WorldWideScience

Sample records for fusion reactor fueling

  1. Fusion reactor fuel processing

    International Nuclear Information System (INIS)

    Johnson, E.F.

    1972-06-01

    For thermonuclear power reactors based on the continuous fusion of deuterium and tritium the principal fuel processing problems occur in maintaining desired compositions in the primary fuel cycled through the reactor, in the recovery of tritium bred in the blanket surrounding the reactor, and in the prevention of tritium loss to the environment. Since all fuel recycled through the reactor must be cooled to cryogenic conditions for reinjection into the reactor, cryogenic fractional distillation is a likely process for controlling the primary fuel stream composition. Another practical possibility is the permeation of the hydrogen isotopes through thin metal membranes. The removal of tritium from the ash discharged from the power system would be accomplished by chemical procedures to assure physiologically safe concentration levels. The recovery process for tritium from the breeder blanket depends on the nature of the blanket fluids. For molten lithium the only practicable possibility appears to be permeation from the liquid phase. For molten salts the process would involve stripping with inert gas followed by chemical recovery. In either case extremely low concentrations of tritium in the melts would be desirable to maintain low tritium inventories, and to minimize escape of tritium through unwanted permeation, and to avoid embrittlement of metal walls. 21 refs

  2. Fuel cycle problems in fusion reactors

    International Nuclear Information System (INIS)

    Hickman, R.G.

    1976-01-01

    Fuel cycle problems of fusion reactors evolve around the breeding, recovery, containment, and recycling of tritium. These processes are described, and their implications and alternatives are discussed. Technically, fuel cycle problems are solvable; economically, their feasibility is not yet known

  3. Advanced fuels for nuclear fusion reactors

    International Nuclear Information System (INIS)

    McNally, J.R. Jr.

    1974-01-01

    Should magnetic confinement of hot plasma prove satisfactory at high β (16 πnkT//sub B 2 / greater than 0.1), thermonuclear fusion fuels other than D.T may be contemplated for future fusion reactors. The prospect of the advanced fusion fuels D.D and 6 Li.D for fusion reactors is quite promising provided the system is large, well reflected and possesses a high β. The first generation reactions produce the very active, energy-rich fuels t and 3 He which exhibit a high burnup probability in very hot plasmas. Steady state burning of D.D can ensue in a 60 kG field, 5 m reactor for β approximately 0.2 and reflectivity R/sub mu/ = 0.9 provided the confinement time is about 38 sec. The feasibility of steady state burning of 6 Li.D has not yet been demonstrated but many important features of such systems still need to be incorporated in the reactivity code. In particular, there is a need for new and improved nuclear cross section data for over 80 reaction possibilities

  4. Radiolytic production of chemical fuels in fusion reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Fish, J D

    1977-06-01

    Miley's energy flow diagram for fusion reactor systems is extended to include radiolytic production of chemical fuel. Systematic study of the economics and the overall efficiencies of fusion reactor systems leads to a criterion for evaluating the potential of radiolytic production of chemical fuel as a means of enhancing the performance of a fusion reactor system. The ecumenicity of the schema is demonstrated by application to (1) tokamaks, (2) mirror machines, (3) theta-pinch reactors, (4) laser-heated solenoids, and (5) inertially confined, laser-pellet devices. Pure fusion reactors as well as fusion-fission hybrids are considered.

  5. Radiolytic production of chemical fuels in fusion reactor systems

    International Nuclear Information System (INIS)

    Fish, J.D.

    1977-06-01

    Miley's energy flow diagram for fusion reactor systems is extended to include radiolytic production of chemical fuel. Systematic study of the economics and the overall efficiencies of fusion reactor systems leads to a criterion for evaluating the potential of radiolytic production of chemical fuel as a means of enhancing the performance of a fusion reactor system. The ecumenicity of the schema is demonstrated by application to (1) tokamaks, (2) mirror machines, (3) theta-pinch reactors, (4) laser-heated solenoids, and (5) inertially confined, laser-pellet devices. Pure fusion reactors as well as fusion-fission hybrids are considered

  6. Fuel and helium confinement in fusion reactors

    International Nuclear Information System (INIS)

    Houlberg, W.A.; Attenberger, S.E.

    1993-01-01

    An expanded macroscopic model for particle confinement is used to investigate both fuel and helium confinement in reactor plasmas. The authors illustrate the relative effects of external sources of fuel, divertor pumping, and wall and divertory recycle on core, edge and scrape-off layer densities by using separate particle confinement times for open-quote core close-quote fueling (deep pellet or beam penetration, τ c ), open-quote shallow close-quote fueling (shallow pellet penetration or neutral atoms that penetrate the scrape-off layer, τ s ) and fueling in the scrape-off layer (τ sol ). Because τ s is determined by the parallel flow velocity and characteristic distance to the divertor plate, it can be orders of magnitude lower than either τ c or τ sol . A dense scrape-off region, desirable for reduced divertor erosion, leads to a high fraction of the recycled neutrals being ionized in the scrape-off region and poor core fueling efficiency. The overall fueling efficiency can then be dramatically improved with either shallow or deep auxillary fueling. Helium recycle is nearly always coupled to the scrape-off region and does not lead to strong core accumulation unless the helium pumping efficiency is much less than the fuel pumping efficiency, or the plasma preferentially retains helium over hydrogenic ions. Differences between the results of this model, single-τ p macroscopic models, and 1-D and 2-D models are discussed in terms of assumptions and boundary conditions

  7. Development of dynamic simulation code for fuel cycle fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Isao; Seki, Yasushi [Department of Fusion Engineering Research, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki (Japan); Sasaki, Makoto; Shintani, Kiyonori; Kim, Yeong-Chan

    1999-02-01

    A dynamic simulation code for fuel cycle of a fusion experimental reactor has been developed. The code follows the fuel inventory change with time in the plasma chamber and the fuel cycle system during 2 days pulse operation cycles. The time dependence of the fuel inventory distribution is evaluated considering the fuel burn and exhaust in the plasma chamber, purification and supply functions. For each subsystem of the plasma chamber and the fuel cycle system, the fuel inventory equation is written based on the equation of state considering the fuel burn and the function of exhaust, purification, and supply. The processing constants of subsystem for steady states were taken from the values in the ITER Conceptual Design Activity (CDA) report. Using this code, the time dependence of the fuel supply and inventory depending on the burn state and subsystem processing functions are shown. (author)

  8. Fusion reactor design studies

    International Nuclear Information System (INIS)

    Emmert, G.A.; Kulcinski, G.L.; Santarius, J.F.

    1990-01-01

    This report discusses the following topics on the ARIES tokamak: systems; plasma power balance; impurity control and fusion ash removal; fusion product ripple loss; energy conversion; reactor fueling; first wall design; shield design; reactor safety; and fuel cost and resources

  9. Advanced nuclear fuel production by using fission-fusion hybrid reactor

    International Nuclear Information System (INIS)

    Al-Kusayer, T.A.; Sahin, S.; Abdulraoof, M.

    1993-01-01

    Efforts are made at the College of Engineering, King Saud University, Riyadh to lay out the main structure of a prototype experimental fusion and fusion-fission (hybrid) reactor blanket in cylindrical geometry. The geometry is consistent with most of the current fusion and hybrid reactor design concepts in respect of the neutronic considerations. Characteristics of the fusion chamber, fusion neutrons and the blanket are provided. The studies have further shown that 1 GWe fission-fusion reactor can produce up to 957 kg/year which is enough to fuel five light water reactors of comparable power. Fuel production can be increased further. 29 refs

  10. Deuterium-tritium fuel self-sufficiency in fusion reactors

    International Nuclear Information System (INIS)

    Abdou, M.A.; Vold, E.L.; Gung, C.Y.; Youssef, M.Z.; Shin, K.

    1986-01-01

    Conditions necessary to achieve deuterium-tritium fuel self-sufficiency in fusion reactors are derived through extensive modeling and calculations of the required and achievable tritium breeding ratios as functions of the many reactor parameters and candidate design concepts. It is found that the excess margin in the breeding potential is not sufficient to cover all present uncertainties. Thus, the goal of attaining fuel self-sufficiency significantly restricts the allowable parameter space and design concepts. For example, the required breeding ratio can be reduced by (A) attaining high tritium fractional burnup, >5%, in the plasma, (B) achieving very high reliability, >99%, and very short times, <1 day, to fix failures in the tritium processing system, and (C) ensuring that nonradioactive decay losses from all subsystems are extremely low, e.g., <0.1% for the plasma exhaust processing system. The uncertainties due to nuclear data and calculational methods are found to be significant, but they are substantially smaller than those due to uncertainties in system definition

  11. Preliminary neutronics calculation of fusion-fission hybrid reactor breeding spent fuel assembly

    International Nuclear Information System (INIS)

    Ma Xubo; Chen Yixue; Gao Bin

    2013-01-01

    The possibility of using the fusion-fission hybrid reactor breeding spent fuel in PWR was preliminarily studied in this paper. According to the fusion-fission hybrid reactor breeding spent fuel characteristics, PWR assembly including fusion-fission hybrid reactor breeding spent fuel was designed. The parameters such as fuel temperature coefficient, moderator temperature coefficient and their variation were investigated. Results show that the neutron properties of uranium-based assembly and hybrid reactor breeding spent fuel assembly are similar. The design of this paper has a smaller uniformity coefficient of power at the same fissile isotope mass percentage. The results will provide technical support for the future fusion-fission hybrid reactor and PWR combined with cycle system. (authors)

  12. Influence of Impurities on the Fuel Retention in Fusion Reactors

    OpenAIRE

    Reinhart, Michael

    2015-01-01

    The topic of this thesis is the influence of plasma impurities on the hydrogen retentionin metals, in the scope of plasma-wall-interaction research for fusion reactors.This is addressed experimentally and by modelling. The mechanisms of the hydrogenretention are influenced by various parameters like the wall temperature, ionenergy, flux and fluence as well as the plasma composition. The plasma compositionis a relevant factor for hydrogen retention in fusion reactors, as their plasma willalso ...

  13. Preliminary study of the economics of enriching PWR fuel with a fusion hybrid reactor

    International Nuclear Information System (INIS)

    Kelly, J.L.

    1978-09-01

    This study is a comparison of the economics of enriching uranium oxide for pressurized water reactor (PWR) power plant fuel using a fusion hybrid reactor versus the present isotopic enrichment process. The conclusion is that privately owned hybrid fusion reactors, which simultaneously produce electrical power and enrich fuel, are competitive with the gaseous diffusion enrichment process if spent PWR fuel rods are reenriched without refabrication. Analysis of irradiation damage effects should be performed to determine if the fuel rod cladding can withstand the additional irradiation in the hybrid and second PWR power cycle. The cost competitiveness shown by this initial study clearly justifies further investigations

  14. The fusion reactor

    International Nuclear Information System (INIS)

    Brennan, M.H.

    1974-01-01

    Basic principles of the fusion reactor are outlined. Plasma heating and confinement schemes are described. These confinement systems include the linear Z pinch, magnetic mirrors and Tokamaks. A fusion reactor is described and a discussion is given of its environmental impact and its fuel situation. (R.L.)

  15. Capabilities of a DT tokamak fusion neutron source for driving a spent nuclear fuel transmutation reactor

    International Nuclear Information System (INIS)

    Stacey, W.M.

    2001-01-01

    The capabilities of a DT fusion neutron source for driving a spent nuclear fuel transmutation reactor are characterized by identifying limits on transmutation rates that would be imposed by tokamak physics and engineering limitations on fusion neutron source performance. The need for spent nuclear fuel transmutation and the need for a neutron source to drive subcritical fission transmutation reactors are reviewed. The likely parameter ranges for tokamak neutron sources that could produce an interesting transmutation rate of 100s to 1000s of kg/FPY (where FPY stands for full power year) are identified (P fus ∼ 10-100 MW, β N ∼ 2-3, Q p ∼ 2-5, R ∼ 3-5 m, I ∼ 6-10 MA). The electrical and thermal power characteristics of transmutation reactors driven by fusion and accelerator spallation neutron sources are compared. The status of fusion development vis-a-vis a neutron source is reviewed. (author)

  16. Mirror fusion reactors

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Conceptual design studies were made of fusion reactors based on the three current mirror-confinement concepts: the standard mirror, the tandem mirror, and the field-reversed mirror. Recent studies of the standard mirror have emphasized its potential as a fusion-fission hybrid reactor, designed to produce fuel for fission reactors. We have designed a large commercial hybrid and a small pilot-plant hybrid based on standard mirror confinement. Tandem mirror designs include a commercial 1000-MWe fusion power plant and a nearer term tandem mirror hybrid. Field-reversed mirror designs include a multicell commercial reactor producing 75 MWe and a single-cell pilot plant

  17. Mirror fusion reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Moir, R.W.

    1978-01-01

    We have carried out conceptual design studies of fusion reactors based on the three current mirror confinement concepts: the standard mirror, the tandem mirror, and the field-reversed mirror. Recent studies of the standard mirror have emphasized its potential as a fusion-fission hybrid reactor, designed to produce fission fuel for fission reactors. We have designed a large commercial hybrid based on standard mirror confinement, and also a small pilot plant hybrid. Tandem mirror designs include a commercial 1000 MWe fusion power plant and a nearer term tandem mirror hybrid. Field-reversed mirror designs include a multicell commercial reactor producing 75 MWe and a single cell pilot plant

  18. Design study of a fusion-driven tokamak hybrid reactor for fissile fuel production. Final report

    International Nuclear Information System (INIS)

    Rose, R.P.

    1979-05-01

    This study evaluated conceptual approaches for a tokamak fusion-driven fuel producing reactor. The conceptual design of this hybrid reactor was based on using projected state-of-the-art technology for the late 1980s. This reactor would be a demonstration plant and, therefore, first-of-a-kind considerations have been included. The conceptual definitions of two alternatives for the fusion driver were evaluated. A Two-Component Tokamak (TCT) concept, based on the TFTR plasma physics parameters, was compared to a Beam-Driven Thermonuclear (BDTN) concept, based on the USSR T-20 plasma physics parameters

  19. Design and cost evaluation of generic magnetic fusion reactor using the D-D fuel cycle

    International Nuclear Information System (INIS)

    Shannon, T.E.

    1988-01-01

    A fusion reactor systems code has been developed to evaluate the economic potential of power generation from a toroidal magnetic fusion reactor using deuterium-deuterium (D-D) fuel. A method similar to that developed by J. Sheffield, of the Oak Ridge National Laboratory, for deuterium-tritium (D-T) fuel was used to model the generic aspects of magnetic fusion reactors. The results of the systems study and cost evaluation show that the cost of electricity produced by a D-D reactor is two times higher than that produced by an equivalent D-T reactor design. The significant finding of the study is that the cost ratio between the D-D and D-T systems can potentially be reduced to 1.5 by improved engineering design and even lower by better physics performance. The absolute costs for both systems at this level are close to the costs for nuclear fission and fossil fuel plants. A design for a magnet reinforced with advanced composite materials is presented as an example of an engineering improvement that could reduce the cost of electricity produced by both reactors. However, since the magnets in the D-D reactor are much larger than in the K-T reactor, the cost ratio of the two systems is significantly reduced

  20. Safety analysis on tokamak helium cooling slab fuel fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Wei Renjie; Jian Hongbing

    1992-01-01

    The thermal analyses for steady state, depressurization and total loss of flow in the tokamak helium cooling slab fuel element fusion-fission hybrid reactor are presented. The design parameters, computed results of HYBRID program and safety evaluation for conception design are given. After all, it gives some recommendations for developing the design

  1. Development of dynamic simulation code for fuel cycle of fusion reactor

    International Nuclear Information System (INIS)

    Aoki, Isao; Seki, Yasushi; Sasaki, Makoto; Shintani, Kiyonori; Kim, Yeong-Chan

    1999-02-01

    A dynamic simulation code for fuel cycle of a fusion experimental reactor has been developed. The code follows the fuel inventory change with time in the plasma chamber and the fuel cycle system during 2 days pulse operation cycles. The time dependence of the fuel inventory distribution is evaluated considering the fuel burn and exhaust in the plasma chamber, purification and supply functions. For each subsystem of the plasma chamber and the fuel cycle system, the fuel inventory equation is written based on the equation of state considering the fuel burn and the function of exhaust, purification, and supply. The processing constants of subsystem for steady states were taken from the values in the ITER Conceptual Design Activity (CDA) report. Using this code, the time dependence of the fuel supply and inventory depending on the burn state and subsystem processing functions are shown. (author)

  2. Development of dynamic simulation code for fuel cycle of fusion reactor. 1. Single pulse operation simulation

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Isao; Seki, Yasushi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Sasaki, Makoto; Shintani, Kiyonori; Kim, Yeong-Chan

    1997-11-01

    A dynamic simulation code for the fuel cycle of a fusion experimental reactor has been developed. The code follows the fuel inventory change with time in the plasma chamber and the fuel cycle system during a single pulse operation. The time dependence of the fuel inventory distribution is evaluated considering the fuel burn and exhaust in the plasma chamber, purification and supply functions. For each subsystem of the plasma chamber and the fuel cycle system, the fuel inventory equation is written based on the equation of state considering the function of fuel burn, exhaust, purification, and supply. The processing constants of subsystem for the steady states were taken from the values in the ITER Conceptual Design Activity (CDA) report. Using the code, the time dependence of the fuel supply and inventory depending on the burn state and subsystem processing functions are shown. (author)

  3. Influence of impurities on the fuel retention in fusion reactors

    International Nuclear Information System (INIS)

    Reinhart, Michael

    2015-01-01

    The topic of this thesis is the influence of plasma impurities on the hydrogen retention in metals, in the scope of plasma-wall-interaction research for fusion reactors. This is addressed experimentally and by modelling. The mechanisms of the hydrogen retention are influenced by various parameters like the wall temperature, ion energy, flux and fluence as well as the plasma composition. The plasma composition is a relevant factor for hydrogen retention in fusion reactors, as their plasma will also contain impurities like helium or seeded impurities like argon. The experiments treated in this thesis were performed in the linear plasma generator PSI-2 at Forschungszentrum Juelich, and are divided in 3 parts: The first experiments cover the plasma diagnostics, most importantly the measurement of the impurity ion concentration in the plasma by optical emission spectroscopy. This is a requirement for the later experiments with mixed plasmas. Diagnostics like Langmuir probe measurements are not applicable for this task because they do not distinguish different ionic species. The results also show that the impurity ion concentrations cannot be simply concluded from the neutral gas input to the plasma source, because the relation between the neutral gas concentration and impurity ion concentration is not linear. The second and main part of the experiments covers the exposure of tungsten samples to deuterium plasmas. In the experiments, the impurity ion type and concentration is variated, to verify the general influence of helium and argon on the deuterium retention in tungsten samples exposed at low temperatures. It shows that helium impurities reduce the amount of retained deuterium by a factor of 3, while argon impurities slightly increase the total retention, compared to exposures to a pure deuterium plasma. Cross-sections of the exposed tungsten surfaces via TEM-imaging reveal a 12-15 nm deep helium nanobubble layer at the surface of the sample, while for the cases of

  4. Influence of impurities on the fuel retention in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Reinhart, Michael

    2015-07-01

    The topic of this thesis is the influence of plasma impurities on the hydrogen retention in metals, in the scope of plasma-wall-interaction research for fusion reactors. This is addressed experimentally and by modelling. The mechanisms of the hydrogen retention are influenced by various parameters like the wall temperature, ion energy, flux and fluence as well as the plasma composition. The plasma composition is a relevant factor for hydrogen retention in fusion reactors, as their plasma will also contain impurities like helium or seeded impurities like argon. The experiments treated in this thesis were performed in the linear plasma generator PSI-2 at Forschungszentrum Juelich, and are divided in 3 parts: The first experiments cover the plasma diagnostics, most importantly the measurement of the impurity ion concentration in the plasma by optical emission spectroscopy. This is a requirement for the later experiments with mixed plasmas. Diagnostics like Langmuir probe measurements are not applicable for this task because they do not distinguish different ionic species. The results also show that the impurity ion concentrations cannot be simply concluded from the neutral gas input to the plasma source, because the relation between the neutral gas concentration and impurity ion concentration is not linear. The second and main part of the experiments covers the exposure of tungsten samples to deuterium plasmas. In the experiments, the impurity ion type and concentration is variated, to verify the general influence of helium and argon on the deuterium retention in tungsten samples exposed at low temperatures. It shows that helium impurities reduce the amount of retained deuterium by a factor of 3, while argon impurities slightly increase the total retention, compared to exposures to a pure deuterium plasma. Cross-sections of the exposed tungsten surfaces via TEM-imaging reveal a 12-15 nm deep helium nanobubble layer at the surface of the sample, while for the cases of

  5. The First Decommissioning of a Fusion Reactor Fueled by Deuterium-Tritium

    International Nuclear Information System (INIS)

    Gentile, Charles A.; Perry, Erik; Rule, Keith; Williams, Michael; Parsells, Robert; Viola, Michael; Chrzanowski, James

    2003-01-01

    The Tokamak Fusion Test Reactor (TFTR) at the Plasma Physics Laboratory of Princeton University (PPPL) was the first fusion reactor fueled by a mixture of deuterium and tritium (D-T) to be decommissioned in the world. The decommissioning was performed over a period of three years and was completed safely, on schedule, and under budget. Provided is an overview of the project and detail of various factors which led to the success of the project. Discussion will cover management of the project, engineering planning before the project started and during the field work as it was being performed, training of workers in the field, the novel adaptation of tools from other industry, and the development of an innovative process for the use of diamond wire to segment the activated/contaminated vacuum vessel. The success of the TFTR decommissioning provides a viable model for the decommissioning of D-T burning fusion devices in the future

  6. Prospects for alternative Fusion Fuels

    International Nuclear Information System (INIS)

    Glancy, J.

    1986-01-01

    The author has worked on three different magnetic confinement concepts for alternate fusion fueled reactors: tokamaks; tanden mirrors, and reversed field pinches. The focus of this article is on prospects for alternate fusion fuels as the author sees them relative to the other choices: increased numbers of coal plants, fission reactors, renewables, and D-T fusion. Discussion is limited on the consideration of alternate fusion fuels to the catalyzed deuterium-deuterium fuel cycle. Reasons for seeking an alternate energy source are cost, a more secure fuel supply, environmental impact and safety. The technical risks associated with development of fusion are examined briefly

  7. Cryogenic hydrogen fuel for controlled inertial confinement fusion (formation of reactor-scale cryogenic targets)

    Energy Technology Data Exchange (ETDEWEB)

    Aleksandrova, I. V.; Koresheva, E. R., E-mail: elena.koresheva@gmail.com; Krokhin, O. N. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Osipov, I. E. [Power Efficiency Centre, Inter RAO UES (Russian Federation)

    2016-12-15

    In inertial fusion energy research, considerable attention has recently been focused on low-cost fabrication of a large number of targets by developing a specialized layering module of repeatable operation. The targets must be free-standing, or unmounted. Therefore, the development of a target factory for inertial confinement fusion (ICF) is based on methods that can ensure a cost-effective target production with high repeatability. Minimization of the amount of tritium (i.e., minimization of time and space at all production stages) is a necessary condition as well. Additionally, the cryogenic hydrogen fuel inside the targets must have a structure (ultrafine layers—the grain size should be scaled back to the nanometer range) that supports the fuel layer survivability under target injection and transport through the reactor chamber. To meet the above requirements, significant progress has been made at the Lebedev Physical Institute (LPI) in the technology developed on the basis of rapid fuel layering inside moving free-standing targets (FST), also referred to as the FST layering method. Owing to the research carried out at LPI, unique experience has been gained in the development of the FST-layering module for target fabrication with an ultrafine fuel layer, including a reactor- scale target design. This experience can be used for the development of the next-generation FST-layering module for construction of a prototype of a target factory for power laser facilities and inertial fusion power plants.

  8. Neutronic performance of a fusion-fission hybrid reactor designed for fuel enrichment for LWRs

    International Nuclear Information System (INIS)

    Yapici, H.; Baltacioglu, E.

    1997-01-01

    In this study, the breeding performance of a fission hybrid reactor was analyzed to provide fissile fuel for Light Water Reactors (LWR) as an alternative to the current methods of gas diffusion and gas centrifuge. LWR fuel rods containing UO 2 or ThO 2 fertile material were located in the fuel zone of the blanket and helium gas or Flibe (Li 2 BeF 4 ) fluid was used as coolant. As a result of the analysis, according to fusion driver (D,T and D,D) and the type of coolant the enrichment of 3%-4% were achieved for operation periods of 12 and 36 months in case of fuel rods containing UO 2 , respectively and for operation periods of 18 and 48 months in case of fuel rods containing ThO 2 , respectively. Depending on the type of fusion driver, coolant and fertile fuel, varying enrichments of between 3% and 8.9% were achieved during operation period of four years

  9. Synthetic fuels and fusion

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J A; Powell, J; Steinberg, M [Brookhaven National Lab., Upton, NY (USA)

    1981-03-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. equal to 40-60% and hydrogen production efficiencies by high temperature electrolysis of approx. equal to 50-70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long-term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

  10. The scaling of economic and performance parameters of DT and advanced fuel fusion reactors

    International Nuclear Information System (INIS)

    Roth, J.R.

    1983-01-01

    In this study, the plasma stability index beta and the fusion power density in the plasma were treated as independent variables to determine how they influenced three economic performance parameters of fusion reactors burning the DT and four advanced fusion fuel cycles. The economic/performance parameters included the total power produced per unit length of reactor; the mass per unit length, and the specific mass in kilograms/kilowatt. The scaling of these parameters with beta and fusion power density was examined for a common set of engineering assumptions on the allowable wall loading limits, the maximum magnetic field existing in the plasma, average blanket mass density, etc. It was found that the power per unit length decreased as the plasma power density and beta increased. This is a consequence of the fact that the first wall is a bottleneck in the energy flow from the plasma to the generating equipment, and the wall power flux will exceed wall loading limits if the plasma radius exceeds a critical value. If one wished to build an engineering test reactor which produced a burning plasma at the lowest possible initial cost, and without regard to whether such a reactor would ultimately produce the cheapest power, then one would minimize the mass per unit length. The mass per unit length decreases with increasing plasma power density and beta, with the DT reaction being the most expensive at a fixed plasma power density (because of its thicker blanket), and the least expensive at a fixed value of beta, at least up to values of beta of 50%. The specific mass, in kg/kw, which is a rough measure of the cost of the power generated by the reactor, shows an opposite trend. It increases with increasing plasma power density and beta. At a given plasma power density and low beta, the DT reaction gives the lowest specific mass, but at a fixed beta above 10%, the advanced fuel cycles have the lowest specific mass

  11. Fusion-fission hybrid reactors

    International Nuclear Information System (INIS)

    Greenspan, E.

    1984-01-01

    This chapter discusses the range of characteristics attainable from hybrid reactor blankets; blanket design considerations; hybrid reactor designs; alternative fuel hybrid reactors; multi-purpose hybrid reactors; and hybrid reactors and the energy economy. Hybrid reactors are driven by a fusion neutron source and include fertile and/or fissile material. The fusion component provides a copious source of fusion neutrons which interact with a subcritical fission component located adjacent to the plasma or pellet chamber. Fissile fuel and/or energy are the main products of hybrid reactors. Topics include high F/M blankets, the fissile (and tritium) breeding ratio, effects of composition on blanket properties, geometrical considerations, power density and first wall loading, variations of blanket properties with irradiation, thermal-hydraulic and mechanical design considerations, safety considerations, tokamak hybrid reactors, tandem-mirror hybrid reactors, inertial confinement hybrid reactors, fusion neutron sources, fissile-fuel and energy production ability, simultaneous production of combustible and fissile fuels, fusion reactors for waste transmutation and fissile breeding, nuclear pumped laser hybrid reactors, Hybrid Fuel Factories (HFFs), and scenarios for hybrid contribution. The appendix offers hybrid reactor fundamentals. Numerous references are provided

  12. Fusion fuel blanket technology

    International Nuclear Information System (INIS)

    Hastings, I.J.; Gierszewski, P.

    1987-05-01

    The fusion blanket surrounds the burning hydrogen core of a fusion reactor. It is in this blanket that most of the energy released by the nuclear fusion of deuterium-tritium is converted into useful product, and where tritium fuel is produced to enable further operation of the reactor. As fusion research turns from present short-pulse physics experiments to long-burn engineering tests in the 1990's, energy removal and tritium production capabilities become important. This technology will involve new materials, conditions and processes with applications both to fusion and beyond. In this paper, we introduce features of proposed blanket designs and update and status of international research. In focusing on the Canadian blanket technology program, we discuss the aqueous lithium salt blanket concept, and the in-reactor tritium recovery test program

  13. Advanced fusion reactor

    International Nuclear Information System (INIS)

    Tomita, Yukihiro

    2003-01-01

    The main subjects on fusion research are now on D-T fueled fusion, mainly due to its high fusion reaction rate. However, many issues are still remained on the wall loading by the 14 MeV neutrons. In the case of D-D fueled fusion, the neutron wall loading is still remained, though the technology related to tritium breeding is not needed. The p- 6 Li and p- 11 B fueled fusions are not estimated to be the next generation candidate until the innovated plasma confinement technologies come in useful to achieve the high performance plasma parameters. The fusion reactor of D- 3 He fuels has merits on the smaller neutron wall loading and tritium handling. However, there are difficulties on achieving the high temperature plasma more than 100 keV. Furthermore the high beta plasma is needed to decrease synchrotron radiation loss. In addition, the efficiency of the direct energy conversion from protons coming out from fusion reaction is one of the key parameters in keeping overall power balance. Therefore, open magnetic filed lines should surround the plasma column. In this paper, we outlined the design of the commercial base reactor (ARTEMIS) of 1 GW electric output power configured by D- 3 He fueled FRC (Field Reversed Configuration). The ARTEMIS needs 64 kg of 3 He per a year. On the other hand, 1 million tons of 3 He is estimated to be in the moon. The 3 He of about 10 23 kg are to exist in gaseous planets such as Jupiter and Saturn. (Y. Tanaka)

  14. Advanced fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, Yukihiro [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2003-04-01

    The main subjects on fusion research are now on D-T fueled fusion, mainly due to its high fusion reaction rate. However, many issues are still remained on the wall loading by the 14 MeV neutrons. In the case of D-D fueled fusion, the neutron wall loading is still remained, though the technology related to tritium breeding is not needed. The p-{sup 6}Li and p-{sup 11}B fueled fusions are not estimated to be the next generation candidate until the innovated plasma confinement technologies come in useful to achieve the high performance plasma parameters. The fusion reactor of D-{sup 3}He fuels has merits on the smaller neutron wall loading and tritium handling. However, there are difficulties on achieving the high temperature plasma more than 100 keV. Furthermore the high beta plasma is needed to decrease synchrotron radiation loss. In addition, the efficiency of the direct energy conversion from protons coming out from fusion reaction is one of the key parameters in keeping overall power balance. Therefore, open magnetic filed lines should surround the plasma column. In this paper, we outlined the design of the commercial base reactor (ARTEMIS) of 1 GW electric output power configured by D-{sup 3}He fueled FRC (Field Reversed Configuration). The ARTEMIS needs 64 kg of {sup 3}He per a year. On the other hand, 1 million tons of {sup 3}He is estimated to be in the moon. The {sup 3}He of about 10{sup 23} kg are to exist in gaseous planets such as Jupiter and Saturn. (Y. Tanaka)

  15. Risk assessment of a fusion-reactor fuel-processing system

    International Nuclear Information System (INIS)

    Bruske, S.Z.; Holland, D.F.

    1983-07-01

    The probabilistic risk assessment (PRA) methodology provides a means to systematically examine the potential for accidents that may result in a release of hazardous materials. This report presents the PRA for a typical fusion reactor fuel processing system. The system used in the analysis is based on the Tritium Systems Test Assembly, which is being operated at the Los Alamos National Laboratory. The results of the evaluation are presented in a probability-consequence plot that describes the probability of various accidental tritium release magnitudes

  16. Preliminary design of fusion reactor fuel cleanup system by palladium alloy membrane method

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Konishi, Satoshi; Naruse, Yuji

    1981-10-01

    A design of palladium diffuser and Fuel Cleanup System (FCU) for D-T fusion reactor is proposed. Feasibility of palladium alloy membrane method is discussed based on the early studies by the authors. Operating conditions of the palladium diffuser are determined experimentally. Dimensions of the diffuser are estimated from computer simulation. FCU system is designed under the feed conditions of Tritium Systems Test Assembly (TSTA) at Los Alamos Scientific Laboratory. The system is composed of Pd-diffusers, catalytic oxidizer, freezer and zink beds, and has some advantages in system layout and operation. This design can readily be extended to other conditions of plasma exhaust gases. (author)

  17. Towards nuclear fusion reactors

    International Nuclear Information System (INIS)

    1993-11-01

    The results of nuclear fusion researches in JAERI are summarized. In this report, following themes are collected: the concept of fusion reactor (including ITER), fusion reactor safety, plasma confinement, fusion reactor equipment, and so on. Includes glossary. (J.P.N.)

  18. Fusion reactor wastes

    International Nuclear Information System (INIS)

    Young, J.R.

    1976-01-01

    The fusion reactor currently is being developed as a clean source of electricity with an essentially infinite source of fuel. These reactors are visualized as using a fusion reaction to generate large quantities of high temperature energy which can be used as process heat or for the generation of electricity. The energy would be created primarily as the kinetic energy of neutrons or other reaction products. Neutron energy could be converted to high-temperature heat by moderation and capture of the neutrons. The energy of other reaction products could be converted to high-temperature heat by capture, or directly to electricity by direct conversion electrostatic equipment. An analysis to determine the wastes released as a result of operation of fusion power plants is presented

  19. Hydrogen production in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sudo, S.; Tomita, Y.; Yamaguchi, S.; Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-11-01

    As one of methods of innovative energy production in fusion reactors without having a conventional turbine-type generator, an efficient use of radiation produced in a fusion reactor with utilizing semiconductor and supplying clean fuel in a form of hydrogen gas are studied. Taking the candidates of reactors such as a toroidal system and an open system for application of the new concepts, the expected efficiency and a concept of plant system are investigated. (author).

  20. Hydrogen production in fusion reactors

    Science.gov (United States)

    Sudo, S.; Tomita, Y.; Yamaguchi, S.; Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-11-01

    As one of the methods of innovative energy production in fusion reactors (that do not include a conventional turbine-type generator), the efficient use of fusion-reactor radiation and semiconductors to supply clean fuel in the form of hydrogen gas is studied. Taking the reactor candidates such as a toroidal system and an open system for application of the new concepts, the expected efficiency and a plant system concept are investigated.

  1. Hydrogen production in fusion reactors

    International Nuclear Information System (INIS)

    Sudo, S.; Tomita, Y.; Yamaguchi, S.; Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-11-01

    As one of methods of innovative energy production in fusion reactors without having a conventional turbine-type generator, an efficient use of radiation produced in a fusion reactor with utilizing semiconductor and supplying clean fuel in a form of hydrogen gas are studied. Taking the candidates of reactors such as a toroidal system and an open system for application of the new concepts, the expected efficiency and a concept of plant system are investigated. (author)

  2. On fusion and fission breeder reactors

    International Nuclear Information System (INIS)

    Brandt, B.; Schuurman, W.; Klippel, H.Th.

    1981-02-01

    Fast breeder reactors and fusion reactors are suitable candidates for centralized, long-term energy production, their fuel reserves being practically unlimited. The technology of a durable and economical fusion reactor is still to be developed. Such a development parallel with the fast breeder is valuable by reasons of safety, proliferation, new fuel reserves, and by the very broad potential of the development of the fusion reactor. In order to facilitate a discussion of these aspects, the fusion reactor and the fast breeder reactor were compared in the IIASA-report. Aspects of both reactor systems are compared

  3. Performance of a palladium membrane reactor using a Ni catalyst for fusion fuel impurities processing

    International Nuclear Information System (INIS)

    Willms, R.S.; Wilhelm, R.; Okuno, K.

    1994-01-01

    The palladium membrane reactor (PNM) provides a means to recover hydrogen isotopes from impurities expected to be present in fusion reactor exhaust. This recovery is based on reactions such as water-gas shift and steam reforming for which conversion is equilibrium limited. By including a selectively permeable membrane such as Pd/Ag in the catalyst bed, hydrogen isotopes can be removed from the reacting environment, thus promoting the reaction to complete conversion. Such a device has been built and operated at the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory (LANL). For the reactions listed above, earlier study with this unit has shown that hydrogen single-pass recoveries approaching 100% can be achieved. It was also determined that a nickel catalyst is a feasible choice for use with a PMR appropriate for fusion fuel impurities processing. The purpose of this study was to systematically assess the performance of the PMR using a nickel catalyst over a range of temperatures, feed compositions and flowrates. Reactions which were studied are the water-gas shift reaction and steam reforming

  4. Fusion reactors as a future energy source

    International Nuclear Information System (INIS)

    Seifritz, W.

    A detailed update of fusion research concepts is given. Discussions are given for the following areas: (1) the magnetic confinement principle, (2) UWMAK I: conceptual design for a fusion reactor, (3) the inertial confinement principle, (4) the laser fusion power plant, (5) electron-induced fusion, (6) the long-term development potential of fusion reactors, (7) the symbiosis between fusion and fission reactors, (8) fuel supply for fusion reactors, (9) safety and environmental impact, and (10) accidents, and (11) waste removal and storage

  5. Fusion reactors - types - problems

    International Nuclear Information System (INIS)

    Schmitter, K.H.

    1979-07-01

    A short account is given of the principles of fusion reactions and of the expected advantages of fusion reactors. Descriptions are presented of various Tokamak experimental devices being developed in a number of countries and of some mirror machines. The technical obstacles to be overcome before a fusion reactor could be self-supporting are discussed. (U.K.)

  6. Nuclear data requirements for fusion reactor nucleonics

    International Nuclear Information System (INIS)

    Bhat, M.R.; Abdou, M.A.

    1980-01-01

    Nuclear data requirements for fusion reactor nucleonics are reviewed and the present status of data are assessed. The discussion is divided into broad categories dealing with data for Fusion Materials Irradiation Test Facility (FMIT), D-T Fusion Reactors, Alternate Fuel Cycles and the Evaluated Data Files that are available or would be available in the near future

  7. Fusion fuel and renewables

    International Nuclear Information System (INIS)

    Entler, Slavomir

    2015-01-01

    It is shown that fusion fuel meets all aspects applied when defining renewables. A table of definitions of renewables is presented. The sections of the paper are as follows: An industrial renewable source; Nuclear fusion; Current situation in research; Definitions of renewable sources; Energy concept of nuclear fusion; Fusion fuel; Natural energy flow; Environmental impacts; Fusion fuel assessment; Sustainable power; and Energy mix from renewables. (P.A.)

  8. Synfuels production from fusion reactors

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approximately 40 to 60 percent and hydrogen production efficiencies by high temperature electrolysis of approximately 50 to 70 percent are projected for fusion reactors using high temperature blankets

  9. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2002-01-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed

  10. Advanced nuclear reactor and nuclear fusion power generation

    International Nuclear Information System (INIS)

    2000-04-01

    This book comprised of two issues. The first one is a advanced nuclear reactor which describes nuclear fuel cycle and advanced nuclear reactor like liquid-metal reactor, advanced converter, HTR and extra advanced nuclear reactors. The second one is nuclear fusion for generation energy, which explains practical conditions for nuclear fusion, principle of multiple magnetic field, current situation of research on nuclear fusion, conception for nuclear fusion reactor and economics on nuclear fusion reactor.

  11. Assessment of fusion reactor development. Proceedings

    International Nuclear Information System (INIS)

    Inoue, N.; Tazima, T.

    1994-04-01

    Symposium on assessment of fusion reactor development was held to make clear critical issues, which should be resolved for the commercial fusion reactor as a major energy source in the next century. Discussing items were as follows. (1) The motive force of fusion power development from viewpoints of future energy demand, energy resources and earth environment for 'Sustainable Development'. (2) Comparison of characteristics with other alternative energy sources, i.e. fission power and solar cell power. (3) Future planning of fusion research and advanced fuel fusion (D 3 He). (4) Critical issues of fusion reactor development such as Li extraction from the sea water, structural material and safety. (author)

  12. Membrane support of accelerated fuel capsules for inertial fusion energy reactors

    International Nuclear Information System (INIS)

    Petzoldt, R.W.; Moir, R.W.

    1993-01-01

    The use of a thin membrane to suspend an (inertial fusion energy) fuel capsule in a holder for injection into a reactor chamber is investigated. Capsule displacement and membrane deformation angle are calculated for an axisymmetric geometry for a range of membrane strain and capsule size. This information is used to calculate maximum target accelerations. Membranes must be thin (perhaps of order one micron) to minimize their effect on capsule implosion symmetry. For example, a 5 μm thick cryogenic mylar membrane is calculated to allow 1,000 m/s 2 acceleration of a 3 mm radius, 100 mg capsule. Vibration analysis (for a single membrane support) shows that if membrane vibration is not deliberately minimized, allowed acceleration may be reduced by a factor of four. A two membrane alternative geometry would allow several times greater acceleration. Therefore, alternative membrane geometry's should be used to provide greater target acceleration potential and reduce capsule displacement within the holder (for a given membrane thickness)

  13. Overview of fusion reactor safety

    International Nuclear Information System (INIS)

    Cohen, S.; Crocker, J.G.

    1981-01-01

    Present trends in magnetic fusion research and development indicate the promise of commercialization of one of a limited number of inexhaustible energy options early in the next century. Operation of the large-scale fusion experiments, such as the Joint European Torus (JET) and Takamak Fusion Test Reactor (TFTR) now under construction, are expected to achieve the scientific break even point. Early design concepts of power producing reactors have provided problem definition, whereas the latest concepts, such as STARFIRE, provide a desirable set of answers for commercialization. Safety and environmental concerns have been considered early in the development of magnetic fusion reactor concepts and recognition of proplem areas, coupled with a program to solve these problems, is expected to provide the basis for safe and environmentally acceptable commercial reactors. First generation reactors addressed in this paper are expected to burn deuterium and tritium fuel because of the relatively high reaction rates at lower temperatures compared to advanced fuels such as deuterium-deuterium. This paper presents an overwiew of the safety and environmental problems presently perceived, together with some of the programs and techniques planned and/or underway to solve these problems. A preliminary risk assessment of fusion technology relative to other energy technologies is made. Improvements based on material selection are discussed. Tritium and neutron activation products representing potential radiological hazards in fusion reactor are discussed, and energy sources that can lead to the release of radioactivity from fusion reactors under accident conditions are examined. The handling and disposal of radioactive waste are discussed; the status of biological effects of magnetic fields are referenced; and release mechanisms for tritium and activation products, including analytical methods, are presented. (orig./GG)

  14. Use of micro gas chromatography in the fuel cycle of fusion reactors

    International Nuclear Information System (INIS)

    Laesser, R.; Gruenhagen, S.; Kawamura, Y.

    2003-01-01

    Various analytical techniques exist to determine the compositions of gases handled in the fuel cycle of future fusion machines. Gas chromatography was found to be the most appropriate method. The main disadvantages of conventional gas chromatography were the long retention times for the heavy hydrogen species of >30 min. Recent progress in the development of micro-gas chromatography has reduced these retention times to ∼3 min. The usefulness of micro-gas chromatography for the analysis of hydrogen and impurity gas mixtures in the fuel cycle of future fusion machines is presented and the advantages and drawbacks are discussed

  15. Environmental aspects of fusion reactors

    International Nuclear Information System (INIS)

    Coffman, F.E.; Williams, J.M.

    1975-01-01

    With the continued depletion of fossil and uranium resources in the coming decades, the U. S. will be forced to look more toward renewable energy resources (e.g., wind, tidal, geothermal, and solar power) and toward such longer-term and nondepletable energy resources as fissile fast breeder reactors and fusion power. Several reference reactor designs have been completed for full-scale fusion power reactors that indicate that the environmental impacts from construction, operation, and eventual decommissioning of fusion reactors will be quite small. The principal environmental impact from fusion reactor operation will be from thermal discharges. Some of the safety and environmental characteristics that make fusion reactors appear attractive include an effectively infinite fuel supply at low cost, inherent incapability for a ''nuclear explosion'' or a ''nuclear runaway,'' the absence of fission products, the flexibility of selecting low neutron-cross-section structural materials so that emergency core cooling for a loss-of-coolant or other accident will not be necesary, and the absence of special nuclear materials such as 235 U or 239 Pu, so that diversion of nuclear weapons materials will not be possible and nuclear blackmail will not be a serious concern

  16. On the energy gain enhancement of DT+D3He fuel configuration in nuclear fusion reactor driven by heavy ion beams

    Directory of Open Access Journals (Sweden)

    S Khoshbinfar

    2016-09-01

    Full Text Available It is expected that advanced fuels be employed in the second generation of nuclear fusion reactors. Theoretical calculations show that in such a fuel, a high plasma temperature about 100 keV is a requisite for reaction rate improvement of nuclear fusion. However, creating such a temporal condition requires a more powerful driver than we have today. Here, introducing an optimal fuel configuration consisting of DT and D-3He layers, suitable for inertial fusion reactors and driven by heavy ion beams, the optimal energy gain conditions have been simulated and derived for 1.3 MJ system. It was found that, in this new fuel configuration, the ideal energy gain, is 22 percent more comparing with energy gain in corresponding single DT fuel layer. Moreover, the inner DT fuel layer contributed as an ignition trigger, while the outer D3He fuel acts as particle and radiation shielding as well as fuel layer.

  17. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2001-01-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the behaviour of fusion reactor materials and components during and after irradiation. Ongoing projects include: the study of the mechanical behaviour of structural materials under neutron irradiation; the investigation of the characteristics of irradiated first wall material such as beryllium; the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; and the study of dismantling and waste disposal strategy for fusion reactors. Progress and achievements in these areas in 2000 are discussed

  18. Materials for fusion reactors

    International Nuclear Information System (INIS)

    Ehrlich, K.; Kaletta, D.

    1978-03-01

    The following report describes five papers which were given during the IMF seminar series summer 1977. The purpose of this series was to discuss especially the irradiation behaviour of materials intended for the first wall of future fusion reactors. The first paper deals with the basic understanding of plasma physics relating to the fusion reactor and presents the current state of art of fusion technology. The next two talks discuss the metals intended for the first wall and structural components of a fusion reactor. Since 14 MeV neutrons play an important part in the process of irradiation damage their role is discussed in detail. The question which machines are presently available to simulate irradiation damage under conditions similar to the ones found in a fusion reactor are investigated in the fourth talk which also presents the limitations of the different methods of simulation. In this context also discussed is the importance future intensive neutron sources and materials test reactors will have for this problem area. The closing paper has as a theme the review of the present status of research of metallic and non-metallic materials in view of the quite different requirements for different fusion systems; a closing topic is the world supply on rare materials required for fusion reactors. (orig) [de

  19. Possible fusion reactor

    International Nuclear Information System (INIS)

    Yoshikawa, S.

    1976-05-01

    A scheme to improve performance characteristics of a tokamak-type fusion reactor is proposed. Basically, the tokamak-type plasma could be moved around so that the plasma could be heated by compression, brought to the region where the blanket surrounds the plasma, and moved so as to keep wall loading below the acceptable limit. This idea should be able to help to economize a fusion reactor

  20. Fusion reactor materials

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The following topics are briefly discussed: (1) surface blistering studies on fusion reactor materials, (2) TFTR design support activities, (3) analysis of samples bombarded in-situ in PLT, (4) chemical sputtering effects, (5) modeling of surface behavior, (6) ion migration in glow discharge tube cathodes, (7) alloy development for irradiation performance, (8) dosimetry and damage analysis, and (9) development of tritium migration in fusion devices and reactors

  1. Fusion reactor materials

    International Nuclear Information System (INIS)

    Sethi, V.K.; Scholz, R.; Nolfi, F.V. Jr.; Turner, A.P.L.

    1980-01-01

    Data are given for each of the following areas: (1) effects of irradiation on fusion reactor materials, (2) hydrogen permeation and materials behavior in alloys, (3) carbon coatings for fusion applications, (4) surface damage of TiB 2 coatings under energetic D + and 4 He + irradiations, and (5) neutron dosimetry

  2. Use of controlled thermonuclear reactor fusion power for the production of synthetic methanol fuel from air and water

    International Nuclear Information System (INIS)

    Steinberg, M.; Vi Duong Dang.

    1975-04-01

    Methanol synthesis from carbon dioxide, water and nuclear fusion energy is extensively investigated. The entire system is analyzed from the point of view of process design and economic evaluation of various processes. The main potential advantage of a fusion reactor (CTR) for this purpose is that it provides a large source of low cost environmentally acceptable electric power based on an abundant fuel source. Carbon dioxide is obtained by extraction from the atomsphere or from sea water. Hydrogen is obtained by electrolysis of water. Methanol is synthesized by the catalytic reaction of carbon dioxide and hydrogen. The water electrolysis and methanol synthesis units are considered to be technically and commercially available. The benefit of using air or sea water as a source of carbon dioxide is to provide an essentially unlimited renewable and environmentally acceptabe source of hydrocarbon fuel. Extraction of carbon dioxide from the atmosphere also allows a high degree of freedom in plant siting. (U.S.)

  3. Time-dependent tritium inventories and flow rates in fuel cycle components of a tokamak fusion reactor

    International Nuclear Information System (INIS)

    Kuan, W.

    1995-01-01

    Time-dependent inventories and flow rates for several components of the fuel cycle are modeled and studied through the use of a new modular-type model for the dynamic simulation of the fuel cycle in a fusion reactor. The complex dynamic behavior in the modeled subsystems is analyzed using this new model. Preliminary results using fuel cycle design configurations similar to ITER are presented and analyzed. The inventories and flow rates inside the primary vacuum pumping, fuel cleanup unit and isotope separation system are studied. Ways to minimize the tritium inventory are also assessed. This was performed by looking at various design options that could be used to minimize tritium inventory for specific components. (orig.)

  4. Cryogenic distillation: a fuel enrichment system for near-term tokamak-type D-T fusion reactors

    International Nuclear Information System (INIS)

    Misra, B.; Davis, J.F.

    1980-02-01

    The successful operation and economic viability of deuterium-tritium- (D-T-) fueled tokamak-type commercial power fusion reactors will depend to a large extent on the development of reliable tritium-containment and fuel-recycle systems. Of the many operating steps in the fuel recycle scheme, separation or enrichment of the isotropic species of hydrogen by cryogenic distillation is one of the most important. A parametric investigation was carried out to study the effects of the various operating conditions and the composition of the spent fuel on the degree of separation. A computer program was developed for the design and analysis of a system of interconnected distillation columns for isotopic separation such that the requirements of near-term D-T-fueled reactors are met. The analytical results show that a distillation cascade consisting of four columns is capable of reprocessing spent fuel varying over a wide range of compositions to yield reinjection-grade fuel with essentially unlimited D/T ratio

  5. Fusion reactor safety

    International Nuclear Information System (INIS)

    1987-12-01

    Nuclear fusion could soon become a viable energy source. Work in plasma physics, fusion technology and fusion safety is progressing rapidly in a number of Member States and international collaboration continues on work aiming at the demonstration of fusion power generation. Safety of fusion reactors and technological and radiological aspects of waste management are important aspects in the development and design of fusion machines. In order to provide an international forum to review and discuss the status and the progress made since 1983 in programmes related to operational safety aspects of fusion reactors, their waste management and decommissioning concepts, the IAEA had organized the Technical Committee on ''Fusion Reactor Safety'' in Culham, 3-7 November 1986. All presentations of this meeting were divided into four sessions: 1. Statements on National-International Fusion Safety Programmes (5 papers); 2. Operation and System Safety (15 papers); 3. Waste Management and Decommissioning (5 papers); 4. Environmental Impacts (6 papers). A separate abstract was prepared for each of these 31 papers. Refs, figs, tabs

  6. Prospect of realizing nuclear fusion reactors

    International Nuclear Information System (INIS)

    1989-01-01

    This Report describes the results of the research work on nuclear fusion, which CRIEPI has carried out for about ten years from the standpoint of electric power utilities, potential user of its energy. The principal points are; (a) economic analysis (calculation of costs) based on Japanese analysis procedures and database of commercial fusion reactors, including fusion-fission hybrid reactors, and (b) conceptual design of two types of hybrid reactors, that is, fission-fuel producing DMHR (Demonstration Molten-Salt Hybrid Reactor) and electric-power producing THPR (Tokamak Hybrid Power Reactor). The Report consists of the following chapters: 1. Introduction. 2. Conceptual Design of Hybrid Reactors. 3. Economic Analysis of Commercial Fusion Reactors. 4. Basic Studies Applicable Also to Nuclear Fusion Technology. 5. List of Published Reports and Papers; 6. Conclusion. Appendices. (author)

  7. Fusion reactor materials

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.; Burn, G.L.; Knee', S.S.; Dowker, C.L.

