WorldWideScience

Sample records for fusion reactor fueling

  1. Development of dynamic simulation code for fuel cycle fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Isao; Seki, Yasushi [Department of Fusion Engineering Research, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki (Japan); Sasaki, Makoto; Shintani, Kiyonori; Kim, Yeong-Chan

    1999-02-01

    A dynamic simulation code for fuel cycle of a fusion experimental reactor has been developed. The code follows the fuel inventory change with time in the plasma chamber and the fuel cycle system during 2 days pulse operation cycles. The time dependence of the fuel inventory distribution is evaluated considering the fuel burn and exhaust in the plasma chamber, purification and supply functions. For each subsystem of the plasma chamber and the fuel cycle system, the fuel inventory equation is written based on the equation of state considering the fuel burn and the function of exhaust, purification, and supply. The processing constants of subsystem for steady states were taken from the values in the ITER Conceptual Design Activity (CDA) report. Using this code, the time dependence of the fuel supply and inventory depending on the burn state and subsystem processing functions are shown. (author)

  2. Hybrid fusion reactor for production of nuclear fuel with minimum radioactive contamination of the fuel cycle

    Science.gov (United States)

    Velikhov, E. P.; Kovalchuk, M. V.; Azizov, E. A.; Ignatiev, V. V.; Subbotin, S. A.; Tsibulskiy, V. F.

    2015-12-01

    The paper presents the results of the system research on the coordinated development of nuclear and fusion power engineering in the current century. Considering the increasing problems of resource procurement, including limited natural uranium resources, it seems reasonable to use fusion reactors as high-power neutron sources for production of nuclear fuel in a blanket. It is shown that the share of fusion sources in this structural configuration of the energy system can be relatively small. A fundamentally important aspect of this solution to the problem of closure of the fuel cycle is that recycling of highly active spent fuel can be abandoned. Radioactivity released during the recycling of the spent fuel from the hybrid reactor blanket is at least two orders of magnitude lower than during the production of the same number of fissile isotopes after the recycling of the spent fuel from a fast reactor.

  3. Development of dynamic simulation code for fuel cycle of fusion reactor. 1. Single pulse operation simulation

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Isao; Seki, Yasushi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Sasaki, Makoto; Shintani, Kiyonori; Kim, Yeong-Chan

    1997-11-01

    A dynamic simulation code for the fuel cycle of a fusion experimental reactor has been developed. The code follows the fuel inventory change with time in the plasma chamber and the fuel cycle system during a single pulse operation. The time dependence of the fuel inventory distribution is evaluated considering the fuel burn and exhaust in the plasma chamber, purification and supply functions. For each subsystem of the plasma chamber and the fuel cycle system, the fuel inventory equation is written based on the equation of state considering the function of fuel burn, exhaust, purification, and supply. The processing constants of subsystem for the steady states were taken from the values in the ITER Conceptual Design Activity (CDA) report. Using the code, the time dependence of the fuel supply and inventory depending on the burn state and subsystem processing functions are shown. (author)

  4. Cryogenic hydrogen fuel for controlled inertial confinement fusion (formation of reactor-scale cryogenic targets)

    Science.gov (United States)

    Aleksandrova, I. V.; Koresheva, E. R.; Krokhin, O. N.; Osipov, I. E.

    2016-12-01

    In inertial fusion energy research, considerable attention has recently been focused on low-cost fabrication of a large number of targets by developing a specialized layering module of repeatable operation. The targets must be free-standing, or unmounted. Therefore, the development of a target factory for inertial confinement fusion (ICF) is based on methods that can ensure a cost-effective target production with high repeatability. Minimization of the amount of tritium (i.e., minimization of time and space at all production stages) is a necessary condition as well. Additionally, the cryogenic hydrogen fuel inside the targets must have a structure (ultrafine layers—the grain size should be scaled back to the nanometer range) that supports the fuel layer survivability under target injection and transport through the reactor chamber. To meet the above requirements, significant progress has been made at the Lebedev Physical Institute (LPI) in the technology developed on the basis of rapid fuel layering inside moving free-standing targets (FST), also referred to as the FST layering method. Owing to the research carried out at LPI, unique experience has been gained in the development of the FST-layering module for target fabrication with an ultrafine fuel layer, including a reactor- scale target design. This experience can be used for the development of the next-generation FST-layering module for construction of a prototype of a target factory for power laser facilities and inertial fusion power plants.

  5. Cryogenic hydrogen fuel for controlled inertial confinement fusion (formation of reactor-scale cryogenic targets)

    Energy Technology Data Exchange (ETDEWEB)

    Aleksandrova, I. V.; Koresheva, E. R., E-mail: elena.koresheva@gmail.com; Krokhin, O. N. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Osipov, I. E. [Power Efficiency Centre, Inter RAO UES (Russian Federation)

    2016-12-15

    In inertial fusion energy research, considerable attention has recently been focused on low-cost fabrication of a large number of targets by developing a specialized layering module of repeatable operation. The targets must be free-standing, or unmounted. Therefore, the development of a target factory for inertial confinement fusion (ICF) is based on methods that can ensure a cost-effective target production with high repeatability. Minimization of the amount of tritium (i.e., minimization of time and space at all production stages) is a necessary condition as well. Additionally, the cryogenic hydrogen fuel inside the targets must have a structure (ultrafine layers—the grain size should be scaled back to the nanometer range) that supports the fuel layer survivability under target injection and transport through the reactor chamber. To meet the above requirements, significant progress has been made at the Lebedev Physical Institute (LPI) in the technology developed on the basis of rapid fuel layering inside moving free-standing targets (FST), also referred to as the FST layering method. Owing to the research carried out at LPI, unique experience has been gained in the development of the FST-layering module for target fabrication with an ultrafine fuel layer, including a reactor- scale target design. This experience can be used for the development of the next-generation FST-layering module for construction of a prototype of a target factory for power laser facilities and inertial fusion power plants.

  6. Process Model of A Fusion Fuel Recovery System for a Direct Drive IFE Power Reactor

    Science.gov (United States)

    Natta, Saswathi; Aristova, Maria; Gentile, Charles

    2008-11-01

    A task has been initiated to develop a detailed representative model for the fuel recovery system (FRS) in the prospective direct drive inertial fusion energy (IFE) reactor. As part of the conceptual design phase of the project, a chemical process model is developed in order to observe the interaction of system components. This process model is developed using FEMLAB Multiphysics software with the corresponding chemical engineering module (CEM). Initially, the reactants, system structure, and processes are defined using known chemical species of the target chamber exhaust. Each step within the Fuel recovery system is modeled compartmentally and then merged to form the closed loop fuel recovery system. The output, which includes physical properties and chemical content of the products, is analyzed after each step of the system to determine the most efficient and productive system parameters. This will serve to attenuate possible bottlenecks in the system. This modeling evaluation is instrumental in optimizing and closing the fusion fuel cycle in a direct drive IFE power reactor. The results of the modeling are presented in this paper.

  7. Hydrogen Production in Fusion Reactors

    OpenAIRE

    Sudo, S.; Tomita, Y.; Yamaguchi, S.; Iiyoshi, A.; Momota, H; Motojima, O.; Okamoto, M.; Ohnishi, M.; Onozuka, M; Uenosono, C.

    1993-01-01

    As one of methods of innovative energy production in fusion reactors without having a conventional turbine-type generator, an efficient use of radiation produced in a fusion reactor with utilizing semiconductor and supplying clean fuel in a form of hydrogen gas are studied. Taking the candidates of reactors such as a toroidal system and an open system for application of the new concepts, the expected efficiency and a concept of plant system are investigated.

  8. Nuclear data requirements for fusion reactor nucleonics

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, M.R.; Abdou, M.A.

    1980-01-01

    Nuclear data requirements for fusion reactor nucleonics are reviewed and the present status of data are assessed. The discussion is divided into broad categories dealing with data for Fusion Materials Irradiation Test Facility (FMIT), D-T Fusion Reactors, Alternate Fuel Cycles and the Evaluated Data Files that are available or would be available in the near future.

  9. Georgia Tech Studies of Sub-Critical Advanced Burner Reactors with a D-T Fusion Tokamak Neutron Source for the Transmutation of Spent Nuclear Fuel

    Science.gov (United States)

    Stacey, W. M.

    2009-09-01

    The possibility that a tokamak D-T fusion neutron source, based on ITER physics and technology, could be used to drive sub-critical, fast-spectrum nuclear reactors fueled with the transuranics (TRU) in spent nuclear fuel discharged from conventional nuclear reactors has been investigated at Georgia Tech in a series of studies which are summarized in this paper. It is found that sub-critical operation of such fast transmutation reactors is advantageous in allowing longer fuel residence time, hence greater TRU burnup between fuel reprocessing stages, and in allowing higher TRU loading without compromising safety, relative to what could be achieved in a similar critical transmutation reactor. The required plasma and fusion technology operating parameter range of the fusion neutron source is generally within the anticipated operational range of ITER. The implications of these results for fusion development policy, if they hold up under more extensive and detailed analysis, is that a D-T fusion tokamak neutron source for a sub-critical transmutation reactor, built on the basis of the ITER operating experience, could possibly be a logical next step after ITER on the path to fusion electrical power reactors. At the same time, such an application would allow fusion to contribute to meeting the nation's energy needs at an earlier stage by helping to close the fission reactor nuclear fuel cycle.

  10. Transmutation of minor actinides discharged from LMFBR spent fuel in a high power density fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Uebeyli, Mustafa E-mail: mubeyli@gazi.edu.tr

    2004-12-01

    Significant amounts of nuclear wastes consisting of plutonium, minor actinides and long lived fission products are produced during the operation of commercial nuclear power plants. Therefore, the destruction of these wastes is very important with respect to public health, environment and also the future of nuclear energy. In this study, transmutation of minor actinides (MAs) discharged from LMFBR spent fuel in a high power density fusion reactor has been investigated under a neutron wall load of 10 MW/m{sup 2} for an operation period of 10 years. Also, the effect of MA percentage on the transmutation has been examined. The fuel zone, containing MAs as spheres cladded with W-5Re, has been located behind the first wall to utilize the high neutron flux for transmutation effectively. Helium at 40 atm has been used as an energy carrier. At the end of the operation period, the total burning and transmutation are greater than the total buildups in all investigated cases, and very high burnups (420-470 GWd/tHM) are reached, depending on the MA content. The total transmutation rate values are 906 and 979 kg/GW{sub th} year at startup and decrease to 140 and 178 kg/GW{sub th} year at the end of the operation for fuel with 10% and 20% MA, respectively. Over an operation period of 10 years, the effective half lives decrease from 2.38, 2.21 and 3.08 years to 1.95, 1.80 and 2.59 years for {sup 237}Np, {sup 241}Am and {sup 243}Am, respectively. Total atomic densities decrease exponentially during the operation period. The reductions in the total atomic densities with respect to the initial ones are 79%, 81%, 82%, 83%, 85% and 86% for 10%, 12%, 14%, 16%, 18% and 20% MAs, respectively.

  11. Hybrid reactors. [Fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R.W.

    1980-09-09

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of /sup 233/U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m/sup -2/, and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid.

  12. Hybrid fusion-fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    Science.gov (United States)

    Shmelev, A. N.; Kulikov, G. G.; Kurnaev, V. A.; Salahutdinov, G. H.; Kulikov, E. G.; Apse, V. A.

    2015-12-01

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the 231Pa-232U-233U-Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of 232U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.

  13. On the energy gain enhancement of DT+D3He fuel configuration in nuclear fusion reactor driven by heavy ion beams

    Directory of Open Access Journals (Sweden)

    S Khoshbinfar

    2016-09-01

    Full Text Available It is expected that advanced fuels be employed in the second generation of nuclear fusion reactors. Theoretical calculations show that in such a fuel, a high plasma temperature about 100 keV is a requisite for reaction rate improvement of nuclear fusion. However, creating such a temporal condition requires a more powerful driver than we have today. Here, introducing an optimal fuel configuration consisting of DT and D-3He layers, suitable for inertial fusion reactors and driven by heavy ion beams, the optimal energy gain conditions have been simulated and derived for 1.3 MJ system. It was found that, in this new fuel configuration, the ideal energy gain, is 22 percent more comparing with energy gain in corresponding single DT fuel layer. Moreover, the inner DT fuel layer contributed as an ignition trigger, while the outer D3He fuel acts as particle and radiation shielding as well as fuel layer.

  14. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed.

  15. Compact fusion reactors

    CERN Document Server

    CERN. Geneva

    2015-01-01

    Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using much smaller devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to tokamaks decreases the costs and building time of the reactors and this has allowed some private companies to enter the field, like EMC2, General Fusion, Helion Energy, Lawrenceville Plasma Physics and Lockheed Martin. Some of these companies are trying to demonstrate net energy production within the next few years. If they are successful their next step is to attempt to commercialize their technology. In this presentation an overview of compact fusion reactor concepts is given.

  16. Magnetic fusion reactor economics

    Energy Technology Data Exchange (ETDEWEB)

    Krakowski, R.A.

    1995-12-01

    An almost primordial trend in the conversion and use of energy is an increased complexity and cost of conversion systems designed to utilize cheaper and more-abundant fuels; this trend is exemplified by the progression fossil fission {yields} fusion. The present projections of the latter indicate that capital costs of the fusion ``burner`` far exceed any commensurate savings associated with the cheapest and most-abundant of fuels. These projections suggest competitive fusion power only if internal costs associate with the use of fossil or fission fuels emerge to make them either uneconomic, unacceptable, or both with respect to expensive fusion systems. This ``implementation-by-default`` plan for fusion is re-examined by identifying in general terms fusion power-plant embodiments that might compete favorably under conditions where internal costs (both economic and environmental) of fossil and/or fission are not as great as is needed to justify the contemporary vision for fusion power. Competitive fusion power in this context will require a significant broadening of an overly focused program to explore the physics and simbiotic technologies leading to more compact, simplified, and efficient plasma-confinement configurations that reside at the heart of an attractive fusion power plant.

  17. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on fusion reactor materials includes: (1) the study of the mechanical behaviour of structural materials under neutron irradiation (including steels, inconel, molybdenum, chromium); (2) the determination and modelling of the characteristics of irradiated first wall materials such as beryllium; (3) the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; (4) the study of the dismantling and waste disposal strategy for fusion reactors.; (5) a feasibility study for the testing of blanket modules under neutron radiation. Main achievements in these topical areas in the year 1999 are summarised.

  18. Self-ignition of an advanced fuel field-reversed configuration reactor by fusion product heating

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, M.; Ohi, S.; Okamoto, M.; Momota, H.; Wakabayashi, J.

    1987-09-01

    A self-ignition of a deuterium-deuterium (D-D)-/sup 3/He fuel field-reversed configuration (FRC) plasma by fusion product heating is studied by using the point plasma model, where an FRC plasma equilibrium is taken into account. It is numerically demonstrated that the D-D-/sup 3/He plasma can be evolved from a deuterium-tritium burning plasma in a controlled manner by means of a compression-decompression control as well as a fueling control. It is also indicated that the increase of a trapped flux is effective for suppressing the excessive elongation of a plasma during the transition. The proposed method may provide a solution to the problem on plasma heating to attain a D-D-/sup 3/He self-ignition.

  19. Fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1989-01-01

    This paper discuses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics.

  20. Fission-suppressed hybrid reactor: the fusion breeder

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R.W.; Lee, J.D.; Coops, M.S.

    1982-12-01

    Results of a conceptual design study of a /sup 233/U-producing fusion breeder are presented. The majority of the study was devoted to conceptual design and evaluation of a fission-suppressed blanket and to fuel cycle issues such as fuel reprocessing, fuel handling, and fuel management. Studies in the areas of fusion engineering, reactor safety, and economics were also performed.

  1. Accelerator based fusion reactor

    Science.gov (United States)

    Liu, Keh-Fei; Chao, Alexander Wu

    2017-08-01

    A feasibility study of fusion reactors based on accelerators is carried out. We consider a novel scheme where a beam from the accelerator hits the target plasma on the resonance of the fusion reaction and establish characteristic criteria for a workable reactor. We consider the reactions d+t\\to n+α,d+{{}3}{{H}\\text{e}}\\to p+α , and p+{{}11}B\\to 3α in this study. The critical temperature of the plasma is determined from overcoming the stopping power of the beam with the fusion energy gain. The needed plasma lifetime is determined from the width of the resonance, the beam velocity and the plasma density. We estimate the critical beam flux by balancing the energy of fusion production against the plasma thermo-energy and the loss due to stopping power for the case of an inert plasma. The product of critical flux and plasma lifetime is independent of plasma density and has a weak dependence on temperature. Even though the critical temperatures for these reactions are lower than those for the thermonuclear reactors, the critical flux is in the range of {{10}22}-{{10}24}~\\text{c}{{\\text{m}}-2}~{{\\text{s}}-1} for the plasma density {ρt}={{10}15}~\\text{c}{{\\text{m}}-3} in the case of an inert plasma. Several approaches to control the growth of the two-stream instability are discussed. We have also considered several scenarios for practical implementation which will require further studies. Finally, we consider the case where the injected beam at the resonance energy maintains the plasma temperature and prolongs its lifetime to reach a steady state. The equations for power balance and particle number conservation are given for this case.

  2. Nuclear Fusion Fuel Cycle Research Perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hongsuk; Koo, Daeseo; Park, Jongcheol; Kim, Yeanjin [KAERI, Daejeon (Korea, Republic of); Yun, Sei-Hun [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    As a part of the International Thermonuclear Experimental Reactor (ITER) Project, we at the Korea Atomic Energy Research Institute (KAERI) and our National Fusion Research Institute (NFRI) colleagues are investigating nuclear fusion fuel cycle hardware including a nuclear fusion fuel Storage and Delivery System (SDS). To have a better knowledge of the nuclear fusion fuel cycle, we present our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). To have better knowledge of the nuclear fusion fuel cycle, we presented our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). Our efforts to enhance the tritium confinement will be continued for the development of cleaner nuclear fusion power plants.

  3. Status and problems of fusion reactor development.

    Science.gov (United States)

    Schumacher, U

    2001-03-01

    Thermonuclear fusion of deuterium and tritium constitutes an enormous potential for a safe, environmentally compatible and sustainable energy supply. The fuel source is practically inexhaustible. Further, the safety prospects of a fusion reactor are quite favourable due to the inherently self-limiting fusion process, the limited radiologic toxicity and the passive cooling property. Among a small number of approaches, the concept of toroidal magnetic confinement of fusion plasmas has achieved most impressive scientific and technical progress towards energy release by thermonuclear burn of deuterium-tritium fuels. The status of thermonuclear fusion research activity world-wide is reviewed and present solutions to the complicated physical and technological problems are presented. These problems comprise plasma heating, confinement and exhaust of energy and particles, plasma stability, alpha particle heating, fusion reactor materials, reactor safety and environmental compatibility. The results and the high scientific level of this international research activity provide a sound basis for the realisation of the International Thermonuclear Experimental Reactor (ITER), whose goal is to demonstrate the scientific and technological feasibility of a fusion energy source for peaceful purposes.

  4. Packed fluidized bed blanket for fusion reactor

    Science.gov (United States)

    Chi, John W. H.

    1984-01-01

    A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.

  5. Fusion reactors for hydrogen production via electrolysis

    Science.gov (United States)

    Fillo, J. A.; Powell, J. R.; Steinberg, M.

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of 50 to 70% are projected for fusion reactors using high temperature blankets.

  6. SABR fusion-fission hybrid transmutation reactor design concept

    Science.gov (United States)

    Stacey, Weston

    2009-11-01

    A conceptual design has been developed for a sub-critical advanced burner reactor (SABR) consisting of i) a sodium cooled fast reactor fueled with the transuranics (TRU) from spent nuclear fuel, and ii) a D-T tokamak fusion neutron source based on ITER physics and technology. Subcritical operation enables more efficient transmutation fuel cycles in TRU fueled reactors (without compromising safety), which may be essential for significant reduction in high-level waste repository requirements. ITER will serve as the prototype for the fusion neutron source, which means SABRs could be implemented to help close the nuclear fuel cycle during the 2^nd quarter of the century.

  7. Fusion - An energy source for synthetic fuels

    Science.gov (United States)

    Fillo, J. A.; Powell, J.; Steinberg, M.

    1980-05-01

    An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of 50 to 70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

  8. Burning high-level TRU waste in fusion fission reactors

    National Research Council Canada - National Science Library

    Shen, Yaosong

    2016-01-01

    .... A new method of burning high-level transuranic (TRU) waste combined with Thorium–Uranium (Th–U) fuel in the subcritical reactors driven by external fusion neutron sources is proposed in this paper...

  9. Tritium management in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Galloway, T.R.

    1978-05-01

    This is a review paper covering the key environmental and safety issues and how they have been handled in the various magnetic and inertial confinement concepts and reference designs. The issues treated include: tritium accident analyses, tritium process control, occupational safety, HTO formation rate from the gas-phase, disposal of tritium contaminated wastes, and environmental impact--each covering the Joint European Tokamak (J.E.T. experiment), Tokamak Fusion Test Reactor (TFTR), Russian T-20, The Next Step (TNS) designs by Westinghouse/ORNL and General Atomic/ANL, the ANL and ORNL EPR's, the G.A. Doublet Demonstration Reactor, the Italian Fintor-D and the ORNL Demo Studies. There are also the following full scale plant reference designs: UWMAK-III, LASL's Theta Pinch Reactor Design (RTPR), Mirror Fusion Reactor (MFR), Tandem Mirror Reactor (TMR), and the Mirror Hybrid Reactor (MHR). There are four laser device breakeven experiments, SHIVA-NOVA, LLL reference designs, ORNL Laser Fusion power plant, the German ''Saturn,'' and LLL's Laser Fusion EPR I and II.

  10. Alternative approaches to fusion. [reactor design and reactor physics for Tokamak fusion reactors

    Science.gov (United States)

    Roth, R. J.

    1976-01-01

    The limitations of the Tokamak fusion reactor concept are discussed and various other fusion reactor concepts are considered that employ the containment of thermonuclear plasmas by magnetic fields (i.e., stellarators). Progress made in the containment of plasmas in toroidal devices is reported. Reactor design concepts are illustrated. The possibility of using fusion reactors as a power source in interplanetary space travel and electric power plants is briefly examined.

  11. Is Helium-3 hype, hyperbole or a hopeful fuel for the future. [Lunar He-3 extraction/production for earth fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mackowski, M.J.

    1989-08-01

    Sixty kilowatts of thermal power have been reached with deuterium/He-3 reaction on the JET reactor, and full scale study of the environmental impact of a tokamak D/He-3 reactor is now underway for NASA. He-3 is obtained from the decaying process undergone by tritium, but in nature, the source of He-3 is the sun. It is found in abundance in the lunar regolith. He-3 combines with deuterium in a fusion reaction generating very high amounts of energy, He-4 and protons. He-3 is economical; it could be moon mined and sold at a price comparable to oil. The energy released is roughly 70 percent efficient, and can be directly converted to electricity with solid-state converters. Also, reactors can be built cheaper, placed closer to cities, and maintained and decomissioned more easily than any other type of fission or fusion reactor, thus allowing faster commercialization and lower energy costs. He-3 is not very radioactive; however, the physics of its nuclear structure presents barriers to getting it to fuse. Other advantages of producing He-3 on the moon include obtaining gases necessary in moon colonies, and fuel for hydrogen rockets. Water, nickel and carbon-oxygen compounds can also be obtained that way.

  12. Fuel cycle for a fusion neutron source

    Science.gov (United States)

    Ananyev, S. S.; Spitsyn, A. V.; Kuteev, B. V.

    2015-12-01

    The concept of a tokamak-based stationary fusion neutron source (FNS) for scientific research (neutron diffraction, etc.), tests of structural materials for future fusion reactors, nuclear waste transmutation, fission reactor fuel production, and control of subcritical nuclear systems (fusion-fission hybrid reactor) is being developed in Russia. The fuel cycle system is one of the most important systems of FNS that provides circulation and reprocessing of the deuterium-tritium fuel mixture in all fusion reactor systems: the vacuum chamber, neutral injection system, cryogenic pumps, tritium purification system, separation system, storage system, and tritium-breeding blanket. The existing technologies need to be significantly upgraded since the engineering solutions adopted in the ITER project can be only partially used in the FNS (considering the capacity factor higher than 0.3, tritium flow up to 200 m3Pa/s, and temperature of reactor elements up to 650°C). The deuterium-tritium fuel cycle of the stationary FNS is considered. The TC-FNS computer code developed for estimating the tritium distribution in the systems of FNS is described. The code calculates tritium flows and inventory in tokamak systems (vacuum chamber, cryogenic pumps, neutral injection system, fuel mixture purification system, isotope separation system, tritium storage system) and takes into account tritium loss in the fuel cycle due to thermonuclear burnup and β decay. For the two facility versions considered, FNS-ST and DEMO-FNS, the amount of fuel mixture needed for uninterrupted operation of all fuel cycle systems is 0.9 and 1.4 kg, consequently, and the tritium consumption is 0.3 and 1.8 kg per year, including 35 and 55 g/yr, respectively, due to tritium decay.

  13. Metallic fuels for advanced reactors

    Science.gov (United States)

    Carmack, W. J.; Porter, D. L.; Chang, Y. I.; Hayes, S. L.; Meyer, M. K.; Burkes, D. E.; Lee, C. B.; Mizuno, T.; Delage, F.; Somers, J.

    2009-07-01

    In the framework of the Generation IV Sodium Fast Reactor Program, the Advanced Fuel Project has conducted an evaluation of the available fuel systems supporting future sodium cooled fast reactors. This paper presents an evaluation of metallic alloy fuels. Early US fast reactor developers originally favored metal alloy fuel due to its high fissile density and compatibility with sodium. The goal of fast reactor fuel development programs is to develop and qualify a nuclear fuel system that performs all of the functions of a conventional fast spectrum nuclear fuel while destroying recycled actinides. This will provide a mechanism for closure of the nuclear fuel cycle. Metal fuels are candidates for this application, based on documented performance of metallic fast reactor fuels and the early results of tests currently being conducted in US and international transmutation fuel development programs.

  14. Fuel cycle for a fusion neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Ananyev, S. S., E-mail: Ananyev-SS@nrcki.ru; Spitsyn, A. V., E-mail: spitsyn-av@nrcki.ru; Kuteev, B. V., E-mail: Kuteev-BV@nrcki.ru [National Research Center Kurchatov Institute (Russian Federation)

    2015-12-15

    The concept of a tokamak-based stationary fusion neutron source (FNS) for scientific research (neutron diffraction, etc.), tests of structural materials for future fusion reactors, nuclear waste transmutation, fission reactor fuel production, and control of subcritical nuclear systems (fusion–fission hybrid reactor) is being developed in Russia. The fuel cycle system is one of the most important systems of FNS that provides circulation and reprocessing of the deuterium–tritium fuel mixture in all fusion reactor systems: the vacuum chamber, neutral injection system, cryogenic pumps, tritium purification system, separation system, storage system, and tritium-breeding blanket. The existing technologies need to be significantly upgraded since the engineering solutions adopted in the ITER project can be only partially used in the FNS (considering the capacity factor higher than 0.3, tritium flow up to 200 m{sup 3}Pa/s, and temperature of reactor elements up to 650°C). The deuterium–tritium fuel cycle of the stationary FNS is considered. The TC-FNS computer code developed for estimating the tritium distribution in the systems of FNS is described. The code calculates tritium flows and inventory in tokamak systems (vacuum chamber, cryogenic pumps, neutral injection system, fuel mixture purification system, isotope separation system, tritium storage system) and takes into account tritium loss in the fuel cycle due to thermonuclear burnup and β decay. For the two facility versions considered, FNS-ST and DEMO-FNS, the amount of fuel mixture needed for uninterrupted operation of all fuel cycle systems is 0.9 and 1.4 kg, consequently, and the tritium consumption is 0.3 and 1.8 kg per year, including 35 and 55 g/yr, respectively, due to tritium decay.

  15. (Meeting on fusion reactor materials)

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.H. (Pacific Northwest Lab., Richland, WA (USA)); Klueh, R.L.; Rowcliffe, A.F.; Wiffen, F.W. (Oak Ridge National Lab., TN (USA)); Loomis, B.A. (Argonne National Lab., IL (USA))

    1990-11-01

    During his visit to the KfK, Karlsruhe, F. W. Wiffen attended the IEA 12th Working Group Meeting on Fusion Reactor Materials. Plans were made for a low-activation materials workshop at Culham, UK, for April 1991, a data base workshop in Europe for June 1991, and a molecular dynamics workshop in the United States in 1991. At the 11th IEA Executive Committee on Fusion Materials, discussions centered on the recent FPAC and Colombo panel review in the United States and EC, respectively. The Committee also reviewed recent progress toward a neutron source in the United States (CWDD) and in Japan (ESNIT). A meeting with D. R. Harries (consultant to J. Darvas) yielded a useful overview of the EC technology program for fusion. Of particular interest to the US program is a strong effort on a conventional ferritic/martensitic steel for fist wall/blanket operation beyond NET/ITER.

  16. Studies in fusion reactor technology. Progress report, June 1, 1975--June 30, 1976. [Hydrogen permeation through first wall, radiolytic fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Axtmann, R C; Perkins, H K; Noda, T; Fish, J D

    1976-01-01

    Two investigations are described that are pertinent to hydrogen hold-up and re-emission in the first wall of fusion reactors. The first employs existing theory to calculate the range distributions for light ions normally incident on metallic targets at energies of one to 20 keV. Three different statistical atomic potentials were used to approximate the interaction between a swift atom and a target atom. A surface correction to the theory of ion penetration was developed to account for the presence of a free surface in the target. The second study employed the diffusion equation to calculate the time dependent fluxes and concentration profiles of a gas originating at a planar source within a finite slab. The purpose of this procedure was to model the transport of gas implanted beneath a metal surface by the impingement of energetic, gaseous ions. Some studies on radiolytic fuel production are briefly reviewed. (MOW)

  17. Fusion reactors-high temperature electrolysis (HTE)

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J.A. (ed.)

    1978-01-01

    Results of a study to identify and develop a reference design for synfuel production based on fusion reactors are given. The most promising option for hydrogen production was high-temperature electrolysis (HTE). The main findings of this study are: 1. HTE has the highest potential efficiency for production of synfuels from fusion; a fusion to hydrogen energy efficiency of about 70% appears possible with 1800/sup 0/C HTE units and 60% power cycle efficiency; an efficiency of about 50% possible with 1400/sup 0/C HTE units and 40% power cycle efficiency. 2. Relative to thermochemical or direct decomposition methods HTE technology is in a more advanced state of development, 3. Thermochemical or direct decomposition methods must have lower unit process or capital costs if they are to be more attractive than HTE. 4. While design efforts are required, HTE units offer the potential to be quickly run in reverse as fuel cells to produce electricity for restart of Tokamaks and/or provide spinning reserve for a grid system. 5. Because of the short timescale of the study, no detailed economic evaluation could be carried out.A comparison of costs could be made by employing certain assumptions. For example, if the fusion reactor-electrolyzer capital installation is $400/(KW(T) ($1000/KW(E) equivalent), the H/sub 2/ energy production cost for a high efficiency (about 70 %) fusion-HTE system is on the same order of magnitude as a coal based SNG plant based on 1976 dollars. 6. The present reference design indicates that a 2000 MW(th) fusion reactor could produce as much at 364 x 10/sup 6/ scf/day of hydrogen which is equivalent in heating value to 20,000 barrels/day of gasoline. This would fuel about 500,000 autos based on average driving patterns. 7. A factor of three reduction in coal feed (tons/day) could be achieved for syngas production if hydrogen from a fusion-HTE system were used to gasify coal, as compared to a conventional syngas plant using coal-derived hydrogen.

  18. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    Energy Technology Data Exchange (ETDEWEB)

    Koch, M.; Kazimi, M.S.

    1991-04-01

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed.

  19. REACTOR FUEL ELEMENTS TESTING CONTAINER

    Science.gov (United States)

    Whitham, G.K.; Smith, R.R.

    1963-01-15

    This patent shows a method for detecting leaks in jacketed fuel elements. The element is placed in a sealed tank within a nuclear reactor, and, while the reactor operates, the element is sparged with gas. The gas is then led outside the reactor and monitored for radioactive Xe or Kr. (AEC)

  20. Fusion-Fission Hybrid for Fissile Fuel Production without Processing

    Energy Technology Data Exchange (ETDEWEB)

    Fratoni, M; Moir, R W; Kramer, K J; Latkowski, J F; Meier, W R; Powers, J J

    2012-01-02

    Two scenarios are typically envisioned for thorium fuel cycles: 'open' cycles based on irradiation of {sup 232}Th and fission of {sup 233}U in situ without reprocessing or 'closed' cycles based on irradiation of {sup 232}Th followed by reprocessing, and recycling of {sup 233}U either in situ or in critical fission reactors. This study evaluates a third option based on the possibility of breeding fissile material in a fusion-fission hybrid reactor and burning the same fuel in a critical reactor without any reprocessing or reconditioning. This fuel cycle requires the hybrid and the critical reactor to use the same fuel form. TRISO particles embedded in carbon pebbles were selected as the preferred form of fuel and an inertial laser fusion system featuring a subcritical blanket was combined with critical pebble bed reactors, either gas-cooled or liquid-salt-cooled. The hybrid reactor was modeled based on the earlier, hybrid version of the LLNL Laser Inertial Fusion Energy (LIFE1) system, whereas the critical reactors were modeled according to the Pebble Bed Modular Reactor (PBMR) and the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) design. An extensive neutronic analysis was carried out for both the hybrid and the fission reactors in order to track the fuel composition at each stage of the fuel cycle and ultimately determine the plant support ratio, which has been defined as the ratio between the thermal power generated in fission reactors and the fusion power required to breed the fissile fuel burnt in these fission reactors. It was found that the maximum attainable plant support ratio for a thorium fuel cycle that employs neither enrichment nor reprocessing is about 2. This requires tuning the neutron energy towards high energy for breeding and towards thermal energy for burning. A high fuel loading in the pebbles allows a faster spectrum in the hybrid blanket; mixing dummy carbon pebbles with fuel pebbles enables a softer spectrum in

  1. Fuel Fabrication and Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    The uranium from the enrichment plant is still in the form of UF6. UF6 is not suitable for use in a reactor due to its highly corrosive chemistry as well as its phase diagram. UF6 is converted into UO2 fuel pellets, which are in turn placed in fuel rods and assemblies. Reactor designs are variable in moderators, coolants, fuel, performance etc.The dream of energy ‘too-cheap to meter’ is no more, and now the nuclear power industry is pushing ahead with advanced reactor designs.

  2. Proliferation Resistant Nuclear Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gray, L W; Moody, K J; Bradley, K S; Lorenzana, H E

    2011-02-18

    Global appetite for fission power is projected to grow dramatically this century, and for good reason. Despite considerable research to identify new sources of energy, fission remains the most plentiful and practical alternative to fossil fuels. The environmental challenges of fossil fuel have made the fission power option increasingly attractive, particularly as we are forced to rely on reserves in ecologically fragile or politically unstable corners of the globe. Caught between a globally eroding fossil fuel reserve as well as the uncertainty and considerable costs in the development of fusion power, most of the world will most likely come to rely on fission power for at least the remainder of the 21st century. Despite inevitable growth, fission power faces enduring challenges in sustainability and security. One of fission power's greatest hurdles to universal acceptance is the risk of potential misuse for nefarious purposes of fissionable byproducts in spent fuel, such as plutonium. With this issue in mind, we have discussed intrinsic concepts in this report that are motivated by the premise that the utility, desirability, and applicability of nuclear materials can be reduced. In a general sense, the intrinsic solutions aim to reduce or eliminate the quantity of existing weapons usable material; avoid production of new weapons-usable material through enrichment, breeding, extraction; or employ engineering solutions to make the fuel cycle less useful or more difficult for producing weapons-usable material. By their nature, these schemes require modifications to existing fuel cycles. As such, the concomitants of these modifications require engagement from the nuclear reactor and fuel-design community to fully assess their effects. Unfortunately, active pursuit of any scheme that could further complicate the spread of domestic nuclear power will probably be understandably unpopular. Nevertheless, the nonproliferation and counterterrorism issues are paramount

  3. Materials issues in fusion reactors

    Science.gov (United States)

    Suri, A. K.; Krishnamurthy, N.; Batra, I. S.

    2010-02-01

    The world scientific community is presently engaged in one of the toughest technological tasks of the current century, namely, exploitation of nuclear fusion in a controlled manner for the benefit of mankind. Scientific feasibility of controlled fusion of the light elements in plasma under magnetic confinement has already been proven. International efforts in a coordinated and co-operative manner are presently being made to build ITER - the International Thermonuclear Experimental Reactor - to test, in this first step, the concept of 'Tokamak' for net fusion energy production. To exploit this new developing option of making energy available through the route of fusion, India too embarked on a robust fusion programme under which we now have a working tokamak - the Aditya and a steady state tokamak (SST-1), which is on the verge of functioning. The programme envisages further development in terms of making SST-2 followed by a DEMO and finally the fusion power reactor. Further, with the participation of India in the ITER program in 2005, and recent allocation of half - a - port in ITER for placing our Lead - Lithium Ceramic Breeder (LLCB) based Test Blanket Module (TBM), meant basically for breeding tritium and extracting high grade heat, the need to understand and address issues related to materials for these complex systems has become all the more necessary. Also, it is obvious that with increasing power from the SST stages to DEMO and further to PROTOTYPE, the increasing demands on performance of materials would necessitate discovery and development of new materials. Because of the 14.1 MeV neutrons that are generated in the D+T reaction exploited in a tokamak, the materials, especially those employed for the construction of the first wall, the diverter and the blanket segments, suffer crippling damage due to the high He/dpa ratios that result due to the high energy of the neutrons. To meet this challenge, the materials that need to be developed for the tokamaks

  4. A fusion reactor for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Kammash, T.; Galbraith, D.L.

    1987-07-01

    A novel approach to fusion power that combines the favorable aspects of magnetic and inertial confinements has recently been proposed in the ''magnetically insulated inertial confinement fusion'' (MICF) reactor. In contrast to conventional inertial confinement schemes, this approach relies on generating the needed plasma inside of a spherical shell by zapping the inside surface of a hollow pellet with an intense laser beam. Physical confinement is provided by the metallic shell that surrounds the deuterium-tritium fuel-coated inner surface, while very strong, plasma-generated magnetic fields provide the desired thermal insulation of the plasma from the surrounding surface. Because of these unique properties, the inertial confinement time can be increased by about two orders of magnitude relative to that of conventional inertial confinement schemes, with the result that truly impressive energy multiplication factors can result. Carbon dioxide lasers of hundreds of kilojoules may be readily employed for such reactors, and, since they are relatively efficient and can be chemically driven, these systems lend themselves nicely to such space applications as space-based power sources or rocket propulsion.

  5. Compound cryopump for fusion reactors

    CERN Document Server

    Kovari, M; Shephard, T

    2013-01-01

    We reconsider an old idea: a three-stage compound cryopump for use in fusion reactors such as DEMO. The helium "ash" is adsorbed on a 4.5 K charcoal-coated surface, while deuterium and tritium are adsorbed at 15-22 K on a second charcoal-coated surface. The helium is released by raising the first surface to ~30 K. In a separate regeneration step, deuterium and tritium are released at ~110 K. In this way, the helium can be pre-separated from other species. In the simplest design, all three stages are in the same vessel, with a single valve to close the pump off from the tokamak during regeneration. In an alternative design, the three stages are in separate vessels, connected by valves, allowing the stages to regenerate without interfering with each other. The inclusion of the intermediate stage would not affect the overall pumping speed significantly. The downstream exhaust processing system could be scaled down, as much of the deuterium and tritium could be returned directly to the reactor. This could reduce ...

  6. Polarized fuel for controlled thermonuclear fusion

    Science.gov (United States)

    Bartalucci, Sergio

    2017-07-01

    The use of polarized nuclei as a fuel for thermonuclear fusion reactors was suggested more than 30 years ago, providing evidence for a significant increase of the total cross section. In particular, an enhancement factor close to 1.5 is expected in the energy range below 100 keV for the dominant nuclear fusion reactions 2H + 3H → 4He + n + 17.58 MeV and 2H + 3He → 4He + p + 18.34 MeV. Furthermore, the use of polarized fuel allows one to control the ejectile trajectories, via an enhancement in the forward-backward cross section asymmetry due to polarization. This allows some control on the energy transfer from the plasma to the reactor wall or helps concentrate the neutron flux to defined wall areas. Nevertheless, this idea was received with skepticism by the relevant scientific community, due to some uncertainty in the physics of the process, the low efficiency in the production of polarized beams for injection into plasma and the apparent difficulty of preserving the ion polarization for a time long compared with nuclear burning time. But more recently, as a consequence of significant progress in the field of atomic beam sources and polarized targets, the interest in this matter has been refreshed for both inertially and magnetically confined plasmas. The possibility of implementing nuclear polarization in present and future fusion reactors is discussed in this paper. In particular, the interaction between polarized ions and magnetic fields, both static and RF, which are typically used in a Tokamak for plasma heating via ion cyclotron resonance (ICRH), is considered. Also, experimental issues for practically performing a feasibility test on a real fusion reactors are illustrated.

  7. 1: the atom. 2: radioactivity. 3: man and radiations. 4: the energy. 5: nuclear energy: fusion and fission. 6: the operation of a nuclear reactor. 7: the nuclear fuel cycle; 1: l'atome. 2: la radioactivite. 3: l'homme et les rayonnements. 4: l'energie. 5: l'energie nucleaire: fusion et fission. 6: le fonctionnement d'un reacteur nucleaire. 7: le cycle du combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This series of 7 digest booklets present the bases of the nuclear physics and of the nuclear energy: 1 - the atom (structure of matter, chemical elements and isotopes, the four fundamental interactions, nuclear physics); 2 - radioactivity (definition, origins of radioelements, applications of radioactivity); 3 - man and radiations (radiations diversity, biological effects, radioprotection, examples of radiation applications); 4 - energy (energy states, different forms of energy, characteristics); 5 - nuclear energy: fusion and fission (nuclear energy release, thermonuclear fusion, nuclear fission and chain reaction); 6 - operation of a nuclear reactor (nuclear fission, reactor components, reactor types); 7 - nuclear fuel cycle (nuclear fuel preparation, fuel consumption, reprocessing, wastes management). (J.S.)

  8. External fuel thermionic reactor system.

    Science.gov (United States)

    Mondt, J. F.; Peelgren, M. L.

    1971-01-01

    Thermionic reactors are prime candidates for nuclear electric propulsion. The national thermionic reactor effort is concentrated on the flashlight concept with the external-fuel concept as the backup. The external-fuel concept is very adaptable to a completely modular power subsystem which is attractive for highly reliable long-life applications. The 20- to 25-cm long, externally-fueled converters have been designed, fabricated, and successfully tested with many thermal cycles by electrical heating. However, difficulties have been encountered during encapsulation for nuclear heated tests and none have been started to date. These nuclear tests are required to demonstrate the concept feasibility.

  9. Gaseous fuel nuclear reactor research

    Science.gov (United States)

    Schwenk, F. C.; Thom, K.

    1975-01-01

    Gaseous-fuel nuclear reactors are described; their distinguishing feature is the use of fissile fuels in a gaseous or plasma state, thereby breaking the barrier of temperature imposed by solid-fuel elements. This property creates a reactor heat source that may be able to heat the propellant of a rocket engine to 10,000 or 20,000 K. At this temperature level, gas-core reactors would provide the breakthrough in propulsion needed to open the entire solar system to manned and unmanned spacecraft. The possibility of fuel recycling makes possible efficiencies of up to 65% and nuclear safety at reduced cost, as well as high-thrust propulsion capabilities with specific impulse up to 5000 sec.

  10. Generic Magnetic Fusion Reactor Revisited

    Science.gov (United States)

    Sheffield, John; Milora, Stanley

    2015-11-01

    The original Generic Magnetic Fusion Reactor paper was published in 1986. This update describes what has changed in 30 years. Notably, the construction of ITER is providing important benchmark numbers for technologies and costs. In addition, we use a more conservative neutron wall flux and fluence. But these cost-increasing factors are offset by greater optimism on the thermal-electric conversion efficiency and potential availability. The main examples show the cost of electricity (COE) as a function of aspect ratio and neutron flux to the first wall. The dependence of the COE on availability, thermo-electric efficiency, electrical power output, and the present day's low interest rates is also discussed. Interestingly, at fixed aspect ratio there is a shallow minimum in the COE at neutron flux around 2.5 MW/m2. The possibility of operating with only a small COE penalty at even lower wall loadings (to 1.0 MW/m2 at larger plant size) and the use of niobium-titanium coils are also investigated. J. Sheffield was supported by ORNL subcontract 4000088999 with the University of Tennessee.

  11. Nuclear reactors and fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100{sup th} nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U{sub 3}O{sub 8} were replaced by U{sub 3}Si{sub 2}-based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to

  12. Radiochemical problems of fusion reactors. 1. Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, M.B.A.

    1984-02-01

    A list of fusion reactor candidate materials is given, for use in connection with blanket structure, breeding, moderation, neutron multiplication, cooling, magnetic field generation, electrical insulation and radiation shielding. The phenomena being studied for each group of materials are indicated. Suitable irradiation test facilities are discussed under the headings (1) accelerator-based neutron sources, (2) fission reactors, and (3) ion accelerators.

  13. Burning high-level TRU waste in fusion fission reactors

    Science.gov (United States)

    Shen, Yaosong

    2016-09-01

    Recently, the concept of actinide burning instead of a once-through fuel cycle for disposing spent nuclear fuel seems to get much more attention. A new method of burning high-level transuranic (TRU) waste combined with Thorium-Uranium (Th-U) fuel in the subcritical reactors driven by external fusion neutron sources is proposed in this paper. The thorium-based TRU fuel burns all of the long-lived actinides via a hard neutron spectrum while outputting power. A one-dimensional model of the reactor concept was built by means of the ONESN_BURN code with new data libraries. The numerical results included actinide radioactivity, biological hazard potential, and much higher burnup rate of high-level transuranic waste. The comparison of the fusion-fission reactor with the thermal reactor shows that the harder neutron spectrum is more efficient than the soft. The Th-U cycle produces less TRU, less radiotoxicity and fewer long-lived actinides. The Th-U cycle provides breeding of 233U with a long operation time (>20 years), hence significantly reducing the reactivity swing while improving safety and burnup.

  14. Nuclear reactor composite fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, Donn M. (Richland, WA); Marr, Duane R. (West Richland, WA); Cappiello, Michael W. (Richland, WA); Omberg, Ronald P. (Richland, WA)

    1980-01-01

    A core and composite fuel assembly for a liquid-cooled breeder nuclear reactor including a plurality of elongated coextending driver and breeder fuel elements arranged to form a generally polygonal bundle within a thin-walled duct. The breeder elements are larger in cross section than the driver elements, and each breeder element is laterally bounded by a number of the driver elements. Each driver element further includes structure for spacing the driver elements from adjacent fuel elements and, where adjacent, the thin-walled duct. A core made up of the fuel elements can advantageously include fissile fuel of only one enrichment, while varying the effective enrichment of any given assembly or core region, merely by varying the relative number and size of the driver and breeder elements.

  15. Cold nuclear fusion reactor and nuclear fusion rocket

    Directory of Open Access Journals (Sweden)

    Huang Zhenqiang

    2013-10-01

    Full Text Available "Nuclear restraint inertial guidance directly hit the cold nuclear fusion reactor and ion speed dc transformer" [1], referred to as "cold fusion reactor" invention patents, Chinese Patent Application No. CN: 200910129632.7 [2]. The invention is characterized in that: at room temperature under vacuum conditions, specific combinations of the installation space of the electromagnetic field, based on light nuclei intrinsic magnetic moment and the electric field, the first two strings of the nuclei to be bound fusion on the same line (track of. Re-use nuclear spin angular momentum vector inherent nearly the speed of light to form a super strong spin rotation gyro inertial guidance features, to overcome the Coulomb repulsion strong bias barrier to achieve fusion directly hit. Similar constraints apply nuclear inertial guidance mode for different speeds and energy ion beam mixing speed, the design of ion speed dc transformer is cold fusion reactors, nuclear fusion engines and such nuclear power plants and power delivery systems start important supporting equipment, so apply for a patent merger

  16. The first fusion reactor: ITER

    Science.gov (United States)

    Campbell, D. J.

    2016-11-01

    Established by the signature of the ITER Agreement in November 2006 and currently under construction at St Paul-lez-Durance in southern France, the ITER project [1,2] involves the European Union (including Switzerland), China, India, Japan, the Russian Federation, South Korea and the United States. ITER (`the way' in Latin) is a critical step in the development of fusion energy. Its role is to provide an integrated demonstration of the physics and technology required for a fusion power plant based on magnetic confinement.

  17. Fast Reactor Fuel Type and Reactor Safety Performance

    Energy Technology Data Exchange (ETDEWEB)

    R. Wigeland; J. Cahalan

    2009-09-01

    Fast Reactor Fuel Type and Reactor Safety Performance R. Wigeland , Idaho National Laboratory J. Cahalan, Argonne National Laboratory The sodium-cooled fast neutron reactor is currently being evaluated for the efficient transmutation of the highly-hazardous, long-lived, transuranic elements that are present in spent nuclear fuel. One of the fundamental choices that will be made is the selection of the fuel type for the fast reactor, whether oxide, metal, carbide, nitride, etc. It is likely that a decision on the fuel type will need to be made before many of the related technologies and facilities can be selected, from fuel fabrication to spent fuel reprocessing. A decision on fuel type should consider all impacts on the fast reactor system, including safety. Past work has demonstrated that the choice of fuel type may have a significant impact on the severity of consequences arising from accidents, especially for severe accidents of low probability. In this paper, the response of sodium-cooled fast reactors is discussed for both oxide and metal fuel types, highlighting the similarities and differences in reactor response and accident consequences. Any fast reactor facility must be designed to be able to successfully prevent, mitigate, or accommodate all consequences of potential events, including accidents. This is typically accomplished by using multiple barriers to the release of radiation, including the cladding on the fuel, the intact primary cooling system, and most visibly the reactor containment building. More recently, this has also included the use of ‘inherent safety’ concepts to reduce or eliminate the potential for serious damage in some cases. Past experience with oxide and metal fuel has demonstrated that both fuel types are suitable for use as fuel in a sodium-cooled fast reactor. However, safety analyses for these two fuel types have also shown that there can be substantial differences in accident consequences due to the neutronic and

  18. Stationary Liquid Fuel Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Won Sik [Purdue Univ., West Lafayette, IN (United States); Grandy, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Boroski, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Krajtl, Lubomir [Argonne National Lab. (ANL), Argonne, IL (United States); Johnson, Terry [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-30

    For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named SLFFR (Stationary Liquid Fuel Fast Reactor) was proposed based on stationary molten metallic fuel. The fuel enters the reactor vessel in a solid form, and then it is heated to molten temperature in a small melting heater. The fuel is contained within a closed, thick container with penetrating coolant channels, and thus it is not mixed with coolant nor flow through the primary heat transfer circuit. The makeup fuel is semi- continuously added to the system, and thus a very small excess reactivity is required. Gaseous fission products are also removed continuously, and a fraction of the fuel is periodically drawn off from the fuel container to a processing facility where non-gaseous mixed fission products and other impurities are removed and then the cleaned fuel is recycled into the fuel container. A reference core design and a preliminary plant system design of a 1000 MWt TRU- burning SLFFR concept were developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches were adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses were performed to develop a reference core design. Region-dependent 33-group cross sections were generated based on the ENDF/B-VII.0 data using the MC2-3 code. Core and fuel cycle analyses were performed in theta-r-z geometries using the DIF3D and REBUS-3 codes. Reactivity coefficients and kinetics parameters were calculated using the VARI3D perturbation theory code. Thermo-fluidic analyses were performed using the ANSYS FLUENT computational fluid dynamics (CFD) code. Figure 0.1 shows a schematic radial layout of the reference 1000 MWt SLFFR core, and Table 0.1 summarizes the main design parameters of SLFFR-1000 loop plant. The fuel container is a 2.5 cm thick cylinder with an inner radius of 87.5 cm. The fuel

  19. Dynamical Safety Analysis of the SABR Fusion-Fission Hybrid Reactor

    Science.gov (United States)

    Sumner, Tyler; Stacey, Weston; Ghiaassian, Seyed

    2009-11-01

    A hybrid fusion-fission reactor for the transmutation of spent nuclear fuel is being developed at Georgia Tech. The Subcritical Advanced Burner Reactor (SABR) is a 3000 MWth sodium-cooled, metal TRU-Zr fueled fast reactor driven by a tokamak fusion neutron source based on ITER physics and technology. We are investigating the accident dynamics of SABR's coupled fission, fusion and heat removal systems to explore the safety characteristics of a hybrid reactor. Possible accident scenarios such as loss of coolant mass flow (LOFA), of power (LOPA) and of heat sink (LOHSA), as well as inadvertent reactivity insertions and fusion source excursion are being analyzed using the RELAP5-3D code, the ATHENA version of which includes liquid metal coolants.

  20. Advanced research reactor fuel development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Kyu; Pak, H. D.; Kim, K. H. [and others

    2000-05-01

    The fabrication technology of the U{sub 3}Si fuel dispersed in aluminum for the localization of HANARO driver fuel has been launches. The increase of production yield of LEU metal, the establishment of measurement method of homogeneity, and electron beam welding process were performed. Irradiation test under normal operation condition, had been carried out and any clues of the fuel assembly breakdown was not detected. The 2nd test fuel assembly has been irradiated at HANARO reactor since 17th June 1999. The quality assurance system has been re-established and the eddy current test technique has been developed. The irradiation test for U{sub 3}Si{sub 2} dispersed fuels at HANARO reactor has been carried out in order to compare the in-pile performance of between the two types of U{sub 3}Si{sub 2} fuels, prepared by both the atomization and comminution processes. KAERI has also conducted all safety-related works such as the design and the fabrication of irradiation rig, the analysis of irradiation behavior, thermal hydraulic characteristics, stress analysis for irradiation rig, and thermal analysis fuel plate, for the mini-plate prepared by international research cooperation being irradiated safely at HANARO. Pressure drop test, vibration test and endurance test were performed. The characterization on powders of U-(5.4 {approx} 10 wt%) Mo alloy depending on Mo content prepared by rotating disk centrifugal atomization process was carried out in order to investigate the phase stability of the atomized U-Mo alloy system. The {gamma}-U phase stability and the thermal compatibility of atomized U-16at.%Mo and U-14at.%Mo-2at.%X(: Ru, Os) dispersion fuel meats at an elevated temperature have been investigated. The volume increases of U-Mo compatibility specimens were almost the same as or smaller than those of U{sub 3}Si{sub 2}. However the atomized alloy fuel exhibited a better irradiation performance than the comminuted alloy. The RERTR-3 irradiation test of nano

  1. Corrosion Minimization for Research Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Eric Shaber; Gerard Hofman

    2005-06-01

    Existing university research reactors are being converted to use low-enriched uranium fue to eliminate the use of highly-enriched uranium. These conversions require increases in fuel loading that will result in the use of elements with more fuel plates, resulting in a net decrease in the water annulus between fuel plates. The proposed decrease in the water annulus raises questions about the requirements and stability of the surface hydroxide on the aluminum fuel cladding and the potential for runaway corrosion resulting in fuel over-temperature incidents. The Nuclear Regulatory Commission (NRC), as regulator for these university reactors, must ensure that proposed fuel modifications will not result in any increased risk or hazard to the reactor operators or the public. This document reviews the characteristics and behavior of aluminum hydroxides, analyzes the drivers for fuel plate corrosion, reviews relevant historical incidents, and provides recommendations on fuel design, surface treatment, and reactor operational practices to avoid corrosion issues.

  2. Reactor potential for magnetized target fusion

    Energy Technology Data Exchange (ETDEWEB)

    Dahlin, J.E

    2001-06-01

    Magnetized Target Fusion (MTF) is a possible pathway to thermonuclear fusion different from both magnetic fusion and inertial confinement fusion. An imploding cylindrical metal liner compresses a preheated and magnetized plasma configuration until thermonuclear conditions are achieved. In this report the Magnetized Target Fusion concept is evaluated and a zero-dimensional computer model of the plasma, liner and circuit as a connected system is designed. The results of running this code are that thermonuclear conditions are achieved indeed, but only during a very short time. At peak compression the pressure from the compressed plasma and magnetic field is so large reversing the liner implosion into an explosion. The time period of liner motion reversal is termed the dwell time and is crucial to the performance of the fusion system. Parameters as liner thickness and plasma density are certainly of significant importance to the dwell time, but it seems like a reactor based on the MTF principle hardly can become economic if not innovative solutions are introduced. In the report two such solutions are presented as well.

  3. Power Flattening and Rejuvenation of PWR Spent Fuel Blanket for Hybrid Fusion-Fission Reactor%功率展平的压水堆乏燃料发电包层中子学初步研究

    Institute of Scientific and Technical Information of China (English)

    马续波; 陈义学; 王继亮; 王悦; 韩静茹; 陆道纲

    2011-01-01

    The hybrid fusion-fission reactor has advantages of breeding of the nuclear fuel and transmutation of the long-life nuclear waste and having inherent safety. Meanwhile, the engineering and technological demand of hybrid reactor is significantly reduced comparing with that of pure fusion reactor. A generating electricity blanket concept using the PWR spent fuel directly was proposed, which was based on ITER parameter level achieved. Different volume fractions of the fuel in blanket enabled to realize a power flattening in the fissile zone. The results show that the peak-to-average power factor becomes less than no power flattening, and the output power of the fuel zone raises more than 21. 7%. At the end of the operation, the maximum fuel enrichment is 5. 23%. The blanket is feasible from the neutronics viewpoint.%聚变裂变混合堆在增殖核燃料、嬗变长寿命核废料及固有安全性等方面具有较大优势,同时,它比纯聚变堆在工程及技术方面要求低,因此较聚变堆更易实现.本工作基于目前国际聚变实验堆(ITER)所能达到的技术水平,提出一种直接利用乏燃料进行发电的聚变裂变混合堆包层概念,利用在不同位置放置不同乏燃料体积分数的方法对燃料增殖区实现了功率展平.计算结果表明:功率展平后的包层功率不均匀系数更小,且包层中燃料区的能量输出要比不展平情况下的能量输出高约21.7%.燃料富集度到运行末期最大可达5.23%.从中子学角度初步论证了该包层的可行性.

  4. Repair welding of fusion reactor components. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Chin, B.A.; Wang, C.A.

    1997-09-30

    The exposure of metallic materials, such as structural components of the first wall and blanket of a fusion reactor, to neutron irradiation will induce changes in both the material composition and microstructure. Along with these changes can come a corresponding deterioration in mechanical properties resulting in premature failure. It is, therefore, essential to expect that the repair and replacement of the degraded components will be necessary. Such repairs may require the joining of irradiated materials through the use of fusion welding processes. The present ITER (International Thermonuclear Experimental Reactor) conceptual design is anticipated to have about 5 km of longitudinal welds and ten thousand pipe butt welds in the blanket structure. A recent study by Buende et al. predict that a failure is most likely to occur in a weld. The study is based on data from other large structures, particularly nuclear reactors. The data used also appear to be consistent with the operating experience of the Fast Flux Test Facility (FFTF). This reactor has a fuel pin area comparable with the area of the ITER first wall and has experienced one unanticipated fuel pin failure after two years of operation. The repair of irradiated structures using fusion welding will be difficult due to the entrapped helium. Due to its extremely low solubility in metals, helium will diffuse and agglomerate to form helium bubbles after being trapped at point defects, dislocations, and grain boundaries. Welding of neutron-irradiated type 304 stainless steels has been reported with varying degree of heat-affected zone cracking (HAZ). The objectives of this study were to determine the threshold helium concentrations required to cause HAZ cracking and to investigate techniques that might be used to eliminate the HAZ cracking in welding of helium-containing materials.

  5. Materials needs for compact fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Krakowski, R.A.

    1983-01-01

    The economic prospects for magnetic fusion energy can be dramatically improved if for the same total power output the fusion neutron first-wall (FW) loading and the system power density can be increased by factors of 3 to 5 and 10 to 30, respectively. A number of compact fusion reactor embodiments have been proposed, all of which would operate with increased FW loadings, would use thin (0.5 to 0.6 m) blankets, and would confine quasi-steady-state plasma with resistive, water-cooled copper or aluminum coils. Increased system power density (5 to 15 MWt/m/sup 3/ versus 0.3 to 0.5 MW/m/sup 3/), considerably reduced physical size of the fusion power core (FPC), and appreciably reduced economic leverage exerted by the FPC and associated physics result. The unique materials requirements anticipated for these compact reactors are outlined against the well documented backdrop provided by similar needs for the mainline approaches. Surprisingly, no single materials need that is unique to the compact systems is identified; crucial uncertainties for the compact approaches must also be addressed by the mainline approaches, particularly for in-vacuum components (FWs, limiters, divertors, etc.).

  6. Advanced fuels for thermal spectrum reactors

    OpenAIRE

    Zakova, Jitka

    2012-01-01

    The advanced fuels investigated in this thesis comprise fuels non− conventional in their design/form (TRISO), their composition (high content of plutonium and minor actinides) or their use in a reactor type, in which they have not been used before (e.g. nitride fuel in BWR). These fuels come with a promise of improved characteristics such as safe, high temperature operation, spent fuel transmutation or fuel cycle extension, for which reasons their potentialis worth assessment and investigatio...

  7. Carbon-14 production in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Scheele, R.D.; Burger, L.L.

    1976-09-01

    Calculations based on existing composition data were performed to estimate the order of magnitude and the final location of /sup 14/C in fusion reactors. These calculations indicate that approximately 8 Ci/day, formed principally by /sup 14/N activation, will be produced in the UWMAK-II reference reactor (5,000 MWth). If Nb-1 percent Zr is used as the structural material instead of stainless steel 316 this quantity will be more than doubled. No information is available on the form of the /sup 14/C produced, but reduced forms such as carbides, hydrocarbons and perhaps CO may be produced. Most of the /sup 14/C may remain fixed in structural and other reactor materials until the material is reclaimed. Activation of air in the plasma chamber would be an immediate concern.

  8. Research reactor de-fueling and fuel shipment

    Energy Technology Data Exchange (ETDEWEB)

    Ice, R.D.; Jawdeh, E.; Strydom, J.

