WorldWideScience

Sample records for fusion protein induces

  1. Peptides and membrane fusion : Towards an understanding of the molecular mechanism of protein-induced fusion

    NARCIS (Netherlands)

    Pecheur, EI; Sainte-Marie, J; Bienvenue, A; Hoekstra, D

    1999-01-01

    Processes such as endo- or exocytosis, membrane recycling, fertilization and enveloped viruses infection require one or more critical membrane fusion reactions. A key feature in viral and cellular fusion phenomena is the involvement of specific fusion proteins. Among the few well-characterized fusio

  2. Mechanism of membrane fusion induced by vesicular stomatitis virus G protein.

    Science.gov (United States)

    Kim, Irene S; Jenni, Simon; Stanifer, Megan L; Roth, Eatai; Whelan, Sean P J; van Oijen, Antoine M; Harrison, Stephen C

    2017-01-03

    The glycoproteins (G proteins) of vesicular stomatitis virus (VSV) and related rhabdoviruses (e.g., rabies virus) mediate both cell attachment and membrane fusion. The reversibility of their fusogenic conformational transitions differentiates them from many other low-pH-induced viral fusion proteins. We report single-virion fusion experiments, using methods developed in previous publications to probe fusion of influenza and West Nile viruses. We show that a three-stage model fits VSV single-particle fusion kinetics: (i) reversible, pH-dependent, G-protein conformational change from the known prefusion conformation to an extended, monomeric intermediate; (ii) reversible trimerization and clustering of the G-protein fusion loops, leading to an extended intermediate that inserts the fusion loops into the target-cell membrane; and (iii) folding back of a cluster of extended trimers into their postfusion conformations, bringing together the viral and cellular membranes. From simulations of the kinetic data, we conclude that the critical number of G-protein trimers required to overcome membrane resistance is 3 to 5, within a contact zone between the virus and the target membrane of 30 to 50 trimers. This sequence of conformational events is similar to those shown to describe fusion by influenza virus hemagglutinin (a "class I" fusogen) and West Nile virus envelope protein ("class II"). Our study of VSV now extends this description to "class III" viral fusion proteins, showing that reversibility of the low-pH-induced transition and architectural differences in the fusion proteins themselves do not change the basic mechanism by which they catalyze membrane fusion.

  3. Protein body-inducing fusions for high-level production and purification of recombinant proteins in plants.

    Science.gov (United States)

    Conley, Andrew J; Joensuu, Jussi J; Richman, Alex; Menassa, Rima

    2011-05-01

    For the past two decades, therapeutic and industrially important proteins have been expressed in plants with varying levels of success. The two major challenges hindering the economical production of plant-made recombinant proteins include inadequate accumulation levels and the lack of efficient purification methods. To address these limitations, several fusion protein strategies have been recently developed to significantly enhance the production yield of plant-made recombinant proteins, while simultaneously assisting in their subsequent purification. Elastin-like polypeptides are thermally responsive biopolymers composed of a repeating pentapeptide 'VPGXG' sequence that are valuable for the purification of recombinant proteins. Hydrophobins are small fungal proteins capable of altering the hydrophobicity of their respective fusion partner, thus enabling efficient purification by surfactant-based aqueous two-phase systems. Zera, a domain of the maize seed storage protein γ-zein, can induce the formation of protein storage bodies, thus facilitating the recovery of fused proteins using density-based separation methods. These three novel protein fusion systems have also been shown to enhance the accumulation of a range of different recombinant proteins, while concurrently inducing the formation of protein bodies. The packing of these fusion proteins into protein bodies may exclude the recombinant protein from normal physiological turnover. Furthermore, these systems allow for quick, simple and inexpensive nonchromatographic purification of the recombinant protein, which can be scaled up to industrial levels of protein production. This review will focus on the similarities and differences of these artificial storage organelles, their biogenesis and their implication for the production of recombinant proteins in plants and their subsequent purification.

  4. Transgenic carrot expressing fusion protein comprising M. tuberculosis antigens induces immune response in mice.

    Science.gov (United States)

    Permyakova, Natalia V; Zagorskaya, Alla A; Belavin, Pavel A; Uvarova, Elena A; Nosareva, Olesya V; Nesterov, Andrey E; Novikovskaya, Anna A; Zav'yalov, Evgeniy L; Moshkin, Mikhail P; Deineko, Elena V

    2015-01-01

    Tuberculosis remains one of the major infectious diseases, which continues to pose a major global health problem. Transgenic plants may serve as bioreactors to produce heterologous proteins including antibodies, antigens, and hormones. In the present study, a genetic construct has been designed that comprises the Mycobacterium tuberculosis genes cfp10, esat6 and dIFN gene, which encode deltaferon, a recombinant analog of the human γ-interferon designed for expression in plant tissues. This construct was transferred to the carrot (Daucus carota L.) genome by Agrobacterium-mediated transformation. This study demonstrates that the fusion protein CFP10-ESAT6-dIFN is synthesized in the transgenic carrot storage roots. The protein is able to induce both humoral and cell-mediated immune responses in laboratory animals (mice) when administered either orally or by injection. It should be emphasized that M. tuberculosis antigens contained in the fusion protein have no cytotoxic effect on peripheral blood mononuclear cells.

  5. Transgenic Carrot Expressing Fusion Protein Comprising M. tuberculosis Antigens Induces Immune Response in Mice

    Directory of Open Access Journals (Sweden)

    Natalia V. Permyakova

    2015-01-01

    Full Text Available Tuberculosis remains one of the major infectious diseases, which continues to pose a major global health problem. Transgenic plants may serve as bioreactors to produce heterologous proteins including antibodies, antigens, and hormones. In the present study, a genetic construct has been designed that comprises the Mycobacterium tuberculosis genes cfp10, esat6 and dIFN gene, which encode deltaferon, a recombinant analog of the human γ-interferon designed for expression in plant tissues. This construct was transferred to the carrot (Daucus carota L. genome by Agrobacterium-mediated transformation. This study demonstrates that the fusion protein CFP10-ESAT6-dIFN is synthesized in the transgenic carrot storage roots. The protein is able to induce both humoral and cell-mediated immune responses in laboratory animals (mice when administered either orally or by injection. It should be emphasized that M. tuberculosis antigens contained in the fusion protein have no cytotoxic effect on peripheral blood mononuclear cells.

  6. Prm3p is a pheromone-induced peripheral nuclear envelope protein required for yeast nuclear fusion.

    Science.gov (United States)

    Shen, Shu; Tobery, Cynthia E; Rose, Mark D

    2009-05-01

    Nuclear membrane fusion is the last step in the mating pathway of the yeast Saccharomyces cerevisiae. We adapted a bioinformatics approach to identify putative pheromone-induced membrane proteins potentially required for nuclear membrane fusion. One protein, Prm3p, was found to be required for nuclear membrane fusion; disruption of PRM3 caused a strong bilateral defect, in which nuclear congression was completed but fusion did not occur. Prm3p was localized to the nuclear envelope in pheromone-responding cells, with significant colocalization with the spindle pole body in zygotes. A previous report, using a truncated protein, claimed that Prm3p is localized to the inner nuclear envelope. Based on biochemistry, immunoelectron microscopy and live cell microscopy, we find that functional Prm3p is a peripheral membrane protein exposed on the cytoplasmic face of the outer nuclear envelope. In support of this, mutations in a putative nuclear localization sequence had no effect on full-length protein function or localization. In contrast, point mutations and deletions in the highly conserved hydrophobic carboxy-terminal domain disrupted both protein function and localization. Genetic analysis, colocalization, and biochemical experiments indicate that Prm3p interacts directly with Kar5p, suggesting that nuclear membrane fusion is mediated by a protein complex.

  7. Thermally-induced aggregation and fusion of protein-free lipid vesicles.

    Science.gov (United States)

    Ibarguren, Maitane; Bomans, Paul H H; Ruiz-Mirazo, Kepa; Frederik, Peter M; Alonso, Alicia; Goñi, Félix M

    2015-12-01

    Membrane fusion is an important phenomenon in cell biology and pathology. This phenomenon can be modeled using vesicles of defined size and lipid composition. Up to now fusion models typically required the use of chemical (polyethyleneglycol, cations) or enzymatic catalysts (phospholipases). We present here a model of lipid vesicle fusion induced by heat. Large unilamellar vesicles consisting of a phospholipid (dioleoylphosphatidylcholine), cholesterol and diacylglycerol in a 43:57:3 mol ratio were employed. In this simple system, fusion was the result of thermal fluctuations, above 60 °C. A similar system containing phospholipid and cholesterol but no diacylglycerol was observed to aggregate at and above 60 °C, in the absence of fusion. Vesicle fusion occurred under our experimental conditions only when (31)P NMR and cryo-transmission electron microscopy of the lipid mixtures used in vesicle preparation showed non-lamellar lipid phase formation (hexagonal and cubic). Non-lamellar structures are probably the result of lipid reassembly of the products of individual fusion events, or of fusion intermediates. A temperature-triggered mechanism of lipid reassembly might have occurred at various stages of protocellular evolution.

  8. pH regulation in early endosomes and interferon-inducible transmembrane proteins control avian retrovirus fusion.

    Science.gov (United States)

    Desai, Tanay M; Marin, Mariana; Mason, Caleb; Melikyan, Gregory B

    2017-05-12

    Enveloped viruses infect host cells by fusing their membranes with those of the host cell, a process mediated by viral glycoproteins upon binding to cognate host receptors or entering into acidic intracellular compartments. Whereas the effect of receptor density on viral infection has been well studied, the role of cell type-specific factors/processes, such as pH regulation, has not been characterized in sufficient detail. Here, we examined the effects of cell-extrinsic factors (buffer environment) and cell-intrinsic factors (interferon-inducible transmembrane proteins, IFITMs), on the pH regulation in early endosomes and on the efficiency of acid-dependent fusion of the avian sarcoma and leukosis virus (ASLV), with endosomes. First, we found that a modest elevation of external pH can raise the pH in early endosomes in a cell type-dependent manner and thereby delay the acid-induced fusion of endocytosed ASLV. Second, we observed a cell type-dependent delay between the low pH-dependent and temperature-dependent steps of viral fusion, consistent with the delayed enlargement of the fusion pore. Third, ectopic expression of IFITMs, known to potently block influenza virus fusion with late compartments, was found to only partially inhibit ASLV fusion with early endosomes. Interestingly, IFITM expression promoted virus uptake and the acidification of endosomal compartments, resulting in an accelerated fusion rate when driven by the glycosylphosphatidylinositol-anchored, but not by the transmembrane isoform of the ASLV receptor. Collectively, these results highlight the role of cell-extrinsic and cell-intrinsic factors in regulating the efficiency and kinetics of virus entry and fusion with target cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Vaccination with TAT-antigen fusion protein induces protective, CD8(+) T cell-mediated immunity against Leishmania major.

    Science.gov (United States)

    Kronenberg, Katharina; Brosch, Sven; Butsch, Florian; Tada, Yayoi; Shibagaki, Naotaka; Udey, Mark C; von Stebut, Esther

    2010-11-01

    In murine leishmaniasis, healing is mediated by IFN-γ-producing CD4(+) and CD8(+) T cells. Thus, an efficacious vaccine should induce Th1 and Tc1 cells. Dendritic cells (DCs) pulsed with exogenous proteins primarily induce strong CD4-dependent immunity; induction of CD8 responses has proven to be difficult. We evaluated the immunogenicity of fusion proteins comprising the protein transduction domain of HIV-1 TAT and the Leishmania antigen LACK (Leishmania homolog of receptors for activated C kinase), as TAT-fusion proteins facilitate major histocompatibility complex class I-dependent antigen presentation. In vitro, TAT-LACK-pulsed DCs induced stronger proliferation of Leishmania-specific CD8(+) T cells compared with DCs incubated with LACK alone. Vaccination with TAT-LACK-pulsed DCs or fusion proteins plus adjuvant in vivo significantly improved disease outcome in Leishmania major-infected mice and was superior to vaccination with DCs treated with LACK alone. Vaccination with DC+TAT-LACK resulted in stronger proliferation of CD8(+) T cells when compared with immunization with DC+LACK. Upon depletion of CD4(+) or CD8(+) T cells, TAT-LACK-mediated protection was lost. TAT-LACK-pulsed IL-12p40-deficient DCs did not promote protection in vivo. In summary, these data show that TAT-fusion proteins are superior in activating Leishmania-specific Tc1 cells when compared with antigen alone and suggest that IL-12-dependent preferential induction of antigen-specific CD8(+) cells promotes significant protection against this important human pathogen.

  10. Protective effects of a bacterially expressed NIF-KGF fusion protein against bleomycin-induced acute lung injury in mice.

    Science.gov (United States)

    Li, Xinping; Li, Shengli; Zhang, Miaotao; Li, Xiukun; Zhang, Xiaoming; Zhang, Wenlong; Li, Chuanghong

    2010-08-01

    Current evidence suggests that the keratinocyte growth factor (KGF) and the polymorphonuclear leukocyte may play key roles in the development of lung fibrosis. Here we describe the construction, expression, purification, and identification of a novel NIF (neutrophil inhibitory factor)-KGF mutant fusion protein (NKM). The fusion gene was ligated via a flexible octapeptide hinge and expressed as an insoluble protein in Escherichia coli BL21 (DE3). The fusion protein retained the activities of KGF and NIF, as it inhibited both fibroblast proliferation and leukocyte adhesion. Next, the effects of NKM on bleomycin-induced lung fibrosis in mice were examined. The mice were divided into the following four groups: (i) saline group; (ii) bleomycin group (instilled with 5 mg/kg bleomycin intratracheally); (iii) bleomycin plus dexamethasone (Dex) group (Dex was given intraperitoneally (i.p.) at 1 mg/kg/day 2 days prior to bleomycin instillation and daily after bleomycin instillation until the end of the treatment); and (iv) bleomycin plus NKM group (NKM was given i.p. at 2 mg/kg/day using the same protocol as the Dex group). NKM significantly improved the survival rates of mice exposed to bleomycin. The marked morphological changes and increased hydroxyproline levels resulted from the instillation of bleomycin (on Day 17) in the lungs were significantly inhibited by NKM. These results revealed that NKM can attenuate bleomycin-induced lung fibrosis, suggesting that NKM could be used to prevent bleomycin-induced lung damage or other interstitial pulmonary fibrosis.

  11. Fusion-protein-assisted protein crystallization.

    Science.gov (United States)

    Kobe, Bostjan; Ve, Thomas; Williams, Simon J

    2015-07-01

    Fusion proteins can be used directly in protein crystallization to assist crystallization in at least two different ways. In one approach, the `heterologous fusion-protein approach', the fusion partner can provide additional surface area to promote crystal contact formation. In another approach, the `fusion of interacting proteins approach', protein assemblies can be stabilized by covalently linking the interacting partners. The linker connecting the proteins plays different roles in the two applications: in the first approach a rigid linker is required to reduce conformational heterogeneity; in the second, conversely, a flexible linker is required that allows the native interaction between the fused proteins. The two approaches can also be combined. The recent applications of fusion-protein technology in protein crystallization from the work of our own and other laboratories are briefly reviewed.

  12. The p10 FAST protein fusion peptide functions as a cystine noose to induce cholesterol-dependent liposome fusion without liposome tubulation.

    Science.gov (United States)

    Key, Tim; Sarker, Muzaddid; de Antueno, Roberto; Rainey, Jan K; Duncan, Roy

    2015-02-01

    The reovirus p10 fusion-associated small transmembrane (FAST) proteins are the smallest known membrane fusion proteins, and evolved specifically to mediate cell-cell, rather than virus-cell, membrane fusion. The 36-40-residue ectodomains of avian reovirus (ARV) and Nelson Bay reovirus (NBV) p10 contain an essential intramolecular disulfide bond required for both cell-cell fusion and lipid mixing between liposomes. To more clearly define the functional, biochemical and biophysical features of this novel fusion peptide, synthetic peptides representing the p10 ectodomains of ARV and NBV were analyzed by solution-state NMR spectroscopy, circular dichroism spectroscopy, fluorescence spectroscopy-based hydrophobicity analysis, and liposome binding and fusion assays. Results indicate that disulfide bond formation promotes exposure of hydrophobic residues, as indicated by bis-ANS binding and time-dependent peptide aggregation under aqueous conditions, implying the disulfide bond creates a small, geometrically constrained, cystine noose. Noose formation is required for peptide partitioning into liposome membranes and liposome lipid mixing, and electron microscopy revealed that liposome-liposome fusion occurs in the absence of liposome tubulation. In addition, p10 fusion peptide activity, but not membrane partitioning, is dependent on membrane cholesterol.

  13. Cellulose binding domain fusion proteins

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  14. Immunisation with ID83 fusion protein induces antigen-specific cell mediated and humoral immune responses in cattle.

    Science.gov (United States)

    Jones, Gareth J; Steinbach, Sabine; Clifford, Derek; Baldwin, Susan L; Ireton, Gregory C; Coler, Rhea N; Reed, Steven G; Vordermeier, H Martin

    2013-10-25

    In this study we have investigated the potential of mycobacterial proteins as candidate subunit vaccines for bovine tuberculosis. In addition, we have explored the use of TLR-ligands as potential adjuvants in cattle. In vitro screening assays with whole blood from Mycobacterium bovis-infected and BCG-vaccinated cattle demonstrated that fusion protein constructs were most commonly recognised, and the ID83 fusion protein was selected for further immunisation studies. Furthermore, glucopyranosyl lipid A (GLA) and resiquimod (R848), agonists for TLR4 and TLR7/8 respectively, stimulated cytokine production (IL-12, TNF-α, MIP-1β and IL-10) in bovine dendritic cell cultures, and these were formulated as novel oil-in-water emulsions (GLA-SE and R848-SE) for immunisation studies. Immunisation with ID83 in a water-in-oil emulsion adjuvant (ISA70) induced both cell mediated and humoral immune responses, as characterised by antigen-specific IFN-γ production, cell proliferation, IgG1 and IgG2 antibody production. In comparison, ID83 immunisation with the novel adjuvants induced weaker (ID83/R848-SE) or no (ID83/GLA-SE) antigen-specific IFN-γ production and cell proliferation. However, both did induce ID83-specific antibody production, which was restricted to IgG1 antibody isotype. Overall, these results provide encouraging preliminary data for the further development of ID83 in vaccine strategies for bovine TB. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  15. JAK inhibitors suppress t(8;21) fusion protein-induced leukemia

    Science.gov (United States)

    Lo, Miao-Chia; Peterson, Luke F.; Yan, Ming; Cong, Xiuli; Hickman, Justin H.; DeKelver, Russel C.; Niewerth, Denise; Zhang, Dong-Er

    2014-01-01

    Oncogenic mutations in components of the JAK/STAT pathway, including those in cytokine receptors and JAKs, lead to increased activity of downstream signaling and are frequently found in leukemia and other hematological disorders. Thus, small-molecule inhibitors of this pathway have been the focus of targeted therapy in these hematological diseases. We previously showed that t(8;21) fusion protein AML1-ETO and its alternatively spliced variant AML1-ETO9a (AE9a) enhance the JAK/STAT pathway via down-regulation of CD45, a negative regulator of this pathway. To investigate the therapeutic potential of targeting JAK/STAT in t(8;21) leukemia, we examined the effects of a JAK2-selective inhibitor TG101209 and a JAK1/2-selective inhibitor INCB18424 on t(8;21) leukemia cells. TG101209 and INCB18424 inhibited proliferation and promoted apoptosis of these cells. Furthermore, TG101209 treatment in AE9a leukemia mice reduced tumor burden and significantly prolonged survival. TG101209 also significantly impaired the leukemia-initiating potential of AE9a leukemia cells in secondary recipient mice. These results demonstrate the potential therapeutic efficacy of JAK inhibitors in treating t(8;21) AML. PMID:23812420

  16. Nuclear envelope breakdown induced by herpes simplex virus type 1 involves the activity of viral fusion proteins

    Energy Technology Data Exchange (ETDEWEB)

    Maric, Martina; Haugo, Alison C. [Department of Microbiology, University of Iowa, Iowa City, IA 52242 (United States); Dauer, William [Department of Neurology, University of Michigan, Ann Arbor, MI 48109 (United States); Johnson, David [Department of Microbiology and Immunology, Oregon Health Sciences University, Portland, OR 97201 (United States); Roller, Richard J., E-mail: richard-roller@uiowa.edu [Department of Microbiology, University of Iowa, Iowa City, IA 52242 (United States)

    2014-07-15

    Herpesvirus infection reorganizes components of the nuclear lamina usually without loss of integrity of the nuclear membranes. We report that wild-type HSV infection can cause dissolution of the nuclear envelope in transformed mouse embryonic fibroblasts that do not express torsinA. Nuclear envelope breakdown is accompanied by an eight-fold inhibition of virus replication. Breakdown of the membrane is much more limited during infection with viruses that lack the gB and gH genes, suggesting that breakdown involves factors that promote fusion at the nuclear membrane. Nuclear envelope breakdown is also inhibited during infection with virus that does not express UL34, but is enhanced when the US3 gene is deleted, suggesting that envelope breakdown may be enhanced by nuclear lamina disruption. Nuclear envelope breakdown cannot compensate for deletion of the UL34 gene suggesting that mixing of nuclear and cytoplasmic contents is insufficient to bypass loss of the normal nuclear egress pathway. - Highlights: • We show that wild-type HSV can induce breakdown of the nuclear envelope in a specific cell system. • The viral fusion proteins gB and gH are required for induction of nuclear envelope breakdown. • Nuclear envelope breakdown cannot compensate for deletion of the HSV UL34 gene.

  17. Anticancer Effects of Fusion Protein CAtin on DMBA-induced Carcinogenesis in Buccal Pouch of Chinese Hamster

    Institute of Scientific and Technical Information of China (English)

    BAI Jie-ying; LI Xiao; LI Chang; ZHANG Xiao-fei; LI Zhi-xin; ZHAO Shuang; LIU Xiao; ZENG Lin; CHI Bao-rong

    2012-01-01

    Aberrant expression ofcarcinoembryonic antigen(CEA)is a common feature for multiple types of cancer,which makes it an attractive target for anticancer therapy.CAtin is a novel dual cancer-specific fusion protein,composed of an anti-CEA single-chain disulfide-stabilized Fv antibody(scdsFv)and Apoptin,a tumor-specific apoptosis-inducing protein.Oral squamous cell carcinoma(OSCC)is an important healthcare problem in the clinic.To evaluate the anticancer effects of CAtin on OSCC,7,12-dimethylbenz[a]anthracene(DMBA)was used to induce oral carcinogenesis and premalignant lesions in the buccal pouch of Chinese hamster,and the antitumor effects of CAtin were determined in pre-cancer,cancer and post-operatative cancer models,respectively.The results show that the administration of CAtin delayed the malignant transformation of early stage cancerous lesions,inhibited the growth of established solid oral tumors and reduced the post-operatative relapse of lesions,with no significant systemic toxicity.This study demonstrates that CAtin may have potential for the treatment of OSCC,and the development of preventive strategies based on CAtin may offer a practical approach for the treatment of human oral tumors.

  18. Differential Roles of Cell Death-inducing DNA Fragmentation Factor-α-like Effector (CIDE) Proteins in Promoting Lipid Droplet Fusion and Growth in Subpopulations of Hepatocytes.

    Science.gov (United States)

    Xu, Wenyi; Wu, Lizhen; Yu, Miao; Chen, Feng-Jung; Arshad, Muhammad; Xia, Xiayu; Ren, Hao; Yu, Jinhai; Xu, Li; Xu, Dijin; Li, John Zhong; Li, Peng; Zhou, Linkang

    2016-02-26

    Lipid droplets (LDs) are dynamic subcellular organelles whose growth is closely linked to obesity and hepatic steatosis. Cell death-inducing DNA fragmentation factor-α-like effector (CIDE) proteins, including Cidea, Cideb, and Cidec (also called Fsp27), play important roles in lipid metabolism. Cidea and Cidec are LD-associated proteins that promote atypical LD fusion in adipocytes. Here, we find that CIDE proteins are all localized to LD-LD contact sites (LDCSs) and promote lipid transfer, LD fusion, and growth in hepatocytes. We have identified two types of hepatocytes, one with small LDs (small LD-containing hepatocytes, SLHs) and one with large LDs (large LD-containing hepatocytes, LLHs) in the liver. Cideb is localized to LDCSs and promotes lipid exchange and LD fusion in both SLHs and LLHs, whereas Cidea and Cidec are specifically localized to the LDCSs and promote lipid exchange and LD fusion in LLHs. Cideb-deficient SLHs have reduced LD sizes and lower lipid exchange activities. Fasting dramatically induces the expression of Cidea/Cidec and increases the percentage of LLHs in the liver. The majority of the hepatocytes from the liver of obese mice are Cidea/Cidec-positive LLHs. Knocking down Cidea or Cidec significantly reduced lipid storage in the livers of obese animals. Our data reveal that CIDE proteins play differential roles in promoting LD fusion and lipid storage; Cideb promotes lipid storage under normal diet conditions, whereas Cidea and Cidec are responsible for liver steatosis under fasting and obese conditions.

  19. Immunization with FSHβ fusion protein antigen prevents bone loss in a rat ovariectomy-induced osteoporosis model

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Wenxin; Yan, Xingrong; Du, Huicong; Cui, Jihong; Li, Liwen, E-mail: liven@nwu.edu.cn; Chen, Fulin, E-mail: chenfl@nwu.edu.cn

    2013-05-03

    Highlights: •A GST-FSH fusion protein was successfully expressed in E. coli. •Immunization with GST-FSH antigen can raise high-titer anti-FSH polyclonal sera. •Anti-FSH polyclonal sera can neutralize osteoclastogenic effect of FSH in vitro. •FSH immunization can prevent bone loss in a rat osteoporosis model. -- Abstract: Osteoporosis, a metabolic bone disease, threatens postmenopausal women globally. Hormone replacement therapy (HTR), especially estrogen replacement therapy (ERT), is used widely in the clinic because it has been generally accepted that postmenopausal osteoporosis is caused by estrogen deficiency. However, hypogonadal α and β estrogen receptor null mice were only mildly osteopenic, and mice with either receptor deleted had normal bone mass, indicating that estrogen may not be the only mediator that induces osteoporosis. Recently, follicle-stimulating hormone (FSH), the serum concentration of which increases from the very beginning of menopause, has been found to play a key role in postmenopausal osteoporosis by promoting osteoclastogenesis. In this article, we confirmed that exogenous FSH can enhance osteoclast differentiation in vitro and that this effect can be neutralized by either an anti-FSH monoclonal antibody or anti-FSH polyclonal sera raised by immunizing animals with a recombinant GST-FSHβ fusion protein antigen. Moreover, immunizing ovariectomized rats with the GST-FSHβ antigen does significantly prevent trabecular bone loss and thereby enhance the bone strength, indicating that a FSH-based vaccine may be a promising therapeutic strategy to slow down bone loss in postmenopausal women.

  20. Antitumor immunopreventive effect in mice induced by DNA vaccine encoding a fusion protein of α-fetoprotein and CTLA4

    Institute of Scientific and Technical Information of China (English)

    Geng Tian; Ji-Lin Yi; Ping Xiong

    2004-01-01

    AIM: To develop a tumor DNA vaccine encoding a fusion protein of murine AFP and CTLA4, and to study its ability to induce specific CTL response and its protective effect against AFP-producing tumor.METHODS: Murine α-fetoprotein (mAFP) gene was cloned from total RNA of Hepa1-6 cells by RT-PCR. A DNA vaccine was constructed by fusion murine α-fetoprotein gene and extramembrane domain of murine CTLA4 gene. The DNA vaccine was identified by restriction enzyme analysis,sequencing and expression. EL-4 (mAFP) was developed by stable transfection of EL-4 cells with pmAFP. The frequency of cells produdng IFN-γ in splenocytes harvested from the immunized mice was measured by ELISPOT. Mice immunized with DNA vaccine were inoculated with EL-4 (mAFP) cells in back to observe the protective effect of immunization on tumor. On the other hand, blood samples were collected from the immunized mice to check the functions of liver and kidney.RESULTS: 1.8 kb mAFP cDNA was cloned from total RNA of Hepa1-6 cells by RT-PCR. The DNA vaccine encoding a fusion protein of mAFP-CTLA4 was constructed and confirmed by restriction enzyme analysis, sequencing and expression. The expression of mAFP mRNA in EL-4 (mAFP) was confirmed by RT-PCR. The ELISPOT results showed that the number of IFN-γ-producing cells in pmAFP-CTLA4 group was significantly higher than that in pmAFP, pcDNA3.1 and PBS group. The tumor volume in pmAFP-CTLA4 group was significantly smaller than that in pmAFP, pcDNA3.1 and PBS group, respectively. The hepatic and kidney functions in each group were not altered.CONCLUSION: AFP-CTLA4 DNA vaccine can stimulate potent specific CTL responses and has distinctive antitumor effect on AFP-producing tumor. The vaccine has no impact on the function of mouse liver and kidney.

  1. Respiratory syncytial virus fusion glycoprotein expressed in insect cells form protein nanoparticles that induce protective immunity in cotton rats.

    Directory of Open Access Journals (Sweden)

    Gale Smith

    Full Text Available Respiratory Syncytial Virus (RSV is an important viral agent causing severe respiratory tract disease in infants and children as well as in the elderly and immunocompromised individuals. The lack of a safe and effective RSV vaccine represents a major unmet medical need. RSV fusion (F surface glycoprotein was modified and cloned into a baculovirus vector for efficient expression in Sf9 insect cells. Recombinant RSV F was glycosylated and cleaved into covalently linked F2 and F1 polypeptides that formed homotrimers. RSV F extracted and purified from insect cell membranes assembled into 40 nm protein nanoparticles composed of multiple RSV F oligomers arranged in the form of rosettes. The immunogenicity and protective efficacy of purified RSV F nanoparticles was compared to live and formalin inactivated RSV in cotton rats. Immunized animals induced neutralizing serum antibodies, inhibited virus replication in the lungs, and had no signs of disease enhancement in the respiratory track of challenged animals. RSV F nanoparticles also induced IgG competitive for binding of palivizumab neutralizing monoclonal antibody to RSV F antigenic site II. Antibodies to this epitope are known to protect against RSV when passively administered in high risk infants. Together these data provide a rational for continued development a recombinant RSV F nanoparticle vaccine candidate.

  2. A tuberculosis vaccine based on phosphoantigens and fusion proteins induces distinct gammadelta and alphabeta T cell responses in primates.

    Science.gov (United States)

    Cendron, Delphine; Ingoure, Sophie; Martino, Angelo; Casetti, Rita; Horand, Françoise; Romagné, François; Sicard, Hélène; Fournié, Jean-Jacques; Poccia, Fabrizio

    2007-02-01

    Phosphoantigens are mycobacterial non-peptide antigens that might enhance the immunogenicity of current subunit candidate vaccines for tuberculosis. However, their testing requires monkeys, the only animal models suitable for gammadelta T cell responses to mycobacteria. Thus here, the immunogenicity of 6-kDa early secretory antigenic target-mycolyl transferase complex antigen 85B (ESAT-6-Ag85B) (H-1 hybrid) fusion protein associated or not to a synthetic phosphoantigen was compared by a prime-boost regimen of two groups of eight cynomolgus. Although phosphoantigen activated immediately a strong release of systemic Th1 cytokines (IL-2, IL-6, IFN-gamma, TNF-alpha), it further anergized blood gammadelta T lymphocytes selectively. By contrast, the hybrid H-1 induced only memory alphabeta T cell responses, regardless of phosphoantigen. These latter essentially comprised cytotoxic T lymphocytes specific for Ag85B (on average + 430 cells/million PBMC) and few IFN-gamma-secreting cells (+ 40 cells/million PBMC, equally specific for ESAT-6 and for Ag85B). Hence, in macaques, a prime-boost with the H-1/phosphoantigen subunit combination induces two waves of immune responses, successively by gammadelta T and alphabeta T lymphocytes.

  3. Humoral immune responses induced by anti-idiotypic antibody fusion protein of 6B11scFv/hGM-CSF in BALB/c mice

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Background We have previously developed and characterized a monoclonal anti-idiotype antibody, designated 6B11, which mimics an ovarian carcinoma associated antigen OC166-9 and whose corresponding monoclonal antibody is COC166-9 (Ab1). In this study, we evaluate the humoral immune responses induced by the fusion protein 6B11 single-chain variable fragment (scFv)/human granulocyte macrophage colony-stimulating factor (hGM-CSF) and 6B11scFv in BALB/c mice. Methods The fusion protein 6B11scFv/hGM-CSF was constructed by fusing a recombinant single-chain variable fragment of 6B11scFv to GM-CSF. BALB/c mice were administrated by 6B11scFv/hGM-CSF and 6B11scFv, respectively. Results The fusion protein 6B11scFv/hGM-CSF retained binding to the anti-mouse F(ab)2' and was also biologically active as measured by proliferation of human GM-CSF dependent cell TF1 in vitro. After immunization with the 6B11scFv/hGM-CSF and 6B11ScFv, BALB/c mice showed significantly enhanced Ab3 antibody responses to 6B11scFv/hGM-CSF compared with the 6B11scFv alone. The level of Ab3 was the highest after the first week and maintained for five weeks after the last immunization. Another booster was given when the Ab3 titer descended, and it would reach to the high level in a week. Conclusion The fusion protein 6B11scFv/hGM-CSF can induce humoral immunity against ovarian carcinoma in vivo. We also provide the theoretical foundation for the application of the fusion protein 6B11scFv/hGM-CSF for active immunotherapy of ovarian cancer.

  4. Transgenic Carrot Expressing Fusion Protein Comprising M. tuberculosis Antigens Induces Immune Response in Mice

    OpenAIRE

    Natalia V. Permyakova; Zagorskaya, Alla A.; Belavin, Pavel A.; Elena A. Uvarova; Nosareva, Olesya V.; Nesterov, Andrey E.; Novikovskaya, Anna A.; Evgeniy L. Zav’yalov; Mikhail P Moshkin; Deineko, Elena V.

    2015-01-01

    Tuberculosis remains one of the major infectious diseases, which continues to pose a major global health problem. Transgenic plants may serve as bioreactors to produce heterologous proteins including antibodies, antigens, and hormones. In the present study, a genetic construct has been designed that comprises the Mycobacterium tuberculosis genes cfp10, esat6 and dIFN gene, which encode deltaferon, a recombinant analog of the human γ-interferon designed for expression in plant tissues. This co...

  5. Fusion proteins of HIV-1 envelope glycoprotein gp120 with CD4-induced antibodies showed enhanced binding to CD4 and CD4 binding site antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weizao, E-mail: chenw3@mail.nih.gov [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Feng, Yang [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Wang, Yanping [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); The Basic Research Program, Science Applications International Corporation-Frederick, Inc., National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Zhu, Zhongyu; Dimitrov, Dimiter S. [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Some recombinant HIV-1 gp120s do not preserve their conformations on gp140s. Black-Right-Pointing-Pointer We hypothesize that CD4i antibodies could induce conformational changes in gp120. Black-Right-Pointing-Pointer CD4i antibodies enhance binding of CD4 and CD4bs antibodies to gp120. Black-Right-Pointing-Pointer CD4i antibody-gp120 fusion proteins could have potential as vaccine immunogens. -- Abstract: Development of successful AIDS vaccine immunogens continues to be a major challenge. One of the mechanisms by which HIV-1 evades antibody-mediated neutralizing responses is the remarkable conformational flexibility of its envelope glycoprotein (Env) gp120. Some recombinant gp120s do not preserve their conformations on gp140s and functional viral spikes, and exhibit decreased recognition by CD4 and neutralizing antibodies. CD4 binding induces conformational changes in gp120 leading to exposure of the coreceptor-binding site (CoRbs). In this study, we test our hypothesis that CD4-induced (CD4i) antibodies, which target the CoRbs, could also induce conformational changes in gp120 leading to better exposed conserved neutralizing antibody epitopes including the CD4-binding site (CD4bs). We found that a mixture of CD4i antibodies with gp120 only weakly enhanced CD4 binding. However, such interactions in single-chain fusion proteins resulted in gp120 conformations which bound to CD4 and CD4bs antibodies better than the original or mutagenically stabilized gp120s. Moreover, the two molecules in the fusion proteins synergized with each other in neutralizing HIV-1. Therefore, fusion proteins of gp120 with CD4i antibodies could have potential as components of HIV-1 vaccines and inhibitors of HIV-1 entry, and could be used as reagents to explore the conformational flexibility of gp120 and mechanisms of entry and immune evasion.

  6. Exo-endo cellulase fusion protein

    Science.gov (United States)

    Bower, Benjamin S [Palo Alto, CA; Larenas, Edmund A [Palo Alto, CA; Mitchinson, Colin [Palo Alto, CA

    2012-01-17

    The present invention relates to a heterologous exo-endo cellulase fusion construct, which encodes a fusion protein having cellulolytic activity comprising a catalytic domain derived from a fungal exo-cellobiohydrolase and a catalytic domain derived from an endoglucanase. The invention also relates to vectors and fungal host cells comprising the heterologous exo-endo cellulase fusion construct as well as methods for producing a cellulase fusion protein and enzymatic cellulase compositions.

  7. Fusion Protein Linkers: Property, Design and Functionality

    OpenAIRE

    Chen, Xiaoying; Zaro, Jennica; Shen, Wei-Chiang

    2012-01-01

    As an indispensable component of recombinant fusion proteins, linkers have shown increasing importance in the construction of stable, bioactive fusion proteins. This review covers the current knowledge of fusion protein linkers and summarizes examples for their design and application. The general properties of linkers derived from naturally-occurring multi-domain proteins can be considered as the foundation in linker design. Empirical linkers designed by researchers are generally classified i...

  8. A protein G fragment from the salmonid viral hemorrhagic septicemia rhabdovirus induces cell-to-cell fusion and membrane phosphatidylserine translocation at low pH.

    Science.gov (United States)

    Estepa, A M; Rocha, A I; Mas, V; Pérez, L; Encinar, J A; Nuñez, E; Fernandez, A; Gonzalez Ros, J M; Gavilanes, F; Coll, J M

    2001-12-07

    The fusion-related properties of segments p9, p3, p4, and p9 + p2 surrounding the p2 phospholipid-binding domain of the protein G (pG) of the salmonid rhabdovirus of viral hemorrhagic septicemia (VHS) (Nuñez, E., Fernandez, A. M., Estepa, A., Gonzalez-Ros, J. M., Gavilanes, F., and Coll, J. M. (1998) Virology 243, 322-330; Estepa, A., and Coll, J. M. (1996) Virology 216, 60-70), have been studied at neutral and fusion (low) pH values by using its derived peptides. Cell-to-cell fusion, translocation of phosphatidylserine, and inhibition of fusion of pG-transfected cells defined the p9 + p2 (fragment 11, sequence 56-110) as a fragment with higher specific activity for anionic phospholipid aggregation than the previously reported p2. While fragment 11, p2, and p3 showed interactions with anionic phospholipids, p9 and p4 showed no interactions with any phospholipids. When added to a cell monolayer model at low pH, fragment 11 induced pH-dependent cell-to-cell fusion and translocated phosphatidylserine from the inner to the outer leaflet of the membrane. At low pH and in the presence of anionic phospholipids, fragment 11 showed more than 80% beta-sheet conformation (IR and CD spectroscopies). Finally, anti-fragment 11 antibodies inhibited low pH-dependent pG-transfected cell-to-cell fusion. All of the data support the conclusion that fragment 11 is a primary determinant of some of the viral cell fusion events in VHSV.

  9. Generation and characterization of transgenic mice expressing tamoxifen-inducible cre-fusion protein specifically in mouse liver.

    Science.gov (United States)

    Zhu, Huan-Zhang; Chen, Jian-Quan; Cheng, Guo-Xiang; Xue, Jing-Lun

    2003-08-01

    To establish transgenic mice expressing tamoxifen-inducible Cre-ERt recombinase specifically in the liver and to provide an efficient animal model for studying gene function in the liver and creating various mouse models mimicking human diseases. Alb-Cre-ERt transgenic mice were produced by microinjecting the construct with Cre-ERt fusion gene of DNA fragments into fertilized eggs derived from inbred C57BL/6 strain. Transgenic mice were identified by using PCR and Southern blotting. Expression of Cre-ERt fusion gene was analyzed in the liver, kidney, brain and lung from F1 generation transgenic mice at 8 weeks of age by reverse transcription (RT)-PCR. Four hundred and fourteen fertilized eggs of C57 BL/6 mice were microinjected with recombinant Alb-Cre-ERt DNA fragments, and 312 survival eggs injected were transferred to the oviducts of 12 pseudopregnant recipient mice, 6 of 12 recipient mice became pregnant and gave birth to 44 offsprings. Of the 44 offsprings, two males and one female carried the hybrid Cre-ERt fusion gene. Three mice were determined as founders, and were back crossed to set up F1 generations with other inbred C57BL/6 mice. Transmission of Cre-ERt fusion gene in F1 offspring followed Mendelian rules. The expression of Cre-ERt mRNA was detected only in the liver of F1 offspring from two of three founder mice. Transgenic mice expressing tamoxifen-inducible Cre-ERt recombinase under control of the liver-specific promoter are preliminary established.

  10. Transurethral instillation with fusion protein MrpH.FimH induces protective innate immune responses against uropathogenic Escherichia coli and Proteus mirabilis.

    Science.gov (United States)

    Habibi, Mehri; Asadi Karam, Mohammad Reza; Bouzari, Saeid

    2016-06-01

    Urinary tract infections (UTIs) are among the most common infections in human. Innate immunity recognizes pathogen-associated molecular patterns (PAMPs) by Toll-like receptors (TLRs) to activate responses against pathogens. Recently, we demonstrated that MrpH.FimH fusion protein consisting of MrpH from Proteus mirabilis and FimH from Uropathogenic Escherichia coli (UPEC) results in the higher immunogenicity and protection, as compared with FimH and MrpH alone. In this study, we evaluated the innate immunity and adjuvant properties induced by fusion MrpH.FimH through in vitro and in vivo methods. FimH and MrpH.FimH were able to induce significantly higher IL-8 and IL-6 responses than untreated or MrpH alone in cell lines tested. The neutrophil count was significantly higher in the fusion group than other groups. After 6 h, IL-8 and IL-6 production reached a peak, with a significant decline at 24 h post-instillation in both bladder and kidney tissues. Mice instilled with the fusion and challenged with UPEC or P. mirabilis showed a significant decrease in the number of bacteria in bladder and kidney compared to control mice. The results of these studies demonstrate that the use of recombinant fusion protein encoding TLR-4 ligand represents an effective vaccination strategy that does not require the use of a commercial adjuvant. Furthermore, MrpH.FimH was presented as a promising vaccine candidate against UTIs caused by UPEC and P. mirabilis.

  11. A Fusion Protein between Streptavidin and the Endogenous TLR4 Ligand EDA Targets Biotinylated Antigens to Dendritic Cells and Induces T Cell Responses In Vivo

    Directory of Open Access Journals (Sweden)

    Laura Arribillaga

    2013-01-01

    Full Text Available The development of tools for efficient targeting of antigens to antigen presenting cells is of great importance for vaccine development. We have previously shown that fusion proteins containing antigens fused to the extra domain A from fibronectin (EDA, an endogenous TLR4 ligand, which targets antigens to TLR4-expressing dendritic cells (DC, are highly immunogenic. To facilitate the procedure of joining EDA to any antigen of choice, we have prepared the fusion protein EDAvidin by linking EDA to the N terminus of streptavidin, allowing its conjugation with biotinylated antigens. We found that EDAvidin, as streptavidin, forms tetramers and binds biotin or biotinylated proteins with a Kd ~ 2.6 × 10−14 mol/L. EDAvidin favours the uptake of biotinylated green fluorescent protein by DC. Moreover, EDAvidin retains the proinflammatory properties of EDA, inducing NF-κβ by TLR4-expressing cells, as well as the production of TNF-α by the human monocyte cell line THP1 and IL-12 by DC. More importantly, immunization of mice with EDAvidin conjugated with the biotinylated nonstructural NS3 protein from hepatitis C virus induces a strong anti-NS3 T cell immune response. These results open a new way to use the EDA-based delivery tool to target any antigen of choice to DC for vaccination against infectious diseases and cancer.

  12. Deployment of membrane fusion protein domains during fusion.

    Science.gov (United States)

    Bentz, J; Mittal, A

    2000-01-01

    It is clear that both viral and intracellular membrane fusion proteins contain a minimal set of domains which must be deployed at the appropriate time during the fusion process. An account of these domains and their functions is given here for the four best-described fusion systems: influenza HA, sendai virus F1, HIV gp120/41 and the neuronal SNARE core composed of synaptobrevin (syn), syntaxin (stx) and the N- and C-termini of SNAP25 (sn25), together with the Ca(2+)binding protein synaptotagmin (syt). Membrane fusion begins with the binding of the virion or vesicle to the target membrane via receptors. The committed step in influenza HA- mediated fusion begins with an aggregate of HAs (at least eight) with some of their HA2 N-termini, a.k.a. fusion peptides, embedded into the viral bilayer (Bentz, 2000 a). The hypothesis presented in Bentz (2000 b) is that the conformational change of HA to the extended coiled coil extracts the fusion peptides from the viral bilayer. When this extraction occurs from the center of the site of restricted lipid flow, it exposes acyl chains and parts of the HA transmembrane domains to the aqueous media, i.e. a hydrophobic defect is formed. This is the 'transition state' of the committed step of fusion. It is stabilized by a 'dam' of HAs, which are inhibited from diffusing away by the rest of the HAs in the aggregate and because that would initially expose more acyl chains to water. Recruitment of lipids from the apposed target membrane can heal this hydrophobic defect, initiating lipid mixing and fusion. The HA transmembrane domains are required to be part of the hydrophobic defect, because the HA aggregate must be closely packed enough to restrict lipid flow. This hypothesis provides a simple and direct coupling between the energy released by the formation of the coiled coil to the energy needed to create and stabilize the high energy intermediates of fusion. Several of these essential domains have been described for the viral fusion

  13. Laser-induced tobacco protoplast fusion

    Institute of Scientific and Technical Information of China (English)

    李银妹; 关力劼; 楼立人; 崔国强; 姚湲; 王浩威; 操传顺; 鲁润龙; 陈曦

    1999-01-01

    Laser tweezers can manipulate small particles, such as cells and organdies. When coupling them with laser microbeam selective fusion of two tobacco protoplasts containing some chloroplast was achieved. Physical and biological variables that affect laser trapping and laser-induced fusion were also discussed. The results show that the effect of chloroplast content and distribution on the yield of cell fusion is remarkable.

  14. Novel Hydrophobin Fusion Tags for Plant-Produced Fusion Proteins

    Science.gov (United States)

    Ritala, Anneli; Linder, Markus; Joensuu, Jussi

    2016-01-01

    Hydrophobin fusion technology has been applied in the expression of several recombinant proteins in plants. Until now, the technology has relied exclusively on the Trichoderma reesei hydrophobin HFBI. We screened eight novel hydrophobin tags, T. reesei HFBII, HFBIII, HFBIV, HFBV, HFBVI and Fusarium verticillioides derived HYD3, HYD4 and HYD5, for production of fusion proteins in plants and purification by two-phase separation. To study the properties of the hydrophobins, we used N-terminal and C-terminal GFP as a fusion partner. Transient expression of the hydrophobin fusions in Nicotiana benthamiana revealed large variability in accumulation levels, which was also reflected in formation of protein bodies. In two-phase separations, only HFBII and HFBIV were able to concentrate GFP into the surfactant phase from a plant extract. The separation efficiency of both tags was comparable to HFBI. When the accumulation was tested side by side, HFBII-GFP gave a better yield than HFBI-GFP, while the yield of HFBIV-GFP remained lower. Thus we present here two alternatives for HFBI as functional fusion tags for plant-based protein production and first step purification. PMID:27706254

  15. Protein-protein fusion catalyzed by sortase A.

    Science.gov (United States)

    Levary, David A; Parthasarathy, Ranganath; Boder, Eric T; Ackerman, Margaret E

    2011-04-06

    Chimeric proteins boast widespread use in areas ranging from cell biology to drug delivery. Post-translational protein fusion using the bacterial transpeptidase sortase A provides an attractive alternative when traditional gene fusion fails. We describe use of this enzyme for in vitro protein ligation and report the successful fusion of 10 pairs of protein domains with preserved functionality--demonstrating the robust and facile nature of this reaction.

  16. Protein-protein fusion catalyzed by sortase A.

    Directory of Open Access Journals (Sweden)

    David A Levary

    Full Text Available Chimeric proteins boast widespread use in areas ranging from cell biology to drug delivery. Post-translational protein fusion using the bacterial transpeptidase sortase A provides an attractive alternative when traditional gene fusion fails. We describe use of this enzyme for in vitro protein ligation and report the successful fusion of 10 pairs of protein domains with preserved functionality--demonstrating the robust and facile nature of this reaction.

  17. Effects of GM-CSF, IL-3, and GM-CSF/IL-3 fusion protein on apoptosis of human myeloid leukemic cell line Tf-1 induced by irradiation

    Institute of Scientific and Technical Information of China (English)

    Su-rongYANG; LiWEN; Ying-qingLU; Qin-yanGONG; RongYU; Ming-huiYAO

    2004-01-01

    AIM: To observe the effects of three cytokines on the apoptosis of Tf-1 cells induced by γ irradiation and investigate the relationship between apoptosis and caspase-3 activity. METHODS: Different cytokines GM-CSF, IL-3 and GM-CS/IL-3 fusion protein were added into the irradiated Tf-1 cells. MTT assay, morphology, flow cytometry,and DNA fragmentation assay were used to observe the effects of cytokines on apoptosis. The caspase-3 activity was determined with a fluorocytometer. RESULTS: Irradiated Tf-1 cells showed typical morphological characteristic of apoptosis demonstrated by transmission electron microscopy and were accumulated in G0/G1 phase. In the groups treated with growth factors after irradiation, three cytokines significantly increased the viability rate, distinctly decreased the apoptosis rate and the proportion of DNA fragmentation. When Tf-1 cells were irradiated by γ irradiation, caspase-3 activity was increased at different time points. In comparison with the control group in which no growth factor was added after the cells were irradiated, the caspase-3 activity of irradiated Tf-1 cells was significantly inhibited by addition of the above cytokines. Thirty-six hours after irradiation, in the control group,GM-CSF, IL-3, GM-CSF and IL-3 in combination, and two GM-CSF/IL-3 fusion protein groups, the apoptosis ratewas 73 %, 11%, 15 %, 13 %, 12 %, and 13 %. The percent of fragmented DNA was 36 %, 19 %, 18 %, 14 %,13 %, and 14 %. The fluorescence intensity was 16923, 5529, 6581, 5322, 5426, and 5485. CONCLUSION:GM-CSF, IL-3, and GM-CSF/IL-3 fusion protein could protect Tf-1 cells from apoptosis induced by γ irradiation.After Tf-1 cells were irradiated, the caspase-3 activity was significantly increased but was dramatically decreased by the above cytokines. The remarkable inhibition of caspase-3 activity may be one of the mechanisms of these hematopoietic growth factors exerting their anti-apoptotic effects.

  18. Hendra virus fusion protein transmembrane domain contributes to pre-fusion protein stability.

    Science.gov (United States)

    Webb, Stacy; Nagy, Tamas; Moseley, Hunter; Fried, Michael; Dutch, Rebecca Ellis

    2017-02-17

    Enveloped viruses utilize fusion (F) proteins studding the surface of the virus to facilitate membrane fusion with a target cell membrane. Fusion of the viral envelope with a cellular membrane is required for release of viral genomic material so the virus can ultimately reproduce and spread. To drive fusion, the F protein undergoes an irreversible conformational change, transitioning from a meta-stable pre-fusion conformation to a more thermodynamically stable post-fusion structure. Understanding the elements which control stability of the pre-fusion state and triggering to the post-fusion conformation is important for understanding F protein function. Mutations in F protein transmembrane (TM) domains implicated the TM domain in the fusion process, but the structural and molecular details in fusion remain unclear. Previously, analytical ultracentrifugation was utilized to demonstrate that isolated TM domains of Hendra virus F protein associate in a monomer-trimer equilibrium (Smith EC, et al. Trimeric transmembrane domain interactions in paramyxovirus fusion proteins. 2013. J Biol Chem. 288, 35726). To determine factors driving this association, 140 paramyxovirus F protein TM domain sequences were analyzed. A heptad repeat of β-branched residues was found and analysis of the Hendra virus F TM domain revealed a heptad repeat leucine-isoleucine zipper motif (LIZ). Replacement of the LIZ with alanine resulted in dramatically reduced TM-TM association. Mutation of the LIZ in the whole protein resulted in decreased protein stability, including pre-fusion conformation stability. Together our data suggest that the heptad repeat LIZ contributed to TM-TM association and is important for F protein function and pre-fusion stability.

  19. Insights into the mechanism of cell death induced by saporin delivered into cancer cells by an antibody fusion protein targeting the transferrin receptor 1

    Science.gov (United States)

    Daniels-Wells, Tracy R.; Helguera, Gustavo; Rodríguez, José A.; Leoh, Lai Sum; Erb, Michael A.; Diamante, Graciel; Casero, David; Pellegrini, Matteo; Martínez-Maza, Otoniel; Penichet, Manuel L.

    2012-01-01

    We previously developed an antibody-avidin fusion protein (ch128.1Av) that targets the human transferrin receptor 1 (TfR1) and exhibits direct cytotoxicity against malignant B cells in an iron-dependent manner. ch128.1Av is also a delivery system and its conjugation with biotinylated saporin (b-SO6), a plant ribosome-inactivating toxin, results in a dramatic iron-independent cytotoxicity, both in malignant cells that are sensitive or resistant to ch128.1Av alone, in which the toxin effectively inhibits protein synthesis and triggers caspase activation. We have now found that the ch128.1Av/b-SO6 complex induces a transcriptional response consistent with oxidative stress and DNA damage, a response that is not observed with ch128.1Av alone. Furthermore, we show that the antioxidant N-acetylcysteine partially blocks saporin-induced apoptosis suggesting that oxidative stress contributes to DNA damage and ultimately saporin-induced cell death. Interestingly, the toxin was detected in nuclear extracts by immunoblotting, suggesting the possibility that saporin might induce direct DNA damage. However, confocal microscopy did not show a clear and consistent pattern of intranuclear localization. Finally, using the long-term culture-initiating cell assay we found that ch128.1Av/b-SO6 is not toxic to normal human hematopoietic stem cells suggesting that this critical cell population would be preserved in therapeutic interventions using this immunotoxin. PMID:23085102

  20. Insights into the mechanism of cell death induced by saporin delivered into cancer cells by an antibody fusion protein targeting the transferrin receptor 1.

    Science.gov (United States)

    Daniels-Wells, Tracy R; Helguera, Gustavo; Rodríguez, José A; Leoh, Lai Sum; Erb, Michael A; Diamante, Graciel; Casero, David; Pellegrini, Matteo; Martínez-Maza, Otoniel; Penichet, Manuel L

    2013-02-01

    We previously developed an antibody-avidin fusion protein (ch128.1Av) that targets the human transferrin receptor 1 (TfR1) and exhibits direct cytotoxicity against malignant B cells in an iron-dependent manner. ch128.1Av is also a delivery system and its conjugation with biotinylated saporin (b-SO6), a plant ribosome-inactivating toxin, results in a dramatic iron-independent cytotoxicity, both in malignant cells that are sensitive or resistant to ch128.1Av alone, in which the toxin effectively inhibits protein synthesis and triggers caspase activation. We have now found that the ch128.1Av/b-SO6 complex induces a transcriptional response consistent with oxidative stress and DNA damage, a response that is not observed with ch128.1Av alone. Furthermore, we show that the antioxidant N-acetylcysteine partially blocks saporin-induced apoptosis suggesting that oxidative stress contributes to DNA damage and ultimately saporin-induced cell death. Interestingly, the toxin was detected in nuclear extracts by immunoblotting, suggesting the possibility that saporin might induce direct DNA damage. However, confocal microscopy did not show a clear and consistent pattern of intranuclear localization. Finally, using the long-term culture-initiating cell assay we found that ch128.1Av/b-SO6 is not toxic to normal human hematopoietic stem cells suggesting that this critical cell population would be preserved in therapeutic interventions using this immunotoxin.

  1. Linker engineering for fusion protein construction: Improvement and characterization of a GLP-1 fusion protein.

    Science.gov (United States)

    Kong, Yuelin; Tong, Yue; Gao, Mingming; Chen, Chen; Gao, Xiangdong; Yao, Wenbing

    2016-01-01

    Protein engineering has been successfully applied in protein drug discovery. Using this technology, we previously have constructed a fusion protein by linking the globular domain of adiponectin to the C-terminus of a glucagon-like peptide-1 (GLP-1) analog. Herein, to further improve its bioactivity, we reconstructed this fusion protein by introducing linker peptides of different length and flexibility. The reconstructed fusion proteins were overexpressed in Escherichia coli and purified using nickel affinity chromatography. Their agonist activity towards receptors of GLP-1 and adiponectin were assessed in vitro by using luciferase assay and AMP-activated protein kinase (AMPK) immunoblotting, respectively. The effects of the selected fusion protein on glucose and lipid metabolism were evaluated in mice. The fusion protein reconstructed using a linker peptide of AMGPSSGAPGGGGS showed high potency in activating GLP-1 receptor and triggering AMPK phosphorylation via activating the adiponectin receptor. Remarkably, the optimized fusion protein was highly effective in lowering blood glucose and lipids in mice. Collectively, these findings demonstrate that the bioactivity of this GLP-1 fusion protein can be significantly promoted by linker engineering, and indicate that the optimized GLP-1 fusion protein is a promising lead structure for anti-diabetic drug discovery.

  2. [La(3+)-induced fusion of plant protoplasts].

    Science.gov (United States)

    Sheremet'ev, Iu A; Smirnova, D V; Sheremet'eva, A V

    2009-01-01

    The effect of La(3+) on the fusion of plant protoplasts has been studied. It was shown that La(3+) induced the aggregation of plant protoplasts. The incubation of a suspension of aggregated protoplasts at 42 degrees C for 30 min resulted in their fusion.

  3. A fusion protein encoding the second extracellular domain of CCR5 arrests chemokine-induced cosignaling and effectively suppresses ongoing experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Sapir, Yair; Vitenshtein, Alon; Barsheshet, Yiftah; Zohar, Yaniv; Wildbaum, Gizi; Karin, Nathan

    2010-08-15

    CCR5 is a key CCR that is highly expressed on CD4(+) T cells. It binds three different ligands: CCL3 (MIP-alpha), CCL4 (MIP-beta), and CCL5 (RANTES). Recent studies suggested that the interaction between CCR5 and its ligands is essential not only for attracting these CCR5(+) T cells but also substantial for transuding cosignals for their activation. The current study explores, for the first time, the in vivo consequences of CCR5 as a costimulatory molecule. First, we show redundancy between CCR5 ligands not only in chemoattractive properties but also in their ability to induced cosignals via CCR5. This has motivated us to generate a soluble receptor-based fusion protein that would selectively bind and neutralize all three CCR5 ligands. We show in this study that a 30-aa-based CCR5-Ig fusion protein encoding the second extracellular domain of receptor selectively binds and neutralizes all three CCR5 ligands and, when administered during ongoing experimental autoimmune encephalomyelitis, rapidly suppressed the disease while arresting Ag-specific effector T cell functions. Finally, our results clearly show that although CCR5 ligands induced cosignaling for IL-2 production is directed by CCR5, other proinflammatory properties of these ligands, such as TNF-alpha, IL-17, and IFN-gamma production, are CCR5 independent and therefore likely to be mediated by the other receptors for these ligands. These findings imply that implementing a CCR5-Ig-based therapy would be advantageous over blockade of this receptor or of the use of mAbs for targeting a single CCR5 ligand.

  4. Secretory Transactivating Transcription-apoptin fusion protein induces apoptosis in hepatocellular carcinoma HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    Su-Xia Han; Jin-Lu Ma; Yi Lv; Chen Huang; Hai-Hua Liang; Kang-Min Duan

    2008-01-01

    AIM: To determine whether SP-TAT-apoptin induces apoptosis and also maintains its tumor cell specificity.METHODS: In this study, we designed a secretory protein by adding a secretory signal peptide (SP) to the N terminus of Transactivating Transcription (TAT)-apoptin (SP-TAT-apoptin), to test the hypothesis that it gains an additive bystander effect as an anti-cancer therapy. We used an artificial human secretory SP whose amino acid sequence and corresponding cDNA sequence were generated by the SP hidden Markov model.RESULTS: In human liver carcinoma HepG2 cells, SP-TAT-apoptin expression showed a diffuse pattern in the early phase after transfection. After 48h, however, it translocated into the nuclear compartment and caused massive apoptotic cell death, as determined by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay and annexin-V binding assay. SP-TAT-apoptin did not, however, cause any cell death in non-malignant human umbilical vein endothelial cells (HUVECs). Most importantly, the conditioned medium from Chinese hamster ovary (CHO) cells transfected with SP-TAT-apoptin also induced significant cell death in HepG2 cells, but not in HUVECs.CONCLUSION: The data demonstrated that SP-TAT-apoptin induces apoptosis only in malignant cells, and its secretory property might greatly increase its potency once it is delivered in vivo for cancer therapy.

  5. Mitochondrial Fusion Proteins and Human Diseases

    Directory of Open Access Journals (Sweden)

    Michela Ranieri

    2013-01-01

    Full Text Available Mitochondria are highly dynamic, complex organelles that continuously alter their shape, ranging between two opposite processes, fission and fusion, in response to several stimuli and the metabolic demands of the cell. Alterations in mitochondrial dynamics due to mutations in proteins involved in the fusion-fission machinery represent an important pathogenic mechanism of human diseases. The most relevant proteins involved in the mitochondrial fusion process are three GTPase dynamin-like proteins: mitofusin 1 (MFN1 and 2 (MFN2, located in the outer mitochondrial membrane, and optic atrophy protein 1 (OPA1, in the inner membrane. An expanding number of degenerative disorders are associated with mutations in the genes encoding MFN2 and OPA1, including Charcot-Marie-Tooth disease type 2A and autosomal dominant optic atrophy. While these disorders can still be considered rare, defective mitochondrial dynamics seem to play a significant role in the molecular and cellular pathogenesis of more common neurodegenerative diseases, for example, Alzheimer’s and Parkinson’s diseases. This review provides an overview of the basic molecular mechanisms involved in mitochondrial fusion and focuses on the alteration in mitochondrial DNA amount resulting from impairment of mitochondrial dynamics. We also review the literature describing the main disorders associated with the disruption of mitochondrial fusion.

  6. A suicidal DNA vaccine expressing the fusion protein of peste des petits ruminants virus induces both humoral and cell-mediated immune responses in mice.

    Science.gov (United States)

    Wang, Yong; Yue, Xiaolin; Jin, Hongyan; Liu, Guangqing; Pan, Ling; Wang, Guijun; Guo, Hao; Li, Gang; Li, Yongdong

    2015-12-01

    Peste des petits ruminants (PPR), a highly contagious disease induced by PPR virus (PPRV), affects sheep and goats. PPRV fusion (F) protein is important for the induction of immune responses against PPRV. We constructed a Semliki Forest virus (SFV) replicon-vectored DNA vaccine ("suicidal DNA vaccine") and evaluated its immunogenicity in BALB/c mice. The F gene of PPRV was cloned and inserted into the SFV replicon-based vector pSCA1. The antigenicity of the resultant plasmid pSCA1/F was identified by indirect immunofluorescence and western blotting. BALB/c mice were then intramuscularly injected with pSCA1/F three times at 14-d intervals. Specific antibodies and virus-neutralizing antibodies against PPRV were quantified by indirect ELISA and microneutralization tests, respectively. Cell-mediated immune responses were examined by cytokine and lymphocyte proliferation assays. The pSCA1/F expressed F protein in vitro and induced specific and neutralizing antibody production, and lymphocyte proliferation in mice. Mice vaccinated with pSCA1/F had increased IL-2 and IL-10 levels after 24-h post first immunization. IFN-γ and TNF-α levels increased from that time point and gradually decreased thereafter. Thus, the Semliki Forest virus replicon-vectored DNA vaccine expressing the F protein of PPRV induced both humoral and cell-mediated immune responses in mice. This could be considered as a novel strategy for vaccine development against PPR. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Construction, Expression and Purification of SUMO1-GST Fusion Protein

    Institute of Scientific and Technical Information of China (English)

    QIAO Xiao-fang; FANG Xue-dong; LIU Jun

    2011-01-01

    Sumoylation is an important protein modification discovered recently. SUMO(small ubiquitin-related modifier) pathway regulates the protein stability and transcriptional activity with a 12-kDa small molecular protein,SUMO, ligated to the target protein. The purification of SUMO proteins is a key step to reveal their function. The purpose of this study was to construct the recombinant SUMO1 gene cloned to a pGEX-4T-1 vector to express and purify the SUMO1-GST fusion protein in Escherichia coli. First, the full length DNA sequence of SUMO1 gene was amplified by PCR and was ligated to pMD18-T vector. Then the SUMO1 gene was subcloned to pGEX-4T-1 prokaryotic expression vector between BamHI and XhoI sites, and transformed in Escherichia coli DH5a cells. The right colonies were identified by restrictive enzyme digestion and sequencing. The correct rebombinant plasmid of pGEX-4T-1-SUMO1 was transformed in Escherichia coli BL21 cells and then induced by IPTG(isopropyl-β-D-lthiogalacto-pyranoside) to express the SUMO1-GST fusion protein. The highly purified SUMOl-GST(glutathione S-transferase) fusion protein was obtained by affinity chromatography. Finally, the properties of SUMO1-GST fusion protein were confirmed by Coomassie brilliant blue strain and Western blot analysis. The recombinant plasmid of pGEX-4T-1-SUMO 1 was successfully constructed, and SUMO1-GST fusion proteins were successfully expressed.

  8. Fluorescent sensors based on bacterial fusion proteins

    Science.gov (United States)

    Prats Mateu, Batirtze; Kainz, Birgit; Pum, Dietmar; Sleytr, Uwe B.; Toca-Herrera, José L.

    2014-06-01

    Fluorescence proteins are widely used as markers for biomedical and technological purposes. Therefore, the aim of this project was to create a fluorescent sensor, based in the green and cyan fluorescent protein, using bacterial S-layers proteins as scaffold for the fluorescent tag. We report the cloning, expression and purification of three S-layer fluorescent proteins: SgsE-EGFP, SgsE-ECFP and SgsE-13aa-ECFP, this last containing a 13-amino acid rigid linker. The pH dependence of the fluorescence intensity of the S-layer fusion proteins, monitored by fluorescence spectroscopy, showed that the ECFP tag was more stable than EGFP. Furthermore, the fluorescent fusion proteins were reassembled on silica particles modified with cationic and anionic polyelectrolytes. Zeta potential measurements confirmed the particle coatings and indicated their colloidal stability. Flow cytometry and fluorescence microscopy showed that the fluorescence of the fusion proteins was pH dependent and sensitive to the underlying polyelectrolyte coating. This might suggest that the fluorescent tag is not completely exposed to the bulk media as an independent moiety. Finally, it was found out that viscosity enhanced the fluorescence intensity of the three fluorescent S-layer proteins.

  9. T cell responses induced by adenoviral vectored vaccines can be adjuvanted by fusion of antigen to the oligomerization domain of C4b-binding protein.

    Directory of Open Access Journals (Sweden)

    Emily K Forbes

    Full Text Available Viral vectored vaccines have been shown to induce both T cell and antibody responses in animals and humans. However, the induction of even higher level T cell responses may be crucial in achieving vaccine efficacy against difficult disease targets, especially in humans. Here we investigate the oligomerization domain of the α-chain of C4b-binding protein (C4 bp as a candidate T cell "molecular adjuvant" when fused to malaria antigens expressed by human adenovirus serotype 5 (AdHu5 vectored vaccines in BALB/c mice. We demonstrate that i C-terminal fusion of an oligomerization domain can enhance the quantity of antigen-specific CD4(+ and CD8(+ T cell responses induced in mice after only a single immunization of recombinant AdHu5, and that the T cells maintain similar functional cytokine profiles; ii an adjuvant effect is observed for AdHu5 vectors expressing either the 42 kDa C-terminal domain of Plasmodium yoelii merozoite surface protein 1 (PyMSP1(42 or the 83 kDa ectodomain of P. falciparum strain 3D7 apical membrane antigen 1 (PfAMA1, but not a candidate 128kDa P. falciparum MSP1 biallelic fusion antigen; iii following two homologous immunizations of AdHu5 vaccines, antigen-specific T cell responses are further enhanced, however, in both BALB/c mice and New Zealand White rabbits no enhancement of functional antibody responses is observed; and iv that the T cell adjuvant activity of C4 bp is not dependent on a functional Fc-receptor γ-chain in the host, but is associated with the oligomerization of small (<80 kDa antigens expressed by recombinant AdHu5. The oligomerization domain of C4 bp can thus adjuvant T cell responses induced by AdHu5 vectors against selected antigens and its clinical utility as well as mechanism of action warrant further investigation.

  10. Fusion proteins useful for producing pinene

    Science.gov (United States)

    Peralta-Yahya, Pamela P.; Keasling, Jay D

    2016-06-28

    The present invention provides for a modified host cell comprising a heterologous pinene synthase (PS), or enzymatically active fragment or variant thereof, and optionally a geranyl pyrophosphate synthase (GPPS), or enzymatically active fragment or variant thereof, or a fusion protein comprising: (a) a PS and (b) a GPPS linked by a linker.

  11. Intracellular distribution of cowpea mosaic virus movement protein as visualised by green fluorescent protein fusions

    NARCIS (Netherlands)

    Gopinath, K.; Bertens, P.; Pouwels, J.; Marks, H.; Lent, van J.W.M.; Wellink, J.E.; Kammen, van A.

    2003-01-01

    Cowpea mosaic virus (CPMV) derivatives expressing movement protein (MP) green fluorescent protein (GFP) fusions (MP:GFP) were used to study the intracellular targeting and localization of the MP in cowpea protoplasts and plants. In protoplasts, a virus coding for a wild type MP:GFP (MPfGFP) induced

  12. Nuclear envelope breakdown induced by herpes simplex virus type 1 involves the activity of viral fusion proteins.

    Science.gov (United States)

    Maric, Martina; Haugo, Alison C; Dauer, William; Johnson, David; Roller, Richard J

    2014-07-01

    Herpesvirus infection reorganizes components of the nuclear lamina usually without loss of integrity of the nuclear membranes. We report that wild-type HSV infection can cause dissolution of the nuclear envelope in transformed mouse embryonic fibroblasts that do not express torsinA. Nuclear envelope breakdown is accompanied by an eight-fold inhibition of virus replication. Breakdown of the membrane is much more limited during infection with viruses that lack the gB and gH genes, suggesting that breakdown involves factors that promote fusion at the nuclear membrane. Nuclear envelope breakdown is also inhibited during infection with virus that does not express UL34, but is enhanced when the US3 gene is deleted, suggesting that envelope breakdown may be enhanced by nuclear lamina disruption. Nuclear envelope breakdown cannot compensate for deletion of the UL34 gene suggesting that mixing of nuclear and cytoplasmic contents is insufficient to bypass loss of the normal nuclear egress pathway.

  13. Recombinant human bone morphogenetic protein 2-induced heterotopic ossification of the retroperitoneum, psoas muscle, pelvis and abdominal wall following lumbar spinal fusion

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Raj K. [The George Washington University School of Medicine, Washington, DC (United States); Moncayo, Valeria M.; Pierre-Jerome, Claude; Terk, Michael R. [Emory University School of Medicine, Radiology Department, Musculoskeletal Division, Atlanta, GA (United States); Smitson, Robert D. [Emory University School of Medicine, Atlanta, GA (United States)

    2010-05-15

    A 45-year-old man presented with vertebral collapse at L5 as an initial manifestation of multiple myeloma and underwent spinal fusion surgery using recombinant human bone morphogenetic protein-2 (rhBMP-2). Subsequent computed tomography (CT) scans and X-rays revealed heterotopic ossification of the left psoas muscle, pelvis, and anterior abdominal wall. While the occurrence of heterotopic ossification has previously been reported when rhBMP-2 has been used for spinal fusion surgery, this case demonstrates that it can occur to a much greater degree than previously seen. (orig.)

  14. Imaging multiple intermediates of single-virus membrane fusion mediated by distinct fusion proteins.

    Science.gov (United States)

    Joo, Kye-Il; Tai, April; Lee, Chi-Lin; Wong, Clement; Wang, Pin

    2010-09-01

    Membrane fusion plays an essential role in the entry of enveloped viruses into target cells. The merging of viral and target cell membranes is catalyzed by viral fusion proteins, which involves multiple sequential steps in the fusion process. However, the fusion mechanisms mediated by different fusion proteins involve multiple transient intermediates that have not been well characterized. Here, we report a synthetic virus platform that allows us to better understand the different fusion mechanisms driven by the diverse types fusion proteins. The platform consists of lentiviral particles coenveloped with a surface antibody, which serves as the binding protein, along with a fusion protein derived from either influenza virus (HAmu) or Sindbis virus (SINmu). By using a single virus tracking technique, we demonstrated that both HAmu- and SINmu-bearing viruses enter cells through clathrin-dependent endocytosis, but they required different endosomal trafficking routes to initiate viral fusion. Direct observation of single viral fusion events clearly showed that hemifusion mediated by SINmu upon exposure to low pH occurs faster than that mediated by HAmu. Monitoring sequential fusion processes by dual labeling the outer and inner leaflets of viral membranes also revealed that the SINmu-mediated hemifusion intermediate is relatively long-lived as compared with that mediated by HAmu. Taken together, we have demonstrated that the combination of this versatile viral platform with the techniques of single virus tracking can be a powerful tool for revealing molecular details of fusion mediated by various fusion proteins.

  15. A recombinant fusion protein derived from dog hookworm inhibits autoantibody-induced dermal-epidermal separation ex vivo.

    Science.gov (United States)

    Kemmer, Annette; Bieber, Katja; Abadpour, Aida; Yu, Xinhua; Mitschker, Nina; Roth, Sara; Kauderer, Claudia; Ludwig, Ralf J; Seeger, Karsten; Köhl, Jörg; Zillikens, Detlef; Recke, Andreas

    2015-11-01

    The proteins secreted by parasitic nematodes are evolutionarily optimized molecules with unique capabilities of suppressing the immune response of the host organism. Neutrophil inhibitory factor (NIF), which is secreted by the dog hookworm Ancylostoma caninum, binds to the β2 integrin CD11b/CD18, which is expressed on human neutrophils, eosinophils, monocytes and macrophages and inhibits neutrophil-dependent lung injury and neutrophil invasion of ischaemic brain tissue. Neutrophils are key players in the pathogenesis of subepidermal autoimmune blistering diseases (sAIBDs), and their pathogenic activities are crucially dependent on β2 integrin functionality. Based on the template of single-stranded, dimerizing antibody derivatives, which are already used in cancer treatment, we designed a novel biologic, NIF-IGHE-CH4, comprising NIF and the dimerizing but otherwise inert constant heavy subdomain 4 (CH4) of human IgE (IGHE). This molecule was evaluated in a variety of in vitro assays, demonstrating its ability to inhibit pathogenically relevant neutrophil functions such as migration, adhesion and spreading, and release of reactive oxygen species. Finally, we confirmed that NIF-IGHE-CH4 inhibits blister formation in an ex vivo assay of sAIBD. These results suggest that NIF-IGHE-CH4 is a novel potential anti-inflammatory drug for the treatment of neutrophil-mediated diseases such as sAIBDs. This study promotes the drugs from bugs concept and encourages further research and development focused on turning parasite proteins into useful anti-inflammatory biologics.

  16. Measles Virus Fusion Protein: Structure, Function and Inhibition

    Directory of Open Access Journals (Sweden)

    Philippe Plattet

    2016-04-01

    Full Text Available Measles virus (MeV, a highly contagious member of the Paramyxoviridae family, causes measles in humans. The Paramyxoviridae family of negative single-stranded enveloped viruses includes several important human and animal pathogens, with MeV causing approximately 120,000 deaths annually. MeV and canine distemper virus (CDV-mediated diseases can be prevented by vaccination. However, sub-optimal vaccine delivery continues to foster MeV outbreaks. Post-exposure prophylaxis with antivirals has been proposed as a novel strategy to complement vaccination programs by filling herd immunity gaps. Recent research has shown that membrane fusion induced by the morbillivirus glycoproteins is the first critical step for viral entry and infection, and determines cell pathology and disease outcome. Our molecular understanding of morbillivirus-associated membrane fusion has greatly progressed towards the feasibility to control this process by treating the fusion glycoprotein with inhibitory molecules. Current approaches to develop anti-membrane fusion drugs and our knowledge on drug resistance mechanisms strongly suggest that combined therapies will be a prerequisite. Thus, discovery of additional anti-fusion and/or anti-attachment protein small-molecule compounds may eventually translate into realistic therapeutic options.