    1994-02-01

    This is the fifteenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: Alloy Development for Irradiation Performance; Damage Analysis and Fundamental Studies; Special purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the U.S. Department of Energy. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide

  8. Compact fusion reactors

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using much smaller devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to tokamaks decreases the costs and building time of the reactors and this has allowed some private companies to enter the field, like EMC2, General Fusion, Helion Energy, Lawrenceville Plasma Physics and Lockheed Martin. Some of these companies are trying to demonstrate net energy production within the next few years. If they are successful their next step is to attempt to commercialize their technology. In this presentation an overview of compact fusion reactor concepts is given.

  9. Magnetic fusion reactor economics

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1995-01-01

    An almost primordial trend in the conversion and use of energy is an increased complexity and cost of conversion systems designed to utilize cheaper and more-abundant fuels; this trend is exemplified by the progression fossil fission → fusion. The present projections of the latter indicate that capital costs of the fusion ''burner'' far exceed any commensurate savings associated with the cheapest and most-abundant of fuels. These projections suggest competitive fusion power only if internal costs associate with the use of fossil or fission fuels emerge to make them either uneconomic, unacceptable, or both with respect to expensive fusion systems. This ''implementation-by-default'' plan for fusion is re-examined by identifying in general terms fusion power-plant embodiments that might compete favorably under conditions where internal costs (both economic and environmental) of fossil and/or fission are not as great as is needed to justify the contemporary vision for fusion power. Competitive fusion power in this context will require a significant broadening of an overly focused program to explore the physics and simbiotic technologies leading to more compact, simplified, and efficient plasma-confinement configurations that reside at the heart of an attractive fusion power plant

  10. Prospects for Tokamak Fusion Reactors

    International Nuclear Information System (INIS)

    Sheffield, J.; Galambos, J.

    1995-01-01

    This paper first reviews briefly the status and plans for research in magnetic fusion energy and discusses the prospects for the tokamak magnetic configuration to be the basis for a fusion power plant. Good progress has been made in achieving fusion reactor-level, deuterium-tritium (D-T) plasmas with the production of significant fusion power in the Joint European Torus (up to 2 MW) and the Tokamak Fusion Test Reactor (up to 10 MW) tokamaks. Advances on the technologies of heating, fueling, diagnostics, and materials supported these achievements. The successes have led to the initiation of the design phases of two tokamaks, the International Thermonuclear Experimental Reactor (ITER) and the US Toroidal Physics Experiment (TPX). ITER will demonstrate the controlled ignition and extended bum of D-T plasmas with steady state as an ultimate goal. ITER will further demonstrate technologies essential to a power plant in an integrated system and perform integrated testing of the high heat flux and nuclear components required to use fusion energy for practical purposes. TPX will complement ITER by testing advanced modes of steady-state plasma operation that, coupled with the developments in ITER, will lead to an optimized demonstration power plant

  11. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed.

  12. Concepts for fusion fuel production blankets

    International Nuclear Information System (INIS)

    Gierszewski, P.

    1986-06-01

    The fusion blanket surrounds the burning hydrogen core of the fusion reactor. It is in this blanket that most of the energy released by the DT fusion reaction is converted into useable product, and where tritium fuel is produced to enable further operation of the reactor. Blankets will involve new materials, conditions and processes. Several recent fusion blanket concepts are presented to illustrate the range of ideas

  13. Safety and environmental aspects of fusion reactors

    International Nuclear Information System (INIS)

    Kilic, H.; Jensen, B.

    1982-01-01

    This paper deals with those problems concerning safety and environmental aspects of the future fusion reactors (e.g. fuel cycle, magnetic failure, after heat disturbances, radioactive waste and magnetic field)

  14. Fusion reactor radioactive waste management

    International Nuclear Information System (INIS)

    Kaser, J.D.; Postma, A.K.; Bradley, D.J.

    1976-01-01

    Quantities and compositions of non-tritium radioactive waste are estimated for some current conceptual fusion reactor designs, and disposal of large amounts of radioactive waste appears necessary. Although the initial radioactivity of fusion reactor and fission reactor wastes are comparable, the radionuclides in fusion reactor wastes are less hazardous and have shorter half-lives. Areas requiring further research are discussed

  15. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2000-01-01

    SCK-CEN's research and development programme on fusion reactor materials includes: (1) the study of the mechanical behaviour of structural materials under neutron irradiation (including steels, inconel, molybdenum, chromium); (2) the determination and modelling of the characteristics of irradiated first wall materials such as beryllium; (3) the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; (4) the study of the dismantling and waste disposal strategy for fusion reactors.; (5) a feasibility study for the testing of blanket modules under neutron radiation. Main achievements in these topical areas in the year 1999 are summarised

  16. Small mirror fusion reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Schultz, K.R.; Smith, A.C. Jr.

    1978-01-01

    Basic requirements for the pilot plants are that they produce a net product and that they have a potential for commercial upgrade. We have investigated a small standard mirror fusion-fission hybrid, a two-component tandem mirror hybrid, and two versions of a field-reversed mirror fusion reactor--one a steady state, single cell reactor with a neutral beam-sustained plasma, the other a moving ring field-reversed mirror where the plasma passes through a reaction chamber with no energy addition

  17. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on fusion reactor materials includes: (1) the study of the mechanical behaviour of structural materials under neutron irradiation (including steels, inconel, molybdenum, chromium); (2) the determination and modelling of the characteristics of irradiated first wall materials such as beryllium; (3) the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; (4) the study of the dismantling and waste disposal strategy for fusion reactors.; (5) a feasibility study for the testing of blanket modules under neutron radiation. Main achievements in these topical areas in the year 1999 are summarised.

  18. Apollo - An advanced fuel fusion power reactor for the 21st century

    International Nuclear Information System (INIS)

    Kulcinski, G.L.; Emmert, G.A.; Blanchard, J.P.

    1989-01-01

    A preconceptual design of a tokamak reactor fueled by a D-He-3 plasma is presented. A low aspect ratio (A=2-4) device is studied here but high aspect ratio devices (A > 6) may also be quite attractive. The Apollo D-He-3 tokamak capitalizes on recent advances in high field magnets (20 T) and utilizes rectennas to convert the synchrotron radiation directly to electricity. The overall efficiency ranges from 37 to 52% depending on whether the bremsstrahlung energy is utilized. The low neutron wall loading (0.1 MW/m/sup 2/) allows a permanent first wall to be designed and the low nuclear decay heat enables the reactor to be classed as inherently safe. The cost of electricity from Apollo is > 40% lower than electricity from a similar sized DT reactor

  19. Pulsed fusion reactors

    International Nuclear Information System (INIS)

    1975-01-01

    This summer school specialized in examining specific fusion center systems. Papers on scientific feasibility are first presented: confinement of high-beta plasma, liners, plasma focus, compression and heating and the use of high power electron beams for thermonuclear reactors. As for technological feasibility, lectures were on the theta-pinch toroidal reactors, toroidal diffuse pinch, electrical engineering problems in pulsed magnetically confined reactors, neutral gas layer for heat removal, the conceptual design of a series of laser fusion power plants with ''Saturn'', implosion experiments and the problem of the targets, the high brightness lasers for plasma generation, and topping and bottoming cycles. Some problems common to pulsed reactors were examined: energy storage and transfer, thermomechanical and erosion effects in the first wall and blanket, the problems of tritium production, radiation damage and neutron activation in blankets, and the magnetic and inertial confinement

  20. Fusion reactor development: A review

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    This paper is a review of the current prospects for fusion reactor development based upon the present status in plasma physics research, fusion technology development and reactor conceptual design for the tokamak magnetic confinement concept. Recent advances in tokamak plasma research and fusion technology development are summarized. The direction and conclusions of tokamak reactor conceptual design are discussed. The status of alternate magnetic confinement concept research is reviewed briefly. A feasible timetable for the development of fusion reactors is presented

  1. Fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1989-01-01

    This paper discuses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics.

  2. Fusion reactor materials

    International Nuclear Information System (INIS)

    1989-01-01

    This paper discuses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics

  3. Fusion reactor problems

    International Nuclear Information System (INIS)

    Carruthers, R.

    It is pointed out that plasma parameters for a fusion reactor have been fairly accurately defined for many years, and the real plasma physics objective must be to find the means of achieving and maintaining these specifiable parameters. There is good understanding of the generic technological problems: breading blankets and shields, radiation damage, heat transfer and methods of magnet design. The required plasma parameters for fusion self-heated reactors are established at ntausub(E) approximately 2.10 14 cm -3 sec, plasma radius 1.5 to 3 m, wall loading 5 to 10 MW cm -2 , temperature 15 keV. Within this model plasma control by quasi-steady burn as a key problem is studied. It is emphasized that the future programme must interact more closely with engineering studies and should concentrate upon research which is relevant to reactor plasmas. (V.P.)

  4. Fusion reactor pumped laser

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1988-01-01

    A nuclear pumped laser is described comprising: a toroidal fusion reactor, the reactor generating energetic neutrons; an annular gas cell disposed around the outer periphery of the reactor, the cell including an annular reflecting mirror disposed at the bottom of the cell and an annular output window disposed at the top of the cell; a gas lasing medium disposed within the annular cell for generating output laser radiation; neutron reflector material means disposed around the annular cell for reflecting neutrons incident thereon back into the gas cell; neutron moderator material means disposed between the reactor and the gas cell and between the gas cell and the neutron reflector material for moderating the energy of energetic neutrons from the reactor; converting means for converting energy from the moderated neutrons to energy pumping means for pumping the gas lasing medium; and beam compactor means for receiving output laser radiation from the annular output window and generating a single output laser beam therefrom

  5. Nuclear Fusion Fuel Cycle Research Perspectives

    International Nuclear Information System (INIS)

    Chung, Hongsuk; Koo, Daeseo; Park, Jongcheol; Kim, Yeanjin; Yun, Sei-Hun

    2015-01-01

    As a part of the International Thermonuclear Experimental Reactor (ITER) Project, we at the Korea Atomic Energy Research Institute (KAERI) and our National Fusion Research Institute (NFRI) colleagues are investigating nuclear fusion fuel cycle hardware including a nuclear fusion fuel Storage and Delivery System (SDS). To have a better knowledge of the nuclear fusion fuel cycle, we present our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). To have better knowledge of the nuclear fusion fuel cycle, we presented our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). Our efforts to enhance the tritium confinement will be continued for the development of cleaner nuclear fusion power plants

  6. Breeder control fusion reactor. Topical interview

    Energy Technology Data Exchange (ETDEWEB)

    Schlueter, A [Max-Planck-Institut fuer Plasmaphysik, Garching/Muenchen (Germany, F.R.)

    1977-09-01

    The energy sources of the future are extremely controversial. The consumption of fossil fuel shall decrease during the next decades, because exhaustion of the resources, pollution, increase of CO/sub 2/ in the atmosphere and other reasons. But at present the question it not yet settled which alternative energy system should replace the fossil fuel. First of all nuclear energy in the form of fission reactions seems to come into operation to a larger extent. The next step may be the controlled thermonuclear fusion reaction. Furthermore, a comparison between fusion and fission is given which shows that fusion would bring about less risks than the breeders. An advantage of the fusion reactor would be the fact that the fuel cycle is closed. Unfortunately, the physical questions are not as yet satisfactorily clarified so that one cannot be sure whether a fusion reactor can really be built.

  7. Inertial fusion reactor designs

    International Nuclear Information System (INIS)

    Meier, W.

    1987-01-01

    In this paper, a variety of reactor concepts are proposed. One of the prime concerns is dealing with the x-rays and debris that are emitted by the target. Internal neutron shielding can reduce radiation damage and activation, leading to longer life systems, reduced activation and fewer safety concerns. There is really no consensus on what the best reactor concept is at this point. There has been virtually no chamber technology development to date. This is the flip side of the coin of the separability of the target physics and the reactor design. Since reactor technology has not been required to do target experiments, it's not being developed. Economic analysis of conceptual designs indicates that ICF can be economically competitive with magnetic fusion, fission and fossil plants

  8. Advanced spheromak fusion reactor

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1996-01-01

    The spheromak has no toroidal magnetic field coils or other structure along its geometric axis, and is thus more attractive than the leading magnetic fusion reactor concept, the tokamak. As a consequence of this and other attributes, the spheromak reactor may be compact and produce a power density sufficiently high to warrant consideration of a liquid 'blanket' that breeds tritium, converts neutron kinetic energy to heat, and protects the reactor vessel from severe neutron damage. However, the physics is more complex, so that considerable research is required to learn how to achieve the reactor potential. Critical physics problems and possible ways of solving them are described. The opportunities and issues associated with a possible liquid wall are considered to direct future research

  9. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Moons, F.

    1998-01-01

    SCK-CEN's programme on fusion reactor materials includes studies (1) to investigate fracture mechanics of neutron-irradiated beryllium; (2) to describe the helium behaviour in irradiated beryllium at atomic scale; (3) to define the kinetics of beryllium reacting with air or steam; (3) to perform a feasibility study for the testing of integrated blanket modules under neutron irradiation. Progress and achievements in 1997 are reported

  10. Results of tritium experiments on ceramic electrolysis cells and palladium diffusers for application to fusion reactor fuel cleanup systems

    International Nuclear Information System (INIS)

    Carlson, R.V.; Binning, K.E.; Konishi, S.; Yoshida, H.; Naruse, Y.

    1987-01-01

    Tritium tests at the Tritium Systems Test Assembly have demonstrated that ceramic electrolysis cells and palladium alloy diffuser developed in Japan are possible components for a fusion reactor fuel cleanup system. Both components have been successfully operated with tritium for over a year. A failure of the first electrolysis cell was most likely the result of an over voltage on the ceramic. A simple circuit was developed to eliminate this mode of failure. The palladium diffusers tubes exhibited some degradation of mechanical properties as a result of the build up of helium from the tritium decay, after 450 days of operation with tritium, however the effects were not significant enough to affect the performance. New models of the diffuser and electrolysis cell, providing higher flow rates and more tritium compatible designs are currently being tested with tritium. 8 refs., 5 figs

  11. Material for fusion reactor

    International Nuclear Information System (INIS)

    Abhishek, Anuj; Ranjan, Prem

    2011-01-01

    To make nuclear fusion power a reality, the scientists are working restlessly to find the materials which can confine the power generated by the fusion of two atomic nuclei. A little success in this field has been achieved, though there are still miles to go. Fusion reaction is a special kind of reaction which must occur at very high density and temperature to develop extremely large amount of energy, which is very hard to control and confine within using the present techniques. As a whole it requires the physical condition that rarely exists on the earth to carry out in an efficient manner. As per the growing demand and present scenario of the world energy, scientists are working round the clock to make effective fusion reactions to real. In this paper the work presently going on is considered in this regard. The progress of the Joint European Torus 2010, ITER 2005, HiPER and minor works have been studied to make the paper more object oriented. A detailed study of the technological and material requirement has been discussed in the paper and a possible suggestion is provided to make a contribution in the field of building first ever nuclear fusion reactor

  12. Fission-suppressed hybrid reactor: the fusion breeder

    International Nuclear Information System (INIS)

    Moir, R.W.; Lee, J.D.; Coops, M.S.

    1982-12-01

    Results of a conceptual design study of a 233 U-producing fusion breeder are presented. The majority of the study was devoted to conceptual design and evaluation of a fission-suppressed blanket and to fuel cycle issues such as fuel reprocessing, fuel handling, and fuel management. Studies in the areas of fusion engineering, reactor safety, and economics were also performed

  13. Fusion-Fission hybrid reactors and nonproliferation

    International Nuclear Information System (INIS)

    Greenspan, E.

    1984-09-01

    New options for the development of the nuclear energy economy which might become available by a successful development of fusion-breeders or fusion-fission hybrid power reactors, identified and their nonproliferative attributes are discussed. The more promising proliferation-resistance ettributes identified include: (1) Justification for a significant delay in the initiation of fuel processing, (2) Denaturing the plutonium with 238 Pu before its use in power reactors of any kind, and (3) Making practical the development of denatured uranium fuel cycles and, in particular, denaturing the uranium with 232 U. Fuel resource utilization, time-table and economic considerations associated with the use of fusion-breeders are also discussed. It is concluded that hybrid reactors may enable developing a nuclear energy economy which is more proliferation resistant than possible otherwise, whileat the same time, assuring high utilization of t he uranium and thorium resources in an economically acceptable way. (author)

  14. Trends in fusion reactor safety research

    International Nuclear Information System (INIS)

    Herring, J.S.; Holland, D.F.; Piet, S.J.

    1991-01-01

    Fusion has the potential to be an attractive energy source. From the safety and environmental perspective, fusion must avoid concerns about catastrophic accidents and unsolvable waste disposal. In addition, fusion must achieve an acceptable level of risk from operational accidents that result in public exposure and economic loss. Finally, fusion reactors must control routine radioactive effluent, particularly tritium. Major progress in achieving this potential rests on development of low-activation materials or alternative fuels. The safety and performance of various material choices and fuels for commercial fusion reactors can be investigated relatively inexpensively through reactor design studies. These studies bring together experts in a wide range of backgrounds and force the group to either agree on a reactor design or identify areas for further study. Fusion reactors will be complex with distributed radioactive inventories. The next generation of experiments will be critical in demonstrating that acceptable levels of safe operation can be achieved. These machines will use materials which are available today and for which a large database exists (e.g. for 316 stainless steel). Researchers have developed a good understanding of the risks associated with operation of these devices. Specifically, consequences from coolant system failures, loss of vacuum events, tritium releases, and liquid metal reactions have been studied. Recent studies go beyond next step designs and investigate commercial reactor concerns including tritium release and liquid metal reactions. 18 refs

  15. Controlled thermonuclear fusion reactors

    International Nuclear Information System (INIS)

    Walstrom, P.L.

    1976-01-01

    Controlled production of energy by fusion of light nuclei has been the goal of a large portion of the physics community since the 1950's. In order for a fusion reaction to take place, the fuel must be heated to a temperature of 100 million degrees Celsius. At this temperature, matter can exist only in the form of an almost fully ionized plasma. In order for the reaction to produce net power, the product of the density and energy confinement time must exceed a minimum value of 10 20 sec m -3 , the so-called Lawson criterion. Basically, two approaches are being taken to meet this criterion: inertial confinement and magnetic confinement. Inertial confinement is the basis of the laser fusion approach; a fuel pellet is imploded by intense laser beams from all sides and ignites. Magnetic confinement devices, which exist in a variety of geometries, rely upon electromagnetic forces on the charged particles of the plasma to keep the hot plasma from expanding. Of these devices, the most encouraging results have been achieved with a class of devices known as tokamaks. Recent successes with these devices have given plasma physicists confidence that scientific feasibility will be demonstrated in the next generation of tokamaks; however, an even larger effort will be required to make fusion power commercially feasible. As a result, emphasis in the controlled thermonuclear research program is beginning to shift from plasma physics to a new branch of nuclear engineering which can be called fusion engineering, in which instrumentation and control engineers will play a major role. Among the new problem areas they will deal with are plasma diagnostics and superconducting coil instrumentation

  16. Directions for improved fusion reactors

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Miller, R.L.; Delene, J.G.

    1986-01-01

    Conceptual fusion reactor studies over the past 10 to 15 years have projected systems that may be too large, complex, and costly to be of commercial interest. One main direction for improved fusion reactors points towards smaller, higher-power-density approaches. First-order economic issues (i.e., unit direct cost and cost of electricity) are used to support the need for more compact fusion reactors. A generic fusion physics/engineering/costing model is used to provide a quantiative basis for these arguments for specific fusion concepts

  17. Coatings for fusion reactor environments

    International Nuclear Information System (INIS)

    Mattox, D.M.

    1979-01-01

    The internal surfaces of a tokamak fusion reactor control the impurity injection and gas recycling into the fusion plasma. Coating of internal surfaces may provide a desirable and possibly necessary design flexibility for achieving the temperatures, ion densities and containment times necessary for net energy production from fusion reactions to take place. In this paper the reactor environments seen by various componentare reviewed along with possible materials responses. Characteristics of coating-substrate systems, important to fusion applications, are delineated and the present status of coating development for fusion applications is reviewed. Coating development for fusion applications is just beginning and poses a unique and important challenge for materials development

  18. Modular Stellarator Fusion Reactor concept

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.

    1981-08-01

    A preliminary conceptual study is made of the Modular Stellarator Reactor (MSR). A steady-state ignited, DT-fueled, magnetic fusion reactor is proposed for use as a central electric-power station. The MSR concept combines the physics of the classic stellarator confinement topology with an innovative, modular-coil design. Parametric tradeoff calculations are described, leading to the selection of an interim design point for a 4-GWt plant based on Alcator transport scaling and an average beta value of 0.04 in an l = 2 system with a plasma aspect ratio of 11. The physics basis of the design point is described together with supporting magnetics, coil-force, and stress computations. The approach and results presented herein will be modified in the course of ongoing work to form a firmer basis for a detailed conceptual design of the MSR

  19. Status of fusion reactor blanket design

    International Nuclear Information System (INIS)

    Smith, D.L.; Sze, D.K.

    1986-02-01

    The recent Blanket Comparison and Selection Study (BCSS), which was a comprehensive evaluation of fusion reactor blanket design and the status of blanket technology, serves as an excellent basis for further development of blanket technology. This study provided an evaluation of over 130 blanket concepts for the reference case of electric power producing, DT fueled reactors in both Tokamak and Tandem Mirror (TMR) configurations. Based on a specific set of reactor operating parameters, the current understanding of materials and blanket technology, and a uniform evaluation methodology developed as part of the study, a limited number of concepts were identified that offer the greatest potential for making fusion an attractive energy source

  20. Fusion reactors for hydrogen production via electrolysis

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.

    1979-01-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets

  1. Radioisotope production in fusion reactors

    International Nuclear Information System (INIS)

    Engholm, B.A.; Cheng, E.T.; Schultz, K.R.

    1986-01-01

    Radioisotope production in fusion reactors is being investigated as part of the Fusion Applications and Market Evaluation (FAME) study. /sup 60/Co is the most promising such product identified to date, since the /sup 60/Co demand for medical and food sterilization is strong and the potential output from a fusion reactor is high. Some of the other radioisotopes considered are /sup 99/Tc, /sup 131/l, several Eu isotopes, and /sup 210/Po. Among the stable isotopes of interest are /sup 197/Au, /sup 103/Rh and Os. In all cases, heat or electricity can be co-produced from the fusion reactor, with overall attractive economics

  2. Fusion: an energy source for synthetic fuels

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J; Steinberg, M.

    1980-01-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion

  3. Space Propulsion via Spherical Torus Fusion Reactor

    International Nuclear Information System (INIS)

    Williams, Craig H.; Juhasz, Albert J.; Borowski, Stanley K.; Dudzinski, Leonard A.

    2003-01-01

    A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 204 days, with an initial mass in low Earth orbit of 1630 mt. Engineering conceptual design, analysis, and assessment were performed on all major systems including nuclear fusion reactor, magnetic nozzle, power conversion, fast wave plasma heating, fuel pellet injector, startup/re-start fission reactor and battery, and other systems. Detailed fusion reactor design included analysis of plasma characteristics, power balance and utilization, first wall, toroidal field coils, heat transfer, and neutron/X-ray radiation

  4. Alternate fusion fuels workshop

    International Nuclear Information System (INIS)

    1981-06-01

    The workshop was organized to focus on a specific confinement scheme: the tokamak. The workshop was divided into two parts: systems and physics. The topics discussed in the systems session were narrowly focused on systems and engineering considerations in the tokamak geometry. The workshop participants reviewed the status of system studies, trade-offs between d-t and d-d based reactors and engineering problems associated with the design of a high-temperature, high-field reactor utilizing advanced fuels. In the physics session issues were discussed dealing with high-beta stability, synchrotron losses and transport in alternate fuel systems. The agenda for the workshop is attached

  5. Tokamak fusion reactor

    International Nuclear Information System (INIS)

    Nohara, Kiyohiko

    2009-01-01

    The structural material is one of key issues for the development of reliable superconducting magnets and peripheral equipments of fusion reactors. Standard stainless steels like SUS 304 and 316 steels available at present do not meet requirements. We are developing a new austenitic steel that has proposed target properties named 'JAERI BOX'. Additions of N and V at different amounts were tested to improve strength and fracture toughness of a base alloy SUS316LN at 4.2 K. Mechanical properties of the developed steel were examined. It is found that the charpy absorbed energy and the fracture toughness of the developed steel at 4.2 K are within JAERI BOX. (T.I.)

  6. Mirror hybrid (fusion--fission) reactor

    International Nuclear Information System (INIS)

    Bender, D.J.; Lee, J.D.; Neef, W.S.; Devoto, R.S.; Galloway, T.R.; Fink, J.H.; Schultz, K.R.; Culver, D.; Rao, S.

    1977-10-01

    The reference mirror hybrid reactor design performed by LLL and General Atomic is summarized. The reactor parameters have been chosen to minimize the cost of producing fissile fuel for consumption in fission power reactors. As in the past, we have emphasized the use of existing technology where possible and a minimum extrapolation of technology otherwise. The resulting reactor may thus be viewed as a comparatively near-term goal of the fusion program, and we project improved performance for the hybrid in the future as more advanced technology becomes available

  7. Physics of fusion-fuel cycles

    International Nuclear Information System (INIS)

    McNally, J.R. Jr.

    1981-01-01

    The evaluation of nuclear fusion fuels for a magnetic fusion economy must take into account the various technological impacts of the various fusion fuel cycles as well as the relative reactivity and the required β's and temperatures necessary for economic steady-state burns. This paper will review some of the physics of the various fusion fuel cycles (D-T, catalyzed D-D, D- 3 He, D- 6 Li, and the exotic fuels: 3 He 3 He and the proton-based fuels such as P- 6 Li, P- 9 Be, and P- 11 B) including such items as: (1) tritium inventory, burnup, and recycle, (2) neutrons, (3) condensable fuels and ashes, (4) direct electrical recovery prospects, (5) fissile breeding, etc. The advantages as well as the disadvantages of the different fusion fuel cycles will be discussed. The optimum fuel cycle from an overall standpoint of viability and potential technological considerations appears to be catalyzed D-D, which could also support smaller relatively clean, lean-D, rich- 3 He satellite reactors as well as fission reactors

  8. Report of 6th research meeting on basic process of fuel cycle for nuclear fusion reactors, Yayoi Research Group; 3rd expert committee on research of nuclear fusion fuel material correlation basis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    In this report, the lecture materials of Yayoi Research Group, 6th research meeting on basic process of fuel cycle for nuclear fusion reactors which was held at the University of Tokyo on March 25, 1996, are collected. This workshop was held also as 3rd expert committee on research of nuclear fusion fuel material correlation basis of Atomic Energy Society of Japan. This workshop has the character of the preparatory meeting for the session on `Interface effect in nuclear fusion energy system` of the international workshop `Interface effect in quantum energy system`, and 6 lectures and one comment were given. The topics were deuterium transport in Mo under deuterium ion implantation, the change of the stratum structure of graphite by hydrogen ion irradiation, the tritium behavior in opposing materials, the basic studies of the irradiation effects of solid breeding materials, the research on the behavior of hydroxyl group on the surface of solid breeding materials, the sweep gas effect on the surface of solid breeding materials, and the dynamic behavior of ion-implanted deuterium in proton-conductive oxides. (K.I.)

  9. 1: the atom. 2: radioactivity. 3: man and radiations. 4: the energy. 5: nuclear energy: fusion and fission. 6: the operation of a nuclear reactor. 7: the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2002-01-01

    This series of 7 digest booklets present the bases of the nuclear physics and of the nuclear energy: 1 - the atom (structure of matter, chemical elements and isotopes, the four fundamental interactions, nuclear physics); 2 - radioactivity (definition, origins of radioelements, applications of radioactivity); 3 - man and radiations (radiations diversity, biological effects, radioprotection, examples of radiation applications); 4 - energy (energy states, different forms of energy, characteristics); 5 - nuclear energy: fusion and fission (nuclear energy release, thermonuclear fusion, nuclear fission and chain reaction); 6 - operation of a nuclear reactor (nuclear fission, reactor components, reactor types); 7 - nuclear fuel cycle (nuclear fuel preparation, fuel consumption, reprocessing, wastes management). (J.S.)

  10. Overview of fusion reactor safety

    International Nuclear Information System (INIS)

    Cohen, S.; Crocker, J.G.

    1981-01-01

    Use of deuterium-tritium burning fusion reactors requires examination of several major safety and environmental issues: (1) tritium inventory control, (2) neutron activation of structural materials, fluid streams and reactor hall environment, (3) release of radioactivity from energy sources including lithium spill reactions, superconducting magnet stored energy release, and plasma disruptions, (4) high magnetic and electromagnetic fields associated with fusion reactor superconducting magnets and radio frequency heating devices, and (5) handling and disposal of radioactive waste. Early recognition of potential safety problems with fusion reactors provides the opportunity for improvement in design and materials to eliminate or greatly reduce these problems. With an early start in this endeavor, fusion should be among the lower risk technologies for generation of commercial electrical power

  11. Tritium-related materials problems in fusion reactors

    International Nuclear Information System (INIS)

    Hickman, R.G.

    1976-01-01

    Pressing materials problems that must be solved before tritium can be used to produce energy economically in fusion reactors are discussed. The following topics are discussed: (1) breeding tritium, (2) recovering bred tritium, (3) containing tritium, (4) fuel recycling, and (5) laser-fusion fueling

  12. Blankets for fusion reactors : materials and neutronics

    International Nuclear Information System (INIS)

    Carvalho, S.H. de.

    1980-03-01

    The studies about Fusion Reactors have lead to several problems for which there is no general agreement about the best solution. Nevertheless, several points seem to be well defined, at least for the first generation of reactors. The fuel, for example, should be a mixture of deuterium and tritium. Therefore, the reactor should be able to generate the tritium to be burned and also to transform kinetic energy of the fusion neutrons into heat in a process similar to the fission reactors. The best materials for the composition of the blanket were first selected and then the neutronics for the proposed system was developed. The neutron flux in the blanket was calculated using the discrete ordinates transport code, ANISN. All the nuclides cross sections came from the DLC-28/CTR library, that processed the ENDF/B data, using the SUPERTOG Program. (Author) [pt

  13. Fuel cycle for a fusion neutron source

    Science.gov (United States)

    Ananyev, S. S.; Spitsyn, A. V.; Kuteev, B. V.

    2015-12-01

    The concept of a tokamak-based stationary fusion neutron source (FNS) for scientific research (neutron diffraction, etc.), tests of structural materials for future fusion reactors, nuclear waste transmutation, fission reactor fuel production, and control of subcritical nuclear systems (fusion-fission hybrid reactor) is being developed in Russia. The fuel cycle system is one of the most important systems of FNS that provides circulation and reprocessing of the deuterium-tritium fuel mixture in all fusion reactor systems: the vacuum chamber, neutral injection system, cryogenic pumps, tritium purification system, separation system, storage system, and tritium-breeding blanket. The existing technologies need to be significantly upgraded since the engineering solutions adopted in the ITER project can be only partially used in the FNS (considering the capacity factor higher than 0.3, tritium flow up to 200 m3Pa/s, and temperature of reactor elements up to 650°C). The deuterium-tritium fuel cycle of the stationary FNS is considered. The TC-FNS computer code developed for estimating the tritium distribution in the systems of FNS is described. The code calculates tritium flows and inventory in tokamak systems (vacuum chamber, cryogenic pumps, neutral injection system, fuel mixture purification system, isotope separation system, tritium storage system) and takes into account tritium loss in the fuel cycle due to thermonuclear burnup and β decay. For the two facility versions considered, FNS-ST and DEMO-FNS, the amount of fuel mixture needed for uninterrupted operation of all fuel cycle systems is 0.9 and 1.4 kg, consequently, and the tritium consumption is 0.3 and 1.8 kg per year, including 35 and 55 g/yr, respectively, due to tritium decay.

  14. Trends and developments in magnetic confinement fusion reactor concepts

    International Nuclear Information System (INIS)

    Baker, C.C.; Carlson, G.A.; Krakowski, R.A.

    1981-01-01

    An overview is presented of recent design trends and developments in reactor concepts for magnetic confinement fusion. The paper emphasizes the engineering and technology considerations of commercial fusion reactor concepts. Emphasis is placed on reactors that operate on the deuterium/tritium/lithium fuel cycle. Recent developments in tokamak, mirror, and Elmo Bumpy Torus reactor concepts are described, as well as a survey of recent developments on a wide variety of alternate magnetic fusion reactor concepts. The paper emphasizes recent developments of these concepts within the last two to three years

  15. Fusion reactors and the environment

    International Nuclear Information System (INIS)

    Hancox, R.

    1990-04-01

    Fusion power, based on the nuclear fusion of light elements to yield a net gain of energy, has the potential to extend the world's resources in a way which is environmentally attractive. Nevertheless, the easiest route to fusion - the reaction between deuterium and tritium - involves hazards from the use of tritium and the neutron activation of the structural materials. These hazards have been considered on the basis of simple conceptual reactor designs, both in relation to normal operation and decommissioning and to potential accident situations. Results from several studies are reviewed and suggest that fusion reactors appear to have an inherently lower environmental impact than fission reactors. However, the realization of this potential has yet to be demonstrated. (author)

  16. Technical issues in fusion reactors

    International Nuclear Information System (INIS)

    Rohatgi, V.K.; Vijayan, T.

    1989-01-01

    In this paper the issues in fusion reactor technology are examined. Rapid progress in fusion technology research in recent years can be attributed to the advances in various technologies. The commercial generation of fusion power greatly depends on the evolution and improvements in these technologies. With better understanding of plasma physics, fusion reactor designs are becoming more and more realistic and comprehensive. It is now possible to compare various concepts within the framework of established technologies. The technological issues needing better understanding and solutions to problem areas are identified. Various instabilities and energy losses are major problem areas. Extensive developments in reactor-relevant advanced materials, compact and powerful superconducting magnets, high-power systems, and plasma heating drivers need to be undertaken and emphasized

  17. Polymer materials for fusion reactors

    International Nuclear Information System (INIS)

    Yamaoka, H.

    1993-01-01

    The radiation-resistant polymer materials have recently drawn much attention from the viewpoint of components for fusion reactors. These are mainly applied to electrical insulators, thermal insulators and structural supports of superconducting magnets in fusion reactors. The polymer materials used for these purposes are required to withstand the synergetic effects of high mechanical loads, cryogenic temperatures and intense nuclear radiation. The objective of this review is to summarize the anticipated performance of candidate materials including polymer composites for fusion magnets. The cryogenic properties and the radiation effects of polymer materials are separately reviewed, because there is only limited investigation on the above-mentioned synergetic effects. Additional information on advanced polymer materials for fusion reactors is also introduced with emphasis on recent developments. (orig.)

  18. Prospects for spheromak fusion reactors

    International Nuclear Information System (INIS)

    Fowler, T.K.; Hua, D.D.

    1995-01-01

    The reactor study of Hagenson and Krakowski demonstrated the attractiveness of the spheromak as a compact fusion reactor, based on physics principles confirmed in CTX experiments in many respects. Most uncertain was the energy confinement time and the role of magnetic turbulence inherent in the concept. In this paper, a one-dimensional model of heat confinement, calibrated by CTX, predicts negligible heat loss by magnetic turbulence at reactor scale

  19. Intelligible seminar on fusion reactors. (12) Next step toward the realization of fusion reactors. Future vision of fusion energy research and development

    International Nuclear Information System (INIS)

    Okano, Kunihiko; Kurihara, Kenichi; Tobita, Kenji

    2006-01-01

    In the last session of this seminar the progress of research and development for the realization of fusion reactors and future vision of fusion energy research and development are summarized. The some problems to be solved when the commercial fusion reactors would be realized, (1) production of deuterium as the fuel, (2) why need the thermonuclear reactors, (3) environmental problems, and (4) ITER project, are described. (H. Mase)

  20. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1981-01-01

    An array of rods comprising zirconium alloy sheathed nuclear fuel pellets assembled to form a fuel element for a pressurised water reactor is claimed. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  1. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1984-01-01

    The fuel elements for a pressurised water reactor comprise arrays of rods of zirconium alloy sheathed nuclear fuel pellets. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  2. Present status of inertial confinement fusion reactor design

    International Nuclear Information System (INIS)

    Mima, Kunioki; Ido, Shunji; Nakai, Sadao.

    1986-01-01

    Since inertial nuclear fusion reactors do not require high vacuum and high magnetic field, the structure of the reactor cavity becomes markedly simple as compared with tokamak type fusion reactors. In particular, since high vacuum is not necessary, liquid metals such as lithium and lead can be used for the first wall, and the damage of reactor structures by neutrons can be prevented. As for the core, the energy efficiency of lasers is not very high, accordingly it must be designed so that the pellet gain due to nuclear fusion becomes sufficiently high, and typically, the gain coefficient from 100 to 200 is necessary. In this paper, the perspective of pellet gain, the plan from the present status to the practical reactors, and the conceptual design of the practical reactors are discussed. The plan of fuel ignition, energy break-even and high gain by the implosion mode, of which the uncertain factor due to uneven irradiation and instability was limited to the minimum, was clarified. The scenario of the development of laser nuclear fusion reactors is presented, and the concept of the reactor system is shown. The various types of nuclear fusion-fission hybrid reactors are explained. As for the design of inertial fusion power reactors, the engineering characteristics of the core, the conceptual design, water fall type reactors and DD fuel reactors are discussed. (Kako, I.)

  3. Survey of fusion reactor technology

    International Nuclear Information System (INIS)

    Chung, M.K.; Kang, H.D.; Oh, Y.K.; Lee, K.W.; In, S.Y.; Kim, Y.C.

    1983-01-01

    The present object of the fusion research is to accomplish the scientific break even by the year of 1986. In view of current progress in the field of Fusion reactor development, we decided to carry out the conceptual design of Tokamak-type fusion reactor during the year of 82-86 in order to acquire the principles of the fusion devices, find the engineering problems and establish the basic capabilities to develop the key techniques with originality. In this year the methods for calculating the locations of the poloidal coils and distribution of the magnetic field, which is one of the most essential and complicated task in the fusion reactor design works, were established. Study on the optimization of the design method of toroidal field coil was also done. Through this work, we established the logic for the design of the toroidal field coil in tokamak and utilize this technique to the design of small compact tokamak. Apart from the development work as to the design technology of tokamak, accelerating column and high voltage power supply (200 KVDC, 100 mA) for intense D-T neutron generator were constructed and now beam transport systems are under construction. This device will be used to develop the materials and the components for the tokamak fusion reactor. (Author)

  4. Study of DD versus DT fusion fuel cycles for different fusion-fission hybrid energy systems

    International Nuclear Information System (INIS)

    Gohar, Y.; Baker, C.C.

    1981-01-01

    A study was performed to investigate the characteristics of an energy system to produce fissile fuel for fission reactors. DD and DT fusion reactors were examined in this study with either a thorium or uranium blanket for each fusion reactor. Various fuel cycles were examined for light-water reactors including the denatured fuel cycles (which may offer proliferation resistance compared to other fuel cycles); these fuel cycles include a uranium fuel cycle with 239 Pu makeup, a thorium fuel cycle with 239 Pu makeup, a denatured uranium fuel cycle with 233 U makeup, and a denatured thorium fuel cycle with 233 U makeup. Four different blankets were considered for this study. The first two blankets have a tritium breeding capability for DT reactors. Lithium oxide (Li 2 O) was used for tritium breeding due to its high lithium density and high temperature capability; however, the use of Li 2 O may result in higher tritium inventories compared to other solid breeders

  5. Mirror fusion reactor design

    International Nuclear Information System (INIS)

    Neef, W.S. Jr.; Carlson, G.A.

    1979-01-01

    Recent conceptual reactor designs based on mirror confinement are described. Four components of mirror reactors for which materials considerations and structural mechanics analysis must play an important role in successful design are discussed. The reactor components are: (a) first-wall and thermal conversion blanket, (b) superconducting magnets and their force restraining structure, (c) neutral beam injectors, and (d) plasma direct energy converters

  6. Tritium management in fusion reactors

    International Nuclear Information System (INIS)

    Galloway, T.R.

    1978-05-01

    This is a review paper covering the key environmental and safety issues and how they have been handled in the various magnetic and inertial confinement concepts and reference designs. The issues treated include: tritium accident analyses, tritium process control, occupational safety, HTO formation rate from the gas-phase, disposal of tritium contaminated wastes, and environmental impact--each covering the Joint European Tokamak (J.E.T. experiment), Tokamak Fusion Test Reactor (TFTR), Russian T-20, The Next Step (TNS) designs by Westinghouse/ORNL and General Atomic/ANL, the ANL and ORNL EPR's, the G.A. Doublet Demonstration Reactor, the Italian Fintor-D and the ORNL Demo Studies. There are also the following full scale plant reference designs: UWMAK-III, LASL's Theta Pinch Reactor Design (RTPR), Mirror Fusion Reactor (MFR), Tandem Mirror Reactor (TMR), and the Mirror Hybrid Reactor (MHR). There are four laser device breakeven experiments, SHIVA-NOVA, LLL reference designs, ORNL Laser Fusion power plant, the German ''Saturn,'' and LLL's Laser Fusion EPR I and II

  7. Fuel cycle for a fusion neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Ananyev, S. S., E-mail: Ananyev-SS@nrcki.ru; Spitsyn, A. V., E-mail: spitsyn-av@nrcki.ru; Kuteev, B. V., E-mail: Kuteev-BV@nrcki.ru [National Research Center Kurchatov Institute (Russian Federation)

    2015-12-15

    The concept of a tokamak-based stationary fusion neutron source (FNS) for scientific research (neutron diffraction, etc.), tests of structural materials for future fusion reactors, nuclear waste transmutation, fission reactor fuel production, and control of subcritical nuclear systems (fusion–fission hybrid reactor) is being developed in Russia. The fuel cycle system is one of the most important systems of FNS that provides circulation and reprocessing of the deuterium–tritium fuel mixture in all fusion reactor systems: the vacuum chamber, neutral injection system, cryogenic pumps, tritium purification system, separation system, storage system, and tritium-breeding blanket. The existing technologies need to be significantly upgraded since the engineering solutions adopted in the ITER project can be only partially used in the FNS (considering the capacity factor higher than 0.3, tritium flow up to 200 m{sup 3}Pa/s, and temperature of reactor elements up to 650°C). The deuterium–tritium fuel cycle of the stationary FNS is considered. The TC-FNS computer code developed for estimating the tritium distribution in the systems of FNS is described. The code calculates tritium flows and inventory in tokamak systems (vacuum chamber, cryogenic pumps, neutral injection system, fuel mixture purification system, isotope separation system, tritium storage system) and takes into account tritium loss in the fuel cycle due to thermonuclear burnup and β decay. For the two facility versions considered, FNS-ST and DEMO-FNS, the amount of fuel mixture needed for uninterrupted operation of all fuel cycle systems is 0.9 and 1.4 kg, consequently, and the tritium consumption is 0.3 and 1.8 kg per year, including 35 and 55 g/yr, respectively, due to tritium decay.

  8. Reactor concepts for laser fusion

    International Nuclear Information System (INIS)

    Meier, W.R.; Maniscalco, J.A.

    1977-07-01

    Scoping studies were initiated to identify attractive reactor concepts for producing electric power with laser fusion. Several exploratory reactor concepts were developed and are being subjected to our criteria for comparing long-range sources of electrical energy: abundance, social costs, technical feasibility, and economic competitiveness. The exploratory concepts include: a liquid-lithium-cooled stainless steel manifold, a gas-cooled graphite manifold, and fluidized wall concepts, such as a liquid lithium ''waterfall'', and a ceramic-lithium pellet ''waterfall''. Two of the major reactor vessel problems affecting the technical feasibility of a laser fusion power plant are: the effects of high-energy neutrons and cyclical stresses on the blanket structure and the effects of x-rays and debris from the fusion microexplosion on the first-wall. The liquid lithium ''waterfall'' concept is presented here in more detail as an approach which effectively deals with these damaging effects

  9. Prospects for improved fusion reactors

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Miller, R.L.; Hagenson, R.L.

    1986-01-01

    Ideally, a new energy source must be capable of displacing old energy sources while providing both economic opportunities and enhanced environmental benefits. The attraction of an essentially unlimited fuel supply has generated a strong impetus to develop advanced fission breeders and, even more strongly, the exploitation of nuclear fusion. Both fission and fusion systems trade a reduced fuel charge for a more capital-intensive plant needed to utilize a cheaper and more abundant fuel. Results from early conceptual designs of fusion power plants, however, indicated a capital intensiveness that could override cost savings promised by an inexpensive fuel cycle. Early warnings of these problems appeared, and generalized routes to more economically attractive systems have been suggested; specific examples have also recently been given. Although a direct reduction in the cost (and mass) of the fusion power core (FPC, i.e., plasma chamber, first wall, blanket, shield, coils, and primary structure) most directly reduces the overall cost of fusion power, with the mass power density (MPD, ratio of net electric power to FPC mass, kWe/tonne) being suggested as a figure-of-merit in this respect, other technical, safety/environmental, and institutional issues also enter into the definition of and direction for improved fusion concepts. These latter issues and related tradeoffs are discussed

  10. Symbiosis of near breeder HTR's with hybrid fusion reactors

    International Nuclear Information System (INIS)

    Seifritz, W.

    1978-07-01

    In this contribution to INFCE a symbiotic fusion/fission reactor system, consisting of a hybrid beam-driven micro-explosion fusion reactor (HMER) and associated high-temperature gas-cooled reactors (HTR) with a coupled fuel cycle, is proposed. This system is similar to the well known Fast Breeder/Near Breeder HTR symbiosis except that the fast fission breeder - running on the U/Pu-cycle in the core and the axial blankets and breeding the surplus fissile material as U-233 in its radial thorium metal or thorium oxide blankets - is replaced by a hybrid micro-explosion DT fusion reactor

  11. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Sakurai, Shungo; Ogiya, Shunsuke.

    1990-01-01

    In a fuel assembly, if the entire fuels comprise mixed oxide fuels, reactivity change in cold temperature-power operation is increased to worsen the reactor shutdown margin. The reactor shutdown margin has been improved by increasing the burnable poison concentration thereby reducing the reactivity of the fuel assembly. However, since unburnt poisons are present at the completion of the reactor operation, the reactivity can not be utilized effectively to bring about economical disadvantage. In view of the above, the reactivity change between lower temperature-power operations is reduced by providing a non-boiling range with more than 9.1% of cross sectional area at the inside of a channel at the central portion of the fuel assembly. As a result, the amount of the unburnt burnable poisons is decreased, the economy of fuel assembly is improved and the reactor shutdown margin can be increase. (N.H.)

  12. Review of fusion DEMO reactor study

    International Nuclear Information System (INIS)

    Seki, Yasushi

    1996-01-01

    Fusion DEMO Reactor is defined and the Steady State Tokamak Reactor (SSTR) concept is introduced as a typical example of a DEMO reactor. Recent DEMO reactor studies in Japan and abroad are introduced. The DREAM Reactor concept is introduced as an ultimate target of fusion research. (author)

  13. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Butterfield, C.E.; Waite, E.

    1982-01-01

    A nuclear reactor fuel element comprising a column of vibration compacted fuel which is retained in consolidated condition by a thimble shaped plug. The plug is wedged into gripping engagement with the wall of the sheath by a wedge. The wedge material has a lower coefficient of expansion than the sheath material so that at reactor operating temperature the retainer can relax sufficient to accommodate thermal expansion of the column of fuel. (author)

  14. Advances in fusion reactor design

    International Nuclear Information System (INIS)

    Baker, C.C.

    1987-01-01

    The author addresses the tokamak as a power reactor. Contrary to popular opinion, there are still a few people that think a tokamak might make a good fusion power reactor. In thinking about advances in fusion reactor design, in the U.S., at least, that generally means advances relevant to the Starfire design. He reviews some of the features of Starfire. Starfire is the last major study done of the tokamak as a reactor in this country. It is now over eight years old in the sense that eight years ago was really the time in which major decisions were made as to its features. Starfire was a tokamak with a major radius of seven meters, about twice the linear dimensions of a machine like TIBER

  15. Reactor fuel charging equipment

    International Nuclear Information System (INIS)

    Wade, Elman.

    1977-01-01

    In many types of reactor fuel charging equipment, tongs or a grab, attached to a trolley, housed in a guide duct, can be used for withdrawing from the core a selected spent fuel assembly or to place a new fuel assembly in the core. In these facilities, the trolley may have wheels that roll on rails in the guide duct. This ensures the correct alignment of the grab, the trolley and fuel assembly when this fuel assembly is being moved. By raising or lowering such a fuel assembly, the trolley can be immerged in the coolant bath of the reactor, whereas at other times it can be at a certain level above the upper surface of the coolant bath. The main object of the invention is to create a fuel handling apparatus for a sodium cooled reactor with bearings lubricated by the sodium coolant and in which the contamination of these bearings is prevented [fr

  16. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Sasaki, Y.; Tashima, J.

    1975-01-01

    A description is given of nuclear reactor fuel assemblies arranged in the form of a lattice wherein there is attached to the interface of one of two adjacent fuel assemblies a plate spring having a concave portion curved toward said interface and to the interface of the other fuel assembly a plate spring having a convex portion curved away from said interface

  17. Tritium resources available for fusion reactors

    Science.gov (United States)

    Kovari, M.; Coleman, M.; Cristescu, I.; Smith, R.

    2018-02-01

    The tritium required for ITER will be supplied from the CANDU production in Ontario, but while Ontario may be able to supply 8 kg for a DEMO fusion reactor in the mid-2050s, it will not be able to provide 10 kg at any realistic starting time. The tritium required to start DEMO will depend on advances in plasma fuelling efficiency, burnup fraction, and tritium processing technology. It is in theory possible to start up a fusion reactor with little or no tritium, but at an estimated cost of 2 billion per kilogram of tritium saved, it is not economically sensible. Some heavy water reactor tritium production scenarios with varying degrees of optimism are presented, with the assumption that only Canada, the Republic of Korea, and Romania make tritium available to the fusion community. Results for the tritium available for DEMO in 2055 range from zero to 30 kg. CANDU and similar heavy water reactors could in theory generate additional tritium in a number of ways: (a) adjuster rods containing lithium could be used, giving 0.13 kg per year per reactor; (b) a fuel bundle with a burnable absorber has been designed for CANDU reactors, which might be adapted for tritium production; (c) tritium production could be increased by 0.05 kg per year per reactor by doping the moderator with lithium-6. If a fusion reactor is started up around 2055, governments in Canada, Argentina, China, India, South Korea and Romania will have the opportunity in the years leading up to that to take appropriate steps: (a) build, refurbish or upgrade tritium extraction facilities; (b) extend the lives of heavy water reactors, or build new ones; (c) reduce tritium sales; (d) boost tritium production in the remaining heavy water reactors. All of the alternative production methods considered have serious economic and regulatory drawbacks, and the risk of diversion of tritium or lithium-6 would also be a major concern. There are likely to be serious problems with supplying tritium for future

  18. Fusion reactors and the environment

    International Nuclear Information System (INIS)

    Wrixon, A.D.

