Astronomical Observatory

    Directory of Open Access Journals (Sweden)

    Hanisch Robert J.

    2012-09-01

    Full Text Available The United States Virtual Astronomical Observatory program is the operational facility successor to the National Virtual Observatory development project. The primary goal of the US VAO is to build on the standards, protocols, and associated infrastructure developed by NVO and the International Virtual Observatory Alliance partners and to bring to fruition a suite of applications and web-based tools that greatly enhance the research productivity of professional astronomers. To this end, and guided by the advice of our Science Council (advisory committee, we are focusing on five science initiatives in the first two years of VAO operations: (1 scalable cross-comparisons between astronomical source catalogs, (2 dynamic spectral energy distribution construction, visualization, and model fitting, (3 integration and periodogram analysis of time series data from the Harvard Time Series Center and NASA Star and Exoplanet Database, (4 integration of VO data discovery and access tools into the IR AF data analysis environment, and (5 a web-based portal to VO data discovery, access, and display tools. We are also developing tools for data linking and semantic discovery, and have a plan for providing data mining and advanced statistical analysis resources for VAO users. Initial versions of these applications and web-based services are being released over the course of the summer and fall of 2011, with further updates and enhancements planned for throughout 2012 and beyond.

  16. NASA Virtual Glovebox: An Immersive Virtual Desktop Environment for Training Astronauts in Life Science Experiments

    Science.gov (United States)

    Twombly, I. Alexander; Smith, Jeffrey; Bruyns, Cynthia; Montgomery, Kevin; Boyle, Richard

    2003-01-01

    The International Space Station will soon provide an unparalleled research facility for studying the near- and longer-term effects of microgravity on living systems. Using the Space Station Glovebox Facility - a compact, fully contained reach-in environment - astronauts will conduct technically challenging life sciences experiments. Virtual environment technologies are being developed at NASA Ames Research Center to help realize the scientific potential of this unique resource by facilitating the experimental hardware and protocol designs and by assisting the astronauts in training. The Virtual GloveboX (VGX) integrates high-fidelity graphics, force-feedback devices and real- time computer simulation engines to achieve an immersive training environment. Here, we describe the prototype VGX system, the distributed processing architecture used in the simulation environment, and modifications to the visualization pipeline required to accommodate the display configuration.

  17. The National Virtual Observatory Science Definintion Team: Report and Status

    Science.gov (United States)

    Djorgovski, S. G.; NVO SDT Team

    2002-05-01

    Astronomy has become an enormously data-rich science, with numerous multi-Terabyte sky surveys and archives over the full range of wavelengths, and Petabyte-scale data sets already on the horizon. The amount of the available information is growing exponentially, largely driven by the progress in detector and information technology, and the quality and complexity of the data are unprecedented. This great quantitative advance will result in qualitative changes in the way astronomy is done. The Virtual Observatory concept is the astronomy community's organized response to the challenges posed by efficient handling and scientific exploration of new, massive data sets. The NAS Decadal Survey, Astronomy and Astrophysics in the New Millennium, recommends as the first priority in the ``small'' projects category creation of the National Virtual Observatory (NVO). In response to this, the NSF and NASA formed in June 2001 the NVO Science Definition Team (SDT), with a mandate to: (1) Define and formulate a joint NASA/NSF initiative to pursue the NVO goals; (2) Solicit input from the U.S. astronomy community, and incorporate it in the NVO definition documents and recommendations for further actions; and (3) Serve as liaison to broader space science, computer science, and statistics communities for the NVO initiative, and as liaison with the similar efforts in Europe, looking forward towards a truly Global Virtual Observatory. The Team has delivered its report to the agencies and made it publicly available on its website (http://nvosdt.org), where many other relevant links can be found. We will summarize the report, its conclusions, and recommendations.

  18. Earth Science Data Fusion with Event Building Approach

    Science.gov (United States)

    Lukashin, C.; Bartle, Ar.; Callaway, E.; Gyurjyan, V.; Mancilla, S.; Oyarzun, R.; Vakhnin, A.

    2015-01-01

    Objectives of the NASA Information And Data System (NAIADS) project are to develop a prototype of a conceptually new middleware framework to modernize and significantly improve efficiency of the Earth Science data fusion, big data processing and analytics. The key components of the NAIADS include: Service Oriented Architecture (SOA) multi-lingual framework, multi-sensor coincident data Predictor, fast into-memory data Staging, multi-sensor data-Event Builder, complete data-Event streaming (a work flow with minimized IO), on-line data processing control and analytics services. The NAIADS project is leveraging CLARA framework, developed in Jefferson Lab, and integrated with the ZeroMQ messaging library. The science services are prototyped and incorporated into the system. Merging the SCIAMACHY Level-1 observations and MODIS/Terra Level-2 (Clouds and Aerosols) data products, and ECMWF re- analysis will be used for NAIADS demonstration and performance tests in compute Cloud and Cluster environments.

  19. Magnet Design Considerations for Fusion Nuclear Science Facility

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kessel, C. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); El-Guebaly, L. [Univ. of Wisconsin, Madison, WI (United States) Fusion Technology Institute; Titus, P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2016-06-01

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility that provides a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between the International Thermonuclear Experimental Reactor (ITER) and the demonstration power plant (DEMO). Compared with ITER, the FNSF is smaller in size but generates much higher magnetic field, i.e., 30 times higher neutron fluence with three orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center with a plasma major radius of 4.8 m and a minor radius of 1.2 m and a peak field of 15.5 T on the toroidal field (TF) coils for the FNSF. Both low-temperature superconductors (LTS) and high-temperature superconductors (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high-performance ternary restacked-rod process Nb3Sn strands for TF magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high-aspect-ratio rectangular CICC design are evaluated for FNSF magnets, but low-activation-jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. The material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.

  20. Report of the Fusion Energy Sciences Advisory Committee. Panel on Integrated Simulation and Optimization of Magnetic Fusion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dahlburg, Jill [General Atomics, San Diego, CA (United States); Corones, James [Krell Inst., Ames, IA (United States); Batchelor, Donald [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bramley, Randall [Indiana Univ., Bloomington, IN (United States); Greenwald, Martin [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Jardin, Stephen [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Krasheninnikov, Sergei [Univ. of California, San Diego, CA (United States); Laub, Alan [Univ. of California, Davis, CA (United States); Leboeuf, Jean-Noel [Univ. of California, Los Angeles, CA (United States); Lindl, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lokke, William [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosenbluth, Marshall [Univ. of California, San Diego, CA (United States); Ross, David [Univ. of Texas, Austin, TX (United States); Schnack, Dalton [Science Applications International Corporation, Oak Ridge, TN (United States)

    2002-11-01

    Fusion is potentially an inexhaustible energy source whose exploitation requires a basic understanding of high-temperature plasmas. The development of a science-based predictive capability for fusion-relevant plasmas is a challenge central to fusion energy science, in which numerical modeling has played a vital role for more than four decades. A combination of the very wide range in temporal and spatial scales, extreme anisotropy, the importance of geometric detail, and the requirement of causality which makes it impossible to parallelize over time, makes this problem one of the most challenging in computational physics. Sophisticated computational models are under development for many individual features of magnetically confined plasmas and increases in the scope and reliability of feasible simulations have been enabled by increased scientific understanding and improvements in computer technology. However, full predictive modeling of fusion plasmas will require qualitative improvements and innovations to enable cross coupling of a wider variety of physical processes and to allow solution over a larger range of space and time scales. The exponential growth of computer speed, coupled with the high cost of large-scale experimental facilities, makes an integrated fusion simulation initiative a timely and cost-effective opportunity. Worldwide progress in laboratory fusion experiments provides the basis for a recent FESAC recommendation to proceed with a burning plasma experiment (see FESAC Review of Burning Plasma Physics Report, September 2001). Such an experiment, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world’s energy security. An integrated simulation capability would dramatically enhance the utilization of such a facility and lead to optimization of toroidal fusion plasmas in general. This science-based predictive capability, which was cited in the FESAC

  1. Report of the Fusion Energy Sciences Advisory Committee. Panel on Integrated Simulation and Optimization of Magnetic Fusion Systems

    International Nuclear Information System (INIS)

    Dahlburg, Jill; Corones, James; Batchelor, Donald; Bramley, Randall; Greenwald, Martin; Jardin, Stephen; Krasheninnikov, Sergei; Laub, Alan; Leboeuf, Jean-Noel; Lindl, John; Lokke, William; Rosenbluth, Marshall; Ross, David; Schnack, Dalton

    2002-01-01

    Fusion is potentially an inexhaustible energy source whose exploitation requires a basic understanding of high-temperature plasmas. The development of a science-based predictive capability for fusion-relevant plasmas is a challenge central to fusion energy science, in which numerical modeling has played a vital role for more than four decades. A combination of the very wide range in temporal and spatial scales, extreme anisotropy, the importance of geometric detail, and the requirement of causality which makes it impossible to parallelize over time, makes this problem one of the most challenging in computational physics. Sophisticated computational models are under development for many individual features of magnetically confined plasmas and increases in the scope and reliability of feasible simulations have been enabled by increased scientific understanding and improvements in computer technology. However, full predictive modeling of fusion plasmas will require qualitative improvements and innovations to enable cross coupling of a wider variety of physical processes and to allow solution over a larger range of space and time scales. The exponential growth of computer speed, coupled with the high cost of large-scale experimental facilities, makes an integrated fusion simulation initiative a timely and cost-effective opportunity. Worldwide progress in laboratory fusion experiments provides the basis for a recent FESAC recommendation to proceed with a burning plasma experiment (see FESAC Review of Burning Plasma Physics Report, September 2001). Such an experiment, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world's energy security. An integrated simulation capability would dramatically enhance the utilization of such a facility and lead to optimization of toroidal fusion plasmas in general. This science-based predictive capability, which was cited in the

  2. Experiencing Soil Science from your office through virtual experiences

    Science.gov (United States)

    Beato, M. Carmen; González-Merino, Ramón; Campillo, M. Carmen; Fernández-Ahumada, Elvira; Ortiz, Leovigilda; Taguas, Encarnación V.; Guerrero, José Emilio

    2017-04-01

    Currently, numerous tools based on the new information and communication technologies offer a wide range of possibilities for the implementation of interactive methodologies in Education and Science. In particular, virtual reality and immersive worlds - artificially generated computer environments where users interact through a figurative individual that represents them in that environment (their "avatar") - have been identified as the technology that will change the way we live, particularly in educational terms, product development and entertainment areas (Schmorrow, 2009). Gisbert-Cervera et al. (2011) consider that the 3D worlds in education, among others, provide a unique training and exchange of knowledge environment which allows a goal reflection to support activities and achieve learning outcomes. In Soil Sciences, the experimental component is essential to acquire the necessary knowledge to understand the biogeochemical processes taking place and their interactions with time, climate, topography and living organisms present. In this work, an immersive virtual environment which reproduces a series of pits have been developed to evaluate and differentiate soil characteristics such as texture, structure, consistency, color and other physical-chemical and biological properties for educational purposes. Bibliographical material such as pictures, books, papers and were collected in order to classify the information needed and to build the soil profiles into the virtual environment. The programming language for the virtual recreation was Unreal Engine4 (UE4; https://www.unrealengine.com/unreal-engine-4). This program was chosen because it provides two toolsets for programmers and it can also be used in tandem to accelerate development workflows. In addition, Unreal Engine4 technology powers hundreds of games as well as real-time 3D films, training simulations, visualizations and it creates very realistic graphics. For the evaluation of its impact and its

  3. The (human) science of medical virtual learning environments.

    Science.gov (United States)

    Stone, Robert J

    2011-01-27

    The uptake of virtual simulation technologies in both military and civilian surgical contexts has been both slow and patchy. The failure of the virtual reality community in the 1990s and early 2000s to deliver affordable and accessible training systems stems not only from an obsessive quest to develop the 'ultimate' in so-called 'immersive' hardware solutions, from head-mounted displays to large-scale projection theatres, but also from a comprehensive lack of attention to the needs of the end users. While many still perceive the science of simulation to be defined by technological advances, such as computing power, specialized graphics hardware, advanced interactive controllers, displays and so on, the true science underpinning simulation--the science that helps to guarantee the transfer of skills from the simulated to the real--is that of human factors, a well-established discipline that focuses on the abilities and limitations of the end user when designing interactive systems, as opposed to the more commercially explicit components of technology. Based on three surgical simulation case studies, the importance of a human factors approach to the design of appropriate simulation content and interactive hardware for medical simulation is illustrated. The studies demonstrate that it is unnecessary to pursue real-world fidelity in all instances in order to achieve psychological fidelity--the degree to which the simulated tasks reproduce and foster knowledge, skills and behaviours that can be reliably transferred to real-world training applications.

  4. Stepping Into Science Data: Data Visualization in Virtual Reality

    Science.gov (United States)

    Skolnik, S.

    2017-12-01

    Have you ever seen people get really excited about science data? Navteca, along with the Earth Science Technology Office (ESTO), within the Earth Science Division of NASA's Science Mission Directorate have been exploring virtual reality (VR) technology for the next generation of Earth science technology information systems. One of their first joint experiments was visualizing climate data from the Goddard Earth Observing System Model (GEOS) in VR, and the resulting visualizations greatly excited the scientific community. This presentation will share the value of VR for science, such as the capability of permitting the observer to interact with data rendered in real-time, make selections, and view volumetric data in an innovative way. Using interactive VR hardware (headset and controllers), the viewer steps into the data visualizations, physically moving through three-dimensional structures that are traditionally displayed as layers or slices, such as cloud and storm systems from NASA's Global Precipitation Measurement (GPM). Results from displaying this precipitation and cloud data show that there is interesting potential for scientific visualization, 3D/4D visualizations, and inter-disciplinary studies using VR. Additionally, VR visualizations can be leveraged as 360 content for scientific communication and outreach and VR can be used as a tool to engage policy and decision makers, as well as the public.

  5. EVEREST: Creating a Virtual Research Environment for Earth Science

    Science.gov (United States)

    Glaves, H.

    2017-12-01

    There is an increasing trend towards researchers working together using common resources whilst being geographically dispersed. The EVER-EST project is developing a range of both generic and domain specific technologies, tailored to the needs of Earth Science (ES) communities, to create a virtual research environment (VRE) that supports this type of dynamic collaborative research. The EVER-EST VRE provides a suite of services to overcome the existing barriers to sharing of Earth Science data and information allowing researchers to discover, access, share and process heterogeneous data, algorithms, results and experiences within and across their communities, and with other domains beyond the Earth Sciences. Researchers will be able to seamlessly manage both the data and the scientific methods applied in their observations and modelling that lead to results that need to be attributable, validated and shared both within their communities and more widely in the form of scholarly communications.To ensure that the EVER-EST VRE meets the specific needs of the Earth Science domain, it is being developed and validated in consultation with four pre-selected virtual research communities (VRC) that include ocean observing, natural hazards, land monitoring and volcanic risk management. The requirements of these individual VRCs for data, software, best practice and community interaction are used to customise the VRE platform This user-centric approach allows the EVER-EST infrastructure to be assessed in terms of its capability to satisfy the heterogeneous needs of Earth Science communities for more effective collaboration, greater efficiency and increasingly innovative research. EVER-EST is a three year project funded by the European Union's Horizon 2020 research and innovation programme under grant agreement no 674907.

  6. A Plan for the Development of Fusion Energy. Final Report to Fusion Energy Sciences Advisory Committee, Fusion Development Path Panel

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2003-03-05

    This report presents a plan for the deployment of a fusion demonstration power plant within 35 years, leading to commercial application of fusion energy by mid-century. The plan is derived from the necessary features of a demonstration fusion power plant and from the time scale defined by President Bush. It identifies critical milestones, key decision points, needed major facilities and required budgets.

  7. Response to FESAC survey, non-fusion connections to Fusion Energy Sciences. Applications of the FES-supported beam and plasma simulation code, Warp

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grote, D. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vay, J. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-29

    The Fusion Energy Sciences Advisory Committee’s subcommittee on non-fusion applications (FESAC NFA) is conducting a survey to obtain information from the fusion community about non-fusion work that has resulted from their DOE-funded fusion research. The subcommittee has requested that members of the community describe recent developments connected to the activities of the DOE Office of Fusion Energy Sciences. Two questions in particular were posed by the subcommittee. This document contains the authors’ responses to those questions.

  8. Cognitive knowledge, attitude toward science, and skill development in virtual science laboratories

    Science.gov (United States)

    Babaie, Mahya

    The purpose of this quantitative, descriptive, single group, pretest posttest design study was to explore the influence of a Virtual Science Laboratory (VSL) on middle school students' cognitive knowledge, skill development, and attitudes toward science. This study involved 2 eighth grade Physical Science classrooms at a large urban charter middle school located in Southern California. The Buoyancy and Density Test (BDT), a computer generated test, assessed students' scientific knowledge in areas of Buoyancy and Density. The Attitude Toward Science Inventory (ATSI), a multidimensional survey assessment, measured students' attitudes toward science in the areas of value of science in society, motivation in science, enjoyment of science, self-concept regarding science, and anxiety toward science. A Virtual Laboratory Packet (VLP), generated by the researcher, captured students' mathematical and scientific skills. Data collection was conducted over a period of five days. BDT and ATSI assessments were administered twice: once before the Buoyancy and Density VSL to serve as baseline data (pre) and also after the VSL (post). The findings of this study revealed that students' cognitive knowledge and attitudes toward science were positively changed as expected, however, the results from paired sample t-tests found no statistical significance. Analyses indicated that VSLs were effective in supporting students' scientific knowledge and attitude toward science. The attitudes most changed were value of science in society and enjoyment of science with mean differences of 1.71 and 0.88, respectively. Researchers and educational practitioners are urged to further examine VSLs, covering a variety of topics, with more middle school students to assess their learning outcomes. Additionally, it is recommended that publishers in charge of designing the VSLs communicate with science instructors and research practitioners to further improve the design and analytic components of these

  9. INTERNET and information about nuclear sciences. The world wide web virtual library: nuclear sciences

    International Nuclear Information System (INIS)

    Kuruc, J.

    1999-01-01

    In this work author proposes to constitute new virtual library which should centralize the information from nuclear disciplines on the INTERNET, in order to them to give first and foremost the connection on the most important links in set nuclear sciences. The author has entitled this new virtual library The World Wide Web Library: Nuclear Sciences. By constitution of this virtual library next basic principles were chosen: home pages of international organizations important from point of view of nuclear disciplines; home pages of the National Nuclear Commissions and governments; home pages of nuclear scientific societies; web-pages specialized on nuclear problematic, in general; periodical tables of elements and isotopes; web-pages aimed on Chernobyl crash and consequences; web-pages with antinuclear aim. Now continue the links grouped on web-pages according to single nuclear areas: nuclear arsenals; nuclear astrophysics; nuclear aspects of biology (radiobiology); nuclear chemistry; nuclear company; nuclear data centres; nuclear energy; nuclear energy, environmental aspects of (radioecology); nuclear energy info centres; nuclear engineering; nuclear industries; nuclear magnetic resonance; nuclear material monitoring; nuclear medicine and radiology; nuclear physics; nuclear power (plants); nuclear reactors; nuclear risk; nuclear technologies and defence; nuclear testing; nuclear tourism; nuclear wastes; nuclear wastes. In these single groups web-links will be concentrated into following groups: virtual libraries and specialized servers; science; nuclear societies; nuclear departments of the academic institutes; nuclear research institutes and laboratories; centres, info links

  10. Science Education Using a Computer Model-Virtual Puget Sound

    Science.gov (United States)

    Fruland, R.; Winn, W.; Oppenheimer, P.; Stahr, F.; Sarason, C.

    2002-12-01

    We created an interactive learning environment based on an oceanographic computer model of Puget Sound-Virtual Puget Sound (VPS)-as an alternative to traditional teaching methods. Students immersed in this navigable 3-D virtual environment observed tidal movements and salinity changes, and performed tracer and buoyancy experiments. Scientific concepts were embedded in a goal-based scenario to locate a new sewage outfall in Puget Sound. Traditional science teaching methods focus on distilled representations of agreed-upon knowledge removed from real-world context and scientific debate. Our strategy leverages students' natural interest in their environment, provides meaningful context and engages students in scientific debate and knowledge creation. Results show that VPS provides a powerful learning environment, but highlights the need for research on how to most effectively represent concepts and organize interactions to support scientific inquiry and understanding. Research is also needed to ensure that new technologies and visualizations do not foster misconceptions, including the impression that the model represents reality rather than being a useful tool. In this presentation we review results from prior work with VPS and outline new work for a modeling partnership recently formed with funding from the National Ocean Partnership Program (NOPP).

  11. Space Science Outreach in the Virtual World of Second Life

    Science.gov (United States)

    Crider, Anthony W.; International Spaceflight Museum

    2006-12-01

    The on-line "game" of Second Life allows users to construct a highly detailed and customized environment. Users often pool talents and resources to construct virtual islands that focus on their common interest. One such group has built the International Spaceflight Museum, committed to constructing and displaying accurate models of rockets, spacecraft, telescopes, and planetariums. Current exhibits include a Saturn V rocket, a Viking lander on Mars, Spaceship One, the New Horizons mission to the Kuiper Belt, and a prototype of the Orion crew exploration vehicle. This museum also hosts public lectures, shuttle launch viewings, and university astronomy class projects. In this presentation, I will focus on how space science researchers and educators may take advantage of this new resource as a means to engage the public.

  12. Fusion connection: contributions to industry, defense, and basic science resulting from scientific advances made in the Magnetic Fusion Energy Program

    International Nuclear Information System (INIS)

    Finn, T.; Woo, J.; Temkin, R.

    1985-10-01

    Fusion research has led to significant contributions in many different areas of industry, defense, and basic science. This diversity is represented visually in the introductory figure which shows both a radio galaxy, and a microchip produced by plasma etching. Some of these spin-off technologies are discussed

  13. Using Virtualization to Integrate Weather, Climate, and Coastal Science Education

    Science.gov (United States)

    Davis, J. R.; Paramygin, V. A.; Figueiredo, R.; Sheng, Y.

    2012-12-01

    To better understand and communicate the important roles of weather and climate on the coastal environment, a unique publically available tool is being developed to support research, education, and outreach activities. This tool uses virtualization technologies to facilitate an interactive, hands-on environment in which students, researchers, and general public can perform their own numerical modeling experiments. While prior efforts have focused solely on the study of the coastal and estuary environments, this effort incorporates the community supported weather and climate model (WRF-ARW) into the Coastal Science Educational Virtual Appliance (CSEVA), an education tool used to assist in the learning of coastal transport processes; storm surge and inundation; and evacuation modeling. The Weather Research and Forecasting (WRF) Model is a next-generation, community developed and supported, mesoscale numerical weather prediction system designed to be used internationally for research, operations, and teaching. It includes two dynamical solvers (ARW - Advanced Research WRF and NMM - Nonhydrostatic Mesoscale Model) as well as a data assimilation system. WRF-ARW is the ARW dynamics solver combined with other components of the WRF system which was developed primarily at NCAR, community support provided by the Mesoscale and Microscale Meteorology (MMM) division of National Center for Atmospheric Research (NCAR). Included with WRF is the WRF Pre-processing System (WPS) which is a set of programs to prepare input for real-data simulations. The CSEVA is based on the Grid Appliance (GA) framework and is built using virtual machine (VM) and virtual networking technologies. Virtualization supports integration of an operating system, libraries (e.g. Fortran, C, Perl, NetCDF, etc. necessary to build WRF), web server, numerical models/grids/inputs, pre-/post-processing tools (e.g. WPS / RIP4 or UPS), graphical user interfaces, "Cloud"-computing infrastructure and other tools into a

  14. Fusion

    CERN Document Server

    Mahaffey, James A

    2012-01-01

    As energy problems of the world grow, work toward fusion power continues at a greater pace than ever before. The topic of fusion is one that is often met with the most recognition and interest in the nuclear power arena. Written in clear and jargon-free prose, Fusion explores the big bang of creation to the blackout death of worn-out stars. A brief history of fusion research, beginning with the first tentative theories in the early 20th century, is also discussed, as well as the race for fusion power. This brand-new, full-color resource examines the various programs currently being funded or p

  15. Fusion science and technology at CIEMAT; Ciencia y Tecnologia de fusion en el Ciemat

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, J.

    2012-07-01

    The presence of the agency Fusion for Energy and the significant participation of Spanish industry in the ITER project bring Spain to a relevant position in the development of fusion. This article reviews briefly the role of Ciemat in the process leading to this situation and analyzers the scientific and technological role of Ciemat in the present and future phases of the fusion programme. (Author)

  16. Building the US National Fusion Grid: results from the National Fusion Collaboratory Project

    International Nuclear Information System (INIS)

    Schissel, D.P.; Burruss, J.R.; Finkelstein, A.; Flanagan, S.M.; Foster, I.T.; Fredian, T.W.; Greenwald, M.J.; Johnson, C.R.; Keahey, K.; Klasky, S.A.; Li, K.; McCune, D.C.; Papka, M.; Peng, Q.; Randerson, L.; Sanderson, A.; Stillerman, J.; Stevens, R.; Thompson, M.R.; Wallace, G.

    2004-01-01

    The US National Fusion Collaboratory Project is developing a persistent infrastructure to enable scientific collaboration for all aspects of magnetic fusion research. The project is creating a robust, user-friendly collaborative software environment and making it available to more than 1000 fusion scientists in 40 institutions who perform magnetic fusion research in the United States. In particular, the project is developing and deploying a national Fusion Energy Sciences Grid (FusionGrid) that is a system for secure sharing of computation, visualization, and data resources over the Internet. The FusionGrid goal is to allow scientists at remote sites to fully participate in experimental and computational activities as if they were working at a common site thereby creating a virtual organization of the US fusion community. The project is funded by the USDOE Office of Science, Scientific Discovery through Advanced Computing (SciDAC) Program and unites fusion and computer science researchers to directly address these challenges

  17. Office of Fusion Energy Sciences. A ten-year perspective (2015-2025)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-12-01

    The vision described here builds on the present U.S. activities in fusion plasma and materials science relevant to the energy goal and extends plasma science at the frontier of discovery. The plan is founded on recommendations made by the National Academies, a number of recent studies by the Fusion Energy Sciences Advisory Committee (FESAC), and the Administration’s views on the greatest opportunities for U.S. scientific leadership.This report highlights five areas of critical importance for the U.S. fusion energy sciences enterprise over the next decade: 1) Massively parallel computing with the goal of validated whole-fusion-device modeling will enable a transformation in predictive power, which is required to minimize risk in future fusion energy development steps; 2) Materials science as it relates to plasma and fusion sciences will provide the scientific foundations for greatly improved plasma confinement and heat exhaust; 3) Research in the prediction and control of transient events that can be deleterious to toroidal fusion plasma confinement will provide greater confidence in machine designs and operation with stable plasmas; 4) Continued stewardship of discovery in plasma science that is not expressly driven by the energy goal will address frontier science issues underpinning great mysteries of the visible universe and help attract and retain a new generation of plasma/fusion science leaders; 5) FES user facilities will be kept world-leading through robust operations support and regular upgrades. Finally, we will continue leveraging resources among agencies and institutions and strengthening our partnerships with international research facilities.

  18. The art and science of data curation: Lessons learned from constructing a virtual collection

    Science.gov (United States)

    Bugbee, Kaylin; Ramachandran, Rahul; Maskey, Manil; Gatlin, Patrick

    2018-03-01

    A digital, or virtual, collection is a value added service developed by libraries that curates information and resources around a topic, theme or organization. Adoption of the virtual collection concept as an Earth science data service improves the discoverability, accessibility and usability of data both within individual data centers but also across data centers and disciplines. In this paper, we introduce a methodology for systematically and rigorously curating Earth science data and information into a cohesive virtual collection. This methodology builds on the geocuration model of searching, selecting and synthesizing Earth science data, metadata and other information into a single and useful collection. We present our experiences curating a virtual collection for one of NASA's twelve Distributed Active Archive Centers (DAACs), the Global Hydrology Resource Center (GHRC), and describe lessons learned as a result of this curation effort. We also provide recommendations and best practices for data centers and data providers who wish to curate virtual collections for the Earth sciences.

  19. Sensor Webs as Virtual Data Systems for Earth Science

    Science.gov (United States)

    Moe, K. L.; Sherwood, R.

    2008-05-01

    The NASA Earth Science Technology Office established a 3-year Advanced Information Systems Technology (AIST) development program in late 2006 to explore the technical challenges associated with integrating sensors, sensor networks, data assimilation and modeling components into virtual data systems called "sensor webs". The AIST sensor web program was initiated in response to a renewed emphasis on the sensor web concepts. In 2004, NASA proposed an Earth science vision for a more robust Earth observing system, coupled with remote sensing data analysis tools and advances in Earth system models. The AIST program is conducting the research and developing components to explore the technology infrastructure that will enable the visionary goals. A working statement for a NASA Earth science sensor web vision is the following: On-demand sensing of a broad array of environmental and ecological phenomena across a wide range of spatial and temporal scales, from a heterogeneous suite of sensors both in-situ and in orbit. Sensor webs will be dynamically organized to collect data, extract information from it, accept input from other sensor / forecast / tasking systems, interact with the environment based on what they detect or are tasked to perform, and communicate observations and results in real time. The focus on sensor webs is to develop the technology and prototypes to demonstrate the evolving sensor web capabilities. There are 35 AIST projects ranging from 1 to 3 years in duration addressing various aspects of sensor webs involving space sensors such as Earth Observing-1, in situ sensor networks such as the southern California earthquake network, and various modeling and forecasting systems. Some of these projects build on proof-of-concept demonstrations of sensor web capabilities like the EO-1 rapid fire response initially implemented in 2003. Other projects simulate future sensor web configurations to evaluate the effectiveness of sensor-model interactions for producing

  20. The APECS Virtual Poster Session: a virtual platform for science communication and discussion

    Science.gov (United States)

    Renner, A.; Jochum, K.; Jullion, L.; Pavlov, A.; Liggett, D.; Fugmann, G.; Baeseman, J. L.; Apecs Virtual Poster Session Working Group, T.

    2011-12-01

    The Virtual Poster Session (VPS) of the Association of Polar Early Career Scientists (APECS) was developed by early career scientists as an online tool for communicating and discussing science and research beyond the four walls of a conference venue. Poster sessions often are the backbone of a conference where especially early career scientists get a chance to communicate their research, discuss ideas, data, and scientific problems with their peers and senior scientists. There, they can hone their 'elevator pitch', discussion skills and presentation skills. APECS has taken the poster session one step further and created the VPS - the same idea but independent from conferences, travel, and location. All that is needed is a computer with internet access. Instead of letting their posters collect dust on the computer's hard drive, scientists can now upload them to the APECS website. There, others have the continuous opportunity to comment, give feedback and discuss the work. Currently, about 200 posters are accessible contributed by authors and co-authors from 34 countries. Since January 2010, researchers can discuss their poster with a broad international audience including fellow researchers, community members, potential colleagues and collaborators, policy makers and educators during monthly conference calls via an internet platform. Recordings of the calls are available online afterwards. Calls so far have included topical sessions on e.g. marine biology, glaciology, or social sciences, and interdisciplinary calls on Arctic sciences or polar research activities in a specific country, e.g. India or Romania. They attracted audiences of scientists at all career stages and from all continents, with on average about 15 persons participating per call. Online tools like the VPS open up new ways for creating collaborations and new research ideas and sharing different methodologies for future projects, pushing aside the boundaries of countries and nations, conferences

  1. A survey on publications in fusion research and technology science and technology indicators in fusion R and T

    International Nuclear Information System (INIS)

    Hillebrand, C.D.

    1999-01-01

    Scientific publications disseminate research results and are therefore an interesting subject for science and technology analysis. Bibliographic databases contain scientific publications which are indexed and structured. The paper considers Fusion Research and Technology records which are stored in the International Nuclear Information System (INIS) bibliographic database. For the first time, all scientometric and bibliometric information specific to a selected field of science and technology contained in a bibliographic database, using INIS records, is analysed and quantified. A variety of new science and technology indicators which can be used for assessing research and development activities are also presented. (author)

  2. A survey on publications in fusion research and technology science and technology indicators in fusion R and T

    International Nuclear Information System (INIS)

    Hillebrand, C.-D.

    2001-01-01

    Scientific publications disseminate research results and are therefore an interesting subject for science and technology analysis. Bibliographic databases contain scientific publications which are indexed and structured. The paper considers Fusion Research and Technology records which are stored in the International Nuclear Information System (INIS) bibliographic database. For the first time, all scientometric and bibliometric information specific to a selected field of science and technology contained in a bibliographic database, using INIS records, is analysed and quantified. A variety of new science and technology indicators which can be used for assessing research and development activities are also presented. (author)

  3. The Virtual Learning Commons: Supporting Science Education with Emerging Technologies

    Science.gov (United States)

    Pennington, D. D.; Gandara, A.; Gris, I.

    2012-12-01

    The Virtual Learning Commons (VLC), funded by the National Science Foundation Office of Cyberinfrastructure CI-Team Program, is a combination of Semantic Web, mash up, and social networking tools that supports knowledge sharing and innovation across scientific disciplines in research and education communities and networks. The explosion of scientific resources (data, models, algorithms, tools, and cyberinfrastructure) challenges the ability of educators to be aware of resources that might be relevant to their classes. Even when aware, it can be difficult to understand enough about those resources to develop classroom materials. Often emerging data and technologies have little documentation, especially about their application. The VLC tackles this challenge by providing mechanisms for individuals and groups of educators to organize Web resources into virtual collections, and engage each other around those collections in order to a) learn about potentially relevant resources that are available; b) design classes that leverage those resources; and c) develop course syllabi. The VLC integrates Semantic Web functionality for structuring distributed information, mash up functionality for retrieving and displaying information, and social media for discussing/rating information. We are working to provide three views of information that support educators in different ways: 1. Innovation Marketplace: supports users as they find others teaching similar courses, where they are located, and who they collaborate with; 2. Conceptual Mapper: supports educators as they organize their thinking about the content of their class and related classes taught by others; 3. Curriculum Designer: supports educators as they generate a syllabus and find Web resources that are relevant. This presentation will discuss the innovation and learning theories that have informed design of the VLC, hypotheses about the use of emerging technologies to support innovation in classrooms, and will include a

  4. Material Science Activities for Fusion Reactors in Kazakhstan

    International Nuclear Information System (INIS)

    Tazhibayeva, I.; Kenzhin, E.; Kulsartov, T.; Shestakov, V.; Chikhray, Y.; Azizov, E.; Filatov, O.; Chernov, V.M.

    2007-01-01

    prevention of failures of intra-chamber components. High parameters of power loads (up to 20 MWt/m 2 ), wide range of used techniques and diagnostics allow for carrying out the studies and tests in divertor volume and at first wall, including mockups of DEMO vanadium module and lithium divertor module on the basis of capillary-porous system. The paper contains description of tokamak KTM features and material science program in support of creation of experimental modules for DEMO, ITER and fusion power reactors. (authors)

  5. Thematic web portals for different user profiles in a virtual health science library: Bibliosalut's experience

    OpenAIRE

    Páez, Virgili; Font, Mònica; Pastor-Ramon, Elena; Sastre-Suárez, Sílvia; Costa-Marin, Maria

    2016-01-01

    Normally users of a virtual health library have different professional profiles (physicians, nurses, pharmacists...) and/or they are from different specialties (Primary Health Care, Internal Medicine, Oncology...). This poster shows the experience of the Virtual Health Sciences Library of the Balearic Islands (Bibliosalut) of creating thematic web portals, which aims is to improve the experience of our users to browse and query to information resources and services of the virtual library and ...

  6. Heterogeneous classifier fusion for ligand-based virtual screening: or, how decision making by committee can be a good thing.

    Science.gov (United States)

    Riniker, Sereina; Fechner, Nikolas; Landrum, Gregory A

    2013-11-25

    The concept of data fusion - the combination of information from different sources describing the same object with the expectation to generate a more accurate representation - has found application in a very broad range of disciplines. In the context of ligand-based virtual screening (VS), data fusion has been applied to combine knowledge from either different active molecules or different fingerprints to improve similarity search performance. Machine-learning (ML) methods based on fusion of multiple homogeneous classifiers, in particular random forests, have also been widely applied in the ML literature. The heterogeneous version of classifier fusion - fusing the predictions from different model types - has been less explored. Here, we investigate heterogeneous classifier fusion for ligand-based VS using three different ML methods, RF, naïve Bayes (NB), and logistic regression (LR), with four 2D fingerprints, atom pairs, topological torsions, RDKit fingerprint, and circular fingerprint. The methods are compared using a previously developed benchmarking platform for 2D fingerprints which is extended to ML methods in this article. The original data sets are filtered for difficulty, and a new set of challenging data sets from ChEMBL is added. Data sets were also generated for a second use case: starting from a small set of related actives instead of diverse actives. The final fused model consistently outperforms the other approaches across the broad variety of targets studied, indicating that heterogeneous classifier fusion is a very promising approach for ligand-based VS. The new data sets together with the adapted source code for ML methods are provided in the Supporting Information .

  7. A Multi-User Virtual Environment for Building and Assessing Higher Order Inquiry Skills in Science

    Science.gov (United States)

    Ketelhut, Diane Jass; Nelson, Brian C.; Clarke, Jody; Dede, Chris

    2010-01-01

    This study investigated novel pedagogies for helping teachers infuse inquiry into a standards-based science curriculum. Using a multi-user virtual environment (MUVE) as a pedagogical vehicle, teams of middle-school students collaboratively solved problems around disease in a virtual town called River City. The students interacted with "avatars" of…

  8. Virtual Laboratories in Science Education: Students' Motivation and Experiences in Two Tertiary Biology Courses

    Science.gov (United States)

    Dyrberg, Nadia Rahbek; Treusch, Alexander H.; Wiegand, Claudia

    2017-01-01

    Potential benefits of simulations and virtual laboratory exercises in natural sciences have been both theorised and studied recently. This study reports findings from a pilot study on student attitude, motivation and self-efficacy when using the virtual laboratory programme Labster. The programme allows interactive learning about the workflows and…

  9. Facing reality: the growth of virtual reality and health sciences libraries

    Directory of Open Access Journals (Sweden)

    Susan Lessick

    2017-10-01

    Full Text Available Virtual reality (VR is an increasingly hot tech topic. Because VR may be the ultimate virtual project as defined by this column, replacing the real world with a simulated one, it is worthwhile to pause and reflect on its potential and practicality for health sciences libraries.

  10. Opportunities in Participatory Science and Citizen Science with MRO's High Resolution Imaging Science Experiment: A Virtual Science Team Experience

    Science.gov (United States)

    Gulick, Ginny

    2009-09-01

    We report on the accomplishments of the HiRISE EPO program over the last two and a half years of science operations. We have focused primarily on delivering high impact science opportunities through our various participatory science and citizen science websites. Uniquely, we have invited students from around the world to become virtual HiRISE team members by submitting target suggestions via our HiRISE Quest Image challenges using HiWeb the team's image suggestion facility web tools. When images are acquired, students analyze their returned images, write a report and work with a HiRISE team member to write a image caption for release on the HiRISE website (http://hirise.lpl.arizona.edu). Another E/PO highlight has been our citizen scientist effort, HiRISE Clickworkers (http://clickworkers.arc.nasa.gov/hirise). Clickworkers enlists volunteers to identify geologic features (e.g., dunes, craters, wind streaks, gullies, etc.) in the HiRISE images and help generate searchable image databases. In addition, the large image sizes and incredible spatial resolution of the HiRISE camera can tax the capabilities of the most capable computers, so we have also focused on enabling typical users to browse, pan and zoom the HiRISE images using our HiRISE online image viewer (http://marsoweb.nas.nasa.gov/HiRISE/hirise_images/). Our educational materials available on the HiRISE EPO web site (http://hirise.seti.org/epo) include an assortment of K through college level, standards-based activity books, a K through 3 coloring/story book, a middle school level comic book, and several interactive educational games, including Mars jigsaw puzzles, crosswords, word searches and flash cards.

  11. Learning Science in a Virtual Reality Application: The Impacts of Animated-Virtual Actors' Visual Complexity

    Science.gov (United States)

    Kartiko, Iwan; Kavakli, Manolya; Cheng, Ken

    2010-01-01

    As the technology in computer graphics advances, Animated-Virtual Actors (AVAs) in Virtual Reality (VR) applications become increasingly rich and complex. Cognitive Theory of Multimedia Learning (CTML) suggests that complex visual materials could hinder novice learners from attending to the lesson properly. On the other hand, previous studies have…

  12. Annual report of National Institute for Fusion Science. April 2011 - March 2012

    International Nuclear Information System (INIS)

    2012-01-01

    This annual report summarizes the research activities at NIFS (the National Institute for Fusion Science) between April 2011 and March 2012. NIFS is pursuing the integration of science and technology to realize a fusion power plant. The systematization of plasma physics, and research and development of reactor relevant engineering are key elements in our strategy. NIFS has been exploiting its role as an inter-university research organization and executing a variety of excellent collaborating studies together with universities and research institutes abroad as well as in Japan. The major projects of NIFS are the Large Helical Device (LHD) Project, the Numerical Simulation Research Project, the Fusion Engineering Research Project and the Coordination Research Project. These major projects are accompanied by unique supporting research. Advanced engineering and fusion reactor design studies are strongly promoted. (J.P.N.)

  13. Annual report of National Institute for Fusion Science. April 2009 - March 2010

    International Nuclear Information System (INIS)

    2010-01-01

    This annual report summarizes the research activities at NIFS (the National Institute for Fusion Science) between April 2009 and March 2010. NIFS is pursuing the integration of science and technology to realize a fusion power plant. The systematization of plasma physics, and research and development of reactor relevant engineering are key elements in our strategy. NIFS has been exploiting its role as an inter-university research organization and executing a variety of excellent collaborating studies together with universities and research institutes abroad as well as in Japan. The major projects of NIFS are the Large Helical Device (LHD) Project, the Numerical Simulation Research Project, the Fusion Engineering Research Project and the Coordination Research Project. These major projects are accompanied by unique supporting research. Advanced engineering and fusion reactor design studies are strongly promoted. (J.P.N.)

  14. Annual report of National Institute for Fusion Science. April 2012 - March 2013

    International Nuclear Information System (INIS)

    2013-01-01

    This annual report summarizes the research activities at NIFS (the National Institute for Fusion Science) between April 2012 and March 2013. NIFS is pursuing the integration of science and technology to realize a fusion power plant. The systematization of plasma physics, and research and development of reactor relevant engineering are key elements in our strategy. NIFS has been exploiting its role as an inter-university research organization and executing a variety of excellent collaborating studies together with universities and research institutes abroad as well as in Japan. The major projects of NIFS are the Large Helical Device (LHD) Project, the Numerical Simulation Research Project, the Fusion Engineering Research Project and the Coordination Research Project. These major projects are accompanied by unique supporting research. Advanced engineering and fusion reactor design studies are strongly promoted. (J.P.N.)

  15. Binaural fusion and the representation of virtual pitch in the human auditory cortex.

    Science.gov (United States)

    Pantev, C; Elbert, T; Ross, B; Eulitz, C; Terhardt, E

    1996-10-01

    The auditory system derives the pitch of complex tones from the tone's harmonics. Research in psychoacoustics predicted that binaural fusion was an important feature of pitch processing. Based on neuromagnetic human data, the first neurophysiological confirmation of binaural fusion in hearing is presented. The centre of activation within the cortical tonotopic map corresponds to the location of the perceived pitch and not to the locations that are activated when the single frequency constituents are presented. This is also true when the different harmonics of a complex tone are presented dichotically. We conclude that the pitch processor includes binaural fusion to determine the particular pitch location which is activated in the auditory cortex.

  16. A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Schissel, David P. [Princeton Plasma Physics Lab., NJ (United States); Abla, G. [Princeton Plasma Physics Lab., NJ (United States); Burruss, J. R. [Princeton Plasma Physics Lab., NJ (United States); Feibush, E. [Princeton Plasma Physics Lab., NJ (United States); Fredian, T. W. [Massachusetts Institute of Technology, Cambridge, MA (United States); Goode, M. M. [Lawrence Berkeley National Lab., CA (United States); Greenwald, M. J. [Massachusetts Institute of Technology, Cambridge, MA (United States); Keahey, K. [Argonne National Lab., IL (United States); Leggett, T. [Argonne National Lab., IL (United States); Li, K. [Princeton Univ., NJ (United States); McCune, D. C. [Princeton Plasma Physics Lab., NJ (United States); Papka, M. E. [Argonne National Lab., IL (United States); Randerson, L. [Princeton Plasma Physics Lab., NJ (United States); Sanderson, A. [Univ. of Utah, Salt Lake City, UT (United States); Stillerman, J. [Massachusetts Institute of Technology, Cambridge, MA (United States); Thompson, M. R. [Lawrence Berkeley National Lab., CA (United States); Uram, T. [Argonne National Lab., IL (United States); Wallace, G. [Princeton Univ., NJ (United States)

    2012-12-20

    This report summarizes the work of the National Fusion Collaboratory (NFC) Project to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. The original objective of the NFC project was to develop and deploy a national FES Grid (FusionGrid) that would be a system for secure sharing of computation, visualization, and data resources over the Internet. The goal of FusionGrid was to allow scientists at remote sites to participate as fully in experiments and computational activities as if they were working on site thereby creating a unified virtual organization of the geographically dispersed U.S. fusion community. The vision for FusionGrid was that experimental and simulation data, computer codes, analysis routines, visualization tools, and remote collaboration tools are to be thought of as network services. In this model, an application service provider (ASP provides and maintains software resources as well as the necessary hardware resources. The project would create a robust, user-friendly collaborative software environment and make it available to the US FES community. This Grid's resources would be protected by a shared security infrastructure including strong authentication to identify users and authorization to allow stakeholders to control their own resources. In this environment, access to services is stressed rather than data or software portability.

  17. A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion

    International Nuclear Information System (INIS)

    Schissel, David P.; Abla, G.; Burruss, J. R.; Feibush, E.; Fredian, T. W.; Goode, M. M.; Greenwald, M. J.; Keahey, K.; Leggett, T.; Li, K.; McCune, D. C.; Papka, M. E.; Randerson, L.; Sanderson, A.; Stillerman, J.; Thompson, M. R.; Uram, T.; Wallace, G.

    2012-01-01

    This report summarizes the work of the National Fusion Collaboratory (NFC) Project to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. The original objective of the NFC project was to develop and deploy a national FES Grid(FusionGrid) that would be a system for secure sharing of computation, visualization, and data resources over the Internet. The goal of FusionGrid was to allow scientists at remote sites to participate as fully in experiments and computational activities as if they were working on site thereby creating a unified virtual organization of the geographically dispersed U.S. fusion community. The vision for FusionGrid was that experimental and simulation data, computer codes, analysis routines, visualization tools, and remote collaboration tools are to be thought of as network services. In this model, an application service provider (ASP) provides and maintains software resources as well as the necessary hardware resources. The project would create a robust, user-friendly collaborative software environment and make it available to the US FES community. This Grid's resources would be protected by a shared security infrastructure including strong authentication to identify users and authorization to allow stakeholders to control their own resources. In this environment, access to services is stressed rather than data or software portability.

  18. Space Science Cloud: a Virtual Space Science Research Platform Based on Cloud Model

    Science.gov (United States)

    Hu, Xiaoyan; Tong, Jizhou; Zou, Ziming

    Through independent and co-operational science missions, Strategic Pioneer Program (SPP) on Space Science, the new initiative of space science program in China which was approved by CAS and implemented by National Space Science Center (NSSC), dedicates to seek new discoveries and new breakthroughs in space science, thus deepen the understanding of universe and planet earth. In the framework of this program, in order to support the operations of space science missions and satisfy the demand of related research activities for e-Science, NSSC is developing a virtual space science research platform based on cloud model, namely the Space Science Cloud (SSC). In order to support mission demonstration, SSC integrates interactive satellite orbit design tool, satellite structure and payloads layout design tool, payload observation coverage analysis tool, etc., to help scientists analyze and verify space science mission designs. Another important function of SSC is supporting the mission operations, which runs through the space satellite data pipelines. Mission operators can acquire and process observation data, then distribute the data products to other systems or issue the data and archives with the services of SSC. In addition, SSC provides useful data, tools and models for space researchers. Several databases in the field of space science are integrated and an efficient retrieve system is developing. Common tools for data visualization, deep processing (e.g., smoothing and filtering tools), analysis (e.g., FFT analysis tool and minimum variance analysis tool) and mining (e.g., proton event correlation analysis tool) are also integrated to help the researchers to better utilize the data. The space weather models on SSC include magnetic storm forecast model, multi-station middle and upper atmospheric climate model, solar energetic particle propagation model and so on. All the services above-mentioned are based on the e-Science infrastructures of CAS e.g. cloud storage and

  19. Virtual Labs (Science Gateways) as platforms for Free and Open Source Science

    Science.gov (United States)

    Lescinsky, David; Car, Nicholas; Fraser, Ryan; Friedrich, Carsten; Kemp, Carina; Squire, Geoffrey

    2016-04-01

    The Free and Open Source Software (FOSS) movement promotes community engagement in software development, as well as provides access to a range of sophisticated technologies that would be prohibitively expensive if obtained commercially. However, as geoinformatics and eResearch tools and services become more dispersed, it becomes more complicated to identify and interface between the many required components. Virtual Laboratories (VLs, also known as Science Gateways) simplify the management and coordination of these components by providing a platform linking many, if not all, of the steps in particular scientific processes. These enable scientists to focus on their science, rather than the underlying supporting technologies. We describe a modular, open source, VL infrastructure that can be reconfigured to create VLs for a wide range of disciplines. Development of this infrastructure has been led by CSIRO in collaboration with Geoscience Australia and the National Computational Infrastructure (NCI) with support from the National eResearch Collaboration Tools and Resources (NeCTAR) and the Australian National Data Service (ANDS). Initially, the infrastructure was developed to support the Virtual Geophysical Laboratory (VGL), and has subsequently been repurposed to create the Virtual Hazards Impact and Risk Laboratory (VHIRL) and the reconfigured Australian National Virtual Geophysics Laboratory (ANVGL). During each step of development, new capabilities and services have been added and/or enhanced. We plan on continuing to follow this model using a shared, community code base. The VL platform facilitates transparent and reproducible science by providing access to both the data and methodologies used during scientific investigations. This is further enhanced by the ability to set up and run investigations using computational resources accessed through the VL. Data is accessed using registries pointing to catalogues within public data repositories (notably including the

  20. Development of innovative fuelling systems for fusion energy science

    International Nuclear Information System (INIS)

    Gouge, M.J.; Baylor, L.R.; Combs, S.K.; Fisher, P.W.

    1996-01-01

    The development of innovative fueling systems in support of magnetic fusion energy, particularly the International Thermonuclear Experimental Reactor (ITER), is described. The ITER fuelling system will use a combination of deuterium-tritium (D-T) gas puffing and pellet injection to achieve and maintain ignited plasmas. This combination will provide a flexible fuelling source with D-T pellets penetrating beyond the separatrix to sustain the ignited fusion plasma and with deuterium-rich gas fuelling the edge region to meet divertor requirements in a process called isotopic fuelling. More advanced systems with potential for deeper penetration, such as multistage pellet guns and compact toroid injection, are also described

  1. Report of the Integrated Program Planning Activity for the DOE Fusion Energy Sciences Program

    International Nuclear Information System (INIS)

    None

    2000-01-01

    This report of the Integrated Program Planning Activity (IPPA) has been prepared in response to a recommendation by the Secretary of Energy Advisory Board that, ''Given the complex nature of the fusion effort, an integrated program planning process is an absolute necessity.'' We, therefore, undertook this activity in order to integrate the various elements of the program, to improve communication and performance accountability across the program, and to show the inter-connectedness and inter-dependency of the diverse parts of the national fusion energy sciences program. This report is based on the September 1999 Fusion Energy Sciences Advisory Committee's (FESAC) report ''Priorities and Balance within the Fusion Energy Sciences Program''. In its December 5,2000, letter to the Director of the Office of Science, the FESAC has reaffirmed the validity of the September 1999 report and stated that the IPPA presents a framework and process to guide the achievement of the 5-year goals listed in the 1999 report. The National Research Council's (NRC) Fusion Assessment Committee draft final report ''An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program'', reviewing the quality of the science in the program, was made available after the IPPA report had been completed. The IPPA report is, nevertheless, consistent with the recommendations in the NRC report. In addition to program goals and the related 5-year, 10-year, and 15-year objectives, this report elaborates on the scientific issues associated with each of these objectives. The report also makes clear the relationships among the various program elements, and cites these relationships as the reason why integrated program planning is essential. In particular, while focusing on the science conducted by the program, the report addresses the important balances between the science and energy goals of the program, between the MFE and IFE approaches, and between the domestic and international aspects

  2. Virtual science instructional strategies: A set of actual practices as perceived by secondary science educators

    Science.gov (United States)

    Gillette, Tammy J.