  17. Recombinant factor VIII Fc (rFVIIIFc) fusion protein reduces immunogenicity and induces tolerance in hemophilia A mice.

    Science.gov (United States)

    Krishnamoorthy, Sriram; Liu, Tongyao; Drager, Douglas; Patarroyo-White, Susannah; Chhabra, Ekta Seth; Peters, Robert; Josephson, Neil; Lillicrap, David; Blumberg, Richard S; Pierce, Glenn F; Jiang, Haiyan

    2016-03-01

    Anti-factor VIII (FVIII) antibodies is a major complication of FVIII replacement therapy for hemophilia A. We investigated the immune response to recombinant human factor VIII Fc (rFVIIIFc) in comparison to BDD-rFVIII and full-length rFVIII (FL-rFVIII) in hemophilia A mice. Repeated administration of therapeutically relevant doses of rFVIIIFc in these mice resulted in significantly lower antibody responses to rFVIII compared to BDD-rFVIII and FL-rFVIII and reduced antibody production upon subsequent challenge with high doses of rFVIIIFc. The induction of a tolerogenic response by rFVIIIFc was associated with higher percentage of regulatory T-cells, a lower percentage of pro-inflammatory splenic T-cells, and up-regulation of tolerogenic cytokines and markers. Disruption of Fc interactions with either FcRn or Fcγ receptors diminished tolerance induction, suggesting the involvement of these pathways. These results indicate that rFVIIIFc reduces immunogenicity and imparts tolerance to rFVIII demonstrating that recombinant therapeutic proteins may be modified to influence immunogenicity and facilitate tolerance.

  18. Sulindac sulfide reverses aberrant self-renewal of progenitor cells induced by the AML-associated fusion proteins PML/RARα and PLZF/RARα.

    Science.gov (United States)

    Steinert, Gunnar; Oancea, Claudia; Roos, Jessica; Hagemeyer, Heike; Maier, Thorsten; Ruthardt, Martin; Puccetti, Elena

    2011-01-01

    Chromosomal translocations can lead to the formation of chimeric genes encoding fusion proteins such as PML/RARα, PLZF/RARα, and AML-1/ETO, which are able to induce and maintain acute myeloid leukemia (AML). One key mechanism in leukemogenesis is increased self renewal of leukemic stem cells via aberrant activation of the Wnt signaling pathway. Either X-RAR, PML/RARα and PLZF/RARα or AML-1/ETO activate Wnt signaling by upregulating γ-catenin and β-catenin. In a prospective study, a lower risk of leukemia was observed with aspirin use, which is consistent with numerous studies reporting an inverse association of aspirin with other cancers. Furthermore, a reduction in leukemia risk was associated with use of non-steroidal anti-inflammatory drug (NSAID), where the effects on AML risk was FAB subtype-specific. To better investigate whether NSAID treatment is effective, we used Sulindac Sulfide in X-RARα-positive progenitor cell models. Sulindac Sulfide (SSi) is a derivative of Sulindac, a NSAID known to inactivate Wnt signaling. We found that SSi downregulated both β-catenin and γ-catenin in X-RARα-expressing cells and reversed the leukemic phenotype by reducing stem cell capacity and increasing differentiation potential in X-RARα-positive HSCs. The data presented herein show that SSi inhibits the leukemic cell growth as well as hematopoietic progenitors cells (HPCs) expressing PML/RARα, and it indicates that Sulindac is a valid molecular therapeutic approach that should be further validated using in vivo leukemia models and in clinical settings.

  19. Sulindac sulfide reverses aberrant self-renewal of progenitor cells induced by the AML-associated fusion proteins PML/RARα and PLZF/RARα.

    Directory of Open Access Journals (Sweden)

    Gunnar Steinert

    Full Text Available Chromosomal translocations can lead to the formation of chimeric genes encoding fusion proteins such as PML/RARα, PLZF/RARα, and AML-1/ETO, which are able to induce and maintain acute myeloid leukemia (AML. One key mechanism in leukemogenesis is increased self renewal of leukemic stem cells via aberrant activation of the Wnt signaling pathway. Either X-RAR, PML/RARα and PLZF/RARα or AML-1/ETO activate Wnt signaling by upregulating γ-catenin and β-catenin. In a prospective study, a lower risk of leukemia was observed with aspirin use, which is consistent with numerous studies reporting an inverse association of aspirin with other cancers. Furthermore, a reduction in leukemia risk was associated with use of non-steroidal anti-inflammatory drug (NSAID, where the effects on AML risk was FAB subtype-specific. To better investigate whether NSAID treatment is effective, we used Sulindac Sulfide in X-RARα-positive progenitor cell models. Sulindac Sulfide (SSi is a derivative of Sulindac, a NSAID known to inactivate Wnt signaling. We found that SSi downregulated both β-catenin and γ-catenin in X-RARα-expressing cells and reversed the leukemic phenotype by reducing stem cell capacity and increasing differentiation potential in X-RARα-positive HSCs. The data presented herein show that SSi inhibits the leukemic cell growth as well as hematopoietic progenitors cells (HPCs expressing PML/RARα, and it indicates that Sulindac is a valid molecular therapeutic approach that should be further validated using in vivo leukemia models and in clinical settings.

  20. Dissipative Particle Dynamics of tension-induced membrane fusion

    DEFF Research Database (Denmark)

    Shillcock, Julian C.

    2009-01-01

    Recent studies of tension-induced membrane fusion using dissipative particle dynamics (DPD) simulations are briefly reviewed. The stochastic nature of the fusion process makes it necessary to simulate a large number of fusion attempts in order to obtain reliable fusion statistics and to extract...

  1. CRACC-targeting Fc-fusion protein induces activation of NK cells and DCs and improves T cell immune responses to antigenic targets.

    Science.gov (United States)

    Aldhamen, Yasser A; Rastall, David P W; Chen, Weimin; Seregin, Sergey S; Pereira-Hicks, Cristiane; Godbehere, Sarah; Kaminski, Norbert E; Amalfitano, Andrea

    2016-06-08

    The CD2-like receptor activating cytotoxic cell (CRACC) receptor is a member of the SLAM family of receptors that are found on several types of immune cells. We previously demonstrated that increasing the abundance of the adaptor protein EAT-2 during vaccination enhanced innate and adaptive immune responses to vaccine antigens. Engagement of the CRACC receptor in the presence of the EAT-2 adaptor generally results in immune cell activation, while activating CRACC signaling in cells that lack EAT-2 adaptor inhibits their effector and regulatory functions. As EAT-2 is the only SAP adaptor that interacts with the CRACC receptor, we hypothesized that technologies that specifically modulate CRACC signaling during vaccination may also improve antigen specific adaptive immune responses. To test this hypothesis, we constructed a CRACC-targeting Fc fusion protein and included it in vaccination attempts. Indeed, mice co-vaccinated with the CRACC-Fc fusion protein and an adenovirus vaccine expressing the HIV-Gag protein had improved Gag-specific T cell responses, as compared to control mice. These responses are characterized by increased numbers of Gag-specific tetramer+ CD8+ T cells and increases in production of IFNγ, TNFα, and IL2, by Gag-specific CD8+ T cells. Moreover, our results revealed that use of the CRACC-Fc fusion protein enhances vaccine-elicited innate immune responses, as characterized by increased dendritic cells (DCs) maturation and IFNγ production from NK cells. This study highlights the importance of CRACC signaling during the induction of an immune response generally, and during vaccinations specifically, and also lends insight into the mechanisms underlying our prior results noting EAT-2-dependent improvements in vaccine efficacy.

  2. Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia.

    Science.gov (United States)

    Grembecka, Jolanta; He, Shihan; Shi, Aibin; Purohit, Trupta; Muntean, Andrew G; Sorenson, Roderick J; Showalter, Hollis D; Murai, Marcelo J; Belcher, Amalia M; Hartley, Thomas; Hess, Jay L; Cierpicki, Tomasz

    2012-03-01

    Translocations involving the mixed lineage leukemia (MLL) gene result in human acute leukemias with very poor prognosis. The leukemogenic activity of MLL fusion proteins is critically dependent on their direct interaction with menin, a product of the multiple endocrine neoplasia (MEN1) gene. Here we present what are to our knowledge the first small-molecule inhibitors of the menin-MLL fusion protein interaction that specifically bind menin with nanomolar affinities. These compounds effectively reverse MLL fusion protein-mediated leukemic transformation by downregulating the expression of target genes required for MLL fusion protein oncogenic activity. They also selectively block proliferation and induce both apoptosis and differentiation of leukemia cells harboring MLL translocations. Identification of these compounds provides a new tool for better understanding MLL-mediated leukemogenesis and represents a new approach for studying the role of menin as an oncogenic cofactor of MLL fusion proteins. Our findings also highlight a new therapeutic strategy for aggressive leukemias with MLL rearrangements.

  3. Mutations in the DI-DII Linker of Human Parainfluenza Virus Type 3 Fusion Protein Result in Diminished Fusion Activity.

    Directory of Open Access Journals (Sweden)

    Wenyan Xie

    Full Text Available Human parainfluenza virus type 3 (HPIV3 can cause severe respiratory tract diseases in infants and young children, but no licensed vaccines or antiviral agents are currently available for treatment. Fusing the viral and target cell membranes is a prerequisite for its entry into host cells and is directly mediated by the fusion (F protein. Although several domains of F are known to have important effects on regulating the membrane fusion activity, the roles of the DI-DII linker (residues 369-374 of the HPIV3 F protein in the fusogenicity still remains ill-defined. To facilitate our understanding of the role of this domain might play in F-induced cell-cell fusion, nine single mutations were engineered into this domain by site-directed mutagenesis. A vaccinia virus-T7 RNA polymerase transient expression system was employed to express the wild-type or mutated F proteins. These mutants were analyzed for membrane fusion activity, cell surface expression, and interaction between F and HN protein. Each of the mutated F proteins in this domain has a cell surface expression level similar to that of wild-type F. All of them resulted in a significant reduction in fusogenic activity in all steps of membrane fusion. Furthermore, all these fusion-deficient mutants reduced the amount of the HN-F complexes at the cell surface. Together, the results of our work suggest that this region has an important effect on the fusogenic activity of F.

  4. The MARVEL domain protein, Singles Bar, is required for progression past the pre-fusion complex stage of myoblast fusion.

    Science.gov (United States)

    Estrada, Beatriz; Maeland, Anne D; Gisselbrecht, Stephen S; Bloor, James W; Brown, Nicholas H; Michelson, Alan M

    2007-07-15

    Multinucleated myotubes develop by the sequential fusion of individual myoblasts. Using a convergence of genomic and classical genetic approaches, we have discovered a novel gene, singles bar (sing), that is essential for myoblast fusion. sing encodes a small multipass transmembrane protein containing a MARVEL domain, which is found in vertebrate proteins involved in processes such as tight junction formation and vesicle trafficking where--as in myoblast fusion--membrane apposition occurs. sing is expressed in both founder cells and fusion competent myoblasts preceding and during myoblast fusion. Examination of embryos injected with double-stranded sing RNA or embryos homozygous for ethane methyl sulfonate-induced sing alleles revealed an identical phenotype: replacement of multinucleated myofibers by groups of single, myosin-expressing myoblasts at a stage when formation of the mature muscle pattern is complete in wild-type embryos. Unfused sing mutant myoblasts form clusters, suggesting that early recognition and adhesion of these cells are unimpaired. To further investigate this phenotype, we undertook electron microscopic ultrastructural studies of fusing myoblasts in both sing and wild-type embryos. These experiments revealed that more sing mutant myoblasts than wild-type contain pre-fusion complexes, which are characterized by electron-dense vesicles paired on either side of the fusing plasma membranes. In contrast, embryos mutant for another muscle fusion gene, blown fuse (blow), have a normal number of such complexes. Together, these results lead to the hypothesis that sing acts at a step distinct from that of blow, and that sing is required on both founder cell and fusion-competent myoblast membranes to allow progression past the pre-fusion complex stage of myoblast fusion, possibly by mediating fusion of the electron-dense vesicles to the plasma membrane.

  5. Laser-induced fusion of human embryonic stem cells with optical tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Chen Shuxun; Wang Xiaolin; Sun Dong [Department of Mechanical and Biomedical Engineering, City University of Hong Kong (Hong Kong); Cheng Jinping; Han Cheng, Shuk [Department of Biology and Chemistry, City University of Hong Kong (Hong Kong); Kong, Chi-Wing [Stem Cell and Regenerative Medicine Consortium, and Departments of Medicine and Physiology, LKS Faculty of Medicine, University of Hong Kong (Hong Kong); Li, Ronald A. [Stem Cell and Regenerative Medicine Consortium, and Departments of Medicine and Physiology, LKS Faculty of Medicine, University of Hong Kong (Hong Kong); Center of Cardiovascular Research, Mount Sinai School of Medicine, New York, New York 10029 (United States)

    2013-07-15

    We report a study on the laser-induced fusion of human embryonic stem cells (hESCs) at the single-cell level. Cells were manipulated by optical tweezers and fused under irradiation with pulsed UV laser at 355 nm. Successful fusion was indicated by green fluorescence protein transfer. The influence of laser pulse energy on the fusion efficiency was investigated. The fused products were viable as gauged by live cell staining. Successful fusion of hESCs with somatic cells was also demonstrated. The reported fusion outcome may facilitate studies of cell differentiation, maturation, and reprogramming.

  6. Laser-induced fusion of human embryonic stem cells with optical tweezers

    Science.gov (United States)

    Chen, Shuxun; Cheng, Jinping; Kong, Chi-Wing; Wang, Xiaolin; Han Cheng, Shuk; Li, Ronald A.; Sun, Dong

    2013-07-01

    We report a study on the laser-induced fusion of human embryonic stem cells (hESCs) at the single-cell level. Cells were manipulated by optical tweezers and fused under irradiation with pulsed UV laser at 355 nm. Successful fusion was indicated by green fluorescence protein transfer. The influence of laser pulse energy on the fusion efficiency was investigated. The fused products were viable as gauged by live cell staining. Successful fusion of hESCs with somatic cells was also demonstrated. The reported fusion outcome may facilitate studies of cell differentiation, maturation, and reprogramming.

  7. Immunization with HBsAg-Fc fusion protein induces a predominant production of Th1 cytokines and reduces HBsAg level in transgenic mice

    Institute of Scientific and Technical Information of China (English)

    MENG Zhe-feng; WANG Hua-jing; YAO Xin; WANG Xuan-yi; WEN Yu-mei; DAI Jian-xin; XIE You-hua; XU Jian-qing

    2012-01-01

    Background The Fc receptor associated pathway might improve the immune responses against hepatitis B virus (HBV) as previously described by us.In addition,the Flt3 ligand (FL) has been reported to potentiate antigen presenting cells in vivo and may act as a potential adjuvant to boost antigen-specific immune responses.In this study,the immune efficacies of a set of fusion proteins of HBsAg and Fc and/or FL were evaluated in HBsAg transgenic mice.Methods The fusion proteins composed of HBsAg and the Fc domain of murine IgG1 (HBsAg-Fc) and/or the Flt3 ligand,and yeast-derived recombinant HBsAg were used as immunogen to immunize HBsAg transgenic mice,respectively.Serum and liver HBsAg levels,serum anti-HBsAg and cytokine profile,and the activities of alanine aminotransferase (ALT)/AST were investigated after immunization.Results After six injections,the most pronounced decrease in serum and liver HBsAg levels was observed in the HBsAg-Fc immunized group.In addition,serum Th1 cytokines and ALT/AST activities were highest in this group,indicating an effective induction of a favorable cellular immune response.Interestingly,the fusion protein containing HBsAg-Fc and the Flt3 ligand stimulated an alternative Th1-type immune response featured with high level productions of tumor necrosis factor α (TNF- α) and monocyte chemoabstractant protein 1 (MCP-1),causing a more severe cytotoxicity in hepatocytes while showed less effective in reducing serum HBsAg level.Conclusion HBsAg-Fc is effective in eliciting both the humoral and cellular immune responses against HBsAg in HBsAg transgenic mice,which makes it a potential immunogen for the immunotherapy of chronic hepatitis B.

  8. Preparation and functional analysis of recombinant protein transduction domain-metallothionein fusion proteins.

    Science.gov (United States)

    Lim, Kwang Suk; Won, Young-Wook; Park, Yong Soo; Kim, Yong-Hee

    2010-08-01

    In order for proteins to be used as pharmaceuticals, delivery technologies need to be developed to overcome biochemical and anatomical barriers to protein drug transport, to protect proteins from systemic degradation, and to target the drug action to specific sites. Protein transduction domains (PTDs) are used for the non-specific transduction of bio-active cargo, such as proteins, genes, and particles, through cellular membranes to overcome biological barriers. Metallothionein (MT) is a low molecular weight intra-cellular protein that consists of 61 amino acids, including 20 cysteine residues, and is over-expressed under stressful conditions. Although MT has the potential to improve the viability of islet cells and cardiomyocytes by inhibiting diabetic-induced apoptosis and by removing reactive oxygen species (ROS), and thereby prevent or reduce diabetes and diabetic complications, all MT applications have been made for gene therapy or under induced over-expression of endogenous MT. To overcome the drawbacks of ineffective intra-cellular MT protein uptake, a human MT gene was cloned and fused with protein transduction domains (PTDs), such as HIV-1 Tat and undeca-arginine, in a bacterial expression vector to produce PTD-MT fusion proteins. The expression and purification of three types of proteins were optimized by adding Zn ions to maintain their stability and functionality mimicking intra-cellular stable conformation of MT as a Zn-MT cluster. The Zn-MT cluster showed better stability than MT in vitro. PTD-MT fusion proteins strongly protected Ins-1 beta cells against oxidative stress and apoptosis induced by glucolipotoxicity with or without hypoxia, and also protected H9c2 cardiomyocytes against hyperglycemia-induced apoptosis with or without hypoxia. PTD-MT recombinant fusion proteins may be useful protein therapeutics for the treatment or prevention of diabetes and diabetes-related complications.

  9. An endoplasmic reticulum (ER)-directed fusion protein comprising a ...

    African Journals Online (AJOL)

    An endoplasmic reticulum (ER)-directed fusion protein comprising a bacterial subtilisin ... which are used for the commercial production of therapeutic proteins. ... expression platforms) to purify recombinant proteins in crude plant extracts.

  10. Recombinant avidin and avidin-fusion proteins.

    Science.gov (United States)

    Airenne, K J; Marjomäki, V S; Kulomaa, M S

    1999-12-31

    Both chicken egg-white avidin and its bacterial relative streptavidin are well known for their extraordinary high affinity with biotin (Kd approximately 10(-15) M). They are widely used as tools in a number of affinity-based separations, in diagnostic assays and in a variety of other applications. These methods have collectively become known as (strept)avidin-biotin technology. Biotin can easily and effectively be attached to different molecules, termed binders and probes, without destroying their biological activity. The exceptional stability of the avidin-biotin complex and the wide range of commercially available reagents explain the popularity of this system. In order by genetic engineering to modify the unwanted properties of avidin and to further expand the existing avidin-biotin technology, production systems for recombinant avidin and avidin-fusion proteins have been established. This review article presents an overview of the current status of these systems. Future trends in the production and applications of recombinant avidin and avidin-fusion proteins are also discussed.

  11. Combined virus-like particle and fusion protein-encoding DNA vaccination of cotton rats induces protection against respiratory syncytial virus without causing vaccine-enhanced disease

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Hye Suk; Lee, Young-Tae; Kim, Ki-Hye; Park, Soojin; Kwon, Young-Man; Lee, Youri; Ko, Eun-Ju; Jung, Yu-Jin [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); Lee, Jong Seok [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); National Institute of Biological Resources, Incheon (Korea, Republic of); Kim, Yu-Jin [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); Lee, Yu-Na; Kim, Min-Chul [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); Animal and Plant Quarantine Agency, Gyeonggi-do, Gimcheon, Gyeongsangbukdo (Korea, Republic of); Cho, Minkyoung [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); Kang, Sang-Moo, E-mail: skang24@gsu.edu [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States)

    2016-07-15

    A safe and effective vaccine against respiratory syncytial virus (RSV) should confer protection without causing vaccine-enhanced disease. Here, using a cotton rat model, we investigated the protective efficacy and safety of an RSV combination vaccine composed of F-encoding plasmid DNA and virus-like particles containing RSV fusion (F) and attachment (G) glycoproteins (FFG-VLP). Cotton rats with FFG-VLP vaccination controlled lung viral replication below the detection limit, and effectively induced neutralizing activity and antibody-secreting cell responses. In comparison with formalin inactivated RSV (FI-RSV) causing severe RSV disease after challenge, FFG-VLP vaccination did not cause weight loss, airway hyper-responsiveness, IL-4 cytokines, histopathology, and infiltrates of proinflammatory cells such as eosinophils. FFG-VLP was even more effective in preventing RSV-induced pulmonary inflammation than live RSV infections. This study provides evidence that FFG-VLP can be developed into a safe and effective RSV vaccine candidate. - Highlights: • Combined RSV FFG VLP vaccine is effective in inducing F specific responses. • FFG VLP vaccine confers RSV neutralizing activity and viral control in cotton rats. • Cotton rats with RSV FFG VLP vaccination do not show vaccine-enhanced disease. • Cotton rats with FFG VLP vaccine induce F specific antibody secreting cell responses. • Cotton rats with FFG VLP do not induce lung cellular infiltrates and Th2 cytokine.

  12. Analysis of respiratory syncytial virus F, G, and SH proteins in cell fusion.

    Science.gov (United States)

    Heminway, B R; Yu, Y; Tanaka, Y; Perrine, K G; Gustafson, E; Bernstein, J M; Galinski, M S

    1994-05-01

    Recombinant expression of the human respiratory syncytial virus (RSV) fusion (F) glycoprotein, receptor-binding glycoprotein (G), and small hydrophobic (SH) protein was performed to determine the role(s) of these proteins in syncytia formation. These studies used a vaccinia virus expressing the bacteriophage (T7) RNA polymerase gene and plasmid vectors containing the RSV genes under the control of a T7 promoter. Within the context of this expression system, expression of any individual RSV gene, or coexpression of F+G genes, did not elicit the formation of syncytia. However, at plasmid input levels which were 10-fold higher than those normally used, coexpression of F+G induced low but detectable levels of cell fusion. In contrast, coexpression of F, G, and SH together elicited extensive cell fusion resembling that of an authentically infected cell monolayer. In addition, coexpression of F and SH elicited significant cell fusion, although to a lesser extent than was observed when G was included. Cell fusion induced by coexpression of F+SH was found to be specific to the RSV proteins, since coexpression of SH with the analogous F proteins from human parainfluenza virus type 3, human parainfluenza virus type 2, Sendai virus, or simian virus type 5 (SV5) did not elicit cell fusion. Finally, coexpression of the SV5 SH protein with the RSV or SV5 glycoproteins also failed to induce syncytia, suggesting type-specific restrictions between the two sets of viral proteins.

  13. Intracellular localization of GBF proteins and blue light-induced import of GBF2 fusion proteins into the nucleus of cultured Arabidopsis and soybean cells.

    Science.gov (United States)

    Terzaghi, W B; Bertekap, R L; Cashmore, A R

    1997-05-01

    The G-box is an important regulatory element found in the promoters of many different genes. Four members of an Arabidopsis gene family encoding basic leucine zipper proteins (GBFs) which bind the G-box have previously been cloned. To study GBFs, a polyclonal antibody was raised against GBF1 expressed in bacteria. This antibody also recognized GBF2 and GBF3. Immunoblot analysis of nuclear and cytoplasmic fractions from Arabidopsis and soybean (SB-M) cell cultures indicated that over 90% of proteins detected with anti-GBF1 were cytoplasmic. Electrophoretic mobility shift assays indicated that over 90% of G-box binding activity was cytoplasmic. DNA affinity chromatography demonstrated that each protein detected with anti-GBF1 specifically bound the G-box. To study individual GBFs, DNA constructs fusing GBF1, GBF2 and GBF4 to GUS were made and assayed by transient expression in SB-M protoplasts. Of GUS:GBF1 proteins, 50-62% were localized in the cytoplasm under all conditions tested, while 97% of GUS:GBF4 was localized in the nucleus. By contrast, whereas about 50% of GUS:GBF2 was found in the cytoplasm of dark-grown cells, over 80% of this protein was found in the nucleus in cells cultured under blue light. Deletion analysis of GBF1 identified a region between amino acids 112 and 164 apparently required for cytoplasmic retention. These results suggest the intriguing possibility that limitation of nuclear access may be an important control on GBF activity. In particular, GBF2 is apparently specifically imported into the nucleus in response to light.

  14. Premature Activation of the Paramyxovirus Fusion Protein before Target Cell Attachment with Corruption of the Viral Fusion Machinery*

    Science.gov (United States)

    Farzan, Shohreh F.; Palermo, Laura M.; Yokoyama, Christine C.; Orefice, Gianmarco; Fornabaio, Micaela; Sarkar, Aurijit; Kellogg, Glen E.; Greengard, Olga; Porotto, Matteo; Moscona, Anne

    2011-01-01

    Paramyxoviruses, including the childhood pathogen human parainfluenza virus type 3, enter host cells by fusion of the viral and target cell membranes. This fusion results from the concerted action of its two envelope glycoproteins, the hemagglutinin-neuraminidase (HN) and the fusion protein (F). The receptor-bound HN triggers F to undergo conformational changes that render it competent to mediate fusion of the viral and cellular membranes. We proposed that, if the fusion process could be activated prematurely before the virion reaches the target host cell, infection could be prevented. We identified a small molecule that inhibits paramyxovirus entry into target cells and prevents infection. We show here that this compound works by an interaction with HN that results in F-activation prior to receptor binding. The fusion process is thereby prematurely activated, preventing fusion of the viral membrane with target cells and precluding viral entry. This first evidence that activation of a paramyxovirus F can be specifically induced before the virus contacts its target cell suggests a new strategy with broad implications for the design of antiviral agents. PMID:21799008

  15. Distinct roles for key karyogamy proteins during yeast nuclear fusion.

    Science.gov (United States)

    Melloy, Patricia; Shen, Shu; White, Erin; Rose, Mark D

    2009-09-01

    During yeast mating, cell fusion is followed by the congression and fusion of the two nuclei. Proteins required for nuclear fusion are found at the surface (Prm3p) and within the lumen (Kar2p, Kar5p, and Kar8p) of the nuclear envelope (NE). Electron tomography (ET) of zygotes revealed that mutations in these proteins block nuclear fusion with different morphologies, suggesting that they act in different steps of fusion. Specifically, prm3 zygotes were blocked before formation of membrane bridges, whereas kar2, kar5, and kar8 zygotes frequently contained them. Membrane bridges were significantly larger and occurred more frequently in kar2 and kar8, than in kar5 mutant zygotes. The kinetics of NE fusion in prm3, kar5, and kar8 mutants, measured by live-cell fluorescence microscopy, were well correlated with the size and frequency of bridges observed by ET. However the kar2 mutant was defective for transfer of NE lumenal GFP, but not diffusion within the lumen, suggesting that transfer was blocked at the NE fusion junction. These observations suggest that Prm3p acts before initiation of outer NE fusion, Kar5p may help dilation of the initial fusion pore, and Kar2p and Kar8p act after outer NE fusion, during inner NE fusion.

  16. Fusion proteins as alternate crystallization paths to difficult structure problems

    Science.gov (United States)

    Carter, Daniel C.; Rueker, Florian; Ho, Joseph X.; Lim, Kap; Keeling, Kim; Gilliland, Gary; Ji, Xinhua

    1994-01-01

    The three-dimensional structure of a peptide fusion product with glutathione transferase from Schistosoma japonicum (SjGST) has been solved by crystallographic methods to 2.5 A resolution. Peptides or proteins can be fused to SjGST and expressed in a plasmid for rapid synthesis in Escherichia coli. Fusion proteins created by this commercial method can be purified rapidly by chromatography on immobilized glutathione. The potential utility of using SjGST fusion proteins as alternate paths to the crystallization and structure determination of proteins is demonstrated.

  17. Fusion of a Sendai mutant deficient in HN protein (ts271) with cardiolipin liposomes

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, S.; Bundo-Morita, K.; Portner, A.; Lenard, J.

    1988-03-01

    Sendai mutant ts271 contains less than 5% of the amount of HN glycoprotein found in wild-type Sendai. Fusion of this mutant with cardiolipin liposomes revealed no differences from the wild-type virus with regard to specific activity, pH dependence, or radiation inactivation. Target sizes of both mutant and wild-type viral proteins were determined by the radiation-induced disappearance of each band from an SDS-polyacrylamide gel and no differences were found. Of the viral proteins, only F had a target size corresponding to the monomer molecular weight, ca. 60 kDa, identical to the minimum unit previously determined by functional assay for Sendai virus-erythrocyte membrane fusion. This provides additional evidence that F alone is the active protein mediating Sendai-erythrocyte fusion. It is concluded that the HN protein is unlikely to mediate any fusion reactions of the intact virions, either with biological membranes or with cardiolipin liposomes.

  18. Recombinant Bivalent Fusion Protein rVE Induces CD4+ and CD8+ T-Cell Mediated Memory Immune Response for Protection Against Yersinia enterocolitica Infection.

    Science.gov (United States)

    Singh, Amit K; Kingston, Joseph J; Gupta, Shishir K; Batra, Harsh V

    2015-01-01

    Studies investigating the correlates of immune protection against Yersinia infection have established that both humoral and cell mediated immune responses are required for the comprehensive protection. In our previous study, we established that the bivalent fusion protein (rVE) comprising immunologically active regions of Y. pestis LcrV (100-270 aa) and YopE (50-213 aa) proteins conferred complete passive and active protection against lethal Y. enterocolitica 8081 challenge. In the present study, cohort of BALB/c mice immunized with rVE or its component proteins rV, rE were assessed for cell mediated immune responses and memory immune protection against Y. enterocolitica 8081. rVE immunization resulted in extensive proliferation of both CD4 and CD8 T cell subsets; significantly high antibody titer with balanced IgG1: IgG2a/IgG2b isotypes (1:1 ratio) and up-regulation of both Th1 (TNF-α, IFN-γ, IL-2, and IL-12) and Th2 (IL-4) cytokines. On the other hand, rV immunization resulted in Th2 biased IgG response (11:1 ratio) and proliferation of CD4+ T-cell; rE group of mice exhibited considerably lower serum antibody titer with predominant Th1 response (1:3 ratio) and CD8+ T-cell proliferation. Comprehensive protection with superior survival (100%) was observed among rVE immunized mice when compared to the significantly lower survival rates among rE (37.5%) and rV (25%) groups when IP challenged with Y. enterocolitica 8081 after 120 days of immunization. Findings in this and our earlier studies define the bivalent fusion protein rVE as a potent candidate vaccine molecule with the capability to concurrently stimulate humoral and cell mediated immune responses and a proof of concept for developing efficient subunit vaccines against Gram negative facultative intracellular bacterial pathogens.

  19. Macrophage fusion is controlled by the cytoplasmic protein tyrosine phosphatase PTP-PEST/PTPN12.

    Science.gov (United States)

    Rhee, Inmoo; Davidson, Dominique; Souza, Cleiton Martins; Vacher, Jean; Veillette, André

    2013-06-01

    Macrophages can undergo cell-cell fusion, leading to the formation of multinucleated giant cells and osteoclasts. This process is believed to promote the proteolytic activity of macrophages toward pathogens, foreign bodies, and extracellular matrices. Here, we examined the role of PTP-PEST (PTPN12), a cytoplasmic protein tyrosine phosphatase, in macrophage fusion. Using a macrophage-targeted PTP-PEST-deficient mouse, we determined that PTP-PEST was not needed for macrophage differentiation or cytokine production. However, it was necessary for interleukin-4-induced macrophage fusion into multinucleated giant cells in vitro. It was also needed for macrophage fusion following implantation of a foreign body in vivo. Moreover, in the RAW264.7 macrophage cell line, PTP-PEST was required for receptor activator of nuclear factor kappa-B ligand (RANKL)-triggered macrophage fusion into osteoclasts. PTP-PEST had no impact on expression of fusion mediators such as β-integrins, E-cadherin, and CD47, which enable macrophages to become fusion competent. However, it was needed for polarization of macrophages, migration induced by the chemokine CC chemokine ligand 2 (CCL2), and integrin-induced spreading, three key events in the fusion process. PTP-PEST deficiency resulted in specific hyperphosphorylation of the protein tyrosine kinase Pyk2 and the adaptor paxillin. Moreover, a fusion defect was induced upon treatment of normal macrophages with a Pyk2 inhibitor. Together, these data argue that macrophage fusion is critically dependent on PTP-PEST. This function is seemingly due to the ability of PTP-PEST to control phosphorylation of Pyk2 and paxillin, thereby regulating cell polarization, migration, and spreading.

  20. Trophoblast cell fusion and differentiation are mediated by both the protein kinase C and a pathways.

    Directory of Open Access Journals (Sweden)

    Waka Omata

    Full Text Available The syncytiotrophoblast of the human placenta is an epithelial barrier that interacts with maternal blood and is a key for the transfer of nutrients and other solutes to the developing fetus. The syncytiotrophoblast is a true syncytium and fusion of progenitor cytotrophoblasts is the cardinal event leading to the formation of this layer. BeWo cells are often used as a surrogate for cytotrophoblasts, since they can be induced to fuse, and then express certain differentiation markers associated with trophoblast syncytialization. Dysferlin, a syncytiotrophoblast membrane repair protein, is up-regulated in BeWo cells induced to fuse by treatment with forskolin; this fusion is thought to occur through cAMP/protein kinase A-dependent mechanisms. We hypothesized that dysferlin may also be up-regulated in response to fusion through other pathways. Here, we show that BeWo cells can also be induced to fuse by treatment with an activator of protein kinase C, and that this fusion is accompanied by increased expression of dysferlin. Moreover, a dramatic synergistic increase in dysferlin expression is observed when both the protein kinase A and protein kinase C pathways are activated in BeWo cells. This synergy in fusion is also accompanied by dramatic increases in mRNA for the placental fusion proteins syncytin 1, syncytin 2, as well as dysferlin. Dysferlin, however, was shown to be dispensable for stimulus-induced BeWo cell syncytialization, since dysferlin knockdown lines fused to the same extent as control cells. The classical trophoblast differentiation marker human chorionic gonadotropin was also monitored and changes in the expression closely parallel that of dysferlin in all of the experimental conditions employed. Thus different biochemical markers of trophoblast fusion behave in concert supporting the hypothesis that activation of both protein kinase C and A pathways lead to trophoblastic differentiation.

  1. A Recombinant DNA Plasmid Encoding the sIL-4R-NAP Fusion Protein Suppress Airway Inflammation in an OVA-Induced Mouse Model of Asthma.

    Science.gov (United States)

    Liu, Xin; Fu, Guo; Ji, Zhenyu; Huang, Xiabing; Ding, Cong; Jiang, Hui; Wang, Xiaolong; Du, Mingxuan; Wang, Ting; Kang, Qiaozhen

    2016-08-01

    Asthma is a chronic inflammatory airway disease. It was prevalently perceived that Th2 cells played the crucial role in asthma pathogenesis, which has been identified as the important target for anti-asthma therapy. The soluble IL-4 receptor (sIL-4R), which is the decoy receptor for Th2 cytokine IL-4, has been reported to be effective in treating asthma in phase I/II clinical trail. To develop more efficacious anti-asthma agent, we attempt to test whether the Helicobacter pylori neutrophil-activating protein (HP-NAP), a novel TLR2 agonist, would enhance the efficacy of sIL-4R in anti-asthma therapy. In our work, we constructed a pcDNA3.1-sIL-4R-NAP plasmid, named PSN, encoding fusion protein of murine sIL-4R and HP-NAP. PSN significantly inhibited airway inflammation, decreased the serum OVA-specific IgE levels and remodeled the Th1/Th2 balance. Notably, PSN is more effective on anti-asthma therapy comparing with plasmid only expressing sIL-4R.

  2. Recombinant fusion protein of albumin-retinol binding protein inactivates stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Soyoung; Park, Sangeun; Kim, Suhyun [Laboratory of Cellular Oncology, Korea University Graduate School of Medicine, Ansan, Gyeonggi do 425-707 (Korea, Republic of); Lim, Chaeseung [Department of Laboratory Medicine, Korea University Guro Hospital, Seoul 152-703 (Korea, Republic of); Kim, Jungho [Department of Life Science, Sogang University, Seoul 121-742 (Korea, Republic of); Cha, Dae Ryong [Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Gyeonggi do 425-020 (Korea, Republic of); Oh, Junseo, E-mail: ohjs@korea.ac.kr [Laboratory of Cellular Oncology, Korea University Graduate School of Medicine, Ansan, Gyeonggi do 425-707 (Korea, Republic of)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer We designed novel recombinant albumin-RBP fusion proteins. Black-Right-Pointing-Pointer Expression of fusion proteins inactivates pancreatic stellate cells (PSCs). Black-Right-Pointing-Pointer Fusion proteins are successfully internalized into and inactivate PSCs. Black-Right-Pointing-Pointer RBP moiety mediates cell specific uptake of fusion protein. -- Abstract: Quiescent pancreatic- (PSCs) and hepatic- (HSCs) stellate cells store vitamin A (retinol) in lipid droplets via retinol binding protein (RBP) receptor and, when activated by profibrogenic stimuli, they transform into myofibroblast-like cells which play a key role in the fibrogenesis. Despite extensive investigations, there is, however, currently no appropriate therapy available for tissue fibrosis. We previously showed that the expression of albumin, composed of three homologous domains (I-III), inhibits stellate cell activation, which requires its high-affinity fatty acid-binding sites asymmetrically distributed in domain I and III. To attain stellate cell-specific uptake, albumin (domain I/III) was coupled to RBP; RBP-albumin{sup domain} {sup III} (R-III) and albumin{sup domain} {sup I}-RBP-albumin{sup III} (I-R-III). To assess the biological activity of fusion proteins, cultured PSCs were used. Like wild type albumin, expression of R-III or I-R-III in PSCs after passage 2 (activated PSCs) induced phenotypic reversal from activated to fat-storing cells. On the other hand, R-III and I-R-III, but not albumin, secreted from transfected 293 cells were successfully internalized into and inactivated PSCs. FPLC-purified R-III was found to be internalized into PSCs via caveolae-mediated endocytosis, and its efficient cellular uptake was also observed in HSCs and podocytes among several cell lines tested. Moreover, tissue distribution of intravenously injected R-III was closely similar to that of RBP. Therefore, our data suggest that albumin-RBP fusion protein comprises

  3. Cell-based analysis of Chikungunya virus E1 protein in membrane fusion

    Directory of Open Access Journals (Sweden)

    Kuo Szu-Cheng

    2012-04-01

    Full Text Available Abstract Background Chikungunya fever is a pandemic disease caused by the mosquito-borne Chikungunya virus (CHIKV. E1 glycoprotein mediation of viral membrane fusion during CHIKV infection is a crucial step in the release of viral genome into the host cytoplasm for replication. How the E1 structure determines membrane fusion and whether other CHIKV structural proteins participate in E1 fusion activity remain largely unexplored. Methods A bicistronic baculovirus expression system to produce recombinant baculoviruses for cell-based assay was used. Sf21 insect cells infected by recombinant baculoviruses bearing wild type or single-amino-acid substitution of CHIKV E1 and EGFP (enhanced green fluorescence protein were employed to investigate the roles of four E1 amino acid residues (G91, V178, A226, and H230 in membrane fusion activity. Results Western blot analysis revealed that the E1 expression level and surface features in wild type and mutant substituted cells were similar. However, cell fusion assay found that those cells infected by CHIKV E1-H230A mutant baculovirus showed little fusion activity, and those bearing CHIKV E1-G91D mutant completely lost the ability to induce cell-cell fusion. Cells infected by recombinant baculoviruses of CHIKV E1-A226V and E1-V178A mutants exhibited the same membrane fusion capability as wild type. Although the E1 expression level of cells bearing monomeric-E1-based constructs (expressing E1 only was greater than that of cells bearing 26S-based constructs (expressing all structural proteins, the sizes of syncytial cells induced by infection of baculoviruses containing 26S-based constructs were larger than those from infections having monomeric-E1 constructs, suggesting that other viral structure proteins participate or regulate E1 fusion activity. Furthermore, membrane fusion in cells infected by baculovirus bearing the A226V mutation constructs exhibited increased cholesterol-dependences and lower pH thresholds

  4. Secretion induces cell pH dynamics impacting assembly-disassembly of the fusion protein complex: A combined fluorescence and atomic force microscopy study.

    Science.gov (United States)

    Lewis, Kenneth T; Naik, Akshata R; Laha, Suvra S; Wang, Sunxi; Mao, Guangzhao; Kuhn, Eric; Jena, Bhanu P

    2017-08-03

    A wide range of cellular activities including protein folding and cell secretion, such as neurotransmission or insulin release, are all governed by intracellular pH homeostasis, underscoring the importance of pH on critical life processes. Nano- scale pH measurements of cells and biomolecules therefore hold great promise in understanding a plethora of cellular functions, in addition to disease detection and therapy. In the current study, a novel approach using cadmium telluride quantum dots (CdTeQDs) as pH sensors, combined with fluorescent imaging, spectrofluorimetry, atomic force microscopy (AFM), and Western blot analysis, enabled the study of intracellular pH dynamics at 1 milli-pH sensitivity and 80nm pixel resolution, during insulin secretion. Additionally, the pH-dependent interaction between membrane fusion proteins, also called the soluble N-ethylmaleimide-sensitive factor activating protein receptor (SNARE), was determined. Glucose stimulation of CdTeQD-loaded insulin secreting Min-6 mouse insulinoma cell line demonstrated the initial (5-6min) intracellular acidification reflected as a loss in QD fluorescence, followed by alkalization and a return to resting pH in 10min. Analysis of the SNARE complex in insulin secreting Min-6 cells demonstrated an initial gain followed by loss of complexed SNAREs in 10min. Stabilization of the SNARE complex at low intracellular pH is further supported by results from studies utilizing both native and AFM measurements of liposome-reconstituted recombinant neuronal SNAREs, providing a molecular understanding of the role of pH during cell secretion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A novel fusion protein domain III-capsid from dengue-2, in a highly aggregated form, induces a functional immune response and protection in mice.

    Science.gov (United States)

    Valdés, Iris; Bernardo, Lidice; Gil, Lázaro; Pavón, Alekis; Lazo, Laura; López, Carlos; Romero, Yaremis; Menendez, Ivón; Falcón, Viviana; Betancourt, Lázaro; Martín, Jorge; Chinea, Glay; Silva, Ricardo; Guzmán, María G; Guillén, Gerardo; Hermida, Lisset

    2009-11-25

    Based on the immunogenicity of domain III from the Envelope protein of dengue virus as well as the proven protective capacity of the capsid antigen, we have designed a novel domain III-capsid chimeric protein with the goal of obtaining a molecule potentially able to induce both humoral and cell-mediated immunity (CMI). After expression of the recombinant gene in Escherichia coli, the domain III moiety retained its antigenicity as evaluated with anti-dengue sera. In order to explore alternatives for modulating the immunogenicity of the protein, it was mixed with oligodeoxynucleotides in order to obtain particulated aggregates and then immunologically evaluated in mice in comparison with non-aggregated controls. Although the humoral immune response induced by both forms of the protein was equivalent, the aggregated variant resulted in a much stronger CMI as measured by in vitro IFN-gamma secretion and protection experiments, mediated by CD4(+) and CD8(+) cells. The present work provides additional evidence in support for a crucial role of CMI in protection against dengue virus and describes a novel vaccine candidate against the disease based on a recombinant protein that can stimulate both arms of the acquired immune system.

  6. IGF1 is a common target gene of Ewing's sarcoma fusion proteins in mesenchymal progenitor cells.

    Directory of Open Access Journals (Sweden)

    Luisa Cironi

    Full Text Available BACKGROUND: The EWS-FLI-1 fusion protein is associated with 85-90% of Ewing's sarcoma family tumors (ESFT, the remaining 10-15% of cases expressing chimeric genes encoding EWS or FUS fused to one of several ets transcription factor family members, including ERG-1, FEV, ETV1 and ETV6. ESFT are dependent on insulin-like growth factor-1 (IGF-1 for growth and survival and recent evidence suggests that mesenchymal progenitor/stem cells constitute a candidate ESFT origin. METHODOLOGY/PRINCIPAL FINDINGS: To address the functional relatedness between ESFT-associated fusion proteins, we compared mouse progenitor cell (MPC permissiveness for EWS-FLI-1, EWS-ERG and FUS-ERG expression and assessed the corresponding expression profile changes. Whereas all MPC isolates tested could stably express EWS-FLI-1, only some sustained stable EWS-ERG expression and none could express FUS-ERG for more than 3-5 days. Only 14% and 4% of the total number of genes that were respectively induced and repressed in MPCs by the three fusion proteins were shared. However, all three fusion proteins, but neither FLI-1 nor ERG-1 alone, activated the IGF1 promoter and induced IGF1 expression. CONCLUSION/SIGNIFICANCE: Whereas expression of different ESFT-associated fusion proteins may require distinct cellular microenvironments and induce transcriptome changes of limited similarity, IGF1 induction may provide one common mechanism for their implication in ESFT pathogenesis.

  7. Fusion expression of Helicobacter pylori neutrophil-activating protein in E.coli

    Institute of Scientific and Technical Information of China (English)

    Qiao-Zhen Kang; Guang-Cai Duan; Qing-Tang Fan; Yuan-Lin Xi

    2005-01-01

    AIM: To produce a recombinant protein rMBP-NAP, which was fusionally expressed by Helicobacter pylori(H pylori)neutrophil-activating protein (NAP) and E. coli maltosebinding protein (MBP) and to evaluate its immunoreactivity and immunogenicity.METHODS: Neutrophil-activating protein gene of H pylori (HP-napA) was subcloned from the recombinant plasmid pNEB-napA, and fused to MalE gene of expressing vector pMAL-c2x. The recombinant plasmid pMAL-c2x-napA was confirmed by restriction enzyme digestion, and then transformed into E. coli TB1. Fusion protein rMBP-NAP was induced by IPTG and identified by SDS-PAGE analysis.Soluble rMBP-NAP was purified by amylose affinity chromatography. Immunoreactivity and immunogenicity of the fusion protein were evaluated by animal experiment,Western blotting with human H pylori anti-sera.RESULTS: E.coli TB1 carrying recombinant plasmid pMAL-c2x-napA was constructed and led to a high efficiency cytosol expression of fusion protein rBMP -NAP when induced by IPTG.The molecular weight of rBMP-NAP was about 57 kD,accounting for 37.55% of the total protein in the sonicated supematant of E. coli TB1 (pMAL-c2x-napA). The purity of the fusion protein after one-step affinity chromatography was 94% and the yield was 100 mg per liter of bacterial culture.The purified fusion protein could be specifically recognized by both human anti-sera from clinical patients with H pylori infection and rabbit sera immunized by rMBP-NAP itself.CONCLUSION: Recombinant protein rMBP-NAP might be a novel antigen for vaccine development against H pylori.

  8. Protein engineering,expression,and activity of a novel fusion protein possessing keratinocyte growth factor 2 and fibronectin

    Institute of Scientific and Technical Information of China (English)

    Wonmo Kang; Junhyeog Jang

    2009-01-01

    Growth factor-induced proliferation and differentiation often require adhesion of cells to the extracellular matrix proteins such as fibronectin(FN).In this study,we aimed to investigate the effect of protein engineering of the keratinocyte growth factor 2(KGF2)fused to the FN on the mitogenic activity of KGF2.The fusion protein(KGF2-FN10),which was expressed in Escherichia coli,showed significantly enhanced mitogenic activity of KGF2 on human keratinocytes.Moreover,KGF2-FN10 fusion protein showed significantly increased activity to differentiate keratinocytes from native KGF2.In conclusion,these results suggest that KGF2-FN10 fusion protein has certain advantages over native KGF2 and may offer a novel strategy to potentiate the therapeutic effect of KGF2.

  9. [Preparation and the biological effect of fusion protein GLP-1-exendin-4/ IgG4(Fc) fusion protein as long acting GLP-1 receptor agonist].

    Science.gov (United States)

    Zheng, Yun-cheng

    2015-12-01

    GLP-1 has a variety of anti-diabetic effects. However, native GLP-1 is not suitable for treatment of diabetes due to its short half-life (t½, 2-5 min). Exendin-4 is a polypeptide isolated from lizard saliva, which can bind to GLP-1 receptor, produce physiological effects similar to GLP-1, t½ up to 2.5 h, therefore, we developed a long-lasting GLP-1 receptor agonists and GLP-1-exendin-4 fusion IgG4 Fc [GLP-1-exendin-4/ IgG4(Fc)]. We constructed the eukaryotic expression vector of human GLP-1-exendin-4/IgG4(Fc)-pOptiVEC- TOPO by gene recombination technique and expressed the fusion protein human GLP-1-IgG4 (Fc) in CHO/DG44 cells. The fusion protein stimulated the INS-1 cells secretion of insulin, GLP-1, exendin-4 and fusion protein in CD1 mice pharmacokinetic experiments, as well as GLP-1, exendin-4 and fusion protein did anti-diabetic effect on streptozotocin induced mice. Results demonstrated that the GLP-1-exendin-4/IgG4(Fc) positive CHO/DG44 clones were chosen and the media from these positive clones. Western blotting showed that one protein band was found to match well with the predicted relative molecular mass of human GLP-1-exendin-4/IgG4(Fc). Insulin RIA showed that GLP-1-exendin-4/IgG4(Fc) dose-dependently stimulated insulin secretion from INS-1 cells. Pharmacokinetic studies in CD1 mice showed that with intraperitoneal injection (ip), the fusion protein peaked at 30 min in circulation and maintained a plateau for 200 h. Natural biological half-life of exendin-4 was (1.39 ± 0.28) h, GLP-1 in vivo t½ 4 min, indicating that fusion protein has long-lasting effects on the modulation of glucose homeostasis. GLP-1-exendin-4/IgG4(Fc) was found to be effective in reducing the incidence of diabetes in multiple-low-dose streptozotocin-induced diabetes in mice, longer duration of the biological activity of the fusion protein. The biological activity was significantly higher than that of GLP-1 and exendin-4. GLP-1-exendin-4/IgG4(Fc) has good anti-diabetic activity

  10. Immunological Properties of Hepatitis B Core Antigen Fusion Proteins

    Science.gov (United States)

    Francis, Michael J.; Hastings, Gillian Z.; Brown, Alan L.; Grace, Ken G.; Rowlands, David J.; Brown, Fred; Clarke, Berwyn E.

    1990-04-01

    The immunogenicity of a 19 amino acid peptide from foot-and-mouth disease virus has previously been shown to approach that of the inactivated virus from which it was derived after multimeric particulate presentation as an N-terminal fusion with hepatitis B core antigen. In this report we demonstrate that rhinovirus peptide-hepatitis B core antigen fusion proteins are 10-fold more immunogenic than peptide coupled to keyhole limpet hemocyanin and 100-fold more immunogenic than uncoupled peptide with an added helper T-cell epitope. The fusion proteins can be readily administered without adjuvant or with adjuvants acceptable for human and veterinary application and can elicit a response after nasal or oral dosing. The fusion proteins can also act as T-cell-independent antigens. These properties provide further support for their suitability as presentation systems for "foreign" epitopes in the development of vaccines.

  11. The Multifaceted Role of SNARE Proteins in Membrane Fusion.

    Science.gov (United States)

    Han, Jing; Pluhackova, Kristyna; Böckmann, Rainer A

    2017-01-01

    Membrane fusion is a key process in all living organisms that contributes to a variety of biological processes including viral infection, cell fertilization, as well as intracellular transport, and neurotransmitter release. In particular, the various membrane-enclosed compartments in eukaryotic cells need to exchange their contents and communicate across membranes. Efficient and controllable fusion of biological membranes is known to be driven by cooperative action of SNARE proteins, which constitute the central components of the eukaryotic fusion machinery responsible for fusion of synaptic vesicles with the plasma membrane. During exocytosis, vesicle-associated v-SNARE (synaptobrevin) and target cell-associated t-SNAREs (syntaxin and SNAP-25) assemble into a core trans-SNARE complex. This complex plays a versatile role at various stages of exocytosis ranging from the priming to fusion pore formation and expansion, finally resulting in the release or exchange of the vesicle content. This review summarizes current knowledge on the intricate molecular mechanisms underlying exocytosis triggered and catalyzed by SNARE proteins. Particular attention is given to the function of the peptidic SNARE membrane anchors and the role of SNARE-lipid interactions in fusion. Moreover, the regulatory mechanisms by synaptic auxiliary proteins in SNARE-driven membrane fusion are briefly outlined.

  12. Coexpression of GM-CSF and antigen in DNA prime-adenoviral vector boost immunization enhances polyfunctional CD8+ T cell responses, whereas expression of GM-CSF antigen fusion protein induces autoimmunity.

    Science.gov (United States)

    Tenbusch, Matthias; Kuate, Seraphin; Tippler, Bettina; Gerlach, Nicole; Schimmer, Simone; Dittmer, Ulf; Uberla, Klaus

    2008-04-11

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) has shown promising results as a cytokine adjuvant for antiviral vaccines and in various models of tumor gene therapy. To explore whether the targeting of antigens to GM-CSF receptors on antigen-presenting cells enhances antigen-specific CD8 T-cell responses, fusion proteins of GM-CSF and ovalbumin (OVA) were expressed by DNA and adenoviral vector vaccines. In addition, bicistronic vectors allowing independent expression of the antigen and the cytokine were tested in parallel. In vitro, the GM-CSF ovalbumin fusion protein (GM-OVA) led to the better stimulation of OVA-specific CD8+ T cells by antigen-presenting cells than OVA and GM-CSF given as two separate proteins. However, prime-boost immunizations of mice with DNA and adenoviral vector vaccines encoding GM-OVA suppressed CD8+ T-cell responses to OVA. OVA-specific IgG2a antibody levels were also reduced, while the IgG1 antibody response was enhanced. Suppression of CD8+ T cell responses by GM-OVA vaccines was associated with the induction of neutralizing antibodies to GM-CSF. In contrast, the coexpression of GM-CSF and antigens in DNA prime adenoviral boost immunizations led to a striking expansion of polyfunctional OVA-specific CD8+ T cells without the induction of autoantibodies. The induction of autoantibodies suggests a general note of caution regarding the use of highly immunogenic viral vector vaccines encoding fusion proteins between antigens and host proteins. In contrast, the expansion of polyfunctional OVA-specific CD8+ T cells after immunizations with bicistronic vectors further support a potential application of GM-CSF as an adjuvant for heterologous prime-boost regimens with genetic vaccines. Since DNA prime adenoviral vector boost regimenes are presently considered as one of the most efficient ways to induce CD8+ T cell responses in mice, non-human primates and humans, further enhancement of this response by GM-CSF is a striking observation.

  13. Coexpression of GM-CSF and antigen in DNA prime-adenoviral vector boost immunization enhances polyfunctional CD8+ T cell responses, whereas expression of GM-CSF antigen fusion protein induces autoimmunity

    Directory of Open Access Journals (Sweden)

    Gerlach Nicole

    2008-04-01

    Full Text Available Abstract Background Granulocyte-macrophage colony-stimulating factor (GM-CSF has shown promising results as a cytokine adjuvant for antiviral vaccines and in various models of tumor gene therapy. To explore whether the targeting of antigens to GM-CSF receptors on antigen-presenting cells enhances antigen-specific CD8 T-cell responses, fusion proteins of GM-CSF and ovalbumin (OVA were expressed by DNA and adenoviral vector vaccines. In addition, bicistronic vectors allowing independent expression of the antigen and the cytokine were tested in parallel. Results In vitro, the GM-CSF ovalbumin fusion protein (GM-OVA led to the better stimulation of OVA-specific CD8+ T cells by antigen-presenting cells than OVA and GM-CSF given as two separate proteins. However, prime-boost immunizations of mice with DNA and adenoviral vector vaccines encoding GM-OVA suppressed CD8+ T-cell responses to OVA. OVA-specific IgG2a antibody levels were also reduced, while the IgG1 antibody response was enhanced. Suppression of CD8+ T cell responses by GM-OVA vaccines was associated with the induction of neutralizing antibodies to GM-CSF. In contrast, the coexpression of GM-CSF and antigens in DNA prime adenoviral boost immunizations led to a striking expansion of polyfunctional OVA-specific CD8+ T cells without the induction of autoantibodies. Conclusion The induction of autoantibodies suggests a general note of caution regarding the use of highly immunogenic viral vector vaccines encoding fusion proteins between antigens and host proteins. In contrast, the expansion of polyfunctional OVA-specific CD8+ T cells after immunizations with bicistronic vectors further support a potential application of GM-CSF as an adjuvant for heterologous prime-boost regimens with genetic vaccines. Since DNA prime adenoviral vector boost regimenes are presently considered as one of the most efficient ways to induce CD8+ T cell responses in mice, non-human primates and humans, further

  14. Expression and Purification of Recombinant Human Basic Fibroblast Growth Factor Fusion Proteins and Their Uses in Human Stem Cell Culture.

    Science.gov (United States)

    Imsoonthornruksa, Sumeth; Pruksananonda, Kamthorn; Parnpai, Rangsun; Rungsiwiwut, Ruttachuk; Ketudat-Cairns, Mariena

    2015-01-01

    To reduce the cost of cytokines and growth factors in stem cell research, a simple method for the production of soluble and biological active human basic fibroblast growth factor (hbFGF) fusion protein in Escherichia coli was established. Under optimal conditions, approximately 60-80 mg of >95% pure hbFGF fusion proteins (Trx-6xHis-hbFGF and 6xHis-hbFGF) were obtained from 1 liter of culture broth. The purified hbFGF proteins, both with and without the fusion tags, were biologically active, which was confirmed by their ability to stimulate proliferation of NIH3T3 cells. The fusion proteins also have the ability to support several culture passages of undifferentiated human embryonic stem cells and induce pluripotent stem cells. This paper describes a low-cost and uncomplicated method for the production and purification of biologically active hbFGF fusion proteins.

  15. Novel nanocomposites from spider silk–silica fusion (chimeric) proteins

    Science.gov (United States)

    Wong Po Foo, Cheryl; Patwardhan, Siddharth V.; Belton, David J.; Kitchel, Brandon; Anastasiades, Daphne; Huang, Jia; Naik, Rajesh R.; Perry, Carole C.; Kaplan, David L.

    2006-01-01

    Silica skeletal architectures in diatoms are characterized by remarkable morphological and nanostructural details. Silk proteins from spiders and silkworms form strong and intricate self-assembling fibrous biomaterials in nature. We combined the features of silk with biosilica through the design, synthesis, and characterization of a novel family of chimeric proteins for subsequent use in model materials forming reactions. The domains from the major ampullate spidroin 1 (MaSp1) protein of Nephila clavipes spider dragline silk provide control over structural and morphological details because it can be self-assembled through diverse processing methods including film casting and fiber electrospinning. Biosilica nanostructures in diatoms are formed in aqueous ambient conditions at neutral pH and low temperatures. The R5 peptide derived from the silaffin protein of Cylindrotheca fusiformis induces and regulates silica precipitation in the chimeric protein designs under similar ambient conditions. Whereas mineralization reactions performed in the presence of R5 peptide alone form silica particles with a size distribution of 0.5–10 μm in diameter, reactions performed in the presence of the new fusion proteins generate nanocomposite materials containing silica particles with a narrower size distribution of 0.5–2 μm in diameter. Furthermore, we demonstrate that composite morphology and structure could be regulated by controlling processing conditions to produce films and fibers. These results suggest that the chimeric protein provides new options for processing and control over silica particle sizes, important benefits for biomedical and specialty materials, particularly in light of the all aqueous processing and the nanocomposite features of these new materials. PMID:16769898

  16. PKC-Mediated ZYG1 Phosphorylation Induces Fusion of Myoblasts as well as of Dictyostelium Cells

    Directory of Open Access Journals (Sweden)

    Aiko Amagai

    2012-01-01

    Full Text Available We have previously demonstrated that a novel protein ZYG1 induces sexual cell fusion (zygote formation of Dictyostelium cells. In the process of cell fusion, involvements of signal transduction pathways via Ca2+ and PKC (protein kinase C have been suggested because zygote formation is greatly enhanced by PKC activators. In fact, there are several deduced sites phosphorylated by PKC in ZYG1 protein. Thereupon, we designed the present work to examine whether or not ZYG1 is actually phosphorylated by PKC and localized at the regions of cell-cell contacts where cell fusion occurs. These were ascertained, suggesting that ZYG1 might be the target protein for PKC. A humanized version of zyg1 cDNA (mzyg1 was introduced into myoblasts to know if ZYG1 is also effective in cell fusion of myoblasts. Quite interestingly, enforced expression of ZYG1 in myoblasts was found to induce markedly their cell fusion, thus strongly suggesting the existence of a common signaling pathway for cell fusion beyond the difference of species.

  17. Appoptosin interacts with mitochondrial outer-membrane fusion proteins and regulates mitochondrial morphology.

    Science.gov (United States)

    Zhang, Cuilin; Shi, Zhun; Zhang, Lingzhi; Zhou, Zehua; Zheng, Xiaoyuan; Liu, Guiying; Bu, Guojun; Fraser, Paul E; Xu, Huaxi; Zhang, Yun-Wu

    2016-03-01

    Mitochondrial morphology is regulated by fusion and fission machinery. Impaired mitochondria dynamics cause various diseases, including Alzheimer's disease. Appoptosin (encoded by SLC25A38) is a mitochondrial carrier protein that is located in the mitochondrial inner membrane. Appoptosin overexpression causes overproduction of reactive oxygen species (ROS) and caspase-dependent apoptosis, whereas appoptosin downregulation abolishes β-amyloid-induced mitochondrial fragmentation and neuronal death during Alzheimer's disease. Herein, we found that overexpression of appoptosin resulted in mitochondrial fragmentation in a manner independent of its carrier function, ROS production or caspase activation. Although appoptosin did not affect levels of mitochondrial outer-membrane fusion (MFN1 and MFN2), inner-membrane fusion (OPA1) and fission [DRP1 (also known as DNM1L) and FIS1] proteins, appoptosin interacted with MFN1 and MFN2, as well as with the mitochondrial ubiquitin ligase MITOL (also known as MARCH5) but not OPA1, FIS1 or DRP1. Appoptosin overexpression impaired the interaction between MFN1 and MFN2, and mitochondrial fusion. By contrast, co-expression of MFN1, MITOL and a dominant-negative form of DRP1, DRP1(K38A), partially rescued appoptosin-induced mitochondrial fragmentation and apoptosis, whereas co-expression of FIS1 aggravated appoptosin-induced apoptosis. Together, our results demonstrate that appoptosin can interact with mitochondrial outer-membrane fusion proteins and regulates mitochondrial morphology.

  18. Potent Systemic Anticancer Activity of Adenovirally Expressed EGFR-Selective TRAIL Fusion Protein

    NARCIS (Netherlands)

    Bremer, Edwin; van Dam, Gooitzen M.; de Bruyn, Marco; van Riezen, Manon; Dijkstra, Marike; Kamps, Gera; Helfrich, Wijnand; Haisma, Hidde

    2008-01-01

    Previously, we demonstrated potent tumor cell-selective pro-apoptotic activity of scFv425:sTRAIL, a recombinant fusion protein comprised of EGFR-directed antibody fragment (scFv425) genetically fused to human soluble TNF-related apoptosis-inducing ligand (sTRAIL). Here, we report on the promising th

  19. Optimization of membrane protein overexpression and purification using GFP fusions

    NARCIS (Netherlands)

    Drew, David; Lerch, Mirjam; Kunji, Edmund; Slotboom, Dirk-Jan; de Gier, Jan-Willem

    2006-01-01

    Optimizing conditions for the overexpression and purification of membrane proteins for functional and structural studies is usually a Laborious and time-consuming process. This process can be accelerated using membrane protein-GFP fusions(1-3), which allows direct monitoring and visualization of mem

  20. Fluobodies : green fluorescent single-chain Fv fusion proteins

    NARCIS (Netherlands)

    Griep, R.A.; Twisk, van C.; Wolf, van der J.M.; Schots, A.

    1999-01-01

    An expression system (pSKGFP), which permits the expression of single-chain variable fragments as fusion proteins with modified green fluorescent proteins, was designed. This expression system is comparable to frequently used phage display vectors and allows single-step characterization of the selec

  1. Expanding the molecular toolbox for Lactococcus lactis: construction of an inducible thioredoxin gene fusion expression system

    LENUS (Irish Health Repository)

    Douillard, Francois P

    2011-08-09

    Abstract Background The development of the Nisin Inducible Controlled Expression (NICE) system in the food-grade bacterium Lactococcus lactis subsp. cremoris represents a cornerstone in the use of Gram-positive bacterial expression systems for biotechnological purposes. However, proteins that are subjected to such over-expression in L. lactis may suffer from improper folding, inclusion body formation and\\/or protein degradation, thereby significantly reducing the yield of soluble target protein. Although such drawbacks are not specific to L. lactis, no molecular tools have been developed to prevent or circumvent these recurrent problems of protein expression in L. lactis. Results Mimicking thioredoxin gene fusion systems available for E. coli, two nisin-inducible expression vectors were constructed to over-produce various proteins in L. lactis as thioredoxin fusion proteins. In this study, we demonstrate that our novel L. lactis fusion partner expression vectors allow high-level expression of soluble heterologous proteins Tuc2009 ORF40, Bbr_0140 and Tuc2009 BppU\\/BppL that were previously insoluble or not expressed using existing L. lactis expression vectors. Over-expressed proteins were subsequently purified by Ni-TED affinity chromatography. Intact heterologous proteins were detected by immunoblotting analyses. We also show that the thioredoxin moiety of the purified fusion protein was specifically and efficiently cleaved off by enterokinase treatment. Conclusions This study is the first description of a thioredoxin gene fusion expression system, purposely developed to circumvent problems associated with protein over-expression in L. lactis. It was shown to prevent protein insolubility and degradation, allowing sufficient production of soluble proteins for further structural and functional characterization.

  2. The cytoplasmic domain of the gamete membrane fusion protein HAP2 targets the protein to the fusion site in Chlamydomonas and regulates the fusion reaction

    Science.gov (United States)

    Liu, Yanjie; Pei, Jimin; Grishin, Nick; Snell, William J.

    2015-01-01

    Cell-cell fusion between gametes is a defining step during development of eukaryotes, yet we know little about the cellular and molecular mechanisms of the gamete membrane fusion reaction. HAP2 is the sole gamete-specific protein in any system that is broadly conserved and shown by gene disruption to be essential for gamete fusion. The wide evolutionary distribution of HAP2 (also known as GCS1) indicates it was present in the last eukaryotic common ancestor and, therefore, dissecting its molecular properties should provide new insights into fundamental features of fertilization. HAP2 acts at a step after membrane adhesion, presumably directly in the merger of the lipid bilayers. Here, we use the unicellular alga Chlamydomonas to characterize contributions of key regions of HAP2 to protein location and function. We report that mutation of three strongly conserved residues in the ectodomain has no effect on targeting or fusion, although short deletions that include those residues block surface expression and fusion. Furthermore, HAP2 lacking a 237-residue segment of the cytoplasmic region is expressed at the cell surface, but fails to localize at the apical membrane patch specialized for fusion and fails to rescue fusion. Finally, we provide evidence that the ancient HAP2 contained a juxta-membrane, multi-cysteine motif in its cytoplasmic region, and that mutation of a cysteine dyad in this motif preserves protein localization, but substantially impairs HAP2 fusion activity. Thus, the ectodomain of HAP2 is essential for its surface expression, and the cytoplasmic region targets HAP2 to the site of fusion and regulates the fusion reaction. PMID:25655701

  3. Transgenic plants expressing ω-ACTX-Hv1a and snowdrop lectin (GNA) fusion protein show enhanced resistance to aphids.

    Science.gov (United States)

    Nakasu, Erich Y T; Edwards, Martin G; Fitches, Elaine; Gatehouse, John A; Gatehouse, Angharad M R

    2014-01-01

    Recombinant fusion proteins containing arthropod toxins have been developed as a new class of biopesticides. The recombinant fusion protein Hv1a/GNA, containing the spider venom toxin ω-ACTX-Hv1a linked to snowdrop lectin (GNA) was shown to reduce survival of the peach-potato aphid Myzus persicae when delivered in artificial diet, with survival <10% after 8 days exposure to fusion protein at 1 mg/ml. Although the fusion protein was rapidly degraded by proteases in the insect, Hv1a/GNA oral toxicity to M. persicae was significantly greater than GNA alone. A construct encoding the fusion protein, including the GNA leader sequence, under control of the constitutive CaMV 35S promoter was transformed into Arabidopsis; the resulting plants contained intact fusion protein in leaf tissues at an estimated level of 25.6 ± 4.1 ng/mg FW. Transgenic Arabidopsis expressing Hv1a/GNA induced up to 40% mortality of M. persicae after 7 days exposure in detached leaf bioassays, demonstrating that transgenic plants can deliver fusion proteins to aphids. Grain aphids (Sitobion avenae) were more susceptible than M. persicae to the Hv1a/GNA fusion protein in artificial diet bioassays (LC50 = 0.73 mg/ml after 2 days against LC50 = 1.81 mg/ml for M. persicae), as they were not able to hydrolyze the fusion protein as readily as M. persicae. Expression of this fusion protein in suitable host plants for the grain aphid is likely to confer higher levels of resistance than that shown with the M. persicae/Arabidopsis model system.

  4. Transgenic plants expressing -ACTX-Hv1a and snowdrop lectin (GNA fusion protein show enhanced resistance to aphids

    Directory of Open Access Journals (Sweden)

    Erich Y.T. Nakasu

    2014-11-01

    Full Text Available Recombinant fusion proteins containing arthropod toxins have been developed as a new class of biopesticides. The recombinant fusion protein Hv1a/GNA, containing the spider venom toxin w-ACTX-Hv1a linked to snowdrop lectin (GNA was shown to reduce survival of the peach-potato aphid Myzus persicae when delivered in artificial diet, with survival <10% after 8 days exposure to fusion protein at 1 mg/ml. Although the fusion protein was rapidly degraded by proteases in the insect, Hv1a/GNA oral toxicity to M. persicae was significantly greater than GNA alone. A construct encoding the fusion protein, including the GNA leader sequence, under control of the constitutive CaMV 35S promoter was transformed into Arabidopsis; the resulting plants contained intact fusion protein in leaf tissues at an estimated level of 25.6±4.1 ng/mg FW. Transgenic Arabidopsis expressing Hv1a/GNA induced up to 40% mortality of M. persicae after seven days exposure in detached leaf bioassays, demonstrating that transgenic plants can deliver fusion proteins to aphids. Grain aphids (Sitobion avenae were more susceptible than M. persicae to the Hv1a/GNA fusion protein in artificial diet bioassays (LC50=0.73 mg/ml after two days against LC50=1.81 mg/ml for M. persicae, as they were not able to hydrolyze the fusion protein as readily as M. persicae. Expression of this fusion protein in suitable host plants for the grain aphid is likely to confer higher levels of resistance than that shown with the M. persicae/Arabidopsis model system.

  5. Differences in dispersion of influenza virus lipids and proteins during fusion.

    Science.gov (United States)

    Lowy, R J; Sarkar, D P; Whitnall, M H; Blumenthal, R

    1995-02-01

    Digitally enhanced low-light-level fluorescence video microscopy and immunochemical staining were used to examine influenza virus envelope lipid and protein redistribution during pH-induced fusion. Video microscopy was performed using viruses labeled with either the lipid analogue octadecylrhodamine B (R18) or fluorescein isothiocyanate (FITC) covalently linked to envelope proteins. Viruses were bound to human red blood cells, and the pattern and intensity of fluorescence were monitored for 30 min while cell-virus complexes were perfused with pH 7.4 or 4.8 media at temperatures either above or below 20 degrees C. R18 showed complete redistribution and dequenching by 30 min at all incubation temperatures, confirming reports that viral fusion occurs at subphysiological temperatures. FITC-labeled protein showed spatial redistribution at 28 degrees C but no change at low temperature. Electron microscopy observations of immunochemical staining of viral proteins confirmed both that protein redistribution at 37 degrees C was slower than R18 and the failure of movement within 30 min at 16 degrees C. Video microscopy monitoring of RNA staining by acridine orange of virus-cell complexes showed redistribution to the RBCs at all temperatures but only after low pH-induced fusion. The results are consistent with differential dispersion of viral components into the RBC and the existence of relatively long-lived barriers to diffusion subsequent to fusion pore formation.

  6. Induction of protein body formation in plant leaves by elastin-like polypeptide fusions

    Directory of Open Access Journals (Sweden)

    Joensuu Jussi J

    2009-08-01

    Full Text Available Abstract Background Elastin-like polypeptides are synthetic biopolymers composed of a repeating pentapeptide 'VPGXG' sequence that are valuable for the simple non-chromatographic purification of recombinant proteins. In addition, elastin-like polypeptide fusions have been shown to enhance the accumulation of a range of different recombinant proteins in plants, thus addressing the major limitation of plant-based expression systems, which is a low production yield. This study's main objectives were to determine the general utility of elastin-like polypeptide protein fusions in various intracellular compartments and to elucidate elastin-like polypeptide's mechanism of action for increasing recombinant protein accumulation in the endoplasmic reticulum of plants. Results The effect of elastin-like polypeptide fusions on the accumulation of green fluorescent protein targeted to the cytoplasm, chloroplasts, apoplast, and endoplasmic reticulum was evaluated. The endoplasmic reticulum was the only intracellular compartment in which an elastin-like polypeptide tag was shown to significantly enhance recombinant protein accumulation. Interestingly, endoplasmic reticulum-targeted elastin-like polypeptide fusions induced the formation of a novel type of protein body, which may be responsible for elastin-like polypeptide's positive effect on recombinant protein accumulation by excluding the heterologous protein from normal physiological turnover. Although expressed in the leaves of plants, these novel protein bodies appeared similar in size and morphology to the prolamin-based protein bodies naturally found in plant seeds. The elastin-like polypeptide-induced protein bodies were highly mobile organelles, exhibiting various dynamic patterns of movement throughout the cells, which were dependent on intact actin microfilaments and a functional actomyosin motility system. Conclusion An endoplasmic reticulum-targeted elastin-like polypeptide fusion approach

  7. Intrinsic structural disorder confers cellular viability on oncogenic fusion proteins.

    Directory of Open Access Journals (Sweden)

    Hedi Hegyi

    2009-10-01

    Full Text Available Chromosomal translocations, which often generate chimeric proteins by fusing segments of two distinct genes, represent the single major genetic aberration leading to cancer. We suggest that the unifying theme of these events is a high level of intrinsic structural disorder, enabling fusion proteins to evade cellular surveillance mechanisms that eliminate misfolded proteins. Predictions in 406 translocation-related human proteins show that they are significantly enriched in disorder (43.3% vs. 20.7% in all human proteins, they have fewer Pfam domains, and their translocation breakpoints tend to avoid domain splitting. The vicinity of the breakpoint is significantly more disordered than the rest of these already highly disordered fusion proteins. In the unlikely event of domain splitting in fusion it usually spares much of the domain or splits at locations where the newly exposed hydrophobic surface area approximates that of an intact domain. The mechanisms of action of fusion proteins suggest that in most cases their structural disorder is also essential to the acquired oncogenic function, enabling the long-range structural communication of remote binding and/or catalytic elements. In this respect, there are three major mechanisms that contribute to generating an oncogenic signal: (i a phosphorylation site and a tyrosine-kinase domain are fused, and structural disorder of the intervening region enables intramolecular phosphorylation (e.g., BCR-ABL; (ii a dimerisation domain fuses with a tyrosine kinase domain and disorder enables the two subunits within the homodimer to engage in permanent intermolecular phosphorylations (e.g., TFG-ALK; (iii the fusion of a DNA-binding element to a transactivator domain results in an aberrant transcription factor that causes severe misregulation of transcription (e.g. EWS-ATF. Our findings also suggest novel strategies of intervention against the ensuing neoplastic transformations.