    1998-08-01

    Planning for the Georgia Institute of Technology Research Reactor operations during the 1996 Summer Olympic Games began in early 1995. Before any details could be outlined, several preliminary administrative decisions had to be agreed upon by state, city, and university officials. The two major administrative decisions involving the reactor were (1) the security level and requirements and (2) the fuel status of the reactor. The Georgia Tech Research Reactor (GTRR) was a heavy-water moderated and cooled reactor, fueled with high-enriched uranium. The reactor was first licensed in 1964 with an engineered lifetime of thirty years. The reactor was intended for use in research applications and as a teaching facility for nuclear engineering students and reactor operators. Approximately one year prior to the olympics, the Georgia Tech administration decided that the GTRR fuel would be removed. In addition, a heightened, beyond regulatory requirements, security system was to be implemented. This report describes the scheduling, operations, and procedures.

  9. History of fast reactor fuel development

    Energy Technology Data Exchange (ETDEWEB)

    Kittel, J.H.; Frost, B.R.T. (Argonne National Lab., IL (United States)); Mustelier, J.P. (COGEMA, Velizy-Villacoublay (France))

    1992-01-01

    Most of the first generation of fast reactors that were operated at significant power levels employed solid metal fuels. They were constructed in the United States and United Kingdom in the 1950s and included Experimental Breeder Reactor (EBR)-I and -II operated by Argonne National Laboratory, United States, the Enrico Fermi Reactor operated by the Atomic Power Development Associates, United States and DFR operated by the U.K. Atomic Energy Authority (UKAEA). Their paper tracer pre-development of fast reactor fuel from these early days through the 1980s including ceramic fuels.

  10. Irradiation behavior of metallic fast reactor fuels

    Energy Technology Data Exchange (ETDEWEB)

    Pahl, R.G.; Porter, D.L.; Crawford, D.C.; Walters, L.C.

    1991-01-01

    Metallic fuels were the first fuels chosen for liquid metal cooled fast reactors (LMR's). In the late 1960's world-wide interest turned toward ceramic LMR fuels before the full potential of metallic fuel was realized. However, during the 1970's the performance limitations of metallic fuel were resolved in order to achieve a high plant factor at the Argonne National Laboratory's Experimental Breeder Reactor II. The 1980's spawned renewed interest in metallic fuel when the Integral Fast Reactor (IFR) concept emerged at Argonne National Laboratory. A fuel performance demonstration program was put into place to obtain the data needed for the eventual licensing of metallic fuel. This paper will summarize the results of the irradiation program carried out since 1985.

  11. Investigation of materials for fusion power reactors

    Science.gov (United States)

    Bouhaddane, A.; Slugeň, V.; Sojak, S.; Veterníková, J.; Petriska, M.; Bartošová, I.

    2014-06-01

    The possibility of application of nuclear-physical methods to observe radiation damage to structural materials of nuclear facilities is nowadays a very actual topic. The radiation damage to materials of advanced nuclear facilities, caused by extreme radiation stress, is a process, which significantly limits their operational life as well as their safety. In the centre of our interest is the study of the radiation degradation and activation of the metals and alloys for the new nuclear facilities (Generation IV fission reactors, fusion reactors ITER and DEMO). The observation of the microstructure changes in the reactor steels is based on experimental investigation using the method of positron annihilation spectroscopy (PAS). The experimental part of the work contains measurements focused on model reactor alloys and ODS steels. There were 12 model reactor steels and 3 ODS steels. We were investigating the influence of chemical composition on the production of defects in crystal lattice. With application of the LT 9 program, the spectra of specimen have been evaluated and the most convenient samples have been determined.

  12. The TITAN reversed-field-pinch fusion reactor study

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This paper on titan plasma engineering contains papers on the following topics: reversed-field pinch as a fusion reactor; parametric systems studies; magnetics; burning-plasma simulations; plasma transient operations; current drive; and physics issues for compact RFP reactors.

  13. Systems study of tokamak fusion--fission reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tenney, F.H.; Bathke, C.G.; Price, W.G. Jr.; Bohlke, W.H.; Mills, R.G.; Johnson, E.F.; Todd, A.M.M.; Buchanan, C.H.; Gralnick, S.L.

    1978-11-01

    This publication reports the results of a two to three year effort at a systematic analysis of a wide variety of tokamak-driven fissioning blanket reactors, i.e., fusion--fission hybrids. It addresses the quantitative problems of determining the economically most desirable mix of the two products: electric power and fissionable fuel and shows how the price of electric power can be minimized when subject to a variety of constraints. An attempt has been made to avoid restricting assumptions, and the result is an optimizing algorithm that operates in a six-dimensional parameter space. Comparisons are made on sets of as many as 100,000 distinct machine models, and the principal results of the study have been derived from the examination of several hundred thousand possible reactor configurations.

  14. Sodium fast reactors with closed fuel cycle

    CERN Document Server

    Raj, Baldev; Vasudeva Rao, PR 0

    2015-01-01

    Sodium Fast Reactors with Closed Fuel Cycle delivers a detailed discussion of an important technology that is being harnessed for commercial energy production in many parts of the world. Presenting the state of the art of sodium-cooled fast reactors with closed fuel cycles, this book:Offers in-depth coverage of reactor physics, materials, design, safety analysis, validations, engineering, construction, and commissioning aspectsFeatures a special chapter on allied sciences to highlight advanced reactor core materials, specialized manufacturing technologies, chemical sensors, in-service inspecti

  15. Researches on a reactor core in heavy ion inertial fusion

    CERN Document Server

    Kondo, S; Iinuma, T; Kubo, K; Kato, H; Kawata, S; Ogoyski, A I

    2016-01-01

    In this paper a study on a fusion reactor core is presented in heavy ion inertial fusion (HIF), including the heavy ion beam (HIB) transport in a fusion reactor, a HIB interaction with a background gas, reactor cavity gas dynamics, the reactor gas backflow to the beam lines, and a HIB fusion reactor design. The HIB has remarkable preferable features to release the fusion energy in inertial fusion: in particle accelerators HIBs are generated with a high driver efficiency of ~30-40%, and the HIB ions deposit their energy inside of materials. Therefore, a requirement for the fusion target energy gain is relatively low, that would be ~50 to operate a HIF fusion reactor with a standard energy output of 1GW of electricity. In a fusion reactor the HIB charge neutralization is needed for a ballistic HIB transport. Multiple mechanical shutters would be installed at each HIB port at the reactor wall to stop the blast waves and the chamber gas backflow, so that the accelerator final elements would be protected from the ...

  16. Core Plasma Characteristics of a Spherical Tokamak D-3He Fusion Reactor

    Institute of Scientific and Technical Information of China (English)

    Shi Bingren

    2005-01-01

    The magnetic fusion reactor using the advanced D-3He fuels has the advantage of much less-neutron productions so that the consequent damages to the first wall are less serious. If the establishment of this kind of reactor becomes realistic, the exploration of 3He on the moon will be largely motivated. Based on recent progresses in the spherical torus (ST) research, we have physically designed a D-3He fusion reactor using the extrapolated results from the ST experiments and also the present-day tokamak scaling. It is found that the reactor size significantly depends on the wall reflection coefficient of the synchrotron radiation and of the impurity contaminations.The secondary reaction between D-D that promptly leads to the D-T reaction producing 14 MeV neutrons is also estimated. Comparison of this D-3He ST reactor with the D-T reactor is made.

  17. Modular stellarator reactor: a fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.L.; Bathke, C.G.; Krakowski, R.A.; Heck, F.M.; Green, L.; Karbowski, J.S.; Murphy, J.H.; Tupper, R.B.; DeLuca, R.A.; Moazed, A.

    1983-07-01

    A comparative analysis of the modular stellarator and the torsatron concepts is made based upon a steady-state ignited, DT-fueled, reactor embodiment of each concept for use as a central electric-power station. Parametric tradeoff calculations lead to the selection of four design points for an approx. 4-GWt plant based upon Alcator transport scaling in l = 2 systems of moderate aspect ratio. The four design points represent high-aspect ratio. The four design points represent high-(0.08) and low-(0.04) beta versions of the modular stellarator and torsatron concepts. The physics basis of each design point is described together with supporting engineering and economic analyses. The primary intent of this study is the elucidation of key physics and engineering tradeoffs, constraints, and uncertainties with respect to the ultimate power reactor embodiment.

  18. The need and prospects for improved fusion reactors

    Science.gov (United States)

    Krakowski, R. A.; Miller, R. L.; Hagenson, R. L.

    1986-09-01

    Conceptual fusion reactor studies over the past 10-15 yr have projected systems that may be too large, complex, and costly to be of commercial interest. One main direction for improved fusion reactors points toward smaller, higher-power-density approaches. First-order economic issues (i.e., unit direct cost and cost of electricity) are used to support the need for more compact fusion reactors. The results of a number of recent conceptual designs of reversed-field pinch, spheromak, and tokamak fusion reactors are summarized as examples of more compact approaches. While a focus has been placed on increasing the fusion-power-core mass power density beyond the minimum economic threshold of 100-200 kWe/tonne, other means by which the overall attractiveness of fusion as a long-term energy source are also addressed.

  19. Post irradiation examination of thermal reactor fuels

    Science.gov (United States)

    Sah, D. N.; Viswanathan, U. K.; Ramadasan, E.; Unnikrishnan, K.; Anantharaman, S.

    2008-12-01

    The post irradiation examination (PIE) facility at the Bhabha Atomic Research Centre (BARC) has been in operation for more than three decades. Over these years this facility has been utilized for examination of experimental fuel pins and fuels from commercial power reactors operating in India. In a program to assess the performance of (U,Pu)O 2 MOX fuel prior to its introduction in commercial reactors, three experimental MOX fuel clusters irradiated in the pressurized water loop (PWL) of CIRUS up to burnup of 16 000 MWd/tU were examined. Fission gas release from these pins was measured by puncture test. Some of these fuel pins in the cluster contained controlled porosity pellets, low temperature sintered (LTS) pellets, large grain size pellets and annular pellets. PIE has also been carried out on natural UO 2 fuel bundles from Indian PHWRs, which included two high burnup (˜15 000 MWd/tU) bundles. Salient investigations carried out consisted of visual examination, leak testing, axial gamma scanning, fission gas analysis, microstructural examination of fuel and cladding, β, γ autoradiography of the fuel cross-section and fuel central temperature estimation from restructuring. A ThO 2 fuel bundle irradiated in Kakrapar Atomic Power Station (KAPS) up to a nominal fuel burnup of ˜11 000 MWd/tTh was also examined to evaluate its in-pile performance. The performance of the BWR fuel pins of Tarapur Atomic Power Stations (TAPS) was earlier assessed by carrying out PIE on 18 fuel elements selected from eight fuel assemblies irradiated in the two reactors. The burnup of these fuel elements varied from 5000 to 29 000 MWd/tU. This paper provides a brief review of some of the fuels examined and the results obtained on the performance of natural UO 2, enriched UO 2, MOX, and ThO 2 fuels.

  20. Pyrometric fuel particle measurements in pressurised reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R.; Joutsenoja, T. [Tampere Univ. of Technology (Finland)

    1996-12-01

    A fiberoptic two-colour pyrometric technique for fuel particle temperature and size measurement is modified and applied to three pressurized reactors of different type in Finland, Germany and France. A modification of the pyrometric method for simultaneous in situ measurement of the temperature and size of individual pulverized coal particles at the pressurized entrained flow reactor in Jyvaeskylae was developed and several series of measurements were made. In Orleans a fiberoptic pyrometric device was installed to a pressurised thermogravimetric reactor and the two-colour temperatures of fuel samples were measured. Some results of these measurements are presented. The project belongs to EU`s Joule 2 extension research programme. (author)

  1. Safety and Environment aspects of Tokamak- type Fusion Power Reactor- An Overview

    Science.gov (United States)

    Doshi, Bharat; Reddy, D. Chenna

    2017-04-01

    Naturally occurring thermonuclear fusion reaction (of light atoms to form a heavier nucleus) in the sun and every star in the universe, releases incredible amounts of energy. Demonstrating the controlled and sustained reaction of deuterium-tritium plasma should enable the development of fusion as an energy source here on Earth. The promising fusion power reactors could be operated on the deuterium-tritium fuel cycle with fuel self-sufficiency. The potential impact of fusion power on the environment and the possible risks associated with operating large-scale fusion power plants is being studied by different countries. The results show that fusion can be a very safe and sustainable energy source. A fusion power plant possesses not only intrinsic advantages with respect to safety compared to other sources of energy, but also a negligible long term impact on the environment provided certain precautions are taken in its design. One of the important considerations is in the selection of low activation structural materials for reactor vessel. Selection of the materials for first wall and breeding blanket components is also important from safety issues. It is possible to fully benefit from the advantages of fusion energy if safety and environmental concerns are taken into account when considering the conceptual studies of a reactor design. The significant safety hazards are due to the tritium inventory and energetic neutron fluence induced activity in the reactor vessel, first wall components, blanket system etc. The potential of release of radioactivity under operational and accident conditions needs attention while designing the fusion reactor. Appropriate safety analysis for the quantification of the risk shall be done following different methods such as FFMEA (Functional Failure Modes and Effects Analysis) and HAZOP (Hazards and operability). Level of safety and safety classification such as nuclear safety and non-nuclear safety is very important for the FPR (Fusion

  2. Uniformity of fuel target implosion in Heavy Ion Fusion

    CERN Document Server

    Kawata, S; Suzuki, T; Karino, T; Barada, D; Ogoyski, A I; Ma, Y Y

    2015-01-01

    In inertial confinement fusion the target implosion non-uniformity is introduced by a driver beams' illumination non-uniformity, a fuel target alignment error in a fusion reactor, the target fabrication defect, et al. For a steady operation of a fusion power plant the target implosion should be robust against the implosion non-uniformities. In this paper the requirement for the implosion uniformity is first discussed. The implosion uniformity should be less than a few percent. A study on the fuel hotspot dynamics is also presented and shows that the stagnating plasma fluid provides a significant enhancement of vorticity at the final stage of the fuel stagnation. Then non-uniformity mitigation mechanisms of the heavy ion beam (HIB) illumination are also briefly discussed in heavy ion inertial fusion (HIF). A density valley appears in the energy absorber, and the large-scale density valley also works as a radiation energy confinement layer, which contributes to a radiation energy smoothing. In HIF a wobbling he...

  3. Modeling and analysis of tritium dynamics in a DT fusion fuel cycle

    Science.gov (United States)

    Kuan, William

    1998-11-01

    A number of crucial design issues have a profound effect on the dynamics of the tritium fuel cycle in a DT fusion reactor, where the development of appropriate solutions to these issues is of particular importance to the introduction of fusion as a commercial system. Such tritium-related issues can be classified according to their operational, safety, and economic impact to the operation of the reactor during its lifetime. Given such key design issues inherent in next generation fusion devices using the DT fuel cycle development of appropriate models can then lead to optimized designs of the fusion fuel cycle for different types of DT fusion reactors. In this work, two different types of modeling approaches are developed and their application to solving key tritium issues presented. For the first approach, time-dependent inventories, concentrations, and flow rates characterizing the main subsystems of the fuel cycle are simulated with a new dynamic modular model of a fusion reactor's fuel cycle, named X-TRUFFLES (X-Windows TRitiUm Fusion Fuel cycLE dynamic Simulation). The complex dynamic behavior of the recycled fuel within each of the modeled subsystems is investigated using this new integrated model for different reactor scenarios and design approaches. Results for a proposed fuel cycle design taking into account current technologies are presented, including sensitivity studies. Ways to minimize the tritium inventory are also assessed by examining various design options that could be used to minimize local and global tritium inventories. The second modeling approach involves an analytical model to be used for the calculation of the required tritium breeding ratio, i.e., a primary design issue which relates directly to the feasibility and economics of DT fusion systems. A time-integrated global tritium balance scheme is developed and appropriate analytical expressions are derived for tritium self-sufficiency relevant parameters. The easy exploration of the large

  4. Fuel condition in Canadian CANDU 6 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hu, R.H.; Macici, N [Hydro-Quebec, Montreal, Quebec (Canada); Gibb, R. [New Brunswick Power, Lepreau, NB (Canada); Purdy, P.L.; Manzer, A.M. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Kohn, E. [Ontario Hydro, Toronto, Ontario (Canada)

    1997-07-01

    The cornerstone of the CANDU concept is its natural uranium fuel, and the success of its reactor operation hinges on the fuel condition in the reactor. Neutron economy, on power refuelling, and simple fuel design are among the unique characteristics of CANDU fuel. In Canadian CANDU 6 reactors (Gentilly 2 and Point Lepreau), the 37-element fuel has provided an enviable record of safe, economic and reliable plant operation for 29 reactor years to date. The fuelling cost is among the lowest in the world - a corollary of high neutron economy, simple fuel design, and judicial fuelling scheme. The reliability of fuel is high: only 21 of the 60000 bundles discharged from Gentilly 2 were confirmed defective and the five-year period from March 1992 to February 1997 saw no defect at all at Gentilly-2. Also, thanks to the inherent on-power refuelling capability and an effective defect detection and removal system, the primary coolant loops are kept extremely clean (very low activity level) - benefiting both maintenance and safety. Moreover, the inventories of fission products in the core and in the channel are maintained within the safety analysis envelope, due to on-power fuelling and sophisticated fuel management. In this paper, CANDU 6 fuel performance is reviewed against the feedback from post-irradiation examinations, and the findings from our ongoing R and D program. The results suggest that the fuel behavior m reactor are basically as originally anticipated, despite an evolutionary 3% increase in bundle uranium mass in the 1980's. For operating conditions within the CANDU 6 37-element experience, the average strains are typically 0.09%; and fission gas release, 2.7%. The UO{sub 2} fuel remains stoichiometric after irradiation. In-core measurements of pressure tube fitting are generally low. All these observations are consistent with the excellent fuel performance statistics coming out of the two Canadian CANDU 6 reactors. Additionally, this paper will briefly

  5. Assessment of tritium breeding requirements for fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J.

    1983-12-01

    This report presents an assessment of tritium-breeding requirements for fusion power reactors. The analysis is based on an evaluation of time-dependent tritium inventories in the reactor system. The method presented can be applied to any fusion systems in operation on a steady-state mode as well as on a pulsed mode. As an example, the UWMAK-I design was analyzed and it has been found that the startup inventory requirement calculated by the present method significantly differs from those previously calculated. The effect of reactor-parameter changes on the required tritium breeding ratio is also analyzed for a variety of reactor operation scenarios.

  6. Assessment of the thorium fuel cycle in power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.; Homan, F.J.; Allen, E.J.

    1977-01-01

    A study was conducted at Oak Ridge National Laboratory to evaluate the role of thorium fuel cycles in power reactors. Three thermal reactor systems were considered: Light Water Reactors (LWRs); High-Temperature Gas-Cooled Reactors (HTGRs); and Heavy Water Reactors (HWRs) of the Canadian Deuterium Uranium Reactor (CANDU) type; most of the effort was on these systems. A summary comparing thorium and uranium fuel cycles in Fast Breeder Reactors (FBRs) was also compiled.

  7. Gaseous fuel reactor systems for aerospace applications

    Science.gov (United States)

    Thom, K.; Schwenk, F. C.

    1977-01-01

    Research on the gaseous fuel nuclear rocket concept continues under the programs of the U.S. National Aeronautics and Space Administration (NASA) Office for Aeronautics and Space Technology and now includes work related to power applications in space and on earth. In a cavity reactor test series, initial experiments confirmed the low critical mass determined from reactor physics calculations. Recent work with flowing UF6 fuel indicates stable operation at increased power levels. Preliminary design and experimental verification of test hardware for high-temperature experiments have been accomplished. Research on energy extraction from fissioning gases has resulted in lasers energized by fission fragments. Combined experimental results and studies indicate that gaseous-fuel reactor systems have significant potential for providing nuclear fission power in space and on earth.

  8. Concept of DT fuel cycle for a fusion neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Anan' ev, S.; Spitsyn, A.V.; Kuteev, B.V.; Cherkez, D.I. [NRC Kurchatov Institute, Moscow (Russian Federation); Shirnin, P.N.; Kazakovsky, N.T. [FSUE RFNC - VNIIEF, Sarov (Russian Federation)

    2015-03-15

    A concept of DT-fusion neutron source (FNS) with the neutron yield higher than 10{sup 18} neutrons per second is under design in Russia. Such a FNS is of interest for many applications: 1) basic and applied research (neutron scattering, etc); 2) testing the structural materials for fusion reactors; 3) control of sub-critical nuclear systems and 4) nuclear waste processing (including transmutation of minor actinides). This paper describes the fuel cycle concept of a compact fusion neutron source based on a small spherical tokamak (FNS-ST) with a MW range of DT fusion power and considers the key physics issues of this device. The major and minor radii are ∼0.5 and ∼0.3 m, magnetic field ∼1.5 T, heating power less than 15 MW and plasma current 1-2 MA. The system provides the fuel mixture with equal fractions of D and T (D:T = 1:1) for all FNS technology systems. (authors)

  9. Introduction to Nuclear Fusion Power and the Design of Fusion Reactors. An Issue-Oriented Module.

    Science.gov (United States)

    Fillo, J. A.

    This three-part module focuses on the principles of nuclear fusion and on the likely nature and components of a controlled-fusion power reactor. The physical conditions for a net energy release from fusion and two approaches (magnetic and inertial confinement) which are being developed to achieve this goal are described. Safety issues associated…

  10. Introduction to Nuclear Fusion Power and the Design of Fusion Reactors. An Issue-Oriented Module.

    Science.gov (United States)

    Fillo, J. A.

    This three-part module focuses on the principles of nuclear fusion and on the likely nature and components of a controlled-fusion power reactor. The physical conditions for a net energy release from fusion and two approaches (magnetic and inertial confinement) which are being developed to achieve this goal are described. Safety issues associated…

  11. Structural analysis of reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Weeks, R.W.

    1977-01-01

    An overview of fuel-element modeling is presented that traces the development of codes for the prediction of light-water-reactor and fast-breeder-reactor fuel-element performance. It is concluded that although the mathematical analysis is now far advanced, the development and incorporation of mechanistic constitutive equations has not kept pace. The resultant reliance on empirical correlations severely limits the physical insight that can be gained from code extrapolations. Current efforts include modeling of alternate fuel systems, analysis of local fuel-cladding interactions, and development of a predictive capability for off-normal behavior. Future work should help remedy the current constitutive deficiencies and should include the development of deterministic failure criteria for use in design.

  12. Pyrometric fuel particle measurements in pressurized reactors

    Energy Technology Data Exchange (ETDEWEB)

    Joutsenoja, T.; Stenberg, J.; Hernberg, R.; Aho, M.; Richard, J.-R.; Mallet, C.; Bonn, B. [Tampere University of Technology, Tampere (Finland). Dept. of Physics

    1998-12-31

    A fibre-optic two-colour pyrometric technique for fuel particle temperature and size measurement is modified and applied to three pressurised reactors of different type in Finland, Germany and France. A modification of the pyrometric method for simultaneous in situ measurement of the temperature and size of individual pulverised coal particles at the pressurised entrained flow reactor of VTT Energy in Jyvaskyla was developed and several series of measurements were made in order to study the effects of oxygen concentration (3-30 vol%) and pressure (0.2-1.0 MPa) on the particle temperature. The fuels used in the experiments were Westerholt, Polish and Gottelborn hvb coals. Gardanne lignite and Niederberg anthracite. The initial nominal fuel particle size varied in the experiments from 70 to 250 {mu}m and the gas temperature was typically 1173 K. For the anthracite also the effects of gas temperature (1073-1423 K) and CO{sub 2} concentration (6-80 vol%) were studied. In Orleans a fibre-optic pyrometric device was installed to a pressurised thermogravimetric reactor of CNRS and the two-colour temperatures of fuel samples were measured. The fuel in the experiments was pulverized Gottelborn char. The reliability of optical temperature measurement in this particular application was analysed. In Essen a fibre-optic pyrometric technique that is capable to measure bed and fuel particle temperatures was applied to an atmospheric fluidised bed reactor of DMT. The effects of oxygen concentration (3-8 vol%) and bed temperature (1123-1193 K) on the fuel particle temperature were studied. The fuels in these were Westerholt coal and char and EBV-coal. 17 refs., 21 figs., 3 tabs.

  13. Pyrometric fuel particle measurements in pressurised reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R.; Joutsenoja, T. [Tampere Univ. of Technology (Finland)

    1997-10-01

    A fibre-optic two-colour pyrometric technique for fuel particle temperature and size measurement is modified and applied to three pressurised reactors of different type in Finland, Germany and France. A modification of the pyrometric method for simultaneous in situ measurement of the temperature and size of individual pulverised coal particles at the pressurised entrained flow reactor of VTT Energy in Jyvaeskylae was developed and several series of measurements were made in order to study the effects of oxygen concentration (3-30 vol%) and pressure (0.2-1.0 MPa) on the particle temperature. The fuels used in the experiments were Westerholt, Polish and Goettelborn hvb coals, Gardanne lignite and Niederberg anthracite. The initial nominal fuel particle size varied in the experiments from 70 to 250 ,{mu}m and the gas temperature was typically 1173 K. For the anthracite also the effects of gas temperature (1073-1423K) and CO{sub 2} concentration (6-80 vol%) were studied. In Orleans a fibreoptic pyrometric device was installed to a pressurised thermogravimetric reactor of CNRS and the two-colour temperatures of fuel samples were measured. The fuel in the experiments was pulverised Goettelborn char. The reliability of optical temperature measurement in this particular application was analysed. In Essen a fibre-optic pyrometric technique that is capable to measure bed and fuel particle temperatures was applied to an atmospheric fluidised bed reactor of DMT. The effects of oxygen concentration (3-8 vol%) and bed temperature (1123-1193 K) on the fuel particle temperature were studied. The fuels in these were Westerholt coal and char and EBV-coal. Some results of these measurements are presented. The project belonged to EU`s Joule 2 extension research programme (contract JOU2-CT93-0331). (orig.)

  14. Activation Characteristics of Fuel Breeding Blanket Module in Fusion Driven Subcritical System

    Institute of Scientific and Technical Information of China (English)

    HUANG Qun-Ying; LI Jian-Gang; CHEN Yi-Xue

    2004-01-01

    @@ Shortage of energy resources and production of long-lived radioactivity wastes from fission reactors are among the main problems which will be faced in the world in the near future. The conceptual design of a fusion driven subcritical system (FDS) is underway in Institute of Plasma Physics, Chinese Academy of Sciences. There are alternative designs for multi-functional blanket modules of the FDS, such as fuel breeding blanket module (FBB)to produce fuels for fission reactors, tritium breeding blanket module to produce the fuel, i.e. tritium, for fusion reactor and waste transmutation blanket module to try to permanently dispose of long-lived radioactivity wastes from fission reactors, etc. Activation of the fuel breeding blanket of the fusion driven subcritical system (FDS-FBB) by D-T fusion neutrons from the plasma and fission neutrons from the hybrid blanket are calculated and analysed under the neutron wall loading 0.5 MW/m2 and neutron fluence 15 MW. yr/m2. The neutron spectrum is calculated with the worldwide-used transport code MCNP/4C and activation calculations are carried out with the well known European inventory code FISPACT/99 with the latest released IAEA Fusion Evaluated Nuclear Data Library FENDL-2.0 and the ENDF/B-V uranium evaluated data. Induced radioactivities, dose rates and afterheats, etc, for different components of the FDS-FBB are compared and analysed.

  15. Optimally moderated nuclear fission reactor and fuel source therefor

    Science.gov (United States)

    Ougouag, Abderrafi M.; Terry, William K.; Gougar, Hans D.

    2008-07-22

    An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.

  16. Performance tests for integral reactor nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Dong-Seong; Yim, Jeong-Sik; Lee, Chong-Tak; Kim, Han-Soo; Koo, Yang-Hyun; Lee, Byung-Ho; Cheon, Jin-Sik; Oh, Je-Yong

    2006-02-15

    An integral type reactor SMART plans to utilize metallic Zr-U fuel which is Zr-based alloy with 34{approx}38 wt% U. In order to verify the technologies for the design and manufacturing of the fuel and get a license, performance tests were carried out. Experimental Fuel Assembly (EFA) manufactured in KAERI is being successfully irradiated in the MIR reactor of RIAR from September 4 2004, and it has achieved burnup of 0.21 g/cc as of January 25 2006. Thermal properties of irradiated Zr-U fuel were measured. Up to the phase transformation temperature, thermal diffusivity increased linearly in proportion to temperature. However its dependence on the burnup was not significant. RIA tests with 4 unirradiated Zr-U fuel rods were performed in Kurchatov Institute to establish a safety criterion. In the case of the un-irradiated Zr-U fuel, the energy deposition during the control rod ejection accident should be less than 172 cal/g to prevent the failure accompanying fuel fragmentation and dispersal. Finally the irradiation tests of fuel rods have been performed at HANARO. The HITE-2 test was successfully completed up to a burnup of 0.31 g/cc. The HITE-3 test began in February 2004 and will be continued up to a target burnup of 0.6 g/cc.

  17. History of fast reactor fuel development

    Energy Technology Data Exchange (ETDEWEB)

    Kittel, J.H. (Argonne National Lab., IL (United States)); Frost, B.R.T. (Argonne National Lab., IL (United States)); Mustelier, J.P. (COGEMA, Velizy-Villacoublay (France)); Bagley, K.Q. (AEA Reactor Services, Risley (United Kingdom)); Crittenden, G.C. (AEA Reactor Services, Dounreay (United Kingdom)); Dievoet, J. van (Belgonucleaire, Brussels (Belgium))

    1993-09-01

    The first fast breeder eactors, constructed in the 1945-1960 time period, used metallic fuels composed of uranium, plutonium, or their alloys. They were chosen because most existing reactor operating experience had been obtained on metallic fuels and because they provided the highest breeding ratios. Difficulties in obtaining adequate dimensional stability in metallic fuel elements under conditions of high fuel burnup led in the 1960s to the virtual worldwide choice of ceramic fuels. Although ceramic fuels provide lower breeding performance, this objective is no longer an important consideration in most national programs. Mixed uranium and plutonium dioxide became the ceramic fuel that has received the widest use. The more advanced ceramic fuels, mixed uranium and plutonium carbides and nitrides, continue under development. More recently, metal fuel elements of improved design have joined ceramic fuels in achieving goal burnups of 15 to 20 percent. Low-swelling fuel cladding alloys have also been continuously developed to deal with the unexpected problem of void formation in stainless steels subjected to fast neutron irradiation, a phenomenon first observed in the 1960s. (orig.)

  18. Homopolar Gun for Pulsed Spheromak Fusion Reactors II

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T

    2004-06-14

    A homopolar gun is discussed that could produce the high currents required for pulsed spheromak fusion reactors even with unit current amplification and open field lines during injection, possible because close coupling between the gun and flux conserver reduces gun losses to acceptable levels. Example parameters are given for a gun compatible with low cost pulsed reactors and for experiments to develop the concept.

  19. PLUTONIUM METALLIC FUELS FOR FAST REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    STAN, MARIUS [Los Alamos National Laboratory; HECKER, SIEGFRIED S. [Los Alamos National Laboratory

    2007-02-07

    Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low-melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuels suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher-melting U-PuZr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.

  20. Plasma engineering studies for Tennessee Tokamak (TENTOK) fusion power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, K.E.; Lacatski, J.T.; Miller, J.B.; Bryan, W.E.; King, P.W.; Santoro, R.T.; Uckan, N.A.; Shannon, T.E.

    1984-02-01

    This paper summarizes the results of the plasma engineering and systems analysis studies for the Tennessee Tokamak (TENTOK) fusion power reactor. TENTOK is a 3000-MW(t) central station power plant that uses deuterium-tritium fuel in a D-shaped tokamak plasma configuration with a double-null poloidal divertor. The major parameters are R/sub 0/ = 6.4 m, a = 1.6 m, sigma (elongation) = 1.65, (n) = 1.5 x 10/sup 20/ m/sup -3/, (T) = 15 keV, (..beta..) = 6%, B/sub T/ (on-axis) = 5.6 T, I/sub p/ = 8.5 MA, and wall loading = 3 MW/m/sup 2/. Detailed analyses are performed in the areas of (1) transport simulation using the one-and-one-half-dimensional (1-1/2-D) WHIST transport code, (2) equilibrium/poloidal field coil systems, (3) neutral beam and radiofrequency (rf) heating, and (4) pellet fueling. In addition, impurity control systems, diagnostics and controls, and possible microwave plasma preheating and steady-state current drive options are also considered. Some of the major features of TENTOK include rf heating in the ion cyclotron range of frequencies, superconducting equilibrium field coils outside the superconducting toroidal field coils, a double-null poloidal divertor for impurity control and alpha ash removal, and rf-assisted plasma preheating and current startup.

  1. Nuclear reactor composite fuel assembly. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, D.M.; Cappiello, M.W.; Marr, D.R.; Omberg, R.P.

    1980-11-25

    A core and composite fuel assembly are described for a liquid-cooled breeder nuclear reactor including a plurality of elongated coextending driver and breeder fuel elements arranged to form a generally polygonal bundle within a thin-walled duct. The breeder elements are larger in cross section than the driver elements, and each breeder element is laterally bounded by a number of the driver elements. Each driver element further includes structure for spacing the driver elements from adjacent fuel elements and, where adjacent, the thin-walled duct. A core made up of the fuel elements can advantageously include fissile fuel of only one enrichment, while varying the effective enrichment of any given assembly or core region, merely by varying the relative number and size of the driver and breeder elements.

  2. Experimental devices in the osiris reactor to study effects of radiations on fusion reactor materials

    Science.gov (United States)

    Lefevre, F.; Thevenot, G.

    1986-11-01

    Within the framework of the Technology Research Program on controlled fusion initiated by the European Communities, the Services des Piles de Saclay (SPS) of Commissariat à l'Energie Atomique (CEA) have been requested to perform some necessary experiments to study the irradiation behaviour of materials which are possible candidates for controlled fusion reactors. This paper describes the devices, generally adapted from a standard model "The COLIBRI", which allow one to carry out, in the OSIRIS reactor, irradiations on the three great families of fusion reactor materials: - lithium containing materials of breeding blanket for in-situ tritium production, - protection materials, and - structural materials.

  3. Experimental devices in the OSIRIS reactor to study effects of radiations on fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, F.; Thevenot, G.

    Within the framework of the Technology Research Program on controlled fusion initiated by the European Communities, the Services des Piles de Saclay (SPS) of Commissariat a l'Energie Atomique (CEA) have been requested to perform some necessary experiments to study the irradiation behaviour of materials which are possible candidates for controlled fusion reactors. This paper describes the devices, generally adapted from a standard model The COLIBRI, which allow one to carry out, in the OSIRIS reactor, irradiations on the three great families of fusion reactor materials: Lithium containing materials of breeding blanket for in-situ tritium production, protection materials, and structural materials.

  4. A new MTR fuel for a new MTR reactor: UMo for the Jules Horowitz reactor

    Energy Technology Data Exchange (ETDEWEB)

    Guigon, B. [CEA Cadarache, F-13108 Saint Paul lez Durance (France); Vacelet, H. [CERCA, Romans (France); Dornbusch, D. [Technicatome, Aix en Provence (France)

    2000-07-01

    Within some years, the Jules Horowitz Reactor will be the only working experimental reactor (material and fuel testing reactor) in France. It will have to provide facilities for a wide range of needs from activation analysis to power reactor fuel qualification. In this paper the main characteristics of the Jules Horowitz Reactor are presented. Safety criteria are explained. Finally, merits and disadvantages of UMo compared to the standard U{sub 3}Si{sub 2} fuel are discussed. (author)

  5. 8th International School of Fusion Reactor Technology "Ettore Majorana"

    CERN Document Server

    Leotta, G G; Muon-catalyzed fusion and fusion with polarized nuclei

    1988-01-01

    The International School of Fusion Reactor Technology started its courses 15 years ago and since then has mantained a biennial pace. Generally, each course has developed the subject which was announced in advance at the closing of the previous course. The subject to which the present proceedings refer was chosen in violation of that rule so as to satisfy the recent and diffuse interest in cold fusion among the main European laboratories involved in controlled thermonuclear research (CTR). In the second half of 1986 we started to prepare a workshop aimed at assessing the state of the art and possibly of the perspectives of muon- catalyzed fusion. Research in this field has recently produced exciting experimental results open to important practical applications. We thought it worthwhile to consider also the beneficial effects and problems of the polarization ofthe nuclei in both cold and thermonuclear fusion. In preparing the 8th Course on Fusion Reactor Technology, it was necessary to abandon the tradi...

  6. Analysis of Trace Hydrogen Isotopes in Fusion Fuel Cycle by High Precision Gas Chromatograph

    Institute of Scientific and Technical Information of China (English)

    YANG; Li-ling; YANG; Hong-guang; ZHAO; Wei-wei; HE; Chang-shui; LIU; Zhen-xing; ZHAN; Qin

    2013-01-01

    It is essential to analysis of hydrogen isotopes in the fuel cycle system of fusion reactors,gas chromatography(GC)was found to be an effectively analytical technique.Compared with conventional GC,the high-precision GC with a cryogenic column could achieve fairly good performance to reduce the retention time.

  7. FUEL COMPOSITION FOR NUCLEAR REACTORS

    Science.gov (United States)

    Andersen, J.C.

    1963-08-01

    A process for making refractory nuclear fuel elements involves heating uranium and silicon powders in an inert atmosphere to 1600 to 1800 deg C to form USi/sub 3/; adding silicon carbide, carbon, 15% by weight of nickel and aluminum, and possibly also molybdenum and silicon powders; shaping the mixture; and heating to 1700 to 2050 deg C again in an inert atmosphere. Information on obtaining specific compositions is included. (AEC)

  8. A revaluation of helium/dpa ratios for fast reactor and thermal reactor data in fission-fusion correlations

    Energy Technology Data Exchange (ETDEWEB)

    Garner, F.A.; Greenwood, L.R. [Pacific Northwest National Lab., Richland, WA (United States); Oliver, B.M.

    1996-10-01

    For many years it has been accepted that significant differences exist in the helium/dpa ratios produced in fast reactors and various proposed fusion energy devices. In general, the differences arise from the much larger rate of (n,{alpha}) threshold reactions occurring in fusion devices, reactions which occur for energies {ge} 6 MeV. It now appears, however, that for nickel-containing alloys in fast reactors the difference may not have been as large as was originally anticipated. In stainless steels that have a very long incubation period for swelling, for instance, the average helium concentration over the duration of the transient regime have been demonstrated in an earlier paper to be much larger in the FFTF out-of-core regions than first calculated. The helium/dpa ratios in some experiments conducted near the core edge or just outside of the FFTF core actually increase strongly throughout the irradiation, as {sup 59}Ni slowly forms by transmutation of {sup 58}Ni. This highly exothermic {sup 59}Ni(n,{alpha}) reaction occurs in all fast reactors, but is stronger in the softer spectra of oxide-fueled cores such as FFTF and weaker in the harder spectra of metal-fueled cores such as EBR-II. The formation of {sup 59}Ni also increases strongly in out-of-core unfueled regions where the reactor spectra softens with distance from the core.

  9. Cost assessment of a generic magnetic fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.; Dory, R.A.; Cohn, S.M.; Delene, J.G.; Parsly, L.F.; Ashby, D.E.T.F.; Reiersen, W.T.

    1986-03-01

    A generic reactor model is used to examine the economic viability of generating electricity by magnetic fusion. The simple model uses components that are representative of those used in previous reactor studies of deuterium-tritium-burning tokamaks, stellarators, bumpy tori, reversed-field pinches (RFPs), and tandem mirrors. Conservative costing assumptions are made. The generic reactor is not a tokamak; rather, it is intended to emphasize what is common to all magnetic fusion rectors. The reactor uses a superconducting toroidal coil set to produce the dominant magnetic field. To this extent, it is not as good an approximation to systems such as the RFP in which the main field is produced by a plasma current. The main output of the study is the cost of electricity as a function of the weight and size of the fusion core - blanket, shield, structure, and coils. The model shows that a 1200-MW(e) power plant with a fusion core weight of about 10,000 tonnes should be competitive in the future with fission and fossil plants. Studies of the sensitivity of the model to variations in the assumptions show that this result is not sensitively dependent on any given assumption. Of particular importance is the result that a fusion reactor of this scale may be realized with only moderate advances in physics and technology capabilities.

  10. Radioactive waste management and disposal scenario for fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tabara, Takashi; Yamano, Naoki [Sumitomo Atomic Energy Industries Ltd., Tokyo (Japan); Seki, Yasushi; Aoki, Isao

    1997-10-01

    The environmental and economic impact of radioactive waste (radwaste) generated from fusion power reactors using five types of structural materials and a light water reactor (LWR) have been evaluated and compared. At first, the amount and the radioactive level of the radwaste generated in five fusion reactors ware evaluated by an activation calculation code. Next, a possible radwaste disposal scenario applicable to fusion radwaste in Japan is considered and the disposal cost evaluated under certain assumptions. The exposure doses are evaluated for the skyshine of gamma-rays during the disposal operation, groundwater migration scenario during the institutional control period of 300 years and future site use scenario after the institutional period. The radwaste generated from a typical LWR was estimated based on a literature survey and the disposal cost was evaluated using the same assumptions as for the fusion reactors. It is found that the relative cost of disposal is strongly dependent on the cost for interim storage of medium level waste of fusion reactors and the cost of high level waste for the LWR. (author)

  11. Composite nozzle design for reactor fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Marlatt, G.R.; Allison, D.K.

    1984-01-24

    A composite nozzle is described for a fuel assembly adapted for installation on the upper or lower end thereof and which is constructed from two components. The first component includes a casting weldment or forging designed to carry handling loads, support fuel assembly weight and flow loads, and interface with structural members of both the fuel assembly and reactor internal structures. The second component of the nozzle consists of a thin stamped bore machine flow plate adapted for attachment to the casting body. The plate is designed to prevent fuel rods from being ejected from the core and provide orifices for coolant flow to a predetermined value and pressure drop which is consistent with the flow at other locations in the core.

  12. Nuclear reactor fuel element. Kernreaktorbrennelement

    Energy Technology Data Exchange (ETDEWEB)

    Lippert, H.J.

    1985-03-28

    The fuel element box for a BWR is situated with a corner bolt on the inside in one corner of its top on the top side of the top plate. This corner bolt is screwed down with a bolt with a corner part which is provided with leaf springs outside on two sides, where the bolt has a smaller diameter and an expansion shank. The bolt is held captive to the bolt head on the top and the holder on the bottom of the corner part. The holder is a locknut. If the expansion forces are too great, the bolt can only break at the expansion shank.

  13. Reference Neutron Radiographs of Nuclear Reactor Fuel

    DEFF Research Database (Denmark)

    Domanus, Joseph Czeslaw

    1986-01-01

    Reference neutron radiographs of nuclear reactor fuel were produced by the Euraton Neutron Radiography Working Group and published in 1984 by the Reidel Publishing Company. In this collection a classification is given of the various neutron radiographic findings, that can occur in different parts...... of pelletized, annular and vibro-conpacted nuclear fuel pins. Those parts of the pins are shown where changes of appearance differ from those for the parts as fabricated. Also radiographs of those as fabricated parts are included. The collection contains 158 neutron radiographs, reproduced on photographic paper...

  14. Study of thorium-uranium based molten salt blanket in a fusion-fission hybrid reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Jing, E-mail: zhao_jing@mail.tsinghua.edu.cn [INET, Tsinghua University, Beijing 100084 (China); Yang Yongwei; Zhou Zhiwei [INET, Tsinghua University, Beijing 100084 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer A molten salt blanket has been designed for the fusion-fission hybrid reactor. Black-Right-Pointing-Pointer The use of Thorium in the molten salt fuels has been studied. Black-Right-Pointing-Pointer The molten salt was consisted of F-Li-Be and with the thickness of 40 cm. Black-Right-Pointing-Pointer The concentration of {sup 6}Li was chosen to be the natural enrichment ratio. Black-Right-Pointing-Pointer The result shows that TBR is greater than 1, M is about 15-16. - Abstract: Not only solid fuels, but also liquid fuels can be used for the fusion-fission symbiotic reactor blanket. The operational record of the molten salt reactor with F-Li-Be was very successful, so the F-Li-Be blanket was chosen for research. The molten salt has several features which are suited for the fusion-fission applications. The fuel material uranium and thorium were dissolved in the F-Li-Be molten salt. A combined program, COUPLE, was used for neutronics analysis of the molten salt blanket. Several cases have been calculated and compared. Not only the influence of the different fuels have been studied, but also the thickness of the molten salt, and the concentration of the {sup 6}Li in the molten salt. Preliminary studies indicate that when thorium-uranium-plutonium fuels were added into a F-Li-Be molten salt blanket and with a component of 71% LiF-2% BeF{sub 2}-13.5% ThF{sub 4}-8.5% UF{sub 4}-5% PuF{sub 3}, and also with the molten salt thickness of 40 cm and natural concentration of {sup 6}Li, the appropriate blanket energy multiplication factor and TBR can be obtained. The result shows that thorium-uranium molten salt can be used in the blanket of a fusion-fission symbiotic reactor. The research on the molten salt blanket must be valuable for the design of fusion-fission symbiotic reactor.

  15. Proliferation resistance of small modular reactors fuels

    Energy Technology Data Exchange (ETDEWEB)

    Polidoro, F.; Parozzi, F. [RSE - Ricerca sul Sistema Energetico,Via Rubattino 54, 20134, Milano (Italy); Fassnacht, F.; Kuett, M.; Englert, M. [IANUS, Darmstadt University of Technology, Alexanderstr. 35, D-64283 Darmstadt (Germany)

    2013-07-01

    In this paper the proliferation resistance of different types of Small Modular Reactors (SMRs) has been examined and classified with criteria available in the literature. In the first part of the study, the level of proliferation attractiveness of traditional low-enriched UO{sub 2} and MOX fuels to be used in SMRs based on pressurized water technology has been analyzed. On the basis of numerical simulations both cores show significant proliferation risks. Although the MOX core is less proliferation prone in comparison to the UO{sub 2} core, it still can be highly attractive for diversion or undeclared production of nuclear material. In the second part of the paper, calculations to assess the proliferation attractiveness of fuel in typical small sodium cooled fast reactor show that proliferation risks from spent fuel cannot be neglected. The core contains a highly attractive plutonium composition during the whole life cycle. Despite some aspects of the design like the sealed core that enables easy detection of unauthorized withdrawal of fissile material and enhances proliferation resistance, in case of open Non-Proliferation Treaty break-out, weapon-grade plutonium in sufficient quantities could be extracted from the reactor core.

  16. Effects of a liquid lithium curtain as the first wall in a fusion reactor plasma

    Institute of Scientific and Technical Information of China (English)

    Li Cheng-Yue; J.P. Allain; Deng Bai-Quan

    2007-01-01

    This paper explores the effect of a liquid lithium curtain on fusion reactor plasma, such curtain is utilized as the first wall for the engineering outline design of the Fusion Experimental Breeder (FEB-E). The relationships between the surface temperature of a liquid lithium curtain and the effective plasma charge, fuel dilution and fusion power production have been derived. Results indicate that under normal operation, the evaporation of liquid lithium does not seriously affect the effective plasma charge, but effects on fuel dilution and fusion power are more sensitive. As an example, it has investigated the relationships between the liquid lithium curtain flow velocity and the rise of surface temperature based on operation scenario Ⅱ of the FEB-E design with reversed shear configuration and high power density. Results show that even if the liquid lithium curtain flow velocity is as low as 0.5 m/s, the effects of evaporation from the liquid lithium curtain on plasma are negligible. In the present design, the sputtering of liquid lithium curtain and the particle removal effects of the divertor are not yet considered in detail. Further studies are in progress, and in this work implication of lithium erosion and divertor physics on fusion reactor operation are discussed.

  17. Overview of the Lockheed Martin Compact Fusion Reactor (CFR) Program

    Science.gov (United States)

    McGuire, Thomas

    2015-11-01

    The Lockheed Martin Compact Fusion Reactor (CFR) Program endeavors to quickly develop a compact fusion power plant with favorable commercial economics and military utility. An overview of the concept and its diamagnetic, high beta magnetically encapsulated linear ring cusp confinement scheme will be given. The analytical model of the major loss mechanisms and predicted performance will be discussed, along with the major physics challenges. Key features of an operational CFR reactor will be highlighted. The proposed developmental path following the current experimental efforts will be presented. ©2015 Lockheed Martin Corporation. All Rights Reserved.

  18. Vanadium-base alloys for fusion reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Loomis, B.A.; Diercks, D.R.

    1984-10-01

    Vanadium-base alloys offer potentially significant advantages over other candidate alloys as a structural material for fusion reactor first wall/blanket applications. Although the data base is more limited than that for the other leading candidate structural materials, viz., austenitic and ferritic steels, vanadium-base alloys exhibit several properties that make them particularly attractive for the fusion reactor environment. This paper presents a review of the structural material requirements, a summary of the materials data base for selected vanadium-base alloys, and a comparison of projected performance characteristics compared to other candidate alloys. Also, critical research and development (R and D) needs are defined.

  19. Fusion Ash Separation in the Princeton Field-Reversed Configuration Reactor

    Science.gov (United States)

    Abbate, Joseph; Yeh, Meagan; McGreivy, Nick; Cohen, Samuel

    2016-10-01

    The Princeton Field-Reversed Configuration (PFRC) concept relies on low-neutron production by D-3He fusion to enable small, safe nuclear-fusion reactors to be built, an approach requiring rapid and efficient extraction of fusion ash and energy produced by D-3He fusion reactions. The ash exhaust stream would contain energetic (0.1-1 MeV) protons, T, 3He, and 4He ions and nearly 1e5 cooler (ca. 100 eV) D ions. The T extracted from the reactor would be a valuable fusion product in that it decays into 3He, which could be used as fuel. If the T were not extracted it would be troublesome because of neutron production by the D-T reaction. This paper discusses methods to separate the various species in a PFRC reactor's exhaust stream. First, we discuss the use of curved magnetic fields to separate the energetic from the cool components. Then we discuss exploiting material properties, specifically reflection, sputtering threshold, and permeability, to allow separation of the hydrogen from the helium isotopes. DOE Contract Number DE-AC02-09CH11466.

  20. Cold fusion reactors and new modern physics

    Directory of Open Access Journals (Sweden)

    Huang Zhenqiang Huang Yuxiang

    2013-10-01

    Full Text Available The author of the "modern physics classical particle quantization orbital motion model general solution", referred to as the “new modern physics” a book. “The nuclear force constraint inertial guidance cold nuclear fusion collides” patent of invention referred to as the “cold nuclear fusion reactor” detailed technical data. Now provide to you, hope you help spread and the mainstream of modern physics of academic and fusion engineering academic communication. We work together to promote the cause of science and technology progress of mankind to contribute

  1. A spherical torus nuclear fusion reactor space propulsion vehicle concept for fast interplanetary travel

    Science.gov (United States)

    Williams, Craig H.; Borowski, Stanley K.; Dudzinski, Leonard A.; Juhasz, Albert J.

    1999-01-01

    A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Initial requirements were for a human mission to Saturn with a>5% payload mass fraction and a one way trip time of less than one year. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 235 days, with an initial mass in low Earth orbit of 2,941 mt. Engineering conceptual design, analysis, and assessment was performed on all major systems including payload, central truss, nuclear reactor (including diverter and fuel injector), power conversion (including turbine, compressor, alternator, radiator, recuperator, and conditioning), magnetic nozzle, neutral beam injector, tankage, start/re-start reactor and battery, refrigeration, communications, reaction control, and in-space operations. Detailed assessment was done on reactor operations, including plasma characteristics, power balance, and component design.

  2. A Spherical Torus Nuclear Fusion Reactor Space Propulsion Vehicle Concept for Fast Interplanetary Travel

    Science.gov (United States)

    Williams, Craig H.; Borowski, Stanley K.; Dudzinski, Leonard A.; Juhasz, Albert J.

    1998-01-01

    A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Initial requirements were for a human mission to Saturn with a greater than 5% payload mass fraction and a one way trip time of less than one year. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 235 days, with an initial mass in low Earth orbit of 2,941 mt. Engineering conceptual design, analysis, and assessment was performed on all ma or systems including payload, central truss, nuclear reactor (including divertor and fuel injector), power conversion (including turbine, compressor, alternator, radiator, recuperator, and conditioning), magnetic nozzle, neutral beam injector, tankage, start/re-start reactor and battery, refrigeration, communications, reaction control, and in-space operations. Detailed assessment was done on reactor operations, including plasma characteristics, power balance, power utilization, and component design.

  3. Micro reactor physics of MOX fueled LWR

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Toshikazu [Osaka Univ. (Japan)

    2001-09-01

    Upon the background that the LWR fuels become complicated in recent years because of the introduction of high burnup fuels, high density Gd fuels, MOX fuels, the author proposes the Micro Reactor Physics. He intends to investigate the behaviors of neutrons and reactions in a pin rod that have not yet been paid attention. Conventionally the resonance absorption has been evaluated by assuming the uniform effective cross sections in a pin rod. However, due to the self-shielding, the neutron spectrum near the surface of the rod is quite different with that of the center of rod. This fact affects the spatial distributions of Pu isotopes produced during burnup. The spatial distribution of temperature in a rod affects the Doppler coefficient. He solved this problem by the multi-band method. In the case where MOX rods are adjacent with U rods, the spectrum of the current from MOX rods to U rods is different with that of U to MOX. That makes the spatial distribution of azimuthal direction together with that of the infinite lattice. He solved this problem by a cell calculation based on the characteristic method. This report introduces several numerical results of his Micro Reactor Physics. One of the important results is the indication that the conventional Doppler coefficient gives 20% higher (not conservative) value. (K. Tsuchihashi)

  4. Micro reactor physics of MOX fueled LWR

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Toshikazu [Osaka Univ. (Japan)

    2001-09-01

    Upon the background that the LWR fuels become complicated in recent years because of the introduction of high burnup fuels, high density Gd fuels, MOX fuels, the author proposes the Micro Reactor Physics. He intends to investigate the behaviors of neutrons and reactions in a pin rod that have not yet been paid attention. Conventionally the resonance absorption has been evaluated by assuming the uniform effective cross sections in a pin rod. However, due to the self-shielding, the neutron spectrum near the surface of the rod is quite different with that of the center of rod. This fact affects the spatial distributions of Pu isotopes produced during burnup. The spatial distribution of temperature in a rod affects the Doppler coefficient. He solved this problem by the multi-band method. In the case where MOX rods are adjacent with U rods, the spectrum of the current from MOX rods to U rods is different with that of U to MOX. That makes the spatial distribution of azimuthal direction together with that of the infinite lattice. He solved this problem by a cell calculation based on the characteristic method. This report introduces several numerical results of his Micro Reactor Physics. One of the important results is the indication that the conventional Doppler coefficient gives 20% higher (not conservative) value. (K. Tsuchihashi)

  5. Advanced Reactor Fuels Irradiation Experiment Design Objectives

    Energy Technology Data Exchange (ETDEWEB)

    Chichester, Heather Jean MacLean [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hayes, Steven Lowe [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dempsey, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Harp, Jason Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report summarizes the objectives of the current irradiation testing activities being undertaken by the Advanced Fuels Campaign relative to supporting the development and demonstration of innovative design features for metallic fuels in order to realize reliable performance to ultra-high burnups. The AFC-3 and AFC-4 test series are nearing completion; the experiments in this test series that have been completed or are in progress are reviewed and the objectives and test matrices for the final experiments in these two series are defined. The objectives, testing strategy, and test parameters associated with a future AFC test series, AFC-5, are documented. Finally, the future intersections and/or synergies of the AFC irradiation testing program with those of the TREAT transient testing program, emerging needs of proposed Versatile Test Reactor concepts, and the Joint Fuel Cycle Study program’s Integrated Recycle Test are discussed.

  6. Advanced Fusion Reactors for Space Propulsion and Power Systems

    Science.gov (United States)

    Chapman, John J.

    2011-01-01

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles "exhaust" momentum can be used directly to produce high ISP thrust and also offer possibility of power conversion into electricity. p- 11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  7. Tokamak fusion reactors with less than full tritium breeding

    Energy Technology Data Exchange (ETDEWEB)

    Evans, K. Jr.; Gilligan, J.G.; Jung, J.

    1983-05-01

    A study of commercial, tokamak fusion reactors with tritium concentrations and tritium breeding ratios ranging from full deuterium-tritium operation to operation with no tritium breeding is presented. The design basis for these reactors is similar to those of STARFIRE and WILDCAT. Optimum operating temperatures, sizes, toroidal field strengths, and blanket/shield configurations are determined for a sequence of reactor designs spanning the range of tritium breeding, each having the same values of beta, thermal power, and first-wall heat load. Additional reactor parameters, tritium inventories and throughputs, and detailed costs are calculated for each reactor design. The disadvantages, advantages, implications, and ramifications of tritium-depleted operation are presented and discussed.

  8. A new MTR fuel for a new MTR reactor: UMo for the Jules Horowitz reactor

    Energy Technology Data Exchange (ETDEWEB)

    Guigon, B. [CEA Cadarache, Dir. de l' Energie Nucleaire DEN, Reacteur Jules Horowitz, 13 - Saint-Paul-lez-Durance (France); Vacelet, H. [Compagnie pour l' Etude et la Realisation de Combustibles Atomiques, CERCA, Etablissement de Romans, 26 (France); Dornbusch, D. [Technicatome, Service d' Architecture Generale, 13 - Aix-en-Provence (France)

    2003-07-01

    Within some years, the Jules Horowitz Reactor will be the only working experimental reactor (material and fuel testing reactor) in France. It will have to provide facilities for a wide range of needs: from activation analysis to power reactor fuel qualification. In this paper will be presented the main characteristics of the Jules Horowitz Reactor: its total power, neutron flux, fuel element... Safety criteria will be explained. Finally merits and disadvantages of UMo compared to the standard U{sub 3}Si{sub 2} fuel will be discussed. (authors)

  9. An evaluation of fusion gain in the compact helical fusion reactor FFHR-c1

    Science.gov (United States)

    Miyazawa, J.; Goto, T.; Sakamoto, R.; Sagara, A.; the FFHR Design Group

    2014-01-01

    A new procedure to predict achievable fusion gain in a sub-ignition fusion reactor is proposed. This procedure uses the direct profile extrapolation (DPE) method based on the gyro-Bohm model. The DPE method has been developed to predict the radial profiles in a fusion reactor sustained without auxiliary heating (i.e., in the self-ignition state) from the experimental data. To evaluate the fusion gain in a fusion reactor sustained with auxiliary heating (i.e., in the sub-ignition state), the DPE method is modified to include the influence of the auxiliary heating. The beta scale factor from experiment to reactor is assumed to be 1. Under this assumption, it becomes reasonable to apply the magnetohydrodynamic (MHD) equilibrium (which is calculated to reproduce the experimental data) to the reactor. At the same time, the MHD stability of the reactor plasma is also guaranteed to a certain extent since that beta was already proven in the experiment. The fusion gain in the helical type nuclear test machine FFHR-c1 has been evaluated using this modified DPE method. FFHR-c1 is basically a large duplication of the Large Helical Device (LHD) with a scale factor of 10/3, which corresponds to the major radius of the helical coils of 13.0 m and the plasma volume of ∼1000 m3. Two options with different magnetic field strengths are considered. The fusion gain in FFHR-c1 extrapolated from a set of radial profile data obtained in LHD ranges from 1 to 7, depending on the profiles used together with the assumptions of the magnetic field strength and the alpha heating efficiency.

  10. Fusion option to dispose of spent nuclear fuel and transuranic elements

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.

    2000-02-10

    The fusion option is examined to solve the disposition problems of the spent nuclear fuel and the transuranic elements. The analysis of this report shows that the top rated solution, the elimination of the transuranic elements and the long-lived fission products, can be achieved in a fusion reactor. A 167 MW of fusion power from a D-T plasma for sixty years with an availability factor of 0.75 can transmute all the transuranic elements and the long-lived fission products of the 70,000 tons of the US inventory of spent nuclear fuel generated up to the year 2015. The operating time can be reduced to thirty years with use of 334 MW of fusion power, a system study is needed to define the optimum time. In addition, the fusion solution eliminates the need for a geological repository site, which is a major advantage. Meanwhile, such utilization of the fusion power will provide an excellent opportunity to develop fusion energy for the future. Fusion blankets with a liquid carrier for the transuranic elements can achieve a transmutation rate for the transuranic elements up to 80 kg/MW.y of fusion power with k{sub eff} of 0.98. In addition, the liquid blankets have several advantages relative to the other blanket options. The energy from this transmutation is utilized to produce revenue for the system. Molten salt (Flibe) and lithium-lead eutectic are identified as the most promising liquids for this application, both materials are under development for future fusion blanket concepts. The Flibe molten salt with transuranic elements was developed and used successfully as nuclear fuel for the molten salt breeder reactor in the 1960's.

  11. Spent nuclear fuel discharges from U.S. reactors 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    Spent Nuclear Fuel Discharges from US Reactors 1994 provides current statistical data on fuel assemblies irradiated at commercial nuclear reactors operating in the US. This year`s report provides data on the current inventories and storage capacities at these reactors. Detailed statistics on the data are presented in four chapters that highlight 1994 spent fuel discharges, storage capacities and inventories, canister and nonfuel component data, and assembly characteristics. Five appendices, a glossary, and bibliography are also included. 10 figs., 34 tabs.

  12. Fast Neutron Detector for Fusion Reactor KSTAR Using Stilbene Scintillator

    CERN Document Server

    Lee, Seung Kyu; Kim, Gi-Dong; Kim, Yong-Kyun

    2011-01-01

    Various neutron diagnostic tools are used in fusion reactors to evaluate different aspects of plasma performance, such as fusion power, power density, ion temperature, fast ion energy, and their spatial distributions. The stilbene scintillator has been proposed for use as a neutron diagnostic system to measure the characteristics of neutrons from the Korea Superconducting Tokamak Advanced Research (KSTAR) fusion reactor. Specially designed electronics are necessary to measure fast neutron spectra with high radiation from a gamma-ray background. The signals from neutrons and gamma-rays are discriminated by the digital charge pulse shape discrimination (PSD) method, which uses total to partial charge ratio analysis. The signals are digitized by a flash analog-to-digital convertor (FADC). To evaluate the performance of the fabricated stilbene neutron diagnostic system, the efficiency of 10 mm soft-iron magnetic shielding and the detection efficiency of fast neutrons were tested experimentally using a 252Cf neutr...

  13. Physical and mechanical characteristics and chemical compatibility of aluminum nitride insulator coatings for fusion reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Rink, D.L. [Argonne National Lab., IL (United States). Energy Technology Div.