    2009-12-01

    The purpose of this proposed research study was to identify actual teaching practices/instructional strategies for online science courses. The identification of these teaching practices/instructional strategies could be used to compile a set of teaching practices/instructional strategies for virtual high school and online academy science instructors. This study could assist online science instructors by determining which teaching practices/instructional strategies were preferred for the online teaching environment. The literature reviewed the role of online and face-to-face instructional strategies, then discussed and elaborated on the science instructional strategies used by teachers, specifically at the secondary level. The current literature did not reflect an integration of these areas of study. Therefore, the connectedness of these two types of instructional strategies and the creation of a set of preferred instructional practices for online science instruction was deemed necessary. For the purpose of this study, the researcher designed a survey for face-to-face and online teachers to identify preferred teaching practices, instructional strategies, and types of technology used when teaching high school science students. The survey also requested demographic data information from the faculty members, including years of experience, subject(s) taught, and whether the teacher taught in a traditional classroom or online, to determine if any of those elements affect differences in faculty perceptions with regard to the questions under investigation. The findings from the current study added to the literature by demonstrating the differences and the similarities that exist between online and face-to-face instruction. Both forms of instruction tend to rely on student-centered approaches to teaching. There were many skills that were similar in that both types of instructors tend to focus on implementing the scientific method. The primary difference is the use of

  3. Collaborative Technologies for Distributed Science - Fusion Energy and High-Energy Physics

    International Nuclear Information System (INIS)

    Schissel, D.P.; Abla, G.; Burruss, J.R.; Gottschalk, E.

    2006-01-01

    The large-scale experiments, needed for fusion energy sciences (FES) and high-energy physics (HEP) research, are staffed by correspondingly large, geographically dispersed teams. At the same time, theoretical work has come to rely increasingly on complex numerical simulations developed by distributed teams of scientists and applied mathematicians and run on massively parallel computers. These trends will only accelerate. Operation of the most powerful accelerator ever built, the Large Hadron Collider at CERN, will begin next year and will dominate experimental high-energy physics. The fusion program will be increasingly oriented toward the ITER where even now, a decade before operation begins, a large portion of national programs efforts are organized around coordinated efforts to develop promising operational scenarios. While both FES and HEP have a significant track record for developing and exploiting remote collaborations, with such large investments at stake, there is a clear need to improve the integration and reach of the tools available. These challenges are being addressed by the creation and deployment of advanced collaborative software and hardware tools. Grid computing, to provide secure on-demand access to data analysis capabilities and related functions, is being deployed as an alternative to traditional resource sharing among institutions. Utilizing public-key based security that is recognized worldwide, numerous analysis and simulation codes are securely available worldwide in a service-oriented approach. Traditional audio teleconferencing is being augmented by more advanced capabilities including videoconferencing, instant messaging, presentation sharing, applications sharing, large display walls, and the virtual-presence capabilities of Access Grid and VRVS. With these advances, remote real-time experimental participation has begun as well as remote seminars, working meetings, and design review meetings. Work continues to focus on reducing the

  4. Early Science Learning with a Virtual Tutor through Multimedia Explanations and Feedback on Spoken Questions

    Science.gov (United States)

    Hautala, Jarkko; Baker, Doris Luft; Keurulainen, Aleksi; Ronimus, Miia; Richardson, Ulla; Cole, Ronald

    2018-01-01

    The purpose of this pilot study with a within-subject design was to gain a deeper understanding about the promise and restrictions of a virtual tutoring system designed to teach science to first grade students in Finland. Participants were 61 students who received six tutoring science sessions of approximately 20 min each. Sessions consisted of a…

  5. SciEthics Interactive: Science and Ethics Learning in a Virtual Environment

    Science.gov (United States)

    Nadolny, Larysa; Woolfrey, Joan; Pierlott, Matthew; Kahn, Seth

    2013-01-01

    Learning in immersive 3D environments allows students to collaborate, build, and interact with difficult course concepts. This case study examines the design and development of the TransGen Island within the SciEthics Interactive project, a National Science Foundation-funded, 3D virtual world emphasizing learning science content in the context of…

  6. A rural virtual health sciences library project: research findings with implications for next generation library services*

    OpenAIRE

    Richwine, Margaret (Peggy); McGowan, Julie J.

    2001-01-01

    Purpose: The Shared Hospital Electronic Library of Southern Indiana (SHELSI) research project was designed to determine whether access to a virtual health sciences library and training in its use would support medical decision making in rural southern Indiana and achieve the same level of impact seen by targeted information services provided by health sciences librarians in urban hospitals.

  7. The Fusion of Modern and Indigenous Science and Technology ...

    African Journals Online (AJOL)

    kofimereku

    In this paper, the benefits of integrating community science and technology ... school, indigenous, informal and formal), each of which constitutes a group with shared ... integration of school and community science and technology education for.

  8. Overview of the U.S. Fusion Materials Sciences Program

    International Nuclear Information System (INIS)

    Zinkle, Steven J.

    2005-01-01

    Highlights of recent U.S. fusion materials research activities are summarized, including multiscale materials modeling and experimental results. Recent first principles atomistic calculations on vanadium and iron-helium have found that previous interatomic potentials incorrectly predict several important point defect properties. Molecular dynamics simulations of displacement cascades are now approaching energies equivalent to 14 MeV fusion neutrons. Considerable effort is being devoted to understanding the fundamental mechanisms of low temperature radiation hardening and embrittlement. Work is also in progress to determine the allowable temperature and dose operating regimes for candidate reduced activation structural materials (including transmutant helium effects). New compositions of reduced activation steels and vanadium alloys with potential for significantly improved properties are being investigated. Due to recent improvements in SiC/SiC ceramic composites, engineering-relevant mechanical property tests are being introduced to replace historical qualitative screening tests. Materials research in support of the ITER burning plasma physics machine is briefly described

  9. The comparison between science virtual and paper based test in measuring grade 7 students’ critical thinking

    Science.gov (United States)

    Dhitareka, P. H.; Firman, H.; Rusyati, L.

    2018-05-01

    This research is comparing science virtual and paper-based test in measuring grade 7 students’ critical thinking based on Multiple Intelligences and gender. Quasi experimental method with within-subjects design is conducted in this research in order to obtain the data. The population of this research was all seventh grade students in ten classes of one public secondary school in Bandung. There were 71 students within two classes taken randomly became the sample in this research. The data are obtained through 28 questions with a topic of living things and environmental sustainability constructed based on eight critical thinking elements proposed by Inch then the questions provided in science virtual and paper-based test. The data was analysed by using paired-samples t test when the data are parametric and Wilcoxon signed ranks test when the data are non-parametric. In general comparison, the p-value of the comparison between science virtual and paper-based tests’ score is 0.506, indicated that there are no significance difference between science virtual and paper-based test based on the tests’ score. The results are furthermore supported by the students’ attitude result which is 3.15 from the scale from 1 to 4, indicated that they have positive attitudes towards Science Virtual Test.

  10. Avatars Go to Class: A Virtual Environment Soil Science Activity

    Science.gov (United States)

    Mamo, M.; Namuth-Covert, D.; Guru, A.; Nugent, G.; Phillips, L.; Sandall, L.; Kettler, T.; McCallister, D.

    2011-01-01

    Web 2.0 technology is expanding rapidly from social and gaming uses into the educational applications. Specifically, the multi-user virtual environment (MUVE), such as SecondLife, allows educators to fill the gap of first-hand experience by creating simulated realistic evolving problems/games. In a pilot study, a team of educators at the…

  11. Genome Island: A Virtual Science Environment in Second Life

    Science.gov (United States)

    Clark, Mary Anne

    2009-01-01

    Mary Anne CLark describes the organization and uses of Genome Island, a virtual laboratory complex constructed in Second Life. Genome Island was created for teaching genetics to university undergraduates but also provides a public space where anyone interested in genetics can spend a few minutes, or a few hours, interacting with genetic…

  12. The Virtual GloveboX (VGX: a Semi-immersive Virtual Environment for Training Astronauts in Life Sciences Experiments

    Directory of Open Access Journals (Sweden)

    I. Alexander Twombly

    2004-06-01

    Full Text Available The International Space Station will soon provide an unparalleled research facility for studying the near- and longer-term effects of microgravity on living systems. Using the Space Station Glovebox Facility - a compact, fully contained reach-in environment - astronauts will conduct technically challenging life sciences experiments. Virtual environment technologies are being developed at NASA Ames Research Center to help realize the scientific potential of this unique resource by facilitating the experimental hardware and protocol designs and by assisting the astronauts in training. The "Virtual GloveboX" (VGX integrates high-fidelity graphics, force-feedback devices and real-time computer simulation engines to achieve an immersive training environment. Here, we describe the prototype VGX system, the distributed processing architecture used in the simulation environment, and modifications to the visualization pipeline required to accommodate the display configuration.

  13. Teachers' Perspectives on Online Virtual Labs vs. Hands-On Labs in High School Science

    Science.gov (United States)

    Bohr, Teresa M.

    This study of online science teachers' opinions addressed the use of virtual labs in online courses. A growing number of schools use virtual labs that must meet mandated laboratory standards to ensure they provide learning experiences comparable to hands-on labs, which are an integral part of science curricula. The purpose of this qualitative case study was to examine teachers' perceptions of the quality and effectiveness of high school virtual labs. The theoretical foundation was constructivism, as labs provide student-centered activities for problem solving, inquiry, and exploration of phenomena. The research questions focused on experienced teachers' perceptions of the quality of virtual vs. hands-on labs. Data were collected through survey questions derived from the lab objectives of The Next Generation Science Standards . Eighteen teachers rated the degree of importance of each objective and also rated how they felt virtual labs met these objectives; these ratings were reported using descriptive statistics. Responses to open-ended questions were few and served to illustrate the numerical results. Many teachers stated that virtual labs are valuable supplements but could not completely replace hands-on experiences. Studies on the quality and effectiveness of high school virtual labs are limited despite widespread use. Comprehensive studies will ensure that online students have equal access to quality labs. School districts need to define lab requirements, and colleges need to specify the lab experience they require. This study has potential to inspire positive social change by assisting science educators, including those in the local school district, in evaluating and selecting courseware designed to promote higher order thinking skills, real-world problem solving, and development of strong inquiry skills, thereby improving science instruction for all high school students.

  14. Utilization and acceptance of virtual patients in veterinary basic sciences - the vetVIP-project.

    Science.gov (United States)

    Kleinsorgen, Christin; Kankofer, Marta; Gradzki, Zbigniew; Mandoki, Mira; Bartha, Tibor; von Köckritz-Blickwede, Maren; Naim, Hassan Y; Beyerbach, Martin; Tipold, Andrea; Ehlers, Jan P

    2017-01-01

    Context: In medical and veterinary medical education the use of problem-based and cased-based learning has steadily increased over time. At veterinary faculties, this development has mainly been evident in the clinical phase of the veterinary education. Therefore, a consortium of teachers of biochemistry and physiology together with technical and didactical experts launched the EU-funded project "vetVIP", to create and implement veterinary virtual patients and problems for basic science instruction. In this study the implementation and utilization of virtual patients occurred at the veterinary faculties in Budapest, Hannover and Lublin. Methods: This report describes the investigation of the utilization and acceptance of students studying veterinary basic sciences using optional online learning material concurrently to regular biochemistry and physiology didactic instruction. The reaction of students towards this offer of clinical case-based learning in basic sciences was analysed using quantitative and qualitative data. Quantitative data were collected automatically within the chosen software-system CASUS as user-log-files. Responses regarding the quality of the virtual patients were obtained using an online questionnaire. Furthermore, subjective evaluation by authors was performed using a focus group discussion and an online questionnaire. Results: Implementation as well as usage and acceptance varied between the three participating locations. High approval was documented in Hannover and Lublin based upon the high proportion of voluntary students (>70%) using optional virtual patients. However, in Budapest the participation rate was below 1%. Due to utilization, students seem to prefer virtual patients and problems created in their native language and developed at their own university. In addition, the statement that assessment drives learning was supported by the observation that peak utilization was just prior to summative examinations. Conclusion: Veterinary

  15. Utilization and acceptance of virtual patients in veterinary basic sciences – the vetVIP-project

    Directory of Open Access Journals (Sweden)

    Kleinsorgen, Christin

    2017-05-01

    Full Text Available Context: In medical and veterinary medical education the use of problem-based and cased-based learning has steadily increased over time. At veterinary faculties, this development has mainly been evident in the clinical phase of the veterinary education. Therefore, a consortium of teachers of biochemistry and physiology together with technical and didactical experts launched the EU-funded project “vetVIP”, to create and implement veterinary virtual patients and problems for basic science instruction. In this study the implementation and utilization of virtual patients occurred at the veterinary faculties in Budapest, Hannover and Lublin.Methods: This report describes the investigation of the utilization and acceptance of students studying veterinary basic sciences using optional online learning material concurrently to regular biochemistry and physiology didactic instruction. The reaction of students towards this offer of clinical case-based learning in basic sciences was analysed using quantitative and qualitative data. Quantitative data were collected automatically within the chosen software-system CASUS as user-log-files. Responses regarding the quality of the virtual patients were obtained using an online questionnaire. Furthermore, subjective evaluation by authors was performed using a focus group discussion and an online questionnaire.Results: Implementation as well as usage and acceptance varied between the three participating locations. High approval was documented in Hannover and Lublin based upon the high proportion of voluntary students (>70% using optional virtual patients. However, in Budapest the participation rate was below 1%. Due to utilization, students seem to prefer virtual patients and problems created in their native language and developed at their own university. In addition, the statement that assessment drives learning was supported by the observation that peak utilization was just prior to summative examinations

  16. Overview of the RFX-mod fusion science activity

    Czech Academy of Sciences Publication Activity Database

    Zuin, M.; Dal Bello, S.; Marrelli, L.; Puiatti, M.E.; Agostinetti, P.; Agostini, M.; Antoni, V.; Auriemma, F.; Barbisan, M.; Barbui, T.; Baruzzo, M.; Belli, F.; Bettini, P.; Bigi, M.; Bilel, R.; Boldrin, M.; Bolzonella, T.; Bonfiglio, D.; Brombin, M.; Buffa, A.; Bustreo, C.; Canton, A.; Cappello, S.; Carraro, L.; Cavazzana, R.; Cester, D.; Chacon, L.; Chitarin, G.; Cooper, W.A.; Cordaro, L.; Dalla Palma, M.; Deambrosis, S.; Delogu, R.; De Lorenzi, A.; De Masi, G.; Dong, J.Q.; Escande, D.F.; Fassina, A.; Felici, F.; Ferro, A.; Finotti, C.; Franz, P.; Frassinetti, L.; Gaio, E.; Ghezzi, F.; Giudicotti, L.; Gnesotto, F.; Gobbin, M.; Gonzalez, W.A.; Grando, L.; Guo, S.C.; Hanson, J.D.; Hirshman, S.P.; Innocente, P.; Jackson, J.L.; Kiyama, S.; Komm, Michael; Kudlacek, O.; Laguardia, L.; Li, C.; Liu, B.; Liu, S.F.; Liu, Y.Q.; López- Bruna, D.; Lorenzini, R.; Luce, T.C.; Luchetta, A.; Maistrello, A.; Manduchi, G.; Mansfield, D.K.; Marchiori, G.; Marconato, N.; Marcuzzi, D.; Martin, P.; Martines, E.; Martini, S.; Mazzitelli, G.; McCormack, O.; Miorin, E.; Momo, B.; Moresco, M.; Narushima, Y.; Okabayashi, M.; Paccagnella, R.; Patel, N.; Pavei, M.; Peruzzo, S.; Pilan, N.; Pigatto, L.; Piovan, R.; Piovesan, P.; Piron, C.; Piron, L.; Predebon, I.; Pucella, G.; Rea, C.; Recchia, M.; Rizzolo, A.; Rostagni, G.; Ruset, C.; Sajò- Bohus, L.; Sakakita, H.; Sanchez, R.; Sarff, J.S.; Sattin, F.; Scarin, P.; Schmitz, O.; Schneider, W.; Siragusa, M.; Sonato, P.; Spada, E.; Spagnolo, S.; Spolaore, M.; Spong, D.A.; Spizzo, G.; Stevanato, L.; Suzuki, Y.; Taliercio, C.; Terranova, D.; Tudisco, O.; Urso, G.; Valente, M.; Valisa, M.; Vallar, M.; Veranda, M.; Vianello, N.; Villone, F.; Vincenzi, P.; Visona, N.; White, R.B.; Xanthopoulos, P.; Xu, X.Y.; Yanovskiy, V.; Zamengo, A.; Zanca, P.; Zaniol, B.; Zanotto, L.; Zhang, Y.; Zilli, E.

    2017-01-01

    Roč. 57, č. 10 (2017), č. článku 102012. ISSN 0029-5515. [IAEA Fusion Energy Conference/26./. Kyoto, 17.10.2016-22.10.2016] Institutional support: RVO:61389021 Keywords : reversed field pinch * tokamak * single helicity * 3D boundary * runaway electrons * MHD * PWI Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/1741-4326/aa61cc

  17. The Comparative Effectiveness of Physical, Virtual, and Virtual-Physical Manipulatives on Third-Grade Students' Science Achievement and Conceptual Understanding of Evaporation and Condensation

    Science.gov (United States)

    Wang, Tzu-Ling; Tseng, Yi-Kuan

    2018-01-01

    The purpose of this study was to investigate the relative effectiveness of experimenting with physical manipulatives alone, virtual manipulatives alone, and virtual preceding physical manipulatives (combination environment) on third-grade students' science achievement and conceptual understanding in the domain of state changes of water, focusing…

  18. Physical and Virtual Laboratories in Science and Engineering Education: review

    NARCIS (Netherlands)

    de Jong, Anthonius J.M.; Linn, Marcia C.; Zacharia, Zacharias C.

    2013-01-01

    The world needs young people who are skillful in and enthusiastic about science and who view science as their future career field. Ensuring that we will have such young people requires initiatives that engage students in interesting and motivating science experiences. Today, students can investigate

  19. Post-doctoral research work developed at the National Institute for Fusion Science - Japan

    International Nuclear Information System (INIS)

    Ueda, M.

    1992-05-01

    This is a research report report on the work developed at the National Institute for Fusion Science - Japan, involving study of Beam Emission Spectroscopy. It describes the use of a fast neutral lithium beam (8 KeV) to measure the density profile in a Compact Helical Device. (A.C.A.S.)

  20. A rural virtual health sciences library project: research findings with implications for next generation library services.

    Science.gov (United States)

    Richwine, M P; McGowan, J J

    2001-01-01

    The Shared Hospital Electronic Library of Southern Indiana (SHELSI) research project was designed to determine whether access to a virtual health sciences library and training in its use would support medical decision making in rural southern Indiana and achieve the same level of impact seen by targeted information services provided by health sciences librarians in urban hospitals. Based on the results of a needs assessment, a virtual medical library was created; various levels of training were provided. Virtual library users were asked to complete a Likert-type survey, which included questions on intent of use and impact of use. At the conclusion of the project period, structured interviews were conducted. Impact of the virtual health sciences library showed a strong correlation with the impact of information provided by health sciences librarians. Both interventions resulted in avoidance of adverse health events. Data collected from the structured interviews confirmed the perceived value of the virtual library. While librarians continue to hold a strong position in supporting information access for health care providers, their roles in the information age must begin to move away from providing information toward selecting and organizing knowledge resources and instruction in their use.

  1. A rural virtual health sciences library project: research findings with implications for next generation library services*

    Science.gov (United States)

    Richwine, Margaret (Peggy); McGowan, Julie J.

    2001-01-01

    Purpose: The Shared Hospital Electronic Library of Southern Indiana (SHELSI) research project was designed to determine whether access to a virtual health sciences library and training in its use would support medical decision making in rural southern Indiana and achieve the same level of impact seen by targeted information services provided by health sciences librarians in urban hospitals. Methods: Based on the results of a needs assessment, a virtual medical library was created; various levels of training were provided. Virtual library users were asked to complete a Likert-type survey, which included questions on intent of use and impact of use. At the conclusion of the project period, structured interviews were conducted. Results: Impact of the virtual health sciences library showed a strong correlation with the impact of information provided by health sciences librarians. Both interventions resulted in avoidance of adverse health events. Data collected from the structured interviews confirmed the perceived value of the virtual library. Conclusion: While librarians continue to hold a strong position in supporting information access for health care providers, their roles in the information age must begin to move away from providing information toward selecting and organizing knowledge resources and instruction in their use. PMID:11209799

  2. Real-Time Motion Tracking for Mobile Augmented/Virtual Reality Using Adaptive Visual-Inertial Fusion.

    Science.gov (United States)

    Fang, Wei; Zheng, Lianyu; Deng, Huanjun; Zhang, Hongbo

    2017-05-05

    In mobile augmented/virtual reality (AR/VR), real-time 6-Degree of Freedom (DoF) motion tracking is essential for the registration between virtual scenes and the real world. However, due to the limited computational capacity of mobile terminals today, the latency between consecutive arriving poses would damage the user experience in mobile AR/VR. Thus, a visual-inertial based real-time motion tracking for mobile AR/VR is proposed in this paper. By means of high frequency and passive outputs from the inertial sensor, the real-time performance of arriving poses for mobile AR/VR is achieved. In addition, to alleviate the jitter phenomenon during the visual-inertial fusion, an adaptive filter framework is established to cope with different motion situations automatically, enabling the real-time 6-DoF motion tracking by balancing the jitter and latency. Besides, the robustness of the traditional visual-only based motion tracking is enhanced, giving rise to a better mobile AR/VR performance when motion blur is encountered. Finally, experiments are carried out to demonstrate the proposed method, and the results show that this work is capable of providing a smooth and robust 6-DoF motion tracking for mobile AR/VR in real-time.

  3. FUSION ENERGY SCIENCES WORKSHOP ON PLASMA MATERIALS INTERACTIONS: Report on Science Challenges and Research Opportunities in Plasma Materials Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Maingi, Rajesh [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Zinkle, Steven J. [University of Tennessee – Knoxville; Foster, Mark S. [U.S. Department of Energy

    2015-05-01

    The realization of controlled thermonuclear fusion as an energy source would transform society, providing a nearly limitless energy source with renewable fuel. Under the auspices of the U.S. Department of Energy, the Fusion Energy Sciences (FES) program management recently launched a series of technical workshops to “seek community engagement and input for future program planning activities” in the targeted areas of (1) Integrated Simulation for Magnetic Fusion Energy Sciences, (2) Control of Transients, (3) Plasma Science Frontiers, and (4) Plasma-Materials Interactions aka Plasma-Materials Interface (PMI). Over the past decade, a number of strategic planning activities1-6 have highlighted PMI and plasma facing components as a major knowledge gap, which should be a priority for fusion research towards ITER and future demonstration fusion energy systems. There is a strong international consensus that new PMI solutions are required in order for fusion to advance beyond ITER. The goal of the 2015 PMI community workshop was to review recent innovations and improvements in understanding the challenging PMI issues, identify high-priority scientific challenges in PMI, and to discuss potential options to address those challenges. The community response to the PMI research assessment was enthusiastic, with over 80 participants involved in the open workshop held at Princeton Plasma Physics Laboratory on May 4-7, 2015. The workshop provided a useful forum for the scientific community to review progress in scientific understanding achieved during the past decade, and to openly discuss high-priority unresolved research questions. One of the key outcomes of the workshop was a focused set of community-initiated Priority Research Directions (PRDs) for PMI. Five PRDs were identified, labeled A-E, which represent community consensus on the most urgent near-term PMI scientific issues. For each PRD, an assessment was made of the scientific challenges, as well as a set of actions

  4. [Application of 3D virtual reality technology with multi-modality fusion in resection of glioma located in central sulcus region].

    Science.gov (United States)

    Chen, T N; Yin, X T; Li, X G; Zhao, J; Wang, L; Mu, N; Ma, K; Huo, K; Liu, D; Gao, B Y; Feng, H; Li, F

    2018-05-08

    Objective: To explore the clinical and teaching application value of virtual reality technology in preoperative planning and intraoperative guide of glioma located in central sulcus region. Method: Ten patients with glioma in the central sulcus region were proposed to surgical treatment. The neuro-imaging data, including CT, CTA, DSA, MRI, fMRI were input to 3dgo sczhry workstation for image fusion and 3D reconstruction. Spatial relationships between the lesions and the surrounding structures on the virtual reality image were obtained. These images were applied to the operative approach design, operation process simulation, intraoperative auxiliary decision and the training of specialist physician. Results: Intraoperative founding of 10 patients were highly consistent with preoperative simulation with virtual reality technology. Preoperative 3D reconstruction virtual reality images improved the feasibility of operation planning and operation accuracy. This technology had not only shown the advantages for neurological function protection and lesion resection during surgery, but also improved the training efficiency and effectiveness of dedicated physician by turning the abstract comprehension to virtual reality. Conclusion: Image fusion and 3D reconstruction based virtual reality technology in glioma resection is helpful for formulating the operation plan, improving the operation safety, increasing the total resection rate, and facilitating the teaching and training of the specialist physician.

  5. Virtual school teacher's science efficacy beliefs: The effects of community of practice on science-teaching efficacy beliefs

    Science.gov (United States)

    Uzoff, Phuong Pham

    The purpose of this study was to examine how much K-12 science teachers working in a virtual school experience a community of practice and how that experience affects personal science-teaching efficacy and science-teaching outcome expectancy. The study was rooted in theoretical frameworks from Lave and Wenger's (1991) community of practice and Bandura's (1977) self-efficacy beliefs. The researcher used three surveys to examine schoolteachers' experiences of a community of practice and science-teaching efficacy beliefs. The instrument combined Mangieri's (2008) virtual teacher demographic survey, Riggs and Enochs (1990) Science-teaching efficacy Beliefs Instrument-A (STEBI-A), and Cadiz, Sawyer, and Griffith's (2009) Experienced Community of Practice (eCoP) instrument. The results showed a significant linear statistical relationship between the science teachers' experiences of community of practice and personal science-teaching efficacy. In addition, the study found that there was also a significant linear statistical relationship between teachers' community of practice experiences and science-teaching outcome expectancy. The results from this study were in line with numerous studies that have found teachers who are involved in a community of practice report higher science-teaching efficacy beliefs (Akerson, Cullen, & Hanson, 2009; Fazio, 2009; Lakshmanan, Heath, Perlmutter, & Elder, 2011; Liu, Lee, & Lin, 2010; Sinclair, Naizer, & Ledbetter, 2010). The researcher concluded that school leaders, policymakers, and researchers should increase professional learning opportunities that are grounded in social constructivist theoretical frameworks in order to increase teachers' science efficacy.

  6. Collaborative virtual reality environments for computational science and design

    International Nuclear Information System (INIS)

    Papka, M. E.

    1998-01-01

    The authors are developing a networked, multi-user, virtual-reality-based collaborative environment coupled to one or more petaFLOPs computers, enabling the interactive simulation of 10 9 atom systems. The purpose of this work is to explore the requirements for this coupling. Through the design, development, and testing of such systems, they hope to gain knowledge that allows computational scientists to discover and analyze their results more quickly and in a more intuitive manner

  7. CosmoQuest: Training Educators and Engaging Classrooms in Citizen Science through a Virtual Research Facility

    Science.gov (United States)

    Buxner, Sanlyn; Bracey, Georgia; Summer, Theresa; Cobb, Whitney; Gay, Pamela L.; Finkelstein, Keely D.; Gurton, Suzanne; Felix-Strishock, Lisa; Kruse, Brian; Lebofsky, Larry A.; Jones, Andrea J.; Tweed, Ann; Graff, Paige; Runco, Susan; Noel-Storr, Jacob; CosmoQuest Team

    2016-10-01

    CosmoQuest is a Citizen Science Virtual Research Facility that engages scientists, educators, students, and the public in analyzing NASA images. Often, these types of citizen science activities target enthusiastic members of the public, and additionally engage students in K-12 and college classrooms. To support educational engagement, we are developing a pipeline in which formal and informal educators and facilitators use the virtual research facility to engage students in real image analysis that is framed to provide meaningful science learning. This work also contributes to the larger project to produce publishable results. Community scientists are being solicited to propose CosmoQuest Science Projects take advantage of the virtual research facility capabilities. Each CosmoQuest Science Project will result in formal education materials, aligned with Next Generation Science Standards including the 3-dimensions of science learning; core ideas, crosscutting concepts, and science and engineering practices. Participating scientists will contribute to companion educational materials with support from the CosmoQuest staff of data specialists and education specialists. Educators will be trained through in person and virtual workshops, and classrooms will have the opportunity to not only work with NASA data, but interface with NASA scientists. Through this project, we are bringing together subject matter experts, classrooms, and informal science organizations to share the excitement of NASA SMD science with future citizen scientists. CosmoQuest is funded through individual donations, through NASA Cooperative Agreement NNX16AC68A, and through additional grants and contracts that are listed on our website, cosmoquest.org.

  8. Thermonuclear fusion: from fundamental research to energy production? Science and technology report No. 26

    International Nuclear Information System (INIS)

    Laval, Guy; Blanzat, Bernard; Aspect, Alain; Aymar, Robert; Bielak, Bogdan; Decroisette, Michel; Martin, Georges; Andre, Michel; Schirmann, Daniel; Garbet, Xavier; Jacquinot, Jean; Laviron, Clement; Migus, Arnold; Moreau, Rene; Pironneau, Olivier; Quere, Yves; Vallee, Alain; Dercourt, Jean; Bayer, Charles; Juraszek, Denis; Deutsch, Claude; Le Garrec, Bruno; Hennequin, Pascale; Peysson, Yves; Rax, Jean-Marcel; Pesme, Denis; Bauche, Jacques; Monier-Garbet, Pascale; Stamm, Roland; Zerah, Gilles; Ghendrih, Philippe; Layet, Roland; Grosman, Andre; Alamo, Ana; Giancarli, Luciano; Poitevin, Yves; Rigal, Emmanuel; Chieze, Jean-Pierre

    2007-01-01

    This work has been commissioned by the French ministry of Education, Sciences and Research, its aim is to provide a reliable account of the state of development of thermonuclear fusion. This report makes a point on the scientific knowledge accumulated on the topic and highlights the research programs that are necessary to overcome the technological difficulties and draws the necessary steps before an industrial application to electricity production. This report is divided into 10 chapters: 1) tokamak technology and ITER, 2) inertial fusion, 3) magnetized hot plasmas, 4) laser-plasma interaction and peta-watt lasers, 5) atomic physics and fusion, 6) computer simulation, 7) plasma-wall interaction, 8) materials for fusion reactors, 9) safety analysis, and 10) inertial fusion and astrophysics. This report has been written by a large panel of experts gathered by the French Academy of Sciences. The comments on the issue by the 3 French organizations: Cea, Cnrs and SFP (French Society of Physics) follow the last chapter

  9. FES Science Network Requirements - Report of the Fusion Energy Sciences Network Requirements Workshop Conducted March 13 and 14, 2008

    International Nuclear Information System (INIS)

    Tierney, Brian; Dart, Eli; Tierney, Brian

    2008-01-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In March 2008, ESnet and the Fusion Energy Sciences (FES) Program Office of the DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the FES Program Office. Most sites that conduct data-intensive activities (the Tokamaks at GA and MIT, the supercomputer centers at NERSC and ORNL) show a need for on the order of 10 Gbps of network bandwidth for FES-related work within 5 years. PPPL reported a need for 8 times that (80 Gbps) in that time frame. Estimates for the 5-10 year time period are up to 160 Mbps for large simulations. Bandwidth requirements for ITER range from 10 to 80 Gbps. In terms of science process and collaboration structure, it is clear that the proposed Fusion Simulation Project (FSP) has the potential to significantly impact the data movement patterns and therefore the network requirements for U.S. fusion science. As the FSP is defined over the next two years, these changes will become clearer. Also, there is a clear and present unmet need for better network connectivity between U.S. FES sites and two Asian fusion experiments--the EAST Tokamak in China and the KSTAR Tokamak in South Korea. In addition to achieving its goal of collecting and characterizing the network requirements of the science endeavors funded by the FES Program Office, the workshop emphasized that there is a need for research into better ways of conducting remote

  10. FES Science Network Requirements - Report of the Fusion Energy Sciences Network Requirements Workshop Conducted March 13 and 14, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, Brian; Dart, Eli; Tierney, Brian

    2008-07-10

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In March 2008, ESnet and the Fusion Energy Sciences (FES) Program Office of the DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the FES Program Office. Most sites that conduct data-intensive activities (the Tokamaks at GA and MIT, the supercomputer centers at NERSC and ORNL) show a need for on the order of 10 Gbps of network bandwidth for FES-related work within 5 years. PPPL reported a need for 8 times that (80 Gbps) in that time frame. Estimates for the 5-10 year time period are up to 160 Mbps for large simulations. Bandwidth requirements for ITER range from 10 to 80 Gbps. In terms of science process and collaboration structure, it is clear that the proposed Fusion Simulation Project (FSP) has the potential to significantly impact the data movement patterns and therefore the network requirements for U.S. fusion science. As the FSP is defined over the next two years, these changes will become clearer. Also, there is a clear and present unmet need for better network connectivity between U.S. FES sites and two Asian fusion experiments--the EAST Tokamak in China and the KSTAR Tokamak in South Korea. In addition to achieving its goal of collecting and characterizing the network requirements of the science endeavors funded by the FES Program Office, the workshop emphasized that there is a need for research into better ways of conducting remote

  11. Magnetic Fusion Science Fellowship program: Summary of program activities for calendar year 1986

    International Nuclear Information System (INIS)

    1986-01-01

    This report describes the 1985-1986 progress of the Magnetic Fusion Science Fellowship program (MFSF). The program was established in January of 1985 by the Office of Fusion Energy (OFE) of the US Department of Energy (DOE) to encourage talented undergraduate and first-year graduate students to enter qualified graduate programs in the sciences related to fusion energy development. The program currently has twelve fellows in participating programs. Six new fellows are being appointed during each of the program's next two award cycles. Appointments are for one year and are renewable for two additional years with a three year maximum. The stipend level also continues at a $1000 a month or $12,000 a year. The program pays all tuition and fee expenses for the fellows. Another important aspect of the fellowship program is the practicum. During the practicum fellows receive three month appointments to work at DOE designated fusion science research and development centers. The practicum allows the MFSF fellows to directly participate in on-going DOE research and development programs

  12. A NATIONAL COLLABORATORY TO ADVANCE THE SCIENCE OF HIGH TEMPERATURE PLASMA PHYSICS FOR MAGNETIC FUSION

    Energy Technology Data Exchange (ETDEWEB)

    Allen R. Sanderson; Christopher R. Johnson

    2006-08-01

    This report summarizes the work of the University of Utah, which was a member of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it the NFC built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was itself a collaboration, itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, and Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. The complete finial report is attached as an addendum. The In the collaboration, the primary technical responsibility of the University of Utah in the collaboration was to develop and deploy an advanced scientific visualization service. To achieve this goal, the SCIRun Problem Solving Environment (PSE) is used on FusionGrid for an advanced scientific visualization service. SCIRun is open source software that gives the user the ability to create complex 3D visualizations and 2D graphics. This capability allows for the exploration of complex simulation results and the comparison of simulation and experimental data. SCIRun on FusionGrid gives the scientist a no-license-cost visualization capability that rivals present day commercial visualization packages. To accelerate the usage of SCIRun within the fusion community, a stand-alone application built on top of SCIRun was developed and deployed. This application, FusionViewer, allows users who are unfamiliar with SCIRun to quickly create

  13. A National Collaboratory To Advance The Science Of High Temperature Plasma Physics For Magnetic Fusion

    International Nuclear Information System (INIS)

    Sanderson, Allen R.; Johnson, Christopher R.

    2006-01-01

    This report summarizes the work of the University of Utah, which was a member of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it the NFC built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was itself a collaboration, itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, and Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. The complete finial report is attached as an addendum. The In the collaboration, the primary technical responsibility of the University of Utah in the collaboration was to develop and deploy an advanced scientific visualization service. To achieve this goal, the SCIRun Problem Solving Environment (PSE) is used on FusionGrid for an advanced scientific visualization service. SCIRun is open source software that gives the user the ability to create complex 3D visualizations and 2D graphics. This capability allows for the exploration of complex simulation results and the comparison of simulation and experimental data. SCIRun on FusionGrid gives the scientist a no-license-cost visualization capability that rivals present day commercial visualization packages. To accelerate the usage of SCIRun within the fusion community, a stand-alone application built on top of SCIRun was developed and deployed. This application, FusionViewer, allows users who are unfamiliar with SCIRun to quickly create

  14. Games, Simulations and Virtual Labs for Science Education: a Compendium and Some Examples

    Science.gov (United States)

    Russell, R. M.

    2012-12-01

    We have assembled a list of computer-based simulations, games, and virtual labs for science education. This list, with links to the sources of these resources, is available online. The entries span a broad range of science, math, and engineering topics. They also span a range of target student ages, from elementary school to university students. We will provide a brief overview of this web site and the resources found on it. We will also briefly demonstrate some of our own educational simulations and games. Computer-based simulations and virtual labs are valuable resources for science educators in various settings, allowing learners to experiment and explore "what if" scenarios. Educational computer games can motivate learners in both formal and informal settings, encouraging them to spend much more time exploring a topic than they might otherwise be inclined to do. Part of this presentation is effectively a "literature review" of numerous sources of simulations, games, and virtual labs. Although we have encountered several nice collections of such resources, those collections seem to be restricted in scope. They either represent materials developed by a specific group or agency (e.g. NOAA's games web site) or are restricted to a specific discipline (e.g. geology simulations and virtual labs). This presentation directs viewers to games, simulations, and virtual labs from many different sources and spanning a broad range of STEM disciplines.

  15. Simulations, Games, and Virtual Labs for Science Education: a Compendium and Some Examples

    Science.gov (United States)

    Russell, R. M.

    2011-12-01

    We have assembled a list of computer-based simulations, games, and virtual labs for science education. This list, with links to the sources of these resources, is available online. The entries span a broad range of science, math, and engineering topics. They also span a range of target student ages, from elementary school to university students. We will provide a brief overview of this web site and the resources found on it. We will also briefly demonstrate some of our own educational simulations, including the "Very, Very Simple Climate Model", and report on formative evaluations of these resources. Computer-based simulations and virtual labs are valuable resources for science educators in various settings, allowing learners to experiment and explore "what if" scenarios. Educational computer games can motivate learners in both formal and informal settings, encouraging them to spend much more time exploring a topic than they might otherwise be inclined to do. Part of this presentation is effectively a "literature review" of numerous sources of simulations, games, and virtual labs. Although we have encountered several nice collections of such resources, those collections seem to be restricted in scope. They either represent materials developed by a specific group or agency (e.g. NOAA's games web site) or are restricted to a specific discipline (e.g. geology simulations and virtual labs). This presentation directs viewers to games, simulations, and virtual labs from many different sources and spanning a broad range of STEM disciplines.

  16. Quality knowledge of science through virtual laboratory as an element of visualization

    Science.gov (United States)

    Rizman Herga, Natasa

    Doctoral dissertation discusses the use of virtual laboratory for learning and teaching chemical concepts at science classes in the seventh grade of primary school. The dissertation has got a two-part structure. In the first theoretical part presents a general platform of teaching science in elementary school, teaching forms and methods of teaching and among modern approaches we highlight experimental work. Particular emphasis was placed on the use of new technologies in education and virtual laboratories. Scientific findings on the importance of visualization of science concepts and their triple nature of their understanding are presented. These findings represent a fundamental foundation of empirical research presented in the second part of the doctoral dissertation, whose basic purpose was to examine the effectiveness of using virtual laboratory for teaching and learning chemical contents at science from students' point of view on knowledge and interest. We designed a didactic experiment in which 225 pupils participated. The work was conducted in the experimental and control group. Prior to its execution, the existing school practice among science and chemistry teachers was analysed in terms of: (1) inclusion of experimental work as a fundamental method of active learning chemical contents, (2) the use of visualization methods in the classroom and (3) the use of a virtual laboratory. The main findings of the empirical research, carried out in the school year 2012/2013, in which 48 science and chemistry participated, are that teachers often include experimental work when teaching chemical contents. Interviewed science teachers use a variety of visualization methods when presenting science concepts, in particular computer animation and simulation. Using virtual laboratory as a new strategy for teaching and learning chemical contents is not common because teachers lack special-didactic skills, enabling them to use virtual reality technology. Based on the didactic

  17. Transnational organizational considerations for sociocultural differences in ethics and virtual team functioning in laboratory animal science.

    Science.gov (United States)

    Pritt, Stacy L; Mackta, Jayne

    2010-05-01

    Business models for transnational organizations include linking different geographies through common codes of conduct, policies, and virtual teams. Global companies with laboratory animal science activities (whether outsourced or performed inhouse) often see the need for these business activities in relation to animal-based research and benefit from them. Global biomedical research organizations can learn how to better foster worldwide cooperation and teamwork by understanding and working with sociocultural differences in ethics and by knowing how to facilitate appropriate virtual team actions. Associated practices include implementing codes and policies transcend cultural, ethnic, or other boundaries and equipping virtual teams with the needed technology, support, and rewards to ensure timely and productive work that ultimately promotes good science and patient safety in drug development.

  18. The attitudes of science policy, environmental, and utility leaders on U.S. Energy issues and fusion

    Science.gov (United States)

    Miller, J. D.

    1988-03-01

    similar print media to become aware of emerging problems and issues. Once an issue has become visible, a second step of in-depth information acquisition relies heavily on colleagues and disciplinary and industrial organizations. Finally, the data suggest that there is broad leadership recognition of the importance of better understanding energy policy, long-term energy options, and associated technologies. There is virtual unanimity among leaders concerning the need to plan for a post-fossil-fuel period, and also a recognition of some of the short-term hazards and drawbacks to current energy technologies. There is a willingness among leaders to consider a wide array of technologies for the production of electricity, and a strong predisposition in favor of fusion-based nuclear technologies. At the same time, there is a recognition that these technologies are unlikely to be available for commercial use in the next 20 years and that the primary window of opportunity will fall somewhere between 20 and 50 years from now. Overall, the level of knowledge about energy related issues is higher than was anticipated at the outset of this project and the attitude patterns are more positive and optimistic than had been expected. However, it is evident that there are gaps in the backgrounds and technical vocabularies of a number of the leaders. While there is strong optimism that future energy technologies will be clean and commercially cost-effective, it is clear that a substantial portion of these leaders do not understand the mechanics of the fusion process or the nature of complex technologies such as lasers. As research in these areas continues over the next decade or two, it is important that industry, environmental, and science policy leaders understand the level of achievement that has been obtained and the remaining questions that need exploration and demonstration. The results of this survey would suggest that those who are involved in research laboratories have not

  19. Construction of Virtual-Experiment Systems for Information Science Education

    Science.gov (United States)

    She, Jin-Hua; Amano, Naoki

    Practice is very important in education because it not only can stimulate the motivation of learning, but also can deepen the understanding of theory. However, due to the limitations on the time and experiment resources, experiments cannot be simply introduced in every lesson. To make the best use of multimedia technology, this paper designs five virtual experiment systems, which are based on the knowledge of physics at the high-school lever, to improve the effectiveness of teaching data processing. The systems are designed by employing the cognitive theory of multimedia learning and the inner game principle to ensure the easy use and to reduce the cognitive load. The learning process is divided into two stages: the first stage teaches the basic concepts of data processing; and the second stage practices the techniques taught in the first stage and uses them to build a linear model and to carry out estimation. The virtual experiment systems have been tested in an university's data processing course, and have demonstrated their validity.

  20. Immersive Earth Science: Data Visualization in Virtual Reality

    Science.gov (United States)

    Skolnik, S.; Ramirez-Linan, R.

    2017-12-01

    Utilizing next generation technology, Navteca's exploration of 3D and volumetric temporal data in Virtual Reality (VR) takes advantage of immersive user experiences where stakeholders are literally inside the data. No longer restricted by the edges of a screen, VR provides an innovative way of viewing spatially distributed 2D and 3D data that leverages a 360 field of view and positional-tracking input, allowing users to see and experience data differently. These concepts are relevant to many sectors, industries, and fields of study, as real-time collaboration in VR can enhance understanding and mission with VR visualizations that display temporally-aware 3D, meteorological, and other volumetric datasets. The ability to view data that is traditionally "difficult" to visualize, such as subsurface features or air columns, is a particularly compelling use of the technology. Various development iterations have resulted in Navteca's proof of concept that imports and renders volumetric point-cloud data in the virtual reality environment by interfacing PC-based VR hardware to a back-end server and popular GIS software. The integration of the geo-located data in VR and subsequent display of changeable basemaps, overlaid datasets, and the ability to zoom, navigate, and select specific areas show the potential for immersive VR to revolutionize the way Earth data is viewed, analyzed, and communicated.

  1. Annual report of National Institute for Fusion Science. April 2003-March 2004

    International Nuclear Information System (INIS)

    2004-01-01

    This annual report summarizes the research activities at NIFS (the National Institute for Fusion Science) between April 2003 and March 2004. 300 collaborating studies have been implemented during this period. The major programs at NIFS are (i) toroidal plasma confinement experiments using the Large Helical Device (LHD) which is a heliotron type net-plasma-current free device and (ii) theoretical research and computer simulations for study of the complex state and the nonlinear dynamics such as these seen in high temperature plasmas. These major projects are accompanied by supporting but unique researches. A fusion reactor design study and its related engineering are also strongly promoted. In addition to the existing collaboration frameworks, a new framework of bilateral collaboration has started to enhance the exploitation of fusion facilities in universities. (J.P.N.)

  2. Collaboration Modality, Cognitive Load, and Science Inquiry Learning in Virtual Inquiry Environments

    Science.gov (United States)

    Erlandson, Benjamin E.; Nelson, Brian C.; Savenye, Wilhelmina C.

    2010-01-01

    Educational multi-user virtual environments (MUVEs) have been shown to be effective platforms for situated science inquiry curricula. While researchers find MUVEs to be supportive of collaborative scientific inquiry processes, the complex mix of multi-modal messages present in MUVEs can lead to cognitive overload, with learners unable to…

  3. An Instructional Design Using the Virtual Ecological Pond for Science Education in Elementary Schools

    Science.gov (United States)

    Tarng, Wernhuar; Ou, Kuo-Liang; Tsai, Wen-Shin; Lin, Yu-Si; Hsu, Chen-Kai

    2010-01-01

    Ecological ponds can be a good teaching tool for science teachers, but they must be built and maintained properly to provide students with a safe and suitable learning environment. However, many schools do not have the ability to build and maintain an ecological pond. This study used virtual reality technology to develop a web-based virtual…

  4. Challenges of Virtual and Open Distance Science Teacher Education in Zimbabwe

    Science.gov (United States)

    Mpofu, Vongai; Samukange, Tendai; Kusure, Lovemore M.; Zinyandu, Tinoidzwa M.; Denhere, Clever; Huggins, Nyakotyo; Wiseman, Chingombe; Ndlovu, Shakespear; Chiveya, Renias; Matavire, Monica; Mukavhi, Leckson; Gwizangwe, Isaac; Magombe, Elliot; Magomelo, Munyaradzi; Sithole, Fungai; Bindura University of Science Education (BUSE),

    2012-01-01

    This paper reports on a study of the implementation of science teacher education through virtual and open distance learning in the Mashonaland Central Province, Zimbabwe. The study provides insight into challenges faced by students and lecturers on inception of the program at four centres. Data was collected from completed evaluation survey forms…

  5. Where's the Chicken? Virtual Reality Brings Poultry Science to the Community College

    Science.gov (United States)

    Kloepper, Marcia Owens; Zweiacher, Ed; Curtis, Pat; Evert, Amanda

    2010-01-01

    This article highlights how two institutions--Redlands Community College (RCC) and Auburn University--teamed up to create a virtual world called Eagle Island, where learners enter to learn all they need to know about poultry science. Eagle Island, located in Second Life, provides an opportunity to tour a real-life food processing…

  6. Overview of Theory and Modeling in the Heavy Ion Fusion Virtual National Laboratory

    International Nuclear Information System (INIS)

    Davidson, R.C.; Kaganovich, I.D.; Lee, W.W.; Qin, H.; Startsev, E.A.; Tzenov, S.; Friedman, A.; Barnard, J.J.; Cohen, R.H.; Grote, D.P.; Lund, S.M.; Sharp, W.M.; Celata, C.M.; De Hoon, M.; Henestroza, E.; Lee, E.P.; Yu, S.S.; Vay, J.-L.; Welch, D.R.; Rose, D.V.; Olson, C.L.

    2003-01-01

    This paper presents analytical and simulation studies of intense heavy ion beam propagation, including the injection, acceleration, transport and compression phases, and beam transport and focusing in background plasma in the target chamber. Analytical theory and simulations that support the High Current Experiment (HCX), the Neutralized Transport Experiment (NTX), and the advanced injector development program are being used to provide a basic understanding of the nonlinear beam dynamics and collective processes, and to develop design concepts for the next-step Integrated Beam Experiment (IBX), an Integrated Research Experiment (IRE), and a heavy ion fusion driver. Three-dimensional (3-D) nonlinear perturbative simulations have been applied to collective instabilities driven by beam temperature anisotropy and to two-stream interactions between the beam ions and any unwanted background electrons. Three-dimensional particle-in-cell simulations of the 2 MV Electrostatic Quadrupole (ESQ) injector have clarified the influence of pulse rise time. Analytical studies and simulations of the drift compression process have been carried out. Syntheses of a four-dimensional (4-D) particle distribution function from phase-space projections have been developed. And, studies of the generation and trapping of stray electrons in the beam self-fields have been performed. Particle-in-cell simulations, involving preformed plasma, are being used to study the influence of charge and current neutralization on the focusing of the ion beam in Neutralized Transport Experiment and in a fusion chamber

  7. Sharing experiences about developing a regional social science virtual library

    OpenAIRE

    Babini, Dominique

    2004-01-01

    Why and how a Latin American and the Caribbean social sciences network (Consejo Latinoamericano de Ciencias Sociales, CLACSO) started a cooperative open access digital library to disseminate research results (journal articles, books, working documents)

  8. FY-2013 FES (Fusion Energy Sciences) Joint Research Target Report

    Energy Technology Data Exchange (ETDEWEB)

    Fenstermacher, M. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Garofalo, A. M. [General Atomics, San Diego, CA (United States); Gerhardt, S. P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Hubbard, A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Maingi, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Whyte, D. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2013-09-30

    The H-mode confinement regime is characterized by a region of good thermal and particle confinement at the edge of the confined plasma, and has generally been envisioned as the operating regime for ITER and other next step devices. This good confinement is often interrupted, however, by edge-localized instabilities, known as ELMs. On the one hand, these ELMs provide particle and impurity flushing from the plasma core, a beneficial effect facilitating density control and stationary operation. On the other hand, the ELMs result in a substantial fraction of the edge stored energy flowing in bursts to the divertor and first wall; this impulsive thermal loading would result in unacceptable erosion of these material surfaces if it is not arrested. Hence, developing and understanding operating regimes that have the energy confinement of standard H-mode and the stationarity that is provided by ELMs, while at the same time eliminating the impulsive thermal loading of large ELMs, is the focus of the 2013 FES Joint Research Target (JRT): Annual Target: Conduct experiments and analysis on major fusion facilities, to evaluate stationary enhanced confinement regimes without large Edge Localized Modes (ELMs), and to improve understanding of the underlying physical mechanisms that allow acceptable edge particle transport while maintaining a strong thermal transport barrier. Mechanisms to be investigated can include intrinsic continuous edge plasma modes and externally applied 3D fields. Candidate regimes and techniques have been pioneered by each of the three major US facilities (C-Mod, D3D and NSTX). Coordinated experiments, measurements, and analysis will be carried out to assess and understand the operational space for the regimes. Exploiting the complementary parameters and tools of the devices, joint teams will aim to more closely approach key dimensionless parameters of ITER, and to identify correlations between edge fluctuations and transport. The role of rotation will be

  9. The NIF: An international high energy density science and inertial fusion user facility

    Directory of Open Access Journals (Sweden)

    Moses E.I.

    2013-11-01

    Full Text Available The National Ignition Facility (NIF, a 1.8-MJ/500-TW Nd:Glass laser facility designed to study inertial confinement fusion (ICF and high-energy-density science (HEDS, is operational at Lawrence Livermore National Laboratory (LLNL. A primary goal of NIF is to create the conditions necessary to demonstrate laboratory-scale thermonuclear ignition and burn. NIF experiments in support of indirect-drive ignition began late in FY2009 as part of the National Ignition Campaign (NIC, an international effort to achieve fusion ignition in the laboratory. To date, all of the capabilities to conduct implosion experiments are in place with the goal of demonstrating ignition and developing a predictable fusion experimental platform in 2012. The results from experiments completed are encouraging for the near-term achievement of ignition. Capsule implosion experiments at energies up to 1.6 MJ have demonstrated laser energetics, radiation temperatures, and symmetry control that scale to ignition conditions. Of particular importance is the demonstration of peak hohlraum temperatures near 300 eV with overall backscatter less than 15%. Important national security and basic science experiments have also been conducted on NIF. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of laser-driven Inertial Fusion Energy (IFE. This paper will describe the results achieved so far on the path toward ignition, the beginning of fundamental science experiments and the plans to transition NIF to an international user facility providing access to HEDS and fusion energy researchers around the world.

  10. The NIF: An international high energy density science and inertial fusion user facility

    Science.gov (United States)

    Moses, E. I.; Storm, E.

    2013-11-01

    The National Ignition Facility (NIF), a 1.8-MJ/500-TW Nd:Glass laser facility designed to study inertial confinement fusion (ICF) and high-energy-density science (HEDS), is operational at Lawrence Livermore National Laboratory (LLNL). A primary goal of NIF is to create the conditions necessary to demonstrate laboratory-scale thermonuclear ignition and burn. NIF experiments in support of indirect-drive ignition began late in FY2009 as part of the National Ignition Campaign (NIC), an international effort to achieve fusion ignition in the laboratory. To date, all of the capabilities to conduct implosion experiments are in place with the goal of demonstrating ignition and developing a predictable fusion experimental platform in 2012. The results from experiments completed are encouraging for the near-term achievement of ignition. Capsule implosion experiments at energies up to 1.6 MJ have demonstrated laser energetics, radiation temperatures, and symmetry control that scale to ignition conditions. Of particular importance is the demonstration of peak hohlraum temperatures near 300 eV with overall backscatter less than 15%. Important national security and basic science experiments have also been conducted on NIF. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of laser-driven Inertial Fusion Energy (IFE). This paper will describe the results achieved so far on the path toward ignition, the beginning of fundamental science experiments and the plans to transition NIF to an international user facility providing access to HEDS and fusion energy researchers around the world.