  8. Fusion of phospholipid vesicles induced by muscle glyceraldehyde-3-phosphate dehydrogenase in the absence of calcium.

    Science.gov (United States)

    Morero, R D; Viñals, A L; Bloj, B; Farías, R N

    1985-04-01

    Ca2+-induced fusion of phospholipid vesicles (phosphatidylcholine/phosphatidic acid, 9:1 mol/mol) prepared by ethanolic injection was followed by five different procedures: resonance energy transfer, light scattering, electron microscopy, intermixing of aqueous content, and gel filtration through Sepharose 4-B. The five methods gave concordant results, showing that vesicles containing only 10% phosphatidic acid can be induced to fuse by millimolar concentrations of Ca2+. When the fusing capability of several soluble proteins was assayed, it was found that concanavalin A, bovine serum albumin, ribonuclease, and protease were inactive. On the other hand, lysozyme, L-lactic dehydrogenase, and muscle and yeast glyceraldehyde-3-phosphate dehydrogenase were capable of inducing vesicle fusion. Glyceraldehyde-3-phosphate dehydrogenase from rabbit muscle, the most extensively studied protein, proved to be very effective: 0.1 microM was enough to induce complete intermixing of bilayer phospholipid vesicles. Under conditions used in this work, fusion was accompanied by leakage of internal contents. The fusing capability of glyceraldehyde-3-phosphate dehydrogenase was not affected by 5 mM ethylenediaminetetraacetic acid. The Ca2+ concentration in the medium, as determined by atomic absorption spectroscopy, was 5 ppm. Heat-denatured enzyme was incapable of inducing fusion. We conclude that glyceraldehyde-3-phosphate dehydrogenase is a soluble protein inherently endowed with the capability of fusing phospholipid vesicles.

  9. [In vivo effect of recombined IL-15/Fc fusion protein on EAU].

    Science.gov (United States)

    Xia, Zong-jing; Kong, Xiang-li; Zhang, Ping

    2008-11-01

    To test the effect of recombined IL-15/Fc on experimental autoimmune uveitis (EAU) in mice. EAU were induced in C57 mice by transferring activated T cells specific to the interphotoreceptor-binding protein (IRBP) 1-20 peptide. The mice were then treated with recombine IL-15/Fc fusion protein or IgG as controls. The severity of EAU were graded on a scale of 0 to 4 with half-point increment based on the type, number, and size of the lesions detected by funduscopic and HE staining. The IRBP1-20 sensitive CD8+T cells were isolated from the IRBP1-20 immune mice with auto-MACS. The in vitro effect of IL-15/Fc fusion protein on the proliferation, differentiation, expansion and production of inflammatory cytokines of the purified IRBP1-20 sensitive CD8+T cells were analyzed with 3HTdR, FACS and ELISA. IL-15/Fc fusion protein inhibited the activation, proliferation, expansion and production of inflammatory cytokines of the IRBP1-20 specific CD8+T cells, down regulated CD44(high)CD62L(low) effect and CD8+ CD62L(low) activated T cell subsets, and consequently decreased the severity of EAU. IL-15/Fc fusion proteins decrease the severity of EAU through inhibiting the proliferation, expansion, differentiation and production of inflammatory cytokines of CD8+ T cells.

  10. Vaccinia mature virus fusion regulator A26 protein binds to A16 and G9 proteins of the viral entry fusion complex and dissociates from mature virions at low pH.

    Science.gov (United States)

    Chang, Shu-Jung; Shih, Ao-Chun; Tang, Yin-Liang; Chang, Wen

    2012-04-01

    Vaccinia mature virus enters cells through either endocytosis or plasma membrane fusion, depending on virus strain and cell type. Our previous results showed that vaccinia virus mature virions containing viral A26 protein enter HeLa cells preferentially through endocytosis, whereas mature virions lacking A26 protein enter through plasma membrane fusion, leading us to propose that A26 acts as an acid-sensitive fusion suppressor for mature virus (S. J. Chang, Y. X. Chang, R. Izmailyan R, Y. L. Tang, and W. Chang, J. Virol. 84:8422-8432, 2010). In the present study, we investigated the fusion suppression mechanism of A26 protein. We found that A26 protein was coimmunoprecipitated with multiple components of the viral entry-fusion complex (EFC) in infected HeLa cells. Transient expression of viral EFC components in HeLa cells revealed that vaccinia virus A26 protein interacted directly with A16 and G9 but not with G3, L5 and H2 proteins of the EFC components. Consistently, a glutathione S-transferase (GST)-A26 fusion protein, but not GST, pulled down A16 and G9 proteins individually in vitro. Together, our results supported the idea that A26 protein binds to A16 and G9 protein at neutral pH contributing to suppression of vaccinia virus-triggered membrane fusion from without. Since vaccinia virus extracellular envelope proteins A56/K2 were recently shown to bind to the A16/G9 subcomplex to suppress virus-induced fusion from within, our results also highlight an evolutionary convergence in which vaccinia viral fusion suppressor proteins regulate membrane fusion by targeting the A16 and G9 components of the viral EFC complex. Finally, we provide evidence that acid (pH 4.7) treatment induced A26 protein and A26-A27 protein complexes of 70 kDa and 90 kDa to dissociate from mature virions, suggesting that the structure of A26 protein is acid sensitive.

  11. Truncated SSX protein suppresses synovial sarcoma cell proliferation by inhibiting the localization of SS18-SSX fusion protein.

    Directory of Open Access Journals (Sweden)

    Yasushi Yoneda

    Full Text Available Synovial sarcoma is a relatively rare high-grade soft tissue sarcoma that often develops in the limbs of young people and induces the lung and the lymph node metastasis resulting in poor prognosis. In patients with synovial sarcoma, specific chromosomal translocation of t(X; 18 (p11.2;q11.2 is observed, and SS18-SSX fusion protein expressed by this translocation is reported to be associated with pathogenesis. However, role of the fusion protein in the pathogenesis of synovial sarcoma has not yet been completely clarified. In this study, we focused on the localization patterns of SS18-SSX fusion protein. We constructed expression plasmids coding for the full length SS18-SSX, the truncated SS18 moiety (tSS18 and the truncated SSX moiety (tSSX of SS18-SSX, tagged with fluorescent proteins. These plasmids were transfected in synovial sarcoma SYO-1 cells and we observed the expression of these proteins using a fluorescence microscope. The SS18-SSX fusion protein showed a characteristic speckle pattern in the nucleus. However, when SS18-SSX was co-expressed with tSSX, localization of SS18-SSX changed from speckle patterns to the diffused pattern similar to the localization pattern of tSSX and SSX. Furthermore, cell proliferation and colony formation of synovial sarcoma SYO-1 and YaFuSS cells were suppressed by exogenous tSSX expression. Our results suggest that the characteristic speckle localization pattern of SS18-SSX is strongly involved in the tumorigenesis through the SSX moiety of the SS18-SSX fusion protein. These findings could be applied to further understand the pathogenic mechanisms, and towards the development of molecular targeting approach for synovial sarcoma.

  12. Intranasal Immunization with the Cholera Toxin B Subunit-Pneumococcal Surface Antigen A Fusion Protein Induces Protection against Colonization with Streptococcus pneumoniae and Has Negligible Impact on the Nasopharyngeal and Oral Microbiota of Mice

    OpenAIRE

    F.C. Pimenta; Miyaji, E. N.; Arêas, A. P. M.; Oliveira, M. L. S.; de Andrade, A. L. S. S.; Ho, P.L.; Hollingshead, S. K.; Leite, L. C. C.

    2006-01-01

    One of the candidate proteins for a mucosal vaccine antigen against Streptococcus pneumoniae is PsaA (pneumococcal surface antigen A). Vaccines targeting mucosal immunity may raise concerns as to possible alterations in the normal microbiota, especially in the case of PsaA, which was shown to have homologs with elevated sequence identity in other viridans group streptococci. In this work, we demonstrate that intranasal immunization with a cholera toxin B subunit-PsaA fusion protein is able to...

  13. Function, oligomerization and N-linked glycosylation of the Helicoverpa armigera single nucleopolyhedrovirus envelope fusion protein

    NARCIS (Netherlands)

    Long, G.; Westenberg, M.; Wang, H.; Vlak, J.M.; Hu, Z.

    2006-01-01

    In the family Baculoviridae, two distinct envelope fusion proteins are identified in budded virions (BVs). GP64 is the major envelope fusion protein of group I nucleopolyhedrovirus (NPV) BVs. An unrelated type of envelope fusion protein, named F, is encoded by group II NPVs. The genome of Helicoverp

  14. Globular adiponectin induces differentiation and fusion of skeletal muscle cells

    Institute of Scientific and Technical Information of China (English)

    Tania Fiaschi; Domenico Cirelli; Giuseppina Comito; Stefania Gelmini; Giampietro Ramponi; Maria Serio; Paola Chiarugi

    2009-01-01

    The growing interest in skeletal muscle regeneration is associated with the opening of new therapeutic strategies for muscle injury after trauma, as well as several muscular degenerative pathologies, including dystrophies, muscu-lar atrophy, and cachexia. Studies focused on the ability of extracellular factors to promote myogenesis are therefore highly promising. We now report that an adipocyte-derived factor, globular adiponectin (gAd), is able to induce mus-cle gene expression and cell differentiation, gAd, besides its well-known ability to regulate several metabolic func-tions in muscle, including glucose uptake and consumption and fatty acid catabolism, is able to block cell cycle entry of myoblasts, to induce the expression of specific skeletal muscle markers such as myosin heavy chain or eaveolin-3, as well as to provoke cell fusion into multinucleated syneytia and, finally, muscle fibre formation, gAd exerts its pro-differentiative activity through redox-dependent activation of p38, Akt and 5'-AMP-activated protein kinase path-ways. Interestingly, differentiating myoblasts are autocrine for adiponectiu, and the mimicking of pro-inflammatory settings or exposure to oxidative stress strongly increases the production of the hormone from differentiating cells. These data suggest a novel function of adiponectin, directly coordinating the myogenic differentiation program and serving an autocrine function during skeletal myogenesis.

  15. Localization of somatostatin receptors at the light and electron microscopical level by using antibodies raised against fusion proteins

    DEFF Research Database (Denmark)

    Helboe, Lone; Møller, Morten

    2000-01-01

    Somatostatin, antibodies against somatostatin receptors, hypothalamus, Müller cells, fusion protein technique......Somatostatin, antibodies against somatostatin receptors, hypothalamus, Müller cells, fusion protein technique...

  16. Sweeping away protein aggregation with entropic bristles: intrinsically disordered protein fusions enhance soluble expression.

    Science.gov (United States)

    Santner, Aaron A; Croy, Carrie H; Vasanwala, Farha H; Uversky, Vladimir N; Van, Ya-Yue J; Dunker, A Keith

    2012-09-18

    Intrinsically disordered, highly charged protein sequences act as entropic bristles (EBs), which, when translationally fused to partner proteins, serve as effective solubilizers by creating both a large favorable surface area for water interactions and large excluded volumes around the partner. By extending away from the partner and sweeping out large molecules, EBs can allow the target protein to fold free from interference. Using both naturally occurring and artificial polypeptides, we demonstrate the successful implementation of intrinsically disordered fusions as protein solubilizers. The artificial fusions discussed herein have a low level of sequence complexity and a high net charge but are diversified by means of distinctive amino acid compositions and lengths. Using 6xHis fusions as controls, soluble protein expression enhancements from 65% (EB60A) to 100% (EB250) were observed for a 20-protein portfolio. Additionally, these EBs were able to more effectively solubilize targets compared to frequently used fusions such as maltose-binding protein, glutathione S-transferase, thioredoxin, and N utilization substance A. Finally, although these EBs possess very distinct physiochemical properties, they did not perturb the structure, conformational stability, or function of the green fluorescent protein or the glutathione S-transferase protein. This work thus illustrates the successful de novo design of intrinsically disordered fusions and presents a promising technology and complementary resource for researchers attempting to solubilize recalcitrant proteins.

  17. Shear-Induced Membrane Fusion in Viscous Solutions

    KAUST Repository

    Kogan, Maxim

    2014-05-06

    Large unilamellar lipid vesicles do not normally fuse under fluid shear stress. They might deform and open pores to relax the tension to which they are exposed, but membrane fusion occurring solely due to shear stress has not yet been reported. We present evidence that shear forces in a viscous solution can induce lipid bilayer fusion. The fusion of 1,2-dioleoyl-sn-glycero-3- phosphocholine (DOPC) liposomes is observed in Couette flow with shear rates above 3000 s-1 provided that the medium is viscous enough. Liposome samples, prepared at different viscosities using a 0-50 wt % range of sucrose concentration, were studied by dynamic light scattering, lipid fusion assays using Förster resonance energy transfer (FRET), and linear dichroism (LD) spectroscopy. Liposomes in solutions with 40 wt % (or more) sucrose showed lipid fusion under shear forces. These results support the hypothesis that under suitable conditions lipid membranes may fuse in response to mechanical-force- induced stress. © 2014 American Chemical Society.

  18. Optically-Induced Cell Fusion on Cell Pairing Microstructures

    Science.gov (United States)

    Yang, Po-Fu; Wang, Chih-Hung; Lee, Gwo-Bin

    2016-02-01

    Cell fusion is a critical operation for numerous biomedical applications including cell reprogramming, hybridoma formation, cancer immunotherapy, and tissue regeneration. However, unstable cell contact and random cell pairings have limited efficiency and yields when utilizing traditional methods. Furthermore, it is challenging to selectively perform cell fusion within a group of cells. This study reports a new approach called optically-induced cell fusion (OICF), which integrates cell-pairing microstructures with an optically-induced, localized electrical field. By projecting light patterns onto a photoconductive film (hydrogen-rich, amorphous silicon) coated on an indium-tin-oxide (ITO) glass while an alternating current electrical field was applied between two such ITO glass slides, “virtual” electrodes could be generated that could selectively fuse pairing cells. At 10 kHz, a 57% cell paring rate and an 87% fusion efficiency were successfully achieved at a driving voltage of 20  Vpp, suggesting that this new technology could be promising for selective cell fusion within a group of cells.

  19. Foot-and-mouth disease virus-like particles produced by a SUMO fusion protein system in Escherichia coli induce potent protective immune responses in guinea pigs, swine and cattle.

    Science.gov (United States)

    Guo, Hui-Chen; Sun, Shi-Qi; Jin, Ye; Yang, Shun-Li; Wei, Yan-Quan; Sun, De-Hui; Yin, Shuang-Hui; Ma, Jun-Wu; Liu, Zai-Xin; Guo, Jian-Hong; Luo, Jian-Xun; Yin, Hong; Liu, Xiang-Tao; Liu, Ding Xiang

    2013-07-04

    Foot-and-mouth disease virus (FMDV) causes a highly contagious infection in cloven-hoofed animals. The format of FMD virus-like particles (VLP) as a non-replicating particulate vaccine candidate is a promising alternative to conventional inactivated FMDV vaccines. In this study, we explored a prokaryotic system to express and assemble the FMD VLP and validated the potential of VLP as an FMDV vaccine candidate. VLP composed entirely of FMDV (Asia1/Jiangsu/China/2005) capsid proteins (VP0, VP1 and VP3) were simultaneously produced as SUMO fusion proteins by an improved SUMO fusion protein system in E. coli. Proteolytic removal of the SUMO moiety from the fusion proteins resulted in the assembly of VLP with size and shape resembling the authentic FMDV. Immunization of guinea pigs, swine and cattle with FMD VLP by intramuscular inoculation stimulated the FMDV-specific antibody response, neutralizing antibody response, T-cell proliferation response and secretion of cytokine IFN-γ. In addition, immunization with one dose of the VLP resulted in complete protection of these animals from homologous FMDV challenge. The 50% protection dose (PD50) of FMD VLP in cattle is up to 6.34. These results suggest that FMD VLP expressed in E. coli are an effective vaccine in guinea pigs, swine and cattle and support further development of these VLP as a vaccine candidate for protection against FMDV.

  20. Comparative immunoblot analysis with 10 different, partially overlapping recombinant fusion proteins derived from 5 different cytomegalovirus proteins

    NARCIS (Netherlands)

    van Zanten, J.; LAZZAROTTO, T; CAMPISI, B; VORNHAGEN, R; JAHN, G; LANDINI, MP; The, T. Hauw

    Ten fusion proteins derived from five various CMV encoded proteins were used for the detection of specific antibody response by immunoblot technique in sera from renal transplant recipients. The fusion proteins were derived from the following CMV specific proteins: the assembly protein ppUL80a with

  1. Accelerated Nucleation of Hydroxyapatite Using an Engineered Hydrophobin Fusion Protein.

    Science.gov (United States)

    Melcher, Melanie; Facey, Sandra J; Henkes, Thorsten M; Subkowski, Thomas; Hauer, Bernhard

    2016-05-09

    Calcium phosphate mineralization is of particular interest in dental repair. A biomimetic approach using proteins or peptides is a highly promising way to reconstruct eroded teeth. In this study, the screening of several proteins is described for their binding and nucleating activities toward hydroxyapatite. Out of 27 tested candidates, only two hydrophobin fusion proteins showed binding abilities to hydroxyapatite in a mouthwash formulation and an increased nucleation in artificial saliva. Using a semirational approach, one of the two candidates (DEWA_5), a fusion protein consisting of a truncated section of the Bacillus subtilis synthase YaaD, the Aspergillus nidulans hydrophobin DEWA, and the rationally designed peptide P11-4 described in the literature, could be further engineered toward a faster mineral formation. The variants DEWA_5a (40aaYaaD-SDSDSD-DEWA) and DEWA_5b (40aaYaaD-RDRDRD-DEWA) were able to enhance the nucleation activity without losing the ability to form hydroxyapatite. In the case of variant DEWA_5b, an additional increase in the binding toward hydroxyapatite could be achieved. Especially with the variant DEWA_5a, the protein engineering of the rationally designed peptide sequence resulted in a resemblance of an amino acid motif that is found in nature. The engineered peptide resembles the amino acid motif in dentin phosphoprotein, one of the major proteins involved in dentinogenesis.

  2. APOPTOSIS INDUCTION BY THE RECOMBINANT FUSION APOPTOSIS INDUCING FACTOR ON HELA CELLS

    Institute of Scientific and Technical Information of China (English)

    于翠娟; 孟艳玲; 桂俊豪; 赵晶; 金明; 王智; 王成济; 杨安钢

    2003-01-01

    Objective: To obtain the recombinant fusion AIF genes inserted into the eukaryotic expression vector Pires2-EGFP, to observe the expression and location of the fusion AIF genes (3NE: PE(280-358)-AIFΔ1-120, and 4NE: PE(280-364)-AIFΔ1-120), and to detect and compare their apoptosis inducing effects on the transfected HeLa cells. Methods: Full-length human AIF gene was cloned by RT-PCR, and its N-terminal mitochondrial localization sequence (MLS) was replaced by part sequence of Psuedomonas exotoxin A (PE) translocation domain (PEII(280-358/364)), then the recombinant fusion genes were inserted into the Pires2-EGFP eukaryotic expression vector. After these genes were transiently transfected into HeLa cells with LipofectAmine, the expression of the recombinant fusion AIF genes and their effects on HeLa cells were detected by fluorescent microscopy, laser confocal microscopy and electron microscopy. Results: The eukaryotic expression vectors containing the recombinant fusion AIF genes (Pires2-EGFP-PEII(280-358/364)- AIFΔ1- 120) were constructed successfully. It was demonstrated that the fusion AIF protein genes were expressed effectively in the transfected cells, with the GFP comco-expressed in cells by indirect immunofluorescence staining analysis. After transfection, expression of the genes could induce HeLa cells to exhibit the typical apoptosis features: such as plasma membrane blebbing and peripheral chromatin condensation. As compared with control groups, the untreated cells and the void vector transfected cells, the living cell number of the AIF gene transfected cells reduced distinctly. Conclusion: Our data prove that the expression of the recombinant human AIF fusion genes could induce apoptosis in transfected HeLa cells, which provides new strategy for cancer killing.

  3. Feature Fusion Based SVM Classifier for Protein Subcellular Localization Prediction.

    Science.gov (United States)

    Rahman, Julia; Mondal, Md Nazrul Islam; Islam, Md Khaled Ben; Hasan, Md Al Mehedi

    2016-12-18

    For the importance of protein subcellular localization in different branches of life science and drug discovery, researchers have focused their attentions on protein subcellular localization prediction. Effective representation of features from protein sequences plays a most vital role in protein subcellular localization prediction specially in case of machine learning techniques. Single feature representation-like pseudo amino acid composition (PseAAC), physiochemical property models (PPM), and amino acid index distribution (AAID) contains insufficient information from protein sequences. To deal with such problems, we have proposed two feature fusion representations, AAIDPAAC and PPMPAAC, to work with Support Vector Machine classifiers, which fused PseAAC with PPM and AAID accordingly. We have evaluated the performance for both single and fused feature representation of a Gram-negative bacterial dataset. We have got at least 3% more actual accuracy by AAIDPAAC and 2% more locative accuracy by PPMPAAC than single feature representation.

  4. Solid-State Nuclear Magnetic Resonance Investigation of the Structural Topology and Lipid Interactions of a Viral Fusion Protein Chimera Containing the Fusion Peptide and Transmembrane Domain.

    Science.gov (United States)

    Yao, Hongwei; Lee, Myungwoon; Liao, Shu-Yu; Hong, Mei

    2016-12-13

    The fusion peptide (FP) and transmembrane domain (TMD) of viral fusion proteins play important roles during virus-cell membrane fusion, by inducing membrane curvature and transient dehydration. The structure of the water-soluble ectodomain of viral fusion proteins has been extensively studied crystallographically, but the structures of the FP and TMD bound to phospholipid membranes are not well understood. We recently investigated the conformations and lipid interactions of the separate FP and TMD peptides of parainfluenza virus 5 (PIV5) fusion protein F using solid-state nuclear magnetic resonance. These studies provide structural information about the two domains when they are spatially well separated in the fusion process. To investigate how these two domains are structured relative to each other in the postfusion state, when the ectodomain forms a six-helix bundle that is thought to force the FP and TMD together in the membrane, we have now expressed and purified a chimera of the FP and TMD, connected by a Gly-Lys linker, and measured the chemical shifts and interdomain contacts of the protein in several lipid membranes. The FP-TMD chimera exhibits α-helical chemical shifts in all the membranes examined and does not cause strong curvature of lamellar membranes or membranes with negative spontaneous curvature. These properties differ qualitatively from those of the separate peptides, indicating that the FP and TMD interact with each other in the lipid membrane. However, no (13)C-(13)C cross peaks are observed in two-dimensional correlation spectra, suggesting that the two helices are not tightly associated. These results suggest that the ectodomain six-helix bundle does not propagate into the membrane to the two hydrophobic termini. However, the loosely associated FP and TMD helices are found to generate significant negative Gaussian curvature to membranes that possess spontaneous positive curvature, consistent with the notion that the FP-TMD assembly may

  5. The promises and challenges of fusion constructs in protein biochemistry and enzymology.

    Science.gov (United States)

    Yang, Haiquan; Liu, Long; Xu, Fei

    2016-10-01

    Fusion constructs are used to improve the properties of or impart novel functionality to proteins for biotechnological applications. The biochemical characteristics of enzymes or functional proteins optimized by fusion include catalytic efficiency, stability, activity, expression, secretion, and solubility. In this review, we summarize the parameters of enzymes or functional proteins that can be modified by fusion constructs. For each parameter, fusion strategies and molecular partners are examined using examples from recent studies. Future prospects in this field are also discussed. This review is expected to increase interest in and advance fusion strategies for optimization of enzymes and other functional proteins.

  6. Fusion protein based on Grb2-SH2 domain for cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Yuriko [Molecular Imaging Center, National Institute of Radiological Sciences (Japan); Graduate School of Pharmaceutical Sciences, Chiba University (Japan); Furukawa, Takako, E-mail: tfuru@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences (Japan); Biomedical Imaging Research Center, University of Fukui (Japan); Arano, Yasushi [Graduate School of Pharmaceutical Sciences, Chiba University (Japan); Fujibayashi, Yasuhisa [Molecular Imaging Center, National Institute of Radiological Sciences (Japan); Biomedical Imaging Research Center, University of Fukui (Japan); Saga, Tsuneo [Molecular Imaging Center, National Institute of Radiological Sciences (Japan)

    2010-08-20

    Research highlights: {yields} Grb2 mediates EGFR signaling through binding to phosphorylate EGFR with SH2 domain. {yields} We generated fusion proteins containing 1 or 2 SH2 domains of Grb2 added with TAT. {yields} The one with 2 SH2 domains (TSSF) interfered ERK phosphorylation. {yields} TSSF significantly delayed the growth of EGFR overexpressing tumor in a mouse model. -- Abstract: Epidermal growth factor receptor (EGFR) is one of the very attractive targets for cancer therapy. In this study, we generated fusion proteins containing one or two Src-homology 2 (SH2) domains of growth factor receptor bound protein 2 (Grb2), which bind to phosphorylated EGFR, added with HIV-1 transactivating transcription for cell membrane penetration (termed TSF and TSSF, respectively). We examined if they can interfere Grb2-mediated signaling pathway and suppress tumor growth as expected from the lack of SH3 domain, which is necessary to intermediate EGFR-Grb2 cell signaling, in the fusion proteins. The transduction efficiency of TSSF was similar to that of TSF, but the binding activity of TSSF to EGFR was higher than that of TSF. Treatment of EGFR-overexpressing cells showed that TSSF decreased p42-ERK phosphorylation, while TSF did not. Both the proteins delayed cell growth but did not induce cell death in culture. TSSF also significantly suppressed tumor growth in vivo under consecutive administration. In conclusion, TSSF showed an ability to inhibit EGFR-Grb2 signaling and could have a potential to treat EGFR-activated cancer.

  7. Tissue-specific and pathogen-inducible expression of a fusion protein containing a Fusarium-specific antibody and a fungal chitinase protects wheat against Fusarium pathogens and mycotoxins.

    Science.gov (United States)

    Cheng, Wei; Li, He-Ping; Zhang, Jing-Bo; Du, Hong-Jie; Wei, Qi-Yong; Huang, Tao; Yang, Peng; Kong, Xian-Wei; Liao, Yu-Cai

    2015-06-01

    Fusarium head blight (FHB) in wheat and other small grain cereals is a globally devastating disease caused by toxigenic Fusarium pathogens. Controlling FHB is a challenge because germplasm that is naturally resistant against these pathogens is inadequate. Current control measures rely on fungicides. Here, an antibody fusion comprised of the Fusarium spp.-specific recombinant antibody gene CWP2 derived from chicken, and the endochitinase gene Ech42 from the biocontrol fungus Trichoderma atroviride was introduced into the elite wheat cultivar Zhengmai9023 by particle bombardment. Expression of this fusion gene was regulated by the lemma/palea-specific promoter Lem2 derived from barley; its expression was confirmed as lemma/palea-specific in transgenic wheat. Single-floret inoculation of independent transgenic wheat lines of the T3 to T6 generations revealed significant resistance (type II) to fungal spreading, and natural infection assays in the field showed significant resistance (type I) to initial infection. Gas chromatography-mass spectrometry analysis revealed marked reduction of mycotoxins in the grains of the transgenic wheat lines. Progenies of crosses between the transgenic lines and the FHB-susceptible cultivar Huamai13 also showed significantly enhanced FHB resistance. Quantitative real-time PCR analysis revealed that the tissue-specific expression of the antibody fusion was induced by salicylic acid drenching and induced to a greater extent by F. graminearum infection. Histochemical analysis showed substantial restriction of mycelial growth in the lemma tissues of the transgenic plants. Thus, the combined tissue-specific and pathogen-inducible expression of this Fusarium-specific antibody fusion can effectively protect wheat against Fusarium pathogens and reduce mycotoxin content in grain. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  8. High-level expression of housefly cecropin A in Escherichia coli using a fusion protein

    Institute of Scientific and Technical Information of China (English)

    Xueli Zheng; Wei Wang

    2010-01-01

    Objective:To investigate the effect of utilizing a molecular partner on high-level expression of Musca domestica (M. domestica) cecropin in Escherichia coli (E. coli) and to identify the expressed products. Methods:The genomic sequence of M. domestica cecropin A (MC) and M. domestica ubiquitin (UBI) were searched from Genbank and amplified by reverse transcriptase polymerase chain reaction (RT-PCR). Two expression plasmids, pET32a-MC and pET32a-UBI-MC, were constructed and transferred into E. coli and were then induced by Isopropylβ-D-1-Thiogalactopyranoside (IPTG). The expression of the fusion proteins Trx-MC and Trx-UBI-MC was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Fusion protein Trx-MC was verified by Western blot analysis. The bactericidal activity of the purified MC was quantitatively determined using E. coli BL21(DE3). Results:The result showed that the fusion proteins were successively expressed in E. coli BL21 cells. A band at the expected position of 24 kDa representing the Trx-MC target protein was positivelystained, and the band at 4 kDa representing the hydrolysis of mature MC protein was also observed at the expected position. The expression levels of Trx-UBI-MC were higher than that of Trx-MC in E. coli. MC exhibited antimicrobial activity. Conclusions:With high-level expression of housefly cecropin A in E. coli using a fusion protein, MC exhibited antimicrobial activity.

  9. Immune responses and protective efficacy induced by 85B antigen and early secreted antigenic target-6 kDa antigen fusion protein secreted by recombinant bacille Calmette-Guérin.

    Science.gov (United States)

    Shi, Changhong; Wang, Xiaowu; Zhang, Hai; Xu, Zhikai; Li, Yuan; Yuan, Lintian

    2007-04-01

    In an attempt to improve immune responses and protective efficacy, we constructed two recombinant bacille Calmette-Guérin (rBCG) strains expressing an 85B antigen (Ag85B) and early secreted antigenic target-6 kDa antigen (ESAT6) of Mycobacterium tuberculosis (MTB) fusion protein. Both rBCG strains have the same protein insertion but in a different order (Ag85B-ESAT6 and ESAT6-Ag85B). The cultured supernatant of rBCG strains and the sera from the mice immunized with the fusion protein Ag85B-ESAT6 or ESAT6-Ag85B formed a band with a fraction size of 37 kDa, equalivalent to the sum of Ag85B and ESAT6. Six weeks after BALB/c mice were immunized with BCG or rBCG, spleen lymphocytes showed significant proliferation in response to culture filtrate protein of MTB. Compared with the BCG group, mice vaccinated with rBCG elicited a high level increase of immunoglobulin G antibodies to culture filtrate protein in the serum. The gamma-interferon levels in the lymphocyte culture medium supernatants increased remarkably in the rBCG1 group, significantly higher than that of the BCG immunized group (p0.05).

  10. Respiratory syncytial virus fusion protein promotes TLR-4-dependent neutrophil extracellular trap formation by human neutrophils.

    Directory of Open Access Journals (Sweden)

    Giselle A Funchal

    Full Text Available Acute viral bronchiolitis by Respiratory Syncytial Virus (RSV is the most common respiratory illness in children in the first year of life. RSV bronchiolitis generates large numbers of hospitalizations and an important burden to health systems. Neutrophils and their products are present in the airways of RSV-infected patients who developed increased lung disease. Neutrophil Extracellular Traps (NETs are formed by the release of granular and nuclear contents of neutrophils in the extracellular space in response to different stimuli and recent studies have proposed a role for NETs in viral infections. In this study, we show that RSV particles and RSV Fusion protein were both capable of inducing NET formation by human neutrophils. Moreover, we analyzed the mechanisms involved in RSV Fusion protein-induced NET formation. RSV F protein was able to induce NET release in a concentration-dependent fashion with both neutrophil elastase and myeloperoxidase expressed on DNA fibers and F protein-induced NETs was dismantled by DNase treatment, confirming that their backbone is chromatin. This viral protein caused the release of extracellular DNA dependent on TLR-4 activation, NADPH Oxidase-derived ROS production and ERK and p38 MAPK phosphorylation. Together, these results demonstrate a coordinated signaling pathway activated by F protein that led to NET production. The massive production of NETs in RSV infection could aggravate the inflammatory symptoms of the infection in young children and babies. We propose that targeting the binding of TLR-4 by F protein could potentially lead to novel therapeutic approaches to help control RSV-induced inflammatory consequences and pathology of viral bronchiolitis.

  11. Fusion

    CERN Document Server

    Mahaffey, James A

    2012-01-01

    As energy problems of the world grow, work toward fusion power continues at a greater pace than ever before. The topic of fusion is one that is often met with the most recognition and interest in the nuclear power arena. Written in clear and jargon-free prose, Fusion explores the big bang of creation to the blackout death of worn-out stars. A brief history of fusion research, beginning with the first tentative theories in the early 20th century, is also discussed, as well as the race for fusion power. This brand-new, full-color resource examines the various programs currently being funded or p

  12. Targeting the unfolded protein response in glioblastoma cells with the fusion protein EGF-SubA.

    Directory of Open Access Journals (Sweden)

    Antony Prabhu

    Full Text Available Rapidly growing tumors require efficient means to allow them to adapt to fluctuating microenvironments consisting of hypoxia, nutrient deprivation, and acidosis. The unfolded protein response (UPR represents a defense mechanism allowing cells to respond to these adverse conditions. The chaperone protein GRP78 serves as a master UPR regulator that is aberrantly expressed in a variety of cancers, including glioma. Therefore, cancer cells may be particularly reliant upon the adaptive mechanisms offered by the UPR and targeting GRP78 may represent a unique therapeutic strategy. Here we report that diffuse expression of GRP78 protein is present in Grade III-IV, but not Grade I-II glioma. To determine the role GRP78 plays in glioblastoma tumorigenesis, we explored the anti-tumor activity of the novel fusion protein EGF-SubA, which combines EGF with the cytotoxin SubA that has been recently shown to selectively cleave GRP78. EGF-SubA demonstrated potent tumor-specific proteolytic activity and cytotoxicity in glioblastoma lines and potentiated the anti-tumor activity of both temozolomide and ionizing radiation. To determine if the tumor microenvironment influences EGF-SubA activity, we maintained cells in acidic conditions that led to both UPR activation and increased EGF-SubA induced cytotoxicity. EGF-SubA was well tolerated in mice and led to a significant tumor growth delay in a glioma xenograft mouse model. The UPR is emerging as an important adaptive pathway contributing to glioma tumorigenesis. Targeting its primary mediator, the chaperone protein GRP78, through specific, proteolytic cleavage with the immunotoxin EGF-SubA represents a novel and promising multi-targeted approach to cancer therapy.

  13. Nuclear Fusion Effects Induced in Intense Laser-Generated Plasmas

    Directory of Open Access Journals (Sweden)

    Lorenzo Torrisi

    2013-01-01

    Full Text Available Deutered polyethylene (CD2n thin and thick targets were irradiated in high vacuum by infrared laser pulses at 1015W/cm2 intensity. The high laser energy transferred to the polymer generates plasma, expanding in vacuum at supersonic velocity, accelerating hydrogen and carbon ions. Deuterium ions at kinetic energies above 4 MeV have been measured by using ion collectors and SiC detectors in time-of-flight configuration. At these energies the deuterium–deuterium collisions may induce over threshold fusion effects, in agreement with the high D-D cross-section valuesaround 3 MeV energy. At the first instants of the plasma generation, during which high temperature, density and ionacceleration occur, the D-D fusions occur as confirmed by the detection of mono-energetic protonsand neutrons with a kinetic energy of 3.0 MeV and 2.5 MeV, respectively, produced by the nuclear reaction. The number of fusion events depends strongly on the experimental set-up, i.e. on the laser parameters (intensity, wavelength, focal spot dimension, target conditions (thickness, chemical composition, absorption coefficient, presence of secondary targets and used geometry (incidence angle, laser spot, secondary target positions.A number of D-D fusion events of the order of 106÷7 per laser shot has been measured.

  14. Mutagenesis and nuclear magnetic resonance analyses of the fusion peptide of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus F protein.

    Science.gov (United States)

    Tan, Ying; Jiang, Ling; Wang, Manli; Yin, Feifei; Deng, Fei; Liu, Maili; Hu, Zhihong; Wang, Hualin

    2008-08-01

    The entry of enveloped viruses into cells is normally mediated by fusion between viral and cellular membranes, in which the fusion peptide plays a crucial role. The fusion peptides of group II nucleopolyhedrovirus (NPV) F proteins are quite conserved, with a hydrophobic region located at the N terminal of the F(1) fragment. For this report, we used mutagenesis and nuclear magnetic resonance (NMR) to study the structure and function of the fusion peptide of the Helicoverpa armigera single-nucleocapsid NPV (HearNPV) F protein (HaF). Five mutations in the fusion peptide of HaF, N(1)G, N(1)L, I(2)N, G(3)L, and D(11)L, were generated separately, and the mutated f genes were transformed into the f-null HearNPV bacmid. The mutations N(1)L, I(2)N, and D(11)L were found to completely abolish the ability of the recombinant bacmids to produce infectious budded virus, while the mutations N(1)G and G(3)L did not. The low-pH-induced envelope fusion assay demonstrated that the N(1)G substitution increased the fusogenicity of HaF, while the G(3)L substitution reduced its fusogenicity. NMR spectroscopy was used to determine the structure of a synthetic fusion peptide of HaF in the presence of sodium dodecyl sulfate micelles at pH 5.0. The fusion peptide appeared to be an amphiphilic structure composed of a flexible coil in the N terminus from N(1) to N(5), a 3(10)-helix from F(6) to G(8), a turn at S(9), and a regular alpha-helix from V(10) to D(19). The data provide the first NMR structure of a baculovirus fusion peptide and allow us to further understand the relationship of structure and function of the fusion peptide.

  15. Constitutively active IRF7/IRF3 fusion protein completely protects swine against Foot-and-Mouth Disease

    Science.gov (United States)

    Foot-and-mouth disease (FMD) remains one of the most devastating livestock diseases around the world. Several serotype specific vaccine formulations exist but require about 5-7 days to induce protective immunity. Our previous studies have shown that a constitutively active fusion protein of porcine ...

  16. Evaluation of a lysostaphin-fusion protein as a dry-cow therapy for Staphylococcus aureus mastitis in dairy cattle

    Science.gov (United States)

    This study evaluated the efficacy of a lysostaphin-fusion protein (Lyso-PTD) as a dry-cow therapy for the treatment of experimentally-induced chronic, subclinical Staphylococcus aureus mastitis. Twenty-two Holstein dairy cows were experimentally infected with Staph. aureus in a single pair of diago...

  17. Fusion protein of retinol-binding protein and albumin domain III reduces liver fibrosis.

    Science.gov (United States)

    Lee, Hongsik; Jeong, Hyeyeun; Park, Sangeun; Yoo, Wonbaek; Choi, Soyoung; Choi, Kyungmin; Lee, Min-Goo; Lee, Mihwa; Cha, DaeRyong; Kim, Young-Sik; Han, Jeeyoung; Kim, Wonkon; Park, Sun-Hwa; Oh, Junseo

    2015-06-01

    Activated hepatic stellate cells (HSCs) play a key role in liver fibrosis, and inactivating HSCs has been considered a promising therapeutic approach. We previously showed that albumin and its derivative designed for stellate cell-targeting, retinol-binding protein-albumin domain III fusion protein (referred to as R-III), inactivate cultured HSCs. Here, we investigated the mechanism of action of albumin/R-III in HSCs and examined the anti-fibrotic potential of R-III in vivo. R-III treatment and albumin expression downregulated retinoic acid (RA) signaling which was involved in HSC activation. RA receptor agonist and retinaldehyde dehydrogenase overexpression abolished the anti-fibrotic effect of R-III and albumin, respectively. R-III uptake into cultured HSCs was significantly decreased by siRNA-STRA6, and injected R-III was localized predominantly in HSCs in liver. Importantly, R-III administration reduced CCl4- and bile duct ligation-induced liver fibrosis. R-III also exhibited a preventive effect against CCl4-inducd liver fibrosis. These findings suggest that the anti-fibrotic effect of albumin/R-III is, at least in part, mediated by downregulation of RA signaling and that R-III is a good candidate as a novel anti-fibrotic drug. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.

  18. Production, purification, and characterization of scFv TNF ligand fusion proteins.

    Science.gov (United States)

    Fick, Andrea; Wyzgol, Agnes; Wajant, Harald

    2012-01-01

    Single-chain variable fragments (scFvs) specific for tumor-associated cell surface antigens are the most broadly used reagents to direct therapeutic or diagnostic effector molecules, such as toxins, radioisotopes, and CD3-stimulating scFvs, to tumors. One novel class of effector molecules that can be targeted to tumors by scFvs are ligands of the tumor necrosis factor (TNF) family. Typically, these molecules have apoptosis inducing and/or immune stimulating properties and are therefore highly attractive for cancer treatment. N-terminal fusion of scFvs does not interfere with the receptor binding capabilities of TNF ligands and thus allows the straightforward generation of scFv TNF ligand fusion proteins. We report here a protocol for the purification of eukaryotically produced scFv TNF ligand fusion proteins based on affinity chromatography on anti-Flag agarose and further describe assays for the determination of the targeting index of this type of scFv-targeted proteins.

  19. Construction of Prokaryotic Expression Plasmid of Fusion Protein Including Porin A and Porin B of Neisseria Gonorrhoeae and Its Expression in E.coli

    Institute of Scientific and Technical Information of China (English)

    廖芳; 宋启发; 万沐芬

    2004-01-01

    In order to provide a rational research basis for clinical detection and genetic engineering vaccine, plasmid pET-28a (+) encoding both Porin gene PIA and PIB of Neisseria gonorrhoeae was constructed and a fusion protein in E. coli DE3 expressed. The fragments of PIA and PIB gene of Neisseria gonorrhoeae were amplified and cloned into prokaryotic expression plasmid pET-28a (+) with double restriction endonuclease cut to construct recombinant pET-PIB-PIA. The recombinant was verified with restriction endonuclease and sequenced and transformed into E. coli DE3 to express the fusion protein PIB-PIA after induced with IPTG. The results showed PIA-PIB fusion DNA fragment was proved correct through sequencing. A 67 kD (1 kD=0. 992 1 ku) fusion protein had been detected by SDS-PAGE. It was concluded that the fusion protein was successively expressed.

  20. TALE-PvuII fusion proteins--novel tools for gene targeting.

    Directory of Open Access Journals (Sweden)

    Mert Yanik

    Full Text Available Zinc finger nucleases (ZFNs consist of zinc fingers as DNA-binding module and the non-specific DNA-cleavage domain of the restriction endonuclease FokI as DNA-cleavage module. This architecture is also used by TALE nucleases (TALENs, in which the DNA-binding modules of the ZFNs have been replaced by DNA-binding domains based on transcription activator like effector (TALE proteins. Both TALENs and ZFNs are programmable nucleases which rely on the dimerization of FokI to induce double-strand DNA cleavage at the target site after recognition of the target DNA by the respective DNA-binding module. TALENs seem to have an advantage over ZFNs, as the assembly of TALE proteins is easier than that of ZFNs. Here, we present evidence that variant TALENs can be produced by replacing the catalytic domain of FokI with the restriction endonuclease PvuII. These fusion proteins recognize only the composite recognition site consisting of the target site of the TALE protein and the PvuII recognition sequence (addressed site, but not isolated TALE or PvuII recognition sites (unaddressed sites, even at high excess of protein over DNA and long incubation times. In vitro, their preference for an addressed over an unaddressed site is > 34,000-fold. Moreover, TALE-PvuII fusion proteins are active in cellula with minimal cytotoxicity.

  1. TALE-PvuII fusion proteins--novel tools for gene targeting.

    Science.gov (United States)

    Yanik, Mert; Alzubi, Jamal; Lahaye, Thomas; Cathomen, Toni; Pingoud, Alfred; Wende, Wolfgang

    2013-01-01

    Zinc finger nucleases (ZFNs) consist of zinc fingers as DNA-binding module and the non-specific DNA-cleavage domain of the restriction endonuclease FokI as DNA-cleavage module. This architecture is also used by TALE nucleases (TALENs), in which the DNA-binding modules of the ZFNs have been replaced by DNA-binding domains based on transcription activator like effector (TALE) proteins. Both TALENs and ZFNs are programmable nucleases which rely on the dimerization of FokI to induce double-strand DNA cleavage at the target site after recognition of the target DNA by the respective DNA-binding module. TALENs seem to have an advantage over ZFNs, as the assembly of TALE proteins is easier than that of ZFNs. Here, we present evidence that variant TALENs can be produced by replacing the catalytic domain of FokI with the restriction endonuclease PvuII. These fusion proteins recognize only the composite recognition site consisting of the target site of the TALE protein and the PvuII recognition sequence (addressed site), but not isolated TALE or PvuII recognition sites (unaddressed sites), even at high excess of protein over DNA and long incubation times. In vitro, their preference for an addressed over an unaddressed site is > 34,000-fold. Moreover, TALE-PvuII fusion proteins are active in cellula with minimal cytotoxicity.

  2. Fusion proteins of flagellin and the major birch pollen allergen Bet v 1 show enhanced immunogenicity, reduced allergenicity, and intrinsic adjuvanticity.

    Science.gov (United States)

    Kitzmüller, Claudia; Kalser, Julia; Mutschlechner, Sonja; Hauser, Michael; Zlabinger, Gerhard J; Ferreira, Fatima; Bohle, Barbara

    2017-04-26

    Recombinant fusion proteins of flagellin and antigens have been demonstrated to induce strong innate and adaptive immune responses. Such fusion proteins can enhance the efficacy of allergen-specific immunotherapy. We sought to characterize different fusion proteins of flagellin and the major birch pollen allergen Bet v 1 for suitability as allergy vaccines. A truncated version of flagellin (NtCFlg) was genetically fused to the N- or C-terminus of Bet v 1. Toll-like receptor (TLR) 5 binding was assessed with HEK293 cells expressing TLR5. Upregulation of CD40, CD80, CD83, and CD86 on monocyte-derived dendritic cells from allergic patients was analyzed by using flow cytometry. The T cell-stimulatory capacity of the fusion proteins was assessed with naive and Bet v 1-specific T cells. IgE binding was tested in inhibition ELISAs and basophil activation tests. Mice were immunized with the fusion proteins in the absence and presence of aluminum hydroxide. Cellular and antibody responses were monitored. Murine antibodies were tested for blocking capacity in basophil activation tests. Both fusion proteins matured monocyte-derived dendritic cells through TLR5. Compared with Bet v 1, the fusion proteins showed stronger T cell-stimulatory and reduced IgE-binding capacity and induced murine Bet v 1-specific antibodies in the absence of aluminum hydroxide. However, only antibodies induced by means of immunization with NtCFlg fused to the C-terminus of Bet v 1 inhibited binding of patients' IgE antibodies to Bet v 1. Bet v 1-flagellin fusion proteins show enhanced immunogenicity, reduced allergenicity, and intrinsic adjuvanticity and thus represent promising vaccines for birch pollen allergen-specific immunotherapy. However, the sequential order of allergen and adjuvant within a fusion protein determines its immunologic characteristics. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  3. On Stability of Targets for Plasma Jet Induced Magnetoinertial Fusion

    CERN Document Server

    Samulyak, Roman; Kim, Hyoungekun

    2015-01-01

    The compression and stability of plasma targets for the plasma jet-induced magneto-inertial fusion (PJMIF) have been investigated via large scale simulations using the FronTier code capable of explicit tracking of material interfaces. In the PJMIF concept, a plasma liner, formed by the merger of a large number of radial, highly supersonic plasma jets, implodes on a magnetized plasma target and compresses it to conditions of the fusion ignition. A multi-stage computational approach for simulations of the liner-target interaction and the compression of plasma targets has been developed to minimize computing time. Simulations revealed important features of the target compression process, including instability and disintegration of targets. The non-uniformity of the leading edge of the liner, caused by plasma jets as well as oblique shock waves between them, leads to instabilities during the target compression. By using front tracking, the evolution of targets has been studied in 3-dimensional simulations. Optimi...

  4. Mechanistic Insight into Bunyavirus-Induced Membrane Fusion from Structure-Function Analyses of the Hantavirus Envelope Glycoprotein Gc

    Science.gov (United States)

    Stettner, Eva; Jeffers, Scott Allen; Pérez-Vargas, Jimena; Pehau-Arnaudet, Gerard; Tortorici, M. Alejandra; Jestin, Jean-Luc; England, Patrick; Tischler, Nicole D.; Rey, Félix A.

    2016-01-01

    Hantaviruses are zoonotic viruses transmitted to humans by persistently infected rodents, giving rise to serious outbreaks of hemorrhagic fever with renal syndrome (HFRS) or of hantavirus pulmonary syndrome (HPS), depending on the virus, which are associated with high case fatality rates. There is only limited knowledge about the organization of the viral particles and in particular, about the hantavirus membrane fusion glycoprotein Gc, the function of which is essential for virus entry. We describe here the X-ray structures of Gc from Hantaan virus, the type species hantavirus and responsible for HFRS, both in its neutral pH, monomeric pre-fusion conformation, and in its acidic pH, trimeric post-fusion form. The structures confirm the prediction that Gc is a class II fusion protein, containing the characteristic β-sheet rich domains termed I, II and III as initially identified in the fusion proteins of arboviruses such as alpha- and flaviviruses. The structures also show a number of features of Gc that are distinct from arbovirus class II proteins. In particular, hantavirus Gc inserts residues from three different loops into the target membrane to drive fusion, as confirmed functionally by structure-guided mutagenesis on the HPS-inducing Andes virus, instead of having a single “fusion loop”. We further show that the membrane interacting region of Gc becomes structured only at acidic pH via a set of polar and electrostatic interactions. Furthermore, the structure reveals that hantavirus Gc has an additional N-terminal “tail” that is crucial in stabilizing the post-fusion trimer, accompanying the swapping of domain III in the quaternary arrangement of the trimer as compared to the standard class II fusion proteins. The mechanistic understandings derived from these data are likely to provide a unique handle for devising treatments against these human pathogens. PMID:27783711

  5. Pooled-matrix protein interaction screens using Barcode Fusion Genetics.

    Science.gov (United States)

    Yachie, Nozomu; Petsalaki, Evangelia; Mellor, Joseph C; Weile, Jochen; Jacob, Yves; Verby, Marta; Ozturk, Sedide B; Li, Siyang; Cote, Atina G; Mosca, Roberto; Knapp, Jennifer J; Ko, Minjeong; Yu, Analyn; Gebbia, Marinella; Sahni, Nidhi; Yi, Song; Tyagi, Tanya; Sheykhkarimli, Dayag; Roth, Jonathan F; Wong, Cassandra; Musa, Louai; Snider, Jamie; Liu, Yi-Chun; Yu, Haiyuan; Braun, Pascal; Stagljar, Igor; Hao, Tong; Calderwood, Michael A; Pelletier, Laurence; Aloy, Patrick; Hill, David E; Vidal, Marc; Roth, Frederick P

    2016-04-22

    High-throughput binary protein interaction mapping is continuing to extend our understanding of cellular function and disease mechanisms. However, we remain one or two orders of magnitude away from a complete interaction map for humans and other major model organisms. Completion will require screening at substantially larger scales with many complementary assays, requiring further efficiency gains in proteome-scale interaction mapping. Here, we report Barcode Fusion Genetics-Yeast Two-Hybrid (BFG-Y2H), by which a full matrix of protein pairs can be screened in a single multiplexed strain pool. BFG-Y2H uses Cre recombination to fuse DNA barcodes from distinct plasmids, generating chimeric protein-pair barcodes that can be quantified via next-generation sequencing. We applied BFG-Y2H to four different matrices ranging in scale from ~25 K to 2.5 M protein pairs. The results show that BFG-Y2H increases the efficiency of protein matrix screening, with quality that is on par with state-of-the-art Y2H methods.

  6. Immune Responses and Protective Efficacy Induced by 85B Antigen and Early Secreted Antigenic Target-6 kDa Antigen Fusion Protein Secreted by Recombinant Bacille Calmette-Guérin

    Institute of Scientific and Technical Information of China (English)

    Changhong SHI; Xiaowu WANG; Hai ZHANG; Zhikai XU; Yuan LI; Lintian YUAN

    2007-01-01

    In an attempt to improve immune responses and protective efficacy, we constructed two recombinant bacille Calmette-Guérin (rBCG) strains expressing an 85B antigen (Ag85B) and early secreted antigenic target-6 kDa antigen (ESAT6) of Mycobacterium tuberculosis (MTB) fusion protein. Both rBCG strains have the same protein insertion but in a different order (Ag85B-ESAT6 and ESAT6-Ag85B). The cultured supernatant of rBCG strains and the sera from the mice immunized with the fusion protein Ag85B-ESAT6 or ESAT6-Ag85B formed a band with a fraction size of 37 kDa, equalivalent to the sum of Ag85B and ESAT6. Six weeks after BALB/c mice were immunized with BCG or rBCG, spleen lymphocytes showed significant proliferation in response to culture filtrate protein of MTB. Compared with the BCG group, mice vaccinated with rBCG elicited a high level increase of immunoglobulin G antibodies to culture filtrate protein in the serum. The γ-interferon levels in the lymphocyte culture medium supernatants increased remarkably in the rBCG1 group, significantly higher than that of the BCG immunized group (P<0.05). Four weeks after vaccination, mice were infected with M. tuberculosis H37Rv and a dramatic reduction in the numbers of MTB colony forming units in the spleens and lungs was observed in the two rBCG immunization groups.Although these rBCG strains were more immunogenic, their protective effect was comparable to the classical BCG strain, and there were no significant differences between two rBCG groups (P>0.05).

  7. Surface adhesion of fusion proteins containing the hydrophobins HFBI and HFBII from Trichoderma reesei

    Science.gov (United States)

    Linder, Markus; Szilvay, Geza R.; Nakari-Setälä, Tiina; Söderlund, Hans; Penttilä, Merja

    2002-01-01

    Hydrophobins are surface-active proteins produced by filamentous fungi, where they seem to be ubiquitous. They have a variety of roles in fungal physiology related to surface phenomena, such as adhesion, formation of surface layers, and lowering of surface tension. Hydrophobins can be divided into two classes based on the hydropathy profile of their primary sequence. We have studied the adhesion behavior of two Trichoderma reesei class II hydrophobins, HFBI and HFBII, as isolated proteins and as fusion proteins. Both hydrophobins were produced as C-terminal fusions to the core of the hydrolytic enzyme endoglucanase I from the same organism. It was shown that as a fusion partner, HFBI causes the fusion protein to efficiently immobilize to hydrophobic surfaces, such as silanized glass and Teflon. The properties of the surface-bound protein were analyzed by the enzymatic activity of the endoglucanase domain, by surface plasmon resonance (Biacore), and by a quartz crystal microbalance. We found that the HFBI fusion forms a tightly bound, rigid surface layer on a hydrophobic support. The HFBI domain also causes the fusion protein to polymerize in solution, possibly to a decamer. Although isolated HFBII binds efficiently to surfaces, it does not cause immobilization as a fusion partner, nor does it cause polymerization of the fusion protein in solution. The findings give new information on how hydrophobins function and how they can be used to immobilize fusion proteins. PMID:12192081

  8. Optimization of induced expression and purification of CDB 3 receptor binding region fusion protein of Clostridium diffi-cile toxinB%艰难梭菌毒素B受体结合区CDB3融合蛋白诱导表达条件优化及其纯化

    Institute of Scientific and Technical Information of China (English)

    陈伟; 刘文恩; 李艳华; 简子娟; 罗姗; 钟一鸣

    2014-01-01

    目的:优化艰难梭菌毒素B受体结合区CDB3融合蛋白诱导表达条件,在获得高表达融合蛋白后对其进行纯化,为艰难梭菌毒素B受体结合区CDB3单克隆抗体的制备奠定基础。方法以诱导前菌液600 nm处的光密度值(OD600)、诱导温度、诱导剂异丙基-β-D巯基半乳糖苷(IPTG)浓度和诱导时间为单变量,分别诱导融合蛋白的表达,在此基础上采用正交试验对融合蛋白的诱导表达条件进行优化,通过十二烷基磺酸钠-聚丙烯酰胺凝胶电泳半定量分析融合蛋白的表达量及表达形式,以Western blot对融合蛋白进行鉴定,以GST 亲和层析柱对融合蛋白进行纯化。结果融合蛋白诱导表达的最佳条件为诱导前菌液OD6000.8、IPTG浓度0.6 mmol/L、诱导时间12 h、诱导温度30℃,融合蛋白以可溶性蛋白表达形式为主,经纯化后,融合蛋白纯度超过90%。结论本研究成功优化了艰难梭菌毒素B受体结合区CDB3融合蛋白的诱导表达条件,获得大量表达,并成功对其进行了纯化,为后续单克隆抗体的制备奠定了基础。%Objective To investigate the best condition for the induced expression of CDB3 receptor binding region fusion protein of Clostridium difficile toxin B ,to analyze the forms of its expression ,and to lay the foundation for the preparation of monoclonal antibodies .Methods The fusion protein were induced to expression at different conditions ,including the optical density at 600 nm(OD600) of bacterial before induction ,the induction temperature , the concentration of inducer isopropy-β-D-thiogalactoside(IPTG) and the induction time .Then ,the orthogonal test was used to determine the optimal conditions for the expression of fusion protein ,and the expression level and the form of its expression were analyzed by sodium dodecylsulphate-polyacrylamide gel electrophoresis and identified by Western blot .Results The optimal

  9. Fluorescent IgG fusion proteins made in E. coli.

    Science.gov (United States)

    Luria, Yael; Raichlin, Dina; Benhar, Itai

    2012-01-01

    Antibodies are among the most powerful tools in biological and biomedical research and are presently the fastest growing category of new bio-pharmaceutics. The most common format of antibody applied for therapeutic, diagnostic and analytical purposes is the IgG format. For medical applications, recombinant IgGs are made in cultured mammalian cells in a process that is too expensive to be considered for producing antibodies for diagnostic and analytical purposes. Therefore, for such purposes, mouse monoclonal antibodies or polyclonal sera from immunized animals are used. While looking for an easier and more rapid way to prepare full-length IgGs for therapeutic purposes, we recently developed and reported an expression and purification protocol for full-length IgGs, and IgG-based fusion proteins in E. coli, called "Inclonals." By applying the Inclonals technology, we could generate full-length IgGs that are genetically fused to toxins. The aim of the study described herein was to evaluate the possibility of applying the "Inclonals" technology for preparing IgG-fluorophore fusion proteins. We found that IgG fused to the green fluorescent proteins enhanced GFP (EGFP) while maintaining functionality in binding, lost most of its fluorescence during the refolding process. In contrast, we found that green fluorescent Superfolder GFP (SFGFP)-fused IgG and red fluorescent mCherry-fused IgG were functional in antigen binding and maintained fluorescence intensity. In addition, we found that we can link several SFGFPs in tandem to each IgG, with fluorescence intensity increasing accordingly. Fluorescent IgGs made in E. coli may become attractive alternatives to monoclonal or polyclonal fluorescent antibodies derived from animals.

  10. Dual Mutation Events in the Haemagglutinin-Esterase and Fusion Protein from an Infectious Salmon Anaemia Virus HPR0 Genotype Promote Viral Fusion and Activation by an Ubiquitous Host Protease.

    Science.gov (United States)

    Fourrier, Mickael; Lester, Katherine; Markussen, Turhan; Falk, Knut; Secombes, Christopher J; McBeath, Alastair; Collet, Bertrand

    2015-01-01

    In Infectious salmon anaemia virus (ISAV), deletions in the highly polymorphic region (HPR) in the near membrane domain of the haemagglutinin-esterase (HE) stalk, influence viral fusion. It is suspected that selected mutations in the associated Fusion (F) protein may also be important in regulating fusion activity. To better understand the underlying mechanisms involved in ISAV fusion, several mutated F proteins were generated from the Scottish Nevis and Norwegian SK779/06 HPR0. Co-transfection with constructs encoding HE and F were performed, fusion activity assessed by content mixing assay and the degree of proteolytic cleavage by western blot. Substitutions in Nevis F demonstrated that K276 was the most likely cleavage site in the protein. Furthermore, amino acid substitutions at three sites and two insertions, all slightly upstream of K276, increased fusion activity. Co-expression with HE harbouring a full-length HPR produced high fusion activities when trypsin and low pH were applied. In comparison, under normal culture conditions, groups containing a mutated HE with an HPR deletion were able to generate moderate fusion levels, while those with a full length HPR HE could not induce fusion. This suggested that HPR length may influence how the HE primes the F protein and promotes fusion activation by an ubiquitous host protease and/or facilitate subsequent post-cleavage refolding steps. Variations in fusion activity through accumulated mutations on surface glycoproteins have also been reported in other orthomyxoviruses and paramyxoviruses. This may in part contribute to the different virulence and tissue tropism reported for HPR0 and HPR deleted ISAV genotypes.

  11. Expression and activity analysis of a new fusion protein targeting ovarian cancer cells.

    Science.gov (United States)

    Su, Manman; Chang, Weiqin; Wang, Dingding; Cui, Manhua; Lin, Yang; Wu, Shuying; Xu, Tianmin

    2015-09-01

    The aim of the present study was to develop a new therapeutic drug to improve the prognosis of ovarian cancer patients. Human urokinase-type plasminogen activator (uPA)17-34-kunitz-type protease inhibitor (KPI) eukaryotic expression vector was constructed and recombinant human uPA17-34-KPI (rhuPA17-34-KPI) in P. pastoris was expressed. In the present study, the DNA sequences that encode uPA 17-34 amino acids were created according to the native amino acids sequence and inserted into the KPI-pPICZαC vector, which was constructed. Then, uPA17‑34-KPI-pPICZαC was transformed into P. pastoris X-33, and rhuPA17-34-KPI was expressed by induction of methanol. The bioactivities of a recombinant fusion protein were detected with trypsin inhibition analysis, and the inhibitory effects on the growth of ovarian cancer cells were identified using the TUNEL assay, in vitro wound‑healing assay and Matrigel model analysis. The results of the DNA sequence analysis of the recombinant vector uPA17-34-KPI‑pPICZα demonstrated that the DNA‑encoding human uPA 17-34 amino acids, 285-288 amino acids of amyloid precursor protein (APP) and 1-57 amino acids of KPI were correctly inserted into the pPICZαC vector. Following induction by methonal, the fusion protein with a molecular weight of 8.8 kDa was observed using SDS-PAGE and western blot analysis. RhuPA17-34-KPI was expressed in P. pastoris with a yield of 50 mg/l in a 50-ml tube. The recombinant fusion protein was able to inhibit the activity of trypsin, inhibit growth and induce apoptosis of SKOV3 cells, and inhibit the invasion and metastasis of ovarian cancer cells. By considering uPA17-34 amino acid specific binding uPAR as the targeted part of fusion protein and utilizing the serine protease inhibitor activity of KPI, it was found that the recombinant fusion protein uPA17-34-KPI inhibited the invasion and metastasis of ovarian tumors, and may therefore be regarded as effective in targeted treatment.

  12. Simplified, Enhanced Protein Purification Using an Inducible, Autoprocessing Enzyme Tag

    Science.gov (United States)

    Shen, Aimee; Lupardus, Patrick J.; Morell, Montse; Ponder, Elizabeth L.; Sadaghiani, A. Masoud; Garcia, K. Christopher; Bogyo, Matthew

    2009-01-01

    We introduce a new method for purifying recombinant proteins expressed in bacteria using a highly specific, inducible, self-cleaving protease tag. This tag is comprised of the Vibrio cholerae MARTX toxin cysteine protease domain (CPD), an autoprocessing enzyme that cleaves exclusively after a leucine residue within the target protein-CPD junction. Importantly, V. cholerae CPD is specifically activated by inositol hexakisphosphate (InsP6), a eukaryotic-specific small molecule that is absent from the bacterial cytosol. As a result, when His6-tagged CPD is fused to the C-terminus of target proteins and expressed in Escherichia coli, the full-length fusion protein can be purified from bacterial lysates using metal ion affinity chromatography. Subsequent addition of InsP6 to the immobilized fusion protein induces CPD-mediated cleavage at the target protein-CPD junction, releasing untagged target protein into the supernatant. This method condenses affinity chromatography and fusion tag cleavage into a single step, obviating the need for exogenous protease addition to remove the fusion tag(s) and increasing the efficiency of tag separation. Furthermore, in addition to being timesaving, versatile, and inexpensive, our results indicate that the CPD purification system can enhance the expression, integrity, and solubility of intractable proteins from diverse organisms. PMID:19956581

  13. Simplified, enhanced protein purification using an inducible, autoprocessing enzyme tag.

    Directory of Open Access Journals (Sweden)

    Aimee Shen

    Full Text Available We introduce a new method for purifying recombinant proteins expressed in bacteria using a highly specific, inducible, self-cleaving protease tag. This tag is comprised of the Vibrio cholerae MARTX toxin cysteine protease domain (CPD, an autoprocessing enzyme that cleaves exclusively after a leucine residue within the target protein-CPD junction. Importantly, V. cholerae CPD is specifically activated by inositol hexakisphosphate (InsP(6, a eukaryotic-specific small molecule that is absent from the bacterial cytosol. As a result, when His(6-tagged CPD is fused to the C-terminus of target proteins and expressed in Escherichia coli, the full-length fusion protein can be purified from bacterial lysates using metal ion affinity chromatography. Subsequent addition of InsP(6 to the immobilized fusion protein induces CPD-mediated cleavage at the target protein-CPD junction, releasing untagged target protein into the supernatant. This method condenses affinity chromatography and fusion tag cleavage into a single step, obviating the need for exogenous protease addition to remove the fusion tag(s and increasing the efficiency of tag separation. Furthermore, in addition to being timesaving, versatile, and inexpensive, our results indicate that the CPD purification system can enhance the expression, integrity, and solubility of intractable proteins from diverse organisms.

  14. Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion.

    Science.gov (United States)

    Shields, Lisa B E; Raque, George H; Glassman, Steven D; Campbell, Mitchell; Vitaz, Todd; Harpring, John; Shields, Christopher B

    2006-03-01

    A retrospective review of patients who underwent an anterior cervical fusion using recombinant human bone morphogenetic protein (rhBMP)-2 with an absorbable collagen sponge (INFUSE; Medtronic Sofamor Danek, Minneapolis, MN). To ascertain the complication rate after the use of high-dose INFUSE in anterior cervical fusions. The rhBMP-2 has been primarily investigated in lumbar spine fusions, where it has significantly enhanced the fusion rate and decreased the length of surgery, blood loss, and hospital stay. We present 151 patients who underwent either an anterior cervical discectomy and fusion (n = 138) or anterior cervical vertebrectomy and fusion (n = 13) augmented with high-dose INFUSE between July 2003 and March 2004. The rhBMP-2 (up to 2.1 mg/level) was used in the anterior cervical discectomy and fusions. A total of 35 (23.2%) patients had complications after the use of high-dose INFUSE in the cervical spine. There were 15 patients diagnosed with a hematoma, including 11 on postoperative day 4 or 5, of whom 8 were surgically evacuated. Thirteen individuals had either a prolonged hospital stay (> 48 hours) or hospital readmission because of swallowing/breathing difficulties or dramatic swelling without hematoma. A significant rate of complications resulted after the use of a high dose of INFUSE in anterior cervical fusions. We hypothesize that in the cervical area, the putative inflammatory effect that contributes to the effectiveness of INFUSE in inducing fusion may spread to adjacent critical structures and lead to increased postoperative morbidity. A thorough investigation is warranted to determine the optimal dose of rhBMP-2 that will promote cervical fusion and minimize complications.

  15. Construction of hpaA gene from a clinical isolate of Helicobacter pyloriand identification of fusion protein

    Institute of Scientific and Technical Information of China (English)

    Ya-Fei Mao; Jie Yan; Li-Wei Li; Shu-Ping Li

    2003-01-01

    AIM: To clone hpaA gene from a clinical strain of Helicobacter pylori and to construct the expression vector of the gene and to identify immunity of the fusion protein.METHODS: The hpaA gene from a clinical isolate Y06 of H.pylori was amplified by high fidelity PCR. The nucleotide sequence of the target DNA amplification fragment was sequenced after T-A cloning. The recombinant expression vector inserted with hpaA gene was constructed. The expression of HpaA fusion protein in E. coli BL21DE3 induced by IPTG at different dosages was examined by SDS-PAGE.Western blot with commercial antibody against whole cell of H. pylorias well as immunodiffusion assay with selfprepared rabbit antiserum against HpaA fusion protein were applied to determine immunity of the fusion protein. ELISA was used to detect the antibody against HpaA in sera of 125 patients infected with H. pylori and to examine HpaA expression of 109 clinical isolates of H. pylori.RESULTS: In comparison with the reported corresponding sequences, the homologies of nucleotide and putative amino acid sequences of the cloned hpaA gene were from 94.25-97.32 % and 95.38-98.46 %, respectively. The output of HpaA fusion protein in its expression system of pET32ahpaA-BL21DE3 was approximately 40 % of the total bacterial proteins. HpaA fusion protein was able to combine with the commercial antibody against whole cell of H. pyloriand to induce rabbit producing specific antiserum with 1:4immunodiffusion titer after the animal was immunized with the fusion protein. 81.6 % of the serum samples from 125patients infected with H.pylori(102/125) were positive for HpaA antibody and all of the tested isolates of H.pylori(109/109) were detectable for HpaA.CONCLUSION: A prokaryotic expression system with high efficiency of H.pylorihpaA gene was successfully established.The HpaA expressing fusion protein showed satisfactory immunoreactivity and antigenicity. High frequencies of HpaA expression in different H. pyloriclinicalstrains

  16. Construction of hpaA gene from a clinical isolate of Helicobacter pylori and identification of fusion protein.

    Science.gov (United States)

    Mao, Ya-Fei; Yan, Jie; Li, Li-Wei; Li, Shu-Ping

    2003-07-01

    To clone hpaA gene from a clinical strain of Helicobacter pylori and to construct the expression vector of the gene and to identify immunity of the fusion protein. The hpaA gene from a clinical isolate Y06 of H.pylori was amplified by high fidelity PCR. The nucleotide sequence of the target DNA amplification fragment was sequenced after T-A cloning. The recombinant expression vector inserted with hpaA gene was constructed. The expression of HpaA fusion protein in E.coli BL21DE3 induced by IPTG at different dosages was examined by SDS-PAGE. Western blot with commercial antibody against whole cell of H.pylori as well as immunodiffusion assay with self-prepared rabbit antiserum against HpaA fusion protein were applied to determine immunity of the fusion protein. ELISA was used to detect the antibody against HpaA in sera of 125 patients infected with H.pylori and to examine HpaA expression of 109 clinical isolates of H.pylori. In comparison with the reported corresponding sequences, the homologies of nucleotide and putative amino acid sequences of the cloned hpaA gene were from 94.25-97.32 % and 95.38-98.46 %, respectively. The output of HpaA fusion protein in its expression system of pET32a-hpaA-BL21DE3 was approximately 40 % of the total bacterial proteins. HpaA fusion protein was able to combine with the commercial antibody against whole cell of H.pylori and to induce rabbit producing specific antiserum with 1:4 immunodiffusion titer after the animal was immunized with the fusion protein. 81.6 % of the serum samples from 125 patients infected with H.pylori (102/125) were positive for HpaA antibody and all of the tested isolates of H.pylori (109/109) were detectable for HpaA. A prokaryotic expression system with high efficiency of H.pylori hpaA gene was successfully established. The HpaA expressing fusion protein showed satisfactory immunoreactivity and antigenicity. High frequencies of HpaA expression in different H.pylori clinical strains and specific antibody

  17. Trans-splicing as a novel method to rapidly produce antibody fusion proteins

    Energy Technology Data Exchange (ETDEWEB)

    Iwasaki, Ryohei; Kiuchi, Hiroki [Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ihara, Masaki [Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Mori, Toshihiro; Kawakami, Masayuki [Lifescience Lab. R and D, Fujifilm Co., 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577 (Japan); Ueda, Hiroshi, E-mail: hueda@chembio.t.u-tokyo.ac.jp [Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2009-07-03

    To cultivate the use of trans-splicing as a novel means to rapidly express various antibody fusion proteins, we tried to express antibody-reporter enzyme fusions in a COS-1 co-transfection model. When a vector designed to induce trans-splicing with IgH pre-mRNA was co-transfected with a vector encoding the mouse IgM locus, the expression of V{sub H}-secreted human placental alkaline phosphatase (SEAP) as well as Fab-SEAP were successfully expressed both in mRNA and protein levels. Especially, the vectors encoding complementary sequence to S{mu} as a binding domain was accurate and efficient, producing trans-spliced mRNA of up to 2% of cis-spliced one. Since S{mu} sequence should exist in every IgH pre-mRNA, our finding will lead to the rapid production and analysis of various antibody-enzyme fusions suitable for enzyme-linked immunosorbent assay (ELISA) or antibody-dependent enzyme prodrug therapy (ADEPT).

  18. Inhibition of HIV type 1 infection with a RANTES-IgG3 fusion protein.

    Science.gov (United States)

    Challita-Eid, P M; Klimatcheva, E; Day, B T; Evans, T; Dreyer, K; Rimel, B J; Rosenblatt, J D; Planelles, V

    1998-12-20

    The natural ligands for the chemokine receptors CCR5 (RANTES, MIP-1alpha, and MIP-1beta) and CXCR4 (SDF-1) can act as potent inhibitors of infection by the human immunodeficiency virus type 1 (HIV-1) at the level of viral entry. Unlike antibody-mediated inhibition, chemokine-mediated inhibition is broadly effective. Different HIV-1 strains can utilize the same coreceptor(s) for viral entry and, therefore, can be blocked by the same chemokine(s). HIV-1 strains that are highly resistant to neutralization by V3-specific antibodies are sensitive to inhibition by chemokines. Therefore, the use of chemokine-derived molecules constitutes a potential therapeutic approach to prevent infection by HIV-1. We have generated a fusion protein between RANTES and human IgG3 (RANTES-IgG3). The effectiveness of RANTES-IgG3 inhibition of infection by HIV-1 was similar to that of rRANTES. Inhibition of HIV-1 by RANTES-IgG3 was specific for CCR5-dependent but not CXCR4-dependent HIV-1 isolates. Fusion of a chemokine to an IgG moiety offers two desirable properties with respect to the recombinant chemokine alone. First, IgG fusion proteins have extended half-lives in vivo. Second, molecules with IgG heavy chain moieties may be able to cross the placenta and potentially induce fetal protection.

  19. ULTRASOUND INDUCED AND LASER ENHANCED COLD FUSION CHEMISTRY

    Institute of Scientific and Technical Information of China (English)

    T.V.Prevenslik

    1995-01-01

    The standard model of sonoluminescence suggests that the coulomb barrer to deuterium fusion may be overcome by high bubble gas temperatures caused by compression heating if the bubble diameter remains spherical during bubble collapse.However,in the more likely collapse geometry of a pancake shape,the temperature rise in the bubbles is negligible.But the collapsing pancake bubble is fund to significantly increase the frequency of the infrared energy available in the vibrational state of the water molecules at ambient temperature.For a collapse to liquied density,ultraviolet radiation at about 10eV is fund.Although the ultraviolet radiation is of a low intensity,higher intensities may be possible if the bubble collapse is enhanced by visible and infrared lases.Neither hot nor cold fusion is predicted in bubble collapse but the ultraviolet energy at about 10eV developed in the bubble is sufficient to provide the basis for a new field of chemistry called ultrasound induced and laser enhanced cold fusion chemistry.

  20. A novel fusion protein diphtheria toxin-stem cell factor (DT-SCF)-purification and characterization.

    Science.gov (United States)

    Potala, Sirisha; Verma, Rama Shanker

    2010-11-01

    Fusion toxins are an emerging class of targeted therapeutics for the treatment of cancer. Diphtheria toxin-stem cell factor (DT-SCF) is one such novel fusion toxin designed to target malignancies expressing c-kit. Since, c-kit overexpression has been reported on many types of cancers, it appeared to be a reasonably good molecule to target. In the present study, we report construction, expression, purification, and characterization of DT-SCF. DT-SCF gene coding for 1-387 amino acids of diphtheria toxin, His-Ala linker, 2-141 amino acids of SCF was cloned into expression vector with C terminal His tag. The induced DT-SCF protein was exclusively expressed in insoluble fraction. Purification of DT-SCF was achieved by inclusion body isolation and metal affinity chromatography under denaturing and reducing conditions. Purified DT-SCF was renatured partially on-column by gradually reducing denaturant concentration followed by complete refolding through rapid dilution technique. Cell viability assay provided the evidence that DT-SCF is a potent cytotoxic agent selective to cells expressing c-kit. The novelty of this study lies in employing SCF as a ligand in construction of fusion toxin to target wide range of malignancies expressing c-kit. Efficacy of DT-SCF fusion toxin was demonstrated over a range of malignancies such as chronic myeloid leukemia (K562), acute lymphoblastic leukemia (MOLT4), pancreatic carcinoma (PANC-1), and cervical carcinoma (HeLa 229). This is the first study reporting specificity and efficacy of DT-SCF against tumor cells expressing c-kit. There was significant correlation (P = 0.007) between c-kit expression on cells and their sensitivity to DT-SCF fusion toxin.

  1. HUWE1 and TRIP12 Collaborate in Degradation of Ubiquitin-Fusion Proteins and Misframed Ubiquitin

    DEFF Research Database (Denmark)

    Poulsen, Esben G; Steinhauer, Cornelia; Lees, Michael

    2012-01-01

    In eukaryotic cells an uncleavable ubiquitin moiety conjugated to the N-terminus of a protein signals the degradation of the fusion protein via the proteasome-dependent ubiquitin fusion degradation (UFD) pathway. In yeast the molecular mechanism of the UFD pathway has been well characterized. Rec...