    1996-04-01

    The blanket system is one of the most important components in a fusion reactor because it has a major impact on both the economics and safety of fusion energy. The primary functions of the blanket in a deuterium/tritium-fueled fusion reactor are to convert the fusion energy into sensible heat and to breed tritium for the fuel cycle. The Blanket Comparison and Selection Study, conducted earlier, described the overall comparative performance of various concepts, including liquid metal, molten salt, water, and helium. Based on the requirements for an electrically insulating coating on the first-wall structural material to minimize the MHD pressure drop during the flow of liquid metal in a magnetic field, AlN was selected as a candidate coating material for the Li self-cooled blanket concept. This report discusses the results from an ongoing study of physical and mechanical characteristics and chemical compatibility of AlN electrical insulator coatings in a liquid Li environment. Details are presented on the AlN coating fabrication methods, and experimental data are reported for microstructures, chemistry of coatings, pretreatment of substrate, heat treatment of coatings, hardness data for coatings, coating/lithium interactions, and electrical resistance before and after exposure to lithium. Thermodynamic calculations are presented to establish regions of stability for AlN coatings in an Li environment as a function of O concentration and temperature, which can aid in-situ development of AlN coatings in Li.

  14. Laser fusion power reactor system (LFPRS)

    Energy Technology Data Exchange (ETDEWEB)

    Kovacik, W. P.

    1977-12-19

    This report gives detailed information for each of the following areas: (1) reference concept description, (2) nuclear design, (3) structural design, (4) thermal and fluid systems design, (5) materials design and analysis, (6) reactor support systems and balance of plant, (7) instrumentation and control, (8) environment and safety, (9) economics assessment, and (10) development requirements. (MOW)

  15. Recent contributions to fusion reactor design and technology development

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-01

    The report contains a collection of 16 recent fusion technology papers on the STARFIRE Project, the study of alternate fusion fuel cycles, a maintainability study, magnet safety, neutral beam power supplies and pulsed superconducting magnets and energy transfer. This collection of papers contains contributions for Argonne National Laboratory, McDonnell Douglas Astronautics Company, General Atomic Company, The Ralph M. Parsons Company, the University of Illinois, and the University of Wisconsin. Separate abstracts are presented for each paper. (MOW)

  16. Tritium issues to be solved for establishment of a fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, Tetsuo, E-mail: tanabe@nucl.kyushu-u.ac.jp [Interdisciplinary Graduate School of Engineering Science, Kyushu University (Japan)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Overview of Japanese tritium researches. Black-Right-Pointing-Pointer Introduction of necessary works for establishment of tritium safety. Black-Right-Pointing-Pointer Tritium researches for burning plasma. - Abstract: In order to establish a D-T fusion reactor as an energy source, economical conversion of fusion energy to electricity and/or heat, attaining enough margins in tritium breeding, and insuring tritium safety must be simultaneously achieved. Scientists and researchers working on Tritium in Japan are now tackling with T related problems. Their research subjects can be categorized into two, i.e. researches on 'Science and technology' to establish safe and economic Tritium fuel cycle for fusion reactors and 'Tritium safety'. Many researchers from various universities, and institutes such as NIFS, JAEA and IEA (Inst. Environmental Science) in Japan are involved in various research programs. In this report, after brief introduction on Tritium related researches in Japan, important T issues to be solved for establishment of a fusion reactor will be summarized considering the handling of large amount of tritium, i.e. fuelling, D-T burning, T inventory, exhausting, refinement, confinement, permeation, leakage, contamination, regulation and tritium accountancy.

  17. Interim irradiated fuel storage facility for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lolich, Jose [INVAP SE, Bariloche (Argentina)

    2002-07-01

    In most research reactors irradiated fuel discharged from the reactor is initially stored underwater inside the reactor building for along period of time. This allows for heat dissipation and fission product decay. In most cases this initial storage is done in a irradiated fuel storage facility pool located closed to the reactor core. After a certain cooling time, the fuel discharged should be relocated for long-term interim storage in a Irradiated Fuel Storage (IFS) Facility. IFS facilities are required for the safe storage of irradiated nuclear fuel before it is reprocessed or conditioned for disposal as radioactive waste. The IFS Facility described in this report is not an integral part of an operating nuclear reactor. This facility many be either co-located with nuclear facilities (such as a nuclear reactor or reprocessing plant) or sited independently of other nuclear facilities. (author)

  18. Study on fission blanket fuel cycling of a fusion-fission hybrid energy generation system

    Science.gov (United States)

    Zhou, Z.; Yang, Y.; Xu, H.

    2011-10-01

    This paper presents a preliminary study on neutron physics characteristics of a light water cooled fission blanket for a new type subcritical fusion-fission hybrid reactor aiming at electric power generation with low technical limits of fission fuel. The major objective is to study the fission fuel cycling performance in the blanket, which may possess significant impacts on the feasibility of the new concept of fusion-fission hybrid reactor with a high energy gain (M) and tritium breeding ratio (TBR). The COUPLE2 code developed by the Institute of Nuclear and New Energy Technology of Tsinghua University is employed to simulate the neutronic behaviour in the blanket. COUPLE2 combines the particle transport code MCNPX with the fuel depletion code ORIGEN2. The code calculation results show that soft neutron spectrum can yield M > 20 while maintaining TBR >1.15 and the conversion ratio of fissile materials CR > 1 in a reasonably long refuelling cycle (>five years). The preliminary results also indicate that it is rather promising to design a high-performance light water cooled fission blanket of fusion-fission hybrid reactor for electric power generation by directly loading natural or depleted uranium if an ITER-scale tokamak fusion neutron source is achievable.

  19. 1st International School of Fusion Reactor Technology "Ettore Majorana"

    CERN Document Server

    Knoepfel, Heinz; Safety, Environmental Impact and Economic Prospects of Nuclear Fusion

    1990-01-01

    This book contains the lectures and the concluding discussion of the "Seminar on Safety, Environmental Impact, and Economic Prospects of Nuclear Fusion", which was held at Erice, August 6-12, 1989. In selecting the contributions to this 9th meeting held by the International School of Fusion Reactor Technology at the E. Majorana Center for Scientific Cul­ ture in Erice, we tried to provide a comprehensive coverage of the many interre­ lated and interdisciplinary aspects of what ultimately turns out to be the global acceptance criteria of our society with respect to controlled nuclear fusion. Consequently, this edited collection of the papers presented should provide an overview of these issues. We thus hope that this book, with its extensive subject index, will also be of interest and help to nonfusion specialists and, in general, to those who from curiosity or by assignment are required to be informed on these as­ pects of fusion energy.

  20. Reference mirror hybrid fusion-fission reactor design

    Energy Technology Data Exchange (ETDEWEB)

    Bender, D.J.; Lee, J.D.; Neef, W.S.

    1977-06-08

    The status of the reference mirror hybrid reactor design being performed by LLL and General Atomic is summarized. The reactor parameters have been chosen to minimize the cost of producing fissile fuel for consumption in fission power reactors. The design draws on the experience developed at LLL in previous hybrid reactor conceptual designs and on GA expertise in gas-cooling technology and fission reactor mechanical design. As in the past, we have emphasized the use of existing technology where possible and a minimum extrapolation of technology otherwise. We consider our projections for the plasma physics parameters to be conservative, in that they are well-founded on the experiments in 2XIIB and the interpretation of these experiments.

  1. FCRD Advanced Reactor (Transmutation) Fuels Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Janney, Dawn Elizabeth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Papesch, Cynthia Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Transmutation of minor actinides such as Np, Am, and Cm in spent nuclear fuel is of international interest because of its potential for reducing the long-term health and safety hazards caused by the radioactivity of the spent fuel. One important approach to transmutation (currently being pursued by the DOE Fuel Cycle Research & Development Advanced Fuels Campaign) involves incorporating the minor actinides into U-Pu-Zr alloys, which can be used as fuel in fast reactors. U-Pu-Zr alloys are well suited for electrolytic refining, which leads to incorporation rare-earth fission products such as La, Ce, Pr, and Nd. It is, therefore, important to understand not only the properties of U-Pu-Zr alloys but also those of U-Pu-Zr alloys with concentrations of minor actinides (Np, Am) and rare-earth elements (La, Ce, Pr, and Nd) similar to those in reprocessed fuel. In addition to requiring extensive safety precautions, alloys containing U, Pu, and minor actinides (Np and Am) are difficult to study for numerous reasons, including their complex phase transformations, characteristically sluggish phasetransformation kinetics, tendency to produce experimental results that vary depending on the histories of individual samples, rapid oxidation, and sensitivity to contaminants such as oxygen in concentrations below a hundred parts per million. Although less toxic, rare-earth elements such as La, Ce, Pr, and Nd are also difficult to study for similar reasons. Many of the experimental measurements were made before 1980, and the level of documentation for experimental methods and results varies widely. It is, therefore, not surprising that little is known with certainty about U-Pu-Zr alloys, particularly those that also contain minor actinides and rare-earth elements. General acceptance of results commonly indicates that there is only a single measurement for a particular property. This handbook summarizes currently available information about U, Pu, Zr, Np, Am, La, Ce, Pr, and Nd and

  2. Operational limitations of light water reactors relating to fuel performance

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, H S

    1976-07-01

    General aspects of fuel performance for typical Boiling and Pressurized Water Reactors are presented. Emphasis is placed on fuel failures in order to make clear important operational limitations. A discussion of fuel element designs is first given to provide the background information for the subsequent discussion of several fuel failure modes that have been identified. Fuel failure experiences through December 31, 1974, are summarized. The operational limitations that are required to mitigate the effects of fuel failures are discussed.

  3. Operational limitations of light water reactors relating to fuel performance

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, H S

    1976-07-01

    General aspects of fuel performance for typical Boiling and Pressurized Water Reactors are presented. Emphasis is placed on fuel failures in order to make clear important operational limitations. A discussion of fuel element designs is first given to provide the background information for the subsequent discussion of several fuel failure modes that have been identified. Fuel failure experiences through December 31, 1974, are summarized. The operational limitations that are required to mitigate the effects of fuel failures are discussed.

  4. Nuclear proliferation and civilian nuclear power: report of the Nonproliferation Alternative Systems Assessment Program. Volume IX. Reactor and fuel cycle descriptions

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The Nonproliferation Alternative Systems Assessment Program (NASAP) has characterized and assessed various reactor/fuel-cycle systems. Volume IX provides, in summary form, the technical descriptions of the reactor/fuel-cycle systems studied. This includes the status of the system technology, as well as a discussion of the safety, environmental, and licensing needs from a technical perspective. This information was then used in developing the research, development, and demonstration (RD and D) program, including its cost and time frame, to advance the existing technology to the level needed for commercial use. Wherever possible, the cost data are given as ranges to reflect the uncertainties in the estimates. Volume IX is divided into three sections: Chapter 1, Reactor Systems; Chapter 2, Fuel-Cycle Systems; and the Appendixes. Chapter 1 contains the characterizations of the following 12 reactor types: light-water reactor; heavy-water reactor; water-cooled breeder reactor; high-temperature gas-cooled reactor; gas-cooled fast reactor; liquid-metal fast breeder reactor; spectral-shift-controlled reactor; accelerator-driven reactor; molten-salt reactor; gaseous-core reactor; tokamak fusion-fisson hybrid reactor; and fast mixed-spectrum reactor. Chapter 2 contains similar information developed for fuel-cycle facilities in the following categories: mining and milling; conversion and enrichment; fuel fabrication; spent fuel reprocessing; waste handling and disposal; and transportation of nuclear materials.

  5. Conceptual design study of a scyllac fusion test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Thomassen, K.I. (comp.)

    1975-07-01

    The report describes a conceptual design study of a fusion test reactor based on the Scyllac toroidal theta-pinch approach to fusion. It is not the first attempt to describe the physics and technology required for demonstrating scientific feasibility of the approach, but it is the most complete design in the sense that the physics necessary to achieve the device goals is extrapolated from experimentally tested MHD theories of toroidal systems,and it uses technological systems whose engineering performance has been carefully calculated to ensure that they meet the machine requirements.

  6. Fuel enrichment and temperature distribution in nuclear fuel rod in (D-T) driven hybrid reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Osman, Ypek [Suleyman Demirel Universitesi Muhendislik-Mimarlyk Fakultesi, Isparta (Turkey)

    2001-07-01

    In this study, melting point of the fuel rod and temperature distribution in nuclear fuel rod are investigated for different coolants under various first wall loads (P{sub w}, =5, 6, 7, 8, 9, and 10 MWm{sup -2}) in Fusion-Fission reactor fueled with 50%LWR +50%CANDU. The fusion source of neutrons of 14.1 MeV is simulated by a movable target along the main axis of cylindrical geometry as a line source. In addition, the fusion chamber was thought as a cylindrical cavity with a diameter of 300 cm that is comparatively small value. The fissile fuel zone is considered to be cooled with four different coolants, gas, flibe (Li{sub 2}BeF{sub 4}), natural lithium (Li), and eutectic lithium (Li{sub 17}Pb{sub 83}). Investigations are observed during 4 years for discrete time intervals of{delta}t= 0.5 month and by a plant factor (PF) of 75%. Volumetric ratio of coolant-to fuel is 1:1, 45.515% coolant, 45.515% fuel, 8.971% clad, in fuel zone. (author)

  7. Fusion reactor blanket/shield design study

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Clemmer, R.G.; Harkness, S.D.

    1979-07-01

    A joint study of tokamak reactor first-wall/blanket/shield technology was conducted by Argonne National Laboratory (ANL) and McDonnell Douglas Astronautics Company (MDAC). The objectives of this program were the identification of key technological limitations for various tritium-breeding-blanket design concepts, establishment of a basis for assessment and comparison of the design features of each concept, and development of optimized blanket designs. The approach used involved a review of previously proposed blanket designs, analysis of critical technological problems and design features associated with each of the blanket concepts, and a detailed evaluation of the most tractable design concepts. Tritium-breeding-blanket concepts were evaluated according to the proposed coolant. The ANL effort concentrated on evaluation of lithium- and water-cooled blanket designs while the MDAC effort focused on helium- and molten salt-cooled designs. A joint effort was undertaken to provide a consistent set of materials property data used for analysis of all blanket concepts. Generalized nuclear analysis of the tritium breeding performance, an analysis of tritium breeding requirements, and a first-wall stress analysis were conducted as part of the study. The impact of coolant selection on the mechanical design of a tokamak reactor was evaluated. Reference blanket designs utilizing the four candidate coolants are presented.

  8. Computer simulation of tritium releases in inertial fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Perlado, J.M.; Velarde, M. [Universidad Politecnica de Madrid, Instituto de Fusion Nuclear, DENIM (Spain)

    2000-07-01

    Accidental releases of tritium from Inertial Fusion reactors are presented. A well-established computer code, MACCS2, is used with realistic models. Release fractions of 1 - 10 - 50 - 100 % of inventories are considered, with height of emissions 10, 30, 60 m, and duration of 10 min. and 2 hours. Only early emergency phase is considered with mitigative actions and shielding factors. It is concluded that except in 100 % releases for some reactors and heights the effective doses to workers and general population does not exceed the regulatory limits. Differences with very conservative results can attain 2 orders of magnitude. (authors)

  9. Fuel Cycle Performance of Thermal Spectrum Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Worrall, Andrew [ORNL; Todosow, Michael [Brookhaven National Laboratory (BNL)

    2016-01-01

    Small modular reactors may offer potential benefits, such as enhanced operational flexibility. However, it is vital to understand the holistic impact of small modular reactors on the nuclear fuel cycle and fuel cycle performance. The focus of this paper is on the fuel cycle impacts of light water small modular reactors in a once-through fuel cycle with low-enriched uranium fuel. A key objective of this paper is to describe preliminary reactor core physics and fuel cycle analyses conducted in support of the U.S. Department of Energy Office of Nuclear Energy Fuel Cycle Options Campaign. Challenges with small modular reactors include: increased neutron leakage, fewer assemblies in the core (and therefore fewer degrees of freedom in the core design), complex enrichment and burnable absorber loadings, full power operation with inserted control rods, the potential for frequent load-following operation, and shortened core height. Each of these will impact the achievable discharge burn-up in the reactor and the fuel cycle performance. This paper summarizes the results of an expert elicitation focused on developing a list of the factors relevant to small modular reactor fuel, core, and operation that will impact fuel cycle performance. Preliminary scoping analyses were performed using a regulatory-grade reactor core simulator. The hypothetical light water small modular reactor considered in these preliminary scoping studies is a cartridge type one-batch core with 4.9% enrichment. Some core parameters, such as the size of the reactor and general assembly layout, are similar to an example small modular reactor concept from industry. The high-level issues identified and preliminary scoping calculations in this paper are intended to inform on potential fuel cycle impacts of one-batch thermal spectrum SMRs. In particular, this paper highlights the impact of increased neutron leakage and reduced number of batches on the achievable burn-up of the reactor. Fuel cycle performance

  10. Integral reactor system and method for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Neil Edward; Brown, Michael S.; Cheekatamaria, Praveen; Deng, Thomas; Dimitrakopoulos, James; Litka, Anthony F.

    2017-03-07

    A reactor system is integrated internally within an anode-side cavity of a fuel cell. The reactor system is configured to convert higher hydrocarbons to smaller species while mitigating the lower production of solid carbon. The reactor system may incorporate one or more of a pre-reforming section, an anode exhaust gas recirculation device, and a reforming section.

  11. Integral reactor system and method for fuel cells

    Science.gov (United States)

    Fernandes, Neil Edward; Brown, Michael S; Cheekatamarla, Praveen; Deng, Thomas; Dimitrakopoulos, James; Litka, Anthony F

    2013-11-19

    A reactor system is integrated internally within an anode-side cavity of a fuel cell. The reactor system is configured to convert hydrocarbons to smaller species while mitigating the lower production of solid carbon. The reactor system may incorporate one or more of a pre-reforming section, an anode exhaust gas recirculation device, and a reforming section.

  12. Fusion fuel cycle: material requirements and potential effluents

    Energy Technology Data Exchange (ETDEWEB)

    Teofilo, V.L.; Bickford, W.E.; Long, L.W.; Price, B.A.; Mellinger, P.J.; Willingham, C.E.; Young, J.K.

    1980-10-01

    Environmental effluents that may be associated with the fusion fuel cycle are identified. Existing standards for controlling their release are summarized and anticipated regulatory changes are identified. The ability of existing and planned environmental control technology to limit effluent releases to acceptable levels is evaluated. Reference tokamak fusion system concepts are described and the principal materials required of the associated fuel cycle are analyzed. These materials include the fusion fuels deuterium and tritium; helium, which is used as a coolant for both the blanket and superconducting magnets; lithium and beryllium used in the blanket; and niobium used in the magnets. The chemical and physical processes used to prepare these materials are also described.

  13. Hydrogen isotopes transport parameters in fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Serra, E. [Politecnico di Torino (Italy). Dipartimento di Energetica; Benamati, G. [ENEA Fusion Division, CR Brasimone, 40032 Camungnano, Bologna (Italy); Ogorodnikova, O.V. [Moscow State Engineering Physics Institute, Moscow 115409 (Russian Federation)

    1998-06-01

    This work presents a review of hydrogen isotopes-materials interactions in various materials of interest for fusion reactors. The relevant parameters cover mainly diffusivity, solubility, trap concentration and energy difference between trap and solution sites. The list of materials includes the martensitic steels (MANET, Batman and F82H-mod.), beryllium, aluminium, beryllium oxide, aluminium oxide, copper, tungsten and molybdenum. Some experimental work on the parameters that describe the surface effects is also mentioned. (orig.) 62 refs.

  14. Towards the detection of magnetohydrodynamics instabilities in a fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sozzi, Carlo, E-mail: sozzi@ifp.cnr.it; Alessi, E., E-mail: sozzi@ifp.cnr.it; Figini, L., E-mail: sozzi@ifp.cnr.it; Galperti, G., E-mail: sozzi@ifp.cnr.it; Lazzaro, E., E-mail: sozzi@ifp.cnr.it; Marchetto, C., E-mail: sozzi@ifp.cnr.it; Nowak, S. [Istituto di Fisica del Plasma, CNR, EURATOM-ENEA Association, Milano (Italy); Mosconi, M. [Dipartimento di Energia, Politecnico di Milano, Milano (Italy)

    2014-08-21

    Various active control strategies of the Neoclassical tearing modes are being studied in present tokamaks using established detection techniques which exploit the measurements of the fluctuations of the magnetic field and of the electron temperature. The extrapolation of such techniques to the fusion reactor scale is made problematic by the neutron fluence and by the physics conditions related to the high plasma temperature and density which degrade the spatial resolution of such measurements.

  15. Reactor-specific spent fuel discharge projections, 1987-2020

    Energy Technology Data Exchange (ETDEWEB)

    Walling, R.C.; Heeb, C.M.; Purcell, W.L.

    1988-03-01

    The creation of five reactor-specific spent fuel data bases that contain information on the projected amounts of spent fuel to be discharged from U.S. commercial nuclear reactors through the year 2020 is described. The data bases contain detailed spent fuel information from existing, planned, and projected pressurized water reactors (PWR) and boiling water eactors (BWR), and one existing high temperature gas reactor (HTGR). The projections are based on individual reactor information supplied by the U.S. reactor owners. The basic information is adjusted to conform to Energy Information Administration (EIA) forecasts for nuclear installed capacity, generation, and spent fuel discharged. The EIA cases considered are: No New Orders (assumes increasing burnup), No New Orders with No Increased Burnup, Upper Reference (assumes increasing burnup), Upper Reference with No Increased Burnup, and Lower Reference (assumes increasing burnup). Detailed, by-reactor tables are provided for annual discharged amounts of spent fuel, for storage requirements assuming maximum at-reactor storage, and for storage requirements assuming maximum at-reactor storage plus intra-utility transshipment of spent fuel. 8 refs., 8 figs., 10 tabs.

  16. Reactor-specific spent fuel discharge projections: 1986 to 2020

    Energy Technology Data Exchange (ETDEWEB)

    Heeb, C.M.; Walling, R.C.; Purcell, W.L.

    1987-03-01

    The creation of five reactor-specific spent fuel data bases that contain information on the projected amounts of spent fuel to be discharged from US commercial nuclear reactors through the year 2020 is described. The data bases contain detailed spent-fuel information from existing, planned, and projected pressurized water reactors (PWR) and boiling water reactors (BWR). The projections are based on individual reactor information supplied by the US reactor owners. The basic information is adjusted to conform to Energy Information Agency (EIA) forecasts for nuclear installed capacity, generation, and spent fuel discharged. The EIA cases considered are: (1) No new orders with extended burnup, (2) No new orders with constant burnup, (3) Upper reference (which assumes extended burnup), (4) Upper reference with constant burnup, and (5) Lower reference (which assumes extended burnup). Detailed, by-reactor tables are provided for annual discharged amounts of spent fuel, for storage requirements assuming maximum-at-reactor storage, and for storage requirements assuming maximum-at-reactor plus intra-utility transshipment of spent fuel. 6 refs., 8 figs., 8 tabs.

  17. Reactor-specific spent fuel discharge projections, 1987-2020

    Energy Technology Data Exchange (ETDEWEB)

    Walling, R.C.; Heeb, C.M.; Purcell, W.L.

    1988-03-01

    The creation of five reactor-specific spent fuel data bases that contain information on the projected amounts of spent fuel to be discharged from U.S. commercial nuclear reactors through the year 2020 is described. The data bases contain detailed spent fuel information from existing, planned, and projected pressurized water reactors (PWR) and boiling water eactors (BWR), and one existing high temperature gas reactor (HTGR). The projections are based on individual reactor information supplied by the U.S. reactor owners. The basic information is adjusted to conform to Energy Information Administration (EIA) forecasts for nuclear installed capacity, generation, and spent fuel discharged. The EIA cases considered are: No New Orders (assumes increasing burnup), No New Orders with No Increased Burnup, Upper Reference (assumes increasing burnup), Upper Reference with No Increased Burnup, and Lower Reference (assumes increasing burnup). Detailed, by-reactor tables are provided for annual discharged amounts of spent fuel, for storage requirements assuming maximum at-reactor storage, and for storage requirements assuming maximum at-reactor storage plus intra-utility transshipment of spent fuel. 8 refs., 8 figs., 10 tabs.

  18. Investigation of decladding via oxidation for MOX fast reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Westphal, B. R.; Wahlquist, D. L.; Sell, D. A.; Bateman, K. J.; Herrmann, S. D. [Idaho National Laboratory, Boise (United States)

    2008-08-15

    Although the oxidation of spent uranium oxide fuels has been extensively studied for its decladding and off-gassing capabilities, research on mixed oxide (MOX) fuels has not been as rigorous. A few studies have been conducted on the oxidation of MOX fuels for both thermal and fast reactor systems where the plutonium content of the MOX reflects the reactor system; generally less than 10 wt. % for thermal and more than 10 wt. % for fast. For the fast reactor fuel studies, conditions were applied during the oxidation testing of these MOX fuels that were uncharacteristic. In one case a cladding material under early development was tested and in the other a non-irradiated simulant was employed. Thus, irradiated fast reactor MOX fuel has been investigated for decladding by oxidation (DEOX) which utilizes later generation cladding material, viz. D9, an austenitic stainless steel alloy stabilized with titanium.

  19. Improve Design of Fuel Shear for Fast Reactor

    Institute of Scientific and Technical Information of China (English)

    GAO; Wei; OUYANG; Ying-gen; LI; Wei-min

    2012-01-01

    <正>Due to the deeper burnup and higher fuel swelling, fast reactor metal fuel rod using 316 stainless steel cladding, replacing the traditional zirconia cladding. The diameter of fuel rod of fast reactor is much longer than that of PWR, and the cladding of stainless steel has better ductility than zirconia cladding. Using the existing shear still will cause several aspects of problem: 1) Longer diameter of rod leads to

  20. Individual dose due to radioactivity accidental release from fusion reactor.

    Science.gov (United States)

    Nie, Baojie; Ni, Muyi; Wei, Shiping

    2017-04-05

    As an important index shaping the design of fusion safety system, evaluation of public radiation consequences have risen as a hot topic on the way to develop fusion energy. In this work, the comprehensive public early dose was evaluated due to unit gram tritium (HT/HTO), activated dust, activated corrosion products (ACPs) and activated gases accidental release from ITER like fusion reactor. Meanwhile, considering that we cannot completely eliminate the occurrence likelihood of multi-failure of vacuum vessel and tokamak building, we conservatively evaluated the public radiation consequences and environment restoration after the worst hypothetical accident preliminarily. The comparison results show early dose of different unit radioactivity release under different conditions. After further performing the radiation consequences, we find it possible that the hypothetical accident for ITER like fusion reactor would result in a level 6 accident according to INES, not appear level 7 like Chernobyl or Fukushima accidents. And from the point of environment restoration, we need at least 69 years for case 1 (1kg HTO and 1000kg dust release) and 34-52years for case 2 (1kg HTO and 10kg-100kg dust release) to wait the contaminated zone drop below the general public safety limit (1mSv per year) before it is suitable for human habitation.

  1. Material options for a commercial fusion reactor first wall

    Energy Technology Data Exchange (ETDEWEB)

    Dabiri, A.E.

    1986-05-01

    A study has been conducted to evaluate the potential of various materials for use as first walls in high-power-density commercial fusion reactors. Operating limits for each material were obtained based on a number of criteria, including maximum allowable structural temperatures, critical heat flux, ultimate tensile strength, and design-allowable stress. The results with water as a coolant indicate that a modified alloy similar to HT-9 may be a suitable candidate for low- and medium-power-density reactor first walls with neutron loads of up to 6 MW/m/sup 2/. A vanadium or copper alloy must be used for high-power-density reactors. The neutron wall load limit for vanadium alloys is about 14 MW/sup 2/, provided a suitable coating material is chosen. The extremely limited data base for radiation effects hinders any quantitative assessment of the limits for copper alloys.

  2. Fuel clad chemical interactions in fast reactor MOX fuels

    Science.gov (United States)

    Viswanathan, R.

    2014-01-01

    Clad corrosion being one of the factors limiting the life of a mixed-oxide fast reactor fuel element pin at high burn-up, some aspects known about the key elements (oxygen, cesium, tellurium, iodine) in the clad-attack are discussed and many Fuel-Clad-Chemical-Interaction (FCCI) models available in the literature are also discussed. Based on its relatively superior predictive ability, the HEDL (Hanford Engineering Development Laboratory) relation is recommended: d/μm = ({0.507 ṡ [B/(at.% fission)] ṡ (T/K-705) ṡ [(O/M)i-1.935]} + 20.5) for (O/M)i ⩽ 1.98. A new model is proposed for (O/M)i ⩾ 1.98: d/μm = [B/(at.% fission)] ṡ (T/K-800)0.5 ṡ [(O/M)i-1.94] ṡ [P/(W cm-1)]0.5. Here, d is the maximum depth of clad attack, B is the burn-up, T is the clad inner surface temperature, (O/M)i is the initial oxygen-to-(uranium + plutonium) ratio, and P is the linear power rating. For fuels with [n(Pu)/n(M = U + Pu)] > 0.25, multiplication factors f are recommended to consider the potential increase in the depth of clad-attack.

  3. Effect of Fuelling Depth on the Fusion Performance and Particle Confinement of a Fusion Reactor

    Science.gov (United States)

    Wang, Shijia; Wang, Shaojie

    2016-12-01

    The fusion performance and particle confinement of an international thermonuclear experimental reactor (ITER)-like fusion device have been modeled by numerically solving the energy transport equation and the particle transport equation. The effect of fuelling depth has been investigated. The plasma is primarily heated by the fusion produced alpha particles and the loss process of particles and energy in the scrape-off layer has been taken into account. To study the effect of fuelling depth on fusion performance, the ITERH-98P(y,2) scaling law has been used to evaluate the transport coefficients. It is shown that the particle confinement and fusion performance are significantly dependent on the fuelling depth. Deviation of 10% of the minor radius on fuelling depth can make the particle confinement change by ∼ 61% and the fusion performance change by ∼ 108%. The enhancement of fusion performance is due to the better particle confinement induced by deeper particle fuelling. supported by National Natural Science Foundation of China (Nos. 11175178 and 11375196) and the National Magnetic Confinement Fusion Science Program of China (No. 2014GB113000)

  4. Thermionic plasma injection for the Lockheed Martin T4 Compact Fusion Reactor experiment

    Science.gov (United States)

    Heinrich, Jonathon

    2015-11-01

    Lockheed Martin's Compact Fusion Reactor (CFR) concept relies on diamagnetic confinement in a magnetically encapsulated linear ring cusp geometry. Plasma injection into cusp field configurations requires careful deliberation. Previous work has shown that axial injection via a plasma gun is capable of achieving high-beta conditions in cusp configurations. We present a pulsed, high power thermionic plasma source and the associated magnetic field topology for plasma injection into the caulked-cusp magnetic field. The resulting plasma fueling and cross-field diffusion is discussed.

  5. Increasing Fuel Utilization of Breed and Burn Reactors

    Science.gov (United States)

    Di Sanzo, Christian Diego

    Breed and Burn reactors (B&B), also referred to Traveling Wave Reactors, are fast spectrum reactors that can be fed indefinitely with depleted uranium only, once criticality is achieved without the need for fuel reprocessing. Radiation damage to the fuel cladding limits the fuel utilization of B&B reactors to ˜ 18-20% FIMA (Fissions of Initial Metal Atoms) -- the minimum burnup required for sustaining the B&B mode of operation. The fuel discharged from this type of cores contain ˜ 10% fissile plutonium. Such a high plutonium content poses environmental and proliferation concerns, but makes it possible to utilize the fuel for further energy production. The objectives of the research reported in this dissertation are to analyze the fuel cycle of B&B reactors and study new strategies to extend the fuel utilization beyond ˜ 18-20% FIMA. First, the B&B reactor physics is examined while recycling the fuel every 20% FIMA via a limited separation processing, using either the melt refining or AIROX dry processes. It was found that the maximum attainable burnup varies from 54% to 58% FIMA -- depending on the recycling process and on the fraction of neutrons lost via leakage and reactivity control. In Chapter 3 the discharge fuel characteristics of B&B reactors operating at 20% FIMA and 55% FIMA is analyzed and compared. It is found that the 20% FIMA reactor discharges a fuel with about ˜ 80% fissile plutonium over total plutonium content. Subsequently a new strategy of minimal reconditioning, called double cladding is proposed to extend the fuel utilization in specifically designed second-tier reactors. It is found that with this strategy it is possible to increase fuel utilization to 30% in a sodium fast reactor and up to 40% when a subcritical B&B core is driven by an accelerator-driven spallation neutron source. Lastly, a fuel cycle using Pressurized Water Reactors (PWR) to reduce the plutonium content of discharged B&B reactors is analyzed. It was found that it is

  6. The role of Z-pinch fusion transmutation of waste in the nuclear fuel cycle.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, James Dean; Drennen, Thomas E. (Hobart & William Smith College, Geneva, NY); Rochau, Gary Eugene; Martin, William Joseph; Kamery, William (Hobart & William Smith College, Geneva, NY); Phruksarojanakun, Phiphat (University of Wisconsin, Madison, WI); Grady, Ryan (University of Wisconsin, Madison, WI); Cipiti, Benjamin B.; Wilson, Paul Philip Hood (University of Wisconsin, Madison, WI); Mehlhorn, Thomas Alan; Guild-Bingham, Avery (Texas A& M University, College Station, TX); Tsvetkov, Pavel Valeryevich (Texas A& M University, College Station, TX)

    2007-10-01

    The resurgence of interest in reprocessing in the United States with the Global Nuclear Energy Partnership has led to a renewed look at technologies for transmuting nuclear waste. Sandia National Laboratories has been investigating the use of a Z-Pinch fusion driver to burn actinide waste in a sub-critical reactor. The baseline design has been modified to solve some of the engineering issues that were identified in the first year of work, including neutron damage and fuel heating. An on-line control feature was added to the reactor to maintain a constant neutron multiplication with time. The transmutation modeling effort has been optimized to produce more accurate results. In addition, more attention was focused on the integration of this burner option within the fuel cycle including an investigation of overall costs. This report presents the updated reactor design, which is able to burn 1320 kg of actinides per year while producing 3,000 MWth.

  7. Steady State Analysis of Small Molten Salt Reactor : Effect of Fuel Salt Flow on Reactor Characteristics

    OpenAIRE

    Yamamoto, Takahisa; MITACHI, Koshi; Suzuki, Takashi

    2005-01-01

    The Molten Salt Reactor (MSR) is a thermal neutron reactor with graphite moderation and operates on the thorium-uranium fuel cycle. The feature of the MSR is that fuel salt flows inside the reactor during the nuclear fission reaction. In the previous study, the authors developed numerical model with which to simulate the effects of fuel salt flow on the reactor characteristics. In this study, we apply the model to the steady-state analysis of a small MSR system and estimate the effects of fue...

  8. Fuel Summary Report: Shippingport Light Water Breeder Reactor - Rev. 2

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Gail Lynn; Mc Cardell, Richard Keith; Illum, Douglas Brent

    2002-09-01

    The Shippingport Light Water Breeder Reactor (LWBR) was developed by Bettis Atomic Power Laboratory to demonstrate the potential of a water-cooled, thorium oxide fuel cycle breeder reactor. The LWBR core operated from 1977-82 without major incident. The fuel and fuel components suffered minimal damage during operation, and the reactor testing was deemed successful. Extensive destructive and nondestructive postirradiation examinations confirmed that the fuel was in good condition with minimal amounts of cladding deformities and fuel pellet cracks. Fuel was placed in wet storage upon arrival at the Expended Core Facility, then dried and sent to the Idaho Nuclear Technology and Engineering Center for underground dry storage. It is likely that the fuel remains in good condition at its current underground dry storage location at the Idaho Nuclear Technology and Engineering Center. Reports show no indication of damage to the core associated with shipping, loading, or storage.

  9. Reactor applications of the compact fusion advanced Rankine (CFAR) cycle for a D-T tokamak fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, H.A.; Logan, B.G.; Campbell, R.B.

    1988-03-01

    We have made a preliminary design of a D-T fusion reactor blanket and MHD power conversion system based on the CFAR concept, and found that the performance and costs for the reference cycle are very attractive. While much remains to be done, the potential advantage of liquid metal Rankine cycles for fusion applications are much clearer now. These include low pressures and mass flow rates, a nearly isothermal module shell which minimizes problems of thermal distortion and stresses, and an insensitivity to pressure losses in the blanket so that the two-phase MHD pressure drops in the boilling part of the blanket and the ordinary vapor pressure drops in the pebble-bed superheating zones are acceptable (the direct result of pumping a liquid rather than having to compress a gas). There are no moving parts in the high-temperature MHD power generators, no steam bottoming plant is required, only small vapor precoolers and condensers are needed because of the high heat rejection trmperatures, and only a relatively small natural-draft heat exhanger is required to reject the heat to the atmosphere. The net result is a very compact fusion reactor and power conversion system which fit entirely inside an 18 meter radius reactor vault. Although we have not yet performed a detailed cost analysis, preliminary cost estimates indicate low capital costs and a very attractive cost of electricity. 11 refs., 5 figs., 2 tabs.

  10. Target-fueled nuclear reactor for medical isotope production

    Science.gov (United States)

    Coats, Richard L.; Parma, Edward J.

    2017-06-27

    A small, low-enriched, passively safe, low-power nuclear reactor comprises a core of target and fuel pins that can be processed to produce the medical isotope .sup.99Mo and other fission product isotopes. The fuel for the reactor and the targets for the .sup.99Mo production are the same. The fuel can be low enriched uranium oxide, enriched to less than 20% .sup.235U. The reactor power level can be 1 to 2 MW. The reactor is passively safe and maintains negative reactivity coefficients. The total radionuclide inventory in the reactor core is minimized since the fuel/target pins are removed and processed after 7 to 21 days.

  11. Control of autothermal reforming reactor of diesel fuel

    Science.gov (United States)

    Dolanc, Gregor; Pregelj, Boštjan; Petrovčič, Janko; Pasel, Joachim; Kolb, Gunther

    2016-05-01

    In this paper a control system for autothermal reforming reactor for diesel fuel is presented. Autothermal reforming reactors and the pertaining purification reactors are used to convert diesel fuel into hydrogen-rich reformate gas, which is then converted into electricity by the fuel cell. The purpose of the presented control system is to control the hydrogen production rate and the temperature of the autothermal reforming reactor. The system is designed in such a way that the two control loops do not interact, which is required for stable operation of the fuel cell. The presented control system is a part of the complete control system of the diesel fuel cell auxiliary power unit (APU).

  12. High Performance Fuel Desing for Next Generation Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mujid S. Kazimi; Pavel Hejzlar

    2006-01-31

    The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

  13. Tokamak D T fusion neutron source requirements for closing the nuclear fuel cycle

    Science.gov (United States)

    Stacey, W. M.

    2007-03-01

    This paper summarizes a series of conceptual design studies conducted with the purpose of determining if tokamak fusion neutron sources based on ITER physics and technology could meet the neutron source requirements for sub-critical fast-spectrum nuclear reactors that would help to close the nuclear fuel cycle by transmuting the transuranics in spent nuclear fuel. The studies were constrained to nuclear reactor and materials technologies under consideration in the US nuclear programme. Fuel cycle studies indicate that fusion neutron sources in the range ~200-500 MW would meet the needs of transmutation reactors, depending on other constraints such as materials damage to the nuclear fuel. A tokamak with R = 3.75 m, a = 1.1 m, B = 5.7-5.9 T, q95 = 3.00-4.0, I = 8.3-10 MA, βN = 2.0-2.85, HIPB98 = 1.0-1.06, γcd = 0.6 A Wm-2 would meet these requirements.

  14. Spent Nuclear Fuel Option Study on Hybrid Reactor for Waste Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Hee; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2016-05-15

    DUPIC nuclear fuel can be used in hybrid reactor by compensation of subcritical level through (U-10Zr) fuel. Energy production performance of Hyb-WT with DUPIC is grateful because it has high EM factor and performs waste transmutation at the same time. However, waste transmutation performance should be improved by different fissile fuel instead of (U-10Zr) fuel. SNF (Spent Nuclear Fuel) disposal is one of the problems in the nuclear industry. FFHR (Fusion-Fission Hybrid Reactor) is one of the most attractive option on reuse of SNF as a waste transmutation system. Because subcritical system like FFHR has some advantages compared to critical system. Subcritical systems have higher safety potential than critical system. Also, there is suppressed excess reactivity at BOC (Beginning of Cycle) in critical system, on the other hand there is no suppressed reactivity in subcritical system. Our research team could have designed FFHR for waste transmutation; Hyb-WT. Various researches have been conducted on fuel and coolant option for optimization of transmutation performance. However, Hyb-WT has technical disadvantage. It is required fusion power (Pfus) which is the key design parameter in FFHR is increased for compensation of decreasing subcritical level. As a result, structure material integrity is damaged under high irradiation condition by increasing Pfus. Also, deep burn of reprocessed SNF is limited by weakened integrity of structure material. Therefore, in this research, SNF option study will be conducted on DUPIC (Direct Use of Spent PWR Fuel in CANDU Reactor) fuel, TRU fuel and DUPIC + TRU mixed fuel for optimization of Hyb-WT performance. Goal of this research is design check for low required fusion power and high waste transmutation. In this paper, neutronic analysis is conducted on Hyb-WT with DUPIC nuclear fuel. When DUPIC nuclear fuel is loaded in fast neutron system, supplement fissile materials need to be loaded together for compensation of low criticality

  15. Neutronic predesign tool for fusion power reactors system assessment

    Energy Technology Data Exchange (ETDEWEB)

    Jaboulay, J.-C., E-mail: jean-charles.jaboulay@cea.fr [CEA, DEN, Saclay, DM2S, SERMA, F-91191 Gif-sur-Yvette (France); Li Puma, A. [CEA, DEN, Saclay, DM2S, SERMA, F-91191 Gif-sur-Yvette (France); Martínez Arroyo, J. [ETSEIB, Internship in CEA (Spain)

    2013-10-15

    SYCOMORE, a fusion reactor system code based on a modular approach, is under development at CEA. In this framework, this paper describes a methodology developed to build the neutronic module of SYCOMORE. This neutronic module aims to evaluate main neutronic parameters characterising a fusion reactor (tokamak): tritium breeding ratio, multiplication factor, nuclear heating as a function of the reactor main geometrical parameters (major radius, elongation, etc.), of the radial build, Li enrichment, blanket and shield thickness, etc. It is based on calculations carried out with APOLLO2 and TRIPOLI-4 CEA transport code on simplified 1D and 2D neutronic models. These models are validated versus a more detailed 3D Monte-Carlo model (using TRIPOLI-4). To ease the integration of this neutronic module in SYCOMORE and provide results instantly, a surrogate model that replicates the 1D and 2D neutronic model results was used. Among the different surrogate models types (polynomial interpolation, responses functions, interpolating by Kriging, artificial neural network, etc.) the neural networks were selected for their efficiency and flexibility. The methodology described in this paper to build SYCOMORE neutronic module is devoted to HCLL blanket, but it could be applied to any breeder blanket concept provided that appropriate validation could be carried out.

  16. Synfuels from fusion: producing hydrogen with the Tandem Mirror Reactor and thermochemical cycles

    Energy Technology Data Exchange (ETDEWEB)

    Werner, R.W.; Ribe, F.L.

    1981-01-21

    This volume contains the following sections: (1) the Tandem Mirror fusion driver, (2) the Cauldron blanket module, (3) the flowing microsphere, (4) coupling the reactor to the process, (5) the thermochemical cycles, and (6) chemical reactors and process units. (MOW)

  17. Materials degradation in fission reactors: Lessons learned of relevance to fusion reactor systems

    Science.gov (United States)

    Was, Gary S.

    2007-08-01

    The management of materials in power reactor systems has become a critically important activity in assuring the safe, reliable and economical operation of these facilities. Over the years, the commercial nuclear power reactor industry has faced numerous 'surprises' and unexpected occurrences in materials. Mitigation strategies have sometimes solved one problem at the expense of creating another. Other problems have been solved successfully and have motivated the development of techniques to foresee problems before they occur. This paper focuses on three aspects of fission reactor experience that may benefit future fusion systems. The first is identification of parameters and processes that have had a large impact on the behavior of materials in fission systems such as temperature, dose rate, surface condition, gradients, metallurgical variability and effects of the environment. The second is the development of materials performance and failure models to provide a basis for assuring component integrity. Last is the development of proactive materials management programs that identify and pre-empt degradation processes before they can become problems. These aspects of LWR experience along with the growing experience with materials in the more demanding advanced fission reactor systems form the basis for a set of 'lessons learned' to aid in the successful management of materials in fusion reactor systems.

  18. Improvement of system code importing evaluation of Life Cycle Analysis of tokamak fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kobori, Hikaru [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hiwatari, Ryoji [Central Research Institute of Electric Power Industry, Tokyo (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2016-11-01

    Highlights: • We incorporated the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code. • We calculated CO{sub 2} emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. • We found that the objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. • The tokamak fusion reactor can reduce CO{sub 2} emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. • The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant. - Abstract: This study incorporate the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code to calculate CO{sub 2} emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. Competitiveness of tokamak fusion power reactors is expected to be evaluated by the cost and environmental impact represented by the CO{sub 2} emissions, compared with present and future power generating systems such as fossil, nuclear and renewables. Result indicated that (1) The objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. (2) The tokamak fusion reactor can reduce CO{sub 2} emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. (3) The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant.

  19. Water-moderated reactor fuel cladding reliability study

    OpenAIRE

    Бакутяк, Елена Викторовна; Пелых, Сергей Николаевич

    2014-01-01

    Considering the fuel element, averaged by fuel assembly (FA) of water-moderated reactor with the power of 1000 MW (VVER-1000), the number of fuel elements with the greatest cladding failure probability after 4 operation years at Khmelnitsky NPP-2 (KNPP-2) is found. This will allow to calculate the fuel cladding failure probability and determine the most likely cladding damages, which will enable to improve the performance and economic indexes of VVER.The novelty of the paper lies in calculati...

  20. Thermal analysis of IRT-T reactor fuel elements

    OpenAIRE

    Naymushin, Artem Georgievich; Chertkov, Yuri Borisovich; Lebedev, Ivan Igorevich; Anikin, Mikhail Nikolaevich

    2015-01-01

    The article describes the method and results of thermo-physical calculations of IRT-T reactor core. Heat fluxes, temperatures of cladding, fuel meat and coolant were calculated for height of core, azimuth directions of FA and each fuel elements in FA. Average calculated values of uniformity factor of energy release distribution for height of fuel assemblies were shown in this research. Onset nucleate boiling temperature and ONB-ratio were calculated. Shows that temperature regimes of fuel ele...

  1. Transportation and storage of foreign spent power reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-30

    This report describes the generic actions to be taken by the Department of Energy, in cooperation with other US government agencies, foreign governments, and international organizations, in support of the implementation of Administration policies with respect to the following international spent fuel management activities: bilateral cooperation related to expansion of foreign national storage capacities; multilateral and international cooperation related to development of multinational and international spent fuel storage regimes; fee-based transfer of foreign spent power reactor fuel to the US for storage; and emergency transfer of foreign spent power reactor fuel to the US for storage.

  2. Development of fusion blanket technology for the DEMO reactor.

    Science.gov (United States)

    Colling, B R; Monk, S D

    2012-07-01

    The viability of various materials and blanket designs for use in nuclear fusion reactors can be tested using computer simulations and as parts of the test blanket modules within the International Thermonuclear Experimental Reactor (ITER) facility. The work presented here focuses on blanket model simulations using the Monte Carlo simulation package MCNPX (Computational Physics Division Los Alamos National Laboratory, 2010) and FISPACT (Forrest, 2007) to evaluate the tritium breeding capability of a number of solid and liquid breeding materials. The liquid/molten salt breeders are found to have the higher tritium breeding ratio (TBR) and are to be considered for further analysis of the self sufficiency timing. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Review of Transient Testing of Fast Reactor Fuels in the Transient REActor Test Facility (TREAT)

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, C.; Wachs, D.; Carmack, J.; Woolstenhulme, N.

    2017-01-01

    The restart of the Transient REActor Test (TREAT) facility provides a unique opportunity to engage the fast reactor fuels community to reinitiate in-pile experimental safety studies. Historically, the TREAT facility played a critical role in characterizing the behavior of both metal and oxide fast reactor fuels under off-normal conditions, irradiating hundreds of fuel pins to support fast reactor fuel development programs. The resulting test data has provided validation for a multitude of fuel performance and severe accident analysis computer codes. This paper will provide a review of the historical database of TREAT experiments including experiment design, instrumentation, test objectives, and salient findings. Additionally, the paper will provide an introduction to the current and future experiment plans of the U.S. transient testing program at TREAT.

  4. Final optics for laser-driven inertial fusion reactors

    Science.gov (United States)

    Woodworth, J. G.; Chase, L. L.; Guinan, M. W.; Krupke, W. F.; Sooy, W. R.

    1991-10-01

    If Inertial Confinement Fusion (ICF) power plus utilizing laser drivers are to be considered for electrical power generation, a method for delivering the driver energy into the reactor must be developed. This driver-reactor interface will necessarily employ 'final optics,' which must survive in the face of fast neutrons, x rays, hot vapors and condensates, and high speed droplets. The most difficult to protect against is fast neutron damage since no optically transmissive shielding material for 14 MeV neutrons is available. Multilayer dielectric mirrors are judged to be unsuitable because radiation induced chemical change, diffusion, and thickness changes will destroy their reflectivity within a few months of plant operation. Recently, grazing incidence metal mirrors were proposed, but optical damage issues are unresolved for this approach. In this study, we considered the use of refractive optics. A baseline design consists of two wedges of fused silica, which put a dogleg into the beam and thus remove optics further upstream from direct sight of the reactor. If the closest optic were located 40 m from the center of a 3 GW sub t reactor it would be subject to an average 14 MeV neutron flux of approx. 5 x 10(exp 12) n/sq cm with a peak flux of approx. 6 x 10(exp 18) n/sq cm. A major question to be answered is: 'what duration of reactor operation can this optic withstand'. To answer this question we have reviewed the literature bearing on radiation induced optical damage in fused silica and assessed its implications for reactor operation with the baseline final optics scheme. It appears possible to continuously anneal the neutron damage in the silica by keeping the wedge at a modestly elevated temperature.

  5. Fusion reactor design-III. Report on the third IAEA technical committee meeting and workshop, Tokyo, Japan, 5-16 October 1981

    Energy Technology Data Exchange (ETDEWEB)

    Iso, Y. (Japan Atomic Energy Research Inst., Tokyo); Stacey, W.M. Jr. (Georgia Inst. of Tech., Atlanta (USA)); Kulcinski, G.L. (Wisconsin Univ., Madison (USA)); Krakowski, R.A. (Los Alamos National Lab., NM (USA)); Carlson, G.A. (Lawrence Livermore National Lab., CA (USA)); Yamanaka, C. (Osaka Univ., Suita, Japan); Casini, G. (Commission of the European Communities, Ispra (Italy). Joint Research Centre); Igata, N. (Tokyo Univ. (Japan))

    1982-05-01

    A brief summary is given of the plenary sessions of the Third IAEA Technical Committee Meeting and Workshop on Fusion Reactor Design and Technology. The large tokamak experiments now under construction have brought fusion research to the threshold of fusion reactor power. A number of major in-depth reactor design studies are reported such as the 650-MW INTOR near-term experimental fusion reactor based upon essentially current technology. Also reported are studies of commercial reactor designs. Results are given of the discussions of seven workshops that were based on the papers presented. These groups evaluated the current status and identified key problem areas for each in the following areas: near-term tokamaks, long-term tokamaks, toroidal systems (alternative concepts), open systems, inertial confinement systems (advanced fuels, hybrids, etc.), and fusion reactor materials. The importance of beginning now to prepare for the next major step in fusion reactor development was emphasized and the benefits of international co-operation were evident in the consensus reached in the INTOR results and the strong influence it has had on the direction of the leading national design efforts.

  6. High conductivity Be-Cu alloys for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lilley, E.A. [NGK Metals Corp., Reading, PA (United States); Adachi, Takao; Ishibashi, Yoshiki [NGK Insulators, Ltd., Aichi-ken (Japan)

    1995-09-01

    The optimum material has not yet been identified. This will result in heat from plasma to the first wall and divertor. That is, because of cracks and melting by thermal power and shock. Today, it is considered to be some kinds of copper, alloys, however, for using, it must have high conductivity. And it is also needed another property, for example, high strength and so on. We have developed some new beryllium copper alloys with high conductivity, high strength, and high endurance. Therefore, we are introducing these new alloys as suitable materials for the heat sink in fusion reactors.

  7. Alpha Particle Physics Experiments in the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Budny, R.V.; Darrow, D.S.; Medley, S.S.; Nazikian, R.; Zweben, S.J.; et al.

    1998-12-14

    Alpha particle physics experiments were done on the Tokamak Fusion Test Reactor (TFTR) during its deuterium-tritium (DT) run from 1993-1997. These experiments utilized several new alpha particle diagnostics and hundreds of DT discharges to characterize the alpha particle confinement and wave-particle interactions. In general, the results from the alpha particle diagnostics agreed with the classical single-particle confinement model in magnetohydrodynamic (MHD) quiescent discharges. Also, the observed alpha particle interactions with sawteeth, toroidal Alfvén eigenmodes (TAE), and ion cyclotron resonant frequency (ICRF) waves were roughly consistent with theoretical modeling. This paper reviews what was learned and identifies what remains to be understood.

  8. Pebble bed reactor fuel cycle optimization using particle swarm algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Tavron, Barak, E-mail: btavron@bgu.ac.il [Planning, Development and Technology Division, Israel Electric Corporation Ltd., P.O. Box 10, Haifa 31000 (Israel); Shwageraus, Eugene, E-mail: es607@cam.ac.uk [Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2016-10-15

    Highlights: • Particle swarm method has been developed for fuel cycle optimization of PBR reactor. • Results show uranium utilization low sensitivity to fuel and core design parameters. • Multi-zone fuel loading pattern leads to a small improvement in uranium utilization. • Thorium mixes with highly enriched uranium yields the best uranium utilization. - Abstract: Pebble bed reactors (PBR) features, such as robust thermo-mechanical fuel design and on-line continuous fueling, facilitate wide range of fuel cycle alternatives. A range off fuel pebble types, containing different amounts of fertile or fissile fuel material, may be loaded into the reactor core. Several fuel loading zones may be used since radial mixing of the pebbles was shown to be limited. This radial separation suggests the possibility to implement the “seed-blanket” concept for the utilization of fertile fuels such as thorium, and for enhancing reactor fuel utilization. In this study, the particle-swarm meta-heuristic evolutionary optimization method (PSO) has been used to find optimal fuel cycle design which yields the highest natural uranium utilization. The PSO method is known for solving efficiently complex problems with non-linear objective function, continuous or discrete parameters and complex constrains. The VSOP system of codes has been used for PBR fuel utilization calculations and MATLAB script has been used to implement the PSO algorithm. Optimization of PBR natural uranium utilization (NUU) has been carried out for 3000 MWth High Temperature Reactor design (HTR) operating on the Once Trough Then Out (OTTO) fuel management scheme, and for 400 MWth Pebble Bed Modular Reactor (PBMR) operating on the multi-pass (MEDUL) fuel management scheme. Results showed only a modest improvement in the NUU (<5%) over reference designs. Investigation of thorium fuel cases showed that the use of HEU in combination with thorium results in the most favorable reactor performance in terms of

  9. Fuel development for gas-cooled fast reactors

    Science.gov (United States)

    Meyer, M. K.; Fielding, R.; Gan, J.

    2007-09-01

    The Generation IV Gas-cooled Fast Reactor (GFR) concept is proposed to combine the advantages of high-temperature gas-cooled reactors (such as efficient direct conversion with a gas turbine and the potential for application of high-temperature process heat), with the sustainability advantages that are possible with a fast-spectrum reactor. The latter include the ability to fission all transuranics and the potential for breeding. The GFR is part of a consistent set of gas-cooled reactors that includes a medium-term Pebble Bed Modular Reactor (PBMR)-like concept, or concepts based on the Gas Turbine Modular Helium Reactor (GT-MHR), and specialized concepts such as the Very High-Temperature Reactor (VHTR), as well as actinide burning concepts [A Technology Roadmap for Generation IV Nuclear Energy Systems, US DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, December 2002]. To achieve the necessary high power density and the ability to retain fission gas at high temperature, the primary fuel concept proposed for testing in the United States is dispersion coated fuel particles in a ceramic matrix. Alternative fuel concepts considered in the US and internationally include coated particle beds, ceramic clad fuel pins, and novel ceramic 'honeycomb' structures. Both mixed carbide and mixed nitride-based solid solutions are considered as fuel phases.

  10. Thermodynamic characterization of salt components for Molten Salt Reactor fuel

    OpenAIRE

    Capelli, E.

    2016-01-01

    The Molten Salt Reactor (MSR) is a promising future nuclear fission reactor technology with excellent performance in terms of safety and reliability, sustainability, proliferation resistance and economics. For the design and safety assessment of this concept, it is extremely important to have a thorough knowledge of the physico-chemical properties of molten fluorides salts, which are one of the best options for the reactor fuel. This dissertation presents the thermodynamic description of the ...

  11. Spent nuclear fuel discharges from US reactors 1993

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    The Energy Information Administration (EIA) of the U.S. Department of Energy (DOE) administers the Nuclear Fuel Data Survey, Form RW-859. This form is used to collect data on fuel assemblies irradiated at commercial nuclear reactors operating in the United States, and the current inventories and storage capacities of those reactors. These data are important to the design and operation of the equipment and facilities that DOE will use for the future acceptance, transportation, and disposal of spent fuels. The data collected and presented identifies trends in burnup, enrichment, and spent nuclear fuel discharged form commercial light-water reactor as of December 31, 1993. The document covers not only spent nuclear fuel discharges; but also site capacities and inventories; canisters and nonfuel components; and assembly type characteristics.

  12. Power Reactor Fuel Reprocessing: Mechanical Phase

    Energy Technology Data Exchange (ETDEWEB)

    Klima, B. B.

    1959-07-01

    The major events in the mechanical phase of the Power Reactor fuels reprocessing program during June were: 1. Feasibility of shearing of fuel elements without disassembly has been demonstrated in tests using porcelain-loaded prototype fuel elements. 2. Further work with the Manco shear was not deemed tb be advisable since permission has been granted to use another shear for cutting UO{sub 2}-loaded fuel elements. 3. Necessity to strip the windows in Building 3048, to sandblast, and repaint them has seriously disrupted occupancy of the cell by July 1. Start of installation probably will not be before August 1. 4. A cold SRE element should be received during July which will permit a direct look a t the problems associated with processing of these irradiated fuel elements. 5. Concurrence with AEC, Atomics International, and ORNL people on the fabrication of a poisoned carrier was obtained and all criteria for the carrier were released and the design was completed. 6. A decision was made to install and use a 24-inch Ty-Sa-Man saw which is on hand and was originally purchased for use in the Segmenting Facility for the SRE reprocessing. This will be used instead of the multipurpose saw to allow more time to refine the design of that saw. The multipurpose saw will be installed for use in subsequent reprocessing programs. This report will chronicle the changes in status which occurred during the calendar month of June. A complete description of each item is not included and may be found in the parent report. The dates indicated on the schedule have slipped since the last report primarily due to increase in scope of the work and postponement on all phases of the work except for the SRE preparations. Twenty-four new items have been added to the schedule. The status of procurement is shown. A total of 93 purchase requests have been turned in to t% Purchasing Department. A total of $199,261.83 has been committed by purchase orders, and a total of 56 purchase orders have been

  13. Metallic Reactor Fuel Fabrication for SFR

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hoon; Kim, Jong-Hwan; Ko, Young-Mo; Woo, Yoon-Myung; Kim, Ki-Hwan; Lee, Chan-Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The metal fuel for an SFR has such advantages such as simple fabrication procedures, good neutron economy, high thermal conductivity, excellent compatibility with a Na coolant, and inherent passive safety 1. U-Zr metal fuel for SFR is now being developed by KAERI as a national R and D program of Korea. The fabrication technology of metal fuel for SFR has been under development in Korea as a national nuclear R and D program since 2007. The fabrication process for SFR fuel is composed of (1) fuel slug casting, (2) loading and fabrication of the fuel rods, and (3) fabrication of the final fuel assemblies. Fuel slug casting is the dominant source of fuel losses and recycled streams in this fabrication process. Fabrication on the rod type metallic fuel was carried out for the purpose of establishing a practical fabrication method. Rod-type fuel slugs were fabricated by injection casting. Metallic fuel slugs fabricated showed a general appearance was smooth.

  14. Fabrication and Installation of Radiation Shielded Spent Fuel Fusion System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soon Dal; Park, Yang Soon; Kim, Jong Goo; Ha, Yeong Keong; Song, Kyu Seok

    2010-02-15

    Most of the generated fission gases are retained in the fuel matrix in supersaturated state, thus alter the original physicochemical properties of the fuel. And some of them are released into free volume of a fuel rod and that cause internal pressure increase of a fuel rod. Furthermore, as extending fuel burnup, the data on fission gas generation(FGG) and fission gas release(FGR) are considered very important for fuel safety investigation. Consequently, it is required to establish an experimental facility for handling of highly radioactive sample and to develop an analytical technology for measurement of retained fission gas in a spent fuel. This report describes not only on the construction of a shielded glove box which can handle highly radioactive materials but also on the modifications and instrumentations of spent fuel fusion facilities and collection apparatuses of retained fission gas

  15. Plasma Heating and Current Drive for Fusion Reactors

    Science.gov (United States)

    Holtkamp, Norbert

    2010-02-01

    ITER (in Latin ``the way'') is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier one and thus release energy. In the fusion process two isotopes of hydrogen - deuterium and tritium - fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q >= 10 (input power 50 MW / output power 500 MW). In a Tokamak the definition of the functionalities and requirements for the Plasma Heating and Current Drive are relevant in the determination of the overall plant efficiency, the operation cost of the plant and the plant availability. This paper summarise these functionalities and requirements in perspective of the systems under construction in ITER. It discusses the further steps necessary to meet those requirements. Approximately one half of the total heating will be provided by two Neutral Beam injection systems at with energy of 1 MeV and a beam power of 16 MW into the plasma. For ITER specific test facility is being build in order to develop and test the Neutral Beam injectors. Remote handling maintenance scheme for the NB systems, critical during the nuclear phase of the project, will be developed. In addition the paper will give an overview over the general status of ITER. )

  16. Fusion reactor handling operations with cable-driven parallel robots

    Energy Technology Data Exchange (ETDEWEB)

    Izard, Jean-Baptiste, E-mail: jeanbaptiste.izard@tecnalia.com; Michelin, Micael; Baradat, Cédric

    2015-10-15

    Highlights: • CDPR allow 6DOF positioning of loads using cable as links without payload swag. • Conceptual design of a CDPR for carrying and positioning tokamak sectors is given. • A CDPR for threading stellarator coils (6D trajectory following) is provided. • Both designs are capable of fullfilling the required precision without tooling. - Abstract: Cable-driven parallel robots (CDPR) are in their concept cranes with inclined cables which allow control of all the degrees of freedom of its payload, and therefore stability of all the degrees of freedom, including rotations. The workspace of a CDPR is only limited by the length of the cables, and the payload capacity related to the mass of the whole robot is very important. Besides, the control being based on kinematic models, the behavior of a CDPR is really that of a robot capable of automated trajectories or remote handling. The present paper gives a presentation of two use case studies based on some of the assembly phases and remote handling actions as designed for the recent fusion machines. Based on the use cases already in place in fusion reactor baselines, the opportunity of using CDPR for assembly of structural elements and coils is discussed. Finally, prospects for remote handling equipment from the reactor in hot cells are envisioned based on current CDPR research.