    1976-01-01

    A summary is given of the report of a study group set up in 1971 by the Director of the UKAEA Culham Laboratory to investigate environmental and safety aspects of future commercial fusion reactors (1975, Carruthers, R., Dunster, H.J., Smith, R.D., Watson, C.J.H., and Mitchell, J.T.D., Culham Study Group Report on Fusion Reactors and the Environment, CLM-R148, HMSO, London). This report was originally issued in 1973 under limited distribution, but has only recently been made available for open circulation. Deuterium/tritium fusion is thought to be the most likely reaction to be used in the first generation of reactors. Estimates were made of the local and world-wide population hazards from the release of tritium, both under normal operating conditions and in the event of an accident. One serious type of accident would be a lithium metal fire in the blanket region of the reactor. The use of a fusible lithium salt (FLIBE), eliminating the lithium fire risk, is considered but the report concentrates on lithium metal in the blanket region. The main hazards to operating staff arise both from tritium and from neutron activation of the construction materials. Remote servicing of the reactor structure will be essential, but radioactive waste management seems less onerous than for fission reactors. Meaningful comparison of the overall hazards associated with fusion and fission power programmes is not yet possible. The study group emphasized the need for more data to aid the safety assessments, and the need for such assessments to keep pace with fusion power station design. (U.K.)

  19. Helium cooling of fusion reactors

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Baxi, C.; Bourque, R.; Dahms, C.; Inamati, S.; Ryder, R.; Sager, G.; Schleicher, R.

    1994-01-01

    On the basis of worldwide design experience and in coordination with the evolution of the International Thermonuclear Experimental Reactor (ITER) program, the application of helium as a coolant for fusion appears to be at the verge of a transition from conceptual design to engineering development. This paper presents a review of the use of helium as the coolant for fusion reactor blanket and divertor designs. The concept of a high-pressure helium cooling radial plate design was studied for both ITER and PULSAR. These designs can resolve many engineering issues, and can help with reaching the goals of low activation and high performance designs. The combination of helium cooling, advanced low-activation materials, and gas turbine technology may permit high thermal efficiency and reduced costs, resulting in the environmental advantages and competitive economics required to make fusion a 21st century power source. ((orig.))

  20. Tritium containment of controlled thermonuclear fusion reactor

    International Nuclear Information System (INIS)

    Tanaka, Yoshihisa; Tsukumo, Kiyohiko; Suzuki, Tatsushi

    1979-01-01

    It is well known that tritium is used as the fuel for nuclear fusion reactors. The neutrons produced by the nuclear fusion reaction of deuterium and tritium react with lithium in blankets, and tritium is produced. The blankets reproduce the tritium consumed in the D-T reaction. Tritium circulates through the main cooling system and the fuel supply and evacuation system, and is accumulated. Tritium is a radioactive substance emitting β-ray with 12.6 year half-life, and harmful to human bodies. It is an isotope of hydrogen, and apt to diffuse and leak. Especially at high temperature, it permeates through materials, therefore it is important to evaluate the release of tritium into environment, to treat leaked tritium to reduce its release, and to select the method of containing tritium. The permeability of tritium and its solubility in structural materials are discussed. The typical blanket-cooling systems of nuclear fusion reactors are shown, and the tungsten coating of steam generator tubes and tritium recovery system are adopted for reducing tritium leak. In case of the Tokamak type reactor of JAERI, the tritium recovery system is installed, in which the tritium gas produced in blankets is converted to tritium steam with a Pd-Pt catalytic oxidation tower, and it is dehydrated and eliminated with a molecular sieve tower, then purified and recovered. (Kako, I.)

  1. Radiation shielding for fusion reactors

    International Nuclear Information System (INIS)

    Santoro, R.T.

    2000-01-01

    Radiation shielding requirements for fusion reactors present different problems than those for fission reactors and accelerators. Fusion devices, particularly tokamak reactors, are complicated by geometry constraints that complicate disposition of fully effective shielding. This paper reviews some of these shielding issues and suggested solutions for optimizing the machine and biological shielding. Radiation transport calculations are essential for predicting and confirming the nuclear performance of the reactor and, as such, must be an essential part of the reactor design process. Development and optimization of reactor components from the first wall and primary shielding to the penetrations and containment shielding must be carried out in a sensible progression. Initial results from one-dimensional transport calculations are used for scoping studies and are followed by detailed two- and three-dimensional analyses to effectively characterize the overall radiation environment. These detail model calculations are essential for accounting for the radiation leakage through ports and other penetrations in the bulk shield. Careful analysis of component activation and radiation damage is cardinal for defining remote handling requirements, in-situ replacement of components, and personnel access at specific locations inside the reactor containment vessel. (author)

  2. Prospects for toroidal fusion reactors

    International Nuclear Information System (INIS)

    Sheffield, J.; Galambos, J.D.

    1994-01-01

    Work on the International Thermonuclear Experimental Reactor (ITER) tokamak has refined understanding of the realities of a deuterium-tritium (D-T) burning magnetic fusion reactor. An ITER-like tokamak reactor using ITER costs and performance would lead to a cost of electricity (COE) of about 130 mills/kWh. Advanced tokamak physics to be tested in the Toroidal Physics Experiment (TPX), coupled with moderate components in engineering, technology, and unit costs, should lead to a COE comparable with best existing fission systems around 60 mills/kWh. However, a larger unit size, ∼2000 MW(e), is favored for the fusion system. Alternative toroidal configurations to the conventional tokamak, such as the stellarator, reversed-field pinch, and field-reversed configuration, offer some potential advantage, but are less well developed, and have their own challenges

  3. Fusion reactor critical issues

    International Nuclear Information System (INIS)

    1987-11-01

    The document summarizes the results of a series of INTOR-related meetings organized by the IAEA in 1985-1986 with the following topics: Impurity control modelling, non-inductive current-drive, confinement in tokamaks with intense heating and DEMO requirements. These results are useful to the specialists involved in research on large fusion machines or in the design activity on the next generation tokamaks. Refs, figs and tabs

  4. Reactor fueling system

    International Nuclear Information System (INIS)

    Hattori, Noriaki; Hirano, Haruyoshi.

    1983-01-01

    Purpose: To optimally position a fuel catcher by mounting a television camera to a fuel catching portion and judging video images by the use of a computer or the like. Constitution: A television camera is mounted to the lower end of a fuel catching mechanism for handling nuclear fuels and a fuel assembly disposed within a reactor core or a fuel storage pool is observed directly from above to judge the position for the fuel assembly by means of video signals. Then, the relative deviation between the actual position of the fuel catcher and that set in a memory device is determined and the positional correction is carried out automatically so as to reduce the determined deviation to zero. This enables to catch the fuel assembly without failure and improves the efficiency for the fuel exchange operation. (Moriyama, K.)

  5. Series lecture on advanced fusion reactors

    International Nuclear Information System (INIS)

    Dawson, J.M.

    1983-01-01

    The problems concerning fusion reactors are presented and discussed in this series lecture. At first, the D-T tokamak is explained. The breeding of tritium and the radioactive property of tritium are discussed. The hybrid reactor is explained as an example of the direct use of neutrons. Some advanced fuel reactions are proposed. It is necessary to make physics consideration for burning advanced fuel in reactors. The rate of energy production and the energy loss are important things. The bremsstrahlung radiation and impurity radiation are explained. The simple estimation of the synchrotron radiation was performed. The numerical results were compared with a more detailed calculation of Taimor, and the agreement was quite good. The calculation of ion and electron temperature was made. The idea to use the energy more efficiently is that one can take X-ray or neutrons, and pass them through a first wall of a reactor into a second region where they heat the material. A method to convert high temperature into useful energy is the third problem of this lecture. The device was invented by A. Hertzberg. The lifetime of the reactor depends on the efficiency of energy recovery. The idea of using spin polarized nuclei has come up. The spin polarization gives a chance to achieve a large multiplication factor. The advanced fuel which looks easiest to make go is D plus He-3. The idea of multipole is presented to reduce the magnetic field inside plasma, and discussed. Two other topics are explained. (Kato, T.)

  6. Review of mirror fusion reactor designs

    International Nuclear Information System (INIS)

    Bender, D.J.

    1977-01-01

    Three magnetic confinement concepts, based on the mirror principle, are described. These mirror concepts are summarized as follows: (1) fusion-fission hybrid reactor, (2) tandem mirror reactor, and (3) reversed field mirror reactor

  7. Plutonium-239 production rate study using a typical fusion reactor

    International Nuclear Information System (INIS)

    Faghihi, F.; Havasi, H.; Amin-Mozafari, M.

    2008-01-01

    The purpose of the present paper is to compute fissile 239 Pu material by supposed typical fusion reactor operation to make the fuel requirement for other purposes (e.g. MOX fissile fuel, etc.). It is assumed that there is a fusion reactor has a cylindrical geometry and uses uniformly distributed deuterium-tritium as fuel so that neutron wall load is taken at 10(MW)/(m 2 ) . Moreover, the reactor core is surrounded by six suggested blankets to make best performance of the physical conditions described herein. We determined neutron flux in each considered blanket as well as tritium self-sufficiency using two groups neutron energy and then computation is followed by the MCNP-4C code. Finally, material depletion according to a set of dynamical coupled differential equations is solved to estimate 239 Pu production rate. Produced 239 Pu is compared with two typical fission reactors to find performance of plutonium breeding ratio in the case of the fusion reactor. We found that 0.92% of initial U is converted into fissile Pu by our suggested fusion reactor with thermal power of 3000 MW. For comparison, 239 Pu yield of suggested large scale PWR is about 0.65% and for LMFBR is close to 1.7%. The results show that the fusion reactor has an acceptable efficiency for Pu production compared with a large scale PWR fission reactor type

  8. Plutonium-239 production rate study using a typical fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Faghihi, F. [Research Center for Radiation Protection, Shiraz University, Shiraz (Iran, Islamic Republic of)], E-mail: faghihif@shirazu.ac.ir; Havasi, H.; Amin-Mozafari, M. [Department of Nuclear Engineering, School of Engineering, Shiraz University, 71348-51154 Shiraz (Iran, Islamic Republic of)

    2008-05-15

    The purpose of the present paper is to compute fissile {sup 239}Pu material by supposed typical fusion reactor operation to make the fuel requirement for other purposes (e.g. MOX fissile fuel, etc.). It is assumed that there is a fusion reactor has a cylindrical geometry and uses uniformly distributed deuterium-tritium as fuel so that neutron wall load is taken at 10(MW)/(m{sup 2}) . Moreover, the reactor core is surrounded by six suggested blankets to make best performance of the physical conditions described herein. We determined neutron flux in each considered blanket as well as tritium self-sufficiency using two groups neutron energy and then computation is followed by the MCNP-4C code. Finally, material depletion according to a set of dynamical coupled differential equations is solved to estimate {sup 239}Pu production rate. Produced {sup 239}Pu is compared with two typical fission reactors to find performance of plutonium breeding ratio in the case of the fusion reactor. We found that 0.92% of initial U is converted into fissile Pu by our suggested fusion reactor with thermal power of 3000 MW. For comparison, {sup 239}Pu yield of suggested large scale PWR is about 0.65% and for LMFBR is close to 1.7%. The results show that the fusion reactor has an acceptable efficiency for Pu production compared with a large scale PWR fission reactor type.

  9. Structural materials for fusion reactors

    International Nuclear Information System (INIS)

    Victoria, M.; Baluc, N.; Spaetig, P.

    2001-01-01

    In order to preserve the condition of an environmentally safe machine, present selection of materials for structural components of a fusion reactor is made not only on the basis of adequate mechanical properties, behavior under irradiation and compatibility with other materials and cooling media, but also on their radiological properties, i.e. activity, decay heat, radiotoxicity. These conditions strongly limit the number of materials available to a few families of alloys, generically known as low activation materials. We discuss the criteria for deciding on such materials, the alloys resulting from the application of the concept and the main issues and problems of their use in a fusion environment. (author)

  10. Fusion reactor design studies

    International Nuclear Information System (INIS)

    Santarius, J.F.; Kulcinski, G.L.; Emmert, G.A.

    1991-01-01

    This progress report will give a detailed breakdown of the work accomplished for ARIES-III during the contract period, November 1, 1990 to October 31, 1991. The areas of effort discussed are: Neutronics; First-Wall; Shield; Safety; Systems; Startup and Shutdown; Energy Conversion; Ripple Loss; and Fuel Resources

  11. Hybrid fission-fusion nuclear reactors

    International Nuclear Information System (INIS)

    Zucchetti, Massimo

    2011-01-01

    A fusion-fission hybrid could contribute to all components of nuclear power - fuel supply, electricity production, and waste management. The idea of the fusion-fission hybrid is many decades old. Several ideas, both new and revisited, have been investigated by hybrid proponents. These ideas appear to have attractive features, but they require various levels of advances in plasma science and fusion and nuclear technology. As a first step towards the development of hybrid reactors, fusion neutron sources can be considered as an option. Compact high-field tokamaks can be a candidate for being the neutron source in a fission-fusion hybrid, essentially due to their design characteristics, such as compact dimensions, high magnetic field, flexibility of operation. This study presents the development of a tokamak neutron source for a material testing facility using an Ignitor-based concept. The computed values show the potential of this neutron-rich device for fusion materials testing. Some full-power months of operation are sufficient to obtain relevant radiation damage values in terms of dpa. (Author)

  12. Vacuum engineering for fusion research and fusion reactors

    International Nuclear Information System (INIS)

    Pittenger, L.C.

    1976-01-01

    The following topics are described: (1) surface pumping by cryogenic condensation, (2) operation of large condensing cryopumps, (3) pumping for large fusion experiments, and (4) vacuum technology for fusion reactors

  13. The LOFA analysis of fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Yu, Z.-C.; Xie, H.

    2014-01-01

    The fusion-fission hybrid energy reactor can produce energy, breed nuclear fuel, and handle the nuclear waste, etc, with the fusion neutron source striking the subcritical blanket. The passive safety system, consisting of passive residual heat removal system, passive safety injection system and automatic depressurization system, was adopted into the fusion-fission hybrid energy reactor in this paper. Modeling and nodalization of primary loop, passive core cooling system and partial secondary loop of the fusion-fission hybrid energy reactor using RELAP5 were conducted and LOFA (Loss of Flow Accident) was analyzed. The results of key transient parameters indicated that the PRHRs could mitigate the accidental consequence of LOFA effectively. It is also concluded that it is feasible to apply the passive safety system concept to fusion-fission hybrid energy reactor. (author)

  14. Fusion reactor systems studies

    International Nuclear Information System (INIS)

    1993-01-01

    Fusion Technology Institute personnel actively participated in the ARIES/PULSAR project during the present contract period. Numerous presentations were made at PULSAR project meetings, major contributions were written for the ARIES-II/IV Final Report presentations and papers were given at technical conferences contributions were written for the ARIES Lessons Learned report and a very large number of electronic-mail and regular-mail communications were sent. The remaining sections of this progress report win summarize the work accomplished and in progress for the PULSAR project during the contract period. The main areas of effort are: PULSAR Research; ARIES-II/IV Report Contributions; ARIES Lessons Learned Report Contributions; and Stellarator Study

  15. Method of reactor fueling

    International Nuclear Information System (INIS)

    Saito, Toshiro.

    1983-01-01

    Purpose: To decrease the cost and shorten the working time by saving fueling neutron detectors and their components. Method: Incore drive tubes for the neutron source range monitor (SRM) and intermediate range monitor (IRM) are disposed respectively within in a reactor core and a SRM detector assembly is inserted to the IRM incore drive tube which is most nearest to the neutron source upon reactor fueling. The reactor core reactivity is monitored by the SRM detector assembly. The SRM detector asesembly inserted into the IRM drive tube is extracted at the time of charging fuels up to the frame connecting the SRM and, thereafter, IRM detection assembly is inserted into the IRM drive tube and the SRM detector assembly is inserted into the SRM drive tube respectively for monitoring the reactor core. (Sekiya, K.)

  16. Fusion reactor high vacuum pumping

    International Nuclear Information System (INIS)

    Sedgley, D.W.; Walthers, C.R.; Jenkins, E.M.

    1992-01-01

    This paper reports on recent experiments which have shown the practicality of using activated carbon (coconut charcoal) at 4K to pump helium and hydrogen isotopes for a fusion reactor. Both speed and capacity for deuterium/helium and tritium/helium-3 mixtures were satisfactory. The long-term effects of tritium on the charcoal/cement system developed by Grumman and LLNL was now known; therefore a program was undertaken to see what, if any, effect long-term tritium exposure has on the cryosorber. Several charcoal on aluminum test samples were subjected to six months exposure of tritium at approximately 77 K. The tritium was scanned several times with a residual gas analyzer and the speed-capacity performance of the samples was measured before, approximately one-third way through, and after the exposure. Modest effects were noted which would not seriously restrict the use of charcoal as a cryosorber for fusion reactor high-vacuum pumping applications

  17. Fusion reactor start-up without an external tritium source

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, S., E-mail: Shanliang.Zheng@ccfe.ac.uk; King, D.B.; Garzotti, L.; Surrey, E.; Todd, T.N.

    2016-02-15

    Highlights: • Investigated the feasibility (including plasma physics, neutronics and economics) of starting a fusion reactor from running pure D–D fusion reactor to gradually move towards the D–T operation. • Proposed building up tritium from making use of neutrons generated by D–D fusion reactions. • Studied plasma physics feasibility for pure D–D operation and provided consistent fusion power and neutron yield in the plasma with different mixture of deuterium and tritium. • Discussed the economics aspect for operating a pure D–D fusion reactor towards a full-power D–T fusion reactor. - Abstract: It has long been recognised that the shortage of external tritium sources for fusion reactors using D–T, the most promising fusion fuel, requires all such fusion power plants (FPP) to breed their own tritium. It is also recognised that the initial start-up of a fusion reactor will require several kilograms of tritium within a scenario in which radioactive decay, ITER and subsequent demonstrator reactors are expected to have consumed most of the known tritium stockpile. To circumvent this tritium fuel shortage and ultimately achieve steady-state operation for a FPP, it is essential to first accumulate sufficient tritium to compensate for loss due to decay and significant retention in the materials in order to start a new FPP. In this work, we propose to accumulate tritium starting from D–D fusion reactions, since D exists naturally in water, and to gradually build up the D–T plasma targeted in fusion reactor designs. There are two likely D–D fusion reaction channels, (1) D + D → T + p, and (2) D + D → He3 + n. The tritium can be generated via the reaction channel ‘(1)’ and the 2.45 MeV neutrons from ‘(2)’ react with lithium-6 in the breeding blanket to produce more tritium to be fed back into plasma fuel. Quantitative evaluations are conducted for two blanket concepts to assess the feasibility and suitability of this approach to FPP

  18. Modular Stellarator Fusion Reactor (MSR) concept

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.

    1981-01-01

    A preliminary conceptual study has been made of the Modulator Stellarator Reactor (MSR) as a stedy-state, ignited, DT-fueled, magnetic fusion reactor. The MSR concept combines the physics of classic stellarator confinement with an innovative, modular-coil design. Parametric tradeoff calculations are described, leading to the selection of an interim design point for a 4.8-GWt plant based on Alcator transport scaling and an average beta value of 0.04 in an l = 2 system with a plasma aspect ratio of 11. Neither an economic analysis nor a detailed conceptual engineering design is presented here, as the primary intent of this scoping study is the elucidation of key physics tradeoffs, constraints, and uncertainties for the ultimate power-reactor embodiment

  19. Innovative energy production in fusion reactors

    International Nuclear Information System (INIS)

    Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Sudo, S.; Tomita, Y.; Yamaguchi, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-10-01

    Concepts of innovative energy production in neutron-lean fusion reactors without having the conventional turbine-type generator are proposed for improving the plant efficiency. These concepts are (a) traveling wave direct energy conversion of 14.7 MeV protons, (b) cusp type direct energy conversion of charged particles, (c) efficient use of radiation with semiconductor and supplying clean fuel in a form of hydrogen gas, and (d) direct energy conversion from deposited heat to electric power with semiconductor utilizing Nernst effect. The candidates of reactors such as a toroidal system and an open system are also studied for application of the new concepts. The study shows the above concepts for a commercial reactor are promising. (author)

  20. Innovative energy production in fusion reactors

    International Nuclear Information System (INIS)

    Iiyoshi, A.; Momota, H.; Motojima, O.

    1994-01-01

    Concepts of innovative energy production in neutron-lean fusion reactors without having the conventional turbine-type generator are proposed for improving the plant efficiency. These concepts are (a) traveling wave direct energy conversion of 14.7 MeV protons, (b) cusp type direct energy conversion of charged particles, (c) efficient use of radiation with semiconductor and supplying clean fuel in a form of hydrogen gas, and (d) direct energy conversion from deposited heat to electric power with semiconductor utilizing Nernst effect. The candidates of reactors such as a toroidal system and an open system are also studied for application of the new concepts. The study shows the above concepts for a commercial reactor are promising. (author)

  1. Innovative energy production in fusion reactors

    Science.gov (United States)

    Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Sudo, S.; Tomita, Y.; Yamaguchi, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-10-01

    Concepts of innovative energy production in neutron-lean fusion reactors without having the conventional turbine-type generator are proposed for improving the plant efficiency. These concepts are: (1) traveling wave direct energy conversion of 14.7 MeV protons; (2) cusp type direct energy conversion of charged particles; (3) efficient use of radiation with semiconductor and supplying clean fuel in a form of hydrogen gas; and (4) direct energy conversion from deposited heat to electric power with semiconductor utilizing Nernst effect. The candidates of reactors such as a toroidal system and an open system are also studied for application of the new concepts. The study shows the above concepts for a commercial reactor are promising.

  2. Innovative energy production in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Sudo, S.; Tomita, Y.; Yamaguchi, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-10-01

    Concepts of innovative energy production in neutron-lean fusion reactors without having the conventional turbine-type generator are proposed for improving the plant efficiency. These concepts are (a) traveling wave direct energy conversion of 14.7 MeV protons, (b) cusp type direct energy conversion of charged particles, (c) efficient use of radiation with semiconductor and supplying clean fuel in a form of hydrogen gas, and (d) direct energy conversion from deposited heat to electric power with semiconductor utilizing Nernst effect. The candidates of reactors such as a toroidal system and an open system are also studied for application of the new concepts. The study shows the above concepts for a commercial reactor are promising. (author).

  3. Tritium in fusion reactor components

    International Nuclear Information System (INIS)

    Watson, J.S.; Fisher, P.W.; Talbot, J.B.

    1980-01-01

    When tritium is used in a fusion energy experiment or reactor, several implications affect and usually restrict the design and operation of the system and involve questions of containment, inventory, and radiation damage. Containment is expected to be particularly important both for high-temperature components and for those components that are prone to require frequent maintenance. Inventory is currently of major significance in cases where safety and environmental considerations limit the experiments to very low levels of tritium. Fewer inventory restrictions are expected as fusion experiments are placed in more-remote locations and as the fusion community gains experience with the use of tritium. However, the advent of power-producing experiments with high-duty cycle will again lead to serious difficulties based principally on tritium availability; cyclic operations with significant regeneration times are the principal problems

  4. Cermet fuel reactors

    International Nuclear Information System (INIS)

    Cowan, C.L.; Palmer, R.S.; Van Hoomissen, J.E.; Bhattacharyya, S.K.

    1987-01-01

    Cermet fueled nuclear reactors are attractive candidates for high performance space power systems. The cermet fuel consists of tungsten-urania hexagonal fuel blocks characterized by high strength at elevated temperatures, a high thermal conductivity and resultant high thermal shock resistance. The concept evolved in the 1960's with the objective of developing a reactor design which could be used for a wide range of mobile power generation systems including both Brayton and Rankine power conversion cycles. High temperature thermal cycling tests and in-reactor irradiation tests using cermet fuel were carried out by General Electric in the 1960's as part of the 710 Development Program and by Argonne National laboratory in a subsequent activity. Cermet fuel development programs are currently underway at Argonne National laboratory and Pacific Northwest Laboratory as part of the Multi-Megawatt Space Power Program. Key features of the cermet fueled reactor design are 1) the ability to achieve very high coolant exit temperatures, and 2) thermal shock resistance during rapid power changes, and 3) two barriers to fission product release - the cermet matrix and the fuel element cladding. Additionally, there is a potential for achieving a long operating life because of 1) the neutronic insensitivity of the fast-spectrum core to the buildup of fission products and 2) the utilization of a high strength refractory metal matrix and structural materials. These materials also provide resistance against compression forces that potentially might compact and/or reconfigure the core

  5. Tokamak fusion reactor exhaust

    International Nuclear Information System (INIS)

    Harrison, M.F.A.; Harbour, P.J.; Hotston, E.S.

    1981-08-01

    This report presents a compilation of papers dealing with reactor exhaust which were produced as part of the TIGER Tokamak Installation for Generating Electricity study at Culham. The papers are entitled: (1) Exhaust impurity control and refuelling. (2) Consideration of the physical problems of a self-consistent exhaust and divertor system for a long burn Tokamak. (3) Possible bundle divertors for INTOR and TIGER. (4) Consideration of various magnetic divertor configurations for INTOR and TIGER. (5) A appraisal of divertor experiments. (6) Hybrid divertors on INTOR. (7) Refuelling and the scrape-off layer of INTOR. (8) Simple modelling of the scrape-off layer. (9) Power flow in the scrape-off layer. (10) A model of particle transport within the scrape-off plasma and divertor. (11) Controlled recirculation of exhaust gas from the divertor into the scrape-off plasma. (U.K.)

  6. Canadian fusion fuels technology project

    International Nuclear Information System (INIS)

    1986-01-01

    The Canadian Fusion Fuels Technology Project was launched in 1982 to coordinate Canada's provision of fusion fuels technology to international fusion power development programs. The project has a mandate to extend and adapt existing Canadian tritium technologies for use in international fusion power development programs. 1985-86 represents the fourth year of the first five-year term of the Canadian Fusion Fuels Technology Project (CFFTP). This reporting period coincides with an increasing trend in global fusion R and D to direct more effort towards the management of tritium. This has resulted in an increased linking of CFFTP activities and objectives with those of facilities abroad. In this way there has been a continuing achievement resulting from CFFTP efforts to have cooperative R and D and service activities with organizations abroad. All of this is aided by the cooperative international atmosphere within the fusion community. This report summarizes our past year and provides some highlights of the upcoming year 1986/87, which is the final year of the first five-year phase of the program. AECL (representing the Federal Government), the Ministry of Energy (representing Ontario) and Ontario Hydro, have given formal indication of their intent to continue with a second five-year program. Plans for the second phase will continue to emphasize tritium technology and remote handling

  7. Generic magnetic fusion reactor cost assessment

    International Nuclear Information System (INIS)

    Sheffield, J.

    1985-01-01

    The Fusion Energy Division of the Oak Ridge National Laboratory discusses ''generic'' magnetic fusion reactors. The author comments on DT burning magnetic fusion reactor models being possibly operational in the 21st century. Representative parameters from D-T reactor studies are given, as well as a shematic diagram of a generic fusion reactor. Values are given for winding pack current density for existing and future superconducting coils. Topics included are the variation of the cost of electricity (COE), the dependence of the COE on the net electric power of the reactor, and COE formula definitions

  8. Tritium chemistry in fission and fusion reactors

    International Nuclear Information System (INIS)

    Roth, E.; Masson, M.; Briec, M.

    1986-09-01

    We are interested in the behaviour of tritium inside the solids where it is generated both in the case of fission nuclear reactor fuel elements, and in that of blankets of future fusion reactor. In the first case it is desirable to be able to predict whether tritium will be found in the hulls or in the uranium oxide, and under what chemical form, in order to take appropriate steps for it's removal in reprocessing plants. In fusion reactors breeding large amounts of tritium and burning it in the plasma should be accomplished in as short a cycle as possible in order to limit inventories that are associated with huge activities. Mastering the chemistry of every step is therefore essential. Amounts generated are not of the same order of magnitude in the two cases studied. Ternary fissions produce about 66 10 13 Bq (18 000 Ci) per year of tritium in a 1000 MWe fission generator, i.e., about 1.8 10 10 Bq (0.5 Ci) per day per ton of fuel

  9. Fusion reactors-high temperature electrolysis (HTE)

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1978-01-01

    Results of a study to identify and develop a reference design for synfuel production based on fusion reactors are given. The most promising option for hydrogen production was high-temperature electrolysis (HTE). The main findings of this study are: 1. HTE has the highest potential efficiency for production of synfuels from fusion; a fusion to hydrogen energy efficiency of about 70% appears possible with 1800 0 C HTE units and 60% power cycle efficiency; an efficiency of about 50% possible with 1400 0 C HTE units and 40% power cycle efficiency. 2. Relative to thermochemical or direct decomposition methods HTE technology is in a more advanced state of development, 3. Thermochemical or direct decomposition methods must have lower unit process or capital costs if they are to be more attractive than HTE. 4. While design efforts are required, HTE units offer the potential to be quickly run in reverse as fuel cells to produce electricity for restart of Tokamaks and/or provide spinning reserve for a grid system. 5. Because of the short timescale of the study, no detailed economic evaluation could be carried out.A comparison of costs could be made by employing certain assumptions. For example, if the fusion reactor-electrolyzer capital installation is $400/(KW(T) [$1000/KW(E) equivalent], the H 2 energy production cost for a high efficiency (about 70 %) fusion-HTE system is on the same order of magnitude as a coal based SNG plant based on 1976 dollars. 6. The present reference design indicates that a 2000 MW(th) fusion reactor could produce as much at 364 x 10 6 scf/day of hydrogen which is equivalent in heating value to 20,000 barrels/day of gasoline. This would fuel about 500,000 autos based on average driving patterns. 7. A factor of three reduction in coal feed (tons/day) could be achieved for syngas production if hydrogen from a fusion-HTE system were used to gasify coal, as compared to a conventional syngas plant using coal-derived hydrogen

  10. Cermet fuel reactors

    International Nuclear Information System (INIS)

    Cowan, C.L.; Palmer, R.S.; Van Hoomissen, J.E.; Bhattacharyya, S.K.; Barner, J.O.

    1987-09-01

    Cermet fueled nuclear reactors are attractive candidates for high performance space power systems. The cermet fuel consists of tungsten-urania hexagonal fuel blocks characterized by high strength at elevated temperatures, a high thermal conductivity and resultant high thermal shock resistance. Key features of the cermet fueled reactor design are (1) the ability to achieve very high coolant exit temperatures, and (2) thermal shock resistance during rapid power changes, and (3) two barriers to fission product release - the cermet matrix and the fuel element cladding. Additionally, thre is a potential for achieving a long operating life because of (1) the neutronic insensitivity of the fast-spectrum core to the buildup of fission products and (2) the utilization of a high strength refractory metal matrix and structural materials. These materials also provide resistance against compression forces that potentially might compact and/or reconfigure the core. In addition, the neutronic properties of the refractory materials assure that the reactor remains substantially subcritical under conditions of water immersion. It is concluded that cermet fueled reactors can be utilized to meet the power requirements for a broad range of advanced space applications. 4 refs., 4 figs., 3 tabs

  11. First preliminary design of an experimental fusion reactor

    International Nuclear Information System (INIS)

    1977-09-01

    A preliminary design of a tokamak experimental fusion reactor to be built in the near future is under way. The goals of the reactor are to achieve reactor-level plasma conditions for a sufficiently long operation period and to obtain design, construction and operational experience for the main components of full-scale power reactors. This design covers overall reactor system including plasma characteristics, reactor structure, blanket neutronics, shielding, superconducting magnets, neutral beam injector, electric power supply system, fuel circulating system, reactor cooling system, tritium recovery system and maintenance scheme. The main design parameters are as follows: the reactor fusion power 100 MW, torus radius 6.75 m, plasma radius 1.5 m, first wall radius 1.75 m, toroidal magnet field on axis 6 T, blanket fertile material Li 2 O, coolant He, structural material 316SS and tritium breeding ratio 0.9. (auth.)

  12. Evaluation of DD and DT fusion fuel cycles for different fusion-fission energy systems

    International Nuclear Information System (INIS)

    Gohar, Y.

    1980-01-01

    A study has been carried out in order to investigate the characteristics of an energy system to produce a new source of fissile fuel for existing fission reactors. The denatured fuel cycles were used because it gives additional proliferation resistance compared to other fuel cycles. DT and DD fusion drivers were examined in this study with a thorium or uranium blanket for each fusion driver. Various fuel cycles were studied for light-water and heavy-water reactors. The cost of electricity for each energy system was calculated

  13. Fusion-Fission Hybrid for Fissile Fuel Production without Processing

    Energy Technology Data Exchange (ETDEWEB)

    Fratoni, M; Moir, R W; Kramer, K J; Latkowski, J F; Meier, W R; Powers, J J

    2012-01-02

    Two scenarios are typically envisioned for thorium fuel cycles: 'open' cycles based on irradiation of {sup 232}Th and fission of {sup 233}U in situ without reprocessing or 'closed' cycles based on irradiation of {sup 232}Th followed by reprocessing, and recycling of {sup 233}U either in situ or in critical fission reactors. This study evaluates a third option based on the possibility of breeding fissile material in a fusion-fission hybrid reactor and burning the same fuel in a critical reactor without any reprocessing or reconditioning. This fuel cycle requires the hybrid and the critical reactor to use the same fuel form. TRISO particles embedded in carbon pebbles were selected as the preferred form of fuel and an inertial laser fusion system featuring a subcritical blanket was combined with critical pebble bed reactors, either gas-cooled or liquid-salt-cooled. The hybrid reactor was modeled based on the earlier, hybrid version of the LLNL Laser Inertial Fusion Energy (LIFE1) system, whereas the critical reactors were modeled according to the Pebble Bed Modular Reactor (PBMR) and the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) design. An extensive neutronic analysis was carried out for both the hybrid and the fission reactors in order to track the fuel composition at each stage of the fuel cycle and ultimately determine the plant support ratio, which has been defined as the ratio between the thermal power generated in fission reactors and the fusion power required to breed the fissile fuel burnt in these fission reactors. It was found that the maximum attainable plant support ratio for a thorium fuel cycle that employs neither enrichment nor reprocessing is about 2. This requires tuning the neutron energy towards high energy for breeding and towards thermal energy for burning. A high fuel loading in the pebbles allows a faster spectrum in the hybrid blanket; mixing dummy carbon pebbles with fuel pebbles enables a softer spectrum in

  14. Economic comparison of fusion fuel cycles

    International Nuclear Information System (INIS)

    Brereton, S.J.; Kazimi, M.S.

    1987-01-01

    The economics of the DT, DD, and DHe fusion fuel cycles are evaluated by comparison on a consistent basis. The designs for the comparison employ HT-9 structure and helium coolant; liquid lithium is used as the tritium breeding material for the DT fuel cycle. The reactors are pulsed, superconducting tokamaks, producing 1200 MW of electric power. The DT and DD designs scan a range of values of plasma beta, assuming first stability scaling laws. The results indicate that on a purely economic basis, the DT fuel cycle is superior to both of the advanced fuel cycles. Geometric factors, materials limitations, and plasma beta were seen to have an impact on the Cost of Electricity (COE). The economics for the DD fuel cycle are more strongly affected by these parameters than is the DT fuel cycle. Fuel costs are a major factor in determining the COE for the DHe fuel cycle. Based on costs directly attributable to the fuel cycle, the DT fuel cycle appears most attractive. Technological advances, improved understanding of physics, or strides in advanced energy conversion schemes may result in altering the economic ranking of the fuel cycles indicated here. 7 refs., 6 figs., 2 tabs

  15. Secret high-temperature reactor concept for inertial fusion

    International Nuclear Information System (INIS)

    Monsler, M.J.; Meier, W.R.

    1983-01-01

    The goal of our SCEPTRE project was to create an advanced second-generation inertial fusion reactor that offers the potential for either of the following: (1) generating electricity at 50% efficiency, (2) providing high temperature heat (850 0 C) for hydrogen production, or (3) producing fissile fuel for light-water reactors. We have found that these applications are conceptually feasible with a reactor that is intrinsically free of the hazards of catastrophic fire or tritium release

  16. Control of tritium permeation through fusion reactor strucural materials

    International Nuclear Information System (INIS)

    Maroni, V.A.

    1978-01-01

    The intention of this paper is to provide a brief synopsis of the status of understanding and technology pertaining to the dissolution and permeation of tritium in fusion reactor materials. The following sections of this paper attempt to develop a simple perspective for understanding the consequences of these phenomena and the nature of the technical methodology being contemplated to control their impact on fusion reactor operation. Considered in order are: (1) the occurrence of tritium in the fusion fuel cycle, (2) a set of tentative criteria to guide the analysis of tritium containment and control strategies, (3) the basic mechanisms by which tritium may be released from a fusion plant, and (4) the methods currently under development to control the permeation-related release mechanisms. To provide background and support for these considerations, existing solubility and permeation data for the hydrogen isotopes are compared and correlated under conditions to be expected in fusion reactor systems

  17. Advances in laser solenoid fusion reactor design

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Quimby, D.C.

    1978-01-01

    The laser solenoid is an alternate fusion concept based on a laser-heated magnetically-confined plasma column. The reactor concept has evolved in several systems studies over the last five years. We describe recent advances in the plasma physics and technology of laser-plasma coupling. The technology advances include progress on first walls, inner magnet design, confinement module design, and reactor maintenance. We also describe a new generation of laser solenoid fusion and fusion-fission reactor designs

  18. ITER, the 'Broader Approach', a DEMO fusion reactor

    International Nuclear Information System (INIS)

    Janeschitz, G.; Bahm, W.

    2007-01-01

    Fusion is a very promising future energy option, which is characterized by almost unlimited fuel reserves, favourable safety features and environmental sustainability. The aim of the worldwide fusion research is a fusion power station which imitates the process taking place in the sun and thus gains energy from the fusion of light atomic nuclei. The experimental reactor ITER which will be built in Cadarache, France, marks a breakthrough in the worldwide fusion research: For the first time an energy multiplication factor of at least 10 will be achieved, the factor by which the fusion power exceeds the external plasma heating. Partners in this project are the European Union, Japan, the Russian Federation, USA, China, South Korea and India as well as Brazil as associated partner. The facility is supposed to demonstrate a long burning, reactor-typical plasma and to test techniques such as plasma heating, plasma confinement by superconducting magnets, fuel cycle as well as energy transition, tritium breeding and remote handling technologies. The next step beyond ITER will be the demonstration power station DEMO which requires further developments in order to create the basis for its design and construction. The roadmap to fusion energy is described. It consists of several elements which are needed to develop the knowledge required for a commercial fusion reactor. The DEMO time schedule depends on the efforts in terms of personnel and budget resources the society is willing to invest in fusion taking into account the long term energy supply and its environmental impact. (orig.)

  19. Confinement inertial fusion. Power reactors of nuclear fusion by lasers

    International Nuclear Information System (INIS)

    Velarde, G.; Ahnert, C.; Aragones, J.M.; Leira, G; Martinez-Val, J.M.

    1980-01-01

    The energy crisis and the need of the nuclear fusion energy are analized. The nuclear processes in the laser interation with the ablator material are studied, as well as the thermohydrodinamic processes in the implossion, and the neutronics of the fusion. The fusion reactor components are described and the economic and social impact of its introduction in the future energetic strategies.(author)

  20. The role of the neutral beam fueling profile in the performance of the Tokamak Fusion Test Reactor and other tokamak plasmas

    International Nuclear Information System (INIS)

    Park, H.K.; Batha, S.

    1997-02-01

    Scalings for the stored energy and neutron yield, determined from experimental data are applied to both deuterium-only and deuterium-tritium plasmas in different neutral beam heated operational domains in Tokamak Fusion Test Reactor. The domain of the data considered includes the Supershot, High poloidal beta, Low-mode, and limiter High-mode operational regimes, as well as discharges with a reversed magnetic shear configuration. The new important parameter in the present scaling is the peakedness of the heating beam fueling profile shape. Ion energy confinement and neutron production are relatively insensitive to other plasma parameters compared to the beam fueling peakedness parameter and the heating beam power when considering plasmas that are stable to magnetohydrodynamic modes. However, the stored energy of the electrons is independent of the beam fueling peakedness. The implication of the scalings based on this parameter is related to theoretical transport models such as radial electric field shear and Ion Temperature Gradient marginality models. Similar physics interpretation is provided for beam heated discharges on other major tokamaks

  1. The Canadian Fusion Fuels Technology Project

    International Nuclear Information System (INIS)

    Dautovich, D.P.; Gierszewski, P.J.; Wong, K.Y.; Stasko, R.R.; Burnham, C.D.

    1987-04-01

    The Canadian Fusion Fuels Technology Project (CFFTP) is a national project whose aim is to develop capability in tritium and robotics technologies for application to international fusion development programs. Activities over the first five years have brought substantial interaction with the world's leading projects such as Tokamak Fusion Test Reactor (TFTR), the Joint European Torus (JET), and the Next European Torus (NET), Canadian R and D and engineering services, and hardware are in demand as these major projects prepare for tritium operation leading to the demonstration of energy breakeven around 1990. Global planning is underway for the next generation ignition experiment. It is anticipated this will provide increased opportunity for CFFTP and its contractors among industry, universities and governmental laboratories

  2. What have fusion reactor studies done for you today?

    International Nuclear Information System (INIS)

    Kulchinski, G.L.

    1985-01-01

    The University of Wisconsin examines the fusion program and puts into perspective what return is being made on investments in fusion reactor studies. Illustations show financial support for fusion research from the four major programs, FY'82 expenditures on fusion research, and the total expenditures on fusion research since 1951. Topics discussed include the estimated number of scientists conducting fusion research, the conceptual design study of a fusion reactor, scoping study of a reactor, the chronology of fusion reactor design studies, published fusion reactor studies 1967-1983, conceptual fusion reactor design studies, STARFIRE reference design, MARS central cell, HYLIFE reaction chamber, and selected contributions of reactor design studies to base programs

  3. Vanadium recycling for fusion reactors

    International Nuclear Information System (INIS)

    Dolan, T.J.; Butterworth, G.J.

    1994-04-01

    Very stringent purity specifications must be applied to low activation vanadium alloys, in order to meet recycling goals requiring low residual dose rates after 50--100 years. Methods of vanadium production and purification which might meet these limits are described. Following a suitable cooling period after their use, the vanadium alloy components can be melted in a controlled atmosphere to remove volatile radioisotopes. The aim of the melting and decontamination process will be the achievement of dose rates low enough for ''hands-on'' refabrication of new reactor components from the reclaimed metal. The processes required to permit hands-on recycling appear to be technically feasible, and demonstration experiments are recommended. Background information relevant to the use of vanadium alloys in fusion reactors, including health hazards, resources, and economics, is provided

  4. Tritium experience in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Skinner, C.H.; Blanchard, W.; Hosea, J.; Mueller, D.; Nagy, A.; Hogan, J.

    1998-01-01

    Tritium management is a key enabling element in fusion technology. Tritium fuel was used in 3.5 years of successful deuterium-tritium (D-T) operations in the Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory. The D-T campaign enabled TFTR to explore the transport, alpha physics, and MHD stability of a reactor core. It also provided experience with tritium retention and removal that highlighted the importance of these issues in future D-T machines. In this paper, the authors summarize the tritium retention and removal experience in TFTR and its implications for future reactors

  5. Second preliminary design of JAERI experimental fusion reactor (JXFR)

    International Nuclear Information System (INIS)

    Sako, Kiyoshi; Tone, Tatsuzo; Seki, Yasushi; Iida, Hiromasa; Yamato, Harumi

    1979-06-01

    Second preliminary design of a tokamak experimental fusion reactor to be built in the near future has been performed. This design covers overall reactor system including plasma characteristics, reactor structure, blanket neutronics radiation shielding, superconducting magnets, neutral beam injector, electric power supply system, fuel recirculating system, reactor cooling and tritium recovery systems and maintenance scheme. Safety analyses of the reactor system have been also performed. This paper gives a brief description of the design as of January, 1979. The feasibility study of raising the power density has been also studied and is shown as appendix. (author)

  6. Natural uranium fueled light water moderated breeding hybrid power reactors

    International Nuclear Information System (INIS)

    Greenspan, E.; Schneider, A.; Misolovin, A.; Gilai, D.; Levin, P.

    The feasibility of fission-fusion hybrid reactors based on breeding light water thermal fission systems is investigated. The emphasis is on fuel-self-sufficient (FSS) hybrid power reactors that are fueled with natural uranium. Other LWHRs considered include FSS-LWHRs that are fueled with spent fuel from LWRs, and LWHRs which are to supplement LWRs to provide a tandem LWR-LWHR power economy that is fuel-self-sufficient

  7. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    1975-01-01

    A description is given of a nuclear reactor fuel assembly comprising a cluster of fuel elements supported by transversal grids so that their axes are parallel to and at a distance from each other, in order to establish interstices for the axial flow of a coolant. At least one of the interstices is occupied by an axial duct reserved for an auxiliary cooling fluid and is fitted with side holes through which the auxiliary cooling fluid is sprayed into the cluster. Deflectors extend as from a transversal grid in a position opposite the holes to deflect the cooling fluid jet towards those parts of the fuel elements that are not accessible to the auxiliary coolant. This assembly is intended for reactors cooled by light or heavy water [fr

  8. Tritium production in fusion reactors

    International Nuclear Information System (INIS)

    Roth, E.

    1981-08-01

    The present analyses on the possibilities of extracting tritium from the liquid and solid fusion reactor blankets show up many problems. A consistent ensemble of materials and devices for extracting the heat and the tritium has not yet been integrated in a fusion reactor blanket project. The dimensioning of the many pipes required for shifting the tritium can only be done very approximately and the volume taken up by the blanket is difficult to evaluate, etc. The utilization of present data leads to over-dimensioning the installations by prudence and perhaps rejecting the best solutions. In order to measure the parameters of the most promising materials, work must be carried out on well defined samples and not only determine the base physical-chemical coefficients, such as thermal conductivity, scattering coefficients, Sievert parameters, but also the kinetic parameters conventional in chemical engineering, such as the hourly space rates of degassing. It is also necessary to perform long duration experiments under radiation and at operating temperatures, or above, in order to study the ageing of the bodies employed [fr

  9. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Vikhorev, Yu.V.; Biryukov, G.I.; Kirilyuk, N.A.; Lobanov, V.N.

    1977-01-01

    A fuel assembly is proposed for nuclear reactors allowing remote replacement of control rod bundles or their shifting from one assembly to another, i.e., their multipurpose use. This leads to a significant increase in fuel assembly usability. In the fuel assembly the control rod bundle is placed in guide tube channels to which baffles are attached for fuel element spacing. The remote handling of control rods is provided by a hollow cylinder with openings in its lower bottom through which the control rods pass. All control rods in a bundle are mounted to a cross beam which in turn is mounted in the cylinder and is designed for grasping the whole rod bundle by a remotely controlled telescopic mechanism in bundle replacement or shifting. (Z.M.)

  10. Definition and conceptual design of a small fusion reactor

    International Nuclear Information System (INIS)

    1979-04-01

    The objective of this project is to evaluate various mirror fusion reactor concepts that might result in small systems for the effective production of electrical power or stored energy (e.g., nuclear and chemical fuels). The basic two-year program goal is to select a particular concept and develop the conceptual design of a pilot plant that could provide a useful output from fusion. The pilot plant would be built and operated in the late 1980s

  11. Fuel assembly and reactor core

    International Nuclear Information System (INIS)

    Aoyama, Motoo; Koyama, Jun-ichi; Uchikawa, Sadao; Bessho, Yasunori; Nakajima, Akiyoshi; Maruyama, Hiromi; Ozawa, Michihiro; Nakamura, Mitsuya.

    1990-01-01

    The present invention concerns fuel assemblies charged in a BWR type reactor and the reactor core. The fuel assembly comprises fuel rods containing burnable poisons and fuel rods not containing burnable poisons. Both of the highest and the lowest gadolinia concentrations of the fuel rods containing gadolinia as burnable poisons are present in the lower region of the fuel assembly. This can increase the spectral shift effect without increasing the maximum linear power density. (I.N.)

  12. On the safety of conceptual fusion-fission hybrid reactors

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Okrent, D.; Badham, V.; Caspi, S.; Chan, C.K.; Ferrell, W.J.; Frederking, T.H.K.; Grzesik, J.; Lee, J.Y.; McKone, T.E.; Pomraning, G.C.; Ullman, A.Z.; Ting, T.D.; Kim, Y.I.

    1979-01-01

    A preliminary examination of some potential safety questions for conceptual fusion-fission hybrid reactors is presented in this paper. The study and subsequent analysis was largely based upon one design, a conceptual mirror fusion-fission reactor, operating on the deuterium-tritium plasma fusion fuel cycle and the uranium-plutonium fission fuel cycle. The major potential hazards were found to be: (a) fission products, (b) actinide elements, (c) induced radioactivity, and (d) tritium. As a result of these studies, it appears that highly reliable and even redundent decay heat removal must be provided. Loss of the ability to remove decay heat results in melting of fuel, with ultimate release of fission products and actinides to the containment. In addition, the studies indicate that blankets can be designed which will remain subcritical under extensive changes in both composition and geometry. Magnet safety and the effects of magnetic fields on thermal parameters were also considered. (Auth.)

  13. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    International Nuclear Information System (INIS)

    Koch, M.; Kazimi, M.S.

    1991-04-01

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed

  14. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    Energy Technology Data Exchange (ETDEWEB)

    Koch, M.; Kazimi, M.S.

    1991-04-01

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed.

  15. Fusion fuel cycle solid radioactive wastes

    International Nuclear Information System (INIS)

    Gore, B.F.; Kaser, J.D.; Kabele, T.J.

    1978-06-01

    Eight conceptual deuterium-tritium fueled fusion power plant designs have been analyzed to identify waste sources, materials and quantities. All plant designs include the entire D-T fuel cycle within each plant. Wastes identified include radiation-damaged structural, moderating, and fertile materials; getter materials for removing corrosion products and other impurities from coolants; absorbents for removing tritium from ventilation air; getter materials for tritium recovery from fertile materials; vacuum pump oil and mercury sludge; failed equipment; decontamination wastes; and laundry waste. Radioactivity in these materials results primarily from neutron activation and from tritium contamination. For the designs analyzed annual radwaste volume was estimated to be 150 to 600 m 3 /GWe. This may be compared to 500 to 1300 m 3 /GWe estimated for the LMFBR fuel cycle. Major waste sources are replaced reactor structures and decontamination waste

  16. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E. D.

    1984-01-01

    An array of rods is assembled to form a fuel element for a pressurized water reactor, the rods comprising zirconium alloy sheathed nuclear fuel pellets and containing helium. The helium gas pressure is selected for each rod so that it differs substantially from the helium gas pressure in its closest neighbors. In a preferred arrangement the rods are arranged in a square lattice and the helium gas pressure alternates between a relatively high value and a relatively low value so that each rod has as its closest neighbors up to four rods containing helium gas at the other pressure value

  17. Nuclear reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, E. D.

    1984-10-16

    An array of rods is assembled to form a fuel element for a pressurized water reactor, the rods comprising zirconium alloy sheathed nuclear fuel pellets and containing helium. The helium gas pressure is selected for each rod so that it differs substantially from the helium gas pressure in its closest neighbors. In a preferred arrangement the rods are arranged in a square lattice and the helium gas pressure alternates between a relatively high value and a relatively low value so that each rod has as its closest neighbors up to four rods containing helium gas at the other pressure value.