  2. Dimeric and Trimeric Fusion Proteins Generated with Fimbrial Adhesins of Uropathogenic Escherichia coli

    Science.gov (United States)

    Luna-Pineda, Víctor M.; Reyes-Grajeda, Juan Pablo; Cruz-Córdova, Ariadnna; Saldaña-Ahuactzi, Zeus; Ochoa, Sara A.; Maldonado-Bernal, Carmen; Cázares-Domínguez, Vicenta; Moreno-Fierros, Leticia; Arellano-Galindo, José; Hernández-Castro, Rigoberto; Xicohtencatl-Cortes, Juan

    2016-01-01

    Urinary tract infections (UTIs) are associated with high rates of morbidity and mortality worldwide, and uropathogenic Escherichia coli (UPEC) is the main etiologic agent. Fimbriae assembled on the bacterial surface are essential for adhesion to the urinary tract epithelium. In this study, the FimH, CsgA, and PapG adhesins were fused to generate biomolecules for use as potential target vaccines against UTIs. The fusion protein design was generated using bioinformatics tools, and template fusion gene sequences were synthesized by GenScript in the following order fimH-csgA-papG-fimH-csgA (fcpfc) linked to the nucleotide sequence encoding the [EAAAK]5 peptide. Monomeric (fimH, csgA, and papG), dimeric (fimH-csgA), and trimeric (fimH-csgA-papG) genes were cloned into the pLATE31 expression vector and generated products of 1040, 539, 1139, 1442, and 2444 bp, respectively. Fusion protein expression in BL21 E. coli was induced with 1 mM IPTG, and His-tagged proteins were purified under denaturing conditions and refolded by dialysis using C-buffer. Coomassie blue-stained SDS-PAGE gels and Western blot analysis revealed bands of 29.5, 11.9, 33.9, 44.9, and 82.1 kDa, corresponding to FimH, CsgA, PapG, FC, and FCP proteins, respectively. Mass spectrometry analysis by MALDI-TOF/TOF revealed specific peptides that confirmed the fusion protein structures. Dynamic light scattering analysis revealed the polydispersed state of the fusion proteins. FimH, CsgA, and PapG stimulated the release of 372–398 pg/mL IL-6; interestingly, FC and FCP stimulated the release of 464.79 pg/mL (p ≤ 0.018) and 521.24 pg/mL (p ≤ 0.002) IL-6, respectively. In addition, FC and FCP stimulated the release of 398.52 pg/mL (p ≤ 0.001) and 450.40 pg/mL (p ≤ 0.002) IL-8, respectively. High levels of IgA and IgG antibodies in human sera reacted against the fusion proteins, and under identical conditions, low levels of IgA and IgG antibodies were detected in human urine. Rabbit polyclonal antibodies

  3. Fusion

    Science.gov (United States)

    Herman, Robin

    1990-10-01

    The book abounds with fascinating anecdotes about fusion's rocky path: the spurious claim by Argentine dictator Juan Peron in 1951 that his country had built a working fusion reactor, the rush by the United States to drop secrecy and publicize its fusion work as a propaganda offensive after the Russian success with Sputnik; the fortune Penthouse magazine publisher Bob Guccione sank into an unconventional fusion device, the skepticism that met an assertion by two University of Utah chemists in 1989 that they had created "cold fusion" in a bottle. Aimed at a general audience, the book describes the scientific basis of controlled fusion--the fusing of atomic nuclei, under conditions hotter than the sun, to release energy. Using personal recollections of scientists involved, it traces the history of this little-known international race that began during the Cold War in secret laboratories in the United States, Great Britain and the Soviet Union, and evolved into an astonishingly open collaboration between East and West.

  4. Construction of single chain Fv antibody against transferrin receptor and its protein fusion with alkaline phosphatase

    Institute of Scientific and Technical Information of China (English)

    Dao-Feng Yang; Hui-Fen Zhu; Zhi-Hua Wang; Guan-Xin Shen; De-Ying Tian

    2005-01-01

    AIM: To construct fusion protein of a single-chain antibody(scFv) against transferrin receptor (TfR) with alkalinephosphatase (AP).METHODS: The VH-linker-VL, namely scFv gene, wasprepared by amplifying the VH and VL genes from plasmid pGEM-T-VH and pGEM-T-VL with splicing overlap extension polymerase chain reaction (SOE PCR). After the ScFv gene was modified by SfiⅠ and NotⅠ, it was subcloned into the secretory expression vector pUC19/119, and then was transformed into E. coli TG1. The positive colonies were screened by colony PCR and their expressions were induced by IPTG. ScFv gene was gained by digesting ScFv expression vector pUC19/119 with Sfi I and NotⅠ restriction enzymes, then subcloned into expression vector pDAP2, followed by transformation in E. coli TG1. The positive colonies were selected by bacterial colony PCR. The expression of fusion protein (scFv-AP) was induced by IPTG. Its activity was detected by enzyme immunoassay. The molecular weights of scFv and scFv-AP were measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).RESULTS: The product of SOE PCR formed a band of 700 bp in agarose gel electrophoresis. SDS-PAGE demonstrated the molecular weight of scFv was 27 ku. Immunofluorescent assay (IFA) demonstrated its reactivity with TfR. The molecular weight of scFv-AP was 75 ku. Enzyme immunoassay showed that scFv-AP could specifically bind to human TfR and play AP activity.CONCLUSION: We have successfully prepared the antihuman TfR scFv and constructed the fusion protein of scFv and AP. It is promising for immunological experiments.

  5. Tension-induced vesicle fusion: pathways and pore dynamics

    DEFF Research Database (Denmark)

    Shillcock, Julian C.

    2008-01-01

    and eventually opens a pore to complete the fusion process. In pathway II, at higher tension, a stalk is formed during the fusion process that is then transformed by transmembrane pore formation into a fusion pore. Whereas the latter pathway II resembles stalk pathways as observed in other simulation studies...... fusion time on membrane tension implies that the fusion process is completed by overcoming two energy barriers with scales of 13kBT and 11kBT. The fusion pore radius as a function of time has also been extracted from the simulations, and provides a quantitative measure of the fusion dynamics which...

  6. Graphene Biosensor Programming with Genetically Engineered Fusion Protein Monolayers.

    Science.gov (United States)

    Soikkeli, Miika; Kurppa, Katri; Kainlauri, Markku; Arpiainen, Sanna; Paananen, Arja; Gunnarsson, David; Joensuu, Jussi J; Laaksonen, Päivi; Prunnila, Mika; Linder, Markus B; Ahopelto, Jouni

    2016-03-01

    We demonstrate a label-free biosensor concept based on specific receptor modules, which provide immobilization and selectivity to the desired analyte molecules, and on charge sensing with a graphene field effect transistor. The receptor modules are fusion proteins in which small hydrophobin proteins act as the anchor to immobilize the receptor moiety. The functionalization of the graphene sensor is a single-step process based on directed self-assembly of the receptor modules on a hydrophobic surface. The modules are produced separately in fungi or plants and purified before use. The modules form a dense and well-oriented monolayer on the graphene transistor channel and the receptor module monolayer can be removed, and a new module monolayer with a different selectivity can be assembled in situ. The receptor module monolayers survive drying, showing that the functionalized devices can be stored and have a reasonable shelf life. The sensor is tested with small charged peptides and large immunoglobulin molecules. The measured sensitivities are in the femtomolar range, and the response is relatively fast, of the order of one second.

  7. Sodium butyrate induces DRP1-mediated mitochondrial fusion and apoptosis in human colorectal cancer cells.

    Science.gov (United States)

    Tailor, Dhanir; Hahm, Eun-Ryeong; Kale, Raosaheb K; Singh, Shivendra V; Singh, Rana P

    2014-05-01

    Sodium butyrate (NaBt) is the byproduct of anaerobic microbial fermentation inside the gastro-intestinal tract that could reach up to 20mM, and has been shown to inhibit the growth of various cancers. Herein, we evaluated its effect on mitochondrial fusion and associated induction of apoptosis in colorectal cancer cells (CRC). NaBt treatment at physiological (1-5mM) concentrations for 12 and 24h decreased the cell viability and induced G2-M phase cell cycle arrest in HCT116 (12h) and SW480 human CRC cells. This cell cycle arrest was associated with mitochondria-mediated apoptosis accompanied by a decrease in survivin and Bcl-2 expression, and generation of reactive oxygen species (ROS). Furthermore, NaBt treatment resulted in a significant decrease in the mitochondrial mass which is an indicator of mitochondrial fusion. Level of dynamin-related protein 1 (DRP1), a key regulator of mitochondrial fission and fusion where its up-regulation correlates with fission, was found to be decreased in CRC cells. Further, at early treatment time, DRP1 down-regulation was noticed in mitochondria which later became drastically reduced in both mitochondria as well as cytosol. DRP1 is activated by cyclin B1-CDK1 complex by its ser616 phosphorylation in which both cyclin B1-CDK1 complex and phospho-DRP1 (ser616) were strongly reduced by NaBt treatment. DRP1 was observed to be regulated by apoptosis as pan-caspase inhibitor showing rescue from NaBt-induced apoptosis also caused the reversal of DRP1 to the normal level as in control proliferating cells. Together, these findings suggest that NaBt can modulate mitochondrial fission and fusion by regulating the level of DRP1 and induce cell cycle arrest and apoptosis in human CRC cells.

  8. A peptide fusion protein in hibits angiogenesis and tumorgrowth by blocking VEGF binding to KDR

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Vascular endothelial growth factor (VEGF) binding to its tyrosine kinase receptors (KDR/FLK1, Flt-1) induces angiogenesis. In search of the peptides blocking VEGF binding to its receptor KDR/FLK1 to inhibit tumor- angiogenesis and growth, we screened a phage display peptide library with KDR as target protein, and some candidate peptides were isolated. In this study, we cloned the DNA fragment coding the peptide K237 from the library, into a vector pQE42 to express fusion protein DHFR-K237 in E. coli M15. The affection of fusion protein DHFR-K237 on endothelial cell proliferation and angiogenesis was investigated. In vitro, DHFR-K237 could completely block VEGF binding to KDR and significantly inhibit the VEGF-medi- ated proliferation of the human vascular endothelial cells. In vivo, DHFR-K237 inhibited angiogenesis in chick embryo chorioa- llantoric membrane and tumor growth in nude mice. These results suggest that K237 is an effective antagonist of VEGF binding to KDR, and could be a potential agent for cancer biotherapy.

  9. The Fusion Loops of the Initial Prefusion Conformation of Herpes Simplex Virus 1 Fusion Protein Point Toward the Membrane

    Directory of Open Access Journals (Sweden)

    Juan Fontana

    2017-08-01

    Full Text Available All enveloped viruses, including herpesviruses, must fuse their envelope with the host membrane to deliver their genomes into target cells, making this essential step subject to interference by antibodies and drugs. Viral fusion is mediated by a viral surface protein that transits from an initial prefusion conformation to a final postfusion conformation. Strikingly, the prefusion conformation of the herpesvirus fusion protein, gB, is poorly understood. Herpes simplex virus (HSV, a model system for herpesviruses, causes diseases ranging from mild skin lesions to serious encephalitis and neonatal infections. Using cryo-electron tomography and subtomogram averaging, we have characterized the structure of the prefusion conformation and fusion intermediates of HSV-1 gB. To this end, we have set up a system that generates microvesicles displaying full-length gB on their envelope. We confirmed proper folding of gB by nondenaturing electrophoresis-Western blotting with a panel of monoclonal antibodies (MAbs covering all gB domains. To elucidate the arrangement of gB domains, we labeled them by using (i mutagenesis to insert fluorescent proteins at specific positions, (ii coexpression of gB with Fabs for a neutralizing MAb with known binding sites, and (iii incubation of gB with an antibody directed against the fusion loops. Our results show that gB starts in a compact prefusion conformation with the fusion loops pointing toward the viral membrane and suggest, for the first time, a model for gB’s conformational rearrangements during fusion. These experiments further illustrate how neutralizing antibodies can interfere with the essential gB structural transitions that mediate viral entry and therefore infectivity.

  10. Cellulose affinity purification of fusion proteins tagged with fungal family 1 cellulose-binding domain.

    Science.gov (United States)

    Sugimoto, Naohisa; Igarashi, Kiyohiko; Samejima, Masahiro

    2012-04-01

    N- or C-terminal fusions of red-fluorescent protein (RFP) with various fungal cellulose-binding domains (CBDs) belonging to carbohydrate binding module (CBM) family 1 were expressed in a Pichia pastoris expression system, and the resulting fusion proteins were used to examine the feasibility of large-scale affinity purification of CBD-tagged proteins on cellulose columns. We found that RFP fused with CBD from Trichoderma reesei CBHI (CBD(Tr)(CBHI)) was expressed at up to 1.2g/l in the culture filtrate, which could be directly injected into the cellulose column. The fusion protein was tightly adsorbed on the cellulose column in the presence of a sufficient amount of ammonium sulfate and was efficiently eluted with pure water. Bovine serum albumin (BSA) was not captured under these conditions, whereas both BSA and the fusion protein were adsorbed on a phenyl column, indicating that the cellulose column can be used for the purification of not only hydrophilic proteins but also for hydrophobic proteins. Recovery of various fusion proteins exceeded 80%. Our results indicate that protein purification by expression of a target protein as a fusion with a fungal family 1 CBD tag in a yeast expression system, followed by affinity purification on a cellulose column, is simple, effective and easily scalable.

  11. Generation of monoclonal antibodies specific of the postfusion conformation of the Pneumovirinae fusion (F) protein.

    Science.gov (United States)

    Rodríguez, Laura; Olmedillas, Eduardo; Mas, Vicente; Vázquez, Mónica; Cano, Olga; Terrón, María C; Luque, Daniel; Palomo, Concepción; Melero, José A

    2015-11-01

    Paramyxovirus entry into cells requires fusion of the viral and cell membranes mediated by one of the major virus glycoproteins, the fusion (F) glycoprotein which transits from a metastable pre-fusion conformation to a highly stable post-fusion structure during the membrane fusion process. F protein refolding involves large conformational changes of the protein trimer. One of these changes results in assembly of two heptad repeat sequences (HRA and HRB) from each protomer into a six-helix bundle (6HB) motif. To assist in distinguishing pre- and post-fusion conformations of the Pneumovirinae F proteins, and as extension of previous work (Palomo et al., 2014), a general strategy was designed to obtain polyclonal and particularly monoclonal antibodies specific of the 6HB motif of the Pneumovirinae fusion protein. The antibodies reported here should assist in the characterization of the structural changes that the F protein of human metapneumovirus or respiratory syncytial virus experiences during the process of membrane fusion. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The immunogenicity of MUC1 peptides and fusion protein.

    Science.gov (United States)

    Apostolopoulos, V; Pietersz, G A; Xing, P X; Lees, C J; Michael, M; Bishop, J; McKenzie, I F

    1995-03-23

    Mucin 1 (MUC1) is highly expressed in breast cancer, has an ubiquitous distribution and, due to altered glycosylation, peptides within the VNTR are exposed. These peptides are the target for anti-MUC1 antibodies, which give a differential reaction on cancer compared with normal tissue. The amino acids, APDTR or adjacent amino acids, are highly immunogenic in mice for antibody production (after immunisation with either breast cancer cells, human milk fat globule (HMFG) or the VNTR peptide). In addition, human studies show that this region of the MUC1 VNTR functions as target epitopes for cytotoxic T cells. We have performed preclinical and clinical studies to examine the immune responses to MUC1 in mice and humans: (a) MUC1+ 3T3 or P815+ 3T3 cells in syngeneic mice are rejected, with the generation of both cytotoxic T lymphocyte (CTL) and DTH responses and a weak antibody response and a weak antibody responses; this type of immunity gives rise to total resistance to re-challenge with high doses of these tumors; (b) immunisation with peptides (VNTR x 2), a fusion protein (VNTR x 5), or HMFG leads to no CTLs, DTH, good antibody production and weak tumour protection (to 10(6) cells, but not 5 x 10(6) cells) (possibly a TH2 type response); (c) immunisation with mannan-fusion protein (MFP) gives rise to good protection (resistance to 50 x 10(6) cells), CTL and DTH responses and weak antibody responses (possibly a TH1 type response, similar in magnitude to that obtained after tumor rejection); (d) established tumors can be rapidly rejected by delayed treatment of MFP; (e) the CTL responses are MHC restricted (in contrast to the human studies); (f) APDTR appears not to be the T cell reactive epitope in mice. On the basis of these findings, two clinical trials are in progress: (a) VNTR x 2 (diphtheria toxoid) which gives rise to some T cell proliferation, DTH and antibody responses in some patients and (b) an MFP trial. The ability to alter the immune response towards

  13. Role of osteogenic protein-1/bone morphogenetic protein-7 in spinal fusion

    Directory of Open Access Journals (Sweden)

    Justin Munns

    2009-10-01

    Full Text Available Justin Munns, Daniel K Park, Kern SinghDepartment of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USAAbstract: Osteogenic protein-1 (OP-1, also known as bone morphogenetic protein-7 (BMP-7, is a protein in the TGF-β family of cellular proteins that has shown potential for application in patients undergoing spinal fusion due to its proven osteoinductive effects, particularly in patients with spondylolisthesis. OP-1 initiates numerous processes at the cellular level, acting on mesenchymal stem cells (MSCs, osteoblasts, and osteoclasts to stimulate bone growth. Animal studies of OP-1 have provided strong evidence for the ability of OP-1 to initiate ossification in posterolateral arthrodesis. Promising findings in early clinical trials with OP-1 prompted FDA approval for use in long bone nonunions in 2001 and subsequently for revision posterolateral arthrodesis in 2004 under a conditional Humanitarian Device Exemption. Larger clinical trials have recently shown no notable safety concerns or increases in adverse events associated with OP-1. However, a recent clinical trial has not conclusively demonstrated the noninferiority of OP-1 compared to autograft in revision posterolateral arthrodesis. The future of OP-1 application in patients with spondylolisthesis thus remains uncertain with the recent rejection of Premarket Approval (PMA status by the FDA (April 2009. Further investigation of its treatment success and immunological consequences appears warranted to establish FDA approval for its use in its current form.Keywords: osteogenic protein-1, bone morphogenetic protein-7, spinal fusion

  14. Analysis and characterization of aggregation of a therapeutic Fc-fusion protein.

    Science.gov (United States)

    Wang, Tian; Fodor, Szilan; Hapuarachchi, Suminda; Jiang, Xinzhao Grace; Chen, Ken; Apostol, Izydor; Huang, Gang

    2013-01-01

    Protein aggregation was observed in a purification intermediate of a therapeutic Fc-fusion protein stored at -30 °C, even though the protein was stable at 4 and -80 °C. The protein was expressed in Escherichia coli as an inclusion body, refolded, and purified using chromatography columns. To study the nature of this aggregation, a series of experiments were conducted to investigate factors that contributed to the protein instability during freezing. We found that the presence of free thiols in the protein is the intrinsic cause. The free thiol cross-linking sites were determined to be at the peptide moiety of the Fc-fusion protein using LC-MS. Partially frozen accompanied by the elevated pH and increased salt and protein concentrations were identified as extrinsic factors that facilitated the aggregation. These results provided important insights into purification process improvement and solution storage of this Fc-fusion protein.

  15. cAMP signaling prevents podocyte apoptosis via activation of protein kinase A and mitochondrial fusion.

    Science.gov (United States)

    Li, Xiaoying; Tao, Hua; Xie, Kewei; Ni, Zhaohui; Yan, Yucheng; Wei, Kai; Chuang, Peter Y; He, John Cijiang; Gu, Leyi

    2014-01-01

    Our previous in vitro studies suggested that cyclic AMP (cAMP) signaling prevents adriamycin (ADR) and puromycin aminonucleoside (PAN)-induced apoptosis in podocytes. As cAMP is an important second messenger and plays a key role in cell proliferation, differentiation and cytoskeleton formation via protein kinase A (PKA) or exchange protein directly activated by cAMP (Epac) pathways, we sought to determine the role of PKA or Epac signaling in cAMP-mediated protection of podocytes. In the ADR nephrosis model, we found that forskolin, a selective activator of adenylate cyclase, attenuated albuminuria and improved the expression of podocyte marker WT-1. When podocytes were treated with pCPT-cAMP (a selective cAMP/PKA activator), PKA activation was increased in a time-dependent manner and prevented PAN-induced podocyte loss and caspase 3 activation, as well as a reduction in mitochondrial membrane potential. We found that PAN and ADR resulted in a decrease in Mfn1 expression and mitochondrial fission in podocytes. pCPT-cAMP restored Mfn1 expression in puromycin or ADR-treated podocytes and induced Drp1 phosphorylation, as well as mitochondrial fusion. Treating podocytes with arachidonic acid resulted in mitochondrial fission, podocyte loss and cleaved caspase 3 production. Arachidonic acid abolished the protective effects of pCPT-cAMP on PAN-treated podocytes. Mdivi, a mitochondrial division inhibitor, prevented PAN-induced cleaved caspase 3 production in podocytes. We conclude that activation of cAMP alleviated murine podocyte caused by ADR. PKA signaling resulted in mitochondrial fusion in podocytes, which at least partially mediated the effects of cAMP.

  16. cAMP signaling prevents podocyte apoptosis via activation of protein kinase A and mitochondrial fusion.

    Directory of Open Access Journals (Sweden)

    Xiaoying Li

    Full Text Available Our previous in vitro studies suggested that cyclic AMP (cAMP signaling prevents adriamycin (ADR and puromycin aminonucleoside (PAN-induced apoptosis in podocytes. As cAMP is an important second messenger and plays a key role in cell proliferation, differentiation and cytoskeleton formation via protein kinase A (PKA or exchange protein directly activated by cAMP (Epac pathways, we sought to determine the role of PKA or Epac signaling in cAMP-mediated protection of podocytes. In the ADR nephrosis model, we found that forskolin, a selective activator of adenylate cyclase, attenuated albuminuria and improved the expression of podocyte marker WT-1. When podocytes were treated with pCPT-cAMP (a selective cAMP/PKA activator, PKA activation was increased in a time-dependent manner and prevented PAN-induced podocyte loss and caspase 3 activation, as well as a reduction in mitochondrial membrane potential. We found that PAN and ADR resulted in a decrease in Mfn1 expression and mitochondrial fission in podocytes. pCPT-cAMP restored Mfn1 expression in puromycin or ADR-treated podocytes and induced Drp1 phosphorylation, as well as mitochondrial fusion. Treating podocytes with arachidonic acid resulted in mitochondrial fission, podocyte loss and cleaved caspase 3 production. Arachidonic acid abolished the protective effects of pCPT-cAMP on PAN-treated podocytes. Mdivi, a mitochondrial division inhibitor, prevented PAN-induced cleaved caspase 3 production in podocytes. We conclude that activation of cAMP alleviated murine podocyte caused by ADR. PKA signaling resulted in mitochondrial fusion in podocytes, which at least partially mediated the effects of cAMP.

  17. Kits and methods of detection using cellulose binding domain fusion proteins

    Energy Technology Data Exchange (ETDEWEB)

    Shoseyov, Oded (Karmey Yosef, IL)

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  18. Characterization of an immunomodulatory Der p 2-FIP-fve fusion protein produced in transformed rice suspension cell culture.

    Science.gov (United States)

    Su, Chin-Fen; Kuo, I-Chun; Chen, Peng-Wen; Huang, Chiung-Hui; Seow, See Voon; Chua, Kaw Yan; Yu, Su-May

    2012-02-01

    Der p 2, a major allergen of Dermatophagoides pteronyssinus mites, is one of the most clinically relevant allergens to allergic patients worldwide. FIP-fve protein (Fve) from the golden needle mushroom (Flammulina velutipes) is an immunomodulatory protein with potential Th1-skewed adjuvant properties. Here, we produced and immunologically evaluated a Der p 2-Fve fusion protein as a potential immunotherapeutic for allergic diseases. Using an inducible expression system in cultured rice suspension cells, the recombinant Der p 2-Fve fusion protein (designated as OsDp2Fve) was expressed in rice cells under the control of an α-amylase gene (αAmy8) promoter and secreted under sucrose starvation. OsDp2Fve was partially purified from the cultured medium. The conformation of Der p 2 in OsDp2Fve remains intact as reflected by its unaltered allergenicity, as assessed by human IgE ELISA and histamine release assays, compared to non-fusion Der p 2 protein. Furthermore, the Fve protein expressed in OsDp2Fve retains its in vitro lymphoproliferative activity but loses its hemagglutination and lymphoagglutination effects compared to the native protein. Notably, in vivo evaluation showed that mice administered with OsDp2Fve possessed an enhanced production of Der p 2-specific IgG antibodies without potentiating the production of Der p 2-specific IgE and Th2 effector cytokines in comparison with mice co-administered with native Fve and Der p 2 proteins. These results suggest that the recombinant Der p 2-Fve fusion protein produced in rice suspension cell cultures has a great potential for allergy immunotherapy.

  19. Characterization of Mason--Pfizer monkey virus-induced cell fusion. [uv radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, S.; Hunter, E.

    1979-06-01

    The characteristics and requirements of multinucleate cell (syncytium) induction by Mason--Pfizer monkey virus (M-PMV) on human and non-human primate cells have been investigated. Multinucleate cell induction by this D-type retrovirus shows single-hit kinetics on human foreskin and rhesus monkey fetal lung cells. The peak of syncytium-forming activity in an isopycnic sucrose gradient coincides with the peak of M-PMV virions as assessed by electron microscopy and analysis of viral polypeptides. Unlike the paramyxoviruses, M-PMV does not induce early cell fusion when added in high concentrations to the target cells. Furthermore, multinucleate cell formation is maximal 48 hr postinfection and the size of the syncytia remains constant after this time. Ultraviolet irradiation of M-PMV reduces its ability to form syncytia and to replicate with single-hit kinetics, suggesting that a functional viral genome is required for syncytium formation. Proviral DNA synthesis and assembly of virions are not necessary for cell fusion since the addition of cytosine arabinoside at concentrations which block virus replication has little effect on multinucleate cell formation. Moreover both multinucleate cells lacking detectable intracellular virus polypeptides, and groups of individual, nonfused but brightly staining cells can be observed in immunofluorescence assays at times when multinucleate cell formation is maximal. Cell fusion is inhibited by the addition of cycloheximide during the first 12 hr of infection, suggesting that de novo protein synthesis is required for multinucleate cell formation. The possibility that the translation of genomic RNA yields a fusion-inducing product is discussed.

  20. E6 and E7 fusion immunoglobulin from human papilloma virus 16 induces dendritic cell maturation and antigen specific activation of T helper 1 response.

    Science.gov (United States)

    Kim, Sang-Hoon; Hur, Yu Jin; Lee, Suk Jun; Kim, Sang Joon; Park, Chung-Gyu; Oh, Yu-Koung; Jung, Woon-Won; Seo, Jong Bok; Nam, Myung Hee; Choi, Inho; Chun, Taehoon

    2011-04-01

    Human papilloma virus (HPV) 16 causes cervical cancer. Induction of oncogenesis by HPV 16 is primarily dependent on the function of E6 and E7 proteins, which inactivate the function of p53 and pRB, respectively. Thus, blocking the activity of the E6 and E7 proteins from HPV 16 is critical to inhibiting oncogenesis during infection. We have expressed and purified soluble HPV 16 E6 and E7 fusion immunoglobulin (Ig), which were combined with the constant region of an Ig heavy chain, in a mammalian system. To assess whether soluble E6 and E7 fusion Igs induce effective cellular immune responses, immature dendritic cells (DCs) were treated with these fusion proteins. Soluble E6 and E7 fusion Igs effectively induced maturation of DCs. Furthermore, immunization with soluble E6 and E7 fusion Igs in mice resulted in antigen-specific activation of T helper 1 (Th1) cells. This is the first comprehensive study to show the molecular basis of how soluble HPV 16 E6 or E7 fusion Igs induces Th1 responses through the maturation of DCs. In addition, we show that DC therapy using soluble HPV E6 and E7 fusion Igs may be a valuable tool for controlling the progress of cervical cancer.

  1. Revealing Surface Waters on an Antifreeze Protein by Fusion Protein Crystallography Combined with Molecular Dynamic Simulations.

    Science.gov (United States)

    Sun, Tianjun; Gauthier, Sherry Y; Campbell, Robert L; Davies, Peter L

    2015-10-01

    Antifreeze proteins (AFPs) adsorb to ice through an extensive, flat, relatively hydrophobic surface. It has been suggested that this ice-binding site (IBS) organizes surface waters into an ice-like clathrate arrangement that matches and fuses to the quasi-liquid layer on the ice surface. On cooling, these waters join the ice lattice and freeze the AFP to its ligand. Evidence for the generality of this binding mechanism is limited because AFPs tend to crystallize with their IBS as a preferred protein-protein contact surface, which displaces some bound waters. Type III AFP is a 7 kDa globular protein with an IBS made up two adjacent surfaces. In the crystal structure of the most active isoform (QAE1), the part of the IBS that docks to the primary prism plane of ice is partially exposed to solvent and has clathrate waters present that match this plane of ice. The adjacent IBS, which matches the pyramidal plane of ice, is involved in protein-protein crystal contacts with few surface waters. Here we have changed the protein-protein contacts in the ice-binding region by crystallizing a fusion of QAE1 to maltose-binding protein. In this 1.9 Å structure, the IBS that fits the pyramidal plane of ice is exposed to solvent. By combining crystallography data with MD simulations, the surface waters on both sides of the IBS were revealed and match well with the target ice planes. The waters on the pyramidal plane IBS were loosely constrained, which might explain why other isoforms of type III AFP that lack the prism plane IBS are less active than QAE1. The AFP fusion crystallization method can potentially be used to force the exposure to solvent of the IBS on other AFPs to reveal the locations of key surface waters.

  2. Semiallogenic fusions of MSI+ tumor cells and activated B cells induce MSI-specific T cell responses

    Directory of Open Access Journals (Sweden)

    Klier Ulrike

    2011-09-01

    Full Text Available Abstract Background Various strategies have been developed to transfer tumor-specific antigens into antigen presenting cells in order to induce cytotoxic T cell responses against tumor cells. One approach uses cellular vaccines based on fusions of autologous antigen presenting cells and allogeneic tumor cells. The fusion cells combine antigenicity of the tumor cell with optimal immunostimulatory capacity of the antigen presenting cells. Microsatellite instability caused by mutational inactivation of DNA mismatch repair genes results in translational frameshifts when affecting coding regions. It has been shown by us and others that these mutant proteins lead to the presentation of immunogenic frameshift peptides that are - in principle - recognized by a multiplicity of effector T cells. Methods We chose microsatellite instability-induced frameshift antigens as ideal to test for induction of tumor specific T cell responses by semiallogenic fusions of microsatellite instable carcinoma cells with CD40-activated B cells. Two fusion clones of HCT116 with activated B cells were selected for stimulation of T cells autologous to the B cell fusion partner. Outgrowing T cells were phenotyped and tested in functional assays. Results The fusion clones expressed frameshift antigens as well as high amounts of MHC and costimulatory molecules. Autologous T cells stimulated with these fusions were predominantly CD4+, activated, and reacted specifically against the fusion clones and also against the tumor cell fusion partner. Interestingly, a response toward 6 frameshift-derived peptides (of 14 tested could be observed. Conclusion Cellular fusions of MSI+ carcinoma cells and activated B cells combine the antigen-presenting capacity of the B cell with the antigenic repertoire of the carcinoma cell. They present frameshift-derived peptides and can induce specific and fully functional T cells recognizing not only fusion cells but also the carcinoma cells. These

  3. [Prokaryotic expression, purification and identification of NY-ESO-1/GST fusion protein in E.coli].

    Science.gov (United States)

    Tang, Lei; Song, Chao-jun; Sun, Yuan-jie; Li, Na; Wei, Yu-ying; Sun, Yi; Yang, Kun

    2012-10-01

    To construct an expression plasmid for NY-ESO-1 gene and identify the expression of recombinant protein NY-ESO-1/GST in E.coli. NY-ESO-1 segment was amplified from the testis cDNA library by RT-PCR and cloned into the prokaryotic expression vector pGEX4T-1 downstream tagged by GST to construct the expression plasmid pGEX-4T1-NY-ESO-1. The recombinant vector was transformed to BL21 (DE3) and NY-ESO-1/GST fusion protein was induced expression by IPTG. The protein was purified by urea elution and identified by SDS-PAGE and Western blotting. The NY-ESO-1 segment was successfully amplified and its sequence was identical with that published in GenBank. The BL21 (DE3) pLysS containing the pGEX-4T1-NY-ESO-1 expressed a M(r); 44 000 fusion protein under the induction of IPTG. The purity of the protein was 90%. Western blotting proved that NY-ESO-1/GST had a specific reaction with anti-GST mAb. The prokaryotic expression vector of NY-ESO-1 has been constructed and the fusion protein NY-ESO-1/GST of high purity is successfully expressed.

  4. Raman spectroscopic evidence of tissue restructuring in heat-induced tissue fusion.

    Science.gov (United States)

    Su, Lei; Cloyd, Kristy L; Arya, Shobhit; Hedegaard, Martin A B; Steele, Joseph A M; Elson, Daniel S; Stevens, Molly M; Hanna, George B

    2014-09-01

    Heat-induced tissue fusion via radio-frequency (RF) energy has gained wide acceptance clinically and here we present the first optical-Raman-spectroscopy study on tissue fusion samples in vitro. This study provides direct insights into tissue constituent and structural changes on the molecular level, exposing spectroscopic evidence for the loss of distinct collagen fibre rich tissue layers as well as the denaturing and restructuring of collagen crosslinks post RF fusion. These findings open the door for more advanced optical feedback-control methods and characterization during heat-induced tissue fusion, which will lead to new clinical applications of this promising technology.

  5. Protein-Protein Interaction Assays with Effector-GFP Fusions in Nicotiana benthamiana.

    Science.gov (United States)

    Petre, Benjamin; Win, Joe; Menke, Frank L H; Kamoun, Sophien

    2017-01-01

    Plant parasites secrete proteins known as effectors into host tissues to manipulate host cell structures and functions. One of the major goals in effector biology is to determine the host cell compartments and the protein complexes in which effectors accumulate. Here, we describe a five-step pipeline that we routinely use in our lab to achieve this goal, which consists of (1) Golden Gate assembly of pathogen effector-green fluorescent protein (GFP) fusions into binary vectors, (2) Agrobacterium-mediated heterologous protein expression in Nicotiana benthamiana leaf cells, (3) laser-scanning confocal microscopy assay, (4) anti-GFP coimmunoprecipitation-liquid chromatography-tandem mass spectrometry (coIP/MS) assay, and (5) anti-GFP western blotting. This pipeline is suitable for rapid, cost-effective, and medium-throughput screening of pathogen effectors in planta.

  6. Structure of the Newcastle disease virus F protein in the post-fusion conformation

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, Kurt; Wen, Xiaolin; Leser, George P.; Paterson, Reay G.; Lamb, Robert A.; Jardetzky, Theodore S. (Stanford-MED); (NWU); (HHMI)

    2010-11-17

    The paramyxovirus F protein is a class I viral membrane fusion protein which undergoes a significant refolding transition during virus entry. Previous studies of the Newcastle disease virus, human parainfluenza virus 3 and parainfluenza virus 5 F proteins revealed differences in the pre- and post-fusion structures. The NDV Queensland (Q) F structure lacked structural elements observed in the other two structures, which are key to the refolding and fusogenic activity of F. Here we present the NDV Australia-Victoria (AV) F protein post-fusion structure and provide EM evidence for its folding to a pre-fusion form. The NDV AV F structure contains heptad repeat elements missing in the previous NDV Q F structure, forming a post-fusion six-helix bundle (6HB) similar to the post-fusion hPIV3 F structure. Electrostatic and temperature factor analysis of the F structures points to regions of these proteins that may be functionally important in their membrane fusion activity.

  7. A fusion tag to fold on: the S-layer protein SgsE confers improved folding kinetics to translationally fused enhanced green fluorescent protein.

    Science.gov (United States)

    Ristl, Robin; Kainz, Birgit; Stadlmayr, Gerhard; Schuster, Heinrich; Pum, Dietmar; Messner, Paul; Obinger, Christian; Schaffer, Christina

    2012-09-01

    Genetic fusion of two proteins frequently induces beneficial effects to the proteins, such as increased solubility, besides the combination of two protein functions. Here, we study the effects of the bacterial surface layer protein SgsE from Geobacillus stearothermophilus NRS 2004/3a on the folding of a C-terminally fused enhanced green fluorescent protein (EGFP) moiety. Although GFPs are generally unable to adopt a functional confirmation in the bacterial periplasm of Escherichia coli cells, we observed periplasmic fluorescence from a chimera of a 150-amino-acid N-terminal truncation of SgsE and EGFP. Based on this finding, unfolding and refolding kinetics of different S-layer-EGFP chimeras, a maltose binding protein-EGFP chimera, and sole EGFP were monitored using green fluorescence as indicator for the folded protein state. Calculated apparent rate constants for unfolding and refolding indicated different folding pathways for EGFP depending on the fusion partner used, and a clearly stabilizing effect was observed for the SgsE_C fusion moiety. Thermal stability, as determined by differential scanning calorimetry, and unfolding equilibria were found to be independent of the fused partner. We conclude that the stabilizing effect SgsE_C exerts on EGFP is due to a reduction of degrees of freedom for folding of EGFP in the fused state.

  8. An evolved Mxe GyrA intein for enhanced production of fusion proteins.

    Science.gov (United States)

    Marshall, Carrie J; Grosskopf, Vanessa A; Moehling, Taylor J; Tillotson, Benjamin J; Wiepz, Gregory J; Abbott, Nicholas L; Raines, Ronald T; Shusta, Eric V

    2015-02-20

    Expressing antibodies as fusions to the non-self-cleaving Mxe GyrA intein enables site-specific, carboxy-terminal chemical modification of the antibodies by expressed protein ligation (EPL). Bacterial antibody-intein fusion protein expression platforms typically yield insoluble inclusion bodies that require refolding to obtain active antibody-intein fusion proteins. Previously, we demonstrated that it was possible to employ yeast surface display to express properly folded single-chain antibody (scFv)-intein fusions, therefore permitting the direct small-scale chemical functionalization of scFvs. Here, directed evolution of the Mxe GyrA intein was performed to improve both the display and secretion levels of scFv-intein fusion proteins from yeast. The engineered intein was shown to increase the yeast display levels of eight different scFvs by up to 3-fold. Additionally, scFv- and green fluorescent protein (GFP)-intein fusion proteins can be secreted from yeast, and while fusion of the scFvs to the wild-type intein resulted in low expression levels, the engineered intein increased scFv-intein production levels by up to 30-fold. The secreted scFv- and GFP-intein fusion proteins retained their respective binding and fluorescent activities, and upon intein release, EPL resulted in carboxy-terminal azide functionalization of the target proteins. The azide-functionalized scFvs and GFP were subsequently employed in a copper-free, strain-promoted click reaction to site-specifically immobilize the proteins on surfaces, and it was demonstrated that the functionalized, immobilized scFvs retained their antigen binding specificity. Taken together, the evolved yeast intein platform provides a robust alternative to bacterial intein expression systems.

  9. The membrane fusion step of vaccinia virus entry is cooperatively mediated by multiple viral proteins and host cell components.

    Directory of Open Access Journals (Sweden)

    Jason P Laliberte

    2011-12-01

    Full Text Available For many viruses, one or two proteins allow cell attachment and entry, which occurs through the plasma membrane or following endocytosis at low pH. In contrast, vaccinia virus (VACV enters cells by both neutral and low pH routes; four proteins mediate cell attachment and twelve that are associated in a membrane complex and conserved in all poxviruses are dedicated to entry. The aim of the present study was to determine the roles of cellular and viral proteins in initial stages of entry, specifically fusion of the membranes of the mature virion and cell. For analysis of the role of cellular components, we used well characterized inhibitors and measured binding of a recombinant VACV virion containing Gaussia luciferase fused to a core protein; viral and cellular membrane lipid mixing with a self-quenching fluorescent probe in the virion membrane; and core entry with a recombinant VACV expressing firefly luciferase and electron microscopy. We determined that inhibitors of tyrosine protein kinases, dynamin GTPase and actin dynamics had little effect on binding of virions to cells but impaired membrane fusion, whereas partial cholesterol depletion and inhibitors of endosomal acidification and membrane blebbing had a severe effect at the later stage of core entry. To determine the role of viral proteins, virions lacking individual membrane components were purified from cells infected with members of a panel of ten conditional-lethal inducible mutants. Each of the entry protein-deficient virions had severely reduced infectivity and except for A28, L1 and L5 greatly impaired membrane fusion. In addition, a potent neutralizing L1 monoclonal antibody blocked entry at a post-membrane lipid-mixing step. Taken together, these results suggested a 2-step entry model and implicated an unprecedented number of viral proteins and cellular components involved in signaling and actin rearrangement for initiation of virus-cell membrane fusion during poxvirus entry.

  10. Rivoflavin may interfere with on-line monitoring of secreted green fluorescence protein fusion proteins in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Valero Francisco

    2007-05-01

    Full Text Available Abstract Background Together with the development of optical sensors, fluorometry is becoming an increasingly attractive tool for the monitoring of cultivation processes. In this context, the green fluorescence protein (GFP has been proposed as a molecular reporter when fused to target proteins to study their subcellular localization or secretion behaviour. The present work evaluates the use of the GFP fusion partner for monitoring extracellular production of a Rhizopus oryzae lipase (ROL in Pichia pastoris by means of 2D-fluorimetric techniques Results In this study, the GFP-ROL fusion protein was successfully produced as a secreted fusion form in P. pastoris batch cultivations. Furthermore, both the fusion enzyme and the fluorescent protein (GFP S65T mutant retained their biological activity. However, when multiwavelength spectrofluorometry was used for extracellular fusion protein monitoring, riboflavin appeared as a major interfering component with GFP signal. Only when riboflavin was removed by ultrafiltration from cultivation supernatants, GFP fluorescence signal linearly correlated to lipase activity Conclusion P. pastoris appears to secrete/excrete significant amounts of riboflavin to the culture medium. When attempting to monitor extracellular protein production in P. pastoris using GFP fusions combined with multiwavelength spectrofluorimetric techniques, riboflavin may interfere with GFP fluorescence signal, thus limiting the application of some GFP variants for on-line extracellular recombinant protein quantification and monitoring purposes.

  11. Photorhabdus luminescens PirAB-fusion protein exhibits both cytotoxicity and insecticidal activity.

    Science.gov (United States)

    Li, Yusheng; Hu, Xiaofeng; Zhang, Xu; Liu, Zhengqiang; Ding, Xuezhi; Xia, Liqiu; Hu, Shengbiao

    2014-07-01

    The binary toxin 'Photorhabdus insect-related' proteins (PirAB) produced by Photorhabdus luminescens have been reported to possess both injectable and oral activities against a range of insects. Here, PirAB-fusion protein was constructed by linking pirA and pirB genes with the flexible linker (Gly4 Ser)3 DNA encoding sequence and then efficiently expressed in Escherichia coli. To better understand the role of PirAB toxin played in the process of invasion, its cytotoxicity against insect midgut CF-203 cells was investigated. Application of purified PirAB-fusion protein as well as PirA/PirB mixture caused loss of viability of CF-203 cells after 24 h incubation. CF-203 cells treated by PirAB-fusion protein displayed morphological changes typical of apoptosis, such as cell shrinkage, cell membrane blebbing, nuclear condensation and DNA fragmentation. Moreover, PirAB-fusion protein also exhibited injectable insecticidal activity against Spodoptera exigua larvae. The bodies of S. exigua fourth-instar larvae injected with PirAB-fusion protein turned completely black. Thus, we concluded that PirAB-fusion protein possessed similar biological activity (cytotoxicity and insecticidal activity) to PirA/PirB mixture, which would enable it to be used as an efficient agent for pest control.

  12. Structure of the uncleaved ectodomain of the paramyxovirus (hPIV3) fusion protein

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Hsien-Sheng; Paterson, Reay G.; Wen, Xiaolin; Lamb, Robert A.; Jardetzky, Theodore S. (NWU)

    2010-03-08

    Class I viral fusion proteins share common mechanistic and structural features but little sequence similarity. Structural insights into the protein conformational changes associated with membrane fusion are based largely on studies of the influenza virus hemagglutinin in pre- and postfusion conformations. Here, we present the crystal structure of the secreted, uncleaved ectodomain of the paramyxovirus, human parainfluenza virus 3 fusion (F) protein, a member of the class I viral fusion protein group. The secreted human parainfluenza virus 3 F forms a trimer with distinct head, neck, and stalk regions. Unexpectedly, the structure reveals a six-helix bundle associated with the postfusion form of F, suggesting that the anchor-minus ectodomain adopts a conformation largely similar to the postfusion state. The transmembrane anchor domains of F may therefore profoundly influence the folding energetics that establish and maintain a metastable, prefusion state.

  13. Fusion protein of single-chain variable domain fragments for treatment of myasthenia gravis

    Institute of Scientific and Technical Information of China (English)

    Fangfang Li; Fanping Meng; Quanxin Jin; Changyuan Sun; Yingxin Li; Honghua Li; Songzhu Jin

    2014-01-01

    Single-chain variable domain fragment (scFv) 637 is an antigen-specific scFv of myasthenia gravis. In this study, scFv and human serum albumin genes were conjugated and the fusion pro-tein was expressed in Pichia pastoris. The afifnity of scFv-human serum albumin fusion protein to bind to acetylcholine receptor at the neuromuscular junction of human intercostal muscles was detected by immunolfuorescence staining. The ability of the fusion protein to block myas-thenia gravis patient sera binding to acetylcholine receptors and its stability in healthy serum were measured by competitive ELISA. The results showed that the inhibition rate was 2.0-77.4%, and the stability of fusion protein in static healthy sera was about 3 days. This approach suggests the scFv-human serum albumin is a potential candidate for speciifc immunosuppressive therapy of myasthenia gravis.

  14. Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: The novel Fh8 system

    Directory of Open Access Journals (Sweden)

    Sofia eCosta

    2014-02-01

    Full Text Available Proteins are now widely produced in diverse microbial cell factories. The Escherichia coli is still the dominant host for recombinant protein production but, as a bacterial cell, it also has its issues: the aggregation of foreign proteins into insoluble inclusion bodies is perhaps the main limiting factor of the E. coli expression system. Conversely, E. coli benefits of cost, ease of use and scale make it essential to design new approaches directed for improved recombinant protein production in this host cell.With the aid of genetic and protein engineering novel tailored-made strategies can be designed to suit user or process requirements. Gene fusion technology has been widely used for the improvement of soluble protein production and/or purification in E. coli, and for increasing peptide’s immunogenicity as well. New fusion partners are constantly emerging and complementing the traditional solutions, as for instance, the Fh8 fusion tag that has been recently studied and ranked among the best solubility enhancer partners. In this review, we provide an overview of current strategies to improve recombinant protein production in E. coli, including the key factors for successful protein production, highlighting soluble protein production, and a comprehensive summary of the latest available and traditionally-used gene fusion technologies. A special emphasis is given to the recently discovered Fh8 fusion system that can be used for soluble protein production, purification and immunogenicity in E. coli. The number of existing fusion tags will probably increase in the next few years, and efforts should be taken to better understand how fusion tags act in E. coli. This knowledge will undoubtedly drive the development of new tailored-made tools for protein production in this bacterial system.

  15. Fusogenic activity of reconstituted newcastle disease virus envelopes: a role for the hemagglutinin-neuraminidase protein in the fusion process.

    Science.gov (United States)

    Cobaleda, C; Muñoz-Barroso, I; Sagrera, A; Villar, E

    2002-04-01

    Enveloped viruses, such as newcastle disease virus (NDV), make their entry into the host cell by membrane fusion. In the case of NDV, the fusion step requires both transmembrane hemagglutinin-neuraminidase (HN) and fusion (F) viral envelope glycoproteins. The HN protein should show fusion promotion activity. To date, the nature of HN-F interactions is a controversial issue. In this work, we aim to clarify the role of the HN glycoprotein in the membrane fusion step. Four types of reconstituted detergent-free NDV envelopes were used, on differing in their envelope protein contents. Fusion of the different virosomes and erythrocyte ghosts was monitored using the octadecyl rhodamine B chloride assay. Only the reconstituted envelopes having the F protein, even in the absence of HN protein, displayed residual fusion activity. Treatment of such virosomes with denaturing agents affecting the F protein abolished fusion, indicating that the fusion detected was viral protein-dependent. Interestingly, the rate of fusion in the reconstituted systems was similar to that of intact viruses in the presence of the inhibitor of HN sialidase activity 2,3-dehydro-2-deoxy-N-acetylneuraminic acid. The results show that the residual fusion activity detected in the reconstituted systems was exclusively due to F protein activity, with no contribution from the fusion promotion activity of HN protein.

  16. Polyclonal and monoclonal antibodies specific for the six-helix bundle of the human respiratory syncytial virus fusion glycoprotein as probes of the protein post-fusion conformation

    Energy Technology Data Exchange (ETDEWEB)

    Palomo, Concepción; Mas, Vicente; Vázquez, Mónica; Cano, Olga [Unidad de Biología Viral, Centro Nacional de Microbiología, Madrid (Spain); CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid (Spain); Luque, Daniel; Terrón, María C. [Unidad de Microscopía Electrónica y Confocal, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid (Spain); Calder, Lesley J. [National Institute for Medical Research, MRC, Mill Hill, London NW7 1AA (United Kingdom); Melero, José A., E-mail: jmelero@isciii.es [Unidad de Biología Viral, Centro Nacional de Microbiología, Madrid (Spain); CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid (Spain)

    2014-07-15

    Human respiratory syncytial virus (hRSV) has two major surface glycoproteins (G and F) anchored in the lipid envelope. Membrane fusion promoted by hRSV{sub F} occurs via refolding from a pre-fusion form to a highly stable post-fusion state involving large conformational changes of the F trimer. One of these changes results in assembly of two heptad repeat sequences (HRA and HRB) into a six-helix bundle (6HB) motif. To assist in distinguishing pre- and post-fusion conformations of hRSV{sub F}, we have prepared polyclonal (α-6HB) and monoclonal (R145) rabbit antibodies specific for the 6HB. Among other applications, these antibodies were used to explore the requirements of 6HB formation by isolated protein segments or peptides and by truncated mutants of the F protein. Site-directed mutagenesis and electron microscopy located the R145 epitope in the post-fusion hRSV{sub F} at a site distantly located from previously mapped epitopes, extending the repertoire of antibodies that can decorate the F molecule. - Highlights: • Antibodies specific for post-fusion respiratory syncytial virus fusion protein are described. • Polyclonal antibodies were obtained in rabbit inoculated with chimeric heptad repeats. • Antibody binding required assembly of a six-helix bundle in the post-fusion protein. • A monoclonal antibody with similar structural requirements is also described. • Binding of this antibody to the post-fusion protein was visualized by electron microscopy.

  17. A Double-Switch Cell Fusion-Inducible Transgene Expression System for Neural Stem Cell-Based Antiglioma Gene Therapy

    Directory of Open Access Journals (Sweden)

    Yumei Luo

    2015-01-01

    Full Text Available Recent progress in neural stem cell- (NSC- based tumor-targeted gene therapy showed that NSC vectors expressing an artificially engineered viral fusogenic protein, VSV-G H162R, could cause tumor cell death specifically under acidic tumor microenvironment by syncytia formation; however, the killing efficiency still had much room to improve. In the view that coexpression of another antitumoral gene with VSV-G can augment the bystander effect, a synthetic regulatory system that triggers transgene expression in a cell fusion-inducible manner has been proposed. Here we have developed a double-switch cell fusion-inducible transgene expression system (DoFIT to drive transgene expression upon VSV-G-mediated NSC-glioma cell fusion. In this binary system, transgene expression is coregulated by a glioma-specific promoter and targeting sequences of a microRNA (miR that is highly expressed in NSCs but lowly expressed in glioma cells. Thus, transgene expression is “switched off” by the miR in NSC vectors, but after cell fusion with glioma cells, the miR is diluted and loses its suppressive effect. Meanwhile, in the syncytia, transgene expression is “switched on” by the glioma-specific promoter. Our in vitro and in vivo experimental data show that DoFIT successfully abolishes luciferase reporter gene expression in NSC vectors but activates it specifically after VSV-G-mediated NSC-glioma cell fusion.

  18. Antibody-independent targeted quantification of TMPRSS2-ERG fusion protein products in prostate cancer.

    Science.gov (United States)

    He, Jintang; Sun, Xuefei; Shi, Tujin; Schepmoes, Athena A; Fillmore, Thomas L; Petyuk, Vladislav A; Xie, Fang; Zhao, Rui; Gritsenko, Marina A; Yang, Feng; Kitabayashi, Naoki; Chae, Sung-Suk; Rubin, Mark A; Siddiqui, Javed; Wei, John T; Chinnaiyan, Arul M; Qian, Wei-Jun; Smith, Richard D; Kagan, Jacob; Srivastava, Sudhir; Rodland, Karin D; Liu, Tao; Camp, David G

    2014-10-01

    Fusions between the transmembrane protease serine 2 (TMPRSS2) and ETS related gene (ERG) represent one of the most specific biomarkers that define a distinct molecular subtype of prostate cancer. Studies of TMPRSS2-ERG gene fusions have seldom been performed at the protein level, primarily due to the lack of high-quality antibodies suitable for quantitative studies. Herein, we applied a recently developed PRISM (high-pressure high-resolution separations with intelligent selection and multiplexing)-SRM (selected reaction monitoring) strategy for quantifying ERG protein in prostate cancer cell lines and tumors. The highly sensitive PRISM-SRM assays provided confident detection of 6 unique ERG peptides in both TMPRSS2-ERG positive cell lines and tissues, but not in cell lines or tissues lacking the TMPRSS2-ERG rearrangement, clearly indicating that ERG protein expression is significantly increased in the presence of the TMPRSS2-ERG gene fusion. Significantly, our results provide evidence that two distinct ERG protein isoforms are simultaneously expressed in TMPRSS2-ERG positive samples as evidenced by the concomitant detection of two mutually exclusive peptides in two patient tumors and in the VCaP prostate cancer cell line. Three peptides, shared across almost all fusion protein products, were determined to be the most abundant peptides, providing "signature" peptides for detection of ERG over-expression resulting from TMPRSS2-ERG gene fusion. The PRISM-SRM assays provide valuable tools for studying TMPRSS2-ERG gene fusion protein products in prostate cancer.

  19. Maltose-binding protein enhances secretion of recombinant human granzyme B accompanied by in vivo processing of a precursor MBP fusion protein.

    Directory of Open Access Journals (Sweden)

    Benjamin Dälken

    Full Text Available BACKGROUND: The apoptosis-inducing serine protease granzyme B (GrB is an important factor contributing to lysis of target cells by cytotoxic lymphocytes. Expression of enzymatically active GrB in recombinant form is a prerequisite for functional analysis and application of GrB for therapeutic purposes. METHODS AND FINDINGS: We investigated the influence of bacterial maltose-binding protein (MBP fused to GrB via a synthetic furin recognition motif on the expression of the MBP fusion protein also containing an N-terminal α-factor signal peptide in the yeast Pichia pastoris. MBP markedly enhanced the amount of GrB secreted into culture supernatant, which was not the case when GrB was fused to GST. MBP-GrB fusion protein was cleaved during secretion by an endogenous furin-like proteolytic activity in vivo, liberating enzymatically active GrB without the need of subsequent in vitro processing. Similar results were obtained upon expression of a recombinant fragment of the ErbB2/HER2 receptor protein or GST as MBP fusions. CONCLUSIONS: Our results demonstrate that combination of MBP as a solubility enhancer with specific in vivo cleavage augments secretion of processed and functionally active proteins from yeast. This strategy may be generally applicable to improve folding and increase yields of recombinant proteins.

  20. The choriocarcinoma cell line BeWo: syncytial fusion and expression of syncytium-specific proteins.

    Science.gov (United States)

    Orendi, Kristina; Gauster, Martin; Moser, Gerit; Meiri, Hamutal; Huppertz, Berthold

    2010-11-01

    Fusion of the trophoblast-derived choriocarcinoma cell line BeWo can be triggered by forskolin. BeWo cells are regularly used as a cell culture model to mimic in vivo syncytialisation of placental villous trophoblast. The β subunit of human chorionic gonadotropin (CGB), placental alkaline phosphatase as well as placental protein 13 (PP13, LGALS13) are exclusively expressed in the syncytiotrophoblast of the human placenta, and CGB is commonly used as a marker of syncytial differentiation. Here we tested the hypothesis that syncytial fusion precedes CGB and LGALS13 expression in trophoblast-derived BeWo cells. BeWo cells were cultured for 48 h in the presence or absence of forskolin and varying concentrations of H-89, a protein kinase A inhibitor that interferes with the forskolin-mediated pathway of syncytial fusion. LGALS13 and CGB expression were quantified by DELFIA and real-time PCR. Cell fusion was determined by morphological analysis and cell counting after immunofluorescence staining. In forskolin-stimulated BeWo cells that were hindered to fuse by treatment with H-89, levels of CGB protein expression were not altered, while LGALS13 protein and mRNA expression decreased significantly to control levels without forskolin. The LGALS13 protein expression data coincided with a significant decrease in syncytial fusion, while CGB protein expression was unaffected by rates of cell fusion and proliferation. We postulate that CGB protein expression is not necessarily linked to syncytial fusion, and thus CGB should be used with great caution as a marker of BeWo cell fusion.

  1. Deltabaculoviruses encode a functional type I budded virus envelope fusion protein

    Science.gov (United States)

    Envelope fusion proteins (F proteins) are major constituents of budded viruses (BVs) of alpha- and betabaculoviruses (Baculoviridae) and are essential for the systemic infection of insect larvae and insect cells in culture. An F protein homolog gene was absent in gammabaculoviruses. Here we show tha...

  2. A novel fusion partner for enhanced secretion of recombinant proteins in Saccharomyces cerevisiae.

    Science.gov (United States)

    Bae, Jung-Hoon; Sung, Bong Hyun; Seo, Jeong-Woo; Kim, Chul Ho; Sohn, Jung-Hoon

    2016-12-01

    Expressing proteins with fusion partners improves yield and simplifies the purification process. We developed a novel fusion partner to improve the secretion of heterologous proteins that are otherwise poorly excreted in yeast. The VOA1 (YGR106C) gene of Saccharomyces cerevisiae encodes a subunit of vacuolar ATPase. We found that C-terminally truncated Voa1p was highly secreted into the culture medium, even when fused with rarely secreted heterologous proteins such as human interleukin-2 (hIL-2). Deletion mapping of C-terminally truncated Voa1p, identified a hydrophilic 28-amino acid peptide (HL peptide) that was responsible for the enhanced secretion of target protein. A purification tag and a protease cleavage site were added to use HL peptide as a multi-purpose fusion partner. The utility of this system was tested via the expression and purification of various heterologous proteins. In many cases, the yield of target proteins fused with the peptide was significantly increased, and fusion proteins could be directly purified with affinity chromatography. The fusion partner was removed by in vitro processing, and intact proteins were purified by re-application of samples to affinity chromatography.

  3. A sensitive HIV-1 envelope induced fusion assay identifies fusion enhancement of thrombin

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, De-Chun; Zhong, Guo-Cai; Su, Ju-Xiang [Department of Microbiology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081 (China); Liu, Yan-Hong [Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, Heilongjiang 150081 (China); Li, Yan; Wang, Jia-Ye [Department of Microbiology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081 (China); Hattori, Toshio [Department of Emerging Infectious Diseases, Division of Internal Medicine, Graduate School of Medicine, Tohoku University, Sendai 9808574 (Japan); Ling, Hong, E-mail: lingh@ems.hrbmu.edu.cn [Department of Microbiology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081 (China); Department of Parasitology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081 (China); Key Lab of Heilongjiang Province for Infection and Immunity, Key Lab of Heilongjiang Province Education Bureau for Etiology, Harbin, Heilongjiang 150081 (China); Zhang, Feng-Min, E-mail: fengminzhang@yahoo.com.cn [Department of Microbiology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081 (China); Key Lab of Heilongjiang Province for Infection and Immunity, Key Lab of Heilongjiang Province Education Bureau for Etiology, Harbin, Heilongjiang 150081 (China)

    2010-01-22

    To evaluate the interaction between HIV-1 envelope glycoprotein (Env) and target cell receptors, various cell-cell-fusion assays have been developed. In the present study, we established a novel fusion system. In this system, the expression of the sensitive reporter gene, firefly luciferase (FL) gene, in the target cells was used to evaluate cell fusion event. Simultaneously, constitutively expressed Renilla luciferase (RL) gene was used to monitor effector cell number and viability. FL gave a wider dynamic range than other known reporters and the introduction of RL made the assay accurate and reproducible. This system is especially beneficial for investigation of potential entry-influencing agents, for its power of ruling out the false inhibition or enhancement caused by the artificial cell-number variation. As a case study, we applied this fusion system to observe the effect of a serine protease, thrombin, on HIV Env-mediated cell-cell fusion and have found the fusion enhancement activity of thrombin over two R5-tropic HIV strains.

  4. Mitochondrial fusion and ERK activity regulate steroidogenic acute regulatory protein localization in mitochondria.

    Science.gov (United States)

    Duarte, Alejandra; Castillo, Ana Fernanda; Podestá, Ernesto J; Poderoso, Cecilia

    2014-01-01

    The rate-limiting step in the biosynthesis of steroid hormones, known as the transfer of cholesterol from the outer to the inner mitochondrial membrane, is facilitated by StAR, the Steroidogenic Acute Regulatory protein. We have described that mitochondrial ERK1/2 phosphorylates StAR and that mitochondrial fusion, through the up-regulation of a fusion protein Mitofusin 2, is essential during steroidogenesis. Here, we demonstrate that mitochondrial StAR together with mitochondrial active ERK and PKA are necessary for maximal steroid production. Phosphorylation of StAR by ERK is required for the maintenance of this protein in mitochondria, observed by means of over-expression of a StAR variant lacking the ERK phosphorylation residue. Mitochondrial fusion regulates StAR levels in mitochondria after hormone stimulation. In this study, Mitofusin 2 knockdown and mitochondrial fusion inhibition in MA-10 Leydig cells diminished StAR mRNA levels and concomitantly mitochondrial StAR protein. Together our results unveil the requirement of mitochondrial fusion in the regulation of the localization and mRNA abundance of StAR. We here establish the relevance of mitochondrial phosphorylation events in the correct localization of this key protein to exert its action in specialized cells. These discoveries highlight the importance of mitochondrial fusion and ERK phosphorylation in cholesterol transport by means of directing StAR to the outer mitochondrial membrane to achieve a large number of steroid molecules per unit of StAR.

  5. Expression of Leukemia-Associated Nup98 Fusion Proteins Generates an Aberrant Nuclear Envelope Phenotype.

    Directory of Open Access Journals (Sweden)

    Birthe Fahrenkrog

    Full Text Available Chromosomal translocations involving the nucleoporin NUP98 have been described in several hematopoietic malignancies, in particular acute myeloid leukemia (AML. In the resulting chimeric proteins, Nup98's N-terminal region is fused to the C-terminal region of about 30 different partners, including homeodomain (HD transcription factors. While transcriptional targets of distinct Nup98 chimeras related to immortalization are relatively well described, little is known about other potential cellular effects of these fusion proteins. By comparing the sub-nuclear localization of a large number of Nup98 fusions with HD and non-HD partners throughout the cell cycle we found that while all Nup98 chimeras were nuclear during interphase, only Nup98-HD fusion proteins exhibited a characteristic speckled appearance. During mitosis, only Nup98-HD fusions were concentrated on chromosomes. Despite the difference in localization, all tested Nup98 chimera provoked morphological alterations in the nuclear envelope (NE, in particular affecting the nuclear lamina and the lamina-associated polypeptide 2α (LAP2α. Importantly, such aberrations were not only observed in transiently transfected HeLa cells but also in mouse bone marrow cells immortalized by Nup98 fusions and in cells derived from leukemia patients harboring Nup98 fusions. Our findings unravel Nup98 fusion-associated NE alterations that may contribute to leukemogenesis.

  6. Expression of Leukemia-Associated Nup98 Fusion Proteins Generates an Aberrant Nuclear Envelope Phenotype.

    Science.gov (United States)

    Fahrenkrog, Birthe; Martinelli, Valérie; Nilles, Nadine; Fruhmann, Gernot; Chatel, Guillaume; Juge, Sabine; Sauder, Ursula; Di Giacomo, Danika; Mecucci, Cristina; Schwaller, Jürg

    2016-01-01

    Chromosomal translocations involving the nucleoporin NUP98 have been described in several hematopoietic malignancies, in particular acute myeloid leukemia (AML). In the resulting chimeric proteins, Nup98's N-terminal region is fused to the C-terminal region of about 30 different partners, including homeodomain (HD) transcription factors. While transcriptional targets of distinct Nup98 chimeras related to immortalization are relatively well described, little is known about other potential cellular effects of these fusion proteins. By comparing the sub-nuclear localization of a large number of Nup98 fusions with HD and non-HD partners throughout the cell cycle we found that while all Nup98 chimeras were nuclear during interphase, only Nup98-HD fusion proteins exhibited a characteristic speckled appearance. During mitosis, only Nup98-HD fusions were concentrated on chromosomes. Despite the difference in localization, all tested Nup98 chimera provoked morphological alterations in the nuclear envelope (NE), in particular affecting the nuclear lamina and the lamina-associated polypeptide 2α (LAP2α). Importantly, such aberrations were not only observed in transiently transfected HeLa cells but also in mouse bone marrow cells immortalized by Nup98 fusions and in cells derived from leukemia patients harboring Nup98 fusions. Our findings unravel Nup98 fusion-associated NE alterations that may contribute to leukemogenesis.

  7. Intravenous treatment of experimental Parkinson's disease in the mouse with an IgG-GDNF fusion protein that penetrates the blood-brain barrier.

    Science.gov (United States)

    Fu, Ailing; Zhou, Qing-Hui; Hui, Eric Ka-Wai; Lu, Jeff Zhiqiang; Boado, Ruben J; Pardridge, William M

    2010-09-17

    Glial-derived neurotrophic factor (GDNF) is a trophic factor for the nigra-striatal tract in experimental Parkinson's disease (PD). The neurotrophin must be administered by intra-cerebral injection, because GDNF does not cross the blood-brain barrier (BBB). In the present study, GDNF was re-engineered to enable receptor-mediated transport across the BBB following fusion of GDNF to the heavy chain of a chimeric monoclonal antibody (MAb) against the mouse transferrin receptor (TfR), and this fusion protein is designated cTfRMAb-GDNF. This fusion protein had been previously shown to retain low nM binding constants for both the GDNF receptor and the mouse TfR, and to rapidly enter the mouse brain in vivo following intravenous administration. Experimental PD in mice was induced by the intra-striatal injection of 6-hydroxydopamine, and mice were treated with either saline or the cTfRMAb-GDNF fusion protein every other day for 3 weeks, starting 1 h after toxin injection. Fusion protein treatment caused a 44% decrease in apomorphine-induced rotation, a 45% reduction in amphetamine-induced rotation, a 121% increase in the vibrissae-elicited forelimb placing test, and a 272% increase in striatal tyrosine hydroxylase (TH) enzyme activity at 3 weeks after toxin injection. Fusion protein treatment caused no change in TH enzyme activity in either the contralateral striatum or the frontal cortex. In conclusion, following fusion of GDNF to a BBB molecular Trojan horse, GDNF trophic effects in brain in experimental PD are observed following intravenous administration.

  8. [Expression of human IL-35-IgG4 (Fc) fusion protein in CHO/DG44 cells].

    Science.gov (United States)

    Tang, Jing; Gao, Wenda; Zhang, Qing; Zhang, Dawei; Chen, Yang; He, Bo; Liu, Quansheng

    2009-01-01

    We constructed the eukaryotic expression vector of human IL-35-IgG4 (Fc)-pOptiVEC-TOPO by gene recombination technique and expressed the fusion protein human IL-35-IgG4 (Fc) in CHO/DG44 cells. The two components of the newly discovered cytokine human IL-35, EBI3 and IL-12p35, were amplified by PCR from the cDNA library derived from the KG-I cells after LPS induction. The two PCR-amplified cDNA fragments of human IL-35 were linked by over-lapping PCR and then cloned into the IgG4 (Fc)-pOptiVEC-TOPO vector. The constructed plasmid with the recombinant cDNA IL-35-IgG4 (Fc) was verified by restriction enzyme digestion analysis, PCR and DNA sequencing. The verified plasmid with the recombinant cDNA was transfected into CHO/DG44 cells using Lipofectamine 2000. The success of the transfection was examined and confirmed by RT-PCR. After selection in alpha-MEM (-) medium, the IL-35-Ig G4 (Fc) positive CHO/DG44 clones were chosen and the media from these positive clones were collected to be used to purify the fusion protein. The positive CHO/DG44 clones were further cultured in increasing concentrations of MTX and the expression levels of the fusion protein IL-35-Ig G4 (Fc) were repetitively induced by MTX-induced gene amplification. The IL-35-IgG4 (Fc) fusion protein was purified from the media collected from the positive CHO/DG44 clones by protein G affinity chromatography and then identified by SDS-PAGE and Western blotting. The results showed that one protein band was found to match well with the predicted relative molecular mass of human IL-35-IgG4 (Fc) and this protein could specifically bind to anti-human IgG4 (Fc) monoclonal antibody. In conclusion, our study successfully established an IL-35-IgG4 (Fc) positive DG44 cell line which could stably express IL-35-IgG4 (Fc) fusion protein.

  9. Evaluation of fusion protein cleavage site sequences of Newcastle disease virus in genotype matched vaccines.

    Science.gov (United States)

    Kim, Shin-Hee; Chen, Zongyan; Yoshida, Asuka; Paldurai, Anandan; Xiao, Sa; Samal, Siba K

    2017-01-01

    Newcastle disease virus (NDV) causes a devastating poultry disease worldwide. Frequent outbreaks of NDV in chickens vaccinated with conventional live vaccines suggest a need to develop new vaccines that are genetically matched against circulating NDV strains, such as the genotype V virulent strains currently circulating in Mexico and Central America. In this study, a reverse genetics system was developed for the virulent NDV strain Mexico/01/10 strain and used to generate highly attenuated vaccine candidates by individually modifying the cleavage site sequence of fusion (F) protein. The cleavage site sequence of parental virus was individually changed to those of the avirulent NDV strain LaSota and other serotypes of avian paramyxoviruses (APMV serotype-2, -3, -4, -6, -7, -8, and -9). In general, these mutations affected cell-to-cell fusion activity in vitro and the efficiency of the F protein cleavage and made recombinant Mexico/01/10 (rMex) virus highly attenuated in chickens. When chickens were immunized with the rMex mutant viruses and challenged with the virulent parent virus, there was reduced challenge virus shedding compared to birds immunized with the heterologous vaccine strain LaSota. Among the vaccine candidates, rMex containing the cleavage site sequence of APMV-2 induced the highest neutralizing antibody titer and completely protected chickens from challenge virus shedding. These results show the role of the F protein cleavage site sequence of each APMV type in generating genotype V-matched vaccines and the efficacy of matched vaccine strains to provide better protection against NDV strains currently circulating in Mexico.

  10. Identification of a human protein-derived HIV-1 fusion inhibitor targeting the gp41 fusion core structure.

    Directory of Open Access Journals (Sweden)

    Lijun Chao

    Full Text Available The HIV-1 envelope glycoprotein (Env gp41 plays a crucial role in the viral fusion process. The peptides derived from the C-terminal heptad repeat (CHR of gp41 are potent HIV fusion inhibitors. However, the activity of these anti-HIV-1 peptides in vivo may be attenuated by their induction of anti-gp41 antibodies. Thus, it is essential to identify antiviral peptides or proteins with low, or no, immunogenicity to humans. Here, we found that the C-terminal fragment (aa 462-521 of the human POB1 (the partner of RalBP1, designated C60, is an HIV-1 fusion inhibitor. It bound to N36, the peptide derived from the N-terminal heptad repeat (NHR of gp41, and to the six-helix bundle (6-HB formed by N36 and C34, a CHR-peptide, but it did not bind to C34. Unlike the CHR-peptides, C60 did not block gp41 6-HB formation. Rather, results suggest that C60 inhibits HIV-1 fusion by binding to the 6-HB, in particular, the residues in the gp41 NHR domain that are exposed on the surface of 6-HB. Since 6-HB plays a crucial role in the late stage of fusion between the viral envelope and endosomal membrane during the endocytic process of HIV-1, C60 may serve as a host restriction factor to suppress HIV-1 entry into CD4+ T lymphocytes. Taken together, it can be concluded from these results that C60 can be used as a lead for the development of anti-HIV-1 therapeutics or microbicides for the treatment and prevention of HIV-1 infection, as well as a molecular probe to study the fusogenic mechanism of HIV-1.

  11. Active inhibition of herpes simplex virus type 1-induced cell fusion

    Energy Technology Data Exchange (ETDEWEB)

    Bzik, D.J.; Person, S.; Read, G.S.

    1982-01-01

    Previous studies have demonstrated that syn mutant-infected cells fuse less well with nonsyncytial virus-infected cells than with uninfected cells, a phenomenon defined as function inhibition. The present study characterizes the kinetics as well as the requirements for expression of fusion inhibition. Initially, the capacity of sparse syn mutant-infected cells to fuse with uninfected surrounding cells was determined throughout infection. Of seven syn mutants examined, including representatives with alterations in two different viral genes that affect cell fusion, all showed an increase in fusion capacity up to 12 hr after infection and a decrease at later times. Fusion inhibition was examined in experiments employing sparse syn20-infected cells which had been incubated to a maximum fusion capacity; it was shown that surrounding cells infected with KOS, the parent of syn20, began to inhibit fusion by the syn20-infected cells at about 4 hr after infection, and that the maximum ability to inhibit fusion was attained at about 6 hr after infection. The metabolic blocking agents actinomycin D (RNA), cycloheximide (protein), 2-deoxyglucose, and tunicamycin (glycoslyation of glycoproteins) all showed the ability to inhibit the expression of fusion inhibition by KOS-infected cells if added shortly after infection. It is concluded that fusion inhibition is an active process that requires the synthesis of RNA, proteins, and glycoproteins. 17 references, 3 figures, 2 tables.

  12. Proteomics computational analyses suggest that the bornavirus glycoprotein is a class III viral fusion protein (γ penetrene

    Directory of Open Access Journals (Sweden)

    Garry Robert F

    2009-09-01

    Full Text Available Abstract Background Borna disease virus (BDV is the type member of the Bornaviridae, a family of viruses that induce often fatal neurological diseases in horses, sheep and other animals, and have been proposed to have roles in certain psychiatric diseases of humans. The BDV glycoprotein (G is an extensively glycosylated protein that migrates with an apparent molecular mass of 84,000 to 94,000 kilodaltons (kDa. BDV G is post-translationally cleaved by the cellular subtilisin-like protease furin into two subunits, a 41 kDa amino terminal protein GP1 and a 43 kDa carboxyl terminal protein GP2. Results Class III viral fusion proteins (VFP encoded by members of the Rhabdoviridae, Herpesviridae and Baculoviridae have an internal fusion domain comprised of beta sheets, other beta sheet domains, an extended alpha helical domain, a membrane proximal stem domain and a carboxyl terminal anchor. Proteomics computational analyses suggest that the structural/functional motifs that characterize class III VFP are located collinearly in BDV G. Structural models were established for BDV G based on the post-fusion structure of a prototypic class III VFP, vesicular stomatitis virus glycoprotein (VSV G. Conclusion These results suggest that G encoded by members of the Bornavirdae are class III VFPs (gamma-penetrenes.

  13. Oral administration of a cholera toxin B subunit-insulin fusion protein produced in silkworm protects against autoimmune diabetes.

    Science.gov (United States)

    Gong, Zhaohui; Jin, Yongfeng; Zhang, Yaozhou

    2005-09-22

    The oral administration of disease-specific autoantigens can induce oral immune tolerance and prevent or delay the onset of autoimmune disease symptoms. Here, we describe the construction of an edible vaccine consisting of a fusion protein composed of cholera toxin B subunit (CTB) and insulin that is produced in silkworm larvae at levels of up to 0.3 mg/ml of hemolymph. The silkworm bioreactor produced this fusion protein vaccine as the pentameric CTB-insulin form, which retained the GM1-ganglioside binding affinity and the native antigenicity of CTB and insulin. Non-obese diabetic mice fed hemolymph containing microgram quantities of the CTB-insulin fusion protein showed a prominent reduction in pancreatic islet inflammation and a delay in the development of symptoms of clinical diabetes. These results demonstrate that the silkworm bioreactor is a feasible production and delivery system for an oral protein vaccine designed to develop immunological tolerance against T-cell-mediated autoimmune diabetes by regulatory T-cell induction.

  14. Characterization of functionally active interleukin-18/eGFP fusion protein expression during cell cycle phases in recombinant chicken DF1 Cells.