  17. Gel-sphere-pac reactor fuel fabrication and its application to a variety of fuels

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, A.R.; Judkins, R.R. (comps.)

    1979-12-01

    The gel-sphere-pac fuel fabrication option was evaluated for its possible application to commercial scale fuel fabrication for 19 fuel element designs that use oxide fuel in metal clad rods. The dry gel spheres are prepared at the reprocessing plant and are then calcined, sintered, inspected, and loaded into fuel rods and packed by low-energy vibration. A fuel smear density of 83 to 88% theoretical can be obtained. All fuel fabrication process steps were defined and evaluated from fuel receiving to finished fuel element shipping. The evaluation also covers the feasibility of the process, the current status of technology, estimates of the required time and cost to develop the technology to commercial status, and the safety and licensability of commercial scale plants. The primary evaluation was for a Light-Water Reactor fuel element containing (U,Pu)O/sub 2/ fuel. The other 18 fuel element types - 3 for Light-Water Reactors, 1 for a Heavy-Water Reactor, 1 for a Gas-Cooled Fast Reactor, 7 for Liquid-Metal-Cooled Fast Breeder Reactors, and 3 pairs for Light-Water Prebreeder and Breeder Reactors - were compared with the Light-Water Reactor. The gel-sphere-pac option was found applicable to 17 of the 19 element types; the characteristics of a commercial scale plant were defined for these for making cost estimates for such plants. The evaluation clearly shows the gel-sphere-pac process to be a viable fuel fabrication option. Estimates indicate a significant potential fabrication cost advantage for the gel-sphere-pac process if a remotely operated and remotely maintained fuel fabrication plant is required.

  18. Reactor Physics Assessment of Thick Silicon Carbide Clad PWR Fuels

    Science.gov (United States)

    2013-06-01

    Loss of Coolant Accident LWR Light Water Reactor MOX Mixed Oxide Fuel MTC Moderator Temperature Coefficient MWd/kgIHM Megawatt days per...working only with UO2 and UO2/PuO2 mixed oxide ( MOX ) fuels. 3.1 Studsvik Core Management Software CASMO-4E and SIMULATE-3 are the primary computational

  19. Fuel element concept for long life high power nuclear reactors

    Science.gov (United States)

    Mcdonald, G. E.; Rom, F. E.

    1969-01-01

    Nuclear reactor fuel elements have burnups that are an order of magnitude higher than can currently be achieved by conventional design practice. Elements have greater time integrated power producing capacity per unit volume. Element design concept capitalizes on known design principles and observed behavior of nuclear fuel.

  20. The properties and weldability of materials for fusion reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Chin, B.A.; Kee, C.K.; Wilcox, R.C. [Auburn Univ., AL (United States). Dept. of Mechanical Engineering; Zinkle, S.J. [Oak Ridge National Lab., TN (United States)

    1991-11-15

    Low-activation austenitic stainless steels have been suggested for applications within fusion reactors. The use of these nickel-free steels will help to reduce the radioactive waste management problem after service. one requirement for such steels is the ability to obtain sound welds for fabrication purposes. Thus, two austenitic Fe-Cr-Mn alloys were studied to characterize the welded microstructure and mechanical properties. The two steels investigated were a Russian steel (Fe-11.6Cr19.3Mn-0.181C) and an US steel (Fe-12.lCr-19.4Mn-0.24C). Welding was performed using a gas tungsten arc welding (GTAW) process. Microscopic examinations of the structure of both steels were conducted. The as-received Russian steel was found to be in the annealed state. Only the fusion zone and the base metal were observed in the welded Russian steel. No visible heat affected zone was observed. Examination revealed that the as-received US steel was in the cold rolled condition. After welding, a fusion zone and a heat affected zone along with the base metal region were found.

  1. Decay heat measurement on fusion reactor materials and validation of calculation code system

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio; Ikeda, Yujiro; Wada, Masayuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Decay heat rates for 32 fusion reactor relevant materials irradiated with 14-MeV neutrons were measured for the cooling time period between 1 minute and 400 days. With using the experimental data base, validity of decay heat calculation systems for fusion reactors were investigated. (author)

  2. Material Science Activities for Fusion Reactors in Kazakhstan

    Energy Technology Data Exchange (ETDEWEB)

    Tazhibayeva, I.; Kenzhin, E.; Kulsartov, T. [Institute of Atomic Energy NNC RK, Kurchatov (Kazakhstan); Shestakov, V. [Kazakhstan State University, Almaty (Kazakhstan); Chikhray, Y. [Kazakh National University, Kourmangazy 15, app.lO, 480100 Almaty (Kazakhstan); Azizov, E. [TRINITI, Troitsk (Russian Federation); Filatov, O. [Effremov Institute, Saint Petersburg (Russian Federation); Chernov, V.M. [Bochvar Institute of Inorganic Materials, P.O. Box 369, 123060 Moscow (Russian Federation)

    2007-07-01

    Full text of publication follows: Paper contains results of fusion material testing national program and results of activities on creation of material testing spherical tokamak. Hydrogen isotope behavior (diffusion, permeation, and accumulation) in the components of the first wall and divertor was studied taking into account temperature, pressure, and reactor irradiation. There were carried out out-of-pile and in-pile (reactors IVG-IM, WWRK, RA) studies of beryllium of various grades (TV-56, TShG-56, DV-56, TGP-56, TIP-56), graphites (RG-T, MPG-8, FP 479, R 4340), molybdenum, tungsten, steels (Cr18Ni10Ti, Cr16Ni15, MANET, F82H), alloys V-(4-6)Cr-( 4-5)Ti, Cu+1%Cr+0.1%Zr, and double Be/Cu and triple Be/Cu/steel structures. Tritium permeability from eutectic Pb+17%Li through steels Cr18Ni10Ti, Cr16Ni15, MANET, and F82H were studied taking into account protective coating effects. The tritium production rate was experimentally assessed during in-pile and post-reactor experiments. There were carried out radiation tests of ceramic Li{sub 2}TiO{sub 3} (96% enrichment by Li-6) with in-situ registration of released tritium and following post-irradiation material tests of irradiated samples. Verification of computer codes for simulation of accidents related to LOCA in ITER reactor was carried out. Codes' verification was carried out for a mockup of first wall in a form of three-layer cylinder of beryllium, bronze (Cu-Cr-Zr) and stainless steel. At present Kazakhstan Tokamak for Material testing (tokamak KTM) is created in National Nuclear Center of Republic of Kazakhstan in cooperation with Russian Federation organizations (start-up is scheduled on 2008). Tokamak KTM allows for expansion and specification of the studies and tests of materials, protection options of first wall, receiving divertor tiles and divertor components, methods for load reduction at divertor, and various options of heat/power removal, fast evacuation of divertor volume and development of the

  3. Multiple recycling of fuel in prototype fast breeder reactor

    Indian Academy of Sciences (India)

    G Pandikumar; V Gopalakrishnan; P Mohanakrishnan

    2009-05-01

    In a thermal neutron reactor, multiple recycle of U–Pu fuel is not possible due to degradation of fissile content of Pu in just one recycle. In the FBR closed fuel cycle, possibility of multi-recycle has been recognized. In the present study, Pu-239 equivalence approach is used to demonstrate the feasibility of achieving near constant input inventory of Pu and near stable Pu isotopic composition after a few recycles of the same fuel of the prototype fast breeder reactor under construction at Kalpakkam. After about five recycles, the cycle-to-cycle variation in the above parameters is below 1%.

  4. Proceedings of the Water Reactor Fuel Performance Meeting - WRFPM / Top Fuel 2009

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-06-15

    SFEN, ENS, SNR, ANS, AESJ, CNS KNS, IAEA and NEA are jointly organizing the 2009 International Water Reactor Fuel Performance / TopFuel 2009 Meeting following the 2008 KNS Water Reactor Performance Meeting held during October 19-23, 2008 in Seoul, Korea. This meeting is held annually on a tri-annual rotational basis in Europe, USA and Asia. In 2009, this meeting will be held in Paris, September 6-10, 2009 in coordination with the Global 2009 Conference at the same date and place. That would lead to a common opening session, some common technical presentations, a common exhibition and common social events. The technical scope of the meeting includes all aspects of nuclear fuel from fuel rod to core design as well as manufacturing, performance in commercial and test reactors or on-going and future developments and trends. Emphasis will be placed on fuel reliability in the general context of nuclear 'Renaissance' and recycling perspective. The meeting includes selectively front and/or back end issues that impact fuel designs and performance. In this frame, the conference track devoted to 'Concepts for transportation and interim storage of spent fuels and conditioned waste' will be shared with 'GLOBAL' conference. Technical Tracks: - 1. Fuel Performance, Reliability and Operational Experience: Fuel operating experience and performance; experience with high burn-up fuels; water side corrosion; stress corrosion cracking; MOX fuel performance; post irradiation data on lead fuel assemblies; radiation effects; water chemistry and corrosion counter-measures. - 2. Transient Fuel Behaviour and Safety Related Issues: Transient fuel behavior and criteria (RIA, LOCA, ATWS, Ramp tests..). Fuel safety-related issues such as PCI (pellet cladding interaction), transient fission gas releases and cladding bursting/ballooning during transient events - Advances in fuel performance modeling and core reload methodology, small and large-scale fuel testing

  5. Fuel gain exceeding unity in an inertially confined fusion implosion.

    Science.gov (United States)

    Hurricane, O A; Callahan, D A; Casey, D T; Celliers, P M; Cerjan, C; Dewald, E L; Dittrich, T R; Döppner, T; Hinkel, D E; Berzak Hopkins, L F; Kline, J L; Le Pape, S; Ma, T; MacPhee, A G; Milovich, J L; Pak, A; Park, H-S; Patel, P K; Remington, B A; Salmonson, J D; Springer, P T; Tommasini, R

    2014-02-20

    Ignition is needed to make fusion energy a viable alternative energy source, but has yet to be achieved. A key step on the way to ignition is to have the energy generated through fusion reactions in an inertially confined fusion plasma exceed the amount of energy deposited into the deuterium-tritium fusion fuel and hotspot during the implosion process, resulting in a fuel gain greater than unity. Here we report the achievement of fusion fuel gains exceeding unity on the US National Ignition Facility using a 'high-foot' implosion method, which is a manipulation of the laser pulse shape in a way that reduces instability in the implosion. These experiments show an order-of-magnitude improvement in yield performance over past deuterium-tritium implosion experiments. We also see a significant contribution to the yield from α-particle self-heating and evidence for the 'bootstrapping' required to accelerate the deuterium-tritium fusion burn to eventually 'run away' and ignite.

  6. Surface area considerations for corroding N reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.B. Jr.; Pitner, A.L.

    1996-06-01

    The N Reactor fuel is corroding at sites where the Zircaloy cladding was damaged when the fuel was discharged from the reactor. Corroding areas are clearly visible on the fuel stored in open cans in the K East Basin. There is a need to estimate the area of the corroding uranium to analyze aspects of fuel behavior as it is transitioned. from current wet storage to dry storage. In this report, the factors that contribute to {open_quotes}true{close_quotes} surface area are analyzed in terms of what is currently known about the N Reactor fuel. Using observations from a visual examinations of the fuel in the K East wet storage facility, a value for the corroding geometric area is estimated. Based on observations of corroding uranium and surface roughness values for other metals, a surface roughness factor is also estimated and applied to the corroding K East fuel to provide an estimated {open_quotes}true{close_quotes} surface area. While the estimated area may be modified as additional data become available from fuel characterization studies, the estimate provides a basis to assess effects of exposed uranium metal surfaces on fuel behavior in operations involved in transitioning from wet to dry storage, during shipment and staging, conditioning, and dry interim storage.

  7. Design of a fusion reactor for eutectic alloys Pb- Li; Diseno de un reactor de fusion para aleaciones autecticas Pb-Li

    Energy Technology Data Exchange (ETDEWEB)

    Quinones, J.; Barrena Perez, M. I.; Gomez de Salazar, J. M.; Serrano, L.; Duran, S.; Conde, E.; Barrado, A. I.; Fernandez, M.; Sedano, L.; Soria Munoz, A.

    2010-07-01

    Given the interest that have the Pb-Li eutectic alloys in the field of production of tritium, designed to optimize energy through nuclear fusion processes, in this paper, we present the design, construction and commissioning of a fusion reactor of Pb-Li alloys eutectic and the optimal process conditions, for these alloys.

  8. LMFBR type reactor core and its fuel exchange method

    Energy Technology Data Exchange (ETDEWEB)

    Ishibashi, Yoko; Koyama, Jun-ichi; Aoyama, Motoo; Haikawa, Katsumasa; Yamanaka, Akihiro

    1996-08-20

    Upon initial loading, two kinds of fuel assemblies including first fuel assemblies having a highest enrichment degree and second fuel assemblies having a lowest enrichment degree are loaded. The average fuel enrichment degree of an upper region of the first fuel assembly is made greater than that of the lower region. The reactivity of the lower region of the first fuel assembly is made lower than that of the upper portion to reduce power peak. Upon transfer from a first cycle to a second cycle, at least one of the second fuel assemblies is exchanged by the same number of the third fuel assemblies. In this case, an average fuel enrichment degree of the upper region of the third fuel assembly is made greater than that of the lower region to suppress the reactivity in the lower region of the third fuel assembly lower than the reactivity in the upper region thereby reducing the power peak. Thus, the upper power peak over the entire reactor core is moderated thereby capable of ensuring the reactor shut down margin without deteriorating the same. (N.H.)

  9. On the implementation of new technology modules for fusion reactor systems codes

    Energy Technology Data Exchange (ETDEWEB)

    Franza, F., E-mail: fabrizio.franza@kit.edu [Institute of Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344 (Germany); Boccaccini, L.V.; Fisher, U. [Institute of Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344 (Germany); Gade, P.V.; Heller, R. [Institute for Technical Physics, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344 (Germany)

    2015-10-15

    Highlights: • At KIT a new technology modules for systems code are under development. • A new algorithm for the definition of the main reactor's components is defined. • A new blanket model based on 1D neutronics analysis is described. • A new TF coil stress model based on 3D electromagnetic analysis is described. • The models were successfully benchmarked against more detailed models. - Abstract: In the frame of the pre-conceptual design of the next generation fusion power plant (DEMO), systems codes are being used from nearly 20 years. In such computational tools the main reactor components (e.g. plasma, blanket, magnets, etc.) are integrated in a unique computational algorithm and simulated by means of rather simplified mathematical models (e.g. steady state and zero dimensional models). The systems code tries to identify the main design parameters (e.g. major radius, net electrical power, toroidal field) and to make the reactor's requirements and constraints to be simultaneously accomplished. In fusion applications, requirements and constraints can be either of physics or technology kind. Concerning the latest category, at Karlsruhe Institute of Technology a new modelling activity has been recently launched aiming to develop improved models focusing on the main technology areas, such as neutronics, thermal-hydraulics, electromagnetics, structural mechanics, fuel cycle and vacuum systems. These activities started by developing: (1) a geometry model for the definition of poloidal profiles for the main reactors components, (2) a blanket model based on neutronics analyses and (3) a toroidal field coil model based on electromagnetic analysis, firstly focusing on the stresses calculations. The objective of this paper is therefore to give a short outline of these models.

  10. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  11. Modeling of Flow in Nuclear Reactor Fuel Cell Outlet

    Directory of Open Access Journals (Sweden)

    František URBAN

    2010-12-01

    Full Text Available Safe and effective load of nuclear reactor fuel cells demands qualitative and quantitative analysis of relations between coolant temperature in fuel cell outlet temperature measured by thermocouple and middle temperature of coolant in thermocouple plane position. In laboratory at Insitute of thermal power engineering of the Slovak University of Technology in Bratislava was installed an experimental physical fuel cell model of VVER 440 nuclear power plant with V 213 nuclear reactors. Objective of measurements on physical model was temperature and velocity profiles analysis in the fuel cell outlet. In this paper the measured temperature and velocity profiles are compared with the results of CFD simulation of fuel cell physical model coolant flow.

  12. Radiation Hydrodynamic Parameter Study of Inertial Fusion Energy Reactor Chambers

    Science.gov (United States)

    Sacks, Ryan; Moses, Gregory

    2014-10-01

    Inertial fusion energy reactors present great promise for the future as they are capable of providing baseline power with no carbon footprint. Simulation work regarding the chamber response and first wall insult is performed with the 1-D radiation hydrodynamics code BUCKY. Simulation with differing chamber parameters are implemented to study the effect of gas fill, gas mixtures and chamber radii. Xenon and argon gases are of particular interest as shielding for the first wall due to their high opacity values and ready availability. Mixing of the two gases is an attempt to engineer a gas cocktail to provide the maximum amount of shielding with the least amount of cost. A parameter study of different chamber radii shows a consistent relationship with that of first wall temperature (~1/r2) and overpressure (~1/r3). This work is performed under collaboration with Lawrence Livermore National Laboratory.

  13. Shielding efficiency of metal hydrides and borohydrides in fusion reactors

    Directory of Open Access Journals (Sweden)

    Singh Vishvanath P.

    2016-01-01

    Full Text Available Mass attenuation coefficients, mean free paths and exposure buildup factors have been used to characterize the shielding efficiency of metal hydrides and borohydrides, with high density of hydrogen. Gamma ray exposure buildup factors were computed using five-parameter geometric progression fitting at energies 0.015 MeV to15 MeV, and for penetration depths up to 40 mean free paths. Fast-neutron shielding efficiency has been characterized by the effective neutron removal cross-section. It is shown that ZrH2 and VH2 are very good shielding materials for gamma rays and fast neutrons due to their suitable combination of low- and high-Z elements. The present work should be useful for the selection and design of blankets and shielding, and for dose evaluation for components in fusion reactors.

  14. High temperature indentation tests on fusion reactor candidate materials

    Energy Technology Data Exchange (ETDEWEB)

    Montanari, R. [Dipartimento di Ingegneria Meccanica, Universita di Roma-Tor Vergata, Via del Politecnico 1, I-00133 Rome (Italy)]. E-mail: roberto.montanari@uniroma2.it; Filacchioni, G. [ENEA CR Casaccia, Via Anguillarese 301, I-00060 S.M. di Galeria, Rome (Italy); Iacovone, B. [Dipartimento di Ingegneria Meccanica, Universita di Roma-Tor Vergata, Via del Politecnico 1, I-00133 Rome (Italy); Plini, P. [Dipartimento di Ingegneria Meccanica, Universita di Roma-Tor Vergata, Via del Politecnico 1, I-00133 Rome (Italy); Riccardi, B. [Associazione EURATOM-ENEA sulla Fusione, P.O. Box 65, I-00044 Frascati, Rome (Italy)

    2007-08-01

    Flat-top cylinder indenter for mechanical characterization (FIMEC) is an indentation technique employing cylindrical punches with diameters ranging from 0.5 to 2 mm. The test gives pressure-penetration curves from which the yield stress can be determined. The FIMEC apparatus was developed to test materials in the temperature range from -180 to +200 {sup o}C. Recently, the heating system of FIMEC apparatus has been modified to operate up to 500 {sup o}C. So, in addition to providing yield stress over a more extended temperature range, it is possible to perform stress-relaxation tests at temperatures of great interest for several nuclear fusion reactor (NFR) alloys. Data on MANET-II, F82H mod., Eurofer-97, EM-10, AISI 316 L, Ti6Al4V and CuCrZr are presented and compared with those obtained by mechanical tests with standard methods.

  15. Radioactivity effects of Pb-17Li in fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Casini, G.; Rocco, P. (Commission of the European Communities, Joint Research Centre, Ispra (Italy)); Zucchetti, M. (Dipt. di Energetica, Politecnico Turin (Italy))

    1991-12-01

    Research on the eutectic Pb-17Li is part of the blanket studies carried out in Europe for fusion power reactors. The use of this breeder makes easier some safety problems as compared to the case of lithium as a consequence of the lower chemical reactivity of Pb-17Li. On the other hand, it increases the radioactivity problems due to the neutron activation of lead and impurities. This paper presents both short-term (accidents) and long-term (waste disposal and recycling) aspects of the Pb-17Li activation products. They include the production, mobilization, release and environmental impact. Concerning accidents, a particular attention is given to Po-210 and Hg-203. Questions related to waste management are also revised. The most attractive solution seems that of recycling the spent Pb-17Li. This will be possible about 20 y after removal from service. As an alternative to recycling, the breeder disposal as radioactive waste is discussed. (orig.).

  16. Simulation of the ash exhaust in a fusion engineering reactor

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kimitaka; Ueda, Noriaki; Itoh, Sanae; Sugihara, Masayoshi.

    1988-09-01

    Numerical analysis of the plasmas in the divertor and scrape-off layer (SOL) of a fusion engineering reactor (FER) is made by using the two-dimensional time-dependent simulation code. The equation for plasmas in the SOL and divertor regions is solved for the given particle and heat sources from the main plasma, GAMMA/sub out/ and Q/sub T/. For the given size of the pumping duct and the pumping speed, the necessary value of GAMMA/sub out/ for the ash exhaust is discussed. Sufficient ash exhaust is possible under the condition which is consistent with the scaling law of the particle and energy confinement of the main plasma.

  17. Electrometallurgical treatment of degraded N-reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gourishankar, K. V.; Karell, E. J.; Everhart, R. E.; Indacochea, E.

    2000-03-03

    N-Reactor fuel constitutes almost 80% of the entire mass of the US Department of Energy's (DOE's) spent fuel inventory. The current plan for disposition of this fuel calls for interim dry storage, followed by direct repository disposal. However, this approach may not be viable for the entire inventory of N-Reactor fuel. The physical condition and chemical composition of much of the fuel have changed during the period that it has been in storage. The cladding of many of the fuel elements has been breached, allowing the metallic uranium fuel to react with water in the storage pools producing uranium oxides (U{sub x}O{sub y}) and uranium hydride (UH{sub 3}). Even if the breached fuel is placed in dry storage, it may continue to undergo significant changes caused by the reaction of exposed uranium with any remaining water in the container. Uranium oxides, uranium hydride, and hydrogen gas are expected to form as a result of this reaction. The presence of potentially explosive hydrogen and uranium hydride, which under certain conditions is pyrophoric, raises technical concerns that will need to be addressed. The electrometallurgical treatment process developed by Argonne National Laboratory (ANL) has potential for conditioning degraded N-Reactor fuel for long-term storage or disposal. The first step in evaluating the applicability of this process is the preparation of degraded fuel that is similar to the actual degraded N-Reactor fuel. Subsequently, the simulated degraded fuel can be introduced into an electrorefiner to examine the effect of corrosion products on the electrorefining process. Some of the technical issues to be resolved include the viability of direct electrorefining without a head-end reduction step, the effect of adherent corrosion products on the electrorefining kinetics, and the recovery and treatment of loose corrosion products that pull away from the degraded fuel. This paper presents results from an experimental study of the preparation

  18. Chemical Gradients in Crud on Boiling Water Reactor Fuel Elements

    Energy Technology Data Exchange (ETDEWEB)

    D. L. Porter; D. E. Janney

    2007-04-01

    Crud (radioactive corrosion products formed inside nuclear reactors is a major problem in commercial power-producing nuclear reactors. Although there are numerous studies of simulated (non-radioactive) crud, characteristics of crud from actual reactors are rarely studied. This study reports scanning electron microscope (SEM) studies of fragments of crud from a commercially operating boiling water reactor. Chemical analyses in the SEM indicated that the crud closest to the outer surfaces of the fuel pins in some areas had Fe:Zn ratios close to 2:1, which decreased away from the fuel pin in some of the fragments. In combination with transmission electron microsope analyses (published elsewhere), these results suggest that the innermost layer of crud in some areas may consist of franklinite (ZnFe2O4, also called zinc spinel), while outer layers in these areas may be predominantly iron oxides.

  19. Spent fuel data base: commercial light water reactors. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hauf, M.J.; Kniazewycz, B.G.

    1979-12-01

    As a consequence of this country's non-proliferation policy, the reprocessing of spent nuclear fuel has been delayed indefinitely. This has resulted in spent light water reactor (LWR) fuel being considered as a potential waste form for disposal. Since the Nuclear Regulatory Commission (NRC) is currently developing methodologies for use in the regulation of the management and disposal of high-level and transuranic wastes, a comprehensive data base describing LWR fuel technology must be compiled. This document provides that technology baseline and, as such, will support the development of those evaluation standards and criteria applicable to spent nuclear fuel.

  20. In-core fuel management for pebble-bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Milian Perez, Daniel; Rodriguez Garcia, Lorena; Garcia Hernandez, Carlos; Milian Lorenzo, Daniel, E-mail: dperez@instec.cu, E-mail: cgh@instec.cu, E-mail: dmilian@instec.cu [Higher Institute of Technologies and Applied Sciences, Havana (Cuba); Velasco, Abanades, E-mail: abanades@etsii.upm.es [Department of Simulation of Thermo Energy Systems, Polytechnic University of Madrid (Spain)

    2013-07-01

    In this paper a calculation procedure to reduce the power peak in the core of a Very High Temperature pebble bed Reactor is presented. This procedure combines the fuel depletion and the neutronic behavior of the fuel in the reactor core, modeling once-through-then-out cycles as well as cycles in which pebbles are recirculated through the core an arbitrary number of times, obtaining the asymptotic fuel-loading pattern. The procedure consists in several coupled computational codes, which are used iteratively until convergence is reached. The utilization of the MCNPX 2.6e, as one of these computational codes, is validated through the calculation of benchmarks announced by IAEA (IAEA-TECDOC-1249, 2001). To complete the verification of the calculation procedure a base case described in (Annals of Nuclear Energy 29 (2002) 1345-1364), was performed. The procedure has been applied to a model of Pebble Bed Modular Reactor (200 MW) design. (author)

  1. BISON and MARMOT Development for Modeling Fast Reactor Fuel Performance

    Energy Technology Data Exchange (ETDEWEB)

    Gamble, Kyle Allan Lawrence [Idaho National Lab. (INL), Idaho Falls, ID (United States); Williamson, Richard L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwen, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Novascone, Stephen Rhead [Idaho National Lab. (INL), Idaho Falls, ID (United States); Medvedev, Pavel G. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    BISON and MARMOT are two codes under development at the Idaho National Laboratory for engineering scale and lower length scale fuel performance modeling. It is desired to add capabilities for fast reactor applications to these codes. The fast reactor fuel types under consideration are metal (U-Pu-Zr) and oxide (MOX). The cladding types of interest include 316SS, D9, and HT9. The purpose of this report is to outline the proposed plans for code development and provide an overview of the models added to the BISON and MARMOT codes for fast reactor fuel behavior. A brief overview of preliminary discussions on the formation of a bilateral agreement between the Idaho National Laboratory and the National Nuclear Laboratory in the United Kingdom is presented.

  2. Flibe use in fusion reactors -- An initial safety assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, L.C.; Longhurst, G.R.

    1999-03-01

    This report is an initial effort to identify and evaluate safety issues associated with the use of Flibe (LiF-BeF{sub 2}) as a molten salt coolant for nuclear fusion power plant applications. Flibe experience in the Molten Salt Reactor Experiment is briefly reviewed. Safety issues identified include chemical toxicity, radiological issues resulting from neutron activation, and the operational concerns of handling a high temperature coolant. Beryllium compounds and fluorine pose be toxicological concerns. Some controls to protect workers are discussed. Since Flibe has been handled safely in other applications, its hazards appear to be manageable. Some safety issues that require further study are pointed out. Flibe salt interaction with strong magnetic fields should be investigated. Evolution of Flibe constituents and activation products at high temperature (i.e., will Fluorine release as a gas or remain in the molten salt) is an issue. Aerosol and tritium release from a Flibe spill requires study, as does neutronics analysis to characterize radiological doses. Tritium migration from Flibe into the cooling system is also a safety concern. Investigation of these issues will help determine the extent to which Flibe shows promise as a fusion power plant coolant or plasma-facing material.

  3. Flibe Use in Fusion Reactors - An Initial Safety Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, Lee Charles; Longhurst, Glen Reed

    1999-04-01

    This report is an initial effort to identify and evaluate safety issues associated with the use of Flibe (LiF-BeF2) as a molten salt coolant for nuclear fusion power plant applications. Flibe experience in the Molten Salt Reactor Experiment is briefly reviewed. Safety issues identified include chemical toxicity, radiological issues resulting from neutron activation, and the operational concerns of handling a high temperature coolant. Beryllium compounds and fluorine pose be toxicological concerns. Some controls to protect workers are discussed. Since Flibe has been handled safely in other applications, its hazards appear to be manageable. Some safety issues that require further study are pointed out. Flibe salt interaction with strong magnetic fields should be investigated. Evolution of Flibe constituents and activation products at high temperature (i.e., will Fluorine release as a gas or remain in the molten salt) is an issue. Aerosol and tritium release from a Flibe spill requires study, as does neutronics analysis to characterize radiological doses. Tritium migration from Flibe into the cooling system is also a safety concern. Investigation of these issues will help determine the extent to which Flibe shows promise as a fusion power plant coolant or plasma-facing material.

  4. Power conversion systems based on Brayton cycles for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Linares, J.I., E-mail: linares@upcomillas.es [Rafael Marino Chair on New Energy Technologies. Comillas Pontifical University, Alberto Aguilera, 25-28015 Madrid (Spain); Herranz, L.E. [Unit of Nuclear Safety Research. CIEMAT, Madrid (Spain); Moratilla, B.Y.; Serrano, I.P. [Rafael Marino Chair on New Energy Technologies. Comillas Pontifical University, Alberto Aguilera, 25-28015 Madrid (Spain)

    2011-10-15

    This paper investigates Brayton power cycles for fusion reactors. Two working fluids have been explored: helium in classical configurations and CO{sub 2} in recompression layouts (Feher cycle). Typical recuperator arrangements in both cycles have been strongly constrained by low temperature of some of the energy thermal sources from the reactor. This limitation has been overcome in two ways: with a combined architecture and with dual cycles. Combined architecture couples the Brayton cycle with a Rankine one capable of taking advantage of the thermal energy content of the working fluid after exiting the turbine stage (iso-butane and steam fitted best the conditions of the He and CO{sub 2} cycles, respectively). Dual cycles set a specific Rankine cycle to exploit the lowest quality thermal energy source, allowing usual recuperator arrangements in the Brayton cycle. The results of the analyses indicate that dual cycles could reach thermal efficiencies around 42.8% when using helium, whereas thermal performance might be even better (46.7%), if a combined CO{sub 2}-H{sub 2}O cycle was set.

  5. Metabolic and environmental aspects of fusion reactor activation products: niobium

    Energy Technology Data Exchange (ETDEWEB)

    Easterly, C.E.; Shank, K.E.

    1977-11-01

    A summary of the metabolic and environmental aspects of niobium is presented. The toxicological symptoms from exposure to niobium are given, along with lethal concentration values for acute and chronic exposures. Existing human data are presented; animal uptake and retention data are analyzed for various routes of administration. Recommended metabolic values are also presented along with comments concerning their use and appropriateness. The natural distribution of niobium is given for freshwater, seawater, and the biosphere. Concentration factors and retention of /sup 95/Nb in the environment are discussed with reference to: plant retention via leaf absorption; plant retention via root uptake; uptake in terrestrial animals from plants; uptake in freshwater organisms; uptake in marine organisms; and movement in soil. Conclusions are drawn regarding needs for future work in these areas. This review was undertaken because niobium is expected to be a key metal in the development of commercial fusion reactors. It is recognized that niobium will likely not be used in the first generation reactors as a structural material but will appear as an alloy in such materials as superconducting wire.

  6. Elevator mode convection in liquid metal blankets for fusion reactors

    Science.gov (United States)

    Zikanov, Oleg; Liu, Li

    2015-11-01

    The work is motivated by the design of liquid-metal blankets for nuclear fusion reactors. Mixed convection in a downward flow in a vertical duct with strong contant-rate heating of one wall (the Grashof number up to 1012) and strong transverse magnetic field (the Hartmann number up to 104) is considered. It is found that in an infinitely long duct the flow is dominated by exponentially growing elevator modes having the form of a combination of ascending and descending jets. An analytical solution approximating the growth rate of the modes is derived. Analogous flows in finite-length pipes and ducts are analyzed using the high-resolution numerical simulations. The results of the recent experiments are reproduced and explained. It is found that the flow evolves in cycles consisting of periods of exponential growth and breakdowns of the jets. The resulting high-amplitude fluctuations of temperature is a feature potentially dangerous for operation of a reactor blanket. Financial support was provided by the US NSF (Grant CBET 1232851).

  7. Radiative capture on $^{242}$Pu for MOX fuel reactors

    CERN Multimedia

    The use of MOX fuel (mixed-oxide fuel made of UO$_{2}$ and PuO$_{2}$) in nuclear reactors allows substituting a large fraction of the enriched Uranium by Plutonium reprocessed from spent fuel. Indeed around 66% of the plutonium from spent fuel is made of $^{239}$Pu and $^{241}$Pu, which are fissile in thermal reactors. A typical reactor of this type uses a fuel with 7% reprocessed Pu and 93% depleted U, thus profiting from both the spent fuel and the remaining $^{238}$U following the $^{235}$U enrichment. With the use of such new fuel compositions rich in Pu the better knowledge of the capture and fission cross sections of the Pu isotopes becomes very important. This is clearly stated in the recent OECD NEA’s “High Priority Request List” and in the WPEC-26 “Uncertainty and target accuracy assessment for innovative systems using recent covariance data evaluations” report. In particular, a new series of cross section evaluations have been recently carried out jointly by the European (JEFF) and United ...

  8. Micro-structural study and Rietveld analysis of fast reactor fuels: U-Mo fuels

    Science.gov (United States)

    Chakraborty, S.; Choudhuri, G.; Banerjee, J.; Agarwal, Renu; Khan, K. B.; Kumar, Arun

    2015-12-01

    U-Mo alloys are the candidate fuels for both research reactors and fast breeder reactors. In-reactor performance of the fuel depends on the microstructural stability and thermal properties of the fuel. To improve the fuel performance, alloying elements viz. Zr, Mo, Nb, Ti and fissium are added in the fuel. The first reactor fuels are normally prepared by injection casting. The objective of this work is to compare microstructure, phase-fields and hardness of as-cast four different U-Mo alloy (2, 5, 10 and 33 at.% Mo) fuels with the equilibrium microstructure of the alloys. Scanning electron microscope with energy dispersive spectrometer and optical microscope have been used to characterize the morphology of the as-cast and annealed alloys. The monoclinic α'' phase in as-cast U-10 at.% Mo alloy has been characterized through Rietveld analysis. A comparison of metallographic and Rietveld analysis of as-cast (dendritic microstructure) and annealed U-33 at.% Mo alloy, corresponding to intermetallic compound, has been reported here for the first time. This study will provide in depth understanding of microstructural and phase evolution of U-Mo alloys as fast reactor fuel.

  9. Burn control of an ITER-like fusion reactor using fuzzy logic

    Science.gov (United States)

    Garcia-Amador, A. Sair; Martinell, Julio J.

    2016-10-01

    The fuel burn in a fusion reactor has to be kept at a nearly constant rate in order to have a steady power exhaust. Here, we develop a control system based on a fuzzy logic controller in order that adjusts external parameters to keep the plasma temperature and density at the design values of a reactor of the characteristics of ITER. The control parameters chosen are the D-T refueling rate, the auxiliary heating power and a neutral helium beam. We use a fuzzy controller of the Mamdani type that uses a number of membership functions appropriate to produce a response to parameter deviations that minimizes the response time. The inference rules are determined in a way to provide stabilization to all perturbations of the temperature, density and alpha particle fraction. The dynamical response of the reactor is simulated with a 0D model that uses confinement times provided by the ITER scaling. We show that the system is feedback stabilized for a large range of parameters around the nominal values. The recovery time after a departure from the steady values is of the order of one second. We compare the results with another control system based on neural networks that was developed previously. Funded by projects PAPIIT IN109115 and Conacyt 152905.

  10. Spent nuclear fuel discharges from US reactors 1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-05

    This report provides current statistical data on every fuel assembly irradiated in commercial nuclear reactors operating in the United States. It also provides data on the current inventories and storage capacities of those reactors to a wide audience, including Congress, Federal and State agencies, the nuclear and electric industries and the general public. It uses data from the mandatory, ``Nuclear Fuel Data`` survey, Form RW-859 for 1992 and historical data collected by the Energy Information Administration (EIA) on previous Form RW-859 surveys. The report was prepared by the EIA under a Memorandum of Understanding with the Office of Civilian Radioactive Waste Management.

  11. Fuel shuffling optimization for the Delft research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Geemert, R. van; Hoogenboom, J.E.; Gibcus, H.P.M. [Delft Univ. of Technology, Interfaculty Reactor Inst., Delft (Netherlands); Quist, A.J. [Delft Univ., Fac. of Applied Mathematics and Informatics, Delft (Netherlands)

    1997-07-01

    A fuel shuffling optimization procedure is proposed for the Hoger Onderwijs Reactor (HOR) in Delft, the Netherlands, a 2 MWth swimming-pool type research reactor. In order to cope with the fluctuatory behaviour of objective functions in loading pattern optimization, the proposed cyclic permutation optimization procedure features a gradual transition from global to local search behaviour via the introduction of stochastic tests for the number of fuel assemblies involved in a cyclic permutation. The possible objectives and the safety and operation constraints, as well as the optimization procedure, are discussed, followed by some optimization results for the HOR. (author)

  12. Reactor-specific spent fuel discharge projections, 1984 to 2020

    Energy Technology Data Exchange (ETDEWEB)

    Heeb, C.M.; Libby, R.A.; Holter, G.M.

    1985-04-01

    The original spent fuel utility data base (SFDB) has been adjusted to produce agreement with the EIA nuclear energy generation forecast. The procedure developed allows the detail of the utility data base to remain intact, while the overall nuclear generation is changed to match any uniform nuclear generation forecast. This procedure adjusts the weight of the reactor discharges as reported on the SFDB and makes a minimal (less than 10%) change in the original discharge exposures in order to preserve discharges of an integral number of fuel assemblies. The procedure used in developing the reactor-specific spent fuel discharge projections, as well as the resulting data bases themselves, are described in detail in this report. Discussions of the procedure cover the following topics: a description of the data base; data base adjustment procedures; addition of generic power reactors; and accuracy of the data base adjustments. Reactor-specific discharge and storage requirements are presented. Annual and cumulative discharge projections are provided. Annual and cumulative requirements for additional storage are shown for the maximum at-reactor (AR) storage assumption, and for the maximum AR with transshipment assumption. These compare directly to the storage requirements from the utility-supplied data, as reported in the Spent Fuel Storage Requirements Report. The results presented in this report include: the disaggregated spent fuel discharge projections; and disaggregated projections of requirements for additional spent fuel storage capacity prior to 1998. Descriptions of the methodology and the results are included in this report. Details supporting the discussions in the main body of the report, including descriptions of the capacity and fuel discharge projections, are included. 3 refs., 6 figs., 12 tabs.

  13. Renewing Liquid Fueled Molten Salt Reactor Research and Development

    Science.gov (United States)

    Towell, Rusty; NEXT Lab Team

    2016-09-01

    Globally there is a desperate need for affordable, safe, and clean energy on demand. More than anything else, this would raise the living conditions of those in poverty around the world. An advanced reactor that utilizes liquid fuel and molten salts is capable of meeting these needs. Although, this technology was demonstrated in the Molten Salt Reactor Experiment (MSRE) at ORNL in the 60's, little progress has been made since the program was cancelled over 40 years ago. A new research effort has been initiated to advance the technical readiness level of key reactor components. This presentation will explain the motivation and initial steps for this new research initiative.

  14. 10 MW research reactor simulation using fuel plate type

    Energy Technology Data Exchange (ETDEWEB)

    Mustafa, M. El Sayed, E-mail: memmm67@yahoo.com [Reactors Department, Nuclear Researches Center, Inshas (Egypt); Shaat, M. [Reactors Department, Nuclear Researches Center, Inshas (Egypt); Kady, M. El [Mechanical Power Engineering Department, Faculty of Engineering, Al Azhar University, Cairo (Egypt)

    2016-04-15

    A computer code was established named ET-RR-1-10 to investigate the thermal hydraulic behavior of the ETRR1 (first Egyptian research reactor) research reactor when its power upgraded to 10 MW using the new fuel plate elements type. The work done include both normal and flow reduction conditions. The code modeled primary loop, secondary lop, and reactor kinetics. All code models used finite difference technique. The code results were tested against the available corresponding experimental data taken from a similar research reactor MITR (Massachusetts Institute of Technology research reactor) for the sake of code validation. The results showed good agreement, and the code can be used for thermal hydraulic calculations.

  15. Fundamental aspects of nuclear reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Olander, D.R.

    1976-01-01

    The book presented is designed to function both as a text for first-year graduate courses in nuclear materials and as a reference for workers involved in the materials design and performance aspects of nuclear power plants. The contents are arranged under the following chapter headings: statistical thermodynamics, thermal properties of solids, crystal structures, cohesive energy of solids, chemical equilibrium, point defects in solids, diffusion in solids, dislocations and grain boundaries, equation of state of UO/sub 2/, fuel element thermal performance, fuel chemistry, behavior of solid fission products in oxide fuel elements, swelling due to fission gases, pore migration and fuel restructuring kinetics, fission gas release, mechanical properties of UO/sub 2/, radiation damage, radiation effects in metals, interaction of sodium and stainless steel, modeling of the structural behavior of fuel elements and assemblies. (DG)

  16. Temperature measuring analysis of the nuclear reactor fuel assembly

    Science.gov (United States)

    F., Urban; Ľ., Kučák; Bereznai, J.; Závodný, Z.; Muškát, P.

    2014-08-01

    Study was based on rapid changes of measured temperature values from the thermocouple in the VVER 440 nuclear reactor fuel assembly. Task was to determine origin of fluctuations of the temperature values by experiments on physical model of the fuel assembly. During an experiment, heated water was circulating in the system and cold water inlet through central tube to record sensitivity of the temperature sensor. Two positions of the sensor was used. First, just above the central tube in the physical model fuel assembly axis and second at the position of the thermocouple in the VVER 440 nuclear reactor fuel assembly. Dependency of the temperature values on time are presented in the diagram form in the paper.

  17. Highest average burnups achieved by MTR fuel elements of the IEA-R1 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Damy, Margaret A.; Terremoto, Luis A.A.; Silva, Jose E.R.; Silva, Antonio Teixeira e; Castanheira, Myrthes; Teodoro, Celso A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Engenharia Nuclear (CEN)]. E-mail: madamy@ipen.br

    2007-07-01

    Different nuclear fuels were employed in the manufacture of plate type at IPEN , usually designated as Material Testing Reactor (MTR) fuel elements. These fuel elements were used at the IEA-R1 research reactor. This work describes the main characteristics of these nuclear fuels, emphasizing the highest average burn up achieved by these fuel elements. (author)

  18. Molten fluoride mixtures as possible fission reactor fuels

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, W.R.

    1978-01-01

    Molten mixtures of fluorides with UF/sub 4/ as a component have been used as combined fuel and primary heat transfer agent in experimental high-temperature reactors and have been proposed for use in breeders or converters of /sup 233/U from thorium. Such use places stringent and diverse demands upon the fluid fuel. A brief review of chemical behavior of molten fluorides is given to show some of their strengths and weaknesses for such service.

  19. Radiographic inspection and densitometric evaluation of CP-5 reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Staroba, J. F.; Knoerzer, T. W.

    1978-02-01

    This report covers the radiographic and densitometric techniques used as part of a quality verification program for CP-5 reactor fuel by the Nondestructive Assay Section of the Special Materials Division. Other nondestructive tests used were ultrasonic and gamma-ray spectrometry. The main objectives were to perform a one-hundred percent radiographic inspection of the fuel tubes and to derive a quantitative relationship between fuel thickness and film density with the use of fabricated fuel step wedges. By the use of tangential x-ray techniques, measurements were made of fuel peaks or ''hot spots'' that protruded above the main fuel line. Other general problems in radiographic inspection and solutions for the upgrading of the total radiographic inspection program are also discussed.

  20. Reactor Physics Scoping and Characterization Study on Implementation of TRIGA Fuel in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jennifer Lyons; Wade R. Marcum; Mark D. DeHart; Sean R. Morrell

    2014-01-01

    The Advanced Test Reactor (ATR), under the Reduced Enrichment for Research and Test Reactors (RERTR) Program and the Global Threat Reduction Initiative (GTRI), is conducting feasibility studies for the conversion of its fuel from a highly enriched uranium (HEU) composition to a low enriched uranium (LEU) composition. These studies have considered a wide variety of LEU plate-type fuels to replace the current HEU fuel. Continuing to investigate potential alternatives to the present HEU fuel form, this study presents a preliminary analysis of TRIGA® fuel within the current ATR fuel envelopes and compares it to the functional requirements delineated by the Naval Reactors Program, which includes: greater than 4.8E+14 fissions/s/g of 235U, a fast to thermal neutron flux ratio that is less than 5% deviation of its current value, a constant cycle power within the corner lobes, and an operational cycle length of 56 days at 120 MW. Other parameters outside those put forth by the Naval Reactors Program which are investigated herein include axial and radial power profiles, effective delayed neutron fraction, and mean neutron generation time.

  1. Silicon carbide composite for light water reactor fuel assembly applications

    Science.gov (United States)

    Yueh, Ken; Terrani, Kurt A.

    2014-05-01

    The feasibility of using SiCf-SiCm composites in light water reactor (LWR) fuel designs was evaluated. The evaluation was motivated by the desire to improve fuel performance under normal and accident conditions. The Fukushima accident once again highlighted the need for improved fuel materials that can maintain fuel integrity to higher temperatures for longer periods of time. The review identified many benefits as well as issues in using the material. Issues perceived as presenting the biggest challenges to the concept were identified to be flux gradient induced differential volumetric swelling, fragmentation and thermal shock resistance. The oxidation of silicon and its release into the coolant as silica has been identified as an issue because existing plant systems have limited ability for its removal. Detailed evaluation using available literature data and testing as part of this evaluation effort have eliminated most of the major concerns. The evaluation identified Boiling Water Reactor (BWR) channel, BWR fuel water tube, and Pressurized Water Reactor (PWR) guide tube as feasible applications for SiC composite. A program has been initiated to resolve some of the remaining issues and to generate physical property data to support the design of commercial fuel components.

  2. Silicon carbide composite for light water reactor fuel assembly applications

    Energy Technology Data Exchange (ETDEWEB)

    Yueh, Ken, E-mail: kyueh@epri.com [Fuel Reliability Program, EPRI, 1300 West WT Harris Blvd, Charlotte, NC 28262 (United States); Terrani, Kurt A., E-mail: terranika@ornl.gov [Fusion and Materials for Nuclear Systems Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd. MS 6093, Oak Ridge, TN 37831 (United States)

    2014-05-01

    The feasibility of using SiC{sub f}–SiC{sub m} composites in light water reactor (LWR) fuel designs was evaluated. The evaluation was motivated by the desire to improve fuel performance under normal and accident conditions. The Fukushima accident once again highlighted the need for improved fuel materials that can maintain fuel integrity to higher temperatures for longer periods of time. The review identified many benefits as well as issues in using the material. Issues perceived as presenting the biggest challenges to the concept were identified to be flux gradient induced differential volumetric swelling, fragmentation and thermal shock resistance. The oxidation of silicon and its release into the coolant as silica has been identified as an issue because existing plant systems have limited ability for its removal. Detailed evaluation using available literature data and testing as part of this evaluation effort have eliminated most of the major concerns. The evaluation identified Boiling Water Reactor (BWR) channel, BWR fuel water tube, and Pressurized Water Reactor (PWR) guide tube as feasible applications for SiC composite. A program has been initiated to resolve some of the remaining issues and to generate physical property data to support the design of commercial fuel components.

  3. Neutron intensity of fast reactor spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Takamatsu, Misao; Aoyama, Takafumi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-03-01

    Neutron intensity of spent fuel of the JOYO Mk-II core with a burnup of 62,500 MWd/t and cooling time of 5.2 years was measured at the spent fuel storage pond. The measured data were compared with the calculated values based on the JOYO core management code system `MAGI`, and the average C/E approximately 1.2 was obtained. It was found that the axial neutron intensity didn`t simply follow the burnup distribution, and the neutron intensity was locally increased at the bottom end of the fuel region due to an accumulation of {sup 244}Cm. (author)

  4. LIGHT WATER REACTOR ACCIDENT TOLERANT FUELS IRRADIATION TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Carmack, William Jonathan [Idaho National Laboratory; Barrett, Kristine Eloise [Idaho National Laboratory; Chichester, Heather Jean MacLean [Idaho National Laboratory

    2015-09-01

    The purpose of Accident Tolerant Fuels (ATF) experiments is to test novel fuel and cladding concepts designed to replace the current zirconium alloy uranium dioxide (UO2) fuel system. The objective of this Research and Development (R&D) is to develop novel ATF concepts that will be able to withstand loss of active cooling in the reactor core for a considerably longer time period than the current fuel system while maintaining or improving the fuel performance during normal operations, operational transients, design basis, and beyond design basis events. It was necessary to design, analyze, and fabricate drop-in capsules to meet the requirements for testing under prototypic LWR temperatures in Idaho National Laboratory's Advanced Test Reactor (ATR). Three industry led teams and one DOE team from Oak Ridge National Laboratory provided fuel rodlet samples for their new concepts for ATR insertion in 2015. As-built projected temperature calculations were performed on the ATF capsules using the BISON fuel performance code. BISON is an application of INL’s Multi-physics Object Oriented Simulation Environment (MOOSE), which is a massively parallel finite element based framework used to solve systems of fully coupled nonlinear partial differential equations. Both 2D and 3D models were set up to examine cladding and fuel performance.

  5. Fabrication of particulate metal fuel for fast burner reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Ho Jin; Lee, Sun Yong; Kim, Jong Hwan; Woo, Yoon Myung; Ko, Young Mo; Kim, Ki Hwan; Park, Jong Man; Lee, Chan Bok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    U Zr metallic fuel for sodium cooled fast reactors is now being developed by KAERI as a national R and D program of Korea. In order to recycle transuranic elements (TRU) retained in spent nuclear fuel, remote fabrication capability in a shielded hot cell should be prepared. Moreover, generation of long lived radioactive wastes and loss of volatile species should be minimized during the recycled fuel fabrication step. Therefore, innovative fuel concepts should be developed to address the fabrication challenges pertaining to TRU while maintaining good performances of metallic fuel. Particulate fuel concepts have already been proposed and tested at several experimental fast reactor systems and vipac ceramic fuel of RIAR, Russia is one of the examples. However, much less work has been reported for particulate metallic fuel development. Spherical uranium alloy particles with various diameters can be easily produced by the centrifugal atomization technique developed by KAERI. Using the atomized uranium and uranium zirconium alloy particles, we fabricated various kinds of powder pack, powder compacts and sintered pellets. The microstructures and properties of the powder pack and pellets are presented.

  6. Exploratory Design of a Reactor/Fuel Cycle Using Spent Nuclear Fuel Without Conventional Reprocessing - 13579

    Energy Technology Data Exchange (ETDEWEB)

    Bertch, Timothy C.; Schleicher, Robert W.; Rawls, John D. [General Atomics 3550 General Atomics Court San Diego, CA 92130 (United States)

    2013-07-01

    General Atomics has started design of a waste to energy nuclear reactor (EM2) that can use light water reactor (LWR) spent nuclear fuel (SNF). This effort addresses two problems: using an advanced small reactor with long core life to reduce nuclear energy overnight cost and providing a disposal path for LWR SNF. LWR SNF is re-fabricated into new EM2 fuel using a dry voloxidation process modeled on AIROX/ OREOX processes which remove some of the fission products but no heavy metals. By not removing all of the fission products the fuel remains self-protecting. By not separating heavy metals, the process remains proliferation resistant. Implementation of Energy Multiplier Module (EM2) fuel cycle will provide low cost nuclear energy while providing a long term LWR SNF disposition path which is important for LWR waste confidence. With LWR waste confidence recent impacts on reactor licensing, an alternate disposition path is highly relevant. Centered on a reactor operating at 250 MWe, the compact electricity generating system design maximizes site flexibility with truck transport of all system components and available dry cooling features that removes the need to be located near a body of water. A high temperature system using helium coolant, electricity is efficiently produced using an asynchronous high-speed gas turbine while the LWR SNF is converted to fission products. Reactor design features such as vented fuel and silicon carbide cladding support reactor operation for decades between refueling, with improved fuel utilization. Beyond the reactor, the fuel cycle is designed so that subsequent generations of EM2 reactor fuel will use the previous EM2 discharge, providing its own waste confidence plus eliminating the need for enrichment after the first generation. Additional LWR SNF is added at each re-fabrication to replace the removed fission products. The fuel cycle uses a dry voloxidation process for both the initial LWR SNF re-fabrication and later for EM2

  7. Overview of alternate-fuel fusion

    Energy Technology Data Exchange (ETDEWEB)

    Miley, G.H.

    1980-01-01

    Alternate fuels (AFs) such as Cat-D, D-/sup 3/He and p-/sup 11/B offer the potential advantages of elimination of tritium breeding and reduced energy release in neutrons. An adequate energy balance appears exceedingly difficult to achieve with proton-based fuels such as p-/sup 11/B. Thus Cat-D, which can ignite at temperatures in the range of 30 to 40 keV, represents the logical near-term candidate. An attractive variation which adds flexibility would be to develop semi-catalyzed-D plants for synfuel production with simultaneous generation of /sup 3/He for use in D-/sup 3/He satellite electrical power plants. These approaches and problems are discussed.

  8. Alternative Fabrication of Recycling Fast Reactor Metal Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Hwan; Kim, Jong Hwan; Song, Hoon; Kim, Hyung-Tae; Lee, Chan-Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Metal fuels such as U-Zr/U-Pu-Zr alloys have been considered as a nuclear fuel for a sodium-cooled fast reactor (SFR) related to the closed fuel cycle for managing minor actinides and reducing a high radioactivity levels since the 1980s. In order to develop innovative fabrication method of metal fuel for preventing the evaporation of volatile elements such as Am, modified casting under inert atmosphere has been applied for metal fuel slugs for SFR. Alternative fabrication method of fuel slugs has been introduced to develop an improved fabrication process of metal fuel for preventing the evaporation of volatile elements. In this study, metal fuel slugs for SFR have been fabricated by modified casting method, and characterized to evaluate the feasibility of the alternative fabrication method. In order to prevent evaporation of volatile elements such as Am and improve quality of fuel slugs, alternative fabrication methods of metal fuel slugs have been studied in KAERI. U-10Zr-5Mn fuel slug containing volatile surrogate element Mn was soundly cast by modified injection casting under modest pressure. Evaporation of Mn during alternative casting could not be detected by chemical analysis. Mn element was most recovered with prevention of evaporation by alternative casting. Modified injection casting has been selected as an alternative fabrication method in KAERI, considering evaporation prevention, and proven benefits of high productivity, high yield, and good remote control.

  9. Comparison of fuel assemblies in lead cooled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Perez, A.; Sanchez, H.; Aguilar, L.; Espinosa P, G., E-mail: alejandria.peval@gmail.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico)

    2016-09-15

    This paper presents a comparison of the thermal-fluid processes in the core, fuel heat transfer, and thermal power between two fuel assemblies: square and hexagonal, in a lead-cooled fast reactor (Lfr). A multi-physics reduced order model for the analysis of Lfr single channel is developed in this work. The work focused on a coupling between process of neutron kinetic, fuel heat transfer process and thermal-fluid, in a single channel. The thermal power is obtained from neutron point kinetics model, considering a non-uniform power distribution. The analysis of the processes of thermal-fluid considers thermal expansion effects. The transient heat transfer in fuel is carried out in an annular geometry, and one-dimensional in radial direction for each axial node. The results presented in comparing these assemblies consider the temperature field in the fuel, in the thermal fluid and under steady state, and transient conditions. Transients consider flow of coolant and inlet temperature of coolant. The mathematical model of Lfr considers three main modules: the heat transfer in the annular fuel, the power generation with feedback effects on neutronic, and the thermal-fluid in the single channel. The modeling of nuclear reactors in general, the coupling is crucial by the feedback between the neutron processes with fuel heat transfer, and thermo-fluid, where is very common the numerical instabilities, after all it has to refine the model to achieve the design data. In this work is considered as a reference the ELSY reactor for the heat transfer analysis in the fuel and pure lead properties for analyzing the thermal-fluid. The results found shows that the hexagonal array has highest temperature in the fuel, respect to square array. (Author)

  10. Innovative microbial fuel cell for electricity production from anaerobic reactors

    DEFF Research Database (Denmark)

    Min, Booki; Angelidaki, Irini

    2008-01-01

    A submersible microbial fuel cell (SMFC) was developed by immersing an anode electrode and a cathode chamber in an anaerobic reactor. Domestic wastewater was used as the medium and the inoculum in the experiments. The SMFC could successfully generate a stable voltage of 0.428 ± 0.003 V with a fixed...

  11. Method of controlling crystallite size in nuclear-reactor fuels

    Science.gov (United States)

    Lloyd, M.H.; Collins, J.L.; Shell, S.E.

    Improved spherules for making enhanced forms of nuclear-reactor fuels are prepared by internal gelation procedures within a sol-gel operation and are accomplished by first boiling the concentrated HMTA-urea feed solution before engaging in the spherule-forming operation thereby effectively controlling crystallite size in the product spherules.

  12. Advanced Gas Reactor (AGR)-5/6/7 Fuel Irradiation Experiments in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    A. Joseph Palmer; David A. Petti; S. Blaine Grover

    2014-04-01

    The United States Department of Energy’s Very High Temperature Reactor (VHTR) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which each consist of at least five separate capsules, are being irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gases also have on-line fission product monitoring the effluent from each capsule to track performance of the fuel during irradiation. The first two experiments (designated AGR-1 and AGR-2), have been completed. The third and fourth experiments have been combined into a single experiment designated AGR-3/4, which started its irradiation in December 2011 and is currently scheduled to be completed in April 2014. The design of the fuel qualification experiment, designated AGR-5/6/7, is well underway and incorporates lessons learned from the three previous experiments. Various design issues will be discussed with particular details related to selection of thermometry.

  13. Overview of Indian activities on fusion reactor materials

    Science.gov (United States)

    Banerjee, Srikumar

    2014-12-01

    This paper on overview of Indian activities on fusion reactor materials describes in brief the efforts India has made to develop materials for the first wall of a tokamak, its blanket and superconducting magnet coils. Through a systematic and scientific approach, India has developed and commercially produced reduced activation ferritic/martensitic (RAFM) steel that is comparable to Eurofer 97. Powder of low activation ferritic/martensitic oxide dispersion strengthened steel with characteristics desired for its application in the first wall of a tokamak has been produced on the laboratory scale. V-4Cr-4Ti alloy was also prepared in the laboratory, and kinetics of hydrogen absorption in this was investigated. Cu-1 wt%Cr-0.1 wt%Zr - an alloy meant for use as heat transfer elements for hypervapotrons and heat sink for the first wall - was developed and characterized in detail for its aging behavior. The role of addition of a small quantity of Zr in its improved fatigue performance was delineated, and its diffusion bonding with both W and stainless steel was achieved using Ni as an interlayer. The alloy was produced in large quantities and used for manufacturing both the heat transfer elements and components for the International Thermonuclear Experimental Reactor (ITER). India has proposed to install and test a lead-lithium cooled ceramic breeder test blanket module (LLCB-TBM) at ITER. To meet this objective, efforts have been made to produce and characterize Li2TiO3 pebbles, and also improve the thermal conductivity of packed beds of these pebbles. Liquid metal loops have been set up and corrosion behavior of RAFM steel in flowing Pb-Li eutectic has been studied in the presence as well as absence of magnetic fields. To prevent permeation of tritium and reduce the magneto-hydro-dynamic drag, processes have been developed for coating alumina on RAFM steel. Apart from these activities, different approaches being attempted to make the U-shaped first wall of the TBM box

  14. The DOE advanced gas reactor fuel development and qualification program

    Science.gov (United States)

    Petti, David; Maki, John; Hunn, John; Pappano, Pete; Barnes, Charles; Saurwein, John; Nagley, Scott; Kendall, Jim; Hobbins, Richard

    2010-09-01

    The high outlet temperatures and high thermal-energy conversion efficiency of modular high-temperature gas-cooled reactors (HTGRs) enable an efficient and cost-effective integration of the reactor system with non-electricity-generation applications, such as process heat and/or hydrogen production, for the many petrochemical and other industrial processes that require temperatures between 300°C and 900°C. The U.S. Department of Energy (DOE) has selected the HTGR concept for the Next Generation Nuclear Plant (NGNP) Project as a transformative application of nuclear energy that will demonstrate emissions-free nuclear-assisted electricity, process heat, and hydrogen production, thereby reducing greenhouse-gas emissions and enhancing energy security. The objective of the DOE Advanced Gas Reactor (AGR) Fuel Development and Qualification program is to qualify tristructural isotropic (TRISO)-coated particle fuel for use in HTGRs. An overview of the program and recent progress is presented.

  15. The concept of isochoric central spark ignition and its fuel gain in inertial fusion

    CERN Document Server

    Kuzmin, A D

    2004-01-01

    One of the best methods in inertial confinement fusion (ICF) is the concept of central spark ignition, consisting of two distinct regions named as hot and cold regions and formed by hydro-dynamical implosion of fuel micro-sphere central spark ignition method in inertial fusion and fuel pellet design condition in fusion power plant has been investigated and fuel gain for isochoric model in this method is calculated. We have shown the effects of different physical parameters of inertial fusion on fuel gain and optimized limit for fuel density and fuel pellet radius has been calculated.