  11. Comparison of student achievement among two science laboratory types: traditional and virtual

    Science.gov (United States)

    Reese, Mary Celeste

    Technology has changed almost every aspect of our daily lives. It is not surprising then that technology has made its way into the classroom. More and more educators are utilizing technological resources in creative ways with the intent to enhance learning, including using virtual laboratories in the sciences in place of the "traditional" science laboratories. This has generated much discussion as to the influence on student achievement when online learning replaces the face-to-face contact between instructor and student. The purpose of this study was to discern differences in achievement of two laboratory instruction types: virtual laboratory and a traditional laboratory. Results of this study indicate statistical significant differences in student achievement defined by averages on quiz scores in virtual labs compared with traditional face-to-face laboratories and traditional laboratories result in greater student learning gains than virtual labs. Lecture exam averages were also greater for students enrolled in the traditional laboratories compared to students enrolled in the virtual laboratories. To account for possible differences in ability among students, a potential extraneous variable, GPA and ACT scores were used as covariates.

  12. Overview of Theory and Modeling in the Heavy Ion Fusion Virtual National Laboratory

    CERN Document Server

    Davidson, R C; Celata, C M; Cohen, R H; De Hoon, M; Friedman, A; Grote, D P; Henestroza, E; Kaganovich, I D; Lee, E P; Lee, W W; Lund, S M; Olson, C L; Qin, H; Rose, D V; Sharp, W M; Startsev, E A; Tzenov, Stephan I; Vay, J L; Welch, D R; Yu, S S

    2003-01-01

    This paper presents analytical and simulation studies of intense heavy ion beam propagation, including the injection, acceleration, transport and compression phases, and beam transport and focusing in background plasma in the target chamber. Analytical theory and simulations that support the High Current Experiment (HCX), the Neutralized Transport Experiment (NTX), and the advanced injector development program are being used to provide a basic understanding of the nonlinear beam dynamics and collective processes, and to develop design concepts for the next-step Integrated Beam Experiment (IBX), an Integrated Research Experiment (IRE), and a heavy ion fusion driver. Three-dimensional (3-D) nonlinear perturbative simulations have been applied to collective instabilities driven by beam temperature anisotropy and to two-stream interactions between the beam ions and any unwanted background electrons. Three-dimensional particle-in-cell simulations of the 2 MV Electrostatic Quadrupole (ESQ) injector have clarified t...

  13. English Language Arts and Science Courses in a Virtual School: A Comparative Case Study

    Science.gov (United States)

    Tustin, Rachel Sarah

    Virtual K-12 schools have rapidly become a popular choice for parents and students in the last decade. However, little research has been done on the instructional practices used in virtual courses. As reflected in the central research question, the purpose of this study was to explore how teachers provided instruction for Grade 7-10 students in both English language arts and science courses in a virtual school in a southern state. The conceptual framework was based on Piaget's theory of cognitive development and Garrison, Anderson, and Siemens' research on instructional design. The units of analysis in this qualitative, comparative case study were four virtual courses; the data were collected from teacher and student questionnaires, threaded student discussions, student work samples, and archival records. The first level of data analysis involved coding and categorization using the constant comparative method, and the second level involved examining the data for patterns, themes, and relationships to determine key findings. Results indicated that a standardized virtual course design supported teacher use of direct instruction and summative assessments and some individualized instruction to deliver course content, including adjusting the course pace, conducting individual telephone conferences, and providing small group instruction using Blackboard Elluminate. Opportunities for student interaction and inquiry learning were limited. This study is expected to contribute to positive social change by providing educators and policymakers with an awareness of the critical need for further study of research-based instructional practices in K-12 virtual courses that would improve student learning.

  14. Discourse, Power, and Knowledge in the Management of "Big Science": The Production of Consensus in a Nuclear Fusion Research Laboratory.

    Science.gov (United States)

    Kinsella, William J.

    1999-01-01

    Extends a Foucauldian view of power/knowledge to the archetypical knowledge-intensive organization, the scientific research laboratory. Describes the discursive production of power/knowledge at the "big science" laboratory conducting nuclear fusion research and illuminates a critical incident in which the fusion research…

  15. The fusion of biology, computer science, and engineering: towards efficient and successful synthetic biology.

    Science.gov (United States)

    Linshiz, Gregory; Goldberg, Alex; Konry, Tania; Hillson, Nathan J

    2012-01-01

    Synthetic biology is a nascent field that emerged in earnest only around the turn of the millennium. It aims to engineer new biological systems and impart new biological functionality, often through genetic modifications. The design and construction of new biological systems is a complex, multistep process, requiring multidisciplinary collaborative efforts from "fusion" scientists who have formal training in computer science or engineering, as well as hands-on biological expertise. The public has high expectations for synthetic biology and eagerly anticipates the development of solutions to the major challenges facing humanity. This article discusses laboratory practices and the conduct of research in synthetic biology. It argues that the fusion science approach, which integrates biology with computer science and engineering best practices, including standardization, process optimization, computer-aided design and laboratory automation, miniaturization, and systematic management, will increase the predictability and reproducibility of experiments and lead to breakthroughs in the construction of new biological systems. The article also discusses several successful fusion projects, including the development of software tools for DNA construction design automation, recursive DNA construction, and the development of integrated microfluidics systems.

  16. InterScience and fusion: Projects, collaborations, and spin-offs

    International Nuclear Information System (INIS)

    Castracane, J.

    1995-01-01

    InterScience, Inc. is a small, high technology research and development company which participates in the mission of the fusion energy research program in a variety of ways. The company specializes in basic physics and advanced technologies applied to research and commercial opportunities. InterScience has numerous federal and private sponsors for research and development activities in plasma physics, electro-optics, materials science, electronics, and biomedical engineering. The company currently has several direct research and development projects which involve the assembly of diagnostic hardware for installation and operation at tokamak facilities both in the U.S. and abroad. In addition, the company works in a technical support capacity for both the magnetic and inertial confinement fusion programs. Successful participation in the Small Business Innovation Research (SBIR) program has provided an avenue for the transfer of expertise from the fusion program to alternate agencies and research areas. Examples of this include fiberoptic sensors with data acquisition systems, advanced spectral imaging and image processing, fiberoptic imaging interferometry for biomedical instrumentation development and, micro-electro-mechanical systems

  17. Energy payback and CO2 gas emissions from fusion and solar photovoltaic electric power plants. Final report to Department of Energy, Office of Fusion Energy Sciences

    International Nuclear Information System (INIS)

    Kulcinski, G.L.

    2002-01-01

    A cradle-to-grave net energy and greenhouse gas emissions analysis of a modern photovoltaic facility that produces electricity has been performed and compared to a similar analysis on fusion. A summary of the work has been included in a Ph.D. thesis titled ''Life-cycle assessment of electricity generation systems and applications for climate change policy analysis'' by Paul J. Meier, and a synopsis of the work was presented at the 15th Topical meeting on Fusion Energy held in Washington, DC in November 2002. In addition, a technical note on the effect of the introduction of fusion energy on the greenhouse gas emissions in the United States was submitted to the Office of Fusion Energy Sciences (OFES)

  18. Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard

    2014-05-02

    The National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,500 users working on some 650 projects that involve nearly 600 codes in a wide variety of scientific disciplines. In March 2013, NERSC, DOE?s Office of Advanced Scientific Computing Research (ASCR) and DOE?s Office of Fusion Energy Sciences (FES) held a review to characterize High Performance Computing (HPC) and storage requirements for FES research through 2017. This report is the result.

  19. ATLAS and CMS Virtual Visits: Bringing Cutting Edge Science into the Classroom and Beyond

    CERN Document Server

    Lapka, Marzena; Aguirre, Lucie; Hill, Ewan; Bourdarios, Claire; Beni, Noemi; Hochkeppel, Stephan Michael; Petrilli, Achille; Szillasi, Zoltan; Alexopoulos, Angelos

    2015-01-01

    Advances in information and communications technologies (ICTs) have given rise to innovative uses of web-based video tools for global communication, enhancing the impact of large research facilities, including their outreach and education programmes. As an example, the Virtual Visits programmes developed by the ATLAS and CMS collaborations at CERN, use videoconferencing to communicate with schools and remote events around the globe. The goal of these programmes is to enable the public, especially young people, to become engaged in and understand the field of particle physics through direct dialogue between ATLAS/CMS scientists and remote audiences. ATLAS and CMS collaborations enhanced the Virtual Visits concept in different ways, but still with the same objective, which is to break down geographical barriers and allow more people to enter the world of science, physics and particle physics. This supports local education and outreach activities. Both collaborations have hosted Virtual Visits for thousands of p...

  20. Gender-Specific Covariations between Competencies, Interest and Effort during Science Learning in Virtual Environments.

    Science.gov (United States)

    Christophel, Eva; Schnotz, Wolfgang

    2017-01-01

    Women are still underrepresented in engineering courses although some German universities offer separate women's engineering courses which include virtual STEM learning environments. To outline information about fundamental aspects relevant for virtual STEM learning, one has to reveal which similarities both genders in virtual learning show. Moreover, the question arises as to whether there are in fact differences in the virtual science learning of female and male learners. Working with virtual STEM learning environments requires strategic and arithmetic-operative competences. Even if we assume that female and male learners have similar competences levels, their correlational pattern of competences, motivational variables, and invested effort during virtual STEM learning might differ. If such gender differences in the correlations between cognitive and motivational variables and learning behavior were revealed, it would be possible to finetune study conditions for female students in a separate engineering course and shape virtual STEM learning in a more gender-appropriate manner. That might support an increase in the number of women in engineering courses. To reveal the differences and similarities between female and male learners, a field study was conducted with 56 students (female = 27, male = 29) as part of the Open MINT Labs project (the German term for Open STEM Labs, OML). The participants had to complete a virtual STEM learning environment during their regular science lessons. The data were collected with questionnaires. The results revealed that the strategic competences of both genders were positively correlated with situational interest in the virtual learning environment. This result shows the big impact strategic competences have for both genders regarding their situational interest. In contrast, the correlations between mental effort and competences differed between female and male participants. Especially female learners' mental effort decreased if

  1. VirtualGalathea3: Education Based on Galathea 3 Science!

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay

    in close collaboration between skilled teachers and the scientists while the scientists were at the same time analysing results. It gives certain challenges, yet the advantage is that the brand new educational material is state-ofthe- art in regard to the specific science topics, several on climate change...... issues. The presentation will describe the working process and well as present selected results from the expedition focussing on climate. The web-based educational material contains large amounts of daily updated satellite images on sea surface temperature, clouds, winds among several other topics, thus...

  2. Grid computing and collaboration technology in support of fusion energy sciences

    International Nuclear Information System (INIS)

    Schissel, D.P.

    2005-01-01

    Science research in general and magnetic fusion research in particular continue to grow in size and complexity resulting in a concurrent growth in collaborations between experimental sites and laboratories worldwide. The simultaneous increase in wide area network speeds has made it practical to envision distributed working environments that are as productive as traditionally collocated work. In computing power, it has become reasonable to decouple production and consumption resulting in the ability to construct computing grids in a similar manner as the electrical power grid. Grid computing, the secure integration of computer systems over high speed networks to provide on-demand access to data analysis capabilities and related functions, is being deployed as an alternative to traditional resource sharing among institutions. For human interaction, advanced collaborative environments are being researched and deployed to have distributed group work that is as productive as traditional meetings. The DOE Scientific Discovery through Advanced Computing Program initiative has sponsored several collaboratory projects, including the National Fusion Collaboratory Project, to utilize recent advances in grid computing and advanced collaborative environments to further research in several specific scientific domains. For fusion, the collaborative technology being deployed is being used in present day research and is also scalable to future research, in particular, to the International Thermonuclear Experimental Reactor experiment that will require extensive collaboration capability worldwide. This paper briefly reviews the concepts of grid computing and advanced collaborative environments and gives specific examples of how these technologies are being used in fusion research today

  3. SciDAC Fusiongrid Project--A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion

    Energy Technology Data Exchange (ETDEWEB)

    SCHISSEL, D.P.; ABLA, G.; BURRUSS, J.R.; FEIBUSH, E.; FREDIAN, T.W.; GOODE, M.M.; GREENWALD, M.J.; KEAHEY, K.; LEGGETT, T.; LI, K.; McCUNE, D.C.; PAPKA, M.E.; RANDERSON, L.; SANDERSON, A.; STILLERMAN, J.; THOMPSON, M.R.; URAM, T.; WALLACE, G.

    2006-08-31

    This report summarizes the work of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was a collaboration itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. Developing a reliable energy system that is economically and environmentally sustainable is the long-term goal of Fusion Energy Science (FES) research. In the U.S., FES experimental research is centered at three large facilities with a replacement value of over $1B. As these experiments have increased in size and complexity, there has been a concurrent growth in the number and importance of collaborations among large groups at the experimental sites and smaller groups located nationwide. Teaming with the experimental community is a theoretical and simulation community whose efforts range from applied analysis of experimental data to fundamental theory (e.g., realistic nonlinear 3D plasma models) that run on massively parallel computers. Looking toward the future, the large-scale experiments needed for FES research are staffed by correspondingly large, globally dispersed teams. The fusion program will be increasingly oriented toward the International Thermonuclear Experimental Reactor (ITER) where even now, a decade before operation begins, a large

  4. BioImg.org: A Catalog of Virtual Machine Images for the Life Sciences.

    Science.gov (United States)

    Dahlö, Martin; Haziza, Frédéric; Kallio, Aleksi; Korpelainen, Eija; Bongcam-Rudloff, Erik; Spjuth, Ola

    2015-01-01

    Virtualization is becoming increasingly important in bioscience, enabling assembly and provisioning of complete computer setups, including operating system, data, software, and services packaged as virtual machine images (VMIs). We present an open catalog of VMIs for the life sciences, where scientists can share information about images and optionally upload them to a server equipped with a large file system and fast Internet connection. Other scientists can then search for and download images that can be run on the local computer or in a cloud computing environment, providing easy access to bioinformatics environments. We also describe applications where VMIs aid life science research, including distributing tools and data, supporting reproducible analysis, and facilitating education. BioImg.org is freely available at: https://bioimg.org.

  5. Challenges of Virtual and Open Distance Science Teacher Education in Zimbabwe

    OpenAIRE

    Vongai Mpofu; Tendai Samukange; Lovemore M Kusure; Tinoidzwa M Zinyandu; Clever Denhere; Nyakotyo Huggins; Chingombe Wiseman; Shakespear Ndlovu; Rennias Chiveya; Monica Matavire; Leckson Mukavhi; Isaac Gwizangwe; Elliot Magombe; Munyaradzi Magomelo; Fungai Sithole

    2012-01-01

    This paper reports on a study of the implementation of science teacher education through virtual and open distance learning in the Mashonaland Central Province, Zimbabwe. The study provides insight into challenges faced by students and lecturers on inception of the program at four centres. Data was collected from completed evaluation survey forms of forty-two lecturers who were directly involved at the launch of the program and in-depth interviews. Qualitative data analysis revealed that the ...

  6. Transnational Organizational Considerations for Sociocultural Differences in Ethics and Virtual Team Functioning in Laboratory Animal Science

    OpenAIRE

    Pritt, Stacy L; Mackta, Jayne

    2010-01-01

    Business models for transnational organizations include linking different geographies through common codes of conduct, policies, and virtual teams. Global companies with laboratory animal science activities (whether outsourced or performed inhouse) often see the need for these business activities in relation to animal-based research and benefit from them. Global biomedical research organizations can learn how to better foster worldwide cooperation and teamwork by understanding and working wit...

  7. Towards a Metadata Schema for Characterizing Lesson Plans Supported by Virtual and Remote Labs in School Science Education

    Science.gov (United States)

    Zervas, Panagiotis; Tsourlidaki, Eleftheria; Sotiriou, Sofoklis; Sampson, Demetrios G.

    2015-01-01

    Technological advancements in the field of World Wide Web have led to a plethora of remote and virtual labs (RVLs) that are currently available online and they are offered with or without cost. However, using a RVL to teach a specific science subject might not be a straightforward task for a science teacher. As a result, science teachers need to…

  8. Fusion Energy Sciences Exascale Requirements Review. An Office of Science review sponsored jointly by Advanced Scientific Computing Research and Fusion Energy Sciences, January 27-29, 2016, Gaithersburg, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Choong-Seock [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Greenwald, Martin [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Riley, Katherine [Argonne Leadership Computing Facility, Argonne, IL (United States); Antypas, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Coffey, Richard [Argonne National Lab. (ANL), Argonne, IL (United States); Dart, Eli [Esnet, Berkeley, CA (United States); Dosanjh, Sudip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hack, James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Monga, Inder [Esnet, Berkeley, CA (United States); Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Rotman, Lauren [Esnet, Berkeley, CA (United States); Straatsma, Tjerk [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wells, Jack [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Andre, R. [TRANSP Group, Princeton, NJ (United States); Bernholdt, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bhattacharjee, Amitava [Princeton Univ., NJ (United States); Bonoli, Paul [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Boyd, Iain [Univ. of Michigan, Ann Arbor, MI (United States); Bulanov, Stepan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cary, John R. [Tech-X Corporation, Boulder, CO (United States); Chen, Yang [Univ. of Colorado, Boulder, CO (United States); Curreli, Davide [Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States); Ernst, Darin R. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ethier, Stephane [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Green, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hager, Robert [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Hakim, Ammar [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Hassanein, A. [Purdue Univ., West Lafayette, IN (United States); Hatch, David [Univ. of Texas, Austin, TX (United States); Held, E. D. [Utah State Univ., Logan, UT (United States); Howard, Nathan [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Izzo, Valerie A. [Univ. of California, San Diego, CA (United States); Jardin, Steve [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Jenkins, T. G. [Tech-X Corp., Boulder, CO (United States); Jenko, Frank [Univ. of California, Los Angeles, CA (United States); Kemp, Andreas [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); King, Jacob [Tech-X Corp., Boulder, CO (United States); Kritz, Arnold [Lehigh Univ., Bethlehem, PA (United States); Krstic, Predrag [Stony Brook Univ., NY (United States); Kruger, Scott E. [Tech-X Corp., Boulder, CO (United States); Kurtz, Rick [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lin, Zhihong [Univ. of California, Irvine, CA (United States); Loring, Burlen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nandipati, Giridhar [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pankin, A. Y. [Tech-X Corp., Boulder, CO (United States); Parker, Scott [Univ. of Colorado, Boulder, CO (United States); Perez, Danny [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pigarov, Alex Y. [Univ. of California, San Diego, CA (United States); Poli, Francesca [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Pueschel, M. J. [Univ. of Wisconsin, Madison, WI (United States); Rafiq, Tariq [Lehigh Univ., Bethlehem, PA (United States); Rübel, Oliver [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Setyawan, Wahyu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sizyuk, Valeryi A. [Purdue Univ., West Lafayette, IN (United States); Smithe, D. N. [Tech-X Corp., Boulder, CO (United States); Sovinec, C. R. [Univ. of Wisconsin, Madison, WI (United States); Turner, Miles [Dublin City University, Leinster (Ireland); Umansky, Maxim [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vay, Jean-Luc [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Verboncoeur, John [Michigan State Univ., East Lansing, MI (United States); Vincenti, Henri [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Voter, Arthur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wang, Weixing [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Wirth, Brian [Univ. of Tennessee, Knoxville, TN (United States); Wright, John [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Yuan, X. [TRANSP Group, Princeton, NJ (United States)

    2017-02-01

    The additional computing power offered by the planned exascale facilities could be transformational across the spectrum of plasma and fusion research — provided that the new architectures can be efficiently applied to our problem space. The collaboration that will be required to succeed should be viewed as an opportunity to identify and exploit cross-disciplinary synergies. To assess the opportunities and requirements as part of the development of an overall strategy for computing in the exascale era, the Exascale Requirements Review meeting of the Fusion Energy Sciences (FES) community was convened January 27–29, 2016, with participation from a broad range of fusion and plasma scientists, specialists in applied mathematics and computer science, and representatives from the U.S. Department of Energy (DOE) and its major computing facilities. This report is a summary of that meeting and the preparatory activities for it and includes a wealth of detail to support the findings. Technical opportunities, requirements, and challenges are detailed in this report (and in the recent report on the Workshop on Integrated Simulation). Science applications are described, along with mathematical and computational enabling technologies. Also see http://exascaleage.org/fes/ for more information.

  9. Including plasma and fusion topics in the science education in school

    International Nuclear Information System (INIS)

    Kado, Shinichiro

    2015-01-01

    Yutori education (more relaxed education policy) started with the revision of the Courses of Study to introduce 'five-day week system' in 1989, continued with the reduction of the content of school lessons by 30% in 1998, and ended with the introduction of the New Courses of Study in 2011. Focusing on science education, especially in the topics of plasma and nuclear fusion, the modality of the education system in Japan is discussed considering the transition of academic performance based on the Program for International Student Assessment (PISA) in comparison with the examples in other countries. Particularly, the issues with high school textbooks are pointed out from the assessment of current textbooks, and the significance and the need for including the topic of 'plasma' in them are stated. Lastly, in order to make the general public acknowledged with plasma and nuclear fusion, it is suggested to include them also in junior high school textbooks, by briefly mentioning the terms related to plasma, solar wind, aurora phenomenon, and nuclear fusion energy. (S.K.)

  10. Advanced Computational Materials Science: Application to Fusion and Generation IV Fission Reactors (Workshop Report)

    Energy Technology Data Exchange (ETDEWEB)

    Stoller, RE

    2004-07-15

    The ''Workshop on Advanced Computational Materials Science: Application to Fusion and Generation IV Fission Reactors'' was convened to determine the degree to which an increased effort in modeling and simulation could help bridge the gap between the data that is needed to support the implementation of these advanced nuclear technologies and the data that can be obtained in available experimental facilities. The need to develop materials capable of performing in the severe operating environments expected in fusion and fission (Generation IV) reactors represents a significant challenge in materials science. There is a range of potential Gen-IV fission reactor design concepts and each concept has its own unique demands. Improved economic performance is a major goal of the Gen-IV designs. As a result, most designs call for significantly higher operating temperatures than the current generation of LWRs to obtain higher thermal efficiency. In many cases, the desired operating temperatures rule out the use of the structural alloys employed today. The very high operating temperature (up to 1000 C) associated with the NGNP is a prime example of an attractive new system that will require the development of new structural materials. Fusion power plants represent an even greater challenge to structural materials development and application. The operating temperatures, neutron exposure levels and thermo-mechanical stresses are comparable to or greater than those for proposed Gen-IV fission reactors. In addition, the transmutation products created in the structural materials by the high energy neutrons produced in the DT plasma can profoundly influence the microstructural evolution and mechanical behavior of these materials. Although the workshop addressed issues relevant to both Gen-IV and fusion reactor materials, much of the discussion focused on fusion; the same focus is reflected in this report. Most of the physical models and computational methods

  11. NASA's Solar System Exploration Research Virtual Institute: Merging Science and Exploration

    Science.gov (United States)

    Pendleton, Y. J.; Schmidt, G. K.; Bailey, B. E.; Minafra, J. A.

    2016-01-01

    NASA's Solar System Exploration Research Virtual Institute (SSERVI) represents a close collaboration between science, technology and exploration, and was created to enable a deeper understanding of the Moon and other airless bodies. SSERVI is supported jointly by NASA's Science Mission Directorate and Human Exploration and Operations Mission Directorate. The institute currently focuses on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars, but the institute goals may expand, depending on NASA's needs, in the future. The 9 initial teams, selected in late 2013 and funded from 2014-2019, have expertise across the broad spectrum of lunar, NEA, and Martian moon sciences. Their research includes various aspects of the surface, interior, exosphere, near-space environments, and dynamics of these bodies. NASA anticipates a small number of additional teams to be selected within the next two years, with a Cooperative Agreement Notice (CAN) likely to be released in 2016. Calls for proposals are issued every 2-3 years to allow overlap between generations of institute teams, but the intent for each team is to provide a stable base of funding for a five year period. SSERVI's mission includes acting as a bridge between several groups, joining together researchers from: 1) scientific and exploration communities, 2) multiple disciplines across a wide range of planetary sciences, and 3) domestic and international communities and partnerships. The SSERVI central office is located at NASA Ames Research Center in Mountain View, CA. The administrative staff at the central office forms the organizational hub for the domestic and international teams and enables the virtual collaborative environment. Interactions with geographically dispersed teams across the U.S., and global partners, occur easily and frequently in a collaborative virtual environment. This poster will provide an overview of the 9 current US teams and

  12. Annual report of National Institute for Fusion Science. April 2013 - March 2014

    International Nuclear Information System (INIS)

    2014-01-01

    This annual report summarizes achievements from research activities at the National Institute for Fusion Science (NIFS) between April 2013 and March 2014. NIFS is an inter-university research organization and conducts open collaboration research under three frameworks which are the General Collaboration Research, the Large Helical Device Collaboration Research and the Bilateral Collaboration Research. More than 500 collaborating studies were implemented during the covered period. About 2,400 collaborators studies were implemented during the covered period. About 2,400 collaborators participated in joint research from 220 external institutions. Many intensively advanced results in plasma physics, fusion science and related fields have been obtained from these studies. Not only NIFS, but also 6 university centers serve as joint research laboratories/centers under bilateral collaboration research. NIFS also organizes diversified frameworks for international collaboration through 6 bilateral agreements, 3 multi-lateral agreements and academic exchange agreements with 18 institutes abroad for the global development of the function of inter-university research organization. (J.P.N.)

  13. Initiative taken by India in magnetically confined fusion reactor

    International Nuclear Information System (INIS)

    Bora, Dhiraj

    2017-01-01

    There is a growing gap between demand and supply of energy in the world. Any attempt to develop new and cleaner sources of energy to meet the future global requirement is welcome. Therefore, it is attractive to think of having fusion as an alternate clean source of energy to contribute in the energy mix towards the second half of the century, with a virtually inexhaustible fuel supply. The environmental impact of fusion would be acceptable and relatively safe. These advantages have driven the world fusion research programme since its inception. Indian progress in fusion science and technology and participation in ITER will be discussed during the talk

  14. Deployed Virtual Consulting: The Fusion of Wearable Computing, Collaborative Technology, Augmented Reality and Intelligent Agents to Support Fleet Aviation Maintenance

    National Research Council Canada - National Science Library

    Nasman, James

    2004-01-01

    .... By implementing wireless technology in combination with advanced software allowing the virtual collaboration of parties widely separated by geographical distance the Navy can establish a "virUal...

  15. A Fusion Nuclear Science Facility for a fast-track path to DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Garofalo, A.M., E-mail: garofalo@fusion.gat.com [General Atomics, San Diego, CA (United States); Abdou, M.A. [University of California, Los Angeles, Los Angeles, CA (United States); Canik, J.M. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Chan, V.S.; Hyatt, A.W. [General Atomics, San Diego, CA (United States); Hill, D.N. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Morley, N.B. [University of California, Los Angeles, Los Angeles, CA (United States); Navratil, G.A. [Columbia University, New York, NY (United States); Sawan, M.E. [University of Wisconsin Madison, Madison, WI (United States); Taylor, T.S.; Wong, C.P.C.; Wu, W. [General Atomics, San Diego, CA (United States); Ying, A. [University of California, Los Angeles, Los Angeles, CA (United States)

    2014-10-15

    Highlights: • A FNSF is needed to reduce the knowledge gaps to a fusion DEMO and accelerate progress toward fusion energy. • FNSF will test and qualify first-wall/blanket components and materials in a DEMO-relevant fusion environment. • The Advanced Tokamak approach enables reduced size and risks, and is on a direct path to an attractive target power plant. • Near term research focus on specific tasks can enable starting FNSF construction within the next ten years. - Abstract: An accelerated fusion energy development program, a “fast-track” approach, requires proceeding with a nuclear and materials testing program in parallel with research on burning plasmas, ITER. A Fusion Nuclear Science Facility (FNSF) would address many of the key issues that need to be addressed prior to DEMO, including breeding tritium and completing the fuel cycle, qualifying nuclear materials for high fluence, developing suitable materials for the plasma-boundary interface, and demonstrating power extraction. The Advanced Tokamak (AT) is a strong candidate for an FNSF as a consequence of its mature physics base, capability to address the key issues, and the direct relevance to an attractive target power plant. The standard aspect ratio provides space for a solenoid, assuring robust plasma current initiation, and for an inboard blanket, assuring robust tritium breeding ratio (TBR) >1 for FNSF tritium self-sufficiency and building of inventory needed to start up DEMO. An example design point gives a moderate sized Cu-coil device with R/a = 2.7 m/0.77 m, κ = 2.3, B{sub T} = 5.4 T, I{sub P} = 6.6 MA, β{sub N} = 2.75, P{sub fus} = 127 MW. The modest bootstrap fraction of ƒ{sub BS} = 0.55 provides an opportunity to develop steady state with sufficient current drive for adequate control. Proceeding with a FNSF in parallel with ITER provides a strong basis to begin construction of DEMO upon the achievement of Q ∼ 10 in ITER.

  16. MetaBlast! Virtual Cell: A Pedagogical Convergence between Game Design and Science Education

    Directory of Open Access Journals (Sweden)

    Anson Call

    2007-10-01

    Full Text Available Virtual Cell is a game design solution to a specific scientific and educational problem; expressly, how to make advanced, university level plant biology instruction on molecular and anatomical levels an exciting, efficient learning experience. The advanced technologies of 3D modeling and animation, computer programming and game design are united and tempered with strong, scientific guidance for accuracy and art direction for a powerful visual and audio simulation. The additional strength of intense gaming as a powerful tool aiding memory, logic and problem solving has recently become well recognized. Virtual Cell will provide a unique gaming experience, while transparently teaching scientifically accurate facts and concepts about, in this case, a soybean plant's inner workings and dependant mechanisms on multiple scales and levels of complexity. Virtual Cell (from now on referred to as VC in the future may prove to be a reference for other scientific/education endeavors as scientists battle for a more prominent mind share among average citizens. This paper will discuss the difficulties of developing VC, its structure, intended game and educational goals along with additional benefits to both the sciences and gaming industry.

  17. IAEA technical meeting on atomic and plasma-material interaction data for fusion science technology. Summary report

    International Nuclear Information System (INIS)

    Clark, R.E.H.

    2003-10-01

    The proceedings and conclusions of the Technical Meeting on 'Atomic and Plasma- Material Interaction Data for Fusion Science Technology' held in Juelich, Germany on October 28-31 are summarized. During the course of the meetings working groups were formed to review the status of specific areas of atomic, molecular and material physics of relevance to fusion and to make recommendations on data needs in fusion from these areas. The reports of those working groups are summarized and the complete reports included as appendices. This meeting brought together over fifty leading scientists in fusion related data. Results of research in a number of topics were presented and very useful discussions were held. The meeting was extremely successful. (author)

  18. NASA's Solar System Exploration Research Virtual Institute: Science and Technology for Lunar Exploration

    Science.gov (United States)

    Schmidt, Greg; Bailey, Brad; Gibbs, Kristina

    2015-01-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on research at the intersection of science and exploration, training the next generation of lunar scientists, and development and support of the international community. As part of its mission, SSERVI acts as a hub for opportunities that engage the larger scientific and exploration communities in order to form new interdisciplinary, research-focused collaborations. The nine domestic SSERVI teams that comprise the U.S. complement of the Institute engage with the international science and exploration communities through workshops, conferences, online seminars and classes, student exchange programs and internships. SSERVI represents a close collaboration between science, technology and exploration enabling a deeper, integrated understanding of the Moon and other airless bodies as human exploration moves beyond low Earth orbit. SSERVI centers on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars, with additional aspects of related technology development, including a major focus on human exploration-enabling efforts such as resolving Strategic Knowledge Gaps (SKGs). The Institute focuses on interdisciplinary, exploration-related science focused on airless bodies targeted as potential human destinations. Areas of study represent the broad spectrum of lunar, NEA, and Martian moon sciences encompassing investigations of the surface, interior, exosphere, and near-space environments as well as science uniquely enabled from these bodies. This research profile integrates investigations of plasma physics, geology/geochemistry, technology integration, solar system origins/evolution, regolith geotechnical properties, analogues, volatiles, ISRU and exploration potential of the target bodies. New opportunities for both domestic and international partnerships are continually generated through these research and

  19. Challenges of Virtual and Open Distance Science Teacher Education in Zimbabwe

    Directory of Open Access Journals (Sweden)

    Vongai Mpofu

    2012-01-01

    Full Text Available This paper reports on a study of the implementation of science teacher education through virtual and open distance learning in the Mashonaland Central Province, Zimbabwe. The study provides insight into challenges faced by students and lecturers on inception of the program at four centres. Data was collected from completed evaluation survey forms of forty-two lecturers who were directly involved at the launch of the program and in-depth interviews. Qualitative data analysis revealed that the programme faces potential threat from centre-, institution-, lecturer-, and student-related factors. These include limited resources, large classes, inadequate expertise in open and distance education, inappropriate science teacher education qualifications, implementer conflict of interest in program participation, students’ low self-esteem, lack of awareness of quality parameters of delivery systems among staff, and lack of standard criteria to measure the quality of services. The paper recommends that issues raised be addressed in order to produce quality teachers.

  20. Formative experience mediated by virtual learning environment: science and mathematics teachers’ education in the amazon region

    Directory of Open Access Journals (Sweden)

    France Fraiha Martins

    2012-06-01

    Full Text Available This article reports results of a qualitative research, in the narrative modality. We investigated the formative experiences of teachers of Mathematics and Science through distance learning in the Amazon region, experienced in a course through the Virtual Learning Environment (VLE. We investigated under what conditions this education experience was a catalyst for teachers’ reflections on the Amazonian context of teaching science and mathematics. By using Discursive Textual Analysis some categories e merged: graduating in the Amazon region: obstacles and confrontations; AVA and Technologies: meaning (s of the education experience and the impact of the experience in the perceptions of teachers’ practices and training. The analysis of the results reveals the obstacles to the training in this context. The dynamics experienced by the use of VLE technologies and of the teachers reverberated methodological insights regarding the use of technology in teaching practices, indicating also the VLE as an alternative of (self education on the Amazon reality

  1. EVER-EST: European Virtual Environment for Research in Earth Science Themes

    Science.gov (United States)

    Glaves, H.; Albani, M.

    2016-12-01

    EVER-EST is an EC Horizon 2020 project having the goal to develop a Virtual Research Environment (VRE) providing a state-of-the-art solution to allow Earth Scientists to preserve their work and publications for reference and future reuse, and to share with others. The availability of such a solution, based on an innovative concept and state of art technology infrastructure, will considerably enhance the quality of how Earth Scientists work together within their own institution and also across other organizations, regions and countries. The concept of Research Objects (ROs), used in the Earth Sciences for the first time, will form the backbone of the EVER-EST VRE infrastructure. ROs will enhance the ability to preserve, re-use and share entire or individual parts of scientific workflows and all the resources related to a specific scientific investigation. These ROs will also potentially be used as part of the scholarly publication process. EVER-EST is building on technologies developed during almost 15 years of research on Earth Science data management infrastructures. The EVER-EST VRE Service Oriented Architecture is being meticulously designed to accommodate at best the requirements of a wide range of Earth Science communities and use cases: focus is put on common requirements and on minimising the level of complexity in the EVER-EST VRE to ensure future sustainability within the user communities beyond the end of the project. The EVER-EST VRE will be validated through its customisation and deployment by four Virtual Research Communities (VRCs) from different Earth Science disciplines and will support enhanced interaction between data providers and scientists in the Earth Science domain. User community will range from bio-marine researchers (Sea Monitoring use case), to common foreign and security policy institutions and stakeholders (Land Monitoring for Security use case), natural hazards forecasting systems (Natural Hazards use case), and disaster and risk

  2. Evaluation of CFETR as a Fusion Nuclear Science Facility using multiple system codes

    Science.gov (United States)

    Chan, V. S.; Costley, A. E.; Wan, B. N.; Garofalo, A. M.; Leuer, J. A.

    2015-02-01

    This paper presents the results of a multi-system codes benchmarking study of the recently published China Fusion Engineering Test Reactor (CFETR) pre-conceptual design (Wan et al 2014 IEEE Trans. Plasma Sci. 42 495). Two system codes, General Atomics System Code (GASC) and Tokamak Energy System Code (TESC), using different methodologies to arrive at CFETR performance parameters under the same CFETR constraints show that the correlation between the physics performance and the fusion performance is consistent, and the computed parameters are in good agreement. Optimization of the first wall surface for tritium breeding and the minimization of the machine size are highly compatible. Variations of the plasma currents and profiles lead to changes in the required normalized physics performance, however, they do not significantly affect the optimized size of the machine. GASC and TESC have also been used to explore a lower aspect ratio, larger volume plasma taking advantage of the engineering flexibility in the CFETR design. Assuming the ITER steady-state scenario physics, the larger plasma together with a moderately higher BT and Ip can result in a high gain Qfus ˜ 12, Pfus ˜ 1 GW machine approaching DEMO-like performance. It is concluded that the CFETR baseline mode can meet the minimum goal of the Fusion Nuclear Science Facility (FNSF) mission and advanced physics will enable it to address comprehensively the outstanding critical technology gaps on the path to a demonstration reactor (DEMO). Before proceeding with CFETR construction steady-state operation has to be demonstrated, further development is needed to solve the divertor heat load issue, and blankets have to be designed with tritium breeding ratio (TBR) >1 as a target.

  3. Evaluation of CFETR as a Fusion Nuclear Science Facility using multiple system codes

    International Nuclear Information System (INIS)

    Chan, V.S.; Garofalo, A.M.; Leuer, J.A.; Costley, A.E.; Wan, B.N.

    2015-01-01

    This paper presents the results of a multi-system codes benchmarking study of the recently published China Fusion Engineering Test Reactor (CFETR) pre-conceptual design (Wan et al 2014 IEEE Trans. Plasma Sci. 42 495). Two system codes, General Atomics System Code (GASC) and Tokamak Energy System Code (TESC), using different methodologies to arrive at CFETR performance parameters under the same CFETR constraints show that the correlation between the physics performance and the fusion performance is consistent, and the computed parameters are in good agreement. Optimization of the first wall surface for tritium breeding and the minimization of the machine size are highly compatible. Variations of the plasma currents and profiles lead to changes in the required normalized physics performance, however, they do not significantly affect the optimized size of the machine. GASC and TESC have also been used to explore a lower aspect ratio, larger volume plasma taking advantage of the engineering flexibility in the CFETR design. Assuming the ITER steady-state scenario physics, the larger plasma together with a moderately higher B T and I p can result in a high gain Q fus  ∼ 12, P fus  ∼ 1 GW machine approaching DEMO-like performance. It is concluded that the CFETR baseline mode can meet the minimum goal of the Fusion Nuclear Science Facility (FNSF) mission and advanced physics will enable it to address comprehensively the outstanding critical technology gaps on the path to a demonstration reactor (DEMO). Before proceeding with CFETR construction steady-state operation has to be demonstrated, further development is needed to solve the divertor heat load issue, and blankets have to be designed with tritium breeding ratio (TBR) >1 as a target. (paper)

  4. NASA's Solar System Exploration Research Virtual Institute: Merging Science and Exploration

    Science.gov (United States)

    Pendleton, Yvonne J.

    2016-10-01

    Established in 2013, through joint funding from the NASA Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD), NASA's Solar System Exploration Research Virtual Institute (SSERVI) is focused on science at the intersection of these two enterprises. Addressing questions of value to the human exploration program that also represent important research relevant to planetary science, SSERVI creates a bridge between HEOMD and SMD. The virtual institute model reduces travel costs, but its primary virtue is the ability to join together colleagues who bring the right expertise, techniques and tools, regardless of their physical location, to address multi-faceted problems, at a deeper level than could be achieved through the typical period of smaller research grants. In addition, collaboration across team lines and international borders fosters the creation of new knowledge, especially at the intersections of disciplines that might not otherwise overlap.SSERVI teams investigate the Moon, Near-Earth Asteroids, and the moons of Mars, addressing questions fundamental to these target bodies and their near space environments. The institute is currently composed of nine U.S. teams of 30-50 members each, distributed geographically across the United States, ten international partners, and a Central Office located at NASA Ames Research Center in Silicon Valley, CA. U.S. teams are competitively selected through peer-reviewed proposals submitted to NASA every 2-3 years, in response to a Cooperative Agreement Notice (CAN). The current teams were selected under CAN-1, with funding for five years (2014-2019). A smaller, overlapping set of teams are expected to be added in 2017 in response to CAN-2, thereby providing continuity and a firm foundation for any directional changes NASA requires as the CAN-1 teams end their term. This poster describes the research areas and composition of the institute to introduce SSERVI to the broader planetary

  5. CosmoQuest: Virtual Star Parties as a Conduit to Citizen Science Research

    Science.gov (United States)

    Lewis, Scott; Gugliucci, N. E.; Gay, P. L.; Amateur Astronomer Team; Commentator Team

    2013-01-01

    CosmoQuest has created an environment that actively engages the public through online star parties while building a growing virtual research center that allows individuals anywhere in the world to participate in and contribute to scientific research. Utilizing the infrastructure of Google+ and YouTube, CosmoQuest has brought optical observational astronomy into homes across the world. Every week astronomers - amateur and professional - meet to share live sky images and to discuss the science behind their beauty during Virtual Star parties. A wide array of optics and digital detectors from varied locations collaborate in a fashion not possible in the standard public star party. Every viewer is able to virtually look through the imaging telescope simultaneously while the equipment owner doesn’t need to worry about accidental mishandling by the public. Digital cameras and CCDs also allow longer exposures of deep-sky objects, something not typical in a standard star party event. Our diversity of equipment - ranging from hand-guided Dobsonian telescopes to 16” Schmidt-Cassegrain telescopes on Paramounts - give viewers the opportunity to experience the sky through different systems. Additional Star Parties focus on special astronomical events, such as eclipses and transits. The annular eclipse of 20 May, 2012 brought together astronomers, space enthusiasts and a curious public into a Google+ Hangout On Air to celebrate the event while advocating safe observing methods and explaining the science behind the phenomenon. Public photos of the eclipse were shared live in the broadcast while video of the event was streamed for thousands of viewers to enjoy. Other special event star parties have focused on the Super Moon, Eros Opposition, and the Venus Transit. In this poster we review the technology behind star parties and the reach of these events.

  6. Introduction to the special issue on virtual reality environments in behavioral sciences.

    Science.gov (United States)

    Riva, Giuseppe; Wiederhold, Brenda K

    2002-09-01

    Virtual reality (VR) is usually described in biology and in medicine as a collection of technologies that allow people to interact efficiently with three-dimensional (3-D) computerized databases in real time using their natural senses. This definition lacks any reference to head-mounted displays (HMDs) and instrumented clothing such as gloves or suits. In fact, less than 10% of VR healthcare applications in medicine are actually using any immersive equipment. However, if we focus our attention on behavioral sciences, where immersion is used by more than 50% of the applications, VR is described as an advanced form of human- computer interface that allows the user to interact with and become immersed in a computer-generated environment. This difference outlines a different vision of VR shared by psychologists, psychotherapists, and neuropsychologists: VR provides a new human-computer interaction paradigm in which users are no longer simply external observers of images on a computer screen but are active participants within a computer-generated 3-D virtual world. This special issue investigates this vision, presenting some of the most interesting applications actually developed in the area. Moreover, it discusses the clinical principles, human factors, and technological issues associated with the use of VR in the behavioral sciences.

  7. ARC: A compact, high-field, disassemblable fusion nuclear science facility and demonstration power plant

    Science.gov (United States)

    Sorbom, Brandon; Ball, Justin; Palmer, Timothy; Mangiarotti, Franco; Sierchio, Jennifer; Bonoli, Paul; Kasten, Cale; Sutherland, Derek; Barnard, Harold; Haakonsen, Christian; Goh, Jon; Sung, Choongki; Whyte, Dennis

    2014-10-01

    The Affordable, Robust, Compact (ARC) reactor conceptual design aims to reduce the size, cost, and complexity of a combined Fusion Nuclear Science Facility (FNSF) and demonstration fusion pilot power plant. ARC is a 270 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has Rare Earth Barium Copper Oxide (REBCO) superconducting toroidal field coils with joints to allow disassembly, allowing for removal and replacement of the vacuum vessel as a single component. Inboard-launched current drive of 25 MW LHRF power and 13.6 MW ICRF power is used to provide a robust, steady state core plasma far from disruptive limits. ARC uses an all-liquid blanket, consisting of low pressure, slowly flowing Fluorine Lithium Beryllium (FLiBe) molten salt. The liquid blanket acts as a working fluid, coolant, and tritium breeder, and minimizes the solid material that can become activated. The large temperature range over which FLiBe is liquid permits blanket operation at 800-900 K with single phase fluid cooling and allows use of a high-efficiency Brayton cycle for electricity production in the secondary coolant loop.

  8. Developing a virtual community for health sciences library book selection: Doody's Core Titles.

    Science.gov (United States)

    Shedlock, James; Walton, Linda J

    2006-01-01

    The purpose of this article is to describe Doody's Core Titles in the Health Sciences as a new selection guide and a virtual community based on an effective use of online systems and to describe its potential impact on library collection development. The setting is the availability of health sciences selection guides. Participants include Doody Enterprise staff, Doody's Library Board of Advisors, content specialists, and library selectors. Resources include the online system used to create Doody's Core Titles along with references to complementary databases. Doody's Core Titles is described and discussed in relation to the literature of selection guides, especially in comparison to the Brandon/Hill selected lists that were published from 1965 to 2003. Doody's Core Titles seeks to fill the vacuum created when the Brandon/Hill lists ceased publication. Doody's Core Titles is a unique selection guide based on its method of creating an online community of experts to identify and score a core list of titles in 119 health sciences specialties and disciplines. The result is a new selection guide, now available annually, that will aid health sciences librarians in identifying core titles for local collections. Doody's Core Titles organizes the evaluation of core titles that are identified and recommended by content specialists associated with Doody's Book Review Service and library selectors. A scoring mechanism is used to create the selection of core titles, similar to the star rating system employed in other Doody Enterprise products and services.

  9. Virtual Fieldwork and Critical Zone Observatories as Vehicles for Teaching "Three Dimensional" (NGSS) Science

    Science.gov (United States)

    Duggan-Haas, D.; Ross, R. M.; Derry, L. A.; White, T.

    2014-12-01

    The Next Generation Science Standards (NGSS) offers a vision for K-12 science education that has important differences from common and long-standing classroom practice in many ways. NGSS's three dimensions (Scientific and Engineering Practices, Crosscutting Concepts, and Disciplinary Core Ideas), coupled with the recognition that it takes years to develop deep understandings of big ideas, do not mesh well with common K-12 (or K-16) teaching practices. NGSS also infuses systems and complexity into the K-12 curriculum. The Critical Zone lies between the bottom of the groundwater and the tops of the trees -- the layer of the Earth system where most life resides. Critical Zone Observatories (CZOs) are NSF-funded observatories in markedly varied ecosystems throughout the US, where interdisciplinary teams study the interplay of geological, biological, physical, and chemical sciences. The work being done in CZOs is three-dimensional science that is both deepening the scientific community's understandings of Earth systems and providing a cutting edge and highly relevant model for K-12 science education. Virtual Fieldwork Experiences (VFEs) are multi-media representations of actual field sites that are intended to mimic fieldwork by allowing for open-ended inquiry. The Paleontological Research Institution has developed tools and strategies to build VFEs of any site that use consistent formats, yet allow for inquiry to take multiple directions. Working together with CZO scientists, PRI staff are developing VFEs and accompanying curriculum materials for each CZO site. Ready-to-use VFEs act as models that teachers and students can use to create VFEs local to their schools. VFEs, like CZOs, facilitate use of interdisciplinary science to better understand the environment. A local VFE can be built up over time with contributions from students and teachers in middle school sciences, high school biology, Earth science, and environmental science -- classes where most curriculum

  10. A methodology for enhancing implementation science proposals: comparison of face-to-face versus virtual workshops.

    Science.gov (United States)

    Marriott, Brigid R; Rodriguez, Allison L; Landes, Sara J; Lewis, Cara C; Comtois, Katherine A

    2016-05-06

    With the current funding climate and need for advancements in implementation science, there is a growing demand for grantsmanship workshops to increase the quality and rigor of proposals. A group-based implementation science-focused grantsmanship workshop, the Implementation Development Workshop (IDW), is one methodology to address this need. This manuscript provides an overview of the IDW structure, format, and findings regarding its utility. The IDW methodology allows researchers to vet projects in the proposal stage in a structured format with a facilitator and two types of expert participants: presenters and attendees. The presenter uses a one-page handout and verbal presentation to present their proposal and questions. The facilitator elicits feedback from attendees using a format designed to maximize the number of unique points made. After each IDW, participants completed an anonymous survey assessing perceptions of the IDW. Presenters completed a funding survey measuring grant submission and funding success. Qualitative interviews were conducted with a subset of participants who participated in both delivery formats. Mixed method analyses were performed to evaluate the effectiveness and acceptability of the IDW and compare the delivery formats. Of those who participated in an IDW (N = 72), 40 participated in face-to-face only, 16 in virtual only, and 16 in both formats. Thirty-eight (face-to-face n = 12, 35 % response rate; virtual n = 26, 66.7 % response rate) responded to the surveys and seven (15.3 % response rate), who had attended both formats, completed an interview. Of 36 total presenters, 17 (face-to-face n = 12, 42.9 % response rate; virtual n = 5, 62.9 % response rate) responded to the funding survey. Mixed method analyses indicated that the IDW was effective for collaboration and growth, effective for enhancing success in obtaining grants, and acceptable. A third (35.3 %) of presenters ultimately received funding for their proposal, and more than

  11. Elementary Science Instruction: Examining a Virtual Environment for Evidence of Learning, Engagement, and 21st Century Competencies

    Directory of Open Access Journals (Sweden)

    Terry K. Smith

    2014-03-01

    Full Text Available This mixed methods study examined the effectiveness of a virtual world curriculum for teaching elementary students complex science concepts and skills. Data were collected using pre- and post-content tests and a student survey of engaged learning, An additional survey collected teacher observations of 21st century competencies conducive to learning. The study involved a five-day intervention of fifteen 4th grade students in a small Midwestern school using a virtual science computer game from Arizona State University. Thirty elementary teachers from Australia, England, and the United States were surveyed on classroom observations of their elementary students working in the virtual world environment. Research questions guiding the virtual learning study were: (1 do pre- and post-content tests show significant learning in the virtual environment; (2 are students academically engaged during the learning process; and (3 are students actively demonstrating relevant 21st century competencies. The study supports prior research in game-based learning showing measureable learning results, highly engaged, motivated students, and observations of student behaviors conducive to learning science in school, namely collaboration, problem solving, critical thinking/inquiry, global awareness, and technology use.

  12. Engaging Scientists with the CosmoQuest Citizen Science Virtual Research Facility

    Science.gov (United States)

    Grier, Jennifer A.; Gay, Pamela L.; Buxner, Sanlyn; Noel-Storr, Jacob; CosmoQuest Team

    2016-10-01

    NASA Science Mission Directorate missions and research return more data than subject matter experts (SMEs - scientists and engineers) can effectively utilize. Citizen scientist volunteers represent a robust pool of energy and talent that SMEs can draw upon to advance projects that require the processing of large quantities of images, and other data. The CosmoQuest Virtual Research Facility has developed roles and pathways to engage SMEs in ways that advance the education of the general public while producing science results publishable in peer-reviewed journals, including through the CosmoQuest Facility Small Grants Program and CosmoAcademy. Our Facility Small Grants Program is open to SMEs to fund them to work with CosmoQuest and engage the public in analysis. Ideal projects have a specific and well-defined need for additional eyes and minds to conduct basic analysis and data collection (such as crater counting, identifying lineaments, etc.) Projects selected will undergo design and implementation as Citizen Science Portals, and citizen scientists will be recruited and trained to complete the project. Users regularly receive feedback on the quality of their data. Data returned will be analyzed by the SME and the CQ Science Team for joint publication in a peer-reviewed journal. SMEs are also invited to consider presenting virtual learning courses in the subjects of their choice in CosmoAcademy. The audience for CosmoAcademy are lifelong-learners and education professionals. Classes are capped at 10, 15, or 20 students. CosmoAcademy can also produce video material to archive seminars long-term. SMEs function as advisors in many other areas of CosmoQuest, including the Educator's Zone (curricular materials for K-12 teachers), Science Fair Projects, and programs that partner to produce material for podcasts and planetaria. Visit the CosmoQuest website at cosmoquest.org to learn more, and to investigate current opportunities to engage with us. CosmoQuest is funded

  13. Collaborative technologies for distributed science: fusion energy and high-energy physics

    International Nuclear Information System (INIS)

    Schissel, D P; Gottschalk, E E; Greenwald, M J; McCune, D

    2006-01-01

    This paper outlines a strategy to significantly enhance scientific collaborations in both Fusion Energy Sciences and in High-Energy Physics through the development and deployment of new tools and technologies into working environments. This strategy is divided into two main elements, collaborative workspaces and secure computational services. Experimental and theory/computational programs will greatly benefit through the provision of a flexible, standards-based collaboration space, which includes advanced tools for ad hoc and structured communications, shared applications and displays, enhanced interactivity for remote data access applications, high performance computational services and an improved security environment. The technologies developed should be prototyped and tested on the current generation of experiments and numerical simulation projects. At the same time, such work should maintain a strong focus on the needs of the next generation of mega-projects, ITER and the ILC. Such an effort needs to leverage existing computer science technology and take full advantage of commercial software wherever possible. This paper compares the requirements of FES and HEP, discuss today's solutions, examine areas where more functionality is required, and discuss those areas with sufficient overlap in requirements that joint research into collaborative technologies will increase the benefit to both

  14. Impact of virtual chemistry laboratory instruction on pre-service science teachers’ scientific process skills

    Directory of Open Access Journals (Sweden)

    Mutlu Ayfer

    2016-01-01

    Full Text Available This study aimed to investigate the impact of virtual chemistry laboratory instruction on pre-service science teachers’ scientific process skills. For this purpose, eight laboratory activities related to chemical kinetic, chemical equilibrium, thermochemistry, acids-bases, and electrochemistry were developed. Those activities were performed in virtual laboratory environment by the pre-service teachers in the experimental group and in the real laboratory environment by c the preservice teachers in the control group during eight weeks. Scientific process skills test developed by Burns, Okey and Wise [3], and translated into Turkish by Ateş and Bahar [2] was used before and after the instructions for data collection. According to results, while there was no significant difference between pre-test mean scores (U=133.500, p>0.05, significant difference between post-test mean scores was found in favour of experimental group (U=76.000, p<0.05. In addition, while no significant difference between pre-test mean scores for each sub-dimension was found, significant difference between post-test mean scores for designing investigation and formulating hypothesis skills was found in favour of experimental group.