    Science.gov (United States)

    Wu, Hsing Chieh; Chen, Yu San; Shien, Jui Hung; Shen, Pin Chun; Lee, Long Huw

    2016-05-01

    The dependence of foreign gene expression on cell cycle phases in mammalian cells has been described. In this study, a DF1/chIL-18a cell line that stably expresses the fusion protein chIL-18 was constructed and the enhanced green fluorescence protein connected through a (G4 S)3 linker sequence investigated the relationship between cell cycle phases and fusion protein production. DF1/chIL-18a cells (1 × 10(5) ) were inoculated in 60-mm culture dishes containing 5 mL of media to achieve 50%-60% confluence and were cultured in the presence of the cycle-specific inhibitors 10058-F4, aphidicolin, and colchicine for 24 and 48 h. The percentage of cell density and mean fluorescence intensity in each cell cycle phase were assessed using flow cytometry. The inhibitors effectively arrested cell growth. The fusion protein production rate was higher in the S phase than in the G0/G1 and G2/M phases. When cell cycle progression was blocked in the G0/G1, S, and G2/M phases by the addition of 10058-F4, aphidicolin, and colchicine, respectively, the aphidicolin-induced single cells showed higher fusion protein levels than did the 10058-F4- or colchicine-induced phase cells and the uninduced control cells. Although the cells did not proliferate after the drug additions, the amount of total fusion protein accumulated in aphidicolin-treated cells was similar to that in the untreated cultures. Fusion protein is biologically active because it induces IFN-γ production in splenocyte cultures of chicken. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:581-591, 2016.

  15. Enhanced protein expression in the baculovirus/insect cell system using engineered SUMO fusions.

    Science.gov (United States)

    Liu, Li; Spurrier, Joshua; Butt, Tauseef R; Strickler, James E

    2008-11-01

    Recombinant protein expression in insect cells varies greatly from protein to protein. A fusion tag that is not only a tool for detection and purification, but also enhances expression and/or solubility would greatly facilitate both structure/function studies and therapeutic protein production. We have shown that fusion of SUMO (small ubiquitin-related modifier) to several test proteins leads to enhanced expression levels in Escherichia coli. In eukaryotic expression systems, however, the SUMO tag could be cleaved by endogenous desumoylase. In order to adapt SUMO-fusion technology to these systems, we have developed an alternative SUMO-derived tag, designated SUMOstar, which is not processed by native SUMO proteases. In the present study, we tested the SUMOstar tag in a baculovirus/insect cell system with several proteins, i.e. mouse UBP43, human tryptase beta II, USP4, USP15, and GFP. Our results demonstrate that fusion to SUMOstar enhanced protein expression levels at least 4-fold compared to either the native or His(6)-tagged proteins. We isolated active SUMOstar tagged UBP43, USP4, USP15, and GFP. Tryptase was active following cleavage with a SUMOstar specific protease. The SUMOstar system will make significant impact in difficult-to-express proteins and especially to those proteins that require the native N-terminal residue for function.

  16. Constitutive and Inducible Expression of Green Fluorescent Protein in Brucella suis

    Science.gov (United States)

    Köhler, Stephan; Ouahrani-Bettache, Safia; Layssac, Marion; Teyssier, Jacques; Liautard, Jean-Pierre

    1999-01-01

    A gene fusion system based on plasmid pBBR1MCS and the expression of green fluorescent protein was developed for Brucella suis, allowing isolation of constitutive and inducible genes. Bacteria containing promoter fusions of chromosomal DNA to gfp were visualized by fluorescence microscopy and examined by flow cytometry. Twelve clones containing gene fragments induced inside J774 murine macrophages were isolated and further characterized. PMID:10569794

  17. Constitutive and Inducible Expression of Green Fluorescent Protein in Brucella suis

    OpenAIRE

    Köhler, Stephan; Ouahrani-Bettache, Safia; Layssac, Marion; Teyssier, Jacques; Liautard, Jean-Pierre

    1999-01-01

    A gene fusion system based on plasmid pBBR1MCS and the expression of green fluorescent protein was developed for Brucella suis, allowing isolation of constitutive and inducible genes. Bacteria containing promoter fusions of chromosomal DNA to gfp were visualized by fluorescence microscopy and examined by flow cytometry. Twelve clones containing gene fragments induced inside J774 murine macrophages were isolated and further characterized.

  18. Antibody-independent Targeted Quantification of TMPRSS2-ERG Fusion Protein Products in Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    He, Jintang; Sun, Xuefei; Shi, Tujin; Schepmoes, Athena A.; Fillmore, Thomas L.; Petyuk, Vladislav A.; Xie, Fang; Zhao, Rui; Gritsenko, Marina A.; Yang, Feng; Kitabayashi, Naoki; Chae, Sung Suk; Rubin, Mark; Siddiqui, Javed; Wei, John; Chinnaiyan, Arul M.; Qian, Weijun; Smith, Richard D.; Kagan, Jacob; Srivastava, Sudhir; Rodland, Karin D.; Liu, Tao; Camp, David G.

    2014-10-01

    Fusions between the transmembrane protease serine 2 (TMPRSS2) and ETS related gene (ERG) represent one of the most specific biomarkers that define a distinct molecular subtype of prostate cancer. The studies on TMPRSS2-ERG gene fusions have seldom been performed at the protein level, primarily due to the lack of high-quality antibodies or an antibody-independent method that is sufficiently sensitive for detecting the truncated ERG protein products resulting from TMPRSS2-ERG gene fusions and alternative splicing. Herein, we applied a recently developed PRISM (high-pressure high-resolution separations with intelligent selection and multiplexing)-SRM (selected reaction monitoring) strategy for quantifying ERG protein in prostate cancer cell lines and tumors. The highly sensitive PRISM-SRM assays led to confident detection of 6 unique ERG peptides in either the TMPRSS2-ERG positive cell lines or tissues but not in the negative controls, indicating that ERG protein expression is highly correlated with TMPRSS2-ERG gene rearrangements. Significantly, our results demonstrated for the first time that at least two groups of ERG protein isoforms were simultaneously expressed at variable levels in TMPRSS2-ERG positive samples as evidenced by concomitant detection of two mutually exclusive peptides. Three peptides shared across almost all fusion protein products were determined to be the most abundant peptides, and hence can be used as “signature” peptides for detecting ERG overexpression resulting from TMPRSS2-ERG gene fusion. These PRISM-SRM assays provide valuable tools for studying TMPRSS2-ERG gene fusion protein products, thus improving our understanding of the role of TMPRSS2-ERG gene fusion in the biology of prostate cancer.

  19. Regulation of HSV glycoprotein induced cascade of events governing cell-cell fusion.

    Science.gov (United States)

    Atanasiu, Doina; Saw, Wan Ting; Eisenberg, Roselyn J; Cohen, Gary H

    2016-09-14

    Receptor dependent HSV-induced fusion requires glycoproteins gD, gH/gL, and gB. Our current model posits that during fusion receptor-activated conformational changes in gD activate gH/gL, which subsequently triggers transformation of the pre-fusion form of gB into a fusogenic state. To examine the role of each glycoprotein in receptor dependent cell-cell fusion we took advantage of our discovery that fusion by wild type HSV-2 glycoproteins occurs twice as fast as that achieved by HSV-1 glycoproteins. By sequentially swapping each glycoprotein between the two serotypes, we established that fusion speed was governed by gH/gL, with gH being the main contributor. While the mutant forms of gB fuse at distinct rates that are dictated by their molecular structure, these restrictions can be overcome by gH2/gL2, thereby enhancing their activity. We also found that deregulated forms of gD1 and gH2/gL2 can alter the fusogenic potential of gB, promoting cell fusion in the absence of a cellular receptor and that deregulated forms of gB can drive the fusion machinery to even higher levels. Low pH enhanced fusion by affecting the structure of both gB and gH/gL mutants. Together, our data highlight the complexity of the fusion machinery, the impact of the activation state of each glycoprotein on the fusion process and the critical role of gH/gL in regulating HSV induced fusion.

  20. Design and construction of self-assembling supramolecular protein complexes using artificial and fusion proteins as nanoscale building blocks.

    Science.gov (United States)

    Kobayashi, Naoya; Arai, Ryoichi

    2017-02-01

    The central goal of nanobiotechnology is to design and construct novel biomaterials of nanometer sizes. In this short review, we describe recent progress of several approaches for designing and creating artificial self-assembling protein complexes and primarily focus on the following biotechnological strategies for using artificial and fusion proteins as nanoscale building blocks: fusion proteins designed for symmetrical self-assembly; three-dimensional domain-swapped oligomers; self-assembling designed coiled-coil peptide modules; metal-directed self-assembling engineered proteins; computationally designed self-assembling de novo proteins; and self-assembling protein nanobuilding blocks (PN-Blocks) using an intermolecularly folded dimeric de novo protein. These state-of-the-art nanobiotechnologies for designing supramolecular protein complexes will facilitate the development of novel functional nanobiomaterials.

  1. Dual Split Protein (DSP) Assay to Monitor Cell-Cell Membrane Fusion.

    Science.gov (United States)

    Nakane, Shuhei; Matsuda, Zene

    2015-01-01

    Fusion between viral and cellular membranes is the essential first step in infection of enveloped viruses. This step is mediated by viral envelope glycoproteins (Env) that recognize cellular receptors. The membrane fusion between the effector cells expressing viral Env and the target cells expressing its receptors can be monitored by several methods. We have recently developed a pair of chimeric reporter protein composed of split Renilla luciferase (RL) and split GFP. We named this reporter dual split protein (DSP), since it recovers both RL and GFP activities upon self reassociation. By using DSP, pore formation and content mixing between the effector and target cells can be monitored upon the recovery of RL and GFP activities after the membrane fusion. This quick assay provides quantitative as well as spatial information about membrane fusion mediated by viral Env.

  2. Targeted therapy to the IL-2R using diphtheria toxin and caspase-3 fusion proteins modulates Treg and ameliorates inflammatory colitis.

    Science.gov (United States)

    Yarkoni, Shai; Sagiv, Yuval; Kaminitz, Ayelet; Farkas, Daniel L; Askenasy, Nadir

    2009-10-01

    Pathogenic lymphocytes in the enteric wall of inflammatory bowel disease patients display various abnormalities, including reduced sensitivity to apoptosis. We evaluated a therapeutic approach to elimination of cytotoxic cells, using two IL-2 fusion proteins, a diphtheria toxin (IL2-DT) and a caspase-3 (IL2-cas) conjugate. In models of acute (dextran sodium sulfate and trinitrobenzene sulfonic acid) and chronic (dextran sodium sulfate) toxic colitis, therapeutic doses of the fusion proteins improved survival and prevented colon shortening. While both chimeric proteins eradicated CD4(+)CD25(+)Foxp3(+) T cells in mesenteric LN, IL2-DT caused severe lymphopenia. In contrast, IL2-cas was equally protective and increased fractional expression of Foxp3. Similar effects of the fusion proteins were observed in healthy mice: IL2-DT caused lymphopenia and IL2-cas increased fractional expression of FoxP3. The fusion proteins induced apoptosis in CD25(+) T cells in vitro, with lower toxicity of IL2-cas to Foxp3(+) T cells. These data infer that targeted depletion of cells expressing the IL-2 receptor has therapeutic potential in models of inflammatory colitis, despite depletion of CD25(+) Treg. The IL2-cas fusion protein is particularly relevant to inflammatory bowel disease, as direct internalization of toxic moieties overcomes multiple pathways of resistance to apoptosis of colitogenic T cells.

  3. Production of recombinant proteins in Escherichia coli tagged with the fusion protein CusF3H.

    Science.gov (United States)

    Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Zarate, Xristo

    2017-04-01

    Recombinant protein expression in the bacterium Escherichia coli still is the number one choice for large-scale protein production. Nevertheless, many complications can arise using this microorganism, such as low yields, the formation of inclusion bodies, and the requirement for difficult purification steps. Most of these problems can be solved with the use of fusion proteins. Here, the use of the metal-binding protein CusF3H+ is described as a new fusion protein for recombinant protein expression and purification in E. coli. We have previously shown that CusF produces large amounts of soluble protein, with low levels of formation of inclusion bodies, and that proteins can be purified using IMAC resins charged with Cu(II) ions. CusF3H+ is an enhanced variant of CusF, formed by the addition of three histidine residues at the N-terminus. These residues then can bind Ni(II) ions allowing improved purity after affinity chromatography. Expression and purification of Green Fluorescent Protein tagged with CusF3H+ showed that the mutation did not alter the capacity of the fusion protein to increase protein expression, and purity improved considerably after affinity chromatography with immobilized nickel ions; high yields are obtained after tag-removal since CusF3H+ is a small protein of just 10 kDa. Furthermore, the results of experiments involving expression of tagged proteins having medium to large molecular weights indicate that the presence of the CusF3H+ tag improves protein solubility, as compared to a His-tag. We therefore endorse CusF3H+ as a useful alternative fusion protein/affinity tag for production of recombinant proteins in E. coli. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Expression,purification and cell penetrativity of fusion protein PDT/GR-ΔLBD

    Directory of Open Access Journals (Sweden)

    Fang ZHANG

    2011-01-01

    Full Text Available Objective To construct the fusion gene expression vector of penetrating peptide(PDT and the glucocorticoid receptor lack of ligand binding domain(GR-ΔLBD,and evaluate the prokaryotic expression,purification and cell penetrativity of fusion protein PDT/GR-ΔLBD.Methods The target gene fragment GR-ΔLBD was obtained from plasmid pEGFP-GR-ΔLBD by double digestion,and sub-cloned into the prokaryotic expression vector pGEX-PDT to construct the fusion gene expression vector pGEX-PDT/GR-ΔLBD.PDT/GR-ΔLBD fusion protein was obtained after the expression vector was transformed into E.coli,followed by sequential induction with IPTG,treatment with glutathione-agarose resin and elution with glutathione.SDS-PAGE was performed to determine the expression of PDT/GR-ΔLBD fusion protein,and it which was diluted into a final concentration of 0,500 and 1000nmol/L,labeled with fluorescein FITC and co-cultivated with TC-1 cells for 2 hours,and the penetrativity was observed by fluorescence microscopy.Results The successfully constructed prokaryotic expression vector pPDT/GR-ΔLBD had the capacity of expressing protein,and it was 78.6kD in molecular weight,which was consistent with the theoretical value(80kD of the fusion protein PDT/GR-ΔLBD.PDT-GR-ΔLBD,penetrating the nuclear membrane in a concentration-dependent manner,was concentrated within nuclei.Conclusion PDT/GR-ΔLBD fusion protein,with good solubility and cell penetrativity,paves the way for further research on its anti-inflammatory effects.

  5. A Betabaculovirus-Encoded gp64 Homolog Codes for a Functional Envelope Fusion Protein

    Science.gov (United States)

    Ardisson-Araújo, Daniel M. P.; Melo, Fernando L.; Clem, Rollie J.; Wolff, José L. C.

    2015-01-01

    The GP64 envelope fusion protein is a hallmark of group I alphabaculoviruses. However, the Diatraea saccharalis granulovirus genome sequence revealed the first betabaculovirus species harboring a gp64 homolog (disa118). In this work, we have shown that this homolog encodes a functional envelope fusion protein and could enable the infection and fusogenic abilities of a gp64-null prototype baculovirus. Therefore, GP64 may complement or may be in the process of replacing F protein activity in this virus lineage. PMID:26537678

  6. A Chimeric Pneumovirus Fusion Protein Carrying Neutralizing Epitopes of Both MPV and RSV.

    Directory of Open Access Journals (Sweden)

    Xiaolin Wen

    Full Text Available Respiratory syncytial virus (RSV and human metapneumovirus (HMPV are paramyxoviruses that are responsible for substantial human health burden, particularly in children and the elderly. The fusion (F glycoproteins are major targets of the neutralizing antibody response and studies have mapped dominant antigenic sites in F. Here we grafted a major neutralizing site of RSV F, recognized by the prophylactic monoclonal antibody palivizumab, onto HMPV F, generating a chimeric protein displaying epitopes of both viruses. We demonstrate that the resulting chimeric protein (RPM-1 is recognized by both anti-RSV and anti-HMPV F neutralizing antibodies indicating that it can be used to map the epitope specificity of antibodies raised against both viruses. Mice immunized with the RPM-1 chimeric antigen generate robust neutralizing antibody responses to MPV but weak or no cross-reactive recognition of RSV F, suggesting that grafting of the single palivizumab epitope stimulates a comparatively limited antibody response. The RPM-1 protein provides a new tool for characterizing the immune responses resulting from RSV and HMPV infections and provides insights into the requirements for developing a chimeric subunit vaccine that could induce robust and balanced immunity to both virus infections.

  7. A Chimeric Pneumovirus Fusion Protein Carrying Neutralizing Epitopes of Both MPV and RSV

    Science.gov (United States)

    Wen, Xiaolin; Pickens, Jennifer; Mousa, Jarrod J.; Leser, George P.; Lamb, Robert A.; Crowe, James E.; Jardetzky, Theodore S.

    2016-01-01

    Respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) are paramyxoviruses that are responsible for substantial human health burden, particularly in children and the elderly. The fusion (F) glycoproteins are major targets of the neutralizing antibody response and studies have mapped dominant antigenic sites in F. Here we grafted a major neutralizing site of RSV F, recognized by the prophylactic monoclonal antibody palivizumab, onto HMPV F, generating a chimeric protein displaying epitopes of both viruses. We demonstrate that the resulting chimeric protein (RPM-1) is recognized by both anti-RSV and anti-HMPV F neutralizing antibodies indicating that it can be used to map the epitope specificity of antibodies raised against both viruses. Mice immunized with the RPM-1 chimeric antigen generate robust neutralizing antibody responses to MPV but weak or no cross-reactive recognition of RSV F, suggesting that grafting of the single palivizumab epitope stimulates a comparatively limited antibody response. The RPM-1 protein provides a new tool for characterizing the immune responses resulting from RSV and HMPV infections and provides insights into the requirements for developing a chimeric subunit vaccine that could induce robust and balanced immunity to both virus infections. PMID:27224013

  8. Investigation of the influence of incomplete fusion on complete fusion of 16O induced reactions at moderate excitation energies

    Directory of Open Access Journals (Sweden)

    Ahamad Tauseef

    2012-12-01

    Full Text Available An attempt has been made to investigate for the reaction dynamics leading to incomplete fusion (ICF of heavy ions at moderate excitation energies, especially the influence of incomplete fusion on complete fusion (CF of 16O induced reactions at specific energies. Excitation functions (EFs of various reaction products populated via CF and/or ICF of 16O projectile with 45Sc target were measured at energies ≈3-7 MeV/nucleon, using recoil catcher technique followed by offline γ-ray spectroscopy. The measured EFs were compared with theoretical values obtained using the statistical model code PACE4. The experimentally measured EFs were in general found to be in good agreement with the theoretical predictions for non α-emitting channels in the present target projectile system. However, for α-emitting channels the measured EFs were higher than the predictions of the theoretical model codes, which may be credited to incomplete fusion reactions at these energies.

  9. Deltabaculoviruses encode a functional type I budded virus envelope fusion protein

    NARCIS (Netherlands)

    Wang, Manli; Shen, Shu; Wang, Hualin; Hu, Zhihong; Becnel, James; Vlak, Just M.

    2017-01-01

    Envelope fusion proteins (F proteins) are major constituents of budded viruses (BVs) of alpha- and betabaculoviruses (Baculoviridae) and are essential for the systemic infection of insect larvae and insect cell culture. An f homologue gene is absent in gammabaculoviruses. Here we characterized the p

  10. Tandem SUMO fusion vectors for improving soluble protein expression and purification.

    Science.gov (United States)

    Guerrero, Fernando; Ciragan, Annika; Iwaï, Hideo

    2015-12-01

    Availability of highly purified proteins in quantity is crucial for detailed biochemical and structural investigations. Fusion tags are versatile tools to facilitate efficient protein purification and to improve soluble overexpression of proteins. Various purification and fusion tags have been widely used for overexpression in Escherichia coli. However, these tags might interfere with biological functions and/or structural investigations of the protein of interest. Therefore, an additional purification step to remove fusion tags by proteolytic digestion might be required. Here, we describe a set of new vectors in which yeast SUMO (SMT3) was used as the highly specific recognition sequence of ubiquitin-like protease 1, together with other commonly used solubility enhancing proteins, such as glutathione S-transferase, maltose binding protein, thioredoxin and trigger factor for optimizing soluble expression of protein of interest. This tandem SUMO (T-SUMO) fusion system was tested for soluble expression of the C-terminal domain of TonB from different organisms and for the antiviral protein scytovirin.

  11. Preparation of unnatural N-to-N and C-to-C protein fusions

    NARCIS (Netherlands)

    Witte, Martin D.; Cragnolini, Juan J.; Dougan, Stephanie K.; Yoder, Nicholas C.; Popp, Maximilian W.; Ploegh, Hidde L.; Petsko, Gregory A.

    2012-01-01

    Standard genetic approaches allow the production of protein composites by fusion of polypeptides in head-to-tail fashion. Some applications would benefit from constructions that are genetically impossible, such as the site-specific linkage of proteins via their N or C termini, when a remaining free

  12. Effects on differentiation by the promyelocytic leukemia PML/RARalpha protein depend on the fusion of the PML protein dimerization and RARalpha DNA binding domains.

    Science.gov (United States)

    Grignani, F; Testa, U; Rogaia, D; Ferrucci, P F; Samoggia, P; Pinto, A; Aldinucci, D; Gelmetti, V; Fagioli, M; Alcalay, M; Seeler, J; Grignani, F; Nicoletti, I; Peschle, C; Pelicci, P G

    1996-01-01

    The block of terminal differentiation is a prominent feature of acute promyelocytic leukemia (APL) and its release by retinoic acid correlates with disease remission. Expression of the APL-specific PML/RARalpha fusion protein in hematopoietic precursor cell lines blocks terminal differentiation, suggesting that PML/ RARalpha may have the same activity in APL blasts. We expressed different PML/RARalpha mutants in U937 and TF-1 cells and demonstrated that the integrity of the PML protein dimerization and RARalpha DNA binding domains is crucial for the differentiation block induced by PML/RARalpha, and that these domains exert their functions only within the context of the fusion protein. Analysis of the in vivo dimerization and cell localization properties of the PML/RARalpha mutants revealed that PML/RARalpha--PML and PML/RARalpha--RXR heterodimers are not necessary for PML/RARalpha activity on differentiation. We propose that a crucial mechanism underlying PML/RARalpha oncogenic activity is the deregulation of a transcription factor, RARalpha, through its fusion with the dimerization interface of another nuclear protein, PML. Images PMID:8890168

  13. Fusion Proteins Cpn10-Erns with Properties of Generating CSFV-Neutralized Antibodies

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    When pigs are infected with classical swine fever virus (CSFV), the antibody primarily targets the structural glycoprotein E rns of the virus. Previous investigations have demonstrated that E rns has low or no virus neutralizing capacity. In this study, candidate subunit marker vaccine, chaperonin 10(Cpn10)-Erns, which possess the property of generating neutralized antibodies against lethal challenge of virulent CSFV was developed. The gene of E rns was isolated from Hog cholera lapinized virus (HCLV)-infected spleen cells of rabbits via RT-PCR method and fused to the downstream region of the cpn10 gene; the products of recombinant fusion protein (cpn10-Erns) induced expression in Escherichia coli, and the products were purified by affinity chromatography. During the course of vaccination, the candidate vaccines cpn10-E rns were used for the immunization of guinea pigs, and they induced a strong antibody response against cpn10-Erns. The antibodies can be immobilized by coating inactivated CSFV particles, indicating that these antibodies can recognize CSFV. Neutralization assay was carried out on rabbits according to National Regulations on Veterinary Drug. The results clearly indicate that the typical fever of rabbits induced by the live attenuated HCLV could be inhibited by preincubation with the antisera (dilution 1:4) induced by cpn10-Erns, but not inhibited by preincubation with the antisera induced only by Erns. Analogous results were observed for the group of the rabbits immunized with cpn10-Erns, which were protected against the typical fever induced by the challenge with HCLV. The findings of this study formed the basis of a new means for developing subunit marker vaccine against CSFV.

  14. Characterization of the fusion core in zebrafish endogenous retroviral envelope protein

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jian [State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072 (China); State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071 (China); Zhang, Huaidong [CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071 (China); Gong, Rui, E-mail: gongr@wh.iov.cn [CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071 (China); Xiao, Gengfu, E-mail: xiaogf@wh.iov.cn [State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072 (China); State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071 (China)

    2015-05-08

    Zebrafish endogenous retrovirus (ZFERV) is the unique endogenous retrovirus in zebrafish, as yet, containing intact open reading frames of its envelope protein gene in zebrafish genome. Similarly, several envelope proteins of endogenous retroviruses in human and other mammalian animal genomes (such as syncytin-1 and 2 in human, syncytin-A and B in mouse) were identified and shown to be functional in induction of cell–cell fusion involved in placental development. ZFERV envelope protein (Env) gene appears to be also functional in vivo because it is expressible. After sequence alignment, we found ZFERV Env shares similar structural profiles with syncytin and other type I viral envelopes, especially in the regions of N- and C-terminal heptad repeats (NHR and CHR) which were crucial for membrane fusion. We expressed the regions of N + C protein in the ZFERV Env (residues 459–567, including predicted NHR and CHR) to characterize the fusion core structure. We found N + C protein could form a stable coiled-coil trimer that consists of three helical NHR regions forming a central trimeric core, and three helical CHR regions packing into the grooves on the surface of the central core. The structural characterization of the fusion core revealed the possible mechanism of fusion mediated by ZFERV Env. These results gave comprehensive explanation of how the ancient virus infects the zebrafish and integrates into the genome million years ago, and showed a rational clue for discovery of physiological significance (e.g., medicate cell–cell fusion). - Highlights: • ZFERV Env shares similar structural profiles with syncytin and other type I viral envelopes. • The fusion core of ZFERV Env forms stable coiled-coil trimer including three NHRs and three CHRs. • The structural mechanism of viral entry mediated by ZFERV Env is disclosed. • The results are helpful for further discovery of physiological function of ZFERV Env in zebrafish.

  15. Protein solubility and differential proteomic profiling of recombinant Escherichia coli overexpressing double-tagged fusion proteins

    Directory of Open Access Journals (Sweden)

    Cheng Chung-Hsien

    2010-08-01

    Full Text Available Abstract Background Overexpression of recombinant proteins usually triggers the induction of heat shock proteins that regulate aggregation and solubility of the overexpressed protein. The two-dimensional gel electrophoresis (2-DE-mass spectrometry approach was used to profile the proteome of Escherichia coli overexpressing N-acetyl-D-glucosamine 2-epimerase (GlcNAc 2-epimerase and N-acetyl-D-neuraminic acid aldolase (Neu5Ac aldolase, both fused to glutathione S-transferase (GST and polyionic peptide (5D or 5R. Results Overexpression of fusion proteins by IPTG induction caused significant differential expression of numerous cellular proteins; most of these proteins were down-regulated, including enzymes connected to the pentose phosphate pathway and the enzyme LuxS that could lead to an inhibition of tRNA synthesis. Interestingly, when plasmid-harboring cells were cultured in LB medium, gluconeogenesis occurred mainly through MaeB, while in the host strain, gluconeogenesis occurred by a different pathway (by Mdh and PckA. Significant up-regulation of the chaperones ClpB, HslU and GroEL and high-level expression of two protective small heat shock proteins (IbpA and IbpB were found in cells overexpressing GST-GlcNAc 2-epimerase-5D but not in GST-Neu5Ac aldolase-5R-expressing E. coli. Although most of the recombinant protein was present in insoluble aggregates, the soluble fraction of GST-GlcNAc 2-epimerase-5D was higher than that of GST-Neu5Ac aldolase-5R. Also, in cells overexpressing recombinant GST-GlcNAc 2-epimerase-5D, the expression of σ32 was maintained at a higher level following induction. Conclusions Differential expression of metabolically functional proteins, especially those in the gluconeogenesis pathway, was found between host and recombinant cells. Also, the expression patterns of chaperones/heat shock proteins differed among the plasmid-harboring bacteria in response to overproduction of recombinant proteins. In conclusion, the

  16. Brain penetrating IgG-erythropoietin fusion protein is neuroprotective following intravenous treatment in Parkinson's disease in the mouse.

    Science.gov (United States)

    Zhou, Qing-Hui; Hui, Eric Ka-Wai; Lu, Jeff Zhiqiang; Boado, Ruben J; Pardridge, William M

    2011-03-25

    Parkinson's disease (PD) is caused by oxidative stress, and erythropoietin (EPO) reduces oxidative stress in the brain. However, EPO cannot be developed as a treatment for PD, because EPO does not cross the blood-brain barrier (BBB). A brain penetrating form of human EPO has been developed wherein EPO is fused to a chimeric monoclonal antibody (MAb) against the mouse transferrin receptor (TfR), which is designated as the cTfRMAb-EPO fusion protein. The TfRMAb acts as a molecular Trojan horse to transport the fused EPO into brain via transport on the BBB TfR. Experimental PD was induced in adult mice by the intra-striatal injection of 6-hydroxydopamine, and PD mice were treated with 1mg/kg of the cTfRMAb-EPO fusion protein intravenously (IV) every other day starting 1 h after toxin injection. Following 3weeks of treatment mice were euthanized for measurement of striatal tyrosine hydroxylase (TH) enzyme activity. Mice treated with the cTfRMAb-EPO fusion protein showed a 306% increase in striatal TH enzyme activity, which correlated with improvement in three assays of neurobehavior. The blood hematocrit increased 10% at 2weeks, with no further changes at 3weeks of treatment. A sandwich ELISA showed the immune reaction against the cTfRMAb-EPO fusion protein was variable and low titer. In conclusion, the present study demonstrates that a brain penetrating form of EPO is neuroprotective in PD following IV administration with minimal effects on erythropoiesis.

  17. Nanoscale organization of {beta}{sub 2}-adrenergic receptor-Venus fusion protein domains on the surface of mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Vobornik, Dusan; Rouleau, Yanouchka; Haley, Jennifer [Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 (Canada); Bani-Yaghoub, Mahmud [Institute for Biological Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 (Canada); Taylor, Rod [Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 (Canada); Johnston, Linda J., E-mail: Linda.Johnston@nrc-cnrc.gc.ca [Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 (Canada); Pezacki, John Paul, E-mail: John.Pezacki@nrc-cnrc.gc.ca [Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 (Canada)

    2009-04-24

    Adrenergic receptors are a key component of nanoscale multiprotein complexes that are responsible for controlling the beat rate in a mammalian heart. We demonstrate the ability of near-field scanning optical microscopy (NSOM) to visualize {beta}{sub 2}-adrenergic receptors ({beta}{sub 2}AR) fused to the GFP analogue Venus at the nanoscale on HEK293 cells. The expression of the {beta}{sub 2}AR-Venus fusion protein was tightly controlled using a tetracycline-induced promoter. Both the size and density of the observed nanoscale domains are dependent on the level of induction and thus the level of protein expression. At concentrations between 100 and 700 ng/ml of inducer doxycycline, the size of domains containing the {beta}{sub 2}AR-Venus fusion protein appears to remain roughly constant, but the number of domains per cell increase. At 700 ng/ml doxycycline the functional receptors are organized into domains with an average diameter of 150 nm with a density similar to that observed for the native protein on primary murine cells. By contrast, larger micron-sized domains of {beta}{sub 2}AR are observed in the membrane of the HEK293 cells that stably overexpress {beta}{sub 2}AR-GFP and {beta}{sub 2}AR-eYFP. We conclude that precise chemical control of gene expression is highly advantageous for the use {beta}{sub 2}AR-Venus fusion proteins as models for {beta}{sub 2}AR function. These observations are critical for designing future cell models and assays based on {beta}{sub 2}AR, since the receptor biology is consistent with a relatively low density of nanoscale receptor domains.

  18. Function of Nup98 subtypes and their fusion proteins, Nup98-TopIIβ and Nup98-SETBP1 in nuclear-cytoplasmic transport.

    Science.gov (United States)

    Saito, Shoko; Yokokawa, Takafumi; Iizuka, Gemmei; Cigdem, Sadik; Okuwaki, Mitsuru; Nagata, Kyosuke

    2017-04-06

    Nup98 is a component of the nuclear pore complex. The nup98-fusion genes derived by chromosome translocations are involved in hematopoietic malignancies. Here, we investigated the functions of Nup98 isoforms and two unexamined Nup98-fusion proteins, Nup98-TopIIβ and Nup98-SETBP1. We first demonstrated that two Nup98 isoforms are expressed in various mouse tissues and similarly localized in the nucleus and the nuclear envelope. We also showed that Nup98-TopIIβ and Nup98-SETBP1 are localized in the nucleus and partially co-localized with full-length Nup98 and a nuclear export receptor XPO1. We demonstrated that Nup98-TopIIβ and Nup98-SETBP1 negatively regulate the XPO1-mediated protein export. Our results will contribute to the understanding of the molecular mechanism by which the Nup98-fusion proteins induce tumorigenesis.

  19. Mechanistic insight provided by glutaredoxin within a fusion to redox-sensitive yellow fluorescent protein

    DEFF Research Database (Denmark)

    Björnberg, Olof; Østergaard, Henrik; Winther, Jakob R

    2006-01-01

    Redox-sensitive yellow fluorescent protein (rxYFP) contains a dithiol disulfide pair that is thermodynamically suitable for monitoring intracellular glutathione redox potential. Glutaredoxin 1 (Grx1p) from yeast is known to catalyze the redox equilibrium between rxYFP and glutathione, and here, we...... have generated a fusion of the two proteins, rxYFP-Grx1p. In comparison to isolated subunits, intramolecular transfer of reducing equivalents made the fusion protein kinetically superior in reactions with glutathione. The rate of GSSG oxidation was thus improved by a factor of 3300. The reaction...... separately and in the fusion. This could not be ascribed to the lack of an unproductive side reaction to glutaredoxin disulfide. Instead, slower alkylation kinetics with iodoacetamide indicates a better leaving-group capability of the remaining cysteine residue, which can explain the increased activity....

  20. The Ancient Gamete Fusogen HAP2 Is a Eukaryotic Class II Fusion Protein.

    Science.gov (United States)

    Fédry, Juliette; Liu, Yanjie; Péhau-Arnaudet, Gérard; Pei, Jimin; Li, Wenhao; Tortorici, M Alejandra; Traincard, François; Meola, Annalisa; Bricogne, Gérard; Grishin, Nick V; Snell, William J; Rey, Félix A; Krey, Thomas

    2017-02-23

    Sexual reproduction is almost universal in eukaryotic life and involves the fusion of male and female haploid gametes into a diploid cell. The sperm-restricted single-pass transmembrane protein HAP2-GCS1 has been postulated to function in membrane merger. Its presence in the major eukaryotic taxa-animals, plants, and protists (including important human pathogens like Plasmodium)-suggests that many eukaryotic organisms share a common gamete fusion mechanism. Here, we report combined bioinformatic, biochemical, mutational, and X-ray crystallographic studies on the unicellular alga Chlamydomonas reinhardtii HAP2 that reveal homology to class II viral membrane fusion proteins. We further show that targeting the segment corresponding to the fusion loop by mutagenesis or by antibodies blocks gamete fusion. These results demonstrate that HAP2 is the gamete fusogen and suggest a mechanism of action akin to viral fusion, indicating a way to block Plasmodium transmission and highlighting the impact of virus-cell genetic exchanges on the evolution of eukaryotic life.

  1. Myeloid and lymphoid contribution to non-haematopoietic lineages through irradiation-induced heterotypic cell fusion

    DEFF Research Database (Denmark)

    Nygren, J.M.; Liuba, K.; Breitbach, M.;

    2008-01-01

    and Purkinje neurons. However, through lineage fate-mapping we demonstrate that such in vivo fusion of lymphoid and myeloid blood cells does not occur to an appreciable extent in steady-state adult tissues or during normal development. Rather, fusion of blood cells with different non-haematopoietic cell types...... is induced by organ-specific injuries or whole-body irradiation, which has been used in previous studies to condition recipients of bone marrow transplants. Our findings demonstrate that blood cells of the lymphoid and myeloid lineages contribute to various non-haematopoietic tissues by forming rare fusion......Recent studies have suggested that regeneration of non-haematopoietic cell lineages can occur through heterotypic cell fusion with haematopoietic cells of the myeloid lineage. Here we show that lymphocytes also form heterotypic-fusion hybrids with cardiomyocytes, skeletal muscle, hepatocytes...

  2. An evaluation of garlic lectin as an alternative carrier domain for insecticidal fusion proteins

    Institute of Scientific and Technical Information of China (English)

    Elaine Fitches; Judith Philip; Gareth Hinchliffe; Leisbeth Vercruysse; Nanasaheb Chougule; John A.Gatehouse

    2008-01-01

    The mannosc-binding lectin GNA(snowdrop lectin)is used as a"carrier"domain in insecticidal fusion proteins which cross the insect gut after oral ingestion.A similar lectin from garlic bulb,ASAII,has been evaluated as an altemative"carrieff".Recombinant ASAII delivered orally to larvae of cabbage moth(Mamestra brassica;Lepidoptera)Was subse-quently detected in haemolymph,demonstrating transport.Fusion proteins comprising an insect neurotoxin.ButaIT(Buthus tamulus insecticidal toxin;red scorpion toxin)linked to the C-terminal region of ASAII or GNA were produced as recombinant proteins(GNA/ButaIT and ASA/ButaIT)by expression in Pichia pastoris.In both cases the C-terminal sequence of the lectin was truncated to avoid post-translational proteolysis.The GNA-containing fusion protein was toxic by injection to cabbage moth larvae(LD50≈250μg/g),and when fed had a negative effect on survival and growth.It also decreased the survival of cereal aphids(Sitobion avenae;Homoptera)from neonate to adult by>70%when fed.In contrast,the ASA-ButaIT fusion protein was non-toxic to aphids,and had no effect on lepidopteran lalwae,either when injected or when fed.However,intact ASA-ButaIT fusion protein was present in the haemolymph of cabbage moth larvae following ingestion,showing that transport of the fusion had occurred.The stabilities of GNA/BUtaIT and ASA/ButaIT to proteolysis in vivo after injection or ingestion differed,and this may be a factor in determining insecticidal activities.

  3. Fusion protein vaccines targeting two tumor antigens generate synergistic anti-tumor effects.

    Directory of Open Access Journals (Sweden)

    Wen-Fang Cheng

    Full Text Available INTRODUCTION: Human papillomavirus (HPV has been consistently implicated in causing several kinds of malignancies, and two HPV oncogenes, E6 and E7, represent two potential target antigens for cancer vaccines. We developed two fusion protein vaccines, PE(ΔIII/E6 and PE(ΔIII/E7 by targeting these two tumor antigens to test whether a combination of two fusion proteins can generate more potent anti-tumor effects than a single fusion protein. MATERIALS AND METHODS: In vivo antitumor effects including preventive, therapeutic, and antibody depletion experiments were performed. In vitro assays including intracellular cytokine staining and ELISA for Ab responses were also performed. RESULTS: PE(ΔIII/E6+PE(ΔIII/E7 generated both stronger E6 and E7-specific immunity. Only 60% of the tumor protective effect was observed in the PE(ΔIII/E6 group compared to 100% in the PE(ΔIII/E7 and PE(ΔIII/E6+PE(ΔIII/E7 groups. Mice vaccinated with the PE(ΔIII/E6+PE(ΔIII/E7 fusion proteins had a smaller subcutaneous tumor size than those vaccinated with PE(ΔIII/E6 or PE(ΔIII/E7 fusion proteins alone. CONCLUSION: Fusion protein vaccines targeting both E6 and E7 tumor antigens generated more potent immunotherapeutic effects than E6 or E7 tumor antigens alone. This novel strategy of targeting two tumor antigens together can promote the development of cancer vaccines and immunotherapy in HPV-related malignancies.

  4. Fusion Protein Vaccines Targeting Two Tumor Antigens Generate Synergistic Anti-Tumor Effects

    Science.gov (United States)

    Cheng, Wen-Fang; Chang, Ming-Cheng; Sun, Wei-Zen; Jen, Yu-Wei; Liao, Chao-Wei; Chen, Yun-Yuan; Chen, Chi-An

    2013-01-01

    Introduction Human papillomavirus (HPV) has been consistently implicated in causing several kinds of malignancies, and two HPV oncogenes, E6 and E7, represent two potential target antigens for cancer vaccines. We developed two fusion protein vaccines, PE(ΔIII)/E6 and PE(ΔIII)/E7 by targeting these two tumor antigens to test whether a combination of two fusion proteins can generate more potent anti-tumor effects than a single fusion protein. Materials and Methods In vivo antitumor effects including preventive, therapeutic, and antibody depletion experiments were performed. In vitro assays including intracellular cytokine staining and ELISA for Ab responses were also performed. Results PE(ΔIII)/E6+PE(ΔIII)/E7 generated both stronger E6 and E7-specific immunity. Only 60% of the tumor protective effect was observed in the PE(ΔIII)/E6 group compared to 100% in the PE(ΔIII)/E7 and PE(ΔIII)/E6+PE(ΔIII)/E7 groups. Mice vaccinated with the PE(ΔIII)/E6+PE(ΔIII)/E7 fusion proteins had a smaller subcutaneous tumor size than those vaccinated with PE(ΔIII)/E6 or PE(ΔIII)/E7 fusion proteins alone. Conclusion Fusion protein vaccines targeting both E6 and E7 tumor antigens generated more potent immunotherapeutic effects than E6 or E7 tumor antigens alone. This novel strategy of targeting two tumor antigens together can promote the development of cancer vaccines and immunotherapy in HPV-related malignancies. PMID:24058440

  5. Intracellular expression of IRF9 Stat fusion protein overcomes the defective Jak-Stat signaling and inhibits HCV RNA replication

    Directory of Open Access Journals (Sweden)

    Balart Luis A

    2010-10-01

    Full Text Available Abstract Interferon alpha (IFN-α binds to a cell surface receptor that activates the Jak-Stat signaling pathway. A critical component of this pathway is the translocation of interferon stimulated gene factor 3 (a complex of three proteins Stat1, Stat2 and IRF9 to the nucleus to activate antiviral genes. A stable sub-genomic replicon cell line resistant to IFN-α was developed in which the nuclear translocation of Stat1 and Stat2 proteins was prevented due to the lack of phosphorylation; whereas the nuclear translocation of IRF9 protein was not affected. In this study, we sought to overcome defective Jak-Stat signaling and to induce an antiviral state in the IFN-α resistant replicon cell line by developing a chimera IRF9 protein fused with the trans activating domain (TAD of either a Stat1 (IRF9-S1C or Stat2 (IRF9-S2C protein. We show here that intracellular expression of fusion proteins using the plasmid constructs of either IRF9-S1C or IRF9-S2C, in the IFN-α resistant cells, resulted in an increase in Interferon Stimulated Response Element (ISRE luciferase promoter activity and significantly induced HLA-1 surface expression. Moreover, we show that transient transfection of IRF9-S1C or IRF9-S2C plasmid constructs into IFN-α resistant replicon cells containing sub-genomic HCV1b and HCV2a viruses resulted in an inhibition of viral replication and viral protein expression independent of IFN-α treatment. The results of this study indicate that the recombinant fusion proteins of IRF9-S1C, IRF9-S2C alone, or in combination, have potent antiviral properties against the HCV in an IFN-α resistant cell line with a defective Jak-Stat signaling.

  6. BMP-2 induced early bone formation in spine fusion using rat ovariectomy osteoporosis model.

    Science.gov (United States)

    Park, Sung Bae; Park, Seong Hoon; Kim, Na-Hyung; Chung, Chun Kee

    2013-10-01

    Bone morphogenetic proteins (BMPs) enhance bone formation. Numerous animal studies have established that BMPs can augment spinal fusion. However, there is a lack of data on the effect of BMP-2 on spinal fusion in the osteoporotic spine. To investigate whether recombinant human BMP-2 (rhBMP-2) enhances spine fusion in an ovariectomized rat model. In vivo animal study. Female Sprague-Dawley rats (n=60) were ovariectomized or sham operated and randomized into three groups: Sham (sham operated+fusion), ovariectomy (OVX) (OVX+fusion), and BMP (OVX+fusion+BMP-2). Six weeks after ovariectomy, unilateral lumbar spine fusion was performed using autologous iliac bone with/without rhBMP-2 delivered on a collagen matrix. For each group, gene expression and histology were evaluated at 3 and 6 weeks after fusion, and bone parameters were measured by microcomputed tomography at 3, 6, 9, and 12 weeks. Real-time reverse-transcription polymerase chain reaction at 3 weeks showed markedly increased expression of osteoblast-related markers (namely alkaline phosphatase, osteocalcin, Runx2, Smad1, and Smad5) in the BMP group compared with the other groups (p=.0005, .0005, .003, .009 and .012, respectively). Although the Sham and OVX groups showed both sparse and compacted bones between transverse processes at 6 weeks, the BMP group had a significantly larger bone mass within the fusion bed at 3 weeks and later. All rats in the BMP group had bridging bone at 3 weeks; at 12 weeks, bridging bones in the Sham and OVX groups were about 50% and 25%, respectively, of that in the BMP group. Recombinant human BMP-2 enhances spinal fusion in OVX rats and acts during early bone formation. Therapeutic BMP-2 may therefore improve the outcome of spinal fusion in the osteoporotic patient. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Adhesion and fusion efficiencies of human immunodeficiency virus type 1 (HIV-1) surface proteins

    OpenAIRE

    2013-01-01

    In about half of patients infected with HIV-1 subtype B, viral populations shift from utilizing the transmembrane protein CCR5 to CXCR4, as well as or instead of CCR5, during late stage progression of the disease. How the relative adhesion efficiency and fusion competency of the viral Env proteins relate to infection during this transition is not well understood. Using a virus-cell fusion assay and live-cell single-molecule force spectroscopy, we compare the entry competency of viral clones t...

  8. Stress proteins induced by arsenic.

    Science.gov (United States)

    Del Razo, L M; Quintanilla-Vega, B; Brambila-Colombres, E; Calderón-Aranda, E S; Manno, M; Albores, A

    2001-12-01

    The elevated expression of stress proteins is considered to be a universal response to adverse conditions, representing a potential mechanism of cellular defense against disease and a potential target for novel therapeutics. Exposure to arsenicals either in vitro or in vivo in a variety of model systems has been shown to cause the induction of a number of the major stress protein families such as heat shock proteins (Hsp). Among them are members with low molecular weight, such as metallotionein and ubiquitin, as well as ones with masses of 27, 32, 60, 70, 90, and 110 kDa. In most of the cases, the induction of stress proteins depends on the capacity of the arsenical to reach the target, its valence, and the type of exposure, arsenite being the biggest inducer of most Hsp in several organs and systems. Hsp induction is a rapid dose-dependent response (1-8 h) to the acute exposure to arsenite. Thus, the stress response appears to be useful to monitor the sublethal toxicity resulting from a single exposure to arsenite. The present paper offers a critical review of the capacity of arsenicals to modulate the expression and/or accumulation of stress proteins. The physiological consequences of the arsenic-induced stress and its usefulness in monitoring effects resulting from arsenic exposure in humans and other organisms are discussed.

  9. Inhibition of CRM1-mediated nuclear export of transcription factors by leukemogenic NUP98 fusion proteins.

    Science.gov (United States)

    Takeda, Akiko; Sarma, Nayan J; Abdul-Nabi, Anmaar M; Yaseen, Nabeel R

    2010-05-21

    NUP98 is a nucleoporin that plays complex roles in the nucleocytoplasmic trafficking of macromolecules. Rearrangements of the NUP98 gene in human leukemia result in the expression of numerous fusion oncoproteins whose effect on nucleocytoplasmic trafficking is poorly understood. The present study was undertaken to determine the effects of leukemogenic NUP98 fusion proteins on CRM1-mediated nuclear export. NUP98-HOXA9, a prototypic NUP98 fusion, inhibited the nuclear export of two known CRM1 substrates: mutated cytoplasmic nucleophosmin and HIV-1 Rev. In vitro binding assays revealed that NUP98-HOXA9 binds CRM1 through the FG repeat motif in a Ran-GTP-dependent manner similar to but stronger than the interaction between CRM1 and its export substrates. Two NUP98 fusions, NUP98-HOXA9 and NUP98-DDX10, whose fusion partners are structurally and functionally unrelated, interacted with endogenous CRM1 in myeloid cells as shown by co-immunoprecipitation. These leukemogenic NUP98 fusion proteins interacted with CRM1, Ran, and the nucleoporin NUP214 in a manner fundamentally different from that of wild-type NUP98. NUP98-HOXA9 and NUP98-DDX10 formed characteristic aggregates within the nuclei of a myeloid cell line and primary human CD34+ cells and caused aberrant localization of CRM1 to these aggregates. These NUP98 fusions caused nuclear accumulation of two transcription factors, NFAT and NFkappaB, that are regulated by CRM1-mediated export. The nuclear entrapment of NFAT and NFkappaB correlated with enhanced transcription from promoters responsive to these transcription factors. Taken together, the results suggest a new mechanism by which NUP98 fusions dysregulate transcription and cause leukemia, namely, inhibition of CRM1-mediated nuclear export with aberrant nuclear retention of transcriptional regulators.

  10. Cholera toxin B subunit-five-stranded α-helical coiled-coil fusion protein: "five-to-five" molecular chimera displays robust physicochemical stability.

    Science.gov (United States)

    Arakawa, Takeshi; Harakuni, Tetsuya

    2014-09-03

    To create a physicochemically stable cholera toxin (CT) B subunit (CTB), it was fused to the five-stranded α-helical coiled-coil domain of cartilage oligomeric matrix protein (COMP). The chimeric fusion protein (CTB-COMP) was expressed in Pichia pastoris, predominantly as a pentamer, and retained its affinity for the monosialoganglioside GM1, a natural receptor of CT. The fusion protein displayed thermostability, tolerating the boiling temperature of water for 10min, whereas unfused CTB readily dissociated to its monomers and lost its affinity for GM1. The fusion protein also displayed resistance to strong acid at pHs as low as 0.1, and to the protein denaturant sodium dodecyl sulfate at concentrations up to 10%. Intranasal administration of the fusion protein to mice induced anti-B subunit serum IgG, even after the protein was boiled, whereas unfused CTB showed no thermostable mucosal immunogenicity. This study demonstrates that CTB fused to a pentameric α-helical coiled coil has a novel physicochemical phenotype, which may provide important insight into the molecular design of enterotoxin-B-subunit-based vaccines and vaccine delivery molecules.

  11. Interactions between synaptic vesicle fusion proteins explored by atomic force microscopy.

    Science.gov (United States)

    Yersin, A; Hirling, H; Steiner, P; Magnin, S; Regazzi, R; Hüni, B; Huguenot, P; De los Rios, P; Dietler, G; Catsicas, S; Kasas, S

    2003-07-22

    Measuring the biophysical properties of macromolecular complexes at work is a major challenge of modern biology. The protein complex composed of vesicle-associated membrane protein 2, synaptosomal-associated protein of 25 kDa, and syntaxin 1 [soluble N-ethyl-maleimide-sensitive factor attachment protein receptor (SNARE) complex] is essential for docking and fusion of neurotransmitter-filled synaptic vesicles with the presynaptic membrane. To better understand the fusion mechanisms, we reconstituted the synaptic SNARE complex in the imaging chamber of an atomic force microscope and measured the interaction forces between its components. Each protein was tested against the two others, taken either individually or as binary complexes. This approach allowed us to determine specific interaction forces and dissociation kinetics of the SNAREs and led us to propose a sequence of interactions. A theoretical model based on our measurements suggests that a minimum of four complexes is probably necessary for fusion to occur. We also showed that the regulatory protein neuronal Sec1 injected into the atomic force microscope chamber prevented the complex formation. Finally, we measured the effect of tetanus toxin protease on the SNARE complex and its activity by on-line registration during tetanus toxin injection. These experiments provide a basis for the functional study of protein microdomains and also suggest opportunities for sensitive screening of drugs that can modulate protein-protein interactions.

  12. Detecting coevolution in mammalian sperm-egg fusion proteins.

    Science.gov (United States)

    Claw, Katrina G; George, Renee D; Swanson, Willie J

    2014-06-01

    Interactions between sperm and egg proteins can occur physically between gamete surface-binding proteins, and genetically between gamete proteins that work in complementary pathways in which they may not physically interact. Physically interacting sperm-egg proteins have been functionally identified in only a few species, and none have been verified within mammals. Candidate genes on both the sperm and egg surfaces exist, but gene deletion studies do not support functional interactions between these sperm-egg proteins; interacting sperm-egg proteins thus remain elusive. Cooperative gamete proteins undergo rapid evolution, and it is predicted that these sperm-egg proteins will also have correlated evolutionary rates due to compensatory changes on both the sperm and egg. To explore potential physical and genetic interactions in sperm-egg proteins, we sequenced four candidate genes from diverse primate species, and used regression and likelihood methods to test for signatures of coevolution between sperm-egg gene pairs. With both methods, we found that the egg protein CD9 coevolves with the sperm protein IZUMO1, suggesting a physical or genetic interaction occurs between them. With regression analysis, we found that CD9 and CRISP2 have correlated rates of evolution, and with likelihood analysis, that CD9 and CRISP1 have correlated rates. This suggests that the different tests may reflect different levels of interaction, be it physical or genetic. Coevolution tests thus provide an exploratory method for detecting potentially interacting sperm-egg protein pairs.

  13. Red fluorescent protein-aequorin fusions as improved bioluminescent Ca2+ reporters in single cells and mice.

    Directory of Open Access Journals (Sweden)

    Adil Bakayan

    Full Text Available Bioluminescence recording of Ca(2+ signals with the photoprotein aequorin does not require radiative energy input and can be measured with a low background and good temporal resolution. Shifting aequorin emission to longer wavelengths occurs naturally in the jellyfish Aequorea victoria by bioluminescence resonance energy transfer (BRET to the green fluorescent protein (GFP. This process has been reproduced in the molecular fusions GFP-aequorin and monomeric red fluorescent protein (mRFP-aequorin, but the latter showed limited transfer efficiency. Fusions with strong red emission would facilitate the simultaneous imaging of Ca(2+ in various cell compartments. In addition, they would also serve to monitor Ca(2+ in living organisms since red light is able to cross animal tissues with less scattering. In this study, aequorin was fused to orange and various red fluorescent proteins to identify the best acceptor in red emission bands. Tandem-dimer Tomato-aequorin (tdTA showed the highest BRET efficiency (largest energy transfer critical distance R(0 and percentage of counts in the red band of all the fusions studied. In addition, red fluorophore maturation of tdTA within cells was faster than that of other fusions. Light output was sufficient to image ATP-induced Ca(2+ oscillations in single HeLa cells expressing tdTA. Ca(2+ rises caused by depolarization of mouse neuronal cells in primary culture were also recorded, and changes in fine neuronal projections were spatially resolved. Finally, it was also possible to visualize the Ca(2+ activity of HeLa cells injected subcutaneously into mice, and Ca(2+ signals after depositing recombinant tdTA in muscle or the peritoneal cavity. Here we report that tdTA is the brightest red bioluminescent Ca(2+ sensor reported to date and is, therefore, a promising probe to study Ca(2+ dynamics in whole organisms or tissues expressing the transgene.

  14. Palmitoylation of SARS-CoV S protein is necessary for partitioning into detergent-resistant membranes and cell-cell fusion but not interaction with M protein

    Science.gov (United States)

    McBride, Corrin E.; Machamer, Carolyn E.

    2010-01-01

    Coronaviruses are enveloped RNA viruses that generally cause mild disease in humans. However, the recently emerged coronavirus that caused severe acute respiratory syndrome (SARS-CoV) is the most pathogenic human coronavirus discovered to date. The SARS-CoV spike (S) protein mediates virus entry by binding cellular receptors and inducing fusion between the viral envelope and the host cell membrane. Coronavirus S proteins are palmitoylated, which may affect function. Here, we created a non-palmitoylated SARS-CoV S protein by mutating all nine cytoplasmic cysteine residues. Palmitoylation of SARS-CoV S was required for partitioning into detergent-resistant membranes and for cell-cell fusion. Surprisingly, however, palmitoylation of S was not required for interaction with SARS-CoV M protein. This contrasts with the requirement for palmitoylation of mouse hepatitis virus S protein for interaction with M protein, and may point to important differences in assembly and infectivity of these two coronaviruses. PMID:20580052

  15. The Endocytic Recycling Protein EHD2 Interacts with Myoferlin to Regulate Myoblast Fusion*

    Science.gov (United States)

    Doherty, Katherine R.; Demonbreun, Alexis R.; Wallace, Gregory Q.; Cave, Andrew; Posey, Avery D.; Heretis, Konstantina; Pytel, Peter; McNally, Elizabeth M.

    2008-01-01

    Skeletal muscle is a multinucleated syncytium that develops and is maintained by the fusion of myoblasts to the syncytium. Myoblast fusion involves the regulated coalescence of two apposed membranes. Myoferlin is a membrane-anchored, multiple C2 domain-containing protein that is highly expressed in fusing myoblasts and required for efficient myoblast fusion to myotubes. We found that myoferlin binds directly to the eps15 homology domain protein, EHD2. Members of the EHD family have been previously implicated in endocytosis as well as endocytic recycling, a process where membrane proteins internalized by endocytosis are returned to the plasma membrane. EHD2 binds directly to the second C2 domain of myoferlin, and EHD2 is reduced in myoferlin null myoblasts. In contrast to normal myoblasts, myoferlin null myoblasts accumulate labeled transferrin and have delayed recycling. Introduction of dominant negative EHD2 into myoblasts leads to the sequestration of myoferlin and inhibition of myoblast fusion. The interaction of myoferlin with EHD2 identifies molecular overlap between the endocytic recycling pathway and the machinery that regulates myoblast membrane fusion. PMID:18502764

  16. Cytolethal distending toxin B as a cell-killing component of tumor-targeted anthrax toxin fusion proteins.

    Science.gov (United States)

    Bachran, C; Hasikova, R; Leysath, C E; Sastalla, I; Zhang, Y; Fattah, R J; Liu, S; Leppla, S H

    2014-01-16

    Cytolethal distending toxin (Cdt) is produced by Gram-negative bacteria of several species. It is composed of three subunits, CdtA, CdtB, and CdtC, with CdtB being the catalytic subunit. We fused CdtB from Haemophilus ducreyi to the N-terminal 255 amino acids of Bacillus anthracis toxin lethal factor (LFn) to design a novel, potentially potent antitumor drug. As a result of this fusion, CdtB was transported into the cytosol of targeted cells via the efficient delivery mechanism of anthrax toxin. The fusion protein efficiently killed various human tumor cell lines by first inducing a complete cell cycle arrest in the G2/M phase, followed by induction of apoptosis. The fusion protein showed very low toxicity in mouse experiments and impressive antitumor effects in a Lewis Lung carcinoma model, with a 90% cure rate. This study demonstrates that efficient drug delivery by a modified anthrax toxin system combined with the enzymatic activity of CdtB has great potential as anticancer treatment and should be considered for the development of novel anticancer drugs.

  17. Affinity Purification of a Recombinant Protein Expressed as a Fusion with the Maltose-Binding Protein (MBP) Tag

    Science.gov (United States)

    Duong-Ly, Krisna C.; Gabelli, Sandra B.

    2015-01-01

    Expression of fusion proteins such as MBP fusions can be used as a way to improve the solubility of the expressed protein in E. coli (Fox and Waugh, 2003; Nallamsetty et al., 2005; Nallamsetty and Waugh, 2006) and as a way to introduce an affinity purification tag. The protocol that follows was designed by the authors as a first step in the purification of a recombinant protein fused with MBP, using fast protein liquid chromatography (FPLC). Cells should have been thawed, resuspended in binding buffer, and lysed by sonication or microfluidization before mixing with the amylose resin or loading on the column. Slight modifications to this protocol may be made to accommodate both the protein of interest and the availability of equipment. PMID:26096500

  18. Control of silicification by genetically engineered fusion proteins: Silk–silica binding peptides

    Science.gov (United States)

    Zhou, Shun; Huang, Wenwen; Belton, David J.; Simmons, Leo O.; Perry, Carole C.; Wang, Xiaoqin; Kaplan, David L.

    2014-01-01

    In the present study, an artificial spider silk gene, 6mer, derived from the consensus sequence of Nephila clavipes dragline silk gene, was fused with different silica-binding peptides (SiBPs), A1, A3 and R5, to study the impact of the fusion protein sequence chemistry on silica formation and the ability to generate a silk–silica composite in two different bioinspired silicification systems: solution–solution and solution– solid. Condensed silica nanoscale particles (600–800 nm) were formed in the presence of the recombinant silk and chimeras, which were smaller than those formed by 15mer-SiBP chimeras [1], revealing that the molecular weight of the silk domain correlated to the sizes of the condensed silica particles in the solution system. In addition, the chimeras (6mer-A1/A3/R5) produced smaller condensed silica particles than the control (6mer), revealing that the silica particle size formed in the solution system is controlled by the size of protein assemblies in solution. In the solution–solid interface system, silicification reactions were performed on the surface of films fabricated from the recombinant silk proteins and chimeras and then treated to induce β-sheet formation. A higher density of condensed silica formed on the films containing the lowest β-sheet content while the films with the highest β-sheet content precipitated the lowest density of silica, revealing an inverse correlation between the β-sheet secondary structure and the silica content formed on the films. Intriguingly, the 6mer-A3 showed the highest rate of silica condensation but the lowest density of silica deposition on the films, compared with 6mer-A1 and -R5, revealing antagonistic crosstalk between the silk and the SiBP domains in terms of protein assembly. These findings offer a path forward in the tailoring of biopolymer–silica composites for biomaterial related needs. PMID:25462851

  19. Metabolic effects of a stabilizing peptide fusion protein of leptin in normal mice.

    Science.gov (United States)

    Park, H; Lee, S-B; Koh, J; Kim, J

    2012-06-01

    Leptin is a protein hormone produced by adipocytes. It is secreted into the blood stream and plays a key role in regulating body energy homeostasis by inhibiting feeding behavior followed by decreased body weight. Because protein aggregation is a major problem in therapeutic proteins, we previously demonstrated that a stabilizing peptide (SP) fusion protein of leptin (SP-leptin) appeared to resist aggregation induced by agitation, freezing/thawing, or heat stress. In this study, we fused mouse leptin with the stabilizing peptide and compared the biological activities of leptin and SP-leptin in vivo using a male C57Bl mouse model and ex vivo using MCF7 breast cancer cell lines. Each group of mice was treated with saline, leptin, and SP-leptin for 20 days and the differences in body weight, food intake, abdominal fat contents, and TG concentration were measured. The SP-leptin appeared to decrease the body weight and food intake in male C57Bl mice more significantly than wild type leptin, and the SP-leptin treated MCF7 cells displayed better cell proliferation than leptin. As a consequence of decreased body weight, the SP-leptin treated mouse group showed decreased abdominal fat contents and low triglyceride (TG) concentration. Moreover, the SP-leptin treated mouse group had fewer lipid droplets in liver and reduced lipid droplet size when analyzed by Oil red O and H & E staining. These results demonstrated that SP-leptin is more effective than wild type leptin in normal mice in lowering their body weight and fat contents in the abdominal region, the serum, and the liver.

  20. Autoprotease N(pro): analysis of self-cleaving fusion protein.

    Science.gov (United States)

    Wellhoefer, Martin; Sprinzl, Wolfgang; Hahn, Rainer; Jungbauer, Alois

    2013-08-23

    A reversed phase high pressure liquid chromatography method was developed for determination of in vitro refolding and cleavage kinetics for the N(pro) autoprotease fusion peptide EDDIE-pep6His using a TSK Super-Octyl column with a segmented acetonitrile gradient. Self-cleaving fusion proteins such as N(pro) autoprotease fusion proteins consist of the single autoprotease N(pro) and a target peptide or a target protein as fusion partner. Hence, three protein species are present after self-cleavage: the target peptide or protein, the single N(pro) autoprotease and, in case of incomplete cleavage, residual N(pro) fusion protein. Thus, for an accurate analysis the method must be standardized for three components in the presence of host cell impurities. For method validation, protein standards of EDDIE-pep6His and the single N(pro) autoprotease EDDIE were prepared from inclusion bodies (IBs) by ion exchange, immobilized metal ion affinity, size exclusion, and reversed phase chromatography. A linear correlation was obtained for EDDIE-pep6His and EDDIE in the range from 95 to 730μg/ml with a lower limit of quantification (LLOQ) and a lower limit of detection (LLOD) of 34.5 and 11.4μg/ml, respectively, for EDDIE-pep6His and 39.6 and 13.1μg/ml, respectively, for EDDIE. Finally, a fully automated batch refolding of EDDIE-pep6His from IBs was performed to demonstrate the applicability of this method. It was shown that the initial EDDIE-pep6His concentration in the refolding solution decreased from 194.3 to 83.8μg/ml over a refolding time of 385min resulting in a final refolding and cleavage yield of 50%.

  1. LegC3, an effector protein from Legionella pneumophila, inhibits homotypic yeast vacuole fusion in vivo and in vitro.

    Directory of Open Access Journals (Sweden)

    Terry L Bennett

    Full Text Available During infection, the intracellular pathogenic bacterium Legionella pneumophila causes an extensive remodeling of host membrane trafficking pathways, both in the construction of a replication-competent vacuole comprised of ER-derived vesicles and plasma membrane components, and in the inhibition of normal phagosome:endosome/lysosome fusion pathways. Here, we identify the LegC3 secreted effector protein from L. pneumophila as able to inhibit a SNARE- and Rab GTPase-dependent membrane fusion pathway in vitro, the homotypic fusion of yeast vacuoles (lysosomes. This vacuole fusion inhibition appeared to be specific, as similar secreted coiled-coiled domain containing proteins from L. pneumophila, LegC7/YlfA and LegC2/YlfB, did not inhibit vacuole fusion. The LegC3-mediated fusion inhibition was reversible by a yeast cytosolic extract, as well as by a purified soluble SNARE, Vam7p. LegC3 blocked the formation of trans-SNARE complexes during vacuole fusion, although we did not detect a direct interaction of LegC3 with the vacuolar SNARE protein complexes required for fusion. Additionally, LegC3 was incapable of inhibiting a defined synthetic model of vacuolar SNARE-driven membrane fusion, further suggesting that LegC3 does not directly inhibit the activity of vacuolar SNAREs, HOPS complex, or Sec17p/18p during membrane fusion. LegC3 is likely utilized by Legionella to modulate eukaryotic membrane fusion events during pathogenesis.

  2. Early secretory antigenic target protein-6/culture filtrate protein-10 fusion protein-specific Th1 and Th2 response and its diagnostic value in tuberculous pleural effusion

    Institute of Scientific and Technical Information of China (English)

    戈启萍

    2013-01-01

    Objective To detect the Th1 and Th2 cell percentage in pleural effusion mononuclear cells (PEMCs) stimulated by early secretory antigenic target protein-6 (ESAT-6) /culture filtrate protein-10 (CFP-10) fusion protein (E/C) with flow cytometry (FCM) ,and to explore the local antigen specific Th1 and Th2 response and

  3. Characterization of a novel fusion protein from IpaB and IpaD of Shigella spp. and its potential as a pan-Shigella vaccine.

    Science.gov (United States)

    Martinez-Becerra, Francisco J; Chen, Xiaotong; Dickenson, Nicholas E; Choudhari, Shyamal P; Harrison, Kelly; Clements, John D; Picking, William D; Van De Verg, Lillian L; Walker, Richard I; Picking, Wendy L

    2013-12-01

    Shigellosis is an important disease in the developing world, where about 90 million people become infected with Shigella spp. each year. We previously demonstrated that the type three secretion apparatus (T3SA) proteins IpaB and IpaD are protective antigens in the mouse lethal pulmonary model. In order to simplify vaccine formulation and process development, we have evaluated a vaccine design that incorporates both of these previously tested Shigella antigens into a single polypeptide chain. To determine if this fusion protein (DB fusion) retains the antigenic and protective capacities of IpaB and IpaD, we immunized mice with the DB fusion and compared the immune response to that elicited by the IpaB/IpaD combination vaccine. Purification of the DB fusion required coexpression with IpgC, the IpaB chaperone, and after purification it maintained the highly α-helical characteristics of IpaB and IpaD. The DB fusion also induced comparable immune responses and retained the ability to protect mice against Shigella flexneri and S. sonnei in the lethal pulmonary challenge. It also offered limited protection against S. dysenteriae challenge. Our results show the feasibility of generating a protective Shigella vaccine comprised of the DB fusion.

  4. High yield purification of nanobodies from the periplasm of E. coli as fusions with the maltose binding protein.

    Science.gov (United States)

    Salema, Valencio; Fernández, Luis Ángel

    2013-09-01

    Nanobodies (Nbs) are single domain antibodies based on the variable domains of heavy chain only antibodies (HCAbs) found in camelids, also referred to as VHHs. Their small size (ca. 12-15kDa), superior biophysical and antigen binding properties have made Nbs very attractive molecules for multiple biotechnological applications, including human therapy. The most widely used system for the purification of Nbs is their expression in the periplasm of Escherichia coli with a C-terminal hexa-histidine (His6) tag followed by immobilized metal affinity chromatography (IMAC). However, significant variability in the expression levels of different Nbs are routinely observed and a single affinity chromatography step is often not sufficient to obtain Nbs of high purity. Here, we report an alternative method for expression and purification of Nbs from the periplasm of E. coli based on their fusion to maltose binding protein (MBP) in the N-terminus and His6 tag in the C-terminus (MBP-NbHis6). Soluble MBP-NbHis6 fusions were consistently expressed at high levels (⩾12mg/L of induced culture in shake flasks) in the periplasm of E. coli HM140, a strain deficient in several periplasmic proteases. Highly pure MBP-NbHis6 fusions and free NbHis6 (after site specific proteolysis of the fusions), were recovered by amylose and metal affinity chromatography steps. The monomeric nature of the purified NbHis6 was determined by gel filtration chromatography. Lastly, we demonstrated by ELISA that both monomeric NbHis6 and MBP-NbHis6 fusions retained antigen binding activity and specificity, thus facilitating their direct use in antigen recognition assays.

  5. Expression, purification, and immobilization of recombinant tamavidin 2 fusion proteins.

    Science.gov (United States)

    Takakura, Yoshimitsu; Oka, Naomi; Tsunashima, Masako

    2014-01-01

    Tamavidin 2 is a fungal avidin-like protein that binds biotin with high affinity. Unlike avidin or streptavidin, tamavidin 2 in soluble form is produced at high levels in Escherichia coli. In this chapter, we describe a method for immobilization and purification of recombinant proteins with the use of tamavidin 2 as an affinity tag. The protein fused to tamavidin 2 is tightly immobilized and simultaneously purified on biotinylated magnetic microbeads without loss of activity.

  6. Novel nanocomposites from spider silk–silica fusion (chimeric) proteins

    OpenAIRE

    Wong Po Foo, Cheryl; Patwardhan, Siddharth V.; Belton, David J.; Kitchel, Brandon; Anastasiades, Daphne; Huang, Jia; Naik, Rajesh R.; Perry, Carole C.; Kaplan, David L.

    2006-01-01

    Silica skeletal architectures in diatoms are characterized by remarkable morphological and nanostructural details. Silk proteins from spiders and silkworms form strong and intricate self-assembling fibrous biomaterials in nature. We combined the features of silk with biosilica through the design, synthesis, and characterization of a novel family of chimeric proteins for subsequent use in model materials forming reactions. The domains from the major ampullate spidroin 1 (MaSp1) protein of Neph...

  7. Inducible expression of a fusion gene encoding two proteinase inhibitors leads to insect and pathogen resistance in transgenic rice.

    Science.gov (United States)

    Quilis, Jordi; López-García, Belén; Meynard, Donaldo; Guiderdoni, Emmanuel; San Segundo, Blanca

    2014-04-01

    Plant proteinase inhibitors (PIs) are considered as candidates for increased insect resistance in transgenic plants. Insect adaptation to PI ingestion might, however, compromise the benefits received by transgenic expression of PIs. In this study, the maize proteinase inhibitor (MPI), an inhibitor of insect serine proteinases, and the potato carboxypeptidase inhibitor (PCI) were fused into a single open reading frame and introduced into rice plants. The two PIs were linked using either the processing site of the Bacillus thuringiensis Cry1B precursor protein or the 2A sequence from the foot-and-mouth disease virus (FMDV). Expression of each fusion gene was driven by the wound- and pathogen-inducible mpi promoter. The mpi-pci fusion gene was stably inherited for at least three generations with no penalty on plant phenotype. An important reduction in larval weight of Chilo suppressalis fed on mpi-pci rice, compared with larvae fed on wild-type plants, was observed. Expression of the mpi-pci fusion gene confers resistance to C. suppressalis (striped stem borer), one of the most important insect pest of rice. The mpi-pci expression systems described may represent a suitable strategy for insect pest control, better than strategies based on the use of single PI genes, by preventing insect adaptive responses. The rice plants expressing the mpi-pci fusion gene also showed enhanced resistance to infection by the fungus Magnaporthe oryzae, the causal agent of the rice blast disease. Our results illustrate the usefulness of the inducible expression of the mpi-pci fusion gene for dual resistance against insects and pathogens in rice plants.

  8. Expression of rabies glycoprotein and ricin toxin B chain (RGP-RTB) fusion protein in tomato hairy roots: a step towards oral vaccination for rabies.

    Science.gov (United States)

    Singh, Ankit; Srivastava, Subhi; Chouksey, Ankita; Panwar, Bhupendra Singh; Verma, Praveen C; Roy, Sribash; Singh, Pradhyumna K; Saxena, Gauri; Tuli, Rakesh

    2015-04-01

    Transgenic hairy roots of Solanum lycopersicum were engineered to express a recombinant protein containing a fusion of rabies glycoprotein and ricin toxin B chain (rgp-rtxB) antigen under the control of constitutive CaMV35S promoter. Asialofetuin-mediated direct ELISA of transgenic hairy root extracts was performed using polyclonal anti-rabies antibodies (Ab1) and epitope-specific peptidal anti-RGP (Ab2) antibodies which confirmed the expression of functionally viable RGP-RTB fusion protein. Direct ELISA based on asialofetuin-binding activity was used to screen crude protein extracts from five transgenic hairy root lines. Expressions of RGP-RTB fusion protein in different tomato hairy root lines varied between 1.4 and 8 µg in per gram of tissue. Immunoblotting assay of RGP-RTB fusion protein from these lines showed a protein band on monomeric size of ~84 kDa after denaturation. Tomato hairy root line H03 showed highest level of RGP-RTB protein expression (1.14 %) and was used further in bench-top bioreactor for the optimization of scale-up process to produce large quantity of recombinant protein. Partially purified RGP-RTB fusion protein was able to induce the immune response in BALB/c mice after intra-mucosal immunization. In the present investigation, we have not only successfully scaled up the hairy root culture but also established the utility of this system to produce vaccine antigen which subsequently will reduce the total production cost for implementing rabies vaccination programs in developing nations. This study in a way aims to provide consolidated base for low-cost preparation of improved oral vaccine against rabies.

  9. [Fluorescent fusion proteins with 10th human fibronectin domain].

    Science.gov (United States)

    Petrovskaia, L E; Gapizov, S Sh; Shingarova, L N; Kriukova, E A; Boldyreva, E F; Iakimov, S A; Svirshchevskaia, E V; Lukashev, E P; Dolgikh, D A; Kirpichnikov, M P

    2014-01-01

    In the current paper we describe a new type of hybrid molecules including red fluorescent protein mCherry and 10th type III human fibronectin domain (10Fn3) - one of the alternative scaffold proteins which can be used for the construction of antibody mimics with various binding specificity. We have constructed different gene variants encoding for the hybrid fluorescent protein and studied their expression in Escherichia coli cells. It was shown that N-terminal position of mCherry and modification of its N-terminal amino acid sequence promotes efficientbacterial expression of the hybrid protein in the soluble form. On the basis of the proposed construction we have obtained the hybrid fluorescent protein ChIBF, containing alphaVbeta3-integrin binding vari- ant of 10Fn3, and demonstrated the possibility of its utilization for the visualization of alphaVbeta3-integrin at the surface of MDCK epithelial cells by confocal microscopy.

  10. Anti-Diabetic Effects of CTB-APSL Fusion Protein in Type 2 Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Yunlong Liu

    2014-03-01

    Full Text Available To determine whether cholera toxin B subunit and active peptide from shark liver (CTB-APSL fusion protein plays a role in treatment of type 2 diabetic mice, the CTB-APSL gene was cloned and expressed in silkworm (Bombyx mori baculovirus expression vector system (BEVS, then the fusion protein was orally administrated at a dose of 100 mg/kg for five weeks in diabetic mice. The results demonstrated that the oral administration of CTB-APSL fusion protein can effectively reduce the levels of both fasting blood glucose (FBG and glycosylated hemoglobin (GHb, promote insulin secretion and improve insulin resistance, significantly improve lipid metabolism, reduce triglycerides (TG, total cholesterol (TC and low density lipoprotein (LDL levels and increase high density lipoprotein (HDL levels, as well as effectively improve the inflammatory response of type 2 diabetic mice through the reduction of the levels of inflammatory cytokines tumor necrosis factor-α (TNF-α and interleukin-6 (IL-6. Histopathology shows that the fusion protein can significantly repair damaged pancreatic tissue in type 2 diabetic mice, significantly improve hepatic steatosis and hepatic cell cloudy swelling, reduce the content of lipid droplets in type 2 diabetic mice, effectively inhibit renal interstitial inflammatory cells invasion and improve renal tubular epithelial cell nucleus pyknosis, thus providing an experimental basis for the development of a new type of oral therapy for type 2 diabetes.