  16. Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element

    Science.gov (United States)

    Mohammed, Abdul Aziz; Pauzi, Anas Muhamad; Rahman, Shaik Mohmmed Haikhal Abdul; Zin, Muhamad Rawi Muhammad; Jamro, Rafhayudi; Idris, Faridah Mohamad

    2016-01-01

    In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 (233U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintaining the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.

  17. Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, Abdul Aziz, E-mail: azizM@uniten.edu.my; Rahman, Shaik Mohmmed Haikhal Abdul [Universiti Tenaga Nasional. Jalan Ikram-UNITEN, 43000 Kajang, Selangor (Malaysia); Pauzi, Anas Muhamad, E-mail: anas@uniten.edu.my; Zin, Muhamad Rawi Muhammad; Jamro, Rafhayudi; Idris, Faridah Mohamad [Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2016-01-22

    In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 ({sup 233}U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintaining the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.

  18. Application of fully ceramic microencapsulated fuels in light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gentry, C.; George, N.; Maldonado, I. [Dept. of Nuclear Engineering, Univ. of Tennessee-Knoxville, Knoxville, TN 37996-2300 (United States); Godfrey, A.; Terrani, K.; Gehin, J. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2012-07-01

    This study performs a preliminary evaluation of the feasibility of incorporation of Fully Ceramic Microencapsulated (FCM) fuels in light water reactors (LWRs). In particular, pin cell, lattice, and full core analyses are carried out on FCM fuel in a pressurized water reactor (PWR). Using uranium-based fuel and Pu/Np-based fuel in TRistructural isotropic (TRISO) particle form, each fuel design was examined using the SCALE 6.1 analytical suite. In regards to the uranium-based fuel, pin cell calculations were used to determine which fuel material performed best when implemented in the fuel kernel as well as the size of the kernel and surrounding particle layers. The higher fissile material density of uranium mononitride (UN) proved to be favorable, while the parametric studies showed that the FCM particle fuel design with 19.75% enrichment would need roughly 12% additional fissile material in comparison to that of a standard UO{sub 2} rod in order to match the lifetime of an 18-month PWR cycle. As part of the fuel assembly design evaluations, fresh feed lattices were modeled to analyze the within-assembly pin power peaking. Also, a 'color-set' array of assemblies was constructed to evaluate power peaking and power sharing between a once-burned and a fresh feed assembly. In regards to the Pu/Np-based fuel, lattice calculations were performed to determine an optimal lattice design based on reactivity behavior, pin power peaking, and isotopic content. After obtaining a satisfactory lattice design, the feasibility of core designs fully loaded with Pu/Np FCM lattices was demonstrated using the NESTLE three-dimensional core simulator. (authors)

  19. Application of Fully Ceramic Microencapsulated Fuels in Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gentry, Cole A [ORNL; George, Nathan M [ORNL; Maldonado, G Ivan [ORNL; Godfrey, Andrew T [ORNL; Terrani, Kurt A [ORNL; Gehin, Jess C [ORNL

    2012-01-01

    This study aims to perform a preliminary evaluation of the feasibility of incorporation of Fully Ceramic Microencapsulated (FCM) fuels in Light Water Reactors (LWRs). In particular pin cell, lattice, and full core analyses are carried out on FCM fuel in a pressurized water reactor. Using uranium-based fuel and transuranic (TRU) based fuel in TRistructural ISOtropic (TRISO) particle form, each fuel design was examined using the SCALE 6.1 analytical suite. In regards to the uranium-based fuel, pin cell calculations were used to determine which fuel material performed best when implemented in the fuel kernel as well as the size of the kernel and surrounding particle layers. The higher physical density of uranium mononitride (UN) proved to be favorable, while the parametric studies showed that the FCM particle fuel design would need roughly 12% additional fissile material in comparison to that of a standard UO2 rod in order to match the lifetime of an 18-month PWR cycle. As part of the fuel assembly design evaluations, fresh feed lattices were modeled to analyze the within-assembly pin power peaking. Also, a color-set array of assemblies was constructed to evaluate power peaking and power sharing between a once-burned and a fresh feed assembly. In regards to the TRU based fuel, lattice calculations were performed to determine an optimal lattice design based on reactivity behavior, pin power peaking, and isotopic content. After obtaining a satisfactory lattice design, feasibility of core designs fully loaded with TRU FCM lattices was demonstrated using the NESTLE three-dimensional core simulator.

  20. Prospects of steady state magnetic diagnostic of fusion reactors based on metallic Hall sensors

    Science.gov (United States)

    Ďuran, I.; Sentkerestiová, J.; Kovařík, K.; Viererbl, L.

    2012-06-01

    Employment of sensors based on Hall effect (Hall sensors) is one of the candidate approaches to detection of almost steady state magnetic fields in future fusion reactors based on magnetic confinement (tokamaks, stellarators etc.), and also in possible fusion-fission hybrid systems having these fusion reactors as a neutron source and driver. This contribution reviews the initial considerations concerning application of metallic Hall sensors in fusion reactor harsh environment that include high neutron loads (>1018 cm-2) and elevated temperatures (>200°C). In particular, the candidate sensing materials, candidate technologies for sensors production, initial analysis of activation and transmutation of sensors under reactor relevant neutron loads and the tests of the the first samples of copper Hall sensors are presented.

  1. Code development incorporating environmental, safety, and economic aspects of fusion reactors (FY 89--91)

    Energy Technology Data Exchange (ETDEWEB)

    Ho, S.K.; Fowler, T.K.; Holdren, J.P. (eds.)

    1991-11-01

    This report discusses the following aspects of Fusion reactors.: Activation Analysis; Tritium Inventory; Environmental and Safety Indices and Their Graphical Representation; Probabilistic Risk Assessment (PRA) and Decision Analysis; Plasma Burn Control -- Application to ITER; and Other Applications.

  2. Conceptual design of a commercial tokamak hybrid reactor fueling system

    Energy Technology Data Exchange (ETDEWEB)

    Matney, K.D.; Donnert, H.J.; Yang, T.F.

    1979-12-01

    A conceptual design of a fuel injection system for CTHR (Commercial Tokamak Hybrid Reactor) is discussed. Initially, relative merits of the cold-fueling concept are compared with those of the hot-fueling concept; that is, fueling where the electron is below 1 eV is compared with fueling where the electron temperature exceeds 100 eV. It is concluded that cold fueling seems to be somewhat more free of drawbacks than hot fueling. Possible implementation of the cold-fueling concept is exploited via frozen-pellet injection. Several methods of achieving frozen-pellet injection are discussed and the light-gas-gun approach is chosen from these possibilities. A modified version of the ORNL Neutral Gas Shielding Model is used to simulate the pellet injection process. From this simulation, the penetration-depth dependent velocity requirement is determined. Finally, with the velocity requirement known, a gas-pressure requirement for the proposed conceptual design is established. The cryogenic fuel-injection and fuel-handling systems are discussed. A possible way to implement the conceptual device is examined along with the attendant effects on the total system.

  3. Conceptual design of a commercial tokamak hybrid reactor fueling system

    Energy Technology Data Exchange (ETDEWEB)

    Matney, K D; Donnert, H J; Yang, T F

    1979-12-01

    A conceptual design of a fuel injection system for CTHR (Commercial Tokamak Hybrid Reactor) is discussed. Initially, relative merits of the cold-fueling concept are compared with those of the hot-fueling concept; that is, fueling where the electron temperature is below 1 eV is compared with fueling where the electron temperature exceeds 100 eV. It is concluded that cold fueling seems to be somewhat more free of drawbacks than hot fueling. Possible implementation of the cold-fueling concept is exploited via frozen-pellet injection. Several methods of achieving frozen-pellet injection are discussed and the light-gas-gun approach is chosen from these possibilities. A modified version of the ORNL Neutral Gas Shielding Model is used to simulate the pellet injection process. From this simulation, the penetration-depth dependent velocity requirement is determined. Finally, with the velocity requirement known, a gas-pressure requirement for the proposed conceptual design is established. The cryogenic fuel-injection and fuel-handling systems are discussed. A possible way to implement the conceptual device is examined along with the attendant effects on the total system.

  4. Inspection of state of spent fuel elements stored in RA reactor spent fuel storage pool

    Energy Technology Data Exchange (ETDEWEB)

    Aden, V.G.; Bulkin, S.Yu.; Sokolov, A.V. [Research and Development Institute of Power Engineering, Moscow (Russian Federation); Matausek, M.V.; Vukadin, Z. [VINCA Institute of Nuclear Science, Belgrade (Yugoslavia)

    1999-07-01

    About five thousand spent fuel elements from RA reactor have been stored for over 30 years in sealed aluminum barrels in the spent fuel storage pool. This way of storage does not provide complete information about the state of spent fuel elements or the medium inside the barrels, like pressure or radioactivity. The technology has recently been developed and the equipment has been manufactured to inspect the state of the spent fuel and to reduce eventual internal pressure inside the aluminum barrels. Based on the results of this inspection, a procedure will be proposed for transferring spent fuel to a more reliable storage facility. (author)

  5. Synergistic smart fuel for in-pile nuclear reactor measurements

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.A.; Kotter, D.K. [Idaho National Laboratories, Idaho Falls (United States); Ali, R.A.; Garrett, S.L. [Penn State University, University Park, State College, PA 16801 (United States)

    2013-07-01

    The thermo-acoustic fuel rod sensor developed in this research has demonstrated a novel technique for monitoring the temperature within the core of a nuclear reactor or the temperature of the surrounding heat-transfer fluid. It uses the heat from the nuclear fuel to generate sustained acoustic oscillations whose frequency will be indicative of the temperature. Converting a nuclear fuel rod into this type of thermo-acoustic sensor simply requires the insertion of a porous material (stack). This sensor has demonstrated a synergy with the elevated temperatures that exist within the nuclear reactor using materials that have only minimal susceptibility to high-energy particle fluxes. When the sensor is in operation, the sound waves radiated from the fuel rod resonator will propagate through the surrounding cooling fluid. The frequency of these oscillations is directly correlated with an effective temperature within the fuel rod resonator. This device is self-powered and is operational even in case of total loss of power of the reactor.

  6. Management of research reactor; dynamic characteristics analysis for reactor structures related with vibration of HANARO fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Chang Kee; Shim, Joo Sup [Shinwa Technology Information, Seoul (Korea)

    2001-04-01

    The objective of this study is to deduce the dynamic correlation between the fuel assembly and the reactor structure. Dynamic characteristics analyses for reactor structure related with vibration of HANARO fuel assembly have been performed For the dynamic characteristic analysis, the in-air models of the round and hexagonal flow tubes, 18-element and 36-element fuel assemblies, and reactor structure were developed. By calculating the hydrodynamic mass and distributing it on the in-air models, the in-water models of the flow tubes, the fuel assemblies, and the reactor structure were developed. Then, modal analyses for developed in-air and in-water models have been performed. Especially, two 18-element fuel assemblies and three 36-element fuel assemblies were included in the in-water reactor models. For the verification of the modal analysis results, the natural frequencies and the mode shapes of the fuel assembly were compared with those obtained from the experiment. Finally the analysis results of the reactor structure were compared with them performed by AECL Based on the reactor model without PCS piping, the in-water reactor model including the fuel assemblies was developed, and its modal analysis was performed. The analysis results demonstrate that there are no resonance between the fuel assembly and the reactor structures. 26 refs., 419 figs., 85 tabs. (Author)

  7. Electrolysis cell for reprocessing plutonium reactor fuel

    Science.gov (United States)

    Miller, William E.; Steindler, Martin J.; Burris, Leslie

    1986-01-01

    An electrolytic cell for refining a mixture of metals including spent fuel containing U and Pu contaminated with other metals, the cell including a metallic pot containing a metallic pool as one anode at a lower level, a fused salt as the electrolyte at an intermediate level and a cathode and an anode basket in spaced-apart positions in the electrolyte with the cathode and anode being retractable to positions above the electrolyte during which spent fuel may be added to the anode basket and the anode basket being extendable into the lower pool to dissolve at least some metallic contaminants, the anode basket containing the spent fuel acting as a second anode when in the electrolyte.

  8. Fuel Target Implosion in Ion beam Inertial Confinement Fusion

    CERN Document Server

    Kawata, Shigeo

    2015-01-01

    The numerical results for the fuel target implosion are presented in order to clarify the target physics in ion beam inertial fusion. The numerical analyses are performed for a direct-driven ion beam target. In the paper the following issues are studied: the beam obliquely incidence on the target surface, the plasma effect on the beam-stopping power, the beam particle energy, the beam time duration, the target radius, the beam input energy and the non-uniformity effect on the fuel target performance. In this paper the beam ions are protons.

  9. Moving bed reactor for solar thermochemical fuel production

    Science.gov (United States)

    Ermanoski, Ivan

    2013-04-16

    Reactors and methods for solar thermochemical reactions are disclosed. Embodiments of reactors include at least two distinct reactor chambers between which there is at least a pressure differential. In embodiments, reactive particles are exchanged between chambers during a reaction cycle to thermally reduce the particles at first conditions and oxidize the particles at second conditions to produce chemical work from heat. In embodiments, chambers of a reactor are coupled to a heat exchanger to pre-heat the reactive particles prior to direct exposure to thermal energy with heat transferred from reduced reactive particles as the particles are oppositely conveyed between the thermal reduction chamber and the fuel production chamber. In an embodiment, particle conveyance is in part provided by an elevator which may further function as a heat exchanger.

  10. Sodium fast reactor fuels and materials : research needs.

    Energy Technology Data Exchange (ETDEWEB)

    Denman, Matthew R.; Porter, Douglas (Idaho National Laboratory, Idaho Falls, ID); Wright, Art (Argonne National Laboratory Argonne, IL); Lambert, John (Argonne National Laboratory Argonne, IL); Hayes, Steven (Idaho National Laboratory, Idaho Falls, ID); Natesan, Ken (Argonne National Laboratory Argonne, IL); Ott, Larry J. (Oak Ridge National Laboratory, Oak Ridge, TN); Garner, Frank (Radiation Effects Consulting. Richland, WA); Walters, Leon (Advanced Reactor Concepts, Idaho Falls, ID); Yacout, Abdellatif (Argonne National Laboratory Argonne, IL)

    2011-09-01

    An expert panel was assembled to identify gaps in fuels and materials research prior to licensing sodium cooled fast reactor (SFR) design. The expert panel considered both metal and oxide fuels, various cladding and duct materials, structural materials, fuel performance codes, fabrication capability and records, and transient behavior of fuel types. A methodology was developed to rate the relative importance of phenomena and properties both as to importance to a regulatory body and the maturity of the technology base. The technology base for fuels and cladding was divided into three regimes: information of high maturity under conservative operating conditions, information of low maturity under more aggressive operating conditions, and future design expectations where meager data exist.

  11. Deep-Burn Modular Helium Reactor Fuel Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    McEachern, D

    2002-12-02

    This document contains the workscope, schedule and cost for the technology development tasks needed to satisfy the fuel and fission product transport Design Data Needs (DDNs) for the Gas Turbine-Modular Helium Reactor (GT-MHR), operating in its role of transmuting transuranic (TRU) nuclides in spent fuel discharged from commercial light-water reactors (LWRs). In its application for transmutation, the GT-MHR is referred to as the Deep-Burn MHR (DB-MHR). This Fuel Development Plan (FDP) describes part of the overall program being undertaken by the U.S. Department of Energy (DOE), utilities, and industry to evaluate the use of the GT-MHR to transmute transuranic nuclides from spent nuclear fuel. The Fuel Development Plan (FDP) includes the work on fuel necessary to support the design and licensing of the DB-MHR. The FDP is organized into ten sections. Section 1 provides a summary of the most important features of the plan, including cost and schedule information. Section 2 describes the DB-MHR concept, the features of its fuel and the plan to develop coated particle fuel for transmutation. Section 3 describes the knowledge base for fabrication of coated particles, the experience with irradiation performance of coated particle fuels, the database for fission product transport in HTGR cores, and describes test data and calculations for the performance of coated particle fuel while in a repository. Section 4 presents the fuel performance requirements in terms of as-manufactured quality and performance of the fuel coatings under irradiation and accident conditions. These requirements are provisional because the design of the DB-MHR is in an early stage. However, the requirements are presented in this preliminary form to guide the initial work on the fuel development. Section 4 also presents limits on the irradiation conditions to which the coated particle fuel can be subjected for the core design. These limits are based on past irradiation experience. Section 5 describes

  12. A cermet fuel reactor for nuclear thermal propulsion

    Science.gov (United States)

    Kruger, Gordon

    1991-01-01

    Work on the cermet fuel reactor done in the 1960's by General Electric (GE) and the Argonne National Laboratory (ANL) that had as its goal the development of systems that could be used for nuclear rocket propulsion as well as closed cycle propulsion system designs for ship propulsion, space nuclear propulsion, and other propulsion systems is reviewed. It is concluded that the work done in the 1960's has demonstrated that we can have excellent thermal and mechanical performance with cermet fuel. Thousands of hours of testing were performed on the cermet fuel at both GE and AGL, including very rapid transients and some radiation performance history. We conclude that there are no feasibility issues with cermet fuel. What is needed is reactivation of existing technology and qualification testing of a specific fuel form. We believe this can be done with a minimum development risk.

  13. Radiation damage of graphite in fission and fusion reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Engle, G.B. (GA Technologies, Inc., San Diego, CA (USA)); Kelly, B.T. (Springfields Nuclear Power Development Labs. (UK))

    1984-05-01

    Increasing the crystalline perfection of artificial graphites is suggested as one method of reducing the crystallite damage. The life expectance for the isotropic conventional graphites will in each case depend on the reactor component for which it will be used and on its design considerations. Based on neutron damage and related dimensional changes it is estimated graphite will be tenable to about 3x10/sup 22/ n/cm/sup 2/ (EDN) at 400/sup 0/C, 0.6x10/sup 22/ n/cm/sup 2/ (EDN) at 1000/sup 0/C and 1.4x10/sup 22/ n/cm/sup 2/ (EDN) at 1400/sup 0/C. There are no data above 1400/sup 0/C on which to speculate. A dose of 2x10/sup 22/ n/cm/sup 2/ may be accumulated in times ranging from as short as a few months in the first wall region of high power density designs to the fusion plant lifetime (30 years) in the neutron reflector region behind the blanket.

  14. An earthquake transient method for pebble-bed reactors and a fuel temperature model for TRISO fueled reactors

    Science.gov (United States)

    Ortensi, Javier

    This investigation is divided into two general topics: (1) a new method for analyzing the safe shutdown earthquake event in a pebble bed reactor core, and (2) the development of an explicit tristructural-isotropic fuel model for high temperature reactors. The safe shutdown earthquake event is one of the design basis accidents for the pebble bed reactor. The new method captures the dynamic geometric compaction of the pebble bed core. The neutronic and thermal-fluids grids are dynamically re-meshed to simulate the re-arrangement of the pebbles in the reactor during the earthquake. Results are shown for the PBMR-400 assuming it is subjected to the Idaho National Laboratory's design basis earthquake. The study concludes that the PBMR-400 can safely withstand the reactivity insertions induced by the slumping of the core and the resulting relative withdrawal of the control rods. This characteristic stems from the large negative Doppler feedback of the fuel. This Doppler feedback mechanism is a major contributor to the passive safety of gas-cooled, graphite-moderated, high-temperature reactors that use fuel based on TRISO particles. The correct prediction of the magnitude and time-dependence of this feedback effect is essential to the conduct of safety analyses for these reactors. An explicit TRISO fuel temperature model named THETRIS has been developed in this work and incorporated in the CYNOD-THERMIX-KONVEK suite of coupled codes. The new model yields similar results to those obtained with more complex methods, requiring multi-TRISO calculations within one control volume. The performance of the code during fast and moderately-slow transients is verified. These analyses show how explicit TRISO models improve the predictions of the fuel temperature, and consequently, of the power escalation. In addition, a brief study of the potential effects on the transient behavior of high-temperature reactors due to the presence of a gap inside the TRISO particles is included

  15. Ignition curves for deuterium/helium-3 fuel in spherical tokamak reactor

    Indian Academy of Sciences (India)

    Motevalli S M; Fadaei F

    2016-04-01

    In this paper, ignition curve for deuterium/helium-3 fusion reaction is studied. Four fusion reactions are considered. Zero-dimensional model for the power balance equation has been used. The closed ignition curves for $\\rho$ = constant (ratio of particle to energy confinement time) have been derived. The results of our calculations show that ignited equilibria for deuterium/helium-3 fuel in a spherical tokamak is only possible for $\\rho$ = 5.5 and 6. Then, by using the energy confinement scaling and parameters of the spherical tokamak reactor, the plasma stability limits have been obtained in $n_e, T$ plane and, to determine the thermal instability of plasma, the time dependent transport equations have been solved.

  16. Behavior of actinides in the Integral Fast Reactor fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, J.C. [Louisiana State Univ., Baton Rouge, LA (United States). Nuclear Science Center; Lineberry, M.J. [Argonne National Lab., Idaho Falls, ID (United States). Technology Development Div.

    1994-06-01

    The Integral Fast Reactor (IFR) under development by Argonne National Laboratory uses metallic fuels instead of ceramics. This allows electrorefining of spent fuels and presents opportunities for recycling minor actinide elements. Four minor actinides ({sup 237}Np, {sup 240}Pu, {sup 241}Am, and {sup 243}Am) determine the waste storage requirements of spent fuel from all types of fission reactors. These nuclides behave the same as uranium and other plutonium isotopes in electrorefining, so they can be recycled back to the reactor without elaborate chemical processing. An experiment has been designed to demonstrate the effectiveness of the high-energy neutron spectra of the IFR in consuming these four nuclides and plutonium. Eighteen sets of seven actinide and five light metal targets have been selected for ten day exposure in the Experimental Breeder Reactor-2 which serves as a prototype of the IFR. Post-irradiation analyses of the exposed targets by gamma, alpha, and mass spectroscopy are used to determine nuclear reaction-rates and neutron spectra. These experimental data increase the authors` confidence in their ability to predict reaction rates in candidate IFR designs using a variety of neutron transport and diffusion programs.

  17. Behavior of actinides in the Integral Fast Reactor fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, J.C. [Louisiana State Univ., Baton Rouge, LA (United States). Nuclear Science Center; Lineberry, M.J. [Argonne National Lab., Idaho Falls, ID (United States). Technology Development Div.

    1994-06-01

    The Integral Fast Reactor (IFR) under development by Argonne National Laboratory uses metallic fuels instead of ceramics. This allows electrorefining of spent fuels and presents opportunities for recycling minor actinide elements. Four minor actinides ({sup 237}Np, {sup 240}Pu, {sup 241}Am, and {sup 243}Am) determine the waste storage requirements of spent fuel from all types of fission reactors. These nuclides behave the same as uranium and other plutonium isotopes in electrorefining, so they can be recycled back to the reactor without elaborate chemical processing. An experiment has been designed to demonstrate the effectiveness of the high-energy neutron spectra of the IFR in consuming these four nuclides and plutonium. Eighteen sets of seven actinide and five light metal targets have been selected for ten day exposure in the Experimental Breeder Reactor-2 which serves as a prototype of the IFR. Post-irradiation analyses of the exposed targets by gamma, alpha, and mass spectroscopy are used to determine nuclear reaction-rates and neutron spectra. These experimental data increase the authors` confidence in their ability to predict reaction rates in candidate IFR designs using a variety of neutron transport and diffusion programs.

  18. Innovative fusion reactor design analysis: Annual performance report, May 15, 1988--January 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Klein, A.C.

    1989-01-31

    This report discusses the following topics on fusion reactor component design: FLiBe intermediate heat exchanger design analysis; FLiBe properties; design methodology; FLiBe system steam generator freezeup; FLiBe reactor systems studies; tritium breeding ratio control; analysis of original objectives; and budget analysis. 15 refs., 13 figs., 3 tabs. (LSP)

  19. Synergistic Smart Fuel For In-pile Nuclear Reactor Measurements

    Energy Technology Data Exchange (ETDEWEB)

    James A. Smith; Dale K. Kotter; Randall A. Ali; Steven L . Garrett

    2013-10-01

    In March 2011, an earthquake of magnitude 9.0 on the Richter scale struck Japan with its epicenter on the northeast coast, near the Tohoku region. In addition to the immense physical destruction and casualties across the country, several nuclear power plants (NPP) were affected. It was the Fukushima Daiichi NPP that experienced the most severe and irreversible damage. The earthquake brought the reactors at Fukushima to an automatic shutdown and because the power transmission lines were damaged, emergency diesel generators (EDGs) were activated to ensure that there was continued cooling of the reactors and spent fuel pools. The situation was being successfully managed until the tsunami hit about forty-five minutes later with a maximum wave height of approximately 15 m. The influx of water submerged the EDGs, the electrical switchgear, and dc batteries, resulting in the total loss of power to the reactors.2 At this point, the situation became critical. There was a loss of the sensors and instrumentation within the reactor that could have provided valuable information to guide the operators to make informed decisions and avoid the unfortunate events that followed. In the light of these events, we have developed and tested a potential self-powered thermoacoustic system, which will have the ability to serve as a temperature sensor and can transmit data independently of electronic networks. Such a device is synergistic with the harsh environment of the nuclear reactor as it utilizes the heat from the nuclear fuel to provide the input power.

  20. Review of Transient Fuel Test Results at Sandia National Laboratories and the Potential for Future Fast Reactor Fuel Transient Testing in the Annular Core Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A.; Pickard, Paul S.; Parma, Edward J.; Vernon, Milton E.; Kelly, John; Tikare, Veena [Sandia National Laboratories, Org 6872 MS-1146, PO Box 5800 Albuquerque, New Mexico 87185 (United States)

    2009-06-15

    Reactor driven transient tests of fast reactor fuels may be required to support the development and certification of new fuels for Fast Reactors. The results of the transient fuel tests will likely be needed to support licensing and to provide validation data to support the safety case for a variety of proposed fast fuel types and reactors. In general reactor driven transient tests are used to identify basic phenomenology during reactor transients and to determine the fuel performance limits and margins to failure during design basis accidents such as loss of flow, loss of heat sink, and reactivity insertion accidents. This paper provides a summary description of the previous Sandia Fuel Disruption and Transient Axial Relocation tests that were performed in the Annular Core Research Reactor (ACRR) for the U.S. Nuclear Regulatory Commission almost 25 years ago. These tests consisted of a number of capsule tests and flowing gas tests that used fission heating to disrupt fresh and irradiated MOX fuel. The behavior of the fuel disruption, the generation of aerosols and the melting and relocation of fuel and cladding was recorded on high speed cinematography. This paper will present videos of the fuel disruption that was observed in these tests which reveal stark differences in fuel behavior between fresh and irradiated fuel. Even though these tests were performed over 25 years ago, their results are still relevant to today's reactor designs. These types of transient tests are again being considered by the Advanced Fuel Cycle Initiative to support the Global Nuclear Energy Partnership because of the need to perform tests on metal fuels and transuranic fuels. Because the Annular Core Research Reactor is the only transient test facility available within the US, a brief summary of Sandia's continued capability to perform these tests in the ACRR will also be provided. (authors)

  1. Reactor Physics Characterization of the HTR Module with UCO Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gerhard Strydom

    2011-01-01

    ABSTRACT The HTR Module [1] is a graphite-moderated, helium cooled pebble bed High Temperature Reactor (HTR) design that has been extensively used as a reference template for the former South African and current Chinese HTR [2] programs. This design utilized spherical fuel elements packed into a dynamic pebble bed, consisting of TRISO coated uranium oxide (UO2) fuel kernels with a U-235 enrichment of 7.8% and a Heavy Metal loading of 7 grams per pebble. The main objective of this study is to compare several important reactor physics and core design parameters for the HTR Module and an identical design utilizing UCO fuel kernels. Fuel kernels of this type are currently being tested in the Idaho National Laboratory’s (INL) Advanced Test Reactor (ATR) as part of the larger Next Generation Nuclear Plant (NGNP) project. The PEBBED-THERMIX [3] code, which was developed specifically for the analysis of pebble bed HTRs, was used to compare the coupled neutronic and thermal fluid performance of the two designs.

  2. Fuel burnup calculation of a research reactor plate element

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Nadia Rodrigues dos; Lima, Zelmo Rodrigues de; Moreira, Maria de Lourdes, E-mail: nadiasam@gmail.com, E-mail: zrlima@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    This work consists in simulating the burnup of two different plate type fuel elements, where one is the benchmark MTR of the IAEA, which is made of an alloy of uranium and aluminum, while the other belonging to a typical multipurpose reactor is composed of an alloy of uranium and silicon. The simulation is performed using the WIMSD-5B computer code, which makes use of deterministic methods for solving neutron transport. In developing this task, fuel element equivalent cells were calculated representing each of the reactors to obtain the initial concentrations of each isotope constituent element of the fuel cell and the thicknesses corresponding to each region of the cell, since this information is part of the input data. The compared values of the k∞ showed a similar behavior for the case of the MTR calculated with the WIMSD-5B and EPRI-CELL codes. Relating the graphs of the concentrations in the burnup of both reactors, there are aspects very similar to each isotope selected. The application WIMSD-5B code to calculate isotopic concentrations and burnup of the fuel element, proved to be satisfactory for the fulfillment of the objective of this work. (author)

  3. Development of fuels and structural materials for fast breeder reactors

    Indian Academy of Sciences (India)

    Baldev Raj; S L Mannan; P R Vasudeva Rao; M D Mathew

    2002-10-01

    Fast breeder reactors (FBRs) are destined to play a crucial role inthe Indian nuclear power programme in the foreseeable future. FBR technology involves a multi-disciplinary approach to solve the various challenges in the areas of fuel and materials development. Fuels for FBRs have significantly higher concentration of fissile material than in thermal reactors, with a matching increase in burn-up. The design of the fuel is an important aspect which has to be optimised for efficient, economic and safe production of power. FBR components operate under hostile and demanding environment of high neutron flux, liquid sodium coolant and elevated temperatures. Resistance to void swelling, irradiation creep, and irradiation embrittlement are therefore major considerations in the choice of materials for the core components. Structural and steam generator materials should have good resistance to creep, low cycle fatigue, creep-fatigue interaction and sodium corrosion. The development of carbide fuel and structural materials for the Fast Breeder Test Reactor at Kalpakkam was a great technological challenge. At the Indira Gandhi Centre for Atomic Research (IGCAR), advanced research facilities have been established, and extensive studies have been carried out in the areas of fuel and materials development. This has laid the foundation for the design and development of a 500 MWe Prototype Fast Breeder Reactor. Highlights of some of these studies are discussed in this paper in the context of our mission to develop and deploy FBR technology for the energy security of India in the 21st century.

  4. CURRENT STATUS OF INTEGRITY ASSESSMENT BY SIPPING SYSTEM OF SPENT FUEL BUNDLES IRRADIATED IN CANDU REACTOR

    Directory of Open Access Journals (Sweden)

    JONG-YOUL PARK

    2014-12-01

    Full Text Available In terms of safety and the efficient management of spent fuel storage, detecting failed fuel is one of the most important tasks in a CANada Deuterium Uranium (CANDU reactor operation. It has been successfully demonstrated that in a CANDU reactor, on-power failed fuel detection and location systems, along with alarm area gamma monitors, can detect and locate defective and suspect fuel bundles before discharging them from the reactor to the spent fuel storage bay. In the reception bay, however, only visual inspection has been used to identify suspect bundles. Gaseous fission product and delayed neutron monitoring systems cannot precisely distinguish failed fuel elements from each fuel bundle. This study reports the use of a sipping system in a CANDU reactor for the integrity assessment of spent fuel bundles. The integrity assessment of spent fuel bundles using this sipping system has shown promise as a nondestructive test for detecting a defective fuel bundle in a CANDU reactor.

  5. Beyond ITER: neutral beams for a demonstration fusion reactor (DEMO) (invited).

    Science.gov (United States)

    McAdams, R

    2014-02-01

    In the development of magnetically confined fusion as an economically sustainable power source, International Tokamak Experimental Reactor (ITER) is currently under construction. Beyond ITER is the demonstration fusion reactor (DEMO) programme in which the physics and engineering aspects of a future fusion power plant will be demonstrated. DEMO will produce net electrical power. The DEMO programme will be outlined and the role of neutral beams for heating and current drive will be described. In particular, the importance of the efficiency of neutral beam systems in terms of injected neutral beam power compared to wallplug power will be discussed. Options for improving this efficiency including advanced neutralisers and energy recovery are discussed.

  6. Beyond ITER: Neutral beams for a demonstration fusion reactor (DEMO) (invited)

    Energy Technology Data Exchange (ETDEWEB)

    McAdams, R., E-mail: roy.mcadams@ccfe.ac.uk [EURATOM/CCFE Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom)

    2014-02-15

    In the development of magnetically confined fusion as an economically sustainable power source, International Tokamak Experimental Reactor (ITER) is currently under construction. Beyond ITER is the demonstration fusion reactor (DEMO) programme in which the physics and engineering aspects of a future fusion power plant will be demonstrated. DEMO will produce net electrical power. The DEMO programme will be outlined and the role of neutral beams for heating and current drive will be described. In particular, the importance of the efficiency of neutral beam systems in terms of injected neutral beam power compared to wallplug power will be discussed. Options for improving this efficiency including advanced neutralisers and energy recovery are discussed.

  7. Conceptual design of fuel transfer cask for Reactor TRIGA PUSPATI (RTP)

    Science.gov (United States)

    Muhamad, Shalina Sheik; Hamzah, Mohd Arif Arif B.

    2014-02-01

    Spent fuel transfer cask is used to transfer a spent fuel from the reactor tank to the spent fuel storage or for spent fuel inspection. Typically, the cask made from steel cylinders that are either welded or bolted closed. The cylinder is enclosed with additional steel, concrete, or other material to provide radiation shielding and containment of the spent fuel. This paper will discuss the Conceptual Design of fuel transfer cask for Reactor TRIGA Puspati (RTP).

  8. Fusion reactor materials semiannual progress report for the period ending March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This is the fourteenth in a series of semiannual technical progress reports on fusion reactor materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the US Depart of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. Separate abstracts were prepared for each individual section.

  9. Detecting pin diversion from pressurized water reactors spent fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Young S.; Sitaraman, Shivakumar

    2017-01-10

    Detecting diversion of spent fuel from Pressurized Water Reactors (PWR) by determining possible diversion including the steps of providing a detector cluster containing gamma ray and neutron detectors, inserting the detector cluster containing the gamma ray and neutron detectors into the spent fuel assembly through the guide tube holes in the spent fuel assembly, measuring gamma ray and neutron radiation responses of the gamma ray and neutron detectors in the guide tube holes, processing the gamma ray and neutron radiation responses at the guide tube locations by normalizing them to the maximum value among each set of responses and taking the ratio of the gamma ray and neutron responses at the guide tube locations and normalizing the ratios to the maximum value among them and producing three signatures, gamma, neutron, and gamma-neutron ratio, based on these normalized values, and producing an output that consists of these signatures that can indicate possible diversion of the pins from the spent fuel assembly.

  10. Use of silicide fuel in the Ford Nuclear Reactor - to lengthen fuel element lifetimes

    Energy Technology Data Exchange (ETDEWEB)

    Bretscher, M.M.; Snelgrove, J.L. [Argonne National Lab., IL (United States); Burn, R.R.; Lee, J.C. [Univ. of Michigan, Ann Arbor, MI (United States). Phoenix Memorial Lab.

    1995-12-31

    Based on economic considerations, it has been proposed to increase the lifetime of LEU fuel elements in the Ford Nuclear Reactor by raising the {sup 235}U plate loading from 9.3 grams in aluminide (UAl{sub x}) fuel to 12.5 grams in silicide (U{sub 3}Si{sub 2}) fuel. For a representative core configuration, preliminary neutronic depletion and steady state thermal hydraulic calculations have been performed to investigate core characteristics during the transition from an all-aluminide to an all-silicide core. This paper discusses motivations for this fuel element upgrade, results from the calculations, and conclusions.

  11. Joining and fabrication techniques for high temperature structures including the first wall in fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Jin; Lee, B. S.; Kim, K. B

    2003-09-01

    The materials for PFC's (Plasma Facing Components) in a fusion reactor are severely irradiated with fusion products in facing the high temperature plasma during the operation. The refractory materials can be maintained their excellent properties in severe operating condition by lowering surface temperature by bonding them to the high thermal conducting materials of heat sink. Hence, the joining and bonding techniques between dissimilar materials is considered to be important in case of the fusion reactor or nuclear reactor which is operated at high temperature. The first wall in the fusion reactor is heated to approximately 1000 .deg. C and irradiated severely by the plasma. In ITER, beryllium is expected as the primary armour candidate for the PFC's; other candidates including W, Mo, SiC, B4C, C/C and Si{sub 3}N{sub 4}. Since the heat affected zones in the PFC's processed by conventional welding are reported to have embrittlement and degradation in the sever operation condition, both brazing and diffusion bonding are being considered as prime candidates for the joining technique. In this report, both the materials including ceramics and the fabrication techniques including joining technique between dissimilar materials for PFC's are described. The described joining technique between the refractory materials and the dissimilar materials may be applicable for the fusion reactor and Generation-4 future nuclear reactor which are operated at high temperature and high irradiation.

  12. Operation of Fusion Reactors in One Atmosphere of Air Instead of Vacuum Systems

    Science.gov (United States)

    Roth, J. Reece

    2009-07-01

    Engineering design studies of both magnetic and inertial fusion power plants have assumed that the plasma will undergo fusion reactions in a vacuum environment. Operation under vacuum requires an expensive additional major system for the reactor-a vacuum vessel with vacuum pumping, and raises the possibility of sudden unplanned outages if the vacuum containment is breached. It would be desirable in many respects if fusion reactors could be made to operate at one atmosphere with air surrounding the plasma, thus eliminating the requirement of a pressure vessel and vacuum pumping. This would have obvious economic, reliability, and engineering advantages for currently envisaged power plant reactors; it would make possible forms of reactor control not possible under vacuum conditions (i.e. adiabatic compression of the fusion plasma by increasing the pressure of surrounding gas); it would allow reactors used as aircraft engines to operate as turbojets or ramjets in the atmosphere, and it would allow reactors used as fusion rockets to take off from the surface of the earth instead of low earth orbit.

  13. Fusion reactor materials. Semiannual progress report for period ending September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Rowcliffe, A.F.; Burn, G.L.; Knee`, S.S.; Dowker, C.L. [comps.

    1994-02-01

    This is the fifteenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: Alloy Development for Irradiation Performance; Damage Analysis and Fundamental Studies; Special purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the U.S. Department of Energy. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide.

  14. A Simplified Supercritical Fast Reactor with Thorium Fuel

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2014-01-01

    Full Text Available Super-Critical water-cooled Fast Reactor (SCFR is a feasible option for the Gen-IV SCWR designs, in which much less moderator and thus coolant are needed for transferring the fission heat from the core compared with the traditional LWRs. The fast spectrum of SCFR is useful for fuel breeding and thorium utilization, which is then beneficial for enhancing the sustainability of the nuclear fuel cycle. A SCFR core is constructed in this work, with the aim of simplifying the mechanical structure and keeping negative coolant void reactivity during the whole core life. A core burnup simulation scheme based on Monte Carlo lattice homogenization is adopted in this study, and the reactor physics analysis has been performed with DU-MOX and Th-MOX fuel. The main issues discussed include the fuel conversion ratio and the coolant void reactivity. The analysis shows that thorium-based fuel can provide inherent safety for SCFR without use of blanket, which is favorable for the mechanical design of SCFR.

  15. Nuclear reactor fuel element with vanadium getter on cladding

    Science.gov (United States)

    Johnson, Carl E.; Carroll, Kenneth G.

    1977-01-01

    A nuclear reactor fuel element is described which has an outer cladding, a central core of fissionable or mixed fissionable and fertile fuel material and a layer of vanadium as an oxygen getter on the inner surface of the cladding. The vanadium reacts with oxygen released by the fissionable material during irradiation of the core to prevent the oxygen from reacting with and corroding the cladding. Also described is a method for coating the inner surface of small diameter tubes of cladding with a layer of vanadium.

  16. Deuterium--tritium plasmas in novel regimes in the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bell, M.G.; Batha, S.; Beer, M.; Bell, R.E.; Belov, A.; Berk, H.; Bernabei, S.; Bitter, M.; Breizman, B.; Bretz, N.L.; Budny, R.; Bush, C.E.; Callen, J.; Cauffman, S.; Chang, C.S.; Chang, Z.; Cheng, C.Z.; Darrow, D.S.; Dendy, R.O.; Dorland, W.; Duong, H.; Efthimion, P.C.; Ernst, D.; Evenson, H.; Fisch, N.J.; Fisher, R.; Fonck, R.J.; Fredrickson, E.D.; Fu, G.Y.; Furth, H.P.; Gorelenkov, N.N.; Goloborodko, V.Y.; Grek, B.; Grisham, L.R.; Hammett, G.W.; Hawryluk, R.J.; Heidbrink, W.; Herrmann, H.W.; Herrmann, M.C.; Hill, K.W.; Hogan, J.; Hooper, B.; Hosea, J.C.; Houlberg, W.A.; Hughes, M.; Jassby, D.L.; Jobes, F.C.; Johnson, D.W.; Kaita, R.; Kaye, S.; Kesner, J.; Kim, J.S.; Kissick, M.; Krasilnikov, A.V.; Kugel, H.; Kumar, A.; Lam, N.T.; Lamarche, P.; LeBlanc, B.; Levinton, F.M.; Ludescher, C.; Machuzak, J.; Majeski, R.P.; Manickam, J.; Mansfield, D.K.; Mauel, M.; Mazzucato, E.; McChesney, J.; McCune, D.C.; McKee, G.; McGuire, K.M.; Meade, D.M.; Medley, S.S.; Mikkelsen, D.R.; Mirnov, S.V.; Mueller, D.; Nagayama, Y.; Navratil, G.A.; Nazikian, R.; Okabayashi, M.; Osakabe, M.; Owens, D.K.; Park, H.K.; Park, W.; Paul, S.F.; Petrov, M.P.; Phillips, C.K.; Phillips, M.; Phillips, P.; Ramsey, A.T.; Rice, B.; Redi, M.H.; Rewoldt, G.; Reznik, S.; Roquemore, A.L.; Rogers, J.; Ruskov, E.; Sabbagh, S.A.; Sasao, M.; Schilling, G.; Schmidt, G.L.; Scott, S.D.; Semenov, I.; Senko, T.; Skinner, C.H.; Stevenson, T.; Strait, E.J.; Stratton, B.C.; Strachan, J.D.; Stodiek, W.; Synakowski, E.; Takahashi, H.; Tang, W.; Taylor, G.; Thompson, M.E.; von Goeler, S.; Von Halle, A.; Walters, R.T.; Wang, S.; White, R.; Wieland, R.M.; Williams, M.; Wilson, J.R.; Wong, K.L.; Wurden, G.A.; Yamada, M.; Yavorski, V.; Young, K.M.; Zakharov, L.; Zarnstorff, M.C.; Zweben, S.J. [Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)

    1997-05-01

    Experiments in the Tokamak Fusion Test Reactor (TFTR) [Phys. Plasmas {bold 2}, 2176 (1995)] have explored several novel regimes of improved tokamak confinement in deuterium{endash}tritium (D--T) plasmas, including plasmas with reduced or reversed magnetic shear in the core and high-current plasmas with increased shear in the outer region (high l{sub i}). New techniques have also been developed to enhance the confinement in these regimes by modifying the plasma-limiter interaction through {ital in situ} deposition of lithium. In reversed-shear plasmas, transitions to enhanced confinement have been observed at plasma currents up to 2.2 MA (q{sub a}{approx}4.3), accompanied by the formation of internal transport barriers, where large radial gradients develop in the temperature and density profiles. Experiments have been performed to elucidate the mechanism of the barrier formation and its relationship with the magnetic configuration and with the heating characteristics. The increased stability of high-current, high-l{sub i} plasmas produced by rapid expansion of the minor cross section, coupled with improvement in the confinement by lithium deposition has enabled the achievement of high fusion power, up to 8.7 MW, with D--T neutral beam heating. The physics of fusion alpha-particle confinement has been investigated in these regimes, including the interactions of the alphas with endogenous plasma instabilities and externally applied waves in the ion cyclotron range of frequencies. In D--T plasmas with q{sub 0}{gt}1 and weak magnetic shear in the central region, a toroidal Alfvn eigenmode instability driven purely by the alpha particles has been observed for the first time. The interactions of energetic ions with ion Bernstein waves produced by mode conversion from fast waves in mixed-species plasmas have been studied as a possible mechanism for transferring the energy of the alphas to fuel ions. {copyright} {ital 1997 American Institute of Physics.}

  17. Deuterium-tritium plasmas in novel regimes in the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bell, M.G.; Beer, M. [Princeton Univ., NJ (United States). Princeton Plasma Physics Lab.; Batha, S. [Fusion Physics and Technology, Torrance, CA (United States)] [and others

    1997-02-01

    Experiments in the Tokamak Fusion Test Reactor (TFTR) have explored several novel regimes of improved tokamak confinement in deuterium-tritium (D-T) plasmas, including plasmas with reduced or reversed magnetic shear in the core and high-current plasmas with increased shear in the outer region (high-l{sub i}). New techniques have also been developed to enhance the confinement in these regimes by modifying the plasma-limiter interaction through in-situ deposition of lithium. In reversed-shear plasmas, transitions to enhanced confinement have been observed at plasma currents up to 2.2 MA (q{sub a} {approx} 4.3), accompanied by the formation of internal transport barriers, where large radial gradients develop in the temperature and density profiles. Experiments have been performed to elucidate the mechanism of the barrier formation and its relationship with the magnetic configuration and with the heating characteristics. The increased stability of high-current, high-l{sub i} plasmas produced by rapid expansion of the minor cross-section, coupled with improvement in the confinement by lithium deposition has enabled the achievement of high fusion power, up to 8.7 MW, with D-T neutral beam heating. The physics of fusion alpha-particle confinement has been investigated in these regimes, including the interactions of the alphas with endogenous plasma instabilities and externally applied waves in the ion cyclotron range of frequencies. In D-T plasmas with q{sub 0} > 1 and weak magnetic shear in the central region, a toroidal Alfven eigenmode instability driven purely by the alpha particles has been observed for the first time. The interactions of energetic ions with ion Bernstein waves produced by mode-conversion from fast waves in mixed-species plasmas have been studied as a possible mechanism for transferring the energy of the alphas to fuel ions.

  18. The basic features of a closed fuel cycle without fast reactors

    Science.gov (United States)

    Bobrov, E. A.; Alekseev, P. N.; Teplov, P. S.

    2017-01-01

    In this paper the basic features of a closed fuel cycle with thermal reactors are considered. The three variants of multiple Pu and U recycling in VVER reactors was investigated. The comparison of MOX and REMIX fuel approaches for closed fuel cycle with thermal reactors is presented. All variants make possible to recycle several times the total amount of Pu and U obtained from spent fuel. The reported study was funded by RFBR according to the research project № 16-38-00021

  19. Proceedings of the Office of Fusion Energy/DOE workshop on ceramic matrix composites for structural applications in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.H. (Pacific Northwest Lab., Richland, WA (USA)); Lucas, G.E. (California Univ., Santa Barbara, CA (USA))

    1990-11-01

    A workshop to assess the potential application of ceramic matrix composites (CMCs) for structural applications in fusion reactors was held on May 21--22, 1990, at University of California, Santa Barbara. Participants included individuals familiar with materials and design requirements in fusion reactors, ceramic composite processing and properties and radiation effects. The primary focus was to list the feasibility issues that might limit the application of these materials in fusion reactors. Clear advantages for the use of CMCs are high-temperature operation, which would allow a high-efficiency Rankine cycle, and low activation. Limitations to their use are material costs, fabrication complexity and costs, lack of familiarity with these materials in design, and the lack of data on radiation stability at relevant temperatures and fluences. Fusion-relevant feasibility issues identified at this workshop include: hermetic and vacuum properties related to effects of matrix porosity and matrix microcracking; chemical compatibility with coolant, tritium, and breeder and multiplier materials, radiation effects on compatibility; radiation stability and integrity; and ability to join CMCs in the shop and at the reactor site, radiation stability and integrity of joints. A summary of ongoing CMC radiation programs is also given. It was suggested that a true feasibility assessment of CMCs for fusion structural applications could not be completed without evaluation of a material tailored'' to fusion conditions or at least to radiation stability. It was suggested that a follow-up workshop be held to design a tailored composite after the results of CMC radiation studies are available and the critical feasibility issues are addressed.

  20. Effect of particle pinch on the fusion performance and profile features of an international thermonuclear experimental reactor-like fusion reactor

    Science.gov (United States)

    Wang, Shijia; Wang, Shaojie

    2015-04-01

    The evolution of the plasma temperature and density in an international thermonuclear experimental reactor (ITER)-like fusion device has been studied by numerically solving the energy transport equation coupled with the particle transport equation. The effect of particle pinch, which depends on the magnetic curvature and the safety factor, has been taken into account. The plasma is primarily heated by the alpha particles which are produced by the deuterium-tritium fusion reactions. A semi-empirical method, which adopts the ITERH-98P(y,2) scaling law, has been used to evaluate the transport coefficients. The fusion performances (the fusion energy gain factor, Q) similar to the ITER inductive scenario and non-inductive scenario (with reversed magnetic shear) are obtained. It is shown that the particle pinch has significant effects on the fusion performance and profiles of a fusion reactor. When the volume-averaged density is fixed, particle pinch can lower the pedestal density by ˜30 % , with the Q value and the central pressure almost unchanged. When the particle source or the pedestal density is fixed, the particle pinch can significantly enhance the Q value by 60 % , with the central pressure also significantly raised.

  1. Fuel Summary Report: Shippingport Light Water Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Illum, D.B.; Olson, G.L.; McCardell, R.K.

    1999-01-01

    The Shippingport Light Water Breeder Reactor (LWBR) was a small water cooled, U-233/Th-232 cycle breeder reactor developed by the Pittsburgh Naval Reactors to improve utilization of the nation's nuclear fuel resources in light water reactors. The LWBR was operated at Shippingport Atomic Power Station (APS), which was a Department of Energy (DOE) (formerly Atomic Energy Commission)-owned reactor plant. Shippingport APS was the first large-scale, central-station nuclear power plant in the United States and the first plant of such size in the world operated solely to produce electric power. The Shippingport LWBR was operated successfully from 1977 to 1982 at the APS. During the five years of operation, the LWBR generated more than 29,000 effective full power hours (EFPH) of energy. After final shutdown, the 39 core modules of the LWBR were shipped to the Expended Core Facility (ECF) at Naval Reactors Facility at the Idaho National Engineering and Environmental Laboratory (INEEL). At ECF, 12 of the 39 modules were dismantled and about 1000 of more than 17,000 rods were removed from the modules of proof-of-breeding and fuel performance testing. Some of the removed rods were kept at ECF, some were sent to Argonne National Laboratory-West (ANL-W) in Idaho and some to ANL-East in Chicago for a variety of physical, chemical and radiological examinations. All rods and rod sections remaining after the experiments were shipped back to ECF, where modules and loose rods were repackaged in liners for dry storage. In a series of shipments, the liners were transported from ECF to Idaho Nuclear Technology Engineering Center (INTEC), formerly the Idaho Chemical Processing Plant (ICPP). The 47 liners containing the fully-rodded and partially-derodded core modules, the loose rods, and the rod scraps, are now stored in underground dry wells at CPP-749.

  2. Transitioning nuclear fuel cycles with uncertain fast reactor costs

    Energy Technology Data Exchange (ETDEWEB)

    Phathanapirom, U.B., E-mail: bphathanapirom@utexas.edu; Schneider, E.A.

    2016-06-15

    This paper applies a novel decision making methodology to a case study involving choices leading to the transition from the current once-through light water reactor fuel cycle to one relying on continuous recycle of plutonium and minor actinides in fast reactors in the face of uncertain fast reactor capital costs. Unique to this work is a multi-stage treatment of a range of plausible trajectories for the evolution of fast reactor capital costs over time, characterized by first-of-a-kind penalties as well as time- and unit-based learning. The methodology explicitly incorporates uncertainties in key parameters into the decision-making process by constructing a stochastic model and embedding uncertainties as bifurcations in the decision tree. “Hedging” strategies are found by applying a choice criterion to select courses of action which mitigate “regrets”. These regrets are calculated by evaluating the performance of all possible transition strategies for every feasible outcome of the uncertain parameter. The hedging strategies are those that preserve the most flexibility for adjusting the fuel cycle strategy in response to new information as uncertainties are resolved.

  3. Packaging design criteria for the N Reactor/single pass reactor fuel characterization shipments

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, P.F.

    1994-08-31

    The majority of the spent fuel from the N Reactor and the single pass reactors (SPR) is presently being stored at the basins in the 100 K Area. Characterization of these fuels is essential to formulate a safe and efficient processing/disposal method for the spent fuel. Consequently, it is necessary to transport a cross section of spent fuel from the K Basins to the hot cells at the 327 Building in the 300 Area for analysis. The CNS 1-13G cask, a US Nuclear Regulatory Commission (NRC) certified cask manufactured by the ChemNuclear company, will be utilized for the transportation for irradiated fuel elements from the K Basins to the 327 Laboratories for characterization. The cask will utilize an inner container to compensate for the possibility of failed fuel cladding and to reduce the chances of contaminating the cask or the off loading facility. The Packaging Design Criteria (PDC) for these shipments establishes the acceptance criteria for the cask and for the design of an inner container that will be used in the Safety Evaluation for Packaging (SEP).

  4. QUARTERLY PROGRESS REPORT JANUARY, FEBRUARY, MARCH, 1967 REACTOR FUELS AND MATERIALS DEVELOPMENT PROGRAMS FOR FUELS AND MATERIALS BRANCH OF USAEC DEVISION OF REACTOR DEVELOPMENT AND TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Albaugh, F. W.; Bush, S. H.; Cadwell, J. J.; de Halas, D. R.; Worlton, D. C.

    1967-06-01

    Work is reported in the areas of: fast fuels oxides and nitrides; nuclear ceramics; nuclear graphite; basic swelling studies; irradiation damage to reactor metals; ATR gas loop operation and maintenance; metallic fuels; nondestructive testing research; and fast reactor dosimetry and damage analysis.

  5. Reprocessing of research reactor fuel the Dounreay option

    Energy Technology Data Exchange (ETDEWEB)

    Cartwright, P.

    1997-08-01

    Reprocessing is a proven process for the treatment of spent U/Al Research Reactor fuel. At Dounreay 12679 elements have been reprocessed during the past 30 years. For reactors converting to LEU fuel the uranium recovered in reprocessing can be blended down to less than 20% U{sub 235}, enrichment and be fabricated into new elements. For reactors already converted to LEU it is technically possible to reprocess spent silicide fuel to reduce the U{sub 235} burden and present to a repository only stable conditioned waste. The main waste stream from reprocessing which contains the Fission products is collected in underground storage tanks where it is kept for a period of at least five years before being converted to a stable solid form for return to the country of origin for subsequent storage/disposal. Discharges to the environment from reprocessing are low and are limited to the radioactive gases contained in the spent fuel and a low level liquid waste steam. Both of these discharges are independently monitored, and controlled within strict discharge limits set by the UK Government`s Scottish Office. Transportation of spent fuel to Dounreay has been undertaken using many routes from mainland Europe and has utilised over the past few years both chartered and scheduled vessel services. Several different transport containers have been handled and are currently licensed in the UK. This paper provides a short history of MTR reprocessing at Dounreay, and provides information to show reprocessing can satisfy the needs of MTR operators, showing that reprocessing is a valuable asset in non-proliferation terms, offers a complete solution and is environmentally acceptable.

  6. Conception of high safety reactor MAVR, technical and economical fuel cycle characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Kotov, V.M.; Cherepnin, Yu.S.

    1993-12-31

    Operation safety of reactor MAVR under nominal and emergency situations is based on creation of conditions for the minimum time of fuel operation in the core at the minimum quantity of the fissionable material. The variants of core elements construction, of the reactor control systems, and the possible scheme of fuel cycles of the reactor MAVR are considered.

  7. Improving fuel cycle design and safety characteristics of a gas cooled fast reactor

    NARCIS (Netherlands)

    van Rooijen, W.F.G.

    2006-01-01

    This research concerns the fuel cycle and safety aspects of a Gas Cooled Fast Reactor, one of the so-called "Generation IV" nuclear reactor designs. The Generation IV Gas Cooled Fast Reactor uses helium as coolant at high temperature. The goal of the GCFR is to obtain a "closed nuclear fuel cycle",

  8. Improving fuel cycle design and safety characteristics of a gas cooled fast reactor

    NARCIS (Netherlands)

    van Rooijen, W.F.G.

    2006-01-01

    This research concerns the fuel cycle and safety aspects of a Gas Cooled Fast Reactor, one of the so-called "Generation IV" nuclear reactor designs. The Generation IV Gas Cooled Fast Reactor uses helium as coolant at high temperature. The goal of the GCFR is to obtain a "closed nuclear fuel cycle",

  9. Evaluating and planning the radioactive waste options for dismantling the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rule, K.; Scott, J.; Larson, S. [Princeton Plasma Physics Lab., NJ (United States)] [and others

    1995-12-31

    The Tokamak Fusion Test Reactor (TFTR) is a one-of-a kind tritium fusion research reactor, and is planned to be decommissioned within the next several years. This is the largest fusion reactor in the world and as a result of deuterium-tritum reactions is tritium contaminated and activated from 14 Mev neutrons. This presents many unusual challenges when dismantling, packaging and disposing its components and ancillary systems. Special containers are being designed to accommodate the vacuum vessel, neutral beams, and tritium delivery and processing systems. A team of experienced professionals performed a detailed field study to evaluate the requirements and appropriate methods for packaging the radioactive materials. This team focused on several current and innovative methods for waste minimization that provides the oppurtunmost cost effective manner to package and dispose of the waste. This study also produces a functional time-phased schedule which conjoins the waste volume, weight, costs and container requirements with the detailed project activity schedule for the entire project scope. This study and project will be the first demonstration of the decommissioning of a tritium fusion test reactor. The radioactive waste disposal aspects of this project are instrumental in demonstrating the viability of a fusion power reactor with regard to its environmental impact and ultimate success.

  10. Development of a Monolithic Research Reactor Fuel Type at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C.R.; Briggs, R.J.

    2004-10-06

    The Reduced Enrichment for Research and Test Reactors (RERTR) program has been tasked with the conversion of research reactors from highly enriched to low-enriched uranium (LEU). To convert several high power reactors, monolithic fuel, a new fuel type, is being developed. This fuel type replaces the standard fuel dispersion with a fuel alloy foil, which allows for fuel densities far in excess of that found in dispersion fuel. The single-piece fuel foil also contains a significantly lower interface area between the fuel and the aluminum in the plate than the standard fuel type, limiting the amount of detrimental fuel-aluminum interaction that can occur. Implementation of monolithic fuel is dependant on the development of a suitable fabrication method as traditional roll-bonding techniques are inadequate.

  11. Fuel depletion calculation in MTR-LEU NUR reactor

    Directory of Open Access Journals (Sweden)

    Zeggar Foudil

    2008-01-01

    Full Text Available In this article, we present the results of a few energy groups calculations for the NUR reactor fuel depletion analysis up to 45 000 MWd/tU taken as the maximum fuel burn up. The WIMSD-4 cell code has been employed as a calculation tool. In this study, we are interested in actinides such as the uranium and plutonium isotopes, as well as fission products Xe-135, Sm-149, Sm-151, Eu-155, and Gd-157. Calculation results regarding the five energy groups are in a good agreement with those obtained with only two energy groups which can, therefore, be used in all subsequent calculations. Calculation results presented in this article can be used as a microscopic data base for estimating the amount of radioactive sources randomly dispersed in the environment. They can also be used to monitor the fuel assemblies inventory at the core level.

  12. Development of a Robust Tri-Carbide Fueled Reactor for Multimegawatt Space Power and Propulsion Applications

    Energy Technology Data Exchange (ETDEWEB)

    Samim Anghaie; Travis W. Knight; Johann Plancher; Reza Gouw

    2004-08-11

    An innovative reactor core design based on advanced, mixed carbide fuels was analyzed for nuclear space power applications. Solid solution, mixed carbide fuels such as (U,Zr,Nb)c and (U,Zr, Ta)C offer great promise as an advanced high temperature fuel for space power reactors.

  13. The TITAN reversed-field-pinch fusion reactor study

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report discusses research on the titan-1 fusion power core. The major topics covered are: titan-1 fusion-power-core engineering; titan-1 divertor engineering; titan-1 tritium systems; titan-1 safety design and radioactive-waste disposal; and titan-1 maintenance procedures.

  14. Three-component U-Pu-Th fuel for plutonium irradiation in heavy water reactors

    Directory of Open Access Journals (Sweden)

    Peel Ross

    2016-01-01

    Full Text Available This paper discusses concepts for three-component fuel bundles containing plutonium, uranium and thorium for use in pressurised heavy water reactors, and cases for and against implementation of such a nuclear energy system in the United Kingdom. Heavy water reactors are used extensively in Canada, and are deploying within India and China, whilst the UK is considering the use of heavy water reactors to manage its plutonium inventory of 140 tonnes. The UK heavy water reactor proposal uses a mixed oxide (MOX fuel of plutonium in depleted uranium, within the enhanced CANDU-6 (EC-6 reactor. This work proposes an alternative heterogeneous fuel concept based on the same reactor and CANFLEX fuel bundle, with eight large-diameter fuel elements loaded with natural thorium oxide and 35 small-diameter fuel elements loaded with a MOX of plutonium and reprocessed uranium stocks from UK MAGNOX and AGR reactors. Indicative neutronic calculations suggest that such a fuel would be neutronically feasible. A similar MOX may alternatively be fabricated from reprocessed <5% enriched light water reactor fuel, such as the fuel of the AREVA EPR reactor, to consume newly produced plutonium from reprocessing, similar to the DUPIC (direct use of PWR fuel in CANDU process.

  15. Freeze-casting as a Novel Manufacturing Process for Fast Reactor Fuels. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wegst, Ulrike G.K. [Dartmouth College, Hanover, NH (United States). Thayer School of Engineering; Allen, Todd [Idaho National Lab. (INL), Idaho Falls, ID (United States); Univ. of Wisconsin, Madison, WI (United States); Sridharan, Kumar [Idaho National Lab. (INL), Idaho Falls, ID (United States); Univ. of Wisconsin, Madison, WI (United States)

    2014-04-07

    Advanced burner reactors are designed to reduce the amount of long-lived radioactive isotopes that need to be disposed of as waste. The input feedstock for creating advanced fuel forms comes from either recycle of used light water reactor fuel or recycle of fuel from a fast burner reactor. Fuel for burner reactors requires novel fuel types based on new materials and designs that can achieve higher performance requirements (higher burn up, higher power, and greater margins to fuel melting) then yet achieved. One promising strategy to improved fuel performance is the manufacture of metal or ceramic scaffolds which are designed to allow for a well-defined placement of the fuel into the host, and this in a manner that permits greater control than that possible in the production of typical CERMET fuels.