  18. Polarized advanced fuel reactors

    International Nuclear Information System (INIS)

    Kulsrud, R.M.

    1987-07-01

    The d- 3 He reaction has the same spin dependence as the d-t reaction. It produces no neutrons, so that if the d-d reactivity could be reduced, it would lead to a neutron-lean reactor. The current understanding of the possible suppression of the d-d reactivity by spin polarization is discussed. The question as to whether a suppression is possible is still unresolved. Other advanced fuel reactions are briefly discussed. 11 refs

  19. Proliferation Resistant Nuclear Reactor Fuel

    International Nuclear Information System (INIS)

    Gray, L.W.; Moody, K.J.; Bradley, K.S.; Lorenzana, H.E.

    2011-01-01

    Global appetite for fission power is projected to grow dramatically this century, and for good reason. Despite considerable research to identify new sources of energy, fission remains the most plentiful and practical alternative to fossil fuels. The environmental challenges of fossil fuel have made the fission power option increasingly attractive, particularly as we are forced to rely on reserves in ecologically fragile or politically unstable corners of the globe. Caught between a globally eroding fossil fuel reserve as well as the uncertainty and considerable costs in the development of fusion power, most of the world will most likely come to rely on fission power for at least the remainder of the 21st century. Despite inevitable growth, fission power faces enduring challenges in sustainability and security. One of fission power's greatest hurdles to universal acceptance is the risk of potential misuse for nefarious purposes of fissionable byproducts in spent fuel, such as plutonium. With this issue in mind, we have discussed intrinsic concepts in this report that are motivated by the premise that the utility, desirability, and applicability of nuclear materials can be reduced. In a general sense, the intrinsic solutions aim to reduce or eliminate the quantity of existing weapons usable material; avoid production of new weapons-usable material through enrichment, breeding, extraction; or employ engineering solutions to make the fuel cycle less useful or more difficult for producing weapons-usable material. By their nature, these schemes require modifications to existing fuel cycles. As such, the concomitants of these modifications require engagement from the nuclear reactor and fuel-design community to fully assess their effects. Unfortunately, active pursuit of any scheme that could further complicate the spread of domestic nuclear power will probably be understandably unpopular. Nevertheless, the nonproliferation and counterterrorism issues are paramount, and

  20. Inertial-fusion-reactor studies at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Monsler, M.J.; Meier, W.R.

    1982-08-01

    We present results of our reactor studies for inertial-fusion energy production. Design studies of liquid-metal wall chambers have led to reactors that are remarkably simple in design, and that promise long life and low cost. Variants of the same basic design, called HYLIFE, can be used for electricity production, as a fissile-fuel factory, a dedicated tritium breeder, or hybrids of each

  1. Reactor and fuel assembly

    International Nuclear Information System (INIS)

    Ishii, Yoshihiko; Bessho, Yasunori; Sano, Hiroki; Yokomizo, Osamu; Yamashita, Jun-ichi.

    1990-01-01

    The present invention realizes an effective spectral operation by applying an optimum pressure loss coefficient while taking the characteristics of a lower tie plate into consideration. That is, the pressure loss coefficient of the lower tie plate is optimized by varying the cross sectional area of a fuel assembly flow channel in the lower tie plate or varying the surface roughness of a coolant flow channel in the lower tie plate. Since there is a pressure loss coefficient to optimize the moderator density over a flow rate change region, the effect of spectral shift rods can be improved by setting the optimum pressure loss coefficient of the lower tie plate. According to the present invention, existent fuel assemblies can easily be changed successively to fuel assemblies having spectral shift rods of a great spectral shift effect by using existent reactor facilities as they are. (I.S.)

  2. Lower activation materials and magnetic fusion reactors

    International Nuclear Information System (INIS)

    Conn, R.W.; Bloom, E.E.; Davis, J.W.; Gold, R.E.; Little, R.; Schultz, K.R.; Smith, D.L.; Wiffen, F.W.

    1984-01-01

    Radioactivity in fusion reactors can be effectively controlled by materials selection. The detailed relationship between the use of a material for construction of a magnetic fusion reactor and the material's characteristics important to waste disposal, safety, and system maintainability has been studied. The quantitative levels of radioactivation are presented for many materials and alloys, including the role of impurities, and for various design alternatives. A major outcome has been the development of quantitative definitions to characterize materials based on their radioactivation properties. Another key result is a four-level classification scheme to categorize fusion reactors based on quantitative criteria for waste management, system maintenance, and safety. A recommended minimum goal for fusion reactor development is a reference reactor that (a) meets the requirements for Class C shallow land burial of waste materials, (b) permits limited hands-on maintenance outside the magnet's shield within 2 days of a shutdown, and (c) meets all requirements for engineered safety. The achievement of a fusion reactor with at least the characteristics of the reference reactor is a realistic goal. Therefore, in making design choices or in developing particular materials or alloys for fusion reactor applications, consideration must be given to both the activation characteristics of a material and its engineering practicality for a given application

  3. Blanket materials for DT fusion reactors

    International Nuclear Information System (INIS)

    Smith, D.L.

    1981-01-01

    This paper presents an overview of the critical materials issues that must be considered in the development of a tritium breeding blanket for a tokamak fusion reactor that operates on the D-T-Li fuel cycle. The primary requirements of the blanket system are identified and the important criteria that must be considered in the development of blanket technology are summarized. The candidate materials are listed for the different blanket components, e.g., breeder, coolant, structure and neutron multiplier. Three blanket concepts that appear to offer the most potential are: (1) liquid-metal breeder/coolant, (2) liquid-metal breeder/separate coolant, and (3) solid breeder/separate coolant. The major uncertainties associated with each of the design concepts are discussed and the key materials R and D requirements for each concept are identified

  4. Burning nuclear wastes in fusion reactors

    International Nuclear Information System (INIS)

    Meldner, H.W.; Howard, W.M.

    1979-01-01

    A study was made up of actinide burn-up in ICF reactor pellets; i.e. 14 Mev neutron fission of the very long-lived actinides that pose storage problems. A major advantage of pellet fuel region burn-up is safety: only milligrams of highly toxic and active material need to be present in the fusion chamber, whereas blanket burn-up requires the continued presence of tons of actinides in a small volume. The actinide data tables required for Monte Carlo calculations of the burn-up of /sup 241/Am and /sup 243/Am are discussed in connection with a study of the sensitivity to cross section uncertainties. More accurate and complete cross sections are required for realistic quantitative calculations. 13 refs

  5. Canadian capabilities in fusion fuels technology and remote handling

    International Nuclear Information System (INIS)

    1987-10-01

    This report describes Canadian expertise in fusion fuels technology and remote handling. The Canadian Fusion Fuels Technology Project (CFFTP) was established and is funded by the Canadian government, the province of Ontario and Ontario Hydro to focus on the technology necessary to produce and manage the tritium and deuterium fuels to be used in fusion power reactors. Its activities are divided amongst three responsibility areas, namely, the development of blanket, first wall, reactor exhaust and fuel processing systems, the development of safe and reliable operating procedures for fusion facilities, and, finally, the application of these developments to specific projects such as tritium laboratories. CFFTP also hopes to utilize and adapt Canadian developments in an international sense, by, for instance, offering training courses to the international tritium community. Tritium management expertise is widely available in Canada because tritium is a byproduct of the routine operation of CANDU reactors. Expertise in remote handling is another byproduct of research and development of of CANDU facilities. In addition to describing the remote handling technology developed in Canada, this report contains a brief description of the Canadian tritium laboratories, storage beds and extraction plants as well as a discussion of tritium monitors and equipment developed in support of the CANDU reactor and fusion programs. Appendix A lists Canadian manufacturers of tritium equipment and Appendix B describes some of the projects performed by CFFTP for offshore clients

  6. Activation product transport in fusion reactors

    International Nuclear Information System (INIS)

    Klein, A.C.; Vogelsang, W.F.

    1984-01-01

    Activated corrosion and neutron sputtering products will enter the coolant and/or tritium breeding material of fusion reactor power plants and experiments and cause personnel access problems. Radiation levels around plant components due to these products will cause difficulties with maintenance and repair operations throughout the plant. A computer code, RAPTOR, has been developed to determine the transport of these products in fusion reactor coolant/tritium breeding materials. Without special treatment, it is likely that fusion reactor power plant operators could experience dose rates as high as 8 rem per hour around a number of plant components after only a few years of operation. (orig.)

  7. Reactor fuel exchanging facility

    International Nuclear Information System (INIS)

    Kubota, Shin-ichi.

    1981-01-01

    Purpose: To enable operation of an emergency manual operating mechanism for a fuel exchanger with all operatorless trucks and remote operation of a manipulator even if the exchanger fails during the fuel exchanging operation. Constitution: When a fuel exchanging system fails while connected to a pressure tube of a nuclear reactor during a fuel exchanging operation, a stand-by self-travelling truck automatically runs along a guide line to the position corresponding to the stopping position at that time of the fuel exchanger based on a command from a central control chamber. At this time the truck is switched to manual operation, and approaches the exchanger while being monitored through a television camera and then stops. Then, a manipurator is connected to the emergency manual operating mechanism of the exchanger, and is operated through necessary emergency steps by driving the snout, the magazine, the grab or the like in the exchanger in response to the problem, and necessary operations for the emergency treatment are thus performed. (Sekiya, K.)

  8. Fossil fuel furnace reactor

    Science.gov (United States)

    Parkinson, William J.

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  9. Cooling nuclear reactor fuel

    International Nuclear Information System (INIS)

    Porter, W.H.L.

    1975-01-01

    Reference is made to water or water/steam cooled reactors of the fuel cluster type. In such reactors it is usual to mount the clusters in parallel spaced relationship so that coolant can pass freely between them, the coolant being passed axially from one end of the cluster in an upward direction through the cluster and being effective for cooling under normal circumstances. It has been suggested, however, that in addition to the main coolant flow an auxiliary coolant flow be provided so as to pass laterally into the cluster or be sprayed over the top of the cluster. This auxiliary supply may be continuously in use, or may be held in reserve for use in emergencies. Arrangements for providing this auxiliary cooling are described in detail. (U.K.)

  10. Progress of nuclear fusion research and review on development of fusion reactors

    International Nuclear Information System (INIS)

    1976-01-01

    Set up in October 1971, the ad hoc Committee on Survey of Nuclear Fusion Reactors has worked on overall fusion reactor aspects and definition of the future problems under four working groups of core, nuclear heat, materials and system. The presect volume is intended to provide reference materials in the field of fusion reactor engineering, prepared by members of the committee. Contents are broadly the following: concept of the nuclear fusion reactor, fusion core engineering, fusion reactor blanket engineering, fusion reactor materials engineering, and system problems in development of fusion reactors. (Mori, K.)

  11. 1: the atom. 2: radioactivity. 3: man and radiations. 4: the energy. 5: nuclear energy: fusion and fission. 6: the operation of a nuclear reactor. 7: the nuclear fuel cycle; 1: l'atome. 2: la radioactivite. 3: l'homme et les rayonnements. 4: l'energie. 5: l'energie nucleaire: fusion et fission. 6: le fonctionnement d'un reacteur nucleaire. 7: le cycle du combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This series of 7 digest booklets present the bases of the nuclear physics and of the nuclear energy: 1 - the atom (structure of matter, chemical elements and isotopes, the four fundamental interactions, nuclear physics); 2 - radioactivity (definition, origins of radioelements, applications of radioactivity); 3 - man and radiations (radiations diversity, biological effects, radioprotection, examples of radiation applications); 4 - energy (energy states, different forms of energy, characteristics); 5 - nuclear energy: fusion and fission (nuclear energy release, thermonuclear fusion, nuclear fission and chain reaction); 6 - operation of a nuclear reactor (nuclear fission, reactor components, reactor types); 7 - nuclear fuel cycle (nuclear fuel preparation, fuel consumption, reprocessing, wastes management). (J.S.)

  12. Designing the Cascade inertial confinement fusion reactor

    International Nuclear Information System (INIS)

    Pitts, J.H.

    1987-01-01

    The primary goal in designing inertial confinement fusion (ICF) reactors is to produce electrical power as inexpensively as possible, with minimum activation and without compromising safety. This paper discusses a method for designing the Cascade rotating ceramic-granule-blanket reactor (Pitts, 1985) and its associated power plant (Pitts and Maya, 1985). Although focus is on the cascade reactor, the design method and issues presented are applicable to most other ICF reactors

  13. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Marmonier, Pierre; Mesnage, Bernard; Nervi, J.C.

    1975-01-01

    This invention refers to fuel assemblies for a liquid metal cooled fast neutron reactor. Each assembly is composed of a hollow vertical casing, of regular polygonal section, containing a bundle of clad pins filled with a fissile or fertile substance. The casing is open at its upper end and has a cylindrical foot at its lower end for positioning the assembly in a housing provided in the horizontal diagrid, on which the core assembly rests. A set of flat bars located on the external surface of the casing enables it to be correctly orientated in its housing among the other core assemblies [fr

  14. SOLASE: a conceptual laser fusion reactor design

    International Nuclear Information System (INIS)

    Conn, R.W.; Abdel-Khalik, S.I.; Moses, G.A.

    1977-12-01

    The SOLASE conceptual laser fusion reactor has been designed to elucidate the technological problems posed by inertial confinement fusion reactors. This report contains a detailed description of all aspects of the study including the physics of pellet implosion and burn, optics and target illumination, last mirror design, laser system analysis, cavity design, pellet fabrication and delivery, vacuum system requirements, blanket design, thermal hydraulics, tritium analysis, neutronics calculations, radiation effects, stress analysis, shield design, reactor and plant building layout, maintenance procedures, and power cycle design. The reactor is designed as a 1000 MW/sub e/ unit for central station electric power generation

  15. Introduction to magnetic fusion reactor design

    International Nuclear Information System (INIS)

    Watanabe, Kenji

    1988-01-01

    Trend of the tokamak reactor design works so far carried out is reviewed, and method of conceptual design for commercial fusion reactor is critically considered concerning the black-box conpepts. System-framework of the engineering of magnetic fusion (commercial) reactor design is proposed as four steps. Based on it the next design studies are recommended in parallel approaches for making real-overcome of reactor material problem, from the view point of technological realization and not from the economical one. Real trials are involved. (author)

  16. Inertial fusion reactors and magnetic fields

    International Nuclear Information System (INIS)

    Cornwell, J.B.; Pendergrass, J.H.

    1985-01-01

    The application of magnetic fields of simple configurations and modest strengths to direct target debris ions out of cavities can alleviate recognized shortcomings of several classes of inertial confinement fusion (ICF) reactors. Complex fringes of the strong magnetic fields of heavy-ion fusion (HIF) focusing magnets may intrude into reactor cavities and significantly affect the trajectories of target debris ions. The results of an assessment of potential benefits from the use of magnetic fields in ICF reactors and of potential problems with focusing-magnet fields in HIF reactors conducted to set priorities for continuing studies are reported. Computational tools are described and some preliminary results are presented

  17. Some safety studies for conceptual fusion--fission hybrid reactors. Final report

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Okrent, D.

    1978-07-01

    The objective of this study was to make a preliminary examination of some potential safety questions for conceptual fusion-fission hybrid reactors. The study and subsequent analysis was largely based upon reference to one design, a conceptual mirror fusion-fission reactor, operating on the deuterium-tritium plasma fusion fuel cycle and the uranium-plutonium fission fuel cycle. The blanket is a fast-spectrum, uranium carbide, helium cooled, subcritical reactor, optimized for the production of fissile fuel. An attempt was made to generalize the results wherever possible

  18. Studies in fusion reactor technology. Final report, September 1, 1974--August 31, 1977

    International Nuclear Information System (INIS)

    Axtmann, R.C.; Perkins, H.K.

    1977-08-01

    Two independent measurements of hydrogen permeation through stainless steel at driving pressures in the range from 10 -6 to 1 Pa indicate that most extant predictions of tritium permeation through fusion reactors are probably overestimated grossly. A comprehensive analysis demonstrates that, given available structural materials, the prospects are negligible for the economic production of synthetic fuels via radiolytic reactions in fusion reactor systems

  19. Advanced-fueled fusion reactors suitable for direct energy conversion. Project note: temperature-gradient enhancement of electrical fields in insulators

    International Nuclear Information System (INIS)

    Blum, A.S.; Mancebo, L.

    1976-01-01

    Direct energy converters for use on controlled fusion reactors utilize electrodes operated at elevated voltages and temperatures. The insulating elements that position these electrodes must support large voltages and under some circumstances large thermal gradients. It is shown that even modest thermal gradients can cause major alterations of the electric-field distribution within the insulating element

  20. Safety and environmental advantages of breeding blanketless fusion reactors

    International Nuclear Information System (INIS)

    Zucchetti, M.; Merola, M.; Matera, R.

    1994-01-01

    Next-step reactors will use DT cycle. However, environmental advantage will be the main chance for fusion to compete with other energy sources. The environmental problems of DT cycle due to tritium and neutron activation, are examined. Fusion commercial reactors could be based on alternative fuel cycles like D-He3. Advantages and disadvantages of this fuel cycle are outlined. All the technologies related with the self-breeding of tritium and the concept of breeding blanket itself may be not reactor relevant. In the frame of the Next-step studies, the potential advantages of intermediate DT devices without breeding blanket are discussed. Simplified design, lower cost, higher safety are the main ones. The problem of the source of tritium is examined. (author)

  1. Fusion reactor safety studies, FY 1977

    International Nuclear Information System (INIS)

    Darby, J.B. Jr.

    1978-04-01

    This report reviews the technical progress in the fusion reactor safety studies performed during FY 1977 in the Fusion Power Program at the Argonne National Laboratory. The subjects reported on include safety considerations of the vacuum vessel and first-wall design for the ANL/EPR, the thermal responses of a tokamak reactor first wall, the vacuum wall electrical resistive requirements in relationship to magnet safety, and a major effort is reported on considerations and experiments on air detritiation

  2. High temperature fusion reactor design

    International Nuclear Information System (INIS)

    Harkness, S.D.; dePaz, J.F.; Gohar, M.Y.; Stevens, H.C.

    1979-01-01

    Fusion energy may have unique advantages over other systems as a source for high temperature process heat. A conceptual design of a blanket for a 7 m tokamak reactor has been developed that is capable of producing 1100 0 C process heat at a pressure of approximately 10 atmospheres. The design is based on the use of a falling bed of MgO spheres as the high temperature heat transfer system. By preheating the spheres with energy taken from the low temperature tritium breeding part of the blanket, 1086 MW of energy can be generated at 1100 0 C from a system that produces 3000 MW of total energy while sustaining a tritium breeding ratio of 1.07. The tritium breeding is accomplished using Li 2 O modules both in front of (6 cm thick) and behind (50 cm thick) the high temperature ducts. Steam is used as the first wall and front tritium breeding module coolant while helium is used in the rear tritium breeding region. The system produces 600 MW of net electricity for use on the grid

  3. Reactor fuel rod

    International Nuclear Information System (INIS)

    Inui, Mitsuhiro; Mori, Kazuma.

    1990-01-01

    In a high burnup degree reactor core, a problem of fuel can corrosion caused by coolants occurs due to long stay in a reactor. Then, the use of fuel cladding tubes with improved corrosion resistance is now undertaken and use of corrosion resistant alloys is attempted. However, since the conventional TIG welding melts the entire portion, the welded portion does not remain only in the corrosive resistant alloy but it forms new alloys of the corrosion resistant alloy and zircaloy as the matrix material or inter-metallic compounds, which degrades the corrosion resistance. In the present invention, a cladding tube comprising a dual layer structure using a corrosion resistant alloy only for a required thickness and an end plug made of the same material as the corrosion resistant alloy are welded at the junction portion by using resistance welding. Then, they are joined under welding by the heat generated to the junction surfaces between both of them, to provide corrosion resistant alloys substantially at the outside of the welded portion as well. Accordingly, the corrosion resistance is not degradated. (T.M.)

  4. Laser-prearc railgun: Development for the application to a fuel pellet injector of a nuclear fusion reactor

    Science.gov (United States)

    Tamura, H.; Sawaoka, A. B.; Oda, Y.; Onozuka, M.; Kuribayashi, S.; Shimizu, K.

    1992-05-01

    The laser-prearc railgun, that utilizes the phenomenon of laser-induced arc formation, was constructed and tested with plastic pellet projectiles. We envision our railgun as especially well suited as a solid hydrogen pellet injector for magnetic confinement fusion. The system consisted of a gas gun for preacceleration of a pellet and a railgun for its primary acceleration. A Q-switched ruby laser was used to induce electrical breakdown of propellant helium gas behind a dielectric pellet in the railgun. The present railgun was shown to accelerate a plastic pellet up to a velocity of 2.4 km/s.

  5. Hydrogen production from fusion reactors coupled with high temperature electrolysis

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and complement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Processes which may be considered for this purpose include electrolysis, thermochemical decomposition or thermochemical-electrochemical hybrid cycles. Preliminary studies at Brookhaven indicate that high temperature electrolysis has the highest potential efficiency for production of hydrogen from fusion. Depending on design electric generation efficiencies of approximately 40 to 60 percent and hydrogen production efficiencies of approximately 50 to 70 percent are projected for fusion reactors using high temperature blankets

  6. The fuel of nuclear reactors

    International Nuclear Information System (INIS)

    1995-03-01

    This booklet is a presentation of the different steps of the preparation of nuclear fuels performed by Cogema. The documents starts with a presentation of the different French reactor types: graphite moderated reactors, PWRs using MOX fuel, fast breeder reactors and research reactors. The second part describes the fuel manufacturing process: conditioning of nuclear materials and fabrication of fuel assemblies. The third part lists the different companies involved in the French nuclear fuel industry while part 4 gives a short presentation of the two Cogema's fuel fabrication plants at Cadarache and Marcoule. Part 5 and 6 concern the quality assurance, the safety and reliability aspects of fuel elements and the R and D programs. The last part presents some aspects of the environmental and personnel protection performed by Cogema. (J.S.)

  7. Recent designs for advanced fusion reactor blankets

    International Nuclear Information System (INIS)

    Sze, D.K.

    1994-01-01

    A series of reactor design studies based on the Tokamak configuration have been carried out under the direction of Professor Robert Conn of UCLA. They are called ARIES-I through IV. The key mission of these studies is to evaluate the attractiveness of fusion assuming different degrees of advancement in either physics or engineering development. This paper discusses the directions and conclusions of the blanket and related engineering systems for those design studies. ARIES-1 investigated the use of SiC composite as the structural material to increase the blanket temperature and reduce the blanket activation. Li 2 ZrO 3 was used as the breeding material due to its high temperature stability and good tritium recovery characteristics. The ARIES-IV is a modification of ARIES-1. The plasma was in the second stability regime. Li 2 O was used as the breeding material to remove Zr. A gaseous divertor was used to replace the conventional divertor so that high Z divertor target is not required. The physics of ARIES-II was the same as ARIES-IV. The engineering design of the ARIES-II was based on a self-cooled lithium blanket with a V-alloy as the structural material. Even though it was assumed that the plasma was in the second stability regime, the plasma beta was still rather low (3.4%). The ARIES-III is an advanced fuel (D- 3 He) tokamak reactor. The reactor design assumed major advancement on the physics, with a plasma beta of 23.9%. A conventional structural material is acceptable due to the low neutron wall loading. From the radiation damage point of view, the first wall can last the life of the reactor, which is expected to be a major advantage from the engineering design and waste disposal point of view

  8. Tritium problems in fusion reactor systems

    International Nuclear Information System (INIS)

    Hickman, R.G.

    1975-01-01

    A brief introduction is given to the role tritium will play in the development of fusion power. The biological and worldwide environmental behavior of tritium is reviewed. The tritium problems expected in fusion power reactors are outlined. A few thoughts on tritium permeation and recent results for tritium cleanup and CT 4 accumulation are presented. Problems involving the recovery of tritium from the breeding blanket in fusion power reactors are also considered, including the possible effect of impurities in lithium blankets and the use of lithium as a regenerable getter pump. (auth)

  9. Tritium-management requirements for D-T fusion reactors (ETF, INTOR, FED)

    International Nuclear Information System (INIS)

    Finn, P.A.; Clemmer, R.G.; Misra, B.

    1981-10-01

    The successful operation of D-T fusion reactors will depend on the development of safe and reliable tritium-containment and fuel-recycle systems. The tritium handling requirements for D-T reactors were analyzed. The reactor facility was then designed from the viewpoint of tritium management. Recovery scenarios after a tritium release were generated to show the relative importance of various scenarios. A fusion-reactor tritium facility was designed which would be appropriate for all types of plants from the Engineering Test Facility (ETF), the International Tokamak Reactor (INTOR), and the Fusion Engineering Device (FED) to the full-scale power plant epitomized by the STARFIRE design

  10. Advanced Research Reactor Fuel Development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C. K.; Park, H. D.; Kim, K. H. (and others)

    2006-04-15

    RERTR program for non-proliferation has propelled to develop high-density U-Mo dispersion fuels, reprocessable and available as nuclear fuel for high performance research reactors in the world. As the centrifugal atomization technology, invented in KAERI, is optimum to fabricate high-density U-Mo fuel powders, it has a great possibility to be applied in commercialization if the atomized fuel shows an acceptable in-reactor performance in irradiation test for qualification. In addition, if rod-type U-Mo dispersion fuel is developed for qualification, it is a great possibility to export the HANARO technology and the U-Mo dispersion fuel to the research reactors supplied in foreign countries in future. In this project, reprocessable rod-type U-Mo test fuel was fabricated, and irradiated in HANARO. New U-Mo fuel to suppress the interaction between U-Mo and Al matrix was designed and evaluated for in-reactor irradiation test. The fabrication process of new U-Mo fuel developed, and the irradiation test fuel was fabricated. In-reactor irradiation data for practical use of U-Mo fuel was collected and evaluated. Application plan of atomized U-Mo powder to the commercialization of U-Mo fuel was investigated.

  11. Composites as structural materials in fusion reactors

    International Nuclear Information System (INIS)

    Megusar, J.

    1989-01-01

    In fusion reactors, materials are used under extreme conditions of temperature, stress, irradiation, and chemical environment. The absence of adequate materials will seriously impede the development of fusion reactors and might ultimately be one of the major difficulties. Some of the current materials problems can be solved by proper design features. For others, the solution will have to rely on materials development. A parallel and balanced effort between the research in plasma physics and fusion-related technology and in materials research is, therefore, the best strategy to ultimately achieve economic, safe, and environmentally acceptable fusion. The essential steps in developing composites for structural components of fusion reactors include optimization of mechanical properties followed by testing under fusion-reactor-relevant conditions. In optimizing the mechanical behavior of composite materials, a wealth of experience can be drawn from the research on ceramic matrix and metal matrix composite materials sponsored by the Department of Defense. The particular aspects of this research relevant to fusion materials development are methodology of the composite materials design and studies of new processing routes to develop composite materials with specific properties. Most notable examples are the synthesis of fibers, coatings, and ceramic materials in their final shapes form polymeric precursors and the infiltration of fibrous preforms by molten metals

  12. Open-ended fusion devices and reactors

    International Nuclear Information System (INIS)

    Kawabe, T.; Nariai, H.

    1983-01-01

    Conceptual design studies on fusion reactors based upon open-ended confinement schemes, such as the tandem mirror and rf plugged cusp, have been carried out in Japan. These studies may be classified into two categories: near-term devices (Fusion Engineering Test Facility), and long-term fusion power recators. In the first category, a two-component cusp neutron source was proposed. In the second category, the GAMMA-R, a tandem-mirror power reactor, and the RFC-R, an axisymetric mirror and cusp, reactor studies are being conducted at the University of Tsukuba and the Institute of Plasma Physics. Mirror Fusion Engineering Facility parameters and a schematic are shown. The GAMMA-R central-cell design schematic is also shown

  13. Studies of conceptual spheromak fusion reactors

    International Nuclear Information System (INIS)

    Katsurai, M.; Yamada, M.

    1982-01-01

    Preliminary design studies are carried out for a spheromak fusion reactor. Simplified circuit theory is applied to obtain the characteristic relations among various parameters of the spheromak configuration for an aspect ratio of A >or approx. 1.6. These relations are used to calculate the parameters for the conceptual designs of three types of fusion reactor: (1) the DT reactor with two-component-type operation, (2) the ignited DT reactor, and (3) the ignited catalysed-type DD reactor. With a total wall loading of approx. 4 MW.m -2 , it is found that edge magnetic fields of only approx. 4 T (DT) and approx. 9 T (Cat. DD) are required for ignited reactors of 1 m plasma (minor) radius with output powers in the gigawatt range. An assessment of various schemes of generation, compression and translation of spheromak plasmas is presented. (author)

  14. REACTOR FUEL ELEMENTS TESTING CONTAINER

    Science.gov (United States)

    Whitham, G.K.; Smith, R.R.

    1963-01-15

    This patent shows a method for detecting leaks in jacketed fuel elements. The element is placed in a sealed tank within a nuclear reactor, and, while the reactor operates, the element is sparged with gas. The gas is then led outside the reactor and monitored for radioactive Xe or Kr. (AEC)

  15. SOLASE: a conceptual laser fusion reactor design

    International Nuclear Information System (INIS)

    Conn, R.W.; Abdel-Khalik, S.I.; Moses, G.A.

    1977-12-01

    The SOLASE conceptual laser fusion reactor has been designed to elucidate the technological problems posed by inertial confinement fusion ractors. This report contains a detailed description of all aspects of the study including the physics of pellet implosion and burn, optics and target illumination, last mirror design, laser system analysis, cavity design, pellet fabrication and delivery, vacuum system requirements, blanket design, thermal hydraulics, tritium analysis, neutronics calculations, radiation effects, stress analysis, shield design, reactor and plant building layout, maintenance procedures, and power cycle design. The reactor is designed as a 1000 MW/sub e/ unit for central station electric power generation

  16. A look at the fusion reactor technology

    International Nuclear Information System (INIS)

    Rohatgi, V.K.

    1985-01-01

    The prospects of fusion energy have been summarised in this paper. The rapid progress in the field in recent years can be attributed to the advances in various technologies. The commercial fusion energy depends more heavily on the evolution and improvement in these technologies. With better understanding of plasma physics, the fusion reactor designs have become more realistic and comprehensive. It is now possible to make intercomparison between various concepts within the frame work of the established technologies. Assuming certain growth rate of the technological development, it is estimated that fusion energy can become available during the early part of the next century. (author)

  17. System model for analysis of the mirror fusion-fission reactor

    International Nuclear Information System (INIS)

    Bender, D.J.; Carlson, G.A.

    1977-01-01

    This report describes a system model for the mirror fusion-fission reactor. In this model we include a reactor description as well as analyses of capital cost and blanket fuel management. In addition, we provide an economic analysis evaluating the cost of producing the two hybrid products, fissile fuel and electricity. We also furnish the results of a limited parametric analysis of the modeled reactor, illustrating the technological and economic implications of varying some important reactor design parameters

  18. Colliding beam fusion reactor space propulsion system

    International Nuclear Information System (INIS)

    Wessel, Frank J.; Binderbauer, Michl W.; Rostoker, Norman; Rahman, Hafiz Ur; O'Toole, Joseph

    2000-01-01

    We describe a space propulsion system based on the Colliding Beam Fusion Reactor (CBFR). The CBFR is a high-beta, field-reversed, magnetic configuration with ion energies in the range of hundreds of keV. Repetitively-pulsed ion beams sustain the plasma distribution and provide current drive. The confinement physics is based on the Vlasov-Maxwell equation, including a Fokker Planck collision operator and all sources and sinks for energy and particle flow. The mean azimuthal velocities and temperatures of the fuel ion species are equal and the plasma current is unneutralized by the electrons. The resulting distribution functions are thermal in a moving frame of reference. The ion gyro-orbit radius is comparable to the dimensions of the confinement system, hence classical transport of the particles and energy is expected and the device is scaleable. We have analyzed the design over a range of 10 6 -10 9 Watts of output power (0.15-150 Newtons thrust) with a specific impulse of, I sp ∼10 6 sec. A 50 MW propulsion system might involve the following parameters: 4-meters diameterx10-meters length, magnetic field ∼7 Tesla, ion beam current ∼10 A, and fuels of either D-He 3 ,P-B 11 ,P-Li 6 ,D-Li 6 , etc

  19. Extrap conceptual fusion reactor design study

    International Nuclear Information System (INIS)

    Eninger, J.E; Lehnert, B.

    1987-12-01

    A study has recently been initiated to asses the fusion reactor potential of the Extrap concept. A reactor model is defined that fulfills certain economic and environmental criteria. This model is applied to Extrap and a reference reactor is outlined. The design is optimized by varying parameters subject to both physics and engineering constraints. Several design options are examined and key engineering issues are identified and addressed. Some preliminary results and conclusions of this work are summarized. (authors)

  20. Reprocessing free nuclear fuel production via fusion fission hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Kotschenreuther, Mike, E-mail: mtk@mail.utexas.edu [Intitute for Fusion Studies, University of Texas at Austin (United States); Valanju, Prashant; Mahajan, Swadesh [Intitute for Fusion Studies, University of Texas at Austin (United States)

    2012-05-15

    Fusion fission hybrids, driven by a copious source of fusion neutrons can open qualitatively 'new' cycles for transmuting nuclear fertile material into fissile fuel. A totally reprocessing-free (ReFree) Th{sup 232}-U{sup 233} conversion fuel cycle is presented. Virgin fertile fuel rods are exposed to neutrons in the hybrid, and burned in a traditional light water reactor, without ever violating the integrity of the fuel rods. Throughout this cycle (during breeding in the hybrid, transport, as well as burning of the fissile fuel in a water reactor) the fissile fuel remains a part of a bulky, countable, ThO{sub 2} matrix in cladding, protected by the radiation field of all fission products. This highly proliferation-resistant mode of fuel production, as distinct from a reprocessing dominated path via fast breeder reactors (FBR), can bring great acceptability to the enterprise of nuclear fuel production, and insure that scarcity of naturally available U{sup 235} fuel does not throttle expansion of nuclear energy. It also provides a reprocessing free path to energy security for many countries. Ideas and innovations responsible for the creation of a high intensity neutron source are also presented.

  1. Reprocessing free nuclear fuel production via fusion fission hybrids

    International Nuclear Information System (INIS)

    Kotschenreuther, Mike; Valanju, Prashant; Mahajan, Swadesh

    2012-01-01

    Fusion fission hybrids, driven by a copious source of fusion neutrons can open qualitatively “new” cycles for transmuting nuclear fertile material into fissile fuel. A totally reprocessing-free (ReFree) Th 232 –U 233 conversion fuel cycle is presented. Virgin fertile fuel rods are exposed to neutrons in the hybrid, and burned in a traditional light water reactor, without ever violating the integrity of the fuel rods. Throughout this cycle (during breeding in the hybrid, transport, as well as burning of the fissile fuel in a water reactor) the fissile fuel remains a part of a bulky, countable, ThO 2 matrix in cladding, protected by the radiation field of all fission products. This highly proliferation-resistant mode of fuel production, as distinct from a reprocessing dominated path via fast breeder reactors (FBR), can bring great acceptability to the enterprise of nuclear fuel production, and insure that scarcity of naturally available U 235 fuel does not throttle expansion of nuclear energy. It also provides a reprocessing free path to energy security for many countries. Ideas and innovations responsible for the creation of a high intensity neutron source are also presented.

  2. Conceptual design of light ion beam inertia nuclear fusion reactors

    International Nuclear Information System (INIS)

    1983-07-01

    Light ion beam, inertia nuclear fusion system drew attention recently as one of the nuclear fusion systems for power reactors in the history of the research on nuclear fusion. Its beginning seemed to be the judgement that the implosion of fusion fuel pellets with light ions can be realized with the light ions which can be obtained in view of accelerator techniques. Of course, in order to generate practically usable nuclear fusion reaction by this system and maintain it, many technical difficulties must be overcome. This research was carried out for the purpose of discovering such technical problems and searching for their solution. At the time of doing the works, the following policy was adopted. Though their is the difference of fine and rough, the design of a whole reactor system is performed conformably. In order to make comparison with other reactor types and nuclear fusion systems, the design is carried out as the power plant of about one million kWe output. As the extent of the design, the works at conceptual design stage are performed to present the concept of design which satisfies the required function. Basically, the design is made from conservative standpoint. This research of design was started in 1981, and in fiscal 1982, the mutual adjustment among the design of respective parts was performed on the basis of the results in 1981, and the possible revision and new proposal were investigated. (Kako, I.)

  3. Reactor fuel assembly

    International Nuclear Information System (INIS)

    Anthony, A.J.; Groves, M.D.

    1980-01-01

    A nuclear reactor fuel assembly having a lower end fitting and actuating means interacting therewith for holding the assembly down on the core support stand against the upward flow of coolant. Locking means for interacting with projections on the support stand are carried by the lower end fitting and are actuated by the movement of an actuating rod operated from above the top of the assembly. In one embodiment of the invention the downward movement of the actuating rod forces a latched spring to move outward into locking engagement with a shoulder on the support stand projections. In another embodiment, the actuating rod is rotated to effect the locking between the end fitting and the projection. (author)

  4. Canadian power reactor fuel

    International Nuclear Information System (INIS)

    Page, R.D.

    1976-03-01

    The following subjects are covered: the basic CANDU fuel design, the history of the bundle design, the significant differences between CANDU and LWR fuel, bundle manufacture, fissile and structural materials and coolants used in the CANDU fuel program, fuel and material behaviour, and performance under irradiation, fuel physics and management, booster rods and reactivity mechanisms, fuel procurement, organization and industry, and fuel costs. (author)

  5. Microencapsulation and fabrication of fuel pellets for inertial confinement fusion

    International Nuclear Information System (INIS)

    Nolen, R.L. Jr.; Kool, L.B.

    1981-01-01

    Various microencapsulation techniques were evaluated for fabrication of thermonuclear fuel pellets for use in existing experimental facilities studying inertial confinement fusion and in future fusion-power reactors. Coacervation, spray drying, in situ polymerization, and physical microencapsulation methods were employed. Highly spherical, hollow polymeric shells were fabricated ranging in size from 20 to 7000 micron. In situ polymerization microencapsulation with poly(methyl methacrylate) provided large shells, but problems with local wall defects still must be solved. Extension to other polymeric systems met with limited success. Requirements for inertial confinement fusion targets are described, as are the methods that were used

  6. Reactor core fuel management

    International Nuclear Information System (INIS)

    Silvennoinen, P.

    1976-01-01

    The subject is covered in chapters, entitled: concepts of reactor physics; neutron diffusion; core heat transfer; reactivity; reactor operation; variables of core management; computer code modules; alternative reactor concepts; methods of optimization; general system aspects. (U.K.)

  7. New materials in nuclear fusion reactors

    International Nuclear Information System (INIS)

    Iwata, Shuichi

    1988-01-01

    In the autumn of 1987, the critical condition was attained in the JET in Europe and Japanese JT-60, thus the first subject in the physical verification of nuclear fusion reactors was resolved, and the challenge to the next attainment of self ignition condition started. As the development process of nuclear fusion reactors, there are the steps of engineering, economical and social verifications after this physical verification, and in respective steps, there are the critical problems related to materials, therefore the development of new materials must be advanced. The condition of using nuclear fusion reactors is characterized by high fluence, high thermal flux and strong magnetic field, and under such extreme condition, the microscopic structures of materials change, and they behave much differently from usual case. The subjects of material development for nuclear fusion reactors, the material data base being built up, the materials for facing plasma and high thermal flux, first walls, blanket structures, electric insulators and others are described. The serious effect of irradiation and the rate of defect inducement must be taken in consideration in the structural materials for nuclear fusion reactors. (Kako, I.)

  8. Catalyzed deuterium fueled reversed-field pinch reactor assessment

    International Nuclear Information System (INIS)

    Dobrott, D.

    1985-01-01

    This study is part of a Department of Energy supported alternate fusion fuels program at Science Applications International Corporation. The purpose of this portion of the study is to perform an assessment of a conceptual compact reversed-field pinch reactor (CRFPR) that is fueled by the catalyzed-deuterium (Cat-d) fuel cycle with respect to physics, technology, safety, and cost. The Cat-d CRFPR is compared to a d-t fueled fusion reactor with respect to several issues in this study. The comparison includes cost, reactor performance, and technology requirements for a Cat-d fueled CRFPR and a comparable cost-optimized d-t fueled conceptual design developed by LANL

  9. Fusion reactor design and technology program in China

    International Nuclear Information System (INIS)

    Huang, J.H.

    1994-01-01

    A fusion-fission hybrid reactor program was launched in 1987. The purpose of development of the hybrid reactor is twofold: to solve the problem of nuclear fuel supply for an expected large-scale development of fission reactor plants, and to maintain the momentum of fusion research. The program is described and the activities and progress of the program are presented. Two conceptual designs of an engineering test reactor with tokamak configuration were developed at the Southwestern Institute of Physics and the Institute of Plasma Physics. The results are a tokamak engineering test breeder (TETB) series design and a fusion-fission hybrid reactor design (SSEHR), characterized by a liquid-Li self-cooled blanket and an He-cooled solid tritium breeder blanket respectively. In parallel with the design studies, relevant technological experiments on a small or medium scale have been supported by this program. These include LHCD, ICRH and pellet injection in the area of plasma engineering; neutronics integral experiments with U, Pu, Fe and Be; various irradiation tests of austenitic and ferritic steels, magnetohydrodynamic (MHD) pressure drop experiments using a liquid metal loop; research into permeation barriers for tritium and hydrogen isotopes; solid tritium breeder tests using an in-situ loop in a fission reactor. All these experiments have proceeded successfully. The second step of this program is now starting. It seems reasonable that most of the research carried out in the first step will continue. ((orig.))

  10. Muon catalyzed fusion - fission reactor driven by a recirculating beam

    International Nuclear Information System (INIS)

    Eliezer, S.; Tajima, T.; Rosenbluth, M.N.

    1986-01-01

    The recent experimentally inferred value of multiplicity of fusion of deuterium and tritium catalyzed by muons has rekindled interest in its application to reactors. Since the main energy expended is in pion (and consequent muon) productions, we try to minimize the pion loss by magnetically confining pions where they are created. Although it appears at this moment not possible to achieve energy gain by pure fusion, it is possible to gain energy by combining catalyzed fusion with fission blankets. We present two new ideas that improve the muon fusion reactor concept. The first idea is to combine the target, the converter of pions into muons, and the synthesizer into one (the synergetic concept). This is accomplished by injecting a tritium or deuterium beam of 1 GeV/nucleon into DT fuel contained in a magnetic mirror. The confined pions slow down and decay into muons, which are confined in the fuel causing little muon loss. The necessary quantity of tritium to keep the reactor viable has been derived. The second idea is that the beam passing through the target is collected for reuse and recirculated, while the strongly interacted portion of the beam is directed to electronuclear blankets. The present concepts are based on known technologies and on known physical processes and data. 29 refs., 6 figs., 4 tabs

  11. Fuel Fabrication and Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    The uranium from the enrichment plant is still in the form of UF6. UF6 is not suitable for use in a reactor due to its highly corrosive chemistry as well as its phase diagram. UF6 is converted into UO2 fuel pellets, which are in turn placed in fuel rods and assemblies. Reactor designs are variable in moderators, coolants, fuel, performance etc.The dream of energy ‘too-cheap to meter’ is no more, and now the nuclear power industry is pushing ahead with advanced reactor designs.

  12. Conceptual design of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1984-02-01

    This report describes the engineering conceptual design of Fusion Experimental Reactor (FER) which is to be built as a next generation tokamak machine. This design covers overall reactor systems including MHD equilibrium analysis, mechanical configuration of reactor, divertor, pumped limiter, first wall/breeding blanket/shield, toroidal field magnet, poloidal field magnet, cryostat, electromagnetic analysis, vacuum system, power handling and conversion, NBI, RF heating device, tritium system, neutronics, maintenance, cooling system and layout of facilities. The engineering comparison of a divertor with pumped limiters and safety analysis of reactor systems are also conducted. (author)

  13. Fusion reactor remote maintenance study. Final report

    International Nuclear Information System (INIS)

    Sniderman, M.

    1979-04-01

    An analysis of a major maintenance operation, the remote replacement of a modular sector of a tokamak reactor, was performed in substantial detail. Specific assumptions were developed which included concepts from various existing designs so that the operation which was studied includes some design features generic to any fusion reactor design. Based on the work performed in this study, the principal conclusions are: (1) It appears feasible to design a tokamak fusion reactor plant with availability comparable to existing fossil and fission plants, but this will require diligence and comprehensive planning during the complete design phase. (2) Since the total fusion program is paced by the success of each device, maintenance considerations must be incorporated into each device during design, even if the device is an experimental unit. (3) Innovative approaches, such as automatic computer controlled operations, should be developed so that large step reductions in planned maintenance times can be achieved

  14. Remote assembly and maintenance of fusion reactors

    International Nuclear Information System (INIS)

    Becquet, M.C.; Farfaletti-Casali, F.

    1991-01-01

    This paper intend to present the state of the art in the field of remote assembly and maintenance, including system analysis design and operation for controlled fusion device such as JET, and the next NET and ITER reactors. The operational constraints of fusion reactors with respect to temperature, radiations dose rates and cumulated doses are considered with the resulting design requirements. Concepts like articulated boom, in-vessel vehicle and blanket handling device are presented. The close relations between computer simulations and experimental validation of those concepts are emphasized to ensure reliability of the operational behavior. Mockups and prototypes in reduced and full scale, as operating machines are described to illustrate the progress in remote operations for fusion reactors. The developments achieved at the Institute for System Engineering and Informatics of the Joint Research Center, in the field of remote blanket maintenance, reliability assessment of RH systems and remote cut and welding of lips joints are considered. (author)

  15. Nuclear data needs for fusion reactors

    International Nuclear Information System (INIS)

    Gohar, Y.

    1986-01-01

    The nuclear design of fusion components (e.g., first wall, blanket, shield, magnet, limiter, divertor, etc.) requires an accurate prediction of the radiation field, the radiation damage parameters, and the activation analysis. The fusion nucleonics for these tasks are reviewed with special attention to point out nuclear data needs and deficiencies which effect the design process. The main areas included in this review are tritium breeding analyses, nuclear heating calculations, radiation damage in reactor components, shield designs, and results of uncertainty analyses as applied to fusion reactor studies. Design choices and reactor parameters that impact the neutronics performance of the blanket are discussed with emphasis on the tritium breeding ratio. Nuclear data required for kerma factors, shielding analysis, and radiation damage are discussed. Improvements in the evaluated data libraries are described to overcome the existing problems. 84 refs., 11 figs., 9 tabs

  16. Fusion power: the transition from fundamental science to fusion reactor engineering

    International Nuclear Information System (INIS)

    Post, R.F.

    1975-01-01

    The historical development of fusion research is outlined. The basics of fusion power along with fuel cost and advantages of fusion are discussed. Some quantitative requirements for fusion power are described. (MOW)

  17. Nuclear data for fusion reactor technology

    International Nuclear Information System (INIS)

    1988-06-01

    The meeting was organized in four sessions and four working groups devoted to the following topics: Requirements of nuclear data for fusion reactor technology (6 papers); Status of experimental and theoretical investigations of microscopic nuclear data (10 papers); Status of existing libraries for fusion neutronic calculations (5 papers); and Status of integral experiments and benchmark tests (6 papers). A separate abstract was prepared for each of these papers

  18. Health physics in fusion reactor design

    International Nuclear Information System (INIS)

    Wong, K.Y.; Dinner, P.J.

    1984-06-01

    Experience in the control of tritium exposures to workers and the public gained through the design and operation of Ontario Hydro's nuclear stations has been applied to fusion projects and to design studies on emerging fusion reactor concepts. Ontario Hydro performance in occupational tritium exposure control and environmental impact is reviewed. Application of tritium control technologies and dose management methodology during facility design is highlighted

  19. TORFA - toroidal reactor for fusion applications

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1980-09-01

    The near-term goal of the US controlled fusion program should be the development, for practical applications, of an intense, quasi-steady, reliable 14-MeV neutron source with an electrical utilization efficiency at least 10 times larger than the value characterizing beam/solid-target neutron generators. This report outlines a method for implementing that goal, based on tokamak fusion reactors featuring resistive toroidal-field coils designed for ease of demountability

  20. Compact approach to fusion power reactors

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.; Bathke, C.G.; Miller, R.L.

    1984-01-01

    The potential of the Reversed-Field Pinch (RFP) for development into an efficient, compact, copper-coil fusion reactor has been quantified by comprehensive parametric tradeoff studies. These compact systems promise to be competitive in size, power density, and cost to alternative energy sources. Conceptual engineering designs that largely substantiate these promising results have since been completed. This 1000-MWe(net) design is described along with a detailed rationale and physics/technology assessment for the compact approach to fusion

  1. CANDU reactor experience: fuel performance

    International Nuclear Information System (INIS)

    Truant, P.T.; Hastings, I.J.

    1985-07-01

    Ontario Hydro has more than 126 reactor-years experience in operating CANDU reactors. Fuel performance has been excellent with 47 000 channel fuelling operations successfully completed and 99.9 percent of the more than 380 000 bundles irradiated operating as designed. Fuel performance limits and fuel defects have had a negligible effect on station safety, reliability, the environment and cost. The actual incapability charged to fuel is less than 0.1 percent over the stations' lifetimes, and more recently has been zero

  2. Decontamination and Decommissioning of the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Perry, E.; Chrzanowski, J.; Rule, K.; Viola, M.; Williams, M.; Strykowsky, R.

    1999-01-01

    The Tokamak Fusion Test Reactor (TFTR) is a one-of-a-kind, tritium-fueled fusion research reactor that ceased operation in April 1997. The Decontamination and Decommissioning (D and D) of the TFTR is scheduled to occur over a period of three years beginning in October 1999. This is not a typical Department of Energy D and D Project where a facility is isolated and cleaned up by ''bulldozing'' all facility and hardware systems to a greenfield condition. The mission of TFTR D and D is to: (a) surgically remove items which can be re-used within the DOE complex, (b) remove tritium contaminated and activated systems for disposal, (c) clear the test cell of hardware for future reuse, (d) reclassify the D-site complex as a non-nuclear facility as defined in DOE Order 420.1 (Facility Safety) and (e) provide data on the D and D of a large magnetic fusion facility. The 100 cubic meter volume of the donut-shaped reactor makes it the second largest fusion reactor in the world. The record-breaking deuterium-tritium experiments performed on TFTR resulted in contaminating the vacuum vessel with tritium and activating the materials with 14 Mev neutrons. The total tritium content within the vessel is in excess of 7,000 Curies while dose rates approach 75 mRem/hr. These radiological hazards along with the size and shape of the Tokamak present a unique and challenging task for dismantling

  3. Light ion driven inertial fusion reactor concepts

    International Nuclear Information System (INIS)

    Cook, D.L.; Sweeney, M.A.; Buttram, M.T.; Prestwich, K.R.; Moses, G.A.; peterson, R.R.; Lovell, E.G.; Englestad, R.L.

    1980-01-01

    The possibility of designing fusion reactor systems using intense beams of light ions has been investigated. concepts for beam production, transport, and focusing on target have been analyzed in light of more conservative target performance estimates. Analyses of the major criteria which govern the design of the beam-target-cavity tried indicate the feasibility of designing power systems at the few hundred megawatt (electric) level. This paper discusses light ion fusion reactor (LIFR) concepts and presents an assessment of the design limitations through quantitative examples

  4. Progress of electromagnetic analysis for fusion reactors

    International Nuclear Information System (INIS)

    Takagi, T.; Ruatto, P.; Boccaccini, L.V.