  11. The production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi

    NARCIS (Netherlands)

    Joosten, V.; Lokman, C.; Hondel, C.A.M.J.J. van den; Punt, P.J.

    2003-01-01

    In this review we will focus on the current status and views concerning the production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi. We will focus on single-chain antibody fragment production (scFv and VHH) by these lower eukaryotes and the possible applications

  12. Relative contributions of measles virus hemagglutinin- and fusion protein- specific serum antibodies to virus neutralization.

    NARCIS (Netherlands)

    R.L. de Swart (Rik); S. Yüksel (Selma); A.D.M.E. Osterhaus (Albert)

    2005-01-01

    textabstractThe relative contribution of measles virus hemagglutinin (H)- or fusion protein (F)-specific antibodies to virus neutralization (VN) has not been demonstrated. We have depleted these specific antibodies from sera collected from young adults, who had been vaccinated during childhood, by

  13. Anti-diabetic effects of CTB-APSL fusion protein in type 2 diabetic mice.

    Science.gov (United States)

    Liu, Yunlong; Gao, Zhangzhao; Guo, Qingtuo; Wang, Tao; Lu, Conger; Chen, Ying; Sheng, Qing; Chen, Jian; Nie, Zuoming; Zhang, Yaozhou; Wu, Wutong; Lv, Zhengbing; Shu, Jianhong

    2014-03-13

    To determine whether cholera toxin B subunit and active peptide from shark liver (CTB-APSL) fusion protein plays a role in treatment of type 2 diabetic mice, the CTB-APSL gene was cloned and expressed in silkworm (Bombyx mori) baculovirus expression vector system (BEVS), then the fusion protein was orally administrated at a dose of 100 mg/kg for five weeks in diabetic mice. The results demonstrated that the oral administration of CTB-APSL fusion protein can effectively reduce the levels of both fasting blood glucose (FBG) and glycosylated hemoglobin (GHb), promote insulin secretion and improve insulin resistance, significantly improve lipid metabolism, reduce triglycerides (TG), total cholesterol (TC) and low density lipoprotein (LDL) levels and increase high density lipoprotein (HDL) levels, as well as effectively improve the inflammatory response of type 2 diabetic mice through the reduction of the levels of inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Histopathology shows that the fusion protein can significantly repair damaged pancreatic tissue in type 2 diabetic mice, significantly improve hepatic steatosis and hepatic cell cloudy swelling, reduce the content of lipid droplets in type 2 diabetic mice, effectively inhibit renal interstitial inflammatory cells invasion and improve renal tubular epithelial cell nucleus pyknosis, thus providing an experimental basis for the development of a new type of oral therapy for type 2 diabetes.

  14. The production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi

    NARCIS (Netherlands)

    Joosten, V.; Lokman, C.; Hondel, C.A.M.J.J. van den; Punt, P.J.

    2003-01-01

    In this review we will focus on the current status and views concerning the production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi. We will focus on single-chain antibody fragment production (scFv and VHH) by these lower eukaryotes and the possible applications

  15. Relative contributions of measles virus hemagglutinin- and fusion protein- specific serum antibodies to virus neutralization.

    NARCIS (Netherlands)

    R.L. de Swart (Rik); S. Yüksel (Selma); A.D.M.E. Osterhaus (Albert)

    2005-01-01

    textabstractThe relative contribution of measles virus hemagglutinin (H)- or fusion protein (F)-specific antibodies to virus neutralization (VN) has not been demonstrated. We have depleted these specific antibodies from sera collected from young adults, who had been vaccinated during childhood, by p

  16. SUMO fusion technology for enhanced protein production in prokaryotic and eukaryotic expression systems.

    Science.gov (United States)

    Panavas, Tadas; Sanders, Carsten; Butt, Tauseef R

    2009-01-01

    In eukaryotic cells, the reversible attachment of small ubiquitin-like modifier (SUMO) protein is a post-translational modification that has been demonstrated to play an important role in various cellular processes. Moreover, it has been found that SUMO as an N-terminal fusion partner enhances functional protein production in prokaryotic and eukaryotic expression systems, based upon significantly improved protein stability and solubility. Following the expression and purification of the fusion protein, the SUMO-tag can be cleaved by specific (SUMO) proteases via their endopeptidase activity in vitro to generate the desired N-terminus of the released protein partner. In addition to its physiological relevance in eukaryotes, SUMO can, thus, be used as a powerful biotechnological tool for protein expression in prokaryotic and eukaryotic cell systems.In this chapter, we will describe the construction of a fusion protein with the SUMO-tag, its expression in Escherichia coli, and its purification followed by the removal of the SUMO-tag by a SUMO-specific protease in vitro.

  17. Site-directed antibody immobilization using a protein A-gold binding domain fusion protein for enhanced SPR immunosensing.

    Science.gov (United States)

    de Juan-Franco, Elena; Caruz, Antonio; Pedrajas, J R; Lechuga, Laura M

    2013-04-07

    We have implemented a novel strategy for the oriented immobilization of antibodies onto a gold surface based on the use of a fusion protein, the protein A-gold binding domain (PAG). PAG consists of a gold binding peptide (GBP) coupled to the immunoglobulin-binding domains of staphylococcal protein A. This fusion protein provides an easy and fast oriented immobilization of antibodies preserving its native structure, while leaving the antigen binding sites (Fab) freely exposed. Using this immobilization strategy, we have demonstrated the performance of the immunosensing of the human Growth Hormone by SPR. A limit of detection of 90 ng mL(-1) was obtained with an inter-chip variability lower than 7%. The comparison of this method with other strategies for the direct immobilization of antibodies over gold surfaces has showed the enhanced sensitivity provided by the PAG approach.

  18. Nuclear fusion induced by X-rays in a crystal

    CERN Document Server

    Belyaev, V B; Otto, J; Rakityansky, S A

    2016-01-01

    The nuclei that constitute a crystalline lattice, oscillate relative to each other with a very low energy that is not sufficient to penetrate through the Coulomb barriers separating them. An additional energy, which is needed to tunnel through the barrier and fuse, can be supplied by external electromagnetic waves (X-rays or the synchrotron radiation). Exposing to the X-rays the solid compound LiD (lithium-deuteride) for the duration of 111 hours, we have detected 88 events of the nuclear fusion d+Li6 ---> Be8*. Our theoretical estimate agrees with what we observed. One of possible applications of the phenomenon we found, could be the measurements of the rates of various nuclear reactions (not necessarily fusion) at extremely low energies inaccessible in accelerator experiments.

  19. Microscopic dynamics simulations of heavy-ion fusion reactions induced by neutron-rich nuclei

    CERN Document Server

    Wang, Ning; Zhang, Yingxun; Li, Zhuxia

    2014-01-01

    The heavy-ion fusion reactions induced by neutron-rich nuclei are investigated with the improved quantum molecular dynamics (ImQMD) model. With a subtle consideration of the neutron skin thickness of nuclei and the symmetry potential, the stability of nuclei and the fusion excitation functions of heavy-ion fusion reactions $^{16}$O+$^{76}$Ge, $^{16}$O+$^{154}$Sm, $^{40}$Ca+$^{96}$Zr and $^{132}$Sn+$^{40}$Ca are systematically studied. The fusion cross sections of these reactions at energies around the Coulomb barrier can be well reproduced by using the ImQMD model. The corresponding slope parameter of the symmetry energy adopted in the calculations is $L \\approx 78$ MeV and the surface energy coefficient is $g_{\\rm sur}=18\\pm 1.5$ MeVfm$^2$. In addition, it is found that the surface-symmetry term significantly influences the fusion cross sections of neutron-rich fusion systems. For sub-barrier fusion, the dynamical fluctuations in the densities of the reaction partners and the enhanced surface diffuseness at ...

  20. Autographa californica multiple nucleopolyhedrovirus GP64 protein: Analysis of domain I and V amino acid interactions and membrane fusion activity

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Qianlong [State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A& F University, Yangling, Shaanxi 712100 (China); Blissard, Gary W. [Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, United State (United States); Liu, Tong-Xian [State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A& F University, Yangling, Shaanxi 712100 (China); Li, Zhaofei, E-mail: zhaofeili73@outlook.com [State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A& F University, Yangling, Shaanxi 712100 (China)

    2016-01-15

    The Autographa californica multiple nucleopolyhedrovirus GP64 is a class III viral fusion protein. Although the post-fusion structure of GP64 has been solved, its pre-fusion structure and the detailed mechanism of conformational change are unknown. In GP64, domain V is predicted to interact with two domain I segments that flank fusion loop 2. To evaluate the significance of the amino acids involved in these interactions, we examined 24 amino acid positions that represent interacting and conserved residues within domains I and V. In several cases, substitution of a single amino acid involved in a predicted interaction disrupted membrane fusion activity, but no single amino acid pair appears to be absolutely required. We identified 4 critical residues in domain V (G438, W439, T452, and T456) that are important for membrane fusion, and two residues (G438 and W439) that appear to be important for formation or stability of the pre-fusion conformation of GP64. - Highlights: • The baculovirus envelope glycoprotein GP64 is a class III viral fusion protein. • The detailed mechanism of conformational change of GP64 is unknown. • We analyzed 24 positions that might stabilize the post-fusion structure of GP64. • We identified 4 residues in domain V that were critical for membrane fusion. • Two residues are critical for formation of the pre-fusion conformation of GP64.

  1. Construction of a linker library with widely controllable flexibility for fusion protein design.

    Science.gov (United States)

    Li, Gang; Huang, Ziliang; Zhang, Chong; Dong, Bo-Jun; Guo, Ruo-Hai; Yue, Hong-Wei; Yan, Li-Tang; Xing, Xin-Hui

    2016-01-01

    Flexibility or rigidity of the linker between two fused proteins is an important parameter that affects the function of fusion proteins. In this study, we constructed a linker library with five elementary units based on the combination of the flexible (GGGGS) and the rigid (EAAAK) units. Molecular dynamics (MD) simulation showed that more rigid units in the linkers lead to more helical conformation and hydrogen bonds, and less distance fluctuation between the N- and C-termini of the linker. The diversity of linker flexibility of the linker library was then studied by fluorescence resonance energy transfer (FRET) of cyan fluorescent protein (CFP)-yellow fluorescent protein (YFP) fusion proteins, which showed that there is a wide range of distribution of the FRET efficiency. Dissipative particle dynamics (DPD) simulation of CFP-YFP with different linkers also gave identical results with that of FRET efficiency analysis, and we further found that the combination manner of the linker peptide had a remarkable effect on the orientation of CFP and YFP domains. Our studies demonstrated that the construction of the linker library with the widely controllable flexibility could provide appropriate linkers with the desirable characteristics to engineer the fusion proteins with the expected functions.

  2. Specific and efficient cleavage of fusion proteins by recombinant plum pox virus NIa protease.

    Science.gov (United States)

    Zheng, Nuoyan; Pérez, José de Jesús; Zhang, Zhonghui; Domínguez, Elvira; Garcia, Juan Antonio; Xie, Qi

    2008-02-01

    Site-specific proteases are the most popular kind of enzymes for removing the fusion tags from fused target proteins. Nuclear inclusion protein a (NIa) proteases obtained from the family Potyviridae have become promising due to their high activities and stringencies of sequences recognition. NIa proteases from tobacco etch virus (TEV) and tomato vein mottling virus (TVMV) have been shown to process recombinant proteins successfully in vitro. In this report, recombinant PPV (plum pox virus) NIa protease was employed to process fusion proteins with artificial cleavage site in vitro. Characteristics such as catalytic ability and affecting factors (salt, temperature, protease inhibitors, detergents, and denaturing reagents) were investigated. Recombinant PPV NIa protease expressed and purified from Escherichia coli demonstrated efficient and specific processing of recombinant GFP and SARS-CoV nucleocapsid protein, with site F (N V V V H Q black triangle down A) for PPV NIa protease artificially inserted between the fusion tags and the target proteins. Its catalytic capability is similar to those of TVMV and TEV NIa protease. Recombinant PPV NIa protease reached its maximal proteolytic activity at approximately 30 degrees C. Salt concentration and only one of the tested protease inhibitors had minor influences on the proteolytic activity of PPV NIa protease. Recombinant PPV NIa protease was resistant to self-lysis for at least five days.

  3. A fluorescent cassette-based strategy for engineering multiple domain fusion proteins

    Directory of Open Access Journals (Sweden)

    Khorchid Ahmad

    2003-07-01

    Full Text Available Abstract Background The engineering of fusion proteins has become increasingly important and most recently has formed the basis of many biosensors, protein purification systems, and classes of new drugs. Currently, most fusion proteins consist of three or fewer domains, however, more sophisticated designs could easily involve three or more domains. Using traditional subcloning strategies, this requires micromanagement of restriction enzymes sites that results in complex workaround solutions, if any at all. Results Therefore, to aid in the efficient construction of fusion proteins involving multiple domains, we have created a new expression vector that allows us to rapidly generate a library of cassettes. Cassettes have a standard vector structure based on four specific restriction endonuclease sites and using a subtle property of blunt or compatible cohesive end restriction enzymes, they can be fused in any order and number of times. Furthermore, the insertion of PCR products into our expression vector or the recombination of cassettes can be dramatically simplified by screening for the presence or absence of fluorescence. Conclusions Finally, the utility of this new strategy was demonstrated by the creation of basic cassettes for protein targeting to subcellular organelles and for protein purification using multiple affinity tags.

  4. Myristylation of gag-onc fusion proteins in mammalian transforming retroviruses

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, A.; Oroszlan, S.

    1984-03-01

    Four cell lines producing transforming proteins encoded by three mammalian oncogenes (fes, abl, and ras) were investigated for incorporation of (/sup 3/H)myristate into gag-onc fusion proteins. Using 5-min pulse-labelings, fusion proteins of Abelson murine leukemia virus, Gardner-Arnstein strain of feline sarcoma virus (FeSV), and Snyder-Theilen strain of FeSV were shown to be myristylated. In a 4-hr pulse, p29gag-ras of rat sarcoma virus (RaSV) was also shown to incorporate radiolabel. The fatty acid was recovered from this labeled protein by acid hydrolysis, and identified by reverse-phase thin-layer chromatography to be (/sup 3/H)myristic acid. The results indicate that substitution of viral gag sequences by cellular oncogene sequences does not abolish their ability to become post-translationally modified by this long chain fatty acid. It is assumed that in the fusion proteins the myristyl moiety is linked through an amide linkage to the amino-terminal glycine as previously found for several retroviral gag precursor polyproteins. The possible role of myristylation of transforming proteins is discussed.

  5. The novel fusion proteins, GnRH-p53 and GnRHIII-p53, expression and their anti-tumor effect.

    Directory of Open Access Journals (Sweden)

    Peiyuan Jia

    Full Text Available p53, one of the most well studied tumor suppressor factor, is responsible to a variety of damage owing to the induction of apoptosis and cell cycle arrest in the tumor cells. More than 50% of human tumors contain mutation or deletion of p53. Gonadotrophin-releasing hormone (GnRH, as the ligand of Gonadotrophin-releasing hormone receptor (GnRH-R, was used to deliver p53 into tumor cells. The p53 fusion proteins GnRH-p53 and GnRH iii-p53 were expressed and their targeted anti-tumor effects were determined. GnRH mediates its fusion proteins transformation into cancer cells. The intracellular delivery of p53 fusion proteins exerted the inhibition of the growth of H1299 cells in vitro and the reduction of tumor volume in vivo. Their anti-tumor effect was functioned by the apoptosis and cell cycle arrest induced by p53. Hence, the fusion protein could be a novel protein drug for anti-tumor therapy.

  6. CD160Ig fusion protein targets a novel costimulatory pathway and prolongs allograft survival.

    Directory of Open Access Journals (Sweden)

    Francesca D'Addio

    Full Text Available CD160 is a cell surface molecule expressed by most NK cells and approximately 50% of CD8(+ cytotoxic T lymphocytes. Engagement of CD160 by MHC class-I directly triggers a costimulatory signal to TCR-induced proliferation, cytokine production and cytotoxic effector functions. The role of CD160 in alloimmunity is unknown. Using a newly generated CD160 fusion protein (CD160Ig we examined the role of the novel costimulatory molecule CD160 in mediating CD4(+ or CD8(+ T cell driven allograft rejection. CD160Ig inhibits alloreactive CD8(+ T cell proliferation and IFN-γ production in vitro, in particular in the absence of CD28 costimulation. Consequently CD160Ig prolongs fully mismatched cardiac allograft survival in CD4(-/-, CD28(-/- knockout and CTLA4Ig treated WT recipients, but not in WT or CD8(-/- knockout recipients. The prolonged cardiac allograft survival is associated with reduced alloreactive CD8(+ T cell proliferation, effector/memory responses and alloreactive IFN-γ production. Thus, CD160 signaling is particularly important in CD28-independent effector/memory CD8(+ alloreactive T cell activation in vivo and therefore may serve as a novel target for prevention of allograft rejection.

  7. Features of a Spatially Constrained Cystine Loop in the p10 FAST Protein Ectodomain Define a New Class of Viral Fusion Peptides*

    OpenAIRE

    Barry, Christopher; Key, Tim; Haddad, Rami; Duncan, Roy

    2010-01-01

    The reovirus fusion-associated small transmembrane (FAST) proteins are the smallest known viral membrane fusion proteins. With ectodomains of only ∼20–40 residues, it is unclear how such diminutive fusion proteins can mediate cell-cell fusion and syncytium formation. Contained within the 40-residue ectodomain of the p10 FAST protein resides an 11-residue sequence of moderately apolar residues, termed the hydrophobic patch (HP). Previous studies indicate the p10 HP shares operational features ...

  8. Engineering of a parainfluenza virus type 5 fusion protein (PIV-5 F): development of an autonomous and hyperfusogenic protein by a combinational mutagenesis approach.

    Science.gov (United States)

    Terrier, O; Durupt, F; Cartet, G; Thomas, L; Lina, B; Rosa-Calatrava, M

    2009-12-01

    The entry of enveloped viruses into host cells is accomplished by fusion of the viral envelope with the target cell membrane. For the paramyxovirus parainfluenza virus type 5 (PIV-5), this fusion involves an attachment protein (HN) and a class I viral fusion protein (F). We investigated the effect of 20 different combinations of 12 amino-acid substitutions within functional domains of the PIV-5 F glycoprotein, by performing cell surface expression measurements, quantitative fusion and syncytia assays. We found that combinations of mutations conferring an autonomous phenotype with mutations leading to an increased fusion activity were compatible and generated functional PIV-5 F proteins. The addition of mutations in the heptad-repeat domains led to both autonomous and hyperfusogenic phenotypes, despite the low cell surface expression of the corresponding mutants. Such engineering approach may prove useful not only for deciphering the fundamental mechanism behind viral-mediated membrane fusion but also in the development of potential therapeutic applications.

  9. Charge heterogeneity study of a Fc-fusion protein, abatacept, using two-dimensional gel electrophoresis.

    Science.gov (United States)

    Nebija, D; Noe, C R; Lachmann, B

    2015-08-01

    Medicinal products obtained by recombinant DNA technology are complex molecules and demonstrate a high degree of molecular heterogeneity. Charge heterogeneity and isoform pattern of this class of medicines, are parameters important for their quality, safety, and efficacy. In this study we report the application of two-dimensional gel electrophoresis (2-D electrophoresis) for the quality assessment, identification, charge heterogeneity and isoform pattern study of recombinant protein, CTLA4-Ig (abatacept), which has been selected as an example of the drug class, known as Fc-fusion proteins. In order to achieve an efficient separation of this complex analyte,2-D electrophoresis was optimized employing different experimental conditions regarding the selection of an immobilized pH gradient (IPG), sample pretreatment, presentation and detection procedure. Experimental datadocumented that 2-D electrophoresis is a suitable method for the assessment of identity, purity, structural integrity, isoform pattern and to monitor charge heterogeneity and post-translational glycosylation of the Fc-fusion protein, abatacept.

  10. Potent single-domain antibodies that arrest respiratory syncytial virus fusion protein in its prefusion state

    Science.gov (United States)

    Rossey, Iebe; Gilman, Morgan S. A.; Kabeche, Stephanie C.; Sedeyn, Koen; Wrapp, Daniel; Kanekiyo, Masaru; Chen, Man; Mas, Vicente; Spitaels, Jan; Melero, José A.; Graham, Barney S.; Schepens, Bert; McLellan, Jason S.; Saelens, Xavier

    2017-01-01

    Human respiratory syncytial virus (RSV) is the main cause of lower respiratory tract infections in young children. The RSV fusion protein (F) is highly conserved and is the only viral membrane protein that is essential for infection. The prefusion conformation of RSV F is considered the most relevant target for antiviral strategies because it is the fusion-competent form of the protein and the primary target of neutralizing activity present in human serum. Here, we describe two llama-derived single-domain antibodies (VHHs) that have potent RSV-neutralizing activity and bind selectively to prefusion RSV F with picomolar affinity. Crystal structures of these VHHs in complex with prefusion F show that they recognize a conserved cavity formed by two F protomers. In addition, the VHHs prevent RSV replication and lung infiltration of inflammatory monocytes and T cells in RSV-challenged mice. These prefusion F-specific VHHs represent promising antiviral agents against RSV. PMID:28194013

  11. HIV-1 envelope trimer fusion proteins and their applications

    NARCIS (Netherlands)

    Sliepen, K.H.E.W.J.

    2016-01-01

    HIV-1 is a major threat to global health and a vaccine is not yet on the horizon. A successful HIV-1 vaccine should probably induce HIV-1 neutralizing antibodies that target the envelope glycoprotein (Env) trimer on the outside of the virion. A possible starting point for such a vaccine are soluble

  12. Fusion protein His-Hsp65-6IA2P2 prevents type 1 diabetes through nasal immunization in NOD Mice.

    Science.gov (United States)

    Lu, Shiping; Li, Guoliang; Liu, Kunfeng; Yang, Xue; Cao, Rongyue; Zong, Li; Long, Jun; Jin, Liang; Wu, Jie

    2016-06-01

    Human heat shock protein 60 (Hsp60), is an endogenous β-cells autoantigen, it could postpone the onset of insulitis and sooner type 1 diabetes mellitus. P277 is one of Hsp65 determinants at position 437-469 of amino acids cascaded. Meanwhile, it's already well-known that there were several better anti-diabetic B epitopes, such as insulinoma antigen-2 (IA-2). Currently, fusion protein IA2P2 has constructed in order to enhance its pharmacological efficacy. In addition, added homologous bacterial-derived Hsp65 and His tag were beneficial to protein immunogenicity and purification separately. So, finally we examined a fusion protein His-Hsp65-6IA2P2 could regulate Th2 immune response and reduce natural diabetic incidence in NOD mice. We constructed two express vector pET28a-His-Hsp65-6P277 and pET28a-His-Hsp65-6IA2P2. After purification, we observed that triple intranasal administration of these two fusion protein in 4-week-old NOD mice maintained normal blood glucose and weight, with a lower diabetic or insulitis incidence. Consistent with induced splenic T cells proliferation and tolerance, His-Hsp65-6IA2P2-treated mice performed reduced IFN-γ and increased IL-10 level. In conclusion, we suggested that fusion protein His-Hsp65-6IA2P2 could be reconstructed and purified successively. Furthermore, nasal administration of this fusion protein could rebalance T cells population and prevent T1DM.

  13. Conserved leucines in N-terminal heptad repeat HR1 of envelope fusion protein F of group II nucleopolyhedroviruses are important for correct processing and essential for fusogenicity

    NARCIS (Netherlands)

    Long, G.; Pan, X.; Vlak, J.M.

    2008-01-01

    The heptad repeat (HR), a conserved structural motif of class I viral fusion proteins, is responsible for the formation of a six-helix bundle structure during the envelope fusion process. The insect baculovirus F protein is a newly found budded virus envelope fusion protein which possesses common fe

  14. Recombinant chymosin used for exact and complete removal of a prochymosin derived fusion tag releasing intact native target protein

    DEFF Research Database (Denmark)

    Justesen, Sune; Lamberth, Kasper; Nielsen, Lise-Lotte B

    2009-01-01

    Fusion tags add desirable properties to recombinant proteins, but they are not necessarily acceptable in the final products. Ideally, fusion tags should be removed releasing the intact native protein with no trace of the tag. Unique endoproteinases with the ability to cleave outside their own...... characteristics for the exact removal of fusion tags. It is readily available in highly purified recombinant versions approved by the FDA for preparation of food for human consumption. We suggest that one should consider extending the use of chymosin to the preparation of pharmaceutical proteins....... recognition sequence can potentially cleave at the boundary of any native protein. Chymosin was recently shown to cleave a pro-chymosin derived fusion tag releasing native target proteins. In our hands, however, not all proteins are chymosin-resistant under the acidic cleavage conditions (pH 4.5) used...

  15. FOXO1 is a direct target of EWS-Fli1 oncogenic fusion protein in Ewing's sarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liu, E-mail: lyang@u.washington.edu [Department of Orthopedics, University of Washington, Seattle, WA 98195 (United States); Medical Research Service, VA Puget Sound Health Care System, Seattle, WA 98108 (United States); Hu, Hsien-Ming; Zielinska-Kwiatkowska, Anna; Chansky, Howard A. [Department of Orthopedics, University of Washington, Seattle, WA 98195 (United States); Medical Research Service, VA Puget Sound Health Care System, Seattle, WA 98108 (United States)

    2010-11-05

    Research highlights: {yields} Inducible and reversible siRNA knockdown of an oncogenic fusion protein such as EWS-Fli1 is feasible and more advantageous than other siRNA methods. {yields} The tumor suppressor gene FOXO1 is a new EWS-Fli1 target. {yields} While trans-activators are known for the FOXO1 gene, there has been no report on negative regulators of FOXO1 transcription. {yields} This study provides first evidence that the EWS-Fli1 oncogenic fusion protein can function as a transcriptional repressor of the FOXO1 gene. -- Abstract: Ewing's family tumors are characterized by a specific t(11;22) chromosomal translocation that results in the formation of EWS-Fli1 oncogenic fusion protein. To investigate the effects of EWS-Fli1 on gene expression, we carried out DNA microarray analysis after specific knockdown of EWS-Fli1 through transfection of synthetic siRNAs. EWS-Fli1 knockdown increased expression of genes such as DKK1 and p57 that are known to be repressed by EWS-Fli1 fusion protein. Among other potential EWS-Fli1 targets identified by our microarray analysis, we have focused on the FOXO1 gene since it encodes a potential tumor suppressor and has not been previously reported in Ewing's cells. To better understand how EWS-Fli1 affects FOXO1 expression, we have established a doxycycline-inducible siRNA system to achieve stable and reversible knockdown of EWS-Fli1 in Ewing's sarcoma cells. Here we show that FOXO1 expression in Ewing's cells has an inverse relationship with EWS-Fli1 protein level, and FOXO1 promoter activity is increased after doxycycline-induced EWS-Fli1 knockdown. In addition, we have found that direct binding of EWS-Fli1 to FOXO1 promoter is attenuated after doxycycline-induced siRNA knockdown of the fusion protein. Together, these results suggest that suppression of FOXO1 function by EWS-Fli1 fusion protein may contribute to cellular transformation in Ewing's family tumors.

  16. [Prokaryotic expression of S2 extracellular domain of SARS coronavirus spike protein and its fusion with Hela cell membrane].

    Science.gov (United States)

    Liu, Yun; Liu, Ai-Hua; Deng, Peng; Wu, Xiang-Ling; Li, Tao; Liu, Ya-Wei; Xu, Jia; Jiang, Yong

    2009-03-01

    To construct the expression plasmid of S2 extracellular domain (S2ED) of SARS-coronavirus (SARS- Cov) spike protein (S protein) and enhanced green fluorescent protein (EGFP) to obtain the fusion protein expressed in prokaryotic cells. S2ED based on bioinformatics prediction and EGFP sequence were amplified by PCR and inserted into pET-14b plasmid. The recombinant protein His-S2ED-EGFP was expressed in E. coli by IPTG induction. After purification by Ni-NTA agarose beads, the soluble fractions of the fusion protein were collected and identified by SDS-PAGE and Western blotting. The fusion of S2ED with Hela cell membranes was observed with fluorescent microscope. The pET-14b-S2ED-EGFP plasmid was correctly constructed and highly expressed in BL21 (DE3). When incubated with Hela cells, the purified protein could not internalize through membrane fusion. The expression plasmid containing S2ED of SARS-Cov S protein and EGFP sequence is constructed successfully. Although the recombinant protein obtained has not shown the expected fusion effect with Hela cell membrane, this work may enrich the understanding of the process of membrane fusion mediated by S2 protein and lay the foundation for future study of targeting cell transport system based on cell-specific binding peptide.

  17. S-layer fusion proteins--construction principles and applications.

    Science.gov (United States)

    Ilk, Nicola; Egelseer, Eva M; Sleytr, Uwe B

    2011-12-01

    Crystalline bacterial cell surface layers (S-layers) are the outermost cell envelope component of many bacteria and archaea. S-layers are monomolecular arrays composed of a single protein or glycoprotein species and represent the simplest biological membrane developed during evolution. The wealth of information available on the structure, chemistry, genetics and assembly of S-layers revealed a broad spectrum of applications in nanobiotechnology and biomimetics. By genetic engineering techniques, specific functional domains can be incorporated in S-layer proteins while maintaining the self-assembly capability. These techniques have led to new types of affinity structures, microcarriers, enzyme membranes, diagnostic devices, biosensors, vaccines, as well as targeting, delivery and encapsulation systems.

  18. Analysis and control of proteolysis of a fusion protein in Pichia pastoris fed-batch processes.

    Science.gov (United States)

    Jahic, Mehmedalija; Gustavsson, Malin; Jansen, Ann-Katrin; Martinelle, Mats; Enfors, Sven-Olof

    2003-04-10

    A fusion protein composed of a cellulose-binding module (CBM) from Neocallimastix patriciarum cellulase 6A and lipase B from Candida antarctica (CALB), was produced by Pichia pastoris Mut(+) in high-cell density bioreactor cultures. The production was induced by switching from growth on glycerol to growth on methanol. The lipase activity in the culture supernatant increased at an almost constant rate up to a value corresponding to 1.3 g x l(-1) of CBM-CALB. However, only about 40% of the product was of full-length according to Western blot analysis. This loss was due to a cleavage of the protein in the linker between the CBM and the CALB moieties. The cleavage was catalyzed by serine proteases in the culture supernatant. The CALB-moiety was subjected to further slow degradation by cell-associated proteolysis. Different strategies were used to reduce the proteolysis. Previous efforts to shorten the linker region resulted in a stable protein but with ten times reduced product concentration in bioreactor cultures (Gustavsson et al. 2001, Protein Eng. 14, 711-715). Addition of rich medium for protease substrate competition had no effect on the proteolysis of CBM-CALB. The kinetics for the proteolytic reactions, with and without presence of cells were shown to be influenced by pH. The fastest reaction, cleavage in the linker, was substantially reduced at pH values below 5.0. Decreasing the pH from 5.0 to 4.0 in bioreactor cultures resulted in an increase of the fraction of full-length product from 40 to 90%. Further improvement was achieved by decreasing the temperature from 30 to 22 degrees C during the methanol feed phase. By combining the optimal pH and the low temperature almost all product (1.5 g x l(-1)) was obtained as full-length protein with a considerably higher purity in the culture supernatant compared with the original cultivation.

  19. An EGFR/HER2-Bispecific and enediyne-energized fusion protein shows high efficacy against esophageal cancer.

    Directory of Open Access Journals (Sweden)

    Xiao-Fang Guo

    Full Text Available Esophageal cancer is one of the most common cancers, and the 5-year survival rate is less than 10% due to lack of effective therapeutic agents. This study was to evaluate antitumor activity of Ec-LDP-Hr-AE, a recently developed bispecific enediyne-energized fusion protein targeting both epidermal growth factor receptor (EGFR and epidermal growth factor receptor 2 (HER2, on esophageal cancer. The fusion protein Ec-LDP-Hr-AE consists of two oligopeptide ligands and an enediyne antibiotic lidamycin (LDM for receptor binding and cell killing, respectively. The current study demonstrated that Ec-LDP-Hr had high affinity to bind to esophageal squamous cell carcinoma (ESCC cells, and enediyne-energized fusion protein Ec-LDP-Hr-AE showed potent cytotoxicity to ESCC cells with differential expression of EGFR and HER2. Ec-LDP-Hr-AE could cause significant G2-M arrest in EC9706 and KYSE150 cells, and it also induced apoptosis in ESCC cells in a dosage-dependent manner. Western blot assays showed that Ec-LDP-Hr-AE promoted caspase-3 and caspase-7 activities as well as PARP cleavage. Moreover, Ec-LDP-Hr-AE inhibited cell proliferation via decreasing phosphorylation of EGFR and HER2, and further exerted inhibition of the activation of their downstream signaling molecules. In vivo, at a tolerated dose, Ec-LDP-Hr-AE inhibited tumor growth by 88% when it was administered to nude mice bearing human ESCC cell KYSE150 xenografts. These results indicated that Ec-LDP-Hr-AE exhibited potent anti-caner efficacy on ESCC, suggesting it could be a promising candidate for targeted therapy of esophageal cancer.

  20. An abundant evolutionarily conserved CSB-PiggyBac fusion protein expressed in Cockayne syndrome.

    Directory of Open Access Journals (Sweden)

    John C Newman

    2008-03-01

    Full Text Available Cockayne syndrome (CS is a devastating progeria most often caused by mutations in the CSB gene encoding a SWI/SNF family chromatin remodeling protein. Although all CSB mutations that cause CS are recessive, the complete absence of CSB protein does not cause CS. In addition, most CSB mutations are located beyond exon 5 and are thought to generate only C-terminally truncated protein fragments. We now show that a domesticated PiggyBac-like transposon PGBD3, residing within intron 5 of the CSB gene, functions as an alternative 3' terminal exon. The alternatively spliced mRNA encodes a novel chimeric protein in which CSB exons 1-5 are joined in frame to the PiggyBac transposase. The resulting CSB-transposase fusion protein is as abundant as CSB protein itself in a variety of human cell lines, and continues to be expressed by primary CS cells in which functional CSB is lost due to mutations beyond exon 5. The CSB-transposase fusion protein has been highly conserved for at least 43 Myr since the divergence of humans and marmoset, and appears to be subject to selective pressure. The human genome contains over 600 nonautonomous PGBD3-related MER85 elements that were dispersed when the PGBD3 transposase was last active at least 37 Mya. Many of these MER85 elements are associated with genes which are involved in neuronal development, and are known to be regulated by CSB. We speculate that the CSB-transposase fusion protein has been conserved for host antitransposon defense, or to modulate gene regulation by MER85 elements, but may cause CS in the absence of functional CSB protein.

  1. Production of FMDV virus-like particles by a SUMO fusion protein approach in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Liang Shu-Mei

    2009-08-01

    Full Text Available Abstract Virus-like particles (VLPs are formed by the self-assembly of envelope and/or capsid proteins from many viruses. Some VLPs have been proven successful as vaccines, and others have recently found applications as carriers for foreign antigens or as scaffolds in nanoparticle biotechnology. However, production of VLP was usually impeded due to low water-solubility of recombinant virus capsid proteins. Previous studies revealed that virus capsid and envelope proteins were often posttranslationally modified by SUMO in vivo, leading into a hypothesis that SUMO modification might be a common mechanism for virus proteins to retain water-solubility or prevent improper self-aggregation before virus assembly. We then propose a simple approach to produce VLPs of viruses, e.g., foot-and-mouth disease virus (FMDV. An improved SUMO fusion protein system we developed recently was applied to the simultaneous expression of three capsid proteins of FMDV in E. coli. The three SUMO fusion proteins formed a stable heterotrimeric complex. Proteolytic removal of SUMO moieties from the ternary complexes resulted in VLPs with size and shape resembling the authentic FMDV. The method described here can also apply to produce capsid/envelope protein complexes or VLPs of other disease-causing viruses.

  2. Antitumor effect of FGFR inhibitors on a novel cholangiocarcinoma patient derived xenograft mouse model endogenously expressing an FGFR2-CCDC6 fusion protein.

    Science.gov (United States)

    Wang, Yu; Ding, Xiwei; Wang, Shaoqing; Moser, Catherine D; Shaleh, Hassan M; Mohamed, Essa A; Chaiteerakij, Roongruedee; Allotey, Loretta K; Chen, Gang; Miyabe, Katsuyuki; McNulty, Melissa S; Ndzengue, Albert; Barr Fritcher, Emily G; Knudson, Ryan A; Greipp, Patricia T; Clark, Karl J; Torbenson, Michael S; Kipp, Benjamin R; Zhou, Jie; Barrett, Michael T; Gustafson, Michael P; Alberts, Steven R; Borad, Mitesh J; Roberts, Lewis R

    2016-09-28

    Cholangiocarcinoma is a highly lethal cancer with limited therapeutic options. Recent genomic analysis of cholangiocarcinoma has revealed the presence of fibroblast growth factor receptor 2 (FGFR2) fusion proteins in up to 13% of intrahepatic cholangiocarcinoma (iCCA). FGFR fusions have been identified as a novel oncogenic and druggable target in a number of cancers. In this study, we established a novel cholangiocarcinoma patient derived xenograft (PDX) mouse model bearing an FGFR2-CCDC6 fusion protein from a metastatic lung nodule of an iCCA patient. Using this PDX model, we confirmed the ability of the FGFR inhibitors, ponatinib, dovitinib and BGJ398, to modulate FGFR signaling, inhibit cell proliferation and induce cell apoptosis in cholangiocarcinoma tumors harboring FGFR2 fusions. In addition, BGJ398 appeared to be superior in potency to ponatinib and dovitinib in this model. Our findings provide a strong rationale for the investigation of FGFR inhibitors, particularly BGJ398, as a therapeutic option for cholangiocarcinoma patients harboring FGFR2 fusions.

  3. SRE elements are binding sites for the fusion protein EWS-FLI-1.

    OpenAIRE

    Magnaghi-Jaulin, L; Masutani, H; Robin, P.; Lipinski, M; Harel-Bellan, A

    1996-01-01

    EWS-FLI-1 is a chimeric protein produced in most Ewing's sarcomas. It results from the fusion of the N-terminal-encoding region of the EWS gene to the C-terminal DNA-binding domain (the ETS domain) encoded by the FLI-1 ets family gene. Both EWS-FLI-1 and FLI-1 proteins function as transcription factors that bind specifically to ets sequences (the ets boxes) present in promoter elements. EWS- FLI-1 is a powerful transforming protein, whereas FLI-1 is not. In a search for potential DNA binding ...

  4. Ebolavirus Glycoprotein Fc Fusion Protein Protects Guinea Pigs against Lethal Challenge.

    Science.gov (United States)

    Konduru, Krishnamurthy; Shurtleff, Amy C; Bradfute, Steven B; Nakamura, Siham; Bavari, Sina; Kaplan, Gerardo

    2016-01-01

    Ebola virus (EBOV), a member of the Filoviridae that can cause severe hemorrhagic fever in humans and nonhuman primates, poses a significant threat to the public health. Currently, there are no licensed vaccines or therapeutics to prevent and treat EBOV infection. Several vaccines based on the EBOV glycoprotein (GP) are under development, including vectored, virus-like particles, and protein-based subunit vaccines. We previously demonstrated that a subunit vaccine containing the extracellular domain of the Ebola ebolavirus (EBOV) GP fused to the Fc fragment of human IgG1 (EBOVgp-Fc) protected mice against EBOV lethal challenge. Here, we show that the EBOVgp-Fc vaccine formulated with QS-21, alum, or polyinosinic-polycytidylic acid-poly-L-lysine carboxymethylcellulose (poly-ICLC) adjuvants induced strong humoral immune responses in guinea pigs. The vaccinated animals developed anti-GP total antibody titers of approximately 105-106 and neutralizing antibody titers of approximately 103 as assessed by a BSL-2 neutralization assay based on vesicular stomatitis virus (VSV) pseudotypes. The poly-ICLC formulated EBOVgp-Fc vaccine protected all the guinea pigs against EBOV lethal challenge performed under BSL-4 conditions whereas the same vaccine formulated with QS-21 or alum only induced partial protection. Vaccination with a mucin-deleted EBOVgp-Fc construct formulated with QS-21 adjuvant did not have a significant effect in anti-GP antibody levels and protection against EBOV lethal challenge compared to the full-length GP construct. The bulk of the humoral response induced by the EBOVgp-Fc vaccine was directed against epitopes outside the EBOV mucin region. Our findings indicate that different adjuvants can eliciting varying levels of protection against lethal EBOV challenge in guinea pigs vaccinated with EBOVgp-Fc, and suggest that levels of total anti-GP antibodies elicit by protein-based GP subunit vaccines do not correlate with protection. Our data further support

  5. In silico design, cloning and high level expression of L7/L12-TOmp31 fusion protein of Brucella antigens

    OpenAIRE

    Golshani, Maryam; Rafati, Sima; Jahanian-Najafabadi, Ali; Nejati-Moheimani, Mehdi; Siadat, Seyed Davar; Shahcheraghi, Fereshteh; Bouzari, Saeid

    2015-01-01

    Globally, Brucella melitensis and B. abortus are the most common cause of human brucellosis. The outer membrane protein 31 (Omp31) and L7/L12 are immunodominant and protective antigens conserved in human Brucella pathogens which are considered as potential vaccine candidates. We aimed to design the fusion protein from Brucella L7/L12 and truncated Omp31proteins, in silico, clone the fusion in pET28a vector, and express it in Escherichia coli host. Two possible fusion forms, L7/L12-TOmp31 and ...

  6. The small G-proteins Rac1 and Cdc42 are essential for myoblast fusion in the mouse

    DEFF Research Database (Denmark)

    Vasyutina, Elena; Martarelli, Benedetta; Brakebusch, Cord;

    2009-01-01

    Rac1 and Cdc42 are small G-proteins that regulate actin dynamics and affect plasma membrane protrusion and vesicle traffic. We used conditional mutagenesis in mice to demonstrate that Rac1 and Cdc42 are essential for myoblast fusion in vivo and in vitro. The deficit in fusion of Rac1 or Cdc42...

  7. Two-plasmid vector system for independently controlled expression of green and red fluorescent fusion proteins in Staphylococcus aureus.

    Science.gov (United States)

    Brzoska, Anthony J; Firth, Neville

    2013-05-01

    We have constructed a system for the regulated coexpression of green fluorescent protein (GFP) and red fluorescent protein (RFP) fusions in Staphylococcus aureus. It was validated by simultaneous localization of cell division proteins FtsZ and Noc and used to detect filament formation by an actin-like ParM plasmid partitioning protein in its native coccoid host.

  8. Analysis of nuclear export using photoactivatable GFP fusion proteins and interspecies heterokaryons.

    Science.gov (United States)

    Nakrieko, Kerry-Ann; Ivanova, Iordanka A; Dagnino, Lina

    2010-01-01

    In this chapter, we review protocols for the analysis of nucleocytoplasmic shuttling of transcription factors and nuclear proteins, using two different approaches. The first involves the use of photoactivatable forms of the protein of interest by fusion to photoactivatable green fluorescent protein to follow its movement out of the nucleus by live-cell confocal microscopy. This methodology allows for the kinetic characterization of protein movements as well as measurement of steady-state levels. In a second procedure to assess the ability of a nuclear protein to move into and out of the nucleus, we describe the use of interspecies heterokaryon assays, which provide a measurement of steady-state distribution. These technologies are directly applicable to the analysis of nucleocytoplasmic movements not only of transcription factors, but also other nuclear proteins.

  9. Morphology, biophysical properties and protein-mediated fusion of archaeosomes.

    Directory of Open Access Journals (Sweden)

    Vid Šuštar

    Full Text Available As variance from standard phospholipids of eubacteria and eukaryotes, archaebacterial diether phospholipids contain branched alcohol chains (phytanol linked to glycerol exclusively with ether bonds. Giant vesicles (GVs constituted of different species of archaebacterial diether phospholipids and glycolipids (archaeosomes were prepared by electroformation and observed under a phase contrast and/or fluorescence microscope. Archaebacterial lipids and different mixtures of archaebacterial and standard lipids formed GVs which were analysed for size, yield and ability to adhere to each other due to the mediating effects of certain plasma proteins. GVs constituted of different proportions of archaeal or standard phosphatidylcholine were compared. In nonarchaebacterial GVs (in form of multilamellar lipid vesicles, MLVs the main transition was detected at T(m = 34. 2°C with an enthalpy of ΔH = 0.68 kcal/mol, whereas in archaebacterial GVs (MLVs we did not observe the main phase transition in the range between 10 and 70°C. GVs constituted of archaebacterial lipids were subject to attractive interaction mediated by beta 2 glycoprotein I and by heparin. The adhesion constant of beta 2 glycoprotein I-mediated adhesion determined from adhesion angle between adhered GVs was in the range of 10(-8 J/m(2. In the course of protein mediated adhesion, lateral segregation of the membrane components and presence of thin tubular membranous structures were observed. The ability of archaebacterial diether lipids to combine with standard lipids in bilayers and their compatibility with adhesion-mediating molecules offer further evidence that archaebacterial lipids are appropriate for the design of drug carriers.

  10. Mistic and TarCF as fusion protein partners for functional expression of the cannabinoid receptor 2 in Escherichia coli.

    Science.gov (United States)

    Chowdhury, Ananda; Feng, Rentian; Tong, Qin; Zhang, Yuxun; Xie, Xiang-Qun

    2012-06-01

    G protein coupled receptors (GPCRs) are key players in signal recognition and cellular communication making them important therapeutic targets. Large-scale production of these membrane proteins in their native form is crucial for understanding their mechanism of action and target-based drug design. Here we report the overexpression system for a GPCR, the cannabinoid receptor subtype 2 (CB2), in Escherichia coli C43(DE3) facilitated by two fusion partners: Mistic, an integral membrane protein expression enhancer at the N-terminal, and TarCF, a C-terminal fragment of the bacterial chemosensory transducer Tar at the C-terminal of the CB2 open reading frame region. Multiple histidine tags were added on both ends of the fusion protein to facilitate purification. Using individual and combined fusion partners, we found that CB2 fusion protein expression was maximized only when both partners were used. Variable growth and induction conditions were conducted to determine and optimize protein expression. More importantly, this fusion protein Mistic-CB2-TarCF can localize into the E. coli membrane and exhibit functional binding activities with known CB2 ligands including CP55,940, WIN55,212-2 and SR144,528. These results indicate that this novel expression and purification system provides us with a promising strategy for the preparation of biologically active GPCRs, as well as general application for the preparation of membrane-bound proteins using the two new fusion partners described.

  11. Protective and therapeutic efficacy of Mycobacterium smegmatis expressing HBHA-hIL12 fusion protein against Mycobacterium tuberculosis in mice.

    Directory of Open Access Journals (Sweden)

    Shanmin Zhao

    Full Text Available Tuberculosis (TB remains a major worldwide health problem. The only vaccine against TB, Mycobacterium bovis Bacille Calmette-Guerin (BCG, has demonstrated relatively low efficacy and does not provide satisfactory protection against the disease. More efficient vaccines and improved therapies are urgently needed to decrease the worldwide spread and burden of TB, and use of a viable, metabolizing mycobacteria vaccine may be a promising strategy against the disease. Here, we constructed a recombinant Mycobacterium smegmatis (rMS strain expressing a fusion protein of heparin-binding hemagglutinin (HBHA and human interleukin 12 (hIL-12. Immune responses induced by the rMS in mice and protection against Mycobacterium tuberculosis (MTB were investigated. Administration of this novel rMS enhanced Th1-type cellular responses (IFN-γ and IL-2 in mice and reduced bacterial burden in lungs as well as that achieved by BCG vaccination. Meanwhile, the bacteria load in M. tuberculosis infected mice treated with the rMS vaccine also was significantly reduced. In conclusion, the rMS strain expressing the HBHA and human IL-12 fusion protein enhanced immunogencity by improving the Th1-type response against TB, and the protective effect was equivalent to that of the conventional BCG vaccine in mice. Furthermore, it could decrease bacterial load and alleviate histopathological damage in lungs of M. tuberculosis infected mice.

  12. Preparation of ChlL-2 and IBDV VP2 Fusion Protein by Baculovirus Expression System

    Institute of Scientific and Technical Information of China (English)

    Yan Liu; Yongwei Wei; Xiaofeng Wu; Lian Yu

    2005-01-01

    This study aims to produce an effective subunit vaccine against infectious bursal disease virus (IBDV). The genes of chicken interleukin-2 (ChIL-2) and IBDV viral protein 2 (VP2) were amplified and fused by splice overlap extension-polymerase chain reaction (SOE-PCR). The fusion gene was digested by EcoR I/Kpn I and inserted into pBacPAK8 vector, resulting in recombinant transfer plasmid pBacPakVP2-IL2. The recombinant plasmid was transfected into Sf-9 cells accompanied with hybrid nuclear polyhedrosis virus (HyNPV) genome DNA and lipofectin. Plaque-purification indicated that we had got the recombinant Hy-VP2-IL2. Fusion protein VP2-IL2was expressed effectively both in insect cells and bombyx mori. The expression of fusion protein was confirmed by ELISA, SDS-PAGE and Western blotting assay, respectively. This efficient system allows us to meet the need for inexpensive vaccines required by the poultry industry.

  13. Sequence motifs and prokaryotic expression of the reptilian paramyxovirus fusion protein

    Science.gov (United States)

    Franke, J.; Batts, W.N.; Ahne, W.; Kurath, G.; Winton, J.R.

    2006-01-01

    Fourteen reptilian paramyxovirus isolates were chosen to represent the known extent of genetic diversity among this novel group of viruses. Selected regions of the fusion (F) gene were sequenced, analyzed and compared. The F gene of all isolates contained conserved motifs homologous to those described for other members of the family Paramyxoviridae including: signal peptide, transmembrane domain, furin cleavage site, fusion peptide, N-linked glycosylation sites, and two heptad repeats, the second of which (HRB-LZ) had the characteristics of a leucine zipper. Selected regions of the fusion gene of isolate Gono-GER85 were inserted into a prokaryotic expression system to generate three recombinant protein fragments of various sizes. The longest recombinant protein was cleaved by furin into two fragments of predicted length. Western blot analysis with virus-neutralizing rabbit-antiserum against this isolate demonstrated that only the longest construct reacted with the antiserum. This construct was unique in containing 30 additional C-terminal amino acids that included most of the HRB-LZ. These results indicate that the F genes of reptilian paramyxoviruses contain highly conserved motifs typical of other members of the family and suggest that the HRB-LZ domain of the reptilian paramyxovirus F protein contains a linear antigenic epitope. ?? Springer-Verlag 2005.

  14. Antibody-cytokine fusion proteins for treatment of cancer: engineering cytokines for improved efficacy and safety.

    Science.gov (United States)

    Young, Patricia A; Morrison, Sherie L; Timmerman, John M

    2014-10-01

    The true potential of cytokine therapies in cancer treatment is limited by the inability to deliver optimal concentrations into tumor sites due to dose-limiting systemic toxicities. To maximize the efficacy of cytokine therapy, recombinant antibody-cytokine fusion proteins have been constructed by a number of groups to harness the tumor-targeting ability of monoclonal antibodies. The aim is to guide cytokines specifically to tumor sites where they might stimulate more optimal anti-tumor immune responses while avoiding the systemic toxicities of free cytokine therapy. Antibody-cytokine fusion proteins containing interleukin (IL)-2, IL-12, IL-21, tumor necrosis factor (TNF)α, and interferons (IFNs) α, β, and γ have been constructed and have shown anti-tumor activity in preclinical and early-phase clinical studies. Future priorities for development of this technology include optimization of tumor targeting, bioactivity of the fused cytokine, and choice of appropriate agents for combination therapies. This review is intended to serve as a framework for engineering an ideal antibody-cytokine fusion protein, focusing on previously developed constructs and their clinical trial results.

  15. Purification method for recombinant proteins based on a fusion between the target protein and the C-terminus of calmodulin

    Science.gov (United States)

    Schauer-Vukasinovic, Vesna; Deo, Sapna K.; Daunert, Sylvia

    2002-01-01

    Calmodulin (CaM) was used as an affinity tail to facilitate the purification of the green fluorescent protein (GFP), which was used as a model target protein. The protein GFP was fused to the C-terminus of CaM, and a factor Xa cleavage site was introduced between the two proteins. A CaM-GFP fusion protein was expressed in E. coli and purified on a phenothiazine-derivatized silica column. CaM binds to the phenothiazine on the column in a Ca(2+)-dependent fashion and it was, therefore, used as an affinity tail for the purification of GFP. The fusion protein bound to the affinity column was then subjected to a proteolytic digestion with factor Xa. Pure GFP was eluted with a Ca(2+)-containing buffer, while CaM was eluted later with a buffer containing the Ca(2+)-chelating agent EGTA. The purity of the isolated GFP was verified by SDS-PAGE, and the fluorescence properties of the purified GFP were characterized.

  16. Prokaryotic soluble overexpression and purification of bioactive human growth hormone by fusion to thioredoxin, maltose binding protein, and protein disulfide isomerase.

    Directory of Open Access Journals (Sweden)

    Minh Tan Nguyen

    Full Text Available Human growth hormone (hGH is synthesized by somatotroph cells of the anterior pituitary gland and induces cell proliferation and growth. This protein has been approved for the treatment of various conditions, including hGH deficiency, chronic renal failure, and Turner syndrome. Efficient production of hGH in Escherichia coli (E. coli has proven difficult because the E. coli-expressed hormone tends to aggregate and form inclusion bodies, resulting in poor solubility. In this study, seven N-terminal fusion partners, hexahistidine (His6, thioredoxin (Trx, glutathione S-transferase (GST, maltose-binding protein (MBP, N-utilization substance protein A (NusA, protein disulfide bond isomerase (PDI, and the b'a' domain of PDI (PDIb'a', were tested for soluble overexpression of codon-optimized hGH in E. coli. We found that MBP and hPDI tags significantly increased the solubility of the hormone. In addition, lowering the expression temperature to 18°C also dramatically increased the solubility of all the fusion proteins. We purified hGH from MBP-, PDIb'a'-, or Trx-tagged hGH expressed at 18°C in E. coli using simple chromatographic techniques and compared the final purity, yield, and activity of hGH to assess the impact of each partner protein. Purified hGH was highly pure on silver-stained gel and contained very low levels of endotoxin. On average, ∼37 mg, ∼12 mg, and ∼7 mg of hGH were obtained from 500 mL-cell cultures of Trx-hGH, MBP-hGH, and PDIb'a'-hGH, respectively. Subsequently, hGH was analyzed using mass spectroscopy to confirm the presence of two intra-molecular disulfide bonds. The bioactivity of purified hGHs was demonstrated using Nb2-11 cell.

  17. Matrix-assisted refolding of autoprotease fusion proteins on an ion exchange column: a kinetic investigation.

    Science.gov (United States)

    Schmoeger, Elisabeth; Wellhoefer, Martin; Dürauer, Astrid; Jungbauer, Alois; Hahn, Rainer

    2010-09-17

    Matrix-assisted refolding is an excellent technique for performing refolding of recombinant proteins at high concentration because aggregation during refolding is partially suppressed. The autoprotease N(pro) and its engineered mutant EDDIE can be efficiently refolded on cation-exchangers. In the current work, denatured fusion proteins were loaded at different column saturations (5 and 50 mg mL(-1) gel), and refolding and self-cleavage were initiated during elution. The contact time of the protein with the matrix significantly influenced the refolding rate and yield. On POROS 50 HS, the refolding rate was comparable to a batch refolding process, but yield was substantially higher; at a protein concentration of 1.55 mg mL(-1), an almost complete conversion was observed. With Capto S, the rate of self-cleavage increased by a factor of 20 while yield was slightly reduced. Processing the autoprotease fusion protein on Capto S at a high protein loading of 50 mg mL(-1) gel and short contact time (0.5h) yielded the highest productivity.

  18. Andrographolide sensitizes cisplatin-induced apoptosis via suppression of autophagosome-lysosome fusion in human cancer cells.

    Science.gov (United States)

    Zhou, Jing; Hu, Shuai-Er; Tan, Shi-Hao; Cao, Ruoxi; Chen, Yiyang; Xia, Dajing; Zhu, Xinqiang; Yang, Xing-Fen; Ong, Choon-Nam; Shen, Han-Ming

    2012-03-01

    Suppression of autophagy has been increasingly recognized as a novel cancer therapeutic approach. Andrographolide (Andro), a diterpenoid lactone isolated from an herbal plant Andrographis paniculata, is known to possess anti-inflammatory and anticancer activity. In this study, we sought to examine the effect of Andro on autophagy, and to evaluate whether such effect is relevant to the sensitization effect of Andro on apoptosis induced by DNA damage agents in cancer cells. First, we found that Andro is able to significantly enhance autophagic markers in various cancer cell lines, including GFP-LC3 puncta and LC3-II level. Interestingly, Andro treatment also led to marked increase of p62 protein level and addition of chloroquine (CQ) failed to further enhance either LC3-II or p62 level, indicating that Andro is likely to suppress autophagic flux at the maturation and degradation stage. Next, we provided evidence that Andro inhibits autophagosome maturation not by affecting the lysosomal function, but by impairing autophagosome-lysosome fusion. Lastly, we demonstrated that treatment with cisplatin, a DNA damage agent, induces autophagy in cancer cells. Importantly, Andro is capable of sensitizing cisplatin-induced cell killing determined with both short-term apoptosis assays and long-term clonogenic test, via suppression of autophagy, a process independent of p53. In summary, these observations collectively suggest that Andro could be a promising anti-cancer agent in combination therapy via its potent inhibitory effect on autophagy by disrupting autophagosome-lysosome fusion.

  19. Promoting lumbar spinal fusion by adenovirus-mediated bone morphogenetic protein-4 gene therapy

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jian; ZHAO Dun-yan; SHEN Ai-guo; LIU Fan; ZHANG Feng; SUN Yu; WU Hong-fu; LU Chun-feng; SHI Hong-guang

    2007-01-01

    Objective: To determine whether an adenoviral construct containing bone morphogenetic protein-4 (BMP-4) gene can be used for lumbar spinal fusion. Methods: Twelve New Zealand white rabbits were randomly divided into two groups, 8 in the experimental group and 4 in the control group. Recombinant, replication-defective type 5 adenovirus with the cytomegalovirus (CMV) promoter and BMP-4 gene (Ad-BMP-4) was used. Another adenovirus constructed with the CMV promoter and β-galactosidase gene (Ad-β-gal) was used as control. Using collagen sponge as a carrier, Ad-BMP-4 (2.9×108 pfu/ml ) was directly implanted on the surface of L5-L6 lamina in the experimental group, while Ad-β-gal was implanted simultaneously in the control group. X-ray was obtained at 3, 6, and 12 weeks postoperatively to observe new bone formation. When new bone formation was identified, CT scans and three-dimensional reconstruction were obtained. After that, the animals were killed and underwent histological inspection.Results: In 12 weeks after operation, new bone formation and fusion were observed on CT scans in the experimental group, without the evidence of ectopic calcification in the canal. Negative results were found in the control group. Histological analysis demonstrated endochondral bone formation at the operative site and fusion at early stage was testified.Conclusions: In vivo gene therapy using Ad-BMP-4 for lumbar posterolateral spinal fusion is practicable and effective.

  20. Viral receptor blockage by multivalent recombinant antibody fusion proteins: inhibiting human rhinovirus (HRV) infection with CFY196

    National Research Council Canada - National Science Library

    Fang, Fang; Yu, Mang

    .... In this article, we have summarized the recently published work from Perlan Therapeutics, Inc. and others that involves creation of multivalent Fab fusion proteins against the HRV major receptor ICAM-1...

  1. Neutron-induced dpa, transmutations, gas production, and helium embrittlement of fusion materials

    CERN Document Server

    Gilbert, M R; Nguyen-Manh, D; Zheng, S; Packer, L W; Sublet, J -Ch

    2013-01-01

    In a fusion reactor materials will be subjected to significant fluxes of high-energy neutrons. As well as causing radiation damage, the neutrons also initiate nuclear reactions leading to changes in the chemical composition of materials (transmutation). Many of these reactions produce gases, particularly helium, which cause additional swelling and embrittlement of materials. This paper investigates, using a combination of neutron-transport and inventory calculations, the variation in displacements per atom (dpa) and helium production levels as a function of position within the high flux regions of a recent conceptual model for the "next-step" fusion device DEMO. Subsequently, the gas production rates are used to provide revised estimates, based on new density-functional-theory results, for the critical component lifetimes associated with the helium-induced grain-boundary embrittlement of materials. The revised estimates give more optimistic projections for the lifetimes of materials in a fusion power plant co...

  2. Two single mutations in the fusion protein of Newcastle disease virus confer hemagglutinin-neuraminidase independent fusion promotion and attenuate the pathogenicity in chickens.

    Science.gov (United States)

    Ji, Yanhong; Liu, Tao; Jia, Yane; Liu, Bin; Yu, Qingzhong; Cui, Xiaole; Guo, Fengfeng; Chang, Huiyun; Zhu, Qiyun

    2017-09-01

    The fusion (F) protein of Newcastle disease virus (NDV) affects viral infection and pathogenicity through mediating membrane fusion. Previously, we found NDV with increased fusogenic activity in which contained T458D or G459D mutation in the F protein. Here, we investigated the effects of these two mutations on viral infection, fusogenicity and pathogenicity. Syncytium formation assays indicated that T458D or G459D increased the F protein cleavage activity and enhanced cell fusion with or without the presence of HN protein. The T458D- or G459D-mutated NDV resulted in a decrease in virus replication or release from cells. The animal study showed that the pathogenicity of the mutated NDVs was attenuated in chickens. These results indicate that these two single mutations in F altered or diminished the requirement of HN for promoting membrane fusion. The increased fusogenic activity may disrupt the cellular machinery and consequently decrease the virus replication and pathogenicity in chickens. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. TLR5-dependent immunogenicity of a recombinant fusion protein containing an immunodominant epitope of malarial circumsporozoite protein and the FliC flagellin of Salmonella Typhimurium

    Directory of Open Access Journals (Sweden)

    Ariane Guglielmi Ariza Camacho

    2011-08-01

    Full Text Available Recently, we described the improved immunogenicity of new malaria vaccine candidates based on the expression of fusion proteins containing immunodominant epitopes of merozoites and Salmonella enterica serovar Typhimurium flagellin (FliC protein as an innate immune agonist. Here, we tested whether a similar strategy, based on an immunodominant B-cell epitope from malaria sporozoites, could also generate immunogenic fusion polypeptides. A recombinant His6-tagged FliC protein containing the C-terminal repeat regions of the VK210 variant of Plasmodium vivax circumsporozoite (CS protein was constructed. This recombinant protein was successfully expressed in Escherichia coli as soluble protein and was purified by affinity to Ni-agarose beads followed by ion exchange chromatography. A monoclonal antibody specific for the CS protein of P. vivax sporozoites (VK210 was able to recognise the purified protein. C57BL/6 mice subcutaneously immunised with the recombinant fusion protein in the absence of any conventional adjuvant developed protein-specific systemic antibody responses. However, in mice genetically deficient in expression of TLR5, this immune response was extremely low. These results extend our previous observations concerning the immunogenicity of these recombinant fusion proteins and provide evidence that the main mechanism responsible for this immune activation involves interactions with TLR5, which has not previously been demonstrated for any recombinant FliC fusion protein.

  4. Matrix-assisted refolding of autoprotease fusion proteins on an ion exchange column.

    Science.gov (United States)

    Schmoeger, Elisabeth; Berger, Eva; Trefilov, Alexandru; Jungbauer, Alois; Hahn, Rainer

    2009-11-27

    Refolding of proteins must be performed under very dilute conditions to overcome the competing aggregation reaction, which has a high reaction order. Refolding on a chromatography column partially prevents formation of the intermediate form prone to aggregation. A chromatographic refolding procedure was developed using an autoprotease fusion protein with the mutant EDDIE from the N(pro) autoprotease of pestivirus. Upon refolding, self-cleavage generates a target peptide with an authentic N-terminus. The refolding process was developed using the basic 1.8-kDa peptide sSNEVi-C fused to the autoprotease EDDIE or the acidic peptide pep6His, applying cation and anion exchange chromatography, respectively. Dissolved inclusion bodies were loaded on cation exchange chromatographic resins (Capto S, POROS HS, Fractogel EMD SO(3)(-), UNOsphere S, SP Sepharose FF, CM Sepharose FF, S Ceramic HyperD F, Toyopearl SP-650, and Toyopearl MegaCap II SP-550EC). A conditioning step was introduced in order to reduce the urea concentration prior to the refolding step. Refolding was initiated by applying an elution buffer containing a high concentration of Tris-HCl plus common refolding additives. The actual refolding process occurred concurrently with the elution step and was completed in the collected fraction. With Capto S, POROS HS, and Fractogel SO(3)(-), refolding could be performed at column loadings of 50mg fusion protein/ml gel, resulting in a final eluate concentration of around 10-15 mg/ml, with refolding and cleavage step yields of around 75%. The overall yield of recovered peptide reached 50%. Similar yields were obtained using the anion exchange system and the pep6His fusion peptide. This chromatographic refolding process allows processing of fusion peptides at a concentration range 10- to 100-fold higher than that observed for common refolding systems.

  5. The Vtc proteins in vacuole fusion: coupling NSF activity to V(0) trans-complex formation

    DEFF Research Database (Denmark)

    Müller, Oliver; Bayer, Martin J; Peters, Christopher

    2002-01-01

    vacuole system has revealed two subsequent molecular events: trans-complex formation of V-ATPase proteolipid sectors (V(0)) and release of LMA1 from the membrane. We have now identified a hetero-oligomeric membrane integral complex of vacuolar transporter chaperone (Vtc) proteins integrating these events......, LMA1 release, but dispensible for all preceding steps, including V(0) trans-complex formation. This suggests that Vtc3p might act close to or at fusion pore opening. We propose that Vtc proteins may couple ATP-dependent NSF activity to a subset of V(0) sectors in order to activate them for V(0) trans...

  6. Induction of Boosted Immune Response in Mice by Leptospiral Surface Proteins Expressed in Fusion with DnaK

    Directory of Open Access Journals (Sweden)

    Marina V. Atzingen

    2014-01-01

    Full Text Available Leptospirosis is an important global disease of human and veterinary concern. Caused by pathogenic Leptospira, the illness was recently classified as an emerging infectious disease. Currently available veterinarian vaccines do not induce long-term protection against infection and do not provide cross-protective immunity. Several studies have suggested the use of DnaK as an antigen in vaccine formulation, due to an exceptional degree of immunogenicity. We focused on four surface proteins: rLIC10368 (Lsa21, rLIC10494, rLIC12690 (Lp95, and rLIC12730, previously shown to be involved in host-pathogen interactions. Our goal was to evaluate the immunogenicity of the proteins genetically fused with DnaK in animal model. The chosen genes were amplified by PCR methodology and cloned into pAE, an E. coli vector. The recombinant proteins were expressed alone or in fusion with DnaK at the N-terminus. Our results demonstrate that leptospiral proteins fused with DnaK have elicited an enhanced immune response in mice when compared to the effect promoted by the individual proteins. The boosted immune effect was demonstrated by the production of total IgG, lymphocyte proliferation, and significant amounts of IL-10 in supernatant of splenocyte cell cultures. We believe that this approach could be employed in vaccines to enhance presentation of antigens of Leptospira to professional immune cells.

  7. Immobilization and utilization of the recombinant fusion proteins trypsin-streptavidin and streptavidin-transglutaminase for modification of whey protein isolate functionality.

    Science.gov (United States)

    Wilcox, Christopher P; Clare, Debra A; Valentine, Val W; Swaisgood, Harold E

    2002-06-19

    A method was developed for the production of a hydrolyzed/polymerized whey protein derivative with altered solution and gelation properties using a combination of recombinant DNA and immobilized enzyme technologies. The recombinant fusion proteins trypsin-streptavidin (TrypSA) and streptavidin-transglutaminase (cSAcTG) were produced in Escherichia coli, extracted, and then immobilized by selective adsorption on biotinylated controlled-pore glass. Recirculation through a TrypSA reactor induced limited proteolysis of whey proteins. Hydrolysates were then recirculated through a cSAcTG reactor for incremental periods of time to arrive at increasing degrees of polymerization. The polymers were subsequently analyzed for viscosity/flow behavior, gelation properties, and fracture properties using shear rate ramps/intrinsic viscosity, small-strain oscillatory rheology, and vane viscometry, respectively. By combining limited proteolysis with controlled cross-linking, it was possible to create derivatives of whey proteins with enhanced functional properties. Increases in the degree of whey protein modification were correlated with greater apparent viscosity and intrinsic viscosity, lowered gel point temperatures, and stronger, more brittle gels. This method allowed for recycling of the enzyme, eliminated the requirement for a downstream inactivation step, and permitted control over the extent of modification. Utilization of a similar process may allow for the production of designer proteins engineered with specific functionalities.

  8. A tailor-made "tag-receptor" affinity pair for the purification of fusion proteins.

    Science.gov (United States)

    Pina, Ana S; Guilherme, Márcia; Pereira, Alice S; Fernandes, Cláudia S F M; Branco, Ricardo J F; El Khoury, Graziella; Lowe, Christopher R; Roque, A Cecília A

    2014-07-07

    A novel affinity "tag-receptor" pair was developed as a generic platform for the purification of fusion proteins. The hexapeptide RKRKRK was selected as the affinity tag and fused to green fluorescent protein (GFP). The DNA fragments were designed, cloned in Pet-21c expression vector and expressed in E. coli host as soluble protein. A solid-phase combinatorial library based on the Ugi reaction was synthesized: 64 affinity ligands displaying complementary functionalities towards the designed tag. The library was screened by affinity chromatography in a 96-well format for binding to the RKRKRK-tagged GFP protein. Lead ligand A7C1 was selected for the purification of RKRKRK fusion proteins. The affinity pair RKRKRK-tagged GFP with A7C1 emerged as a promising solution (Ka of 2.45×10(5)  M(-1) ). The specificity of the ligand towards the tag was observed experimentally and theoretically through automated docking and molecular dynamics simulations.

  9. S-layer-streptavidin fusion proteins as template for nanopatterned molecular arrays

    Science.gov (United States)

    Moll, Dieter; Huber, Carina; Schlegel, Birgit; Pum, Dietmar; Sleytr, Uwe B.; Sára, Margit

    2002-11-01

    Biomolecular self-assembly can be used as a powerful tool for nanoscale engineering. In this paper, we describe the development of building blocks for nanobiotechnology, which are based on the fusion of streptavidin to a crystalline bacterial cell surface layer (S-layer) protein with the inherent ability to self-assemble into a monomolecular protein lattice. The fusion proteins and streptavidin were produced independently in Escherichia coli, isolated, and mixed to refold and purify heterotetramers of 1:3 stoichiometry. Self-assembled chimeric S-layers could be formed in suspension, on liposomes, on silicon wafers, and on accessory cell wall polymer containing cell wall fragments. The two-dimensional protein crystals displayed streptavidin in defined repetitive spacing, and they were capable of binding D-biotin and biotinylated proteins. Therefore, the chimeric S-layer can be used as a self-assembling nanopatterned molecular affinity matrix to arrange biotinylated compounds on a surface. In addition, it has application potential as a functional coat of liposomes.

  10. Expression,Purification,and Refolding of Recombinant Fusion Protein Hil-2/Mgm-CSF

    Institute of Scientific and Technical Information of China (English)

    QIAN WEN; LI MA; WEI LUO; MING-QIAN ZHOU; XIAO-NING WANG

    2008-01-01

    To study the activities of interleukin (IL)-2 and granulocyte-macrophage colony-stimulating factor (GM-CSF) (hIL-2/mGM-CSF).Methods SOE PCR was used to change the linker of the fusion protein for higher activities.The fusion protein was expressed in Escherichia coli (E.coli) BL21 (DE3) in inclusion body (IB) form.After IB was extracted and clarified,it was denatured and purified by affinity chromatography.The protein was refolded by dilution in a L-arginine refolding buffer and refined by anion chromatography.The protein activity was detected by cytokine-dependent cell proliferation assay Results The expression of hlL-2/mGM-CSF in E.coil yielded approximately 20 mg protein/L culture and the purity was about 90%.The specific activities of IL-2 and GM-CSF were 5.4×106 IU/mg and 7.1×106 IU/mg,respectively.Conclusion This research provides important information about the anti-tumor activity of hIL-2/mGM-CSF in vivo,thus facilitating future clinical research on hIL-2/mGM-CSF used in immune therapy.

  11. Determination of the topology of endoplasmic reticulum membrane proteins using redox-sensitive green-fluorescence protein fusions.

    Science.gov (United States)

    Tsachaki, Maria; Birk, Julia; Egert, Aurélie; Odermatt, Alex

    2015-07-01

    Membrane proteins of the endoplasmic reticulum (ER) are involved in a wide array of essential cellular functions. Identification of the topology of membrane proteins can provide significant insight into their mechanisms of action and biological roles. This is particularly important for membrane enzymes, since their topology determines the subcellular site where a biochemical reaction takes place and the dependence on luminal or cytosolic co-factor pools and substrates. The methods currently available for the determination of topology of proteins are rather laborious and require post-lysis or post-fixation manipulation of cells. In this work, we have developed a simple method for defining intracellular localization and topology of ER membrane proteins in living cells, based on the fusion of the respective protein with redox-sensitive green-fluorescent protein (roGFP). We validated the method and demonstrated that roGFP fusion proteins constitute a reliable tool for the study of ER membrane protein topology, using as control microsomal 11β-hydroxysteroid dehydrogenase (11β-HSD) proteins whose topology has been resolved, and comparing with an independent approach. We then implemented this method to determine the membrane topology of six microsomal members of the 17β-hydroxysteroid dehydrogenase (17β-HSD) family. The results revealed a luminal orientation of the catalytic site for three enzymes, i.e. 17β-HSD6, 7 and 12. Knowledge of the intracellular location of the catalytic site of these enzymes will enable future studies on their biological functions and on the role of the luminal co-factor pool.

  12. Gold nanoprobe functionalized with specific fusion protein selection from phage display and its application in rapid, selective and sensitive colorimetric biosensing of Staphylococcus aureus.

    Science.gov (United States)

    Liu, Pei; Han, Lei; Wang, Fei; Petrenko, Valery A; Liu, Aihua

    2016-08-15

    Staphylococcus aureus (S. aureus) is one of the most ubiquitous pathogens in public healthcare worldwide. It holds great insterest in establishing robust analytical method for S. aureus. Herein, we report a S. aureus-specific recognition element, isolated from phage monoclone GQTTLTTS, which was selected from f8/8 landscape phage library against S. aureus in a high-throughput way. By functionalizing cysteamine (CS)-stabilized gold nanoparticles (CS-AuNPs) with S. aureus-specific pVIII fusion protein (fusion-pVIII), a bifunctional nanoprobe (CS-AuNPs@fusion-pVIII) for S. aureus was developed. In this strategy, the CS-AuNPs@fusion-pVIII could be induced to aggregate quickly in the presence of target S. aureus, resulting in a rapid colorimetric response of gold nanoparticles. More importantly, the as-designed probe exhibited excellent selectivity over other bacteria. Thus, the CS-AuNPs@fusion-pVIII could be used as the indicator of target S. aureus. This assay can detect as low as 19CFUmL(-1)S. aureus within 30min. Further, this approach can be applicable to detect S. aureus in real water samples. Due to its sensitivity, specificity and rapidness, this proposed method is promising for on-site testing of S. aureus without using any costly instruments.

  13. Equatorial segment protein (ESP) is a human alloantigen involved in sperm-egg binding and fusion.

    Science.gov (United States)

    Wolkowicz, M J; Digilio, L; Klotz, K; Shetty, J; Flickinger, C J; Herr, J C

    2008-01-01

    The equatorial segment of the sperm head is known to play a role in fertilization; however, the specific sperm molecules contributing to the integrity of the equatorial segment and in binding and fusion at the oolemma remain incomplete. Moreover, identification of molecular mediators of fertilization that are also immunogenic in humans is predicted to advance both the diagnosis and treatment of immune infertility. We previously reported the cloning of Equatorial Segment Protein (ESP), a protein localized to the equatorial segment of ejaculated human sperm. ESP is a biomarker for a subcompartment of the acrosomal matrix that can be traced through all stages of acrosome biogenesis (Wolkowicz et al, 2003). In the present study, ESP immunoreacted on Western blots with 4 (27%) of 15 antisperm antibody (ASA)-positive serum samples from infertile male patients and 2 (40%) of 5 ASA-positive female sera. Immunofluorescent studies revealed ESP in the equatorial segment of 89% of acrosome-reacted sperm. ESP persisted as a defined equatorial segment band on 100% of sperm tightly bound to the oolemma of hamster eggs. Antisera to recombinant human ESP inhibited both oolemmal binding and fusion of human sperm in the hamster egg penetration assay. The results indicate that ESP is a human alloantigen involved in sperm-egg binding and fusion. Defined recombinant sperm immunogens, such as ESP, may offer opportunities for differential diagnosis of immune infertility.