  16. Models and analyses for inertial-confinement fusion-reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Bohachevsky, I.O.

    1981-05-01

    This report describes models and analyses devised at Los Alamos National Laboratory to determine the technical characteristics of different inertial confinement fusion (ICF) reactor elements required for component integration into a functional unit. We emphasize the generic properties of the different elements rather than specific designs. The topics discussed are general ICF reactor design considerations; reactor cavity phenomena, including the restoration of interpulse ambient conditions; first-wall temperature increases and material losses; reactor neutronics and hydrodynamic blanket response to neutron energy deposition; and analyses of loads and stresses in the reactor vessel walls, including remarks about the generation and propagation of very short wavelength stress waves. A discussion of analytic approaches useful in integrations and optimizations of ICF reactor systems concludes the report.

  17. Plutonium Discharge Rates and Spent Nuclear Fuel Inventory Estimates for Nuclear Reactors Worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Brian K. Castle; Shauna A. Hoiland; Richard A. Rankin; James W. Sterbentz

    2012-09-01

    This report presents a preliminary survey and analysis of the five primary types of commercial nuclear power reactors currently in use around the world. Plutonium mass discharge rates from the reactors’ spent fuel at reload are estimated based on a simple methodology that is able to use limited reactor burnup and operational characteristics collected from a variety of public domain sources. Selected commercial reactor operating and nuclear core characteristics are also given for each reactor type. In addition to the worldwide commercial reactors survey, a materials test reactor survey was conducted to identify reactors of this type with a significant core power rating. Over 100 material or research reactors with a core power rating >1 MW fall into this category. Fuel characteristics and spent fuel inventories for these material test reactors are also provided herein.

  18. Proposal for a novel type of small scale aneutronic fusion reactor

    Science.gov (United States)

    Gruenwald, J.

    2017-02-01

    The aim of this work is to propose a novel scheme for a small scale aneutronic fusion reactor. This new reactor type makes use of the advantages of combining laser driven plasma acceleration and electrostatic confinement fusion. An intense laser beam is used to create a lithium-proton plasma with high density, which is then collimated and focused into the centre of the fusion reaction chamber. The basic concept presented here is based on the 7Li-proton fusion reaction. However, the physical and technological fundamentals may generally as well be applied to 11B-proton fusion. The former fusion reaction path offers higher energy yields while the latter has larger fusion cross sections. Within this paper a technological realisation of such a fusion device, which allows a steady state operation with highly energetic, well collimated ion beam, is presented. It will be demonstrated that the energetic break even can be reached with this device by using a combination of already existing technologies.

  19. Ultrasonic decontamination of prototype fast breeder reactor fuel pins.

    Science.gov (United States)

    Kumar, Aniruddha; Bhatt, R B; Behere, P G; Afzal, Mohd

    2014-04-01

    Fuel pin decontamination is the process of removing particulates of radioactive material from its exterior surface. It is an important process step in nuclear fuel fabrication. It assumes more significance with plutonium bearing fuel known to be highly radio-toxic owing to its relatively longer biological half life and shorter radiological half life. Release of even minute quantity of plutonium oxide powder in the atmosphere during its handling can cause alarming air borne activity and may pose a severe health hazard to personnel working in the vicinity. Decontamination of fuel pins post pellet loading operation is thus mandatory before they are removed from the glove box for further processing and assembly. This paper describes the setting up of ultrasonic decontamination process, installed inside a custom built fume-hood in the production line, comprising of a cleaning tank with transducers, heaters, pin handling device and water filtration system and its application in cleaning of fuel pins for prototype fast breeder reactor. The cleaning process yielded a typical decontamination efficiency of more than 99%.

  20. Tabular equation of state of lithium for laser-fusion reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Young, D.A.; Ross, M.; Rogers, F.J.

    1979-01-19

    A tabular lithium equation of state was formulated from three separate equation-of-state models to carry out hydrodynamic simulations of a lithium-waterfall laser-fusion reactor. The models we used are: ACTEX for the ionized fluid, soft-sphere for the liquid and vapor, and pseudopotential for the hot, dense liquid. The models are smoothly joined over the range of density and temperature conditions appropriate for a laser-fusion reactor. We also fitted the models into two forms suitable for hydrodynamic calculations.

  1. Fusion reactor materials: Semiannual progress report for the period ending March 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1987-09-01

    This is the second in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities in the following areas: (1) Alloy Development for Irradiation Performance; (2) Damage Analysis and Fundamental Studies; and (3) Special Purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials program being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. Separate analytics were prepared for the reports in this volume.

  2. Fusion-power-core design of a Compact Reversed-Field Pinch Reactor (CRFPR)

    Science.gov (United States)

    Copenhaver, C.; Schnurr, N. M.; Krakowski, R. A.; Hagenson, R. L.; Mynard, R. C.; Cappiello, C.; Lujan, R. E.; Davidson, J. W.; Chaffee, A. D.; Battat, M. E.

    A conceptual design of a fusion power core (FPC, i.e., plasma chamber, first wall, blanket, shield, coils) based on a Reversed-Field Pinch (RFP) has been completed. After a brief statement of rationale and description of the reactor configuraton, the FPC integration is described in terms of power balance, thermal-hydraulics, and mechanical design. The engineering versatility, promise, and problems of this high-power-density approach to fusion are addressed.

  3. A combined gas cooled nuclear reactor and fuel cell cycle

    Science.gov (United States)

    Palmer, David J.

    Rising oil costs, global warming, national security concerns, economic concerns and escalating energy demands are forcing the engineering communities to explore methods to address these concerns. It is the intention of this thesis to offer a proposal for a novel design of a combined cycle, an advanced nuclear helium reactor/solid oxide fuel cell (SOFC) plant that will help to mitigate some of the above concerns. Moreover, the adoption of this proposal may help to reinvigorate the Nuclear Power industry while providing a practical method to foster the development of a hydrogen economy. Specifically, this thesis concentrates on the importance of the U.S. Nuclear Navy adopting this novel design for its nuclear electric vessels of the future with discussion on efficiency and thermodynamic performance characteristics related to the combined cycle. Thus, the goals and objectives are to develop an innovative combined cycle that provides a solution to the stated concerns and show that it provides superior performance. In order to show performance, it is necessary to develop a rigorous thermodynamic model and computer program to analyze the SOFC in relation with the overall cycle. A large increase in efficiency over the conventional pressurized water reactor cycle is realized. Both sides of the cycle achieve higher efficiencies at partial loads which is extremely important as most naval vessels operate at partial loads as well as the fact that traditional gas turbines operating alone have poor performance at reduced speeds. Furthermore, each side of the cycle provides important benefits to the other side. The high temperature exhaust from the overall exothermic reaction of the fuel cell provides heat for the reheater allowing for an overall increase in power on the nuclear side of the cycle. Likewise, the high temperature helium exiting the nuclear reactor provides a controllable method to stabilize the fuel cell at an optimal temperature band even during transients helping

  4. Return of spent fuel from the Portuguese research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ramalho, A.J.G.; Marques, J.G.; Cardeira, F.M. [Instituto Tecnologico e Nuclear, PO-2686-953 Sacavem (Portugal)

    2000-07-01

    Thirty-nine spent MTR fuel assemblies from the Portuguese Research Reactor were recently returned to the US. Prior to the shipment all assemblies were inspected for corrosion and sipped for determination of fission product leakage. Limitations on the floor loading of the reactor building and on the capacity of the crane prevented the placement and loading of the Transnucleaire IU04 transport cask inside the containment building. The transport cask was thus placed outside, under permanent surveillance, in a support structure built around it. A small transfer cask was used to carry individually the assemblies from the storage racks to the transport cask. A forklift was used as a shuttle between the pool and the IU04. A detailed description of the procedures is given. (author)

  5. Moderator configuration options for a low-enriched uranium fueled Kilowatt-class Space Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    King, Jeffrey C., E-mail: kingjc@mines.edu [Nuclear Science and Engineering Program, Colorado School of Mines (CSM), Golden, CO (United States); Mencarini, Leonardo de Holanda; Guimaraes, Lamartine N. F., E-mail: guimaraes@ieav.cta.br, E-mail: mencarini@ieav.cta.br [Instituto de Estudos Avancados (IEAV), Sao Jose dos Campos, SP (Brazil). Divisao de Energia Nuclear

    2015-07-01

    The Brazilian Air Force, through its Institute for Advanced Studies (Instituto de Estudos Avancados, IEAv/DCTA), and the Colorado School of Mines (CSM) are studying the feasibility of a space nuclear reactor with a power of 1-5 kW{sub e} and fueled with Low-Enriched Uranium (LEU). This type of nuclear reactor would be attractive to signatory countries of the Non-Proliferation Treaty (NPT) or commercial interests. A LEU-fueled space reactor would avoid the security concerns inherent with Highly Enriched Uranium (HEU) fuel. As an initial step, the HEU-fueled Kilowatt Reactor Using Stirling Technology (KRUSTY) designed by the Los Alamos National Laboratory serves as a basis for a similar reactor fueled with LEU fuel. Using the computational code MCNP6 to predict the reactor neutronics performance, the size of the resulting reactor fueled with 19.75 wt% enriched uranium-10 wt% molybdenum alloy fuel is adjusted to match the excess reactivity of KRUSTY. Then, zirconium hydride moderator is added to the core to reduce the size of the reactor. This work presents the preliminary results of the computational modeling, with special emphasis on the comparison between homogeneous and heterogeneous moderator systems, in terms of the core diameter required to meet a specific multiplication factor (k{sub eff} = 1.035). This comparison illustrates the impact of moderator configuration on the size and performance of a LEU-fueled kilowatt-class space nuclear reactor. (author)

  6. Parametric design study of tandem mirror fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, G.A.

    1977-05-27

    The parametric design study of the tandem mirror reactor (TMR) is described. The results of this study illustrate the variation of reactor characteristics with changes in the independent design parameters, reveal the set of design parameters which minimizes the cost of the reactor, and show the sensitivity of the optimized design to physics and technological uncertainties. The total direct capital cost of an optimized 1000 MWe TMR is estimated to be $1300/kWe. The direct capital cost of a 2000 MWe plant is less than $1000/kWe.

  7. On use of beryllium in fusion reactors: Resources, impurities and necessity of detritiation after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kolbasov, B.N., E-mail: b.kolbasov@yandex.ru; Khripunov, V.I., E-mail: Khripunov_VI@nrcki.ru; Biryukov, A.Yu.

    2016-11-01

    Highlights: • Potential needs in Be for fusion power engineering may exceed Be resources. • Be recycling after its operation in a fusion power plant (FPP) seems inevitable. • U impurity in Be seriously impairs environmental properties of fusion power plants. • Upon burial of irradiated Be the main problems are caused by U and {sup 3}H impurities. • Clearance of Be extracted from a FPP is impossible due to U impurity. - Abstract: Worldwide identified resources of beryllium somewhat exceed 80 000 t. Beryllium production in all the countries of the world in 2012 was about 230 t. At the same time, some conceptual designs of fusion power reactors envisage utilization of several hundred tons of this metal. Therefore return of beryllium into the production cycle (recycling) will be necessary. The beryllium ore from some main deposits has uranium content inadmissible for fusion reactors. This fact raises a question on the need to develop and apply an economically acceptable technology for beryllium purification from the uranium. Practically any technological procedure with beryllium used in fusion reactors requires its detritiation. A study of tritium and helium release from irradiated beryllium at different temperatures and rates of temperature increase was performed at Kurchatov Institute.

  8. The TITAN reversed-field-pinch fusion reactor study

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report discusses the following topics: overview of titan-2 design; titan-2 fusion-power-core engineering; titan-2 divertor engineering; titan-2 tritium systems; titan-2 safety design and radioactive-waste disposal; and titan-2 maintenance procedures.

  9. Next generation fuel irradiation capability in the High Flux Reactor Petten

    Energy Technology Data Exchange (ETDEWEB)

    Fuetterer, Michael A., E-mail: michael.fuetterer@jrc.n [European Commission, Joint Research Centre, Institute for Energy (JRC-IE), P.O. Box 2, NL-1755 ZG Petten (Netherlands); D' Agata, Elio; Laurie, Mathias; Marmier, Alain; Scaffidi-Argentina, Francesco [European Commission, Joint Research Centre, Institute for Energy (JRC-IE), P.O. Box 2, NL-1755 ZG Petten (Netherlands); Raison, Philippe [European Commission, Joint Research Centre, Institute for Transuranium Elements (JRC-ITU), D-76334 Eggenstein-Leopoldshafen (Germany); Bakker, Klaas; Groot, Sander de; Klaassen, Frodo [Nuclear Research and consultancy Group (NRG), P.O. Box 25, NL-1755 ZG Petten (Netherlands)

    2009-07-15

    This paper describes selected equipment and expertise on fuel irradiation testing at the High Flux Reactor (HFR) in Petten, The Netherlands. The reactor went critical in 1961 and holds an operating license up to at least 2015. While HFR has initially focused on Light Water Reactor fuel and materials, it also played a decisive role since the 1970s in the German High Temperature Reactor (HTR) development program. A variety of tests related to fast reactor development in Europe were carried out for next generation fuel and materials, in particular for Very High Temperature Reactor (V/HTR) fuel, fuel for closed fuel cycles (U-Pu and Th-U fuel cycle) and transmutation, as well as for other innovative fuel types. The HFR constitutes a significant European infrastructure tool for the development of next generation reactors. Experimental facilities addressed include V/HTR fuel tests, a coated particle irradiation rig, and tests on fast reactor, transmutation and thorium fuel. The rationales for these tests are given, results are provided and further work is outlined.

  10. Metal Fuel Development and Verification for Prototype Generation IV Sodium-Cooled Fast Reactor

    OpenAIRE

    Chan Bock Lee; Jin Sik Cheon; Sung Ho Kim; Jeong-Yong Park; Hyung-Kook Joo

    2016-01-01

    Metal fuel is being developed for the prototype generation-IV sodium-cooled fast reactor (PGSFR) to be built by 2028. U–Zr fuel is a driver for the initial core of the PGSFR, and U–transuranics (TRU)–Zr fuel will gradually replace U–Zr fuel through its qualification in the PGSFR. Based on the vast worldwide experiences of U–Zr fuel, work on U–Zr fuel is focused on fuel design, fabrication of fuel components, and fuel verification tests. U–TRU–Zr fuel uses TRU recovered through pyroelectrochem...

  11. Use of Stable Noble Gases as a Predictor of Reactor Fuel Type and Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Fearey, B.L.; Charlton, W.S.; Perry, R.T.; Poths, J.; Wilson, W.B.; Hemberger, P.H.; Nakhleh, C.W.; Stanbro, W.D.

    1999-08-30

    Ensuring spent reactor fuel is not produced to provide weapons-grade plutonium is becoming a major concern as many countries resort to nuclear power as a solution to their energy problems. Proposed solutions range from the development of proliferation resistant fuel to continuous monitoring of the fuel. This paper discusses the use of the stable isotopes of the fissiogenic noble gases, xenon and krypton, for determining the burnup characteristics, fuel type, and the reactor type of the fuel from which the sample was obtained. The gases would be collected on-stack as the fuel is reprocessed, and thus confirm that the fuel is as declared.

  12. Reactor Physics and Criticality Benchmark Evaluations for Advanced Nuclear Fuel - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    William Anderson; James Tulenko; Bradley Rearden; Gary Harms

    2008-09-11

    The nuclear industry interest in advanced fuel and reactor design often drives towards fuel with uranium enrichments greater than 5 wt% 235U. Unfortunately, little data exists, in the form of reactor physics and criticality benchmarks, for uranium enrichments ranging between 5 and 10 wt% 235U. The primary purpose of this project is to provide benchmarks for fuel similar to what may be required for advanced light water reactors (LWRs). These experiments will ultimately provide additional information for application to the criticality-safety bases for commercial fuel facilities handling greater than 5 wt% 235U fuel.

  13. Preliminary Study of Lead-Oxide Cooled Fast Reactor with Natural Uranium as an Input Fuel with Reactor Shuffling Strategy

    Science.gov (United States)

    Mahmudah, Rida SN; Su’ud, Zaki

    2017-01-01

    A preliminary study of lead-oxide cooled fast reactor with natural uranium as an input fuel using reactor shuffling strategy has been conducted. In this study, reactor core is divided into four zone with the same volume, each zone use different uranium enrichment. The enrichment number is estimated so that in the end of reactor’s operation, we only need to add natural uranium as the fresh input fuel. This study used UN-PuN as the fuel and lead oxide as the coolant. Several parameter studies have been conducted to determine the most suitable input condition. It is confirmed in this study that with fuel : cladding : coolant ratio of 53 : 10 : 37, and uranium enrichment in the first to the fourth zone of 0%, 6.25%, 7.5% and 8%, respectively, the reactor can operate as long as 20 years of operation with terminal k-eff of 1.0004.

  14. Energy-Resources - the Safety of Fusion-Reactors

    NARCIS (Netherlands)

    Ornstein, L. T. M.

    1994-01-01

    In part I the world's present energy production and consumption will be treated, as well as the expected increase in demand in the next decades. The limited availability of fossil fuels, the impact on the environment caused by the burning of these fuels, the restricted applicability of renewabl

  15. Energy-Resources - the Safety of Fusion-Reactors

    NARCIS (Netherlands)

    Ornstein, L. T. M.

    1994-01-01

    In part I the world's present energy production and consumption will be treated, as well as the expected increase in demand in the next decades. The limited availability of fossil fuels, the impact on the environment caused by the burning of these fuels, the restricted applicability of renewabl

  16. Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics

    Energy Technology Data Exchange (ETDEWEB)

    Brad Merrill; Melissa Teague; Robert Youngblood; Larry Ott; Kevin Robb; Michael Todosow; Chris Stanek; Mitchell Farmer; Michael Billone; Robert Montgomery; Nicholas Brown; Shannon Bragg-Sitton

    2014-02-01

    The safe, reliable and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the United States’ nuclear industry. As a result, continual improvement of technology, including advanced materials and nuclear fuels, remains central to industry’s success. Decades of research combined with continual operation have produced steady advancements in technology and yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. In 2011, following the Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex, enhancing the accident tolerance of LWRs became a topic of serious discussion. As a result of direction from the U.S. Congress, the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) initiated an Accident Tolerant Fuel (ATF) Development program. The complex multiphysics behavior of LWR nuclear fuel makes defining specific material or design improvements difficult; as such, establishing qualitative attributes is critical to guide the design and development of fuels and cladding with enhanced accident tolerance. This report summarizes a common set of technical evaluation metrics to aid in the optimization and down selection of candidate designs. As used herein, “metrics” describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. Furthermore, this report describes a proposed technical evaluation methodology that can be applied to assess the ability of each concept to meet performance and safety goals relative to the current UO2 – zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed for lead test rod or lead test assembly

  17. On the possibility of using uranium-beryllium oxide fuel in a VVER reactor

    Science.gov (United States)

    Kovalishin, A. A.; Prosyolkov, V. N.; Sidorenko, V. D.; Stogov, Yu. V.

    2014-12-01

    The possibility of using UO2-BeO fuel in a VVER reactor is considered with allowance for the thermophysical properties of this fuel. Neutron characteristics of VVER fuel assemblies with UO2-BeO fuel pellets are estimated.

  18. Catalytic cracking of endothermic fuels in coated tube reactor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Suspensoid of HZSM-5 or HY zeolites mixed with a self-made ceramic-like binder was coated on the inner wall of a tubular reactor by gas-aided fluid displacement technology.The coated zeolites were characterized by means of X-ray diffraction (XRD),Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM).The coating thickness is 10-20 μm and the particle size of the zeolites is in the range of 1-5 μm.In the coated reactor,cracking of endothermic fuels including n-dodecane and aviation fuel RP-3 was carried out separately under supercritical conditions at 600℃ and 625℃ to investigate their heat sinks and conversion of catalytic reactions.For the reaction catalyzed by HY (25% mass fraction) coating,the heat sink capacity of ndodecane are 815.7 and 901.9 kJ/kg higher than that of the bare tube at 600℃ and at 625℃,respectively.Conversion of n-dodecane also increases from 42% to 60% at 600℃ and from 66% to 80% at 625℃.The coated zeolite can significantly inhibit the carbon deposition during supercritical cracking reactions.

  19. Fusion Reactor Materials semiannual progress report for the period ending March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    This is the twelfth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: Alloy Development for Irradiation Performance; Damage Analysis and Fundamental Studies; and Special Purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide.

  20. Fusion reactor materials semiannual progress report for the period ending March 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1991-07-01

    This is the tenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: alloy development for irradiation performance; damage analysis and fundamental studies; special purpose materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials program being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of program participants, and to provide a means of communicating the efforts of materials scientists to the test of the fusion community, both nationally and worldwide.

  1. Fusion reactor materials semiannual progress report for the period ending September 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1989-04-01

    This paper discusses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics.

  2. Fusion reactor materials: Semiannual progress report for period ending September 30, 1987

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1988-03-01

    This is the third in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following technical progress reports: Alloy Development for Irradiation Performances; Damage Analysis and Fundamental Studies; Special Purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials program being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide.

  3. Review of heat transfer problems associated with magnetically-confined fusion reactor concepts

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, M.A.; Werner, R.W.; Carlson, G.A.; Cornish, D.N.

    1976-04-01

    Conceptual design studies of possible fusion reactor configurations have revealed a host of interesting and sometimes extremely difficult heat transfer problems. The general requirements imposed on the coolant system for heat removal of the thermonuclear power from the reactor are discussed. In particular, the constraints imposed by the fusion plasma, neutronics, structure and magnetic field environment are described with emphasis on those aspects which are unusual or unique to fusion reactors. Then the particular heat transfer characteristics of various possible coolants including lithium, flibe, boiling alkali metals, and helium are discussed in the context of these general fusion reactor requirements. Some specific areas where further experimental and/or theoretical work is necessary are listed for each coolant along with references to the pertinent research already accomplished. Specialized heat transfer problems of the plasma injection and removal systems are also described. Finally, the challenging heat transfer problems associated with the superconducting magnets are reviewed, and once again some of the key unsolved heat transfer problems are enumerated.

  4. Fusion reactor materials semiannual progress report for the period ending September 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1989-01-01

    This is the seventh in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following technical progress reports: alloy development for irradiation performance, damage analysis and fundamental studies, and special purpose materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials program being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide.

  5. Tokamak Fusion Test Reactor. Final conceptual design report. [Overall cost and scheduling program

    Energy Technology Data Exchange (ETDEWEB)

    1976-02-01

    The TFTR is the first U.S. magnetic confinement device planned to demonstrate the fusion of D-T at reactor power levels. This report addresses the physics objectives and the engineering goals of the TFTR project. Technical, cost, and schedule aspects of the project are included. (MOW)

  6. The Feasibility of Pellet Re-Fuelling of a Fusion Reactor

    DEFF Research Database (Denmark)

    Chang, Tinghong; Jørgensen, L. W.; Nielsen, P.

    1980-01-01

    The feasibility of re-fuelling a fusion reactor by injecting pellets of frozen hydrogen isotopes is reviewed. First a general look is taken of the dominant energy fluxes received by the pellet, the re-fuelling rate required and the relation between pellet size, injection speed and frequency...

  7. Fusion reactor materials semiannual progress report for period ending September 30, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    This is the ninth in series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following technical progress reports: Alloy Development of Irradiation Performance; Damage Analysis and Fundamental Studies; and Special Purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials program being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide.

  8. ON feasibility of using nitride and metallic fuel in the MBIR reactor core

    Directory of Open Access Journals (Sweden)

    V.A. Eliseev

    2016-09-01

    Studies on the MBIR reactor, involving advanced dense fuel types, have shown that nitride fuel does not make it possible to achieve the required neutron flux value, while metallic fuel provides for the required neutron flux (practically the same as MOX fuel and a high dpa rate but requires modified temperature conditions of irradiation. The specific neutronic properties of these fuel types, as compared to the standard MOX fuel, have also been identified.

  9. Simulation of the irradiation behaviour of the PBMR fuel in the SAFARI-1 reactor / B.M. Makgopa

    OpenAIRE

    2009-01-01

    Irradiation experiments for the pebble bed modular reactor PBMR fuel (coated fuel particles and pebble fuel) are planned at the South African First Atomic Reactor Installation (SAFARI-1). The experiments are conducted to investigate the behavior of the fuel under normal operating and accelerated/accident simulating conditions because the safe operation of the reactor relies on the integrity of the fuel for retention of radioactivity. For fuel irradiation experiments, the accura...

  10. Measurement of tritium production rate distribution for a fusion-fission hybrid conceptual reactor

    Institute of Scientific and Technical Information of China (English)

    WANG Xin-Hua; GUO Hai-Ping; MOU Yun-Feng; ZHENG Pu; LIU Rong; YANG Xiao-Fei; YANG Jian

    2013-01-01

    A fusion-fission hybrid conceptual reactor is established.It consists of a DT neutron source and a spherical shell of depleted uranium and hydrogen lithium.The tritium production rate (TPR) distribution in the conceptual reactor was measured by DT neutrons using two sets of lithium glass detectors with different thicknesses in the hole in the vertical direction with respect to the D+ beam of the Cockcroft-Walton neutron generator in direct current mode.The measured TPR distribution is compared with the calculated results obtained by the threedimensional Monte Carlo code MCNP5 and the ENDF/B-Ⅵ data file.The discrepancy between the measured and calculated values can be attributed to the neutron data library of the hydrogen lithium lack S(α,β) thermal scattering model,so we show that a special database of low-energy and thermal neutrons should be established in the physics design of fusion-fission hybrid reactors.

  11. Ammonia removal via microbial fuel cell (MFC) dynamic reactor

    Science.gov (United States)

    Alabiad, I.; Ali, U. F. M.; Zakarya, I. A.; Ibrahim, N.; Radzi, R. W.; Zulkurnai, N. Z.; Azmi, N. H.

    2017-06-01

    Landfill leachate is generally known as high-strength wastewater that is difficult to handle and contains dissolved extracts and suspended matter. Microbial fuel cells (MFCs) were designed to treat landfill leachate while continuously producing power (voltage output). Three different anodes were tested in MFC reactors: carbon black, activated carbon, and zinc electrodes. Movements in the MFC reactor during treatment were also a key factor for testing. Results showed a difference in ammonia levels in the three anodes used. The study compared the efficiency of static and dynamic modes of MFC in removing ammonia. Continual leachate movement in the reactor could increase the rate of removal of the ammonia components. The setup provided a viable condition for maximum removal because the reactor movement caused the sludge to disintegrate, which allowed ammonia to separate easily from the parent leachate. Ammonia removal also resulted from the transfer of ammonium through the membrane or from ammonia loss. Constant exchange of ionic content benefited the MFC performance by increasing power production and decreasing internal electrode material resistance. This paper presents the results of the analyses of leachate treatment from the solid waste landfill located in Padang Siding Landfill, Perlis. The performance of ammonia removal was enhanced using different types of electrodes. In both modes, activated carbon performed better than black carbon and zinc. The respective percentages of ammonia removal for activated carbon of dynamic over static were 96.6%, 66.6%, and 92.8% for activated carbon, zinc, and black carbon. The results provide further information on the possibility of using MFCs in landfill leachate treatment systems.

  12. Operation of N Reactor and Fuels Fabrication Facilities, Hanford Reservation, Richland, Benton County, Washington: Environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    Environmental data, calculations and analyses show no significant adverse radiological or nonradiological impacts from current or projected future operations resulting from N Reactor, Fuels Fabrication and Spent Fuel Storage Facilities. Nonoccupational radiation exposures resulting from 1978 N Reactor operations are summarized and compared to allowable exposure limits.

  13. Operation of N Reactor and Fuels Fabrication Facilities, Hanford Reservation, Richland, Benton County, Washington: Environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    Environmental data, calculations and analyses show no significant adverse radiological or nonradiological impacts from current or projected future operations resulting from N Reactor, Fuels Fabrication and Spent Fuel Storage Facilities. Nonoccupational radiation exposures resulting from 1978 N Reactor operations are summarized and compared to allowable exposure limits.

  14. Technology Implementation Plan. Fully Ceramic Microencapsulated Fuel for Commercial Light Water Reactor Application

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Lance Lewis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Snead, Mary A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-01

    This report is an overview of the implementation plan for ORNL's fully ceramic microencapsulated (FCM) light water reactor fuel. The fully ceramic microencapsulated fuel consists of tristructural isotropic (TRISO) particles embedded inside a fully dense SiC matrix and is intended for utilization in commercial light water reactor application.

  15. Recent development and application of a new safety analysis code for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, Brad J., E-mail: Brad.Merrill@inl.gov; Humrickhouse, Paul W.; Shimada, Masashi

    2016-11-01

    Highlights: • This paper presents recent code development activities for the MELCOR for fusion and Tritium Migration Analysis Program computer codes at the Idaho National Engineering Laboratory. • The capabilities of these computer codes are being merged into a single safety analysis tool for fusion reactor accidents. • The result of benchmarking these codes against previous code versions is presented by the authors of this paper. • This new capability is applied to study the tritium inventory and permeation rate for a water cold tungsten divertor that has neutron damage at 0.3 dpa. - Abstract: This paper describes the recent progress made in the development of two codes for fusion reactor safety assessments at the Idaho National Laboratory (INL): MELCOR for fusion and the Tritium Migration Analysis Program (TMAP). During the ITER engineering design activity (EDA), the INL Fusion Safety Program (FSP) modified the MELCOR 1.8.2 code for fusion applications to perform ITER thermal hydraulic safety analyses. Because MELCOR has undergone many improvements at SNL-NM since version 1.8.2 was released, the INL FSP recently imported these same fusion modifications into the MELCOR 1.8.6 code, along with the multiple fluids modifications of MELCOR 1.8.5 for fusion used in US advanced fusion reactor design studies. TMAP has also been under development for several decades at the INL by the FSP. TMAP treats multi-specie surface absorption and diffusion in composite materials with dislocation traps, plus the movement of these species from room to room by fluid flow within a given facility. Recently, TMAP was updated to consider multiple trap site types to allow the simulation of experimental data from neutron irradiated tungsten. The natural development path for both of these codes is to merge their capabilities into one computer code to provide a more comprehensive safety tool for analyzing accidents in fusion reactors. In this paper we detail recent developments in this

  16. Reactor physics and safety aspects of various design options of a Russian light water reactor with rock-like fuels

    Science.gov (United States)

    Bondarenko, A. V.; Komissarov, O. V.; Kozmenkov, Ya. K.; Matveev, Yu. V.; Orekhov, Yu. I.; Pivovarov, V. A.; Sharapov, V. N.

    2003-06-01

    This paper presents results of analytical studies on weapons grade plutonium incineration in VVER (640) medium size light water reactors using a special composition of rock-like fuel (ROX-fuel) to assure spent fuel long-term storage without its reprocessing. The main goal is to achieve high degree of plutonium incineration in once-through cycle. In this paper we considered two fuel compositions. In both compositions weapons grade plutonium is used as fissile material. Spinel (MgAl 2O 4) is used as the 'preserving' material assuring safe storage of the spent fuel. Besides an inert matrix, the option of rock-like fuel with thorium dioxide was studied. One of principal problems in the realization of the proposed approach is the substantial change of properties of the light water reactor core when passing to the use of the ROX-fuel, in particular: (i) due to the absence of 238U the Doppler effect playing a crucial role in reactor's self-regulation and limiting the consequences of reactivity accidents, decreases significantly, (ii) no fuel breeding on one hand, and the quest to attain the maximum plutonium burnup on the other hand, would result in a drastical change of the fuel assembly power during the lifetime and, as a consequence, the rise in irregularity of the power density of fuel assemblies, (iii) both the control rods worth and dissolved boron worth decrease in view of neutron spectrum hardening brought on by the larger absorption cross-section of plutonium as compared to uranium, (iv) βeff is markedly reduced. All these distinctive features are potentially detrimental to the reactor nuclear safety. The principal objective of this work is that to identify a variant of the fuel composition and the reactor layout, which would permit neutralize the negative effect of the above-mentioned distinctive features.

  17. A Spouted Bed Reactor Monitoring System for Particulate Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    D. S. Wendt; R. L. Bewley; W. E. Windes

    2007-06-01

    Conversion and coating of particle nuclear fuel is performed in spouted (fluidized) bed reactors. The reactor must be capable of operating at temperatures up to 2000°C in inert, flammable, and coating gas environments. The spouted bed reactor geometry is defined by a graphite retort with a 2.5 inch inside diameter, conical section with a 60° included angle, and a 4 mm gas inlet orifice diameter through which particles are removed from the reactor at the completion of each run. The particles may range from 200 µm to 2 mm in diameter. Maintaining optimal gas flow rates slightly above the minimum spouting velocity throughout the duration of each run is complicated by the variation of particle size and density as conversion and/or coating reactions proceed in addition to gas composition and temperature variations. In order to achieve uniform particle coating, prevent agglomeration of the particle bed, and monitor the reaction progress, a spouted bed monitoring system was developed. The monitoring system includes a high-sensitivity, low-response time differential pressure transducer paired with a signal processing, data acquisition, and process control unit which allows for real-time monitoring and control of the spouted bed reactor. The pressure transducer is mounted upstream of the spouted bed reactor gas inlet. The gas flow into the reactor induces motion of the particles in the bed and prevents the particles from draining from the reactor due to gravitational forces. Pressure fluctuations in the gas inlet stream are generated as the particles in the bed interact with the entering gas stream. The pressure fluctuations are produced by bulk movement of the bed, generation and movement of gas bubbles through the bed, and the individual motion of particles and particle subsets in the bed. The pressure fluctuations propagate upstream to the pressure transducer where they can be monitored. Pressure fluctuation, mean differential pressure, gas flow rate, reactor

  18. STATUS OF TRISO FUEL IRRADIATIONS IN THE ADVANCED TEST REACTOR SUPPORTING HIGH-TEMPERATURE GAS-COOLED REACTOR DESIGNS

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, Michael; Petti, D. A.; Palmer, Joe

    2016-11-01

    The United States Department of Energy’s Advanced Reactor Technologies (ART) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is irradiating up to seven low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The experiments will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of several independent capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and completed in October 2013. The third and fourth experiments have been combined into a single experiment designated (AGR-3/4), which started its irradiation in December 2011 and completed in April 2014. Since the purpose of this experiment was to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment was significantly different from the first two experiments, though the control

  19. Assessment of Startup Fuel Options for the GNEP Advanced Burner Reactor (ABR)

    Energy Technology Data Exchange (ETDEWEB)

    Jon Carmack (062056); Kemal O. Pasamehmetoglu (103171); David Alberstein

    2008-02-01

    The Global Nuclear Energy Program (GNEP) includes a program element for the development and construction of an advanced sodium cooled fast reactor to demonstrate the burning (transmutation) of significant quantities of minor actinides obtained from a separations process and fabricated into a transuranic bearing fuel assembly. To demonstrate and qualify transuranic (TRU) fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype is needed. The ABR would necessarily be started up using conventional metal alloy or oxide (U or U, Pu) fuel. Startup fuel is needed for the ABR for the first 2 to 4 core loads of fuel in the ABR. Following start up, a series of advanced TRU bearing fuel assemblies will be irradiated in qualification lead test assemblies in the ABR. There are multiple options for this startup fuel. This report provides a description of the possible startup fuel options as well as possible fabrication alternatives available to the program in the current domestic and international facilities and infrastructure.

  20. Development of an Integrated Performance Model for TRISO-Coated Gas Reactor Particle Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Petti, David Andrew; Miller, Gregory Kent; Martin, David George; Maki, John Thomas

    2005-05-01

    The success of gas reactors depends upon the safety and quality of the coated particle fuel. The understanding and evaluation of this fuel requires development of an integrated mechanistic fuel performance model that fully describes the mechanical and physico-chemical behavior of the fuel particle under irradiation. Such a model, called PARFUME (PARticle Fuel ModEl), is being developed at the Idaho National Engineering and Environmental Laboratory. PARFUME is based on multi-dimensional finite element modeling of TRISO-coated gas reactor fuel. The goal is to represent all potential failure mechanisms and to incorporate the statistical nature of the fuel. The model is currently focused on carbide, oxide nd oxycarbide uranium fuel kernels, while the coating layers are the classical IPyC/SiC/OPyC. This paper reviews the current status of the mechanical aspects of the model and presents results of calculations for irradiations from the New Production Modular High Temperature Gas Reactor program.

  1. Hybrid fusion–fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shmelev, A. N., E-mail: shmelan@mail.ru; Kulikov, G. G., E-mail: ggkulikov@mephi.ru; Kurnaev, V. A., E-mail: kurnaev@yandex.ru; Salahutdinov, G. H., E-mail: saip07@mail.ru; Kulikov, E. G., E-mail: egkulikov@mephi.ru; Apse, V. A., E-mail: apseva@mail.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2015-12-15

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the {sup 231}Pa–{sup 232}U–{sup 233}U–Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of {sup 232}U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.

  2. Composite nuclear fuel fabrication methodology for gas fast reactors

    Science.gov (United States)

    Vasudevamurthy, Gokul

    An advanced fuel form for use in Gas Fast Reactors (GFR) was investigated. Criteria for the fuel includes operation at high temperature (˜1400°C) and high burnup (˜150 MWD/MTHM) with effective retention of fission products even during transient temperatures exceeding 1600°C. The GFR fuel is expected to contain up to 20% transuranics for a closed fuel cycle. Earlier evaluations of reference fuels for the GFR have included ceramic-ceramic (cercer) dispersion type composite fuels of mixed carbide or nitride microspheres coated with SiC in a SiC matrix. Studies have indicated that ZrC is a potential replacement for SiC on account of its higher melting point, increased fission product corrosion resistance and better chemical stability. The present work investigated natural uranium carbide microspheres in a ZrC matrix instead of SiC. Known issues of minor actinide volatility during traditional fabrication procedures necessitated the investigation of still high temperature but more rapid fabrication techniques to minimize these anticipated losses. In this regard, fabrication of ZrC matrix by combustion synthesis from zirconium and graphite powders was studied. Criteria were established to obtain sufficient matrix density with UC microsphere volume fractions up to 30%. Tests involving production of microspheres by spark erosion method (similar to electrodischarge machining) showed the inability of the method to produce UC microspheres in the desired range of 300 to 1200 mum. A rotating electrode device was developed using a minimum current of 80A and rotating at speeds up to 1500 rpm to fabricate microspheres between 355 and 1200 mum. Using the ZrC process knowledge, UC electrodes were fabricated and studied for use in the rotating electrode device to produce UC microspheres. Fabrication of the cercer composite form was studied using microsphere volume fractions of 10%, 20%, and 30%. The macrostructure of the composite and individual components at various stages were

  3. Mechatronics of fuel handling mechanism for fast experimental reactor 'Joyo'

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Akikazu (Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center)

    1984-01-01

    The outline of the fast experimental reactor ''Joyo'' is introduced, and the fuel handling mechanism peculiar to fast reactors is described. The objectives of the construction of Joyo are to obtain the techniques for the design, construction, manufacture, installation, operation and maintenance of sodium-cooled fast reactors independently, and to use it as an irradiation facility for the development of fuel and materials for fast breeder reactors. At present, the reactor is operated at 100 MW maximum thermal output for the second objective. Since liquid sodium is used as the coolant, the atmosphere of the fuel handling course changes such as liquid sodium at 250 deg C, argon gas at 200 deg C and water, in addition, the spent fuel taken out has the decay heat of 2.1 kW at maximum. The fuel handling works in the reactor and fuel transfer works, and the fuel handling mechanism of a fuel exchanger and that of a cask car for fuel handling are described. Relay sequence control system is used for the fuel handling mechanism of Joyo.

  4. Neutron analysis of the fuel of high temperature nuclear reactors; Analisis neutronico del combustible de reactores nucleares de alta temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Bastida O, G. E.; Francois L, J. L., E-mail: gbo729@yahoo.com.mx [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)

    2014-10-15

    In this work a neutron analysis of the fuel of some high temperature nuclear reactors is presented, studying its main features, besides some alternatives of compound fuel by uranium and plutonium, and of coolant: sodium and helium. For this study was necessary the use of a code able to carry out a reliable calculation of the main parameters of the fuel. The use of the Monte Carlo method was convenient to simulate the neutrons transport in the reactor core, which is the base of the Serpent code, with which the calculations will be made for the analysis. (Author)

  5. Comparative evaluation of remote maintenance schemes for fusion DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Utoh, Hiroyasu, E-mail: uto.hiroyasu@jaea.go.jp; Tobita, Kenji; Someya, Youji; Asakura, Nobuyuki; Sakamoto, Yoshiteru; Hoshino, Kazuo; Nakamura, Makoto

    2015-10-15

    Highlights: • Various remote maintenance schemes for DEMO were comparatively assessed based on requirements for DEMO remote maintenance. • The banana shape segment transport using all vertical maintenance ports would be more probable DEMO reactor maintenance scheme. • The key engineering issues are in-vessel transferring mechanism of segment, pipe connection and conducting shell design for plasma vertical stability. - Abstract: Maintenance schemes are one of the critical issues in DEMO design, significantly affecting the configuration of in-vessel components, the size of toroidal field (TF) coil, the arrangement of poloidal field (PF) coils, reactor building, hot cell and so forth. Therefore, the maintenance schemes should satisfy many design requirements and criteria to assure reliable and safe plant operation and to attain reasonable plant availability. The plant availability depends on reliability of remote maintenance scheme, inspection of pipe connection and plasma operation. In this paper, various remote maintenance schemes for DEMO were comparatively assessed based on requirements for DEMO remote maintenance. From the view points of the reliability of inspection on hot cell, TF coil size, stored energy of PF coil and portability of segment, the banana shape segment transport using all vertical maintenance ports would be more probable DEMO reactor maintenance scheme, and it has key engineering issues such as in-vessel transferring mechanism of segment, pipe connection and conducting shell design for plasma vertical stability.

  6. Building on knowledge base of sodium cooled fast spectrum reactors to develop materials technology for fusion reactors

    Science.gov (United States)

    Raj, Baldev; Rao, K. Bhanu Sankara

    2009-04-01

    The alloys 316L(N) and Mod. 9Cr-1Mo steel are the major structural materials for fabrication of structural components in sodium cooled fast reactors (SFRs). Various factors influencing the mechanical behaviour of these alloys and different modes of deformation and failure in SFR systems, their analysis and the simulated tests performed on components for assessment of structural integrity and the applicability of RCC-MR code for the design and validation of components are highlighted. The procedures followed for optimal design of die and punch for the near net shape forming of petals of main vessel of 500 MWe prototype fast breeder reactor (PFBR); the safe temperature and strain rate domains established using dynamic materials model for forming of 316L(N) and 9Cr-1Mo steels components by various industrial processes are illustrated. Weldability problems associated with 316L(N) and Mo. 9Cr-1Mo are briefly discussed. The utilization of artificial neural network models for prediction of creep rupture life and delta-ferrite in austenitic stainless steel welds is described. The usage of non-destructive examination techniques in characterization of deformation, fracture and various microstructural features in SFR materials is briefly discussed. Most of the experience gained on SFR systems could be utilized in developing science and technology for fusion reactors. Summary of the current status of knowledge on various aspects of fission and fusion systems with emphasis on cross fertilization of research is presented.

  7. Transuranic material recovery in the Integral Fast Reactor fuel cycle demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Benedict, R.W.; Goff, K.M.

    1993-01-01

    The Integral Fast Reactor is an innovative liquid metal reactor concept that is being developed by Argonne National Laboratory. It takes advantage of the properties of metallic fuel and liquid metal cooling to offer significant improvements in reactor safety, operation, fuel cycle economics, environmental protection, and safeguards. The plans for demonstrating the IFR fuel cycle, including its waste processing options, by processing irradiated fuel from the Experimental Breeder Reactor-II fuel in its associated Fuel Cycle Facility have been developed for the first refining series. This series has been designed to provide the data needed for the further development of the IFR program. An important piece of the data needed is the recovery of TRU material during the reprocessing and waste operations.

  8. Transuranic material recovery in the Integral Fast Reactor fuel cycle demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Benedict, R.W.; Goff, K.M.

    1993-03-01

    The Integral Fast Reactor is an innovative liquid metal reactor concept that is being developed by Argonne National Laboratory. It takes advantage of the properties of metallic fuel and liquid metal cooling to offer significant improvements in reactor safety, operation, fuel cycle economics, environmental protection, and safeguards. The plans for demonstrating the IFR fuel cycle, including its waste processing options, by processing irradiated fuel from the Experimental Breeder Reactor-II fuel in its associated Fuel Cycle Facility have been developed for the first refining series. This series has been designed to provide the data needed for the further development of the IFR program. An important piece of the data needed is the recovery of TRU material during the reprocessing and waste operations.

  9. The scheme for evaluation of isotopic composition of fast reactor core in closed nuclear fuel cycle

    Science.gov (United States)

    Saldikov, I. S.; Ternovykh, M. Yu; Fomichenko, P. A.; Gerasimov, A. S.

    2017-01-01

    The PRORYV (i.e. «Breakthrough» in Russian) project is currently under development. Within the framework of this project, fast reactors BN-1200 and BREST-OD-300 should be built to, inter alia, demonstrate possibility of the closed nuclear fuel cycle technologies with plutonium as a main source of power. Russia has a large inventory of plutonium which was accumulated in the result of reprocessing of spent fuel of thermal power reactors and conversion of nuclear weapons. This kind of plutonium will be used for development of initial fuel assemblies for fast reactors. To solve the closed nuclear fuel modeling tasks REPRORYV code was developed. It simulates the mass flow for nuclides in the closed fuel cycle. This paper presents the results of modeling of a closed nuclear fuel cycle, nuclide flows considering the influence of the uncertainty on the outcome of neutron-physical characteristics of the reactor.

  10. Evaluation of isotopic composition of fast reactor core in closed nuclear fuel cycle

    Science.gov (United States)

    Tikhomirov, Georgy; Ternovykh, Mikhail; Saldikov, Ivan; Fomichenko, Peter; Gerasimov, Alexander

    2017-09-01

    The strategy of the development of nuclear power in Russia provides for use of fast power reactors in closed nuclear fuel cycle. The PRORYV (i.e. «Breakthrough» in Russian) project is currently under development. Within the framework of this project, fast reactors BN-1200 and BREST-OD-300 should be built to, inter alia, demonstrate possibility of the closed nuclear fuel cycle technologies with plutonium as a main source of energy. Russia has a large inventory of plutonium which was accumulated in the result of reprocessing of spent fuel of thermal power reactors and conversion of nuclear weapons. This kind of plutonium will be used for development of initial fuel assemblies for fast reactors. The closed nuclear fuel cycle concept of the PRORYV assumes self-supplied mode of operation with fuel regeneration by neutron capture reaction in non-enriched uranium, which is used as a raw material. Operating modes of reactors and its characteristics should be chosen so as to provide the self-sufficient mode by using of fissile isotopes while refueling by depleted uranium and to support this state during the entire period of reactor operation. Thus, the actual issue is modeling fuel handling processes. To solve these problems, the code REPRORYV (Recycle for PRORYV) has been developed. It simulates nuclide streams in non-reactor stages of the closed fuel cycle. At the same time various verified codes can be used to evaluate in-core characteristics of a reactor. By using this approach various options for nuclide streams and assess the impact of different plutonium content in the fuel, fuel processing conditions, losses during fuel processing, as well as the impact of initial uncertainties on neutron-physical characteristics of reactor are considered in this study.

  11. Non destructive testing of irradiated fuel assemblies at the IEA-R1 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jose Eduardo Rosa da; Terremoto, Luis Antonio Albiac; Castanheira, Myrthes; Teodoro, Celso Antonio; Silva, Antonio Teixeira e; Damy, Margaret de Almeida; Lucki, Georgi [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: jersilva@ipen.br; laaterre@ipen.br; myrthes@ipen.br; cteodoro@ipen.br; teixeira@ipen.br; madamy@ipen.br; glucki@ipen.br

    2007-07-01

    Fuel performance and nuclear fuel qualification require a post-irradiation analysis. Non-destructive methods are utilised both in irradiated fuel storage pools and in hot-cells laboratories. As Brazil does not have hot-cells facilities for post-irradiation analysis, a qualification program for the Material Testing Reactor (MTR) fuel elements made at IPEN/CNEN-SP was adopted, based on non-destructive tests. The IPEN Fuel Engineering Group - CENC developed basic facilities for fuels post-irradiated analysis inside the reactor pool, which gives indications of: general state, by visual inspection; the integrity of the irradiated fuel cladding, by sipping tests; thickness measurements of the fuel miniplates during the irradiation time, for swelling evaluation; and, local burn-up evaluation by gamma spectrometry along the active area of the fuel element. This work describes that facilities, equipment and examples of some irradiated fuels analysis performed. (author)

  12. Comparative assessment of nuclear fuel cycles. Light-water reactor once-through, classical fast breeder reactor, and symbiotic fast breeder reactor cycles

    Energy Technology Data Exchange (ETDEWEB)

    Hardie, R.W.; Barrett, R.J.; Freiwald, J.G.

    1980-06-01

    The object of the Alternative Nuclear Fuel Cycle Study is to perform comparative assessments of nuclear power systems. There are two important features of this study. First, this evaluation attempts to encompass the complete, integrated fuel cycle from mining of uranium ore to disposal of waste rather than isolated components. Second, it compares several aspects of each cycle - energy use, economics, technological status, proliferation, public safety, and commercial potential - instead of concentrating on one or two assessment areas. This report presents assessment results for three fuel cycles. These are the light-water reactor once-through cycle, the fast breeder reactor on the classical plutonium cycle, and the fast breeder reactor on a symbiotic cycle using plutonium and /sup 233/U as fissile fuels. The report also contains a description of the methodology used in this assessment. Subsequent reports will present results for additional fuel cycles.

  13. Performance of low smeared density sodium-cooled fast reactor metal fuel

    Science.gov (United States)

    Porter, D. L.; Chichester, H. J. M.; Medvedev, P. G.; Hayes, S. L.; Teague, M. C.

    2015-10-01

    An experiment was performed in the Experimental Breeder Rector-II (EBR-II) in the 1990s to show that metallic fast reactor fuel could be used in reactors with a single, once-through core. To prove the long duration, high burnup, high neutron exposure capability an experiment where the fuel pin was designed with a very large fission gas plenum and very low fuel smeared density (SD). The experiment, X496, operated to only 8.3 at.% burnup because the EBR-II reactor was scheduled for shut-down at that time. Many of the examinations of the fuel pins only funded recently with the resurgence of reactor designs using very high-burnup fuel. The results showed that, despite the low smeared density of 59% the fuel swelled radially to contact the cladding, fission gas release appeared to be slightly higher than demonstrated in conventional 75%SD fuel tests and axial growth was about the same as 75% SD fuel. There were axial positions in some of the fuel pins which showed evidence of fuel restructuring and an absence of fission products with low melting points and gaseous precursors (Cs and Rb). A model to investigate whether these areas may have overheated due to a loss of bond sodium indicates that it is a possible explanation for the fuel restructuring and something to be considered for fuel performance modeling of low SD fuel.

  14. Literature search on Light Water Reactor (LWR) fuel and absorber rod fabrication, 1960--1976

    Energy Technology Data Exchange (ETDEWEB)

    Sample, C R [comp.

    1977-02-01

    A literature search was conducted to provide information supporting the design of a conceptual Light Water Reactor (LWR) Fuel Fabrication plant. Emphasis was placed on fuel processing and pin bundle fabrication, effects of fuel impurities and microstructure on performance and densification, quality assurance, absorber and poison rod fabrication, and fuel pin welding. All data have been taken from publicly available documents, journals, and books. This work was sponsored by the Finishing Processes-Mixed Oxide (MOX) Fuel Fabrication Studies program at HEDL.

  15. Design and in-core fuel management of reload fuel elements for reactors made by other manufacturers. Auslegung und Einsatzplanung von Nachlade-Brennelementen fuer Reaktoren anderer Hersteller

    Energy Technology Data Exchange (ETDEWEB)

    Neufert, A.; Urban, P.

    1990-12-01

    By the end of 1990 Siemens had performed fuel element designs and in-core fuel management for 94 operating cycles in 27 pressurized and boiling water reactors of other manufacturers. Together with the client different fuel element designs are developed and proof is furnished of the reactor physics compatibility of different fuel elements from various producers, and of plant safety. (DG).

  16. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2001-04-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  17. Fusion

    Science.gov (United States)

    Herman, Robin

    1990-10-01

    The book abounds with fascinating anecdotes about fusion's rocky path: the spurious claim by Argentine dictator Juan Peron in 1951 that his country had built a working fusion reactor, the rush by the United States to drop secrecy and publicize its fusion work as a propaganda offensive after the Russian success with Sputnik; the fortune Penthouse magazine publisher Bob Guccione sank into an unconventional fusion device, the skepticism that met an assertion by two University of Utah chemists in 1989 that they had created "cold fusion" in a bottle. Aimed at a general audience, the book describes the scientific basis of controlled fusion--the fusing of atomic nuclei, under conditions hotter than the sun, to release energy. Using personal recollections of scientists involved, it traces the history of this little-known international race that began during the Cold War in secret laboratories in the United States, Great Britain and the Soviet Union, and evolved into an astonishingly open collaboration between East and West.

  18. N-Reactor (U-metal) Fuel Characteristics for Disposal Criticality Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Larry Lorin

    2000-05-01

    DOE-owned spent nuclear fuels encompass many fuel types. In an effort to facilitate criticality analysis for these various fuel types, they were categorized into nine characteristic fuel groups with emphasis on fuel matrix composition. Out of each fuel group, a representative fuel type was chosen for analysis as a bounding case within that fuel group. Generally, burnup data, fissile enrichments, and total fuel and fissile mass govern the selection of the representative or candidate fuel within that group. Additionally, the criticality analysis will also require data to support design of the canister internals, thermal, and radiation shielding. The purpose of this report is to consolidate and provide in a concise format, material and information/data needed to perform supporting analyses to qualify N-Reactor fuels for acceptance into the designated repository. The N Reactor fuels incorporate zirconium cladding and uranium metal with unique fabrication details in terms of physical size, and method of construction. The fuel construction and post-irradiation handling have created attendant issues relative to cladding failure in the underwater storage environment. These fuels were comprised of low-enriched metal (0.947 to 1.25 wt% 235U) that were originally intended to generate weapons-grade plutonium for national defense. Modifications in subsequent fuel design and changes in the mode of reactor operation in later years were focused more toward power production.

  19. Dosimetric impact evaluation of primary coolant chemistry of the internal tritium breeding cycle of a fusion reactor DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Velarde, M. [Instituto de Fusion Nuclear (DENIM), ETSII, Universidad Politecnica Madrid UPM, J. Gutierrez Abascal 2, Madrid 28006 (Spain); Sedano, L. A. [Asociacion Euratom-Ciematpara Fusion, Av. Complutense 22, 28040 Madrid (Spain); Perlado, J. M. [Instituto de Fusion Nuclear (DENIM), ETSII, Universidad Politecnica Madrid UPM, J. Gutierrez Abascal 2, Madrid 28006 (Spain)

    2008-07-15

    Tritium will be responsible for a large fraction of the environmental impact of the first generation of DT fusion reactors. Today, the efforts of conceptual development of the tritium cycle for DEMO are mainly centred in the so called Inner Breeding Tritium Cycle, conceived as guarantee of reactor fuel self-sufficiency. The EU Fusion Programme develops for the short term of fusion power technology two breeding blanket conceptual designs both helium cooled. One uses Li-ceramic material (HCPB, Helium-Cooled Pebble Bed) and the other a liquid metal eutectic alloy (Pb15.7Li) (HCLL, Helium-Cooled Lithium Lead). Both are Li-6 enriched materials. At a proper scale designs will be tested as Test Blanket Modules in ITER. The tritium cycles linked to both blanket concepts are similar, with some different characteristics. The tritium is recovered from the He purge gas in the case of HCPB, and directly from the breeding alloy through a carrier gas in HCLL. For a 3 GWth self-sufficient fusion reactor the tritium breeding need is few hundred grams of tritium per day. Safety and environmental impact are today the top priority design criteria. Dose impact limits should determine the key margins and parameters in its conception. Today, transfer from the cycle to the environment is conservatively assumed to be operating in a 1-enclosure scheme through the tritium plant power conversion system (intermediate heat exchangers and helium blowers). Tritium loss is caused by HT and T{sub 2} permeation and simultaneous primary coolant leakage through steam generators. Primary coolant chemistry appears to be the most natural way to control tritium permeation from the breeder into primary coolant and from primary coolant through SG by H{sub 2} tritium flux isotopic swamping or steel (EUROFER/INCOLOY) oxidation. A primary coolant chemistry optimization is proposed. Dynamic flow process diagrams of tritium fluxes are developed ad-hoc and coupled with tritiated effluents dose impact evaluations

  20. Overview of the Lockheed Martin Compact Fusion Reactor (CFR) T4B Experiment

    Science.gov (United States)

    McGuire, Thomas

    2016-10-01

    The Lockheed Martin Compact Fusion Reactor (CFR) Program endeavors to quickly develop a compact fusion power plant with favorable commercial economics and military utility. The CFR uses a diamagnetic, high beta, magnetically encapsulated, linear ring cusp plasma confinement scheme. The goal of the T4B experiment is to demonstrate a suitable plasma target for heating experiments and to characterize the behavior of plasma sources in the CFR configuration. The design of the T4B experiment will be presented, including discussion of predicted behavior, plasma sources, heating mechanisms, diagnostics suite and relevant numerical modeling. ©2016 Lockheed Martin Corporation. All Rights Reserved.

  1. Fusion reactor theory and conceptual design. (Latest citations from the INSPEC: Information Services for the Physics and Engineering Communities database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    The bibliography contains citations concerning theoretical and conceptual aspects of fusion reactor physics and designs. A variety of fusion reactors is discussed, including Tokamak, experimental, commercial, tandem mirror, and superconducting magnetic. Topics also include fusion reactor materials, Tokamak devices, blanket design, divertors, fusion plasma production, superconducting magnets, and cryogenic systems. (Contains a minimum of 159 citations and includes a subject term index and title list.)

  2. Disassembly of the fusion-1 capsule after irradiation in the BOR-60 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H. [Argonne National Lab., IL (United States); Kazakov, V.A.; Chakin, V.P. [and others

    1997-04-01

    A U.S./Russia (RF) collaborative irradiation experiment, Fusion-1, was completed in June 1996 after reaching a peak exposure of {approx}17 dpa in the BOR-60 fast reactor at the Research Institute of Atomic Reactors (RIAR) in Russia. The specimens were vanadium alloys, mainly of recent heats from both countries. In this reporting period, the capsule was disassembled at the RIAR hot cells and all test specimens were successfully retrieved. For the disassembly, an innovative method of using a heated diffusion oil to melt and separate the lithium bond from the test specimens was adopted. This method proved highly successful.

  3. Membrane pumping technology for helium and hydrogen isotope separation in the fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pistunovich, V.I. [Kurchatov Inst., Moscow (Russian Federation). NFI RRC; Pigarov, A.Yu. [Kurchatov Inst., Moscow (Russian Federation). NFI RRC; Busnyuk, A.O. [Bonch-Bruyevich University, St. Petersburg (Russian Federation); Livshits, A.I. [Bonch-Bruyevich University, St. Petersburg (Russian Federation); Notkin, M.E. [Bonch-Bruyevich University, St. Petersburg (Russian Federation); Samartsev, A.A. [Bonch-Bruyevich University, St. Petersburg (Russian Federation); Borisenko, K.L. [Efremov Institute, St. Petersburg (Russian Federation); Darmogray, V.V. [Efremov Institute, St. Petersburg (Russian Federation); Ershov, B.D. [Efremov Institute, St. Petersburg (Russian Federation); Filippova, L.V. [Efremov Institute, St. Petersburg (Russian Federation); Mudugin, B.G. [Efremov Institute, St. Petersburg (Russian Federation); Odintsov, V.N. [Efremov Institute, St. Petersburg (Russian Federation); Saksagansky, G.L. [Efremov Institute, St. Petersburg (Russian Federation); Serebrennikov, D.V. [Efremov Institute, St. Petersburg (Russian Federation)

    1995-03-01

    A gas pumping system for ITER, improved by implementation of superpermeable membranes for selective hydrogen isotope exhaust, is considered. A study of the pumping capability of a niobium membrane for a hydrogen-helium mixture has been performed.Monte Carlo simulations of gas behaviour for the experimental facility and fusion reactor have been done.The scheme of the ITER pumping system with the membranes and membrane pumping technology was considered. The conceptual study the membrane pump for the ITER was done. This work gives good prospects for the membrane pumping use in ITER to reduce the total inventory of tritium necessary for reactor operation. (orig.).

  4. Status of the irradiation test vehicle for testing fusion materials in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H.; Gomes, I.C.; Smith, D.L. [Argonne National Lab., IL (United States); Palmer, A.J.; Ingram, F.W. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Wiffen, F.W. [Dept. of Energy, Germantown, MD (United States). Office of Fusion Energy

    1998-09-01

    The design of the irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) has been completed. The main application for the ITV is irradiation testing of candidate fusion structural materials, including vanadium-base alloys, silicon carbide composites, and low-activation steels. Construction of the vehicle is underway at the Lockheed Martin Idaho Technology Company (LMITCO). Dummy test trains are being built for system checkout and fine-tuning. Reactor insertion of the ITV with the dummy test trains is scheduled for fall 1998. Barring unexpected difficulties, the ITV will be available for experiments in early 1999.