  15. The effectiveness of virtual and augmented reality in health sciences and medical anatomy.

    Science.gov (United States)

    Moro, Christian; Štromberga, Zane; Raikos, Athanasios; Stirling, Allan

    2017-11-01

    Although cadavers constitute the gold standard for teaching anatomy to medical and health science students, there are substantial financial, ethical, and supervisory constraints on their use. In addition, although anatomy remains one of the fundamental areas of medical education, universities have decreased the hours allocated to teaching gross anatomy in favor of applied clinical work. The release of virtual (VR) and augmented reality (AR) devices allows learning to occur through hands-on immersive experiences. The aim of this research was to assess whether learning structural anatomy utilizing VR or AR is as effective as tablet-based (TB) applications, and whether these modes allowed enhanced student learning, engagement and performance. Participants (n = 59) were randomly allocated to one of the three learning modes: VR, AR, or TB and completed a lesson on skull anatomy, after which they completed an anatomical knowledge assessment. Student perceptions of each learning mode and any adverse effects experienced were recorded. No significant differences were found between mean assessment scores in VR, AR, or TB. During the lessons however, VR participants were more likely to exhibit adverse effects such as headaches (25% in VR P virtual and augmented reality as means to supplement lesson content in anatomical education. Anat Sci Educ 10: 549-559. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.

  16. The development of a virtual science museum for the public understanding of science in eastern China and in the United States

    Science.gov (United States)

    Delello, Julie Anne

    2009-12-01

    In 1999, the Chinese Academy of Sciences realized that there was a need for a better public understanding of science. For the public to have better accessibility and comprehension of China's significance to the world, the Computer Network Information Center (CNIC), under the direction of the Chinese Academy of Sciences, combined resources from thousands of experts across the world to develop online science exhibits housed within the Virtual Science Museum of China. Through an analysis of historical documents, this descriptive dissertation presents a research project that explores a dimension of the development of the Giant Panda Exhibit. This study takes the reader on a journey, first to China and then to a classroom within the United States, in order to answer the following questions: (1) What is the process of the development of a virtual science exhibit; and, (2) What role do public audiences play in the design and implementation of virtual science museums? The creation of a virtual science museum exhibition is a process that is not completed with just the building and design, but must incorporate feedback from public audiences who utilize the exhibit. To meet the needs of the museum visitors, the designers at CNIC took a user-centered approach and solicited feedback from six survey groups. To design a museum that would facilitate a cultural exchange of scientific information, the CNIC looked at the following categories: visitor insights, the usability of the technology, the educational effectiveness of the museum exhibit, and the cultural nuances that existed between students in China and in the United States. The findings of this study illustrate that the objectives of museum designers may not necessarily reflect the needs of the visitors and confirm previous research studies which indicate that museum exhibits need a more constructivist approach that fully engages the visitor in an interactive, media-rich environment. Even though the world has moved forwards

  17. Virtual Immersions in Science: the outreach program of the 'Scuola Normale Superiore'

    International Nuclear Information System (INIS)

    Valdes, M.

    2016-01-01

    With the project “Virtual Immersions in Science: a path of excellence from Research to Outreach” (VIS), we set ourselves the ambitious goal to divulge and disseminate the latest scientific research results produced by the Scuola Normale Superiore (SNS) and by top level Italian scientists working in our country and in the rest of the world, providing an idea as to the type of activity carried out by researchers as well as how research is actually carried out, and showing the most dynamic and creative side of contemporary scientific activity. VIS has met with extraordinary public success, coverage by the major media including local and national television and newspapers, and enthusiastic feedback from all the participants, already in their hundreds of thousands.

  18. Immersive Virtual Reality Technologies as a New Platform for Science, Scholarship, and Education

    Science.gov (United States)

    Djorgovski, Stanislav G.; Hut, P.; McMillan, S.; Knop, R.; Vesperini, E.; Graham, M.; Portegies Zwart, S.; Farr, W.; Mahabal, A.; Donalek, C.; Longo, G.

    2010-01-01

    Immersive virtual reality (VR) and virtual worlds (VWs) are an emerging set of technologies which likely represent the next evolutionary step in the ways we use information technology to interact with the world of information and with other people, the roles now generally fulfilled by the Web and other common Internet applications. Currently, these technologies are mainly accessed through various VWs, e.g., the Second Life (SL), which are general platforms for a broad range of user activities. As an experiment in the utilization of these technologies for science, scholarship, education, and public outreach, we have formed the Meta-Institute for Computational Astrophysics (MICA; http://mica-vw.org), the first professional scientific organization based exclusively in VWs. The goals of MICA are: (1) Exploration, development and promotion of VWs and VR technologies for professional research in astronomy and related fields. (2) Providing and developing novel social networking venues and mechanisms for scientific collaboration and communications, including professional meetings, effective telepresence, etc. (3) Use of VWs and VR technologies for education and public outreach. (4) Exchange of ideas and joint efforts with other scientific disciplines in promoting these goals for science and scholarship in general. To this effect, we have a regular schedule of professional and public outreach events in SL, including technical seminars, workshops, journal club, collaboration meetings, public lectures, etc. We find that these technologies are already remarkably effective as a telepresence platform for scientific and scholarly discussions, meetings, etc. They can offer substantial savings of time and resources, and eliminate a lot of unnecessary travel. They are equally effective as a public outreach platform, reaching a world-wide audience. On the pure research front, we are currently exploring the use of these technologies as a venue for numerical simulations and their

  19. Identifying potential types of guidance for supporting student inquiry when using virtual and remote labs in science: a literature review

    NARCIS (Netherlands)

    Zacharia, Zacharias C.; Manoli, Constantinos; Xenofontos, Nikoletta; de Jong, Anthonius J.M.; Pedaste, Margus; van Riesen, Siswa; Kamp, E.T.; Kamp, Ellen T.; Mäeots, Mario; Siiman, Leo; Tsourlidaki, Eleftheria

    2015-01-01

    The aim of this review is to identify specific types of guidance for supporting student use of online labs, that is, virtual and remote labs, in an inquiry context. To do so, we reviewed the literature on providing guidance within computer supported inquiry learning (CoSIL) environments in science

  20. Virtual tool mark generation for efficient striation analysis in forensic science

    Energy Technology Data Exchange (ETDEWEB)

    Ekstrand, Laura [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    In 2009, a National Academy of Sciences report called for investigation into the scienti c basis behind tool mark comparisons (National Academy of Sciences, 2009). Answering this call, Chumbley et al. (2010) attempted to prove or disprove the hypothesis that tool marks are unique to a single tool. They developed a statistical algorithm that could, in most cases, discern matching and non-matching tool marks made at di erent angles by sequentially numbered screwdriver tips. Moreover, in the cases where the algorithm misinterpreted a pair of marks, an experienced forensics examiner could discern the correct outcome. While this research served to con rm the basic assumptions behind tool mark analysis, it also suggested that statistical analysis software could help to reduce the examiner's workload. This led to a new tool mark analysis approach, introduced in this thesis, that relies on 3D scans of screwdriver tip and marked plate surfaces at the micrometer scale from an optical microscope. These scans are carefully cleaned to remove noise from the data acquisition process and assigned a coordinate system that mathematically de nes angles and twists in a natural way. The marking process is then simulated by using a 3D graphics software package to impart rotations to the tip and take the projection of the tip's geometry in the direction of tool travel. The edge of this projection, retrieved from the 3D graphics software, becomes a virtual tool mark. Using this method, virtual marks are made at increments of 5 and compared to a scan of the evidence mark. The previously developed statistical package from Chumbley et al. (2010) performs the comparison, comparing the similarity of the geometry of both marks to the similarity that would occur due to random chance. The resulting statistical measure of the likelihood of the match informs the examiner of the angle of the best matching virtual mark, allowing the examiner to focus his/her mark analysis on a smaller range of angles

  1. Going from lectures to expeditions: Creating a virtual voyage in undergraduate ocean science education

    Science.gov (United States)

    Reed, D.; Garfield, N.; Locke, J.; Anglin, J.; Karl, H.; Edwards, B.

    2003-04-01

    The WWW provides for new collaborations in distributed learning in higher education. The lead author has developed a highly successful online course at the undergraduate level with an enrollment of more than 300 non-science majors each year, We are currently initiating a new focus for the course by emphasizing sea-going research, primarily in the northeastern Pacific Ocean, through the development of a virtual oceanographic voyage over the WWW. The "virtual voyage" courseware combines elements of experiential learning with anytime, anywhere access of the WWW to stimulate inquiry-based learning in the ocean sciences. The first leg of the voyage is currently being synthesized from contemporary ocean research sponsored by a collaboration of U.S. government agencies, including NSF, NOAA, and the USGS. The initial portion of this effort involves transforming portions of USGS Circular 1198, Beyond the Golden Gate -- Oceanography, Geology, Biology, and Environmental Issues in the Gulf of the Farallones, into an interactive expedition by which students participate as scientists aboard a research vessel departing from San Francisco. Virtual experiments on the voyage are patterned after research cruises over the past decade in two national marine sanctuaries and include the technologies of data acquisition and data analysis, as well as providing insight into the methodologies of working marine scientists. Real-time data for monitoring the marine environment are embedded into several modules; for example, students will analyze data from offshore buoys and satellite imagery to assess ocean conditions prior to departing from port. Multibeam sonar is used to create seafloor maps near the Golden Gate Bridge and sediment cores provide evidence of sea-level change in the region. Environmental studies in the region include locating canisters of low-level radioactive waste and assessing potential sites for the disposal for dredged materials from the San Francisco Bay. Upon completion

  2. Department of Energy's Virtual Lab Infrastructure for Integrated Earth System Science Data

    Science.gov (United States)

    Williams, D. N.; Palanisamy, G.; Shipman, G.; Boden, T.; Voyles, J.

    2014-12-01

    The U.S. Department of Energy (DOE) Office of Biological and Environmental Research (BER) Climate and Environmental Sciences Division (CESD) produces a diversity of data, information, software, and model codes across its research and informatics programs and facilities. This information includes raw and reduced observational and instrumentation data, model codes, model-generated results, and integrated data products. Currently, most of this data and information are prepared and shared for program specific activities, corresponding to CESD organization research. A major challenge facing BER CESD is how best to inventory, integrate, and deliver these vast and diverse resources for the purpose of accelerating Earth system science research. This talk provides a concept for a CESD Integrated Data Ecosystem and an initial roadmap for its implementation to address this integration challenge in the "Big Data" domain. Towards this end, a new BER Virtual Laboratory Infrastructure will be presented, which will include services and software connecting the heterogeneous CESD data holdings, and constructed with open source software based on industry standards, protocols, and state-of-the-art technology.

  3. Cryosphere Science Outreach using the Ice Sheet System Model and a Virtual Ice Sheet Laboratory

    Science.gov (United States)

    Cheng, D. L. C.; Halkides, D. J.; Larour, E. Y.

    2015-12-01

    Understanding the role of Cryosphere Science within the larger context of Sea Level Rise is both a technical and educational challenge that needs to be addressed if the public at large is to trulyunderstand the implications and consequences of Climate Change. Within this context, we propose a new approach in which scientific tools are used directly inside a mobile/website platform geared towards Education/Outreach. Here, we apply this approach by using the Ice Sheet System Model, a state of the art Cryosphere model developed at NASA, and integrated within a Virtual Ice Sheet Laboratory, with the goal is to outreach Cryospherescience to K-12 and College level students. The approach mixes laboratory experiments, interactive classes/lessons on a website, and a simplified interface to a full-fledged instance of ISSM to validate the classes/lessons. This novel approach leverages new insights from the Outreach/Educational community and the interest of new generations in web based technologies and simulation tools, all of it delivered in a seamlessly integrated web platform. This work was performed at the California Institute of Technology's Jet Propulsion Laboratory undera contract with the National Aeronautics and Space Administration's Cryosphere Science Program.

  4. The Fusion Science Research Plan for the Major U.S. Tokamaks. Advisory report

    International Nuclear Information System (INIS)

    1996-01-01

    In summary, the community has developed a research plan for the major tokamak facilities that will produce impressive scientific benefits over the next two years. The plan is well aligned with the new mission and goals of the restructured fusion energy sciences program recommended by FEAC. Budget increases for all three facilities will allow their programs to move forward in FY 1997, increasing their rate of scientific progress. With a shutdown deadline now established, the TFTR will forego all but a few critical upgrades and maximize operation to achieve a set of high-priority scientific objectives with deuterium-tritium plasmas. The DIII-D and Alcator C-Mod facilities will still fall well short of full utilization. Increasing the run time in vii DIII-D is recommended to increase the scientific output using its existing capabilities, even if scheduled upgrades must be further delayed. An increase in the Alcator C-Mod budget is recommended, at the expense of equal and modest reductions (~1%) in the other two facilities if necessary, to develop its capabilities for the long-term and increase its near-term scientific output.

  5. Accountability in Science During the Information Era: Lessons Drawn from the "Cold Fusion Furor"

    Science.gov (United States)

    Chubb, Scott

    2001-04-01

    As guest editor of a recent Ethics in Science publication(S. R. Chubb, Accountability in Research, v 8), #'s 1 and 2, 1 (2000). journals/149/149-top.htm>(http://www.gbhap us.com/journals/149/149-top.htm), I requested key players, from both sides of the Cold Fusion (CF) debate, to attempt to go beyond questions involving the merits of CF, by addressing a more basic issue: have CF claims been judged effectively. All participants agreed that this has not occurred. Three factors seem to have been responsible: 1. Errors in the initial neutron measurements, 2. Events immediately prior to and during a specific APS session, held 1 May 1989, and 3. Irresponsible use of FAX machines and the Internet. The resulting furor, fueled by these Information Era Technologies (IET's), has evolved into such a serious breakdown in communication that, even after 11 years, it is impossible to rule-out the possibility that a number of important new discoveries may have occurred. Regardless of the merits of the claims, two lessons can be drawn from the debate: 1. Individuals and groups must be held accountable for their actions and statements, 2. When IET users fail to respect each other, IET's can seriously impede communication.

  6. Research Needs for Magnetic Fusion Energy Sciences. Report of the Research Needs Workshop (ReNeW) Bethesda, Maryland, June 8-12, 2009

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-06-08

    Nuclear fusion - the process that powers the sun - offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITE R fusion collaboration, which involves seven parties representing half the world's population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES ) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW's task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.) This Report presents a portfolio of research activities for US research in magnetic fusion for the next two decades. It is intended to provide

  7. Validation of science virtual test to assess 8th grade students' critical thinking on living things and environmental sustainability theme

    Science.gov (United States)

    Rusyati, Lilit; Firman, Harry

    2017-05-01

    This research was motivated by the importance of multiple-choice questions that indicate the elements and sub-elements of critical thinking and implementation of computer-based test. The method used in this research was descriptive research for profiling the validation of science virtual test to measure students' critical thinking in junior high school. The participant is junior high school students of 8th grade (14 years old) while science teacher and expert as the validators. The instrument that used as a tool to capture the necessary data are sheet of an expert judgment, sheet of legibility test, and science virtual test package in multiple choice form with four possible answers. There are four steps to validate science virtual test to measure students' critical thinking on the theme of "Living Things and Environmental Sustainability" in 7th grade Junior High School. These steps are analysis of core competence and basic competence based on curriculum 2013, expert judgment, legibility test and trial test (limited and large trial test). The test item criterion based on trial test are accepted, accepted but need revision, and rejected. The reliability of the test is α = 0.747 that categorized as `high'. It means the test instruments used is reliable and high consistency. The validity of Rxy = 0.63 means that the validity of the instrument was categorized as `high' according to interpretation value of Rxy (correlation).

  8. Opportunities in the Fusion Energy Sciences Program [Includes Appendix C: Topical Areas Characterization

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-06-01

    Recent years have brought dramatic advances in the scientific understanding of fusion plasmas and in the generation of fusion power in the laboratory. Today, there is little doubt that fusion energy production is feasible. The challenge is to make fusion energy practical. As a result of the advances of the last few years, there are now exciting opportunities to optimize fusion systems so that an attractive new energy source will be available when it may be needed in the middle of the next century. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are among the reasons to pursue these opportunities.

  9. Opportunities in the Fusion Energy Sciences Program. Appendix C: Topical Areas Characterization

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-06-30

    Recent years have brought dramatic advances in the scientific understanding of fusion plasmas and in the generation of fusion power in the laboratory. Today, there is little doubt that fusion energy production is feasible. The challenge is to make fusion energy practical. As a result of the advances of the last few years, there are now exciting opportunities to optimize fusion systems so that an attractive new energy source will be available when it may be needed in the middle of the next century. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are among the reasons to pursue these opportunities.

  10. Assessing students' learning outcomes, self-efficacy and attitudes toward the integration of virtual science laboratory in general physics

    Science.gov (United States)

    Ghatty, Sundara L.

    Over the past decade, there has been a dramatic rise in online delivery of higher education in the United States. Recent developments in web technology and access to the internet have led to a vast increase in online courses. For people who work during the day and whose complicated lives prevent them from taking courses on campus, online courses are the only alternatives by which they may achieve their goals in education. The laboratory courses are the major requirements for college and university students who want to pursue degree and certification programs in science. It is noted that there is a lack of laboratory courses in online physics courses. The present study addressed the effectiveness of a virtual science laboratory in physics instruction in terms of learning outcomes, attitudes, and self-efficacy of students in a Historically Black University College. The study included fifty-eight students (36 male and 22 female) of different science majors who were enrolled in a general physics laboratory course. They were divided into virtual and traditional groups. Three experiments were selected from the syllabus. The traditional group performed one experiment in a traditional laboratory, while the virtual group performed the same experiment in a virtual laboratory. For the second experiment, the use of laboratories by both groups was exchanged. Learner's Assessment Test (LAT), Attitudes Toward Physics Laboratories (ATPL), and Self-Efficacy Survey (SES) instruments were used. Additionally, quantitative methods such as an independent t-test, a paired t-test, and correlation statistics were used to analyze the data. The results of the first experiment indicated the learning outcomes were higher in the Virtual Laboratory than in the traditional laboratory, whereas there was no significant difference in learning outcomes with either type of lab instruction. However, significant self-efficacy gains were observed. Students expressed positive attitudes in terms of liking

  11. Creating a virtual community of practice to investigate legitimate peripheral participation by African American middle school girls in science activities

    Science.gov (United States)

    Edwards, Leslie D.

    How do teenage girls develop an interest in science? What kinds of opportunities can science teachers present to female students that support their engagement with learning science? I studied one aspect of this issue by focusing on ways students could use science to enhance or gain identities that they (probably) already valued. To do that I created technology-rich activities and experiences for an after school class in science and technology for middle school girls who lived in a low socio-economic urban neighborhood. These activities and experiences were designed to create a virtual community of practice whose members used science in diverse ways. Student interest was made evident in their responses to the activities. Four conclusions emerged. (1) Opportunities to learn about the lives and work of admired African American business women interested students in learning by linking it to their middle-class aspirations and their interest in things that money and status can buy. (2) Opportunities to learn about the lives and work of African American women experts in science in a classroom context where students then practiced similar kinds of actual scientific tasks engaged students in relations of legitimate peripheral participation in a virtual and diverse community of practice focused on science which was created in the after-school classes. (3) Opportunities where students used science to show off for family, friends, and supporters of the after-school program, identities they valued, interested them enough that they engaged in long-term science and technology projects that required lots of revisions. (4) In response to the opportunities presented, new and enhanced identities developed around becoming a better student or becoming some kind of scientist.

  12. Virtual Reality for Artificial Intelligence: human-centered simulation for social science.

    Science.gov (United States)

    Cipresso, Pietro; Riva, Giuseppe

    2015-01-01

    There is a long last tradition in Artificial Intelligence as use of Robots endowing human peculiarities, from a cognitive and emotional point of view, and not only in shape. Today Artificial Intelligence is more oriented to several form of collective intelligence, also building robot simulators (hardware or software) to deeply understand collective behaviors in human beings and society as a whole. Modeling has also been crucial in the social sciences, to understand how complex systems can arise from simple rules. However, while engineers' simulations can be performed in the physical world using robots, for social scientist this is impossible. For decades, researchers tried to improve simulations by endowing artificial agents with simple and complex rules that emulated human behavior also by using artificial intelligence (AI). To include human beings and their real intelligence within artificial societies is now the big challenge. We present an hybrid (human-artificial) platform where experiments can be performed by simulated artificial worlds in the following manner: 1) agents' behaviors are regulated by the behaviors shown in Virtual Reality involving real human beings exposed to specific situations to simulate, and 2) technology transfers these rules into the artificial world. These form a closed-loop of real behaviors inserted into artificial agents, which can be used to study real society.

  13. The relationship between students critical thinking measured by science virtual test and students logical thinking on eighth grade secondary school

    Science.gov (United States)

    Nurismawati, R.; Sanjaya, Y.; Rusyati, L.

    2018-05-01

    The aim of this study is to examine the relationship between students’ critical thinking skill and students’ logical thinking skill of Junior High School students in Tasikmalaya city. The respondent consists of 168 students from eighth grade at three public schools in Tasikmalaya City. Science Virtual Test and Test of Logical Thinking were used in this research study. Science virtual test instrument consist of 26 questions with 5 different topics. IBM SPSS 23.00 program was used for analysis of the data. By the findings; students’ critical thinking skill has significant differences in elements of generating purpose, embodying point of view, utilizing concept and making implication and consequence. By Post Hoc LSD Test, from those four elements, there are significant differences between concrete - transitional groups and transitional – concrete groups. There is positive and weak correlation between students’ critical thinking and students’ logical thinking attainment.

  14. A DOE/Fusion Energy Sciences Research/Education Program at PVAMU Study of Rotamak Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Tian-Sen [Prairie View A& M Univ., Prairie View, TX (United States); Saganti, Premkumar [Prairie View A& M Univ., Prairie View, TX (United States)

    2017-02-17

    During recent years (2004-2015), with DOE support, the PVAMU plasma research group accomplished new instrumentation development, conducted several new plasma experiments, and is currently poised to advance with standing-wave microwave plasma propulsion research. On the instrumentation development, the research group completed: (i) building a new plasma chamber with metal CF flanges, (ii) setting up of a 6kW/2450MHz microwave input system as an additional plasma heating source at our rotamak plasma facility, (iii) installation of one programmatic Kepco ATE 6-100DMG fast DC current supply system used in rotamak plasma shape control experiment, built a new microwave, standing-wave experiment chamber and (iv) established a new plasma lab with field reversal configuration capability utilizing 1MHz/200kW RF (radio frequency) wave generator. Some of the new experiments conducted in this period also include: (i) assessment of improved magnetic reconnection at field-reversed configuration (FRC) plasma, (ii) introduction of microwave heating experiments, and (iii) suppression of n = 1 tilt instability by one coil with a smaller current added inside the rotamak’s central pipe. These experiments led to publications in Physical Review Letters, Reviews of Scientific Instruments, Division of Plasma Physics (DPP) of American Physical Society (APS) Reports, Physics of Plasmas Controlled Fusion, and Physics of Plasmas (between 2004 and 2015). With these new improvements and advancements, we also initiated and accomplished design and fabrication of a plasma propulsion system. Currently, we are assembling a plasma propulsion experimental system that includes a 5kW helicon plasma source, a 25 cm diameter plasma heating chamber with 1MHz/200kW RF power rotating magnetic field, and a 60 cm diameter plasma exhaust chamber, and expect to achieve a plasma mass flow of 0.1g/s with 60km/s ejection. We anticipate several propulsion applications in near future as we advance our capabilities

  15. Oceanography in Second Life: Use of a Virtual Reality to Enhance Undergraduate Education in Marine Science

    Science.gov (United States)

    Villareal, T. A.; Jarmon, L.; Triggs, R.

    2009-12-01

    Shipboard research is a fundamental part of oceanography, but has numerous legal and practical constraints virtually eliminate it as a regular part of large-enrollment programs in marine science. The cost of a properly equipped research vessel alone can prevent student access. While much can be learned by active exploration of archived data by students, the limitations placed on real oceanographic programs by distance, vessel speed, and time are difficult to reproduce in exercises. Pre-cruise planning and collaboration between investigators are likewise a challenge to incorporate. We have used design students in the College of Liberal Arts to construct a oceanographic expedition in Second Life for use in a marine science course (Fall 2009). Second Life is a highly collaborative environment with a variety of tools that allow users to create their own environment and interact with it. Second LIfe is free, highly portable, and inherently amenable to distance or remote teaching. In our application, the research vessel exists as an moving platform with sampling abilities. Software code queries an external MySQL database that contains information from the World Ocean Atlas for the entire ocean, and returns strings of data from standard depths. Students must plan the cruise track to test hypothesis about the ocean, collaborate with other teams to develop the big picture and use standard oceanographic software (Ocean Data Viewer; ODV) to analyze the data. Access to the entire database in ODV then allows comparison to the actual properties and distributions. The effectiveness of this approach is being evaluated by a pre- and post-class surveys and post semester focus group interviews. Similar surveys of the design students that created the environment noted that use of Second Life created a learning experience that was both more immersive and process oriented than traditional college courses. Initial impressions in the marine science class indicate that the strong social

  16. One year on VESPA, a community-driven Virtual Observatory in Planetary Science

    Science.gov (United States)

    Erard, S.; Cecconi, B.; Le Sidaner, P.; Rossi, A. P.; Capria, M. T.; Schmitt, B.; Andre, N.; Vandaele, A. C.; Scherf, M.; Hueso, R.; Maattanen, A. E.; Thuillot, W.; Achilleos, N.; Marmo, C.; Santolik, O.; Benson, K.

    2016-12-01

    The Europlanet H2020 program started on 1/9/2015 for 4 years. It includes an activity to adapt Virtual Observatory (VO) techniques to Planetary Science data called VESPA. The objective is to facilitate searches in big archives as well as sparse databases, to provide simple data access and on-line visualization, and to allow small data providers to make their data available in an interoperable environment with minimum effort. The VESPA system, based on a prototype developed in a previous program [1], has been hugely improved during the first year of Europlanet H2020: the infrastructure has been upgraded to describe data in many fields more accurately; the main user search interface (http://vespa.obspm.fr) has been redesigned to provide more flexibility; alternative ways to access Planetary Science data services from VO tools are being implemented in addition to receiving data from the main interface; VO tools are being improved to handle specificities of Solar System data, e.g. measurements in reflected light, coordinate systems, etc. Existing data services have been updated, and new ones have been designed. The global objective (50 data services) is already overstepped, with 54 services open or being finalized. A procedure to install data services has been documented, and hands-on sessions are organized twice a year at EGU and EPSC; this is intended to favour the installation of services by individual research teams, e.g. to distribute derived data related to a published study. In complement, regular discussions are held with big data providers, starting with space agencies (IPDA). Common projects with ESA and NASA's PDS have been engaged, which should lead to a connection between PDS4 and EPN-TAP. In parallel, a Solar System Interest Group has been decided in IVOA; the goal is here to adapt existing astronomy standards to Planetary Science.Future steps will include the development of a connection between the VO world and GIS tools, and integration of Heliophysics

  17. Progress on VESPA, a community-driven Virtual Observatory in Planetary Science

    Science.gov (United States)

    Erard, S.; Cecconi, B.; Le Sidaner, P.; Rossi, A. P.; Capria, M. T.; Schmitt, B.; Genot, V. N.; André, N.; Vandaele, A. C.; Scherf, M.; Hueso, R.; Maattanen, A. E.; Carry, B.; Achilleos, N.; Marmo, C.; Santolik, O.; Benson, K.; Fernique, P.

    2017-12-01

    The Europlanet H2020 program started on 1/9/2015 for 4 years. It includes an activity to adapt Virtual Observatory (VO) techniques to Planetary Science data called VESPA. The objective is to facilitate searches in big archives as well as sparse databases, to provide simple data access and on-line visualization, and to allow small data providers to make their data available in an interoperable environment with minimum effort. The VESPA system, based on a prototype developed in a previous program [1], has been hugely improved during the first two years of Europlanet H2020: the infrastructure has been upgraded to describe data in many fields more accurately; the main user search interface (http://vespa.obspm.fr) has been redesigned to provide more flexibility; alternative ways to access Planetary Science data services from VO tools have been implemented; VO tools are being improved to handle specificities of Solar System data, e.g. measurements in reflected light, coordinate systems, etc. Current steps include the development of a connection between the VO world and GIS tools, and integration of Heliophysics, planetary plasmas, and mineral spectroscopy data to support of the analysis of observations. Existing data services have been updated, and new ones have been designed. The global objective is already overstepped, with 34 services open and 20 more being finalized. A procedure to install data services has been documented, and hands-on sessions are organized twice a year at EGU and EPSC; this is intended to favour the installation of services by individual research teams, e.g. to distribute derived data related to a published study. In complement, regular discussions are held with big data providers, starting with space agencies (IPDA). Common projects with ESA and NASA's PDS have been engaged, with the goal to connect PDS4 and EPN-TAP. In parallel, a Solar System Interest Group has just been started in IVOA; the goal is here to adapt existing astronomy standards to

  18. Virtual in-service training from the librarians' point of view in libraries of medical sciences universities in Tehran

    Science.gov (United States)

    Mohaghegh, Niloofar; Raiesi Dehkordi, Puran; Alibeik, MohammadReza; Ghashghaee, Ahmad; Janbozorgi, Mojgan

    2016-01-01

    Background: In-service training courses are one of the most available programs that are used to improve the quantity and quality level of the staff services in various organizations, including libraries and information centers. With the advent of new technologies in the field of education, the problems and shortcomings of traditional in-service training courses were replaced with virtual ones. This study aimed to evaluate the virtual in-service training courses from the librarians' point of view in libraries of state universities of medical sciences in Tehran. Methods: This was a descriptive- analytical study. The statistical population consisted of all librarians at libraries of universities of medical sciences in Tehran. Out of 103 librarians working in the libraries under the study, 93 (90%) participated in this study. Data were collected, using a questionnaire. Results: The results revealed that 94/6% of librarians were satisfied to participate in virtual in-service training courses. In this study, only 45 out of 93 participants said that the virtual in-service courses were held in their libraries. Of the participants, 75.6% were satisfied with the length of training courses, and one month seemed to be adequate time duration for the librarians to be more satisfied. The satisfaction level of the individuals who participated in in-service courses of the National Library was moderate to high. A total of 84.4% participants announced that the productivity level of the training courses was moderate to high. The most important problem with which the librarians were confronted in virtual in-service training was the "low speed of the internet and inadequate computer substructures". Conclusion: Effectiveness of in-service training courses from librarians’ point of view was at an optimal level in the studied libraries. PMID:28491833

  19. Virtual in-service training from the librarians' point of view in libraries of medical sciences universities in Tehran.

    Science.gov (United States)

    Mohaghegh, Niloofar; Raiesi Dehkordi, Puran; Alibeik, MohammadReza; Ghashghaee, Ahmad; Janbozorgi, Mojgan

    2016-01-01

    Background: In-service training courses are one of the most available programs that are used to improve the quantity and quality level of the staff services in various organizations, including libraries and information centers. With the advent of new technologies in the field of education, the problems and shortcomings of traditional in-service training courses were replaced with virtual ones. This study aimed to evaluate the virtual in-service training courses from the librarians' point of view in libraries of state universities of medical sciences in Tehran. Methods: This was a descriptive- analytical study. The statistical population consisted of all librarians at libraries of universities of medical sciences in Tehran. Out of 103 librarians working in the libraries under the study, 93 (90%) participated in this study. Data were collected, using a questionnaire. Results: The results revealed that 94/6% of librarians were satisfied to participate in virtual in-service training courses. In this study, only 45 out of 93 participants said that the virtual in-service courses were held in their libraries. Of the participants, 75.6% were satisfied with the length of training courses, and one month seemed to be adequate time duration for the librarians to be more satisfied. The satisfaction level of the individuals who participated in in-service courses of the National Library was moderate to high. A total of 84.4% participants announced that the productivity level of the training courses was moderate to high. The most important problem with which the librarians were confronted in virtual in-service training was the "low speed of the internet and inadequate computer substructures". Conclusion: Effectiveness of in-service training courses from librarians' point of view was at an optimal level in the studied libraries.

  20. An Interdisciplinary Design Project in Second Life: Creating a Virtual Marine Science Learning Environment

    Science.gov (United States)

    Triggs, Riley; Jarmon, Leslie; Villareal, Tracy A.

    2010-01-01

    Virtual environments can resolve many practical and pedagogical challenges within higher education. Economic considerations, accessibility issues, and safety concerns can all be somewhat alleviated by creating learning activities in a virtual space. Because of the removal of real-world physical limitations like gravity, durability and scope,…

  1. Virtual laboratory learning media development to improve science literacy skills of mechanical engineering students on basic physics concept of material measurement

    Science.gov (United States)

    Jannati, E. D.; Setiawan, A.; Siahaan, P.; Rochman, C.

    2018-05-01

    This study aims to determine the description of virtual laboratory learning media development to improve science literacy skills of Mechanical Engineering students on the concept of basic Physics. Quasi experimental method was employed in this research. The participants of this research were first semester students of mechanical engineering in Majalengka University. The research instrument was readability test of instructional media. The results of virtual laboratory learning media readability test show that the average score is 78.5%. It indicates that virtual laboratory learning media development are feasible to be used in improving science literacy skill of Mechanical Engineering students in Majalengka University, specifically on basic Physics concepts of material measurement.

  2. Simulated and Virtual Science Laboratory Experiments: Improving Critical Thinking and Higher-Order Learning Skills

    Science.gov (United States)

    Simon, Nicole A.

    Virtual laboratory experiments using interactive computer simulations are not being employed as viable alternatives to laboratory science curriculum at extensive enough rates within higher education. Rote traditional lab experiments are currently the norm and are not addressing inquiry, Critical Thinking, and cognition throughout the laboratory experience, linking with educational technologies (Pyatt & Sims, 2007; 2011; Trundle & Bell, 2010). A causal-comparative quantitative study was conducted with 150 learners enrolled at a two-year community college, to determine the effects of simulation laboratory experiments on Higher-Order Learning, Critical Thinking Skills, and Cognitive Load. The treatment population used simulated experiments, while the non-treatment sections performed traditional expository experiments. A comparison was made using the Revised Two-Factor Study Process survey, Motivated Strategies for Learning Questionnaire, and the Scientific Attitude Inventory survey, using a Repeated Measures ANOVA test for treatment or non-treatment. A main effect of simulated laboratory experiments was found for both Higher-Order Learning, [F (1, 148) = 30.32,p = 0.00, eta2 = 0.12] and Critical Thinking Skills, [F (1, 148) = 14.64,p = 0.00, eta 2 = 0.17] such that simulations showed greater increases than traditional experiments. Post-lab treatment group self-reports indicated increased marginal means (+4.86) in Higher-Order Learning and Critical Thinking Skills, compared to the non-treatment group (+4.71). Simulations also improved the scientific skills and mastery of basic scientific subject matter. It is recommended that additional research recognize that learners' Critical Thinking Skills change due to different instructional methodologies that occur throughout a semester.

  3. Virtual Reality.

    Science.gov (United States)

    Newby, Gregory B.

    1993-01-01

    Discusses the current state of the art in virtual reality (VR), its historical background, and future possibilities. Highlights include applications in medicine, art and entertainment, science, business, and telerobotics; and VR for information science, including graphical display of bibliographic data, libraries and books, and cyberspace.…

  4. Using Virtual Reality to Bring Ocean Science Field Experiences to the Classroom and Beyond

    Science.gov (United States)

    Waite, A. J.; Rosenberg, A.; Frehm, V.; Gravinese, P.; Jackson, J.; Killingsworth, S.; Williams, C.

    2017-12-01

    While still in its infancy, the application of virtual reality (VR) technology to classroom education provides unparalleled opportunities to transport students to otherwise inaccessible localities and increase awareness of and engagement in STEAM fields. Here we share VR programming in development by the ANGARI Foundation, a 501(c)(3) nonprofit committed to advancing ocean science research and education. ANGARI Foundation's series of thematic VR films features the research of ocean scientists from onboard the Foundation's research vessel, R/V ANGARI. The films are developed and produced through an iterative process between expedition scientists, the film production team, and ANGARI staff and Educator Council members. Upon completion of filming, the K-12 and informal educators of ANGARI's Educator Council work with ANGARI staff and affiliated scientists to develop and implement standards-aligned (e.g. Next Generation Science Standards and International Baccalaureate) lesson plans for the classroom. The goal of ANGARI Foundation's VR films is to immerse broad audiences in the marine environment, while actively engaging them in the at-sea scientific methods of expert scientists, ultimately increasing knowledge of our oceans and promoting their conservation. The foundation's VR films and developed lessons are made available for free to the public via YouTube and www.ANGARI.org. While South Florida educators may request that ANGARI Foundation visit their classrooms and bring the necessary headsets to run the experience, the Foundation is also partnering with VR hardware companies to facilitate the acquisition and adoption of VR headsets by schools in the U.S. and abroad. In this presentation we will share our most recent VR film that highlights coral reef ecosystems and the Florida Reef Tract, taking an interdisciplinary approach to investigating how it has changed over time and the issues and opportunities it currently faces. We will also discuss classroom

  5. Students' meaning making in science: solving energy resource problems in virtual worlds combined with spreadsheets to develop graphs

    Science.gov (United States)

    Krange, Ingeborg; Arnseth, Hans Christian

    2012-09-01

    The aim of this study is to scrutinize the characteristics of conceptual meaning making when students engage with virtual worlds in combination with a spreadsheet with the aim to develop graphs. We study how these tools and the representations they contain or enable students to construct serve to influence their understanding of energy resource consumption. The data were gathered in 1st grade upper-secondary science classes and they constitute the basis for the interaction analysis of students' meaning making with representations. Our analyses demonstrate the difficulties involved in developing students' orientation toward more conceptual orientations to representations of the knowledge domain. Virtual worlds do not in themselves represent a solution to this problem.

  6. Transduction between worlds: using virtual and mixed reality for earth and planetary science

    Science.gov (United States)

    Hedley, N.; Lochhead, I.; Aagesen, S.; Lonergan, C. D.; Benoy, N.

    2017-12-01

    Virtual reality (VR) and augmented reality (AR) have the potential to transform the way we visualize multidimensional geospatial datasets in support of geoscience research, exploration and analysis. The beauty of virtual environments is that they can be built at any scale, users can view them at many levels of abstraction, move through them in unconventional ways, and experience spatial phenomena as if they had superpowers. Similarly, augmented reality allows you to bring the power of virtual 3D data visualizations into everyday spaces. Spliced together, these interface technologies hold incredible potential to support 21st-century geoscience. In my ongoing research, my team and I have made significant advances to connect data and virtual simulations with real geographic spaces, using virtual environments, geospatial augmented reality and mixed reality. These research efforts have yielded new capabilities to connect users with spatial data and phenomena. These innovations include: geospatial x-ray vision; flexible mixed reality; augmented 3D GIS; situated augmented reality 3D simulations of tsunamis and other phenomena interacting with real geomorphology; augmented visual analytics; and immersive GIS. These new modalities redefine the ways in which we can connect digital spaces of spatial analysis, simulation and geovisualization, with geographic spaces of data collection, fieldwork, interpretation and communication. In a way, we are talking about transduction between real and virtual worlds. Taking a mixed reality approach to this, we can link real and virtual worlds. This paper presents a selection of our 3D geovisual interface projects in terrestrial, coastal, underwater and other environments. Using rigorous applied geoscience data, analyses and simulations, our research aims to transform the novelty of virtual and augmented reality interface technologies into game-changing mixed reality geoscience.

  7. Mental vision: a computer graphics platform for virtual reality, science and education

    OpenAIRE

    Peternier, Achille

    2009-01-01

    Despite the wide amount of computer graphics frameworks and solutions available for virtual reality, it is still difficult to find a perfect one fitting at the same time the many constraints of research and educational contexts. Advanced functionalities and user-friendliness, rendering speed and portability, or scalability and image quality are opposite characteristics rarely found into a same approach. Furthermore, fruition of virtual reality specific devices like CAVEs or wearable systems i...

  8. Dissemination actions and the popularization of the Exact Sciences by virtual environments and non-formal spaces of education

    Directory of Open Access Journals (Sweden)

    Carlos Coimbra-Araujo

    2017-08-01

    Full Text Available For several reasons, the Exact Sciences have been shown as one of the areas of scientific knowledge that most demand actions in non-formal spaces of education. One of the main reasons lies in the fact that Mathematics, Physics, Chemistry and Astronomy are traditionally addressed, within the school environment and in the formal curriculum, unrelated to the student reality. Such subjects are often seen as a set of inflexible and incomprehensible principles. In this aspect, the present work reviews the main problems surrounding the teaching of the mentioned scientific areas, highlighting non-formal tools for the teaching of Mathematics, Physics, Chemistry, Astronomy and, in particular, the modern virtual environments of teaching modeled by Computing Science. Other historical difficulties that the formal education of Exact Sciences has suffered in Brazil are also presented, as well some of the main non-formal resources sought to complement the curriculum that is usually presented in the classroom.

  9. BioVeL: a virtual laboratory for data analysis and modelling in biodiversity science and ecology.

    Science.gov (United States)

    Hardisty, Alex R; Bacall, Finn; Beard, Niall; Balcázar-Vargas, Maria-Paula; Balech, Bachir; Barcza, Zoltán; Bourlat, Sarah J; De Giovanni, Renato; de Jong, Yde; De Leo, Francesca; Dobor, Laura; Donvito, Giacinto; Fellows, Donal; Guerra, Antonio Fernandez; Ferreira, Nuno; Fetyukova, Yuliya; Fosso, Bruno; Giddy, Jonathan; Goble, Carole; Güntsch, Anton; Haines, Robert; Ernst, Vera Hernández; Hettling, Hannes; Hidy, Dóra; Horváth, Ferenc; Ittzés, Dóra; Ittzés, Péter; Jones, Andrew; Kottmann, Renzo; Kulawik, Robert; Leidenberger, Sonja; Lyytikäinen-Saarenmaa, Päivi; Mathew, Cherian; Morrison, Norman; Nenadic, Aleksandra; de la Hidalga, Abraham Nieva; Obst, Matthias; Oostermeijer, Gerard; Paymal, Elisabeth; Pesole, Graziano; Pinto, Salvatore; Poigné, Axel; Fernandez, Francisco Quevedo; Santamaria, Monica; Saarenmaa, Hannu; Sipos, Gergely; Sylla, Karl-Heinz; Tähtinen, Marko; Vicario, Saverio; Vos, Rutger Aldo; Williams, Alan R; Yilmaz, Pelin

    2016-10-20

    Making forecasts about biodiversity and giving support to policy relies increasingly on large collections of data held electronically, and on substantial computational capability and capacity to analyse, model, simulate and predict using such data. However, the physically distributed nature of data resources and of expertise in advanced analytical tools creates many challenges for the modern scientist. Across the wider biological sciences, presenting such capabilities on the Internet (as "Web services") and using scientific workflow systems to compose them for particular tasks is a practical way to carry out robust "in silico" science. However, use of this approach in biodiversity science and ecology has thus far been quite limited. BioVeL is a virtual laboratory for data analysis and modelling in biodiversity science and ecology, freely accessible via the Internet. BioVeL includes functions for accessing and analysing data through curated Web services; for performing complex in silico analysis through exposure of R programs, workflows, and batch processing functions; for on-line collaboration through sharing of workflows and workflow runs; for experiment documentation through reproducibility and repeatability; and for computational support via seamless connections to supporting computing infrastructures. We developed and improved more than 60 Web services with significant potential in many different kinds of data analysis and modelling tasks. We composed reusable workflows using these Web services, also incorporating R programs. Deploying these tools into an easy-to-use and accessible 'virtual laboratory', free via the Internet, we applied the workflows in several diverse case studies. We opened the virtual laboratory for public use and through a programme of external engagement we actively encouraged scientists and third party application and tool developers to try out the services and contribute to the activity. Our work shows we can deliver an operational

  10. Fusion: science, politics, and the invention of a new energy source

    International Nuclear Information System (INIS)

    Bromberg, J.L.

    1982-01-01

    The history of the magnetic fusion research program is described. The book carries the story from the programs inception in 1951 under the auspices of the Atomic Energy Commission through the reformulation of its goals in 1978 under the new Department of Energy

  11. The attitudes of science policy, environmental, and utility leaders on US energy issues and fusion

    International Nuclear Information System (INIS)

    Miller, J.D.

    1986-01-01

    One example of basic and applied research at LLNL that has produced major, highly visible scientific and engineering advances has been the research related to controlled fusion energy. Continuing experimentation at LLNL and elsewhere is likely to demonstrate that fusion is a viable, inexhaustible alternative source of energy. Having conducted major fusion energy experiments for over 30 years at LLNL, it scientists and engineers recognized the enormous challenges that lay ahead in this important endeavor. To be successful, it was clear that collaborative efforts with universities, private industry, and other national laboratories would need to be greatly expanded. Along with invention and scientific discovery would come the challenge of transferring the myriad of new technologies from the laboratories to the private sector for commercialization of the fusion energy process and the application of related technologies to yet unimagined new industries and products. Therefore, using fusion energy research as the focus, the Laboratory's Technology Transfer Initiatives Program contracted with the Public Opinion Laboratory to conduct a survey designed to promote a better understanding of effective technology transfer. As one of the recognized authorities on scientific surveys, Dr. Jon Miller of the POL worked with Laboratory scientists to understand the objectives of the survey. He then formulated the questions, designed the survey, and derived his survey sample from a qualified list developed at the POL, which has formed the basis for other survey panels. This report, prepared by Dr. Miller, describes the basis and methodology of this survey process and then presents the survey findings and some conclusions. 12 refs., 28 tabs

  12. Modeling and Analysis Compute Environments, Utilizing Virtualization Technology in the Climate and Earth Systems Science domain

    Science.gov (United States)

    Michaelis, A.; Nemani, R. R.; Wang, W.; Votava, P.; Hashimoto, H.

    2010-12-01

    Given the increasing complexity of climate modeling and analysis tools, it is often difficult and expensive to build or recreate an exact replica of the software compute environment used in past experiments. With the recent development of new technologies for hardware virtualization, an opportunity exists to create full modeling, analysis and compute environments that are “archiveable”, transferable and may be easily shared amongst a scientific community or presented to a bureaucratic body if the need arises. By encapsulating and entire modeling and analysis environment in a virtual machine image, others may quickly gain access to the fully built system used in past experiments, potentially easing the task and reducing the costs of reproducing and verify past results produced by other researchers. Moreover, these virtual machine images may be used as a pedagogical tool for others that are interested in performing an academic exercise but don't yet possess the broad expertise required. We built two virtual machine images, one with the Community Earth System Model (CESM) and one with Weather Research Forecast Model (WRF), then ran several small experiments to assess the feasibility, performance overheads costs, reusability, and transferability. We present a list of the pros and cons as well as lessoned learned from utilizing virtualization technology in the climate and earth systems modeling domain.

  13. Nuclear science experiments with a bright neutron source from fusion reactions on the OMEGA Laser System

    Science.gov (United States)

    Forrest, C. J.; Knauer, J. P.; Schroeder, W. U.; Glebov, V. Yu.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Sickles, M.; Stoeckl, C.; Szczepanski, J.

    2018-04-01

    Subnanosecond impulses of 1013 to 1014 neutrons, produced in direct-drive laser inertial confinement fusion implosions, have been used to irradiate deuterated targets at the OMEGA Laser System (Boehly et al., 1997). The target compounds include heavy water (D2O) and deuterated benzene (C6D6). Yields and energy spectra of neutrons from D(n,2n)p to study the breakup reaction have been measured at a forward angle of θlab = 3 .5∘ ± 3.5° with a sensitive, high-dynamic-range neutron time-of-flight spectrometer to infer the double-differential breakup cross section d2 σ/dE d Ω for 14-MeV D-T fusion neutrons.

  14. Advanced data visualization and sensor fusion: Conversion of techniques from medical imaging to Earth science

    Science.gov (United States)

    Savage, Richard C.; Chen, Chin-Tu; Pelizzari, Charles; Ramanathan, Veerabhadran

    1993-01-01

    Hughes Aircraft Company and the University of Chicago propose to transfer existing medical imaging registration algorithms to the area of multi-sensor data fusion. The University of Chicago's algorithms have been successfully demonstrated to provide pixel by pixel comparison capability for medical sensors with different characteristics. The research will attempt to fuse GOES (Geostationary Operational Environmental Satellite), AVHRR (Advanced Very High Resolution Radiometer), and SSM/I (Special Sensor Microwave Imager) sensor data which will benefit a wide range of researchers. The algorithms will utilize data visualization and algorithm development tools created by Hughes in its EOSDIS (Earth Observation SystemData/Information System) prototyping. This will maximize the work on the fusion algorithms since support software (e.g. input/output routines) will already exist. The research will produce a portable software library with documentation for use by other researchers.

  15. Overview of the RFX-mod contribution to the international Fusion Science Program

    Czech Academy of Sciences Publication Activity Database

    Puiatti, M.E.; Dal Bello, S.; Marrelli, L.; Martin, P.; Agostinetti, P.; Agostini, M.; Antoni, V.; Auriemma, F.; Barbisan, M.; Barbui, T.; Baruzzo, M.; Battistella, M.; Belli, F.; Bettini, P.; Bigi, M.; Bilel, R.; Boldrin, M.; Bolzonella, T.; Bonfiglio, D.; Brombin, M.; Buffa, A.; Canton, A.; Cappello, S.; Carraro, L.; Cavazzana, R.; Cester, D.; Chacon, L.; Chapman, B.E.; Chitarin, G.; Ciaccio, G.; Cooper, W.A.; Dalla Palma, M.; Deambrosis, S.; Delogu, R.; De Lorenzi, A.; De Masi, G.; Dong, J.Q.; Escande, D.F.; Esposito, B.; Fassina, A.; Fellin, F.; Ferro, A.; Finotti, C.; Franz, P.; Frassinetti, L.; Furno Palumbo, M.; Gaio, E.; Ghezzi, F.; Giudicotti, L.; Gnesotto, F.; Gobbin, M.; Gonzales, W.A.; Grando, L.; Guo, S.C.; Hanson, J.D.; Hirshman, S.P.; Innocente, P.; Jackson, J.L.; Kiyama, S.; Komm, Michael; Laguardia, L.; Li, C.; Liu, Y.Q.; Lorenzini, R.; Luce, T.C.; Luchetta, A.; Maistrello, A.; Manduchi, G.; Mansfield, D.K.; Marchiori, G.; Marconato, N.; Marocco, D.; Marcuzzi, D.; Martines, E.; Martini, S.; Matsunaga, G.; Mazzitelli, G.; Miorin, E.; Momo, B.; Moresco, M.; Okabayashi, M.; Olofsson, E.; Paccagnella, R.; Patel, N.; Pavei, M.; Peruzzo, S.; Pilan, N.; Pigatto, L.; Piovan, R.; Piovesan, P.; Piron, C.; Piron, L.; Predebon, I.; Rea, C.; Recchia, M.; Rigato, V.; Rizzolo, A.; Roquemore, A.L.; Rostagni, G.; Ruset, C.; Ruzzon, A.; Sajo-Bohus, L.; Sakakita, H.; Sanchez, R.; Sarff, J.S.; Sartori, E.; Sattin, F.; Scaghanm, A.; Scarin, P.; Schmitz, O.; Sonato, P.; Spada, E.; Spagnolo, S.; Spolaore, M.; Spong, D.A.; Spizzo, G.; Stevanato, L.; Takechi, M.; Taliercio, C.; Terranova, D.; Trevisan, G.L.; Urso, G.; Valente, M.; Valisa, M.; Veranda, M.; Vianello, N.; Viesti, G.; Villone, F.; Vincenzi, P.; Visona, N.; Wang, Z.R.; White, R.B.; Xanthopoulos, P.; Xu, X.Y.; Yanovskiy, V.; Zamengo, A.; Zanca, P.; Zaniol, B.; Zanotto, L.; Zilli, E.; Zuin, M.