    1998-01-01

    This paper describes the recent progress of electromagnetic analysis research for fusion reactors including methods, codes, verification tests and some applications. Due to the necessity of the research effort for the structural design of large tokamak devices since the 1970's with the help of the introduction of new numerical methods and the advancement of computer technologies, three-dimensional analysis methods have become as practical as shell approximation methods. The electromagnetic analysis is now applied to the structural design of new fusion reactors. Some more modeling and verification tests are necessary when the codes are applied to new materials with nonlinear material properties. (orig.)

  5. A feasibility study of a linear laser heated solenoid fusion reactor. Final report

    International Nuclear Information System (INIS)

    Steinhauer, L.C.

    1976-02-01

    This report examines the feasibility of a laser heated solenoid as a fusion or fusion-fission reactor system. The objective of this study, was an assessment of the laser heated solenoid reactor concept in terms of its plasma physics, engineering design, and commercial feasibility. Within the study many pertinent reactor aspects were treated including: physics of the laser-plasma interaction; thermonuclear behavior of a slender plasma column; end-losses under reactor conditions; design of a modular first wall, a hybrid (both superconducting and normal) magnet, a large CO 2 laser system; reactor blanket; electrical storage elements; neutronics; radiation damage, and tritium processing. Self-consistent reactor configurations were developed for both pure fusion and fusion-fission designs, with the latter designed both to produce power and/or fissile fuels for conventional fission reactors. Appendix A is a bibliography with commentary of theoretical and experimental studies that have been directed at the laser heated solenoid

  6. Present status of fusion reactor materials, 4

    International Nuclear Information System (INIS)

    Nagasaki, Ryukichi; Shiraishi, Kensuke; Watanabe, Hitoshi; Murakami, Yoshio; Takamura, Saburo

    1982-01-01

    Recently, the design of fusion reactors such as Intor has been carried out, and various properties that fusion reactor materials should have been clarified. In the Japan Atomic Energy Research Institute, the research and development of materials aiming at a tokamak type experimental fusion reactor are in progress. In this paper, the problems, the present status of research and development and the future plan about the surface materials and structural materials for the first wall, blanket materials and magnet materials are explained. The construction of the critical plasma testing facility JT-60 developed by JAERI has progressed smoothly, and the operation is expected in 1985. The research changes from that of plasma physics to that of reactor technology. In tokamak type fusion reactors, high temperature D-T plasma is contained with strong magnetic field in vacuum vessels, and the neutrons produced by nuclear reaction, charged particles diffusing from plasma and neutral particles by charge exchange strike the first wall. The PCA by improving 316 stainless steel is used as the structural material, and TiC coating techniques are developed. As the blanket material, Li 2 O is studied, and superconducting magnets are developed. (Koko, I.)

  7. Occupational health physics at a fusion reactor

    International Nuclear Information System (INIS)

    Shank, K.E.; Easterly, C.E.; Shoup, R.L.

    1975-01-01

    Future generation of electrical power using controlled thermonuclear reactors will involve both traditional and new concerns for health protection. A review of the problems associated with exposures to tritium and magnetic fields is presented with emphasis on the occupational worker. The radiological aspects of tritium, inventories and loss rates of tritium for fusion reactors, and protection of the occupational worker are discussed. Magnetic fields in which workers may be exposed routinely and possible biological effects are also discussed

  8. Economic, safety and environmental prospects of fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Conn, R W; Holdren, J P; Sharafat, S [California Univ., Los Angeles, CA (USA). Inst. of Plasma and Fusion Research; and others

    1990-09-01

    Controlled fusion energy is one of the long term, non-fossil energy sources available to mankind. It has the potential of significant advantages over fission nuclear power in that the consequences of severe accidents are predicted to be less and the radioactive waste burden is calculated to be smaller. Fusion can be an important ingredient in the future world energy mix as a hedge against environmental, supply or political difficulties connected with the use of fossil fuel and present-day nuclear power. Progress in fusion reactor technology and design is described for both magnetic and inertial fusion energy systems. The projected economic prospects show that fusion will be capital intensive, and the historical trend is towards greater mass utilization efficiency and more competitive costs. Recent studies emphasizing safety and environmental advantages show that the competitive potential of fusion can be further enhanced by specific choices of materials and design. The safety and environmental prospects of fusion appear to exceed substantially those of advanced fission and coal. Clearly, a significant and directed technology effort is necessary to achieve these advantages. Typical parameters have been established for magnetic fusion energy reactors, and a tokamak at moderately high magnetic field (about 7 T on axis) in the first regime of MHD stability ({beta} {le} 3.5 I/aB) is closest to present experimental achievement. Further improvements of the economic and technological performance of the tokamak are possible. In addition, alternative, non-tokamak magnetic fusion approaches may offer substantive economic and operational benefits, although at present these concepts must be projected from a less developed physics base. (Abstract Truncated)

  9. Transmutation of actinide 237Np with a fusion reactor and a hybrid reactor

    International Nuclear Information System (INIS)

    Feng, K.M.; Huang, J.H.

    1994-01-01

    The use of fusion reactors to transmute fission reactor wastes to stable species is an attractive concept. In this paper, the feasibility of transmutation of the long-lived actinide radioactive waste Np-237 with a fusion reactor and a hybrid reactor has been investigated. A new waste management concept of burning HLW (High Level Waste), utilizing released energy and converting Np-237 into fissile fuel Pu-239 through transmutation has been adopted. The detailed neutronics and depletion calculation of waste inventories was carried out with a modified version of one-dimensional neutron transport and burnup calculation code system BISON1.5 in this study. The transmutation rate of Np with relationship to neutron wall loading, Pu and Np with relationship to neutron wall load, Pu and Np concentration in the transmutation zone have been explored as well as relevant results are also given

  10. Research reactor fuel - an update

    International Nuclear Information System (INIS)

    Finlay, M.R.; Ripley, M.I.

    2003-01-01

    In the two years since the last ANA conference there have been marked changes in the research reactor fuel scene. A new low-enriched uranium (LEU) fuel, 'monolithic' uranium molybdenum, has shown such promise in initial trials that it may be suitable to meet the objectives of the Joint Declaration signed by Presidents Bush and Putin to commit to converting all US and Russian research reactors to LEU by 2012. Development of more conventional aluminium dispersion UMo LEU fuel has continued in the meantime and is entering the final qualification stage of multiple full sized element irradiations. Despite this progress, the original 2005 timetable for UMo fuel qualification has slipped and research reactors, including the RRR, may not convert from silicide to UMo fuel before 2007. The operators of the Swedish R2 reactor have been forced to pursue the direct route of qualifying a UMo lead test assembly (LTA) in order to meet spent fuel disposal requirements of the Swedish law. The LTA has recently been fabricated and is expected to be loaded shortly into the R2 reactor. We present an update of our previous ANA paper and details of the qualification process for UMo fuel

  11. Ceramics as nuclear reactor fuels

    International Nuclear Information System (INIS)

    Reeve, K.D.

    1975-01-01

    Ceramics are widely accepted as nuclear reactor fuel materials, for both metal clad ceramic and all-ceramic fuel designs. Metal clad UO 2 is used commercially in large tonnages in five different power reactor designs. UO 2 pellets are made by familiar ceramic techniques but in a reactor they undergo complex thermal and chemical changes which must be thoroughly understood. Metal clad uranium-plutonium dioxide is used in present day fast breeder reactors, but may eventually be replaced by uranium-plutonium carbide or nitride. All-ceramic fuels, which are necessary for reactors operating above about 750 0 C, must incorporate one or more fission product retentive ceramic coatings. BeO-coated BeO matrix dispersion fuels and silicate glaze coated UO 2 -SiO 2 have been studied for specialised applications, but the only commercial high temperature fuel is based on graphite in which small fuel particles, each coated with vapour deposited carbon and silicon carbide, are dispersed. Ceramists have much to contribute to many aspects of fuel science and technology. (author)

  12. Scyllac fusion test reactor design

    International Nuclear Information System (INIS)

    Dudziak, D.J.; Gerstl, S.A.; Houck, D.L.; Jalbert, R.A.; Krakowski, R.A.; Linford, R.K.; McDonald, T.E.; Rogers, J.D.; Thomassen, K.I.

    1975-01-01

    A general design of the system is given. The implosion heating and compression systems (METS) are described. Tritium handling, shielding and activation of the reactor, and safety and environmental aspects are discussed

  13. D-3He fuel cycles for neutron lean reactors

    International Nuclear Information System (INIS)

    Kernbichler, W.; Miley, G.H.; Heindler, M.

    1989-01-01

    The intrinsic potential of D-3He as a reactor fuel is investigated for a large range of 3He to D density ratios. A steady-state zero-dimensional reactor model is developed in which much care is attributed to a proper treatment of fast fusion products. Useful ranges of reactor parameters as well as temperature-density windows for driven and ignited operation are identified. Various figures of merit are calculated, such as power densities, net power production, neutron production, tritium load and radiative power. These results suggest several optimistic conclusions about the performance of D-3He as a reactor fuel

  14. Caramel fuel for research reactors

    International Nuclear Information System (INIS)

    Bussy, P.

    1979-11-01

    This fuel for research reactors is made of UO 2 pellets in a zircaloy cladding to replace 93% enriched uranium. It is a cold fuel, non contaminating and non proliferating, enrichment is only 7 to 8%. Irradiation tests were performed until burn-up of 50000 MWD/t [fr

  15. Tritium breeding in fusion reactors

    International Nuclear Information System (INIS)

    Abdou, M.A.

    1982-10-01

    Key technological problems that influence tritium breeding in fusion blankets are reviewed. The breeding potential of candidate materials is evaluated and compared to the tritium breeding requirements. The sensitivity of tritium breeding to design and nuclear data parameters is reviewed. A framework for an integrated approach to improve tritium breeding prediction is discussed with emphasis on nuclear data requirements

  16. Materials problems associated with fusion reactor technology

    International Nuclear Information System (INIS)

    Dutton, R.

    This paper outlines the principles of design and operation of conceptual fusion reactors, indicates the level of research funding and activity being proposed at major centres and reviews the major materials problems which have been identified, together with an outline of the experimental techniques which have been suggested for investigating these problems. (author)

  17. Standard mirror fusion reactor design study

    International Nuclear Information System (INIS)

    Moir, R.W.

    1978-01-01

    This report covers the work of the Magnetic Fusion Energy Division's reactor study group during FY 1976 on the standard mirror reactor. The ''standard'' mirror reactor is characterized as a steady state, neutral beam sustained, D-T fusioning plasma confined by a Yin-Yang magnetic mirror field. The physics parameters are obtained from the same physics model that explains the 2XIIB experiment. The model assumes that the drift cyclotron loss cone mode occurs on the boundary of the plasma, and that it is stabilized by warm plasma with negligible energy investment. The result of the study was a workable mirror fusion power plant, steady-state blanket removal made relatively simple by open-ended geometry, and no impurity problem due to the positive plasma potential. The Q (fusion power/injected beam power) turns out to be only 1.1 because of loss out the ends from Coulomb collisions, i.e., classical losses. This low Q resulted in 77% of the gross electrical power being used to power the injectors, thereby causing the net power cost to be high. The low Q stimulated an intensive search for Q-enhancement concepts, resulting in the LLL reactor design effort turning to the field reversal mirror and the tandem mirror, each having Q of order 5

  18. Engineering the fusion reactor first wall

    International Nuclear Information System (INIS)

    Wurden, Glen; Scott, Willms

    2008-01-01

    Recently the National Academy of Engineering published a set of Grand Challenges in Engineering in which the second item listed was entitled 'Provide energy from fusion'. Clearly a key component of this challenge is the science and technology associated with creating and maintaining burning plasmas. This is being vigorously addressed with both magnetic and inertial approaches with various experiments such as ITER and NIF. Considerably less attention is being given to another key component of this challenge, namely engineering the first wall that will contain the burning plasma. This is a daunting problem requiring technologies and materials that can not only survive, but also perform multiple essential functions in this extreme environment. These functions are (1) shield the remainder of the device from radiation. (2) convert of neutron energy to useful heat and (3) breed and extract tritium to maintain the reactor fuel supply. The first wall must not contaminate the plasma with impurities. It must be infused with cooling to maintain acceptable temperatures on plasma facing and structural components. It must not degrade. It must avoid excessive build-up of tritium on surfaces, and, if surface deposits do form, must be receptive to cleaning techniques. All these functions and constraints must be met while being subjected to nuclear and thermal radiation, particle bombardment, high magnetic fields, thermal cycling and occasional impingement of plasma on the surface. And, operating in a nuclear environment, the first wall must be fully maintainable by remotely-operated manipulators. Elements of the first wall challenge have been studied since the 1970' s both in the US and internationally. Considerable foundational work has been performed on plasma facing materials and breeding blanket/shield modules. Work has included neutronics, materials fabrication and joining, fluid flow, tritium breeding, tritium recovery and containment, energy conversion, materials damage and

  19. Fuel assembly in a reactor

    International Nuclear Information System (INIS)

    Saito, Shozo; Kawahara, Akira.

    1975-01-01

    Object: To provide a fuel assembly in a reactor which can effectively prevent damage of the clad tube caused by mutual interference between pellets and the clad tube. Structure: A clad tube for a fuel element, which is located in the outer peripheral portion, among the fuel elements constituting fuel assemblies arranged in assembled and lattice fashion within a channel box, is increased in thickness by reducing the inside diameter thereof to be smaller than that of fuel elements internally located, thereby preventing damage of the clad tube resulting from rapid rise in output produced when control rods are removed. (Kamimura, M.)

  20. Waste management for JAERI fusion reactors

    International Nuclear Information System (INIS)

    Tobita, K.; Nishio, S.; Konishi, S.; Jitsukawa, S.

    2004-01-01

    In the fusion reactor design study at Japan Atomic Energy Institute (JAERI), several waste management strategies were assessed. The assessed strategies are: (1) reinforced neutron shield to clear the massive ex-shielding components from regulatory control; (2) low aspect ratio tokamak to reduce the total waste; (3) reuse of liquid metal breeding material and neutron shield. Combining these strategies, the weight of disposal waste from a low aspect ratio reactor VECTOR is expected to be comparable with the metal radwaste from a light water reactor (∼4000 t)

  1. Fuel assembly and reactor core

    International Nuclear Information System (INIS)

    Yuchi, Yoko; Aoyama, Motoo; Haikawa, Katsumasa; Yamanaka, Akihiro; Koyama, Jun-ichi.

    1996-01-01

    In a fuel assembly of a BWR type reactor, a region substantially containing burnable poison is divided into an upper region and a lower region having different average concentrations of burnable poison along a transverse cross section perpendicular to the axial direction. The ratio of burnable poison contents of both regions is determined to not more than 80%, and the average concentration of the burnable poison in the lower region is determined to not less than 9% by weight. An infinite multiplication factor at an initial stage of the burning of the fuel assembly is controlled effectively by the burnable poisons. Namely, the ratio of the axial power can be controlled by the distribution of the enrichment degree of uranium fuels and the distribution of the burnable poison concentration in the axial direction. Since the average enrichment degree of the reactor core has to be increased in order to provide an initially loaded reactor core at high burnup degree. Distortion of the power distribution in the axial direction of the reactor core to which fuel assemblies at high enrichment degree are loaded is flattened to improve thermal margin, to extend continuous operation period and increase a burnup degree upon take-out thereby improving fuel economy without worsening the reactor core characteristics of the initially loaded reactor core. (N.H.)

  2. Conditioning of nuclear reactor fuel

    International Nuclear Information System (INIS)

    1975-01-01

    A method of conditioning the fuel of a nuclear reactor core to minimize failure of the fuel cladding comprising increasing the fuel rod power to a desired maximum power level at a rate below a critical rate which would cause cladding damage is given. Such conditioning allows subsequent freedom of power changes below and up to said maximum power level with minimized danger of cladding damage. (Auth.)

  3. Reactor transients tests for SNR fuel elements in HFR reactor

    International Nuclear Information System (INIS)

    Plitz, H.

    1989-01-01

    In HFR reactor, fuel pins of LMFBR reactors are putted in irradiation specimen capsules cooled with sodium for reactor transients tests. These irradiation capsules are instrumented and the experiences realized until this day give results on: - Fuel pins subjected at a continual variation of power - melting fuel - axial differential elongation of fuel pins

  4. Fuels for Canadian research reactors

    International Nuclear Information System (INIS)

    Feraday, M.A.

    1993-01-01

    This paper includes some statements and remarks concerning the uranium silicide fuels for which there is significant fabrication in AECL, irradiation and defect performance experience; description of two Canadian high flux research reactors which use high enrichment uranium (HEU) and the fuels currently used in these reactors; limited fabrication work done on Al-U alloys to uranium contents as high as 40 wt%. The latter concerns work aimed at AECL fast neutron program. This experience in general terms is applied to the NRX and NRU designs of fuel

  5. Optical design considerations for laser fusion reactors

    International Nuclear Information System (INIS)

    Monsler, M.J.; Maniscalco, J.A.

    1977-09-01

    The plan for the development of commercial inertial confinement fusion (ICF) power plants is discussed, emphasizing the utilization of the unique features of laser fusion to arrive at conceptual designs for reactors and optical systems which minimize the need for advanced materials and techniques requiring expensive test facilities. A conceptual design for a liquid lithium fall reactor is described which successfully deals with the hostile x-ray and neutron environment and promises to last the 30 year plant lifetime. Schemes for protecting the final focusing optics are described which are both compatible with this reactor system and show promise of surviving a full year in order to minimize costly downtime. Damage mechanisms and protection techniques are discussed, and a recommendation is made for a high f-number metal mirror final focusing system

  6. Materials design data for fusion reactors

    International Nuclear Information System (INIS)

    Tavassoli, A.A.F.

    1998-01-01

    Design data needed for fusion reactors are characterized by the diversity of materials and the complexity of loading situations found in these reactors. In addition, advanced fabrication techniques, such as hot isostatic pressing, envisaged for fabrication of single and multilayered in-vessel components, could significantly change the original materials properties for which the current design rules are written. As a result, additional materials properties have had to be generated for fusion reactors and new structural design rules formulated. This paper recalls some of the materials properties data generated for ITER and DEMO, and gives examples of how these are converted into design criteria. In particular, it gives specific examples for the properties of 316LN-IG and modified 9Cr-1Mo steels, and CuCrZr alloy. These include, determination of tension, creep, isochronous, fatigue, and creep-fatigue curves and their analysis and conversion into design limits. (orig.)

  7. Neutronic study of fusion reactor blanket

    International Nuclear Information System (INIS)

    Barre, F.

    1983-06-01

    The problem of effective regeneration is a crucial issue for the fusion reactor, specially for the power reactor because of the conflicting requirements of heat removal and tritium breeding. For that, calculations are performed to evaluate blanket materials. Precise techniques are herein developed to improve the accuracy of the tritium production and the neutron and gamma transport calculations. Many configurations are studied with realistic breeder, structure, and coolant proportions. Accuracy of the results are evaluated from the sensitivity theory and uncertainty study using covariance matrices. At the end of this work, we presented the needs of nuclear data for fusion reactors and we give some advices for improving our knowledge of these data [fr

  8. Neutronic study of fusion reactor blanket

    International Nuclear Information System (INIS)

    Barre, F.

    1984-02-01

    The problem of effective regeneration is a crucial issue for the fusion reactor, specially for the power reactor because of the conflicting requirements of heat removal and tritium breeding. For that, calculations are performed to evaluate blanket materials. Precise techniques are herein developed to improve the accuracy of the tritium production and the neutron and gamma transport calculations. Many configurations are studied with realistic breeder, structure, and coolant proportions. Accuracy of the results are evaluated from the sensitivity theory and uncertainty study using covariance matricies. At the end of this work, we presented the needs of nuclear data for fusion reactors and we give some advices for improving our knowledge of these data [fr

  9. Materials design data for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A.A.F. [CEA Commissariat a l`Energie Atomique, Gif sur Yvette (France). CEREM

    1998-10-01

    Design data needed for fusion reactors are characterized by the diversity of materials and the complexity of loading situations found in these reactors. In addition, advanced fabrication techniques, such as hot isostatic pressing, envisaged for fabrication of single and multilayered in-vessel components, could significantly change the original materials properties for which the current design rules are written. As a result, additional materials properties have had to be generated for fusion reactors and new structural design rules formulated. This paper recalls some of the materials properties data generated for ITER and DEMO, and gives examples of how these are converted into design criteria. In particular, it gives specific examples for the properties of 316LN-IG and modified 9Cr-1Mo steels, and CuCrZr alloy. These include, determination of tension, creep, isochronous, fatigue, and creep-fatigue curves and their analysis and conversion into design limits. (orig.) 19 refs.

  10. Magnet design considerations for Tokamak fusion reactors

    International Nuclear Information System (INIS)

    Purcell, J.R.; Chen, W.; Thomas, R.

    1976-01-01

    Design problems for superconducting ohmic heating and toroidal field coils for large Tokamak fusion reactors are discussed. The necessity for making these coils superconducting is explained, together with the functions of these coils in a Tokamak reactor. Major problem areas include materials related aspects and mechanical design and cryogenic considerations. Projections and comparisons are made based on existing superconducting magnet technology. The mechanical design of large-scale coils, which can contain the severe electromagnetic loading and stress generated in the winding, are emphasized. Additional major tasks include the development of high current conductors for pulsed applications to be used in fabricating the ohmic heating coils. It is important to note, however, that no insurmountable technical barriers are expected in the course of developing superconducting coils for Tokamak fusion reactors. (Auth.)

  11. Tritium management for fusion reactors

    International Nuclear Information System (INIS)

    Rouyer, J.L.; Djerassi, H.

    1985-01-01

    To determine a waste management strategy, one has to identify first the wastes (quantities, activities, etc.), then to define options, and to compare these options by appropriate criteria and evaluations. Two European Associations are working together, i.e., Studsvik and CEA, on waste treatment and tritium problems. A contribution to fusion specific tritiated waste management strategy is presented. It is demonstrated that the best strategy is to retain tritium (outgas and recover, or immobilize it) so that residual tritium releases are kept to a minimum. For that, wastes are identified, actual regulations are described and judged inadequate without amendments for fusion problems. Appropriate criteria are defined. Options for treatment and disposal of tritiated wastes are proposed and evaluated. A tritium recovery solution is described

  12. Comparative energetics of three fusion-fission symbiotic nuclear reactor systems

    International Nuclear Information System (INIS)

    Gordon, C.W.; Harms, A.A.

    1975-01-01

    The energetics of three symbiotic fusion-fission nuclear reactor concepts are investigated. The fuel and power balances are considered for various values of systems parameters. The results from this analysis suggest that symbiotic fusion-fission systems are advantageous from the standpoint of economy and resource utilization. (Auth.)

  13. Radiation environment of fusion experimental reactor

    International Nuclear Information System (INIS)

    Mori, Seiji; Seki, Yasushi

    1988-01-01

    Next step device (experimental reactor), which is planned to succeed the large plasma experimental devices such as JT-60, JET and TFTR, generates radiation (neutron + gamma ray) during its operation. Radiation (neutronic) properties of the material are basis for the study on neutron utilization (energy recovery and tritium breeding), material selection (irradiation damage and lifetime evaluation) and radiation safety (personnel exposure and radiation waste). It is necessary, therefore, to predict radiation behaviour in the reactor correctly for the engineering design of the reactor. This report describes the outline of the radiation environment of the reactor based on the information obtained by the neutronic and shielding design calculation of the fusion experimental reactor (FER). (author)

  14. Conceptual design of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1984-01-01

    Conceptual Design of Fusion Experimental Reactor (FER) of which the objective will be to realize self-ignition with D-T reaction is reported. Mechanical Configurations of FER are characterized with a noncircular plasma and a double-null divertor. The primary aim of design studies is to demonstrate fissibility of reactor structures as compact and simple as possible with removable torus sectors. The structures of each component such as a first-wall, blanket, shielding, divertor, magnet and so on have been designed. It is also discussed about essential reactor plant system requirements. In addition to the above, a brief concept of a steady-state reactor based on RF current drive is also discussed. The main aim, in this time, is to examine physical studies of a possible RF steady-state reactor. (author)

  15. Diamond Wire Cutting of the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Keith Rule; Erik Perry; Robert Parsells

    2003-01-01

    The Tokamak Fusion Test Reactor (TFTR) is a one-of-a-kind, tritium-fueled fusion research reactor that ceased operation in April 1997. As a result, decommissioning commenced in October 1999. The 100 cubic meter volume of the donut-shaped reactor makes it the second largest fusion reactor in the world. The deuterium-tritium experiments resulted in contaminating the vacuum vessel with tritium and activating the materials with 14 MeV neutrons. The total tritium content within the vessel is in excess of 7,000 Curies, while dose rates approach 50 mRem/hr. These radiological hazards along with the size of the tokamak present a unique and challenging task for dismantling. Engineers at the Princeton Plasma Physics Laboratory (PPPL) decided to investigate an alternate, innovative approach for dismantlement of the TFTR vacuum vessel: diamond wire cutting technology. In August 1999, this technology was successfully demonstrated and evaluated on vacuum vessel surrogates. Subsequently, the technology was improved and redesigned for the actual cutting of the vacuum vessel. Ten complete cuts were performed in a 6-month period to complete the removal of this unprecedented type of DandD (Decontamination and Decommissioning) activity

  16. Progress on the conceptual design of a mirror hybrid fusion--fission reactor

    International Nuclear Information System (INIS)

    Moir, R.W.; Lee, J.D.; Burleigh, R.J.

    1975-01-01

    A conceptual design study was made of a fusion-fission reactor for the purpose of producing fissile material and electricity. The fusion component is a D-T plasma confined by a pair of magnetic mirror coils in a Yin-Yang configuration and is sustained by neutral beam injection. The neutrons from the fusion plasma drive the fission assembly which is composed of natural uranium carbide fuel rods clad with stainless steel and helium cooled. It was shown conceptually how the reactor might be built using essentially present-day technology and how the uranium-bearing blanket modules can be routinely changed to allow separation of the bred fissile fuel

  17. Neutron personnel dosimetry considerations for fusion reactors

    International Nuclear Information System (INIS)

    Barton, T.P.; Easterly, C.E.

    1979-07-01

    The increasing development of fusion reactor technology warrants an evaluation of personnel neutron dosimetry systems to aid in the concurrent development of a radiation protection program. For this reason, current state of knowledge neutron dosimeters have been reviewed with emphasis placed on practical utilization and the problems inherent in each type of dosimetry system. Evaluations of salient parameters such as energy response, latent image instability, and minimum detectable dose equivalent are presented for nuclear emulsion films, track etch techniques, albedo and other thermoluminescent dosimetry techniques, electrical conductivity damage effects, lyoluminescence, thermocurrent, and thermally stimulated exoelectron emission. Brief summaries of dosimetry regulatory requirements and intercomparison study results help to establish compliance and recent trends, respectively. Spectrum modeling data generated by the Neutron Physics Division of Oak Ridge National Laboratory for the Princeton Tokamak Fusion Test Reactor (TFTR) Facility have been analyzed by both International Commission on Radiological Protection fluence to dose conversion factors and an adjoint technique of radiation dosimetry, in an attempt to determine the applicability of current neutron dosimetry systems to deuterium and tritium fusion reactor leakage spectra. Based on the modeling data, a wide range of neutron energies will probably be present in the leakage spectra of the TFTR facility, and no appreciable risk of somatic injury to occupationally exposed workers is expected. The relative dose contributions due to high energy and thermal neutrons indicate that neutron dosimetry will probably not be a serious limitation in the development of fusion power

  18. Nuclear reactors and fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100{sup th} nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U{sub 3}O{sub 8} were replaced by U{sub 3}Si{sub 2}-based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to

  19. Nuclear reactors and fuel cycle

    International Nuclear Information System (INIS)

    2014-01-01

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100 th nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U 3 O 8 were replaced by U 3 Si 2 -based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to fulfill its mission that is

  20. Maintenance of fission and fusion reactors. 10. workshop on fusion reactor engineering

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    This report contains copies of OHP presented at the title meeting. The presented topics are as follows, maintenance of nuclear power plants and ITER, exchange of shroud in BWR type reactors, deterioration of fission and fusion reactor materials, standards of pressure vessels, malfunction diagnosis method with neural network. (J.P.N.)

  1. Tritium monitor for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jalbert, R.A.

    1982-08-01

    This report describes the design, operation, and performance of a flow-through ion-chamber instrument designed to measure tritium concentrations in air containing /sup 13/N, /sup 16/N, and /sup 41/Ar produced by neutrons generated by D-T fusion devices. The instrument employs a chamber assembly consisting of two coaxial ionization chambers. The inner chamber is the flow-through measuring chamber and the outer chamber is used for current subtraction. A thin wall common to both chambers is opaque to the tritium betas. Currents produced in the two chambers by higher energy radiation are automatically subtracted, leaving only the current due to tritium.

  2. Fusion as a source of synthetic fuels

    International Nuclear Information System (INIS)

    Powell, J.R.; Fillo, J.A.; Steinberg, M.

    1981-01-01

    In the near-term, coal derived synthetic fuels will be used; but in the long-term, resource depletion and environmental effects will mandate synthetic fuels from inexhaustible sources - fission, fusion, and solar. Of the three sources, fusion appears uniquely suited for the efficient production of hydrogen-based fuels, due to its ability to directly generate very high process temperatures (up to approx. 2000 0 C) for water splitting reactions. Fusion-based water splitting reactions include high temperature electrolysis (HTE) of steam, thermochemical cycles, hybrid electrochemical/thermochemical, and direct thermal decomposition. HTE appears to be the simplest and most efficient process with efficiencies of 50 to 70% (fusion to hydrogen chemical energy), depending on process conditions

  3. Cermet coatings for magnetic fusion reactors

    International Nuclear Information System (INIS)

    Smith, M.F.; Whitley, J.B.; McDonald, J.M.

    1984-01-01

    Cermet coatings consisting of SiC particles in an aluminum matrix were produced by a low pressure chamber plasma spray process. Properties of these coatings are being investigated to evaluate their suitability for use in the next generation of magnetic confinement fusion reactors. Although this preliminary study has focused primarily upon SiC-Al cermets, the deposition process can be adapted to other ceramic-metal combinations. Potential applications for cermet coatings in magnetic fusion devices are presented along with experimental results from thermal tests of candidate coatings. (Auth.)

  4. ITER: the first experimental fusion reactor

    International Nuclear Information System (INIS)

    Rebut, P.H.

    1995-01-01

    The International Thermonuclear Experimental Reactor (ITER) project is a multiphased project, at present proceeding under the auspices of the International Atomic Energy Agency according to the terms of a four-party agreement between the European Atomic Energy Community, the Government of Japan, the Government of the USA and the Government of Russia (''the parties''). The project is based on the tokamak, a Russian invention which has been brought to a high level of development and progress in all major fusion programs throughout the world.The objective of ITER is to demonstrate the scientific and technological feasibility of fusion energy for commercial energy production and to test technologies for a demonstration fusion power plant. During the extended performance phase of ITER, it will demonstrate the characteristics of a fusion power plant, producing more than 1500MW of fusion power.The objective of the engineering design activity (EDA) phase is to produce a detailed, complete and fully integrated engineering design of ITER and all technical data necessary for the future decision on the construction of ITER.The ITER device will be a major step from present fusion experiments and will encompass all the major elements required for a fusion reactor. It will also require the development and the implementation of major new components and technologies.The inside surface of the plasma containment chamber will be designed to withstand temperature of up to 500 C, although normal operating temperatures will be substantially lower. Materials will have to be carefully chosen to withstand these temperatures, and a high neutron flux. In addition, other components of the device will be composed of state-of-the-art metal alloys, ceramics and composites, many of which are now in the early stage of development of testing. (orig.)

  5. Economic, safety and environmental prospects of fusion reactors

    International Nuclear Information System (INIS)

    Conn, R.W.; Holdren, J.P.; Sharafat, S.

    1990-01-01

    Controlled fusion energy is one of the long term, non-fossil energy sources available to mankind. It has the potential of significant advantages over fission nuclear power in that the consequences of severe accidents are predicted to be less and the radioactive waste burden is calculated to be smaller. Fusion can be an important ingredient in the future world energy mix as a hedge against environmental, supply or political difficulties connected with the use of fossil fuel and present-day nuclear power. Progress in fusion reactor technology and design is described for both magnetic and inertial fusion energy systems. The projected economic prospects show that fusion will be capital intensive, and the historical trend is towards greater mass utilization efficiency and more competitive costs. Recent studies emphasizing safety and environmental advantages show that the competitive potential of fusion can be further enhanced by specific choices of materials and design. The safety and environmental prospects of fusion appear to exceed substantially those of advanced fission and coal. Clearly, a significant and directed technology effort is necessary to achieve these advantages. Typical parameters have been established for magnetic fusion energy reactors, and a tokamak at moderately high magnetic field (about 7 T on axis) in the first regime of MHD stability (β ≤ 3.5 I/aB) is closest to present experimental achievement. Further improvements of the economic and technological performance of the tokamak are possible. In addition, alternative, non-tokamak magnetic fusion approaches may offer substantive economic and operational benefits, although at present these concepts must be projected from a less developed physics base. For inertial fusion energy, the essential requirements are a high efficiency (≥ 10%) repetitively pulsed pellet driver capable of delivering up to 10 MJ of energy on target, targets capable of an energy gain of about 100, reactor chambers capable of

  6. Fuel assemblies for nuclear reactor

    International Nuclear Information System (INIS)

    Nishi, Akihito.

    1987-01-01

    Purpose: To control power-up rate at the initial burning stage of new fuel assemblies due to fuel exchange in a pressure tube type power reactor. Constitution: Burnable poisons are disposed to a most portion of fuel pellets in a fuel assembly to such a low concentration as the burn-up rate changes with time at the initial stage of the burning. The most portion means substantially more than one-half part of the pellets and gadolinia is used as burn-up poisons to be dispersed and the concentration is set to less than about 0.2 %. Upon elapse of about 15 days after the charging, the burnable poisons are eliminated and the infinite multiplication factors are about at 1.2 to attain a predetermined power state. Since the power-up rate of the nuclear reactor fuel assembly is about 0.1 % power/hour and the power-up rate of the fuel assembly around the exchanged channel is lower than that, it can be lowered sufficiently than the limit for the power-up rate practiced upon reactor start-up thereby enabling to replace fuels during power operation. (Horiuchi, T.)

  7. Reactor prospects of muon-catalyzed fusion of deuterium and tritium concentrated in transition metals

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.

    1989-01-01

    It is conjectured that the number of fusion events catalyzed by a single muon is orders of magnitude greater for deuterium and tritium concentrated in a transition metal than in gaseous form and that the recent observation of 2.5-MeV neutrons from a D 2 O electrolytic cell with palladium and titanium cathodes can thereby be interpreted in terms of cosmic muon-catalyzed deuterium-deuterium fusion. This suggests a new fusion reactor reactor consisting of deuterium and tritium concentrated in transition metal fuel elements in a fusion core that surrounds an accelerator-produced muon source. The feasibility of net energy production in such a reactor is established in terms of requirements on the number of fusion events catalyzed per muon. The technological implications for a power reactor based on this concept are examined. The potential of such a concept as a neutron source for materials testing and tritium and plutonium production is briefly discussed

  8. Canadian Fusion Fuels Technology Project annual report 93/94

    International Nuclear Information System (INIS)

    1994-01-01

    The Canadian Fusion Fuels Technology Project exists to develop fusion technologies and apply them worldwide in today's advanced fusion projects and to apply these technologies in fusion and tritium research facilities. CFFTP concentrates on developing capability in fusion fuel cycle systems, in tritium handling technologies and in remote handling. This is an annual report for CFFTP and as such also includes a financial report

  9. Reactor potential for magnetized target fusion

    International Nuclear Information System (INIS)

    Dahlin, J.E.

    2001-06-01

    Magnetized Target Fusion (MTF) is a possible pathway to thermonuclear fusion different from both magnetic fusion and inertial confinement fusion. An imploding cylindrical metal liner compresses a preheated and magnetized plasma configuration until thermonuclear conditions are achieved. In this report the Magnetized Target Fusion concept is evaluated and a zero-dimensional computer model of the plasma, liner and circuit as a connected system is designed. The results of running this code are that thermonuclear conditions are achieved indeed, but only during a very short time. At peak compression the pressure from the compressed plasma and magnetic field is so large reversing the liner implosion into an explosion. The time period of liner motion reversal is termed the dwell time and is crucial to the performance of the fusion system. Parameters as liner thickness and plasma density are certainly of significant importance to the dwell time, but it seems like a reactor based on the MTF principle hardly can become economic if not innovative solutions are introduced. In the report two such solutions are presented as well

  10. Reactor potential for magnetized target fusion

    Energy Technology Data Exchange (ETDEWEB)

    Dahlin, J.E

    2001-06-01

    Magnetized Target Fusion (MTF) is a possible pathway to thermonuclear fusion different from both magnetic fusion and inertial confinement fusion. An imploding cylindrical metal liner compresses a preheated and magnetized plasma configuration until thermonuclear conditions are achieved. In this report the Magnetized Target Fusion concept is evaluated and a zero-dimensional computer model of the plasma, liner and circuit as a connected system is designed. The results of running this code are that thermonuclear conditions are achieved indeed, but only during a very short time. At peak compression the pressure from the compressed plasma and magnetic field is so large reversing the liner implosion into an explosion. The time period of liner motion reversal is termed the dwell time and is crucial to the performance of the fusion system. Parameters as liner thickness and plasma density are certainly of significant importance to the dwell time, but it seems like a reactor based on the MTF principle hardly can become economic if not innovative solutions are introduced. In the report two such solutions are presented as well.

  11. Fusion energy

    International Nuclear Information System (INIS)

    Gross, R.A.

    1984-01-01

    This textbook covers the physics and technology upon which future fusion power reactors will be based. It reviews the history of fusion, reaction physics, plasma physics, heating, and confinement. Descriptions of commercial plants and design concepts are included. Topics covered include: fusion reactions and fuel resources; reaction rates; ignition, and confinement; basic plasma directory; Tokamak confinement physics; fusion technology; STARFIRE: A commercial Tokamak fusion power plant. MARS: A tandem-mirror fusion power plant; and other fusion reactor concepts

  12. Conceptual design of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1984-03-01

    A conceptual design study (option C) has been carried out for the fusion experimental reactor (FER). In addition to design of the tokamak reactor and associated systems based on the reference design specifications, feasibility of a water-shield reactor concept was examined as a topical study. The design study for the reference tokamak reactor has produced a reactor concept for the FER, along with major R D items for the concept, based on close examinations on thermal design, electromagnetics, neutronics and remote maintenance. Particular efforts have been directed to the area of electromagnetics. Detailed analyses with close simulation models have been performed on PF coil arrangements and configurations, shell effects of the blanket for plasma position unstability, feedback control, and eddy currents during disruptions. The major design specifications are as follows; Peak fusion power 437 MW Major radius 5.5 m Minor radius 1.1 m Plasma elongation 1.5 Plasma current 5.3 MA Toroidal beta 4 % Field on axis 5.7 T (author)

  13. Reduction of surface erosion in fusion reactors

    International Nuclear Information System (INIS)

    Rossing, T.D.; Das, S.K.; Kaminsky, M.

    1976-01-01

    Some of the major processes leading to surface erosion in fusion reactors are reviewed briefly, including blistering by implanted gas, sputtering by ions, atoms, and neutrons, and vaporization by local heating. Surface erosion affects the structural integrity and limits the lifetime of reactor components exposed to plasma radiation. In addition, some of the processes leading to surface erosion also cause the release of plasma contaminants. Methods proposed to reduce surface erosion have included control of surface temperature, selection of materials with a favorable microstructure, chemical and mechanical treatment of surfaces, and employment of protective surface coatings, wall liners, and divertors. The advantages and disadvantages of some of these methods are discussed

  14. Nuclear data requirements for fusion reactor shielding

    International Nuclear Information System (INIS)

    Abdou, M.A.

    1979-01-01

    The nuclear data requirements for experimental, demonstration and commercial fusion reactors are reviewed. Particular emphasis is given to the shield as well as major reactor components of concern to the nuclear performance. The nuclear data requirements are defined as a result of analyzing four key areas. These are the most likely candidate materials, energy range, types of needed nuclear data, and the required accuracy in the data. Deducing the latter from the target goals for the accuracy in prediction is also discussed. A specific proposal of measurements is recommended. Priorities for acquisition of data are also assigned. (author)

  15. Recent designs for advanced fusion reactor blankets

    International Nuclear Information System (INIS)

    Sze, D.K.

    1994-06-01

    A series of reactor design studies based on the Tokamak configuration have been carried out under the direction of Professor Robert Conn of UCLA. They are called ARIES-1 through 4 and PULSAR 1 and 2. The key mission of these studies is to evaluate the attractiveness of fusion assuming different degrees of advancement in either physics or engineering development. Also, the requirements of engineering and physics systems for a pulsed reactor were evaluated by the PULSAR design studies. This paper discusses the directions and conclusions of the blanket and related engineering systems for those design studies

  16. FRESCO: fusion reactor simulation code for tokamaks

    International Nuclear Information System (INIS)

    Mantsinen, M.J.

    1995-03-01

    The study of the dynamics of tokamak fusion reactors, a zero-dimensional particle and power balance code FRESCO (Fusion Reactor Simulation Code) has been developed at the Department of Technical Physics of Helsinki University of Technology. The FRESCO code is based on zero-dimensional particle and power balance equations averaged over prescribed plasma profiles. In the report the data structure of the FRESCO code is described, including the description of the COMMON statements, program input, and program output. The general structure of the code is described, including the description of subprograms and functions. The physical model used and examples of the code performance are also included in the report. (121 tabs.) (author)

  17. Overview of materials research for fusion reactors

    International Nuclear Information System (INIS)

    Muroga, T.; Gasparotto, M.; Zinkle, S.J.

    2002-01-01

    Materials research for fusion reactors is overviewed from Japanese, EU and US perspectives. Emphasis is placed on programs and strategies for developing blanket structural materials, and recent highlights in research and development for reduced activation ferritic martensitic steels, vanadium alloys and SiC/SiC composites, and in mechanistic experimental and modeling studies. The common critical issue for the candidate materials is the effect of irradiation with helium production. For the qualification of materials up to the full lifetime of a DEMO and Power Plant reactors, an intense neutron source with relevant fusion neutron spectra is crucial. Elaborate use of the presently available irradiation devices will facilitate efficient and sound materials development within the required time scale

  18. Fuel pellets and optical systems for inertially confined fusion

    International Nuclear Information System (INIS)

    Hendricks, C.D.

    1979-01-01

    Current laser-driven ICF targets are complex sets of concentric spherical shells made from a variety of materials including the fuel (e.g., deuterium-tritium), glass, beryllium, gold, polymeric materials, organo-metallics, and several additional organic and inorganic materials depending on the particular experiments to be done. While it is not yet known what the reactor targets will be exactly, there is little reason to believe they will be just simple, low quality glass shells containing DT gas or simple spheres of deuterated polyethylene or other fuel. Consequently, many of the current targets, materials, and fabrication techniques are considered to be applicable to the long range problems of ICF reactor target fabrication. Many current material problems and fabrication techniques are discussed and various quality factors are presented in an attempt to bring an awareness of the possible fusion reactor target materials problems to the scientific and technical community

  19. Environmental aspects of fusion reactors 1985

    International Nuclear Information System (INIS)

    Casini, G.; Ponti, C.; Rocco, P.

    1986-01-01

    The aspects of the environmental impact as expected from future fusion reactors are reviewed. The radioactive inventories consist in tritium and neutron-induced radioactivity in the structures. An analysis is performed of the radioactive releases from the different plant's systems in normal and accident conditions and typical emissions to the ambient are defined. Information is given on the waste management problems. Two appendixes give general information on tritium and safety guidelines

  20. Designs of tandem-mirror fusion reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Barr, W.L.; Boghosian, B.M.

    1981-01-01

    We have completed a comparative evaluation of several end plug configurations for tandem mirror fusion reactors with thermal barriers. The axi-cell configuration has been selected for further study and will be the basis for a detailed conceptual design study to be carried out over the next two years. The axi-cell end plug has a simple mirror cell produced by two circular coils followed by a transition coil and a yin-yang pair, which provides for MHD stability

  1. The spheromak as a compact fusion reactor

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.

    1987-03-01

    After summarizing the economic and utility-based rationale for compact, higher-power-density fusion reactors, the gun-sustained spheromak concept is explored as one of a number of poloidal-field-dominated confinement configurations that might improve the prospects for economically attractive and operationally simplified fusion power plants. Using a comprehensive physics/engineering/costing model for the spheromak, guided by realistic engineering constraints and physics extrapolation, a range of cost-optimized reactor design points is presented, and the sensitivity of cost to key physics, engineering, and operational variables is reported. The results presented herein provide the basis for conceptual engineering designs of key fusion-power-core (FPC) subsystems and more detailed plasma modeling of this promising, high mass-power-density concept, which stresses single-piece FPC maintenance, steady-state current drive through electrostatic magnetic helicity injection, a simplified co-axial electrode-divertor, and efficient resistive-coal equilibrium-field coils. The optimal FPC size and the cost estimates project a system that competes aggressively with the best offered by alternative energy sources while simplifying considerably the complexity that has generally been associated with most approaches to magnetic fusion energy

  2. The spheromak as a compact fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hagenson, R.L.; Krakowski, R.A.

    1987-03-01

    After summarizing the economic and utility-based rationale for compact, higher-power-density fusion reactors, the gun-sustained spheromak concept is explored as one of a number of poloidal-field-dominated confinement configurations that might improve the prospects for economically attractive and operationally simplified fusion power plants. Using a comprehensive physics/engineering/costing model for the spheromak, guided by realistic engineering constraints and physics extrapolation, a range of cost-optimized reactor design points is presented, and the sensitivity of cost to key physics, engineering, and operational variables is reported. The results presented herein provide the basis for conceptual engineering designs of key fusion-power-core (FPC) subsystems and more detailed plasma modeling of this promising, high mass-power-density concept, which stresses single-piece FPC maintenance, steady-state current drive through electrostatic magnetic helicity injection, a simplified co-axial electrode-divertor, and efficient resistive-coal equilibrium-field coils. The optimal FPC size and the cost estimates project a system that competes aggressively with the best offered by alternative energy sources while simplifying considerably the complexity that has generally been associated with most approaches to magnetic fusion energy.

  3. Materials needs for compact fusion reactors

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1983-01-01

    The economic prospects for magnetic fusion energy can be dramatically improved if for the same total power output the fusion neutron first-wall (FW) loading and the system power density can be increased by factors of 3 to 5 and 10 to 30, respectively. A number of compact fusion reactor embodiments have been proposed, all of which would operate with increased FW loadings, would use thin (0.5 to 0.6 m) blankets, and would confine quasi-steady-state plasma with resistive, water-cooled copper or aluminum coils. Increased system power density (5 to 15 MWt/m 3 versus 0.3 to 0.5 MW/m 3 ), considerably reduced physical size of the fusion power core (FPC), and appreciably reduced economic leverage exerted by the FPC and associated physics result. The unique materials requirements anticipated for these compact reactors are outlined against the well documented backdrop provided by similar needs for the mainline approaches. Surprisingly, no single materials need that is unique to the compact systems is identified; crucial uncertainties for the compact approaches must also be addressed by the mainline approaches, particularly for in-vacuum components (FWs, limiters, divertors, etc.)

  4. The ICRH tokamak fusion test reactor

    International Nuclear Information System (INIS)

    Perkins, F.W.

    1976-01-01

    A Tokamak Fusion Test Reactor where the ion are maintained at Tsub(i) approximately 20keV>Tsub(e) approximately 7keV by ion-cyclotron resonance heating is shown to produce an energy amplification of Q>2 provided the principal ion energy loss channel is via collisional transfer to the electrons. Such a reactor produces 19MW of fusion power to the electrons. Such a reactor produces 19MW of fusion power and requires a 50MHz radio-frequency generator capable of 50MW peak power; it is otherwise compatible with the conceptual design for the Princeton TFTR. The required n tausub(E) values for electrons and ions are respectively ntausub(Ee)>1.5.10 13 cm -3 -sec and ntausub(Ei)>4.10 13 cm -3 -sec. The principal areas where research is needed to establish this concept are: tokamak transport calculations, ICRH physics, trapped-particle instability energy losses, tokamak equilibria with high values of βsub(theta), and, of course, impurities

  5. Cost aspects of the research reactor fuel cycle

    International Nuclear Information System (INIS)

    2010-01-01

    Research reactors have made valuable contributions to the development of nuclear power, basic science, materials development, radioisotope production for medicine and industry, and education and training. In doing so, they have provided an invaluable service to humanity. Research reactors are expected to make important contributions in the coming decades to further development of the peaceful uses of nuclear technology, in particular for advanced nuclear fission reactors and fuel cycles, fusion, high energy physics, basic research, materials science, nuclear medicine, and biological sciences. However, in the context of decreased public sector support, research reactors are increasingly faced with financial constraints. It is therefore of great importance that their operations are based on a sound understanding of the costs of the complete research reactor fuel cycle, and that they are managed according to sound financial and economic principles. This publication is targeted at individuals and organizations involved with research reactor operations, with the aim of providing both information and an analytical framework for assessing and determining the cost structure of fuel cycle related activities. Efficient management of fuel cycle expenditures is an important component in developing strategies for sustainable future operation of a research reactor. The elements of the fuel cycle are presented with a description of how they can affect the cost efficient operation of a research reactor. A systematic review of fuel cycle choices is particularly important when a new reactor is being planned or when an existing reactor is facing major changes in its fuel cycle structure, for example because of conversion of the core from high enriched uranium (HEU) to low enriched uranium (LEU) fuel, or the changes in spent fuel management provision. Review and optimization of fuel cycle issues is also recommended for existing research reactors, even in cases where research reactor

  6. Fuel elements of research reactors in China

    International Nuclear Information System (INIS)

    Zhou Yongmao; Chen Dianshan; Tan Jiaqiu

    1987-01-01

    This paper describes the current status of design, fabrication of fuel elements for research reactors in China, emphasis is placed on the technology of fuel elements for the High Flux Engineering Test Reactor (HFETR). (author)

  7. Fueling moving ring field-reversed mirror reactor plasmas

    International Nuclear Information System (INIS)

    Felber, F.S.

    1980-01-01

    The concept of small fusion reactors is being studied jointly by Lawrence Livermore Laboratory General Atomic Company, and Pacific Gas and Electric Company. The objective is to investigate alternatives and then to develop a conceptual design for a small reactor that could produce useful, though not necessarily economical, energy by the late 1980s. Three methods of fueling a small moving ring field-reversed mirror are considered: injection of fuel pellets accelerated by laser ablation, injection of fuel pellets accelerated by deflagration-gun ablation, and direct injection of plasma by a deflagration gun. 13 refs

  8. Fuel bundle for nuclear reactor

    International Nuclear Information System (INIS)

    Long, J.W.; Flora, B.S.; Ford, K.L.

    1977-01-01

    The invention concerns a new, simple and inexpensive system for assembling and dismantling a nuclear reactor fuel bundle. Several fuel rods are fitted in parallel rows between two retaining plates which secure the fuel rods in position and which are maintained in an assembled position by means of several stays fixed to the two end plates. The invention particularly refers to an improved apparatus for fixing the stays to the upper plate by using locking fittings secured to rotating sleeves which are applied against this plate [fr

  9. Repair welding of fusion reactor components. Final technical report

    International Nuclear Information System (INIS)

    Chin, B.A.; Wang, C.A.