  5. Dissolution Flowsheet for High Flux Isotope Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rudisill, T. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, P. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Karay, N. S [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-27

    As part of the Spent Nuclear Fuel (SNF) processing campaign, H-Canyon is planning to begin dissolving High Flux Isotope Reactor (HFIR) fuel in late FY17 or early FY18. Each HFIR fuel core contains inner and outer fuel elements which were fabricated from uranium oxide (U3O8) dispersed in a continuous Al phase using traditional powder metallurgy techniques. Fuels fabricated in this manner, like other SNF’s processed in H-Canyon, dissolve by the same general mechanisms with similar gas generation rates and the production of H2. The HFIR fuel cores will be dissolved and the recovered U will be down-blended into low-enriched U. HFIR fuel was previously processed in H-Canyon using a unique insert in both the 6.1D and 6.4D dissolvers. Multiple cores will be charged to the same dissolver solution maximizing the concentration of dissolved Al. The objective of this study was to identify flowsheet conditions through literature review and laboratory experimentation to safely and efficiently dissolve the HFIR fuel in H-Canyon. Laboratory-scale experiments were performed to evaluate the dissolution of HFIR fuel using both Al 1100 and Al 6061 T6 alloy coupons. The Al 1100 alloy was considered a representative surrogate which provided an upper bound on the generation of flammable (i.e., H2) gas during the dissolution process. The dissolution of the Al 6061 T6 alloy proceeded at a slower rate than the Al 1100 alloy and was used to verify that the target Al concentration in solution could be achieved for the selected Hg concentration. Mass spectrometry and Raman spectroscopy were used to provide continuous monitoring of the concentration of H2 and other permanent gases in the dissolution offgas allowing the development of H2 generation rate profiles. The H2 generation rates were subsequently used to evaluate if a full HFIR core could be dissolved in an H-Canyon dissolver without exceeding 60% of the calculated lower

  6. Dissolution Flowsheet for High Flux Isotope Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rudisill, T. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, P. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Karay, N. S [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-27

    As part of the Spent Nuclear Fuel (SNF) processing campaign, H-Canyon is planning to begin dissolving High Flux Isotope Reactor (HFIR) fuel in late FY17 or early FY18. Each HFIR fuel core contains inner and outer fuel elements which were fabricated from uranium oxide (U3O8) dispersed in a continuous Al phase using traditional powder metallurgy techniques. Fuels fabricated in this manner, like other SNF’s processed in H-Canyon, dissolve by the same general mechanisms with similar gas generation rates and the production of H2. The HFIR fuel cores will be dissolved and the recovered U will be down-blended into low-enriched U. HFIR fuel was previously processed in H-Canyon using a unique insert in both the 6.1D and 6.4D dissolvers. Multiple cores will be charged to the same dissolver solution maximizing the concentration of dissolved Al. The objective of this study was to identify flowsheet conditions through literature review and laboratory experimentation to safely and efficiently dissolve the HFIR fuel in H-Canyon. Laboratory-scale experiments were performed to evaluate the dissolution of HFIR fuel using both Al 1100 and Al 6061 T6 alloy coupons. The Al 1100 alloy was considered a representative surrogate which provided an upper bound on the generation of flammable (i.e., H2) gas during the dissolution process. The dissolution of the Al 6061 T6 alloy proceeded at a slower rate than the Al 1100 alloy, and was used to verify that the target Al concentration in solution could be achieved for the selected Hg concentration. Mass spectrometry and Raman spectroscopy were used to provide continuous monitoring of the concentration of H2 and other permanent gases in the dissolution offgas, allowing the development of H2 generation rate profiles. The H2 generation rates were subsequently used to evaluate if a full HFIR core could be dissolved in an H-Canyon dissolver without exceeding 60% of the

  7. Fuel Burnup and Fuel Pool Shielding Analysis for Bushehr Nuclear Reactor VVER-1000

    Science.gov (United States)

    Hadad, Kamal; Ayobian, Navid

    Bushehr Nuclear power plant (BNPP) is currently under construction. The VVER-1000 reactor will be loaded with 126 tons of about 4% enriched fuel having 3-years life cycle. The spent fuel (SF) will be transferred into the spent fuel pool (SPF), where it stays for 8 years before being transferred to Russia. The SPF plays a crucial role during 8 years when the SP resides in there. This paper investigates the shielding of this structure as it is designed to shield the SF radiation. In this study, the SF isotope inventory, for different cycles and with different burnups, was calculated using WIMS/4D transport code. Using MCNP4C nuclear code, the intensity of γ rays was obtained in different layers of SFP shields. These layers include the water above fuel assemblies (FA) in pool, concrete wall of the pool and water laid above transferring fuels. Results show that γ rays leakage from the shield in the mentioned layers are in agreement with the plant's PSAR data. Finally we analyzed an accident were the water height above the FA in the pool drops to 47 cm. In this case it was observed that exposure dose above pool, 10 and 30 days from the accident, are still high and in the levels of 1000 and 758 R/hr.

  8. The generation of denatured reactor plutonium by different options of the fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Broeders, C.H.M.; Kessler, G. [Inst. for Neutron Physics and Reactor Technology, Research Center Karlsruhe (Germany)

    2006-11-15

    Denatured (proliferation resistant) reactor plutonium can be generated in a number of different fuel cycle options. First denatured reactor plutonium can be obtained if, instead of low enriched U-235 PWR fuel, re-enriched U-235/U-236 from reprocessed uranium is used (fuel type A). Also the envisaged existing 2,500 t of reactor plutonium (being generated world wide up to the year 2010), mostly stored in intermediate fuel storage facilities at present, could be converted during a transition phase into denatured reactor plutonium by the options fuel type B and D. Denatured reactor plutonium could have the same safeguards standard as present low enriched (<20% U-235) LWR fuel. It could be incinerated by recycling once or twice in PWRs and subsequently by multi-recycling in FRs (CAPRA type or IFRs). Once denatured, such reactor plutonium could remain denatured during multiple recycling. In a PWR, e.g., denatured reactor plutonium could be destroyed at a rate of about 250 kg/GWey. While denatured reactor plutonium could be recycled and incinerated under relieved IAEA safeguards, neptunium would still have to be monitored by the IAEA in future for all cases in which considerable amounts of neptunium are produced. (orig.)

  9. Fusion research principles

    CERN Document Server

    Dolan, Thomas James

    2013-01-01

    Fusion Research, Volume I: Principles provides a general description of the methods and problems of fusion research. The book contains three main parts: Principles, Experiments, and Technology. The Principles part describes the conditions necessary for a fusion reaction, as well as the fundamentals of plasma confinement, heating, and diagnostics. The Experiments part details about forty plasma confinement schemes and experiments. The last part explores various engineering problems associated with reactor design, vacuum and magnet systems, materials, plasma purity, fueling, blankets, neutronics

  10. Very High Temperature Reactor (VHTR) Deep Burn Core and Fuel Analysis -- Complete Design Selection for the Pebble Bed Reactor

    Energy Technology Data Exchange (ETDEWEB)

    B. Boer; A. M. Ougouag

    2010-09-01

    The Deep-Burn (DB) concept focuses on the destruction of transuranic nuclides from used light water reactor fuel. These transuranic nuclides are incorporated into TRISO coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400). Although it has been shown in the previous Fiscal Year (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup, while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239-Pu, 240-Pu and 241-Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a ”standard,” UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. The effort of this task in FY 2010 has focused on the optimization of the core to maximize the pebble discharge

  11. Vibration of fusion reactor components with magnetic damping

    Energy Technology Data Exchange (ETDEWEB)

    D’Amico, Gabriele; Portone, Alfredo [Fusion for Energy – Torres Diagonal Litoral B3 – c/Josep Plá n.2, Barcelona (Spain); Rubinacci, Guglielmo [Department of Electrical Eng. and Information Technologies, Università di Napoli Federico II, Via Claudio, 21, 80125 Napoli (Italy); Testoni, Pietro, E-mail: pietro.testoni@f4e.europa.eu [Fusion for Energy – Torres Diagonal Litoral B3 – c/Josep Plá n.2, Barcelona (Spain)

    2016-11-01

    The aim of this paper is to assess the importance of the magnetic damping in the dynamic response of the main plasma facing components of fusion machines, under the strong Lorentz forces due to Vertical Displacement Events. The additional eddy currents due to the vibration of the conducting structures give rise to volume loads acting as damping forces, a kind of viscous damping, being these additional loads proportional to the vibration speed. This effect could play an important role when assessing, for instance, the inertial loads associated to VV movements in case of VDEs. In this paper, we present the results of a novel numerical formulation, in which the field equations are solved by adopting a very effective fully 3D integral formulation, not limited to the analysis of thin shell structures, as already successfully done in several approaches previously published.

  12. Mechanical design aspects of a tandem mirror fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Neef, W.S. Jr.

    1977-04-25

    Two ''plugs'' of dense plasma at either end of a central solenoid cell form the basis of a new mirror fusion power plant concept. A central cell blanket design is presented. Modules on crawler tracks serviced by remote welding and handling machines of very simple design are important features resulting from linear axisymmetric geometry. Three blanket designs are considered and the best one presented in some detail. It has lithium as the breeder material, helium cooled. ''Plug'' magnet field strengths must be high. A novel magnet is presented to satisfy the physics of the end plugs. Beam sources at 1,200 KV present special problems. Methods of voltage standoff, arc damage control, and neutralization are discussed. New secondary containment ideas are presented to allow removable roof sections of balanced design.

  13. Advanced reactors and associated fuel cycle facilities: safety and environmental impacts.

    Science.gov (United States)

    Hill, R N; Nutt, W M; Laidler, J J

    2011-01-01

    The safety and environmental impacts of new technology and fuel cycle approaches being considered in current U.S. nuclear research programs are contrasted to conventional technology options in this paper. Two advanced reactor technologies, the sodium-cooled fast reactor (SFR) and the very high temperature gas-cooled reactor (VHTR), are being developed. In general, the new reactor technologies exploit inherent features for enhanced safety performance. A key distinction of advanced fuel cycles is spent fuel recycle facilities and new waste forms. In this paper, the performance of existing fuel cycle facilities and applicable regulatory limits are reviewed. Technology options to improve recycle efficiency, restrict emissions, and/or improve safety are identified. For a closed fuel cycle, potential benefits in waste management are significant, and key waste form technology alternatives are described.

  14. Code development incorporating environmental, safety, and economic aspects of fusion reactors (FY 89--91). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ho, S.K.; Fowler, T.K.; Holdren, J.P. [eds.

    1991-11-01

    This report discusses the following aspects of Fusion reactors.: Activation Analysis; Tritium Inventory; Environmental and Safety Indices and Their Graphical Representation; Probabilistic Risk Assessment (PRA) and Decision Analysis; Plasma Burn Control -- Application to ITER; and Other Applications.

  15. Code development incorporating environmental, safety and economic aspects of fusion reactors; Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T.K.; Greenspan, E.; Holdren, J.P.

    1993-12-31

    This document is a proposal to continue the authors work on the Environmental, Safety and Economic (ESE) aspects of fusion reactors under DOE contract DE-FR03-89ER52514. The grant objectives continue those from the previous grant: (1) completion of first-generation Environmental, Safety and Economic (ESE) computer modules suitable as integral components of tokamak systems codes. (2) continuation of work on special topics, in support of the above and in response to OFE requests. The proposal also highlights progress on the contract in the twelve months since April, 1992. This has included work with the ARIES and ITER design teams, work on tritium management, studies on materials activation, and calculation of radioactive inventories in fusion reactors.

  16. Status of R&D Activities on Materials for Fusion Power Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Baluc, N.; Abe, K.; Boutard, J. L.; Chernov, V. M.; Diegele, E.; Jitsukawa, S.; Kimura, Akihiko; Klueh, R. L.; Kohyama, Akira; Kurtz, Richard J.; Lasser, R.; Matsui, H.; Moslang, A.; Muroga, T.; Odette, George R.; Tran, M. Q.; van der Schaaf, B.; Wu, Y.; Yu, J.; Zinkle, Steven J.

    2007-09-19

    Current R&D activities on materials for fusion power reactors are mainly focused on plasma facing, structural and tritium breeding materials for plasma facing (first wall, divertor) and breeding blanket components. Most of these activities are being performed in Europe, Japan, P.R. China, Russia and the USA. They relate to development of new high temperature, radiation resistant materials, development of coatings that shall act as erosion, corrosion, permeation or electrical/MHD barriers, characterization of the whole candidate materials in terms of mechanical and physical properties, assessment of irradiation effects, compatibility experiments, development of reliable joints, and development and/or validation of design rules. Priorities defined worldwide in the field of materials for fusion power reactors are summarized, as well as the main achievements obtained during the last few years and the near-term perspectives in the different investigation areas.

  17. Ion cyclotron and lower hybrid arrays applicable to current drive in fusion reactors

    Science.gov (United States)

    Bosia, G.; Helou, W.; Goniche, M.; Hillaret, J.; Ragona, R.

    2014-02-01

    This paper presents concepts for Ion Cyclotron and Lower Hybrid Current Drive arrays applicable to fusion reactors and based on periodically loaded line power division. It is shown that, in large arrays, such as the ones proposed for fusion reactor applications, these schemes can offer, in principle, a number of practical advantages, compared with currently adopted ones, such as in-blanket operation at significantly reduced power density, lay out suitable for water cooling, single ended or balanced power feed, simple and load independent impedance matching In addition, a remote and accurate real time measurement of the complex impedance of all array elements as well as detection, location, and measurement of the complex admittance of a single arc occurring anywhere in the structure is possible.

  18. New Revelation of Lightning Ball Observation and Proposal for a Nuclear Reactor Fusion Experiment

    CERN Document Server

    Tar, Domokos

    2009-01-01

    In this paper, the author brings further details regarding his Lightning Ball observation that were not mentioned in the first one (Ref.1-2). Additionally, he goes more into detail as the three forces that are necessary to allow the residual crescent form the hydrodynamic vortex ring to shrink into a sphere.Further topics are the similarities and analogies between the Lightning Ball formation's theory and the presently undertaken Tokamak-Stellarator-Spheromak fusion reactor experiments. A new theory and its experimental realisation are proposed as to make the shrinking of the hot plasma of reactors into a ball possible by means of the so called long range electromagnetic forces. In this way,the fusion ignition temperature could possibly atteined.

  19. Results from systematic modeling of neutron damage in inertial fusion energy reactors

    Energy Technology Data Exchange (ETDEWEB)

    Perlado, J.M. E-mail: mperlado@denim.upm.es; Dominguez, E.; Malerba, L.; Marian, J.; Lodi, D.; Salvador, M.; Alonso, E.; Caturla, Ma.J.; Diaz de la Rubia, T

    2002-01-01

    Radiation damage is an important issue in the lifetime of the structural materials in an Inertial Fusion Energy (IFE) Reactor. The effect will strongly depend on the class of chamber protection at the IFE Reactor design. This paper gives results from DENIM, and collaboration with LLNL, on the necessary magnitudes for the final evaluation of neutron damage. The determination of the neutron intensities and energy spectra emerging from the target, the energy spectra of the Primary Knock-on Atoms (PKA) resulting from the neutron interactions, the modeling at microscopic scale of the pulsed irradiation in metals are reported, in addition to reference to the work on the time dependence of neutron flux in IFE protected chamber. Results are also presented on the damage accumulation in SiC, relevant both for magnetic (MFE) and inertial fusion.

  20. Burnup measurements on spent fuel elements of the RP-10 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vela Mora, Mariano; Gallardo Padilla, Alberto; Palomino, Jose Luis Castro, E-mail: mvela@ipen.gob.p [Instituto Peruano de Energia Nuclear (IPEN/Peru), Lima (Peru). Grupo de Calculo, Analisis y Seguridad de Reactores; Terremoto, Luis Antonio Albiac, E-mail: laaterre@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This work describes the measurement, using nondestructive gamma-ray spectroscopy, of the average burnup attained by Material Testing Reactor (MTR) fuel elements irradiated in the RP-10 research reactor. Measurements were performed at the reactor storage pool area using {sup 137}Cs as the only burnup monitor, even for spent fuel elements with cooling times much shorter than two years. The experimental apparatus was previously calibrated in efficiency to obtain absolute average burnup values, which were compared against corresponding ones furnished by reactor physics calculations. The mean deviation between both values amounts to 6%. (author)

  1. Assessment of radiological releases to the environment from a fusion reactor power plant

    Energy Technology Data Exchange (ETDEWEB)

    Shank, K.E.; Oakes, T.W.; Easterly, C.E.

    1978-05-01

    This report summarizes the expected tritium and activation-product inventories and presents an assessment of the potential radiological releases from a fusion reactor power plant, hypothetically located at the Oak Ridge National Laboratory. Routine tritium releases and the resulting dose assessment are discussed. Uncertainties associated with the conversion of tritium gas to tritium oxide and the global tritium cycling are evaluated. The difficulties of estimating releases of activated materials and the subsequent dose commitment are reviewed.

  2. Resistive sensor and electromagnetic actuator for feedback stabilization of liquid metal walls in fusion reactors

    CERN Document Server

    Mirhoseini, S H M

    2016-01-01

    Liquid metal walls in fusion reactors will be subject to instabilities, turbulence, induced currents, error fields and temperature gradients that will make them locally bulge, thus entering in contact with the plasma, or deplete, hence exposing the underlying solid substrate. To prevent this, research has begun to actively stabilize static or flowing liquid metal layers by locally applying forces in feedback with thickness measurements. Here we present resistive sensors of liquid metal thickness and demonstrate jxB actuators, to locally control it.

  3. COMPARISON OF COOLING SCHEMES FOR HIGH HEAT FLUX COMPONENTS COOLING IN FUSION REACTORS

    Directory of Open Access Journals (Sweden)

    Phani Kumar Domalapally

    2015-04-01

    Full Text Available Some components of the fusion reactor receives high heat fluxes either during the startup and shutdown or during the operation of the machine. This paper analyzes different ways of enhancing heat transfer using helium and water for cooling of these high heat flux components and then conclusions are drawn to decide the best choice of coolant, for usage in near and long term applications.

  4. High energy resolution characteristics on 14MeV neutron spectrometer for fusion experimental reactor

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tetsuo [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.; Takada, Eiji; Nakazawa, Masaharu

    1996-10-01

    A 14MeV neutron spectrometer suitable for an ITER-like fusion experimental reactor is now under development on the basis of a recoil proton counter telescope principle in oblique scattering geometry. To verify its high energy resolution characteristics, preliminary experiments are made for a prototypical detector system. The comparison results show reasonably good agreement and demonstrate the possibility of energy resolution of 2.5% in full width at half maximum for 14MeV neutron spectrometry. (author)

  5. Development of whole energy absorption spectrometer for decay heat measurement on fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    To measure decay heat on fusion reactor materials irradiated by D-T neutrons, a Whole Energy Absorption Spectrometer (WEAS) consisting of a pair of large BGO (bismuth-germanate) scintillators was developed. Feasibility of decay heat measurement with WEAS for various materials and for a wide range of half-lives (seconds - years) was demonstrated by experiments at FNS. Features of WEAS, such as high sensitivity, radioactivity identification, and reasonably low experimental uncertainty of {approx} 10 %, were found. (author)

  6. Conversion of hydrocarbon fuel in thermal protection reactors of hypersonic aircraft

    Science.gov (United States)

    Kuranov, A. L.; Mikhaylov, A. M.; Korabelnikov, A. V.

    2016-07-01

    Thermal protection of heat-stressed surfaces of a high-speed vehicle flying in dense layers of atmosphere is one of the topical issues. Not of a less importance is also the problem of hydrocarbon fuel combustion in a supersonic air flow. In the concept under development, it is supposed that in the most high-stressed parts of airframe and engine, catalytic thermochemical reactors will be installed, wherein highly endothermic processes of steam conversion of hydrocarbon fuel take place. Simultaneously with heat absorption, hydrogen generation will occur in the reactors. This paper presents the results of a study of conversion of hydrocarbon fuel in a slit reactor.

  7. Assessment of Startup Fuel Options for a Test or Demonstration Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Carmack, Jon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hayes, Steven [Idaho National Lab. (INL), Idaho Falls, ID (United States); Walters, L. C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    This document explores startup fuel options for a proposed test/demonstration fast reactor. The fuel options considered are the metallic fuels U-Zr and U-Pu-Zr and the ceramic fuels UO2 and UO2-PuO2 (MOX). Attributes of the candidate fuel choices considered were feedstock availability, fabrication feasibility, rough order of magnitude cost and schedule, and the existing irradiation performance database. The reactor-grade plutonium bearing fuels (U-Pu-Zr and MOX) were eliminated from consideration as the initial startup fuels because the availability and isotopics of domestic plutonium feedstock is uncertain. There are international sources of reactor grade plutonium feedstock but isotopics and availability are also uncertain. Weapons grade plutonium is the only possible source of Pu feedstock in sufficient quantities needed to fuel a startup core. Currently, the available U.S. source of (excess) weapons-grade plutonium is designated for irradiation in commercial light water reactors (LWR) to a level that would preclude diversion. Weapons-grade plutonium also contains a significant concentration of gallium. Gallium presents a potential issue for both the fabrication of MOX fuel as well as possible performance issues for metallic fuel. Also, the construction of a fuel fabrication line for plutonium fuels, with or without a line to remove gallium, is expected to be considerably more expensive than for uranium fuels. In the case of U-Pu-Zr, a relatively small number of fuel pins have been irradiated to high burnup, and in no case has a full assembly been irradiated to high burnup without disassembly and re-constitution. For MOX fuel, the irradiation database from the Fast Flux Test Facility (FFTF) is extensive. If a significant source of either weapons-grade or reactor-grade Pu became available (i.e., from an international source), a startup core based on Pu could be reconsidered.

  8. Direct extrapolation of radial profile data to a self-ignited fusion reactor based on the gyro-Bohm model

    Energy Technology Data Exchange (ETDEWEB)

    Miyazawa, J., E-mail: miyazawa@LHD.nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Goto, T.; Morisaki, T.; Goto, M.; Sakamoto, R.; Motojima, G.; Peterson, B.J.; Suzuki, C.; Ida, K.; Yamada, H.; Sagara, A. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer The DPE method predicts temperature and density profiles in a fusion reactor. Black-Right-Pointing-Pointer This method is based on the gyro-Bohm type parameter dependence. Black-Right-Pointing-Pointer The size of fusion reactor is determined to fulfill the power balance. Black-Right-Pointing-Pointer The reactor size is proportional to a factor and -4/3 power of the magnetic field. Black-Right-Pointing-Pointer This factor can be a measure of plasma performance like the fusion triple product. - Abstract: A new method named direct profile extrapolation (DPE) has been developed to estimate the radial profiles of temperature and density in a fusion reactor. This method directly extrapolates the radial profiles observed in present experiments to the fusion reactor condition assuming gyro-Bohm type parameter dependence. The magnetohydrodynamic equilibrium that fits the experimental profile data is used to determine the plasma volume. Four enhancement factors for the magnetic field strength, the density, the plasma beta, and the energy confinement are assumed. Then, the plasma size is determined so as to fulfill the power balance in the reactor plasma. The plasma performance can be measured by an index, C{sub exp}, introduced in the DPE method. The minimum magnetic stored energy of the fusion reactor to achieve self-ignition is shown to be proportional to the cube of C{sub exp} and inversely proportional to the square of magnetic field strength. Using this method, the design window of a self-ignited fusion reactor that can be extrapolated from recent experimental results in the Large Helical Device (LHD) is considered. Also discussed is how large an enhancement is needed for the LHD experiment to ensure the helical reactor design of FFHR2m2.

  9. Design of a tokamak fusion reactor first wall armor against neutral beam impingement

    Energy Technology Data Exchange (ETDEWEB)

    Myers, R.A.

    1977-12-01

    The maximum temperatures and thermal stresses are calculated for various first wall design proposals, using both analytical solutions and the TRUMP and SAP IV Computer Codes. Beam parameters, such as pulse time, cycle time, and beam power, are varied. It is found that uncooled plates should be adequate for near-term devices, while cooled protection will be necessary for fusion power reactors. Graphite and tungsten are selected for analysis because of their desirable characteristics. Graphite allows for higher heat fluxes compared to tungsten for similar pulse times. Anticipated erosion (due to surface effects) and plasma impurity fraction are estimated. Neutron irradiation damage is also discussed. Neutron irradiation damage (rather than erosion, fatigue, or creep) is estimated to be the lifetime-limiting factor on the lifetime of the component in fusion power reactors. It is found that the use of tungsten in fusion power reactors, when directly exposed to the plasma, will cause serious plasma impurity problems; graphite should not present such an impurity problem.

  10. Metal fuel development and verification for prototype generation- IV Sodium- Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan Bock; Cheon, Jin Sik; Kim, Sung Ho; Park, Jeong Yong; Joo, Hyung Kook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Metal fuel is being developed for the prototype generation-IV sodium-cooled fast reactor (PGSFR) to be built by 2028. U-Zr fuel is a driver for the initial core of the PGSFR, and U -transuranics (TRU)-Zr fuel will gradually replace U-Zr fuel through its qualification in the PGSFR. Based on the vast worldwide experiences of U-Zr fuel, work on U-Zr fuel is focused on fuel design, fabrication of fuel components, and fuel verification tests. U-TRU-Zr fuel uses TRU recovered through pyroelectrochemical processing of spent PWR (pressurized water reactor) fuels, which contains highly radioactive minor actinides and chemically active lanthanide or rare earth elements as carryover impurities. An advanced fuel slug casting system, which can prevent vaporization of volatile elements through a control of the atmospheric pressure of the casting chamber and also deal with chemically active lanthanide elements using protective coatings in the casting crucible, was developed. Fuel cladding of the ferritic-martensitic steel FC92, which has higher mechanical strength at a high temperature than conventional HT9 cladding, was developed and fabricated, and is being irradiated in the fast reactor.

  11. Surface modifications of fusion reactor relevant materials on exposure to fusion grade plasma in plasma focus device

    Energy Technology Data Exchange (ETDEWEB)

    Niranjan, Ram, E-mail: niranjan@barc.gov.in [Applied Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Rout, R.K.; Srivastava, R. [Applied Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Chakravarthy, Y. [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mishra, P. [Materials Processing Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kaushik, T.C.; Gupta, Satish C. [Applied Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2015-11-15

    Graphical abstract: - Highlights: • Exposure of materials (W, Ni, SS, Mo and Cu) to fusion plasma in a plasma focus device. • The erosion and the formations of blisters, pores, craters, micro-cracks after irradiation. • The structural phase transformation in the SS sample after irradiation. • The surface layer alloying of the samples with the plasma focus anode material. - Abstract: An 11.5 kJ plasma focus (PF) device was used here to irradiate materials with fusion grade plasma. The surface modifications of different materials (W, Ni, stainless steel, Mo and Cu) were investigated using various available techniques. The prominent features observed through the scanning electron microscope on the sample surfaces were erosions, cracks, blisters and craters after irradiations. The surface roughness of the samples increased multifold after exposure as measured by the surface profilometer. The X-ray diffraction analysis indicated the changes in the microstructures and the structural phase transformation in surface layers of the samples. We observed change in volumes of austenite and ferrite phases in the stainless steel sample. The energy dispersive X-ray spectroscopic analysis suggested alloying of the surface layer of the samples with elements of the PF anode. We report here the comparative analysis of the surface damages of materials with different physical, thermal and mechanical properties. The investigations will be useful to understand the behavior of the perspective materials for future fusion reactors (either in pure form or in alloy) over the long operations.

  12. Calculation of Radioactivity and Dose Rate of Activated Corrosion Products in Water-Cooled Fusion Reactor

    Directory of Open Access Journals (Sweden)

    Jingyu Zhang

    2016-01-01

    Full Text Available In water-cooled reactor, the dominant radioactive source term under normal operation is activated corrosion products (ACPs, which have an important impact on reactor inspection and maintenance. A three-node transport model of ACPs was introduced into the new version of ACPs source term code CATE in this paper, which makes CATE capable of theoretically simulating the variation and the distribution of ACPs in a water-cooled reactor and suitable for more operating conditions. For code testing, MIT PWR coolant chemistry loop was simulated, and the calculation results from CATE are close to the experimental results from MIT, which means CATE is available and credible on ACPs analysis of water-cooled reactor. Then ACPs in the blanket cooling loop of water-cooled fusion reactor ITER under construction were analyzed using CATE and the results showed that the major contributors are the short-life nuclides, especially Mn-56. At last a point kernel integration code ARShield was coupled with CATE, and the dose rate around ITER blanket cooling loop was calculated. Results showed that after shutting down the reactor only for 8 days, the dose rate decreased nearly one order of magnitude, which was caused by the rapid decay of the short-life ACPs.

  13. Experimental facilities for investigation of structural material properties for fusion reactor under irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, G.M.; Strebkov, Yu.S.; Sidorenkov, A.V.; Zyryanov, A.P.; Barsanov, V.I.; Shushlebin, V.V. (Research and Development Inst. of Power Engineering, Moscow (Russia)); Rybin, V.V.; Vinokurov, V.F.; Odintsov, N.B. (Central Scientific and Research Inst. of Structural Materials, St. Petersburg (Russia)); Zykanov, V.A.; Shamardin, V.K.; Kazakov, V.A. (Scientific Research Inst. of Atomic Reactors, Dimitrovgrad (Russia))

    1992-09-01

    The study of sturctural and breeding materials for fusion reactors covers a wide range of investigations including the effect of different operating factors; irradiation is the main factor. This paper presents basic reactor characteristics, the types of investigations on structural and breeding materials carried out at these reactors, and the reactor irradiation conditions. The design of equipment used for parameter control during the irradiations is also discussed. CM-2 and BOR-60 reactors are primarily used to irradiate structural materials for the blanket, first wall and divertor at temperatures of 80 and 350deg C and fluences up to 5x10[sup 22] n/cm[sup 2]. The IVV-2 reactor is used to investigate breeding blanket materials and to study the problems of hydrogen/tritium permeability and recovery from Li-Pb eutectic and through 0.4C-16Cr-11Ni-3Mo-Ti steel. In addition, there are facilities for carrying out irradiation experiments at cryogenic temperatures as well as in different media. (orig.).

  14. FLOWSHEET EVALUATION FOR THE DISSOLVING AND NEUTRALIZATION OF SODIUM REACTOR EXPERIMENT USED NUCLEAR FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, W. E.; Hansen, E. K.; Shehee, T. C.

    2012-10-30

    This report includes the literature review, hydrogen off-gas calculations, and hydrogen generation tests to determine that H-Canyon can safely dissolve the Sodium Reactor Experiment (SRE; thorium fuel), Ford Nuclear Reactor (FNR; aluminum alloy fuel), and Denmark Reactor (DR-3; silicide fuel, aluminum alloy fuel, and aluminum oxide fuel) assemblies in the L-Bundles with respect to the hydrogen levels in the projected peak off-gas rates. This is provided that the number of L-Bundles charged to the dissolver is controlled. Examination of SRE dissolution for potential issues has aided in predicting the optimal batching scenario. The calculations detailed in this report demonstrate that the FNR, SRE, and DR-3 used nuclear fuel (UNF) are bounded by MURR UNF and may be charged using the controls outlined for MURR dissolution in a prior report.

  15. The evaluation of the use of metal alloy fuels in pressurized water reactors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lancaster, D.

    1992-10-26

    The use of metal alloy fuels in a PWR was investigated. It was found that it would be feasible and competitive to design PWRs with metal alloy fuels but that there seemed to be no significant benefits. The new technology would carry with it added economic uncertainty and since no large benefits were found it was determined that metal alloy fuels are not recommended. Initially, a benefit was found for metal alloy fuels but when the oxide core was equally optimized the benefit faded. On review of the optimization of the current generation of ``advanced reactors,`` it became clear that reactor design optimization has been under emphasized. Current ``advanced reactors`` are severely constrained. The AP-600 required the use of a fuel design from the 1970`s. In order to find the best metal alloy fuel design, core optimization became a central effort. This work is ongoing.

  16. The measurement of neutron and neutron induced photon spectra in fusion reactor related assemblies

    CERN Document Server

    Unholzer, S; Klein, H; Seidel, K

    2002-01-01

    The spectral neutron and photon fluence (or flux) measured outside and inside of assemblies related to fusion reactor constructions are basic quantities of fusion neutronics. The comparison of measured spectra with the results of MCNP neutron and photon transport calculations allows a crucial test of evaluated nuclear data as generally used in fusion applications to be carried out. The experiments concern mixed neutron/photon fields with about the same intensity of the two components. An NE-213 scintillation spectrometer, well described by response matrices for both neutrons and photons, is used as proton-recoil and Compton spectrometer. The experiments described here in more detail address the background problematic of two applications, an iron benchmark experiment with an ns-pulsed neutron source and a deep penetration mock-up experiment for the investigation of the ITER in-board shield system. The measured spectral neutron and photon fluences are compared with spectra calculated with the MCNP code on the b...

  17. Model for collisional fast ion diffusion into Tokamak Fusion Test Reactor loss cone

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.S. [New York Univ., NY (United States). Courant Inst. of Mathematical Sciences]|[Korea Advanced Inst. of Science and Technology, Seoul (Korea, Republic of); Zweben, S.J.; Schivell, J.; Budny, R.; Scott, S. [Princeton Univ., NJ (United States). Plasma Physics Lab.

    1994-08-01

    An analytic model is developed to estimate the classical pitch angle scattering loss of energetic fusion product ions into prompt loss orbits in a tokamak geometry. The result is applied to alpha particles produced by deutrium-tritium fusion reactions in a plasma condition relevant to Tokamak Fusion Test Reactor (TFTR). A poloidal angular distribution of collisional fast ion loss at the first wall is obtained and the numerical result from the TRANSP code is discussed. The present model includes the effect that the prompt loss boundary moves away from the slowing-down path due to reduction in banana thickness, which enables us to understand, for the first time. the dependence of the collisional loss rate on Z{sub eff}.

  18. Avalanche boron fusion by laser picosecond block ignition with magnetic trapping for clean and economic reactor

    CERN Document Server

    Hora, H; Eliezer, S; Lalousis, N Nissim P; Giuffrida, L; Margarone, D; Picciotto, A; Miley, G H; Moustaizis, S; Martinez-Val, J -M; Barty, C P J; Kirchhoff, G J

    2016-01-01

    After the very long consideration of the ideal energy source by fusion of the protons of light hydrogen with the boron isotope 11 (boron fusion HB11) the very first two independent measurements of very high reaction gains by lasers basically opens a fundamental breakthrough. The non-thermal plasma block ignition with extremely high power laser pulses above petawatt of picosecond duration in combination with up to ten kilotesla magnetic fields for trapping has to be combined to use the measured high gains as proof of an avalanche reaction for an environmentally clean, low cost and lasting energy source as potential option against global warming. The unique HB11 avalanche reaction is are now based on elastic collisions of helium nuclei (alpha particles) limited only to a reactor for controlled fusion energy during a very short time within a very small volume.

  19. Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Shannon Bragg-Sitton

    2014-02-01

    Research and development (R&D) activities on advanced, higher performance Light Water Reactor (LWR) fuels have been ongoing for the last few years. Following the unfortunate March 2011 events at the Fukushima Nuclear Power Plant in Japan, the R&D shifted toward enhancing the accident tolerance of LWRs. Qualitative attributes for fuels with enhanced accident tolerance, such as improved reaction kinetics with steam resulting in slower hydrogen generation rate, provide guidance for the design and development of fuels and cladding with enhanced accident tolerance. A common set of technical metrics should be established to aid in the optimization and down selection of candidate designs on a more quantitative basis. “Metrics” describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. This report describes a proposed technical evaluation methodology that can be applied to evaluate the ability of each concept to meet performance and safety goals relative to the current UO2 – zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed toward qualification.

  20. High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion

    Science.gov (United States)

    Juhasz, Albert J.; Sawicki, Jerzy T.

    2003-01-01

    For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a partial energy conversion system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.

  1. Compatibility of structural materials with fusion reactor coolant and breeder fluids

    Energy Technology Data Exchange (ETDEWEB)

    DeVan, J.H.

    1979-01-01

    Fusion reactors are characterized by a lithium-containing blanket, a heat transfer medium that is integral with the blanket and first wall, and a heat engine that couples to the heat transfer medium. A variety of lithium-containing substances have been identified as potential blanket materials, including molten lithium metal, molten LiF--BeF/sub 2/, Pb--Li alloys, and solid ceramic compounds such as Li/sub 2/O. Potential heat transfer media include liquid lithium, liquid sodium, molten nitrates, water, and helium. Each of these coolants and blankets requires a particular set of chemical and mechanical properties with respect to the associated reactor and heat engine structural materials. This paper discusses the materials factors that underlie the selection of workable combinations of blankets and coolants. It also addresses the materials compatibility problems generic to those blanket-coolant combinations currently being considered in reactor design studies.

  2. Summary engineering description of underwater fuel storage facility for foreign research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Dahlke, H.J.; Johnson, D.A.; Rawlins, J.K.; Searle, D.K.; Wachs, G.W.

    1994-10-01

    This document is a summary description for an Underwater Fuel Storage Facility (UFSF) for foreign research reactor (FRR) spent nuclear fuel (SNF). A FRR SNF environmental Impact Statement (EIS) is being prepared and will include both wet and dry storage facilities as storage alternatives. For the UFSF presented in this document, a specific site is not chosen. This facility can be sited at any one of the five locations under consideration in the EIS. These locations are the Idaho National Engineering Laboratory, Savannah River Site, Hanford, Oak Ridge National Laboratory, and Nevada Test Site. Generic facility environmental impacts and emissions are provided in this report. A baseline fuel element is defined in Section 2.2, and the results of a fission product analysis are presented. Requirements for a storage facility have been researched and are summarized in Section 3. Section 4 describes three facility options: (1) the Centralized-UFSF, which would store the entire fuel element quantity in a single facility at a single location, (2) the Regionalized Large-UFSF, which would store 75% of the fuel element quantity in some region of the country, and (3) the Regionalized Small-UFSF, which would store 25% of the fuel element quantity, with the possibility of a number of these facilities in various regions throughout the country. The operational philosophy is presented in Section 5, and Section 6 contains a description of the equipment. Section 7 defines the utilities required for the facility. Cost estimates are discussed in Section 8, and detailed cost estimates are included. Impacts to worker safety, public safety, and the environment are discussed in Section 9. Accidental releases are presented in Section 10. Standard Environmental Impact Forms are included in Section 11.

  3. Summary engineering description of underwater fuel storage facility for foreign research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Dahlke, H.J.; Johnson, D.A.; Rawlins, J.K.; Searle, D.K.; Wachs, G.W.

    1994-10-01

    This document is a summary description for an Underwater Fuel Storage Facility (UFSF) for foreign research reactor (FRR) spent nuclear fuel (SNF). A FRR SNF environmental Impact Statement (EIS) is being prepared and will include both wet and dry storage facilities as storage alternatives. For the UFSF presented in this document, a specific site is not chosen. This facility can be sited at any one of the five locations under consideration in the EIS. These locations are the Idaho National Engineering Laboratory, Savannah River Site, Hanford, Oak Ridge National Laboratory, and Nevada Test Site. Generic facility environmental impacts and emissions are provided in this report. A baseline fuel element is defined in Section 2.2, and the results of a fission product analysis are presented. Requirements for a storage facility have been researched and are summarized in Section 3. Section 4 describes three facility options: (1) the Centralized-UFSF, which would store the entire fuel element quantity in a single facility at a single location, (2) the Regionalized Large-UFSF, which would store 75% of the fuel element quantity in some region of the country, and (3) the Regionalized Small-UFSF, which would store 25% of the fuel element quantity, with the possibility of a number of these facilities in various regions throughout the country. The operational philosophy is presented in Section 5, and Section 6 contains a description of the equipment. Section 7 defines the utilities required for the facility. Cost estimates are discussed in Section 8, and detailed cost estimates are included. Impacts to worker safety, public safety, and the environment are discussed in Section 9. Accidental releases are presented in Section 10. Standard Environmental Impact Forms are included in Section 11.

  4. The Tokamak Fusion Test Reactor decontamination and decommissioning project and the Tokamak Physics Experiment at the Princeton Plasma Physics Laboratory. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-05-27

    If the US is to meet the energy needs of the future, it is essential that new technologies emerge to compensate for dwindling supplies of fossil fuels and the eventual depletion of fissionable uranium used in present-day nuclear reactors. Fusion energy has the potential to become a major source of energy for the future. Power from fusion energy would provide a substantially reduced environmental impact as compared with other forms of energy generation. Since fusion utilizes no fossil fuels, there would be no release of chemical combustion products to the atmosphere. Additionally, there are no fission products formed to present handling and disposal problems, and runaway fuel reactions are impossible due to the small amounts of deuterium and tritium present. The purpose of the TPX Project is to support the development of the physics and technology to extend tokamak operation into the continuously operating (steady-state) regime, and to demonstrate advances in fundamental tokamak performance. The purpose of TFTR D&D is to ensure compliance with DOE Order 5820.2A ``Radioactive Waste Management`` and to remove environmental and health hazards posed by the TFTR in a non-operational mode. There are two proposed actions evaluated in this environmental assessment (EA). The actions are related because one must take place before the other can proceed. The proposed actions assessed in this EA are: the decontamination and decommissioning (D&D) of the Tokamak Fusion Test Reactor (TFTR); to be followed by the construction and operation of the Tokamak Physics Experiment (TPX). Both of these proposed actions would take place primarily within the TFTR Test Cell Complex at the Princeton Plasma Physics Laboratory (PPPL). The TFTR is located on ``D-site`` at the James Forrestal Campus of Princeton University in Plainsboro Township, Middlesex County, New Jersey, and is operated by PPPL under contract with the United States Department of Energy (DOE).

  5. What we miss in order to be able to design and build a commercially viable fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Andreani, R. [ENEA, Centro Ricerche Frascati, RM (Italy). Dipt. Energia

    1999-07-01

    The paper considers in a critical way the different areas in which work is required to provide sufficient information in view of designing a reliable and attractive fusion reactor. [Italian] Il rapporto considera in modo critico le differenti aree nelle quali si richiede ulteriore lavoro per fornire informazioni al fine di progettare un reattore a fusione affidabile ed economicamente competitivo.

  6. The Advanced High-Temperature Reactor (AHTR) for Producing Hydrogen to Manufacture Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.; Peterson, P.F.; Ott, L.

    2004-10-06

    Conventional world oil production is expected to peak within a decade. Shortfalls in production of liquid fuels (gasoline, diesel, and jet fuel) from conventional oil sources are expected to be offset by increased production of fuels from heavy oils and tar sands that are primarily located in the Western Hemisphere (Canada, Venezuela, the United States, and Mexico). Simultaneously, there is a renewed interest in liquid fuels from biomass, such as alcohol; but, biomass production requires fertilizer. Massive quantities of hydrogen (H2) are required (1) to convert heavy oils and tar sands to liquid fuels and (2) to produce fertilizer for production of biomass that can be converted to liquid fuels. If these liquid fuels are to be used while simultaneously minimizing greenhouse emissions, nonfossil methods for the production of H2 are required. Nuclear energy can be used to produce H2. The most efficient methods to produce H2 from nuclear energy involve thermochemical cycles in which high-temperature heat (700 to 850 C) and water are converted to H2 and oxygen. The peak nuclear reactor fuel and coolant temperatures must be significantly higher than the chemical process temperatures to transport heat from the reactor core to an intermediate heat transfer loop and from the intermediate heat transfer loop to the chemical plant. The reactor temperatures required for H2 production are at the limits of practical engineering materials. A new high-temperature reactor concept is being developed for H2 and electricity production: the Advanced High-Temperature Reactor (AHTR). The fuel is a graphite-matrix, coated-particle fuel, the same type that is used in modular high-temperature gas-cooled reactors (MHTGRs). The coolant is a clean molten fluoride salt with a boiling point near 1400 C. The use of a liquid coolant, rather than helium, reduces peak reactor fuel and coolant temperatures 100 to 200 C relative to those of a MHTGR. Liquids are better heat transfer fluids than gases

  7. Thermal Aspects of Using Alternative Nuclear Fuels in Supercritical Water-Cooled Reactors

    Science.gov (United States)

    Grande, Lisa Christine

    A SuperCritical Water-cooled Nuclear Reactor (SCWR) is a Generation IV concept currently being developed worldwide. Unique to this reactor type is the use of light-water coolant above its critical point. The current research presents a thermal-hydraulic analysis of a single fuel channel within a Pressure Tube (PT)-type SCWR with a single-reheat cycle. Since this reactor is in its early design phase many fuel-channel components are being investigated in various combinations. Analysis inputs are: steam cycle, Axial Heat Flux Profile (AHFP), fuel-bundle geometry, and thermophysical properties of reactor coolant, fuel sheath and fuel. Uniform and non-uniform AHFPs for average channel power were applied to a variety of alternative fuels (mixed oxide, thorium dioxide, uranium dicarbide, uranium nitride and uranium carbide) enclosed in an Inconel-600 43-element bundle. The results depict bulk-fluid, outer-sheath and fuel-centreline temperature profiles together with the Heat Transfer Coefficient (HTC) profiles along the heated length of fuel channel. The objective is to identify the best options in terms of fuel, sheath material and AHFPS in which the outer-sheath and fuel-centreline temperatures will be below the accepted temperature limits of 850°C and 1850°C respectively. The 43-element Inconel-600 fuel bundle is suitable for SCWR use as the sheath-temperature design limit of 850°C was maintained for all analyzed cases at average channel power. Thoria, UC2, UN and UC fuels for all AHFPs are acceptable since the maximum fuel-centreline temperature does not exceed the industry accepted limit of 1850°C. Conversely, the fuel-centreline temperature limit was exceeded for MOX at all AHFPs, and UO2 for both cosine and downstream-skewed cosine AHFPs. Therefore, fuel-bundle modifications are required for UO2 and MOX to be feasible nuclear fuels for SCWRs.

  8. An alternative solution for heavy liquid metal cooled reactors fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Vitale Di Maio, Damiano, E-mail: damiano.vitaledimaio@uniroma1.it [“SAPIENZA” University of Rome – DIAEE, Corso Vittorio Emanuele II, 244, 00186 Rome (Italy); Cretara, Luca; Giannetti, Fabio [“SAPIENZA” University of Rome – DIAEE, Corso Vittorio Emanuele II, 244, 00186 Rome (Italy); Peluso, Vincenzo [“ENEA”, Via Martiri di Monte Sole 4, 40129 Bologna (Italy); Gandini, Augusto [“SAPIENZA” University of Rome – DIAEE, Corso Vittorio Emanuele II, 244, 00186 Rome (Italy); Manni, Fabio [“SRS Engineering Design S.r.l.”, Vicolo delle Palle 25-25/b, 00186 Rome (Italy); Caruso, Gianfranco [“SAPIENZA” University of Rome – DIAEE, Corso Vittorio Emanuele II, 244, 00186 Rome (Italy)

    2014-10-15

    Highlights: • A new fuel assembly locking system for heavy metal cooled reactor is proposed. • Neutronic, mechanical and thermal-hydraulic evaluations of the system behavior have been performed. • A comparison with other solutions has been presented. - Abstract: In the coming future, the electric energy production from nuclear power plants will be provided by both thermal reactors and fast reactors. In order to have a sustainable energy production through fission reactors, fast reactors should provide an increasing contribution to the total electricity production from nuclear power plants. Fast reactors have to achieve economic and technical targets of Generation IV. Among these reactors, Sodium cooled Fast Reactors (SFRs) and Lead cooled Fast Reactors (LFRs) have the greatest possibility to be developed as industrial power plants within few decades. Both SFRs and LFRs require a great R and D effort to overcome some open issues which affect the present designs (e.g. sodium-water reaction for the SFRs, erosion/corrosion for LFRs, etc.). The present paper is mainly focused on LFR fuel assembly (FA) design: issues linked with the high coolant density of lead or lead–bismuth eutectic cooled reactors have been investigated and an innovative solution for the core mechanical design is here proposed and analyzed. The solution, which foresees cylindrical fuel assemblies and exploits the buoyancy force due to the lead high density, allows to simplify the FAs locking system, to reduce their length and could lead to a more uniform neutron flux distribution.

  9. Sipping test update device for fuel elements cladding inspections in IPR-r1 TRIGA reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, R.R.; Mesquita, A.Z.; Andrade, E.P.D.; Gual, Maritza R., E-mail: rrr@cdtn.br, E-mail: amir@cdtn.br, E-mail: edson@cdtn.br, E-mail: maritzargual@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    It is in progress at the Centro de Desenvolvimento da Tecnologia Nuclear - CDTN (Nuclear Technology Development Center), a research project that aims to investigate possible leaks in the fuel elements of the TRIGA reactor, located in this research center. This paper presents the final form of sipping test device for TRIGA reactor, and results of the first experiments setup. Mechanical support strength tests were made by knotting device on the crane, charged with water from the conventional water supply, and tests outside the reactor pool with the use of new non-irradiated fuel elements encapsulated in stainless steel, and available safe stored in this unit. It is expected that tests with graphite elements from reactor pool are done soon after and also the test experiment with the first fuel elements in service positioned in the B ring (central ring) of the reactor core in the coming months. (author)

  10. Comparison of the radiological hazard of thorium and uranium spent fuels from VVER-1000 reactor

    Science.gov (United States)

    Frybort, Jan

    2014-11-01

    Thorium fuel is considered as a viable alternative to the uranium fuel used in the current generation of nuclear power plants. Switch from uranium to thorium means a complete change of composition of the spent nuclear fuel produced as a result of the fuel depletion during operation of a reactor. If the Th-U fuel cycle is implemented, production of minor actinides in the spent fuel is negligible. This is favourable for the spent fuel disposal. On the other hand, thorium fuel utilisation is connected with production of 232U, which decays via several alpha decays into a strong gamma emitter 208Tl. Presence of this nuclide might complicate manipulations with the irradiated thorium fuel. Monte-Carlo computation code MCNPX can be used to simulate thorium fuel depletion in a VVER-1000 reactor. The calculated actinide composition will be analysed and dose rate from produced gamma radiation will be calculated. The results will be compared to the reference uranium fuel. Dependence of the dose rate on time of decay after the end of irradiation in the reactor will be analysed. This study will compare the radiological hazard of the spent thorium and uranium fuel handling.

  11. V.S.O.P. (99) for WINDOWS and UNIX : computer code system for reactor physics and fuel cycle simulation

    OpenAIRE

    Rütten, H. J.; Haas, K. A.; Brockmann, H.; Ohlig, U.; Scherer, W.

    2000-01-01

    V.S.O.P. is a computer code system for the comprehensive numerical simulation of the physics of thermal reactors. It implies the setup of the reactor and of the fuel element, processing of cross sections, neutron spectrum evaluation, neutron diffusion calculation in two or three dimensions, fuel burnup, fuel shuffling, reactor control, thermal hydraulics and fuel cycle costs. The thermal hydraulics part (steady state and time-dependent) is restricted to HTRs and to two spatial dimensions. The...

  12. V.S.O.P.(97) Computer Code System for Reactor Physics and Fuel Cycle Simulation : Input Manual and Comments

    OpenAIRE

    Rütten, H. J.; Haas, K. A.; Brockmann, H.; Ohlig, U.; Scherer, W.

    1998-01-01

    V.S.O.P. (97) is a computer code system for the comprehensive numerical simulation ofthe physics of thermal reactors. It implies processing ofcross sections, the setup ofthe reactor and ofthe fuel element, repeated neutron spectrum evaluation, neutron diffusion calculation in two or three dimensions, fuel burnup, fuel shuffling, reactor control, thermal hydraulics and fuel cycle costs. The thermal hydraulics part (steady state and time-dependent) is restricted to EM and to two spatial dimensi...

  13. Modification of Neutron Kinetic Code for Plate Type Fuel Nuclear Reactor

    Directory of Open Access Journals (Sweden)

    Salah Ud-Din Khan

    2013-01-01

    Full Text Available The research is conducted on the modification of neutron kinetic code for the plate type fuel nuclear reactor. REMARK is a neutron kinetic code that works only for the cylindrical type fuel nuclear reactor. In this research, our main emphasis is on the modification of this code in order to be applicable for the plate type fuel nuclear reactor. For this purpose, detailed mathematical studies have been performed and are subjected to write the program in Fortran language. Since REMARK code is written in Fortran language, so we have developed the program in Fortran and then inserted it into the source library of the code. The main emphasis is on the modification of subroutine in the source library of the code for hexagonal fuel assemblies with plate type fuel elements in it. The number of steps involved in the modification of the code has been included in the paper. The verification studies were performed by considering the small modular reactor with hexagonal assemblies and plate type fuel in it to find out the power distribution of the reactor core. The purpose of the research is to make the code work for the hexagonal fuel assemblies with plate type fuel element.

  14. A Compact Gas-Cooled Fast Reactor with an Ultra-Long Fuel Cycle

    Directory of Open Access Journals (Sweden)

    Hangbok Choi

    2013-01-01

    Full Text Available In an attempt to allow nuclear power to reach its full economic potential, General Atomics is developing the Energy Multiplier Module (EM2, which is a compact gas-cooled fast reactor (GFR. The EM2 augments its fissile fuel load with fertile materials to enhance an ultra-long fuel cycle based on a “convert-and-burn” core design which converts fertile material to fissile fuel and burns it in situ over a 30-year core life without fuel supplementation or shuffling. A series of reactor physics trade studies were conducted and a baseline core was developed under the specific physics design requirements of the long-life small reactor. The EM2 core performance was assessed for operation time, fuel burnup, excess reactivity, peak power density, uranium utilization, etc., and it was confirmed that an ultra-long fuel cycle core is feasible if the conversion is enough to produce fissile material and maintain criticality, the amount of matrix material is minimized not to soften the neutron spectrum, and the reactor core size is optimized to minimize the neutron loss. This study has shown the feasibility, from the reactor physics standpoint, of a compact GFR that can meet the objectives of ultra-long fuel cycle, factory-fabrication, and excellent fuel utilization.

  15. Annular core liquid-salt cooled reactor with multiple fuel and blanket zones

    Science.gov (United States)

    Peterson, Per F.

    2013-05-14

    A liquid fluoride salt cooled, high temperature reactor having a reactor vessel with a pebble-bed reactor core. The reactor core comprises a pebble injection inlet located at a bottom end of the reactor core and a pebble defueling outlet located at a top end of the reactor core, an inner reflector, outer reflector, and an annular pebble-bed region disposed in between the inner reflector and outer reflector. The annular pebble-bed region comprises an annular channel configured for receiving pebble fuel at the pebble injection inlet, the pebble fuel comprising a combination of seed and blanket pebbles having a density lower than the coolant such that the pebbles have positive buoyancy and migrate upward in said annular pebble-bed region toward the defueling outlet. The annular pebble-bed region comprises alternating radial layers of seed pebbles and blanket pebbles.

  16. The TITAN Reversed-Field Pinch fusion reactor study: Scoping phase report

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    The TITAN research program is a multi-institutional effort to determine the potential of the Reversed-Field Pinch (RFP) magnetic fusion concept as a compact, high-power-density, and ''attractive'' fusion energy system from economic (cost of electricity, COE), environmental, and operational viewpoints. In particular, a high neutron wall loading design (18 MW/m/sup 2/) has been chosen as the reference case in order to quantify the issue of engineering practicality, to determine the physics requirements and plasma operating mode, to assess significant benefits of compact systems, and to illuminate the main drawbacks. The program has been divided into two phases, each roughly one year in length: the Scoping Phase and the Design Phase. During the scoping phase, the TITAN design team has defined the parameter space for a high mass power density (MPD) RFP reactor, and explored a variety of approaches to the design of major subsystems. Two major design approaches consistent with high MPD and low COE, the lithium-vanadium blanket design and aqueous loop-in-pool design, have been selected for more detailed engineering evaluation in the design phase. The program has retained a balance in its approach to investigating high MPD systems. On the one hand, parametric investigations of both subsystems and overall system performance are carried out. On the other hand, more detailed analysis and engineering design and integration are performed, appropriate to determining the technical feasibility of the high MPD approach to RFP fusion reactors. This report describes the work of the scoping phase activities of the TITAN program. A synopsis of the principal technical findings and a brief description of the TITAN multiple-design approach is given. The individual chapters on Plasma Physics and Engineering, Parameter Systems Studies, Divertor, Reactor Engineering, and Fusion Power Core Engineering have been cataloged separately.

  17. A Fusion Reactor Design with a Liquid First Wall and Divertor

    Energy Technology Data Exchange (ETDEWEB)

    Nygren, R E; Rognlien, T D; Rensink, M E; Smolentsev, S S; Youssef, M E; Sawan, M Z; Merrill, B J; Eberle, C; Fogarty, P J; Nelson, B E; Sze, D K; Majeski, R

    2003-11-13

    Within the magnetic fusion energy program in the US, a program called APEX is investigating the use of free flowing liquid surfaces to form the inner surface of the chamber around the plasma. As part of this work, the APEX Team has investigated several possible design implementations and developed a specific engineering concept for a fusion reactor with liquid walls. Our approach has been to utilize an already established design for a future fusion reactor, the ARIES-RS, for the basic chamber geometry and magnetic configuration and to replace the chamber technology in this design with liquid wall technology for a first wall and divertor and a blanket with adequate tritium breeding. This paper gives an overview of one design with a molten salt (a mixture of lithium, beryllium and sodium fluorides) forming the liquid surfaces and a ferritic steel for the structural material of the blanket. The design point is a reactor with 3840MW of fusion power of which 767MW is in the form of energetic particles (alpha power) and 3073MW is in the form of neutrons. The alpha plus auxiliary power total 909MW of which 430MW is radiated from the core mostly onto the first wall and the balance flows into the edge plasma and is distributed between the first wall and the divertor. In pursuing the application of liquid surfaces in APEX, the team has developed analytical tools that are significant achievements themselves and also pursued experiments on flowing liquids. This work is covered elsewhere, but the paper will also note several such areas to indicate the supporting science behind the design presented. Significant new work in modeling the plasma edge to understand the interaction of the plasma with the liquid walls is one example. Another is the incorporation of magneto-hydrodynamic (MHD) effects in fluid modeling and heat transfer.

  18. Considerations for the development of neutral beam injection for fusion reactors or DEMO

    Science.gov (United States)

    Hemsworth, R. S.; Boilson, D.

    2017-08-01

    Neutral beam injection (NBI) has been the most successful heating scheme applied to fusion devices, the majority of which have been based on the acceleration and neutralization in a gas target of accelerated positive ions. For large fusion devices such as ITER, DEMO and fusion reactors, beam energies of the order of 0.5 MeV per nucleon or higher are required to penetrate deeply into the fusing plasma, and thus to heat the plasma in the most important region, i.e. near the poloidal axis of the device, and to drive current in the plasma. Because the efficiency of neutralization of positive ions in a gas target becomes unacceptably low at energies above ≈100 keV/nucleon, future injectors will be based on the neutralization of negative ions, either in a gas target, by photons or in a plasma target. So far only two systems based on negative ions have been used on fusion devices, at JT-60U and at LHD, both based on neutralization in a gas target. The injectors for ITER will also use a gas target, but the energy and operating environment are reactor and DEMO relevant. Also the ITER injectors will have to operate for pulse lengths orders of magnitude higher than all previous NBI systems. In this paper the R&D required for an NBI system for a reactor, or DEMO, is considered against the background of the ITER NBI system development, and the main elements of the required R&D are identified.

  19. External Attachment of Titanium Sheathed Thermocouples to Zirconium Nuclear Fuel Rods For The Loss-Of-Fluid-Test (LOFT) Reactor

    Science.gov (United States)

    Welty, Richard K.

    1980-10-01

    The Exxon Nuclear Company, Inc. acting as a Subcontractor to EG&G Idaho Inc.3 Idaho National Engineering Laboratory, Idaho Falls, Idaho, has developed a welding process to attach titanium sheathed thermocouples to the outside of the zircaloy clad fuel rods. The fuel rods and thermocouples are used to test simulated loss-of-coolant-accident (LOCA) conditions in a pressurized water reactor (LOFT Reactor, Idaho National Laboratory). The design goals were to (1) reliably attach thermocouples to the zircaloy fuel rods, (2) achieve or exceed a life expectancy of 6,000 hours of reactor operation in a borated water environment of 316°C at 2260 psi, (3) provide and sustain repeatable physical and metallurgical properties in the instrumented rods subjected to transient temperatures up to 1538°C with blowdown, shock, loading, and fast quench. A laser beam was selected as the optimum welding process because of the extremely high energy input per unit volume that can be achieved allowing local fusion of a small area irrespective of the difference in material thickness to be joined. A commercial pulsed laser and energy control system was installed along with specialized welding fixtures. Laser room facility requirements and tolerances were established. Performance qualifications and detailed welding procedures were also developed. Product performance tests were conducted to assure that engineering design requirements could be met on a production basis. Irradiation tests showed no degradation of thermocouples or weld structure. Fast thermal cycle and heater rod blowdown reflood tests were made to subject the weldments to high temperatures, high pressure steam, and fast water quench cycles. From the behavior of these tests, it was concluded that the attachment welds would survive a series of reactor safety tests.

  20. A controllability study of TRUMOX fuel for load following operations in a CANDU-900 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Trudell, D.A., E-mail: trudelda@mcmaster.ca [McMaster Univ., Hamilton, Ontario (Canada)

    2012-07-01

    Using a core model of a generic CANDU-900 reactor in RFSP-IST, load following simulations have been performed to assess the controllability of the reactor due to Xenon transients. Week long load following simulations have been performed with daily power cycles 12 hours in duration. Simulations have shown that Natural Uranium fuel can be safely cycled between 100 and 90% Full Power without adjuster rod movement while TRUMOX fuel can be safely cycled between 100 and 85% Full Power. (author)

  1. Plasma-material Interactions in Current Tokamaks and their Implications for Next-step Fusion Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Federici, G.; Skinner, C.H.; Brooks, J.N.; Coad, J.P.; Grisolia, C. [and others

    2001-01-10

    The major increase in discharge duration and plasma energy in a next-step DT [deuterium-tritium] fusion reactor will give rise to important plasma-material effects that will critically influence its operation, safety, and performance. Erosion will increase to a scale of several centimeters from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma-facing components. Controlling plasma wall interactions is critical to achieving high performance in present-day tokamaks and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of the important consequences of these phenomena has stimulated an internationally coordinated effort in the field of plasma-surface interactions supporting the Engineering Design Activities of the International Thermonuclear Experimental Reactor (ITER) project and significant progress has been made in better under standing these issues. This paper reviews the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next-step fusion reactors. Two main topical groups of interactions are considered: (i) erosion/redeposition from plasma sputtering and disruptions, including dust and flake generation, (ii) tritium retention and removal. The use of modeling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D [Research and Development] avenues for their resolution are presented.