    2015-01-01

    Roč. 55, č. 10 (2015), s. 104012-104012 ISSN 0029-5515. [Fusion Energy Conference 2014 (FEC) /25./. St Petersburg, 13.10.2014-18.10.2014] Institutional support: RVO:61389021 Keywords : plasma * tokamak * reversed field pinch * single helicity * 3D boundary Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.040, year: 2015 http://iopscience.iop.org/article/10.1088/0029-5515/55/10/104001

  16. Review of Burning Plasma Physics. Fusion Energy Sciences Advisory Committee (FESAC)

    International Nuclear Information System (INIS)

    Berk, Herb; Betti, Riccardo; Dahlburg, Jill; Freidberg, Jeff; Hopper, Bick; Meade, Dale; Navritil, Jerry; Nevins, Bill; Ono, Masa; Perkins, Rip; Prager, Stewart; Schoenburg, Kurt; Taylor, Tony; Uckan, Nermin

    2001-01-01

    The next frontier in the quest for magnetic fusion energy is the development of a basic understanding of plasma behavior in the regime of strong self-heating, the so called burning plasma regime. The general consensus in the fusion community is that the exploration of this frontier requires a new, relatively large experimental facility - a burning plasma experiment. The motivation, justification, and steps required to build such a facility are the primary focus of our report. The specific goals of the report are as follows. First, the report describes the critical scientific and engineering phenomena that are expected to arise for the first time, or else in a strongly modified form, in a burning plasma. Second, the report shows that the capabilities of existing experiments are inadequate to investigate these phenomena, thereby providing a major justification for a new facility. Third, the report compares the features and predicted performance of the three major next generation burning plasma experiments under current consideration (ITER-FEAT, FIRE, and IGNITOR), which are aimed at addressing these problems. Deliberately, no selection of the best option is made or attempted since such a decision involves complex scientific and cost issues that are beyond the scope of the present panel report. Fourth, the report makes specific recommendations regarding a process to move the burning plasma program forward, including a procedure for choosing the best option and the future activities of the Next Step Option (NSO) program. Fifth, the report attempts to provide a proper perspective for the role of burning plasmas with respect to the overall U.S. fusion program. The introduction provides the basic background information required for understanding the context in which the U.S. fusion community thinks about burning plasma issues. It sets the stage for the remainder of the report.

  17. Design, Development and Preliminary Student Evaluation of Virtual Field Guides as aids to teaching and learning in the Earth sciences

    Science.gov (United States)

    Stott, Tim

    2010-05-01

    In Universities the benefits of teaching and learning through fieldwork has been brought under closer examination in recent years (e.g. Andrews et al., 2003) and the notion of supporting fieldwork in the Geography, Earth and Environmental Science (GEES) disciplines has been gathering momentum over the past decade as evidenced by conferences on ‘Supporting fieldwork using information technology' (Maskall et al., 2007) and a Higher Education Academy GEES Virtual Fieldwork Conference at University of Worcester (May 2007). Virtual environments and e-learning resources have been shown to help students become active rather than passive learners by appealing to their multi-sensory learning ability with interactive media (Fletcher et al., 2002; 2007). Research on glacial and fluvial processes has been conducted since 2003 by Liverpool John Moores University (LJMU) staff, sometimes in collaboration with other Universities, at field sites in the French Alps, Swiss Alps and Cariboo Mountains in British Columbia. A virtual field guide (VFG) (www.virtualalps.co.uk) has been developed which uses maps, site photos, panorama movies, video clips, a google earth tour, student exercises using hydrological and glacial datasets collected in the field and revision exercises. A preliminary evaluation of this learning resource has been carried out with two groups of LJMU students and an article written (Stott et al. 2009a). The Ingleton Waterfalls VFG (http://www.ljmu.ac.uk/BIE/ingleton/) was developed by LJMU staff to meet the needs of Foundation degree and undergraduate students. A workshop was presented at the Earth Science Teachers Association 2008 Annual Conference at LJMU, and a subsequent article written (Stott et al. 2009b). The final section of this presentation will summarise some staff perspectives and raises some questions and issues concerned with development and accessibility of VFGs in the light of new developments of a ‘semantic web' at LJMU (Carmichael, 2009). Andrews

  18. A Further Characterization of Empirical Research Related to Learning Outcome Achievement in Remote and Virtual Science Labs

    Science.gov (United States)

    Brinson, James R.

    2017-10-01

    This paper further characterizes recently reviewed literature related to student learning outcome achievement in non-traditional (virtual and remote) versus traditional (hands-on) science labs, as well as factors to consider when evaluating the state and progress of research in this field as a whole. Current research is characterized according to (1) participant nationality and culture, (2) participant education level, (3) participant demography, (4) scientific discipline, and (5) research methodology, which could provide avenues for further research and useful dialog regarding the measurement and interpretation of data related to student learning outcome achievement in, and thus the efficacy of, non-traditional versus traditional science labs. Current research is also characterized by (6) research publication media and (7) availability of non-traditional labs used, which demonstrate some of the obstacles to progress and consensus in this research field.

  19. Individual Factors That Encourage the Use of Virtual Platforms of Administrative Sciences Students: A Case Study

    Science.gov (United States)

    Arias, Alejandro Valencia; Naffah, Salim Chalela; Bermudez Hernández, Jonathan; Bedoya Pérez, Luz Mirelia

    2015-01-01

    Higher education Institutions have incorporated into their educational processes the virtual learning platforms use, in their search to answers to the dynamic and changing needs of young students, thus students have practical training in the use of information technologies and communication (ICT) in their curses. However, few studies have been…

  20. The Learning Outcomes of Mentoring Library Science Students in Virtual World Reference: A Case Study

    Science.gov (United States)

    Purpur, Geraldine; Morris, Jon Levi

    2015-01-01

    This article reports on the cognitive and affective development of students being mentored in virtual reference interview skills by professional librarians. The authors present a case study which examines the impact on student learning resulting from librarian mentor participation and collaboration with students on a course assignment. This study…

  1. Present status of research activities at the national institute for fusion science and its role in international collaboration

    International Nuclear Information System (INIS)

    Fujita, J.

    1997-01-01

    In the National Institute for Fusion Science (NIFS), Japan, a helical magnetic confinement system named Large Helical Device (LHD) is under construction with objective of comprehensive studies of high temperature plasmas in a helical system and investigation of a helical reactor as an alternative approach. Superconducting coils of l = 2, m = 10, major radius R = 3.9 m, produce a steady state helical magnetic field for confinement, together with poloidal coils on LHD. The magnetic field strength on the axis is 3.0 T in the phase I and 4.0 T in the phase II experiment. The plasma major radius in LHD is 3.75 m, and averaged plasma radius is 0.6 m. The plasma will be produced and heated with ECH, and further heated with NBI and ICRF. It is also planned to produced a steady state plasma in LHD. It is expected to have the first plasma in 1998. Small devices such as CHS and others are under operation in the NIFS for supporting the LHD project. The Data and Planning Center of NIFS is collecting, compiling and evaluating atomic and molecular data which are necessary for nuclear fusion research. The talk will include the present status of the construction of LHD, research activities on the development of heating and diagnostic devices for LHD, and experimental results obtained on CHS, JIPP T-IIU and other devices. The role of NIFS on promoting IAEA activities to bridge large scale institutions and small and medium scale laboratories for world-wide collaborations in the field of plasma physics and fusion research will also be introduced, together with an idea of organizing a regional center in Asia. (author)

  2. Immersive participation: Smartphone-Apps and Virtual Reality - tools for knowledge transfer, citizen science and interactive collaboration

    Science.gov (United States)

    Dotterweich, Markus

    2017-04-01

    In the last few years, the use of smartphone-apps has become a daily routine in our life. However, only a few approaches have been undertaken to use apps for transferring scientific knowledge to the public audience. The development of learning apps or serious games requires large efforts and several levels of simplification which is different to traditional text books or learning webpages. Current approaches often lack a connection to the real life and/or innovative gamification concepts. Another almost untapped potential is the use of Virtual Reality, a fast growing technology which replicates a virtual environment in order to simulate physical experiences in artificial or real worlds. Hence, smartphone-apps and VR provides new opportunities for capacity building, knowledge transfer, citizen science or interactive engagement in the realm of environmental sciences. This presentation will show some examples and discuss the advantages of these immersive approaches to improve the knowledge transfer between scientists and citizens and to stimulate actions in the real world.

  3. ARC: A compact, high-field, fusion nuclear science facility and demonstration power plant with demountable magnets

    Energy Technology Data Exchange (ETDEWEB)

    Sorbom, B.N., E-mail: bsorbom@mit.edu; Ball, J.; Palmer, T.R.; Mangiarotti, F.J.; Sierchio, J.M.; Bonoli, P.; Kasten, C.; Sutherland, D.A.; Barnard, H.S.; Haakonsen, C.B.; Goh, J.; Sung, C.; Whyte, D.G.

    2015-11-15

    Highlights: • ARC reactor designed to have 500 MW fusion power at 3.3 m major radius. • Compact, simplified design allowed by high magnetic fields and jointed magnets. • ARC has innovative plasma physics solutions such as inboardside RF launch. • High temperature superconductors allow high magnetic fields and jointed magnets. • Liquid immersion blanket and jointed magnets greatly simplify tokamak reactor design. - Abstract: The affordable, robust, compact (ARC) reactor is the product of a conceptual design study aimed at reducing the size, cost, and complexity of a combined fusion nuclear science facility (FNSF) and demonstration fusion Pilot power plant. ARC is a ∼200–250 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has rare earth barium copper oxide (REBCO) superconducting toroidal field coils, which have joints to enable disassembly. This allows the vacuum vessel to be replaced quickly, mitigating first wall survivability concerns, and permits a single device to test many vacuum vessel designs and divertor materials. The design point has a plasma fusion gain of Q{sub p} ≈ 13.6, yet is fully non-inductive, with a modest bootstrap fraction of only ∼63%. Thus ARC offers a high power gain with relatively large external control of the current profile. This highly attractive combination is enabled by the ∼23 T peak field on coil achievable with newly available REBCO superconductor technology. External current drive is provided by two innovative inboard RF launchers using 25 MW of lower hybrid and 13.6 MW of ion cyclotron fast wave power. The resulting efficient current drive provides a robust, steady state core plasma far from disruptive limits. ARC uses an all-liquid blanket, consisting of low pressure, slowly flowing fluorine lithium beryllium (FLiBe) molten salt. The liquid blanket is low-risk technology and provides effective neutron moderation and shielding, excellent

  4. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.7--nuclear fusion

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the seventh one, the content is about nuclear electronics, nuclear detecting technology, pulse power technology, nuclear fusion and plasma

  5. The relationship among critical thinking skill measured by science virtual test, gender, andmotivation in 9th grade students

    Science.gov (United States)

    Fernandi, R. A. U. I.; Firman, H.; Rusyati, L.

    2018-05-01

    The purpose of this study was to identify the relationship among critical thinking skill, gender and motivation in 9th grade students of Junior High School in Kuningan. This descriptive study used purposive sampling that comprised 110 ninth grade students taken from three junior high school that has good computer literacy and use 2013 curriculum. The data were obtained through Science Virtual Test on living things and environmental sustainability theme, respondent identity, and science motivation questionnaire (SMQ). Female students scored highest on generating purpose skill (M = 73.81), while male students performed better on generating implication and consequences skill (M = 78.01) where both groups differed significantly (p = 0.011). Students scored highest on generating purpose skill for high and moderate motivation group, while for the lowest score, moderate and low motivation group performed it on making assumption skill. Additionally, some critical thinking elements differed significantly by motivation to learn science. Despite, there was no correlation between students’ critical thinking and motivation (r = 0.155, p > 0.05). The finding indicated that students’ critical thinking is not differed by gender and not affected by motivation to learn science.

  6. Profile of Students’ Critical Thinking Skill Measured by Science Virtual Test on Living Things and Environmental Sustainability Theme

    Science.gov (United States)

    Maulida, N. I.; Firman, H.; Rusyati, L.

    2017-02-01

    The aims of this study are: (1) to investigate the level of students’ critical thinking skill on living things and environmental sustainability theme for each Inch’ critical thinking elements and overall, (2) to investigate the level of students’ critical thinking skill on living things characteristic, biodiversity, energy resources, ecosystem, environmental pollution, and global warming topics. The research was conducted due to the important of critical thinking measurement to get the current skill description as the basic consideration for further critical thinking skill improvement in lower secondary science. The research method used was descriptive. 331 seventh grade students taken from five lower secondary schools in Cirebon were tested to get the critical thinking skill data by using Science Virtual Test as the instrument. Generally, the mean scores on eight Inch’ critical thinking elements and overall score from descriptive statistic reveals a moderate attainments level. Students’ critical thinking skill on biodiversity, energy resources, ecosystem, environmental pollution, and global warming topics are in moderate level. While students’ critical thinking skill on living things characteristic is identified as high level. Students’ experience in thinking critically during science learning process and the characteristic of the topic are emerged as the reason behind the students’ critical thinking skill level on certain science topic.

  7. Using virtualization to protect the proprietary material science applications in volunteer computing

    Directory of Open Access Journals (Sweden)

    Khrapov Nikolay P.

    2018-04-01

    Full Text Available USPEX is a world-leading software for computational material design. In essence, USPEX splits simulation into a large number of workunits that can be processed independently. This scheme ideally fits the desktop grid architecture. Workunit processing is done by a simulation package aimed at energy minimization. Many of such packages are proprietary and should be protected from unauthorized access when running on a volunteer PC. In this paper we present an original approach based on virtualization. In a nutshell, the proprietary code and input files are stored in an encrypted folder and run inside a virtual machine image that is also password protected. The paper describes this approach in detail and discusses its application in USPEX@home volunteer project.

  8. Using virtualization to protect the proprietary material science applications in volunteer computing

    Science.gov (United States)

    Khrapov, Nikolay P.; Rozen, Valery V.; Samtsevich, Artem I.; Posypkin, Mikhail A.; Sukhomlin, Vladimir A.; Oganov, Artem R.

    2018-04-01

    USPEX is a world-leading software for computational material design. In essence, USPEX splits simulation into a large number of workunits that can be processed independently. This scheme ideally fits the desktop grid architecture. Workunit processing is done by a simulation package aimed at energy minimization. Many of such packages are proprietary and should be protected from unauthorized access when running on a volunteer PC. In this paper we present an original approach based on virtualization. In a nutshell, the proprietary code and input files are stored in an encrypted folder and run inside a virtual machine image that is also password protected. The paper describes this approach in detail and discusses its application in USPEX@home volunteer project.

  9. Condensed matter nuclear science: Proceedings of the 11. international conference on cold fusion

    International Nuclear Information System (INIS)

    Biberian, Jean-Paul

    2006-01-01

    The tenth International Conference on Cold Fusion, ICCF 10, was held in Cambridge and then it appeared to the chairman Jean-Paul Biberian that the ideal choice for the venue of ICCF 11 would be Marseille. He considers that the field had matured and it was obvious that a scientific demonstration of Cold Fusion had been made. He realizes that a lot more is needed to be accomplished in the field of research and technology, but the answers to many of the questions of scientific community are available. It is known for sure that the phenomenon announced in 1989 by Martin Fleischmann and Stan Pons was real. Discoveries since their announcement, in particular the discovery that hydrogen, not only deuterium, may be nuclear active under certain conditions. It had been shown that the simple D + D producing helium reaction was not the only reaction channel. One had observed fission and transmutation beyond doubts, but there are probably more reactions than one currently knows. Several important new results were presented during the conference. The team headed by Irving Dardik confirmed that the super-waves they used in their electrolytic experiment help introducing more heat. Also Iwamura et al. showed new transmutation effects in their experiments of diffusion of deuterium gas through a complex structure of palladium and calcium oxide. A team of Russian scientists claimed that their experiments showed the existence of light monopoles. Czerski and Huke who were working in high-energy physics, discovered CMNS when they lowered the energy of the deuterium beam. They demonstrated that the cross section of the deuterium with deuterated metals was much higher than expected. They came to the conclusion that they were doing indeed cold fusion. Another important contribution was the one from the Vysotskii team from Ukraine, who confirmed their biological transmutation experiments. On the theory front there appears to be many problems. The initial idea of the necessity of high

  10. Moving Virtual Research Environments from high maintenance Stovepipes to Multi-purpose Sustainable Service-oriented Science Platforms

    Science.gov (United States)

    Klump, Jens; Fraser, Ryan; Wyborn, Lesley; Friedrich, Carsten; Squire, Geoffrey; Barker, Michelle; Moloney, Glenn

    2017-04-01

    The researcher of today is likely to be part of a team distributed over multiple sites that will access data from an external repository and then process the data on a public or private cloud or even on a large centralised supercomputer. They are increasingly likely to use a mixture of their own code, third party software and libraries, or even access global community codes. These components will be connected into a Virtual Research Environments (VREs) that will enable members of the research team who are not co-located to actively work together at various scales to share data, models, tools, software, workflows, best practices, infrastructures, etc. Many VRE's are built in isolation: designed to meet a specific research program with components tightly coupled and not capable of being repurposed for other use cases - they are becoming 'stovepipes'. The limited number of users of some VREs also means that the cost of maintenance per researcher can be unacceptably high. The alternative is to develop service-oriented Science Platforms that enable multiple communities to develop specialised solutions for specific research programs. The platforms can offer access to data, software tools and processing infrastructures (cloud, supercomputers) through globally distributed, interconnected modules. In Australia, the Virtual Geophysics Laboratory (VGL) was initially built to enable a specific set of researchers in government agencies access to specific data sets and a limited number of tools, that is now rapidly evolving into a multi-purpose Earth science platform with access to an increased variety of data, a broader range of tools, users from more sectors and a diversity of computational infrastructures. The expansion has been relatively easy, because of the architecture whereby data, tools and compute resources are loosely coupled via interfaces that are built on international standards and accessed as services wherever possible. In recent years, investments in

  11. Advances in compact proton spectrometers for inertial-confinement fusion and plasma nuclear science.

    Science.gov (United States)

    Seguin, F H; Sinenian, N; Rosenberg, M; Zylstra, A; Manuel, M J-E; Sio, H; Waugh, C; Rinderknecht, H G; Johnson, M Gatu; Frenje, J; Li, C K; Petrasso, R; Sangster, T C; Roberts, S

    2012-10-01

    Compact wedge-range-filter proton spectrometers cover proton energies ∼3-20 MeV. They have been used at the OMEGA laser facility for more than a decade for measuring spectra of primary D(3)He protons in D(3)He implosions, secondary D(3)He protons in DD implosions, and ablator protons in DT implosions; they are now being used also at the National Ignition Facility. The spectra are used to determine proton yields, shell areal density at shock-bang time and compression-bang time, fuel areal density, and implosion symmetry. There have been changes in fabrication and in analysis algorithms, resulting in a wider energy range, better accuracy and precision, and better robustness for survivability with indirect-drive inertial-confinement-fusion experiments.

  12. Fusion energy. What Canada can do

    International Nuclear Information System (INIS)

    Weller, J.A.

    1988-01-01

    As Canada's fusion programs have grown, Canadian capabilities in fusion science and technology have grown and matured with them. The fusion capabilities described in this booklet have come from a coordinated national effort. The Government of Canada is committed to continuing its fusion energy program, and to supporting global fusion efforts. These first pages provide an overview of Canada's fusion work and its underlying basis of science and technology

  13. CSI Web Adventures: A Forensics Virtual Apprenticeship for Teaching Science and Inspiring STEM Careers

    Science.gov (United States)

    Miller, Leslie; Chang, Ching-I; Hoyt, Daniel

    2010-01-01

    CSI: The Experience, a traveling museum exhibit and a companion web adventure, was created through a grant from the National Science Foundation as a potential model for informal learning. The website was designed to enrich and complement the exhibit by modeling the forensic process. Substantive science, real-world lab techniques, and higher-level…

  14. Virtual Mockup test based on computational science and engineering. Near future technology projected by JSPS-RFTFADVENTURE project

    International Nuclear Information System (INIS)

    Yoshimura, Shinobu

    2001-01-01

    The ADVENTURE project began on August, 1997, as a project in the computational science' field of JSPS-RFTFADVENTURE project, and is progressed as five year project. In this project, by using versatile parallel computer environment such as PC cluster, super parallel computer, and so on , to solve an arbitrary shape of actual dynamical equation by using 10 to 100 million freedom class mode under maintaining a general use analytical capacity agreeable with present general use computational mechanics system, further development of a large-scale parallel computational mechanics system (ADVENTURE system) capable of carrying out an optimization design on shapes, physical properties, loading conditions, and so on is performed. Here was scoped, after outlining on background of R and D on ADVENTURE system and its features, on near future virtual mockup test forecast from it. (G.K.)

  15. Maximizing 1D “like” implosion performance for inertial confinement fusion science

    Energy Technology Data Exchange (ETDEWEB)

    Kline, John L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-15

    While the march towards achieving indirectly driven inertial confinement fusion at the NIF has made great progress, the experiments show that multi-dimensional effects still dominate the implosion performance. Low mode implosion symmetry and hydrodynamic instabilities seed by capsule mounting features appear to be two key limiting factors for implosion performance. One reason these factors have a large impact on the performance of ICF implosions is the high convergence required to achieve high fusion gains. To tackle these problems, a predictable implosion platform is needed meaning experiments must trade-off high gain for performance. To this end, LANL has adopted three main approaches to develop a 1D implosion platform where 1D means high yield over 1D clean calculations. Taking advantage of the properties of beryllium capsules, a high adiabat, low convergence platform is being developed. The higher drive efficiency for beryllium enables larger case-to-capsule ratios to improve symmetry at the expense of drive. Smaller capsules with a high adiabat drive are expected to reduce the convergence and thus increase predictability. The second approach is liquid fuel layers using wetted foam targets. With liquid fuel layers, the initial mass in the hot spot can be controlled via the target fielding temperature which changes the liquid vapor pressure. Varying the initial hot spot mass via the vapor pressure controls the implosion convergence and minimizes the need to vaporize the dense fuel layer during the implosion to achieve ignition relevant hot spot densities. The last method is double shell targets. Unlike hot spot ignition, double shells ignite volumetrically. The inner shell houses the DT fuel and the convergence of this cavity is relatively small compared to hot spot ignition. Radiation trapping and the longer confinement times relax the conditions required to ignite the fuel. Key challenges for double shell targets are coupling the momentum of the outer shell to

  16. 76 FR 4645 - Fusion Energy Sciences Advisory Committee; Notice of Open Meeting

    Science.gov (United States)

    2011-01-26

    ..., 9 a.m. to 5 p.m.; Tuesday, March 8, 2011, 8:30 a.m. to 12 p.m. ADDRESSES: Doubletree Bethesda Hotel... year (FY) 2012 budget submission to Congress and to conduct other committee business. Tentative Agenda Items: Office of Science FY 2012 Congressional Budget Request FES Program FY 2012 Congressional Budget...

  17. Bayesian data fusion for spatial prediction of categorical variables in environmental sciences

    Science.gov (United States)

    Gengler, Sarah; Bogaert, Patrick

    2014-12-01

    First developed to predict continuous variables, Bayesian Maximum Entropy (BME) has become a complete framework in the context of space-time prediction since it has been extended to predict categorical variables and mixed random fields. This method proposes solutions to combine several sources of data whatever the nature of the information. However, the various attempts that were made for adapting the BME methodology to categorical variables and mixed random fields faced some limitations, as a high computational burden. The main objective of this paper is to overcome this limitation by generalizing the Bayesian Data Fusion (BDF) theoretical framework to categorical variables, which is somehow a simplification of the BME method through the convenient conditional independence hypothesis. The BDF methodology for categorical variables is first described and then applied to a practical case study: the estimation of soil drainage classes using a soil map and point observations in the sandy area of Flanders around the city of Mechelen (Belgium). The BDF approach is compared to BME along with more classical approaches, as Indicator CoKringing (ICK) and logistic regression. Estimators are compared using various indicators, namely the Percentage of Correctly Classified locations (PCC) and the Average Highest Probability (AHP). Although BDF methodology for categorical variables is somehow a simplification of BME approach, both methods lead to similar results and have strong advantages compared to ICK and logistic regression.

  18. Bayesian data fusion for spatial prediction of categorical variables in environmental sciences

    International Nuclear Information System (INIS)

    Gengler, Sarah; Bogaert, Patrick

    2014-01-01

    First developed to predict continuous variables, Bayesian Maximum Entropy (BME) has become a complete framework in the context of space-time prediction since it has been extended to predict categorical variables and mixed random fields. This method proposes solutions to combine several sources of data whatever the nature of the information. However, the various attempts that were made for adapting the BME methodology to categorical variables and mixed random fields faced some limitations, as a high computational burden. The main objective of this paper is to overcome this limitation by generalizing the Bayesian Data Fusion (BDF) theoretical framework to categorical variables, which is somehow a simplification of the BME method through the convenient conditional independence hypothesis. The BDF methodology for categorical variables is first described and then applied to a practical case study: the estimation of soil drainage classes using a soil map and point observations in the sandy area of Flanders around the city of Mechelen (Belgium). The BDF approach is compared to BME along with more classical approaches, as Indicator CoKringing (ICK) and logistic regression. Estimators are compared using various indicators, namely the Percentage of Correctly Classified locations (PCC) and the Average Highest Probability (AHP). Although BDF methodology for categorical variables is somehow a simplification of BME approach, both methods lead to similar results and have strong advantages compared to ICK and logistic regression

  19. The current state of the development of the supercomputer system in plasma science and nuclear fusion research in the case of Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Azumi, Masafumi

    2004-01-01

    The progress of large scale scientific simulation environment in JAERI is briefly described. The expansion of fusion simulation science has been played a key role in the increasing performances of super computers and computer network system in JAERI. Both scalar parallel and vector parallel computer systems are now working at the Naka and Tokai sites respectively, and particle and fluid simulation codes developed under the fusion simulation project, NEXT, are running on each system. The storage grid system has been also successfully developed for effective visualization analysis by remote users. Fusion research is going to enter the new phase of ITER, and the need for the super computer system with higher performance are increasing more than as ever along with the development of reliable simulation models. (author)

  20. Development of reactor design aid tool using virtual reality technology

    International Nuclear Information System (INIS)

    Mizuguchi, N.; Tamura, Y.; Imagawa, S.; Sagara, A.; Hayashi, T.

    2006-01-01

    A new type of aid system for fusion reactor design, to which the virtual reality (VR) visualization and sonification techniques are applied, is developed. This system provides us with an intuitive interaction environment in the VR space between the observer and the designed objects constructed by the conventional 3D computer-aided design (CAD) system. We have applied the design aid tool to the heliotron-type fusion reactor design activity FFHR2m [A. Sagara, S. Imagawa, O. Mitarai, T. Dolan, T. Tanaka, Y. Kubota, et al., Improved structure and long -life blanket concepts for heliotron reactors, Nucl. Fusion 45 (2005) 258-263] on the virtual reality system CompleXcope [Y. Tamura, A. Kageyama, T. Sato, S. Fujiwara, H. Nakamura, Virtual reality system to visualize and auralize numerical imulation data, Comp. Phys. Comm. 142 (2001) 227-230] of the National Institute for Fusion Science, Japan, and have evaluated its performance. The tool includes the functions of transfer of the observer, translation and scaling of the objects, recording of the operations and the check of interference

  1. INSA Virtual Labs: a new R+D framework for innovative space science and technology

    Science.gov (United States)

    Cardesin Moinelo, Alejandro; Sanchez Portal, Miguel

    2012-10-01

    The company INSA (Ingeniería y Servicios Aeroespaciales) has given support to ESA Scientific missions for more than 20 years and is one of the main companies present in the European Space Astronomy Centre (ESAC) in Madrid since its creation. INSA personnel at ESAC provide high level technical and scientific support to ESA for all Astronomy and Solar System missions. In order to improve and maintain the scientific and technical competences among the employees, a research group has been created with the name "INSA Virtual Labs". This group coordinates all the R+D activities carried out by INSA personnel at ESAC and aims to establish collaborations and improve synergies with other research groups, institutes and universities. This represents a great means to improve the visibility of these activities towards the scientific community and serves as breeding ground for new innovative ideas and future commercial products.

  2. Researchers’ communication on Twitter. A virtual ethnography in the area of information science

    Directory of Open Access Journals (Sweden)

    Belén Álvarez-Bornstein

    2016-12-01

    Full Text Available The present article analyzes the scientific communication that takes place on Twitter. Its aim is to understand and describe the types of scientific activities that occur on this platform, by identifying the type of information exchanged and the activities that researchers perform. Thus we attempt to better understand the number of times that research work is mentioned within a specific context. We followed a group of researchers and professionals with Twitter profiles who had published at least 3 articles in the journal EPI between 2009 and 2013. The research methodology was qualitative using virtual ethnography based on non-participant observation. Among the main conclusions, we found that researchers use Twitter mostly as a way to make their professional activity public and to disseminate their own research works or those of close collaborators, in order to give them more visibility and impact.

  3. Vastu Shastra And Feng Shui The Ancient Sciences And Their Fusion In Context Of Indian Architecture

    Directory of Open Access Journals (Sweden)

    Sujata Saran

    2017-11-01

    Full Text Available About 30 present of modern buildings are suffering from sick building syndrome. The design of buildings according to ancient sciences like vastu shastra and Feng shui are efficient to resolve the problem of sick building syndrome by making the building physically and psychologically satisfactory. Both the sciences are based on five basic elements. Human body is also composed of five elements and above all the nature is made up five elements. Therefore there should be an inter-relationship between man building and universe. These sciences are capable of resolving the problem of sick building syndrome by incorporating five basic elements as a part of building like Ayurveda a field of medicine based on natural means to heal and maintain the sick body. Similarly Buildings should be designed as a union of physical and metaphysical aspects. The physical aspect is related to five basic elements. Elements made up of matter and matter is associated with different colour and each colour has its own energy in terms of its wavelength colour is also important element to balance the energies the chromo therapy is also a way to balance the energies of human body and buildings and the metaphysical aspect is related to cosmos.

  4. FY2014 FES (Fusion Energy Sciences) Theory & Simulation Performance Target, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Guoyong [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Budny, Robert [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Gorelenkov, Nikolai [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Poli, Francesca [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Chen, Yang [Univ. of Colorado, Boulder, CO (United States); McClenaghan, Joseph [Univ. of California, Irvine, CA (United States); Lin, Zhihong [Univ. of California, Irvine, CA (United States); Spong, Don [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bass, Eric [Univ. of California, San Diego, CA (United States); Waltz, Ron [General Atomics, San Diego, CA (United States)

    2014-10-14

    We report here the work done for the FY14 OFES Theory Performance Target as given below: "Understanding alpha particle confinement in ITER, the world's first burning plasma experiment, is a key priority for the fusion program. In FY 2014, determine linear instability trends and thresholds of energetic particle-driven shear Alfven eigenmodes in ITER for a range of parameters and profiles using a set of complementary simulation models (gyrokinetic, hybrid, and gyrofluid). Carry out initial nonlinear simulations to assess the effects of the unstable modes on energetic particle transport". In the past year (FY14), a systematic study of the alpha-driven Alfven modes in ITER has been carried out jointly by researchers from six institutions involving seven codes including the transport simulation code TRANSP (R. Budny and F. Poli, PPPL), three gyrokinetic codes: GEM (Y. Chen, Univ. of Colorado), GTC (J. McClenaghan, Z. Lin, UCI), and GYRO (E. Bass, R. Waltz, UCSD/GA), the hybrid code M3D-K (G.Y. Fu, PPPL), the gyro-fluid code TAEFL (D. Spong, ORNL), and the linear kinetic stability code NOVA-K (N. Gorelenkov, PPPL). A range of ITER parameters and profiles are specified by TRANSP simulation of a hybrid scenario case and a steady-state scenario case. Based on the specified ITER equilibria linear stability calculations are done to determine the stability boundary of alpha-driven high-n TAEs using the five initial value codes (GEM, GTC, GYRO, M3D-K, and TAEFL) and the kinetic stability code (NOVA-K). Both the effects of alpha particles and beam ions have been considered. Finally, the effects of the unstable modes on energetic particle transport have been explored using GEM and M3D-K.

  5. Learning to Provide 3D Virtual Reference: A Library Science Assignment

    Science.gov (United States)

    Johnson, Megan; Purpur, Geraldine; Abbott, Lisa T.

    2009-01-01

    In spring semester 2009, two of the authors taught LIB 5020--Information Sources & Services to graduate library science students at Appalachian State University. The course covers information seeking patterns and provides an overview of reference services. The course is also designed to examine and evaluate library reference materials and…

  6. The Effectiveness of Virtual and Augmented Reality in Health Sciences and Medical Anatomy

    Science.gov (United States)

    Moro, Christian; Štromberga, Zane; Raikos, Athanasios; Stirling, Allan

    2017-01-01

    Although cadavers constitute the gold standard for teaching anatomy to medical and health science students, there are substantial financial, ethical, and supervisory constraints on their use. In addition, although anatomy remains one of the fundamental areas of medical education, universities have decreased the hours allocated to teaching gross…

  7. Analysing an academic field through the lenses of Internet Science : Digital Humanities as a Virtual Community

    NARCIS (Netherlands)

    Akdag Salah, A.; Scharnhorst, Andrea; Wyatt, S.; Tiropanis, Thanassis; Vakali, Athena; Sartori, Laura; Burnap, Pete

    2015-01-01

    Digital Humanities (DH) has been depicted as an innovative engine for humanities, as a challenge for Data Science, and as an area where libraries, archives and providers of e-research infrastructures join forces with research pioneers. However DH is defined, one thing is cer- tain: DH is a new

  8. Taking Science Online: Evaluating Presence and Immersion through a Laboratory Experience in a Virtual Learning Environment for Entomology Students

    Science.gov (United States)

    Annetta, Leonard; Klesath, Marta; Meyer, John

    2009-01-01

    A 3-D virtual field trip was integrated into an online college entomology course and developed as a trial for the possible incorporation of future virtual environments to supplement online higher education laboratories. This article provides an explanation of the rationale behind creating the virtual experience, the Bug Farm; the method and…

  9. Inertial Fusion Sciences and Applications 2003: State of the Art 2003, Published by the American Nuclear Society

    International Nuclear Information System (INIS)

    Editors: B. A. Hammel; D. D. Meyerhofer; J. Meyer-ter-Vehn; H. Azechi. Organizing Chair: W. J. Hogan

    2004-01-01

    Collection of all papers presented and submitted at the IFSA2003 conference. Topics included target design and performance, fast ignition, plasma instabilities, laser technology, fusion reactor technology

  10. Virtual Reality: Bringing the Awe of Our Science into The Classroom with VR

    Science.gov (United States)

    Bell, R. E.; Turrin, M.; Frearson, N.; Boghosian, A.; Ferrini, V. L.; Simpson, F.

    2016-12-01

    The geosciences are rich in imagery, making them compelling material for immersive teaching experiences. We often work in remote locations, places where few others are able to travel. Flat 2 D images from the field have served explorers and scientists well from the lantern slides brought back from Antarctica to the images scientists and educators now use in powerpoint presentations. These images provide a backdrop to introduce the experience for formal classes and informal presentations. Our stories from the field bring the setting alive for the participants. The travelers presented and the audience passively listened. Immersive learning opportunities are much more powerful than lecturing. We have enlisted both VR and drone imagery to bring learners fully into the experience of science. A 360 VR image brings the viewer into the moment of discovery. Both have been shown to create an active learning setting fully under the learner's control; they explore at their own pace and following their own interest. This learning `sticks', becoming part of the participant's own unique experience in the space. We are building VR images of field experiences and VR data immersion experiences that will transport people into new locations, building a field experience that they can not only see but fully explore. Through VR we introduce new experiences that showcase our science, our careers and our collaborations. Users can spin the view up to see the helicopter landing in a remote field location by the ice. Spin to the right and see a colleague collecting a reading from instruments that have been pulled from the LC130 aircraft. Turn the view to the left and see the harsh windswept environment along the edge of an ice shelf. Look down and note that you feet are encased in snow boots to keep them warm and stable on the ice. The viewer is in the field as part of the science team. Learning in the classroom and through social media is now fully 360 and fully immersive.

  11. Adding immersive virtual reality to a science lab simulation causes more presence but less learning

    DEFF Research Database (Denmark)

    Makransky, Guido; Terkildsen, Thomas S.; Mayer, Richard E.

    2017-01-01

    significantly higher cognitive load based on the EEG measure (d = 0.59). In spite of its motivating properties (as reflected in presence ratings), learning science in VR may overload and distract the learner (as reflected in EEG measures of cognitive load), resulting in less opportunity to build learning...... whether the principles of multimedia learning generalize to immersive VR. Furthermore, electroencephalogram (EEG) was used to obtain a direct measure of cognitive processing during learning. A sample of 52 university students participated in a 2 × 2 experimental cross-panel design wherein students learned...

  12. CosmoQuest: A Virtual Facility for Learning and Doing Science

    Science.gov (United States)

    Gay, P.; Lehan, C.; Bracey, G.; Gugiucci, N.

    2012-09-01

    CosmoQuest is a new online citizen science project designed to bring to the public the facilities typically enjoyed by professional researchers working in academic environments. Research is enabled through a series of online interfaces that guide individuals through tasks that professional collaborators need completed. Seminars, star parties, and other professional development is conducted through online video conferencing using the Google Hangouts on Air technology. Additional learning materials are maintained online using wiki software, and social interactions and collaboration are facilitated via online forums and social media.

  13. FOREWORD: 13th International Workshop on Plasma-Facing Materials and Components for Fusion Applications/1st International Conference on Fusion Energy Materials Science 13th International Workshop on Plasma-Facing Materials and Components for Fusion Applications/1st International Conference on Fusion Energy Materials Science

    Science.gov (United States)

    Jacob, Wolfgang; Linsmeier, Christian; Rubel, Marek

    2011-12-01

    The 13th International Workshop on Plasma-Facing Materials and Components (PFMC-13) jointly organized with the 1st International Conference on Fusion Energy Materials Science (FEMaS-1) was held in Rosenheim (Germany) on 9-13 May 2011. PFMC-13 is a successor of the International Workshop on Carbon Materials for Fusion Applications series. Between 1985 and 2003 ten 'Carbon Workshops' were organized in Jülich, Stockholm and Hohenkammer. Then it was time for a change and redefinition of the scope of the symposium to reflect the new requirements of ITER and the ongoing evolution in the field. Under the new name (PFMC-11), the workshop was first organized in 2006 in Greifswald, Germany and PFMC-12 took place in Jülich in 2009. Initially starting in 1985 with about 40 participants as a 1.5 day workshop, the event has continuously grown to about 220 participants at PFMC-12. Due to the joint organization with FEMaS-1, PFMC-13 set a new record with more than 280 participants. The European project Fusion Energy Materials Science, FEMaS, coordinated by the Max-Planck-Institut für Plasmaphysik (IPP), organizes and stimulates cooperative research activities which involve large-scale research facilities as well as other top-level materials characterization laboratories. Five different fields are addressed: benchmarking experiments for radiation damage modelling, the application of micro-mechanical characterization methods, synchrotron and neutron radiation-based techniques and advanced nanoscopic analysis based on transmission electron microscopy. All these fields need to be exploited further by the fusion materials community for timely materials solutions for a DEMO reactor. In order to integrate these materials research fields, FEMaS acted as a co-organizer for the 2011 workshop and successfully introduced a number of participants from research labs and universities into the PFMC community. Plasma-facing materials experience particularly hostile conditions as they are

  14. Fusion energy

    International Nuclear Information System (INIS)

    Gross, R.A.

    1984-01-01

    This textbook covers the physics and technology upon which future fusion power reactors will be based. It reviews the history of fusion, reaction physics, plasma physics, heating, and confinement. Descriptions of commercial plants and design concepts are included. Topics covered include: fusion reactions and fuel resources; reaction rates; ignition, and confinement; basic plasma directory; Tokamak confinement physics; fusion technology; STARFIRE: A commercial Tokamak fusion power plant. MARS: A tandem-mirror fusion power plant; and other fusion reactor concepts

  15. The Relationship Between the Use of Virtual Social Networks with Academic Achievement and Students' Confidence in Interpersonal Relations at Birjand University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    aliakbar ajam

    2017-06-01

    Full Text Available Background and Objective: This study aimed to investigate the relationship between the use of mobile based virtual social networks with academic achievement and trust in interpersonal relations of university students Of Medical Sciences was conducted. Materials and Methods: This study was descriptive correlational. The study population included college of Public Health students and students of medicine at Birjand University of Medical Sciences. Based on purposive sampling method, 150 students were selected. For data collection Scale of trust in interpersonal relations of Rempel & Holmes was used. The researchers made use of social networks and academic achievement. Data were analyzed by SPSS software version 20. Result: There was a significant negative relationship between the time allotted to the network and the number of virtual memberships in social groups and academic achievement of students(P <0.01. Academic achievement of students who used virtual social networks for scientific purposes was higher than those who used it for non-scientific purposes. There was a significant negative correlation between the time allocated to social networks and factors such as capability of trust, predictability and loyalty (P <0.05. Conclusion: It is recommended that workshops and training courses be held for practical learning of virtual networks.

  16. The environmental virtual observatory pilot (EVOp): a cloud solution demonstrating effective science for efficient decisions

    Science.gov (United States)

    Gurney, R. J.; Emmett, B.; McDonald, A.

    2012-12-01

    Environmental managers and policy makers face a challenging future trying to accommodate growing expectations of environmental well-being, while subject to maturing regulation, constrained budgets and a public scrutiny that expects easier and more meaningful access to data and decision logic. To support such a challenge requires new tools and new approaches. The EVOp is an initiative from the UK Natural Environment Research Council (NERC) designed to deliver proof of concept for these new tools and approaches. A series of exemplar 'big catchment science questions' are posed and the prospects for their solution are assessed. These are then used to develop cloud solutions for serving data, models, visualisation and analysis tools to scientists, regulators, private companies and the public, all of whom have different expectations of what environmental information is important. Approaches are tested regularly with users using SCRUM. The VO vision encompasses seven key ambitions: i. being driven by the need to contribute to the solution of major environmental issues that impinge on, or link to, catchment science ii. having the flexibility and adaptability to address future problems not yet defined or fully clarified iii. being able to communicate issues and solutions to a range of audiences iv. supporting easy access by a variety of users v. drawing meaningful information from data and models and identifying the constraints on application in terms of errors, uncertainties, etc vi. adding value and cost effectiveness to current investigations by supporting transfer and scale adjustment thus limiting the repetition of expensive field monitoring addressing essentially the same issues in varying locations vii. promoting effective interfacing of robust science with a variety of end users by using terminology or measures familiar to the user (or required by regulation), including financial and carbon accounting, whole life or fixed period costing, risk as probability or as

  17. New technology and neo-science on the nuclear fusion reactor engineering. ITER and super high speed phenomena

    International Nuclear Information System (INIS)

    1996-12-01

    This research meeting has been held under cooperation of the ''nuclear fusion reactor engineering research group'' and ''nuclear fusion reactor materials research group'' of the Yayoi Research Group. This meeting was planned and conducted for 2 days under the following predominant thema: Present status of research on thermo-nuclear fusion experimental reactor engineering design (ITER/EDA) and its promoting method in Japan, and a new scientific side in the research and development of nuclear fusion reactor materials or the super high speed phenomena. In the former item, the following reports were published: Creative period of R and D on the nuclear fusion reactor, present statue and future development of ITER/EDA, meanings of ITER under realization of the nuclear fusion energy, and others. And in the latter item, the following reports were published: Nuclear fusion materials engineering and system quantum engineering, dynamic imagination of atom and molecule using pulse snap shot method, laser wake field acceleration and ultra short x-ray pulse generation, development of T-cube laser in JAERI, and others. (G.K.)

  18. Development of a virtual system of improvement of the quality in the teaching of materials science

    Science.gov (United States)

    Del Hoyo Martínez, Carmen

    2014-05-01

    The last aim of this educational experience is the increase of the motivation of the students for the learning of the matters to giving as well as looking for the raising awareness, placing in the center the student and distinguishing the teaching for every group and specific case with different action plans for subjects and groups. This aim happens for achieving a major participation of the students in the way of developing and raising the matters (active subjects in the teaching), with a major follow-up of the teacher and a constant feedback with possibility of change in the exposition of the subjects to mold it to the characteristics of the groups of students. Besides the previous thing, one tries to obtain a manual of good practices in the classroom as well as a compendium of the actions undertaken before mistakes or aspects identified in the classroom and what results they have served us as tools for future or current teachers. Likewise, also one tries to improve the implantation of the systems of follow-up of the quality and also of coordination of professorship in the subject of Materials Science. The accomplishment of the questionnaires carried out by means of the controls of personalized response Educlick, equipment that was obtained by a Project of Educational Investigation (University of Salamanca), and that provides an experience of participation to the students. As for the teachers, it allows the application of measures of improvement and implementation of the qualit systems. It might extend to other Powers and Centers that are interested in similar experiences. The feedback has distinguished himself as one of the most powerful tools for the learning (Black and Williams, 1998). The investigation-action in the classroom (Avison et to, 1999; Contreras Perez and Arbesú García, 2008; Samian and Noor, 2012) supposes a methodology that allows to modify in time the teaching and to contribute this feedback to the pupils in every moment. The development of

  19. Virtually teaching virtual leadership

    DEFF Research Database (Denmark)

    Henriksen, Thomas Duus; Nielsen, Rikke Kristine; Børgesen, Kenneth

    2017-01-01

    This paper seeks to investigate the challenges to virtual collaboration and leadership on basis of findings from a virtual course on collaboration and leadership. The course used for this experiment was designed as a practical approach, which allowed participants to experience curriculum phenomena....... This experimental course provided insights into the challenges involved in virtual processes, and those experiences where used for addressing the challenges that virtual leadership is confronted with. Emphasis was placed on the reduction of undesired virtual distance and its consequences through affinity building....... We found that student scepticism appeared when a breakdown resulted in increasing virtual distance, and raises questions on how leaders might translate or upgrade their understandings of leadership to handling such increased distance through affinity building....

  20. Building a Generic Virtual Research Environment Framework for Multiple Earth and Space Science Domains and a Diversity of Users.

    Science.gov (United States)

    Wyborn, L. A.; Fraser, R.; Evans, B. J. K.; Friedrich, C.; Klump, J. F.; Lescinsky, D. T.

    2017-12-01

    Virtual Research Environments (VREs) are now part of academic infrastructures. Online research workflows can be orchestrated whereby data can be accessed from multiple external repositories with processing taking place on public or private clouds, and centralised supercomputers using a mixture of user codes, and well-used community software and libraries. VREs enable distributed members of research teams to actively work together to share data, models, tools, software, workflows, best practices, infrastructures, etc. These environments and their components are increasingly able to support the needs of undergraduate teaching. External to the research sector, they can also be reused by citizen scientists, and be repurposed for industry users to help accelerate the diffusion and hence enable the translation of research innovations. The Virtual Geophysics Laboratory (VGL) in Australia was started in 2012, built using a collaboration between CSIRO, the National Computational Infrastructure (NCI) and Geoscience Australia, with support funding from the Australian Government Department of Education. VGL comprises three main modules that provide an interface to enable users to first select their required data; to choose a tool to process that data; and then access compute infrastructure for execution. VGL was initially built to enable a specific set of researchers in government agencies access to specific data sets and a limited number of tools. Over the years it has evolved into a multi-purpose Earth science platform with access to an increased variety of data (e.g., Natural Hazards, Geochemistry), a broader range of software packages, and an increasing diversity of compute infrastructures. This expansion has been possible because of the approach to loosely couple data, tools and compute resources via interfaces that are built on international standards and accessed as network-enabled services wherever possible. Built originally for researchers that were not fussy about

  1. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    International Nuclear Information System (INIS)

    Grisham, L.R.; Kwan, J.W.

    2008-01-01

    Some years ago it was suggested that halogen negative ions (1)could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion-ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component--positive ions, negative ions, and electrons--can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion-ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed

  2. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy,and Related Fields

    International Nuclear Information System (INIS)

    Grisham, L.R.; Kwan, J.W.

    2008-01-01

    Some years ago it was suggested that halogen negative ions could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons - can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion - ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  3. The Use of Immersive Virtual Reality in the Learning Sciences: Digital Transformations of Teachers, Students, and Social Context

    Science.gov (United States)

    Bailenson, Jeremy N.; Yee, Nick; Blascovich, Jim; Beall, Andrew C.; Lundblad, Nicole; Jin, Michael

    2008-01-01

    This article illustrates the utility of using virtual environments to transform social interaction via behavior and context, with the goal of improving learning in digital environments. We first describe the technology and theories behind virtual environments and then report data from 4 empirical studies. In Experiment 1, we demonstrated that…

  4. Connecting Distance Learning Communities to Research via Virtual Collaboratories: A Case Study from Library and Information Science

    Science.gov (United States)

    Rebmann, Kristen

    2012-01-01

    This case study reports on patterns of participation in a virtual collaboratory organised around goals associated with the involvement of graduate students in research and writing projects. Traditionally, distance learning classrooms have been devoted to teaching content matter (in a virtual context) yet this case study reports on the use of…

  5. Lowering the Barriers to Using Data: Enabling Desktop-based HPD Science through Virtual Environments and Web Data Services

    Science.gov (United States)

    Druken, K. A.; Trenham, C. E.; Steer, A.; Evans, B. J. K.; Richards, C. J.; Smillie, J.; Allen, C.; Pringle, S.; Wang, J.; Wyborn, L. A.

    2016-12-01

    The Australian National Computational Infrastructure (NCI) provides access to petascale data in climate, weather, Earth observations, and genomics, and terascale data in astronomy, geophysics, ecology and land use, as well as social sciences. The data is centralized in a closely integrated High Performance Computing (HPC), High Performance Data (HPD) and cloud facility. Despite this, there remain significant barriers for many users to find and access the data: simply hosting a large volume of data is not helpful if researchers are unable to find, access, and use the data for their particular need. Use cases demonstrate we need to support a diverse range of users who are increasingly crossing traditional research discipline boundaries. To support their varying experience, access needs and research workflows, NCI has implemented an integrated data platform providing a range of services that enable users to interact with our data holdings. These services include: - A GeoNetwork catalog built on standardized Data Management Plans to search collection metadata, and find relevant datasets; - Web data services to download or remotely access data via OPeNDAP, WMS, WCS and other protocols; - Virtual Desktop Infrastructure (VDI) built on a highly integrated on-site cloud with access to both the HPC peak machine and research data collections. The VDI is a fully featured environment allowing visualization, code development and analysis to take place in an interactive desktop environment; and - A Learning Management System (LMS) containing User Guides, Use Case examples and Jupyter Notebooks structured into courses, so that users can self-teach how to use these facilities with examples from our system across a range of disciplines. We will briefly present these components, and discuss how we engage with data custodians and consumers to develop standardized data structures and services that support the range of needs. We will also highlight some key developments that have

  6. Use of a virtual human performance laboratory to improve integration of mathematics and biology in sports science curricula in Sweden and the United States.

    Science.gov (United States)

    Garza, D; Besier, T; Johnston, T; Rolston, B; Schorsch, A; Matheson, G; Annerstedt, C; Lindh, J; Rydmark, M

    2007-01-01

    New fields such as bioengineering are exploring the role of the physical sciences in traditional biological approaches to problems, with exciting results in device innovation, medicine, and research biology. The integration of mathematics, biomechanics, and material sciences into the undergraduate biology curriculum will better prepare students for these opportunities and enhance cooperation among faculty and students at the university level. We propose the study of sports science as the basis for introduction of this interdisciplinary program. This novel integrated approach will require a virtual human performance laboratory dual-hosted in Sweden and the United States. We have designed a course model that involves cooperative learning between students at Göteborg University and Stanford University, utilizes new technologies, encourages development of original research and will rely on frequent self-assessment and reflective learning. We will compare outcomes between this course and a more traditional didactic format as well as assess the effectiveness of multiple web-hosted virtual environments. We anticipate the grant will result in a network of original faculty and student research in exercise science and pedagogy as well as provide the opportunity for implementation of the model in more advance training levels and K-12 programs.

  7. Nuclear fusion: The issues

    International Nuclear Information System (INIS)

    Griffin, R.D.

    1993-01-01

    The taming of fusion energy, has proved one of the most elusive quests of modern science. For four decades, the United States has doggedly pursued energy's holy grail, pumping more than $9 billion into research and reactor prototypes. This year, the federal government is slated to spend $339 million on fusion, more than the combined amount the government will spend for research on oil, natural gas, solar power, wind power, geothermal energy, biofuels and conservation. This article summarizes the technical, political in terms of international cooperation, economic, planning, etc. issues surrounding the continued development of fusion as a possible power source for the next century. Brief descriptions of how fusion works and of the design of a tokamak fusion machine are included

  8. Material science and manufacturing of heat-resistant reduced-activation ferritic-martensitic steels for fusion

    International Nuclear Information System (INIS)

    Ioltukhovskiy, A.G.; Blokhin, A.I.; Budylkin, N.I.; Chernov, V.M.; Leont'eva-Smirnova, M.V.; Mironova, E.G.; Medvedeva, E.A.; Solonin, M.I.; Porollo, S.I.; Zavyalsky, L.P.