    1997-01-01

    The exposure of metallic materials, such as structural components of the first wall and blanket of a fusion reactor, to neutron irradiation will induce changes in both the material composition and microstructure. Along with these changes can come a corresponding deterioration in mechanical properties resulting in premature failure. It is, therefore, essential to expect that the repair and replacement of the degraded components will be necessary. Such repairs may require the joining of irradiated materials through the use of fusion welding processes. The present ITER (International Thermonuclear Experimental Reactor) conceptual design is anticipated to have about 5 km of longitudinal welds and ten thousand pipe butt welds in the blanket structure. A recent study by Buende et al. predict that a failure is most likely to occur in a weld. The study is based on data from other large structures, particularly nuclear reactors. The data used also appear to be consistent with the operating experience of the Fast Flux Test Facility (FFTF). This reactor has a fuel pin area comparable with the area of the ITER first wall and has experienced one unanticipated fuel pin failure after two years of operation. The repair of irradiated structures using fusion welding will be difficult due to the entrapped helium. Due to its extremely low solubility in metals, helium will diffuse and agglomerate to form helium bubbles after being trapped at point defects, dislocations, and grain boundaries. Welding of neutron-irradiated type 304 stainless steels has been reported with varying degree of heat-affected zone cracking (HAZ). The objectives of this study were to determine the threshold helium concentrations required to cause HAZ cracking and to investigate techniques that might be used to eliminate the HAZ cracking in welding of helium-containing materials

  10. Boiling water reactor fuel bundle

    International Nuclear Information System (INIS)

    Weitzberg, A.

    1986-01-01

    A method is described of compensating, without the use of control rods or burnable poisons for power shaping, for reduced moderation of neutrons in an uppermost section of the active core of a boiling water nuclear reactor containing a plurality of elongated fuel rods vertically oriented therein, the fuel rods having nuclear fuel therein, the fuel rods being cooled by water pressurized such that boiling thereof occurs. The method consists of: replacing all of the nuclear fuel in a portion of only the upper half of first predetermined ones of the fuel rods with a solid moderator material of zirconium hydride so that the fuel and the moderator material are axially distributed in the predetermined ones of the fuel rods in an asymmetrical manner relative to a plane through the axial midpoint of each rod and perpendicular to the axis of the rod; placing the moderator material in the first predetermined ones of the fuel rods in respective sealed internal cladding tubes, which are separate from respective external cladding tubes of the first predetermined ones of the fuel rods, to prevent interaction between the moderator material and the external cladding tube of each of the first predetermined ones of the fuel rods; and wherein the number of the first predetermined ones of the fuel rods is at least thirty, and further comprising the steps of: replacing with the moderator material all of the fuel in the upper quarter of each of the at least thirty rods; and also replacing with the moderator material all of the fuel in the adjacent lower quarter of at least sixteen of the at least thirty rods

  11. Nuclear reactor fuel rod

    International Nuclear Information System (INIS)

    Busch, H.; Mindnich, F.R.

    1973-01-01

    The fuel rod consists of a can with at least one end cap and a plenum spring between this cap and the fuel. To prevent the hazard that a eutectic mixture is formed during welding of the end cap, a thermal insulation is added between the end cap and plenum spring. It consists of a comical extension of the end cap with a terminal disc against which the spring is supported. The end cap, the extension, and the disc may be formed by one or several pieces. If the disc is separated from the other parts it may be manufactured from chrome steel or VA steel. (DG) [de

  12. Fuel designs for VVER reactors

    International Nuclear Information System (INIS)

    Simonov, K.V.; Carbon, P.; Silberstein, A.

    1995-01-01

    That progresses in efficiency and safety through progresses in technology and better prediction with fully benchmarked upgraded computer codes is a common goal for on the one hand the original designer of the VVER reactors and their respective fuels and on the other hand for EVF a western company resulting from a combined force with highly diversified and complementary talents in reactor and fuel design and manufacturing. It can be expected that this new challenge and dialogue between the two Russian and European industrial ventures will be mutually beneficial and yield innovative and high quality products and as a consequence strong return will be produced for the best interest of utilities operating VVER reactors. (orig./HP)

  13. Status of fusion reactor concept development in Japan

    International Nuclear Information System (INIS)

    Tsuji-Iio, Shunji

    1996-01-01

    Fusion power reactor studies in Japan based on magnetic confinement schemes are reviewed. As D-T fusion reactors, a steady-state tokamak reactor (SSTR) was proposed and extensively studied at the Japan Atomic Energy Research Institute (JAERI) and an inductively operated day-long tokamak reactor (IDLT) was proposed by a group at the University of Tokyo. The concept of a drastically easy maintenance (DREAM) tokamak reactor is being developed at JAERI. A high-field tokamak reactor with force-balanced coils as a volumetric neutron source is being studied by our group at Tokyo Institute of Technology. The conceptual design of a force-free helical reactor (FFHR) is under way at the National Institute for Fusion Science. A design study of a D- 3 He field-reversed configuration (FRC) fusion reactor called ARTEMIS was conducted by the FRC fusion working group of research committee of lunar base an lunar resources. (author)

  14. Non-electrical uses of thermal energy generated in the production of fissile fuel in fusion--fission reactors: a comparative economic parametric analysis for a hybrid with or without synthetic fuel production

    International Nuclear Information System (INIS)

    Tai, A.S.; Krakowski, R.A.

    1979-01-01

    A parametric analysis has been carried out for testing the sensitivity of the synfuel production cost in relation to crucial economic and technologic quantities (investment costs of hybrid and synfuel plant, energy multiplication of the fission blanket, recirculating power fraction of the fusion driver, etc.). In addition, a minimum synfuel selling price has been evaluated, from which the fission--fusion--synfuel complex brings about a higher economic benefit than does the fusion--fission hybrid entirely devoted to fissile-fuel and electricity generation. Assuming an electricity cost of 2.7 cents/kWh, an annual investment cost per power unit of 4.2 to 6 $/GJ (132 to 189 k$/MWty) for the fission--fusion complex and 1.5 to 3 $/GJ (47 to 95 k$/MWty) for the synfuel plant, the synfuel production net cost (i.e., revenue = cost) varies between 6.5 and 8.6 $/GJ. These costs can compete with those obtained by other processes (natural gas reforming, resid partial oxidation, coal gasification, nuclear fission, solar electrolysis, etc.). This study points out a potential use of the fusion--fission hybrid other than fissile-fuel and electricity generation

  15. Breeder reactor fuel reprocessing

    International Nuclear Information System (INIS)

    Trauger, D.B.

    1983-01-01

    The time cycle for breeder reactor development and deployment is longer than the planning horizons for most private industry and governments. The potential advantage and possible desperate need for widely deployed breeder reactors in the future seems to dictate that suitable long-term development and deployment programs be established to provide an adequate base of technology and in time to meet the need. The problems of failing to do so and being confronted with a major requirement for nuclear energy could result in very serious economic and social disruption. The cost of maintaining the needed program, although substantial, is certainly modest compared with the potential problems which could ensue should we fail to proceed

  16. SEBREZ: an inertial-fusion-reactor concept

    International Nuclear Information System (INIS)

    Meier, W.R.

    1982-01-01

    The neutronic aspects of an inertial fusion reactor concept that relies on asymmetrical neutronic effects to enhance the tritium production in the breeding zones have been studied. We find that it is possible to obtain a tritium breeding ratio greater than 1.0 with a chamber configuration in which the breeding zones subtend only a fraction of the total solid angle. This is the origin of the name SEBREZ which stands for SEgregated BREeding Zones. It should be emphasized that this is not a reactor design study; rather this study illustrates certain neutronic effects in the context of a particular reactor concept. An understanding of these effects forms the basis of a design technique which has broader application than just the SEBREZ concept

  17. Interatomic potentials for fusion reactor material simulations

    International Nuclear Information System (INIS)

    Bjoerkas, C.

    2009-01-01

    In this thesis, the behaviour of a material situated in a fusion reactor was studied using molecular dynamics simulations. Simulations of processes in the next generation fusion reactor ITER include the reactor materials beryllium, carbon and tungsten as well as the plasma hydrogen isotopes. This means that interaction models, i.e. interatomic potentials, for this complicated quaternary system are needed. The task of finding such potentials is nonetheless nearly at its end, since models for the beryllium-carbon-hydrogen interactions were constructed in this thesis and as a continuation of that work, a beryllium-tungsten model is under development. These potentials are combinable with the earlier tungsten-carbon-hydrogen ones. The potentials were used to explain the chemical sputtering of beryllium due to deuterium plasma exposure. During experiments, a large fraction of the sputtered beryllium atoms were observed to be released as BeD molecules, and the simulations identified the swift chemical sputtering mechanism, previously not believed to be important in metals, as the underlying mechanism. Radiation damage in the reactor structural materials vanadium, iron and iron chromium, as well as in the wall material tungsten and the mixed alloy tungsten carbide, was also studied in this thesis. Interatomic potentials for vanadium, tungsten and iron were modified to be better suited for simulating collision cascades that are formed during particle irradiation, and the potential features affecting the resulting primary damage were identified. Including the often neglected electronic effects in the simulations was also shown to have an impact on the damage. With proper tuning of the electronphonon interaction strength, experimentally measured quantities related to ion-beam mixing in iron could be reproduced. The damage in tungsten carbide alloys showed elemental asymmetry, as the major part of the damage consisted of carbon defects. On the other hand, modelling the damage

  18. Simulation of fusion power in tokamak reactor

    International Nuclear Information System (INIS)

    Gaber, F.A.; Elsharif, R.N.; Sayed, Y.A.

    1993-01-01

    The paper deals with the transient response of the fusion power against perturbation in the injection rate of the fuel to ± 10% step change. The steady state results are in good agreement with the references results. The adequacy of these study was tested by assessing the physical plausibility of the obtained result, as well as, comparison with other validated model. 2 fig., 2 tab

  19. Tokamak Fusion Test Reactor D-T results

    International Nuclear Information System (INIS)

    Meade, D.M.

    1995-01-01

    Temperatures, densities and confinement of deuterium plasmas confined in tokamaks have been achieved within the last decade that are approaching those required for a D-T reactor. As a result, the unique phenomena present in a D-T reactor plasma (D-T plasma confinement, α confinement, α heating and possible α-driven instabilities) can now be studied in the laboratory. Recent experiments on the Tokamak Fusion Test Reactor (TFTR) have been the first magnetic fusion experiments to study plasmas with reactor fuel concentrations of tritium. The injection of about 20MW of tritium and 14MW of deuterium neutral beams into the TFTR produced a plasma with a T-to-D density ratio of about 1 and yielding a maximum fusion power of about 9.2MW. The fusion power density in the core of the plasma was about 1.8MWm -3 , approximating that expected in a D-T fusion reactor. A TFTR plasma with a T-to-D density ratio of about 1 was found to have about 20% higher energy confinement time than a comparable D plasma, indicating a confinement scaling with average ion mass A of τ E ∝A 0.6 . The core ion temperature increased from 30 to 37keV owing to a 35% improvement of ion thermal conductivity. Using the electron thermal conductivity from a comparable deuterium plasma, about 50% of the electron temperature increase from 9 to 10.6keV can be attributed to electron heating by the α particles. The approximately 5% loss of α particles, as observed on detectors near the bottom edge of the plasma, was consistent with classical first orbit loss without anomalous effects. Initial measurements have been made of the confined high energy α particles and the resultant α ash density. At fusion power levels of 7.5MW, fluctuations at the toroidal Alfven eigen-mode frequency were observed by the fluctuation diagnostics. However, no additional α loss due to the fluctuations was observed. (orig.)

  20. Research reactors for power reactor fuel and materials testing - Studsvik's experience

    International Nuclear Information System (INIS)

    Grounes, M.

    1998-01-01

    Presently Studsvik's R2 test reactor is used for BWR and PWR fuel irradiations at constant power and under transient power conditions. Furthermore tests are performed with defective LWR fuel rods. Tests are also performed on different types of LWR cladding materials and structural materials including post-irradiation testing of materials irradiated at different temperatures and, in some cases, in different water chemistries and on fusion reactor materials. In the past, tests have also been performed on HTGR fuel and FBR fuel and materials under appropriate coolant, temperature and pressure conditions. Fuel tests under development include extremely fast power ramps simulating some reactivity initiated accidents and stored energy (enthalpy) measurements. Materials tests under development include different types of in-pile tests including tests in the INCA (In-Core Autoclave) facility .The present and future demands on the test reactor fuel in all these cases are discussed. (author)

  1. Tritium monitoring within the reactor hall of a DT fusion reactor

    International Nuclear Information System (INIS)

    Jalbert, R.A.

    1983-01-01

    Monitoring the reactor hall atmosphere of DT-fueled fusion reactors will probably be performed with conventional ion chamber and proportional counter instruments modified as necessry to deal with the background radiation. Background includes external neutron and gamma radiation and internal beta-gamma radiation from the activated atmosphere. Although locating instruments in remote areas of the reactor hall and adding local shielding and electronic compensation may be feasible, placing the instruments in accessible low-background areas outside of the reactor hall and doing remote sampling is preferable and solves most of the radiation problems. The remaining problem of the activated atmosphere may be solved by recently developed instruments in conjunction with the use of semi-permeable membranes currently under development and evaluation

  2. Nuclear reactor fuel element

    International Nuclear Information System (INIS)

    D'Eye, R.W.M.; Shennan, J.V.; Ford, L.H.

    1977-01-01

    Fuel element with particles from ceramic fissionable material (e.g. uranium carbide), each one being coated with pyrolitically deposited carbon and all of them being connected at their points of contact by means of an individual crossbar. The crossbar consists of silicon carbide produced by reaction of silicon metal powder with the carbon under the influence of heat. Previously the silicon metal powder together with the particles was kneaded in a solvent and a binder (e.g. epoxy resin in methyl ethyl ketone plus setting agent) to from a pulp. The reaction temperature lies at 1750 0 C. The reaction itself may take place in a nitrogen atmosphere. There will be produced a fuel element with a high overall thermal conductivity. (DG) [de

  3. An optimized symbiotic fusion and molten-salt fission reactor system

    International Nuclear Information System (INIS)

    Blinkin, V.L.; Novikov, V.M.

    A symbiotic fusion-fission reactor system which breeds nuclear fuel is discussed. In the blanket of the controlled thermonuclear reactor (CTR) uranium-233 is generated from thorium, which circulates in the form of ThF 4 mixed with molten sodium and beryllium fluorides. The molten-salt fission reactor (MSR) burns up the uranium-233 and generates tritium for the fusion reactor from lithium, which circulates in the form of LiF mixed with BeF 2 and 233 UF 4 through the MSR core. With a CTR-MSR thermal power ratio of 1:11 the system can produce electrical energy and breed fuel with a doubling time of 4-5 years. The system has the following special features: (1) Fuel reprocessing is much simpler and cheaper than for contemporary fission reactors; reprocessing consists simply in continuous removal of 233 U from the salt circulating in the CTR blanket by the fluorination method and removal of xenon from the MSR fuel salt by gas scavenging; the MSR fuel salt is periodically exchanged for fresh salt and the 233 U is then removed from it; (2) Tritium is produced in the fission reactor, which is a much simpler system than the fusion reactor; (3) The CTR blanket is almost ''clean''; no tritium is produced in it and fission fragment activity does not exceed the activity induced in the structural materials; (4) Almost all the thorium introduced into the CTR blanket can be used for producing 233 U

  4. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    International Nuclear Information System (INIS)

    Lasche, G.P.

    1988-01-01

    A method for recovering energy in an inertial confinement fusion reactor having a reactor chamber and a sphere forming means positioned above an opening in the reactor chamber is described, comprising: embedding a fusion target fuel capsule having a predetermined yield in the center of a hollow solid lithium tube and subsequently embedding the hollow solid lithium tube in a liquid lithium medium; using the sphere forming means for forming the liquid lithium into a spherical shaped liquid lithium mass having a diameter smaller than the length of the hollow solid lithium tube with the hollow solid lithium tube being positioned along a diameter of the spherical shaped mass, providing the spherical shaped liquid lithium mass with the fusion fuel target capsule and hollow solid lithium tube therein as a freestanding liquid lithium shaped spherical shaped mass without any external means for maintaining the spherical shape by dropping the liquid lithium spherical shaped mass from the sphere forming means into the reactor chamber; producing a magnetic field in the reactor chamber; imploding the target capsule in the reactor chamber to produce fusion energy; absorbing fusion energy in the liquid lithium spherical shaped mass to convert substantially all the fusion energy to shock induced kinetic energy of the liquid lithium spherical shaped mass which expands the liquid lithium spherical shaped mass; and compressing the magnetic field by expansion of the liquid lithium spherical shaped mass and recovering useful energy

  5. Survey of the laser-solenoid fusion reactor

    International Nuclear Information System (INIS)

    Amherd, N.A.

    1975-09-01

    This report surveys the prospects for a laser-solenoid fusion reactor. A sample reactor and scaling laws are used to describe the concept's characteristics. Experimental results are reviewed, and the laser and magnet technologies that undergird the laser-solenoid concept are analyzed. Finally, a systems analysis of fusion power reactors is given, including a discussion of direct conversion and fusion-fission effects, to ascertain the system attributes of the laser-solenoid configuration

  6. Nuclear fuel performance in boiling water reactors

    International Nuclear Information System (INIS)

    Elkins, R.B.; Baily, W.E.; Proebstle, R.A.; Armijo, J.S.; Klepfer, H.H.

    1981-01-01

    A major development program is described to improve the performance of Boiling Water Reactor fuel. This sustained program is described in four parts: 1) performance monitoring, 2) fuel design changes, 3) plant operating recommendations, and 4) advanced fuel programs

  7. Applying design principles to fusion reactor configurations for propulsion in space

    International Nuclear Information System (INIS)

    Carpenter, S.A.; Deveny, M.E.; Schulze, N.R.

    1993-01-01

    The application of fusion power to space propulsion requires rethinking the engineering-design solution to controlled-fusion energy. Whereas the unit cost of electricity (COE) drives the engineering-design solution for utility-based fusion reactor configurations; initial mass to low earth orbit (IMLEO), specific jet power (kW(thrust)/kg(engine)), and reusability drive the engineering-design solution for successful application of fusion power to space propulsion. Three design principles (DP's) were applied to adapt and optimize three candidate-terrestrial-fusion-reactor configurations for propulsion in space. The three design principles are: provide maximum direct access to space for waste radiation, operate components as passive radiators to minimize cooling-system mass, and optimize the plasma fuel, fuel mix, and temperature for best specific jet power. The three candidate terrestrial fusion reactor configurations are: the thermal barrier tandem mirror (TBTM), field reversed mirror (FRM), and levitated dipole field (LDF). The resulting three candidate space fusion propulsion systems have their IMLEO minimized and their specific jet power and reusability maximized. A preliminary rating of these configurations was performed, and it was concluded that the leading engineering-design solution to space fusion propulsion is a modified TBTM that we call the Mirror Fusion Propulsion System (MFPS)

  8. Process and device for the decontamination of the waste gas of the fuel cycle of a fusion reactor of waste gas components containing tritium and/or deuterium in chemically bound form

    International Nuclear Information System (INIS)

    Penzhorn, R.D.; Glugla, M.; Schuster, P.

    1987-01-01

    The waste gas of the fuel cycle of a fusion reactor consists of a mixture of about 85% He and Ar and about 15% of deuteriated and/or tritiated ammonia, methane, water and hydrogen, apart from impurities such as CO, CO 2 , N 2 and O 2 . According to the invention, after oxidation of CO to CO 2 on an oxidation catalyst and after the reduction of water to hydrogen and the removal of O 2 by an O 2 getter metal, ammonia and methane are catalytically decomposed. The released hydrogen isotopes are separated for reuse via a membrane permeable to hydrogen, while the decontaminated waste gas is taken away to the environment. (orig.) [de

  9. Investigation of materials for fusion power reactors

    Science.gov (United States)

    Bouhaddane, A.; Slugeň, V.; Sojak, S.; Veterníková, J.; Petriska, M.; Bartošová, I.

    2014-06-01

    The possibility of application of nuclear-physical methods to observe radiation damage to structural materials of nuclear facilities is nowadays a very actual topic. The radiation damage to materials of advanced nuclear facilities, caused by extreme radiation stress, is a process, which significantly limits their operational life as well as their safety. In the centre of our interest is the study of the radiation degradation and activation of the metals and alloys for the new nuclear facilities (Generation IV fission reactors, fusion reactors ITER and DEMO). The observation of the microstructure changes in the reactor steels is based on experimental investigation using the method of positron annihilation spectroscopy (PAS). The experimental part of the work contains measurements focused on model reactor alloys and ODS steels. There were 12 model reactor steels and 3 ODS steels. We were investigating the influence of chemical composition on the production of defects in crystal lattice. With application of the LT 9 program, the spectra of specimen have been evaluated and the most convenient samples have been determined.

  10. Fast reactor fuel reprocessing. An Indian perspective

    International Nuclear Information System (INIS)

    Natarajan, R.; Raj, Baldev

    2005-01-01

    The Department of Atomic Energy (DAE) envisioned the introduction of Plutonium fuelled fast reactors as the intermediate stage, between Pressurized Heavy Water Reactors and Thorium-Uranium-233 based reactors for the Indian Nuclear Power Programme. This necessitated the closing of the fast reactor fuel cycle with Plutonium rich fuel. Aiming to develop a Fast Reactor Fuel Reprocessing (FRFR) technology with low out of pile inventory, the DAE, with over four decades of operating experience in Thermal Reactor Fuel Reprocessing (TRFR), had set up at the India Gandhi Center for Atomic Research (IGCAR), Kalpakkam, R and D facilities for fast reactor fuel reprocessing. After two decades of R and D in all the facets, a Pilot Plant for demonstrating FRFR had been set up for reprocessing the FBTR (Fast Breeder Test Reactor) spent mixed carbide fuel. Recently in this plant, mixed carbide fuel with 100 GWd/t burnup fuel with short cooling period had been successfully reprocessed for the first time in the world. All the challenging problems encountered had been successfully overcome. This experience helped in fine tuning the designs of various equipments and processes for the future plants which are under construction and design, namely, the DFRP (Demonstration Fast reactor fuel Reprocessing Plant) and the FRP (Fast reactor fuel Reprocessing Plant). In this paper, a comprehensive review of the experiences in reprocessing the fast reactor fuel of different burnup is presented. Also a brief account of the various developmental activities and strategies for the DFRP and FRP are given. (author)

  11. Conceptual design of Fusion Experimental Reactor (FER)

    International Nuclear Information System (INIS)

    Tone, T.; Fujisawa, N.

    1983-01-01

    Conceptual design studies of the Fusion Experimental Reactor (FER) have been performed. The FER has an objective of achieving selfignition and demonstrating engineering feasibility as a next generation tokamak to JT-60. Various concepts of the FER have been considered. The reference design is based on a double-null divertor. Optional design studies with some attractive features based on advanced concepts such as pumped limiter and RF current drive have been carried out. Key design parameters are; fusion power of 440 MW, average neutron wall loading of 1MW/m 2 , major radius of 5.5m, plasma minor radius of 1.1m, plasma elongation of 1.5, plasma current of 5.3MA, toroidal beta of 4%, toroidal field on plasma axis of 5.7T and tritium breeding ratio of above unity

  12. Assessment of materials needs for fusion reactors

    International Nuclear Information System (INIS)

    Allison, G.S.

    1976-07-01

    This report has the goal of presenting for the CTR designer and material supplier potentially significant problem areas in materials manufacturing and in structural material resources projected for potential application in fusion power reactor construction. The projected material requirements are based on presently available bills-of-materials for conceptual CTR designs used for constructing a hypothetical fusion power generating capacity of 10 6 MW(e) maturing exponentially over a 20-year period. The projected elemental requirements, the ratio of these requirements to the projected total U.S. demand, and the salient problems currently identified with the CTR use of these elements are summarized. The projected requirements are based upon a ''model'' industry, which is described, and the estimated potential use of molybdenum, niobium, vanadium, and tantalum as blanket structural materials

  13. Assessment of materials needs for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Allison, G.S. (comp.)

    1976-07-01

    This report has the goal of presenting for the CTR designer and material supplier potentially significant problem areas in materials manufacturing and in structural material resources projected for potential application in fusion power reactor construction. The projected material requirements are based on presently available bills-of-materials for conceptual CTR designs used for constructing a hypothetical fusion power generating capacity of 10/sup 6/ MW(e) maturing exponentially over a 20-year period. The projected elemental requirements, the ratio of these requirements to the projected total U.S. demand, and the salient problems currently identified with the CTR use of these elements are summarized. The projected requirements are based upon a ''model'' industry, which is described, and the estimated potential use of molybdenum, niobium, vanadium, and tantalum as blanket structural materials.

  14. New tritium monitor for the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Jalbert, R.A.

    1985-01-01

    At DT-fueled fusion reactors, there will be a need for tritium monitors that can simultaneously measure in real time the concentrations of HTO, HT and the activated air produced by fusion neutrons. Such a monitor has been developed, tested and delivered to the Princeton Plasma Physics Laboratory for use at the Tokamak Fusion Test Reactor (TFTR). It uses semipermeable membranes to achieve the removal of HTO from the sampled air for monitoring and a catalyst to convert the HT to HTO, also for removal and monitoring. The remaining air, devoid of tritium, is routed to a third detector for monitoring the activated air. The sensitivities are those that would be expected from tritium instruments employing conventional flow-through ionization chambers: 1 to 3 μCi/m 3 . Its discriminating ability is approximately 10 -3 for any of the three components (HTO, HT and activated air) in any of the other two channels. For instance, the concentration of HT in the HTO channel is 10 -3 times its original concentration in the sampled air. This will meet the needs of TFTR

  15. Reactor potential of the magnetically insulated inertial fusion (MICF) system

    International Nuclear Information System (INIS)

    Kammash, T.; Galbraith, D.L.

    1987-01-01

    The Magnetically Insulated Inertial Confinement Fusion (MICF) scheme is examined with regard to its potential as a power-producing reactor. This approach combines the favorable aspects of both magnetic and inertial fusions in that physical containment of the plasma is provided by a metallic shell while thermal insulation of its energy is provided by a strong, self-generated magnetic field. The plasma is created at the core of the target as a result of irradiation of the fuel-coated inner surface by a laser beam that enters through a hole in the spherical shell. The instantaneous magnetic field is generated by the current loops formed by the laser-heated, laser-ablated electrons, and preliminary experimental results at Osaka University have confirmed the presence of such a field. These same experiments have also yielded a Lawson parameter of about 5x10 12 cm -3 sec, and because of these unique properties, the plasma lifetimes in MICF have been shown to be about two orders of magnitude longer than conventional, pusher type inertial fusion schemes. In this paper a quasi one dimensional, time dependent set of particle and energy balance equations for the thermal species, namely, electrons, ions and thermal alphas which also allows for an appropriate set of fast alpha groups is utilized to assess the reactor prospects of a DT-burning MICF system. (author) [pt

  16. Fuel element for nuclear reactors

    International Nuclear Information System (INIS)

    Cadwell, D.J.

    1982-01-01

    The invention concerns a fuel element for nuclear reactors with fuel rods and control rod guide tubes, where the control rod guide tubes are provided with flat projections projecting inwards, in the form of local deformations of the guide tube wall, in order to reduce the radial play between the control rod concerned and the guide tube, and to improve control rod movement. This should ensure that wear on the guide tubes is largely prevented which would be caused by lateral vibration of the control rods in the guide tubes, induced by the flow of coolant. (orig.) [de

  17. Reactor fuel assembly fastening

    International Nuclear Information System (INIS)

    Formanek, F.J.; Schukei, G.E.

    1980-01-01

    A nuclear fuel assembly is described, adapted to be locked into first mating surfaces on a core support stand, comprising a lower end fitting having posts for resting on the stand; elongated hook members pivotally connected at one end to the lower end fitting and having a second mating surface at the other end to engage the first mating surfaces; actuating means located between the posts on the lower end fitting and being vertically movable relative to the end fitting; and rigid links pivotally attached at one end to the hook members intermediate the connection of the hook members to the end fitting and the second mating surface and pivotally attached at the other end to the actuating means, the link having a length between the pivoted connections such that the second mating surface on the hook members locks into engagement with the first mating surfaces on the stand as the links approach the horizontal. (author)

  18. The TITAN reversed-field-pinch fusion reactor study

    International Nuclear Information System (INIS)

    1990-01-01

    This paper on titan plasma engineering contains papers on the following topics: reversed-field pinch as a fusion reactor; parametric systems studies; magnetics; burning-plasma simulations; plasma transient operations; current drive; and physics issues for compact RFP reactors

  19. Afterheat assessment of a conceptual fusion reactor

    International Nuclear Information System (INIS)

    Jayatissa, S.P.; Goddard, A.J.H.

    1987-01-01

    Structural activation and decay heat deposition calculations have been undertaken for the DEMO fusion reactor design. The DEMO design was based on an earlier conceptual design of a blanket sector which could breed tritium and generate electricity. These calculations have taken account of the redistribution of energy by the transport of γ radiation. Calculated heat deposition patterns have been used as data for simplified heat transfer calculations to judge temperature rises in relation to materials limits in a severe accident involving complete coolant flow failure. (author)

  20. Dust removal system for fusion experimental reactors

    International Nuclear Information System (INIS)

    Onozuka, M.; Ueda, Y.; Takahashi, K.; Oda, Y.; Seki, Y.; Ueda, S.; Aoki, I.

    1995-01-01

    Development of a dust removal system using static electricity has been conducted. It is envisioned that the system can collect and transport dust under vacuum. In the system, the dust is charged by dielectric polarization and floated by an electrostatic attraction force that is generated by the DC electric field. The dust is then transported by the electric curtain formed by the three-phase AC electric field. Experimental investigation has been conducted to examine the characteristics of the system. Current research results indicate that the dust removal system using static electricity can be used for fusion experimental reactors

  1. Dust removal system for fusion experimental reactors

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M.; Ueda, Y.; Takahashi, K.; Oda, Y. [Mitsubishi Heavy Industries, Ltd., Yokohama (Japan); Seki, Y.; Ueda, S.; Aoki, I. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan)

    1995-12-31

    Development of a dust removal system using static electricity has been conducted. It is envisioned that the system can collect and transport dust under vacuum. In the system, the dust is charged by dielectric polarization and floated by an electrostatic attraction force that is generated by the DC electric field. The dust is then transported by the electric curtain formed by the three-phase AC electric field. Experimental investigation has been conducted to examine the characteristics of the system. Current research results indicate that the dust removal system using static electricity can be used for fusion experimental reactors.

  2. Organic materials for fusion-reactor applications

    International Nuclear Information System (INIS)

    Hurley, G.F.; Coltman, R.R. Jr.

    1983-09-01

    Organic materials requirements for fusion-reactor magnets are described with reference to the temperature, radiation, and electrical and mechanical stress environment expected in these magnets. A review is presented of the response to gamma-ray and neutron irradiation at low temperatures of candidate organic materials; i.e. laminates, thin films, and potting compounds. Lifetime-limiting features of this response as well as needed testing under magnet operating conditions not yet adequately investigated are identified and recomendations for future work are made

  3. The tritium and the controlled fusion reactors

    International Nuclear Information System (INIS)

    Leger, D.; Rouyer, J.L.

    1986-04-01

    It is shown how tritium is used how it is circulating in a fusion reactor. The great functions of tritium circuits are detailed: reprocessing of burnt gases, reprocessing of gases coming from neutral injectors, reprocessing from gaseous wastes, detritiation of cooling fluids. Current technologic developments are quoted. Then tritium confinement and containment, in normal or accidental situations, are displayed. Limitation devices of effluents and release for normal operating (noticeably the reprocessing systems of atmosphere) and safety and protection systems in case of accident are described [fr

  4. Vanadium alloys for fusion reactor applications

    International Nuclear Information System (INIS)

    Mattas, R.F.; Loomis, B.A.; Smith, D.L.

    1992-01-01

    This paper reports that fusion reactors will produce a severe operating environment for structural materials. The material should have good mechanical strength and ductility to high temperature, be corrosion resistant to the local environment, have attractive thermophysical properties to accommodate high heat loads, and be resistant to neutron damage. Vanadium alloys are being developed for such applications, and they exhibit desirable properties in many areas Recent progress in vanadium alloy development indicates good strength and ductility to 700 degrees C, minimal degradation by neutron irradiation, and reduced radioactivity compared with other candidate alloy systems

  5. Environmental considerations for alternative fusion reactor blankets

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Young, J.R.

    1975-01-01

    Comparisons of alternative fusion reactor blanket/coolant systems suggest that environmental considerations will enter strongly into selection of design and materials. Liquid blankets and coolants tend to maximize transport of radioactive corrosion products. Liquid lithium interacts strongly with tritium, minimizing permeation and escape of gaseous tritium in accidents. However, liquid lithium coolants tend to create large tritium inventories and have a large fire potential compared to flibe and solid blankets. Helium coolants minimize radiation transport, but do not have ability to bind the tritium in case of accidental releases. (auth)

  6. Systems study of tokamak fusion--fission reactors

    International Nuclear Information System (INIS)

    Tenney, F.H.; Bathke, C.G.; Price, W.G. Jr.; Bohlke, W.H.; Mills, R.G.; Johnson, E.F.; Todd, A.M.M.; Buchanan, C.H.; Gralnick, S.L.

    1978-11-01

    This publication reports the results of a two to three year effort at a systematic analysis of a wide variety of tokamak-driven fissioning blanket reactors, i.e., fusion--fission hybrids. It addresses the quantitative problems of determining the economically most desirable mix of the two products: electric power and fissionable fuel and shows how the price of electric power can be minimized when subject to a variety of constraints. An attempt has been made to avoid restricting assumptions, and the result is an optimizing algorithm that operates in a six-dimensional parameter space. Comparisons are made on sets of as many as 100,000 distinct machine models, and the principal results of the study have been derived from the examination of several hundred thousand possible reactor configurations

  7. Maintenance features of the Compact Ignition Tokamak fusion reactor

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Hager, E.R.

    1987-01-01

    The Compact Ignition Tokamak (CIT) is envisaged to be the next experimental machine in the US Fusion Program. Its use of deuterium/tritium fuel requires the implementation of remote handling technology for maintenance and disassembly operations. The reactor is surrounded by a close-proximity nuclear shield which is designed to permit personnel access within the test cell, one day after shutdown. With the shield in place, certain maintenance activities in the cell may be done hands-on. Maintenance on the reactor is accomplished remotely using a boom-mounted manipulator after disassembling the shield. Maintenance within the plasma chamber is accomplished with two articulated boom manipulators that are capable of operating in a vacuum environment. They are stored in a vacuum enclosure behind movable shield plugs

  8. Neutral-beam-injected tokamak fusion reactors: a review

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1976-08-01

    The theories of energetic-ion velocity distributions, stability, injection, and orbits were summarized. The many-faceted role of the energetic ions in plasma heating, fueling, and current maintenance, as well as in the direct enhancement of fusion power multiplication and power density, is discussed in detail for three reactor types. The relevant implications of recent experimental results on several beam-injected tokamaks are examined. The behavior of energetic ions is found to be in accordance with classical theory, large total ion energy densities are readily achieved, and plasma equilibrium and stability are maintained. The status of neutral-beam injectors and of conceptual design studies of beam-driven reactors are briefly reviewed. The principal plasma-engineering problems are those associated directly with achieving quasi-stationary operation

  9. Thermal safety analysis for pebble bed blanket fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Wei Renjie

    1998-01-01

    Pebble bed blanket hybrid reactor may have more advantages than slab element blanket hybrid reactor in nuclear fuel production and nuclear safety. The thermo-hydraulic calculations of the blanket in the Tokamak helium cooling pebble bed blanket fusion-fission hybrid reactor developed in China are carried out using the Code THERMIX and auxiliary code. In the calculations different fuel pebble material and steady state, depressurization and total loss of flow accident conditions are included. The results demonstrate that the conceptual design of the Tokamak helium cooling pebble bed blanket fusion-fission hybrid reactor with dump tank is feasible and safe enough only if the suitable fuel pebble material is selected and the suitable control system and protection system are established. Some recommendations for due conceptual design are also presented

  10. Decommissioning of the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Perry, E.; Chrzanowski, J.; Gentile, C.; Parsells, R.; Rule, K.; Strykowsky, R.; Viola, M.

    2003-01-01

    The Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory was operated from 1982 until 1997. The last several years included operations with mixtures of deuterium and tritium. In September 2002, the three year Decontamination and Decommissioning (D and D) Project for TFTR was successfully completed. The need to deal with tritium contamination as well as activated materials led to the adaptation of many techniques from the maintenance work during TFTR operations to the D and D effort. In addition, techniques from the decommissioning of fission reactors were adapted to the D and D of TFTR and several new technologies, most notably the development of a diamond wire cutting process for complex metal structures, were developed. These techniques, along with a project management system that closely linked the field crews to the engineering staff who developed the techniques and procedures via a Work Control Center, resulted in a project that was completed safely, on time, and well below budget

  11. Tritium permeation in fusion reactors: INTOR

    International Nuclear Information System (INIS)

    Baskes, M.I.; Bauer, W.; Kerst, R.A.; Swansiger, W.A.; Wilson, K.L.

    1981-12-01

    Tritium permeation through the first wall of advanced fusion reactors is examined. A fraction of the D-T which bombards the first wall as charge exchange neutral particles will permeate through the first wall and enter the coolant. Calculations of the steady state permeation rate for the US INTOR Tokamak design result in values of less than or equal to 0.002 grams of tritium per day under the most favorable conditions. For unfavorable surface conditions the rate is greater than or equal to 0.1 g/day. The magnitude of these permeation rates is critically dependent on the temperatures and surface conditions of the wall. The introduction of permeation barriers at the wall-coolant interface can significantly reduce permeation rates and hence may be desirable for reactor applications

  12. Conceptual design of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1985-01-01

    The Fusion Experimental Reactor (FER) being developed at JAERI as a next generation tokamak to JT-60 has a major mission of realizing a self-ignited long-burning DT plasma and demonstrating engineering feasibility. During FY82 and FY83 a comprehensive and intensive conceptual design study has been conducted for a pulsed operation FER as a reference option which employs a conventional inductive current drive and a double-null divertor. In parallel with the reference design, studies have been carried out to evaluate advanced reactor concepts such as quasi-steady state operation and steady state operation based on RF current drive and pumped limiter, and comparative studies for single-null divertor/pumped limiter. This report presents major results obtained primarily from FY83 design studies, while the results of FY82 design studies are described in previous references (JAERI-M 83-213--216). (author)

  13. Thermophysical properties of reactor fuels

    International Nuclear Information System (INIS)

    Leibowitz, L.

    1981-01-01

    A review is presented of the literature on the enthalpy of uranium, thorium, and plutonium oxide and an approach is described for calculating the vapor pressure and gaseous composition of reactor fuel. In these calculations, thermodynamic functions of gas phase molecular species (obtained from matrix-isolation spectroscopy) are employed in conjunction with condensed phase therodynamics. A summary is presented of the status of this work

  14. Laser fusion hybrid reactor systems study

    International Nuclear Information System (INIS)

    1976-07-01

    The work was performed in three phases. The first phase included a review of the many possible laser-reactor-blanket combinations and resulted in the selection of a ''demonstration size'' 500 MWe plant for further study. A number of fast fission blankets using uranium metal, uranium-molybdenum alloy, and uranium carbide as fuel were investigated. The second phase included design of the reactor vessel and internals, heat transfer system, tritium processing system, and the balance of plant, excluding the laser building and equipment. A fuel management scheme was developed, safety considerations were reviewed, and capital and operating costs were estimated. Costs developed during the second phase were unexpectedly high, and a thorough review indicated considerable unit cost savings could be obtained by scaling the plant to a larger size. Accordingly, a third phase was added to the original scope, encompassing the redesign and scaling of the plant from 500 MWe to 1200 MWe

  15. Fuel exchanger in FBR type reactor

    International Nuclear Information System (INIS)

    Shinden, Kazuhiko; Tanaka, Osamu.

    1990-01-01

    The present invention concerns a fuel exchanger for exchanging fuels in an LMFBR type reactor using liquid metals as coolants. An outer gripper cylinder rotating device for rotating an outer gripper cylinder that holds a gripper is driven, to lower the gripper driving portion and the outer gripper cylinder, fuels are caught by the finger at the top end of the outer gripper cylinder and elevated to extract the fuels from the reactor core. Then, the gripper driving portion casing and the outer gripper cylinder are rotated to rotate the fuels caught by the gripper. Subsequently, the gripper driving portion and the outer gripper cylinder are lowered to charge the fuels in the reactor core. This can directly shuffle the fuels in the reactor core without once transferring the fuels into a reactor storing pot and replacing with other fuels, thereby shortening the shuffling time. (I.N.)

  16. Burn Control in Fusion Reactors via Nonlinear Stabilization Techniques

    International Nuclear Information System (INIS)

    Schuster, Eugenio; Krstic, Miroslav; Tynan, George

    2003-01-01

    Control of plasma density and temperature magnitudes, as well as their profiles, are among the most fundamental problems in fusion reactors. Existing efforts on model-based control use control techniques for linear models. In this work, a zero-dimensional nonlinear model involving approximate conservation equations for the energy and the densities of the species was used to synthesize a nonlinear feedback controller for stabilizing the burn condition of a fusion reactor. The subignition case, where the modulation of auxiliary power and fueling rate are considered as control forces, and the ignition case, where the controlled injection of impurities is considered as an additional actuator, are treated separately.The model addresses the issue of the lag due to the finite time for the fresh fuel to diffuse into the plasma center. In this way we make our control system independent of the fueling system and the reactor can be fed either by pellet injection or by puffing. This imposed lag is treated using nonlinear backstepping.The nonlinear controller proposed guarantees a much larger region of attraction than the previous linear controllers. In addition, it is capable of rejecting perturbations in initial conditions leading to both thermal excursion and quenching, and its effectiveness does not depend on whether the operating point is an ignition or a subignition point.The controller designed ensures setpoint regulation for the energy and plasma parameter β with robustness against uncertainties in the confinement times for different species. Hence, the controller can increase or decrease β, modify the power, the temperature or the density, and go from a subignition to an ignition point and vice versa

  17. Activation product transport in fusion reactors

    International Nuclear Information System (INIS)

    Klein, A.C.

    1983-01-01

    Activated corrosion and neutron sputtering products will enter the coolant and/or tritium breeding material of fusion reactor power plants and experiments and cause personnel access problems. Radiation levels around plant components due to these products will cause difficulties with maintenance and repair operations throughout the plant. Similar problems are experienced around fission reactor systems. The determination of the transport of radioactive corrosion and neutron sputtering products through the system is achieved using the computer code RAPTOR. This code calculates the mass transfer of a number of activation products based on the corrosion and sputtering rates through the system, the deposition and release characteristics of various plant components, the neturon flux spectrum, as well as other plant parameters. RAPTOR assembles a system of first order linear differential equations into a matrix equation based upon the reactor system parameters. Included in the transfer matrix are the deposition and erosion coefficients, and the decay and activation data for the various plant nodes and radioactive isotopes. A source vector supplies the corrosion and neutron sputtering source rates. This matrix equation is then solved using a matrix operator technique to give the specific activity distribution of each radioactive species throughout the plant. Once the amount of mass transfer is determined, the photon transport due to the radioactive corrosion and sputtering product sources can be evaluated, and dose rates around the plant components of interest as a function of time can be determined. This method has been used to estimate the radiation hazards around a number of fusion reactor system designs

  18. D-3He fueled FRC reactor 'ARTEMIS-L'

    International Nuclear Information System (INIS)

    Momota, Hiromu; Tomita, Yukihiro; Ishida, Akio; Kohzaki, Yasuji; Nakao, Yasuyuki; Nishikawa, Masabumi; Ohi, Shoichi; Ohnishi, Masami.

    1992-09-01

    A neutron-lean D- 3 He fueled field reversed configuration (FRC) fusion reactor is studied on the bases of former high-efficiency ARTEMIS design. Certain improvements such as effective axial contracting plasma heating and cusp-type direct energy converters as well as an empirical scale of the energy confinement are introduced. The resultant total neutron load onto the first wall of the plasma chamber is as low as 0.1 MW/m 2 , which enable the life of the first wall or the structural materials to be longer than the whole life of the reactor. The attractive characteristics of the neutron-lean reactor follow in the ARTEMIS design: it is socially acceptable in views of radioactivity and fuel resources, and the cost of electricity appears to be cheap compared with that from a light water reactor. Critical physics and engineering issues for performing the ARTEMIS-L reactor are clarified. (author)

  19. Conceptual design study of fusion experimental reactor (FY86 FER)

    International Nuclear Information System (INIS)

    Seki, Yasushi; Iida, Hiromasa; Honda, Tsutomu.

    1987-08-01

    This report describes the study on safety for FER(Fusion Experimental Reactor) which has been designed as a next step machine to the JT-60. Though the final purpose of this study is to have an image of design base accident, maximum credible accident and to assess their risk or probability, etc., as FER plant system, the emphasis of this years study is placed on fuel-gas circulation system where the tritium inventory is maximum. This report consists of two chapters. The first chapter of this report summaries the FER system and describes FMEA(Failure Mode and Effect Analysis) and related accident progression sequence for FER plant system as a whole. The second chapter of this report is focused on fuel-gas circulation system including the purification, isotope separation system and storage system. Here, probability of risk is assessed by the probabilistic risk analysis (PRA) procedure based on FMEA, ETA and FTA. (author)

  20. Progress of fusion fuel processing system development at the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Nishi, Masataka; Yamanishi, Toshihiko; Kawamura, Yoshinori; Iwai, Yasunori; Isobe, Kanetsugu; O'Hira, Shigeru; Hayashi, Takumi; Nakamura, Hirofumi; Kobayashi, Kazuhiro; Suzuki, Takumi; Yamada, Masayuki; Konishi, Satoshi

    2000-01-01

    The Tritium Process Laboratory (TPL) at the Japan Atomic Energy Research Institute has been working on the development of fuel processing technology for fusion reactors as a major activity. A fusion fuel processing loop was installed and is being tested with tritium under reactor relevant conditions. The loop at the TPL consists of ZrCo based tritium storage beds, a plasma exhaust processing system using a palladium diffuser and an electrolytic reactor, cryogenic distillation columns for isotope separation, and analytical systems based on newly developed micro gas chromatographs and Raman Spectroscopy. Several extended demonstration campaigns were performed under realistic reactor conditions to test tritiated impurity processing. A sophisticated control technique of distillation column was performed at the same time, and integrated fuel circulation was successfully demonstrated. Major recent design work on the International Thermonuclear Experimental Reactor (ITER) tritium plant at the TPL is devoted to water detritiation based on liquid phase catalytic exchange for improved tritium removal from waste water

  1. Fuel assemblies for nuclear reactors

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1979-01-01

    In a nuclear fuel assembly, hollow guide posts protrude into a fuel assembly and fitting grill from a biased spring pad with a plunger that moves with the spring pad plugging one end of each of the guide posts. A plate on the end fitting grill that has a hole for fluid discharge partially plugs the other end of the guide post. Pressurized water coolant that fills the guide post volume acts as a shock absorber and should the reactor core receive a major seismic or other shock, the fuel assembly is compelled to move towards a pad depending from a transversely disposed support grid. The pad bears against the spring pad and the plunger progressively blocks the orifices provided by slots in the guide posts thus gradually absorbing the applied shock. After the orifice has been completely blocked, controlled fluid discharge continues through a hole coil spring cooperating in the attenuation of the shock. (author)

  2. Stationary Liquid Fuel Fast Reactor

    International Nuclear Information System (INIS)

    Yang, Won Sik; Grandy, Andrew; Boroski, Andrew; Krajtl, Lubomir; Johnson, Terry

    2015-01-01

    For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named SLFFR (Stationary Liquid Fuel Fast Reactor) was proposed based on stationary molten metallic fuel. The fuel enters the reactor vessel in a solid form, and then it is heated to molten temperature in a small melting heater. The fuel is contained within a closed, thick container with penetrating coolant channels, and thus it is not mixed with coolant nor flow through the primary heat transfer circuit. The makeup fuel is semi- continuously added to the system, and thus a very small excess reactivity is required. Gaseous fission products are also removed continuously, and a fraction of the fuel is periodically drawn off from the fuel container to a processing facility where non-gaseous mixed fission products and other impurities are removed and then the cleaned fuel is recycled into the fuel container. A reference core design and a preliminary plant system design of a 1000 MWt TRU- burning SLFFR concept were developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches were adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses were performed to develop a reference core design. Region-dependent 33-group cross sections were generated based on the ENDF/B-VII.0 data using the MC2-3 code. Core and fuel cycle analyses were performed in theta-r-z geometries using the DIF3D and REBUS-3 codes. Reactivity coefficients and kinetics parameters were calculated using the VARI3D perturbation theory code. Thermo-fluidic analyses were performed using the ANSYS FLUENT computational fluid dynamics (CFD) code. Figure 0.1 shows a schematic radial layout of the reference 1000 MWt SLFFR core, and Table 0.1 summarizes the main design parameters of SLFFR-1000 loop plant. The fuel container is a 2.5 cm thick cylinder with an inner radius of 87.5 cm. The fuel

  3. Stationary Liquid Fuel Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Won Sik [Purdue Univ., West Lafayette, IN (United States); Grandy, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Boroski, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Krajtl, Lubomir [Argonne National Lab. (ANL), Argonne, IL (United States); Johnson, Terry [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-30

    For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named SLFFR (Stationary Liquid Fuel Fast Reactor) was proposed based on stationary molten metallic fuel. The fuel enters the reactor vessel in a solid form, and then it is heated to molten temperature in a small melting heater. The fuel is contained within a closed, thick container with penetrating coolant channels, and thus it is not mixed with coolant nor flow through the primary heat transfer circuit. The makeup fuel is semi- continuously added to the system, and thus a very small excess reactivity is required. Gaseous fission products are also removed continuously, and a fraction of the fuel is periodically drawn off from the fuel container to a processing facility where non-gaseous mixed fission products and other impurities are removed and then the cleaned fuel is recycled into the fuel container. A reference core design and a preliminary plant system design of a 1000 MWt TRU- burning SLFFR concept were developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches were adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses were performed to develop a reference core design. Region-dependent 33-group cross sections were generated based on the ENDF/B-VII.0 data using the MC2-3 code. Core and fuel cycle analyses were performed in theta-r-z geometries using the DIF3D and REBUS-3 codes. Reactivity coefficients and kinetics parameters were calculated using the VARI3D perturbation theory code. Thermo-fluidic analyses were performed using the ANSYS FLUENT computational fluid dynamics (CFD) code. Figure 0.1 shows a schematic radial layout of the reference 1000 MWt SLFFR core, and Table 0.1 summarizes the main design parameters of SLFFR-1000 loop plant. The fuel container is a 2.5 cm thick cylinder with an inner radius of 87.5 cm. The fuel

  4. SOLASE conceptual laser fusion reactor study

    International Nuclear Information System (INIS)

    Moses, G.A.; Conn, R.W.; Abdel-Khalik, S.I.; Cooper, G.W.; Howard, J.; Magelssen, G.R.

    1978-01-01

    A conceptual laser fusion reactor for electric power, SOLASE, has been designed. The SOLASE design utilizes a 1 MJ, 6.7% efficient laser to implode 20 fusion targets per second. The target gain is 150 and produces a net electrical power of 1000 MW. The reactor cavity is spherical with a 6 m radius. The first wall is graphite and has a neutron wall loading of 5 MW/m 2 . It is protected from the target debris by low pressure xenon gas that is introduced into the cavity. The blanket structure is a honeycombed graphite composite. The tritium breeding and heat transport medium is Li 2 O in the form of pellets that flow through the blanket. The tritium breeding ration is 1.34. Temperature decoupling of the graphite structure and the Li 2 O coolant enables the structure to operate at temperatures that minimize radiation damage effects. The graphite blanket is replaced every year but exhibits low levels of radioactivity so that limited hands on maintenance is possible two weeks after shutdown, thus facilitating rapid replacement

  5. Pulse Star inertial confinement fusion reactor

    International Nuclear Information System (INIS)

    Blink, J.A.; Hogan, W.J.