  2. Reactor Fuel Isotopics and Code Validation for Nuclear Applications

    Energy Technology Data Exchange (ETDEWEB)

    Francis, Matthew W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Weber, Charles F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pigni, Marco T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gauld, Ian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-02-01

    Experimentally measured isotopic concentrations of well characterized spent nuclear fuel (SNF) samples have been collected and analyzed by previous researchers. These sets of experimental data have been used extensively to validate the accuracy of depletion code predictions for given sets of burnups, initial enrichments, and varying power histories for different reactor types. The purpose of this report is to present the diversity of data in a concise manner and summarize the current accuracy of depletion modeling. All calculations performed for this report were done using the Oak Ridge Isotope GENeration (ORIGEN) code, an internationally used irradiation and decay code solver within the SCALE comprehensive modeling and simulation code. The diversity of data given in this report includes key actinides, stable fission products, and radioactive fission products. In general, when using the current ENDF/B-VII.0 nuclear data libraries in SCALE, the major actinides are predicted to within 5% of the measured values. Large improvements were seen for several of the curium isotopes when using improved cross section data found in evaluated nuclear data file ENDF/B-VII.0 as compared to ENDF/B-V-based results. The impact of the flux spectrum on the plutonium isotope concentrations as a function of burnup was also shown. The general accuracy noted for the actinide samples for reactor types with burnups greater than 5,000 MWd/MTU was not observed for the low-burnup Hanford B samples. More work is needed in understanding these large discrepancies. The stable neodymium and samarium isotopes were predicted to within a few percent of the measured values. Large improvements were seen in prediction for a few of the samarium isotopes when using the ENDF/B-VII.0 libraries compared to results obtained with ENDF/B-V libraries. Very accurate predictions were obtained for 133Cs and 153Eu. However, the predicted values for the stable ruthenium and rhodium isotopes varied

  3. Experimental needs for water cooled reactors. Reactor and nuclear fuel; Les besoins experimentaux pour les reacteurs a eau legere. Reacteur et combustible

    Energy Technology Data Exchange (ETDEWEB)

    Waeckel, N. [Electricite de France (EDF/SEPTEN), 69 - Villeurbanne (France); Beguin, S. [Electricite de France (EDF/SEPTEN), 50 - Cherbourg (France); Assedo [AREVA Framatome ANP, 92 - Paris La Defense (France)

    2005-07-01

    In order to improve the competitiveness of nuclear reactors, the trend will be to increase the fuel burn-up, the fuel enrichment, the length of the irradiation cycle and the global thermal power of the reactor. In all cases the fuel rod will be more acted upon. Experimental programs involving research reactors able to irradiate in adequate conditions instrumented fuel rods will stay necessary for the validation of new practices or new nuclear fuel materials in normal or accidental conditions. (A.C.)

  4. Challenges and Innovative Technologies On Fuel Handling Systems for Future Sodium-Cooled Fast Reactors

    OpenAIRE

    Chassignet, Mathieu; Dumas, Sebastien; Penigot, Christophe; Prele, Gerard; Capitaine, Alain; Rodriguez, Gilles; Sanseigne, Emmanuel; Beauchamp, Francois

    2011-01-01

    International audience; The reactor refuelling system provides the means of transporting, storing, and handling reactor core subassemblies. The system consists of the facilities and equipment needed to accomplish the scheduled refuelling operations. The choice of a FHS impacts directly on the general design of the reactor vessel (primary vessel, storage, and final cooling before going to reprocessing), its construction cost, and its availability factor. Fuel handling design must take into acc...

  5. Gas-Cooled Thorium Reactor with Fuel Block of the Unified Design

    Directory of Open Access Journals (Sweden)

    Igor Shamanin

    2015-01-01

    Full Text Available Scientific researches of new technological platform realization carried out in Russia are based on ideas of nuclear fuel breeding in closed fuel cycle and physical principles of fast neutron reactors. Innovative projects of low-power reactor systems correspond to the new technological platform. High-temperature gas-cooled thorium reactors with good transportability properties, small installation time, and operation without overloading for a long time are considered perspective. Such small modular reactor systems at good commercial, competitive level are capable of creating the basis of the regional power industry of the Russian Federation. The analysis of information about application of thorium as fuel in reactor systems and its perspective use is presented in the work. The results of the first stage of neutron-physical researches of a 3D model of the high-temperature gas-cooled thorium reactor based on the fuel block of the unified design are given. The calculation 3D model for the program code of MCU-5 series was developed. According to the comparison results of neutron-physical characteristics, several optimum reactor core compositions were chosen. The results of calculations of the reactivity margins, neutron flux distribution, and power density in the reactor core for the chosen core compositions are presented in the work.

  6. Closed Fuel Cycle and Minor Actinide Multirecycling in a Gas-Cooled Fast Reactor

    NARCIS (Netherlands)

    Van Rooijen, W.F.G.; Kloosterman, J.L.

    2009-01-01

    The Generation IV International Forum has identified the Gas-Cooled Fast Reactor (GCFR) as one of the reactor concepts for future deployment. The GCFR targets sustainability, which is achieved by the use of a closed nuclear fuel cycle where only fission products are discharged to a repository; all H

  7. Closed Fuel Cycle and Minor Actinide Multirecycling in a Gas-Cooled Fast Reactor

    NARCIS (Netherlands)

    Van Rooijen, W.F.G.; Kloosterman, J.L.

    2009-01-01

    The Generation IV International Forum has identified the Gas-Cooled Fast Reactor (GCFR) as one of the reactor concepts for future deployment. The GCFR targets sustainability, which is achieved by the use of a closed nuclear fuel cycle where only fission products are discharged to a repository; all

  8. A fuel management study and cycle nuclear design for PW reactors

    Energy Technology Data Exchange (ETDEWEB)

    Minguez, E.; Ahnert, C.; Aragones, J. M.; Corella, M. R.

    1975-07-01

    A reference reactor was chosen to do a general study involving Fuel Management Evaluations of several cycles, and Design Calculations of cycles already performed, according to a calculation scheme set up in the Reactor Technology Division of the J.E.N., using some computer codes acquired to foreign sources and other ones developed in the J.E.N. (Author) 5 refs.

  9. Closed Fuel Cycle and Minor Actinide Multirecycling in a Gas-Cooled Fast Reactor

    NARCIS (Netherlands)

    Van Rooijen, W.F.G.; Kloosterman, J.L.

    2009-01-01

    The Generation IV International Forum has identified the Gas-Cooled Fast Reactor (GCFR) as one of the reactor concepts for future deployment. The GCFR targets sustainability, which is achieved by the use of a closed nuclear fuel cycle where only fission products are discharged to a repository; all H

  10. Experience on wet storage spent fuel sipping at IEA-R1 Brazilian research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Perrotta, J.A.; Terremoto, L.A.A.; Zeituni, C.A. [Instituto de Pesquisas Energeticas e Nucleares, Sao Paulo (Brazil). Divisao de Engenharia do Nucleo

    1997-12-01

    The IEA-R1 research reactor of the Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP) is a pool type reactor of B and W design, that has been operating since 1957 at a power of 2 MW. Irradiated (spent) fuels have been stored at the facility during the various years of operation. At present there are 40 spent fuel assemblies at dry storage, 79 spent fuel assemblies at wet storage and 30 fuel assemblies in the core. The oldest fuels are of United States origin, made with U-Al alloy, both of LEU and HEU MTR fuel type. many of these fuel assemblies have corrosion pits along their lateral fuel plates. These pits originate by galvanic corrosion between the fuel plate and the stainless steel storage racks. As a consequence of the possibility of sending the irradiated old fuels back to the U.S.A., sipping tests were performed with the spent fuel assemblies. The reason for this was to evaluate their {sup 137}Cs leaking rate, if any. This work describes the procedure and methodology used to perform the sipping tests with the fuel assemblies at the storage pool, and presents the results obtained for the {sup 137}Cs sipping water activity for each fuel assembly. A correlation is made between the corrosion pits and the activity values measured. A {sup 137}Cs leaking rate is determined and compared to the criteria established for canning spent fuel assemblies before shipment. (author).

  11. Experience on wet storage spent fuel sipping at IEA-R1 Brazilian research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Perrotta, J.A.; Terremoto, L.A.A.; Zeituni, C.A

    1998-03-01

    The IEA-R1 research reactor of the Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP) is a pool type reactor of B and W design, that has been operating since 1957 at a power of 2 MW. Irradiated (spent) fuels have been stored at the facility during the various years of operation. At present there are 40 spent fuel assemblies at dry storage, 79 spent fuel assemblies at wet storage and 30 fuel assemblies in the core. The oldest fuels are of United States origin, made with U-Al alloy, both of LEU and HEU MTR fuel type. Many of these fuel assemblies have corrosion pits along their lateral fuel plates. These pits originate by galvanic corrosion between the fuel plate and the stainless steel storage racks. As a consequence of the possibility of sending the irradiated old fuels back the U.S.A., sipping tests were performed with the spent fuel assemblies. The reason for this was to evaluate their {sup 137}Cs leaking rate, if any. This work describes the procedure and methodology used to perform the sipping tests with the fuel assemblies at the storage pool, and presents the results obtained for the {sup 137}Cs sipping water activity for each fuel assembly. A correlation is made between the corrosion pits and the activity values measured. A {sup 137}Cs leaking rate is determined and compared to the criteria established for canning spent fuel assemblies before shipment.

  12. Annual report of Power Reactor and Nuclear Fuel Development Corporation, fiscal year 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This was the Annual Report of the Power Reactor and Nuclear Fuel Development Corporation, Fiscal Year of 1994. In this report, the following 12 items are described: (1) Development of the fast breeding reactor; (a) operation of the fast experimental reactor, `Joyo`, (b) construction and trial operation of the fast breeding prototype reactor, `Monju`, and (c) R and D of FBR; (2) Development of the new type conversion reactor; (a) operation of prototype reactor, `Fugen`, and (b) R and D of ATR; (3) Development of uranium mining and conversion; (4) Development of uranium concentration technology; (5) Development of plutonium fuel; (a) preparation of the MOX fuel, (b) preparation facility construction of the MOX fuel, (c) R and D of plutonium fuel. and (d) technical development of plutonium mixing and conversion; (6) Reprocessing of spent fuel; (7) Environmental technology development of radioactive waste; (8) Creative and innovative R and D; (9) Management and nuclear non-proliferation countermeasure of nuclear matter; (10) Safety management and safety study; (11) Related common business; and (12) General management business. (G.K.)

  13. CFD Analysis of the Fuel Temperature in High Temperature Gas-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    In, W. K.; Chun, T. H.; Lee, W. J.; Chang, J. H. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    High temperature gas-cooled reactors (HTGR) have received a renewed interest as potential sources for future energy needs, particularly for a hydrogen production. Among the HTGRs, the pebble bed reactor (PBR) and a prismatic modular reactor (PMR) are considered as the nuclear heat source in Korea's nuclear hydrogen development and demonstration project. PBR uses coated fuel particles embedded in spherical graphite fuel pebbles. The fuel pebbles flow down through the core during an operation. PMR uses graphite fuel blocks which contain cylindrical fuel compacts consisting of the fuel particles. The fuel blocks also contain coolant passages and locations for absorber and control material. The maximum fuel temperature in the core hot spot is one of the important design parameters for both PBR and PMR. The objective of this study is to predict the fuel temperature distributions in PBR and PMR using a computational fluid dynamics(CFD) code, CFX-5. The reference reactor designs used in this analysis are PBMR400 and GT-MHR600.

  14. Build-up of actinides in irradiated fuel rods of the ET-RR-1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M.; Naguib, K.; Morcos, H.N

    2001-09-01

    The content concentrations of actinides are calculated as a function of operating reactor regime and cooling time at different percentage of fuel burn-up. The build-up transmutation equations of actinides content in an irradiated fuel are solved numerically .A computer code BAC was written to operate on a PC computer to provide the required calculations. The fuel element of 10% {sup 235}U enrichment of ET-RR-1 reactor was taken as an example for calculations using the BAC code. The results are compared with other calculations for the ET-RR-1 fuel rod. An estimation of fissile build-up content of a proposed new fuel of 20% {sup 235}U enrichment for ET-RR-1 reactor is given. The sensitivity coefficients of build-up plutonium concentrations as a function of cross-section data uncertainties are also calculated.

  15. Fusion solution to dispose of spent nuclear fuel, transuranic elements, and highly enriched uranium

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Yousry E-mail: gohar@anl.gov

    2001-11-01

    The disposal of the nuclear spent fuel, the transuranic elements, and the highly enriched uranium represents a major problem under investigation by the international scientific community to identify the most promising solutions. The investigation of this paper focused on achieving the top rated solution for the problem, the elimination goal, which requires complete elimination for the transuranic elements or the highly enriched uranium, and the long-lived fission products. To achieve this goal, fusion blankets with liquid carrier, molten salts or liquid metal eutectics, for the transuranic elements and the uranium isotopes are utilized. The generated energy from the fusion blankets is used to provide revenue for the system. The long-lived fission products are fabricated into fission product targets for transmutation utilizing the neutron leakage from the fusion blankets. This paper investigated the fusion blanket designs for small fusion devices and the system requirements for such application. The results show that 334 MW of fusion power from D-T plasma for 30 years with an availability factor of 0.75 can dispose of the 70,000 tons of the U.S. inventory of spent nuclear fuel generated up to the year 2015. In addition, this fusion solution eliminates the need for a geological repository site, which is a major advantage. Meanwhile, such utilization of the fusion power will provide an excellent opportunity to develop fusion energy for the future.

  16. A preliminary study of a D-T tokamak fusion reactor with advanced blanket using compact fusion advanced Brayton (CFAB) cycle

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, K.; Ohnishi, M.; Yamamoto, Y. [Kyoto Univ. (Japan)] [and others

    1994-12-31

    Key issues on a D-T Tokamak fusion reactor with advanced blanket concept using CFAB (Compact Fusion Advanced Brayton) cycle are presented. Although the previously proposed and studied compact fusion advanced Rankine cycle using mercury liquid metal has shown, in general, excellent performance characteristics in extracting energy and electricity with high efficiency by the {open_quotes}in-situ{close_quotes} nonequilibrium MHD disk generator, and in enhancing safety potential, there was a fear about uses of hazardous mercury as primary coolant as well as its limited natural resources. To overcome these disadvantages while retaining the advantage features of a ultra-high temperature coolant inherent in the synchrotron energy-enhanced D-T tokamak reactor, a compact fusion advanced Brayton cycle using helium was reexamined which was once considered relatively not superior in the CFAR study, at the expense of high, but acceptable circulation power, lower heat transfer characteristics, and probably of a little bit reduced safety.

  17. Preliminary Reactor Physics Assessment of the HTR Module with 14% Enriched UCO Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gerhard Strydom; Hans D. Gougar

    2013-03-01

    The high temperature reactor (HTR) Module (Lohnert, 1990) is a graphite-moderated, helium cooled pebble bed design that has been extensively used as a reference template for the former South African (Matzner, 2004) and current Chinese (Zhang et al., 2009) HTR programs. This design utilizes spherical fuel elements packed into a dynamic pebble bed, consisting of tri-structural isotropic (TRISO) coated uranium oxide (UO2) 500 µm fuel kernels with a U-235 enrichment of 7.8% and a heavy metal loading of 7 g per pebble. This fuel type was previously qualified for use in Germany for pebble bed HTRs, as well as undergoing re-qualification in South Africa for the PBMR project. It is also the fuel type being tested for use in the high temperature reactor (HTR-PM) under construction in China. In the United States, however, a different TRISO fuel form is the subject of a qualification program. The U.S. experience with HTRs has been focused upon the batch-fueled prismatic reactor in which TRISO particles are embedded in cylindrical compacts and stacked inside the graphite blocks which comprise the core. Under this type of operating regime, a smaller TRISO with a different composition and enrichment performs better than the fuel historically used in PBRs. Fuel kernels and compacting techniques more suited to prismatic core duty are currently being developed and qualified under the U.S. Department of Energy's Advanced Gas Reactor (AGR) fuel development program and in support of the Next Generation Nuclear Plant project. Interest in the pebble bed concept remains high, however, and a study was undertaken by the authors to assess the viability of using AGR fuel in a pebble bed reactor. Using the German HTR Module as the reference plant, key neutronic and thermal-hydraulic parameters were compared between the nominal design and one fueled with the fuel that is the focus of the AGR program.

  18. Fuel-Cycle and Nuclear Material Disposition Issues Associated with High-Temperature Gas Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shropshire, D.E.; Herring, J.S.

    2004-10-03

    The objective of this paper is to facilitate a better understanding of the fuel-cycle and nuclear material disposition issues associated with high-temperature gas reactors (HTGRs). This paper reviews the nuclear fuel cycles supporting early and present day gas reactors, and identifies challenges for the advanced fuel cycles and waste management systems supporting the next generation of HTGRs, including the Very High Temperature Reactor, which is under development in the Generation IV Program. The earliest gas-cooled reactors were the carbon dioxide (CO2)-cooled reactors. Historical experience is available from over 1,000 reactor-years of operation from 52 electricity-generating, CO2-cooled reactor plants that were placed in operation worldwide. Following the CO2 reactor development, seven HTGR plants were built and operated. The HTGR came about from the combination of helium coolant and graphite moderator. Helium was used instead of air or CO2 as the coolant. The helium gas has a significant technical base due to the experience gained in the United States from the 40-MWe Peach Bottom and 330-MWe Fort St. Vrain reactors designed by General Atomics. Germany also built and operated the 15-MWe Arbeitsgemeinschaft Versuchsreaktor (AVR) and the 300-MWe Thorium High-Temperature Reactor (THTR) power plants. The AVR, THTR, Peach Bottom and Fort St. Vrain all used fuel containing thorium in various forms (i.e., carbides, oxides, thorium particles) and mixtures with highly enriched uranium. The operational experience gained from these early gas reactors can be applied to the next generation of nuclear power systems. HTGR systems are being developed in South Africa, China, Japan, the United States, and Russia. Elements of the HTGR system evaluated included fuel demands on uranium ore mining and milling, conversion, enrichment services, and fuel fabrication; fuel management in-core; spent fuel characteristics affecting fuel recycling and refabrication, fuel handling, interim

  19. High-Yield Lithium-Injection Fusion-Energy (HYLIFE) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Blink, J.A.; Hogam, W.J.; Hovingh, J.; Meier, E.R.; Pitts, J.H. (comps.)

    1985-12-23

    The High-Yield Lithium-Injection Fusion Energy (HYLIFE) concept to convent inertial confinement fusion energy into electric power has undergone intensive research and refinement at LLNL since 1978. This paper reports on the final HYLIFE design, focusing on five major areas: the HYLIFE reaction chamber (which includes neutronics, liquid-metal jet-array hydrocynamics, and structural design), supporting systems, primary steam system and balance of plant, safety and environmental protection, and costs. An annotated bibliography of reports applicable to HYLIFE is also provided. We conclude that HYLIFE is a particularly viable concept for the safe, clean production of electrical energy. The liquid-metal jet array, HYLIFE's key design feature, protects the surrounding structural components from x-rays, fusion fuel-pellet debris, neutron damage and activation, and high temperatures and stresses, allowing the structure to last for the plant's entire 30-year lifetime without being replaced. 127 refs., 18 figs.

  20. Understanding fuel magnetization and mix using secondary nuclear reactions in magneto-inertial fusion.

    Science.gov (United States)

    Schmit, P F; Knapp, P F; Hansen, S B; Gomez, M R; Hahn, K D; Sinars, D B; Peterson, K J; Slutz, S A; Sefkow, A B; Awe, T J; Harding, E; Jennings, C A; Chandler, G A; Cooper, G W; Cuneo, M E; Geissel, M; Harvey-Thompson, A J; Herrmann, M C; Hess, M H; Johns, O; Lamppa, D C; Martin, M R; McBride, R D; Porter, J L; Robertson, G K; Rochau, G A; Rovang, D C; Ruiz, C L; Savage, M E; Smith, I C; Stygar, W A; Vesey, R A

    2014-10-10

    Magnetizing the fuel in inertial confinement fusion relaxes ignition requirements by reducing thermal conductivity and changing the physics of burn product confinement. Diagnosing the level of fuel magnetization during burn is critical to understanding target performance in magneto-inertial fusion (MIF) implosions. In pure deuterium fusion plasma, 1.01 MeV tritons are emitted during deuterium-deuterium fusion and can undergo secondary deuterium-tritium reactions before exiting the fuel. Increasing the fuel magnetization elongates the path lengths through the fuel of some of the tritons, enhancing their probability of reaction. Based on this feature, a method to diagnose fuel magnetization using the ratio of overall deuterium-tritium to deuterium-deuterium neutron yields is developed. Analysis of anisotropies in the secondary neutron energy spectra further constrain the measurement. Secondary reactions also are shown to provide an upper bound for the volumetric fuel-pusher mix in MIF. The analysis is applied to recent MIF experiments [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] on the Z Pulsed Power Facility, indicating that significant magnetic confinement of charged burn products was achieved and suggesting a relatively low-mix environment. Both of these are essential features of future ignition-scale MIF designs.

  1. The behaviour of transuranic mixed oxide fuel in a Candu-900 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Morreale, A. C.; Ball, M. R.; Novog, D. R.; Luxat, J. C. [Dept. of Engineering Physics, McMaster Univ., 1280 Main St. W, Hamilton, ON (Canada)

    2012-07-01

    The production of transuranic actinide fuels for use in current thermal reactors provides a useful intermediary step in closing the nuclear fuel cycle. Extraction of actinides reduces the longevity, radiation and heat loads of spent material. The burning of transuranic fuels in current reactors for a limited amount of cycles reduces the infrastructure demand for fast reactors and provides an effective synergy that can result in a reduction of as much as 95% of spent fuel waste while reducing the fast reactor infrastructure needed by a factor of almost 13.5 [1]. This paper examines the features of actinide mixed oxide fuel, TRUMOX, in a CANDU{sup R}* nuclear reactor. The actinide concentrations used were based on extraction from 30 year cooled spent fuel and mixed with natural uranium in 3.1 wt% actinide MOX fuel. Full lattice cell modeling was performed using the WIMS-AECL code, super-cell calculations were analyzed in DRAGON and full core analysis was executed in the RFSP 2-group diffusion code. A time-average full core model was produced and analyzed for reactor coefficients, reactivity device worth and online fuelling impacts. The standard CANDU operational limits were maintained throughout operations. The TRUMOX fuel design achieved a burnup of 27.36 MWd/kg HE. A full TRUMOX fuelled CANDU was shown to operate within acceptable limits and provided a viable intermediary step for burning actinides. The recycling, reprocessing and reuse of spent fuels produces a much more sustainable and efficient nuclear fuel cycle. (authors)

  2. Application of computational fluid dynamics (CFD) codes as design tools for inertial confinement fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Abanades, A; MartInez-Val, J M [Instituto de Fusion Nuclear, c/Jose Gutierrez Abascal 2, 28006 - Madrid (Spain); Sordo, F; Lafuente, A [Escuela Tecnica Superior de Ingenieros Industriales-UPM, c/Jose Gutierrez Abascal 2, 28006 - Madrid (Spain); Munoz, J [Fundacion para el Fomento de la Innovacion Industrial, c/Jose Gutierrez Abascal 2, 28006 - Madrid (Spain)], E-mail: abanades@etsii.upm.es

    2008-05-15

    The engineering design of the new innovative fusion reactors constitutes a clear challenge for the need to overcome several new technological edges in every engineering aspect. The great amount of thermal energy delivered into any inertial fusion chamber and the large temperatures and thermal gradients that are envisaged, joined to the even more demanding aspects related to neutron activation, Tritium breeding and the characteristics that are imposed to the coolant that could be used for that purpose, converged into material selection in which liquid metal seems to be one of the most interesting options. The safety assessment of such Fusion reactors should be clearly provided to fulfill the requirements asked by the Regulatory Bodies in a near-term future, when licensing will be a must. Therefore the availability of well proven and validated engineering design tools is a must. In this context, CFD is one of the tools that are potentially needed for thermal-hydraulic design of such complex machines. The state-of-the-art of CFD technologies will be shown, in particular in relation with liquid metals.

  3. Application of computational fluid dynamics (CFD) codes as design tools for inertial confinement fusion reactor

    Science.gov (United States)

    Abánades, A.; Sordo, F.; Lafuente, A.; Muñoz, J.; Martínez-Val, J. M.

    2008-05-01

    The engineering design of the new innovative fusion reactors constitutes a clear challenge for the need to overcome several new technological edges in every engineering aspect. The great amount of thermal energy delivered into any inertial fusion chamber and the large temperatures and thermal gradients that are envisaged, joined to the even more demanding aspects related to neutron activation, Tritium breeding and the characteristics that are imposed to the coolant that could be used for that purpose, converged into material selection in which liquid metal seems to be one of the most interesting options. The safety assessment of such Fusion reactors should be clearly provided to fulfill the requirements asked by the Regulatory Bodies in a near-term future, when licensing will be a must. Therefore the availability of well proven and validated engineering design tools is a must. In this context, CFD is one of the tools that are potentially needed for thermal-hydraulic design of such complex machines. The state-of-the-art of CFD technologies will be shown, in particular in relation with liquid metals.

  4. X-rays from Proton Bremsstrahlung: Evidence from Fusion Reactors and Its Implication in Astrophysics

    CERN Document Server

    Luo, Nie

    2009-01-01

    In a fusion reactor, a proton and a neutron generated in previous reactions may again fuse with each other. Or they can in turn fuse with or be captured by an un-reacted deuteron. The average center-of-mass (COM) energy for such reaction is around 10 keV in a typical fusion reactor, but could be as low as 1 keV. At this low COM energy, the reacting nucleons are in an s-wave state in terms of their relative angular momentum. The single-gamma radiation process is thus strongly suppressed due to conservation laws. Instead the gamma ray released is likely to be accompanied by x-ray photons from a nuclear bremsstrahlung process. The x-ray thus generated has a continuous spectrum and peaks around a few hundred eV to a few keV. The average photon energy and spectrum properties of such a process are calculated with a semiclassical approach. The results give a peak near 1.1 keV for the proton-deuteron fusion and a power-to-the-minus-second law in the spectrum's high-energy limit. An analysis of some prior tokamak disc...

  5. The DOE Advanced Gas Reactor (AGR) Fuel Development and Qualification Program

    Energy Technology Data Exchange (ETDEWEB)

    David Petti; Hans Gougar; Gary Bell

    2005-05-01

    The Department of Energy has established the Advanced Gas Reactor Fuel Development and Qualification Program to address the following overall goals: Provide a baseline fuel qualification data set in support of the licensing and operation of the Next Generation Nuclear Plant (NGNP). Gas-reactor fuel performance demonstration and qualification comprise the longest duration research and development (R&D) task for the NGNP feasibility. The baseline fuel form is to be demonstrated and qualified for a peak fuel centerline temperature of 1250°C. Support near-term deployment of an NGNP by reducing market entry risks posed by technical uncertainties associated with fuel production and qualification. Utilize international collaboration mechanisms to extend the value of DOE resources. The Advanced Gas Reactor Fuel Development and Qualification Program consists of five elements: fuel manufacture, fuel and materials irradiations, postirradiation examination (PIE) and safety testing, fuel performance modeling, and fission product transport and source term evaluation. An underlying theme for the fuel development work is the need to develop a more complete fundamental understanding of the relationship between the fuel fabrication process, key fuel properties, the irradiation performance of the fuel, and the release and transport of fission products in the NGNP primary coolant system. Fuel performance modeling and analysis of the fission product behavior in the primary circuit are important aspects of this work. The performance models are considered essential for several reasons, including guidance for the plant designer in establishing the core design and operating limits, and demonstration to the licensing authority that the applicant has a thorough understanding of the in-service behavior of the fuel system. The fission product behavior task will also provide primary source term data needed for licensing. An overview of the program and recent progress will be presented.

  6. The DOE Advanced Gas Reactor (AGR) Fuel Development and Qualification Program

    Energy Technology Data Exchange (ETDEWEB)

    David Petti; Hans Gougar; Gary Bell

    2005-05-01

    The Department of Energy has established the Advanced Gas Reactor Fuel Development and Qualification Program to address the following overall goals: Provide a baseline fuel qualification data set in support of the licensing and operation of the Next Generation Nuclear Plant (NGNP). Gas-reactor fuel performance demonstration and qualification comprise the longest duration research and development (R&D) task for the NGNP feasibility. The baseline fuel form is to be demonstrated and qualified for a peak fuel centerline temperature of 1250°C. Support near-term deployment of an NGNP by reducing market entry risks posed by technical uncertainties associated with fuel production and qualification. Utilize international collaboration mechanisms to extend the value of DOE resources. The Advanced Gas Reactor Fuel Development and Qualification Program consists of five elements: fuel manufacture, fuel and materials irradiations, postirradiation examination (PIE) and safety testing, fuel performance modeling, and fission product transport and source term evaluation. An underlying theme for the fuel development work is the need to develop a more complete fundamental understanding of the relationship between the fuel fabrication process, key fuel properties, the irradiation performance of the fuel, and the release and transport of fission products in the NGNP primary coolant system. Fuel performance modeling and analysis of the fission product behavior in the primary circuit are important aspects of this work. The performance models are considered essential for several reasons, including guidance for the plant designer in establishing the core design and operating limits, and demonstration to the licensing authority that the applicant has a thorough understanding of the in-service behavior of the fuel system. The fission product behavior task will also provide primary source term data needed for licensing. An overview of the program and recent progress will be presented.

  7. Use of freeze-casting in advanced burner reactor fuel design

    Energy Technology Data Exchange (ETDEWEB)

    Lang, A. L.; Yablinsky, C. A.; Allen, T. R. [Dept. of Engineering Physics, Univ. of Wisconsin Madison, 1500 Engineering Drive, Madison, WI 53711 (United States); Burger, J.; Hunger, P. M.; Wegst, U. G. K. [Thayer School of Engineering, Dartmouth College, 8000 Cummings Hall, Hanover, NH 03755 (United States)

    2012-07-01

    This paper will detail the modeling of a fast reactor with fuel pins created using a freeze-casting process. Freeze-casting is a method of creating an inert scaffold within a fuel pin. The scaffold is created using a directional solidification process and results in open porosity for emplacement of fuel, with pores ranging in size from 300 microns to 500 microns in diameter. These pores allow multiple fuel types and enrichments to be loaded into one fuel pin. Also, each pore could be filled with varying amounts of fuel to allow for the specific volume of fission gases created by that fuel type. Currently fast reactors, including advanced burner reactors (ABR's), are not economically feasible due to the high cost of operating the reactors and of reprocessing the fuel. However, if the fuel could be very precisely placed, such as within a freeze-cast scaffold, this could increase fuel performance and result in a valid design with a much lower cost per megawatt. In addition to competitive costs, freeze-cast fuel would also allow for selective breeding or burning of actinides within specific locations in fast reactors. For example, fast flux peak locations could be utilized on a minute scale to target specific actinides for transmutation. Freeze-cast fuel is extremely flexible and has great potential in a variety of applications. This paper performs initial modeling of freeze-cast fuel, with the generic fast reactor parameters for this model based on EBR-II. The core has an assumed power of 62.5 MWt. The neutronics code used was Monte Carlo N-Particle (MCNP5) transport code. Uniform pore sizes were used in increments of 100 microns. Two different freeze-cast scaffold materials were used: ceramic (MgO-ZrO{sub 2}) and steel (SS316L). Separate models were needed for each material because the freeze-cast ceramic and metal scaffolds have different structural characteristics and overall porosities. Basic criticality results were compiled for the various models

  8. Mirror Advanced Reactor Study (MARS). Final report. Volume 2. Commercial fusion synfuels plant

    Energy Technology Data Exchange (ETDEWEB)

    Donohue, M.L.; Price, M.E. (eds.)

    1984-07-01

    Volume 2 contains the following chapters: (1) synfuels; (2) physics base and parameters for TMR; (3) high-temperature two-temperature-zone blanket system for synfuel application; (4) thermochemical hydrogen processes; (5) interfacing the sulfur-iodine cycle; (6) interfacing the reactor with the thermochemical process; (7) tritium control in the blanket system; (8) the sulfur trioxide fluidized-bed composer; (9) preliminary cost estimates; and (10) fuels beyond hydrogen. (MOW)

  9. Thermal-Hydraulic Research Review and Cooperation Outcome for Light Water Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    In, Wang Kee; Shin, Chang Hwan; Lee, Chan; Chun, Tae Hyun; Oh, Dong Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Chi Young [Pukyong Nat’l Univ., Busan (Korea, Republic of)

    2016-12-15

    The fuel assembly for pressurized water reactor (PWR) consists of fuel rod bundle, spacer grid and bottom/top end fittings. The cooling water in high pressure and temperature is introduced in lower plenum of reactor core and directed to upper plenum through the subchannel which is formed between the fuel rods. The main thermalhydraulic performance parameters for the PWR fuel are pressure drop and critical heat flux in normal operating condition, and quenching time in accident condition. The Korea Atomic Energy Research Institute (KAERI) has been developing an advanced PWR fuel, dual-cooled annular fuel and accident tolerant fuel for the enhancement of fuel performance and the localization. For the key thermal-hydraulic technology development of PWR fuel, the KAERI LWR fuel team has conducted the experiments for pressure drop, turbulent flow mixing and heat transfer, critical heat flux(CHF) and quenching. The computational fluid dynamics (CFD) analysis was also performed to predict flow and heat transfer in fuel assembly including the spent fuel assembly in dry cask for interim repository. In addition, the research cooperation with university and nuclear fuel company was also carried out to develop a basic thermalhydraulic technology and the commercialization.

  10. ORNL fusion power demonstration study: arguments for a vacuum building in which to enclose a fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Werner, R.W.

    1976-12-01

    Fusion reactors as presently contemplated are excessively complicated, are virtually inaccessible for some repairs, and are subject to frequent loss of function. This dilemma arises in large part because the closed surface that separates the ''hard'' vacuum of the plasma zone from atmospheric pressure is located at the first wall or between blanket and shield. This closed surface is one containing hundreds to thousands of linear meters of welds or mechanical seals which are subject to radiation damage and cyclic fatigue. In situ repair is extremely difficult. This paper examines the arguments favoring the enclosing of the entire reactor in a vacuum building and thus changing the character of this closed surface from one requiring absolute vacuum integrity to one of high pumping impedance. Two differentially pumped vacuum zones are imagined, one clean zone for the plasma and one for the balance of the volume. Both would be at substantially the same pressure. Other advantages for the vacuum enclosure are also cited and discussed.

  11. Mitigation of the hydrogen risk in fusion reactors; Mitigation du risque hydrogene dans les reacteurs de fusion

    Energy Technology Data Exchange (ETDEWEB)

    Maruejouls, C.; Robin, J.C. [CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. d' Etudes des Reacteurs; Arnould, F.; Bachellerie, E. [Technicatome DI SEPS, 13 - Aix en Provence (France); Latge, C. [CEA Cadarache, Dept. d' Etudes des Dechets DED, 13 - Saint Paul lez Durance (France); Laurent, A. [Institut National Polytechnique de Lorraine, Lab. des Sciences du Genie Chimique, 54 - Nancy (France)

    2001-07-01

    The rupture of the first wall and the intrusion of water vapor inside the torus, is one of the major accident that can occur in a thermonuclear fusion reactor. In this situation, water oxidizes the beryllium of the wall and the reaction produces hydrogen with a strong risk of explosion inside the reactor. In order to mitigate this risk, a process based on the reduction of metal oxides (MnO{sub 2}, Ag{sub 2}O) has been developed. The aim of this study is the determination of the kinetics of this reduction reaction. A mixture of both oxides has been deposited on the surface of porous balls for an experiment on fixed beds. The modeling of the phenomenon is based on the equations used in heterogenous catalysis and the experimental determination of the kinetics of the reaction is performed with the CIGNE test-facility. The velocity of the reduction reaction is deduced from the remaining amount of hydrogen in the test-gas (N{sub 2} with 1 to 2% of H{sub 2}) after it has been flowed on the oxides coated balls of the fixed bed. (J.S.)

  12. Spent fuel management - two alternatives at the FiR 1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Salmenhaara, S.E.J. [Technical Research Centre of Finland (VTT), FIN-02044 VTT Espoo (Finland)

    2001-07-01

    The FiR 1 -reactor, a 250 kW Triga reactor, has been in operation since 1962. The reactor with its subsystems has experienced a large renovation work in 1996-97. The main purpose of the upgrading was to install the new Boron Neutron Capture Therapy (BNCT) irradiation facility. The BNCT work dominates the current utilization of the reactor: four days per week for BNCT purposes and only one day per week for neutron activation analysis and isotope production. The Council of State (government) granted for the reactor a new operating license for twelve years starting from the beginning of the year 2000. There is however a special condition in the new license. We have to achieve a binding agreement between our Research Centre and the domestic Nuclear Power Plant Companies about the possibility to use the final disposal facility of the Nuclear Power Plants for our spent fuel, if we want to continue the reactor operation beyond the year 2006. In addition to the choosing of one of the spent fuel management alternatives the future of the reactor will also depend strongly on the development of the BNCT irradiations. If the number of patients per year increases fast enough and the irradiations of the patients will be economically justified, the operation of the reactor will continue independently of the closing of the USDOE alternative in 2006. Otherwise, if the number of patients will be low, the funding of the reactor will be probably stopped and the reactor will be shut down. (author)

  13. On the Optimization of the Fuel Distribution in a Nuclear Reactor

    DEFF Research Database (Denmark)

    Thevenot, Laurent

    2004-01-01

    In this paper we give an optimality condition for the optimization problem of the distribution of fuel assemblies in a nuclear reactor by using the homogenization method. This study deals with purely fissile fuels and is based on the neutron transport equation modeling for continuous models...

  14. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Science.gov (United States)

    2010-01-01

    ... fuel and nuclear waste. 71.97 Section 71.97 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... advance notification of transportation of nuclear waste was published in the Federal Register on June...

  15. Experience of IEA-R1 research reactor spent fuel transportation back to United States

    Energy Technology Data Exchange (ETDEWEB)

    Frajndlich, Roberto [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Div. de Operacao do Reator IEAR-R1m]. E-mail: frajndli@net.ipen.br; Perrotta, Jose A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Div.de Engenharia do Nucleo]. E-mail: perrotta@net.ipen.br; Maiorino, Jose Rubens [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Diretoria de Reatores]. E-mail: maiorino@net.ipen.br; Soares, Adalberto Jose [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Dept. de Reatores]. E-mail: ajsoares@net.ipen.br

    1998-07-01

    IPEN/CNEN-SP is sending the IEA-R1 Research Reactor spent fuels from USA origin back to this country. This paper describes the experience in organizing the negotiations, documents and activities to perform the transport. Subjects as cask licensing, transport licensing and fuel failure criteria for transportation are presented. (author)

  16. Development of analysis system and analysis on reactor physics for CANDU advanced fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Gi; Bae, Chang Joon; Kwon, Oh Sun [Korea Power Electric Corporation, Taejon (Korea, Republic of)

    1997-07-01

    characteristics of reactor physics for CANFLEX-NU fuel core were calculated using final fuel design data. The results of analysis showed that there was no impact on reactor operations and safety. The above results of calculations and analysis were described in the physics design for CANFLEX-NU= fuel core. Various fuel models were evaluated for selecting high burnup fuel using recovered uranium. It is judged to be worse effects for reactor safety Hence, the use of graphite within fuel was proposed and its results showed to be better. The analysis system of reactor physics for design and analysis of high burnup fuel was evaluated. Lattice codes and core code were reviewed. From the results, the probability of WIMS-AECL and HELIOS is known to be high for analysis of high burnup fuel. For the core code, RFSP, it was evaluated that the simplified 2 group equation should be replaced by explicit 2 group equation. (Author) 32 refs., 25 tabs., 79 figs.

  17. Fabrication procedures for manufacturing High Flux Isotope Reactor fuel elements - 2

    Energy Technology Data Exchange (ETDEWEB)

    Knight, R.W.; Morin, R.A.

    1999-12-01

    The original fabrication procedures written in 1968 delineated the manufacturing procedures at that time. Since 1968, there have been a number of procedural changes. This rewrite of the fabrication procedures incorporates these changes. The entire fuel core of this reactor is made up of two fuel elements. Each element consists of one annular array of fuel plates. These annuli are identified as the inner and outer fuel elements, since one fits inside the other. The inner element consists of 171 identical fuel plates, and the outer element contains 369 identical fuel plates differing slightly from those in the inner element. Both sets of fuel plates contain U{sub 3}O{sub 8} powder as the fuel, dispersed in an aluminum powder matrix and clad with aluminum. Procedures for manufacturing and inspection of the fuel elements are described and illustrated.

  18. Study and Evaluation of Innovative Fuel Handling Systems for Sodium-Cooled Fast Reactors: Fuel Handling Route Optimization

    Directory of Open Access Journals (Sweden)

    Franck Dechelette

    2014-01-01

    Full Text Available The research for technological improvement and innovation in sodium-cooled fast reactor is a matter of concern in fuel handling systems in a view to perform a better load factor of the reactor thanks to a quicker fuelling/defueling process. An optimized fuel handling route will also limit its investment cost. In that field, CEA has engaged some innovation study either of complete FHR or on the optimization of some specific components. This paper presents the study of three SFR fuel handling route fully described and compared to a reference FHR option. In those three FHR, two use a gas corridor to transfer spent and fresh fuel assembly and the third uses two casks with a sodium pot to evacuate and load an assembly in parallel. All of them are designed for the ASTRID reactor (1500 MWth but can be extrapolated to power reactors and are compatible with the mutualisation of one FHS coupled with two reactors. These three concepts are then intercompared and evaluated with the reference FHR according to four criteria: performances, risk assessment, investment cost, and qualification time. This analysis reveals that the “mixed way” FHR presents interesting solutions mainly in terms of design simplicity and time reduction. Therefore its study will be pursued for ASTRID as an alternative option.

  19. Integrated Decision-Making Tool to Develop Spent Fuel Strategies for Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Beatty, Randy L [ORNL; Harrison, Thomas J [ORNL

    2016-01-01

    IAEA Member States operating or having previously operated a Research Reactor are responsible for the safe and sustainable management and disposal of associated radioactive waste, including research reactor spent nuclear fuel (RRSNF). This includes the safe disposal of RRSNF or the corresponding equivalent waste returned after spent fuel reprocessing. One key challenge to developing general recommendations lies in the diversity of spent fuel types, locations and national/regional circumstances rather than mass or volume alone. This is especially true given that RRSNF inventories are relatively small, and research reactors are rarely operated at a high power level or duration typical of commercial power plants. Presently, many countries lack an effective long-term policy for managing RRSNF. This paper presents results of the International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) #T33001 on Options and Technologies for Managing the Back End of the Research Reactor Nuclear Fuel Cycle which includes an Integrated Decision Making Tool called BRIDE (Back-end Research reactor Integrated Decision Evaluation). This is a multi-attribute decision-making tool that combines the Total Estimated Cost of each life-cycle scenario with Non-economic factors such as public acceptance, technical maturity etc and ranks optional back-end scenarios specific to member states situations in order to develop a specific member state strategic plan with a preferred or recommended option for managing spent fuel from Research Reactors.

  20. The effects of actinide based fuels on incremental cross sections in a Candu reactor

    Energy Technology Data Exchange (ETDEWEB)

    Morreale, A.C.; Ball, M.R.; Novog, D.R.; Luxat, J.C., E-mail: morreaac@mcmaster.ca, E-mail: ballmr@mcmaster.ca, E-mail: novog@mcmaster.ca, E-mail: luxatj@mcmaster.ca [Department of Engineering Physics, McMaster University, Ontario (Canada)

    2011-07-01

    The reprocessing of spent fuel such as the extraction of actinide materials for use in mixed oxide fuels is a key component of reducing the end waste from nuclear power plant operations. Using recycled spent fuels in current reactors is becoming a popular option to help close the fuel cycle. In order to ensure safe and consistent operations in existing facilities, the properties of these fuels must be compatible with current reactor designs. This paper examines the features of actinide mixed oxide fuel, TRUMOX, in a CANDU reactor. Specifically, the effect of this fuel design on the incremental cross sections related to the use of adjuster rods is investigated. The actinide concentrations studied in this work were based on extraction from thirty year cooled spent fuel and mixed with natural uranium to yield a MOX fuel of 4.75% actinide by weight. The incremental cross sections were calculated using the DRAGON neutron transport code. The results for the actinide fuel were compared to those for standard natural uranium fuel and for a slightly enriched (1% U-235) fuel designed to reduce void reactivity. Adjuster reactivity effect calculations and void reactivity simulations were also performed. The impact of the adjuster on reactivity decreased by as much as 56% with TRUMOX fuel while the CVR was reduced by 71% due to the addition of central burnable poison. The incremental cross sections were largely affected by the use of the TRUMOX fuel primarily due to its increased level of fissile material (five times that of NU). The largest effects are in the thermal neutron group where the Σ{sub T} value is increased by 46.7%, the Σ{sub ny)} values increased by 13.0% and 9.9%. The value associated with thermal fission, υΣ{sub f}, increased by 496.6% over regular natural uranium which is expected due to the much higher reactivity of the fuel. (author)

  1. Meeting Summary Advanced Light Water Reactor Fuels Industry Meeting Washington DC October 27 - 28, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Not Listed

    2011-11-01

    The Advanced LWR Fuel Working Group first met in November of 2010 with the objective of looking 20 years ahead to the role that advanced fuels could play in improving light water reactor technology, such as waste reduction and economics. When the group met again in March 2011, the Fukushima incident was still unfolding. After the March meeting, the focus of the program changed to determining what we could do in the near term to improve fuel accident tolerance. Any discussion of fuels with enhanced accident tolerance will likely need to consider an advanced light water reactor with enhanced accident tolerance, along with the fuel. The Advanced LWR Fuel Working Group met in Washington D.C. on October 72-18, 2011 to continue discussions on this important topic.

  2. Establishing Specifications for Low Enriched Uranium Fuel Operations Conducted Outside the High Flux Isotope Reactor Site

    Energy Technology Data Exchange (ETDEWEB)

    Pinkston, Daniel [ORNL; Primm, Trent [ORNL; Renfro, David G [ORNL; Sease, John D [ORNL

    2010-10-01

    The National Nuclear Security Administration (NNSA) has funded staff at Oak Ridge National Laboratory (ORNL) to study the conversion of the High Flux Isotope Reactor (HFIR) from the current, high enriched uranium fuel to low enriched uranium fuel. The LEU fuel form is a metal alloy that has never been used in HFIR or any HFIR-like reactor. This report provides documentation of a process for the creation of a fuel specification that will meet all applicable regulations and guidelines to which UT-Battelle, LLC (UTB) the operating contractor for ORNL - must adhere. This process will allow UTB to purchase LEU fuel for HFIR and be assured of the quality of the fuel being procured.

  3. Selected transport studies of a tokamak-based DEMO fusion reactor

    Science.gov (United States)

    Fable, E.; Wenninger, R.; Kemp, R.

    2017-02-01

    As a next-step in the tokamak-based fusion programme, the DEMO fusion reactor is foreseen to produce relevant output electricity, in the order of  ∼500 MW delivered to the network. The scenarios that are being presently investigated consist of a pulsed device, called DEMO1, and a steady-state device, called DEMO2. In this work, which is focused on the pulsed device DEMO1, scenarios are studied from the point of view of core transport, to assess plasma performance and limitations due to core microinstabilities. The role of radiated power, aspect ratio, and height of temperature pedestal are assessed as they impact both core energy and particle transport. Open issues in this framework are also discussed.

  4. Introduction to the special issue on the technical status of materials for a fusion reactor

    Science.gov (United States)

    Stork, D.; Zinkle, S. J.

    2017-09-01

    Materials determine in a fundamental way the performance and environmental attractiveness of a fusion reactor: through the size (power fluxes to the divertor, neutron fluxes to the first wall); economics (replacement lifetime of critical in-vessel components, thermodynamic efficiency through operating temperature etc); plasma performance (erosion by plasma fluxes to the divertor surfaces); robustness against off-normal accidents (safety); and the effects of post-operation radioactivity on waste disposal and maintenance. The major philosophies and methodologies used to formulate programmes for the development of fusion materials are outlined, as the basis for other articles in this special issue, which deal with the fundamental understanding of the issues regarding these materials and their technical status and prospects for development.

  5. Optimisation of confinement in a fusion reactor using a nonlinear turbulence model

    CERN Document Server

    Highcock, E G; Barnes, M; Dorland, W

    2016-01-01

    The confinement of heat in the core of a magnetic fusion reactor is optimised using a multidimensional optimisation algorithm. For the first time in such a study, the loss of heat due to turbulence is modelled at every stage using first-principles nonlinear simulations which accurately capture the turbulent cascade and large-scale zonal flows. The simulations utilise a novel approach, with gyrofluid treatment of the small-scale drift waves and gyrokinetic treatment of the large-scale zonal flows. A simple near-circular equilibrium with standard parameters is chosen as the initial condition. The figure of merit, fusion power per unit volume, is calculated, and then two control parameters, the elongation and triangularity of the outer flux surface, are varied, with the algorithm seeking to optimise the chosen figure of merit. An optimal configuration is discovered at an elongation of 1.5 and a triangularity of 0.03.

  6. Fuel, Structural Material and Coolant for an Advanced Fast Micro-Reactor

    Science.gov (United States)

    Do Nascimento, J. A.; Duimarães, L. N. F.; Ono, S.

    The use of nuclear reactors in space, seabed or other Earth hostile environment in the future is a vision that some Brazilian nuclear researchers share. Currently, the USA, a leader in space exploration, has as long-term objectives the establishment of a permanent Moon base and to launch a manned mission to Mars. A nuclear micro-reactor is the power source chosen to provide energy for life support, electricity for systems, in these missions. A strategy to develop an advanced micro-reactor technologies may consider the current fast reactor technologies as back-up and the development of advanced fuel, structural and coolant materials. The next generation reactors (GEN-IV) for terrestrial applications will operate with high output temperature to allow advanced conversion cycle, such as Brayton, and hydrogen production, among others. The development of an advanced fast micro-reactor may create a synergy between the GEN-IV and space reactor technologies. Considering a set of basic requirements and materials properties this paper discusses the choice of advanced fuel, structural and coolant materials for a fast micro-reactor. The chosen candidate materials are: nitride, oxide as back-up, for fuel, lead, tin and gallium for coolant, ferritic MA-ODS and Mo alloys for core structures. The next step will be the neutronic and burnup evaluation of core concepts with this set of materials.

  7. Fuel burnup analysis for Thai research reactor by using MCNPX computer code

    Science.gov (United States)

    Sangkaew, S.; Angwongtrakool, T.; Srimok, B.

    2017-06-01

    This paper presents the fuel burnup analysis of the Thai research reactor (TRR-1/M1), TRIGA Mark-III, operated by Thailand Institute of Nuclear Technology (TINT) in Bangkok, Thailand. The modelling software used in this analysis is MCNPX (MCNP eXtended) version 2.6.0, a Fortran90 Monte Carlo radiation transport computer code. The analysis results will cover the core excess reactivity, neutron fluxes at the irradiation positions and neutron detector tubes, power distribution, fuel burnup, and fission products based on fuel cycle of first reactor core arrangement.

  8. High-power-density approaches to magnetic fusion energy: Problems and promise of compact reversed-field pinch reactors (CRFPR)

    Science.gov (United States)

    Hagenson, Randy L.; Krakowski, Robert A.; Dreicer, Harry

    1983-03-01

    If the costing assumptions upon which the positive assessment of conventional large superconducting fusion reactors are based proves overly optimistic, approaches that promise considerably increased system power density and reduced mass utilization will be required. These more compact reactor embodiments generally must operate with reduced shield thickness and resistive magnets. Because of the unique magnetic topology associated with the Reversed-Field Pinch (RFP), the compact reactor embodiment for this approach is particularly attractive from the viewpoint of low-field resistive coils operating with ohmic losses that can be made small relative to the fusion power. The RFP, therefore, is used as one example of a high-power-density (HPD) approach to magnetic fusion energy. A comprehensive system model is described and applied to select a unique, cost-optimized design point that will be used for a subsequent conceptual engineering design of the compact RFP Reactor (CRFPR). This cost-optimized CRFPR design serves as an example of a HPD fusion reactor that would operate with system power densities and mass utilizations that are comparable to fission power plants, these measures of system performance being an order of magnitude more favorable than the conventional approaches to magnetic fusion energy (MFE).

  9. Treatment of irradiation effects in structural design criteria for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, S. [Argonne National Lab., IL (United States). Fusion Power Program; Smith, P. [San Diego Joint Work Site, CA (United States). ITER Joint Central Team

    1997-03-01

    The irradiation environment experienced by the in-vessel components of fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) presents structural design challenges not envisioned in the development of existing structural design criteria such as the ASME Code or RCC-MR. From the standpoint of structural design criteria, the most significant issues stem from the irradiation-induced changes in material properties, specifically the reduction of ductility, strain hardening capability, and fracture toughness with neutron irradiation. These effects call into question the basis of the design rules in existing structural design criteria which assume that only code-approved materials with high toughness, ductility and strain hardening capability will be used. The present paper reviews the basis of new rules that address these issues in Draft 5 of the interim ITER structural design criteria (ISDC) which was released recently for trial use by the ITER designers.

  10. Potential for use of high-temperature superconductors in fusion reactors

    Science.gov (United States)

    Hull, John R.

    1992-09-01

    The present rate of development of high-temperature superconductors (HTSs) is sufficiently rapid that there may be opportunities for their use in contemporary fusion devices such as the International Thermonuclear Experimental Reactor (ITER). The most likely application is for delivering power to the superconducting magnets, especially in substituting for the current leads between the temperatures of 4 and 77 K. A second possible application of HTSs is in a liquid-nitrogen-cooled power bus connecting the power supplies to the magnets, thus reducing ohmic heating losses in these relatively long cables. A third potential application of HTSs is in inner high-field windings of the toroidal field coils that would operate at ~ 20 K. While the use of higher temperature magnets offers significant advantages to the reactor system, it is unlikely that tested HTSs for this application will be available within the ITER time frame.

  11. Thermal-hydraulic characteristics in a tokamak vacuum vessel of fusion reactor after transient events occurred

    Energy Technology Data Exchange (ETDEWEB)

    Takase, Kazuyuki; Kunugi, Tomoaki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Seki, Yasushi

    1997-12-31

    The thermal-hydraulic characteristics in a vacuum vessel (VV) of fusion reactor under the ingress-of-coolant-event (ICE) or loss-of-vacuum-event (LOVA) condition were carried out to investigate experimentally the thermofluid safety in the International Thermonuclear Experimental Reactor (ITER) under transient events. In the ICE experiments, the pressure rise and wall temperatures in the VV were measured and the performance of a suppression tank was confirmed. In the LOVA experiments, the exchange time inside the VV from the vacuum to be the atmospheric pressure was measured for various breach size and the exchange flow rates through the breaches of the VV under the atmospheric pressure conditions were clarified. (author)

  12. A Development of Technical Specification of a Research Reactor with Plate Fuels Cooled by Upward Flow

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sujin; Kim, Jeongeun; Kim, Hyeonil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The contents of the TS(Technical Specifications) are definitions, safety limits, limiting safety system settings, limiting conditions for operation, surveillance requirements, design features, and administrative controls. TS for Nuclear Power Plants (NPPs) have been developed since many years until now. On the other hands, there are no applicable modernized references of TS for research reactors with many differences from NPPs in purpose and characteristics. Fuel temperature and Departure from Nuclear Boiling Ratio (DNBR) are being used as references from the thermal-hydraulic analysis point of view for determining whether the design of research reactors satisfies acceptance criteria for the nuclear safety or not. Especially for research reactors using plate-type fuels, fuel temperature and critical heat flux, however, are very difficult to measure during the reactor operation. This paper described the outline of main contents of a TS for open-pool research reactor with plate-type fuels using core cooling through passive systems, where acceptance criteria for nuclear safety such as CHF and fuel temperature cannot be directly measured, different from circumstances in NPPs. Thus, three independent variables instead of non-measurable acceptance criteria: fuel temperature and CHF are considered as safety limits, i.e., power, flow, and flow temperature.

  13. Delayed Neutrons Effect on Power Reactor with Variation of Fluid Fuel Velocity at MSR Fuji-12

    Science.gov (United States)

    Kuncoro Aji, Indarta; Pramuditya, Syeilendra; Novitrian; Irwanto, Dwi; Waris, Abdul

    2017-01-01

    As the nuclear reactor operate with liquid fuel, controlling velocity of the fuel flow on the Molten salt reactor very influence on the neutron kinetics in that reactor system. The effect of the pace fuel changes to the populations number of neutrons and power density on vertical direction (1 dimension) from the first until fifth year reactor operating had been analyzed on this research. This research had been conducted on MSR Fuji-12 with a two meters core high, and LiF-BeF2-ThF4-233UF4 as fuel composition respectively 71.78%-16%-11.86%-0.36%. Data of reactivity, neutron flux, and the macroscopic fission cross section obtained from ouput of SRAC (neutronic calculation code has been developed by JAEA, with JENDL-4.0 as data library on the SRAC calculation) was being used for the calculation process of this research. The calculation process of this research had been performed numerically by SOR (successive over relaxation) and finite difference methode, as well as using C programing language. From the calculation, regarding to the value of power density resulting from delayed neutrons, concluded that 20 m/s is the optimum fuel flow velocity in all the years reactor had operated. Where the increases number of power are inversely proportional with the fuel flow speed.

  14. Development of Advanced High Uranium Density Fuels for Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, James [Univ. of Wisconsin, Madison, WI (United States); Butt, Darryl [Boise State Univ., ID (United States); Meyer, Mitchell [Idaho National Lab. (INL), Idaho Falls, ID (United States); Xu, Peng [Westinghouse Electric Corporation, Pittsburgh, PA (United States)

    2016-02-15

    This work conducts basic materials research (fabrication, radiation resistance, thermal conductivity, and corrosion response) on U3Si2 and UN, two high uranium density fuel forms that have a high potential for success as advanced light water reactor (LWR) fuels. The outcome of this proposed work will serve as the basis for the development of advance LWR fuels, and utilization of such fuel forms can lead to the optimization of the fuel performance related plant operating limits such as power density, power ramp rate and cycle length.

  15. Fusion core start-up, ignition and burn simulations of reversed-field pinch (RFP) reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Yuh-Yi

    1988-01-01

    A transient reactor simulation model is developed to investigate and simulate the start-up, ignition and burn of a reversed-field pinch reactor. The simulation is based upon a spatially averaged plasma balance model with field profiles obtained from MHD quasi-equilibrium analysis. Alpha particle heating is estimated from Fokker-Planck calculations. The instantaneous plasma current is derived from a self-consistent circuit analysis for plasma/coil/eddy current interactions. The simulation code is applied to the TITAN RFP reactor design which features a compact, high-power-density reversed-field pinch fusion system. A contour analysis is performed using the steady-state global plasma balance. The results are presented with contours of constant plasma current. A saddle point is identified in the contour plot which determines the minimum value of plasma current required to achieve ignition. An optimized start-up to ignition and burn path can be obtained by passing through the saddle point. The simulation code is used to study and optimize the start-up scenario. In the simulations of the TITAN RFP reactor, the OH-driven superconducting EF coils are found to deviate from the required equilibrium values as the induced plasma current increases. This results in the modification of superconducting EF coils and the addition of a set of EF trim coils. The design of the EF coil system is performed with the simulation code subject to the optimization of trim-coil power and current. In addition, the trim-coil design is subject to the constraints of vertical-field stability index and maintenance access. A power crowbar is also needed to prevent the superconducting EF coils from generating excessive vertical field. A set of basic results from the simulation of TITAN RFP reactor yield a picture of RFP plasma operation in a reactor. Investigations of eddy current are also presented. 145 refs., 37 figs., 2 tabs.

  16. Feasibility and Safety Assessment for Advanced Reactor Concepts Using Vented Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Andrew [Oregon State Univ., Corvallis, OR (United States). Nuclear Engineering and Radiation Health Physics; Matthews, Topher [Oregon State Univ., Corvallis, OR (United States); Lenhof, Renae [Oregon State Univ., Corvallis, OR (United States); Deason, Wesley [Oregon State Univ., Corvallis, OR (United States); Harter, Jackson [Oregon State Univ., Corvallis, OR (United States)

    2015-01-16

    Recent interest in fast reactor technology has led to renewed analysis of past reactor concepts such as Gas Fast Reactors and Sodium Fast Reactors. In an effort to make these reactors more economic, the fuel is required to stay in the reactor for extended periods of time; the longer the fuel stays within the core, the more fertile material is converted into usable fissile material. However, as burnup of the fuel-rod increases, so does the internal pressure buildup due to gaseous fission products. In order to reach the 30 year lifetime requirements of some reactor designs, the fuel pins must have a vented-type design to allow the buildup of fission products to escape. The present work aims to progress the understanding of the feasibility and safety issues related to gas reactors that incorporate vented fuel. The work was separated into three different work-scopes: 1. Quantitatively determine fission gas release from uranium carbide in a representative helium cooled fast reactor; 2. Model the fission gas behavior, transport, and collection in a Fission Product Vent System; and, 3. Perform a safety analysis of the Fission Product Vent System. Each task relied on results from the previous task, culminating in a limited scope Probabilistic Risk Assessment (PRA) of the Fission Product Vent System. Within each task, many key parameters lack the fidelity needed for comprehensive or accurate analysis. In the process of completing each task, the data or methods that were lacking were identified and compiled in a Gap Analysis included at the end of the report.

  17. Note: Readout of a micromechanical magnetometer for the ITER fusion reactor.

    Science.gov (United States)

    Rimminen, H; Kyynäräinen, J

    2013-05-01

    We present readout instrumentation for a MEMS magnetometer, placed 30 m away from the MEMS element. This is particularly useful when sensing is performed in high-radiation environment, where the semiconductors in the readout cannot survive. High bandwidth transimpedance amplifiers are used to cancel the cable capacitances of several nanofarads. A frequency doubling readout scheme is used for crosstalk elimination. Signal-to-noise ratio in the range of 60 dB was achieved and with sub-percent nonlinearity. The presented instrument is intended for the steady-state magnetic field measurements in the ITER fusion reactor.

  18. Modifications Made to the MELCOR Code for Analyzing Lithium Fires in Fusion Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, Brad Johnson

    2000-04-01

    This report documents initial modifications made to the MELCOR code that allows MELCOR to predict the consequences of lithium spill accidents for evolving fusion reactor designs. These modifications include thermodynamic and transport properties for lithium, and physical models for predicting the rate of reaction of and energy production from the lithium-air reaction. A benchmarking study was performed with this new MELCOR capability. Two lithium-air reaction tests conducted at the Hanford Engineering Development Laboratory (HEDL) were selected for this benchmark study. Excellent agreement was achieved between MELCOR predictions and measured data. Recommendations for modeling lithium fires with MELCOR and for future work in this area are included in this report.

  19. Modifications made to the MELCOR Code for Analyzing Lithium Fires in Fusion Reactors

    Energy Technology Data Exchange (ETDEWEB)

    B. J. Merrill

    2000-04-01

    This report documents initial modifications made to the MELCOR code that allows MELCOR to predict the consequences of lithium spill accidents for evolving fusion reactor designs. These modifications include thermodyna