    2000-01-01

    A number of issues regarding the development and use of 10-12% Cr reduced-activation ferritic-martensitic steels (RAFMS) for fusion are considered. These include: (1) problems of manufacturing and modifying their composition and metallurgical condition; (2) the influence on properties of their composition, purity, δ-ferrite concentration and cooling rates in the final stages of manufacturing; and (3) the effects of neutron irradiation at 320-650 deg. C up to 108 dpa on their mechanical properties. In addition, neutron activation and nuclear accumulation of elements in RAFMS with different initial concentrations of alloying and impurity elements for typical fusion reactor (DEMO) irradiation regimes have been calculated

  9. EMP Fusion

    OpenAIRE

    KUNTAY, Isık

    2010-01-01

    This paper introduces a novel fusion scheme, called EMP Fusion, which has the promise of achieving breakeven and realizing commercial fusion power. The method is based on harnessing the power of an electromagnetic pulse generated by the now well-developed flux compression technology. The electromagnetic pulse acts as a means of both heating up the plasma and confining the plasma, eliminating intermediate steps. The EMP Fusion device is simpler compared to other fusion devices and this reduces...

  10. Magnetic fusion research in developing countries

    International Nuclear Information System (INIS)

    Hassan, M.H.A.

    1990-01-01

    This article is a presentation prepared by the Third World Academy of Sciences on magnetic fusion research activity in the developing countries and its connection with the IAEA's own fusion programme. 6 figs, 1 tab

  11. Virtual anthropology.

    Science.gov (United States)

    Weber, Gerhard W

    2015-02-01

    Comparative morphology, dealing with the diversity of form and shape, and functional morphology, the study of the relationship between the structure and the function of an organism's parts, are both important subdisciplines in biological research. Virtual anthropology (VA) contributes to comparative morphology by taking advantage of technological innovations, and it also offers new opportunities for functional analyses. It exploits digital technologies and pools experts from different domains such as anthropology, primatology, medicine, paleontology, mathematics, statistics, computer science, and engineering. VA as a technical term was coined in the late 1990s from the perspective of anthropologists with the intent of being mostly applied to biological questions concerning recent and fossil hominoids. More generally, however, there are advanced methods to study shape and size or to manipulate data digitally suitable for application to all kinds of primates, mammals, other vertebrates, and invertebrates or to issues regarding plants, tools, or other objects. In this sense, we could also call the field "virtual morphology." The approach yields permanently available virtual copies of specimens and data that comprehensively quantify geometry, including previously neglected anatomical regions. It applies advanced statistical methods, supports the reconstruction of specimens based on reproducible manipulations, and promotes the acquisition of larger samples by data sharing via electronic archives. Finally, it can help identify new, hidden traits, which is particularly important in paleoanthropology, where the scarcity of material demands extracting information from fragmentary remains. This contribution presents a current view of the six main work steps of VA: digitize, expose, compare, reconstruct, materialize, and share. The VA machinery has also been successfully used in biomechanical studies which simulate the stress and strains appearing in structures. Although

  12. Synchrotron radiation and fusion materials

    International Nuclear Information System (INIS)

    Nielsen, S.F.

    2009-01-01

    The development of fusion energy is approaching a stage where the capabilities of materials will be dictating the further progress and the time scale for the attainment of fusion power. EU has therefore funded the Fusion Energy Materials Science project Coordination Action (FEMaS - CA) with the intension to utilise the know-how in the materials community to help overcome the material science problems with the fusion related materials. The FEMaS project and some of the possible applications of synchrotron radiation for materials characterisation are described in this paper. (au)

  13. Japanese fusion research

    International Nuclear Information System (INIS)

    Uchida, T.

    1987-01-01

    The Japan experience during thirty years in nuclear fusion research is reported, after attending the 1st Geneva Conference in 1955, Osaka University, immedeately began linear pinch study using capacitor bank discharge. Subsequently to his trial several groups were organized to ward fusion R and D at universities in Tokyo, Nagoya, Kyoto, Sendai and son on. Based upon the recommendation of Japan Science Council, Institut of Plasma Physics (IPP) was established at Nagoya University in 1961 When the 1st International Conference on Plasma Physics and Controlled Nuclear Fusion Research was held in Saltzburg. The gloomy Bohm barrier had stood in front of many of experiments at that time. (author) [pt

  14. Environmental System Science Data Infrastructure for a Virtual Ecosystem (ESS-DIVE) - A New U.S. DOE Data Archive

    Science.gov (United States)

    Agarwal, D.; Varadharajan, C.; Cholia, S.; Snavely, C.; Hendrix, V.; Gunter, D.; Riley, W. J.; Jones, M.; Budden, A. E.; Vieglais, D.

    2017-12-01

    The ESS-DIVE archive is a new U.S. Department of Energy (DOE) data archive designed to provide long-term stewardship and use of data from observational, experimental, and modeling activities in the earth and environmental sciences. The ESS-DIVE infrastructure is constructed with the long-term vision of enabling broad access to and usage of the DOE sponsored data stored in the archive. It is designed as a scalable framework that incentivizes data providers to contribute well-structured, high-quality data to the archive and that enables the user community to easily build data processing, synthesis, and analysis capabilities using those data. The key innovations in our design include: (1) application of user-experience research methods to understand the needs of users and data contributors; (2) support for early data archiving during project data QA/QC and before public release; (3) focus on implementation of data standards in collaboration with the community; (4) support for community built tools for data search, interpretation, analysis, and visualization tools; (5) data fusion database to support search of the data extracted from packages submitted and data available in partner data systems such as the Earth System Grid Federation (ESGF) and DataONE; and (6) support for archiving of data packages that are not to be released to the public. ESS-DIVE data contributors will be able to archive and version their data and metadata, obtain data DOIs, search for and access ESS data and metadata via web and programmatic portals, and provide data and metadata in standardized forms. The ESS-DIVE archive and catalog will be federated with other existing catalogs, allowing cross-catalog metadata search and data exchange with existing systems, including DataONE's Metacat search. ESS-DIVE is operated by a multidisciplinary team from Berkeley Lab, the National Center for Ecological Analysis and Synthesis (NCEAS), and DataONE. The primarily data copies are hosted at DOE's NERSC

  15. Inverse fusion PCR cloning.

    Directory of Open Access Journals (Sweden)

    Markus Spiliotis

    Full Text Available Inverse fusion PCR cloning (IFPC is an easy, PCR based three-step cloning method that allows the seamless and directional insertion of PCR products into virtually all plasmids, this with a free choice of the insertion site. The PCR-derived inserts contain a vector-complementary 5'-end that allows a fusion with the vector by an overlap extension PCR, and the resulting amplified insert-vector fusions are then circularized by ligation prior transformation. A minimal amount of starting material is needed and experimental steps are reduced. Untreated circular plasmid, or alternatively bacteria containing the plasmid, can be used as templates for the insertion, and clean-up of the insert fragment is not urgently required. The whole cloning procedure can be performed within a minimal hands-on time and results in the generation of hundreds to ten-thousands of positive colonies, with a minimal background.

  16. Alternate laser fusion drivers

    International Nuclear Information System (INIS)

    Pleasance, L.D.

    1979-11-01

    One objective of research on inertial confinement fusion is the development of a power generating system based on this concept. Realization of this goal will depend on the availability of a suitable laser or other system to drive the power plant. The primary laser systems used for laser fusion research, Nd 3+ : Glass and CO 2 , have characteristics which may preclude their use for this application. Glass lasers are presently perceived to be incapable of sufficiently high average power operation and the CO 2 laser may be limited by and issues associated with target coupling. These general perceptions have encouraged a search for alternatives to the present systems. The search for new lasers has been directed generally towards shorter wavelengths; most of the new lasers discovered in the past few years have been in the visible and ultraviolet region of the spectrum. Virtually all of them have been advocated as the most promising candidate for a fusion driver at one time or another

  17. Analysis of chemical concepts as the basic of virtual laboratory development and process science skills in solubility and solubility product subject

    Science.gov (United States)

    Syafrina, R.; Rohman, I.; Yuliani, G.

    2018-05-01

    This study aims to analyze the concept characteristics of solubility and solubility products that will serve as the basis for the development of virtual laboratory and students' science process skills. Characteristics of the analyzed concepts include concept definitions, concept attributes, and types of concepts. The concept analysis method uses concept analysis according to Herron. The results of the concept analysis show that there are twelve chemical concepts that become the prerequisite concept before studying the solubility and solubility and five core concepts that students must understand in the solubility and Solubility product. As many as 58.3% of the definitions of the concepts contained in high school textbooks support students' science process skills, the rest of the definition of the concept is memorized. Concept attributes that meet three levels of chemical representation and can be poured into a virtual laboratory have a percentage of 66.6%. Type of concept, 83.3% is a concept based on principle; and 16.6% concepts that state the process. Meanwhile, the science process skills that can be developed based on concept analysis are the ability to observe, calculate, measure, predict, interpret, hypothesize, apply, classify, and inference.

  18. Scientific Inquiry Self-Efficacy and Computer Game Self-Efficacy as Predictors and Outcomes of Middle School Boys' and Girls' Performance in a Science Assessment in a Virtual Environment

    Science.gov (United States)

    Bergey, Bradley W.; Ketelhut, Diane Jass; Liang, Senfeng; Natarajan, Uma; Karakus, Melissa

    2015-01-01

    The primary aim of the study was to examine whether performance on a science assessment in an immersive virtual environment was associated with changes in scientific inquiry self-efficacy. A secondary aim of the study was to examine whether performance on the science assessment was equitable for students with different levels of computer game…

  19. Virtual colonoscopy

    Science.gov (United States)

    Colonoscopy - virtual; CT colonography; Computed tomographic colonography; Colography - virtual ... Differences between virtual and conventional colonoscopy include: VC can view the colon from many different angles. This is not as easy ...

  20. Fusion research activities in China

    International Nuclear Information System (INIS)

    Deng Xiwen

    1998-01-01

    The fusion program in China has been executed in most areas of magnetic confinement fusion for more than 30 years. Basing on the situation of the power supply requirements of China, the fusion program is becoming an important and vital component of the nuclear power program in China. This paper reviews the status of fusion research and next step plans in China. The motivation and goal of the Chinese fusion program is explained. Research and development on tokamak physics and engineering in the southwestern institute of physics (SWIP) and the institute of plasma physics of Academic Sinica (ASIPP) are introduced. A fusion breeder program and a pure fusion reactor design program have been supported by the state science and technology commission (SSTC) and the China national nuclear corporation (CNNC), respectively. Some features and progress of fusion reactor R and D activities are reviewed. Non fusion applications of plasma science are an important part of China fusion research; a brief introduction about this area is given. Finally, an introductional collaboration network on fusion research activities in China is reported. (orig.)

  1. Osteoclast Fusion

    DEFF Research Database (Denmark)

    Marie Julie Møller, Anaïs; Delaissé, Jean-Marie; Søe, Kent

    2017-01-01

    on the nuclearity of fusion partners. While CD47 promotes cell fusions involving mono-nucleated pre-osteoclasts, syncytin-1 promotes fusion of two multi-nucleated osteoclasts, but also reduces the number of fusions between mono-nucleated pre-osteoclasts. Furthermore, CD47 seems to mediate fusion mostly through...... individual fusion events using time-lapse and antagonists of CD47 and syncytin-1. All time-lapse recordings have been studied by two independent observers. A total of 1808 fusion events were analyzed. The present study shows that CD47 and syncytin-1 have different roles in osteoclast fusion depending...... broad contact surfaces between the partners' cell membrane while syncytin-1 mediate fusion through phagocytic-cup like structure. J. Cell. Physiol. 9999: 1-8, 2016. © 2016 Wiley Periodicals, Inc....

  2. Impact of real-time virtual sonography, a coordinated sonography and MRI system that uses an image fusion technique, on the sonographic evaluation of MRI-detected lesions of the breast in second-look sonography.

    Science.gov (United States)

    Nakano, Shogo; Kousaka, Junko; Fujii, Kimihito; Yorozuya, Kyoko; Yoshida, Miwa; Mouri, Yukako; Akizuki, Miwa; Tetsuka, Rie; Ando, Takahito; Fukutomi, Takashi; Oshima, Yukihiko; Kimura, Junko; Ishiguchi, Tsuneo; Arai, Osamu

    2012-08-01

    The aim of this study was to verify the utility of second-look sonography using real-time virtual sonography (RVS)-a coordinated sonography with an MRI system that uses an image fusion technique with magnetic navigation-on the sonographic evaluation of MRI-detected lesions of the breast. Of the 196 consecutive patients who were examined with breast MRI in our hospital from 2006 to 2009, those patients who underwent second-look sonography to identify MRI-detected lesions were enrolled in this study. MRI was performed using a 1.5-T imager with the patient in a supine position. To assess the efficacy benefits of RVS, the correlations between lesion detection rates, MRI features, distribution, and histopathological classification on second-look sonography using conventional B-mode or RVS were analyzed. Of the 196 patients, 55 (28 %) demonstrated 67 lesions initially detected by MRI, followed by second-look sonography. Of the 67 MRI-detected lesions, 18 (30 %) were identified with second-look sonography using conventional B-mode alone, whereas 60 (90 %) lesions were detected with second-look sonography using RVS (p use of RVS on second-look sonography significantly increases the sonographic detection rate of MRI-detected lesions without operator dependence.

  3. Revitalizing Fusion via Fission Fusion

    Science.gov (United States)

    Manheimer, Wallace

    2001-10-01

    Existing tokamaks could generate significant nuclear fuel. TFTR, operating steady state with DT might generate enough fuel for a 300 MW nuclear reactor. The immediate goals of the magnetic fusion program would necessarily shift from a study of advanced plasma regimes in larger sized devices, to mostly known plasmas regimes, but at steady state or high duty cycle operation in DT plasmas. The science and engineering of breeding blankets would be equally important. Follow on projects could possibly produce nuclear fuel in large quantity at low price. Although today there is strong opposition to nuclear power in the United States, in a 21st century world of 10 billion people, all of whom will demand a middle class life style, nuclear energy will be important. Concern over greenhouse gases will also drive the world toward nuclear power. There are studies indicating that the world will need 10 TW of carbon free energy by 2050. It is difficult to see how this can be achieved without the breeding of nuclear fuel. By using the thorium cycle, proliferation risks are minimized. [1], [2]. 1 W. Manheimer, Fusion Technology, 36, 1, 1999, 2.W. Manheimer, Physics and Society, v 29, #3, p5, July, 2000

  4. The concept and science process skills analysis in bomb calorimeter experiment as a foundation for the development of virtual laboratory of bomb calorimeter

    Science.gov (United States)

    Kurniati, D. R.; Rohman, I.

    2018-05-01

    This study aims to analyze the concepts and science process skills in bomb calorimeter experiment as a basis for developing the virtual laboratory of bomb calorimeter. This study employed research and development method (R&D) to gain the answer to the proposed problems. This paper discussed the concepts and process skills analysis. The essential concepts and process skills associated with bomb calorimeter are analyze by optimizing the bomb calorimeter experiment. The concepts analysis found seven fundamental concepts to be concerned in developing the virtual laboratory that are internal energy, burning heat, perfect combustion, incomplete combustion, calorimeter constant, bomb calorimeter, and Black principle. Since the concept of bomb calorimeter, perfect and incomplete combustion created to figure out the real situation and contain controllable variables, in virtual the concepts displayed in the form of simulation. Meanwhile, the last four concepts presented in the form of animation because no variable found to be controlled. The process skills analysis detect four notable skills to be developed that are ability to observe, design experiment, interpretation, and communication skills.

  5. Fusion Simulation Program

    International Nuclear Information System (INIS)

    Greenwald, Martin

    2011-01-01

    Many others in the fusion energy and advanced scientific computing communities participated in the development of this plan. The core planning team is grateful for their important contributions. This summary is meant as a quick overview the Fusion Simulation Program's (FSP's) purpose and intentions. There are several additional documents referenced within this one and all are supplemental or flow down from this Program Plan. The overall science goal of the DOE Office of Fusion Energy Sciences (FES) Fusion Simulation Program (FSP) is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in International Thermonuclear Experimental Reactor (ITER) research and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. (1). Initial FSP research will focus on two critical Integrated Science Application (ISA) areas: ISA1, the plasma edge; and ISA2, whole device modeling (WDM) including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a critical

  6. The Virtual Classroom.

    Science.gov (United States)

    Roach, Ronald

    1997-01-01

    Increasingly, college teachers and instructional designers are exploring use of the technology of virtual reality to enhance student learning in math, science, and the social sciences. It is found particularly useful for teaching psychomotor skills and may have potential to make scientific concepts and abstract subjects more accessible to…

  7. Preface [IFSA 2015: 9. international conference on inertial fusion sciences and applications, Seattle, WA (United States), 20-25 September 2015

    International Nuclear Information System (INIS)

    2016-01-01

    The Ninth International Conference on Inertial Fusion Science and Applications (IFSA) was held on September 20-25, 2015 at the Hyatt Regency Bellevue on Seattle's Eastside, Washington, U.S.A. The event was hosted by the University of California and was organized by the Lawrence Livermore National Laboratory. It brought together more than 370 participants from 16 countries. The goal, as for all previous IFSA Conferences, was to bring together scientists in the fields of inertial fusion science and high-energy-density physics, and their applications. Three hundred twenty seven papers were presented emphasizing the science of high-energy and high-intensity laser, pulsed-power, and particle-beam interactions with matter, the associated high-energy-density physics, and their application to fusion concepts. Results presented included theory, modeling, and experimental results from facilities worldwide. In recent years, significant advances have been made in high-energy-density science using lasers, Z-pinches, and particle beam systems with dramatic technical achievements in areas such as central-hot-spot ignition, fast and impulse ignition, material properties at extreme conditions, warm dense matter, particle acceleration and laser-plasma interactions. For the first time in the laboratory, x-ray driven ignition experiments, performed at the National Ignition Facility (NIF) in the United States, have exhibited self-heating. In the month following the Conference, the first plasma experiments were performed at Laser Mégajoule (LMJ) in France, and ignition scale projects are under way in China and Russia. Other approaches, such as magnetic compression on the Z-machine at Sandia National Laboratories and direct drive experiments at the University of Rochester, have produced exciting new results which were reported on at the Conference. Second-generation petawatt short-pulse laser systems such as the highest-energy petawatt laser systems LFEX (FIREX) in Japan, OMEGA

  8. Fusion power

    International Nuclear Information System (INIS)

    Hancox, R.

    1981-01-01

    The principles of fusion power, and its advantages and disadvantages, are outlined. Present research programmes and future plans directed towards the development of a fusion power reactor, are summarized. (U.K.)

  9. Fusion rings and fusion ideals

    DEFF Research Database (Denmark)

    Andersen, Troels Bak

    by the so-called fusion ideals. The fusion rings of Wess-Zumino-Witten models have been widely studied and are well understood in terms of precise combinatorial descriptions and explicit generating sets of the fusion ideals. They also appear in another, more general, setting via tilting modules for quantum......This dissertation investigates fusion rings, which are Grothendieck groups of rigid, monoidal, semisimple, abelian categories. Special interest is in rational fusion rings, i.e., fusion rings which admit a finite basis, for as commutative rings they may be presented as quotients of polynomial rings...

  10. Comparing Science Virtual and Paper-Based Test to Measure Students’ Critical Thinking based on VAK Learning Style Model

    Science.gov (United States)

    Rosyidah, T. H.; Firman, H.; Rusyati, L.

    2017-02-01

    This research was comparing virtual and paper-based test to measure students’ critical thinking based on VAK (Visual-Auditory-Kynesthetic) learning style model. Quasi experiment method with one group post-test only design is applied in this research in order to analyze the data. There was 40 eight grade students at one of public junior high school in Bandung becoming the sample in this research. The quantitative data was obtained through 26 questions about living thing and environment sustainability which is constructed based on the eight elements of critical thinking and be provided in the form of virtual and paper-based test. Based on analysis of the result, it is shown that within visual, auditory, and kinesthetic were not significantly difference in virtual and paper-based test. Besides, all result was supported by quistionnaire about students’ respond on virtual test which shows 3.47 in the scale of 4. Means that student showed positive respond in all aspet measured, which are interest, impression, and expectation.

  11. Fusion: introduction

    International Nuclear Information System (INIS)

    Decreton, M.

    2006-01-01

    The article gives an overview and introduction to the activities of SCK-CEN's research programme on fusion. The decision to construct the ITER international nuclear fusion experiment in Cadarache is highlighted. A summary of the Belgian contributions to fusion research is given with particular emphasis on studies of radiation effects on diagnostics systems, radiation effects on remote handling sensing systems, fusion waste management and socio-economic studies

  12. Comparing the performance and preference of students experiencing a Reading Aloud Accommodation to those who do not on a virtual science assessment

    Science.gov (United States)

    Shelton, Angela

    Many United States secondary students perform poorly on standardized summative science assessments. Situated Assessments using Virtual Environments (SAVE) Science is an innovative assessment project that seeks to capture students' science knowledge and understanding by contextualizing problems in a game-based virtual environment called Scientopolis. Within Scientopolis, students use an "avatar" to interact with non-player characters (NPCs), artifacts, embedded clues and "sci-tools" in order to help solve the problems of the townspeople. In an attempt to increase students' success on assessments, SAVE science places students in an environment where they can use their inquiry skills to solve problems instead of reading long passages which attempt to contextualize questions but ultimately cause construct-irrelevant variance. However, within these assessments reading is still required to access the test questions and character interactions. This dissertation explores how students' in-world performances differ when exposed to a Reading Aloud Accommodation (RAA) treatment in comparison to a control group. Student perceptions of the treatment are also evaluated. While a RAA is typically available for students with learning disabilities or English language learners, within this study, all students were randomly assigned to either the treatment or control, regardless of any demographic factors or learning barriers. The theories of Universal design for learning and brain-based learning advocate for multiple ways for students to engage, comprehend, and illustrate their content knowledge. Further, through providing more ways for students to interact with content, all students should benefit, not just those with learning disabilities. Students in the experimental group listened to the NPCs speak the dialogue that provides them with the problem, clues, and assessment questions, instead of relying on reading skills to gather the information. Overall, students in the treatment

  13. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  14. Fusion Canada

    International Nuclear Information System (INIS)

    1987-07-01

    This first issue of a quarterly newsletter announces the startup of the Tokamak de Varennes, describes Canada's national fusion program, and outlines the Canadian Fusion Fuels Technology Program. A map gives the location of the eleven principal fusion centres in Canada. (L.L.)

  15. Magnetic fusion energy

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The efforts of the Chemical Technology Division in the area of fusion energy include fuel handling, processing, and containment. These studies are closely coordinated with the ORNL Fusion Energy Division. Current experimental studies are concerned with the development of vacuum pumps for fusion reactors, the evaluation and development of techniques for recovering tritium (fuel) from either solid or liquid lithium containing blankets, and the use of deep beds of sorbents as roughing pumps and/or transfer operations. In addition, a small effort is devoted to the support of the ORNL design of The Next Step (TNS) in tokamak reactor development. The more applied studies--vacuum pump development and TNS design--are funded by the DOE/Magnetic Fusion Energy, and the more fundamental studies--blanket recovery and sorption in deep beds--are funded by the DOE/Basic Energy Sciences

  16. The assessment of fusion power

    International Nuclear Information System (INIS)

    Bickerton, Roy

    1990-01-01

    It is argued that the recent 'Science and Technology Options Assessments' of fusion power produced for the European Parliament is incorrecta and misleading. The report takes no account of the complex organizational structure of the European fusion programme, it misrepresents history, and it presents incomprehensible graphical evidence and criteria which are narrowly-based and largely platitudinous. (author)

  17. Virtual Reality Lab Assistant

    Science.gov (United States)

    Saha, Hrishikesh; Palmer, Timothy A.

    1996-01-01

    Virtual Reality Lab Assistant (VRLA) demonstration model is aligned for engineering and material science experiments to be performed by undergraduate and graduate students in the course as a pre-lab simulation experience. This will help students to get a preview of how to use the lab equipment and run experiments without using the lab hardware/software equipment. The quality of the time available for laboratory experiments can be significantly improved through the use of virtual reality technology.

  18. VNML: Virtualized Network Management Laboratory for Educational ...

    African Journals Online (AJOL)

    VNML: Virtualized Network Management Laboratory for Educational Purposes. ... Journal of Fundamental and Applied Sciences ... In this paper, we implement a Virtualized Network Management Laboratory named (VNML) linked to college ...

  19. ARLearn: augmented reality meets augmented virtuality

    NARCIS (Netherlands)

    Ternier, Stefaan; Klemke, Roland; Kalz, Marco; Van Ulzen, Patricia; Specht, Marcus

    2012-01-01

    Ternier, S., Klemke, R., Kalz, M., Van Ulzen, P., & Specht, M. (2012). ARLearn: augmented reality meets augmented virtuality [Special issue]. Journal of Universal Computer Science - Technology for learning across physical and virtual spaces, 18(15), 2143-2164.

  20. An in situ accelerator-based diagnostic for plasma-material interactions science on magnetic fusion devices.

    Science.gov (United States)

    Hartwig, Zachary S; Barnard, Harold S; Lanza, Richard C; Sorbom, Brandon N; Stahle, Peter W; Whyte, Dennis G

    2013-12-01

    This paper presents a novel particle accelerator-based diagnostic that nondestructively measures the evolution of material surface compositions inside magnetic fusion devices. The diagnostic's purpose is to contribute to an integrated understanding of plasma-material interactions in magnetic fusion, which is severely hindered by a dearth of in situ material surface diagnosis. The diagnostic aims to remotely generate isotopic concentration maps on a plasma shot-to-shot timescale that cover a large fraction of the plasma-facing surface inside of a magnetic fusion device without the need for vacuum breaks or physical access to the material surfaces. Our instrument uses a compact (~1 m), high-current (~1 milliamp) radio-frequency quadrupole accelerator to inject 0.9 MeV deuterons into the Alcator C-Mod tokamak at MIT. We control the tokamak magnetic fields--in between plasma shots--to steer the deuterons to material surfaces where the deuterons cause high-Q nuclear reactions with low-Z isotopes ~5 μm into the material. The induced neutrons and gamma rays are measured with scintillation detectors; energy spectra analysis provides quantitative reconstruction of surface compositions. An overview of the diagnostic technique, known as accelerator-based in situ materials surveillance (AIMS), and the first AIMS diagnostic on the Alcator C-Mod tokamak is given. Experimental validation is shown to demonstrate that an optimized deuteron beam is injected into the tokamak, that low-Z isotopes such as deuterium and boron can be quantified on the material surfaces, and that magnetic steering provides access to different measurement locations. The first AIMS analysis, which measures the relative change in deuterium at a single surface location at the end of the Alcator C-Mod FY2012 plasma campaign, is also presented.

  1. Fusion neutronics

    CERN Document Server

    Wu, Yican

    2017-01-01

    This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronics characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics, and which have since been widely applied all over the world. Further, it introduces readers to neutronics design’s unique principles and procedures, experimental methodologies and technologies for fusion systems...

  2. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.7--nuclear fusion and plasma physics sub-volume

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 22 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the seventh one, the content is about nuclear fusion and plasma physics sub-volume

  3. Fusion research in Hungary

    International Nuclear Information System (INIS)

    Zoletnik, S.

    2004-01-01

    Hungarian fusion research started in the 1970s, when the idea of installing a small tokamak experiment emerged. In return to computer equipment a soviet tokamak was indeed sent to Hungary and started to operate as MT-1 at the Central Research Institute for Physics (KFKI) in 1979. Major research topics included diagnostic development, edge plasma studies and investigation of disruptions. Following a major upgrade in 1992 (new vacuum vessel, active position control and PC network based data acquisition system) the MT-1M tokamak was used for the study of transport processes with trace impurity injection, micropellet ablation studies, X-ray tomography and laser blow-off diagnostic development. Although funding ceased in the middle of the 90's the group was held alive by collaborations with EU fusion labs: FZ -Juelich, IPP-Garching and CRPP-EPFL Lausanne. In 1998 the machine was dismantled due to reorganization of the Hungarian Academy of Sciences. New horizons opened to fusion research from 1999, when Hungary joined EURATOM and a fusion Association was formed. Since then fusion physics studies are done in collaboration with major EU fusion laboratories, Hungarian researchers also play an active role in JET diagnostics upgrade and ITER design. Major topics are pellet ablation studies, plasma turbulence diagnosis using Beam Emission Spectroscopy and other techniques, tomography and plasma diagnostics using various neutral beams. In fusion relevant technology R and D Hungary has less records. Before joining EURATOM some materials irradiation studies were done at the Budapest Research Reactor at KFKI-AEKI. The present day fusion technology programme focuses still on irradiation studies, nuclear material database and electromagnetic testing techniques. Increasing the fusion technology research activities is a difficult task, as the competition in Hungarian industry is very strong and the interest of organizations in long-term investments into R and D is rather weak and

  4. Fusion and its future in Illinois

    International Nuclear Information System (INIS)

    Baker, C.C.

    1984-08-01

    This report was prepared by the Illinois Fusion Power Task Force under the sponsorship of the Governor's Commission on Sciences and Technology. The report presents the findings and recommendations of the Task Force, an explanation of the basic concepts of fusion, a summary of national and international programs and a description of ongoing fusion activities in Illinois

  5. Snowmass Fusion Summer Study Group workshop

    International Nuclear Information System (INIS)

    Clement, S.

    1999-01-01

    The Snowmass Fusion Summer Study Group workshop, has taken place at Snowmass, Colorado, 11-23 July 1999. Its purpose was to discuss opportunities and directions in fusion energy science for the next decade. About 300 experts from all fields in the magnetic and inertial fusion communities attended, coming mostly from the US, but with some foreign participation

  6. lysosome tethering and fusion

    Indian Academy of Sciences (India)

    AMIT TULI

    LYSOSOME. MTOC. LATE ENDOSOME. Arl8b promotes the assembly of the HOPS complex on the lysosomes to mediate late endosome-lysosome fusion and cargo delivery to lysosomes. Khatter D et al., J Cell Science 2015. Khatter D et al., Cellular Logistics 2015 ...

  7. Fusion Physics

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Mitsuru; Lackner, Karl; Tran, Minh Quang [eds.

    2012-09-15

    Recreating the energy production process of the Sun - nuclear fusion - on Earth in a controlled fashion is one of the greatest challenges of this century. If achieved at affordable costs, energy supply security would be greatly enhanced and environmental degradation from fossil fuels greatly diminished. Fusion Physics describes the last fifty years or so of physics and research in innovative technologies to achieve controlled thermonuclear fusion for energy production. The International Atomic Energy Agency (IAEA) has been involved since its establishment in 1957 in fusion research. It has been the driving force behind the biennial conferences on Plasma Physics and Controlled Thermonuclear Fusion, today known as the Fusion Energy Conference. Hosted by several Member States, this biennial conference provides a global forum for exchange of the latest achievements in fusion research against the backdrop of the requirements for a net energy producing fusion device and, eventually, a fusion power plant. The scientific and technological knowledge compiled during this series of conferences, as well as by the IAEA Nuclear Fusion journal, is immense and will surely continue to grow in the future. It has led to the establishment of the International Thermonuclear Experimental Reactor (ITER), which represents the biggest experiment in energy production ever envisaged by humankind.

  8. Astronauts in Outer Space Teaching Students Science: Comparing Chinese and American Implementations of Space-to-Earth Virtual Classrooms

    Science.gov (United States)

    An, Song A.; Zhang, Meilan; Tillman, Daniel A.; Robertson, William; Siemssen, Annette; Paez, Carlos R.

    2016-01-01

    The purpose of this study was to investigate differences between science lessons taught by Chinese astronauts in a space shuttle and those taught by American astronauts in a space shuttle, both of whom conducted experiments and demonstrations of science activities in a microgravity space environment. The study examined the instructional structure…

  9. Fusion breeder

    International Nuclear Information System (INIS)

    Moir, R.W.

    1982-01-01

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs

  10. A pilot Virtual Observatory (pVO) for integrated catchment science - Demonstration of national scale modelling of hydrology and biogeochemistry (Invited)

    Science.gov (United States)

    Freer, J. E.; Bloomfield, J. P.; Johnes, P. J.; MacLeod, C.; Reaney, S.

    2010-12-01

    There are many challenges in developing effective and integrated catchment management solutions for hydrology and water quality issues. Such solutions should ideally build on current scientific evidence to inform policy makers and regulators and additionally allow stakeholders to take ownership of local and/or national issues, in effect bringing together ‘communities of practice’. A strategy being piloted in the UK as the Pilot Virtual Observatory (pVO), funded by NERC, is to demonstrate the use of cyber-infrastructure and cloud computing resources to investigate better methods of linking data and models and to demonstrate scenario analysis for research, policy and operational needs. The research will provide new ways the scientific and stakeholder communities come together to exploit current environmental information, knowledge and experience in an open framework. This poster presents the project scope and methodologies for the pVO work dealing with national modelling of hydrology and macro-nutrient biogeochemistry. We evaluate the strategies needed to robustly benchmark our current predictive capability of these resources through ensemble modelling. We explore the use of catchment similarity concepts to understand if national monitoring programs can inform us about the behaviour of catchments. We discuss the challenges to applying these strategies in an open access and integrated framework and finally we consider the future for such virtual observatory platforms for improving the way we iteratively improve our understanding of catchment science.

  11. Fusion Implementation

    International Nuclear Information System (INIS)

    Schmidt, J.A.

    2002-01-01

    If a fusion DEMO reactor can be brought into operation during the first half of this century, fusion power production can have a significant impact on carbon dioxide production during the latter half of the century. An assessment of fusion implementation scenarios shows that the resource demands and waste production associated with these scenarios are manageable factors. If fusion is implemented during the latter half of this century it will be one element of a portfolio of (hopefully) carbon dioxide limiting sources of electrical power. It is time to assess the regional implications of fusion power implementation. An important attribute of fusion power is the wide range of possible regions of the country, or countries in the world, where power plants can be located. Unlike most renewable energy options, fusion energy will function within a local distribution system and not require costly, and difficult, long distance transmission systems. For example, the East Coast of the United States is a prime candidate for fusion power deployment by virtue of its distance from renewable energy sources. As fossil fuels become less and less available as an energy option, the transmission of energy across bodies of water will become very expensive. On a global scale, fusion power will be particularly attractive for regions separated from sources of renewable energy by oceans

  12. Interpretations of virtual reality.

    Science.gov (United States)

    Voiskounsky, Alexander

    2011-01-01

    University students were surveyed to learn what they know about virtual realities. The two studies were administered with a half-year interval in which the students (N=90, specializing either in mathematics and science, or in social science and humanities) were asked to name particular examples of virtual realities. The second, but not the first study, was administered after the participants had the chance to see the movie "Avatar" (no investigation was held into whether they really saw it). While the students in both studies widely believed that activities such as social networking and online gaming represent virtual realities, some other examples provided by the students in the two studies differ: in the second study the participants expressed a better understanding of the items related to virtual realities. At the same time, not a single participant reported particular psychological states (either regular or altered) as examples of virtual realities. Profound popularization efforts need to be done to acquaint the public, including college students, with virtual realities and let the public adequately understand how such systems work.

  13. Virtual Reality

    Science.gov (United States)

    1993-04-01

    until exhausted. SECURITY CLASSIFICATION OF THIS PAGE All other editions are obsolete. UNCLASSIFIED " VIRTUAL REALITY JAMES F. DAILEY, LIEUTENANT COLONEL...US" This paper reviews the exciting field of virtual reality . The author describes the basic concepts of virtual reality and finds that its numerous...potential benefits to society could revolutionize everyday life. The various components that make up a virtual reality system are described in detail

  14. Virtual Box

    DEFF Research Database (Denmark)

    Davis, Hilary; Skov, Mikael B.; Stougaard, Malthe

    2007-01-01

    . This paper reports on the design, implementation and initial evaluation of Virtual Box. Virtual Box attempts to create a physical and engaging context in order to support reciprocal interactions with expressive content. An implemented version of Virtual Box is evaluated in a location-aware environment...

  15. Education and Public Outreach at The Pavilion Lake Research Project: Fusion of Science and Education using Web 2.0

    Science.gov (United States)

    Cowie, B. R.; Lim, D. S.; Pendery, R.; Laval, B.; Slater, G. F.; Brady, A. L.; Dearing, W. L.; Downs, M.; Forrest, A.; Lees, D. S.; Lind, R. A.; Marinova, M.; Reid, D.; Seibert, M. A.; Shepard, R.; Williams, D.

    2009-12-01

    The Pavilion Lake Research Project (PLRP) is an international multi-disciplinary science and exploration effort to explain the origin and preservation potential of freshwater microbialites in Pavilion Lake, British Columbia, Canada. Using multiple exploration platforms including one person DeepWorker submersibles, Autonomous Underwater Vehicles, and SCUBA divers, the PLRP acts as an analogue research site for conducting science in extreme environments, such as the Moon or Mars. In 2009, the PLRP integrated several Web 2.0 technologies to provide a pilot-scale Education and Public Outreach (EPO) program targeting the internet savvy generation. The seamless integration of multiple technologies including Google Earth, Wordpress, Youtube, Twitter and Facebook, facilitated the rapid distribution of exciting and accessible science and exploration information over multiple channels. Field updates, science reports, and multimedia including videos, interactive maps, and immersive visualization were rapidly available through multiple social media channels, partly due to the ease of integration of these multiple technologies. Additionally, the successful application of videoconferencing via a readily available technology (Skype) has greatly increased the capacity of our team to conduct real-time education and public outreach from remote locations. The improved communication afforded by Web 2.0 has increased the quality of EPO provided by the PLRP, and has enabled a higher level of interaction between the science team and the community at large. Feedback from these online interactions suggest that remote communication via Web 2.0 technologies were effective tools for increasing public discourse and awareness of the science and exploration activity at Pavilion Lake.

  16. Wireless virtualization

    CERN Document Server

    Wen, Heming; Le-Ngoc, Tho

    2013-01-01

    This SpringerBriefs is an overview of the emerging field of wireless access and mobile network virtualization. It provides a clear and relevant picture of the current virtualization trends in wireless technologies by summarizing and comparing different architectures, techniques and technologies applicable to a future virtualized wireless network infrastructure. The readers are exposed to a short walkthrough of the future Internet initiative and network virtualization technologies in order to understand the potential role of wireless virtualization in the broader context of next-generation ubiq

  17. Virtual marketing in virtual enterprises

    OpenAIRE

    Ale Ebrahim, Nader; Fattahi, Hamaid Ali; Golnam, Arash

    2008-01-01

    Virtualization caused tremendous evolution in the economics of marketing channels, patterns of physical distribution and the structure of distributors and developed a new concept that is known as virtual marketing (VM). VM combines the powerful technologies of interactive marketing and virtual reality. Virtual enterprise (VE) refers to an organization not having a clear physical locus. In other words, VE is an organization distributed geographically and whose work is coordinated through e...

  18. Thermonuclear fusion

    International Nuclear Information System (INIS)

    Weisse, J.

    2000-01-01

    This document takes stock of the two ways of thermonuclear fusion research explored today: magnetic confinement fusion and inertial confinement fusion. The basic physical principles are recalled first: fundamental nuclear reactions, high temperatures, elementary properties of plasmas, ignition criterion, magnetic confinement (charged particle in a uniform magnetic field, confinement and Tokamak principle, heating of magnetized plasmas (ohmic, neutral particles, high frequency waves, other heating means), results obtained so far (scale laws and extrapolation of performances, tritium experiments, ITER project), inertial fusion (hot spot ignition, instabilities, results (Centurion-Halite program, laser experiments). The second part presents the fusion reactor and its associated technologies: principle (tritium production, heat source, neutron protection, tritium generation, materials), magnetic fusion (superconducting magnets, divertor (role, principle, realization), inertial fusion (energy vector, laser adaptation, particle beams, reaction chamber, stresses, chamber concepts (dry and wet walls, liquid walls), targets (fabrication, injection and pointing)). The third chapter concerns the socio-economic aspects of thermonuclear fusion: safety (normal operation and accidents, wastes), costs (costs structure and elementary comparison, ecological impact and external costs). (J.S.)

  19. Fusion devices

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1977-01-01

    Three types of thermonuclear fusion devices currently under development are reviewed for an electric utilities management audience. Overall design features of laser fusion, tokamak, and magnetic mirror type reactors are described and illustrated. Thrusts and trends in current research on these devices that promise to improve performance are briefly reviewed. Twenty photographs and drawings are included

  20. Pre-Operative Planning Using Real-Time Virtual Sonography, an MRI/Ultrasound Image Fusion Technique, for Breast-Conserving Surgery in Patients with Non-Mass Enhancement on Breast MRI: A Preliminary Study.

    Science.gov (United States)

    Ando, Takahito; Ito, Yukie; Ido, Mirai; Osawa, Manami; Kousaka, Junko; Mouri, Yukako; Fujii, Kimihito; Nakano, Shogo; Kimura, Junko; Ishiguchi, Tsuneo; Watanebe, Rie; Imai, Tsuneo; Fukutomi, Takashi

    2018-07-01

    The purpose of this retrospective study was to evaluate the effect of pre-operative planning using real-time virtual sonography (RVS), a magnetic resonance imaging (MRI)/ultrasound (US) image fusion technique on breast-conserving surgery (BCS) in patients with non-mass enhancement (NME) on breast MRI. Between 2011 and 2015, we enrolled 12 consecutive patients who had lesions with NME that exceeded the US hypo-echoic area, in which it was particularly difficult to evaluate the tumor margin. During pre-operative planning before breast-conserving surgery, RVS was used to delineate the enhancing area on the breast surface after additional supine breast MRI was performed. We analyzed both the surgical margin positivity rate and the re-operation rate. All NME lesions corresponded to the index cancer. In all patients, the diameter of the NME lesion was greater than that of the hypo-echoic lesion. The median diameters of the NME and hypo-echoic lesions were 24 mm (range: 12-39 mm) and 8.0 mm (range: 4.9-18 mm), respectively (p = 0.0002). After RVS-derived skin marking was performed on the surface of the affected breast, lumpectomy and quadrantectomy were conducted in 7 and 5 patients, respectively. The surgical margins were negative in 10 (83%) patients. Two patients with positive margins were found to have ductal carcinoma in situ in 1 duct each, 2.4 and 3.2 mm from the resection margin, respectively. None of the patients required additional resection. Although further prospective studies are required, the findings of our preliminary study suggest that it is very well possible that the use of RVS-derived skin marking during pre-operative planning for BCS in patients with NME would have resulted in surgical outcomes similar to or better than those obtained without the use of such marking. Copyright © 2018. Published by Elsevier Inc.

  1. The restructured fusion program and the role of alternative fusion concepts

    International Nuclear Information System (INIS)

    Perkins, L.J.

    1996-01-01

    This testimony to the subcommittee on Energy and the Environment of the U.S. House of Representatives's Committee on Science pushes for about 25% of the fusion budget to go to alternative fusion concepts. These concepts are: low density magnetic confinement, inertial confinement fusion, high density magnetic confinement, and non- thermonuclear and miscellaneous programs. Various aspects of each of these concepts are outlined

  2. Systematic literature review of digital three-dimensional superimposition techniques to create virtual dental patients.

    Science.gov (United States)

    Joda, Tim; Brägger, Urs; Gallucci, German

    2015-01-01

    Digital developments have led to the opportunity to compose simulated patient models based on three-dimensional (3D) skeletal, facial, and dental imaging. The aim of this systematic review is to provide an update on the current knowledge, to report on the technical progress in the field of 3D virtual patient science, and to identify further research needs to accomplish clinical translation. Searches were performed electronically (MEDLINE and OVID) and manually up to March 2014 for studies of 3D fusion imaging to create a virtual dental patient. Inclusion criteria were limited to human studies reporting on the technical protocol for superimposition of at least two different 3D data sets and medical field of interest. Of the 403 titles originally retrieved, 51 abstracts and, subsequently, 21 full texts were selected for review. Of the 21 full texts, 18 studies were included in the systematic review. Most of the investigations were designed as feasibility studies. Three different types of 3D data were identified for simulation: facial skeleton, extraoral soft tissue, and dentition. A total of 112 patients were investigated in the development of 3D virtual models. Superimposition of data on the facial skeleton, soft tissue, and/or dentition is a feasible technique to create a virtual patient under static conditions. Three-dimensional image fusion is of interest and importance in all fields of dental medicine. Future research should focus on the real-time replication of a human head, including dynamic movements, capturing data in a single step.

  3. An illustration of how sciences may be combined at Cea: parallel progress in superconductivity, particle physics, medical imaging and fusion

    International Nuclear Information System (INIS)

    Duchateau, J.L.; Devred, A.; Kircher, F.; Meuris, Ch.; Schild, Th.; Rousset, B.

    2005-01-01

    Superconductivity was hailed as the most important achievement of modern physics when it was discovered in 1911. Since then the enthusiasm has damped a bit because superconductivity still requires very low temperatures. This article gives an historical account of the application of superconductivity to the research programs and achievement of Cea (French atomic energy board). The first uses were dedicated to the design of superconducting magnets. We can note the delivery in 1989 of 246 quadrupolar magnets for bending particle beams for the HERA accelerator. As for the LHC (large hadron collider) project, Cea-Grenoble has a key role in the development of the cryogenic system and Cea-Saclay is responsible of the design of 400 quadrupolar magnets, it will have to fabricate 3 prototypes and the mass production will be made in Germany. A second sector involving superconductivity is thermonuclear devices through magnetic confinement. Tore-Supra has been for 10 years the only big fusion machine involving a superconducting system. In ITER all the coils necessary to the plasma confinement will be superconducting, it will represent 700 tons of superconducting wires. The research programs linked to the ITER project have led to the design of a new superconducting material: the niobium-tin (Nb 3 Sn). A third sector is medical imaging in which Cea is involved since the eighties. Cea-Saclay will home the Neurospin center whose purpose is to assess the limit of brain imaging from mice to man. Cea has to design magnets in the range of 11 tesla with a one meter broad clearance, the selected technology is that of superconducting magnets cooled by pressurized superfluid helium. (A.C.)

  4. Computer simulation, rhetoric, and the scientific imagination how virtual evidence shapes science in the making and in the news

    CERN Document Server

    Roundtree, Aimee Kendall

    2013-01-01

    Computer simulations help advance climatology, astrophysics, and other scientific disciplines. They are also at the crux of several high-profile cases of science in the news. How do simulation scientists, with little or no direct observations, make decisions about what to represent? What is the nature of simulated evidence, and how do we evaluate its strength? Aimee Kendall Roundtree suggests answers in Computer Simulation, Rhetoric, and the Scientific Imagination. She interprets simulations in the sciences by uncovering the argumentative strategies that underpin the production and disseminati

  5. Intense fusion neutron sources

    International Nuclear Information System (INIS)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-01-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 10 15 -10 21 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 10 20 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  6. Intense fusion neutron sources

    Science.gov (United States)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  7. Atomic fusion, Gerrard atomic fusion

    International Nuclear Information System (INIS)

    Gerrard, T.H.

    1980-01-01

    In the approach to atomic fusion described here the heat produced in a fusion reaction, which is induced in a chamber by the interaction of laser beams and U.H.F. electromagnetic beams with atom streams, is transferred to a heat exchanger for electricity generation by a coolant flowing through a jacket surrounding the chamber. (U.K.)

  8. Recommendations on the Nature and Level of U.S. Participation in the International Thermonuclear Experimental Reactor Extension of the Experimental Reactor Extension of the Engineering Design Activities. Panel Report To Fusion Energy Sciences Advisory Committee (FESAC)

    International Nuclear Information System (INIS)

    1998-01-01

    The DOE Office of Energy Research chartered through the Fusion Energy Sciences Advisory Committee (FESAC) a panel to 'address the topic of U. S. participation in an ITER construction phase, assuming the ITER Parties decide to proceed with construction.' (Attachment 1: DOE Charge, September 1996). Given that there is expected to be a transition period of three to five years between the conclusion of the Engineering Design Activities (EDA) and the possible construction start, the DOE Office of Energy Research expanded the charge to 'include the U.S. role in an interim period between the EDA and construction.' (Attachment 2: DOE Expanded Charge, May 1997). This panel has heard presentations and received input from a wide cross-section of parties with an interest in the fusion program. The panel concluded it could best fulfill its responsibility under this charge by considering the fusion energy science and technology portion of the U.S. program in its entirety. Accordingly, the panel is making some recommendations for optimum use of the transition period considering the goals of the fusion program and budget pressures.

  9. Ion beam inertial fusion

    International Nuclear Information System (INIS)

    Bangerter, R.O.

    1995-01-01

    About twenty years ago, A. W. Maschke of Brookhaven National Laboratory and R. L. Martin of Argonne National Laboratory recognized that the accelerators that have been developed for high energy and nuclear physics are, in many ways, ideally suited to the requirements of inertial fusion power production. These accelerators are reliable, they have a long operating life, and they can be efficient. Maschke and Martin noted that they can focus ion beams to small focal spots over distances of many meters and that they can readily operate at the high pulse repetition rates needed for commercial power production. Fusion, however, does impose some important new constraints that are not important for high energy or nuclear physics applications. The most challenging new constraint from a scientific standpoint is the requirement that the accelerator deliver more than 10 14 W of beam power to a small quantity (less than 100 mg) of matter. The most challenging constraint from an engineering standpoint is accelerator cost. Maschke showed theoretically that accelerators could produce adequate work. Heavy-ion fusion is widely recognized to be a promising approach to inertial fusion power production. It provides an excellent opportunity to apply methods and technology developed for basic science to an important societal need. The pulsed-power community has developed a complementary, parallel approach to ion beam fusion known as light-ion fusion. The talk will discuss both heavy-ion and light-ion fusion. It will explain target physics requirements and show how they lead to constraints on the usual accelerator parameters such as kinetic energy, current, and emittance. The talk will discuss experiments that are presently underway, specifically experiments on high-current ion sources and injectors, pulsed-power machines recirculating induction accelerators, and transverse beam combining. The talk will give a brief description of a proposed new accelerator called Elise

  10. Peaceful fusion

    Energy Technology Data Exchange (ETDEWEB)

    Englert, Matthias [IANUS, TU Darmstadt (Germany)

    2014-07-01

    Like other intense neutron sources fusion reactors have in principle a potential to be used for military purposes. Although the use of fissile material is usually not considered when thinking of fusion reactors (except in fusion-fission hybrid concepts) quantitative estimates about the possible production potential of future commercial fusion reactor concepts show that significant amounts of weapon grade fissile materials could be produced even with very limited amounts of source materials. In this talk detailed burnup calculations with VESTA and MCMATH using an MCNP model of the PPCS-A will be presented. We compare different irradiation positions and the isotopic vectors of the plutonium bred in different blankets of the reactor wall with the liquid lead-lithium alloy replaced by uranium. The technical, regulatory and policy challenges to manage the proliferation risks of fusion power will be addressed as well. Some of these challenges would benefit if addressed at an early stage of the research and development process. Hence, research on fusion reactor safeguards should start as early as possible and accompany the current research on experimental fusion reactors.

  11. Computer Simulations of Quantum Theory of Hydrogen Atom for Natural Science Education Students in a Virtual Lab

    Science.gov (United States)

    Singh, Gurmukh

    2012-01-01

    The present article is primarily targeted for the advanced college/university undergraduate students of chemistry/physics education, computational physics/chemistry, and computer science. The most recent software system such as MS Visual Studio .NET version 2010 is employed to perform computer simulations for modeling Bohr's quantum theory of…

  12. A Virtual Observatory Census to Address Dwarfs Origins (AVOCADO). I. Science goals, sample selection, and analysis tools

    Science.gov (United States)

    Sánchez-Janssen, R.; Amorín, R.; García-Vargas, M.; Gomes, J. M.; Huertas-Company, M.; Jiménez-Esteban, F.; Mollá, M.; Papaderos, P.; Pérez-Montero, E.; Rodrigo, C.; Sánchez Almeida, J.; Solano, E.

    2013-06-01

    Context. Even though they are by far the most abundant of all galaxy types, the detailed properties of dwarf galaxies are still only poorly characterised - especially because of the observational challenge that their intrinsic faintness and weak clustering properties represent. Aims: AVOCADO aims at establishing firm conclusions on the formation and evolution of dwarf galaxies by constructing and analysing a homogeneous, multiwavelength dataset for a statistically significant sample of approximately 6500 nearby dwarfs (Mi - 5 log h100 > - 18 mag). The sample is selected to lie within the 20 < D < 60 h100-1 Mpc volume covered by the SDSS-DR7 footprint, and is thus volume-limited for Mi - 5 log h100 < -16 mag dwarfs - but includes ≈1500 fainter systems. We will investigate the roles of mass and environment in determining the current properties of the different dwarf morphological types - including their structure, their star formation activity, their chemical enrichment history, and a breakdown of their stellar, dust, and gas content. Methods: We present the sample selection criteria and describe the suite of analysis tools, some of them developed in the framework of the Virtual Observatory. We use optical spectra and UV-to-NIR imaging of the dwarf sample to derive star formation rates, stellar masses, ages, and metallicities - which are supplemented with structural parameters that are used to classify them morphologically. This unique dataset, coupled with a detailed characterisation of each dwarf's environment, allows for a fully comprehensive investigation of their origins and enables us to track the (potential) evolutionary paths between the different dwarf types. Results: We characterise the local environment of all dwarfs in our sample, paying special attention to trends with current star formation activity. We find that virtually all quiescent dwarfs are located in the vicinity (projected distances ≲ 1.5 h100-1 Mpc) of ≳ L∗ companions, consistent with

  13. Virtual reality technology and applications

    CERN Document Server

    Mihelj, Matjaž; Beguš, Samo

    2014-01-01

    As virtual reality expands from the imaginary worlds of science fiction and pervades every corner of everyday life, it is becoming increasingly important for students and professionals alike to understand the diverse aspects of this technology. This book aims to provide a comprehensive guide to the theoretical and practical elements of virtual reality, from the mathematical and technological foundations of virtual worlds to the human factors and the applications that enrich our lives: in the fields of medicine, entertainment, education and others. After providing a brief introduction to the topic, the book describes the kinematic and dynamic mathematical models of virtual worlds. It explores the many ways a computer can track and interpret human movement, then progresses through the modalities that make up a virtual world: visual, acoustic and haptic. It explores the interaction between the actual and virtual environments, as well as design principles of the latter. The book closes with an examination of diff...