    1985-01-01

    Pulse Star is a pool-type ICF reactor that emphasizes low cost and high safety levels. The reactor consists of a vacuum chamber (belljar) submerged in a compact liquid metal (Li 17 Pb 83 or lithium) pool which also contains the heat exchangers and liquid metal pumps. The shielding efficiency of the liquid metal pool is high enough to allow hands-on maintenance of (removed) pumps and heat exchangers. Liquid metal is allowed to spray through the 5.5 m radius belljar at a controlled rate, but is prohibited from the target region by a 4 m radius mesh first wall. The wetted first wall absorbs the fusion x-rays and debris while the spray region absorbs the fusion neutrons. The mesh allows vaporized liquid metal to blow through to the spray region where it can quickly cool and condense. Preliminary calculations show that a 2 m thick first wall could handle the mechanical (support, buckling, and x-ray-induced hoop) loads. Wetting and gas flow issues are in an initial investigation stage

  6. Towards diagnostics for a fusion reactor

    International Nuclear Information System (INIS)

    Costley, A. E.

    2009-01-01

    The requirements for measurements on modern tokamak fusion plasmas are outlined, and the techniques and systems used to make the measurements, usually referred to as 'diagnostics', are introduced. The basics of three particular diagnostics - magnetics, neutron systems and a laser based optical system - are outlined as examples of modern diagnostic systems, and the implementation of these diagnostics on a current tokamak (JET) are described. The next major step in magnetic confinement fusion is the construction and operation of the International Thermonuclear Experimental Reactor (ITER), which is a joint project of China, Europe, Japan, India, Korea, the Russian Federation, and the United States. Construction has begun in Cadarache, France. It is expected that ITER will operate at the 500 MW level. Because of the harsh environment in the vacuum vessel where many diagnostic components are located, the development of diagnostics for ITER is a major challenge - arguably the most difficult challenge ever undertaken in the field of diagnostics. The main elements in the diagnostic step are outlined using the three chosen techniques as examples. Finally, the step beyond ITER to a demonstration reactor, DEMO, that is expected to produce several GWs of fusion power is considered and the impact on diagnostics outlined. It is shown that the applicability and development steps needed for the individual diagnostics techniques will differ. The challenges for DEMO diagnostics are substantial and a dedicated effort should be made to find and develop new techniques, and especially techniques appropriate to the DEMO environment. It is argued that the limitations and difficulties in diagnostics should be a consideration in the optimization and designs of DEMO. (author)

  7. Fuel assemblies for use in nuclear reactors

    International Nuclear Information System (INIS)

    Schluderberg, D.C.

    1981-01-01

    A fuel assembly for use in pressurized water cooled nuclear fast breeder reactors is described in which moderator to fuel ratios, conducive to a high Pu-U-D 2 O reactor breeding ratio, are obtained whilst at the same time ensuring accurate spacing of fuel pins without the parasitic losses associated with the use of spacer grids. (U.K.)

  8. Aspects of the fast reactors fuel cycle

    International Nuclear Information System (INIS)

    Zouain, D.M.

    1982-06-01

    The fuel cycle for fast reactors, is analysed, regarding the technical aspects of the developing of the reprocessing stages and the fuel fabrication. The environmental impact of LMFBRs and the waste management of this cycle are studied. The economic aspects of the fuel cycle, are studied too. Some coments about the Brazilian fast reactors programs are done. (E.G.) [pt

  9. Advanced research reactor fuel development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Kyu; Pak, H. D.; Kim, K. H. [and others

    2000-05-01

    The fabrication technology of the U{sub 3}Si fuel dispersed in aluminum for the localization of HANARO driver fuel has been launches. The increase of production yield of LEU metal, the establishment of measurement method of homogeneity, and electron beam welding process were performed. Irradiation test under normal operation condition, had been carried out and any clues of the fuel assembly breakdown was not detected. The 2nd test fuel assembly has been irradiated at HANARO reactor since 17th June 1999. The quality assurance system has been re-established and the eddy current test technique has been developed. The irradiation test for U{sub 3}Si{sub 2} dispersed fuels at HANARO reactor has been carried out in order to compare the in-pile performance of between the two types of U{sub 3}Si{sub 2} fuels, prepared by both the atomization and comminution processes. KAERI has also conducted all safety-related works such as the design and the fabrication of irradiation rig, the analysis of irradiation behavior, thermal hydraulic characteristics, stress analysis for irradiation rig, and thermal analysis fuel plate, for the mini-plate prepared by international research cooperation being irradiated safely at HANARO. Pressure drop test, vibration test and endurance test were performed. The characterization on powders of U-(5.4 {approx} 10 wt%) Mo alloy depending on Mo content prepared by rotating disk centrifugal atomization process was carried out in order to investigate the phase stability of the atomized U-Mo alloy system. The {gamma}-U phase stability and the thermal compatibility of atomized U-16at.%Mo and U-14at.%Mo-2at.%X(: Ru, Os) dispersion fuel meats at an elevated temperature have been investigated. The volume increases of U-Mo compatibility specimens were almost the same as or smaller than those of U{sub 3}Si{sub 2}. However the atomized alloy fuel exhibited a better irradiation performance than the comminuted alloy. The RERTR-3 irradiation test of nano

  10. Safety and economic comparison of fusion fuel cycles

    International Nuclear Information System (INIS)

    Brereton, S.J.; Kazimi, M.S.

    1987-08-01

    The DT, DD and DHe fusion fuel cycles are compared on the basis of safety and economics. The designs for the comparison employ HT-9 structure and helium coolant; liquid lithium is used as the tritium breeder for the DT fuel cycle. The reactors are pulsed superconducting tokamaks, producing 4000 MW thermal power. The DT and DD designs are developed utilizing a plasma beta of 5%, 10% and 20%, assuming first stability scaling laws; a single value of 10% for beta is used for the DHe design. Modest extrapolations of current day technology are employed, providing a reference point for the relative ranking of the fuel cycles. Technological advances and improved understanding of the physics involved may alter the relative positions from what has been determined here. 92 figs., 59 tabs

  11. Neutronics issues in fusion-fission hybrid reactor design

    International Nuclear Information System (INIS)

    Liu Chengan

    1995-01-01

    The coupled neutron and γ-ray transport equations and nuclear number density equations, and its computer program systems concerned in fusion-fission hybrid reactor design are briefly described. The current status and focal point for coming work of nuclear data used in fusion reactor design are explained

  12. Hydrogen production from high temperature electrolysis and fusion reactor

    International Nuclear Information System (INIS)

    Dang, V.D.; Steinberg, J.F.; Issacs, H.S.; Lazareth, O.; Powell, J.R.; Salzano, F.J.

    1978-01-01

    Production of hydrogen from high temperature electrolysis of steam coupled with a fusion reactor is studied. The process includes three major components: the fusion reactor, the high temperature electrolyzer and the power conversion cycle each of which is discussed in the paper. Detailed process design and analysis of the system is examined. A parametric study on the effect of process efficiency is presented

  13. Graphs of neutron cross section data for fusion reactor development

    International Nuclear Information System (INIS)

    Asami, Tetsuo; Tanaka, Shigeya

    1979-03-01

    Graphs of neutron cross section data relevant to fusion reactor development are presented. Nuclides and reaction types in the present compilation are based on a WRENDA request list from Japan for fusion reactor development. The compilation contains various partial cross sections for 55 nuclides from 6 Li to 237 Np in the energy range up to 20 MeV. (author)

  14. Improved inherent safety in liquid fuel reactors

    International Nuclear Information System (INIS)

    Taube, M.

    1982-01-01

    The molten salt reactor system divided into core (thermal and fast) and breeding zone (fission breeder reactor, fusion hybrid system, accelerator-spallation system) has some unique inherent safety properties: a) reduced inventory of fission products during normal operation due to on-line chemical reprocessing and in-core gas purging; b) fast removal of freshly bred fissile nuclides and fission products from the breeding zone (the so called suppressed fission system); c) pressureless fuel and primary coolant system; d) elimination of the possibility of a violent exoenergetic chemical reaction with air, water or metals; e) elimination of the possibility of gaseous hydrogen production during an accident; f) provides a non-engineered feature of dumping of fuel from the core and heat exchanger to a safe drain tank; g) presence of a large heat sink in the form of an inactive diluent salt; h) possibility of natural convection heat removal during an accident and even normal operation (by means of gas lifting); i) dissipation of the remaining decayheat by spraying water on the containment from outside, which allows to manage the worst accident; i) Even in the case of the destruction in the war by conventional or nuclear weapon the contaminated land is significantly reduced. The world-wide present activity in the field of molten salt technology is reviewed. (orig.)

  15. Canadian Fusion Fuels Technology Project annual report 93/94

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Canadian Fusion Fuels Technology Project exists to develop fusion technologies and apply them worldwide in today`s advanced fusion projects and to apply these technologies in fusion and tritium research facilities. CFFTP concentrates on developing capability in fusion fuel cycle systems, in tritium handling technologies and in remote handling. This is an annual report for CFFTP and as such also includes a financial report.

  16. Fuel assembly for FBR type reactor and reactor core thereof

    International Nuclear Information System (INIS)

    Kobayashi, Kaoru.

    1998-01-01

    The present invention provides a fuel assembly to be loaded to a reactor core of a large sized FBR type reactor, in which a coolant density coefficient can be reduced without causing power peaking in the peripheral region of neutron moderators loaded in the reactor core. Namely, the fuel assembly for the FBR type reactor comprises a plurality of fission product-loaded fuel rods and a plurality of fertile material-loaded fuel rods and one or more rods loading neutron moderators. In this case, the plurality of fertile material-loaded fuel rods are disposed to the peripheral region of the neutron moderator-loaded rods. The plurality of fission product-loaded fuel rods are disposed surrounding the peripheral region of the plurality of fertile material-loaded fuel rods. The neutron moderator comprises zirconium hydride, yttrium hydride and calcium hydride. The fission products are mixed oxide fuels. The fertile material comprises depleted uranium or natural uranium. (I.S.)

  17. Use of nuclear fusion systems for spent nuclear fuel degradation

    International Nuclear Information System (INIS)

    Nieto, M.; Ramos, G.; Herrera V, J. J. E.

    2009-10-01

    One of the severe problems of the nuclear industry that should be resolved to facilitate its acceptance like viable energy alternative is of the wastes. In spite of having alternative of fuel reprocessing, many of them have been abandoned by economic or security reasons. In the present work, the alternative is described for using reactors of nuclear fusion as sources of fast neutrons with two important applications in mind: the plutonium burning and the transmutation of the elements that contribute in way more important to their radioactivity, mainly the smaller actinides and the fission products of long half life. (Author)

  18. Water Reactor Fuel Performance Meeting 2008

    International Nuclear Information System (INIS)

    2008-10-01

    This meeting contains articles of the Water Reactor Fuel Performance Meeting 2008 of Korean Nuclear Society, Atomic Energy Society of Japan, Chinese Nuclear Society, European Nuclear Society and American Nuclear Society. It was held on Oct. 19-23, 2008 in Seoul, Korea and subject of Meeting is 'New Clear' Fuel - A green energy solution. This proceedings is comprised of 5 tracks. The main topic titles of track are as follows: Advances in water reactor fuel technology, Fuel performance and operational experience, Transient fuel behavior and safety-related issues, Fuel cycle, spent fuel storage and transportations and Fuel modeling and analysis. (Yi, J. H.)

  19. The ARIES tokamak fusion reactor study

    International Nuclear Information System (INIS)

    Bartlit, J.R.; Bathke, C.G.; Krakowski, R.A.; Miller, R.L.; Beecraft, W.R.; Hogan, J.T.; Peng, Y.K.M.; Reid, R.L.; Strickler, D.J.; Whitson, J.C.; Blanchard, J.P.; Emmert, G.A.; Santarius, J.F.; Sviatoslavsky, I.N.; Wittenberg, L.J.

    1989-01-01

    The ARIES study is a community effort to develop several visions of the tokamak as fusion power reactors. The aims are to determine their potential economics, safety, and environmental features and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Three ARIES visions are planned, each having a different degree of extrapolation from the present data base in physics and technology. The ARIES-I design assumes a minimum extrapolation from current tokamak physics (e.g., 1st stability) and incorporates technological advances that can be available in the next 20 to 30 years. ARIES-II is a DT-burning tokamak in 2nd stability regime and employs both potential advances in the physics and expected advances in technology and engineering; and ARIES-III is a conceptual D 3 He reactor. This paper focuses on the ARIES-I design. Parametric systems studies show that the optimum 1st stability tokamak has relatively low plasma current (∼ 12 MA), high plasma aspect ratio (∼ 4-6), and high magnetic field (∼ 24 T at the coil). ARIES-I is 1,000 MWe (net) reactor with a plasma major radius of 6.5 m, a minor radius of 1.4 m, a neutron wall loading of about 2.8 MW/m 2 , and a mass power density of about 90 kWe/ton. The ARIES-I reactor operates at steady state using ICRF fast waves to drive current in the plasma core and lower-hybrid waves for edge-plasma current drive. The current-drive system supplements a significant (∼ 57%) bootstrap current contribution. The impurity control system is based on high-recycling poloidal divertors. Because of the high field and large Lorentz forces in the toroidal-field magnets, innovative approaches with high-strength materials and support structures are used. 24 refs., 4 figs., 1 tab

  20. The need and prospects for improved fusion reactors

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Hagenson, R.L.; Miller, R.L.

    1986-01-01

    Conceptual fusion reactor studies over the past 10-15 yr have projected systems that may be too large, complex, and costly to be of commercial interest. One main direction for improved fusion reactors points toward smaller, higher-power-density approaches. First-order economic issues (i.e., unit direct cost and cost of electricity) are used to support the need for more compact fusion reactors. The results of a number of recent conceptual designs of reversed-field pinch, spheromak, and tokamak fusion reactors are summarized as examples of more compact approaches. While a focus has been placed on increasing the fusion-power-core mass power density beyond the minimum economic threshold of 100-200 kWe/tonne, other means by which the overall attractiveness of fusion as a long-term energy source are also addressed

  1. The fusion reactor - a chance to solve the energy problem

    International Nuclear Information System (INIS)

    Wienecke, R.

    1975-01-01

    The work deals with the physical fundamentals of nuclear fusion and the properties of the necessary plasma and gives a survey on the arrangements used today for magnetic confinement such as tokamak, stellarator, high-beta experiments and laser fusion. Finally, the technology of the fusion reactor and its potential advantages are explained. (RW/LH) [de

  2. Asymptotic estimation of reactor fueling optimal strategy

    International Nuclear Information System (INIS)

    Simonov, V.D.

    1985-01-01

    The problem of improving the technical-economic factors of operating. and designed nuclear power plant blocks by developino. internal fuel cycle strategy (reactor fueling regime optimization), taking into account energy system structural peculiarities altogether, is considered. It is shown, that in search of asymptotic solutions of reactor fueling planning tasks the model of fuel energy potential (FEP) is the most ssuitable and effective. FEP represents energy which may be produced from the fuel in a reactor with real dimensions and power, but with hypothetical fresh fuel supply, regime, providing smilar burnup of all the fuel, passing through the reactor, and continuous overloading of infinitely small fuel portion under fule power, and infinitely rapid mixing of fuel in the reactor core volume. Reactor fuel run with such a standard fuel cycle may serve as FEP quantitative measure. Assessment results of optimal WWER-440 reactor fresh fuel supply periodicity are given as an example. The conclusion is drawn that with fuel enrichment x=3.3% the run which is 300 days, is economically justified, taking into account that the cost of one energy unit production is > 3 cop/KW/h

  3. Roles of plasma neutron source reactor in development of fusion reactor engineering: Comparison with fission reactor engineering

    International Nuclear Information System (INIS)

    Hirayama, Shoichi; Kawabe, Takaya

    1995-01-01

    The history of development of fusion power reactor has come to a turning point, where the main research target is now shifting from the plasma heating and confinement physics toward the burning plasma physics and reactor engineering. Although the development of fusion reactor system is the first time for human beings, engineers have experience of development of fission power reactor. The common feature between them is that both are plants used for the generation of nuclear reactions for the production of energy, nucleon, and radiation on an industrial scale. By studying the history of the development of the fission reactor, one can find the existence of experimental neutron reactors including irradiation facilities for fission reactor materials. These research neutron reactors played very important roles in the development of fission power reactors. When one considers the strategy of development of fusion power reactors from the points of fusion reactor engineering, one finds that the fusion neutron source corresponds to the neutron reactor in fission reactor development. In this paper, the authors discuss the roles of the plasma-based neutron source reactors in the development of fusion reactor engineering, by comparing it with the neutron reactors in the history of fission power development, and make proposals for the strategy of the fusion reactor development. 21 refs., 6 figs

  4. Economic evaluation of fast reactor fuel cycling

    International Nuclear Information System (INIS)

    Hu Ping; Zhao Fuyu; Yan Zhou; Li Chong

    2012-01-01

    Economic calculation and analysis of two kinds of nuclear fuel cycle are conducted by check off method, based on the nuclear fuel cycling process and model for fast reactor power plant, and comparison is carried out for the economy of fast reactor fuel cycle and PWR once-through fuel cycle. Calculated based on the current price level, the economy of PWR one-through fuel cycle is better than that of the fast reactor fuel cycle. However, in the long term considering the rising of the natural uranium's price and the development of the post treatment technology for nuclear fuels, the cost of the fast reactor fuel cycle is expected to match or lower than that of the PWR once-through fuel cycle. (authors)

  5. Fusion reactor design and technology 1986. V. 1

    International Nuclear Information System (INIS)

    1987-01-01

    The first volume of the Proceedings of the Fourth Technical Committee Meeting and Workshop on Fusion Reactor Design and Technology organized by the IAEA (Yalta, 26 May - 6 June 1986) includes 36 papers devoted to the following topics: fusion programmes (3 papers), tokamaks (15 papers), non-tokamak reactors and open systems (9 papers), inertial confinement concepts (5 papers), fission-fusion hybrids (4 papers). Each of these papers has a separate abstract. Refs, figs and tabs

  6. Past, present and future of the fusion reactors

    International Nuclear Information System (INIS)

    Rosenbaum P, M.

    1992-01-01

    Among the alternate technologies that have acquired a special interest in the present decade, we find the nuclear fusion. Within this, the fusion reactors by magnetic confinement of the Tokamak type have shown an increasing technological progress during this period. For this reason, a new strategy, coordinated at international level, has been implemented for the specific development of the nuclear fusion reactors, aimed to face those scientific and technological aspects which still remain, and which will determine their future economic feasibility. (Author)

  7. Fuels for Canadian research reactors

    International Nuclear Information System (INIS)

    Feraday, M.A.

    1993-01-01

    For a period of about 10 years AECL had a significant program looking into the possibility of developing U 3 Si as a high density replacement for the UO 2 pellet fuel in use in CANDU power reactors. The element design consisted of a Zircaloy-clad U 3 Si rod containing suitable voidage to accommodate swelling. We found that the binary U 3 Si could not meet the defect criterion for our power reactors, i.e., one month in 300 degree C water with a defect in the sheath and no significant damage to the element. Since U 3 Si could not do the job, a new corrosion resistant ternary U-Si-Al alloy was developed and patented. Fuel elements containing this alloy came close to meeting the defect criterion and showed slightly better irradiation stability than U 3 Si. Shortly after this, the program was terminated for other reasons. We have made much of this experience available to the Low Enrichment Fuel Development Program and will be glad to supply further data to assist this program

  8. Fast reactors fuel Cycle: State in Europe

    International Nuclear Information System (INIS)

    1991-01-01

    In this SFEN day we treat all aspects (economics-reactor cores, reprocessing, experience return) of the LMFBR fuel cycle in Europe and we discuss about the development of this type of reactor (EFR project) [fr

  9. Fusion-fission hybrid as an alternative to the fast breeder reactor

    International Nuclear Information System (INIS)

    Barrett, R.J.; Hardie, R.W.

    1980-09-01

    This report compares the fusion-fission hybrid on the plutonium cycle with the classical fast breeder reactor (FBR) cycle as a long-term nuclear energy source. For the purpose of comparison, the current light-water reactor once-through (LWR-OT) cycle was also analyzed. The methods and models used in this study were developed for use in a comparative analysis of conventional nuclear fuel cycles. Assessment areas considered in this study include economics, energy balance, proliferation resistance, technological status, public safety, and commercial viability. In every case the characteristics of all fuel cycle facilities were accounted for, rather than just those of the reactor

  10. Fast reactor fuel design and development

    International Nuclear Information System (INIS)

    Bishop, J.F.W.; Chamberlain, A.; Holmes, J.A.G.

    1977-01-01

    Fuel design parameters for oxide and carbide fast reactor fuels are reviewed in the context of minimising the total uranium demands for a combined thermal and fast reactor system. The major physical phenomena conditioning fast reactor fuel design, with a target of high burn-up, good breeding and reliable operation, are characterised. These include neutron induced void swelling, irradiation creep, pin failure modes, sub-assembly structural behaviour, behaviour of defect fuel, behaviour of alternative fuel forms. The salient considerations in the commercial scale fabrication and reprocessing of the fuels are reviewed, leading to the delineation of possible routes for the manufacture and reprocessing of Commercial Reactor fuel. From the desiderata and restraints arising from Surveys, Performance and Manufacture, the problems posed to the Designer are considered, and a narrow range of design alternatives is proposed. The paper concludes with a consideration of the development areas and the conceptual problems for fast reactors associated with those areas

  11. Conceptual design of a fusion-fission hybrid reactor for transmutation of high level nuclear waste

    International Nuclear Information System (INIS)

    Qiu, L.J.; Wu, Y.C.; Yang, Y.W.; Wu, Y.; Luan, G.S.; Xu, Q.; Guo, Z.J.; Xiao, B.J.

    1994-01-01

    To assess the feasibility of the transmutation of long-lived radioactive waste using fusion-fission hybrid reactors, we are studying all the possible types of blanket, including a comparison of the thermal and fast neutron spectrum blankets. Conceptual designs of a small tokamak hybrid blanket with small inventory of actinides and fission products are presented. The small inventory of wastes makes the system safer. The small hybrid reactor system based on a fusion core with experimental parameters to be realized in the near future can effectively transmute actinides and fission products at a neutron wall loading of 1MWm -2 . An innovative energy system is also presented, including a fusion driver, fuel breeder, high level waste transmuter, fission reactor and so on. An optimal combination of all types of reactor is proposed in the system. ((orig.))

  12. Safety and Environment aspects of Tokamak- type Fusion Power Reactor- An Overview

    Science.gov (United States)

    Doshi, Bharat; Reddy, D. Chenna

    2017-04-01

    Naturally occurring thermonuclear fusion reaction (of light atoms to form a heavier nucleus) in the sun and every star in the universe, releases incredible amounts of energy. Demonstrating the controlled and sustained reaction of deuterium-tritium plasma should enable the development of fusion as an energy source here on Earth. The promising fusion power reactors could be operated on the deuterium-tritium fuel cycle with fuel self-sufficiency. The potential impact of fusion power on the environment and the possible risks associated with operating large-scale fusion power plants is being studied by different countries. The results show that fusion can be a very safe and sustainable energy source. A fusion power plant possesses not only intrinsic advantages with respect to safety compared to other sources of energy, but also a negligible long term impact on the environment provided certain precautions are taken in its design. One of the important considerations is in the selection of low activation structural materials for reactor vessel. Selection of the materials for first wall and breeding blanket components is also important from safety issues. It is possible to fully benefit from the advantages of fusion energy if safety and environmental concerns are taken into account when considering the conceptual studies of a reactor design. The significant safety hazards are due to the tritium inventory and energetic neutron fluence induced activity in the reactor vessel, first wall components, blanket system etc. The potential of release of radioactivity under operational and accident conditions needs attention while designing the fusion reactor. Appropriate safety analysis for the quantification of the risk shall be done following different methods such as FFMEA (Functional Failure Modes and Effects Analysis) and HAZOP (Hazards and operability). Level of safety and safety classification such as nuclear safety and non-nuclear safety is very important for the FPR (Fusion

  13. Fusion neutronics plan in the development of fusion reactor. With the aim of realizing electric power

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hiroo; Morimoto, Yuichi; Ochiai, Kentarou; Sugimoto, Masayoshi; Nishitani, Takeo; Takeuchi, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-10-01

    On June 1992, Atomic Energy Commission in Japan has settled Third Phase Program of Fusion Research and Development to achieve self-ignition condition, to realize long pulse burning plasma and to establish basis of fusion engineering for demonstration reactor. This report describes research plan of Fusion Neutron Laboratory in JAERI toward a development of fusion reactor with an aim of realizing electric power. The fusion neutron laboratory has a fusion neutronics facility (FNS), intense fusion neutron source. The plan includes research items in the FNS; characteristics of shielding and breeding materials, nuclear characteristics of materials, fundamental irradiation process of insulator, diagnostics materials and structural materials, and development of in-vessel diagnostic technology. Upgrade of the FNS is also described. Also, the International Fusion Material Irradiation Facility (IFMIF) for intense neutron source to develop fusion materials is described. (author)

  14. Process and device for decontamination of the waste gas of the fuel circuit of a fusion reactor from tritium and/or deuterium in waste gas containing them in chemically bound form

    International Nuclear Information System (INIS)

    Penzhorn, R.D.; Glugla, M.

    1987-01-01

    The invention concerns a process and a device for the decontamination of the wate gases of the fuel circuit of a fusion reactor from tritum and/or deuterium in waste gas containing them in chemically bound form, in which the waste gas is taken over an oxidation catalyst and then over a hot metal bed, tritium and/or deuterium is released from its compounds, separated from the waste gas and is returned to the fuel circuit. The process is intended to prevent losses of tritum and/or deuterium by permeation and the high loading of the hot metal getter materials, as occurs in the previously known corresponding process, and to avoid the formation of nitrogen oxides. This is achieved by: a) The catalytic oxidation reaction being carried out at a temperature of 200 0 C to 300 0 C. b) The gas mixture then being brought into contact with a hot metal bed at 200 0 C to 300 0 C to remove the remaining O 2 and for the selective conversion of the proportion of water into the hydrogen isotope. c) The gas mixture being brought into contact with a diaphragm made of palladium or a palladium-silver alloy at 400 0 C to 450 0 C to decompose the ammonia, all the released hydrogen isotope being passed through the diaphragm, separated from the remaining waste gas flow and removed. (orig.) [de

  15. The Canadian research reactor spent fuel situation

    International Nuclear Information System (INIS)

    Ernst, P.C.

    1996-01-01

    This paper summarizes the present research reactor spent fuel situation in Canada. The research reactors currently operating are listed along with the types of fuel that they utilize. Other shut down research reactors contributing to the storage volume are included for completeness. The spent fuel storage facilities associated with these reactors and the methods used to determine criticality safety are described. Finally the current inventory of spent fuel and where it is stored is presented along with concerns for future storage. (author). 3 figs

  16. Space reactor fuels performance and development issues

    International Nuclear Information System (INIS)

    Wewerka, E.M.

    1984-01-01

    Three compact reactor concepts are now under consideration by the US Space Nuclear Power Program (the SP-100 Program) as candidates for the first 100-kWe-class space reactor. Each of these reactor designs puts unique constraints and requirements on the fuels system, and raises issues of fuel systems feasibility and performance. This paper presents a brief overview of the fuel requirements for the proposed space reactor designs, a delineation of the technical feasibility issues that each raises, and a description of the fuel systems development and testing program that has been established to address key technical issues

  17. Material test reactor fuel research at the BR2 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dyck, Steven Van; Koonen, Edgar; Berghe, Sven van den [Institute for Nuclear Materials Science, SCK-CEN, Boeretang, Mol (Belgium)

    2012-03-15

    The construction of new, high performance material test reactor or the conversion of such reactors' core from high enriched uranium (HEU) to low enriched uranium (LEU) based fuel requires several fuel qualification steps. For the conversion of high performance reactors, high density dispersion or monolithic fuel types are being developed. The Uranium-Molybdenum fuel system has been selected as reference system for the qualification of LEU fuels. For reactors with lower performance characteristics, or as medium enriched fuel for high performance reactors, uranium silicide dispersion fuel is applied. However, on the longer term, the U-Mo based fuel types may offer a more efficient fuel alternative and-or an easier back-end solution with respect to the silicide based fuels. At the BR2 reactor of the Belgian nuclear research center, SCK-CEN in Mol, several types of fuel testing opportunities are present to contribute to such qualification process. A generic validation test for a selected fuel system is the irradiation of flat plates with representative dimensions for a fuel element. By flexible positioning and core loading, bounding irradiation conditions for fuel elements can be performed in a standard device in the BR2. For fuel element designs with curved plates, the element fabrication method compatibility of the fuel type can be addressed by incorporating a set of prototype fuel plates in a mixed driver fuel element of the BR2 reactor. These generic types of tests are performed directly in the primary coolant flow conditions of the BR2 reactor. The experiment control and interpretation is supported by detailed neutronic and thermal-hydraulic modeling of the experiments. Finally, the BR2 reactor offers the flexibility for irradiation of full size prototype fuel elements, as 200mm diameter irradiation channels are available. These channels allow the accommodation of various types of prototype fuel elements, eventually using a dedicated cooling loop to provide the

  18. Fuel handling system of nuclear reactor plants

    International Nuclear Information System (INIS)

    Faulstich, D.L.

    1991-01-01

    This patent describes a fuel handing system for nuclear reactor plants comprising a reactor vessel having an openable top and removable cover for refueling and containing therein, submerged in coolant water substantially filling the reactor vessel, a fuel core including a multiplicity of fuel bundles formed of groups of sealed tube elements enclosing fissionable fuel assembled into units. It comprises a fuel bundle handing platform moveable over the open top of the reactor vessel; a fuel bundle handing mast extendable downward from the platform with a lower end projecting into the open top reactor vessel to the fuel core submerged in water; a grapple head mounted on the lower end of the mast provided with grappling hook means for attaching to and transporting fuel bundles into and out from the fuel core; and a camera with a prismatic viewing head surrounded by a radioactive resisting quartz cylinder and enclosed within the grapple head which is provided with at least three windows with at least two windows provided with an angled surface for aiming the camera prismatic viewing head in different directions and thereby viewing the fuel bundles of the fuel core from different perspectives, and having a cable connecting the camera with a viewing monitor located above the reactor vessel for observing the fuel bundles of the fuel core and for enabling aiming of the camera prismatic viewing head through the windows by an operator

  19. Tritium Aspects of Fueling and Exhaust Pumping in Magnetic Fusion Energy

    Energy Technology Data Exchange (ETDEWEB)

    Baylor, Larry R. [ORNL; Meitner, Steven J. [ORNL

    2017-04-01

    Magnetically confined fusion plasmas generate energy from deuterium-tritium (DT) fusion reactions that produce energetic 3.5 MeV alpha particles and 14 MeV neutrons. Since the DT fusion reaction rate is a strong function of plasma density, an efficient fueling source is needed to maintain high plasma density in such systems. Energetic ions in fusion plasmas are able to escape the confining magnetic fields at a much higher rate than the fusion reactions occur, thus dictating the fueling rate needed. These lost ions become neutralized and need to be pumped away as exhaust gas to be reinjected into the plasma as fuel atoms.The technology to fuel and pump fusion plasmas has to be inherently compatible with the tritium fuel. An ideal holistic solution would couple the pumping and fueling such that the pump exhaust is directly fed back into pellet formation without including impurity gases. This would greatly reduce the processing needs for the exhaust. Concepts to accomplish this are discussed along with the fueling and pumping needs for a DT fusion reactor.

  20. Decommissioning the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Walton, G.R.

    1993-01-01

    The Tokamak Fusion Test Reactor (TFTR) at Princeton Plasma Physics Laboratory (PPPL) will complete its experimental lifetime with a series of deuterium-tritium pulses in 1994. As a result, the machine structures will become radioactive, and vacuum components will also be contaminated with tritium. Dose rate levels will range from less than 1 mr/h for external structures to hundreds of mr/h for the vacuum vessel. Hence, decommissioning operations will range from hands on activities to the use of remotely operated equipment. After 21 months of cool down, decontamination and decommissioning (D and D) operations will commence and continue for approximately 15 months. The primary objective is to render the test cell complex re-usable for the next machine, the Tokamak Physics Experiment (TPX). This paper presents an overview of decommissioning TFTR and discusses the D and D objectives

  1. Storage device of reactor fuel

    International Nuclear Information System (INIS)

    Nakamura, Masaaki.

    1997-01-01

    The present invention concerns storage of spent fuels and provides a storage device capable of securing container-cells in shielding water by remote handling and moving and securing the container-cells easily. Namely, a horizontal support plate has a plurality of openings formed in a lattice like form and is disposed in a pit filled with water. The container-cell has a rectangular cross section, and is inserted and disposed vertically in the openings. Securing members are put between the container-cells above the horizontal support plate, and constituted so as to be expandable from above by remote handling. The securing member is preferably comprised of a vertical screw member and an expandable urging member. Since securing members for securing the container-cells for incorporating reactor fuels are disposed to the horizontal support plate controllable from above by the remote handling, fuel storage device can be disposed without entering into a radiation atmosphere. The container-cells can be settled and exchanged easily after starting of the use of a fuel pit. (I.S.)

  2. Fuel assembly for a nuclear reactor

    International Nuclear Information System (INIS)

    Gjertsen, R.K.; Tower, S.N.; Huckestein, E.A.

    1982-01-01

    A fuel assembly for a nuclear reactor comprises a 5x5 array of guide tubes in a generally 20x20 array of fuel elements, the guide tubes being arranged to accommodate either control rods or water displacer rods. The fuel assembly has top and bottom Inconel (Registered Trade Mark) grids and intermediate Zircaloy grids in engagement with the guide tubes and supporting the fuel elements and guide tubes while allowing flow of reactor coolant through the assembly. (author)

  3. Early fusion reactor neutronic calculations: A reevaluation

    International Nuclear Information System (INIS)

    Perry, R.T.

    1996-01-01

    Several fusion power plant design studies were made at a number of universities and laboratories in the late 1960s and early 1970s. These studies included such designs as the Princeton Plasma Physics Laboratory Fusion Power Plan and the University of Wisconsin UWMAK-I Reactor Neutronic analyses of the blankets and shields were part of the studies. During this time there were dissertations written on neutronic analysis systems and the results of neutronic analysis on several blanket and shield designs. The results were presented in the literature. Now in the fifth decade of fusion research, investigators often return to the earlier analyses for the neutronic results that are applicable to current blanket and shield designs, with the idea of using the older work as a basis for the new. However, the analyses of the past were made with cross-section data sets that have long been replaced with more modern versions. In addition, approximations were often made to the cross sections used because more exact data were not available. Because these results are used as guides, it is important to know if they are reproducible using more modern data. In this paper, several of the neutronic calculations made in the early studies are repeated using the MATXS-11 data library. This library is the ENDF/B-VI version of the MATXS-5 library. The library has 80 neutron groups. Tritium breeding ratios, heating rates, and fluxes are calculated and compared. This transport code used here is the one- dimensional S n code, ONEDANT. It is important to note that the calculations here are not to be considered as benchmarks because parameter and sensitivity studies were not made. They are used only to see if the results of older calculations are in reasonable agreement with a more modern library

  4. Introduction to Nuclear Fusion Power and the Design of Fusion Reactors. An Issue-Oriented Module.

    Science.gov (United States)

    Fillo, J. A.

    This three-part module focuses on the principles of nuclear fusion and on the likely nature and components of a controlled-fusion power reactor. The physical conditions for a net energy release from fusion and two approaches (magnetic and inertial confinement) which are being developed to achieve this goal are described. Safety issues associated…

  5. Fusion reactor design studies: standard accounts for cost estimates

    International Nuclear Information System (INIS)

    Schulte, S.C.; Willke, T.L.; Young, J.R.

    1978-05-01

    The fusion reactor design studies--standard accounts for cost estimates provides a common format from which to assess the economic character of magnetically confined fusion reactor design concepts. The format will aid designers in the preparation of design concept costs estimates and also provide policymakers with a tool to assist in appraising which design concept may be economically promising. The format sets forth a categorization and accounting procedure to be used when estimating fusion reactor busbar energy cost that can be easily and consistently applied. Reasons for developing the procedure, explanations of the procedure, justifications for assumptions made in the procedure, and the applicability of the procedure are described in this document. Adherence to the format when evaluating prospective fusion reactor design concepts will result in the identification of the more promising design concepts thus enabling the fusion power alternatives with better economic potential to be quickly and efficiently developed

  6. Future fuel cycle development for CANDU reactors

    International Nuclear Information System (INIS)

    Hatcher, S.R.; McDonnell, F.N.; Griffiths, J.; Boczar, P.G.

    1987-01-01

    The CANDU reactor has proven to be safe and economical and has demonstrated outstanding performance with natural uranium fuel. The use of on-power fuelling, coupled with excellent neutron economy, leads to a very flexible reactor system with can utilize a wide variety of fuels. The spectrum of fuel cycles ranges from natural uranium, through slightly enriched uranium, to plutonium and ultimately thorium fuels which offer many of the advantages of the fast breeder reactor system. CANDU can also burn the recycled uranium and/or the plutonium from fuel discharged from light water reactors. This synergistic relationship could obviate the need to re-enrich the reprocessed uranium and allow a simpler reprocessing scheme. Fule management strategies that will permit future fuel cycles to be used in existing CANDU reactors have been identified. Evolutionary design changes will lead to an even greater flexibility, which will guarantee the continued success of the CANDU system. (author)

  7. Physical Investigation for Neutron Consumption and Multiplication in Blanket Module of Fusion-Fission Hybrid Reactor

    International Nuclear Information System (INIS)

    Tariq Siddique, M.; Kim, Myung Hyun

    2014-01-01

    Fusion-fission hybrid reactor can be the first milestone of fusion technology and achievable in near future. It can provide operational experience for tritium recycling for pure fusion reactor and be used for incineration of high-level long-lived waste isotopes from existing fission power reactors. Hybrid reactor for waste transmutation (Hyb-WT) was designed and optimized to assess its otential for waste transmutation. ITER will be the first large scaled experimental tokamak facility for the testing of test blanket modules (TBM) which will layout the foundation for DEMO fusion power plants. Similarly hybrid test blanket module (HTBM) will be the foundation for rationality of fusion fission hybrid reactors. Designing and testing of hybrid blankets will lead to another prospect of nuclear technology. This study is initiated with a preliminary design concept of a hybrid test blanket module (HTBM) which would be tested in ITER. The neutrons generated in D-T fusion plasma are of high energy, 14.1 MeV which could be multiplied significantly through inelastic scattering along with fission in HTBM. In current study the detailed neutronic analysis is performed for the blanket module which involves the neutron growth and loss distribution within blanket module with the choice of different fuel and coolant materials. TRU transmutation and tritium breeding performance of HTBM is analyzed under ITER irradiation environment for five different fuel types and with Li and LiPb coolants. Simple box geometry with plate type TRU fuel is adopted so that it can be modelled with heterogeneous material geometry in MCNPX. Waste transmutation ratio (WTR) of TRUs and tritium breeding ration (TBR) is computed to quantify the HTBM performance. Neutron balance is computed in detail to analyze the performance parameters of HTBM. Neutron spectrum and fission to capture ratio in TRU fuel types is also calculated for detailed analysis of HTBM

  8. Physical Investigation for Neutron Consumption and Multiplication in Blanket Module of Fusion-Fission Hybrid Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tariq Siddique, M.; Kim, Myung Hyun [Kyung Hee Univ., Yongin (Korea, Republic of)

    2014-05-15

    Fusion-fission hybrid reactor can be the first milestone of fusion technology and achievable in near future. It can provide operational experience for tritium recycling for pure fusion reactor and be used for incineration of high-level long-lived waste isotopes from existing fission power reactors. Hybrid reactor for waste transmutation (Hyb-WT) was designed and optimized to assess its otential for waste transmutation. ITER will be the first large scaled experimental tokamak facility for the testing of test blanket modules (TBM) which will layout the foundation for DEMO fusion power plants. Similarly hybrid test blanket module (HTBM) will be the foundation for rationality of fusion fission hybrid reactors. Designing and testing of hybrid blankets will lead to another prospect of nuclear technology. This study is initiated with a preliminary design concept of a hybrid test blanket module (HTBM) which would be tested in ITER. The neutrons generated in D-T fusion plasma are of high energy, 14.1 MeV which could be multiplied significantly through inelastic scattering along with fission in HTBM. In current study the detailed neutronic analysis is performed for the blanket module which involves the neutron growth and loss distribution within blanket module with the choice of different fuel and coolant materials. TRU transmutation and tritium breeding performance of HTBM is analyzed under ITER irradiation environment for five different fuel types and with Li and LiPb coolants. Simple box geometry with plate type TRU fuel is adopted so that it can be modelled with heterogeneous material geometry in MCNPX. Waste transmutation ratio (WTR) of TRUs and tritium breeding ration (TBR) is computed to quantify the HTBM performance. Neutron balance is computed in detail to analyze the performance parameters of HTBM. Neutron spectrum and fission to capture ratio in TRU fuel types is also calculated for detailed analysis of HTBM.

  9. Fuel and fuel cycles with high burnup for WWER reactors

    International Nuclear Information System (INIS)

    Chernushev, V.; Sokolov, F.

    2002-01-01

    The paper discusses the status and trends in development of nuclear fuel and fuel cycles for WWER reactors. Parameters and main stages of implementation of new fuel cycles will be presented. At present, these new fuel cycles are offered to NPPs. Development of new fuel and fuel cycles based on the following principles: profiling fuel enrichment in a cross section of fuel assemblies; increase of average fuel enrichment in fuel assemblies; use of refuelling schemes with lower neutron leakage ('in-in-out'); use of integrated fuel gadolinium-based burnable absorber (for a five-year fuel cycle); increase of fuel burnup in fuel assemblies; improving the neutron balance by using structural materials with low neutron absorption; use of zirconium alloy claddings which are highly resistant to irradiation and corrosion. The paper also presents the results of fuel operation. (author)

  10. Application of Bondarenko formalism to fusion reactors

    International Nuclear Information System (INIS)

    Soran, P.D.; Dudziak, D.J.

    1975-01-01

    The Bondarenko formalism used to account for resonance self-shielding effects (temperature and composition) in a Reference Theta-Pinch Reactor is reviewed. A material of interest in the RTPR blanket is 93 Nb, which exhibits a large number of capture resonance in the energy region below 800 keV. Although Nb constitutes a small volume fraction of the blanket, its presence significantly affects the nucleonic properties of the RTPR blanket. The effects of self-shielding in 93 Nb on blanket parameters such as breeding ratio, total afterheat, radioactivity, magnet-coil heating and total energy depositions have been studied. Resonance self-shielding of 93 Nb, as compared to unshielded cross sections, will increase tritium breeding by approximately 7 percent in the RTPR blanket and will decrease blanket radioactivity, total recoverable energy, and magnet-coil heating. Temperature effects change these parameters by less than 2 percent. The method is not restricted to the RTPR, as a single set of Bondarenko f-factors is suitable for application to a variety of fusion reactor designs

  11. Conceptual design of imploding liner fusion reactors

    International Nuclear Information System (INIS)

    Turchi, P.J.; Robson, A.E.

    1976-01-01

    The basic new ingredient is the concept of rotationally stabilized liquid metal liners accelerated with free pistons. The liner motion is constrained on its outer surface by the pistons, laterally by channel walls, during acceleration, and on its inner surface, where megagauss field levels are attained by the centrifugal motion of the liner material. In this way, stable, reversible motion of the liner should be possible, permitting repetitive, pulsed operation at interior pressures far greater than can be allowed in static conductor systems. Such higher operating pressures permit the use of simple plasma geometries, such as theta pinches, with greatly reduced dimensions. Furthermore, the implosion of thick, lithium-bearing liners with large radial compression ratios inherently provides the plasma with a surrounding blanket of neutron absorbing liquid metal, thereby substantially reducing the problems of induced radioactivity and first wall damage that haunt conventional fusion reactor designs. The following article discusses the basic operation of liner reactors and several important features influencing their design

  12. Fusion reactor blanket-main design aspects

    International Nuclear Information System (INIS)

    Strebkov, Yu.; Sidorov, A.; Danilov, I.

    1994-01-01

    The main function of the fusion reactor blanket is ensuring tritium breeding and radiation shield. The blanket version depends on the reactor type (experimental, DEMO, commercial) and its parameters. Blanket operation conditions are defined with the heat flux, neutron load/fluence, cyclic operation, dynamic heating/force loading, MHD effects etc. DEMO/commercial blanket design is distinguished e.g. by rather high heat load and neutron fluence - up to 100 W/cm 2 and 7 MWa/m 2 accordingly. This conditions impose specific requirements for the materials, structure, maintenance of the blanket and its most loaded components - FW and limiter. The liquid Li-Pb eutectic is one of the possible breeder for different kinds of blanket in view of its advantages one of which is the blanket convertibility that allow to have shielding blanket (borated water) or breeding one (Li-Pb eutectic). Using Li-Pb eutectic for both ITER and DEMO blankets have been considered. In the conceptual ITER design the solid eutectic blanket was carried out. The liquid eutectic breeder/coolant is suggested also for the advanced (high parameter) blanket

  13. Fuel assemblies for nuclear reactors

    International Nuclear Information System (INIS)

    Leclercg, J.

    1985-01-01

    Improvements to guide tubes for the fuel assemblies of light water nuclear reactors, said assemblies being immersed in operation in the cooling water of the core of such a reactor, the guide tubes being of the type made from zircaloy and fixed at their two ends respectively to an upper end part and a lower end part made from stainless steel or Irconel and which incorporate devices for braking the fall of the control rods which they house during the rapid shutdown of the reactor, wherein the said braking devices are constituted by means for restricting the diameter of the guide tubes comprising for each guide tube a zircaloy inner sleeve spot welded to the said guide tube and whose internal diameter permits the passage, with a calibrated clearance, of the corresponding control rod, the sleeve being distributed over the lower portion of each guide tube and associated with orifices made in the actual guide tubes to produce the progressive hydraulic absorption of the end of the fall of the control rods

  14. Research reactor de-fueling and fuel shipment

    International Nuclear Information System (INIS)

    Ice, R.D.; Jawdeh, E.; Strydom, J.

    1998-01-01

    Planning for the Georgia Institute of Technology Research Reactor operations during the 1996 Summer Olympic Games began in early 1995. Before any details could be outlined, several preliminary administrative decisions had to be agreed upon by state, city, and university officials. The two major administrative decisions involving the reactor were (1) the security level and requirements and (2) the fuel status of the reactor. The Georgia Tech Research Reactor (GTRR) was a heavy-water moderated and cooled reactor, fueled with high-enriched uranium. The reactor was first licensed in 1964 with an engineered lifetime of thirty years. The reactor was intended for use in research applications and as a teaching facility for nuclear engineering students and reactor operators. Approximately one year prior to the olympics, the Georgia Tech administration decided that the GTRR fuel would be removed. In addition, a heightened, beyond regulatory requirements, security system was to be implemented. This report describes the scheduling, operations, and procedures

  15. Self-sustaining nuclear pumped laser-fusion reactor experiment

    International Nuclear Information System (INIS)

    Boody, F.P.; Choi, C.K.; Miley, G.H.

    1977-01-01

    The features of a neutron feedback nuclear pumped (NFNP) laser-fusion reactor equipment were studied with the intention of establishing the feasibility of the concept. The NFNP laser-fusion concept is compared schematically to electrically pumped laser fusion. The study showed that, once a method of energy storage has been demonstrated, a self-sustaining fusion-fission hybrid reactor with a ''blanket multiplication'' of two would be feasible using nuclear pumped Xe F* excimer lasers having efficiencies of 1 to 2 percent and D-D-T pellets with gains of 50 to 100

  16. Fuel exchange device for FBR type reactor

    International Nuclear Information System (INIS)

    Onuki, Koji.

    1993-01-01

    The device of the present invention can provide fresh fuels with a rotational angle aligned with the direction in the reactor core, so that the fresh fuels can be inserted being aligned with apertures of the reactor core even if a self orientation mechanism should fail to operate. That is, a rotational angle detection means (1) detects the rotational angle of fresh fuels before insertion to the reactor core. A fuel rotational angle control means (2) controls the rotational angle of the fresh fuels by comparing the detection result of the means (1) and the data for the insertion position of the reactor core. A fuel rotation means (3) compensates the rotational angel of the fresh fuels based on the control signal from the means (2). In this way, when the fresh fuels are inserted to the reactor core, the fresh fuels set at the same angle as that for the aperture of the reactor core. Accordingly, even if the self orientation mechanism should not operate, the fresh fuels can be inserted smoothly. As a result, it is possible to save loss time upon fuel exchange and mitigate operator's burden during operation. (I.S.)

  17. Numerical analysis of magnetoelastic coupled buckling of fusion reactor components

    International Nuclear Information System (INIS)

    Demachi, K.; Yoshida, Y.; Miya, K.

    1994-01-01

    For a tokamak fusion reactor, it is one of the most important subjects to establish the structural design in which its components can stand for strong magnetic force induced by plasma disruption. A number of magnetostructural analysis of the fusion reactor components were done recently. However, in these researches the structural behavior was calculated based on the small deformation theory where the nonlinearity was neglected. But it is known that some kinds of structures easily exceed the geometrical nonlinearity. In this paper, the deflection and the magnetoelastic buckling load of fusion reactor components during plasma disruption were calculated

  18. Fissile fuel production and usage of thermal reactor waste fueled with UO2 by means of hybrid reactor system

    International Nuclear Information System (INIS)

    Ipek, O.

    1997-01-01

    The use of Fast Breeder Reactors to produce fissile fuel from nuclear waste and the operation of these reactors with a new neutron source are becoming today' topic. In the thermonuclear reactors, it is possible to use 2.45-14.1 MeV - neutrons which can be obtained by D-T, D-D Semicatalyzed (D-D) and other fusion reactions. To be able to do these, Hybrid Reactor System, which still has experimental and theoretical studies, have to be taken into consideration.In this study, neutronic analysis of hybrid blanket with grafit reflector, is performed. D-T driven fusion reaction is surrounded by UO 2 fuel layer and the production of ''2''3''9Pu fissile fuel from waste ''2''3''8U is analyzed. It is also compared to the other possible fusion reactions. The results show that 815.8 kg/year ''2''3''8Pu with D-T reaction and 1431.6 kg/year ''2''3''8Pu with semicatalyzed (D-D) reaction can be produced for 1000 MW fusion power. This means production of 2.8/ year and 4.94/ year LWR respectively. In addition, 1000 MW fusion flower is is multiplicated to 3415 MW and 4274 MW for D-T and semicatalyzed (D-D) reactions respectively. The system works subcritical and these values are 0.4115 and 0.312 in order. The calculations, ANISN-ORNL code, S 16 -P 3 approach and DLC36 data library are used

  19. Research reactor spent fuel in Ukraine

    International Nuclear Information System (INIS)

    Trofimenko, A.P.

    1996-01-01

    This paper describes the research reactors in Ukraine, their spent fuel facilities and spent fuel management problems. Nuclear sciences, technology and industry are highly developed in Ukraine. There are 5 NPPs in the country with 14 operating reactors which have total power capacity of 12,800 MW

  20. Plasma-gun fueling for tokamak reactors

    International Nuclear Information System (INIS)

    Ehst, D.A.

    1980-11-01

    In light of the uncertain extrapolation of gas puffing for reactor fueling and certain limitations to pellet injection, the snowplow plasma gun has been studied as a fueling device. Based on current understanding of gun and plasma behavior a design is proposed, and its performance is predicted in a tokamak reactor environment

  1. Fissile fuel doubling time characteristics for reactor lifetime fuel logistics

    International Nuclear Information System (INIS)

    Heindler, M.; Harms, A.A.