  14. 重组鼠Muc1-MBP融合蛋白疫苗体内抗肿瘤作用%Anti-tumor effect induced by recombinant mouse Muc1-MBP fusion protein in,vivo

    Institute of Scientific and Technical Information of China (English)

    方芳; 宋献美; 马吉春; 张庆勇; 窦蕊; 陈文博; 柳忠辉; 台桂香

    2009-01-01

    目的:研究重组鼠Muc1-MBP蛋白的体内抗肿瘤作用.方法:采用皮下注射法将不同剂量Muc1-MBP蛋白免疫小鼠,2 wk/次,共免疫3次.在第3次免疫后4 d,给予C57BL/6小鼠尾静脉注射LLCl细胞,或给予5 Gy x射线照射的ICR小鼠背部皮下注射MCF-7细胞.注射3 wk后剥离并测量肿瘤大小;肿瘤组织行常规HE染色.免疫组织化学染色分析肿瘤周围浸润的淋巴细胞亚群.结果:LLCl细胞尾静脉接种后21 d,肺肿瘤结节对照组,Muc1-MBP 0.15 g/L组小鼠分别为54和39个(100%),Muc1-MBP 0.3 g/L组小鼠共计17个(60%),提示Muc1-MBP 0.3 g/L组可显著抑制肺癌的生长(P<0.05),Muc1-MBP0.15 g/L组作用较弱.皮下接种MCF-7细胞后21 d,对照组,Muc1.MBP0.15 g/L组小鼠100%(6/6)可见乳腺癌瘤体形成,平均体积分别为(142.8±70.2)和(96.1±53.4)mm~3,Muc1.MBP 0.3 g/L组瘤体形成66.7%(4/6),平均体积为(54.5±46.7)mm~3.表明Muc1-MBP 0.3 g/L组免疫后可显著抑制人乳腺癌移植瘤生长(P<0.05),Muc1-MBP 0.15 g/L组作用较弱.免疫组化结果显示MucI-MBP免疫组肿瘤周围有大量CD4~+和CD8~+T的细胞浸润到肿瘤周围.结论:Muc1-MBP诱导免疫能够明显抑制LLC1,MCF-7细胞的生长,为临床应用研究奠定了基础.%AIM: To study the anti-tumor effect of recombinant Muc1-MBP protein in vivo. METHODS: Mice were immunized subcutaneously with different dose of Muc1-MBP protein 3 times at 2-weekly intervals. C.57 BL/6 mice were challenged with LLC1 cells by tail vein or ICR mice irradiated with X-ray injected MCF-7 cells at back 4 d after the third immunization. The tumor was striped and measured 3 weeks later. Histological analysis of tumor tissue was carried out with HE staining . Tumor infiltrating lymphoeytes subsets were detected by immunohistochemistry. RESULTS: After 21 d of LLC1 cell challenge, there was only 60% forming lung tumor nodules and total number 17 in high dose Muc1-MBP group, while there was 100% forming lung tumor nodules in low

  15. A compact, multifunctional fusion module directs cholesterol-dependent homomultimerization and syncytiogenic efficiency of reovirus p10 FAST proteins.

    Directory of Open Access Journals (Sweden)

    Tim Key

    2014-03-01

    Full Text Available The homologous p10 fusion-associated small transmembrane (FAST proteins of the avian (ARV and Nelson Bay (NBV reoviruses are the smallest known viral membrane fusion proteins, and are virulence determinants of the fusogenic reoviruses. The small size of FAST proteins is incompatible with the paradigmatic membrane fusion pathway proposed for enveloped viral fusion proteins. Understanding how these diminutive viral fusogens mediate the complex process of membrane fusion is therefore of considerable interest, from both the pathogenesis and mechanism-of-action perspectives. Using chimeric ARV/NBV p10 constructs, the 36-40-residue ectodomain was identified as the major determinant of the differing fusion efficiencies of these homologous p10 proteins. Extensive mutagenic analysis determined the ectodomain comprises two distinct, essential functional motifs. Syncytiogenesis assays, thiol-specific surface biotinylation, and liposome lipid mixing assays identified an ∼25-residue, N-terminal motif that dictates formation of a cystine loop fusion peptide in both ARV and NBV p10. Surface immunofluorescence staining, FRET analysis and cholesterol depletion/repletion studies determined the cystine loop motif is connected through a two-residue linker to a 13-residue membrane-proximal ectodomain region (MPER. The MPER constitutes a second, independent motif governing reversible, cholesterol-dependent assembly of p10 multimers in the plasma membrane. Results further indicate that: (1 ARV and NBV homomultimers segregate to distinct, cholesterol-dependent microdomains in the plasma membrane; (2 p10 homomultimerization and cholesterol-dependent microdomain localization are co-dependent; and (3 the four juxtamembrane MPER residues present in the multimerization motif dictate species-specific microdomain association and homomultimerization. The p10 ectodomain therefore constitutes a remarkably compact, multifunctional fusion module that directs syncytiogenic

  16. A plasmid toolkit for cloning chimeric cDNAs encoding customized fusion proteins into any Gateway destination expression vector.

    Science.gov (United States)

    Buj, Raquel; Iglesias, Noa; Planas, Anna M; Santalucía, Tomàs

    2013-08-20

    Valuable clone collections encoding the complete ORFeomes for some model organisms have been constructed following the completion of their genome sequencing projects. These libraries are based on Gateway cloning technology, which facilitates the study of protein function by simplifying the subcloning of open reading frames (ORF) into any suitable destination vector. The expression of proteins of interest as fusions with functional modules is a frequent approach in their initial functional characterization. A limited number of Gateway destination expression vectors allow the construction of fusion proteins from ORFeome-derived sequences, but they are restricted to the possibilities offered by their inbuilt functional modules and their pre-defined model organism-specificity. Thus, the availability of cloning systems that overcome these limitations would be highly advantageous. We present a versatile cloning toolkit for constructing fully-customizable three-part fusion proteins based on the MultiSite Gateway cloning system. The fusion protein components are encoded in the three plasmids integral to the kit. These can recombine with any purposely-engineered destination vector that uses a heterologous promoter external to the Gateway cassette, leading to the in-frame cloning of an ORF of interest flanked by two functional modules. In contrast to previous systems, a third part becomes available for peptide-encoding as it no longer needs to contain a promoter, resulting in an increased number of possible fusion combinations. We have constructed the kit's component plasmids and demonstrate its functionality by providing proof-of-principle data on the expression of prototype fluorescent fusions in transiently-transfected cells. We have developed a toolkit for creating fusion proteins with customized N- and C-term modules from Gateway entry clones encoding ORFs of interest. Importantly, our method allows entry clones obtained from ORFeome collections to be used without prior

  17. Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes

    DEFF Research Database (Denmark)

    Gannagé, Monique; Dormann, Dorothee; Albrecht, Randy

    2009-01-01

    Influenza A virus is an important human pathogen causing significant morbidity and mortality every year and threatening the human population with epidemics and pandemics. Therefore, it is important to understand the biology of this virus to develop strategies to control its pathogenicity. Here, we...... demonstrate that influenza A virus inhibits macroautophagy, a cellular process known to be manipulated by diverse pathogens. Influenza A virus infection causes accumulation of autophagosomes by blocking their fusion with lysosomes, and one viral protein, matrix protein 2, is necessary and sufficient...... for this inhibition of autophagosome degradation. Macroautophagy inhibition by matrix protein 2 compromises survival of influenza virus-infected cells but does not influence viral replication. We propose that influenza A virus, which also encodes proapoptotic proteins, is able to determine the death of its host cell...

  18. Targeting at the Nanoscale: A Novel S-Layer Fusion Protein Enabling Controlled Immobilization of Biotinylated Molecules.

    Science.gov (United States)

    Varga, Melinda

    2016-11-04

    With the aim of constructing an S-layer fusion protein that combines both excellent self-assembly and specific ligand i.e., biotin binding ability, streptavidin (aa 16-133) was fused to the S-layer protein of Sporosarcina ureae ATCC 13881 (SslA) devoid of its N-terminal 341 and C-terminal 172 amino acids. The genetically engineered chimeric protein could be successfully produced in E. coli, isolated, and purified via Ni affinity chromatography. In vitro recrystallisation experiments performed with the purified chimeric protein in solution and on a silicon wafer have demonstrated that fusion of the streptavidin domain does not interfere with the self-assembling properties of the S-layer part. The chimeric protein self-assembled into multilayers. More importantly, the streptavidin domain retained its full biotin-binding ability, a fact evidenced by experiments in which biotinylated quantum dots were coupled to the fusion protein monomers and adsorbed onto the in vitro recrystallised fusion protein template. In this way, this S-layer fusion protein can serve as a functional template for the controlled immobilization of biotinylated and biologically active molecules.

  19. Characterization of foot-and-mouth disease virus gene products with antisera against bacterially synthesized fusion proteins

    Energy Technology Data Exchange (ETDEWEB)

    Strebel, K.; Beck, E.; Strohmaier, K.; Schaller, H.

    1986-03-01

    Defined segments of the cloned foot-and-mouth disease virus genome corresponding to all parts of the coding region were expressed in Escherichia coli as fusions to the N-terminal part of the MS2-polymerase gene under the control of the inducible lambdaPL promoter. All constructs yielded large amounts of proteins, which were purified and used to raise sequence-specific antisera in rabbits. These antisera were used to identify the corresponding viral gene products in /sup 35/S-labeled extracts from foot-and-mouth disease virus-infected BHK cells. This allowed us to locate unequivocally all mature foot-and-mouth disease virus gene products in the nucleotide sequence, to identify precursor-product relationships, and to detect several foot-and mouth disease virus gene products not previously identified in vivo or in vitro.

  20. Membrane fusion induced by a short fusogenic peptide is assessed by its insertion and orientation into target bilayers

    NARCIS (Netherlands)

    Martin, [No Value; Pecheur, EI; Ruysschaert, JM; Hoekstra, D

    1999-01-01

    To clarify the molecular mechanism by which an amphipathic negatively charged peptide consisting of 11 residues (WAE) induces fusion, and the relevance of these features for fusion, its mode of insertion and orientation into target bilayers were investigated. Using attenuated total reflection

  1. Effects of protein transduction domain (PTD) selection and position for improved intracellular delivery of PTD-Hsp27 fusion protein formulations.

    Science.gov (United States)

    Ul Ain, Qurrat; Lee, Jong Hwan; Woo, Young Sun; Kim, Yong-Hee

    2016-09-01

    Protein drugs have attracted considerable attention as therapeutic agents due to their diversity and biocompatibility. However, hydrophilic proteins possess difficulty in penetrating lipophilic cell membrane. Although protein transduction domains (PTDs) have shown effectiveness in protein delivery, the importance of selection and position of PTDs in recombinant protein vector constructs has not been investigated. This study intends to investigate the significance of PTD selection and position for therapeutic protein delivery. Heat shock protein 27 (Hsp27) would be a therapeutic protein for the treatment of ischemic heart diseases, but itself is insufficient to prevent systemic degradation and overcoming biochemical barriers during cellular transport. Among all PTD-Hsp27 fusion proteins we cloned, Tat-Hsp27 fusion protein showed the highest efficacy. Nona-arginine (9R) conjugation to the N-terminal of Hsp27 (Hsp27-T) showed higher efficacy than C-terminal. To test the synergistic effect of two PTDs, Tat was inserted to the N-terminal of Hsp27-9R. Tat-Hsp27-9R exhibited enhanced transduction efficiency and significant improvement against oxidative stress and apoptosis. PTD-Hsp27 fusion proteins have strong potential to be developed as therapeutic proteins for the treatment of ischemic heart diseases and selection and position of PTDs for improved efficacy of PTD-fusion proteins need to be optimized considering protein's nature, transduction efficiency and stability.

  2. Auxin-inducible protein depletion system in fission yeast

    Directory of Open Access Journals (Sweden)

    Kakimoto Tatsuo

    2011-02-01

    Full Text Available Abstract Background Inducible inactivation of a protein is a powerful approach for analysis of its function within cells. Fission yeast is a useful model for studying the fundamental mechanisms such as chromosome maintenance and cell cycle. However, previously published strategies for protein-depletion are successful only for some proteins in some specific conditions and still do not achieve efficient depletion to cause acute phenotypes such as immediate cell cycle arrest. The aim of this work was to construct a useful and powerful protein-depletion system in Shizosaccaromyces pombe. Results We constructed an auxin-inducible degron (AID system, which utilizes auxin-dependent poly-ubiquitination of Aux/IAA proteins by SCFTIR1 in plants, in fission yeast. Although expression of a plant F-box protein, TIR1, decreased Mcm4-aid, a component of the MCM complex essential for DNA replication tagged with Aux/IAA peptide, depletion did not result in an evident growth defect. We successfully improved degradation efficiency of Mcm4-aid by fusion of TIR1 with fission yeast Skp1, a conserved F-box-interacting component of SCF (improved-AID system; i-AID, and the cells showed severe defect in growth. The i-AID system induced degradation of Mcm4-aid in the chromatin-bound MCM complex as well as those in soluble fractions. The i-AID system in conjunction with transcription repression (off-AID system, we achieved more efficient depletion of other proteins including Pol1 and Cdc45, causing early S phase arrest. Conclusion Improvement of the AID system allowed us to construct conditional null mutants of S. pombe. We propose that the off-AID system is the powerful method for in vivo protein-depletion in fission yeast.

  3. Adhesion and fusion efficiencies of human immunodeficiency virus type 1 (HIV-1) surface proteins

    Science.gov (United States)

    Dobrowsky, Terrence M.; Rabi, S. Alireza; Nedellec, Rebecca; Daniels, Brian R.; Mullins, James I.; Mosier, Donald E.; Siliciano, Robert F.; Wirtz, Denis

    2013-10-01

    In about half of patients infected with HIV-1 subtype B, viral populations shift from utilizing the transmembrane protein CCR5 to CXCR4, as well as or instead of CCR5, during late stage progression of the disease. How the relative adhesion efficiency and fusion competency of the viral Env proteins relate to infection during this transition is not well understood. Using a virus-cell fusion assay and live-cell single-molecule force spectroscopy, we compare the entry competency of viral clones to tensile strengths of the individual Env-receptor bonds of Env proteins obtained from a HIV-1 infected patient prior to and during coreceptor switching. The results suggest that the genetic determinants of viral entry were predominantly enriched in the C3, HR1 and CD regions rather than V3. Env proteins can better mediate entry into cells after coreceptor switch; this effective entry capacity does not correlate with the bond strengths between viral Env and cellular receptors.

  4. Interactions involved in pH protection of the alphavirus fusion protein

    Energy Technology Data Exchange (ETDEWEB)

    Fields, Whitney; Kielian, Margaret, E-mail: margaret.kielian@einstein.yu.edu

    2015-12-15

    The alphavirus membrane protein E1 mediates low pH-triggered fusion of the viral and endosome membranes during virus entry. During virus biogenesis E1 associates as a heterodimer with the transmembrane protein p62. Late in the secretory pathway, cellular furin cleaves p62 to the mature E2 protein and a peripheral protein E3. E3 remains bound to E2 at low pH, stabilizing the heterodimer and thus protecting E1 from the acidic pH of the secretory pathway. Release of E3 at neutral pH then primes the virus for fusion during entry. Here we used site-directed mutagenesis and revertant analysis to define residues important for the interactions at the E3–E2 interface. Our data identified a key residue, E2 W235, which was required for E1 pH protection and alphavirus production. Our data also suggest additional residues on E3 and E2 that affect their interacting surfaces and thus influence the pH protection of E1 during alphavirus exit.

  5. Targeted codon optimization improves translational fidelity for an Fc fusion protein.

    Science.gov (United States)

    Hutterer, Katariina M; Zhang, Zhongqi; Michaels, Mark Leo; Belouski, Ed; Hong, Robert W; Shah, Bhavana; Berge, Mark; Barkhordarian, Hedieh; Le, Eleanor; Smith, Steve; Winters, Dwight; Abroson, Frank; Hecht, Randy; Liu, Jennifer

    2012-11-01

    High levels of translational errors, both truncation and misincorporation in an Fc-fusion protein were observed. Here, we demonstrate the impact of several commercially available codon optimization services, and compare to a targeted strategy. Using the targeted strategy, only codons known to have translational errors are modified. For an Fc-fusion protein expressed in Escherichia coli, the targeted strategy, in combination with appropriate fermentation conditions, virtually eliminated misincorporation (proteins produced with a wrong amino acid sequence), and reduced the level of truncation. The use of full optimization using commercially available strategies reduced the initial errors, but introduced different misincorporations. However, truncation was higher using the targeted strategy than for most of the full optimization strategies. This targeted approach, along with monitoring of translation fidelity and careful attention to fermentation conditions is key to minimizing translational error and ensuring high-quality expression. These findings should be useful for other biopharmaceutical products, as well as any other transgenic constructs where protein quality is important.

  6. Expression, refolding, and characterization of recombinant thrombopoietin/stem cell factor fusion protein in Escherichia coli.

    Science.gov (United States)

    Zang, Yuhui; Zhang, Xu; Jiang, Xiaoling; Li, Haoran; Zhu, Jie; Zhang, Chi; Peng, Wei; Qin, Junchuan

    2007-03-01

    Thrombopoietin/stem cell factor (TPO/SCF) is a novel fusion protein that combines the complementary biological effects of TPO and SCF into a single molecule. In this study, TPO/SCF gene was cloned into pET32a and expressed as a thioredoxin (Trx) fusion protein with a C-terminal 6His-tag in Escherichia coli BL21(DE3) under the control of T7 promoter. Trx-TPO/SCF protein approximately accounted for 20% of the total bacterial proteins and was found to accumulate in inclusion bodies. Inclusion bodies were separated from cellular debris, washed with buffer containing 2 M urea, and solubilized with 8 M urea. The refolding of Trx-TPO/SCF was then carried out by an on-column method. Soluble Trx-TPO/SCF was characterized for its dose-dependent effects on promoting cells proliferation in both TF1 and Mo7e cell lines. rhTPO/SCF was released by thrombin digestion and further purified by Ni(2+) affinity chromatography. Western blot analysis confirmed the identities of Trx-TPO/SCF and rhTPO/SCF.

  7. Interactions involved in pH protection of the alphavirus fusion protein.

    Science.gov (United States)

    Fields, Whitney; Kielian, Margaret

    2015-12-01

    The alphavirus membrane protein E1 mediates low pH-triggered fusion of the viral and endosome membranes during virus entry. During virus biogenesis E1 associates as a heterodimer with the transmembrane protein p62. Late in the secretory pathway, cellular furin cleaves p62 to the mature E2 protein and a peripheral protein E3. E3 remains bound to E2 at low pH, stabilizing the heterodimer and thus protecting E1 from the acidic pH of the secretory pathway. Release of E3 at neutral pH then primes the virus for fusion during entry. Here we used site-directed mutagenesis and revertant analysis to define residues important for the interactions at the E3-E2 interface. Our data identified a key residue, E2 W235, which was required for E1 pH protection and alphavirus production. Our data also suggest additional residues on E3 and E2 that affect their interacting surfaces and thus influence the pH protection of E1 during alphavirus exit. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Resolution of Disulfide Heterogeneity in Nogo Receptor 1 Fusion Proteins by Molecular Engineering

    Energy Technology Data Exchange (ETDEWEB)

    P Weinreb; D Wen; F Qian; C Wildes; E Garber; L Walus; M Jung; J Wang; J Relton; et al.

    2011-12-31

    NgRI (Nogo-66 receptor) is part of a signalling complex that inhibits axon regeneration in the central nervous system. Truncated soluble versions of NgRI have been used successfully to promote axon regeneration in animal models of spinal-cord injury, raising interest in this protein as a potential therapeutic target. The LRR (leucine-rich repeat) regions in NgRI are flanked by N- and C-terminal disulfide-containing 'cap' domains (LRRNT and LRRCT respectively). In the present work we show that, although functionally active, the NgRI(310)-Fc fusion protein contains mislinked and heterogeneous disulfide patterns in the LRRCT domain, and we report the generation of a series of variant molecules specifically designed to prevent this heterogeneity. Using these variants we explored the effects of modifying the NgRI truncation site or the spacing between the NgRI and Fc domains, or replacing cysteines within the NgRI or IgG hinge regions. One variant, which incorporates replacements of Cys{sup 266} and Cys{sup 309} with alanine residues, completely eliminated disulfide scrambling while maintaining functional in vitro and in vivo efficacy. This modified NgRI-Fc molecule represents a significantly improved candidate for further pharmaceutical development, and may serve as a useful model for the optimization of other IgG fusion proteins made from LRR proteins.

  9. Adhesion and fusion efficiencies of human immunodeficiency virus type 1 (HIV-1) surface proteins.

    Science.gov (United States)

    Dobrowsky, Terrence M; Rabi, S Alireza; Nedellec, Rebecca; Daniels, Brian R; Mullins, James I; Mosier, Donald E; Siliciano, Robert F; Wirtz, Denis

    2013-10-22

    In about half of patients infected with HIV-1 subtype B, viral populations shift from utilizing the transmembrane protein CCR5 to CXCR4, as well as or instead of CCR5, during late stage progression of the disease. How the relative adhesion efficiency and fusion competency of the viral Env proteins relate to infection during this transition is not well understood. Using a virus-cell fusion assay and live-cell single-molecule force spectroscopy, we compare the entry competency of viral clones to tensile strengths of the individual Env-receptor bonds of Env proteins obtained from a HIV-1 infected patient prior to and during coreceptor switching. The results suggest that the genetic determinants of viral entry were predominantly enriched in the C3, HR1 and CD regions rather than V3. Env proteins can better mediate entry into cells after coreceptor switch; this effective entry capacity does not correlate with the bond strengths between viral Env and cellular receptors.

  10. Protein Sub-Nuclear Localization Based on Effective Fusion Representations and Dimension Reduction Algorithm LDA

    Directory of Open Access Journals (Sweden)

    Shunfang Wang

    2015-12-01

    Full Text Available An effective representation of a protein sequence plays a crucial role in protein sub-nuclear localization. The existing representations, such as dipeptide composition (DipC, pseudo-amino acid composition (PseAAC and position specific scoring matrix (PSSM, are insufficient to represent protein sequence due to their single perspectives. Thus, this paper proposes two fusion feature representations of DipPSSM and PseAAPSSM to integrate PSSM with DipC and PseAAC, respectively. When constructing each fusion representation, we introduce the balance factors to value the importance of its components. The optimal values of the balance factors are sought by genetic algorithm. Due to the high dimensionality of the proposed representations, linear discriminant analysis (LDA is used to find its important low dimensional structure, which is essential for classification and location prediction. The numerical experiments on two public datasets with KNN classifier and cross-validation tests showed that in terms of the common indexes of sensitivity, specificity, accuracy and MCC, the proposed fusing representations outperform the traditional representations in protein sub-nuclear localization, and the representation treated by LDA outperforms the untreated one.

  11. Protein Sub-Nuclear Localization Based on Effective Fusion Representations and Dimension Reduction Algorithm LDA.

    Science.gov (United States)

    Wang, Shunfang; Liu, Shuhui

    2015-12-19

    An effective representation of a protein sequence plays a crucial role in protein sub-nuclear localization. The existing representations, such as dipeptide composition (DipC), pseudo-amino acid composition (PseAAC) and position specific scoring matrix (PSSM), are insufficient to represent protein sequence due to their single perspectives. Thus, this paper proposes two fusion feature representations of DipPSSM and PseAAPSSM to integrate PSSM with DipC and PseAAC, respectively. When constructing each fusion representation, we introduce the balance factors to value the importance of its components. The optimal values of the balance factors are sought by genetic algorithm. Due to the high dimensionality of the proposed representations, linear discriminant analysis (LDA) is used to find its important low dimensional structure, which is essential for classification and location prediction. The numerical experiments on two public datasets with KNN classifier and cross-validation tests showed that in terms of the common indexes of sensitivity, specificity, accuracy and MCC, the proposed fusing representations outperform the traditional representations in protein sub-nuclear localization, and the representation treated by LDA outperforms the untreated one.

  12. Characterization of Aggregation Propensity of a Human Fc-Fusion Protein Therapeutic by Hydrogen/Deuterium Exchange Mass Spectrometry

    Science.gov (United States)

    Huang, Richard Y.-C.; Iacob, Roxana E.; Krystek, Stanley R.; Jin, Mi; Wei, Hui; Tao, Li; Das, Tapan K.; Tymiak, Adrienne A.; Engen, John R.; Chen, Guodong

    2017-05-01

    Aggregation of protein therapeutics has long been a concern across different stages of manufacturing processes in the biopharmaceutical industry. It is often indicative of aberrant protein therapeutic higher-order structure. In this study, the aggregation propensity of a human Fc-fusion protein therapeutic was characterized. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) was applied to examine the conformational dynamics of dimers collected from a bioreactor. HDX-MS data combined with spatial aggregation propensity calculations revealed a potential aggregation interface in the Fc domain. This study provides a general strategy for the characterization of the aggregation propensity of Fc-fusion proteins at the molecular level.

  13. Construction of a recombinant Lactococcus lactis strain expressing a fusion protein of Omp22 and HpaA from Helicobacter pylori for oral vaccine development.

    Science.gov (United States)

    Zhang, Rongguang; Duan, Guangcai; Shi, Qingfeng; Chen, Shuaiyin; Fan, Qingtang; Sun, Nan; Xi, Yuanlin

    2016-11-01

    To develop orally administrated anti-Helicobacter pylori vaccination, a Lactococcus lactis strain was genetically constructed for fusion expression of H. pylori protective antigens HpaA and Omp22. The fusion gene of omp22 and hpaA with an adapter encoding three glycines was cloned from a plasmid pMAL-c2x-omp22-hpaA into Escherichia coli MC1061 and L. lactis NZ3900 successively using a shutter vector pNZ8110. Expression of the fusion gene in L. lactis was induced with nisin resulting in production of proteins with molecular weights of 50 and 28 kDa. Both of them were immunoreactive with mouse anti-H. pylori sera as determined via western blotting. Oral vaccination of BALB/c mice using the L. lactis strain carrying pNZ8110-omp22-hpaA elicited significant systematic humoral immune response (P < 0.05). This is the first report showing that a fusion protein of two H. pylori antigens was efficiently expressed in L. lactis with immunogenicity. This is a considerable step towards H. pylori vaccines.

  14. Construction and use of a Cupriavidus necator H16 soluble hydrogenase promoter (PSH) fusion to gfp (green fluorescent protein).

    Science.gov (United States)

    Jugder, Bat-Erdene; Welch, Jeffrey; Braidy, Nady; Marquis, Christopher P

    2016-01-01

    Hydrogenases are metalloenzymes that reversibly catalyse the oxidation or production of molecular hydrogen (H2). Amongst a number of promising candidates for application in the oxidation of H2 is a soluble [Ni-Fe] uptake hydrogenase (SH) produced by Cupriavidus necator H16. In the present study, molecular characterisation of the SH operon, responsible for functional SH synthesis, was investigated by developing a green fluorescent protein (GFP) reporter system to characterise PSH promoter activity using several gene cloning approaches. A PSH promoter-gfp fusion was successfully constructed and inducible GFP expression driven by the PSH promoter under de-repressing conditions in heterotrophic growth media was demonstrated in the recombinant C. necator H16 cells. Here we report the first successful fluorescent reporter system to study PSH promoter activity in C. necator H16. The fusion construct allowed for the design of a simple screening assay to evaluate PSH activity. Furthermore, the constructed reporter system can serve as a model to develop a rapid fluorescent based reporter for subsequent small-scale process optimisation experiments for SH expression.

  15. Construction and use of a Cupriavidus necator H16 soluble hydrogenase promoter (PSH fusion to gfp (green fluorescent protein

    Directory of Open Access Journals (Sweden)

    Bat-Erdene Jugder

    2016-07-01

    Full Text Available Hydrogenases are metalloenzymes that reversibly catalyse the oxidation or production of molecular hydrogen (H2. Amongst a number of promising candidates for application in the oxidation of H2 is a soluble [Ni–Fe] uptake hydrogenase (SH produced by Cupriavidus necator H16. In the present study, molecular characterisation of the SH operon, responsible for functional SH synthesis, was investigated by developing a green fluorescent protein (GFP reporter system to characterise PSH promoter activity using several gene cloning approaches. A PSH promoter-gfp fusion was successfully constructed and inducible GFP expression driven by the PSH promoter under de-repressing conditions in heterotrophic growth media was demonstrated in the recombinant C. necator H16 cells. Here we report the first successful fluorescent reporter system to study PSH promoter activity in C. necator H16. The fusion construct allowed for the design of a simple screening assay to evaluate PSH activity. Furthermore, the constructed reporter system can serve as a model to develop a rapid fluorescent based reporter for subsequent small-scale process optimisation experiments for SH expression.

  16. Optimization of the Expression of DT386-BR2 Fusion Protein in Escherichia coli using Response Surface Methodology

    Science.gov (United States)

    Shafiee, Fatemeh; Rabbani, Mohammad; Jahanian-Najafabadi, Ali

    2017-01-01

    Background: The aim of this study was to determine the best condition for the production of DT386-BR2 fusion protein, an immunotoxin consisting of catalytic and translocation domains of diphtheria toxin fused to BR2, a cancer specific cell penetrating peptide, for targeted eradication of cancer cells, in terms of the host, cultivation condition, and culture medium. Materials and Methods: Recombinant pET28a vector containing the codons optimized for the expression of the DT386-BR2 gene was transformed to different strains of Escherichia coli (E. coli BL21 DE3, E. coli Rosetta DE3 and E. coli Rosetta-gami 2 DE3), followed by the induction of expression using 1 mM IPTG. Then, the strain with the highest ability to produce recombinant protein was selected and used to determine the best expression condition using response surface methodology (RSM). Finally, the best culture medium was selected. Results: Densitometry analysis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the expressed fusion protein showed that E. coli Rosetta DE3 produced the highest amounts of the recombinant fusion protein when quantified by 1 mg/ml bovine serum albumin (178.07 μg/ml). Results of RSM also showed the best condition for the production of the recombinant fusion protein was induction with 1 mM IPTG for 2 h at 37°C. Finally, it was established that terrific broth could produce higher amounts of the fusion protein when compared to other culture media. Conclusion: In this study, we expressed the recombinant DT386-BR2 fusion protein in large amounts by optimizing the expression host, cultivation condition, and culture medium. This fusion protein will be subjected to purification and evaluation of its cytotoxic effects in future studies.

  17. Transduction of the MPG-tagged fusion protein into mammalian cells and oocytes depends on amiloride-sensitive endocytic pathway

    Directory of Open Access Journals (Sweden)

    Cheon Yong-Pil

    2009-08-01

    Full Text Available Abstract Background MPG is a cell-permeable peptide with proven efficiency to deliver macromolecular cargoes into cells. In this work, we examined the efficacy of MPG as an N-terminal tag in a fusion protein to deliver a protein cargo and its mechanism of transduction. Results We examined transduction of MPG-EGFP fusion protein by live imaging, flow cytometry, along with combination of cell biological and pharmacological methods. We show that MPG-EGFP fusion proteins efficiently enter various mammalian cells within a few minutes and are co-localized with FM4-64, a general marker of endosomes. The transduction of MPG-EGFP occurs rapidly and is inhibited at a low temperature. The entry of MPG-EGFP is inhibited by amiloride, but cytochalasin D and methyl-β-cyclodextrin did not inhibit the entry, suggesting that macropinocytosis is not involved in the transduction. Overexpression of a mutant form of dynamin partially reduced the transduction of MPG-EGFP. The partial blockade of MPG-EGFP transduction by a dynamin mutant is abolished by the treatment of amiloride. MPG-EGFP transduction is also observed in the mammalian oocytes. Conclusion The results show that the transduction of MPG fusion protein utilizes endocytic pathway(s which is amiloride-sensitive and partially dynamin-dependent. Collectively, the MPG fusion protein could be further developed as a novel tool of "protein therapeutics", with potentials to be used in various cell systems including mammalian oocytes.

  18. Relationship between the loss of neutralizing antibody binding and fusion activity of the F protein of human respiratory syncytial virus

    Directory of Open Access Journals (Sweden)

    Sarisky Robert T

    2007-07-01

    Full Text Available Abstract To elucidate the relationship between resistance to HRSV neutralizing antibodies directed against the F protein and the fusion activity of the F protein, a recombinant approach was used to generate a panel of mutations in the major antigenic sites of the F protein. These mutant proteins were assayed for neutralizing mAb binding (ch101F, palivizumab, and MAb19, level of expression, post-translational processing, cell surface expression, and fusion activity. Functional analysis of the fusion activity of the panel of mutations revealed that the fusion activity of the F protein is tolerant to multiple changes in the site II and IV/V/VI region in contrast with the somewhat limited spectrum of changes in the F protein identified from the isolation of HRSV neutralizing antibody virus escape mutants. This finding suggests that aspects other than fusion activity may limit the spectrum of changes tolerated within the F protein that are selected for by neutralizing antibodies.

  19. Dihydrotestosterone stimulates proliferation and differentiation of fetal calvarial osteoblasts and dural cells and induces cranial suture fusion.

    Science.gov (United States)

    Lin, Ines C; Slemp, Alison E; Hwang, Catherine; Sena-Esteves, Miguel; Nah, Hyun-Duck; Kirschner, Richard E

    2007-10-01

    The higher prevalence of metopic and sagittal suture synostosis in male infants suggests a role for androgens in early craniofacial development. These experiments characterize the influence of androgen stimulation on growth and differentiation of fetal dural and calvarial bone cells and on cranial suture fusion. Primary murine fetal (E18) dural cells and calvarial osteoblasts were isolated and cultured. Cells were treated for 48 hours with 5alpha-dihydrotestosterone (0 to 1000 nM). Cell proliferation was examined by nonradioactive proliferation assay; mRNA expression of alkaline phosphatase, transforming growth factor (TGF)-beta1, and the bone matrix proteins osteopontin, osteocalcin, and type 1 collagen was determined by reverse-transcriptase polymerase chain reaction. In separate experiments, intact fetal calvariae were grown in tissue culture with 10 nM 5alpha-dihydrotestosterone for 7 and 14 days and then examined histologically. Androgen stimulation at 5 nM increased proliferation of fetal dural cells by 46.0 percent and of fetal calvarial osteoblasts by 20.5 percent. Dural expression of osteopontin, osteocalcin, and type 1 collagen was enhanced by 5alpha-dihydrotestosterone, as was that of TGF-beta1 and alkaline phosphatase. Androgen stimulation increased calvarial osteoblast expression of alkaline phosphatase and TGF-beta1 but induced little change in expression of osteocalcin, osteopontin, and type 1 collagen. In tissue culture, 5alpha-dihydrotestosterone stimulated osteoid formation and fusion of sagittal sutures. Androgen stimulation of dural cells and osteoblasts isolated from fetal calvaria promotes cell proliferation and osteoblastic differentiation and can induce cranial suture fusion. These results suggest that sex steroid hormone signaling may stimulate sutural osteogenesis by means of osteodifferentiation of dural cells, thus explaining the male prevalence of nonsyndromic craniosynostosis.

  20. Influence of silk-silica fusion protein design on silica condensation in vitro and cellular calcification

    Science.gov (United States)

    Plowright, Robyn; Dinjaski, Nina; Zhou, Shun; Belton, David J.; Kaplan, David L.; Perry, Carole C.

    2016-01-01

    Biomaterial design via genetic engineering can be utilized for the rational functionalization of proteins to promote biomaterial integration and tissue regeneration. Spider silk has been extensively studied for its biocompatibility, biodegradability and extraordinary material properties. As a protein-based biomaterial, recombinant DNA derived derivatives of spider silks have been modified with biomineralization domains which lead to silica deposition and potentially accelerated bone regeneration. However, the influence of the location of the R5 (SSKKSGSYSGSKGSKRRIL) silicifying domain fused with the spider silk protein sequence on the biosilicification process remains to be determined. Here we designed two silk-R5 fusion proteins that differed in the location of the R5 peptide, C- vs. N-terminus, where the spider silk domain consisted of a 15mer repeat of a 33 amino acid consensus sequence of the major ampullate dragline Spidroin 1 from Nephila clavipes (SGRGGLGGQG AGAAAAAGGA GQGGYGGLGSQGT). The chemical, physical and silica deposition properties of these recombinant proteins were assessed and compared to a silk 15mer control without the R5 present. The location of the R5 peptide did not have a significant effect on wettability and surface energies, while the C-terminal location of the R5 promoted more controlled silica precipitation, suggesting differences in protein folding and possibly different access to charged amino acids that drive the silicification process. Further, cell compatibility in vitro, as well as the ability to promote human bone marrow derived mesenchymal stem cell (hMSC) differentiation were demonstrated for both variants of the fusion proteins. PMID:26989487

  1. An IL12-IL2-antibody fusion protein targeting Hodgkin's lymphoma cells potentiates activation of NK and T cells for an anti-tumor attack.

    Directory of Open Access Journals (Sweden)

    Tobias Jahn

    Full Text Available Successful immunotherapy of Hodgkin's disease is so far hampered by the striking unresponsiveness of lymphoma infiltrating immune cells. To mobilize both adoptive and innate immune cells for an anti-tumor attack we fused the pro-inflammatory cytokines IL2 and IL12 to an anti-CD30 scFv antibody in a dual cytokine fusion protein to accumulate both cytokines at the malignant CD30(+ Hodgkin/Reed-Sternberg cells in the lymphoma lesion. The tumor-targeted IL12-IL2 fusion protein was superior in activating resting T cells to amplify and secrete pro-inflammatory cytokines compared to targeted IL2 or IL12 alone. NK cells were also activated by the dual cytokine protein to secrete IFN-γ and to lyse target cells. The tumor-targeted IL12-IL2, when applied by i.v. injection to immune-competent mice with established antigen-positive tumors, accumulated at the tumor site and induced tumor regression. Data demonstrate that simultaneous targeting of two cytokines in a spatial and temporal simultaneous fashion to pre-defined tissues is feasible by a dual-cytokine antibody fusion protein. In the case of IL12 and IL2, this produced superior anti-tumor efficacy implying the strategy to muster a broader immune cell response in the combat against cancer.

  2. Destabilization and fusion of zwitterionic large unilamellar lipid vesicles induced by a beta-type structure of the HIV-1 fusion peptide

    NARCIS (Netherlands)

    Nieva, JL; Nir, S; Wilschut, J

    1998-01-01

    The peptide HIVarg, corresponding to a sequence of 23 amino acid residues at the N-terminus of HIV-1 gp41, has the capacity to induce fusion of large unilamellar vesicles (LUV) consisting of negatively charged or zwitterionic phospholipids. In the present study, we further characterize this destabil

  3. Diphtheria Toxin/Human B-Cell Activating Factor Fusion Protein Kills Human Acute Lymphoblastic Leukemia BALL-1 Cells: An Experimental Study

    Institute of Scientific and Technical Information of China (English)

    Xin-pu Gao; Zheng-min Liu; Yu-lian Jiao; Bin Cui; Yue-ting Zhu; Jie Zhang; Lai-cheng Wang; Yue-ran Zhao

    2012-01-01

    Objective:This study aimed to express a fusion protein of diphtheria toxin and human B ceil-activating factor (DT388sBAFF) in Escherichia coli (E.coli) and investigate its activity in human B-lineage acute lymphoblastic leukemia 1 cells (BALL-1).Methods:A fragment of DT388sBAFF fusion gene was separated from plasmid pUC57-DT388sBAFF digested with Nde Ⅰ and Xho Ⅰ,and inserted into the expression vector pcold Ⅱ digested with the same enzymes.Recombinants were screened by the colony polymerase chain reaction (PCR) and restriction map.The recombinant expression vector was transformed into BL21 and its expression was induced by isopropyl β-D-1-thiogalactopyranoside (IPTG).The recombinant protein was identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot,and then purified by Ni2+-NTA affinity chromatography.The expression level of B cell-activating factor receptor (BAFF-R) on BALL-1 cells was assessed by real-time PCR.The receptor binding capacity of recombinant protein was determined by cell fluorescent assay.The specific cytotoxicity of recombinant protein on BALL-1 cells was detected by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay.Results:The expression level of recombinant protein was 50% of total bacterial proteins in E.coli,and the recombinant protein could bind to BAFF-R-positive BALL-1 cells and thereby produce a cytotoxic effect on the cells.Conclusion:The fusion protein expression vector DT388sBAFF was successfully constructed and the recombinant protein with selective cytotoxicity against BALL-1 cells was obtained,providing foundation for further study of the therapy of human B-lineage acute lymphoblastic leukemia.

  4. Monoclonal antibody-glial-derived neurotrophic factor fusion protein penetrates the blood-brain barrier in the mouse.

    Science.gov (United States)

    Zhou, Qing-Hui; Boado, Ruben J; Lu, Jeff Zhiqiang; Hui, Eric Ka-Wai; Pardridge, William M

    2010-04-01

    Glial-derived neurotrophic factor (GDNF) is a potent neuroprotective agent for multiple brain disorders, including Parkinson's disease. However, GDNF drug development is difficult because GDNF does not cross the blood-brain barrier (BBB). To enable future drug development of GDNF in mouse models, the neurotrophin was re-engineered as an IgG fusion protein to enable penetration through the BBB after intravenous administration. The 134-amino acid GDNF was fused to the heavy chain of a chimeric monoclonal antibody (MAb) against the mouse transferrin receptor (TfR) designated the cTfRMAb. This antibody undergoes receptor-mediated transport across the BBB and acts as a molecular Trojan horse to ferry the GDNF into mouse brain. The cTfRMAb-GDNF fusion protein was expressed by stably transfected Chinese hamster ovary cells, affinity-purified, and the biochemical identity was confirmed by mouse IgG and GDNF Western blotting. The cTfRMAb-GDNF fusion protein was bifunctional and bound with high affinity to both the GDNF receptor alpha1, ED(50) = 1.7 +/- 0.2 nM, and the mouse TfR, ED(50) = 3.2 +/- 0.3 nM. The cTfRMAb-GDNF fusion protein was rapidly taken up by brain, and the brain uptake was 3.1 +/- 0.2% injected dose/g brain at 60 min after intravenous injection of a 1-mg/kg dose of the fusion protein. Brain capillary depletion analysis showed the majority of the fusion protein was transcytosed across the BBB with penetration into brain parenchyma. The brain uptake results indicate it is possible to achieve therapeutic elevations of GDNF in mouse brain with intravenous administration of the cTfRMAb-GDNF fusion protein.

  5. Fusion protein-based biofilm fabrication composed of recombinant azurin–myoglobin for dual-level biomemory application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taek [Research Institute for Basic Science, Sogang University, Heukseok-dong, Dongjak-gu, Seoul 156-756 (Korea, Republic of); Chung, Yong-Ho; Yoon, Jinho [Department of Chemical and Biomolecular Engineering, Sogang University, Heukseok-dong, Dongjak-gu, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul 121-742 (Korea, Republic of); Min, Junhong [School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 156-756 (Korea, Republic of); Choi, Jeong-Woo, E-mail: jwchoi@sogang.ac.kr [Department of Chemical and Biomolecular Engineering, Sogang University, Heukseok-dong, Dongjak-gu, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul 121-742 (Korea, Republic of)

    2014-11-30

    Graphical abstract: - Highlights: • We developed the fusion protein-based biofilm on the inorganic surface. • For making the fusion protein, the recombinant azurin and the myoglobin was conjugated by the native chemical ligation method. • The developed fusion protein shows unique electrochemical property. • The proposed fusion protein biofilm appears to be a good method for dual-level biomemory device. - Abstract: In the present study, a fusion protein-based biofilm composed of a recombinant azurin–myoglobin (Azu-Myo) has been developed and confirmed its original electrochemical property for dual-level biomemory device application. For this purpose, the azurin was modified with cysteine residues for direct immobilization and conjugation. Then, the recombinant azurin was conjugated with the myoglobin via a sulfo-SMCC bifunctional linker using the chemical ligation method (CLM). The SDS-PAGE and UV–vis spectroscopy were performed to examine the fusion protein conjugates. The prepared Azu-Myo fusion protein was self-assembled onto Au substrate for the biofilm fabrication. Then, the atomic force microscopy (AFM) was used to confirm the immobilization and the surface-enhanced Raman spectroscopy (SERS) was carried out to the surface analysis. Also, the cyclic voltammetry (CV) was carried out to observe an electrochemical property of fabricated biofilm. As a result, the two pair of redox potential values was obtained for dual-level biomemory device application. Then, the dual-level biomemory function was verified by the multi-potential chronoamperometry (MPCA). The results indicate a new fabrication method and material combination for advances in bioelectronic device development.

  6. Rational Design of a Fusion Protein to Exhibit Disulfide-Mediated Logic Gate Behavior

    Science.gov (United States)

    2015-01-01

    Synthetic cellular logic gates are primarily built from gene circuits owing to their inherent modularity. Single proteins can also possess logic gate functions and offer the potential to be simpler, quicker, and less dependent on cellular resources than gene circuits. However, the design of protein logic gates that are modular and integrate with other cellular components is a considerable challenge. As a step toward addressing this challenge, we describe the design, construction, and characterization of AND, ORN, and YES logic gates built by introducing disulfide bonds into RG13, a fusion of maltose binding protein and TEM-1 β-lactamase for which maltose is an allosteric activator of enzyme activity. We rationally designed these disulfide bonds to manipulate RG13’s allosteric regulation mechanism such that the gating had maltose and reducing agents as input signals, and the gates could be toggled between different gating functions using redox agents, although some gates performed suboptimally. PMID:25144732

  7. F-18 Labeled Diabody-Luciferase Fusion Proteins for Optical-ImmunoPET

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Anna M

    2013-01-18

    The goal of the proposed work is to develop novel dual-labeled molecular imaging probes for multimodality imaging. Based on small, engineered antibodies called diabodies, these probes will be radioactively tagged with Fluorine-18 for PET imaging, and fused to luciferases for optical (bioluminescence) detection. Performance will be evaluated and validated using a prototype integrated optical-PET imaging system, OPET. Multimodality probes for optical-PET imaging will be based on diabodies that are dually labeled with 18F for PET detection and fused to luciferases for optical imaging. 1) Two sets of fusion proteins will be built, targeting the cell surface markers CEA or HER2. Coelenterazine-based luciferases and variant forms will be evaluated in combination with native substrate and analogs, in order to obtain two distinct probes recognizing different targets with different spectral signatures. 2) Diabody-luciferase fusion proteins will be labeled with 18F using amine reactive [18F]-SFB produced using a novel microwave-assisted, one-pot method. 3) Sitespecific, chemoselective radiolabeling methods will be devised, to reduce the chance that radiolabeling will inactivate either the target-binding properties or the bioluminescence properties of the diabody-luciferase fusion proteins. 4) Combined optical and PET imaging of these dual modality probes will be evaluated and validated in vitro and in vivo using a prototype integrated optical-PET imaging system, OPET. Each imaging modality has its strengths and weaknesses. Development and use of dual modality probes allows optical imaging to benefit from the localization and quantitation offered by the PET mode, and enhances the PET imaging by enabling simultaneous detection of more than one probe.

  8. Delayed toxicity associated with soluble anthrax toxin receptor decoy-Ig fusion protein treatment.

    Directory of Open Access Journals (Sweden)

    Diane Thomas

    Full Text Available Soluble receptor decoy inhibitors, including receptor-immunogloubulin (Ig fusion proteins, have shown promise as candidate anthrax toxin therapeutics. These agents act by binding to the receptor-interaction site on the protective antigen (PA toxin subunit, thereby blocking toxin binding to cell surface receptors. Here we have made the surprising observation that co-administration of receptor decoy-Ig fusion proteins significantly delayed, but did not protect, rats challenged with anthrax lethal toxin. The delayed toxicity was associated with the in vivo assembly of a long-lived complex comprised of anthrax lethal toxin and the receptor decoy-Ig inhibitor. Intoxication in this system presumably results from the slow dissociation of the toxin complex from the inhibitor following their prolonged circulation. We conclude that while receptor decoy-Ig proteins represent promising candidates for the early treatment of B. anthracis infection, they may not be suitable for therapeutic use at later stages when fatal levels of toxin have already accumulated in the bloodstream.

  9. On the origin of protein synthesis factors: a gene duplication/fusion model.

    Science.gov (United States)

    Cousineau, B; Leclerc, F; Cedergren, R

    1997-12-01

    Sequence similarity has given rise to the proposal that IF-2, EF-G, and EF-Tu are related through a common ancestor. We evaluate this proposition and whether the relationship can be extended to other factors of protein synthesis. Analysis of amino acid sequence similarity gives statistical support for an evolutionary affiliation among IF-1, IF-2, IF-3, EF-Tu, EF-Ts, and EF-G and suggests further that this association is a result of gene duplication/fusion events. In support of this mechanism, the three-dimensional structures of IF-3, EF-Tu, and EF-G display a predictable domain structure and overall conformational similarity. The model that we propose consists of three consecutives duplication/fusion events which would have taken place before the divergence of the three superkingdoms: eubacteria, archaea, and eukaryotes. The root of this protein superfamily tree would be an ancestor of the modern IF-1 gene sequence. The repeated fundamental motif of this protein superfamily is a small RNA binding domain composed of two alpha-helices packed along side of an antiparallel beta-sheet.

  10. Dendritic-tumor fusion cells derived heat shock protein70-peptide complex has enhanced immunogenicity.

    Science.gov (United States)

    Zhang, Yunfei; Zhang, Yong; Chen, Jun; Liu, Yunyan; Luo, Wen

    2015-01-01

    Tumor-derived heat shock protein70-peptide complexes (HSP70.PC-Tu) have shown great promise in tumor immunotherapy due to numerous advantages. However, large-scale phase III clinical trials showed that the limited immunogenicity remained to be enhanced. In previous research, we demonstrated that heat shock protein 70-peptide complexes (HSP70.PC-Fc) derived from dendritic cell (DC)-tumor fusions exhibit enhanced immunogenicity compared with HSP70.PCs from tumor cells. However, the DCs used in our previous research were obtained from healthy donors and not from the patient population. In order to promote the clinical application of these complexes, HSP70.PC-Fc was prepared from patient-derived DC fused directly with patient-derived tumor cells in the current study. Our results showed that compared with HSP70.PC-Tu, HSP70.PC-Fc elicited much more powerful immune responses against the tumor from which the HSP70 was derived, including enhanced T cell activation, and CTL responses that were shown to be antigen specific and HLA restricted. Our results further indicated that the enhanced immunogenicity is related to the activation of CD4+ T cells and increased association with other heat shock proteins, such as HSP90. Therefore, the current study confirms the enhanced immunogenicity of HSP70.PC derived from DC-tumor fusions and may provide direct evidence promoting their future clinical use.

  11. [Expression and purification of GST-CML28 fusion protein and preparation of its polyclonal antibody].

    Science.gov (United States)

    Mao, Xia; Zhang, Bing; Bai, Xue-Ling; Liu, Long-Long; Zhang, Dong-Hua

    2012-12-01

    This study was aimed to investigate the expression of GST-CML28 in Escherichia Coli and to prepare its antibody. The constructed recombinant expression vectors CML28-pGEX-3X were transformed into Escherichia Coli BL21 under IPTG induction. The protein was abstracted from the transformers, and purified by a GSTrap FF column. The rabbits were immunized by the purified fusion protein to produce serum with anti-CML28 antibody. The serum was purified by chromatographic column stuffed with glutathione Sephamse 4B to get the antibody. The specific antibody against CML28 was further identified by ELISA, Western blot, immunohistochemistry and quantum dot luminescence. The results indicated that GST-CML28 fusion protein was expressed in Escherichia coli and its specific polyclonal antibody was obtained. It is concluded that the anti-CML28 polyclonal antibodies with high titer and specificity are successfully prepared. These antibodies provide an useful experimental tool to profoundly research the physiological significance and biological function of the CML28 gene.

  12. Design and analysis of post-fusion 6-helix bundle of heptad repeat regions from Newcastle disease virus F protein.

    Science.gov (United States)

    Zhu, Jieqing; Li, Pengyun; Wu, Tinghe; Gao, Feng; Ding, Yi; Zhang, Catherine W-H; Rao, Zihe; Gao, George F; Tien, Po

    2003-05-01

    Fusion of paramyxovirus to the cell involves receptor binding of the HN glycoprotein and a number of conformational changes of F glycoprotein. The F protein is expressed as a homotrimer on the virus surface. In the present model, there are at least three conformations of F protein, i.e. native form, pre-hairpin intermediate and the post-fusion state. In the post-fusion state, the two highly conserved heptad repeat (HR) regions of F protein form a stable 6-helix coiled-coil bundle. However, no crystal structure is known for this state for the Newcastle disease virus, although the crystal structure of the F protein native form has been solved recently. Here we deployed an Escherichia coli in vitro expression system to engineer this 6-helix bundle by fusion of either the two HR regions (HR1, linker and HR2) or linking the 6-helix [3 x (HR1, linker and HR2)] together as a single chain. Subsequently, both of them form a stable 6-helix bundle in vitro judging by gel filtration and chemical cross-linking and the proteins show salient features of an alpha-helix structure. Crystals diffracting X-rays have been obtained from both protein preparations and the structure determination is under way. This method could be used for crystallization of the post-fusion state HR structures of other viruses.

  13. A Maltose-Binding Protein Fusion Construct Yields a Robust Crystallography Platform for MCL1.

    Directory of Open Access Journals (Sweden)

    Matthew C Clifton

    Full Text Available Crystallization of a maltose-binding protein MCL1 fusion has yielded a robust crystallography platform that generated the first apo MCL1 crystal structure, as well as five ligand-bound structures. The ability to obtain fragment-bound structures advances structure-based drug design efforts that, despite considerable effort, had previously been intractable by crystallography. In the ligand-independent crystal form we identify inhibitor binding modes not observed in earlier crystallographic systems. This MBP-MCL1 construct dramatically improves the structural understanding of well-validated MCL1 ligands, and will likely catalyze the structure-based optimization of high affinity MCL1 inhibitors.

  14. Targeting leukemic fusion proteins with small interfering RNAs: recent advances and therapeutic potentials

    Institute of Scientific and Technical Information of China (English)

    Maria THOMAS; Johann GREIL; Olaf HEIDENREICH

    2006-01-01

    RNA interference has become an indispensable research tool to study gene functions in a wide variety of organisms.Because of their high efficacy and specificity,RNA interference-based approaches may also translate into new therapeutic strategies to treat human diseases.In particular,oncogenes such as leukemic fusion proteins,which arise from chromosomal translocations,are promising targets for such gene silencing approaches,because they are exclusively expressed in precancerous and cancerous tissues,and because they are frequently indispensable for maintaining the malignant phenotype.This review summarizes recent developments in targeting leukemia-specific genes and discusses problems and approaches for possible clinical applications.

  15. A faster way to make GFP-based biosensors: Two new transposons for creating multicolored libraries of fluorescent fusion proteins

    Directory of Open Access Journals (Sweden)

    Hughes Thomas E

    2004-08-01

    Full Text Available Abstract Background There are now several ways to generate fluorescent fusion proteins by randomly inserting DNA encoding the Green Fluorescent Protein (GFP into another protein's coding sequence. These approaches can be used to map regions in a protein that are permissive for GFP insertion or to create novel biosensors. While remarkably useful, the current insertional strategies have two major limitations: (1 they only produce one kind, or color, of fluorescent fusion protein and (2 one half of all GFP insertions within the target coding sequence are in the wrong orientation. Results We have overcome these limitations by incorporating two different fluorescent proteins coding sequences in a single transposon, either in tandem or antiparallel. Our initial tests targeted two mammalian integral membrane proteins: the voltage sensitive motor, Prestin, and an ER ligand gated Ca2+ channel (IP3R. Conclusions These new designs increase the efficiency of random fusion protein generation in one of two ways: (1 by creating two different fusion proteins from each insertion or (2 by being independent of orientation.

  16. Expression and cytosolic assembly of the S-layer fusion protein mSbsC-EGFP in eukaryotic cells

    Directory of Open Access Journals (Sweden)

    Veenhuis Marten

    2005-10-01

    Full Text Available Abstract Background Native as well as recombinant bacterial cell surface layer (S-layer protein of Geobacillus (G. stearothermophilus ATCC 12980 assembles to supramolecular structures with an oblique symmetry. Upon expression in E. coli, S-layer self assembly products are formed in the cytosol. We tested the expression and assembly of a fusion protein, consisting of the mature part (aa 31–1099 of the S-layer protein and EGFP (enhanced green fluorescent protein, in eukaryotic host cells, the yeast Saccharomyces cerevisiae and human HeLa cells. Results Upon expression in E. coli the recombinant mSbsC-EGFP fusion protein was recovered from the insoluble fraction. After denaturation by Guanidine (Gua-HCl treatment and subsequent dialysis the fusion protein assembled in solution and yielded green fluorescent cylindric structures with regular symmetry comparable to that of the authentic SbsC. For expression in the eukaryotic host Saccharomyces (S. cerevisiae mSbsC-EGFP was cloned in a multi-copy expression vector bearing the strong constitutive GPD1 (glyceraldehyde-3-phosophate-dehydrogenase promoter. The respective yeast transfomants were only slightly impaired in growth and exhibited a needle-like green fluorescent pattern. Transmission electron microscopy (TEM studies revealed the presence of closely packed cylindrical structures in the cytosol with regular symmetry comparable to those obtained after in vitro recrystallization. Similar structures are observed in HeLa cells expressing mSbsC-EGFP from the Cytomegalovirus (CMV IE promoter. Conclusion The mSbsC-EGFP fusion protein is stably expressed both in the yeast, Saccharomyces cerevisiae, and in HeLa cells. Recombinant mSbsC-EGFP combines properties of both fusion partners: it assembles both in vitro and in vivo to cylindrical structures that show an intensive green fluorescence. Fusion of proteins to S-layer proteins may be a useful tool for high level expression in yeast and HeLa cells of

  17. Construction and prokaryotic expression of the fusion protein Stx2B-IntiminC300 of EHEC O157:H7 and its immunoprophylactic potential

    Institute of Scientific and Technical Information of China (English)

    YONG YI; WEI JUN ZHANG; JIANG GU; PING LUO; XU HU MAO; WEN DE TONG; YING MA; MING ZEN; YONG HONG ZHU; QUAN MING ZOU; XIA AI; JIAN PING CHENG

    2006-01-01

    To construct and express the fusion protein Stx2B-IntiminC300 of EHEC O157: H7, and to further investigate its immunoprophylactic potential, the gene of Stx2B ( stx2b ) from EHEC O157: H7chromosome was cloned into pMD18-T vector. Thereafter, the amplified gene was cloned into prokaryotic expression plasmid pET-28a ( + )-eaeC300, which was constructed previously. The recombinant pasmid pET-28a( + )-stx2b-eaeC300 was transformed into E. coli BL21 (DE3). After inducement, the protein Stx2B-IntiminC300 was successfully expressed and analyzed with sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), Western blotting and N-terminal amino acid residual sequencing. To evaluate its immunoprophylactic potential, it was primarily purified by ion-exchange chromatography and injected into 30 BALB/c mice with Al(OH)3 in the subscapular region. Ten days after the last booster vaccination, 20 mice were attacked with EHEC O157:H7 lysate and the protective efficacy was observed. In the present study, the gene of Stx2B-IntiminC300 was successfully cloned into pET-28a (+) vector. The results of SDS-PAGE and Western blotting assay showed that the fusion protein was successfully expressed in the inclusion body form, accounting for 25% of total expression products, and its molecular weight was about 43 kDa. The result of the N-terminal amino acid residual sequencing showed that it was identical to that of the molecular designed. The purity was about 75% after primary purification. Animal tests revealed that the fusion protein Stx2B-IntiminC300 has elicited high titer of protective antibody relatively. These results demonstrate that the fusion protein Stx2B-IntiminC300 is successfully expressed in prokaryotic expression system and shows certain immunoprophylactic potential.

  18. Recombinant fusion proteins for the industrial production of disulfide bridge containing peptides: purification, oxidation without concatamer formation, and selective cleavage.

    Science.gov (United States)

    Döbeli, H; Andres, H; Breyer, N; Draeger, N; Sizmann, D; Zuber, M T; Weinert, B; Wipf, B

    1998-04-01

    We report the biotechnical production of peptides of approximately 35-50 amino acids in length containing one intramolecular disulfide bridge, using a recombinant fusion tail approach. This method fills the technological gap when either (a) chemical synthesis fails due to known problematic peptide sequences or (b) if simple recombinant expression is unsuccessful due to degradation. The fusion tail described here serves several purposes: (i) it enables high expression levels in Escherichia coli to be achieved; (ii) it renders the fusion protein fairly soluble; (iii) it contains a histidine affinity tag for easy purification on Ni-chelate resins, which also serves as a catalyst for the oxygen-dependent formation of the disulfide bridge; and (iv) it suppresses the formation of concatamers during the oxidation process through steric hindrance. The purified fusion protein is then immobilized on a reversed phase column for two purposes: (i) chemical cleavage of the fusion tail by cyanogen bromide and (ii) subsequent purification of the peptide. A very hydrophilic fusion partner is required so that immobilization on the reversed phase column always occurs due to the peptide. Sensitive hydrophobic residues are thereby protected from the cleavage reagent while the cleaved hydrophilic fusion tail is easily separated from the hydrophobic peptide. The method is exemplified by eight peptides representing an immunodominant epitope of the human immunodeficiency virus, but may be useful for a significant variety of similar peptides.

  19. Human cytomegaloviruses expressing yellow fluorescent fusion proteins--characterization and use in antiviral screening.

    Science.gov (United States)

    Straschewski, Sarah; Warmer, Martin; Frascaroli, Giada; Hohenberg, Heinrich; Mertens, Thomas; Winkler, Michael

    2010-02-11

    Recombinant viruses labelled with fluorescent proteins are useful tools in molecular virology with multiple applications (e.g., studies on intracellular trafficking, protein localization, or gene activity). We generated by homologous recombination three recombinant cytomegaloviruses carrying the enhanced yellow fluorescent protein (EYFP) fused with the viral proteins IE-2, ppUL32 (pp150), and ppUL83 (pp65). In growth kinetics, the three viruses behaved all like wild type, even at low multiplicity of infection (MOI). The expression of all three fusion proteins was detected, and their respective localizations were the same as for the unmodified proteins in wild-type virus-infected cells. We established the in vivo measurement of fluorescence intensity and used the recombinant viruses to measure inhibition of viral replication by neutralizing antibodies or antiviral substances. The use of these viruses in a pilot screen based on fluorescence intensity and high-content analysis identified cellular kinase inhibitors that block viral replication. In summary, these viruses with individually EYFP-tagged proteins will be useful to study antiviral substances and the dynamics of viral infection in cell culture.

  20. Human cytomegaloviruses expressing yellow fluorescent fusion proteins--characterization and use in antiviral screening.

    Directory of Open Access Journals (Sweden)

    Sarah Straschewski

    Full Text Available Recombinant viruses labelled with fluorescent proteins are useful tools in molecular virology with multiple applications (e.g., studies on intracellular trafficking, protein localization, or gene activity. We generated by homologous recombination three recombinant cytomegaloviruses carrying the enhanced yellow fluorescent protein (EYFP fused with the viral proteins IE-2, ppUL32 (pp150, and ppUL83 (pp65. In growth kinetics, the three viruses behaved all like wild type, even at low multiplicity of infection (MOI. The expression of all three fusion proteins was detected, and their respective localizations were the same as for the unmodified proteins in wild-type virus-infected cells. We established the in vivo measurement of fluorescence intensity and used the recombinant viruses to measure inhibition of viral replication by neutralizing antibodies or antiviral substances. The use of these viruses in a pilot screen based on fluorescence intensity and high-content analysis identified cellular kinase inhibitors that block viral replication. In summary, these viruses with individually EYFP-tagged proteins will be useful to study antiviral substances and the dynamics of viral infection in cell culture.

  1. Different sets of ER-resident J-proteins regulate distinct polar nuclear-membrane fusion events in Arabidopsis thaliana.

    Science.gov (United States)

    Maruyama, Daisuke; Yamamoto, Masaya; Endo, Toshiya; Nishikawa, Shuh-ichi

    2014-11-01

    Angiosperm female gametophytes contain a central cell with two polar nuclei. In many species, including Arabidopsis thaliana, the polar nuclei fuse during female gametogenesis. We previously showed that BiP, an Hsp70 in the endoplasmic reticulum (ER), was essential for membrane fusion during female gametogenesis. Hsp70 function requires partner proteins for full activity. J-domain containing proteins (J-proteins) are the major Hsp70 functional partners. A. thaliana ER contains three soluble J-proteins, AtERdj3A, AtERdj3B, and AtP58(IPK). Here, we analyzed mutants of these proteins and determined that double-mutant ovules lacking AtP58(IPK) and AtERdj3A or AtERdj3B were defective in polar nuclear fusion. Electron microscopy analysis identified that polar nuclei were in close contact, but no membrane fusion occurred in mutant ovules lacking AtP58(IPK) and AtERdj3A. The polar nuclear outer membrane appeared to be connected via the ER remaining at the inner unfused membrane in mutant ovules lacking AtP58(IPK) and AtERdj3B. These results indicate that ER-resident J-proteins, AtP58(IPK)/AtERdj3A and AtP58(IPK)/AtERdj3B, function at distinct steps of polar nuclear-membrane fusion. Similar to the bip1 bip2 double mutant female gametophytes, the aterdj3a atp58(ipk) double mutant female gametophytes defective in fusion of the outer polar nuclear membrane displayed aberrant endosperm proliferation after fertilization with wild-type pollen. However, endosperm proliferated normally after fertilization of the aterdj3b atp58(ipk) double mutant female gametophytes defective in fusion of the inner membrane. Our results indicate that the polar nuclear fusion defect itself does not cause an endosperm proliferation defect.

  2. Intranasal immunization with fusion protein MrpH·FimH and MPL adjuvant confers protection against urinary tract infections caused by uropathogenic Escherichia coli and Proteus mirabilis.

    Science.gov (United States)

    Habibi, Mehri; Asadi Karam, Mohammad Reza; Shokrgozar, Mohammad Ali; Oloomi, Mana; Jafari, Anis; Bouzari, Saeid

    2015-04-01

    Urinary tract infections (UTIs) caused by Uropathogenic Escherichia coli (UPEC) and Proteus mirabilis are among the most common infections in the world. Currently there are no vaccines available to confer protection against UTI in humans. In this study, the immune responses and protection of FimH of UPEC with MrpH antigen of P. mirabilis in different vaccine formulations with and without MPL adjuvant were assessed. Mice intranasally immunized with the novel fusion protein MrpH·FimH induced a significant increase in IgG and IgA in serum, nasal wash, vaginal wash, and urine samples. Mice immunized with fusion MrpH·FimH also showed a significant boost in cellular immunity. Addition of MPL as the adjuvant enhanced FimH and MrpH specific humoral and cellular responses in both systemic and mucosal samples. Vaccination with MrpH·FimH alone or in combination with MPL showed the highest efficiency in clearing bladder and kidney infections in mice challenged with UPEC and P. mirabilis. These findings may indicate that the protection observed correlates with the systemic, mucosal and cellular immune responses induced by vaccination with these preparations. Our data suggest MrpH·FimH fusion protein with or without MPL as adjuvant could be potential vaccine candidates for elimination of UPEC and P. mirabilis. These data altogether are promising and these formulations are good candidates for elimination of UPEC and P. mirabilis.

  3. Exceptionally potent anti-tumor bystander activity of an scFv : sTRAIL fusion protein with specificity for EGP2 toward target antigen-negative tumor cells

    NARCIS (Netherlands)

    Bremer, E; Samplonius, D; Kroesen, BJ; van Genne, L; de Leij, L; Helfrich, W

    2004-01-01

    Previously, we reported on the target cell-restricted fratricide apoptotic activity of scFvC54:sTRAIL, a fusion protein comprising human-soluble tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) genetically linked to the antibody fragment scFvC54 specific for the cell surface target

  4. HUWE1 and TRIP12 collaborate in degradation of ubiquitin-fusion proteins and misframed ubiquitin.

    Directory of Open Access Journals (Sweden)

    Esben G Poulsen

    Full Text Available In eukaryotic cells an uncleavable ubiquitin moiety conjugated to the N-terminus of a protein signals the degradation of the fusion protein via the proteasome-dependent ubiquitin fusion degradation (UFD pathway. In yeast the molecular mechanism of the UFD pathway has been well characterized. Recently the human E3 ubiquitin-protein ligase TRIP12 was connected with the UFD pathway, but little is otherwise known about this system in mammalian cells. In the present work, we utilized high-throughput imaging on cells transfected with a targeted siRNA library to identify components involved in degradation of the UFD substrate Ub(G76V-YFP. The most significant hits from the screen were the E3 ubiquitin-protein ligase HUWE1, as well as PSMD7 and PSMD14 that encode proteasome subunits. Accordingly, knock down of HUWE1 led to an increase in the steady state level and a retarded degradation of the UFD substrate. Knock down of HUWE1 also led to a stabilization of the physiological UFD substrate UBB(+1. Precipitation experiments revealed that HUWE1 is associated with both the Ub(G76V-YFP substrate and the 26S proteasome, indicating that it functions late in the UFD pathway. Double knock down of HUWE1 and TRIP12 resulted in an additive stabilization of the substrate, suggesting that HUWE1 and TRIP12 function in parallel during UFD. However, even when both HUWE1 and TRIP12 are downregulated, ubiquitylation of the UFD substrate was still apparent, revealing functional redundancy between HUWE1, TRIP12 and yet other ubiquitin-protein ligases.

  5. Fluorescence fluctuation analysis of BACE1-GFP fusion protein in cultured HEK293 cells

    Science.gov (United States)

    Gardeen, Spencer; Johnson, Joseph L.; Heikal, Ahmed A.

    2016-10-01

    Beta-site APP cleaving enzyme 1 (BACE1) is a type I transmembrane aspartyl protease. In the amyloidogenic pathway, BACE1 provides β-secretase activity that cleaves the amyloid precursor protein (APP) that leads to amyloid beta (Aβ) peptides. The aggregation of these Aβ will ultimately results in amyloid plaque formation, a hallmark of Alzheimer's disease (AD). Amyloid aggregation leads to progressive memory impairment and neural loss. Recent detergent protein extraction studies suggest that the untreated BACE1 protein forms a dimer that has significantly higher catalytic activity than its monomeric counterpart. Here, we examine the dimerization hypothesis of BACE1 in cultured HEK293 cells using fluorescence correlation spectroscopy (FCS). Cells were transfected with a BACE1-EGFP fusion protein construct and imaged using confocal and DIC microscopy to monitor labeled BACE1 localization and distribution within the cell. Our one-photon fluorescence fluctuation autocorrelation of BACE1- EGFP on the plasma membrane of HEK cells is modeled using two diffusing species on the plasma membrane with estimated diffusion coefficients of 1.39 x 10-7 cm2/sec and 2.8 x 10-8 cm2/sec under resting conditions and STA-200 inhibition, respectively. Anomalous diffusion model also provided adequate description of the observed autocorrelation function of BACE1- EGFP on the plasma membrane with an estimate exponent (α) of 0.8 and 0.5 for resting and STA-200 treated cells, respectively. The corresponding hydrodynamic radius of this transmembrane fusion protein was estimated using the measured diffusion coefficients assuming both Stokes-Einstein and Saffman-Delbruck models. Our results suggest a complex diffusion pattern of BACE1-EGFP on the plasma membrane of HEK cells with the possibility for dimer formation, especially under STA-200 inhibition.

  6. Heat generation above break-even from laser-induced fusion in ultra-dense deuterium

    Directory of Open Access Journals (Sweden)

    Leif Holmlid

    2015-08-01

    Full Text Available Previous results from laser-induced processes in ultra-dense deuterium D(0 give conclusive evidence for ejection of neutral massive particles with energy >10 MeV u−1. Such particles can only be formed from nuclear processes like nuclear fusion at the low laser intensity used. Heat generation is of interest for future fusion energy applications and has now been measured by a small copper (Cu cylinder surrounding the laser target. The temperature rise of the Cu cylinder is measured with an NTC resistor during around 5000 laser shots per measured point. No heating in the apparatus or the gas feed is normally used. The fusion process is suboptimal relative to previously published studies by a factor of around 10. The small neutral particles HN(0 of ultra-dense hydrogen (size of a few pm escape with a substantial fraction of the energy. Heat loss to the D2 gas (at <1 mbar pressure is measured and compensated for under various conditions. Heat release of a few W is observed, at up to 50% higher energy than the total laser input thus a gain of 1.5. This is uniquely high for the use of deuterium as fusion fuel. With a slightly different setup, a thermal gain of 2 is reached, thus clearly above break-even for all neutronicity values possible. Also including the large kinetic energy which is directly measured for MeV particles leaving through a small opening gives a gain of 2.3. Taking into account the lower efficiency now due to the suboptimal fusion process, previous studies indicate a gain of at least 20 during long periods.

  7. Baculovirus envelope fusion proteins F and GP64 exploit distinct receptors to gain entry into cultured insect cells

    NARCIS (Netherlands)

    Westenberg, M.; Uijtdewilligen, P.; Vlak, J.M.

    2007-01-01

    Group II nucleopolyhedroviruses (NPVs), e.g. Helicoverpa armigera (Hear) NPV and Spodoptera exigua (Se) MNPV (multiple NPV), lack a GP64-like protein that is present in group I NPVs, e.g. Autographa californica (Ac)MNPV, but have an unrelated envelope fusion protein named F. Three AcMNPV viruses wer

  8. Baculovirus envelope fusion proteins F and GP64 exploit distinct receptors to gain entry into cultured insect cells.

    NARCIS (Netherlands)

    Westenberg, M.; Uijtdewilligen, P.J.E.; Vlak, J.M.

    2007-01-01

    Group II nucleopolyhedroviruses (NPVs), e.g. Helicoverpa armigera (Hear) NPV and Spodoptera exigua (Se) MNPV (multiple NPV), lack a GP64-like protein that is present in group I NPVs, e.g. Autographa californica (Ac)MNPV, but have an unrelated envelope fusion protein named F. Three AcMNPV viruses wer

  9. Evaluation of immune effect of recombinant fusion protein targeting the prostate stem cell antigen based on PSCA and HSP70

    Directory of Open Access Journals (Sweden)

    Lei DONG

    2014-10-01

    Full Text Available Objective To explore the immune effect and antitumor activity of recombinant prostate stem cell protein (PSCA and heat shock protein 70 (HSP70 in a murine model of prostate cancer. Methods Twenty-five healthy male C57BL/6 mice were randomly divided into 5 groups (5 each: PSCA, HSP, PSCA+HSP, PSCA-HSP and control group. Mice in the first 4 groups were vaccinated with the corresponding proteins, and those in control group were faked with injection of phosphate buffer saline (PBS. After immunization with recombinant proteins, the PSCA-specific cellular immune responses were monitored with ELISPOT, intracellular cytokine staining assay, and flow cytometry, and ELISA assay was used to detect humoral immune responses. The tumor growth and survival of vaccined mice were observed. Results ELISPOT revealed that the mice in PSCA-HSP group generated much more IFN-γ spot-forming cells than those in other groups (P<0.05, and they could generate strong anti-PSCA antibody response. Results of flow cytometry showed that the number of CD8+/IFN-γ+ T cells was significantly higher in PSCAHSP group than that in other groups (P<0.05. ELISA results revealed that all the mice in PSCA, PSCA+HSP and PSCA-HSP group were induced to generate the PSCA-specific humoral immune response, and no statistical difference was found on the antibody levels among the three groups. Animal experiment showed that PSCA-HSP could inhibit the growth of PSCA-expressing tumors and prolong the survival time of vaccinated mice. Conclusion HSP70 is a chaperone with significant effect for protein vaccines, and the recombinant fusion protein PSCA-HSP70 could be of potential value for prostate cancer treatment. DOI: 10.11855/j.issn.0577-7402.2014.09.08

  10. Vaccination of Gerbils with Bm-103 and Bm-RAL-2 Concurrently or as a Fusion Protein Confers Consistent and Improved Protection against Brugia malayi Infection.