  14. The ethnography of virtual reality

    Directory of Open Access Journals (Sweden)

    Gavrilović Ljiljana 1

    2004-01-01

    Full Text Available This paper discusses possible application of ethnographic research in the realm of virtual reality, especially in the relationship between cultures in virtual communities. This represents an entirely new area of ethnographic research and therefore many adjustments in the research design are needed for example, a development of a specific method of data gathering and tools for their verification. A virtual, cyber space is a version of social space more or less synchronous with it, but without the, "real", that is, physical presence of the people who create it. This virtual reality, defined and bounded by virtual space, is in fact real - and though we are not able to observe real, physical parameters of its existence, we can perceive its consequences. In sum, an innovative ethnographic research method is fully applicable for exploring the realm of virtual reality; in order to do so we need to expand, in addition to the new research design and methods, the field of science itself.

  15. The correlation between effective factors of e-learning and demographic variables in a post-graduate program of virtual medical education in Tehran University of Medical Sciences.

    Science.gov (United States)

    Golband, Farnoosh; Hosseini, Agha Fatemeh; Mojtahedzadeh, Rita; Mirhosseini, Fakhrossadat; Bigdeli, Shoaleh

    2014-01-01

    E-learning as an educational approach has been adopted by diverse educational and academic centers worldwide as it facilitates learning in facing the challenges of the new era in education. Considering the significance of virtual education and its growing practice, it is of vital importance to examine its components for promoting and maintaining success. This analytical cross-sectional study was an attempt to determine the relationship between four factors of content, educator, learner and system, and effective e-learning in terms of demographic variables, including age, gender, educational background, and marital status of postgraduate master's students (MSc) studying at virtual faculty of Tehran University of Medical Sciences. The sample was selected by census (n=60); a demographic data gathering tool and a researcher-made questionnaire were used to collect data. The face and content validity of both tools were confirmed and the results were analyzed by descriptive statistics (frequency, percentile, standard deviation and mean) and inferential statistics (independent t-test, Scheffe's test, one-way ANOVA and Pearson correlation test) by using SPSS (V.16). The present study revealed that There was no statistically significant relationship between age and marital status and effective e-learning (P>0.05); whereas, there was a statistically significant difference between gender and educational background with effective e-learning (Pe-learning can help managers and designers to make the right decisions about educational components of e-learning, i.e. content, educator, system and learner and improve them to create a more productive learning environment for learners.

  16. Virtual Exploratories

    DEFF Research Database (Denmark)

    Jensen, Sisse Siggaard

    2006-01-01

    -systems, the paper introduces the designing strategy referred to as virtual exploratories. Some of the advanced virtual worlds may inspire the design of such provoking and challenging virtual exploratories, and especially the Massively Multi-User Online Role-Playing Games (MMORPGS). However, if we have to learn from...... the design and activity of the advanced virtual worlds and role-playing games, then the empirical research on the actors’ activity, while they are acting, is an important precondition to it. A step towards the conception of such a designing strategy for virtual exploratories is currently pursued....... [1] The research project: Actors and Avatars Communicating in Virtual Worlds – an Empirical Analysis of Actors’ Sense-making Strategies When Based on a Communication Theoretical Approach’ (2006-2007) is supported...

  17. Virtual autopsy using imaging: bridging radiologic and forensic sciences. A review of the Virtopsy and similar projects

    International Nuclear Information System (INIS)

    Bolliger, Stephan A.; Thali, Michael J.; Ross, Steffen; Buck, Ursula; Naether, Silvio; Vock, Peter

    2008-01-01

    The transdisciplinary research project Virtopsy is dedicated to implementing modern imaging techniques into forensic medicine and pathology in order to augment current examination techniques or even to offer alternative methods. Our project relies on three pillars: three-dimensional (3D) surface scanning for the documentation of body surfaces, and both multislice computed tomography (MSCT) and magnetic resonance imaging (MRI) to visualise the internal body. Three-dimensional surface scanning has delivered remarkable results in the past in the 3D documentation of patterned injuries and of objects of forensic interest as well as whole crime scenes. Imaging of the interior of corpses is performed using MSCT and/or MRI. MRI, in addition, is also well suited to the examination of surviving victims of assault, especially choking, and helps visualise internal injuries not seen at external examination of the victim. Apart from the accuracy and three-dimensionality that conventional documentations lack, these techniques allow for the re-examination of the corpse and the crime scene even decades later, after burial of the corpse and liberation of the crime scene. We believe that this virtual, non-invasive or minimally invasive approach will improve forensic medicine in the near future. (orig.)

  18. Virtual Reflexes

    OpenAIRE

    Jonker, Catholijn; Broekens, Joost; Plaat, Aske

    2014-01-01

    Virtual Reality is used successfully to treat people for regular phobias. A new challenge is to develop Virtual Reality Exposure Training for social skills. Virtual actors in such systems have to show appropriate social behavior including emotions, gaze, and keeping distance. The behavior must be realistic and real-time. Current approaches consist of four steps: 1) trainee social signal detection, 2) cognitive-affective interpretation, 3) determination of the appropriate bodily responses, and...

  19. Virtual volatility

    Science.gov (United States)

    Silva, A. Christian; Prange, Richard E.

    2007-03-01

    We introduce the concept of virtual volatility. This simple but new measure shows how to quantify the uncertainty in the forecast of the drift component of a random walk. The virtual volatility also is a useful tool in understanding the stochastic process for a given portfolio. In particular, and as an example, we were able to identify mean reversion effect in our portfolio. Finally, we briefly discuss the potential practical effect of the virtual volatility on an investor asset allocation strategy.

  20. Progress in fusion

    International Nuclear Information System (INIS)

    1959-01-01

    Controlled thermonuclear fusion is now the biggest challenge before atomic science, not only because of the exceedingly difficult nature of the problem but also because of the virtually limitless benefit that, it is expected, will eventually flow from its solution. It might be pointed out that if some of the early optimism is now inevitably moderated, that is only because there is now a better understanding of the difficulties and, consequently, of the basic scientific and technical problems. The basic problem, as is now widely known, is to heat heavy hydrogen gas to a temperature at which the nuclei will fuse by moving so fast as to overcome their mutual electrical repulsion, and simultaneously to keep the gas in a state of extreme density so that the nuclei may collide against each other, fuse, release-energy in the form of heat, and thus set in a kind of thermal chain reaction. The temperature required is of a fantastically high order, but the scientists are confident that it can be obtained by fantastically powerful electrical discharges. More difficult seems to be the task of making the superheated gas, or the plasma as it is called when completely ionized, to behave obligingly. It must remain in a state of extreme density even when it is heated to a temperature of many millions of degrees. As a matter of fact, it must be contained, so to speak, by itself; it must not touch the walls of its material container and thereby lose some of its heat and, on top of that, evaporate the container. The pinch effect produces a kind of magnetic bottle for containing the plasma, but the trouble seems to be that it is difficult to make the bottle stable and leak-proof. The next task will be to ensure that the output of energy from this fusion is greater than the input of energy to heat the plasma. Intensive research and experiment on these problems have been going on in several countries, notably in the UK, the USA, and the USSR. In all the countries most advanced in

  1. Starpower: the US and the international quest for fusion energy

    International Nuclear Information System (INIS)

    1987-10-01

    This report, requested by the House Committee on Science, Space, and Technology and endorsed by the Senate Committee on Energy and Natural Resources, reviews the status of magnetic-confinement fusion research and compares its progress with the requirements for development of a useful energy technology. The report does not analyze inertial-confinement fusion research, which is overseen by the House and Senate Armed Services Committees. Contents include: Executive Summary; Introduction and overview; History of fusion research; Fusion science and technology; Fusion as an energy program; Fusion as a research program; Fusion as an international program; Future paths for the magnetic-fusion program; Appendixes--(Non-electric applications for fusion, Other approaches to fusion, Data for figures, List of acronyms and glossary)

  2. New trends in fusion research

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    The efforts of the international fusion community aim at demonstrating the scientific feasibility of thermonuclear fusion energy power plants. Understanding the behavior of burning plasmas, i.e. plasmas with strong self-heating, represents a primary scientific challenge for fusion research and a new science frontier. Although integrated studies will only be possible, in new, dedicated experimental facilities, such as the International Tokamak Experimental Reactor (ITER), present devices can address specific issues in regimes relevant to burning plasmas. Among these are an improvement of plasma performance via a reduction of the energy and particle transport, an optimization of the path to ignition or to sustained burn using additional heating and a control of plasma-wall interaction and energy and particle exhaust. These lectures address recent advances in plasma science and technology that are relevant to the development of fusion energy. Mention will be made of the inertial confinement line of research, but...

  3. Virtual bronchoscopy

    International Nuclear Information System (INIS)

    Rogalla, P.; Meiri, N.; Hamm, B.; Rueckert, J.C.; Schmidt, B.; Witt, C.

    2001-01-01

    Flexible bronchoscopy represents a clinically well-established invasive diagnostic tool. Virtual bronchoscopies, calculated from thin-slice CT sections, allow astonishing immitations of reality although principal differences exist between both technologies: the Fact that colour representation is artificial and concommitant interventions are impossible limits the clinical use of virtual bronchoscopy. However, its value increases when calculations can be attained within minutes due to technological advancements, and when virtually any chest CT is suitable for further postprocessing. Indications, findings and the clinical role of virtual bronchoscopy are discussed. (orig.) [de

  4. Virtual projects

    DEFF Research Database (Denmark)

    Svejvig, Per; Commisso, Trine Hald

    2012-01-01

    that the best practice knowledge has not permeated sufficiently to the practice. Furthermore, the appropriate application of information and communication technology (ICT) remains a big challenge, and finally project managers are not sufficiently trained in organizing and conducting virtual projects....... The overall implications for research and practice are to acknowledge virtual project management as very different to traditional project management and to address this difference.......Virtual projects are common with global competition, market development, and not least the financial crisis forcing organizations to reduce their costs drastically. Organizations therefore have to place high importance on ways to carry out virtual projects and consider appropriate practices...

  5. Cold fusion

    International Nuclear Information System (INIS)

    Suh, Suk Yong; Sung, Ki Woong; Kang, Joo Sang; Lee, Jong Jik

    1995-02-01

    So called 'cold fusion phenomena' are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording 4 He, 3 He, 3 H, which are not rich in quantity basically. An experiment where plenty of 4 He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author)

  6. Cold fusion

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Suk Yong; Sung, Ki Woong; Kang, Joo Sang; Lee, Jong Jik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-02-01

    So called `cold fusion phenomena` are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording {sup 4}He, {sup 3}He, {sup 3}H, which are not rich in quantity basically. An experiment where plenty of {sup 4}He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author).

  7. Laser fusion

    International Nuclear Information System (INIS)

    Ashby, D.E.T.F.

    1976-01-01

    A short survey is given on laser fusion its basic concepts and problems and the present theoretical and experimental methods. The future research program of the USA in this field is outlined. (WBU) [de

  8. World progress toward fusion energy

    International Nuclear Information System (INIS)

    Clarke, J.F.

    1989-09-01

    This paper will describe the progress in fusion science and technology from a world perspective. The paper will cover the current technical status, including the understanding of fusion's economic, environmental, and safety characteristics. Fusion experiments are approaching the energy breakeven condition. An energy gain (Q) of 30 percent has been achieved in magnetic confinement experiments. In addition, temperatures required for an ignited plasma (Ti = 32 KeV) and energy confinements about 75 percent of that required for ignition have been achieved in separate experiments. Two major facilities have started the experimental campaign to extend these results and achieve or exceed Q = 1 plasma conditions by 1990. Inertial confinement fusion experiments are also approaching thermonuclear conditions and have achieved a compression factor 100-200 times liquid D-T. Because of this progress, the emphasis in fusion research is turning toward questions of engineering feasibility. Leaders of the major fusion R and D programs in the European Community (EC), Japan, the United States, and the U.S.S.R. have agreed on the major steps that are needed to reach the point at which a practical fusion system can be designed. The United States is preparing for an experiment to address the last unexplored scientific issue, the physics of an ignited plasma, during the late 1990's. The EC, Japan, U.S.S.R., and the United States have joined together under the auspices of the International Atomic Energy Agency (IAEA) to jointly design and prepare the validating R and D for an international facility, the International Thermonuclear Experimental Reactor (ITER), to address all the remaining scientific issues and to explore the engineering technology of fusion around the turn of the century. In addition, a network of international agreements have been concluded between these major parties and a number of smaller fusion programs, to cooperate on resolving a complete spectrum of fusion science and

  9. Fusion energy

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The efforts of the Chemical Technology Division in fusion energy include the areas of fuel handling, processing, and containment. Current studies are concerned largely with the development of vacuum pumps for fusion reactors and experiments and with development and evaluation of techniques for recovering tritium from solid or liquid breeding blankets. In addition, a small effort is devoted to support of the ORNL design of a major Tokamak experiment, The Next Step (TNS)

  10. Laser fusion

    International Nuclear Information System (INIS)

    Key, M.H.; Oxford Univ.

    1990-04-01

    The use of lasers to drive implosions for the purpose of inertially confined fusion is an area of intense activity where progress compares favourably with that made in magnetic fusion and there are significant prospects for future development. In this brief review the basic concept is summarised and the current status is outlined both in the area of laser technology and in the most recent results from implosion experiments. Prospects for the future are also considered. (author)

  11. Nuclear fusion

    International Nuclear Information System (INIS)

    Al-zaelic, M.M.

    2013-01-01

    Nuclear fusion can be relied on to solve the global energy crisis if the process of limiting the heat produced by the fusion reaction (Plasma) is successful. Currently scientists are progressively working on this aspect whereas there are two methods to limit the heat produced by fusion reaction, the two methods are auto-restriction using laser beam and magnetic restriction through the use of magnetic fields and research is carried out to improve these two methods. It is expected that at the end of this century the nuclear fusion energy will play a vital role in overcoming the global energy crisis and for these reasons, acquiring energy through the use of nuclear fusion reactors is one of the most urge nt demands of all mankind at this time. The conclusion given is that the source of fuel for energy production is readily available and inexpensive ( hydrogen atoms) and whole process is free of risks and hazards, especially to general health and the environment . Nuclear fusion importance lies in the fact that energy produced by the process is estimated to be about four to five times the energy produced by nuclear fission. (author)

  12. Magnetic fusion 1985: what next

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1985-03-01

    Recent budget reductions for magnetic fusion have led to a re-examination of program schedules and objectives. Faced with delays and postponement of major facilities as previously planned, some have called for a near-term focus on science, others have stressed technology. This talk will suggest a different focus as the keynote for this conference, namely, the applications of fusion. There is no doubt that plasma science is by now mature and fusion technology is at the forefront. This has and will continue to benefit many fields of endeavor, both in actual new discoveries and techniques and in attracting and training scientists and engineers who move on to make significant contributions in science, defense and industry. Nonetheless, however superb the science or how challenging the technology, these are means, not ends. To maintain its support, the magnetic fusion program must also offer the promise of power reactors that could be competitive in the future. At this conference, several new reactor designs will be described that claim to be smaller and economically competitive with fission reactors while retaining the environmental and safety characteristics that are the hallmark of fusion. The American Nuclear Society is an appropriate forum in which to examine these new designs critically, and to stimulate better ideas and improvements. As a preview, this talk will include brief discussions of new tokamak, tandem mirror and reversed field pinch reactor designs to be presented in later sessions. Finally, as a preview of the session on fusion breeders, the talk will explore once again the economic implications of a new nuclear age, beginning with improved fission reactors fueled by fusion breeders, then ultimately evolving to reactors based solely on fusion

  13. Fusion Simulation Project Workshop Report

    Science.gov (United States)

    Kritz, Arnold; Keyes, David

    2009-03-01

    The mission of the Fusion Simulation Project is to develop a predictive capability for the integrated modeling of magnetically confined plasmas. This FSP report adds to the previous activities that defined an approach to integrated modeling in magnetic fusion. These previous activities included a Fusion Energy Sciences Advisory Committee panel that was charged to study integrated simulation in 2002. The report of that panel [Journal of Fusion Energy 20, 135 (2001)] recommended the prompt initiation of a Fusion Simulation Project. In 2003, the Office of Fusion Energy Sciences formed a steering committee that developed a project vision, roadmap, and governance concepts [Journal of Fusion Energy 23, 1 (2004)]. The current FSP planning effort involved 46 physicists, applied mathematicians and computer scientists, from 21 institutions, formed into four panels and a coordinating committee. These panels were constituted to consider: Status of Physics Components, Required Computational and Applied Mathematics Tools, Integration and Management of Code Components, and Project Structure and Management. The ideas, reported here, are the products of these panels, working together over several months and culminating in a 3-day workshop in May 2007.

  14. Virtual Workshop

    DEFF Research Database (Denmark)

    Buus, Lillian; Bygholm, Ann

    In relation to the Tutor course in the Mediterranean Virtual University (MVU) project, a virtual workshop “Getting experiences with different synchronous communication media, collaboration, and group work” was held with all partner institutions in January 2006. More than 25 key-tutors within MVU...

  15. THE GENERAL ATOMICS FUSION THEORY PROGRAM ANNUAL REPORT FOR GRANT YEAR 2004

    International Nuclear Information System (INIS)

    PROJECT STAFF

    2004-01-01

    The dual objective of the fusion theory program at General Atomics (GA) is to significantly advance our scientific understanding of the physics of fusion plasmas and to support the DIII-D and other tokamak experiments. The program plan is aimed at contributing significantly to the Fusion Energy Science and the Tokamak Concept Improvement goals of the Office of Fusion Energy Sciences (OFES)

  16. Project-based learning strategy, supported by virtual mediations and computer tools in a poultry production course: case study in Agricultural Sciences

    Directory of Open Access Journals (Sweden)

    Luis Díaz S

    2017-12-01

    Full Text Available The project-based learning strategy, supported by virtual mediations and computer tools, was applied to 42 students of a program of Animal Science in the course poultry Production in which the degree of familiarization, academic productivity, e-mail asynchronous mediation, the domain of the excel spreadsheet and the appreciation against the implemented methodology. The results showed that 100% of the students did not know the learning strategy and showed fears at the beginning of the activity. The final grades obtained (4.44 ± 0.14, 38.09%; 3.67 ± 0.09; 38.09%; 2.8, 19.05%, delivered products and degree of achievement (100%, 31 students; 88.88%, 5 students; 77.77%, 3 students; 55.55%, 3 students were influenced by the degree of mastery of the spreadsheet (8 students showed mastery, 26 a basic level to elementary and scarce, the rest and the registered participation level. It was found that the strategy generated motivation in the students reflected in the accomplishment of the goals and objectives drawn at the beginning of the course, increased the student-teacher interaction and reached a high academic performance (final grades ≥3.7 in the majority of the participants (73.8%.

  17. Cold fusion

    International Nuclear Information System (INIS)

    Koster, J.

    1989-01-01

    In this contribution the author the phenomenom of so-called cold fusion, inspired by the memorable lecture of Moshe Gai on his own search for this effect. Thus much of what follows was presented by Dr. Gai; the rest is from independent reading. What is referred to as cold fusion is of course the observation of possible products of deuteron-deuteron (d-d) fusion within deuterium-loaded (dentended) electrodes. The debate over the two vanguard cold fusion experiments has raged under far more public attention than usually accorded new scientific phenomena. The clamor commenced with the press conference of M. Fleishmann and S. Pons on March 23, 1989 and the nearly simultaneous wide circulation of a preprint of S. Jones and collaborators. The majority of work attempting to confirm these observations has at the time of this writing yet to appear in published form, but contributions to conferences and electronic mail over computer networks were certainly filled with preliminary results. To keep what follows to a reasonable length the author limit this discussion to the searches for neutron (suggested by ref. 2) or for excessive heat production (suggested by ref. 1), following a synopsis of the hypotheses of cold fusion

  18. Public Relations on Fusion in Europe

    Science.gov (United States)

    Ongena, J.; van Oost, G.; Paris, P. J.

    2000-10-01

    A summary will be presented of PR efforts on fusion energy research in Europe. A 3-D movie of a fusion research experimental reactor has been realized at the start of this year. It has been made entirely on virtual animation basis. Two versions exists, a short version of 3 min., as a video clip, and a longer version of nearly 8 min. Both could be viewed in 3D, using special projections and passive glasses or in normal VHS video projections. A new CD-ROM for individual and classroom use will be presented, discussing (i) the different energy forms, (ii) general principles of fusion, (iii) current research efforts and (iv) future prospects of fusion. This CD-ROM is now produced in English, German, French, Spanish, Italian and Portuguese Several new brochures and leaflets intended to increase the public awareness on fusion in Europe will be on display.

  19. Using a multi-user virtual simulation to promote science content: Mastery, scientific reasoning, and academic self-efficacy in fifth grade science

    Science.gov (United States)

    Ronelus, Wednaud J.

    The purpose of this study was to examine the impact of using a role-playing game versus a more traditional text-based instructional method on a cohort of general education fifth grade students' science content mastery, scientific reasoning abilities, and academic self-efficacy. This is an action research study that employs an embedded mixed methods design model, involving both quantitative and qualitative data. The study is guided by the critical design ethnography theoretical lens: an ethnographic process involving participatory design work aimed at transforming a local context while producing an instructional design that can be used in multiple contexts. The impact of an immersive 3D multi-user web-based educational simulation game on a cohort of fifth-grade students was examined on multiple levels of assessments--immediate, close, proximal and distal. A survey instrument was used to assess students' self-efficacy in technology and scientific inquiry. Science content mastery was assessed at the immediate (participation in game play), close (engagement in-game reports) and proximal (understanding of targeted concepts) levels; scientific reasoning was assessed at the distal (domain general critical thinking test) level. This quasi-experimental study used a convenient sampling method. Seven regular fifth-grade classes participated in this study. Three of the classes were the control group and the other four were the intervention group. A cohort of 165 students participated in this study. The treatment group contained 38 boys and 52 girls, and the control group contained 36 boys and 39 girls. Two-tailed t-test, Analysis of Covariance (ANCOVA), and Pearson Correlation were used to analyze data. The data supported the rejection of the null hypothesis for the three research questions. The correlational analyses showed strong relationship among three of the four variables. There were no correlations between gender and the three dependent variables. The findings of this

  20. The role of industry in fusion

    International Nuclear Information System (INIS)

    Forsen, H.K.; Fowler, T.K.; Mariscalco, J.A.; Reichle, F.C.

    1985-01-01

    Bechtel National, Inc. comments on the principle objective of the national fusion program as being the development of fusion as a potential new energy source option. It is also discussed that industry needs a clearer statement of fusion program goals and approximate timing from the DOE, in order to properly assess corporate priorities and commitment to the principle objective. The Lawrence Livermore National Laboratory discusses the idea of ''partnership'', which addresses the issue of industry's role in the fusion program. TRW specifies a need for budget realities and the administrations's science and energy policies as outlined by the DOE's Office of Fusion Energy. Ebasco Services, Inc. expands on the idea of fully involving industry in the fusion energy program. At the Plasma Physics Laboratory, further comments are made on the need for industry's participation in the fusion energy program

  1. Fusion events

    International Nuclear Information System (INIS)

    Aboufirassi, M; Angelique, J.C.; Bizard, G.; Bougault, R.; Brou, R.; Buta, A.; Colin, J.; Cussol, D.; Durand, D.; Genoux-Lubain, A.; Horn, D.; Kerambrun, A.; Laville, J.L.; Le Brun, C.; Lecolley, J.F.; Lefebvres, F.; Lopez, O.; Louvel, M.; Meslin, C.; Metivier, V.; Nakagawa, T.; Peter, J.; Popescu, R.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Wieloch, A.; Yuasa-Nakagawa, K.

    1998-01-01

    The fusion reactions between low energy heavy ions have a very high cross section. First measurements at energies around 30-40 MeV/nucleon indicated no residue of either complete or incomplete fusion, thus demonstrating the disappearance of this process. This is explained as being due to the high amount o energies transferred to the nucleus, what leads to its total dislocation in light fragments and particles. Exclusive analyses have permitted to mark clearly the presence of fusion processes in heavy systems at energies above 30-40 MeV/nucleon. Among the complete events of the Kr + Au reaction at 60 MeV/nucleon the majority correspond to binary collisions. Nevertheless, for the most considerable energy losses, a class of events do occur for which the detected fragments appears to be emitted from a unique source. These events correspond to an incomplete projectile-target fusion followed by a multifragmentation. Such events were singled out also in the reaction Xe + Sn at 50 MeV/nucleon. For the events in which the energy dissipation was maximal it was possible to isolate an isotropic group of events showing all the characteristics of fusion nuclei. The fusion is said to be incomplete as pre-equilibrium Z = 1 and Z = 2 particles are emitted. The cross section is of the order of 25 mb. Similar conclusions were drown for the systems 36 Ar + 27 Al and 64 Zn + nat Ti. A cross section value of ∼ 20 mb was determined at 55 MeV/nucleon in the first case, while the measurement of evaporation light residues in the last system gave an upper limit of 20-30 mb for the cross section at 50 MeV/nucleon

  2. Fusion plasma research and education in Japan

    International Nuclear Information System (INIS)

    Inoue, N.

    1995-01-01

    Japanese fusion plasma research and education is reviewed by focusing on the activities promoted by the Ministry of Education, Science, Culture, and Sports (MOE). University fusion research is pursued by the academic interest and student education. A hierarchical structure of budget and manpower arrangement is observed. The small research groups of universities play the role of recruiting young students into the fusion and plasma society. After graduating the master course, most students are engaged by industries

  3. Office of Basic Energy Sciences program to meet high priority nuclear data needs of the Office of Fusion Energy: 1986 review

    International Nuclear Information System (INIS)

    Lane, R.O.

    1986-09-01

    A coordination meeting of the program was held at Argonne National Laboratory on September 17-19, 1986. Representatives from the participating laboratories and from the fusion technology community met to discuss nuclear data needs for fusion. Most of the standing nuclear data requests for fusion were discussed in considerable detail, and the status of the relevant data was reviewed. Task force groups were organized along disciplinary lines to address many of the issues which confront the program. Plans were laid for several collaborative endeavors, including technical projects to address specific data problems and an intercomparison of methods and codes in the area of nuclear modeling

  4. Ch. 37, Inertial Fusion Energy Technology

    International Nuclear Information System (INIS)

    Moses, E.

    2010-01-01

    Nuclear fission, nuclear fusion, and renewable energy (including biofuels) are the only energy sources capable of satisfying the Earth's need for power for the next century and beyond without the negative environmental impacts of fossil fuels. Substantially increasing the use of nuclear fission and renewable energy now could help reduce dependency on fossil fuels, but nuclear fusion has the potential of becoming the ultimate base-load energy source. Fusion is an attractive fuel source because it is virtually inexhaustible, widely available, and lacks proliferation concerns. It also has a greatly reduced waste impact, and no danger of runaway reactions or meltdowns. The substantial environmental, commercial, and security benefits of fusion continue to motivate the research needed to make fusion power a reality. Replicating the fusion reactions that power the sun and stars to meet Earth's energy needs has been a long-sought scientific and engineering challenge. In fact, this technological challenge is arguably the most difficult ever undertaken. Even after roughly 60 years of worldwide research, much more remains to be learned. the magnitude of the task has caused some to declare that fusion is 20 years away, and always will be. This glib criticism ignores the enormous progress that has occurred during those decades, progress inboth scientific understanding and essential technologies that has enabled experiments producing significant amounts of fusion energy. For example, more than 15 megawatts of fusion power was produced in a pulse of about half a second. Practical fusion power plants will need to produce higher powers averaged over much longer periods of time. In addition, the most efficient experiments to date have required using about 50% more energy than the resulting fusion reaction generated. That is, there was no net energy gain, which is essential if fusion energy is to be a viable source of electricity. The simplest fusion fuels, the heavy isotopes of

  5. Curating Virtual Data Collections

    Science.gov (United States)

    Lynnes, Chris; Leon, Amanda; Ramapriyan, Hampapuram; Tsontos, Vardis; Shie, Chung-Lin; Liu, Zhong

    2015-01-01

    NASAs Earth Observing System Data and Information System (EOSDIS) contains a rich set of datasets and related services throughout its many elements. As a result, locating all the EOSDIS data and related resources relevant to particular science theme can be daunting. This is largely because EOSDIS data's organizing principle is affected more by the way they are produced than around the expected end use. Virtual collections oriented around science themes can overcome this by presenting collections of data and related resources that are organized around the user's interest, not around the way the data were produced. Virtual collections consist of annotated web addresses (URLs) that point to data and related resource addresses, thus avoiding the need to copy all of the relevant data to a single place. These URL addresses can be consumed by a variety of clients, ranging from basic URL downloaders (wget, curl) and web browsers to sophisticated data analysis programs such as the Integrated Data Viewer.

  6. Virtual Teams.

    Science.gov (United States)

    Geber, Beverly

    1995-01-01

    Virtual work teams scattered around the globe are becoming a feature of corporate workplaces. Although most people prefer face-to-face meetings and interactions, reality often requires telecommuting. (JOW)

  7. Virtual data

    International Nuclear Information System (INIS)

    Bjorklund, E.

    1993-01-01

    In the 1970's, when computers were memory limited, operating system designers created the concept of ''virtual memory'' which gave users the ability to address more memory than physically existed. In the 1990s, many large control systems have the potential for becoming data limited. We propose that many of the principles behind virtual memory systems (working sets, locality, caching, and clustering) can also be applied to data-limited systems - creating, in effect, ''virtual data systems.'' At the Los Alamos National Laboratory's Clinton P. Anderson Meson Physics Facility (LAMPF), we have applied these principles to a moderately sized (10,000 data points) data acquisition and control system. To test the principles, we measured the system's performance during tune-up, production, and maintenance periods. In this paper, we present a general discussion of the principles of a virtual data system along with some discussion of our own implementation and the results of our performance measurements

  8. Virtual Worlds for Virtual Organizing

    Science.gov (United States)

    Rhoten, Diana; Lutters, Wayne

    The members and resources of a virtual organization are dispersed across time and space, yet they function as a coherent entity through the use of technologies, networks, and alliances. As virtual organizations proliferate and become increasingly important in society, many may exploit the technical architecture s of virtual worlds, which are the confluence of computer-mediated communication, telepresence, and virtual reality originally created for gaming. A brief socio-technical history describes their early origins and the waves of progress followed by stasis that brought us to the current period of renewed enthusiasm. Examination of contemporary examples demonstrates how three genres of virtual worlds have enabled new arenas for virtual organizing: developer-defined closed worlds, user-modifiable quasi-open worlds, and user-generated open worlds. Among expected future trends are an increase in collaboration born virtually rather than imported from existing organizations, a tension between high-fidelity recreations of the physical world and hyper-stylized imaginations of fantasy worlds, and the growth of specialized worlds optimized for particular sectors, companies, or cultures.

  9. Inertial fusion reactor designs

    International Nuclear Information System (INIS)

    Meier, W.

    1987-01-01

    In this paper, a variety of reactor concepts are proposed. One of the prime concerns is dealing with the x-rays and debris that are emitted by the target. Internal neutron shielding can reduce radiation damage and activation, leading to longer life systems, reduced activation and fewer safety concerns. There is really no consensus on what the best reactor concept is at this point. There has been virtually no chamber technology development to date. This is the flip side of the coin of the separability of the target physics and the reactor design. Since reactor technology has not been required to do target experiments, it's not being developed. Economic analysis of conceptual designs indicates that ICF can be economically competitive with magnetic fusion, fission and fossil plants

  10. Nuclear fusion

    International Nuclear Information System (INIS)

    Huber, H.

    1978-01-01

    A comprehensive survey is presented of the present state of knowledge in nuclear fusion research. In the first part, potential thermonuclear reactions, basic energy balances of the plasma (Lawson criterion), and the main criteria to be observed in the selection of appropriate thermonuclear reactions are dealt with. This is followed by a discussion of the problems encountered in plasma physics (plasma confinement and heating, transport processes, plasma impurities, plasma instabilities and plasma diagnostics) and by a consideration of the materials problems involved, such as material of the first wall, fuel inlet and outlet, magnetic field generation, as well as repair work and in-service inspections. Two main methods have been developed to tackle these problems: reactor concepts using the magnetic pinch (stellarator, Tokamak, High-Beta reactors, mirror machines) on the one hand, and the other concept using the inertial confinement (laser fusion reactor). These two approaches and their specific problems as well as past, present and future fusion experiments are treated in detail. The last part of the work is devoted to safety and environmental aspects of the potential thermonuclear aspects of the potential thermonuclear reactor, discussing such problems as fusion-specific hazards, normal operation and potential hazards, reactor incidents, environmental pollution by thermal effluents, radiological pollution, radioactive wastes and their disposal, and siting problems. (orig./GG) [de

  11. Short fusion

    CERN Multimedia

    2002-01-01

    French and UK researchers are perfecting a particle accelerator technique that could aid the quest for fusion energy or make X-rays that are safer and produce higher-resolution images. Led by Dr Victor Malka from the Ecole Nationale Superieure des Techniques Avancees in Paris, the team has developed a better way of accelerating electrons over short distances (1 page).

  12. Magnetic fusion

    International Nuclear Information System (INIS)

    2002-01-01

    This document is a detailed lecture on thermonuclear fusion. The basic physics principles are recalled and the technological choices that have led to tokamaks or stellarators are exposed. Different aspects concerning thermonuclear reactors such as safety, economy and feasibility are discussed. Tore-supra is described in details as well as the ITER project

  13. Cold fusion

    International Nuclear Information System (INIS)

    Seo, Suk Yong; You, Jae Jun

    1996-01-01

    Nearly every technical information is chased in the world. All of them are reviewed and analyzed. Some of them are chosen to study further more to review every related documents. And a probable suggestion about the excitonic process in deuteron absorbed condensed matter is proposed a way to cold fusion. 8 refs. (Author)

  14. Fusion research program in Korea

    International Nuclear Information System (INIS)

    Hwang, Y.S.

    1996-01-01

    Fusion research in Korea is still premature, but it is a fast growing program. Groups in several universities and research institutes were working either in small experiments or in theoretical areas. Recently, couple of institutes who have small fusion-related experiments, proposed medium-size tokamak programs to jump into fusion research at the level of international recognition. Last year, Korean government finally approved to construct 'Superconducting Tokamak' as a national fusion program, and industries such as Korea Electric Power Corp. (KEPCO) and Samsung joined to support this program. Korea Basic Science Institute (KBSI) has organized national project teams including universities, research institutes and companies. National project teams are performing design works since this March. (author)

  15. Report from the Committee of Visitors on its Review of the Processes and Procedures used to Manage the Theory and Computations Program, Fusion Energy Sciences Advisory Committee

    International Nuclear Information System (INIS)

    2004-01-01

    A Committee of Visitors (COV) was formed to review the procedures used by the Office of Fusion Energy Sciences to manage its Theory and Computations program. The COV was pleased to conclude that the research portfolio supported by the OFES Theory and Computations Program was of very high quality. The Program supports research programs at universities, research industries, and national laboratories that are well regarded internationally and address questions of high relevance to the DOE. A major change in the management of the Theory and Computations program over the past few years has been the introduction of a system of comparative peer review to guide the OFES Theory Team in selecting proposals for funding. The COV was impressed with the success of OFES in its implementation of comparative peer review and with the quality of the reviewers chosen by the OFES Theory Team. The COV concluded that the competitive peer review process has improved steadily over the three years that it has been in effect and that it has improved both the fairness and accountability of the proposal review process. While the COV commends OFES in its implementation of comparative review, the COV offers the following recommendations in the hope that they will further improve the comparative peer review process: The OFES should improve the consistency of peer reviews. We recommend adoption of a results-oriented scoring system in their guidelines to referees (see Appendix II), a greater use of review panels, and a standard format for proposals; The OFES should further improve the procedures and documentation for proposal handling. We recommend that the folders documenting funding decisions contain all the input from all of the reviewers, that OFES document their rationale for funding decisions which are at variance with the recommendation of the peer reviewers, and that OFES provide a Summary Sheet within each folder; The OFES should better communicate the procedures used to determine funding

  16. West European magnetic confinement fusion research

    International Nuclear Information System (INIS)

    McKenney, B.L.; McGrain, M.; Hogan, J.T.; Porkolab, M.; Thomassen, K.I.

    1990-01-01

    This report presents a technical assessment and review of the West European program in magnetic confinement fusion by a panel of US scientists and engineers active in fusion research. Findings are based on the scientific and technical literature, on laboratory reports and preprints, and on the personal experiences and collaborations of the panel members. Concerned primarily with developments during the past 10 years, from 1979 to 1989, the report assesses West European fusion research in seven technical areas: tokamak experiments; magnetic confinement technology and engineering; fusion nuclear technology; alternate concepts; theory; fusion computations; and program organization. The main conclusion emerging from the analysis is that West European fusion research has attained a position of leadership in the international fusion program. This distinction reflects in large measure the remarkable achievements of the Joint European Torus (JET). However, West European fusion prominence extends beyond tokamak experimental physics: the program has demonstrated a breadth of skill in fusion science and technology that is not excelled in the international effort. It is expected that the West European primacy in central areas of confinement physics will be maintained or even increased during the early 1990s. The program's maturity and commitment kindle expectations of dramatic West European advances toward the fusion energy goal. For example, achievement of fusion breakeven is expected first in JET, before 1995

  17. Cold fusion, Alchemist's dream

    International Nuclear Information System (INIS)

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D 2 molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D 2 fusion at low energies; fusion of deuterons into 4 He; secondary D+T fusion within the hydrogenated metal lattice; 3 He to 4 He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of 3 He/ 4 He

  18. Magnetic fusion; La fusion magnetique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document is a detailed lecture on thermonuclear fusion. The basic physics principles are recalled and the technological choices that have led to tokamaks or stellarators are exposed. Different aspects concerning thermonuclear reactors such as safety, economy and feasibility are discussed. Tore-supra is described in details as well as the ITER project.

  19. Fusion of Nuclear and Emerging Technology

    International Nuclear Information System (INIS)

    Nahrul Khaer Alang Rashid

    2005-04-01

    The presentation discussed the following subjects: emerging technology; nuclear technology; fusion emerging and nuclear technology; progressive nature of knowledge; optically stimulated luminescence - application of luminescence technology to sediments; Biosystemics technology -convergence nanotechnology, ecological science, biotechnology, cognitive science and IT - prospective impact on materials science, the management of public system for bio-health, eco and food system integrity and disease mitigation

  20. Virtual Vision

    Science.gov (United States)

    Terzopoulos, Demetri; Qureshi, Faisal Z.

    Computer vision and sensor networks researchers are increasingly motivated to investigate complex multi-camera sensing and control issues that arise in the automatic visual surveillance of extensive, highly populated public spaces such as airports and train stations. However, they often encounter serious impediments to deploying and experimenting with large-scale physical camera networks in such real-world environments. We propose an alternative approach called "Virtual Vision", which facilitates this type of research through the virtual reality simulation of populated urban spaces, camera sensor networks, and computer vision on commodity computers. We demonstrate the usefulness of our approach by developing two highly automated surveillance systems comprising passive and active pan/tilt/zoom cameras that are deployed in a virtual train station environment populated by autonomous, lifelike virtual pedestrians. The easily reconfigurable virtual cameras distributed in this environment generate synthetic video feeds that emulate those acquired by real surveillance cameras monitoring public spaces. The novel multi-camera control strategies that we describe enable the cameras to collaborate in persistently observing pedestrians of interest and in acquiring close-up videos of pedestrians in designated areas.

  1. Heavy-ion accelerator research for inertial fusion

    International Nuclear Information System (INIS)

    1987-08-01

    Thermonuclear fusion offers a most attractive long-term solution to the problem of future energy supplies: The fuel is virtually inexhaustible and the fusion reaction is notably free of long-lived radioactive by-products. Also, because the fuel is in the form of a plasma, there is no solid fuel core that could melt down. The DOE supports two major fusion research programs to exploit these virtues, one based on magnetic confinement and a second on inertial confinement. One part of the program aimed at inertial fusion is known as Heavy Ion Fusion Accelerator Research, or HIFAR. In this booklet, the aim is to place this effort in the context of fusion research generally, to review the brief history of heavy-ion fusion, and to describe the current status of the HIFAR program

  2. Splenogonadal Fusion

    Directory of Open Access Journals (Sweden)

    Sung-Lang Chen

    2008-11-01

    Full Text Available Splenogonadal fusion (SGF is a rare congenital non-malignant anomaly characterized by fusion of splenic tissue to the gonad, and can be continuous or discontinuous. Very few cases have been diagnosed preoperatively, and many patients who present with testicular swelling undergo unnecessary orchiectomy under the suspicion of testicular neoplasm. A 16-year-old boy presented with a left scrotal mass and underwent total excision of a 1.6-cm tumor without damaging the testis, epididymis or its accompanying vessels. Pathologic examination revealed SFG (discontinuous type. If clinically suspected before surgery, the diagnosis may be confirmed by Tc-99m sulfur colloid imaging, which shows uptake in both the spleen and accessory splenic tissue within the scrotum. Frozen section should be considered if there remains any doubt regarding the diagnosis during operation.

  3. Membrane Trafficking and Vesicle Fusion

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 5. Membrane Trafficking and Vesicle Fusion: Post-Palade Era Researchers Win the Nobel Prize. Riddhi Atul Jani Subba Rao Gangi Setty. General Article Volume 19 Issue 5 May 2014 pp 421-445 ...

  4. THE GENERAL ATOMICS FUSION THEORY PROGRAM ANNUAL REPORT FOR FISCAL YEAR 2002

    International Nuclear Information System (INIS)

    PROJECT STAFF

    2002-01-01

    OAK B202 THE GENERAL ATOMICS FUSION THEORY PROGRAM ANNUAL REPORT FOR FISCAL YEAR 2002. The dual objective of the fusion theory program at General Atomics (GA) is to significantly advance the scientific understanding of the physics of fusion plasmas and to support the DIII-D and other tokamak experiments. The program plan is aimed at contributing significantly to the Fusion Energy Science and the Tokamak Concept Improvement goals of the Office of Fusion Energy Sciences (OFES)

  5. Laser fusion

    International Nuclear Information System (INIS)

    Eliezer, S.

    1982-02-01

    In this paper, the physics of laser fusion is described on an elementary level. The irradiated matter consists of a dense inner core surrounded by a less dense plasma corona. The laser radiation is mainly absorbed in the outer periphery of the plasma. The absorbed energy is transported inward to the ablation surface where plasma flow is created. Due to this plasma flow, a sequence of inward going shock waves and heat waves are created, resulting in the compression and heating of the core to high density and temperature. The interaction physics between laser and matter leading to thermonuclear burn is summarized by the following sequence of events: Laser absorption → Energy transport → Compression → Nuclear Fusion. This scenario is shown in particular for a Nd:laser with a wavelength of 1 μm. The wavelength scaling of the physical processes is also discussed. In addition to the laser-plasma physics, the Nd high power pulsed laser is described. We give a very brief description of the oscillator, the amplifiers, the spatial filters, the isolators and the diagnostics involved. Last, but not least, the concept of reactors for laser fusion and the necessary laser system are discussed. (author)

  6. Fusion spectroscopy

    International Nuclear Information System (INIS)

    Peacock, N.J.

    1995-09-01

    This article traces developments in the spectroscopy of high temperature laboratory plasma used in controlled fusion research from the early 1960's until the present. These three and a half decades have witnessed many orders of magnitude increase in accessible plasma parameters such as density and temperature as well as particle and energy confinement timescales. Driven by the need to interpret the radiation in terms of the local plasma parameters, the thrust of fusion spectroscopy has been to develop our understanding of (i) the atomic structure of highly ionised atoms, usually of impurities in the hydrogen isotope fuel; (ii) the atomic collision rates and their incorporation into ionization structure and emissivity models that take into account plasma phenomena like plasma-wall interactions, particle transport and radiation patterns; (iii) the diagnostic applications of spectroscopy aided by increasingly sophisticated characterisation of the electron fluid. These topics are discussed in relation to toroidal magnetically confined plasmas, particularly the Tokamak which appears to be the most promising approach to controlled fusion to date. (author)

  7. Virtual Sustainability

    Directory of Open Access Journals (Sweden)

    William Sims Bainbridge

    2010-09-01

    Full Text Available In four ways, massively multiplayer online role-playing games may serve as tools for advancing sustainability goals, and as laboratories for developing alternatives to current social arrangements that have implications for the natural environment. First, by moving conspicuous consumption and other usually costly status competitions into virtual environments, these virtual worlds might reduce the need for physical resources. Second, they provide training that could prepare individuals to be teleworkers, and develop or demonstrate methods for using information technology to replace much transportation technology, notably in commuting. Third, virtual worlds and online games build international cooperation, even blending national cultures, thereby inching us toward not only the world consciousness needed for international agreements about the environment, but also toward non-spatial government that cuts across archaic nationalisms. Finally, realizing the potential social benefits of this new technology may urge us to reconsider a number of traditional societal institutions.

  8. Virtual Tower

    International Nuclear Information System (INIS)

    Wayne, R.A.

    1997-01-01

    The primary responsibility of an intrusion detection system (IDS) operator is to monitor the system, assess alarms, and summon and coordinate the response team when a threat is acknowledged. The tools currently provided to the operator are somewhat limited: monitors must be switched, keystrokes must be entered to call up intrusion sensor data, and communication with the response force must be maintained. The Virtual tower is an operator interface assembled from low-cost commercial-off-the-shelf hardware and software; it enables large amounts of data to be displayed in a virtual manner that provides instant recognition for the operator and increases assessment accuracy in alarm annunciator and control systems. This is accomplished by correlating and fusing the data into a 360-degree visual representation that employs color, auxiliary attributes, video, and directional audio to prompt the operator. The Virtual Tower would be a valuable low-cost enhancement to existing systems

  9. Virtual care

    DEFF Research Database (Denmark)

    Kamp, Annette; Aaløkke Ballegaard, Stinne

    of retrenchment, promising better quality, empowerment of citizens and work that is smarter and more qualified. Through ethnographic field studies we study the introduction of virtual home care in Danish elderly care, focusing on the implications for relational work and care relations. Virtual home care entails...... the performance of specific home care services by means of video conversations rather than physical visits in the citizens’ homes. As scholars within the STS tradition maintain, technologies do not simply replace a human function; they rather transform care work, redistributing tasks between citizens, technology...... point out how issues of trust and surveillance, which are always negotiated in care relations, are in fact accentuated in this kind of virtual care work. Moreover, we stress that the contemporary institutional context, organization and time schedules have a vast impact on the practices developed....

  10. Virtual toolbox

    Science.gov (United States)

    Jacobus, Charles J.; Jacobus, Heidi N.; Mitchell, Brian T.; Riggs, A. J.; Taylor, Mark J.

    1993-04-01

    At least three of the five senses must be fully addressed in a successful virtual reality (VR) system. Sight, sound, and touch are the most critical elements for the creation of the illusion of presence. Since humans depend so much on sight to collect information about their environment, this area has been the focus of much of the prior art in virtual reality, however, it is also crucial that we provide facilities for force, torque, and touch reflection, and sound replay and 3-D localization. In this paper we present a sampling of hardware and software in the virtual environment maker's `toolbox' which can support rapidly building up of customized VR systems. We provide demonstrative examples of how some of the tools work and we speculate about VR applications and future technology needs.

  11. Game-Based Virtual Worlds as Decentralized Virtual Activity Systems

    Science.gov (United States)

    Scacchi, Walt

    There is widespread interest in the development and use of decentralized systems and virtual world environments as possible new places for engaging in collaborative work activities. Similarly, there is widespread interest in stimulating new technological innovations that enable people to come together through social networking, file/media sharing, and networked multi-player computer game play. A decentralized virtual activity system (DVAS) is a networked computer supported work/play system whose elements and social activities can be both virtual and decentralized (Scacchi et al. 2008b). Massively multi-player online games (MMOGs) such as World of Warcraft and online virtual worlds such as Second Life are each popular examples of a DVAS. Furthermore, these systems are beginning to be used for research, deve-lopment, and education activities in different science, technology, and engineering domains (Bainbridge 2007, Bohannon et al. 2009; Rieber 2005; Scacchi and Adams 2007; Shaffer 2006), which are also of interest here. This chapter explores two case studies of DVASs developed at the University of California at Irvine that employ game-based virtual worlds to support collaborative work/play activities in different settings. The settings include those that model and simulate practical or imaginative physical worlds in different domains of science, technology, or engineering through alternative virtual worlds where players/workers engage in different kinds of quests or quest-like workflows (Jakobsson 2006).

  12. Virtual polytopes

    International Nuclear Information System (INIS)

    Panina, G Yu; Streinu, I

    2015-01-01

    Originating in diverse branches of mathematics, from polytope algebra and toric varieties to the theory of stressed graphs, virtual polytopes represent a natural algebraic generalization of convex polytopes. Introduced as elements of the Grothendieck group associated to the semigroup of convex polytopes, they admit a variety of geometrizations. The present survey connects the theory of virtual polytopes with other geometrical subjects, describes a series of geometrizations together with relations between them, and gives a selection of applications. Bibliography: 50 titles

  13. Inertial-confinement fusion with lasers

    International Nuclear Information System (INIS)

    Betti, R.; Hurricane, O. A.

    2016-01-01

    The quest for controlled fusion energy has been ongoing for over a half century. The demonstration of ignition and energy gain from thermonuclear fuels in the laboratory has been a major goal of fusion research for decades. Thermonuclear ignition is widely considered a milestone in the development of fusion energy, as well as a major scientific achievement with important applications to national security and basic sciences. The U.S. is arguably the world leader in the inertial con fment approach to fusion and has invested in large facilities to pursue it with the objective of establishing the science related to the safety and reliability of the stockpile of nuclear weapons. Even though significant progress has been made in recent years, major challenges still remain in the quest for thermonuclear ignition via laser fusion

  14. Progress in high gain inertial confinement fusion

    International Nuclear Information System (INIS)

    Sun Jingwen

    2001-01-01

    The author reviews the progress in laboratory high gain inertial confinement fusion (ICF), including ICF capsule physics, high-energy-density science, inertial fusion energy, the National Ignition Facility (NIF) and its design of ignition targets and the peta watt laser breakthrough. High power laser, particle beam, and pulsed power facilities around the world have established the new laboratory field of high-energy- density plasma physics and have furthered development of inertial fusion. New capabilities such as those provided by high-brightness peta watt lasers have enabled the study of matter feasible in conditions previously unachievable on earth. Science and technology developed in inertial fusion research have found near-term commercial use and have enabled steady progress toward the goal of fusion ignition and high gain in the laboratory, and have opened up new fields of study for the 21 st century

  15. VIRTUAL REALITY AS A SPHERE OF FICTIONS

    OpenAIRE

    V. A. Abramova

    2017-01-01

    In post-nonclassical science in studying of spontaneous systems it is important to consider a narrow orientation of perception in the solution of specific objectives, in this context, perception of symbolical transformations at various levels – subjective and objective. The virtual reality widespread now thanks to enhancement of information and communication technologies consists of hypertrophied effects of virtualization of reality where the virtual image has nothing in common with reality, ...

  16. Laser fusion and precision engineering

    International Nuclear Information System (INIS)

    Nakai, Sadao

    1989-01-01

    The development of laser nuclear fusion energy for attaining the self supply of energy in Japan and establishing the future perspective as the nation is based in the wide fields of high level science and technology. Therefore to its promotion, large expectation is placed as the powerful traction for the development of creative science and technology which are particularly necessary in Japan. The research on laser nuclear fusion advances steadily in the elucidation of the physics of pellet implosion which is its basic concept and compressed plasma parameters. In September, 1986, the number of neutron generation 10 13 , and in October, 1988, the high density compression 600 times as high as solid density have been achieved. Based on these results, now the laser nuclear fusion is in the situation to begin the attainment of ignition condition for nuclear fusion and the realization of break even. The optical components, high power laser technology, fuel pellet production, high resolution measurement, the simulation of implosion using a supercomputer and so on are closely related to precision engineering. In this report, the mechanism of laser nuclear fusion, the present status of its research, and the basic technologies and precision engineering are described. (K.I.)

  17. Hesitant birth of cold fusion

    International Nuclear Information System (INIS)

    Bockris, J.O.

    1992-01-01

    John O'M. Bockris, a distinguished chemistry professor at Texas A ampersand M University, finds the reaction to the announcement of the discovery of cold fusion curious. Two years earlier, he notes, there had been a comparable announcement concerning the discovery of high-temperature superconductivity; it received favorable press coverage for months. The cold-fusion announcement, on the other hand, was met with dour skepticism. When other researchers failed in efforts to duplicate the findings of Martin Fleischmann and B. Stanley Pons, Bockris says, the two scientists were held up to ridicule. Bockris says he found a deep emotional opposition to cold fusion, even within his own department and university. This opposition is fueled in large part, he believes, by big science and the hot fusion lobby. A key indicator of cold fusion is the presence of tritium, Brockis claims. At Texas A ampersand M, large amounts of tritium have been found in some experiments; this also has occurred in experiments at more than 40 laboratories in nine countries, he says. Excess heat production is more difficult to attain, he acknowledges. The cold-fusion controversy has uncovered some unflattering characteristics of the scientific community, Bockris says. Among them are: scientists are no less driven by emotion that business people or politicians; research funding decisions serve to perpetuate the goals of politically powerful interest groups; and ideas have great inertia once planted in a scientist's mind

  18. Virtual Savannah

    DEFF Research Database (Denmark)

    Rodil, Kasper; Eskildsen, Søren; Rehm, Matthias

    2012-01-01

    Virtual Savannah is constructed to visualize parts of a curriculum, which the educational service at Aalborg Zoo has difficulties in teaching children visiting the zoo. It contains rich media like audio, text, video and picture galleries about African ecology, but some of this episodic information...