    1978-01-01

    The establishment of nuclear fuel requirements and their efficient utilization requires a detailed knowledge of some aspects of fuel dynamics and processing during the reactor lifetime. It is shown here that the use of the fuel stockpile inventory concept can serve effectively for this fuel management purpose. The temporal variation of the fissile fuel doubling time as well as nonequilibrium core conditions are among the characteristics which thus become more evident. These characteristics - rather than a single figure-of-merit - clearly provide an improved description of the expansion capacity and/or fuel requirements of a nuclear reactor energy system

  2. Concept of DT fuel cycle for a fusion neutron source DEMO-FNS

    Energy Technology Data Exchange (ETDEWEB)

    Ananyev, Sergey S., E-mail: Ananyev_SS@nrcki.ru; Spitsyn, Alexander V.; Kuteev, Boris V.

    2016-11-01

    Highlights: • We presented the concept of a deuterium-tritium fuel cycle of stationary thermonuclear reactor. • Data of fuel cycles for nuclear facility (DEMO-FNS) with 2 variants of the fuel mixture for NBI system are presented. • The amount of tritium which is required for operation of DEMO-FNS is estimated. - Abstract: The paper describes the concept of a deuterium-tritium fuel cycle of a steady-state thermonuclear reactor with a fusion power over 10 MW. Parameters of fuel cycle for nuclear facility (JET scale) with different types of fuel mixtures for neutral beam injection system are presented. Optimization of fuel cycle characteristics was aimed at reducing flows and inventory of hydrogen isotopes and tritium in fuel cycle subsystems. The calculations were carried out using computer code TC-FNS to estimate tritium distribution in fusion reactor systems and components of “tritium plant”. The code enables calculations of tritium flows and inventory in the tokamak systems. Calculations of tritium flows and accumulation have been carried out for two different cases of the fuel mixture for neutral beam injection (NBI) system. The amounts of tritium which is required for operation of all fuel cycle systems in two different cases of the fuel mixture for NBI are 0.45 “” kg (D:T = 1:0) and 0.9 kg (D:T = 1:1) respectively.

  3. Irradiation behavior of metallic fast reactor fuels

    International Nuclear Information System (INIS)

    Pahl, R.G.; Porter, D.L.; Crawford, D.C.; Walters, L.C.

    1991-01-01

    Metallic fuels were the first fuels chosen for liquid metal cooled fast reactors (LMR's). In the late 1960's world-wide interest turned toward ceramic LMR fuels before the full potential of metallic fuel was realized. However, during the 1970's the performance limitations of metallic fuel were resolved in order to achieve a high plant factor at the Argonne National Laboratory's Experimental Breeder Reactor II. The 1980's spawned renewed interest in metallic fuel when the Integral Fast Reactor (IFR) concept emerged at Argonne National Laboratory. A fuel performance demonstration program was put into place to obtain the data needed for the eventual licensing of metallic fuel. This paper will summarize the results of the irradiation program carried out since 1985

  4. Method of fueling for a nuclear reactor

    International Nuclear Information System (INIS)

    Igarashi, Takao.

    1983-01-01

    Purpose: To enable the monitoring of reactor power with sufficient accuracy, upon starting even without existence of neutron source in case of a low average burnup degree in the reactor core. Constitution: Each of fuel assemblies is charged such that neutron source region monitors for the start-up system in a reactor core neutron instrumentation system having nuclear fuel assemblies and a neutron instrumentation system are surrounded with 4 or 16 fuel assemblies of a low burnup degree. Then, the average burnup degree of the fuel assemblies surrounding the neutron source region monitors are increased than the reactor core burnup degree, whereby neutrons released from the peripheral fuels are increased, sufficient number of neutron counts can be obtained even with no neutron sources upon start-up and the reactor power can be monitored at a sufficient accuracy. (Sekiya, K.)

  5. Major features of a mirror fusion--fast fission hybrid reactor

    International Nuclear Information System (INIS)

    Moir, R.W.; Lee, J.D.; Burleigh, R.J.

    1974-01-01

    A conceptual design was made of a fusion-fission reactor. The fusion component is a D-T plasma confined by a pair of magnetic mirror coils in a Yin-Yang configuration and sustained by hot neutral beam injection. The neutrons from the fusion plasma drive the fission assembly which is composed of natural uranium carbide fuel rods clad with stainless steel and is cooled by helium. It was shown how the reactor can be built using essentially present day construction technology and how the uranium bearing blanket modules can be routinely changed to allow separation of the bred fissile fuel of which approximately 1200 kg of plutonium are produced each year along with the approximately 750 MW of electricity. (U.S.)

  6. Hydriding failure in water reactor fuel elements

    International Nuclear Information System (INIS)

    Sah, D.N.; Ramadasan, E.; Unnikrishnan, K.

    1980-01-01

    Hydriding of the zircaloy cladding has been one of the important causes of failure in water reactor fuel elements. This report reviews the causes, the mechanisms and the methods for prevention of hydriding failure in zircaloy clad water reactor fuel elements. The different types of hydriding of zircaloy cladding have been classified. Various factors influencing zircaloy hydriding from internal and external sources in an operating fuel element have been brought out. The findings of post-irradiation examination of fuel elements from Indian reactors, with respect to clad hydriding and features of hydriding failure are included. (author)

  7. BR2 Reactor: Irradiation of fuels

    International Nuclear Information System (INIS)

    Verwimp, A.

    2005-01-01

    Safe, reliable and economical operation of reactor fuels, both UO 2 and MOX types, requires in-pile testing and qualification up to high target burn-up levels. In-pile testing of advanced fuels for improved performance is also mandatory. The objectives of research performed at SCK-CEN are to perform Neutron irradiation of LWR (Light Water Reactor) fuels in the BR2 reactor under relevant operating and monitoring conditions, as specified by the experimenter's requirements and to improve the on-line measurements on the fuel rods themselves

  8. Fast reactor fuel reprocessing in the UK

    International Nuclear Information System (INIS)

    Allardice, R.H.; Williams, J.; Buck, C.

    1977-01-01

    Enriched uranium metal fuel irradiated in the Dounreay Fast Reactor has been reprocessed and refabricated in plants specifically designed for the purpose in the U.K. since 1961. Efficient and reliable fuel recycle is essential to the development of a plutonium based fast reactor system and the importance of establishing at an early stage fast reactor fuel reprocessing has been reinforced by current world difficulties in reprocessing high burn-up thermal reactor oxide fuel. In consequence, the U.K. has decided to reprocess irradiated fuel from the 250 MW(E) Prototype Fast Reactor as an integral part of the fast reactor development programme. Flowsheet and equipment development work for the small scale fully active demonstration plant have been carried out over the past 5 years and the plant will be commissioned and ready for active operation during 1977. In parallel, a comprehensive waste management system has been developed and installed. Based on this development work and the information which will arise from active operation of the plant a parallel development programme has been initiated to provide the basis for the design of a large scale fast reactor fuel reprocessing plant to come into operation in the late 1980s to support the projected U.K. fast reactor installation programme. The paper identifies the important differences between fast reactor and thermal reactor fuel reprocessing technologies and describes some of the development work carried out in these areas for the small scale P.F.R. fuel reprocessing operation. In addition, the development programme in aid of the design of a larger scale fast reactor fuel reprocessing plant is outlined and the current design philosophy is discussed

  9. United States Domestic Research Reactor Infrastructure TRIGA Reactor Fuel Support

    International Nuclear Information System (INIS)

    Morrell, Douglas

    2011-01-01

    The United State Domestic Research Reactor Infrastructure Program at the Idaho National Laboratory manages and provides project management, technical, quality engineering, quality inspection and nuclear material support for the United States Department of Energy sponsored University Reactor Fuels Program. This program provides fresh, unirradiated nuclear fuel to Domestic University Research Reactor Facilities and is responsible for the return of the DOE-owned, irradiated nuclear fuel over the life of the program. This presentation will introduce the program management team, the universities supported by the program, the status of the program and focus on the return process of irradiated nuclear fuel for long term storage at DOE managed receipt facilities. It will include lessons learned from research reactor facilities that have successfully shipped spent fuel elements to DOE receipt facilities.

  10. Gaseous fuel reactors for power systems

    Science.gov (United States)

    Kendall, J. S.; Rodgers, R. J.

    1977-01-01

    Gaseous-fuel nuclear reactors have significant advantages as energy sources for closed-cycle power systems. The advantages arise from the removal of temperature limits associated with conventional reactor fuel elements, the wide variety of methods of extracting energy from fissioning gases, and inherent low fissile and fission product in-core inventory due to continuous fuel reprocessing. Example power cycles and their general performance characteristics are discussed. Efficiencies of gaseous fuel reactor systems are shown to be high with resulting minimal environmental effects. A technical overview of the NASA-funded research program in gaseous fuel reactors is described and results of recent tests of uranium hexafluoride (UF6)-fueled critical assemblies are presented.

  11. Assessment of tritium breeding requirements for fusion power reactors

    International Nuclear Information System (INIS)

    Jung, J.

    1983-12-01

    This report presents an assessment of tritium-breeding requirements for fusion power reactors. The analysis is based on an evaluation of time-dependent tritium inventories in the reactor system. The method presented can be applied to any fusion systems in operation on a steady-state mode as well as on a pulsed mode. As an example, the UWMAK-I design was analyzed and it has been found that the startup inventory requirement calculated by the present method significantly differs from those previously calculated. The effect of reactor-parameter changes on the required tritium breeding ratio is also analyzed for a variety of reactor operation scenarios

  12. Breeder reactor fuel fabrication system development

    International Nuclear Information System (INIS)

    Bennett, D.W.; Fritz, R.L.; McLemore, D.R.; Yatabe, J.M.

    1981-01-01

    Significant progress has been made in the design and development of remotely operated breeder reactor fuel fabrication and support systems (e.g., analytical chemistry). These activities are focused by the Secure Automated Fabrication (SAF) Program sponsored by the Department of Energy to provide: a reliable supply of fuel pins to support US liquid metal cooled breeder reactors and at the same time demonstrate the fabrication of mixed uranium/plutonium fuel by remotely operated and automated methods

  13. Homogeneous Thorium Fuel Cycles in Candu Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hyland, B.; Dyck, G.R.; Edwards, G.W.R.; Magill, M. [Chalk River Laboratories, Atomic Energy of Canada Limited (Canada)

    2009-06-15

    The CANDU{sup R} reactor has an unsurpassed degree of fuel-cycle flexibility, as a consequence of its fuel-channel design, excellent neutron economy, on-power refueling, and simple fuel bundle [1]. These features facilitate the introduction and full exploitation of thorium fuel cycles in Candu reactors in an evolutionary fashion. Because thorium itself does not contain a fissile isotope, neutrons must be provided by adding a fissile material, either within or outside of the thorium-based fuel. Those same Candu features that provide fuel-cycle flexibility also make possible many thorium fuel-cycle options. Various thorium fuel cycles can be categorized by the type and geometry of the added fissile material. The simplest of these fuel cycles are based on homogeneous thorium fuel designs, where the fissile material is mixed uniformly with the fertile thorium. These fuel cycles can be competitive in resource utilization with the best uranium-based fuel cycles, while building up a 'mine' of U-233 in the spent fuel, for possible recycle in thermal reactors. When U-233 is recycled from the spent fuel, thorium-based fuel cycles in Candu reactors can provide substantial improvements in the efficiency of energy production from existing fissile resources. The fissile component driving the initial fuel could be enriched uranium, plutonium, or uranium-233. Many different thorium fuel cycle options have been studied at AECL [2,3]. This paper presents the results of recent homogeneous thorium fuel cycle calculations using plutonium and enriched uranium as driver fuels, with and without U-233 recycle. High and low burnup cases have been investigated for both the once-through and U-233 recycle cases. CANDU{sup R} is a registered trademark of Atomic Energy of Canada Limited (AECL). 1. Boczar, P.G. 'Candu Fuel-Cycle Vision', Presented at IAEA Technical Committee Meeting on 'Fuel Cycle Options for LWRs and HWRs', 1998 April 28 - May 01, also Atomic Energy

  14. Alternative fusion concepts and the prospects for improved reactors

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1985-01-01

    Past trends, present status, and future directions in the search for an improved fusion reactor are reviewed, and promising options available to boh the principle tokamak and other supporting concept are summarized

  15. Nuclear data for structural materials of fission and fusion reactors

    International Nuclear Information System (INIS)

    Goulo, V.

    1989-06-01

    The document presents the status of nuclear reaction theory concerning optical model development, level density models and pre-equilibrium and direct processes used in calculation of neutron nuclear data for structural materials of fission and fusion reactors. 6 refs

  16. Health physics aspects of activation products from fusion reactors

    International Nuclear Information System (INIS)

    Shoup, R.L.; Poston, J.W.; Easterly, C.E.; Jacobs, D.G.

    1975-01-01

    A review of the activation products from fusion reactors and their attendant impacts is discussed. This includes a discussion on their production, expected inventories, and the status of metabolic data on these products

  17. Nuclear characteristics of D-D fusion reactor blankets

    International Nuclear Information System (INIS)

    Nakashima, Hideki; Ohta, Masao

    1978-01-01

    Fusion reactors operating on deuterium (D-D) cycle are considered to be of long range interest for their freedom from tritium breeding in the blanket. The present paper discusses the various possibilities of D-D fusion reactor blanket designs mainly from the standpoint of the nuclear characteristics. Neutronic and photonic calculations are based on presently available data to provide a basis of the optimal blanket design in D-D fusion reactors. It is found that it appears desirable to design a blanket with blanket/shield (BS) concept in D-D fusion reactors. The BS concept is designed to obtain reasonable shielding characteristics for superconducting magnet (SCM) by using shielding materials in the compact blanket. This concept will open the possibility of compact radiation shield design based on assured technology, and offer the advantage from the system economics point of view. (auth.)

  18. Simulated nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Berta, V.T.

    1993-01-01

    An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end

  19. FIREBIRD - a conceptual design of a field reversed configuration compact torus fusion reactor (CTFR)

    International Nuclear Information System (INIS)

    Raman, R.; Zubrin, R.M.

    1987-01-01

    This paper is a summary of the work carried out by the Nuclear Engineering 512 design team at the University of Washington on a conceptual design study of a Compact-Torus (Field-Reversed) Fusion Reactor Configuration (CTFR). The primary objective of the study was to develop a reactor design that strived for high engineering power density, modest recirculating power and competitive cost of electrical power. A Conceptual design was developed for a translating field-reversed configuration reactor; based on the Physics developed by Tuszewski and Lindford at LANL and by Hoffman and Milroy at MSNW. Furthermore, it also appears possible to operate a simplified form of this reactor using a pure D-D fuel cycle after an initial D-T ignition ramp to reach the advanced fuel operating regime. One optimistic reactor so designed has a length of about 35 meters, producing a net electrical power of about 375 MWe

  20. Fusion-reactor blanket and coolant material compatibility

    International Nuclear Information System (INIS)

    Jeppson, D.W.; Keough, R.F.

    1981-01-01

    Fusion reactor blanket and coolant compatibility tests are being conducted to aid in the selection and design of safe blanket and coolant systems for future fusion reactors. Results of scoping compatibility tests to date are reported for blanket material and water interactions at near operating temperatures. These tests indicate the quantitative hydrogen release, the maximum temperature and pressures produced and the rates of interactions for selected blanket materials

  1. Nuclear reactor fuel assembly grid

    International Nuclear Information System (INIS)

    Alder, J.L.; Kmonk, S.; Racki, F.R.

    1981-01-01

    A grid for a nuclear reactor fuel assembly which includes intersecting straps arranged to form a structure of egg crate configuration. The cells defined by the intersecting straps are adapted to contain axially extending fuel rods, each of which occupy one cell, while each control rod guide tube or thimble occupies the space of four cells. To effect attachment of each guide thimble to the grid, a short intermediate sleeve is brazed to the strap walls and the guide thimble is then inserted therein and mechanically secured to the sleeve walls. Each sleeve preferably, although not necessarily, is equipped with circumferentially spaced openings useful in adjusting dimples and springs in adjacent cells. To accurately orient each sleeve in position in the grid, the ends of straps extending in one direction project through transversely extending straps and terminate in the wall of the guide sleeve. Other straps positioned at right angles thereto terminate in that portion of the wall of a strap which lies next to a wall of the sleeve

  2. Fabrication of internally instrumented reactor fuel rods

    International Nuclear Information System (INIS)

    Schmutz, J.D.; Meservey, R.H.

    1975-01-01

    Procedures are outlined for fabricating internally instrumented reactor fuel rods while maintaining the original quality assurance level of the rods. Instrumented fuel rods described contain fuel centerline thermocouples, ultrasonic thermometers, and pressure tubes for internal rod gas pressure measurements. Descriptions of the thermocouples and ultrasonic thermometers are also contained

  3. Pressurized water reactor fuel rod design methodology

    International Nuclear Information System (INIS)

    Silva, A.T.; Esteves, A.M.

    1988-08-01

    The fuel performance program FRAPCON-1 and the structural finite element program SAP-IV are applied in a pressurized water reactor fuel rod design methodology. The applied calculation procedure allows to dimension the fuel rod components and characterize its internal pressure. (author) [pt

  4. An analysis of the estimated capital cost of a fusion reactor

    International Nuclear Information System (INIS)

    Hollis, A.A.

    1981-06-01

    The cost of building a fusion reactor similar to the Culham Conceptual Tokamak reactor Mark IIB is assessed and compared with other published capital costs of fusion and fission reactors. It is concluded that capital-investment and structure-renewal costs for a typical fusion reactor as presently conceived are likely to be higher than for thermal-fission reactors. (author)

  5. An analysis of the estimated capital cost of a fusion reactor

    International Nuclear Information System (INIS)

    Hollis, A.A.; Evans, L.S.

    1981-01-01

    The cost of building a fusion reactor similar to the Culham Conceptual Tokamak reactor Mark IIB is assessed and compared with other published capital costs of fusion and fission reactors. It is concluded that capital-investment and structure-renewal costs for a typical fusion reactor as presently conceived are likely to be higher than for thermal-fission reactors. (author)

  6. Thermal aspects of a superconducting coil for fusion reactor

    International Nuclear Information System (INIS)

    Yeh, H.T.

    1975-01-01

    Computer models are used to simulate both localized and extensive thermal excursions in a large superconducting magnet for fusion reactor. Conditions for the failure of fusion magnet due to thermal excursion are delineated. Designs to protect the magnet against such thermal excursion are evaluated

  7. Communication links for fusion reactor maintenance operations

    International Nuclear Information System (INIS)

    Van Uffelen, M.

    2005-01-01

    Different architectures are envisaged for data transmission with fibre optic links in a radiation environment, as proposed in literature for both space and high energy physics applications. Their needs and constraints differ from those encountered for maintenance tasks in the future ITER environment, not only in terms of temperature and radiation levels, but also with respect to transmission speed requirements. Our approach attempts to limit the use of radiation-sensitive electronics for transmission of both digital and/or analogue data to the control room, using glass fibres as transport medium. We therefore assessed the radiation behaviour of a cost-effective fibre optic transmitter at 850 nm, consisting of a PWM (pulse width modulator), a radiation tolerant current driver (previously developed at SCK-CEN) and a VCSEL (Vertical-Cavity Surface Emitting Laser assembly, up to 10 MGy at 60 degrees Celsius. The PWM enables to transform an analogue sensor signal into a pseudo numerical signal, with a pulse width proportional to the incoming signal. The main objective of this task is to contribute to the major design of the maintenance equipment and strategy needed for the remote replacement of the divertor system in the future ITER fusion reactor, with particular attention to the implications of radiation hardening rules and recommendations. Next to the radiation assessment studies of remote handling tools, including actuators and sensors, we also develop radiation tolerant communication links with multiplexing capabilities

  8. Reversed-field pinch fusion reactor

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.

    1980-01-01

    A conceptual engineering design of a fusion reactor based on plasma confinement in a toroidal Reversed-Field Pinch (RFP) configuration is described. The plasma is ohmically ignited by toroidal plasma currents which also inherently provide the confining magnetic fields in a toroidal chamber having major and minor radii of 12.7 and 1.5 m, respectively. The DT plasma ignites in 2 to 3 s and undergoes a transient, unrefueled burn at 10 to 20 keV for approx. 20 s to give a DT burnup of approx. 50%. The 5-s dwell period between burn pulses for plasma quench and refueling allows steady-state operation of all thermal systems outside the first wall; no auxiliary thermal capacity is required. Tritium breeding occurs in a granular Li 2 O blanket which is packed around an array of radially oriented water/steam coolant tubes. The slightly superheated steam emerging from this blanket directly drives a turbine that produces electrical power at an efficiency of 30%. A borated-water shield is located immediately outside the thermal blanket to protect the superconducting magnet coils. Both the superconducting poloidal and toroidal field coils are energized by homopolar motor/generators. Accounting for all major energy sinks yields a cost-optimized system with a recirculating power fraction of 0.17; the power output is 750 MWe

  9. Safety vessels for explosive fusion reactor

    International Nuclear Information System (INIS)

    Mineev, V.

    1994-01-01

    The failure of several types of geometrically similar cylindrical and spherical steel and glass fibers vessels filled with water or air was investigated when an explosive charge of TNT was detonated in the center. Vessels had radius 50-1000 mm, thickness of walls 2-20%. The detonation on TNT imitated energy release. The parameter: K = M/mf is a measure of the strength of the vessel where M is the mass of the vessel, and mf is the mass of TNT for which the vessel fails. This demanded 2-4 destroyed and nondestroyed shots. It may be showed that: K=A/σ f where σ f is the fracture stress of the material vessel, and A = const = F(energy TNT, characteristic of elasticity of vessel material). The chief results are the following: (1) A similar increase in the geometrical dimensions of steel vessels by a factor of 10 leads to the increase of parameter K in about 5 times and to decrease of failure deformation in 7 times (scale effect). (2) For glass fibers, scale effect is absent. (3) This problem is solved in terms of theory energetic scale effect. (4) The concept of TNT equivalent explosive makes it possible to use these investigations to evaluate the response of safety vessels for explosive fusion reactor

  10. Superconducting magnets for toroidal fusion reactors

    International Nuclear Information System (INIS)

    Haubenreich, P.N.

    1980-01-01

    Fusion reactors will soon be employing superconducting magnets to confine plasma in which deuterium and tritium (D-T) are fused to produce usable energy. At present there is one small confinement experiment with superconducting toroidal field (TF) coils: Tokamak 7 (T-7), in the USSR, which operates at 4 T. By 1983, six different 2.5 x 3.5-m D-shaped coils from six manufacturers in four countries will be assembled in a toroidal array in the Large Coil Test Facility (LCTF) at Oak Ridge National Laboratory (ORNL) for testing at fields up to 8 T. Soon afterwards ELMO Bumpy Torus (EBT-P) will begin operation at Oak Ridge with superconducting TF coils. At the same time there will be tokamaks with superconducting TF coils 2 to 3 m in diameter in the USSR and France. Toroidal field strength in these machines will range from 6 to 9 T. NbTi and Nb 3 Sn, bath cooling and forced flow, cryostable and metastable - various designs are being tried in this period when this new application of superconductivity is growing and maturing

  11. Fusion reactor horizontal versus vertical maintenance approach

    International Nuclear Information System (INIS)

    Charruyer, Ph.; Djerassi, H.; Leger, D.; Maupou, M.; Rouillard, J.; Salpietro, E.; Holloway, C.; Suppan, A.

    1987-01-01

    This paper concerns the comparison of horizontal versus vertical maintenance options of internal components (blanket and segment) of fusion reactors NET (Next European Torus) and INTOR Design. The described mechanical options are taken to ensure the handling of internals with the required precision, taking into account the problems raised by the safety and confinement requirements. Handling is obviously performed remotely. The option comparisons are performed according to the criteria of feasibility, building size, duration of maintenance operations, safety, flexibility, availability and cost. The first conclusions point on that the vertical handling option offers advantages, as regards the ease of handling and confinement possibilities. From the building size point of view, the two solutions are almost equivalent, while other criteria do not provide a basis for choice. It is emphasized that the confinement option C.T.U. (Containment Transfer Unit) or T.I.C. (Tight Intermediate Confinement) should be the major factor in determining the best options. In additions, a cost comparative analysis emphasizes the best cost/benefit ratio for the different options studied

  12. Facilities of fuel transfer for nuclear reactors

    International Nuclear Information System (INIS)

    Wade, E.E.

    1977-01-01

    This invention relates to sodium cooled fast breeder reactors. It particularly concerns facilities for the transfer of fuel assemblies between the reactor core and a fuel transfer area. The installation is simple in construction and enables a relatively small vessel to be used. In greater detail, the invention includes a vessel with a head, fuel assemblies housed in this vessel, and an inlet and outlet for the coolant covering these fuel assemblies. The reactor has a fuel transfer area in communication with this vessel and gear inside the vessel for the transfer of these fuel assemblies. These facilities are borne by the vessel head and serve to transfer the fuel assemblies from the vessel to the transfer area; whilst leaving the fuel assemblies completely immersed in a continuous mass of coolant. A passageway is provided between the vessel and this transfer area for the fuel assemblies. Facilities are provided for closing off this passageway so that the inside of the reactor vessel may be isolated as desired from this fuel transfer area whilst the reactor is operating [fr

  13. Parameter study toward economical magnetic fusion power reactors

    International Nuclear Information System (INIS)

    Yoshida, Tomoaki; Okano, Kunihiko; Nanahara, Toshiya; Hatayama, Akiyoshi; Yamaji, Kenji; Takuma, Tadashi.

    1996-01-01

    Although the R and D of nuclear fusion reactors has made a steady progress as seen in ITER project, it has become of little doubt that fusion power reactors require hugeness and enormous amount of construction cost as well as surmounting the physics and engineering difficulties. Therefore, it is one of the essential issues to investigate the prospect of realizing fusion power reactors. In this report we investigated the effects of physics and engineering improvements on the economics of ITER-like steady state tokamak fusion reactors using our tokamak system and costing analysis code. With the results of this study, we considered what is the most significant factor for realizing economical competitive fusion reactors. The results show that with the conventional TF coil maximum field (12T), physics progress in β-value (or Troyon coefficient) has the most considerable effect on the reduction of fusion plant COE (Cost of Electricity) while the achievement of H factor = 2-3 and neutron wall load =∼5MW/m 2 is necessary. The results also show that with the improvement of TF coil maximum field, reactors with a high aspect ratio are economically advantageous because of low plasma current driving power while the improvement of current density in the conductors and yield strength of support structures is indispensable. (author)

  14. Nuclear design of a very-low-activation fusion reactor

    International Nuclear Information System (INIS)

    Cheng, E.T.; Hopkins, G.R.

    1983-06-01

    An investigation was conducted to study the nuclear design aspects of using very-low-activation materials, such as SiC, MgO, and aluminum for fusion-reactor first wall, blanket, and shield applications. In addition to the advantage of very-low radioactive inventory, it was found that the very-low-activation fusion reactor can also offer an adequate tritium-breeding ratio and substantial amount of blanket nuclear heating as a conventional-material-structured reactor does. The most-stringent design constraint found in a very-low-activation fusion reactor is the limited space available in the inboard region of a tokamak concept for shielding to protect the superconducting toroidal field coil. A reference design was developed which mitigates the constraint by adopting a removable tungsten shield design that retains the inboard dimensions and gives the same shield performance as the reference STARFIRE tokamak reactor design

  15. Gaseous fuel reactors for power systems

    International Nuclear Information System (INIS)

    Helmick, H.H.; Schwenk, F.C.

    1978-01-01

    The Los Alamos Scientific Laboratory is participating in a NASA-sponsored program to demonstrate the feasibility of a gaseous uranium fueled reactor. The work is aimed at acquiring experimental and theoretical information for the design of a prototype plasma core reactor which will test heat removal by optical radiation. The basic goal of this work is for space applications, however, other NASA-sponsored work suggests several attractive applications to help meet earth-bound energy needs. Such potential benefits are small critical mass, on-site fuel processing, high fuel burnup, low fission fragment inventory in reactor core, high temperature for process heat, optical radiation for photochemistry and space power transmission, and high temperature for advanced propulsion systems. Low power reactor experiments using uranium hexafluoride gas as fuel demonstrated performance in accordance with reactor physics predictions. The final phase of experimental activity now in progress is the fabrication and testing of a buffer gas vortex confinement system

  16. Unified fuel elements development for research reactors

    International Nuclear Information System (INIS)

    Vatulin, A.; Stetsky, Y.; Dobrikova, I.

    1998-01-01

    Square cross-section rod type fuel elements have been developed for russian pool-type research reactors. new fuel elements can replace the large nomenclature of tubular fuel elements with around, square and hexahedral cross-sections and to solve a problem of enrichment reduction. the fuel assembly designs with rod type fuel elements have been developed. The overall dimensions of existing the assemblies are preserved in this one. the experimental-industrial fabricating process of fuel elements, based on a joint extrusion method has been developed. The fabricating process has been tested in laboratory conditions, 150 experimental fuel element samples of the various sizes were produced. (author)

  17. Power from plutonium: fast reactor fuel

    International Nuclear Information System (INIS)

    Bishop, J.F.W.

    1981-01-01

    Points of similarity and of difference between fast reactor fuel and fuels for AGR and PWR plants are established. The flow of uranium and plutonium in fast and thermal systems is also mentioned, establishing the role of the fast reactor as a plutonium burner. A historical perspective of fast reactors is given in which the substantial experience accumulated in test and prototype is indicated and it is noted that fast reactors have now entered the commercial phase. The relevance of the data obtained in the test and prototype reactors to the behaviour of commercial fast reactor fuel is considered. The design concepts employed in fuel are reviewed, including sections on core support styles, pin support and pin detail. This is followed by a discussion of current issues under the headings of manufacture, performance and reprocessing. This section includes a consideration of gel fuel, achievable burn-up, irradiation induced distortions and material choices, fuel form, and fuel failure mechanisms. Future development possibilities are also discussed and the Paper concludes with a view on the logic of a UK fast reactor strategy. (U.K.)

  18. The integral fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1990-01-01

    The liquid-metal reactor (LMR) has the potential to extend the uranium resource by a factor of 50 to 100 over current commercial light water reactors (LWRs). In the integral fast reactor (IFR) development program, the entire reactor system - reactor, fuel cycle, and waste process - is being developed and optimized at the same time as a single integral entity. A key feature of the IFR concept is the metallic fuel. The lead irradiation tests on the new U-Pu-Zr metallic fuel in the Experimental Breeder Reactor II have surpassed 185000 MWd/t burnup, and its high burnup capability has now been fully demonstrated. The metallic fuel also allows a radically improved fuel cycle technology. Pyroprocessing, which utilizes high temperatures and molten salt and molten metal solvents, can be advantageously utilized for processing metal fuels because the product is metal suitable for fabrication into new fuel elements. Direct production of a metal product avoids expensive and cumbersome chemical conversion steps that would result from use of the conventional Purex solvent extraction process. The key step in the IFR process is electrorefining, which provides for recovery of the valuable fuel constituents, uranium and plutonium, and for removal of fission products. A notable feature of the IFR process is that the actinide elements accompany plutonium through the process. This results in a major advantage in the high-level waste management

  19. Mechanical design and first experimental results of an upgraded technical PERMCAT reactor for tritium recovery in the fuel cycle of a fusion machine

    Energy Technology Data Exchange (ETDEWEB)

    Welte, S., E-mail: stefan.welte@kit.edu [Karlsruhe Institute of Technology (KIT), Forschungszentrum Karlsruhe, Institute for Technical Physics, Tritium Laboratory Karlsruhe, Hermann v. Helmholtz Platz 1, 76344 Eggenstein Leopoldshafen (Germany); Demange, D.; Wagner, R. [Karlsruhe Institute of Technology (KIT), Forschungszentrum Karlsruhe, Institute for Technical Physics, Tritium Laboratory Karlsruhe, Hermann v. Helmholtz Platz 1, 76344 Eggenstein Leopoldshafen (Germany)

    2010-12-15

    The PERMCAT process developed for the final clean-up stage of the Tokamak Exhaust Processing systems of the ITER tritium plant combines a catalytic reactor and a Pd/Ag permeator in a single component. A first generation technical PERMCAT has been successfully operated as part of the CAPER experiment at the Tritium Laboratory Karlsruhe for several years. Various alternative PERMCAT mechanical designs were proposed and studied on small-scale prototypes. An upgraded technical PERMCAT reactor was designed, manufactured and commissioned with deuterium. A parallel arrangement of finger-type membranes inserted in a single catalyst bed design was chosen to simplify the geometry and the manufacturing while improving the robustness of the reactor. The component has been designed and manufactured to be fully tritium compatible and also fully compatible with both process and electrical connections of the previous PERMCAT to be replaced. The new PERMCAT mechanical design is more compact and easy to manufacture. This PERMCAT reactor was submitted to functional tests and experiments based on isotopic exchanges between H{sub 2}O and D{sub 2} to measure the processing performances. The first experimental results show decontamination factors versus flow rates better than all previously measured.

  20. Mechanical design and first experimental results of an upgraded technical PERMCAT reactor for tritium recovery in the fuel cycle of a fusion machine

    International Nuclear Information System (INIS)

    Welte, S.; Demange, D.; Wagner, R.

    2010-01-01

    The PERMCAT process developed for the final clean-up stage of the Tokamak Exhaust Processing systems of the ITER tritium plant combines a catalytic reactor and a Pd/Ag permeator in a single component. A first generation technical PERMCAT has been successfully operated as part of the CAPER experiment at the Tritium Laboratory Karlsruhe for several years. Various alternative PERMCAT mechanical designs were proposed and studied on small-scale prototypes. An upgraded technical PERMCAT reactor was designed, manufactured and commissioned with deuterium. A parallel arrangement of finger-type membranes inserted in a single catalyst bed design was chosen to simplify the geometry and the manufacturing while improving the robustness of the reactor. The component has been designed and manufactured to be fully tritium compatible and also fully compatible with both process and electrical connections of the previous PERMCAT to be replaced. The new PERMCAT mechanical design is more compact and easy to manufacture. This PERMCAT reactor was submitted to functional tests and experiments based on isotopic exchanges between H 2 O and D 2 to measure the processing performances. The first experimental results show decontamination factors versus flow rates better than all previously measured.

  1. Sodium fast reactors with closed fuel cycle

    CERN Document Server

    Raj, Baldev; Vasudeva Rao, PR 0

    2015-01-01

    Sodium Fast Reactors with Closed Fuel Cycle delivers a detailed discussion of an important technology that is being harnessed for commercial energy production in many parts of the world. Presenting the state of the art of sodium-cooled fast reactors with closed fuel cycles, this book:Offers in-depth coverage of reactor physics, materials, design, safety analysis, validations, engineering, construction, and commissioning aspectsFeatures a special chapter on allied sciences to highlight advanced reactor core materials, specialized manufacturing technologies, chemical sensors, in-service inspecti

  2. The chemistry of water reactor fuel

    International Nuclear Information System (INIS)

    Potter, P.E.

    1990-01-01

    In this paper, the authors discuss features of the changes in chemical constitution which occur in fuel and fuel rods for water reactors during operation and in fault conditions. The fuel for water reactors consists of pellets of urania (UO 2 ) clad in Zircaloy. An essential step in the prediction of the fate of all the radionuclides in a fault or accident is to possess a detailed knowledge of their chemical behavior at all stages of the development of such incidents. In this paper, the authors consider: the chemical constitution of fuel during operation at temperatures corresponding to rather low ratings, together with a quite detailed discussion of the chemistry within the fuel-clad gap; the behavior of fuel subjected to higher temperatures and ratings than those of contemporary fuel; and the changes in constitution on failure of fuel rods in fault or accident conditions

  3. Advanced materials: The key to attractive magnetic fusion power reactors

    International Nuclear Information System (INIS)

    Bloom, E.E.

    1992-01-01

    Fusion is one of the most attractive central station power sources from the viewpoint of potential safety and environmental impact characteristics. Studies also indicate that fusion can be economically competitive with other options such as fission reactors and fossil-fired power stations. However, to achieve this triad of characteristics we must develop advanced materials with properties tailored for performance in the various fusion reactor systems. This paper discusses the desired characteristics of materials and the status of materials technology in four critical areas: (1) structural material for the first wail and blanket (FWB), (2) plasma-facing materials, (3) materials for superconducting magnets, and (4) ceramics for electrical and structural applications

  4. Fusion reactor design: On the road to commercialization

    International Nuclear Information System (INIS)

    Kulcinski, G.L.

    1984-01-01

    The worldwide effort in fusion is now approximately 2 billion dollars per year and over 12 billion dollars has been invested since 1951 in developing this energy source for the 21st century. A vital component of the past efforts in fusion research has been the conceptual design activities performed by scientists and engineers around the world. Almost 80 such major designs of Tokamak, Mirror, Laser and Ion Beam Reactors have been published and this article discusses how recent conceptual designs have afftected our perception of future fusion reactor performance. (orig.) [de

  5. Advanced materials - the key to attractive magnetic fusion power reactors

    International Nuclear Information System (INIS)

    Bloom, E.E.

    1992-01-01

    Fusion is one of the most attractive central station power sources from the viewpoint of potential safety and environmental impact characteristics. Studies also indicate that fusion can be economically competitive with other options such as fission reactors and fossil-fired power stations. However, to achieve this triad of characteristics we must develop advanced materials with properties tailored for performance in the various fusion reactor systems. This paper discusses the desired characteristics of materials and the status of materials technology in four critical areas: (1) structural materials for the first wall and blanket (FWB), (2) plasmafacing materials, (3) materials for superconducting magnets, and (4) ceramics for electrical and structural applications. (author)

  6. Fusion reactor nucleonics: status and needs

    International Nuclear Information System (INIS)

    Lee, J.D.; Engholm, B.A.; Dudziak, D.J.; Haight, R.C.

    1980-01-01

    The national fusion technology effort has made a good start at addressing the basic nucleonics issues, but only a start. No fundamental nucleonics issues are seen as insurmountable barriers to the development of commercial fusion power. To date the fusion nucleonics effort has relied almost exclusively on other programs for nuclear data and codes. But as we progress through and beyond ETF type design studies the fusion program will need to support a broad based nucleonics effort including code development, sensitivity studies, integral experiments, data acquisition etc. It is clear that nucleonics issues are extremely important to fusion development and that we have only scratched the surface

  7. Feasibility study of a magnetic fusion production reactor

    Science.gov (United States)

    Moir, R. W.

    1986-12-01

    A magnetic fusion reactor can produce 10.8 kg of tritium at a fusion power of only 400 MW —an order of magnitude lower power than that of a fission production reactor. Alternatively, the same fusion reactor can produce 995 kg of plutonium. Either a tokamak or a tandem mirror production plant can be used for this purpose; the cost is estimated at about 1.4 billion (1982 dollars) in either case. (The direct costs are estimated at 1.1 billion.) The production cost is calculated to be 22,000/g for tritium and 260/g for plutonium of quite high purity (1%240Pu). Because of the lack of demonstrated technology, such a plant could not be constructed today without significant risk. However, good progress is being made in fusion technology and, although success in magnetic fusion science and engineering is hard to predict with assurance, it seems possible that the physics basis and much of the needed technology could be demonstrated in facilities now under construction. Most of the remaining technology could be demonstrated in the early 1990s in a fusion test reactor of a few tens of megawatts. If the Magnetic Fusion Energy Program constructs a fusion test reactor of approximately 400 MW of fusion power as a next step in fusion power development, such a facility could be used later as a production reactor in a spinoff application. A construction decision in the late 1980s could result in an operating production reactor in the late 1990s. A magnetic fusion production reactor (MFPR) has four potential advantages over a fission production reactor: (1) no fissile material input is needed; (2) no fissioning exists in the tritium mode and very low fissioning exists in the plutonium mode thus avoiding the meltdown hazard; (3) the cost will probably be lower because of the smaller thermal power required; (4) and no reprocessing plant is needed in the tritium mode. The MFPR also has two disadvantages: (1) it will be more costly to operate because it consumes rather than sells

  8. Brief review of the fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Tenney, F.H.

    1977-01-01

    Much of the conceptual framework of present day fusion-fission hybrid reactors is found in the original work of the early 1950's. Present day motivations for development are quite different. The role of the hybrid reactor is discussed as well as the current activities in the development program

  9. ELMO Bumpy Torus fusion-reactor design study

    International Nuclear Information System (INIS)

    Bathke, C.G.; Krakowski, R.A.

    1981-01-01

    A complete power plant design of a 1200-MWe ELMO Bumpy Torus Reactor (EBTR) is described that emphasizes those features that are unique to the EBT confinement concept, with subsystems and balance-of-plant items that are generic to magnetic fusion being adopted from past, more extensive tokamak reactor designs

  10. Systems studies of dual purpose electric/synthetic fuels fusion plants

    International Nuclear Information System (INIS)

    Beardsworth, E.; Powell, J.

    1975-02-01

    A reactor power plant is proposed that can meet base load electrical demand, while the remainder can generate synthetic fuels and meet intermittent electrical demands. Two principal objectives of this study are: (1) to examine how strongly various economic demand and resource factors affect the amount of installed CTR capacity, and (2) to examine what increase in CTR capacity can be expected with dual purpose electric/synthetic fuel fusion plants, and also the relative importance of the different production modes

  11. Fuel element shipping shim for nuclear reactor

    International Nuclear Information System (INIS)

    Gehri, A.

    1975-01-01

    A shim is described for use in the transportation of nuclear reactor fuel assemblies. It comprises a member preferably made of low density polyethylene designed to have three-point contact with the fuel rods of a fuel assembly and being of sufficient flexibility to effectively function as a shock absorber. The shim is designed to self-lock in place when associated with the fuel rods. (Official Gazette)

  12. CANDU reactors with reactor grade plutonium/thorium carbide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Suemer [Atilim Univ., Ankara (Turkey). Faculty of Engineering; Khan, Mohammed Javed; Ahmed, Rizwan [Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan); Gazi Univ., Ankara (Turkey). Faculty of Technology

    2011-08-15

    Reactor grade (RG) plutonium, accumulated as nuclear waste of commercial reactors can be re-utilized in CANDU reactors. TRISO type fuel can withstand very high fuel burn ups. On the other hand, carbide fuel would have higher neutronic and thermal performance than oxide fuel. In the present work, RG-PuC/ThC TRISO fuels particles are imbedded body-centered cubic (BCC) in a graphite matrix with a volume fraction of 60%. The fuel compacts conform to the dimensions of sintered CANDU fuel compacts are inserted in 37 zircolay rods to build the fuel zone of a bundle. Investigations have been conducted on a conventional CANDU reactor based on GENTILLYII design with 380 fuel bundles in the core. Three mixed fuel composition have been selected for numerical calculation; (1) 10% RG-PuC + 90% ThC; (2) 30% RG-PuC + 70% ThC; (3) 50% RG-PuC + 50% ThC. Initial reactor criticality values for the modes (1), (2) and (3) are calculated as k{sub {infinity}}{sub ,0} = 1.4848, 1.5756 and 1.627, respectively. Corresponding operation lifetimes are {proportional_to} 2.7, 8.4, and 15 years and with burn ups of {proportional_to} 72 000, 222 000 and 366 000 MW.d/tonne, respectively. Higher initial plutonium charge leads to higher burn ups and longer operation periods. In the course of reactor operation, most of the plutonium will be incinerated. At the end of life, remnants of plutonium isotopes would survive; and few amounts of uranium, americium and curium isotopes would be produced. (orig.)

  13. Methane impurity production in the fusion reactor environment

    International Nuclear Information System (INIS)

    Dawson, P.T.

    1984-11-01

    Fusion requires temperatures of the order of 10 8 degrees C. In order to attain the required temperature it will be essential to minimise the energy losses from the plasma. Impurities are a major cause of plasma cooling. Ionization of impurity species in the plasma leads to a subsequent decay and emission of radiation. The most common low Z contaminants to be consideed are water and methane produced by reaction of hydrogen isotopes with oxygen and carbon. This review focuses on the methane production problem. We will be concerned with the sources of carbon in the reactor and also with the reactivity of carbon with hydrogen molecules, atoms and ions and the synergistic effects which can arise from coincident fluxes of electrons and photons and the effects of radiation-induced damage of the materials involved. While the reactor first wall will provide the most hostile environment for methane producton, most of the reactions discussed can occur in breeder blankets and also in other tritium facilities such as fuel handling, purification and storage facilities

  14. Candu reactors with thorium fuel cycles

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Fehrenbach, P.; Duffey, R.; Kuran, S.; Ivanco, M.; Dyck, G.R.; Chan, P.S.W.; Tyagi, A.K.; Mancuso, C.

    2006-01-01

    Over the last decade and a half AECL has established a strong record of delivering CANDU 6 nuclear power plants on time and at budget. Inherently flexible features of the CANDU type reactors, such as on-power fuelling, high neutron economy, fuel channel based heat transport system, simple fuel bundle configuration, two independent shut down systems, a cool moderator and a defence-in-depth based safety philosophy provides an evolutionary path to further improvements in design. The immediate milestone on this path is the Advanced CANDU ReactorTM** (ACRTM**), in the form of the ACR-1000TM**. This effort is being followed by the Super Critical Water Reactor (SCWR) design that will allow water-cooled reactors to attain high efficiencies by increasing the coolant temperature above 550 0 C. Adaptability of the CANDU design to different fuel cycles is another technology advantage that offers an additional avenue for design evolution. Thorium is one of the potential fuels for future reactors due to relative abundance, neutronics advantage as a fertile material in thermal reactors and proliferation resistance. The Thorium fuel cycle is also of interest to China, India, and Turkey due to local abundance that can ensure sustainable energy independence over the long term. AECL has performed an assessment of both CANDU 6 and ACR-1000 designs to identify systems, components, safety features and operational processes that may need to be modified to replace the NU or SEU fuel cycles with one based on Thorium. The paper reviews some of these requirements and the associated practical design solutions. These modifications can either be incorporated into the design prior to construction or, for currently operational reactors, during a refurbishment outage. In parallel with reactor modifications, various Thorium fuel cycles, either based on mixed bundles (homogeneous) or mixed channels (heterogeneous) have been assessed for technical and economic viability. Potential applications of a

  15. New facilities in Japan materials testing reactor for irradiation test of fusion reactor components

    International Nuclear Information System (INIS)

    Kawamura, H.; Sagawa, H.; Ishitsuka, E.; Sakamoto, N.; Niiho, T.

    1996-01-01

    The testing and evaluation of fusion reactor components, i.e. blanket, plasma facing components (divertor, etc.) and vacuum vessel with neutron irradiation is required for the design of fusion reactor components. Therefore, four new test facilities were developed in the Japan Materials Testing Reactor: an in-pile functional testing facility, a neutron multiplication test facility, an electron beam facility, and a re-weldability facility. The paper describes these facilities

  16. United States Domestic Research Reactor Infrastructure - TRIGA Reactor Fuel Support

    International Nuclear Information System (INIS)

    Morrell, Douglas

    2008-01-01

    The purpose of the United State Domestic Research Reactor Infrastructure Program is to provide fresh nuclear reactor fuel to United States universities at no, or low, cost to the university. The title of the fuel remains with the United States government and when universities are finished with the fuel, the fuel is returned to the United States government. The program is funded by the United States Department of Energy - Nuclear Energy division, managed by Department of Energy - Idaho Field Office, and contracted to the Idaho National Laboratory's Management and Operations Contractor - Battelle Energy Alliance. Program has been at Idaho since 1977 and INL subcontracts with 26 United States domestic reactor facilities (13 TRIGA facilities, 9 plate fuel facilities, 2 AGN facilities, 1 Pulstar fuel facility, 1 Critical facility). University has not shipped fuel since 1968 and as such, we have no present procedures for shipping spent fuel. In addition: floor loading rate is unknown, many interferences must be removed to allow direct access to the reactor tank, floor space in the reactor cell is very limited, pavement ends inside our fence; some of the surface is not finished. The whole approach is narrow, curving and downhill. A truck large enough to transport the cask cannot pull into the lot and then back out (nearly impossible / refused by drivers); a large capacity (100 ton), long boom crane would have to be used due to loading dock obstructions. Access to the entrance door is on a sidewalk. The campus uses it as a road for construction equipment, deliveries and security response. Large trees are on both sides of sidewalk. Spent fuel shipments have never been done, no procedures approved or in place, no approved casks, no accident or safety analysis for spent fuel loading. Any cask assembly used in this facility will have to be removed from one crane, moved on the floor and then attached to another crane to get from the staging area to the reactor room. Reactor

  17. Fuel transfer system for a nuclear reactor

    International Nuclear Information System (INIS)

    Katz, L.R.; Marshall, J.R.; Desmarchais, W.E.

    1977-01-01

    Disclosed is a fuel transfer system for moving nuclear reactor fuel assemblies from a new fuel storage pit to a containment area containing the nuclear reactor, and for transferring spent fuel assemblies under water from the reactor to a spent fuel storage area. The system includes an underwater track which extends through a wall dividing the fuel building from the reactor containment and a car on the track serves as the vehicle for moving fuel assemblies between these two areas. The car is driven by a motor and linkage extending from an operating deck to a chain belt drive on the car. A housing pivotally mounted at its center on the car is hydraulically actuated to vertically receive a fuel assembly which then is rotated to a horizontal position to permit movement through the wall between the containment and fuel building areas. Return to the vertical position provides for fuel assembly removal and the reverse process is repeated when transferring an assembly in the opposite direction. Limit switches used in controlling operation of the system are designed to be replaced from the operating deck when necessary by tools designed for this purpose. 5 claims, 8 figures

  18. 8th International School of Fusion Reactor Technology "Ettore Majorana"

    CERN Document Server

    Leotta, G G; Muon-catalyzed fusion and fusion with polarized nuclei

    1988-01-01

    The International School of Fusion Reactor Technology started its courses 15 years ago and since then has mantained a biennial pace. Generally, each course has developed the subject which was announced in advance at the closing of the previous course. The subject to which the present proceedings refer was chosen in violation of that rule so as to satisfy the recent and diffuse interest in cold fusion among the main European laboratories involved in controlled thermonuclear research (CTR). In the second half of 1986 we started to prepare a workshop aimed at assessing the state of the art and possibly of the perspectives of muon- catalyzed fusion. Research in this field has recently produced exciting experimental results open to important practical applications. We thought it worthwhile to consider also the beneficial effects and problems of the polarization ofthe nuclei in both cold and thermonuclear fusion. In preparing the 8th Course on Fusion Reactor Technology, it was necessary to abandon the tradi...

  19. Nuclear fuels for material test reactors

    International Nuclear Information System (INIS)

    Ramanathan, L.V.; Durazzo, M.; Freitas, C.T. de

    1982-01-01

    Experimental results related do the development of nuclear fuels for reactors cooled and moderated by water have been presented cylindrical and plate type fuels have been described in which the core consists of U compouns dispersed in an Al matrix and is clad with aluminium. Fabrication details involving rollmilling, swaging or hot pressing have been described. Corrosion and irradiation test results are also discussed. The performance of the different types of fuels indicates that it is possible to locally fabricate fuel plates with U 3 O 8 +Al cores (20% enriched U) for use in operating Brazilian research reactors. (Author) [pt

  20. Fuel assembly for a nuclear reactor

    International Nuclear Information System (INIS)

    Gjertsen, R.K.

    1982-01-01

    A fuel assembly in a nuclear reactor comprises a locking mechanism that is capable of locking the fuel assembly to the core plate of a nuclear reactor to prevent inadvertent movement of the fuel assembly. The locking mechanism comprises a ratchet mechanism 108 that allows the fuel assembly to be easily locked to the core plate but prevents unlocking except when the ratchet is disengaged. The ratchet mechanism is coupled to the locking mechanism by a rotatable guide tube for a control rod or water displacer rod. (author)