    Science.gov (United States)

    Arumugam, Sridhar; Wei, Junfei; Liu, Zhuyun; Abraham, David; Bell, Aaron; Bottazzi, Maria Elena; Hotez, Peter J; Zhan, Bin; Lustigman, Sara; Klei, Thomas R

    2016-04-01

    The Brugia malayi Bm-103 and Bm-RAL-2 proteins are orthologous to Onchocerca volvulus Ov-103 and Ov-RAL-2, and which were selected as the best candidates for the development of an O. volvulus vaccine. The B. malayi gerbil model was used to confirm the efficacy of these Ov vaccine candidates on adult worms and to determine whether their combination is more efficacious. Vaccine efficacy of recombinant Bm-103 and Bm-RAL-2 administered individually, concurrently or as a fusion protein were tested in gerbils using alum as adjuvant. Vaccination with Bm-103 resulted in worm reductions of 39%, 34% and 22% on 42, 120 and 150 days post infection (dpi), respectively, and vaccination with Bm-RAL-2 resulted in worm reductions of 42%, 22% and 46% on 42, 120 and 150 dpi, respectively. Vaccination with a fusion protein comprised of Bm-103 and Bm-RAL-2 resulted in improved efficacy with significant reduction of worm burden of 51% and 49% at 90 dpi, as did the concurrent vaccination with Bm-103 and Bm-RAL-2, with worm reduction of 61% and 56% at 90 dpi. Vaccination with Bm-103 and Bm-RAL-2 as a fusion protein or concurrently not only induced a significant worm reduction of 61% and 42%, respectively, at 150 dpi, but also significantly reduced the fecundity of female worms as determined by embryograms. Elevated levels of antigen-specific IgG were observed in all vaccinated gerbils. Serum from gerbils vaccinated with Bm-103 and Bm-RAL-2 individually, concurrently or as a fusion protein killed third stage larvae in vitro when combined with peritoneal exudate cells. Although vaccination with Bm-103 and Bm-RAL-2 individually conferred protection against B. malayi infection in gerbils, a more consistent and enhanced protection was induced by vaccination with Bm-103 and Bm-RAL-2 fusion protein and when they were used concurrently. Further characterization and optimization of these filarial vaccines are warranted.

  11. Vaccination of Gerbils with Bm-103 and Bm-RAL-2 Concurrently or as a Fusion Protein Confers Consistent and Improved Protection against Brugia malayi Infection.

    Directory of Open Access Journals (Sweden)

    Sridhar Arumugam

    2016-04-01

    Full Text Available The Brugia malayi Bm-103 and Bm-RAL-2 proteins are orthologous to Onchocerca volvulus Ov-103 and Ov-RAL-2, and which were selected as the best candidates for the development of an O. volvulus vaccine. The B. malayi gerbil model was used to confirm the efficacy of these Ov vaccine candidates on adult worms and to determine whether their combination is more efficacious.Vaccine efficacy of recombinant Bm-103 and Bm-RAL-2 administered individually, concurrently or as a fusion protein were tested in gerbils using alum as adjuvant. Vaccination with Bm-103 resulted in worm reductions of 39%, 34% and 22% on 42, 120 and 150 days post infection (dpi, respectively, and vaccination with Bm-RAL-2 resulted in worm reductions of 42%, 22% and 46% on 42, 120 and 150 dpi, respectively. Vaccination with a fusion protein comprised of Bm-103 and Bm-RAL-2 resulted in improved efficacy with significant reduction of worm burden of 51% and 49% at 90 dpi, as did the concurrent vaccination with Bm-103 and Bm-RAL-2, with worm reduction of 61% and 56% at 90 dpi. Vaccination with Bm-103 and Bm-RAL-2 as a fusion protein or concurrently not only induced a significant worm reduction of 61% and 42%, respectively, at 150 dpi, but also significantly reduced the fecundity of female worms as determined by embryograms. Elevated levels of antigen-specific IgG were observed in all vaccinated gerbils. Serum from gerbils vaccinated with Bm-103 and Bm-RAL-2 individually, concurrently or as a fusion protein killed third stage larvae in vitro when combined with peritoneal exudate cells.Although vaccination with Bm-103 and Bm-RAL-2 individually conferred protection against B. malayi infection in gerbils, a more consistent and enhanced protection was induced by vaccination with Bm-103 and Bm-RAL-2 fusion protein and when they were used concurrently. Further characterization and optimization of these filarial vaccines are warranted.

  12. Receptor-induced thiolate couples Env activation to retrovirus fusion and infection.

    Directory of Open Access Journals (Sweden)

    Jason G Smith

    2007-12-01

    Full Text Available According to current models of retrovirus infection, receptor binding to the surface subunit (SU of the envelope glycoprotein (Env triggers a conformational change in the transmembrane subunit (TM that mediates virus fusion to cell membranes. To understand how this occurs, we investigated the role of the receptor Tva in avian leukosis virus-A (ALV-A infection. We find that Tva binding induced the formation of a reactive thiolate on Cys38 (Cys38-S- in SU. Both chemical and genetic inactivation of Cys38-S- completely abrogated ALV fusion and infection. Remarkably, Cys38-S- does not mediate isomerization of the SU-TM disulfide bond and is not required for Tva-induced activation of TM, including pre-hairpin association with membranes and low pH assembly of helical bundles. These findings indicate that, contrary to current models, receptor activation of TM is not sufficient for ALV fusion and infection and that formation of a reactive thiolate is an additional receptor-dependent step.

  13. In vitro antitumor immune response induced by fusion of dendritic cells and colon cancer cells

    Institute of Scientific and Technical Information of China (English)

    Feng Xu; Ying-Jiang Ye; Shan Wang

    2004-01-01

    AIM: The prevention of recurrence of colon cancer (CC)after operation is very important for improvement of the prognosis of CC patients, especially those with micrometastasis. The generation of fused cells between dendritic cells (DCs) and tumor cells maybe an effective approach for tumor antigen presentation in immunotherapy. In this study,we fused human colon caner SW480 cells and human peripheral blood - derived DCs to induce an antitumor activity against human CC.METHODS: CC SW480 cells and human peripheral blood derived DCs were fused with 500 mL/L polyethylene glycol (PEG).RESULTS: The specific T cell responses activated by fusion cells (FCs), were observed. About 100 mL/L to 160 mL/L of the PEG-treated non-adherent cells with fluorescences were considered to be dendritomas that highly expressed the key molecules for antigen presentation in our five cases. In vitro studies showed that fusions effectively activated CD8+ T lymphocytes to secrete interferon-γ. The early apoptotic ratio of the colon cancer SW480 cells was higher than that of controls, which was affected by cytotoxic T lymphocytes (CTLs) stimulated by dendritomas.CONCLUSION: The data indicate that fusion of tumor cells with DCs is an attractive strategy to induce tumor rejection.

  14. Structural and kinetic analysis of the unnatural fusion protein 4-coumaroyl-CoA ligase::stilbene synthase

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yechun; Yi, Hankuil; Wang, Melissa; Yu, Oliver; Jez, Joseph M. (WU); (Danforth)

    2012-10-24

    To increase the biochemical efficiency of biosynthetic systems, metabolic engineers have explored different approaches for organizing enzymes, including the generation of unnatural fusion proteins. Previous work aimed at improving the biosynthesis of resveratrol, a stilbene associated a range of health-promoting activities, in yeast used an unnatural engineered fusion protein of Arabidopsis thaliana (thale cress) 4-coumaroyl-CoA ligase (At4CL1) and Vitis vinifera (grape) stilbene synthase (VvSTS) to increase resveratrol levels 15-fold relative to yeast expressing the individual enzymes. Here we present the crystallographic and biochemical analysis of the 4CL::STS fusion protein. Determination of the X-ray crystal structure of 4CL::STS provides the first molecular view of an artificial didomain adenylation/ketosynthase fusion protein. Comparison of the steady-state kinetic properties of At4CL1, VvSTS, and 4CL::STS demonstrates that the fusion protein improves catalytic efficiency of either reaction less than 3-fold. Structural and kinetic analysis suggests that colocalization of the two enzyme active sites within 70 {angstrom} of each other provides the basis for enhanced in vivo synthesis of resveratrol.

  15. Contruction of the Genetic Engineering Strain Expressed Nontoxic ST1-LTB Fusion Protein Against Enterotoxigenic Eschenichia coli

    Institute of Scientific and Technical Information of China (English)

    BAI Jia-ning; SUN Yi-min; BIAN Yan-qing; ZHAO Bao-hua

    2004-01-01

    Thermostable enterotoxinⅠ(ST1)mutant genes and thermolabile enterotoxin B subunit(LTB)genes were amplified by PCR from plasmids of Eschenichia coli C83902.The recombinant expression plasmid pZST3LTB containing ST1-LTB fusion gene was constructed by recombinant DNA technique and then transformed into Escherichia coli BL21(DE3).The ST1-LTB fusion protein was highly expressed in recombinant strain BL21(DE3)(pZST3LTB)and the fusion protein was about 38.53% of total cellular protein by SDS-PAGE and thin-layer gel scanning analysis.More important,mice immunized with crude preparation containing the fusion protein inclusion bodies or inactivated recombinant strain produced antibodies that were able to recognize ST1 in vitro.These sera antibodies were able to neutralize the biological activity of native ST1 in the suckling mouse assay.Hence the ST1-LTB fusion protein was nontoxic and immunogenic,the constructed recombinant strain BL21(DE3)(pZST3LTB)could be used as a candidate of vaccine strain.

  16. Recombinant human bone morphogenic protein-2-enhanced anterior spine fusion without bone encroachment into the spinal canal: a histomorphometric study in a thoracoscopically instrumented porcine model.

    Science.gov (United States)

    Zhang, Hong; Sucato, Daniel J; Welch, Robert D

    2005-03-01

    A thoracoscopically assisted 5-level anterior spinal fusion and instrumentation model analyzing new bone formation when using recombinant human bone morphogenic protein-2 (rhBMP-2) with a collagen hydroxyapatite-tricalcium phosphate (HA/TCP) composite sponge carrier. To determine whether new bone formation extends beyond the posterior confines of the vertebral body encroaching into the spinal canal when rhBMP-2 is used to enhance anterior fusion. A possible concern regarding the use of rhBMP-2 to enhance spinal fusion is the risk of unwanted bone formation leading to inadvertent fusion of adjacent levels or compression of neural elements. The safety of rhBMP-2 in one spinal application does not ensure similar results in other applications. Therefore, the expanded use of rhBMP-2 should occur only after carefully monitored preclinical and clinical studies for each new application. Eighteen pigs underwent thoracoscopically-assisted instrumentation and fusion of 5 contiguous levels (T5-T10) and randomly assigned to 4 treatment groups: group 1 (n = 6): rh-BMP-2 on a HA/TCP-collagen sponge (Medtronic Sofamor Danek, Memphis, TN); group 2 (n = 4): iliac crest autograft; group 3 (n = 4): empty; group 4 (n = 4): HA/TCP-collagen sponge (Medtronic Sofamor Danek) only. In groups 1 and 4, the HA/TCP collagen sponge was morselized into small granules and pushed through a bone delivery funnel for implantation into the disc. At 4 months after surgery, spines were sectioned longitudinally through the midsagittal plane and underwent undecalcified processing. Bone formation extending beyond the margins of the original discectomy and the confines of vertebral body were evaluated histomorphometrically at each operative level. Recombinant human bone morphogenic protein-2 on a HA/TCP-collagen sponge induced significant new bone formation extending anterior to the confines of the vertebral body compared with the other treatment groups (P fusion area and beyond the discectomy area (P fusion

  17. Doping-Induced Isotopic Mg11B2 Bulk Superconductor for Fusion Application

    Directory of Open Access Journals (Sweden)

    Qi Cai

    2017-03-01

    Full Text Available Superconducting wires are widely used for fabricating magnetic coils in fusion reactors. Superconducting magnet system represents a key determinant of the thermal efficiency and the construction/operating costs of such a reactor. In consideration of the stability of 11B against fast neutron irradiation and its lower induced radioactivation properties, MgB2 superconductor with 11B serving as the boron source is an alternative candidate for use in fusion reactors with a severe high neutron flux environment. In the present work, the glycine-doped Mg11B2 bulk superconductor was synthesized from isotopic 11B powder to enhance the high field properties. The critical current density was enhanced (103 A·cm−2 at 20 K and 5 T over the entire field in contrast with the sample prepared from natural boron.

  18. Refolding and Characterization of Recombinant Human GST-PD-1 Fusion Protein Expressed in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    Da-Wei LI; Jian-Feng YU; Yong-Jing CHEN; Hong-Bing MA; Zheng-Fei WANG; Yi-Bei ZHU; Xue-Guang ZHANG

    2004-01-01

    Programmed death-1 (PD-1) is a costimulatory molecule of CD28 family expressed onactivated T, B and myeloid cells. The engagement of PD-1 with its two ligands, PD-L1 and PD-L2, inhibitsproliferation of T cell and production of a series of its cytokines. The blockade of PD-1 pathway is involvedin antiviral and antitumoral immunity. In this study, human PD-1 cDNA encoding extracellular domain wasamplified and cloned into expression plasmid pGEX-5x-3. The fusion protein GST-PD-1 was effectivelyexpressed in E. coli BL21 (DE3) as inclusion bodies and a denaturation and refolding procedure was performed to obtain bioactive soluble GST-PD-1. Fusion protein of above 95% purity was acquired by a convenient two-step purification using GST affinity and size exclusion columns. Furthermore, a PD-L1-dependentin vitro bioassay method was set up to characterize GST-PD-1 bioactivity. The results suggested that GSTPD-1 could competently block the interaction between PD-L1 and PD-1 and increase the production of IL2 and IFN-γ of phytohemagglutinin-activated T cells.

  19. Refoiding and Characterization of Recombinant Human GST-PD-1 Fusion Protein Expressed in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    Da-WeiLI; Jian-FengYU; Yong-JingCHEN; Hong-BingMA; Zheng-FeiWANG; Yi-BeiZHU; Xue-GuangZHANG

    2004-01-01

    Programmed death-1 (PD-1) is a costimulatory molecule of CD28 family expressed onactivated T, B and myeloid cells. The engagement of PD-1 with its two ligands, PD-L1 and PD-L2, inhibitsproliferation of T cell and production of a series of its cytokines. The blockade of PD-1 pathway is involvedin antiviral and antitumoral immunity. In this study, human PD-1 cDNA encoding extracellular domain wasamplified and cloned into expression plasmid pGEX-Sx-3. The fusion protein GST-PD-1 was effectivelyexpressed in E. coli BL21 (DE3) as inclusion bodies and a denaturation and refolding procedure was per-formed to obtain bioactive soluble GST-PD-I. Fusion protein of above 95% purity was acquired by a conve-nient two-step purification using GST affinity and size exclusion columns. Furthermore, a PD-L1-dependentin vitro bioassay method was set up to characterize GST-PD-1 bioactivity. The results suggested that GST-PD-1 could competently block the interaction between PD-Ll and PD-l and increase the production of IL-2 and IFN-γ of phytohemagglutinin-activated T cells.

  20. In vitro Activity and Function of B7-H4-Ig Fusion Protein

    DEFF Research Database (Denmark)

    Rasmussen, Susanne B; Kosicki, Michael; Svendsen, Signe Goul

    2013-01-01

    B7-H4 has been shown to inhibit T cell proliferation, cytokine production and cell cycle in vitro. B7-H4 deficient mice develop exacerbated disease in the mouse models of Rheumatoid Arthritis (RA), Type 1 Diabetes (T1D) and Experimental Autoimmune Encephalomyelitis (EAE). On the other hand, B7-H4......-Ig fusion protein has been documented to assuage the symptoms in mouse models of RA, T1D, and multiple sclerosis in vivo. In the present study, B7-H4-Ig bound to the majority of human peripheral blood monocytes and NK cells, but not to either normal or activated T cells. B7-H4-Ig fusion protein...... was assayed for its effects in allogeneic mixed lymphocyte culture (MLC) systems. Soluble B7- H4-Ig had no significant effect in the MLC, but with a tendency to promote allogeneic response. Immobilized, but not soluble B7-H4-Ig inhibited plastic bound anti-CD3 mediated activation of T cells. This inhibition...

  1. Mannose-exposing myeloid leukemia cells detected by the sCAR-PPA fusion protein.

    Science.gov (United States)

    Li, Gong Chu; Li, Na; Zhang, Yan Hong; Li, Xin; Wang, Yi Gang; Liu, Xin Yuan; Qian, Wen Bin; Liu, Xiao Chuan

    2009-06-01

    Altered glycosylation may be a hallmark of malignant transformation and cancer progression. In the work described, a specific mannose-binding lectin, Pinellia pedatisecta agglutinin (PPA), was genetically fused with the extracellular domain of coxsackie-adenovirus receptor (CAR) to generate the soluble CAR (sCAR)-PPA fusion protein. The adenoviral transduction of acute myeloid leukemia (AML) cell lines Kasumi-1 and HL-60 was increased by sCAR-PPA, indicating that a fraction of AML cells exposing mannose residues was detected by PPA. However, sCAR-PPA did not increase the adenoviral infection of KG-1 cells, suggesting the mannose exposure of AML cells may be cell type specific. Furthermore, the infectious efficiency of Ad-EGFP in chronic myeloid leukemia cell line K562 was significantly increased by sCAR-PPA as well. We, herein, report that PPA recognized a fraction of myeloid leukemia cells showing mannose-exposing phenotype. The sCAR-PPA fusion protein combined with the adenoviral vector system may provide a useful tool for investigating myeloid leukemia cells exposing mannose residues and further elucidating the role of these cells in the leukemia development.

  2. Enhanced HIV-1 neutralization by a CD4-VH3-IgG1 fusion protein

    Energy Technology Data Exchange (ETDEWEB)

    Meyuhas, Ronit; Noy, Hava; Fishman, Sigal [Laboratory of Immunology, MIGAL, P.O. Box 831, Kiryat Shmona 11016 (Israel); Margalit, Alon [Laboratory of Immunology, MIGAL, P.O. Box 831, Kiryat Shmona 11016 (Israel); Department of Biotechnology, Tel-Hai Academic College, Upper Galilee 12210 (Israel); Montefiori, David C. [Department of Surgery, Duke University Medical Center, Durham, NC 27710 (United States); Gross, Gideon, E-mail: gidi@migal.org.il [Laboratory of Immunology, MIGAL, P.O. Box 831, Kiryat Shmona 11016 (Israel); Department of Biotechnology, Tel-Hai Academic College, Upper Galilee 12210 (Israel)

    2009-08-21

    HIV-1 gp120 is an alleged B cell superantigen, binding certain VH3+ human antibodies. We reasoned that a CD4-VH3 fusion protein could possess higher affinity for gp120 and improved HIV-1 inhibitory capacity. To test this we produced several human IgG1 immunoligands harboring VH3. Unlike VH3-IgG1 or VH3-CD4-IgG1, CD4-VH3-IgG1 bound gp120 considerably stronger than CD4-IgG1. CD4-VH3-IgG1 exhibited {approx}1.5-2.5-fold increase in neutralization of two T-cell laboratory-adapted strains when compared to CD4-IgG1. CD4-VH3-IgG1 improved neutralization of 7/10 clade B primary isolates or pseudoviruses, exceeding 20-fold for JR-FL and 13-fold for Ba-L. It enhanced neutralization of 4/8 clade C viruses, and had negligible effect on 1/4 clade A pseudoviruses. We attribute this improvement to possible pairing of VH3 with CD4 D1 and stabilization of an Ig Fv-like structure, rather than to superantigen interactions. These novel findings support the current notion that CD4 fusion proteins can act as better HIV-1 entry inhibitors with potential clinical implications.

  3. Recombinant GDNF: Tetanus toxin fragment C fusion protein produced from insect cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianhong; Chian, Ru-Ju; Ay, Ilknur; Celia, Samuel A.; Kashi, Brenda B.; Tamrazian, Eric; Matthews, Jonathan C. [Cecil B. Day Laboratory for Neuromuscular Research, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129 (United States); Remington, Mary P. [Research Service, Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201 (United States); Pepinsky, R. Blake [BiogenIdec, Inc., 14 Cambridge Center, Cambridge, MA 02142 (United States); Fishman, Paul S. [Research Service, Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201 (United States); Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Brown, Robert H. [Cecil B. Day Laboratory for Neuromuscular Research, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129 (United States); Francis, Jonathan W., E-mail: jwfrancisby@gmail.com [Cecil B. Day Laboratory for Neuromuscular Research, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129 (United States)

    2009-07-31

    Glial cell line-derived neurotrophic factor (GDNF) has potent survival-promoting effects on CNS motor neurons in experimental animals. Its therapeutic efficacy in humans, however, may have been limited by poor bioavailability to the brain and spinal cord. With a view toward improving delivery of GDNF to CNS motor neurons in vivo, we generated a recombinant fusion protein comprised of rat GDNF linked to the non-toxic, neuron-binding fragment of tetanus toxin. Recombinant GDNF:TTC produced from insect cells was a soluble homodimer like wild-type GDNF and was bi-functional with respect to GDNF and TTC activity. Like recombinant rat GDNF, the fusion protein increased levels of immunoreactive phosphoAkt in treated NB41A3-hGFR{alpha}-1 neuroblastoma cells. Like TTC, GDNF:TTC bound to immobilized ganglioside GT1b in vitro with high affinity and selectivity. These results support further testing of recombinant GDNF:TTC as a non-viral vector to improve delivery of GDNF to brain and spinal cord in vivo.

  4. Features of a spatially constrained cystine loop in the p10 FAST protein ectodomain define a new class of viral fusion peptides.

    Science.gov (United States)

    Barry, Christopher; Key, Tim; Haddad, Rami; Duncan, Roy

    2010-05-28

    The reovirus fusion-associated small transmembrane (FAST) proteins are the smallest known viral membrane fusion proteins. With ectodomains of only approximately 20-40 residues, it is unclear how such diminutive fusion proteins can mediate cell-cell fusion and syncytium formation. Contained within the 40-residue ectodomain of the p10 FAST protein resides an 11-residue sequence of moderately apolar residues, termed the hydrophobic patch (HP). Previous studies indicate the p10 HP shares operational features with the fusion peptide motifs found within the enveloped virus membrane fusion proteins. Using biotinylation assays, we now report that two highly conserved cysteine residues flanking the p10 HP form an essential intramolecular disulfide bond to create a cystine loop. Mutagenic analyses revealed that both formation of the cystine loop and p10 membrane fusion activity are highly sensitive to changes in the size and spatial arrangement of amino acids within the loop. The p10 cystine loop may therefore function as a cystine noose, where fusion peptide activity is dependent on structural constraints within the noose that force solvent exposure of key hydrophobic residues. Moreover, inhibitors of cell surface thioreductase activity indicate that disruption of the disulfide bridge is important for p10-mediated membrane fusion. This is the first example of a viral fusion peptide composed of a small, spatially constrained cystine loop whose function is dependent on altered loop formation, and it suggests the p10 cystine loop represents a new class of viral fusion peptides.

  5. Expression of a multi-epitope DPT fusion protein in transplastomic tobacco plants retains both antigenicity and immunogenicity of all three components of the functional oligomer.

    Science.gov (United States)

    Soria-Guerra, Ruth Elena; Alpuche-Solís, Angel G; Rosales-Mendoza, Sergio; Moreno-Fierros, Leticia; Bendik, Elise M; Martínez-González, Luzmila; Korban, Schuyler S

    2009-05-01

    Expression of genes in plant chloroplasts provides an opportunity for enhanced production of target proteins. We report the introduction and expression of a fusion DPT protein containing immunoprotective exotoxin epitopes of Corynebacterium diphtheriae, Bordetella pertussis, and Clostridium tetani in tobacco chloroplasts. Using biolistic-mediated transformation, a plant-optimized synthetic DPT gene was successfully transferred to tobacco plastomes. Putative transplastomic T0 plants were identified by PCR, and Southern blot analysis confirmed homoplasmy in T1 progeny. ELISA assays demonstrated that the DPT protein retained antigenicity of the three components of the fusion protein. The highest level of expression in these transplastomic plants reached 0.8% of total soluble protein. To assess whether the functional recombinant protein expressed in tobacco plants would induce specific antibodies in test animals, a mice feeding experiment was conducted. For mice orally immunized with freeze-dried transplastomic leaves, production of IgG and IgA antibodies specific to each toxin were detected in serum and mucosal tissues.

  6. An important role for syndecan-1 in herpes simplex virus type-1 induced cell-to-cell fusion and virus spread.

    Directory of Open Access Journals (Sweden)

    Ghadah A Karasneh

    Full Text Available Herpes simplex virus type-1 (HSV-1 is a common human pathogen that relies heavily on cell-to-cell spread for establishing a lifelong latent infection. Molecular aspects of HSV-1 entry into host cells have been well studied; however, the molecular details of the spread of the virus from cell-to-cell remain poorly understood. In the past, the role of heparan sulfate proteoglycans (HSPG during HSV-1 infection has focused solely on the role of HS chains as an attachment receptor for the virus, while the core protein has been assumed to perform a passive role of only carrying the HS chains. Likewise, very little is known about the involvement of any specific HSPGs in HSV-1 lifecycle. Here we demonstrate that a HSPG, syndecan-1, plays an important role in HSV-1 induced membrane fusion and cell-to-cell spread. Interestingly, the functions of syndecan-1 in fusion and spread are independent of the presence of HS on the core protein. Using a mutant CHO-K1 cell line that lacks all glycosaminoglycans (GAGs on its surface (CHO-745 we demonstrate that the core protein of syndecan-1 possesses the ability to modulate membrane fusion and viral spread. Altogether, we identify a new role for syndecan-1 in HSV-1 pathogenesis and demonstrate HS-independent functions of its core protein in viral spread.

  7. [Element distribution analysis of welded fusion zone by laser-induced breakdown spectroscopy].

    Science.gov (United States)

    Yang, Chun; Zhang, Yong; Jia, Yun-Hai; Wang, Hai-Zhou

    2014-04-01

    Over the past decade there has been intense activity in the study and development of laser-induced breakdown spectroscopy (LIBS). As a new tool for surface microanalysis, it caused widespread in materials science because of the advantage of rapid and high sensitivity. In the present paper, the distribution of Ni, Mn, C and Si near weld fusion line was analyzed on two kinds of weld sample. Line scanning mode analysis was carried out by three different kinds of methods, namely laser-induced breakdown spectroscopy (LIBS), scanning electron microscope/energy dispersive spectrometer (SEM/EDS) and electron probe X-ray microanalyser (EPMA). The concentration variation trend of Ni and Mn acquired by LIBS is coincident with SEM/EDS and EPMA. The result shows that the content of Ni and Mn was significantly different between weld seam and base metal on both the samples. The content of Ni and Mn was much higher in weld seam than in base metal, and a sharp concentration gradient was analyzed in the fusion zone. According to the distribution of Ni and Mn, all the three methods got a similar value of welded fusion zone width. The concentration variation trend of C and Si acquired by LIBS is not coincident with SEM/EDS and EPMA. The concentration difference between weld seam and base metal was analyzed by LIBS, but had not by SEM/EDS and EPMA, because of the low concentration and slight difference. The concentration gradient of C and Si in fusion zone was shows clearly by LIBS. For higher sensitivity performance, LIBS is much more adapted to analyze low content element than SEM/EDS and EPMA.

  8. Dynamic in vivo imaging and cell tracking using a histone fluorescent protein fusion in mice

    Directory of Open Access Journals (Sweden)

    Papaioannou Virginia E

    2004-12-01

    Full Text Available Abstract Background Advances in optical imaging modalities and the continued evolution of genetically-encoded fluorescent proteins are coming together to facilitate the study of cell behavior at high resolution in living organisms. As a result, imaging using autofluorescent protein reporters is gaining popularity in mouse transgenic and targeted mutagenesis applications. Results We have used embryonic stem cell-mediated transgenesis to label cells at sub-cellular resolution in vivo, and to evaluate fusion of a human histone protein to green fluorescent protein for ubiquitous fluorescent labeling of nucleosomes in mice. To this end we have generated embryonic stem cells and a corresponding strain of mice that is viable and fertile and exhibits widespread chromatin-localized reporter expression. High levels of transgene expression are maintained in a constitutive manner. Viability and fertility of homozygous transgenic animals demonstrates that this reporter is developmentally neutral and does not interfere with mitosis or meiosis. Conclusions Using various optical imaging modalities including wide-field, spinning disc confocal, and laser scanning confocal and multiphoton excitation microscopy, we can identify cells in various stages of the cell cycle. We can identify cells in interphase, cells undergoing mitosis or cell death. We demonstrate that this histone fusion reporter allows the direct visualization of active chromatin in situ. Since this reporter segments three-dimensional space, it permits the visualization of individual cells within a population, and so facilitates tracking cell position over time. It is therefore attractive for use in multidimensional studies of in vivo cell behavior and cell fate.

  9. Expression, Purification, and Biophysical Characterization of a Secreted Anthrax Decoy Fusion Protein in Nicotiana benthamiana

    Science.gov (United States)

    Karuppanan, Kalimuthu; Duhra-Gill, Sifti; Kailemia, Muchena J.; Phu, My L.; Lebrilla, Carlito B.; Dandekar, Abhaya M.; Rodriguez, Raymond L.; Nandi, Somen; McDonald, Karen A.

    2017-01-01

    Anthrax toxin receptor-mediated drug development for blocking anthrax toxin action has received much attention in recent decades. In this study, we produced a secreted anthrax decoy fusion protein comprised of a portion of the human capillary morphogenesis gene-2 (CMG2) protein fused via a linker to the fragment crystallizable (Fc) domain of human immunoglobulin G1 in Nicotiana benthamiana plants using a transient expression system. Using the Cauliflower Mosaic Virus (CaMV) 35S promoter and co-expression with the p19 gene silencing suppressor, we were able to achieve a high level of recombinant CMG2-Fc-Apo (rCMG2-Fc-Apo) protein accumulation. Production kinetics were observed up to eight days post-infiltration, and maximum production of 826 mg/kg fresh leaf weight was observed on day six. Protein A affinity chromatography purification of the rCMG2-Fc-Apo protein from whole leaf extract and apoplast wash fluid showed the homodimeric form under non-reducing gel electrophoresis and mass spectrometry analysis confirmed the molecular integrity of the secreted protein. The N-glycosylation pattern of purified rCMG2-Fc-Apo protein was analysed; the major portion of N-glycans consists of complex type structures in both protein samples. The most abundant (>50%) N-glycan structure was GlcNAc2(Xyl)Man3(Fuc)GlcNAc2 in rCMG2-Fc-Apo recovered from whole leaf extract and apoplast wash fluid. High mannose N-glycan structures were not detected in the apoplast wash fluid preparation, which confirmed the protein secretion. Altogether, these findings demonstrate that high-level production of rCMG2-Fc-Apo can be achieved by transient production in Nicotiana benthamiana plants with apoplast targeting. PMID:28054967

  10. Expression, Purification, and Biophysical Characterization of a Secreted Anthrax Decoy Fusion Protein in Nicotiana benthamiana.

    Science.gov (United States)

    Karuppanan, Kalimuthu; Duhra-Gill, Sifti; Kailemia, Muchena J; Phu, My L; Lebrilla, Carlito B; Dandekar, Abhaya M; Rodriguez, Raymond L; Nandi, Somen; McDonald, Karen A

    2017-01-04

    Anthrax toxin receptor-mediated drug development for blocking anthrax toxin action has received much attention in recent decades. In this study, we produced a secreted anthrax decoy fusion protein comprised of a portion of the human capillary morphogenesis gene-2 (CMG2) protein fused via a linker to the fragment crystallizable (Fc) domain of human immunoglobulin G1 in Nicotiana benthamiana plants using a transient expression system. Using the Cauliflower Mosaic Virus (CaMV) 35S promoter and co-expression with the p19 gene silencing suppressor, we were able to achieve a high level of recombinant CMG2-Fc-Apo (rCMG2-Fc-Apo) protein accumulation. Production kinetics were observed up to eight days post-infiltration, and maximum production of 826 mg/kg fresh leaf weight was observed on day six. Protein A affinity chromatography purification of the rCMG2-Fc-Apo protein from whole leaf extract and apoplast wash fluid showed the homodimeric form under non-reducing gel electrophoresis and mass spectrometry analysis confirmed the molecular integrity of the secreted protein. The N-glycosylation pattern of purified rCMG2-Fc-Apo protein was analysed; the major portion of N-glycans consists of complex type structures in both protein samples. The most abundant (>50%) N-glycan structure was GlcNAc₂(Xyl)Man₃(Fuc)GlcNAc₂ in rCMG2-Fc-Apo recovered from whole leaf extract and apoplast wash fluid. High mannose N-glycan structures were not detected in the apoplast wash fluid preparation, which confirmed the protein secretion. Altogether, these findings demonstrate that high-level production of rCMG2-Fc-Apo can be achieved by transient production in Nicotiana benthamiana plants with apoplast targeting.

  11. Syntaxin 7 and VAMP-7 are soluble N-ethylmaleimide-sensitive factor attachment protein receptors required for late endosome-lysosome and homotypic lysosome fusion in alveolar macrophages.

    Science.gov (United States)

    Ward, D M; Pevsner, J; Scullion, M A; Vaughn, M; Kaplan, J

    2000-07-01

    Endocytosis in alveolar macrophages can be reversibly inhibited, permitting the isolation of endocytic vesicles at defined stages of maturation. Using an in vitro fusion assay, we determined that each isolated endosome population was capable of homotypic fusion. All vesicle populations were also capable of heterotypic fusion in a temporally specific manner; early endosomes, isolated 4 min after internalization, could fuse with endosomes isolated 8 min after internalization but not with 12-min endosomes or lysosomes. Lysosomes fuse with 12-min endosomes but not with earlier endosomes. Using homogenous populations of endosomes, we have identified Syntaxin 7 as a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) required for late endosome-lysosome and homotypic lysosome fusion in vitro. A bacterially expressed human Syntaxin 7 lacking the transmembrane domain inhibited homotypic late endosome and lysosome fusion as well as heterotypic late endosome-lysosome fusion. Affinity-purified antibodies directed against Syntaxin 7 also inhibited lysosome fusion in vitro but had no affect on homotypic early endosome fusion. Previous work suggested that human VAMP-7 (vesicle-associated membrane protein-7) was a SNARE required for late endosome-lysosome fusion. A bacterially expressed human VAMP-7 lacking the transmembrane domain inhibited both late endosome-lysosome fusion and homotypic lysosome fusion in vitro. These studies indicate that: 1) fusion along the endocytic pathway is a highly regulated process, and 2) two SNARE molecules, Syntaxin 7 and human VAMP-7, are involved in fusion of vesicles in the late endocytic pathway in alveolar macrophages.

  12. Expression and bioactivity of recombinant human serum albumin and dTMP fusion proteins in CHO cells.

    Science.gov (United States)

    Ru, Yi; Zhi, Dejuan; Guo, Dingding; Wang, Yong; Li, Yang; Wang, Meizhu; Wei, Suzhen; Wang, Haiqing; Wang, Na; Che, Jingmin; Li, Hongyu

    2016-09-01

    The 14-amino acid (IEGPTLRQWLAARA) thrombopoietin mimetic peptide (TMP) shares no sequence homology with native thrombopoietin (TPO). When dimerized, it displays a high-binding affinity for the TPO receptor and has equipotent bioactivity with recombinant human TPO (rhTPO) in stimulating proliferation and maturation of megakaryocytes in vitro. However, TMP is limited for clinical usage because of its short half-life in vivo. In this study, fusion proteins that composed of tandem dimer of TMP (dTMP) genetically fused at the C- or N-terminus of human serum albumin (HSA) were separately expressed in Chinese hamster ovary (CHO) cells. In vitro bioactivity assays showed that purified fusion proteins promoted the proliferation of megakaryocytes in a dose-dependent manner and activated signal transducer and activator of transcription (STAT) pathway in TPO receptor-dependent manner. Following subcutaneous administration, both HSA-dTMP and dTMP-HSA significantly elevated peripheral platelet counts in normal mice in a dose-dependent manner. In addition, fusion with HSA successfully prolonged dTMP half-life in mice. However, when HSA was fused at the C-terminus of dTMP, the bioactivity of dTMP-HSA was about half of that of HSA-dTMP. In conclusion, these results suggested that HSA/dTMP fusion proteins might be potential drugs for thrombocytopenia and, when HSA was fused at the N-terminus of dTMP, the fusion protein had a higher activity.

  13. Construct design, biophysical, and biochemical characterization of the fusion core from mouse hepatitis virus (a coronavirus) spike protein.

    Science.gov (United States)

    Xu, Yanhui; Cole, David K; Lou, Zhiyong; Liu, Yiwei; Qin, Lan; Li, Xu; Bai, Zhihong; Yuan, Fang; Rao, Zihe; Gao, George F

    2004-11-01

    Membrane fusion between virus and host cells is the key step for enveloped virus entry and is mediated by the viral envelope fusion protein. In murine coronavirus, mouse hepatitis virus (MHV), the spike (S) protein mediates this process. Recently, the formation of anti-parallel 6-helix bundle of the MHV S protein heptad repeat (HR) regions (HR1 and HR2) has been confirmed, implying coronavirus has a class I fusion protein. This bundle is also called fusion core. To facilitate the solution of the crystal structure of this fusion core, we deployed an Escherichia coli in vitro expression system to express the HR1 and HR2 regions linked together by a flexible linker as a single chain (named 2-helix). This 2-helix polypeptide subsequently assembled into a typical 6-helix bundle. This bundle has been analyzed by a series of biophysical and biochemical techniques and confirmed that the design technique can be used for coronavirus as we successfully used for members of paramyxoviruses.

  14. New shuttle vector-based expression system to generate polyhistidine-tagged fusion proteins in Staphylococcus aureus and Escherichia coli.

    Science.gov (United States)

    Schwendener, Sybille; Perreten, Vincent

    2015-05-01

    Four Staphylococcus aureus-Escherichia coli shuttle vectors were constructed for gene expression and production of tagged fusion proteins. Vectors pBUS1-HC and pTSSCm have no promoter upstream of the multiple cloning site (MCS), and this allows study of genes under the control of their native promoters, and pBUS1-Pcap-HC and pTSSCm-Pcap contain the strong constitutive promoter of S. aureus type 1 capsule gene 1A (Pcap) upstream of a novel MCS harboring codons for the peptide tag Arg-Gly-Ser-hexa-His (rgs-his6). All plasmids contained the backbone derived from pBUS1, including the E. coli origin ColE1, five copies of terminator rrnB T1, and tetracycline resistance marker tet(L) for S. aureus and E. coli. The minimum pAMα1 replicon from pBUS1 was improved through either complementation with the single-strand origin oriL from pUB110 (pBUS1-HC and pBUS1-Pcap-HC) or substitution with a pT181-family replicon (pTSSCm and pTSSCm-Pcap). The new constructs displayed increased plasmid yield and segregational stability in S. aureus. Furthermore, pBUS1-Pcap-HC and pTSSCm-Pcap offer the potential to generate C-terminal RGS-His6 translational fusions of cloned genes using simple molecular manipulation. BcgI-induced DNA excision followed by religation converts the TGA stop codon of the MCS into a TGC codon and links the rgs-his6 codons to the 3' end of the target gene. The generation of the rgs-his6 codon-fusion, gene expression, and protein purification were demonstrated in both S. aureus and E. coli using the macrolide-lincosamide-streptogramin B resistance gene erm(44) inserted downstream of Pcap. The new His tag expression system represents a helpful tool for the direct analysis of target gene function in staphylococcal cells.

  15. Screening of High Expression Strain and Activity Assay of Apoptin Fusion Protein%凋亡素融合蛋白质高表达菌株的筛选及其产物活性测定

    Institute of Scientific and Technical Information of China (English)

    王焕焕; 汪雅雯; 曹晨; 赵健; 陆玉婷; 王富军

    2012-01-01

    目的 筛选凋亡素-HBD融合蛋白质高表达的工程菌株,验证其目标产物具有抑制肿瘤细胞增值的活性.方法 在不同大肠杆菌宿主中凋亡素融合蛋白质表达,筛选出高表达工程菌,随后诱导表达和纯化凋亡素融合蛋白质,并通过噻唑蓝法(MTT法)检测目标产物对肿瘤细胞的抑制活性.结果 凋亡素-HBD融合蛋白质在SG工程菌的表达量较好.MTT法检测表明,凋亡素融合蛋白质有抑制HeLa细胞增值的活性.结论 获得一种凋亡素-HBD融合蛋白质的高表达工程菌株,并证实其产物能够进入HeLa细胞并诱导细胞凋亡.%Objective To screen the high expression strain of apoptin-HBD fusion protein and verify the anti-tumor activity of apoptin-HBD fusion protein. Methods The apoptin-HBD fusion protein was expressed in a variety of E. Coli strains. The high expression strain of the target protein was screened. The expressed apoptin-HBD fusion protein was further purified and the inhibitory effect on tumor cells of the fusion protein in vitro was tested by MTT assay. Results The apoptin-HBD fusion protein had a higher expression in E. Coli SG strain. MTT assay results indicated that the apoptin-HBD fusion protein could inhibit the proliferation of HeLa cells. Conclusion A high expression engineering strain of the apoptin-HBD fusion protein can be obtained and the apoptin-HBD fusion protein can induce the apoptosis of HeLa cells.

  16. A new way to rapidly create functional, fluorescent fusion proteins: random insertion of GFP with an in vitro transposition reaction

    Directory of Open Access Journals (Sweden)

    Jakobsdottir Klara B

    2002-06-01

    Full Text Available Abstract Background The jellyfish green fluorescent protein (GFP can be inserted into the middle of another protein to produce a functional, fluorescent fusion protein. Finding permissive sites for insertion, however, can be difficult. Here we describe a transposon-based approach for rapidly creating libraries of GFP fusion proteins. Results We tested our approach on the glutamate receptor subunit, GluR1, and the G protein subunit, αs. All of the in-frame GFP insertions produced a fluorescent protein, consistent with the idea that GFP will fold and form a fluorophore when inserted into virtually any domain of another protein. Some of the proteins retained their signaling function, and the random nature of the transposition process revealed permissive sites for insertion that would not have been predicted on the basis of structural or functional models of how that protein works. Conclusion This technique should greatly speed the discovery of functional fusion proteins, genetically encodable sensors, and optimized fluorescence resonance energy transfer pairs.

  17. Incorporation of albumin fusion proteins into fibrin clots in vitro and in vivo: comparison of different fusion motifs recognized by factor XIIIa

    Directory of Open Access Journals (Sweden)

    Sheffield William P

    2011-12-01

    Full Text Available Abstract Background The transglutaminase activated factor XIII (FXIIIa acts to strengthen pathological fibrin clots and to slow their dissolution, in part by crosslinking active α2-antiplasmin (α2AP to fibrin. We previously reported that a yeast-derived recombinant fusion protein comprising α2AP residues 13-42 linked to human serum albumin (HSA weakened in vitro clots but failed to become specifically incorporated into in vivo clots. In this study, our aims were to improve both the stability and clot localization of the HSA fusion protein by replacing α2AP residues 13-42 with shorter sequences recognized more effectively by FXIIIa. Results Expression plasmids were prepared encoding recombinant HSA with the following N-terminal 23 residue extensions: H6NQEQVSPLTLLAG4Y (designated XL1; H6DQMMLPWAVTLG4Y (XL2; H6WQHKIDLPYNGAG4Y (XL3; and their 17 residue non-His-tagged equivalents (XL4, XL5, and XL6. The HSA moiety of XL4- to XL6-HSA proteins was C-terminally His-tagged. All chimerae were efficiently secreted from transformed Pichia pastoris yeast except XL3-HSA, and following nickel chelate affinity purification were found to be intact by amino acid sequencing, as was an N-terminally His-tagged version of α2AP(13-42-HSA. Of the proteins tested, XL5-HSA was cross-linked to biotin pentylamine (BPA most rapidly by FXIIIa, and was the most effective competitor of α2AP crosslinking not only to BPA but also to plasma fibrin clots. In the mouse ferric chloride vena cava thrombosis model, radiolabeled XL5-HSA was retained in the clot to a greater extent than recombinant HSA. In the rabbit jugular vein stasis thrombosis model, XL5-HSA was also retained in the clot, in a urea-insensitive manner indicative of crosslinking to fibrin, to a greater extent than recombinant HSA. Conclusions Fusion protein XL5-HSA (DQMMLPWAVTLG4Y-HSAH6 was found to be more active as a substrate for FXIIIa-mediated transamidation than seven other candidate fusion proteins in

  18. Optimizing HIV-1 protease production in Escherichia coli as fusion protein

    Directory of Open Access Journals (Sweden)

    Piubelli Luciano

    2011-06-01

    Full Text Available Abstract Background Human immunodeficiency virus (HIV is the etiological agent in AIDS and related diseases. The aspartyl protease encoded by the 5' portion of the pol gene is responsible for proteolytic processing of the gag-pol polyprotein precursor to yield the mature capsid protein and the reverse transcriptase and integrase enzymes. The HIV protease (HIV-1Pr is considered an attractive target for designing inhibitors which could be used to tackle AIDS and therefore it is still the object of a number of investigations. Results A recombinant human immunodeficiency virus type 1 protease (HIV-1Pr was overexpressed in Escherichia coli cells as a fusion protein with bacterial periplasmic protein dithiol oxidase (DsbA or glutathione S-transferase (GST, also containing a six-histidine tag sequence. Protein expression was optimized by designing a suitable HIV-1Pr cDNA (for E. coli expression and to avoid autoproteolysis and by screening six different E. coli strains and five growth media. The best expression yields were achieved in E. coli BL21-Codon Plus(DE3-RIL host and in TB or M9 medium to which 1% (w/v glucose was added to minimize basal expression. Among the different parameters assayed, the presence of a buffer system (based on phosphate salts and a growth temperature of 37°C after adding IPTG played the main role in enhancing protease expression (up to 10 mg of chimeric DsbA:HIV-1Pr/L fermentation broth. GST:HIVPr was in part (50% produced as soluble protein while the overexpressed DsbA:HIV-1Pr chimeric protein largely accumulated in inclusion bodies as unprocessed fusion protein. A simple refolding procedure was developed on HiTrap Chelating column that yielded a refolded DsbA:HIV-1Pr with a > 80% recovery. Finally, enterokinase digestion of resolubilized DsbA:HIV-1Pr gave more than 2 mg of HIV-1Pr per liter of fermentation broth with a purity ≤ 80%, while PreScission protease cleavage of soluble GST:HIVPr yielded ~ 0.15 mg of pure HIV-1

  19. Efficient activation of human T cells of both CD4 and CD8 subsets by urease-deficient recombinant Mycobacterium bovis BCG that produced a heat shock protein 70-M. tuberculosis-derived major membrane protein II fusion protein.

    Science.gov (United States)

    Mukai, Tetsu; Tsukamoto, Yumiko; Maeda, Yumi; Tamura, Toshiki; Makino, Masahiko

    2014-01-01

    For the purpose of obtaining Mycobacterium bovis bacillus Calmette-Guérin (BCG) capable of activating human naive T cells, urease-deficient BCG expressing a fusion protein composed of Mycobacterium tuberculosis-derived major membrane protein II (MMP-II) and heat shock protein 70 (HSP70) of BCG (BCG-DHTM) was produced. BCG-DHTM secreted the HSP70-MMP-II fusion protein and effectively activated human monocyte-derived dendritic cells (DCs) by inducing phenotypic changes and enhanced cytokine production. BCG-DHTM-infected DCs activated naive T cells of both CD4 and naive CD8 subsets, in an antigen (Ag)-dependent manner. The T cell activation induced by BCG-DHTM was inhibited by the pretreatment of DCs with chloroquine. The naive CD8(+) T cell activation was mediated by the transporter associated with antigen presentation (TAP) and the proteosome-dependent cytosolic cross-priming pathway. Memory CD8(+) T cells and perforin-producing effector CD8(+) T cells were efficiently produced from the naive T cell population by BCG-DHTM stimulation. Single primary infection with BCG-DHTM in C57BL/6 mice efficiently produced T cells responsive to in vitro secondary stimulation with HSP70, MMP-II, and M. tuberculosis-derived cytosolic protein and inhibited the multiplication of subsequently aerosol-challenged M. tuberculosis more efficiently than did vector control BCG. These results indicate that the introduction of MMP-II and HSP70 into urease-deficient BCG may be useful for improving BCG for control of tuberculosis.

  20. Parameterization of fusion barriers for light-projectiles-induced reactions using the proximity approach

    Energy Technology Data Exchange (ETDEWEB)

    Gharaei, R. [Hakim Sabzevari University, Department of Physics, Sciences Faculty, P. O. Box 397, Sabzevar (Iran, Islamic Republic of); Sheibani, J. [University of Birjand, Department of Physics, Ferdows Faculty of Engineering, Ferdows (Iran, Islamic Republic of)

    2016-05-15

    In this article we propose a pocket formula for fusion barriers calculated by three versions of the proximity formalism, namely AW 95, Bass 80 and Prox. 2010 potentials, for fusion reactions involving the collisions of the proton and helium projectiles with different targets in mass ranges 51≤ A{sub T}≤130 and 40≤A{sub T}≤233, respectively. For the first type of the colliding systems, it is shown that the proposed pocket formulas are able to predict the actual values of R{sub B} and V{sub B} within accuracies of ±0.4% and ±0.45%, respectively. Moreover, for the second type of the selected reactions, these accuracies are obtained ±0.24% and ±0.36%, respectively. In this study, the ability of the present pocket formulas is also demonstrated to predict the exact values of the fusion cross sections for our selected mass ranges. A comparison with the results of the previous pocket formulas reveals that our parameterized forms are more successful to reproduce the empirical data of the barrier height and position in the proton- and helium-induced reactions. (orig.)

  1. Model-independent determination of the astrophysical S-factor in laser-induced fusion plasmas

    CERN Document Server

    Lattuada, D; Bonasera, A; Bang, W; Quevedo, H J; Warren, M; Consoli, F; De Angelis, R; Andreoli, P; Kimura, S; Dyer, G; Bernstein, A C; Hagel, K; Barbui, M; Schmidt, K; Gaul, E; Donovan, M E; Natowitz, J B; Ditmire, T

    2016-01-01

    In this work, we present a new and general method for measuring the astrophysical S-factor of nuclear reactions in laser-induced plasmas and we apply it to d(d,n)$^{3}$He. The experiment was performed with the Texas Petawatt laser, which delivered 150-270 fs pulses of energy ranging from 90 to 180 J to D$_{2}$ or CD$_{4}$ molecular clusters. After removing the background noise, we used the measured time-of-flight data of energetic deuterium ions to obtain their energy distribution. We derive the S-factor using the measured energy distribution of the ions, the measured volume of the fusion plasma and the measured fusion yields. This method is model-independent in the sense that no assumption on the state of the system is required, but it requires an accurate measurement of the ion energy distribution especially at high energies and of the relevant fusion yields. In the d(d,n)$^{3}$He and $^{3}$He(d,p)$^{4}$He cases discussed here, it is very important to apply the background subtraction for the energetic ions ...

  2. Unraveling a three-step spatiotemporal mechanism of triggering of receptor-induced Nipah virus fusion and cell entry.

    Directory of Open Access Journals (Sweden)

    Qian Liu

    Full Text Available Membrane fusion is essential for entry of the biomedically-important paramyxoviruses into their host cells (viral-cell fusion, and for syncytia formation (cell-cell fusion, often induced by paramyxoviral infections [e.g. those of the deadly Nipah virus (NiV]. For most paramyxoviruses, membrane fusion requires two viral glycoproteins. Upon receptor binding, the attachment glycoprotein (HN/H/G triggers the fusion glycoprotein (F to undergo conformational changes that merge viral and/or cell membranes. However, a significant knowledge gap remains on how HN/H/G couples cell receptor binding to F-triggering. Via interdisciplinary approaches we report the first comprehensive mechanism of NiV membrane fusion triggering, involving three spatiotemporally sequential cell receptor-induced conformational steps in NiV-G: two in the head and one in the stalk. Interestingly, a headless NiV-G mutant was able to trigger NiV-F, and the two head conformational steps were required for the exposure of the stalk domain. Moreover, the headless NiV-G prematurely triggered NiV-F on virions, indicating that the NiV-G head prevents premature triggering of NiV-F on virions by concealing a F-triggering stalk domain until the correct time and place: receptor-binding. Based on these and recent paramyxovirus findings, we present a comprehensive and fundamentally conserved mechanistic model of paramyxovirus membrane fusion triggering and cell entry.

  3. Investigation of a Potential Scintigraphic Tracer for Imaging Apoptosis: Radioiodinated Annexin V-Kunitz Protease Inhibitor Fusion Protein

    Directory of Open Access Journals (Sweden)

    Mei-Hsiu Liao

    2011-01-01

    Full Text Available Radiolabeled annexin V (ANV has been widely used for imaging cell apoptosis. Recently, a novel ANV-Kunitz-type protease inhibitor fusion protein, ANV-6L15, was found to be a promising probe for improved apoptosis detection based on its higher affinity to phosphatidylserine (PS compared to native ANV. The present paper investigates the feasibility of apoptosis detection using radioiodinated ANV-6L15. Native ANV and ANV-6L15 were labeled with iodine-123 and iodine-125 using Iodogen method. The binding between the radioiodinated proteins and erythrocyte ghosts or chemical-induced apoptotic cells was examined. ANV-6L15 can be radioiodinated with high yield (40%−60% and excellent radiochemical purity (>95%. 123I-ANV-6L15 exhibited a higher binding ratio to erythrocyte ghosts and apoptotic cells compared to 123I-ANV. The biodistribution of 123I-ANV-6L15 in mice was also characterized. 123I-ANV-6L15 was rapidly cleared from the blood. High uptake in the liver and the kidneys may limit the evaluation of apoptosis in abdominal regions. Our data suggest that radiolabled ANV-6L15 may be a better scintigraphic tracer than native ANV for apoptosis detection.

  4. Facilitated geranylgeranylation of shrimp ras-encoded p25 fusion protein by the binding with guanosine diphosphate.

    Science.gov (United States)

    Huang, C F; Chuang, N N

    1999-05-01

    A cDNA was isolated from the shrimp Penaeus japonicus by homology cloning. Similar to the mammalian Ras proteins, this shrimp hepatopancreas cDNA encodes a 187-residue polypeptide whose predicted amino acid sequence shares 85% homology with mammalian KB-Ras proteins and demonstrates identity in the guanine nucleotide binding domains. Expression of the cDNA of shrimp in Escherichia coli yielded a 25-kDa polypeptide with positive reactivity toward the monoclonal antibodies against Ras of mammals. As judged by nitrocellulose filtration assay, the specific GTP binding activity of ras-encoded p25 fusion protein was approximately 30,000 units/mg of protein, whereas that of GDP was 5,000 units/mg of protein. In other words, the GTP bound form of ras-encoded p25 fusion protein prevails. Fluorography analysis demonstrated that the prenylation of both shrimp Ras-GDP and shrimp Ras-GTP by protein geranylgeranyltransferase I of shrimp Penaeus japonicus exceeded that of nucleotide-free form of Ras by 10-fold and four-fold, respectively. That is, the protein geranylgeranyl transferase I prefers to react with ras-encoded p25 fusion protein in the GDP bound form.

  5. Electrostatic Architecture of the Infectious Salmon Anemia Virus (ISAV) Core Fusion Protein Illustrates a Carboxyl-Carboxylate pH Sensor.

    Science.gov (United States)

    Cook, Jonathan D; Soto-Montoya, Hazel; Korpela, Markus K; Lee, Jeffrey E

    2015-07-24

    Segment 5, ORF 1 of the infectious salmon anemia virus (ISAV) genome, encodes for the ISAV F protein, which is responsible for viral-host endosomal membrane fusion during a productive ISAV infection. The entry machinery of ISAV is composed of a complex of the ISAV F and ISAV hemagglutinin esterase (HE) proteins in an unknown stoichiometry prior to receptor engagement by ISAV HE. Following binding of the receptor to ISAV HE, dissociation of the ISAV F protein from HE, and subsequent endocytosis, the ISAV F protein resolves into a fusion-competent oligomeric state. Here, we present a 2.1 Å crystal structure of the fusion core of the ISAV F protein determined at low pH. This structure has allowed us to unambiguously demonstrate that the ISAV entry machinery exhibits typical class I viral fusion protein architecture. Furthermore, we have determined stabilizing factors that accommodate the pH-dependent mode of ISAV transmission, and our structure has allowed the identification of a central coil that is conserved across numerous and varied post-fusion viral glycoprotein structures. We then discuss a mechanistic model of ISAV fusion that parallels the paramyxoviral class I fusion strategy wherein attachment and fusion are relegated to separate proteins in a similar fashion to ISAV fusion.

  6. 5-Fluorocytosine combined with Fcy-hEGF fusion protein targets EGFR-expressing cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Keng-Hsueh [Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei 100, Taiwan (China); Shih, Yi-Sheng [Cancer Center, Taipei Veterans General Hospital, Taipei 112, Taiwan (China); Chang, Cheng Allen [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan (China); Yen, Sang-Hue [Cancer Center, Taipei Veterans General Hospital, Taipei 112, Taiwan (China); Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Lan, Keng-Li, E-mail: kllan@vghtpe.gov.tw [Cancer Center, Taipei Veterans General Hospital, Taipei 112, Taiwan (China); Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan (China)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer EGFR-expressing epithelial cancers account for significant portion of cancer deaths. Black-Right-Pointing-Pointer EGF-EGFR signaling pathway is validated as an important anticancer drug target. Black-Right-Pointing-Pointer EGF and Fcy fusion protein (Fcy-hEGF) can bind to EGFR and convert 5-FC to 5-FU. Black-Right-Pointing-Pointer Fcy-hEGF combined with 5-FC preferentially inhibits EGFR-expressing cells viability. -- Abstract: Human epithelial cancers account for approximately 50% of all cancer deaths. This type of cancer is characterized by excessive activation and expression of the epidermal growth factor receptor (EGFR). The EGFR pathway is critical for cancer cell proliferation, survival, metastasis and angiogenesis. The EGF-EGFR signaling pathway has been validated as an important anticancer drug target. Increasing numbers of targeted therapies against this pathway have been either approved or are currently under development. Here, we adopted a prodrug system that uses 5-fluorocytosine (5-FC) and human EGF (hEGF) fused with yeast cytosine deaminase (Fcy) to target EGFR-overexpressing cancer cells and to convert 5-FC to a significantly more toxic chemotherapeutic, 5-fluorouracil (5-FU). We cloned and purified the Fcy-hEGF fusion protein from Pichia pastoris yeast. This fusion protein specifically binds to EGFR with a similar affinity as hEGF, approximately 10 nM. Fcy-hEGF binds tightly to A431 and MDA-MB-468 cells, which overexpress EGFR, but it binds with a lower affinity to MDA-MB-231 and MCF-7, which express lower levels of EGFR. Similarly, the viability of EGFR-expressing cells was suppressed by Fcy-hEGF in the presence of increasing concentrations of 5-FC, and the IC{sub 50} values for A431 and MDA-MB-468 were approximately 10-fold lower than those of MDA-MB-231 and MCF-7. This novel prodrug system, Fcy-hEGF/5-FC, might represent a promising addition to the available class of inhibitors that specifically target EGFR

  7. Sodium butyrate induces DRP1-mediated mitochondrial fusion and apoptosis in human colorectal cancer cells

    OpenAIRE

    Tailor, Dhanir; Hahm, Eun-Ryeong; Kale, Raosaheb K.; Singh, Shivendra V.; Singh, Rana P.

    2013-01-01

    Sodium butyrate (NaBt) is the byproduct of anaerobic microbial fermentation inside the gastro-intestinal tract that could reach upto 20 mM, and has been shown to inhibit the growth of various cancers. Herein, we evaluated its effect on mitochondrial fusion and associated induction of apoptosis in colorectal cancer cells (CRC). NaBt treatment at physiological (1-5 mM) concentrations for 12 and 24 h decreased the cell viability and induced G2-M phase cell cycle arrest in HCT116 (12h) and SW480 ...

  8. Enhancement of solubility and dissolution rate of poorly water soluble raloxifene using microwave induced fusion method

    OpenAIRE

    Payal Hasmukhlal Patil; Veena Sailendra Belgamwar; Pratibha Ramratan Patil; Sanjay Javerilal Surana

    2013-01-01

    The objective of the present work was to enhance the solubility and dissolution rate of the drug raloxifene HCl (RLX), which is poorly soluble in water. The solubility of RLX was observed to increase with increasing concentration of hydroxypropyl methylcellulose (HPMC E5 LV). The optimized ratio for preparing a solid dispersion (SD) of RLX with HPMC E5 LV using the microwave-induced fusion method was 1:5 w/w. Microwave energy was used to prepare SDs. HPMC E5 LV was used as a hydrophilic carri...

  9. Construction of Recombinant Bacmid Containing M2e-Ctxb and Producing the Fusion Protein in Insect Cell Lines

    Science.gov (United States)

    Mirzaei, Nima; Mokhtari Azad, Talat; Nategh, Rakhshandeh; Soleimanjahi, Hoorieh; Amirmozafari, Nour

    2014-01-01

    Background: Sequence variations in glycoproteins of influenza virus surface impel us to design new candidate vaccines yearly. Ectodomain of influenza M2 protein is a surface and highly conserved protein. M2e in influenza vaccines may eliminate the need for changing vaccine formulation every year. Objectives: In this study, a recombinant baculovirus containing M2e and cholera toxin subunit B fusion gene was generated with transposition process to express in large amounts in insect cell lines. Materials and Methods: M2e-ctxB fusion gene was created and cloned into pFastBac HT. The recombinant vector was transformed into DH10Bac cells to introduce the fusion gene into the bacmid DNA via a site-specific transposition process. The recombinant bacmid was then extracted from white colonies and further analyzed using PCR, DNA sequence analyzing, and indirect immunofluorescence assay. Results: PCR and DNA sequence analyzing results showed that the fusion gene was constructed as a single open reading frame and was successfully inserted into bacmid DNA. Moreover, indirect immunofluorescence results showed that the fusion gene was successfully expressed. Conclusions: Baculovirus expression vector system is valuable to produce M2e based influenza vaccines due to its simple utilization and ease of target gene manipulation. The expressed protein in such systems can improve the evaluating process of new vaccination strategies. PMID:24719728

  10. Nuclei of non-muscle cells bind centrosome proteins upon fusion with differentiating myoblasts.

    Directory of Open Access Journals (Sweden)

    Xavier Fant

    Full Text Available BACKGROUND: In differentiating myoblasts, the microtubule network is reorganized from a centrosome-bound, radial array into parallel fibres, aligned along the long axis of the cell. Concomitantly, proteins of the centrosome relocalize from the pericentriolar material to the outer surface of the nucleus. The mechanisms that govern this relocalization are largely unknown. METHODOLOGY: In this study, we perform experiments in vitro and in cell culture indicating that microtubule nucleation at the centrosome is reduced during myoblast differentiation, while nucleation at the nuclear surface increases. We show in heterologous cell fusion experiments, between cultures of differentiating mouse myoblasts and human cells of non-muscular origin, that nuclei from non-muscle cells recruit centrosome proteins once fused with the differentiating myoblasts. This recruitment still occurs in the presence of cycloheximide and thus appears to be independent of new protein biosynthesis. CONCLUSIONS: Altogether, our data suggest that nuclei of undifferentiated cells have the dormant potential to bind centrosome proteins, and that this potential becomes activated during myoblast differentiation.

  11. Antigen Binding and Site-Directed Labeling of Biosilica-Immobilized Fusion Proteins Expressed in Diatoms

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Nicole R.; Hecht, Karen A.; Hu, Dehong; Orr, Galya; Xiong, Yijia; Squier, Thomas; Rorrer, Gregory L.; Roesijadi, Guritno

    2016-01-08

    The diatom Thalassiosira pseudonana was genetically modified to express biosilica-targeted fusion proteins incorporating a tetracysteine tag for site-directed labeling with biarsenical affinity probes and either EGFP or single chain antibody to test colocalization of probes with the EGFP-tagged recombinant protein or binding of biosilica-immobilized antibodies to large and small molecule antigens, respectively. Site-directed labeling with the biarsenical probes demonstrated colocalization with EGFP-encoded proteins in nascent and mature biosilica, supporting their use in studying biosilica maturation. Isolated biosilica transformed with a single chain antibody against either the Bacillus anthracis surface layer protein EA1 or small molecule explosive trinitrotoluene (TNT) effectively bound the respective antigens. A marked increase in fluorescence lifetime of the TNT surrogate Alexa Fluor 555-trinitrobenzene reflected the high binding specificity of the transformed isolated biosilica. These results demonstrated the potential use of biosilica-immobilized single chain antibodies as binders for large and small molecule antigens in sensing and therapeutics.

  12. Fusion to chicken C3d enhances the immunogenicity of the M2 protein of avian influenza virus

    Directory of Open Access Journals (Sweden)

    Zhang Li

    2010-05-01

    Full Text Available Abstract Background Current vaccines to avian influenzae virus (AIV, a highly contagious disease of birds, need to be constantly updated due to the high level of variation in the target antigens. Therefore, a vaccine that could induce broad cross protection against AIV is required. The M2 membrane protein is structurally conserved amongst AIV subtypes but tends in induce a poor immune response, whereas C3d has been shown in many species to enhance immunogenicity. In this study, we investigated the potential of M2-avian C3d fusion proteins to provide effective immunity. Results We fused chicken complement C3d to sM2 (M2 protein with the transmembrane region deleted of AIV and expressed four fusion proteins, GST (Glutathione S-transferase tagged proteins in pGEX expression vector -C3d-sM2, GST-C3d-L2-sM2, GST-C3d-L1-C3d-sM2 and GST-C3d-L1-C3d-L2-sM2 were used to immunize mice. In addition, Specific pathogen free (SPF chickens were inoculated with the plasmids pcDNA-sM2, pcDNA-C3d-L1-C3d-L2-sM2, GST-sM2 and GST-C3d-L1-C3d-L2-sM2. The immune response was monitored by an enzyme-linked immunosorbent assay (ELISA for sM2 antibody, and all the test animals were challenged with A/chicken/Bei Jing/WD9/98 (H9N2 virus. Results revealed that the anti-sM2 antibody in mice and chickens vaccinated with these proteins was higher than the nonfused forms of sM2, the GST-C3d-L1-C3d-L2-sM2 groups have conferred the highest 30% and 20% protection ratio in mice and chickens respectively. In addition, the pcDNA-C3d-L1-C3d-L2-sM2 also enhances the antibody responses to sM2 compared to pcDNA-sM2 in chickens, and acquired 13.3% protection ratio. Conclusion These results indicated that chicken C3d enhanced the humoral immunity against AIV M2 protein either fused proteins expressed by the prokaryotic system or with the DNA vaccine. Nevertheless, in view of the poor protection ratio for these animals, we speculated that this is not a worthy developing of vaccine in these

  13. Analysis of Induced Gamma Activation by D-T Neutrons in Selected Fusion Reactor Relevant Materials with EAF-2010

    Science.gov (United States)

    Klix, Axel; Fischer, Ulrich; Gehre, Daniel

    2016-02-01

    Samples of lanthanum, erbium and titanium which are constituents of structural materials, insulating coatings and tritium breeder for blankets of fusion reactor designs have been irradiated in a fusion peak neutron field. The induced gamma activities were measured and the results were used to check calculations with the European activation system EASY-2010. Good agreement for the prediction of major contributors to the contact dose rate of the materials was found, but for minor contributors the calculation deviated up to 50%.

  14. Construction of a novel fusion protein harboring mouse inter- feron γ and epidermal growth factor receptor binding domain and enhancement of its antitumor activity

    Institute of Scientific and Technical Information of China (English)

    丁炎平; 谭维彦; 胡荣; 陈望秋; 侯云德

    1997-01-01

    A novel fusion protein harboring mouse interferon γ and epidermal growth factor receptor binding domain was constructed with the method of genetic and protein engineering. The fusion protein kept complete antiviral activity with the titer of 108 IU per liter of culture. The EGF-RBD of the fusion protein exhibited competitive binding activity against 125I-mEGF for mEGF receptors on A431 cells. The fusion protein was shown to be more potent in in-hibiting the growth of cultured mouse breast carcinoma cells than interferon γ. Experimental data on mouse B16 malig-nant melanoma model indicated that the tumor weight of fusion protein-treated group was statistically significantly smaller than that of interferon γ-treated group. The work here provides a necessarily reliable clue for the upcoming clinical employment of a novel class of targeting interferons.

  15. A Novel Two Domain-Fusion Protein in Cyanobacteria with Similarity to the CAB/ELIP/HLIP Superfamily: Evolutionary Implications and Regulation

    Institute of Scientific and Technical Information of China (English)

    Oliver Kilian; Anne Soisig Steunou; Arthur R.Grossman; Devaki Bhaya

    2008-01-01

    Vascular plants contain abundant, light-harvesting complexes in the thylakoid membrane that are non-covalently associated with chlorophylls and carotenoids. These light-harvesting chlorophyll a/b binding (LHC) proteins are members of an extended CAB/ELIP/HLIP superfamily of distantly related polypeptides, which have between one and four transmembrane helices (TMH). This superfamily includes the single TMH, high-light-inducible proteins (Hlips), found in cyanobacteria that are induced by various stress conditions, including high light, and are considered ancestral to the LHC proteins. The roles of, and evolutionary relationships between, these superfamily members are of particular interest,since they function in both light harvesting and photoprotection and may have evolved through tandem gene duplication and fusion events. We have investigated the Hlips (hli gene family) in the thermophilic unicellular cyanobacterium Synechococcus OS-B'. The five hli genes present on the genome of Synechococcus OS-B' are relatively similar, but transcript analyses indicate that there are different patterns of transcript accumulation when the cells are exposed to various growth conditions, suggesting that different Hlips may have specific functions. Hlip5 has an additional TMH at the N-terminus as a result of a novel fusion event. This additional TMH is very similar to a conserved hypothetical, single membrane-spanning polypeptide present in most cyanobacteria. The evolutionary significance of these results is discussed.

  16. Ca2+ -regulated lysosome fusion mediates angiotensin II-induced lipid raft clustering in mesenteric endothelial cells.

    Science.gov (United States)

    Han, Wei-Qing; Chen, Wen-Dong; Zhang, Ke; Liu, Jian-Jun; Wu, Yong-Jie; Gao, Ping-Jin

    2016-04-01

    It has been reported that intracellular Ca2+ is involved in lysosome fusion and membrane repair in skeletal cells. Given that angiotensin II (Ang II) elicits an increase in intracellular Ca2+ and that lysosome fusion is a crucial mediator of lipid raft (LR) clustering, we hypothesized that Ang II induces lysosome fusion and activates LR formation in rat mesenteric endothelial cells (MECs). We found that Ang II acutely increased intracellular Ca2+ content, an effect that was inhibited by the extracellular Ca2+ chelator ethylene glycol tetraacetic acid (EGTA) and the inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release inhibitor 2-aminoethoxydiphenyl borate (2-APB). Further study showed that EGTA almost completely blocked Ang II-induced lysosome fusion, the translocation of acid sphingomyelinase (ASMase) to LR clusters, ASMase activation and NADPH (nicotinamide adenine dinucleotide phosphate) oxidase activation. In contrast, 2-APB had a slight inhibitory effect. Functionally, both the lysosome inhibitor bafilomycin A1 and the ASMase inhibitor amitriptyline reversed Ang II-induced impairment of vasodilation. We conclude that Ca2+ -regulated lysosome fusion mediates the Ang II-induced regulation of the LR-redox signaling pathway and mesenteric endothelial dysfunction.

  17. Two active molecular phenotypes of the tachykinin NK1 receptor revealed by G-protein fusions and mutagenesis

    DEFF Research Database (Denmark)

    Holst, B; Hastrup, H; Raffetseder, U

    2001-01-01

    either Galpha(s) or Galpha(q) and the NK1 receptor with a truncated tail, which secured non-promiscuous G-protein interaction, demonstrated monocomponent agonist binding closely corresponding to either of the two affinity states found in the wild-type receptor. High affinity binding of both substance P...... and neurokinin A was observed in the tail-truncated Galpha(s) fusion construct, whereas the lower affinity component was displayed by the tail-truncated Galpha(q) fusion. The elusive difference between the affinity determined in heterologous versus homologous binding assays for substance P and especially...... for neurokinin A was eliminated in the G-protein fusions. An NK1 receptor mutant with a single substitution at the extracellular end of TM-III-(F111S), which totally uncoupled the receptor from Galpha(s) signaling, showed binding properties that were monocomponent and otherwise very similar to those observed...

  18. CRISPR/Cas9 Engineering of Adult Mouse Liver Demonstrates That the Dnajb1-Prkaca Gene Fusion is Sufficient to Induce Tumors Resembling Fibrolamellar Hepatocellular Carcinoma

    DEFF Research Database (Denmark)

    Engelholm, Lars H; Riaz, Anjum; Serra, Denise

    2017-01-01

    ) to the protein kinase cAMP-activated catalytic subunit alpha gene (PRKACA) has been repeatedly identified in patients with FL-HCC. However, the DNAJB1-PRKACA gene fusion has not been shown to induce liver tumorigenesis. We used the CRISPR/Cas9 technique to delete in mice the syntenic region on chromosome 8...... to create a Dnajb1-Prkaca fusion and monitored the mice for liver tumor development. METHODS: We delivered CRISPR/Cas9 vectors designed to juxtapose exon 1 of Dnajb1 with exon 2 of Prkaca to create the Dnajb1-Prkaca gene fusion associated with FL-HCC, or control Cas9 vector, via hydrodynamic tail vein......, as observed in human FL-HCC. CONCLUSIONS: Using CRISPR/Cas9 technology, we found generation of the Dnajb1-Prkaca fusion gene in wild-type mice to be sufficient to initiate formation of tumors that have many features of human FL-HCC. Strategies to block DNAJB1-PRKACA might be developed as therapeutics...

  19. Plant science. Morphinan biosynthesis in opium poppy requires a P450-oxidoreductase fusion protein.

    Science.gov (United States)

    Winzer, Thilo; Kern, Marcelo; King, Andrew J; Larson, Tony R; Teodor, Roxana I; Donninger, Samantha L; Li, Yi; Dowle, Adam A; Cartwright, Jared; Bates, Rachel; Ashford, David; Thomas, Jerry; Walker, Carol; Bowser, Tim A; Graham, Ian A

    2015-07-17

    Morphinan alkaloids from the opium poppy are used for pain relief. The direction of metabolites to morphinan biosynthesis requires isomerization of (S)- to (R)-reticuline. Characterization of high-reticuline poppy mutants revealed a genetic locus, designated STORR [(S)- to (R)-reticuline] that encodes both cytochrome P450 and oxidoreductase modules, the latter belonging to the aldo-keto reductase family. Metabolite analysis of mutant alleles and heterologous expression demonstrate that the P450 module is responsible for the conversion of (S)-reticuline to 1,2-dehydroreticuline, whereas the oxidoreductase module converts 1,2-dehydroreticuline to (R)-reticuline rather than functioning as a P450 redox partner. Proteomic analysis confirmed that these two modules are contained on a single polypeptide in vivo. This modular assembly implies a selection pressure favoring substrate channeling. The fusion protein STORR may enable microbial-based morphinan production.

  20. Intracellular delivery of cell-penetrating peptide-transcriptional factor fusion protein and its role in selective osteogenesis

    Directory of Open Access Journals (Sweden)

    Suh JS

    2014-03-01

    Full Text Available Jin Sook Suh,1,* Jue Yeon Lee,2,* Yoon Jung Choi,1 Hyung Keun You,3 Seong-Doo Hong,4 Chong Pyoung Chung,2 Yoon Jeong Park1,2 1Dental Regenerative Biotechnology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 2Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC, Seoul, 3Department of Periodontology, College of Dentistry, Wonkwang University, Iksan, 4Department of Oral Pathology, School of Dentistry, Seoul National University, Seoul, Republic of Korea *These authors contributed equally to this work Abstract: Protein-transduction technology has been attempted to deliver macromolecular materials, including protein, nucleic acids, and polymeric drugs, for either diagnosis or therapeutic purposes. Herein, fusion protein composed of an arginine-rich cell-penetrating peptide, termed low-molecular-weight protamine (LMWP, and a transcriptional coactivator with a PDZ-binding motif (TAZ protein was prepared and applied in combination with biomaterials to increase bone-forming capacity. TAZ has been recently identified as a specific osteogenic stimulating transcriptional coactivator in human mesenchymal stem cell (hMSC differentiation, while simultaneously blocking adipogenic differentiation. However, TAZ by itself cannot penetrate the cells, and thus needs a transfection tool for translocalization. The LMWP-TAZ fusion proteins were efficiently translocalized into the cytosol of hMSCs. The hMSCs treated with cell-penetrating LMWP-TAZ exhibited increased expression of osteoblastic genes and protein, producing significantly higher quantities of mineralized matrix compared to free TAZ. In contrast, adipogenic differentiation of the hMSCs was blocked by treatment of LMWP-TAZ fusion protein, as reflected by reduced marker-protein expression, adipocyte fatty acid-binding protein 2, and peroxisome proliferator-activated receptor-γ messenger ribonucleic acid levels. LMWP-TAZ was applied in