  19. Virtualize Me!

    Science.gov (United States)

    Waters, John K.

    2009-01-01

    John Abdelmalak, director of technology for the School District of the Chathams, was pretty sure it was time to jump on the virtualization bandwagon last year when he invited Dell to conduct a readiness assessment of his district's servers. When he saw just how little of their capacity was being used, he lost all doubt. Abdelmalak is one of many…

  20. Virtual Classroom

    DEFF Research Database (Denmark)

    Christensen, Ove

    2013-01-01

    In the Scandinavian countries: Sweden, Norway and Denmark, the project GNU (Grænseoverskridende Nordisk Undervisning, i.e. Transnational Nordic Teaching) is experimenting with ways of conducting teaching across the borders in the elementary schools. The cloud classes are organised with one class...... and benefits in regard to learning and pedagogy with virtual classroom....

  1. Virtual landmarks

    Science.gov (United States)

    Tong, Yubing; Udupa, Jayaram K.; Odhner, Dewey; Bai, Peirui; Torigian, Drew A.

    2017-03-01

    Much has been published on finding landmarks on object surfaces in the context of shape modeling. While this is still an open problem, many of the challenges of past approaches can be overcome by removing the restriction that landmarks must be on the object surface. The virtual landmarks we propose may reside inside, on the boundary of, or outside the object and are tethered to the object. Our solution is straightforward, simple, and recursive in nature, proceeding from global features initially to local features in later levels to detect landmarks. Principal component analysis (PCA) is used as an engine to recursively subdivide the object region. The object itself may be represented in binary or fuzzy form or with gray values. The method is illustrated in 3D space (although it generalizes readily to spaces of any dimensionality) on four objects (liver, trachea and bronchi, and outer boundaries of left and right lungs along pleura) derived from 5 patient computed tomography (CT) image data sets of the thorax and abdomen. The virtual landmark identification approach seems to work well on different structures in different subjects and seems to detect landmarks that are homologously located in different samples of the same object. The approach guarantees that virtual landmarks are invariant to translation, scaling, and rotation of the object/image. Landmarking techniques are fundamental for many computer vision and image processing applications, and we are currently exploring the use virtual landmarks in automatic anatomy recognition and object analytics.

  2. Virtual reality at work

    Science.gov (United States)

    Brooks, Frederick P., Jr.

    1991-01-01

    The utility of virtual reality computer graphics in telepresence applications is not hard to grasp and promises to be great. When the virtual world is entirely synthetic, as opposed to real but remote, the utility is harder to establish. Vehicle simulators for aircraft, vessels, and motor vehicles are proving their worth every day. Entertainment applications such as Disney World's StarTours are technologically elegant, good fun, and economically viable. Nevertheless, some of us have no real desire to spend our lifework serving the entertainment craze of our sick culture; we want to see this exciting technology put to work in medicine and science. The topics covered include the following: testing a force display for scientific visualization -- molecular docking; and testing a head-mounted display for scientific and medical visualization.

  3. Personal Virtual Libraries

    Science.gov (United States)

    Pappas, Marjorie L.

    2004-01-01

    Virtual libraries are becoming more and more common. Most states have a virtual library. A growing number of public libraries have a virtual presence on the Web. Virtual libraries are a growing addition to school library media collections. The next logical step would be personal virtual libraries. A personal virtual library (PVL) is a collection…

  4. Office of Basic Energy Sciences program to meet high priority nuclear data needs of the Office of Fusion Energy 1983 review

    International Nuclear Information System (INIS)

    Haight, R.C.; Larson, D.C.

    1983-11-01

    This review was prepared during a coordination meeting held at Oak Ridge National Laboratory on September 28-29, 1983. Participants included research scientists working for this program, a representative from the OFE's Coordination of Magnetic Fusion Energy (MFE) Nuclear Data Needs Activities, and invited specialists

  5. Fusion Machines

    International Nuclear Information System (INIS)

    Weynants, R.R.

    2004-01-01

    A concise overview is given of the principles of inertial and magnetic fusion, with an emphasis on the latter in view of the aim of this summer school. The basis of magnetic confinement in mirror and toroidal geometry is discussed and applied to the tokamak concept. A brief discussion of the reactor prospects of this configuration identifies which future developments are crucial and where alternative concepts might help in optimising the reactor design. The text also aims at introducing the main concepts encountered in tokamak research that will be studied and used in the subsequent lectures

  6. Crosscut report: Exascale Requirements Reviews, March 9–10, 2017 – Tysons Corner, Virginia. An Office of Science review sponsored by: Advanced Scientific Computing Research, Basic Energy Sciences, Biological and Environmental Research, Fusion Energy Sciences, High Energy Physics, Nuclear Physics

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Hack, James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Riley, Katherine [Argonne National Lab., IL (United States). Argonne Leadership Computing Facility (ALCF); Antypas, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Coffey, Richard [Argonne National Lab. (ANL), Argonne, IL (United States). Argonne Leadership Computing Facility (ALCF); Dart, Eli [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). ESnet; Straatsma, Tjerk [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Wells, Jack [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Bard, Deborah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Dosanjh, Sudip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Monga, Inder [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). ESnet; Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States). Argonne Leadership Computing Facility; Rotman, Lauren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). ESnet

    2018-01-22

    The mission of the U.S. Department of Energy Office of Science (DOE SC) is the delivery of scientific discoveries and major scientific tools to transform our understanding of nature and to advance the energy, economic, and national security missions of the United States. To achieve these goals in today’s world requires investments in not only the traditional scientific endeavors of theory and experiment, but also in computational science and the facilities that support large-scale simulation and data analysis. The Advanced Scientific Computing Research (ASCR) program addresses these challenges in the Office of Science. ASCR’s mission is to discover, develop, and deploy computational and networking capabilities to analyze, model, simulate, and predict complex phenomena important to DOE. ASCR supports research in computational science, three high-performance computing (HPC) facilities — the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory and Leadership Computing Facilities at Argonne (ALCF) and Oak Ridge (OLCF) National Laboratories — and the Energy Sciences Network (ESnet) at Berkeley Lab. ASCR is guided by science needs as it develops research programs, computers, and networks at the leading edge of technologies. As we approach the era of exascale computing, technology changes are creating challenges for science programs in SC for those who need to use high performance computing and data systems effectively. Numerous significant modifications to today’s tools and techniques will be needed to realize the full potential of emerging computing systems and other novel computing architectures. To assess these needs and challenges, ASCR held a series of Exascale Requirements Reviews in 2015–2017, one with each of the six SC program offices,1 and a subsequent Crosscut Review that sought to integrate the findings from each. Participants at the reviews were drawn from the communities of leading domain

  7. Natural Interaction With Pedagogical Agents in Virtual Environments

    National Research Council Canada - National Science Library

    Johnson, W

    2002-01-01

    The USC / Information Sciences Institute (I SI), in collaboration with Lockheed Martin and USC Behavior Technology Laboratory, conducted a research project named Virtual Environments for Training (VET...

  8. Fusion Canada issue 10

    International Nuclear Information System (INIS)

    1990-02-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on Fusion Materials Research, ITER physics research, fusion performance record at JET, and design options for reactor building. 4 figs

  9. The Virtual Earthquake and Seismology Research Community e-science environment in Europe (VERCE) FP7-INFRA-2011-2 project

    Science.gov (United States)

    Vilotte, J.-P.; Atkinson, M.; Michelini, A.; Igel, H.; van Eck, T.

    2012-04-01

    Increasingly dense seismic and geodetic networks are continuously transmitting a growing wealth of data from around the world. The multi-use of these data leaded the seismological community to pioneer globally distributed open-access data infrastructures, standard services and formats, e.g., the Federation of Digital Seismic Networks (FDSN) and the European Integrated Data Archives (EIDA). Our ability to acquire observational data outpaces our ability to manage, analyze and model them. Research in seismology is today facing a fundamental paradigm shift. Enabling advanced data-intensive analysis and modeling applications challenges conventional storage, computation and communication models and requires a new holistic approach. It is instrumental to exploit the cornucopia of data, and to guarantee optimal operation and design of the high-cost monitoring facilities. The strategy of VERCE is driven by the needs of the seismological data-intensive applications in data analysis and modeling. It aims to provide a comprehensive architecture and framework adapted to the scale and the diversity of those applications, and integrating the data infrastructures with Grid, Cloud and HPC infrastructures. It will allow prototyping solutions for new use cases as they emerge within the European Plate Observatory Systems (EPOS), the ESFRI initiative of the solid Earth community. Computational seismology, and information management, is increasingly revolving around massive amounts of data that stem from: (1) the flood of data from the observational systems; (2) the flood of data from large-scale simulations and inversions; (3) the ability to economically store petabytes of data online; (4) the evolving Internet and Data-aware computing capabilities. As data-intensive applications are rapidly increasing in scale and complexity, they require additional services-oriented architectures offering a virtualization-based flexibility for complex and re-usable workflows. Scientific information

  10. Nuclear Fusion prize laudation Nuclear Fusion prize laudation

    Science.gov (United States)

    Burkart, W.

    2011-01-01

    Clean energy in abundance will be of critical importance to the pursuit of world peace and development. As part of the IAEA's activities to facilitate the dissemination of fusion related science and technology, the journal Nuclear Fusion is intended to contribute to the realization of such energy from fusion. In 2010, we celebrated the 50th anniversary of the IAEA journal. The excellence of research published in the journal is attested to by its high citation index. The IAEA recognizes excellence by means of an annual prize awarded to the authors of papers judged to have made the greatest impact. On the occasion of the 2010 IAEA Fusion Energy Conference in Daejeon, Republic of Korea at the welcome dinner hosted by the city of Daejeon, we celebrated the achievements of the 2009 and 2010 Nuclear Fusion prize winners. Steve Sabbagh, from the Department of Applied Physics and Applied Mathematics, Columbia University, New York is the winner of the 2009 award for his paper: 'Resistive wall stabilized operation in rotating high beta NSTX plasmas' [1]. This is a landmark paper which reports record parameters of beta in a large spherical torus plasma and presents a thorough investigation of the physics of resistive wall mode (RWM) instability. The paper makes a significant contribution to the critical topic of RWM stabilization. John Rice, from the Plasma Science and Fusion Center, MIT, Cambridge is the winner of the 2010 award for his paper: 'Inter-machine comparison of intrinsic toroidal rotation in tokamaks' [2]. The 2010 award is for a seminal paper that analyzes results across a range of machines in order to develop a universal scaling that can be used to predict intrinsic rotation. This paper has already triggered a wealth of experimental and theoretical work. I congratulate both authors and their colleagues on these exceptional papers. W. Burkart Deputy Director General Department of Nuclear Sciences and Applications International Atomic Energy Agency, Vienna

  11. Virtual Reality and Legal Education

    OpenAIRE

    Kiskinov, Vihar

    2014-01-01

    Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2014 The paper examines the impact of virtual reality on legal education. Association for the Development of the Information Society, Institute of Mathematics and Informatics Bulgarian Academy of Sciences, Plovdiv University "Paisii Hilendarski"

  12. Virtual Special Issue on Migration

    NARCIS (Netherlands)

    Jordan, Declan; Elhorst, Paul

    2016-01-01

    This editorial introduces a virtual special issue of Spatial Economic Analysis compiled to mark the keynote lecture at the 46th Annual Conference of the Regional Science Association InternationalBritish and Irish Section in Cornwall by Professor Jacques Poot of the National Institute of Demographic

  13. Sensorial Virtualization: Coupling Gaming and Virtual Environment

    NARCIS (Netherlands)

    Garbaya, S.; Miraoui, C.; Wendrich, Robert E.; Lim, T.; Stanescu, I.A.; Hauge, J.B.

    2014-01-01

    Virtual reality and virtualization are currently used to design complex systems and demonstrate that they represent the functionalities of real systems. However, the design refinement of the virtual environment (VE) and distributed virtual environment (DVE) are still time consuming and costly, as it

  14. Virtual Presenters: Towards Interactive Virtual Presentations

    NARCIS (Netherlands)

    Nijholt, Antinus; Cappellini, V.; Hemsley, J.

    2005-01-01

    We discuss having virtual presenters in virtual environments that present information to visitors of these environments. Some current research is surveyed and we will look in particular to our research in the context of a virtual meeting room where a virtual presenter uses speech, gestures, pointing

  15. Virtual materiality

    DEFF Research Database (Denmark)

    Søndergaard, Dorte Marie

    as their recounts of them and 3. the consumption of other media products like movies, reality shows, YouTube videos etc. How do we theorize ‘matter’ in such dimensions? Is it possible to theorize virtual matter as ‘materiality’ in line with any real life materiality? What conceptualization will help us understand......? These questions become crucial when we follow matter in and across real life, virtual experience, recounted imagery, night dreams, YouTube videos and even further. Some may already have recognized Phillip’s skeleton army as a transport/transformation from Lord of the Rings, DVD 3, the army which Aragon calls out....... Butler, J. (1993) Bodies that Matter. On the Discursive Limits of “Sex”. London: Routledge. Durkin, K. et al. (1998) Children, Media and Agression. Current Research in Australia and New Zealand. In: Carlson, U. & von Feilitzen, C. (red): Children and Media Violence. Yearbook from the UNESCO International...

  16. Virtual Reality: A Dream Come True or a Nightmare.

    Science.gov (United States)

    Cornell, Richard; Bailey, Dan

    Virtual Reality (VR) is a new medium which allows total stimulation of one's senses through human/computer interfaces. VR has applications in training simulators, nano-science, medicine, entertainment, electronic technology, and manufacturing. This paper focuses on some current and potential problems of virtual reality and virtual environments…

  17. Integrating a virtual agent into the real world

    OpenAIRE

    André, Elisabeth

    2007-01-01

    Integrating a virtual agent into the real world : the virtual anatomy assistant ritchie / K. Dorfmüller-Ulhaas ... - In: Intelligent virtual agents : 7th international conference, IVA 2007, Paris, France, September 17-19, 2007 ; proceedings / Catherine Pelachaud ... (eds.). - Berlin [u.a.] : Springer, 2007. - S. 211-224. - (Lecture notes in computer science ; 4722 : Lecture notes in artificial intelligence)

  18. A hitchhiker's guide to virtual reality

    CERN Document Server

    McMenemy , Karen

    2007-01-01

    A Hitchhiker's Guide to Virtual Reality brings together under one cover all the aspects of graphics, video, audio, and haptics that have to work together to make virtual reality a reality. Like any good guide, it reveals the practical things you need to know, from the viewpoint of authors who have been there. This two-part guide covers the science, technology, and mathematics of virtual reality and then details its practical implementation. The first part looks at how the interface between human senses and technology works to create virtual reality, with a focus on vision, the most important s

  19. Virtual automation.

    Science.gov (United States)

    Casis, E; Garrido, A; Uranga, B; Vives, A; Zufiaurre, C

    2001-01-01

    Total laboratory automation (TLA) can be substituted in mid-size laboratories by a computer sample workflow control (virtual automation). Such a solution has been implemented in our laboratory using PSM, software developed in cooperation with Roche Diagnostics (Barcelona, Spain), to this purpose. This software is connected to the online analyzers and to the laboratory information system and is able to control and direct the samples working as an intermediate station. The only difference with TLA is the replacement of transport belts by personnel of the laboratory. The implementation of this virtual automation system has allowed us the achievement of the main advantages of TLA: workload increase (64%) with reduction in the cost per test (43%), significant reduction in the number of biochemistry primary tubes (from 8 to 2), less aliquoting (from 600 to 100 samples/day), automation of functional testing, drastic reduction of preanalytical errors (from 11.7 to 0.4% of the tubes) and better total response time for both inpatients (from up to 48 hours to up to 4 hours) and outpatients (from up to 10 days to up to 48 hours). As an additional advantage, virtual automation could be implemented without hardware investment and significant headcount reduction (15% in our lab).

  20. Virtual Cystoscopy

    International Nuclear Information System (INIS)

    Mejia Restrepo, Jorge; Aldana S, Natalia; Munoz Sierra, Juan; Lopez Amaya, Juan

    2011-01-01

    Introduction: virtual cystoscopy is a minimally invasive procedure that facilitates the evaluation of the urinary tract, allowing intraluminal navigation through the urinary tract structures on the basis of CT imaging reconstructions. it allows detection of various pathologies of the system, through high-sensitivity, three-dimensional lesion visualization with some advantages over conventional cystoscopy. Objective: to describe the technique used for virtual cystoscopy at our institution,and present some representative cases. Materials and methods: We describe the main indications, advantages and limitations of the method, followed by a description of the technique used in our institution, and finally, we present five representative cases of bladder and urethral pathology. Conclusion: virtual cystoscopy is a sensitive technique for the diagnosis of bladder tumors, even those smaller than 5mm. it is the preferred method in patients who have contraindications for conventional cystoscopy, such as prostate hyperplasia, urethral stenoses and active haematuria.it is less invasive and has a lower complication rate when compared with conventional cystoscopy. It has limited use in the assessment of the mucosa and of small, flat lesions.

  1. Catalysed fusion

    CERN Document Server

    Farley, Francis

    2012-01-01

    A sizzling romance and a romp with subatomic particles at CERN. Love, discovery and adventure in the city where nations meet and beams collide. Life in a large laboratory. As always, the challenges are the same. Who leads? Who follows? Who succeeds? Who gets the credit? Who gets the women or the men? Young Jeremy arrives in CERN and joins the quest for green energy. Coping with baffling jargon and manifold dangers, he is distracted by radioactive rats, lovely ladies and an unscrupulous rival. Full of doubts and hesitations, he falls for a dazzling Danish girl, who leads him astray. His brilliant idea leads to a discovery and a new route to cold fusion. But his personal life is scrambled. Does it bring fame or failure? Tragedy or triumph?

  2. Fusion cuisine

    DEFF Research Database (Denmark)

    Peters, Chris; Broersma, Marcel

    2018-01-01

    JJournalism studies as an academic field is characterized by multidisciplinarity. Focusing on one object of study, journalism and the news, it established itself by integrating and synthesizing approaches from established disciplines – a tendency that lives on today. This constant gaze to the out......JJournalism studies as an academic field is characterized by multidisciplinarity. Focusing on one object of study, journalism and the news, it established itself by integrating and synthesizing approaches from established disciplines – a tendency that lives on today. This constant gaze...... to the outside for conceptual inspiration and methodological tools lends itself to a journalism studies that is a fusion cuisine of media, communication, and related scholarship. However, what happens when this object becomes as fragmented and multifaceted as the ways we study it? This essay addresses...

  3. Virtualisation Devices for Student Learning: Comparison between Desktop-Based (Oculus Rift) and Mobile-Based (Gear VR) Virtual Reality in Medical and Health Science Education

    Science.gov (United States)

    Moro, Christian; Stromberga, Zane; Stirling, Allan

    2017-01-01

    Consumer-grade virtual reality has recently become available for both desktop and mobile platforms and may redefine the way that students learn. However, the decision regarding which device to utilise within a curriculum is unclear. Desktop-based VR has considerably higher setup costs involved, whereas mobile-based VR cannot produce the quality of…

  4. Low Temperature Plasma Science: Not Only the Fourth State of Matter but All of Them. Report of the Department of Energy Office of Fusion Energy Sciences Workshop on Low Temperature Plasmas, March 25-57, 2008

    International Nuclear Information System (INIS)

    2008-01-01

    Low temperature plasma science (LTPS) is a field on the verge of an intellectual revolution. Partially ionized plasmas (often referred to as gas discharges) are used for an enormous range of practical applications, from light sources and lasers to surgery and making computer chips, among many others. The commercial and technical value of low temperature plasmas (LTPs) is well established. Modern society would simply be less advanced in the absence of LTPs. Much of this benefit has resulted from empirical development. As the technology becomes more complex and addresses new fields, such as energy and biotechnology, empiricism rapidly becomes inadequate to advance the state of the art. The focus of this report is that which is less well understood about LTPs - namely, that LTPS is a field rich in intellectually exciting scientific challenges and that addressing these challenges will result in even greater societal benefit by placing the development of plasma technologies on a solid science foundation. LTPs are unique environments in many ways. Their nonequilibrium and chemically active behavior deviate strongly from fully ionized plasmas, such as those found in magnetically confined fusion or high energy density plasmas. LTPs are strongly affected by the presence of neutral species-chemistry adds enormous complexity to the plasma environment. A weakly to partially ionized gas is often characterized by strong nonequilibrium in the velocity and energy distributions of its neutral and charged constituents. In nonequilibrium LTP, electrons are generally hot (many to tens of electron volts), whereas ions and neutrals are cool to warm (room temperature to a few tenths of an electron volt). Ions and neutrals in thermal LTP can approach or exceed an electron volt in temperature. At the same time, ions may be accelerated across thin sheath boundary layers to impact surfaces, with impact energies ranging up to thousands of electron volts. These moderately energetic electrons

  5. Low Temperature Plasma Science: Not Only the Fourth State of Matter but All of Them. Report of the Department of Energy Office of Fusion Energy Sciences Workshop on Low Temperature Plasmas, March 25-57, 2008

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-09-01

    Low temperature plasma science (LTPS) is a field on the verge of an intellectual revolution. Partially ionized plasmas (often referred to as gas discharges) are used for an enormous range of practical applications, from light sources and lasers to surgery and making computer chips, among many others. The commercial and technical value of low temperature plasmas (LTPs) is well established. Modern society would simply be less advanced in the absence of LTPs. Much of this benefit has resulted from empirical development. As the technology becomes more complex and addresses new fields, such as energy and biotechnology, empiricism rapidly becomes inadequate to advance the state of the art. The focus of this report is that which is less well understood about LTPs - namely, that LTPS is a field rich in intellectually exciting scientific challenges and that addressing these challenges will result in even greater societal benefit by placing the development of plasma technologies on a solid science foundation. LTPs are unique environments in many ways. Their nonequilibrium and chemically active behavior deviate strongly from fully ionized plasmas, such as those found in magnetically confined fusion or high energy density plasmas. LTPs are strongly affected by the presence of neutral species-chemistry adds enormous complexity to the plasma environment. A weakly to partially ionized gas is often characterized by strong nonequilibrium in the velocity and energy distributions of its neutral and charged constituents. In nonequilibrium LTP, electrons are generally hot (many to tens of electron volts), whereas ions and neutrals are cool to warm (room temperature to a few tenths of an electron volt). Ions and neutrals in thermal LTP can approach or exceed an electron volt in temperature. At the same time, ions may be accelerated across thin sheath boundary layers to impact surfaces, with impact energies ranging up to thousands of electron volts. These moderately energetic electrons

  6. Summary of inertial fusion

    International Nuclear Information System (INIS)

    Lindl, J.

    2003-01-01

    There has been rapid progress in inertial fusion since the last IAEA meeting. This progress spans the construction of ignition facilities, a wide range of target concepts, and the pursuit of integrated programs to develop fusion energy using lasers and ion beams. Two ignition facilities are under construction (NIF in the U.S. and LMJ in France) and both projects are progressing toward an initial experimental capability. The LIL prototype beamline for LMJ and the first 4 beams of NIF will be available for experiments in about 1 year. Ignition experiments are expected to begin in 7-9 years at both facilities. There is steady progress in the target science and target fabrication in preparation for indirect drive ignition experiments on NIF and LMJ. Advanced target designs may lead to 5-10 times more yield than initial target designs. There has been excellent progress on the science of ion beam and z-pinch driven indirect drive targets. Excellent progress on direct-drive targets have been obtained at the University of Rochester. This includes improved performance of targets with a pulse shape predicted to result in reduced hydrodynamic instability. Rochester has also obtained encouraging results from initial cryogenic implosions. There is widespread interest in the science of fast ignition because of its potential for achieving higher target gain with lower driver energy and relaxed target fabrication requirements. Researchers from Osaka have achieved outstanding implosion and heating results from the Gekko Petawatt facility. A broad based program to develop lasers and ions beams for IFE is under way with excellent progress in drivers, chambers, target fabrication and target injection. KrF and Diode Pumped Solid-State lasers (DPSSL) are being developed in conjunction with dry-wall chambers and direct drive targets. Induction accelerators for heavy ions are being developed in conjunction with thick-liquid protected wall chambers and indirect-drive targets. (author)

  7. Engineering sciences research highlights. Fiscal year 1983

    International Nuclear Information System (INIS)

    Tucker, E.F.; Dobratz, B.

    1984-05-01

    The Laboratory's overall mission is sixfold. We are charged with developing nuclear warheads for defense, technology for arms control, and new concepts for defense against nuclear attack; with supporting programs for both nonnuclear defense and energy research and development; and with advancing our knowledge of science and technology so that we can respond to other national needs. Major programs in support of this mission involve nuclear weapons, energy, environmental science, and basic research. Specific areas of investigation include the design, development, and testing of nuclear weapons; nuclear safeguards and security; inertial and magnetic fusion and nuclear, solar, fossil, and geothermal energy; and basic research in physics, chemistry, mathematics, engineering, and the computer and life sciences. With the staff and facilities maintained for these and other programs, the Laboratory can respond to specific national needs in virtually all areas of the physical and life sciences. Within the Laboratory's organization, most technical research activities are carried out in three directorates: Engineering Sciences; Physics and Mathematics; and Chemistry, Earth and Life Sciences. The activities highlighted here are examples of unclassified work carried out in the seven divisions that made up the Engineering Sciences Directorate at the end of fiscal year 1983. Brief descriptions of these divisions' goals and capabilities and summaries of selected projects illustrate the diversity of talent, expertise, and facilities maintained within the Engineering Sciences Directorate

  8. Towards nuclear fusion reactors

    International Nuclear Information System (INIS)

    1993-11-01

    The results of nuclear fusion researches in JAERI are summarized. In this report, following themes are collected: the concept of fusion reactor (including ITER), fusion reactor safety, plasma confinement, fusion reactor equipment, and so on. Includes glossary. (J.P.N.)

  9. Fusion Canada issue 28

    International Nuclear Information System (INIS)

    1995-06-01

    A short bulletin from the National Fusion Program highlighting in this issue the Canada - US fusion meeting in Montreal, fusion breeder work in Chile, new management at CFFTP, fast electrons in tokamaks: new data from TdeV, a program review of CCFM and Velikhov to address Montreal fusion meeting. 1 fig

  10. Fusion systems engineering

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Summaries of research are included for each of the following topics: (1) fusion reactor systems studies, (2) development of blanket processing technology for fusion reactors, (3) safety studies of fusion concepts, (4) the MACK/MACKLIB system for nuclear response functions, and (5) energy storage and power supply systems for fusion reactors

  11. Periodismo virtual

    Directory of Open Access Journals (Sweden)

    Carlos Morales

    2015-01-01

    Full Text Available El periodismo virtual se produce en diarios que no ofrecen noticias (concebidas como versión o reflejo de la realidad sino que crean sus propias ficciones, especialmente en primeras planas. El autor del artículo señala que esto esta sucediendo en LA NACIÓN de San José de Costa Rica, diario premiado por la inefable Sociedad Interamericana de Prensa - SIP - y periódico económicamente más importante del país.

  12. Cold nuclear fusion

    Energy Technology Data Exchange (ETDEWEB)

    Tsyganov, E.N., E-mail: edward.tsyganov@coldfusion-power.com [Cold Fusion Power, International (United States); Bavizhev, M.D. [LLC “Radium”, Moscow (Russian Federation); Buryakov, M.G. [Joint Institute for Nuclear Research (JINR), Dubna (Russian Federation); Dabagov, S.B. [RAS P.N. Lebedev Physical Institute, Leninsky pr. 53, 119991 Moscow (Russian Federation); National Research Nuclear University MEPhI, Kashirskoe shosse 31, 115409 Moscow (Russian Federation); Golovatyuk, V.M.; Lobastov, S.P. [Joint Institute for Nuclear Research (JINR), Dubna (Russian Federation)

    2015-07-15

    If target deuterium atoms were implanted in a metal crystal in accelerator experiments, a sharp increase in the probability of DD-fusion reaction was clearly observed when compared with the reaction’s theoretical value. The electronic screening potential, which for a collision of free deuterium atoms is about 27 eV, reached 300–700 eV in the case of the DD-fusion in metallic crystals. These data leads to the conclusion that a ban must exist for deuterium atoms to be in the ground state 1s in a niche filled with free conduction electrons. At the same time, the state 2p whose energy level is only 10 eV above that of state 1s is allowed in these conditions. With anisotropy of 2p, 3p or above orbitals, their spatial positions are strictly determined in the lattice coordinate system. When filling out the same potential niches with two deuterium atoms in the states 2p, 3p or higher, the nuclei of these atoms can be permanently positioned without creating much Coulomb repulsion at a very short distance from each other. In this case, the transparency of the potential barrier increases dramatically compared to the ground state 1s for these atoms. The probability of the deuterium nuclei penetrating the Coulomb barrier by zero quantum vibration of the DD-system also increases dramatically. The so-called cold nuclear DD-fusion for a number of years was registered in many experiments, however, was still rejected by mainstream science for allegedly having no consistent scientific explanation. Finally, it received the validation. Below, we outline the concept of this explanation and give the necessary calculations. This paper also considers the further destiny of the formed intermediate state of {sup 4}He{sup ∗}.

  13. The National Ignition Facility. The path to ignition and inertial fusion energy

    International Nuclear Information System (INIS)

    Eric Storm

    2010-01-01

    will focus the world's attention on the possibility of IFE as a virtually inexhaustible, carbon free, energy option. This talk will summarize the capabilities of NIF, discuss NIF ignition, NIF's experimental program in HED science and the potential for laser-based fusion energy.

  14. Fusion systems engineering

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Research during this report period has covered the following areas: (1) fusion reactor systems studies, (2) development of blanket processing technology for fusion reactors, (3) safety studies of fusion concepts, (4) MACKLIB-IV, a new library of nuclear response functions, (5) energy storage and power supply requirements for commercial fusion reactors, (6) blanket/shield design evaluation for commercial fusion reactors, and (7) cross section measurements, evaluations, and techniques

  15. Fusion fuel and renewables

    International Nuclear Information System (INIS)

    Entler, Slavomir

    2015-01-01

    It is shown that fusion fuel meets all aspects applied when defining renewables. A table of definitions of renewables is presented. The sections of the paper are as follows: An industrial renewable source; Nuclear fusion; Current situation in research; Definitions of renewable sources; Energy concept of nuclear fusion; Fusion fuel; Natural energy flow; Environmental impacts; Fusion fuel assessment; Sustainable power; and Energy mix from renewables. (P.A.)

  16. Approximation of the economy of fusion energy

    Czech Academy of Sciences Publication Activity Database

    Entler, Slavomír; Horáček, Jan; Dlouhý, T.; Dostál, V.

    2018-01-01

    Roč. 152, June (2018), s. 489-497 ISSN 0360-5442 Grant - others:AV ČR(CZ) StrategieAV21/2 Program:StrategieAV Institutional support: RVO:61389021 Keywords : Nuclear fusion * Fusion energy * Economy * NPV * LCOE * External costs Subject RIV: JF - Nuclear Energetics OBOR OECD: Thermodynamics Impact factor: 4.520, year: 2016 https://www.sciencedirect.com/science/article/pii/S0360544218305395

  17. Cold fusion

    International Nuclear Information System (INIS)

    Bush, R.T.

    1991-01-01

    The transmission resonance model (TRM) is combined with some electrochemistry of the cathode surface and found to provide a good fit to new data on excess heat. For the first time, a model for cold fusion not only fits calorimetric data but also predicts optimal trigger points. This suggests that the model is meaningful and that the excess heat phenomenon claimed by Fleischmann and Pons is genuine. A crucial role is suggested for the overpotential and, in particular, for the concentration overpotential, i.e., the hydrogen overvoltage. Self-similar geometry, or scale invariance, i.e., a fractal nature, is revealed by the relative excess power function. Heat bursts are predicted with a scale invariance in time, suggesting a possible link between the TRM and chaos theory. The model describes a near-surface phenomenon with an estimated excess power yield of ∼1 kW/cm 3 Pd, as compared to 50 W/cm 3 of reactor core for a good fission reactor. Transmission resonance-induced nuclear transmutation, a new type of nuclear reaction, is strongly suggested with two types emphasized: transmission resonance-induced neutron transfer reactions yielding essentially the same end result as Teller's hypothesized catalytic neutron transfer and a three-body reaction promoted by standing de Broglie waves. In this paper suggestions for the anomalous production of heat, particles, and radiation are given

  18. Fusion energy

    International Nuclear Information System (INIS)

    1990-09-01

    The main purpose of the International Thermonuclear Experimental Reactor (ITER) is to develop an experimental fusion reactor through the united efforts of many technologically advanced countries. The ITER terms of reference, issued jointly by the European Community, Japan, the USSR, and the United States, call for an integrated international design activity and constitute the basis of current activities. Joint work on ITER is carried out under the auspices of the International Atomic Energy Agency (IAEA), according to the terms of quadripartite agreement reached between the European Community, Japan, the USSR, and the United States. The site for joint technical work sessions is at the MaxPlanck Institute of Plasma Physics. Garching, Federal Republic of Germany. The ITER activities have two phases: a definition phase performed in 1988 and the present design phase (1989--1990). During the definition phase, a set of ITER technical characteristics and supporting research and development (R ampersand D) activities were developed and reported. The present conceptual design phase of ITER lasts until the end of 1990. The objectives of this phase are to develop the design of ITER, perform a safety and environmental analysis, develop site requirements, define future R ampersand D needs, and estimate cost, manpower, and schedule for construction and operation. A final report will be submitted at the end of 1990. This paper summarizes progress in the ITER program during the 1989 design phase

  19. The Broader Spectrum of Magnetic Configurations for Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Prager, S C [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Ryutov, D D [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2012-09-15

    Over the decades, a large array of magnetic configurations has been studied, producing a huge amount of fusion plasma science. As configurations are developed, information and techniques learned through one configuration influence the development of other configurations. In this way, configurations evolve unexpectedly in response to new information. Configurations that were at a pause can become unstuck by new discoveries, and configurations that appeared promising for fusion energy can become unattractive as new limits are uncovered. The plasma science of fusion energy is sufficiently complex that, as we approach ever closer to practical fusion power, the need for potential contributions of broad research of multiple magnetic configurations remains strong. (author)

  20. Offline fusion of co-registered intravascular ultrasound and frequency domain optical coherence tomography images for the analysis of human atherosclerotic plaques

    DEFF Research Database (Denmark)

    Räber, Lorenz; Heo, Jung Ho; Radu, Maria D

    2012-01-01

    To demonstrate the feasibility and potential usefulness of an offline fusion of matched optical coherence tomography (OCT) and intravascular ultrasound (IVUS)/virtual histology (IVUS-VH) images.......To demonstrate the feasibility and potential usefulness of an offline fusion of matched optical coherence tomography (OCT) and intravascular ultrasound (IVUS)/virtual histology (IVUS-VH) images....

  1. Electrochemically induced nuclear fusion of deuterium

    International Nuclear Information System (INIS)

    Jorne, J.

    1990-01-01

    In this paper cold fusion of deuterium by electrolysis of heavy water onto a palladium (or titanium) cathode is reported. Contrary to the assumption of Fleishmann and Pons that electrochemically compressed D + exists inside the palladium cathode, the observations of Jones et al. can be partially explained by the simultaneous presence of deuteride D - and the highly mobile positive deuterium ion D + . The opposite charges reduce the intranuclear distance and enhance the tunneling fusion rate. Furthermore, alloying of lithium with palladium can stabilize a negatively charged deuteride ion due to the salinelike character of lithium deuteride. The enormous pressure (or fugacity), achieved by the applied electrochemical potential (10 30 atm), is a virtual pressure that would have existed in equilibrium with palladium deuteride (PdD x ). It is speculated that nuclear fusion occurs at the surface, and the PdD x serves as a reservoir for the supply of deuteride ions

  2. The fusion-hydrogen energy system

    International Nuclear Information System (INIS)

    Williams, L.O.

    1994-01-01

    This paper will describe the structure of the system, from energy generation and hydrogen production through distribution to the end users. It will show how stationary energy users will convert to hydrogen and will outline ancillary uses of hydrogen to aid in reducing other forms of pollution. It will show that the adoption of the fusion hydrogen energy system will facilitate the use of renewable energy such as wind and solar. The development of highly efficient fuel cells for production of electricity near the user and for transportation will be outlined. The safety of the hydrogen fusion energy system is addressed. This paper will show that the combination of fusion generation combined with hydrogen distribution will provide a system capable of virtually eliminating the negative impact on the environment from the use of energy by humanity. In addition, implementation of the energy system will provide techniques and tools that can ameliorate environmental problems unrelated to energy use. (Author)

  3. Trust and virtual worlds

    DEFF Research Database (Denmark)

    Ess, Charles; Thorseth, May

    2011-01-01

    We collect diverse philosophical analyses of the issues and problems clustering around trust online with specific attention to establishing trust in virtual environments. The book moves forward important discussions of how virtual worlds and virtuality are to be defined and understood; the role o...... by virtuality, such as virtual child pornography. The introduction further develops a philosophical anthropology, rooted in Kantian ethics, phenomenology, virtue ethics, and feminist perspectives, that grounds a specific approach to ethical issues in virtual environments....

  4. Realidad virtual y materialidad

    OpenAIRE

    Pérez Herranz, Fernando Miguel

    2009-01-01

    1. Fenomenología de partida: Real / Simbólico / Imaginario 2. Realidad 3. Virtual 3.1. Virtual / real / posible / probable 3.2. Los contextos de la realidad virtual A) REALIDAD VIRTUAL INMERSIVA B) REALIDAD VIRTUAL NO INMERSIVA C) REALIDAD VIRTUAL Y DIGITALIZACIÓN 3.3. Cruce virtual / real 3.4. Cuestiones filosóficas 4. Materialidad 5. Materialidad y descentramiento 5.1. Ejemplos de descentramiento en los contextos de Realidad Virtual A’) DUALISMO CARTESIANO, CUERPO Y «CIBORG » B’) EL ESPÍRIT...

  5. Realidad virtual

    OpenAIRE

    García García, Alberto Luis

    2000-01-01

    Las nuevas tecnologías, basadas en el mundo digital propuesto por la informática, están cambiando nuestra forma de entender el mundo, tanto desde el punto de vista sociocultural como económico. La realidad virtual se vale de códigos icónicos, y con ello se convierte en un paso más hacia la supresión de toda barrera linguística, para llegar a conseguir la gran comunidad global. Es necesario conocer en toda su extensión, una tecnología que está cambiando el modo de comunicarnos. Estos son, a gr...

  6. Alternate fusion -- continuous inertial confinement

    International Nuclear Information System (INIS)

    Barnes, D.C.; Turner, L.; Nebel, R.A.

    1993-01-01

    The authors argue that alternate approaches to large tokamak confinement are appropriate for fusion applications if: (1) They do not require magnetic confinement of a much higher quality than demonstrated in tokamaks; (2) Their physics basis may be succinctly stated and experimentally tested; (3) They offer near-term applications to important technical problems; and (4) Their cost to proof-of-principle is low enough to be consistent with current budget realities. An approach satisfying all of these criteria is presented. Fusion systems based on continuous inertial confinement are described. In these approaches, the inertia of a nonequilibrium plasma is used to produce local concentrations of plasma density in space and/or time. One implementation (inertial electrostatic confinement) which has been investigated both experimentally and theoretically uses a system of electrostatic grids to accelerate plasma ions toward a spherical focus. This system produced a steady 2 x 10 10 D-T neutrons/second with an overall fusion gain of 10 -5 in a sphere of about 9 cm radius. Recent theoretical developments show how to raise the fusion gain to order unity or greater by replacing the internal grids by a combination of applied magnetic and electrostatic fields. In these approaches, useful thermonuclear conditions may be produced in a system as small as a few mm radius. Confinement is that of a nonneutralized plasma. A pure electron plasma with a radial beam velocity distribution is absolutely confined by an applied Penning trap field. Spherical convergence of the confined electrons forms a deep virtual cathode near r = 0, in which thermonuclear ions are absolutely confined at useful densities. The authors have examined the equilibrium, stability, and classical relaxation of such systems, and obtained many positive physics results. Equilibria exist for both pure electron and partially charge-neutralized systems with arbitrarily high core-plasma densities

  7. Virtual Reality and the Virtual Library.

    Science.gov (United States)

    Oppenheim, Charles

    1993-01-01

    Explains virtual reality, including proper and improper uses of the term, and suggests ways that libraries might be affected by it. Highlights include elements of virtual reality systems; possible virtual reality applications, including architecture, the chemical industry, transport planning, armed forces, and entertainment; and the virtual…

  8. From virtual environment to virtual community

    NARCIS (Netherlands)

    Nijholt, Antinus; Terano, Takao; Nishida, Toyoaki; Namatame, Akira; Tsumoto, Syusaku; Ohsawa, Yukido; Washio, Takashi

    2001-01-01

    We discuss a virtual reality theater environment and its transition to a virtual community by adding domain agents and by allowing multiple users to visit this environment. The environment has been built using VRML (Virtual Reality Modeling Language). We discuss how our ideas about this environment

  9. Data management on the fusion computational pipeline

    International Nuclear Information System (INIS)

    Klasky, S; Beck, M; Bhat, V; Feibush, E; Ludaescher, B; Parashar, M; Shoshani, A; Silver, D; Vouk, M

    2005-01-01

    Fusion energy science, like other science areas in DOE, is becoming increasingly data intensive and network distributed. We discuss data management techniques that are essential for scientists making discoveries from their simulations and experiments, with special focus on the techniques and support that Fusion Simulation Project (FSP) scientists may need. However, the discussion applies to a broader audience since most of the fusion SciDAC's, and FSP proposals include a strong data management component. Simulations on ultra scale computing platforms imply an ability to efficiently integrate and network heterogeneous components (computational, storage, networks, codes, etc), and to move large amounts of data over large distances. We discuss the workflow categories needed to support such research as well as the automation and other aspects that can allow an FSP scientist to focus on the science and spend less time tending information technology

  10. FUSION technology programme 2003-2006

    International Nuclear Information System (INIS)

    Karttunen, S.; Rantamaeki, K.

    2007-01-01

    This report summarises the results of the FUSION technology programme during the period between 2003-2006. FUSION is a continuation of the previous FFusion and FFusion2 technology programmes that took place from 1993 to 2002. The FUSION technology programme was fully integrated into the European Fusion Programme in the sixth Framework Programme (Euratom), through the bilateral Contract of Association between Euratom and Tekes and the multilateral European Fusion Development Agreement (EFDA). The Association Euratom-Tekes was established in 1995. At the moment, there are 26 Euratom Fusion associations working together as an European Research Area. There are four research areas in the FUSION technology programme: (1) fusion physics and plasma engineering, (2) vessel/in-vessel materials, joints and components, (3) in-vessel remote handling systems, and (4) system studies. The FUSION team consists of research groups from the Technical Research Centre of Finland (VTT), the Helsinki, Tampere and Lappeenranta Universities of Technology and the University of Helsinki. The co-ordinating unit is VTT. A key element of the FUSION programme is the close collaboration between VTT, the universities and the industry, which has resulted in dynamic and sufficiently large research teams to tackle challenging research and development projects. The distribution of work between research institutes and industry has also been clear. Industrial activities related to the FUSION programme are co-ordinated through the 'Big Science' Project by Finpro and Prizztech. The total expenditure of the FUSION technology programme for 2003-2006 amounted to euro 14,9 million in research work at VTT and the universities with an additional euro 3,5 million for projects by the Finnish companies including the industry co-ordination. The funding of the FUSION programme and related industrial projects was mainly provided by Tekes (37%), Euratom (38%) and the participating institutes and industry (24%). The

  11. Fusion technology: The Iter fusion experiment

    International Nuclear Information System (INIS)

    Dietz, K.J.

    1994-01-01

    Plans for the Iter international fusion experiment, in which the European Union, Japan, Canada, Russia, Sweden, Switzerland, and the USA cooperate, were begun in 1985, and construction work started in early 1994. These activities serve for the preparation of the design and construction documents for a research reactor in which a stable fusion plasma is to be generated. This is to be the basis for the construction of a fusion reactor for electricity generation. Preparatory work was performed in the Tokamak experiments with JET and TFTR. The fusion power of 1.5 GW will be attained, thus enabling Iter to keep a deuterium-tritium plasma burning. (orig.) [de

  12. Microsoft Virtualization Master Microsoft Server, Desktop, Application, and Presentation Virtualization

    CERN Document Server

    Olzak, Thomas; Boomer, Jason; Keefer, Robert M

    2010-01-01

    Microsoft Virtualization helps you understand and implement the latest virtualization strategies available with Microsoft products. This book focuses on: Server Virtualization, Desktop Virtualization, Application Virtualization, and Presentation Virtualization. Whether you are managing Hyper-V, implementing desktop virtualization, or even migrating virtual machines, this book is packed with coverage on all aspects of these processes. Written by a talented team of Microsoft MVPs, Microsoft Virtualization is the leading resource for a full installation, migration, or integration of virtual syste

  13. Sex determination using the Probabilistic Sex Diagnosis (DSP: Diagnose Sexuelle Probabiliste) tool in a virtual environment.

    Science.gov (United States)

    Chapman, Tara; Lefevre, Philippe; Semal, Patrick; Moiseev, Fedor; Sholukha, Victor; Louryan, Stéphane; Rooze, Marcel; Van Sint Jan, Serge

    2014-01-01

    The hip bone is one of the most reliable indicators of sex in the human body due to the fact it is the most dimorphic bone. Probabilistic Sex Diagnosis (DSP: Diagnose Sexuelle Probabiliste) developed by Murail et al., in 2005, is a sex determination method based on a worldwide hip bone metrical database. Sex is determined by comparing specific measurements taken from each specimen using sliding callipers and computing the probability of specimens being female or male. In forensic science it is sometimes not possible to sex a body due to corpse decay or injury. Skeletalization and dissection of a body is a laborious process and desecrates the body. There were two aims to this study. The first aim was to examine the accuracy of the DSP method in comparison with a current visual sexing method on sex determination. A further aim was to see if it was possible to virtually utilise the DSP method on both the hip bone and the pelvic girdle in order to utilise this method for forensic sciences. For the first part of the study, forty-nine dry hip bones of unknown sex were obtained from the Body Donation Programme of the Université Libre de Bruxelles (ULB). A comparison was made between DSP analysis and visual sexing on dry bone by two researchers. CT scans of bones were then analysed to obtain three-dimensional (3D) virtual models and the method of DSP was analysed virtually by importing the models into a customised software programme called lhpFusionBox which was developed at ULB. The software enables DSP distances to be measured via virtually-palpated bony landmarks. There was found to be 100% agreement of sex between the manual and virtual DSP method. The second part of the study aimed to further validate the method by analysing thirty-nine supplementary pelvic girdles of known sex blind. There was found to be a 100% accuracy rate further demonstrating that the virtual DSP method is robust. Statistically significant differences were found in the identification of sex

  14. Review of fusion synfuels

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1980-01-01

    Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high-temperature electrolysis of approx. 50 to 65% are projected for fusion reactors using high-temperatures blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion

  15. Barriers to fusion

    International Nuclear Information System (INIS)

    Berriman, A.C.; Butt, R.D.; Dasgupta, M.; Hinde, D.J.; Morton, C.R.; Newton, J.O.

    1999-01-01

    The fusion barrier is formed by the combination of the repulsive Coulomb and attractive nuclear forces. Recent research at the Australian National University has shown that when heavy nuclei collide, instead of a single fusion barrier, there is a set of fusion barriers. These arise due to intrinsic properties of the interacting nuclei such deformation, rotations and vibrations. Thus the range of barrier energies depends on the properties of both nuclei. The transfer of matter between nuclei, forming a neck, can also affect the fusion process. High precision data have been used to determine fusion barrier distributions for many nuclear reactions, leading to new insights into the fusion process

  16. European Virtual Atomic And Molecular Data Center - VAMDC

    Science.gov (United States)

    Dimitrijevic, M. S.; Sahal-Brechot, S.; Kovacevic, A.; Jevremovic, D.; Popovic, L. C.

    2010-07-01

    Reliable atomic and molecular data are of great importance for different applications in astrophysics, atmospheric physics, fusion, environmental sciences, combustion chemistry, and in industrial applications from plasmas and lasers to lighting. Currently, very important resources of such data are highly fragmented, presented in different, nonstandardized ways, available through a variety of highly specialized and often poorly documented interfaces, so that the full exploitation of all their scientific worth is limited, hindering research in many topics like e.g. the characterization of extrasolar planets, understanding the chemistry of our local solar system and of the wider universe, the study of the terrestrial atmosphere and quantification of climate change; the development of the fusion rersearch, etc. The Virtual Atomic and Molecular Data Centre (http://www.vamdc.eu, VAMDC) is an European Union funded FP7 project aiming to build a secure, documented, flexible and interoperable e-science environment-based interface to existing atomic and molecular data. It will also provide a forum for training potential users and dissemination of expertise worldwide. Partners in the Consortium of the Project are: 1) Centre National de Recherche Scientifique - CNRS (Paris, Reims, Grenoble, Bordeaux, Dijon, Toulouse); 2) The Chancellor, Masters and Scholars of the University of Cambridge - CMSUC; 3) University College London - UCL; 4) Open University - OU; (Milton Keynes, England); 5) Universitaet Wien - UNIVIE; 6) Uppsala Universitet - UU; 7) Universitaet zu Koeln - KOLN; 8) Istituto Nazionale di Astrofisica - INAF (Catania, Cagliari); 9) Queen's University Belfast - QUB; 10) Astronomska Opservatorija - AOB (Belgrade, Serbia); 11) Institute of Spectroscopy RAS - ISRAN (Troitsk, Russia); 12) Russian Federal Nuclear Center - All-Russian Institute of Technical Physics - RFNC-VNIITF (Snezhinsk, Chelyabinsk Region, Russia; 13) Institute of Atmospheric Optics - IAO (Tomsk, Russia

  17. Evolving Capabilities for Virtual Globes

    Science.gov (United States)

    Glennon, A.

    2006-12-01

    Though thin-client spatial visualization software like Google Earth and NASA World Wind enjoy widespread popularity, a common criticism is their general lack of analytical functionality. This concern, however, is rapidly being addressed; standard and advanced geographic information system (GIS) capabilities are being developed for virtual globes--though not centralized into a single implementation or software package. The innovation is mostly originating from the user community. Three such capabilities relevant to the earth science, education, and emergency management communities are modeling dynamic spatial phenomena, real-time data collection and visualization, and multi-input collaborative databases. Modeling dynamic spatial phenomena has been facilitated through joining virtual globe geometry definitions--like KML--to relational databases. Real-time data collection uses short scripts to transform user-contributed data into a format usable by virtual globe software. Similarly, collaborative data collection for virtual globes has become possible by dynamically referencing online, multi-person spreadsheets. Examples of these functions include mapping flows within a karst watershed, real-time disaster assessment and visualization, and a collaborative geyser eruption spatial decision support system. Virtual globe applications will continue to evolve further analytical capabilities, more temporal data handling, and from nano to intergalactic scales. This progression opens education and research avenues in all scientific disciplines.

  18. science

    International Development Research Centre (IDRC) Digital Library (Canada)

    David Spurgeon

    Give us the tools: science and technology for development. Ottawa, ...... altered technical rela- tionships among the factors used in the process of production, and the en- .... to ourselves only the rights of audit and periodic substantive review." If a ...... and destroying scarce water reserves, recreational areas and a generally.

  19. Fusion research and technology records in INIS database

    International Nuclear Information System (INIS)

    Hillebrand, C.D.

    1998-01-01

    This article is a summary of a survey study ''''A survey on publications in Fusion Research and Technology. Science and Technology Indicators in Fusion R and T'''' by the same author on Fusion R and T records in the International Nuclear Information System (INIS) bibliographic database. In that study, for the first time, all scientometric and bibliometric information contained in a bibliographic database, using INIS records, is analyzed and quantified, specific to a selected field of science and technology. A variety of new science and technology indicators which can be used for evaluating research and development activities is also presented in that study that study

  20. A small molecule fusion inhibitor of dengue virus.

    Science.gov (United States)

    Poh, Mee Kian; Yip, Andy; Zhang, Summer; Priestle, John P; Ma, Ngai Ling; Smit, Jolanda M; Wilschut, Jan; Shi, Pei-Yong; Wenk, Markus R; Schul, Wouter

    2009-12-01

    The dengue virus envelope protein plays an essential role in viral entry by mediating fusion between the viral and host membranes. The crystal structure of the envelope protein shows a pocket (located at a "hinge" between Domains I and II) that can be occupied by ligand n-octyl-beta-D-glucoside (betaOG). Compounds blocking the betaOG pocket are thought to interfere with conformational changes in the envelope protein that are essential for fusion. Two fusion assays were developed to examine the anti-fusion activities of compounds. The first assay measures the cellular internalization of propidium iodide upon membrane fusion. The second assay measures the protease activity of trypsin upon fusion between dengue virions and trypsin-containing liposomes. We performed an in silico virtual screening for small molecules that can potentially bind to the betaOG pocket and tested these candidate molecules in the two fusion assays. We identified one compound that inhibits dengue fusion in both assays with an IC(50) of 6.8 microM and reduces viral titers with an EC(50) of 9.8 microM. Time-of-addition experiments showed that the compound was only active when present during viral infection but not when added 1h later, in agreement with a mechanism of action through fusion inhibition.